Sample records for psychrophilic microorganisms challenges

  1. Psychrophilic Microorganisms from Areas Associated with the Viking Spacecraft

    PubMed Central

    Foster, Terry L.; Winans, Luther

    1975-01-01

    Microorganisms capable of growth at 7 C were enumerated and isolated from soil samples from the manufacture and assembly areas of the Viking spacecraft. Populations ranging from 4.2 × 103 to 7.7 × 106/g of soil were isolated from the 15 soil samples examined. Temperature requirements were determined, and those growing at 3 C, but not at 32 C, were designated as obligate psychrophiles in this investigation. Populations of soil bacteria, including aerobic sporeformers, ranging from 1.5 × 102 to 9.8 × 105/g were capable of growth at 3 C, but not at 32 C. Bacterial isolates were identified to major generic groups. No psychrophilic sporeformers were isolated from soil from the manufacture area, but psychrophilic sporeformers ranged from 0 to 6.1 × 103/g from soil from the assembly area. PMID:1190759

  2. Psychrophiles

    NASA Astrophysics Data System (ADS)

    Siddiqui, Khawar S.; Williams, Timothy J.; Wilkins, David; Yau, Sheree; Allen, Michelle A.; Brown, Mark V.; Lauro, Federico M.; Cavicchioli, Ricardo

    2013-05-01

    Psychrophilic (cold-adapted) microorganisms make a major contribution to Earth's biomass and perform critical roles in global biogeochemical cycles. The vast extent and environmental diversity of Earth's cold biosphere has selected for equally diverse microbial assemblages that can include archaea, bacteria, eucarya, and viruses. Underpinning the important ecological roles of psychrophiles are exquisite mechanisms of physiological adaptation. Evolution has also selected for cold-active traits at the level of molecular adaptation, and enzymes from psychrophiles are characterized by specific structural, functional, and stability properties. These characteristics of enzymes from psychrophiles not only manifest in efficient low-temperature activity, but also result in a flexible protein structure that enables biocatalysis in nonaqueous solvents. In this review, we examine the ecology of Antarctic psychrophiles, physiological adaptation of psychrophiles, and properties of cold-adapted proteins, and we provide a view of how these characteristics inform studies of astrobiology.

  3. Biotechnological uses of enzymes from psychrophiles

    PubMed Central

    Cavicchioli, R.; Charlton, T.; Ertan, H.; Omar, S. Mohd; Siddiqui, K. S.; Williams, T. J.

    2011-01-01

    Summary The bulk of the Earth's biosphere is cold (e.g. 90% of the ocean's waters are ≤ 5°C), sustaining a broad diversity of microbial life. The permanently cold environments vary from the deep ocean to alpine reaches and to polar regions. Commensurate with the extent and diversity of the ecosystems that harbour psychrophilic life, the functional capacity of the microorganisms that inhabitat the cold biosphere are equally diverse. As a result, indigenous psychrophilic microorganisms provide an enormous natural resource of enzymes that function effectively in the cold, and these cold‐adapted enzymes have been targeted for their biotechnological potential. In this review we describe the main properties of enzymes from psychrophiles and describe some of their known biotechnological applications and ways to potentially improve their value for biotechnology. The review also covers the use of metagenomics for enzyme screening, the development of psychrophilic gene expression systems and the use of enzymes for cleaning. PMID:21733127

  4. A study of psychrophilic organisms isolated from the manufacture and assembly areas of spacecraft to be used in the Viking mission

    NASA Technical Reports Server (NTRS)

    Foster, T. L.; Winans, L., Jr.

    1974-01-01

    The ability of psychrophilic microorganisms to grow in some of the environmental conditions suggested for Mars is studied with particular attention given to the effects of moisture and nutrients on growth. Results of growth with the slide culture technique are presented and indicate that this technique can be a rapid and sensitive technique for demonstration of microbial growth under various environmental conditions. Additional soil samples have been obtained from Cape Kennedy, and results of these assays at various low temperatures for psychrophilic populations are presented. The heat resistance of some of the psychrophilic sporeformers have been determined. Psychrophilic organisms were isolated from the teflon ribbons at Cape Kennedy and characterization of these was begun. In addition, heat survivors from the teflon ribbons are being investigated, and partial characterizations of these are presented.

  5. Psychrophilic and Psychrotolerant Microbial Extremophiles in Polar Environments

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Pikuta, Elena V.

    2010-01-01

    The microbial extremophiles that inhabit the polar regions of our planet are of tremendous significance. The psychrophilic and psychrotolerant microorganisms, which inhabit all of the cold environments on Earth have important applications to Bioremediation, Medicine, Pharmaceuticals, and many other areas of Biotechnology. Until recently, most of the research on polar microorganisms was confined to studies of polar diatoms, yeast, fungi and cyanobacteria. However, within the past three decades, extensive studies have been conducted to understand the bacteria and archaea that inhabit the Arctic and Antarctic sea-ice, glaciers, ice sheets, permafrost and the cryptoendolithic, cryoconite and ice-bubble environments. These investigations have resulted in the discovery of many new genera and species of anaerobic and aerobic microbial extremophiles. Exotic enzymes, cold-shock proteins and pigments produced by some of the extremophiles from polar environments have the potential to be of great benefit to Mankind. Knowledge about microbial life in the polar regions is crucial to understanding the limitations and biodiversity of life on Earth and may provide valuable clues to the Origin of Life on Earth. The discovery of viable microorganisms in ancient ice from the Fox Tunnel, Alaska and the deep Vostok Ice has shown that microorganisms can remain alive while cryopreserved in ancient ice. The psychrophilic lithoautotrophic homoacetogen isolated from the deep anoxic trough of Lake Untersee is an ideal candidate for life that might inhabit comets or the polar caps of Mars. The spontaneous release of gas from within the Anuchin Glacier above Lake Untersee may provide clues to the ice geysers that erupt from the tiger stripe regions of Saturn s moon Enceladus. The methane productivity in the lower regimes of Lake Untersee may also provide insights into possible mechanisms for the recently discovered methane releases on Mars. Since most of the other water bearing bodies of our

  6. A study of psychrophilic organisms isolated from the manufacture and assembly areas of spacecraft to be used in the Viking mission

    NASA Technical Reports Server (NTRS)

    Foster, T. L.; Winans, L., Jr.

    1973-01-01

    The sampling of soils from the manufacture and assembly areas of the Viking spacecraft is reported and the methodology employed in the analysis of these samples for psychrophilic microorganisms, and temperature studies on these organisms is outlined. Results showing the major types of organisms and the percentage of obligate psychrophiles in each sample are given and discussed. Emphasis in all areas is toward application of these results to the objectives of the planetary quarantine program.

  7. Quantitative ecology and dry-heat resistance of psychrophiles. M.S. Thesis; [in soil samples from Viking spacecraft manufacturing areas

    NASA Technical Reports Server (NTRS)

    Winans, L., Jr.

    1974-01-01

    Microorganisms capable of growth at 7 C were enumerated and isolated from soil samples from the manufacture area (Denver, Colorado) and assembly area (Cape Kennedy, Florida) of the Viking spacecraft. Temperature requirements were determined for these isolates, and those growing at 3 C, but not at 32 C were designated as obligate psychrophiles in this investigation. These were identified to major generic groups, and the population density of obligate psychrophiles from the various groups was determined. Dry heat D-values were found for those spores that demonstrated growth or survival under a simulated Martian environment.

  8. Psychrophilic Biomass Producers in the Trophic Chain of the Microbial Community of Lake Untersee, Antarctica

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.

    2010-01-01

    The study of photosynthetic microorganisms from the Lake Untersee samples showed dispersed distribution of phototrophs within 80 m water column. Lake Untersee represents a unique ecosystem that experienced complete isolation: sealed by the Anuchin Glacier for many millennia. Consequently, its biocenosis has evolved over a significant period of time without exchange or external interaction with species from other environments. The major producers of organic matter in Lake Untersee are represented by phototrophic and chemolithotrophic microorganisms. This is the traditional trophic scheme for lacustrine ecosystems on Earth. Among the phototrophs, diatoms were not found, which differentiates this lake from other known ecosystems. The dominant species among phototrophs was Chlamydomonas sp. with typical morphostructure: green chloroplasts, bright red round spot, and two polar flagella near the opening. As expected, the physiology of studied phototrophs was limited by low temperature, which defined them as obligate psychrophilic microorganisms. By the quantity estimation of methanogenesis in this lake, the litho-autotrophic production of organic matter is competitive with phototrophic production. However, pure cultures of methanogens have not yet been obtained. We discuss the primary producers of organic matter and the participation of our novel psychrophilic homoacetogen into the litho-autotrophic link of biomass production in Lake Untersee.

  9. Biomethanation under psychrophilic conditions.

    PubMed

    Dhaked, Ram Kumar; Singh, Padma; Singh, Lokendra

    2010-12-01

    The biomethanation of organic matter represents a long-standing, well-established technology. Although at mesophilic and thermophilic temperatures the process is well understood, current knowledge on psychrophilic biomethanation is somewhat scarce. Methanogenesis is particularly sensitive to temperature, which not only affects the activity and structure of the microbial community, but also results in a change in the degradation pathway of organic matter. There is evidence of psychrophilic methanogenesis in natural environments, and a number of methanogenic archaea have been isolated with optimum growth temperatures of 15-25 °C. At psychrophilic temperatures, large amounts of heat are needed to operate reactors, thus resulting in a marginal or negative overall energy yield. Biomethanation at ambient temperature can alleviate this requirement, but for stable biogas production, a microbial consortium adapted to low temperatures or a psychrophilic consortium is required. Single-step or two-step high rate anaerobic reactors [expanded granular sludge bed (EGSB) and up flow anaerobic sludge bed (UASB)] have been used for the treatment of low strength wastewater. Simplified versions of these reactors, such as anaerobic sequencing batch reactors (ASBR) and anaerobic migrating blanket reactor (AMBR) have also been developed with the aim of reducing volume and cost. This technology has been further simplified and extended for the disposal of night soil in high altitude, low temperature areas of the Himalayas, where the hilly terrain, non-availability of conventional energy, harsh climate and space constraints limit the application of complicated reactors. Biomethanation at psychrophilic temperatures and the contribution made to night-soil degradation in the Himalayas are reviewed in this article. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Dry-heat resistance of selected psychrophiles.

    PubMed Central

    Winans, L; Pflug, I J; Foster, T L

    1977-01-01

    The dry-heat resistance characteristics of spores of psychrophilic organisms isolated from soil samples from the Viking spacecraft assembly areas at Cape Kennedy Space Flight Center, Cape Canaveral, Fla., were studied. Spore suspensions were produced, and dry-heat D values were determined for the microorganisms that demonstrated growth or survival under a simulated Martian environment. The dry-heat tests were carried out by using the planchet-boat-hot plate system at 110 and 125 degrees C with an ambient relative humidity of 50% at 22 degrees C. The spores evaluated had a relatively low resistance to dry heat. D(110 degrees C) values ranged from 7.5 to 122 min, whereas the D(123 degrees C) values ranged from less than 1.0 to 9.8 min. PMID:410367

  11. Isolation and Physiological Characterization of Psychrophilic Denitrifying Bacteria from Permanently Cold Arctic Fjord Sediments (Svalbard, Norway)

    NASA Technical Reports Server (NTRS)

    Canion, Andy; Prakash, Om; Green, Stefan J.; Jahnke, Linda; Kuypers, Marcel M. M.; Kostka, Joel E.

    2013-01-01

    A large proportion of reactive nitrogen loss from polar sediments is mediated by denitrification, but microorganisms mediating denitrification in polar environments remain poorly characterized. A combined approach of most-probable-number (MPN) enumeration, cultivation and physiological characterization was used to describe psychrophilic denitrifying bacterial communities in sediments of three Arctic fjords in Svalbard (Norway). A MPN assay showed the presence of 10(sup 3)-10(sup 6) cells of psychrophilic nitrate-respiring bacteria g(sup -1) of sediment. Fifteen strains within the Proteobacteria were isolated using a systematic enrichment approach with organic acids as electron donors and nitrate as an electron acceptor. Isolates belonged to five genera, including Shewanella, Pseudomonas, Psychromonas (Gammaproteobacteria), Arcobacter (Epsilonproteobacteria) and Herminiimonas (Betaproteobacteria). All isolates were denitrifiers, except Shewanella, which exhibited the capacity for dissimilatory nitrate reduction to ammonium (DNRA). Growth from 0 to 40 degC demonstrated that all genera except Shewanella were psychrophiles with optimal growth below 15 degC, and adaptation to low temperature was demonstrated as a shift from primarily C16:0 saturated fatty acids to C16:1 monounsaturated fatty acids at lower temperatures. This study provides the first targeted enrichment and characterization of psychrophilic denitrifying bacteria from polar sediments, and two genera, Arcobacter and Herminiimonas, are isolated for the first time from permanently cold marine sediments.

  12. Psychrophilic and Mesophilic Fungi in Frozen Food Products

    PubMed Central

    Kuehn, Harold H.; Gunderson, Millard F.

    1963-01-01

    The mold flora of certain frozen pastries and chicken pies was investigated. Molds were determined qualitatively or quantitatively, or both, by preparing pour plates of the blended product and incubating the plates at various temperatures. The mesophilic fungal flora developed on plates incubated at 10 and 20 C, whereas psychrophilic fungi were obtained on plates incubated at 0 and 5 C. About 2,000 cultures of fungi, representing about 100 different species, were isolated from various products. Four different brands of blueberry, two brands of cherry pastries, two brands of apple, and one brand of raspberry pastries were examined. In addition, two brands of chicken pies were studied. Blueberry pastries had a much higher total fungal population than the other products, although different brands of blueberry pastries varied considerably. Blueberry pastries had from 347 to 1,586 psychrophilic fungi per g. Cherry pastries had about 70 to 110 psychrophiles per g, and apple pastries had 19 to 92 psychrophiles per g. Chicken pies contained very few psychrophilic fungi, about 15 per g. Aureobasidium pullulans was recovered most frequently. About 90% of the psychrophilic fungi found in blueberry products was A. pullulans. Depending upon the brand of cherry pastry, either Phoma spp. or A. pullulans was the most common fungus present. Apple pastries also displayed brand variation, but were unique in having many mesophilic aspergilli. This genus was generally absent from other products. The Penicillium content of apple pastries was also rather high; 50% of the psychrophilic flora was represented by this genus. The psychrophilic fungal flora of chicken pies was composed primarily of penicillia (50%) and Chrysosporium pannorum (46%). PMID:13927344

  13. Thermolabile triose phosphate isomerase in a psychrophilic Clostridium.

    NASA Technical Reports Server (NTRS)

    Shing, Y. W.; Akagi, J. M.; Himes, R. H.

    1972-01-01

    It was found that a psychrophilic Clostridium contains a triose phosphate isomerase which is very labile at moderate temperatures. An investigation showed that the optimal growth temperature of the psychrophile was between 15 and 20 deg C. No growth occurred at 25 deg C. The thermostability of the glycolytic enzymes in the cell-free extracts of Clostridium sp. strain 69 was studied. The data obtained show that the triose phosphate isomerase is quite labile at moderate temperatures. The instability of the enzyme is sufficient to explain the low maximum growth temperature of the psychrophile.

  14. Screening of Microorganisms Producing Cold-Active Oxidoreductases to Be Applied in Enantioselective Alcohol Oxidation. An Antarctic Survey

    PubMed Central

    Araújo, Lidiane S.; Kagohara, Edna; Garcia, Thaís P.; Pellizari, Vivian H.; Andrade, Leandro H.

    2011-01-01

    Several microorganisms were isolated from soil/sediment samples of Antarctic Peninsula. The enrichment technique using (RS)-1-(phenyl)ethanol as a carbon source allowed us to isolate 232 psychrophile/psychrotroph microorganisms. We also evaluated the enzyme activity (oxidoreductases) for enantioselective oxidation reactions, by using derivatives of (RS)-1-(phenyl)ethanol as substrates. Among the studied microorganisms, 15 psychrophile/psychrotroph strains contain oxidoreductases that catalyze the (S)-enantiomer oxidation from racemic alcohols to their corresponding ketones. Among the identified microorganisms, Flavobacterium sp. and Arthrobacter sp. showed excellent enzymatic activity. These new bacteria strains were selected for optimization study, in which the (RS)-1-(4-methyl-phenyl)ethanol oxidation was evaluated in several reaction conditions. From these studies, it was observed that Flavobacterium sp. has an excellent enzymatic activity at 10 °C and Arthrobacter sp. at 15 and 25 °C. We have also determined the growth curves of these bacteria, and both strains showed optimum growth at 25 °C, indicating that these bacteria are psychrotroph. PMID:21673897

  15. Dry-heat resistance of selected psychrophiles. [Viking lander in spacecraft sterilization

    NASA Technical Reports Server (NTRS)

    Winans, L.; Pflug, I. J.; Foster, T. L.

    1977-01-01

    The dry-heat resistance characteristics of spores of psychrophilic organisms isolated from soil samples from the Viking spacecraft assembly areas at Cape Kennedy Space Flight Center, Cape Canaveral, Fla., were studied. Spore suspensions were produced, and dry-heat D values were determined for the microorganisms that demonstrated growth or survival under a simulated Martian environment. The dry-heat tests were carried out by using the planchet-boat-hot plate system at 110 and 125 C with an ambient relative humidity of 50% at 22 C. The spores evaluated had a relatively low resistance to dry heat. D (110 C) values ranged from 7.5 to 122 min, whereas the D (125 C) values ranged from less than 1.0 to 9.8 min.

  16. Complete genome sequence of Pseudomonas antarctica PAMC 27494, a bacteriocin-producing psychrophile isolated from Antarctica.

    PubMed

    Lee, Jaejin; Cho, Yong-Joon; Yang, Jae Young; Jung, You-Jung; Hong, Soon Gyu; Kim, Ok-Sun

    2017-10-10

    Antimicrobial-producing, cold-adapted microorganisms have great potential for biotechnological applications in food, pharmaceutical, and cosmetic industries. Pseudomonas antarctica PAMC 27494, a psychrophile exhibiting antimicrobial activity, was isolated from an Antarctic freshwater sample. Here we report the complete genome of P. antarctica PAMC 27494. The strain contains a gene cluster encoding microcin B which inhibits DNA regulations by targeting the DNA gyrase. PAMC 27494 may produce R-type pyocins and also contains a complete set of proteins for the biosynthesis of adenosylcobalamin and possibly induces plant growth by supplying pyrroloquinoline quionone molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Efficient aspartic acid production by a psychrophile-based simple biocatalyst.

    PubMed

    Tajima, Takahisa; Hamada, Mai; Nakashimada, Yutaka; Kato, Junichi

    2015-10-01

    We previously constructed a Psychrophile-based Simple bioCatalyst (PSCat) reaction system, in which psychrophilic metabolic enzymes are inactivated by heat treatment, and used it here to study the conversion of aspartic acid from fumaric acid mediated by the activity of aspartate ammonia-lyase (aspartase). In Escherichia coli, the biosynthesis of aspartic acid competes with that of L-malic acid produced from fumaric acid by fumarase. In this study, E. coli aspartase was expressed in psychrophilic Shewanella livingstonensis Ac10 heat treated at 50 °C for 15 min. The resultant PSCat could convert fumaric acid to aspartic acid without the formation of L-malic acid because of heat inactivation of psychrophilic fumarase activity. Furthermore, alginate-immobilized PSCat produced high yields of aspartic acid and could be re-used nine times. The results of our study suggest that PSCat can be applied in biotechnological production as a new approach to increase the yield of target compounds.

  18. A study of psychrophilic organisms isolated from the manufacture and assembly areas of spacecraft to be used in the Viking mission, 1 January - 30 June 1973

    NASA Technical Reports Server (NTRS)

    Foster, T. L.; Winans, L., Jr.

    1973-01-01

    Soil samples from the areas associated with the Viking spacecraft were analyzed for major generic groups of microorganisms and the percentage of obligate psychrophiles. Results are presented which show the distribution of organisms isolated at low temperatures and the methods employed for subjecting samples to simulated Martian conditions. Emphasis is placed on application of these results to the objectives of the quarantine program.

  19. Identity and physiology of a new psychrophilic eukaryotic green alga, Chlorella sp., strain BI, isolated from a transitory pond near Bratina Island, Antarctica

    USGS Publications Warehouse

    Morgan-Kiss, R. M.; Ivanov, A.G.; Modla, S.; Czymmek, K.; Huner, N.P.A.; Priscu, J.C.; Lisle, J.T.; Hanson, T.E.

    2008-01-01

    Permanently low temperature environments are one of the most abundant microbial habitats on earth. As in most ecosystems, photosynthetic organisms drive primary production in low temperature food webs. Many of these phototrophic microorganisms are psychrophilic; however, functioning of the photosynthetic processes of these enigmatic psychrophiles (the 'photopsychrophiles') in cold environments is not well understood. Here we describe a new chlorophyte isolated from a low temperature pond, on the Ross Ice Shelf near Bratina Island, Antarctica. Phylogenetic and morphological analyses place this strain in the Chlorella clade, and we have named this new chlorophyte Chlorella BI. Chlorella BI is a psychrophilic species, exhibiting optimum temperature for growth at around 10??C. However, psychrophily in the Antarctic Chlorella was not linked to high levels of membrane-associated poly-unsaturated fatty acids. Unlike the model Antarctic lake alga, Chlamydomonas raudensis UWO241, Chlorella BI has retained the ability for dynamic short term adjustment of light energy distribution between photosystem II (PS II) and photosystem I (PS I). In addition, Chlorella BI can grow under a variety of trophic modes, including heterotrophic growth in the dark. Thus, this newly isolated photopsychrophile has retained a higher versatility in response to environmental change than other well studied cold-adapted chlorophytes. ?? 2008 Springer.

  20. Psychrophiles and astrobiology: microbial life of frozen worlds

    NASA Astrophysics Data System (ADS)

    Pikuta, Elena V.; Hoover, Richard B.

    2003-01-01

    Most bodies of our Solar System are "Frozen Worlds" where the prevailing surface temperature remains at or below freezing. On Earth there are vast permanently frozen regions of permafrost, polar ice sheets, and glaciers and the deep oceans and deep-sea marine sediments have remained at 2 - 4°C for eons. Psychrophilic and psychrotrophic microbiota that inhabit these regimes provide analogs for microbial life that might inhabit ice sheets and permafrost of Mars, comets, or the ice/water interfaces or sediments deep beneath the icy crusts of Europa, Callisto, or Ganymede. Cryopreserved micro-organisms can remain viable (in a deep anabiotic state) for millions of years frozen in permafrost and ice. Psychrophilic and psychrotrophic (cold-loving) microbes can carry out metabolic processes in water films and brine, acidic, or alkaline chanels in permafrost or ice at temperatures far below 0°C. These microbes of the cryosphere help define the thermal and temporal limits of life on Earth and may provide clues to where and how to search for evidence of life elsewhere in the Cosmos. Astrobiologists at the NASA Marshall Space Flight Center have collected microbial extremophiles from the Pleistocene ice wedges and frozen thermokarst ponds from the Fox Permafrost Tunnel of Alaska. Microbes have also been isolated from samples of Magellanic Penguin guano from Patagonia; deep-sea marine muds near hydrothermal vents; snow and permafrost from Siberia, and deep ice cores, ice-bubble and cryoconite rocks of the Central Antarctic Ice Sheet. These samples have yielded microbial extremophiles representing a wide variety of anaerobic bacteria and archaea. These microbes have been isolated, cultured, characterized and analyzed by phylogenetic and genomic methods. Images were obtained by Phase Contrast, Environmental, Field Emission Scanning and Transmission Electron Microscopes to study the ultra-microstructure and elemental distribution in the composition of these micro-organisms. We

  1. Alkane hydroxylase genes in psychrophile genomes and the potential for cold active catalysis.

    PubMed

    Bowman, Jeff S; Deming, Jody W

    2014-12-16

    Psychrophiles are presumed to play a large role in the catabolism of alkanes and other components of crude oil in natural low temperature environments. In this study we analyzed the functional diversity of genes for alkane hydroxylases, the enzymes responsible for converting alkanes to more labile alcohols, as found in the genomes of nineteen psychrophiles for which alkane degradation has not been reported. To identify possible mechanisms of low temperature optimization we compared putative alkane hydroxylases from these psychrophiles with homologues from nineteen taxonomically related mesophilic strains. Seven of the analyzed psychrophile genomes contained a total of 27 candidate alkane hydroxylase genes, only two of which are currently annotated as alkane hydroxylase. These candidates were mostly related to the AlkB and cytochrome p450 alkane hydroxylases, but several homologues of the LadA and AlmA enzymes, significant for their ability to degrade long-chain alkanes, were also detected. These putative alkane hydroxylases showed significant differences in primary structure from their mesophile homologues, with preferences for specific amino acids and increased flexibility on loops, bends, and α-helices. A focused analysis on psychrophile genomes led to discovery of numerous candidate alkane hydroxylase genes not currently annotated as alkane hydroxylase. Gene products show signs of optimization to low temperature, including regions of increased flexibility and amino acid preferences typical of psychrophilic proteins. These findings are consistent with observations of microbial degradation of crude oil in cold environments and identify proteins that can be targeted in rate studies and in the design of molecular tools for low temperature bioremediation.

  2. Anaerobic psychrophiles from Alaska, Antarctica, and Patagonia: implications to possible life on Mars and Europa

    NASA Astrophysics Data System (ADS)

    Hoover, Richard B.; Pikuta, Elena V.; Marsic, Damien; Ng, Joseph D.

    2002-02-01

    Microorganisms preserved within the permafrost, glaciers, and polar ice sheets of planet Earth provide analogs for microbial life forms that may be encountered in ice or permafrost of Mars, Europa, Callisto, Ganymede, asteroids, comets or other frozen worlds in the Cosmos. The psychrophilic and psychrotolerant microbes of the terrestrial cryosphere help establish the thermal and temporal limitations of life on Earth and provide clues to where and how we should search for evidence of life elsewhere in the Universe. For this reason, the cold-loving microorganisms are directly relevant to Astrobiology. Cryopreserved microorganisms can remain viable (in deep anabiosis) in permafrost and ice for millions of years. Permafrost, ice wedges, pingos, glaciers, and polar ice sheets may contain intact ancient DNA, lipids, enzymes, proteins, genes, and even frozen and yet viable ancient microbiota. Some microorganisms carry out metabolic processes in water films and brine, acidic, or alkaline channels in permafrost or ice at temperatures far below 0 degree(s)C. Complex microbial communities live in snow, ice-bubbles, cryoconite holes on glaciers and ancient microbial ecosystems are cryopreserved within the permafrost, glaciers, and polar caps. In the Astrobiology group of the NASA Marshall Space Flight Center and the University of Alabama at Huntsville, we have employed advanced techniques for the isolation, culture, and phylogenetic analysis of many types of microbial extremophiles. We have also used the Environmental Scanning Electron Microscope to study the morphology, ultra-microstructure and chemical composition of microorganisms in ancient permafrost and ice. We discuss several interesting and novel anaerobic microorganisms that we have isolated and cultured from the Pleistocene ice of the Fox Tunnel of Alaska, guano of the Magellanic Penguin, deep-sea sediments from the vicinity of the Rainbow Hydrothermal Vent and enrichment cultures from ice of the Patriot Hills of

  3. Anaerobic Psychrophiles from Alaska, Antarctica, and Patagonia: Implications to Possible Life on Mars and Europa

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Pikuta, Elena V.; Marsic, Damien; Ng, Joseph

    2002-01-01

    Microorganisms preserved within the permafrost, glaciers, and polar ice sheets of planet Earth provide analogs for microbial life forms that may be encountered in ice or permafrost of Mars, Europa, Callisto, Ganymede, asteroids, comets or other frozen worlds in the Cosmos. The psychrophilic and psychrotolerant microbes of the terrestrial cryosphere help establish the thermal and temporal limitations of life on Earth and provide clues to where and how we should search for evidence of life elsewhere in the Universe. For this reason, the cold-loving microorganisms are directly relevant to Astrobiology. Cryopreserved microorganisms can remain viable (in deep anabiosis) in permafrost and ice for millions of years. Permafrost, ice wedges, pingos, glaciers, and polar ice sheets may contain intact ancient DNA, lipids, enzymes, proteins, genes, and even frozen and yet viable ancient microbiota. Some microorganisms carry out metabolic processes in water films and brine, acidic, or alkaline channels in permafrost or ice at temperatures far below 0 C. Complex microbial communities live in snow, ice-bubbles, cryoconite holes on glaciers and ancient microbial ecosystems are cryopreserved within the permafrost, glaciers, and polar caps. In the Astrobiology group of the NASA Marshall Space Flight Center and the University of Alabama at Huntsville, we have employed advanced techniques for the isolation, culture, and phylogenetic analysis of many types of microbial extremophiles. We have also used the Environmental Scanning Electron Microscope to study the morphology, ultra-microstructure and chemical composition of microorganisms in ancient permafrost and ice. We discuss several interesting and novel anaerobic microorganisms that we have isolated and cultured from the Pleistocene ice of the Fox Tunnel of Alaska, guano of the Magellanic Penguin, deep-sea sediments from the vicinity of the Rainbow Hydrothermal Vent and enrichment cultures from ice of the Patriot Hills of Antarctica

  4. Anaerobic Psychrophiles from Alaska, Antarctica, and Patagonia: Implications to Possible Life on Mars and Europa

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Pikuta, Elena V.; Marsic, Damien; Ng, Joseph; Six, N. Frank (Technical Monitor)

    2001-01-01

    Microorganisms preserved within the permafrost, glaciers, and polar ice sheets of planet Earth provide analogs for microbial life forms that may be encountered in ice or permafrost of Mars, Europa, Callisto, Ganymede, asteroids, comets or other frozen worlds in the Cosmos. The psychrophilic and psychrotolerant microbes of the terrestrial cryosphere help establish the thermal and temporal limitations of life on Earth and provide clues to where and how we should search for evidence of life elsewhere in the Universe. For this reason, the cold-loving microorganisms are directly relevant to Astrobiology. Cryo-preserved microorganisms can remain viable (in deep anabiosis) in permafrost and ice for millions of years. Permafrost, ice wedges, pingos, glaciers, and polar ice sheets may contain intact ancient DNA, lipids, enzymes, proteins, genes, and even frozen and yet viable ancient microbiota. Some microorganisms carry out metabolic processes in water films and brine, acidic, or alkaline channels in permafrost or ice at temperatures far below 0 T. Complex microbial communities live in snow, ice-bubbles, cryoconite holes on glaciers and ancient microbial ecosystems are cryopreserved within the permafrost, glaciers, and polar caps. In the Astrobiology group of the NASA Marshall Space Flight Center and the University of Alabama at Huntsville, we have employed advanced techniques for the isolation, culture, and phylogenetic analysis of many types of microbial extremophiles. We have also used the Environmental Scanning Electron Microscope to study the morphology, ultra-microstructure and chemical composition of microorganisms in ancient permafrost and ice. We discuss several interesting and novel anaerobic microorganisms that we have isolated and cultured from the Pleistocene ice of the Fox Tunnel of Alaska, guano of the Magellanic Penguin, deep sea sediments from the vicinity of the Rainbow Hydrothermal Vent and enrichment cultures from ice of the Patriot Hills of Antarctica

  5. Anaerobic Psychrophiles from Lake Zub and Lake Untersee, Antarctica

    NASA Technical Reports Server (NTRS)

    Townsend, Alisa; Pikuta, Elena V.; Guisler, Melissa; Stahl, Sarah; Hoover, Richard B.

    2009-01-01

    The study of samples from Antarctica 2008 and 2009 expeditions organized and successfully conducted by Richard Hoover led to the isolation of diverse anaerobic strains with psychrotolerant and psychrophilic physiology. Due to the fact that Lake Untersee has never been subject to microbiological study, this work with the samples has significant and pioneering impact to the knowledge about the biology of this unique ecosystem. Also, the astrobiological significance for the study of these ecosystems is based on new findings of ice covered water systems on other bodies of our solar system. Anaerobic psychrotolerant strain LZ-22 was isolated from a frozen sample of green moss with soils around the rhizosphere collected near Lake Zub in Antarctica. Morphology of strain LZ-22 was observed to be motile, rod shaped and spore-forming cells with sizes 1 x 5-10 micron. This new isolate is a mesophile with the maximum temperature of growth at 40C. Strain LZ-22 is able to live on media without NaCl and in media with up to 7% (w/v) NaCl. It is catalase negative and grows only on sugars with the best growth rate being on lactose. The strain is a neutrophile and grows between pH 5 and 9.0 with the optimum at 7.8. Another two strains UL7-96mG and LU-96m7P were isolated from deep water samples of Lake Untersee. Proteolytic strain LU-96m7P had a truly psychrophilic nature and refused to grow at room temperature. Sugarlytic strain UL7-96mG was found to be psychrotolerant, but its rate of growth at 3C was very high compared with other mesophiles. Two homoacetogenic psychrophilic strains A7AC-96m and AC-DS7 were isolated and purified from samples of Lake Untersee; both of them are able to grow chemolithotrophically on H2+CO2. In the presence of lactate, these strains are able to grow only at 0-18C, and growth at 22C was observed only with yeast extract stimulation. In this paper, physiological and morphological characteristics of novel psychrophilic and psychrotolerant isolates from

  6. Stepwise Adaptations to Low Temperature as Revealed by Multiple Mutants of Psychrophilic α-Amylase from Antarctic Bacterium*

    PubMed Central

    Cipolla, Alexandre; D'Amico, Salvino; Barumandzadeh, Roya; Matagne, André; Feller, Georges

    2011-01-01

    The mutants Mut5 and Mut5CC from a psychrophilic α-amylase bear representative stabilizing interactions found in the heat-stable porcine pancreatic α-amylase but lacking in the cold-active enzyme from an Antarctic bacterium. From an evolutionary perspective, these mutants can be regarded as structural intermediates between the psychrophilic and the mesophilic enzymes. We found that these engineered interactions improve all the investigated parameters related to protein stability as follows: compactness; kinetically driven stability; thermodynamic stability; resistance toward chemical denaturation, and the kinetics of unfolding/refolding. Concomitantly to this improved stability, both mutants have lost the kinetic optimization to low temperature activity displayed by the parent psychrophilic enzyme. These results provide strong experimental support to the hypothesis assuming that the disappearance of stabilizing interactions in psychrophilic enzymes increases the amplitude of concerted motions required by catalysis and the dynamics of active site residues at low temperature, leading to a higher activity. PMID:21900238

  7. Structural and functional analysis of a novel psychrophilic β-mannanase from Glaciozyma antarctica PI12

    NASA Astrophysics Data System (ADS)

    Parvizpour, Sepideh; Razmara, Jafar; Ramli, Aizi Nor Mazila; Md Illias, Rosli; Shamsir, Mohd Shahir

    2014-06-01

    The structure of a novel psychrophilic β-mannanase enzyme from Glaciozyma antarctica PI12 yeast has been modelled and analysed in detail. To our knowledge, this is the first attempt to model a psychrophilic β-mannanase from yeast. To this end, a 3D structure of the enzyme was first predicted using a threading method because of the low sequence identity (<30 %) using MODELLER9v12 and simulated using GROMACS at varying low temperatures for structure refinement. Comparisons with mesophilic and thermophilic mannanases revealed that the psychrophilic mannanase contains longer loops and shorter helices, increases in the number of aromatic and hydrophobic residues, reductions in the number of hydrogen bonds and salt bridges and numerous amino acid substitutions on the surface that increased the flexibility and its efficiency for catalytic reactions at low temperatures.

  8. Trichloroethylene biodegradation by mesophilic and psychrophilic ammonia oxidizers and methanotrophs in groundwater microcosms.

    PubMed Central

    Moran, B N; Hickey, W J

    1997-01-01

    This study investigated the efficiency of methane and ammonium for stimulating trichloroethylene (TCE) biodegradation in groundwater microcosms (flasks and batch exchange columns) at a psychrophilic temperature (12 degrees C) typical of shallow aquifers in the northern United States or a mesophilic temperature (24 degrees C) representative of most laboratory experiments. After 140 days, TCE biodegradation rates by ammonia oxidizers and methanotrophs in mesophilic flask microcosms were similar (8 to 10 nmol day-1), but [14C]TCE mineralization (biodegradation to 14CO2) by ammonia oxidizers was significantly greater than that by methanotrophs (63 versus 53%). Under psychrophilic conditions, [14C]TCE mineralization in flask systems by ammonia oxidizers and methanotrophs was reduced to 12 and 5%, respectively. In mesophilic batch exchange columns, average TCE biodegradation rates for methanotrophs (900 nmol liter-1 day-1) were not significantly different from those of ammonia oxidizers (775 nmol liter-1 day-1). Psychrophilic TCE biodegradation rates in the columns were similar with both biostimulants and averaged 145 nmol liter-1 day-1. Methanotroph biostimulation was most adversely affected by low temperatures. At 12 degrees C, the biodegradation efficiencies (TCE degradation normalized to microbial activity) of methanotrophs and ammonia oxidizers decreased by factors of 2.6 and 1.6, respectively, relative to their biodegradation efficiencies at 24 degrees C. Collectively, these experiments demonstrated that in situ bioremediation of TCE is feasible at the psychrophilic temperatures common in surficial aquifers in the northern United States and that for such applications biostimulation of ammonia oxidizers could be more effective than has been previously reported. PMID:9327550

  9. The Characterization of Psychrophilic Microorganisms and their potentially useful Cold-Active Glycosidases Final Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brenchly, Jean E.

    Our studies of novel, cold-loving microorganisms have focused on two distinct extreme environments. The first is an ice core sample from a 120,000 year old Greenland glacier. The results of this study are particularly exciting and have been highlighted with press releases and additional coverage. The first press release in 2004 was based on our presentation at the General Meeting of the American Society for Microbiology and was augmented by coverage of our publication (Appl. Environ. Microbiol. 2005. Vol. 71:7806) in the Current Topics section of the ASM news journal, “Microbe.” Of special interest for this report was the isolationmore » of numerous, phylogenetically distinct and potentially novel ultrasmall microorganisms. The detection and isolation of members of the ultrasmall population is significant because these cells pass through 0.2 micron pore filters that are generally used to trap microorganisms from environmental samples. Thus, analyses by other investigators that examined only cells captured on the filters would have missed a significant portion of this population. Only a few ultrasmall isolates had been obtained prior to our examination of the ice core samples. Our development of a filtration enrichment and subsequent cultivation of these organisms has added extensively to the collection of, and knowledge about, this important population in the microbial world.« less

  10. [Phylogenetic diversity of microorganisms associated with the deep-water sponge Baikalospongia intermedia].

    PubMed

    Kalyzhnaya, O V; Itskovich, V B

    2014-07-01

    The diversity of bacteria associated with deep-water sponge Baikalospongia intermedia was evaluated by sequence analysis of 16S rRNA genes from two sponge samples collected in Lake Baikal from depths of 550 and 1204 m. A total of 64 operational taxonomic units, belonging to nine bacterial phyla, Proteobacteria (classes Alphaproteobacteria,. Betaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria), Actinobacteria, Planctomycetes, Cloroflexi, Verrucomicrobia, Acidobacteria, Chlorobi, and Nitrospirae, including candidate phylum WS5, were identified. Phylogenetic analysis showed that the examined communities contained phylotypes exhibiting homology to uncultured bacteria from different lake ecosystems, freshwater sediments, soil and geological formations. Moreover, a number of phylotypes were relative to psychrophilic, methane-oxidizing, sulfate-reducing bacteria, and to microorganisms resistant to the influence of heavy metals. It seems likely that the unusual habitation conditions of deep-water sponges contribute to the taxonomic diversity of associated bacteria and have an influence on the presence of functionally important microorganisms in bacterial communities.

  11. Combined anaerobic-aerobic treatment of landfill leachates under mesophilic, submesophilic and psychrophilic conditions.

    PubMed

    Kalyuzhnyi, S; Gladchenko, M; Epov, A

    2003-01-01

    As a first step of treatment of landfill leachates (total COD--1,430-3,810 mg/l, total nitrogen 90-162 mg/l), a performance of laboratory UASB reactors has been investigated under mesophilic (30 degrees C), sub-mesophilic (20 degrees C) and psychrophilic (10 degrees C) conditions. Under hydraulic retention times (HRT) of around 7 h, when the average organic loading rates (OLR) were around 5 g COD/l/day, the total COD removal accounted for 81% (on the average) with the effluent concentrations close to anaerobic biodegradability limit (0.25 g COD/l) for mesophilic and sub-mesophilic regimes. The psychrophilic treatment conducted under the average HRT of 8 h and the average OLR of 4.22 g COD/l/day showed a total COD removal of 47% producing the effluents (0.75 g COD/l) more suitable for subsequent biological nitrogen removal. All three anaerobic regimes used for leachate treatment were quite efficient for elimination of heavy metals (Fe, Zn, Cu, Pb, Cd) by concomitant precipitation in the form of insoluble sulphides inside the sludge bed. The application of aerobic/anoxic biofilter as a sole polishing step for psychrophilic anaerobic effluents was acceptable for elimination of biodegradable COD and nitrogen approaching the current standards for direct discharge of treated wastewater.

  12. Comparative structural studies of psychrophilic and mesophilic protein homologues by molecular dynamics simulation.

    PubMed

    Kundu, Sangeeta; Roy, Debjani

    2009-01-01

    Comparative molecular dynamics simulations of psychrophilic type III antifreeze protein from the North-Atlantic ocean-pout Macrozoarces americanus and its corresponding mesophilic counterpart, the antifreeze-like domain of human sialic acid synthase, have been performed for 10 ns each at five different temperatures. Analyses of trajectories in terms of secondary structure content, solvent accessibility, intramolecular hydrogen bonds and protein-solvent interactions indicate distinct differences in these two proteins. The two proteins also follow dissimilar unfolding pathways. The overall flexibility calculated by the trace of the diagonalized covariance matrix displays similar flexibility of both the proteins near their growth temperatures. However at higher temperatures psychrophilic protein shows increased overall flexibility than its mesophilic counterpart. Principal component analysis also indicates that the essential subspaces explored by the simulations of two proteins at different temperatures are non-overlapping and they show significantly different directions of motion. However, there are significant overlaps within the trajectories and similar directions of motion of each protein especially at 298 K, 310 K and 373 K. Overall, the psychrophilic protein leads to increased conformational sampling of the phase space than its mesophilic counterpart. Our study may help in elucidating the molecular basis of thermostability of homologous proteins from two organisms living at different temperature conditions. Such an understanding is required for designing efficient proteins with characteristics for a particular application at desired working temperatures.

  13. Genomic analysis of cold-active Colwelliaphage 9A and psychrophilic phage-host interactions.

    PubMed

    Colangelo-Lillis, Jesse R; Deming, Jody W

    2013-01-01

    The 104 kb genome of cold-active bacteriophage 9A, which replicates in the marine psychrophilic gamma-proteobacterium Colwellia psychrerythraea strain 34H (between -12 and 8 °C), was sequenced and analyzed to investigate elements of molecular adaptation to low temperature and phage-host interactions in the cold. Most characterized ORFs indicated closest similarity to gamma-proteobacteria and their phages, though no single module provided definitive phylogenetic grouping. A subset of primary structural features linked to psychrophily suggested that the majority of annotated phage proteins were not psychrophilic; those that were, primarily serve phage-specific functions and may also contribute to 9A's restricted temperature range for replication as compared to host. Comparative analyses suggest ribonucleotide reductase genes were acquired laterally from host. Neither restriction modification nor the CRISPR-Cas system appeared to be the predominant phage defense mechanism of Cp34H or other cold-adapted bacteria; we hypothesize that psychrophilic hosts rely more on the use of extracellular polymeric material to block cell surface receptors recognized by phages. The relative dearth of evidence for genome-specific defenses, genetic transfer events or auxiliary metabolic genes suggest that the 9A-Cp34H system may be less tightly coupled than are other genomically characterized marine phage-host systems, with possible implications for phage specificity under different environmental conditions.

  14. Cloning and expression of phosphoglycerate mutase from the psychrophilic yeast, Glaciozyma antarctica PI12

    NASA Astrophysics Data System (ADS)

    Jaafar, Nardiah Rizwana; Bakar, Farah Diba Abu; Murad, Abdul Munir Abdul; Mahadi, Nor Muhammad

    2015-09-01

    The conversion of 3-phosphoglycerate to 2-phosphoglycerate during glycolysis and gluconeogenesis is catalyzed by phosphoglycerate mutase (PGM). Better understanding of metabolic reactions performed by this enzyme has been studied extensively in prokaryotes and eukaryotes. Here, we report a phosphoglycerate mutase from the psychrophilic yeast, Glaciozyma antarctica. cDNA encoding for PGM from G. antarctica PI12, a psychrophilic yeast isolated from sea ice at Casey Station, Antarctica was amplified. The gene was then cloned into a cloning vector and sequenced, which verified its identity as the gene putatively encoding for PGM. The recombinant protein was expressed in Escherichia coli BL21 (DE3) as inclusion bodies and this was confirmed by SDS-PAGE and Western blot.

  15. Microbiology and atmospheric processes: research challenges concerning the impact of airborne micro-organisms on the atmosphere and climate

    NASA Astrophysics Data System (ADS)

    Morris, C. E.; Sands, D. C.; Bardin, M.; Jaenicke, R.; Vogel, B.; Leyronas, C.; Ariya, P. A.; Psenner, R.

    2011-01-01

    For the past 200 years, the field of aerobiology has explored the abundance, diversity, survival and transport of micro-organisms in the atmosphere. Micro-organisms have been explored as passive and severely stressed riders of atmospheric transport systems. Recently, an interest in the active roles of these micro-organisms has emerged along with proposals that the atmosphere is a global biome for microbial metabolic activity and perhaps even multiplication. As part of a series of papers on the sources, distribution and roles in atmospheric processes of biological particles in the atmosphere, here we describe the pertinence of questions relating to the potential roles that air-borne micro-organisms might play in meteorological phenomena. For the upcoming era of research on the role of air-borne micro-organisms in meteorological phenomena, one important challenge is to go beyond descriptions of abundance of micro-organisms in the atmosphere toward an understanding of their dynamics in terms of both biological and physico-chemical properties and of the relevant transport processes at different scales. Another challenge is to develop this understanding under contexts pertinent to their potential role in processes related to atmospheric chemistry, the formation of clouds, precipitation and radiative forcing. This will require truly interdisciplinary approaches involving collaborators from the biological and physical sciences, from disciplines as disparate as agronomy, microbial genetics and atmosphere physics, for example.

  16. Start-up of a sequential dry anaerobic digestion of paunch under psychrophilic and mesophilic temperatures.

    PubMed

    Nkemka, Valentine Nkongndem; Hao, Xiying

    2018-04-01

    The present laboratory study evaluated the sequential leach bed dry anaerobic digestion (DAD) of paunch under psychrophilic (22°C) and mesophilic (40°C) temperatures. Three leach bed reactors were operated under the mesophilic temperature in sequence at a solid retention time (SRT) of 40d with a new batch started 27d into the run of the previous one. A total of six batches were operated for 135d. The results showed that the mesophilic DAD of paunch was efficient, reaching methane yields of 126.9-212.1mLg -1 volatile solid (VS) and a VS reduction of 32.9-55.5%. The average daily methane production rate increased from 334.3mLd -1 to 571.4mLd -1 and 825.7mLd -1 when one, two and three leach bed reactors were in operation, respectively. The psychrophilic DAD of paunch was operated under a SRT of 100d and a total of three batches were performed in sequence for 300d with each batch starting after completion of the previous one. Improvements in the methane yield from 93.9 to 107.3 and 148.3mLg -1 VS and VS reductions of 24.8, 30.2 and 38.6% were obtained in the consecutive runs, indicating the adaptation of anaerobic microbes from mesophilic to psychrophilic temperatures. In addition, it took three runs for anaerobic microbes to reduce the volatile fatty acid accumulation observed in the first and second trials. This study demonstrates the potential of renewable energy recovery from paunch under psychrophilic and mesophilic temperatures. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  17. Structural prediction and comparative docking studies of psychrophilic β- Galactosidase with lactose, ONPG and PNPG against its counter parts of mesophilic and thermophilic enzymes.

    PubMed

    Kumar, Ponnada Suresh; Pulicherla, Kk; Ghosh, Mrinmoy; Kumar, Anmol; Rao, Krs Sambasiva

    2011-01-01

    Enzymes from psychrophiles catalyze the reactions at low temperatures with higher specific activity. Among all the psychrophilic enzymes produced, cold active β-galactosidase from marine psychrophiles revalorizes a new arena in numerous areas at industrial level. The hydrolysis of lactose in to glucose and galactose by cold active β-galactosidase offers a new promising approach in removal of lactose from milk to overcome the problem of lactose intolerance. Herein we propose, a 3D structure of cold active β-galactosidase enzyme sourced from Pseudoalteromonas haloplanktis by using Modeler 9v8 and best model was developed having 88% of favourable region in ramachandran plot. Modelling was followed by docking studies with the help of Auto dock 4.0 against the three substrates lactose, ONPG and PNPG. In addition, comparative docking studies were also performed for the 3D model of psychrophilic β-galactosidase with mesophilic and thermophilic enzymes. Docking studies revealed that binding affinity of enzyme towards the three different substrates is more for psychrophilic enzyme when compared with mesophilic and thermophilic enzymes. It indicates that the enzyme has high specific activity at low temperature when compared with mesophilic and thermophilic enzymes.

  18. PCR detection of psychrophilic Clostridium spp. causing 'blown pack' spoilage of vacuum-packed chilled meats.

    PubMed

    Broda, D M; Boerema, J A; Bell, R G

    2003-01-01

    To develop a practical molecular procedure that directly, without isolation, and specifically detects the presence of clostridia which cause 'blown pack' spoilage of vacuum-packed meat. Primer sets and PCR amplification procedures were developed that detect the presence of 16S rDNA gene and/or 16S-23S rDNA internal transcribed spacer fragments of 'blown pack' causing clostridia in meat. The specificity of the developed procedures was evaluated with DNA obtained from close phylogenetic neighbours of 'blown pack' causing clostridia, food clostridia and common meat spoilage microorganisms. The sensitivity of detection was assessed in non-enriched and low-temperature-enriched beef mince inoculated with serially diluted pure cultures of Clostridium estertheticum DSMZ 8809T and Cl. gasigenes DB1AT. The efficacy of detection procedures was evaluated for naturally contaminated vacuum-packed meat samples. Three primer sets, 16SE, 16SDB and EISR, produced amplicons of the expected size with DNA templates from target clostridia, but failed to yield PCR products with DNAs from any other microorganisms tested. With 16SE and 16SDB primers, minimum levels of detection were 104 CFU g(-1) for non-enriched, and 102 CFU g(-1) for enriched meat samples. Based on the established specificity of these primers, as well as DNA sequencing of amplicons, Cl. gasigenes was confirmed as the causative agent of 'blown pack' spoilage in two packs, and Cl. estertheticum as the causative agent in the third. The developed method can be used for rapid detection of 'blown pack' causing clostridia in commercial blown packs, or following low temperature enrichment, for detection of these microorganisms in meat containing as few as 100 clostridial cells per gram. The paper reports practical procedures that can be used for rapid confirmation of the causative agents of clostridial 'blown pack' spoilage in commercial spoiled packs, or for detection of psychrophilic clostridia in epidemiological trace back of

  19. Halophilic-Psychrophilic Bacteria from Tirich Mir Glacier, Pakistan, as Potential Candidate for Astrobiological Studies

    NASA Astrophysics Data System (ADS)

    Rafiq, M. R.; Anesio, A. M. A.; Hayat, M. H.; Zada, S. Z.; Sajjad, W. S.; Shah, A. A. S.; Hasan, F. H.

    2016-09-01

    Hindu Kush, Karakoram, and Himalaya region is referred to as 'third pole' and could be suitable as a terrestrial analog of Mars and increased possibility of finding polyextremophiles. Study is focused on halophilic psychrophiles.

  20. Crystal structure of fuculose aldolase from the Antarctic psychrophilic yeast Glaciozyma antarctica PI12.

    PubMed

    Jaafar, Nardiah Rizwana; Littler, Dene; Beddoe, Travis; Rossjohn, Jamie; Illias, Rosli Md; Mahadi, Nor Muhammad; Mackeen, Mukram Mohamed; Murad, Abdul Munir Abdul; Abu Bakar, Farah Diba

    2016-11-01

    Fuculose-1-phosphate aldolase (FucA) catalyses the reversible cleavage of L-fuculose 1-phosphate to dihydroxyacetone phosphate (DHAP) and L-lactaldehyde. This enzyme from mesophiles and thermophiles has been extensively studied; however, there is no report on this enzyme from a psychrophile. In this study, the gene encoding FucA from Glaciozyma antarctica PI12 (GaFucA) was cloned and the enzyme was overexpressed in Escherichia coli, purified and crystallized. The tetrameric structure of GaFucA was determined to 1.34 Å resolution. The overall architecture of GaFucA and its catalytically essential histidine triad are highly conserved among other fuculose aldolases. Comparisons of structural features between GaFucA and its mesophilic and thermophilic homologues revealed that the enzyme has typical psychrophilic attributes, indicated by the presence of a high number of nonpolar residues at the surface and a lower number of arginine residues.

  1. FK506-Binding Protein 22 from a Psychrophilic Bacterium, a Cold Shock-Inducible Peptidyl Prolyl Isomerase with the Ability to Assist in Protein Folding

    PubMed Central

    Budiman, Cahyo; Koga, Yuichi; Takano, Kazufumi; Kanaya, Shigenori

    2011-01-01

    Adaptation of microorganisms to low temperatures remains to be fully elucidated. It has been previously reported that peptidyl prolyl cis-trans isomerases (PPIases) are involved in cold adaptation of various microorganisms whether they are hyperthermophiles, mesophiles or phsycrophiles. The rate of cis-trans isomerization at low temperatures is much slower than that at higher temperatures and may cause problems in protein folding. However, the mechanisms by which PPIases are involved in cold adaptation remain unclear. Here we used FK506-binding protein 22, a cold shock protein from the psychrophilic bacterium Shewanella sp. SIB1 (SIB1 FKBP22) as a model protein to decipher the involvement of PPIases in cold adaptation. SIB1 FKBP22 is homodimer that assumes a V-shaped structure based on a tertiary model. Each monomer consists of an N-domain responsible for dimerization and a C-catalytic domain. SIB1 FKBP22 is a typical cold-adapted enzyme as indicated by the increase of catalytic efficiency at low temperatures, the downward shift in optimal temperature of activity and the reduction in the conformational stability. SIB1 FKBP22 is considered as foldase and chaperone based on its ability to catalyze refolding of a cis-proline containing protein and bind to a folding intermediate protein, respectively. The foldase and chaperone activites of SIB1 FKBP22 are thought to be important for cold adaptation of Shewanella sp. SIB1. These activities are also employed by other PPIases for being involved in cold adaptation of various microorganisms. Despite other biological roles of PPIases, we proposed that foldase and chaperone activities of PPIases are the main requirement for overcoming the cold-stress problem in microorganisms due to folding of proteins. PMID:21954357

  2. Temperature Sensitivity Conferred by ligA Alleles from Psychrophilic Bacteria upon Substitution in Mesophilic Bacteria and a Yeast Species

    PubMed Central

    Pankowski, Jarosław A.; Puckett, Stephanie M.

    2016-01-01

    We have assembled a collection of 13 psychrophilic ligA alleles that can serve as genetic elements for engineering mesophiles to a temperature-sensitive (TS) phenotype. When these ligA alleles were substituted into Francisella novicida, they conferred a TS phenotype with restrictive temperatures between 33 and 39°C. When the F. novicida ligA hybrid strains were plated above their restrictive temperatures, eight of them generated temperature-resistant variants. For two alleles, the mutations that led to temperature resistance clustered near the 5′ end of the gene, and the mutations increased the predicted strength of the ribosome binding site at least 3-fold. Four F. novicida ligA hybrid strains generated no temperature-resistant variants at a detectable level. These results suggest that multiple mutations are needed to create temperature-resistant variants of these ligA gene products. One ligA allele was isolated from a Colwellia species that has a maximal growth temperature of 12°C, and this allele supported growth of F. novicida only as a hybrid between the psychrophilic and the F. novicida ligA genes. However, the full psychrophilic gene alone supported the growth of Salmonella enterica, imparting a restrictive temperature of 27°C. We also tested two ligA alleles from two Pseudoalteromonas strains for their ability to support the viability of a Saccharomyces cerevisiae strain that lacked its essential gene, CDC9, encoding an ATP-dependent DNA ligase. In both cases, the psychrophilic bacterial alleles supported yeast viability and their expression generated TS phenotypes. This collection of ligA alleles should be useful in engineering bacteria, and possibly eukaryotic microbes, to predictable TS phenotypes. PMID:26773080

  3. Structural prediction of a novel chitinase from the psychrophilic Glaciozyma antarctica PI12 and an analysis of its structural properties and function

    NASA Astrophysics Data System (ADS)

    Ramli, Aizi Nor Mazila; Mahadi, Nor Muhammad; Shamsir, Mohd Shahir; Rabu, Amir; Joyce-Tan, Kwee Hong; Murad, Abdul Munir Abdul; Illias, Rosli Md.

    2012-08-01

    The structure of psychrophilic chitinase (CHI II) from Glaciozyma antarctica PI12 has yet to be studied in detail. Due to its low sequence identity (<30 %), the structural prediction of CHI II is a challenge. A 3D model of CHI II was built by first using a threading approach to search for a suitable template and to generate an optimum target-template alignment, followed by model building using MODELLER9v7. Analysis of the catalytic insertion domain structure in CHI II revealed an increase in the number of aromatic residues and longer loops compared to mesophilic and thermophilic chitinases. A molecular dynamics simulation was used to examine the stability of the CHI II structure at 273, 288 and 300 K. Structural analysis of the substrate-binding cleft revealed a few exposed aromatic residues. Substitutions of certain amino acids in the surface and loop regions of CHI II conferred an increased flexibility to the enzyme, allowing for an adaptation to cold temperatures. A substrate binding comparison of CHI II with the mesophilic chitinase from Coccidioides immitis, 1D2K, suggested that the psychrophilic adaptation and catalytic activity at low temperatures were achieved through a reduction in the number of salt bridges, fewer hydrogen bonds and an increase in the exposure of the hydrophobic side chains to the solvent.

  4. Genomics of an extreme psychrophile, Psychromonas ingrahamii

    PubMed Central

    Riley, Monica; Staley, James T; Danchin, Antoine; Wang, Ting Zhang; Brettin, Thomas S; Hauser, Loren J; Land, Miriam L; Thompson, Linda S

    2008-01-01

    Background The genome sequence of the sea-ice bacterium Psychromonas ingrahamii 37, which grows exponentially at -12C, may reveal features that help to explain how this extreme psychrophile is able to grow at such low temperatures. Determination of the whole genome sequence allows comparison with genes of other psychrophiles and mesophiles. Results Correspondence analysis of the composition of all P. ingrahamii proteins showed that (1) there are 6 classes of proteins, at least one more than other bacteria, (2) integral inner membrane proteins are not sharply separated from bulk proteins suggesting that, overall, they may have a lower hydrophobic character, and (3) there is strong opposition between asparagine and the oxygen-sensitive amino acids methionine, arginine, cysteine and histidine and (4) one of the previously unseen clusters of proteins has a high proportion of "orphan" hypothetical proteins, raising the possibility these are cold-specific proteins. Based on annotation of proteins by sequence similarity, (1) P. ingrahamii has a large number (61) of regulators of cyclic GDP, suggesting that this bacterium produces an extracellular polysaccharide that may help sequester water or lower the freezing point in the vicinity of the cell. (2) P. ingrahamii has genes for production of the osmolyte, betaine choline, which may balance the osmotic pressure as sea ice freezes. (3) P. ingrahamii has a large number (11) of three-subunit TRAP systems that may play an important role in the transport of nutrients into the cell at low temperatures. (4) Chaperones and stress proteins may play a critical role in transforming nascent polypeptides into 3-dimensional configurations that permit low temperature growth. (5) Metabolic properties of P. ingrahamii were deduced. Finally, a few small sets of proteins of unknown function which may play a role in psychrophily have been singled out as worthy of future study. Conclusion The results of this genomic analysis provide a

  5. Structural Investigation of the Oligosaccharide Portion Isolated from the Lipooligosaccharide of the Permafrost Psychrophile Psychrobacter arcticus 273-4.

    PubMed

    Casillo, Angela; Parrilli, Ermenegilda; Filomena, Sannino; Lindner, Buko; Lanzetta, Rosa; Parrilli, Michelangelo; Tutino, Maria Luisa; Corsaro, Maria Michela

    2015-07-22

    Psychrophilic microorganisms have successfully colonized all permanently cold environments from the deep sea to mountain and polar regions. The ability of an organism to survive and grow in cryoenviroments depends on a number of adaptive strategies aimed at maintaining vital cellular functions at subzero temperatures, which include the structural modifications of the membrane. To understand the role of the membrane in the adaptation, it is necessary to characterize the cell-wall components, such as the lipopolysaccharides, that represent the major constituent of the outer membrane. The aim of this study was to investigate the structure of the carbohydrate backbone of the lipooligosaccharide (LOS) isolated from the cold-adapted Psychrobacter arcticus 273-4. The strain, isolated from a 20,000-to-30,000-year-old continuously frozen permafrost in Siberia, was cultivated at 4 °C. The LOS was isolated from dry cells and analyzed by means of chemical methods. In particular, it was degraded either by mild acid hydrolysis or by hydrazinolysis and investigated in detail by (1)H and (13)C NMR spectroscopy and by ESI FT-ICR mass spectrometry. The oligosaccharide was characterized by the substitution of the heptose residue, usually linked to Kdo in the inner core, with a glucose, and for the unusual presence of N-acetylmuramic acid.

  6. Challenges to a blow/fill/seal process with airborne microorganisms having different resistances to dry heat.

    PubMed

    Poisson, Patrick; Sinclair, Colin S; Tallentire, Alan

    2006-01-01

    Controlled challenges with air dispersed microorganisms having widely different resistances to dry heat, carried out on 624 BFS machine processing growth medium, have shown that higher the heat resistance, the greater the extent of vial contamination. Differences in heat resistance affected also the extent of vial contamination when parison and vial formation were knowingly manipulated through changes made to each of three process variables, provision of ballooning air, mould vacuum delay, and parison extrusion rate. The findings demonstrate that, in this investigational system, exposure of challenge micoorganisms to heat inherent in the process has a controlling influence on vial contamination, an influence that could also control microbiological risk in production environments.

  7. Use of essential gene, encoding prophobilinogen deaminase from extreme psychrophilic Colwellia sp. C1, to generate temperature-sensitive strain of Francisella novicida.

    PubMed

    Pankowski, J A

    2016-08-01

    Previously, several essential genes from psychrophilic bacteria have been substituted for their homologues in mesophilic bacterial pathogens to make the latter temperature sensitive. It has been noted that an essential ligA gene from an extreme psychrophile, Colwellia sp. C1, yielded a gene product that is inactivated at 27°C, the lowest that has been observed for any psychrophilic enzyme, and hypothesized that other essential proteins of that strain would also have low inactivation temperatures. This work describes the partial sequencing of the genome of Colwellia sp. C1 strain and the identification of 24 open reading frames encoding homologues of highly conserved bacterial essential genes. The gene encoding porphobilinogen deaminase (hemC), which is involved in the pathway of haem synthesis, has been tested for its ability to convert Francisella novicida into a temperature-sensitive strain. The hybrid strain carrying the C1-derived hemC gene exhibited a temperature-sensitive phenotype with a restrictive temperature of 36°C. These results support the conclusion that Colwellia sp. C1 is a rich source of heat-labile enzymes. The issue of biosafety is often raised when it comes to work with pathogenic organisms. The main concern is caused by the risk of researchers being exposed to infectious doses of dangerous microbes. This paper analyses essential genes identified in partial genomic sequence of the psychrophilic bacterium Collwelia sp. C1. These sequences can be used as a mean of generating temperature-sensitive strains of pathogenic bacteria. Such strains are incapable of surviving at the temperature of human body. This means they could be applied as vaccines or for safer work with dangerous organisms. © 2016 The Society for Applied Microbiology.

  8. Psychrophilic dry anaerobic digestion of dairy cow feces: Long-term operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massé, Daniel I., E-mail: Daniel.masse@agr.gc.ca; Cata Saady, Noori M.

    2015-02-15

    Highlights: • Psychrophilic dry anaerobic digestion (PDAD) of cow feces (CF) is feasible. • PDAD of CF is as efficient as mesophilic and thermophilic AD at TCL 21 days. • CF (13–16% TS at OLR 5.0 g TCOD{sub fed} kg{sup −1} inoculum d{sup −1}) yielded 222 ± 27 {sub N}L CH{sub 4} kg{sup −1} VS fed. - Abstract: This paper reports experimental results which demonstrate psychrophilic dry anaerobic digestion of cow feces during long-term operation in sequence batch reactor. Cow feces (13–16% total solids) has been anaerobically digested in 12 successive cycles (252 days) at 21 days treatment cycle lengthmore » (TCL) and temperature of 20 °C using psychrotrophic anaerobic mixed culture. An average specific methane yield (SMY) of 184.9 ± 24.0, 189.9 ± 27.3, and 222 ± 27.7 {sub N}L CH{sub 4} kg{sup −1} of VS fed has been achieved at an organic loading rate of 3.0, 4.0, and 5.0 g TCOD kg{sup −1} inoculum d{sup −1} and TCL of 21 days, respectively. The corresponding substrate to inoculum ratio (SIR) was 0.39 ± 0.06, 0.48 ± .02, 0.53 ± 0.05, respectively. Average methane production rate of 10 ± 1.4 {sub N}L CH{sub 4} kg{sup −1} VS fed d{sup −1} has been obtained. The low concentration of volatile fatty acids indicated that hydrolysis was the reaction limiting step.« less

  9. The impact of permafrost-associated microorganisms on hydrate formation kinetics

    NASA Astrophysics Data System (ADS)

    Luzi-Helbing, Manja; Liebner, Susanne; Spangenberg, Erik; Wagner, Dirk; Schicks, Judith M.

    2016-04-01

    The relationship between gas hydrates, microorganisms and the surrounding sediment is extremely complex: On the one hand, microorganisms producing methane provide the prerequisite for gas hydrate formation. As it is known most of the gas incorporated into natural gas hydrates originates from biogenic sources. On the other hand, as a result of microbial activity gas hydrates are surrounded by a great variety of organic compounds which are not incorporated into the hydrate structure but may influence the formation or degradation process. For gas hydrate samples from marine environments such as the Gulf of Mexico a direct association between microbes and gas hydrates was shown by Lanoil et al. 2001. It is further assumed that microorganisms living within the gas hydrate stability zone produce biosurfactants which were found to enhance the hydrate formation process significantly and act as nucleation centres (Roger et al. 2007). Another source of organic compounds is sediment organic matter (SOM) originating from plant material or animal remains which may also enhance hydrate growth. So far, the studies regarding this relationship were focused on a marine environment. The scope of this work is to extend the investigations to microbes originating from permafrost areas. To understand the influence of microbial activity in a permafrost environment on the methane hydrate formation process and the stability conditions of the resulting hydrate phase we will perform laboratory studies. Thereby, we mimic gas hydrate formation in the presence and absence of methanogenic archaea (e.g. Methanosarcina soligelidi) and other psychrophilic bacteria isolated from permafrost environments of the Arctic and Antarctic to investigate their impact on hydrate induction time and formation rates. Our results may contribute to understand and predict the occurrences and behaviour of potential gas hydrates within or adjacent to the permafrost. Lanoil BD, Sassen R, La Duc MT, Sweet ST, Nealson KH

  10. The genome sequence of the psychrophilic archaeon, Methanococcoides burtonii: the role of genome evolution in cold adaptation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Michele A; Lauro, Federico M; Williams, Timothy J

    2009-01-01

    Psychrophilic archaea are abundant and perform critical roles throughout the Earth's expansive cold biosphere. Here we report the first complete genome sequence for a psychrophilic methanogenic archaeon, Methanococcoides burtonii. The genome sequence was manually annotated including the use of a five-tiered evidence rating (ER) system that ranked annotations from ER1 (gene product experimentally characterized from the parent organism) to ER5 (hypothetical gene product) to provide a rapid means of assessing the certainty of gene function predictions. The genome is characterized by a higher level of aberrant sequence composition (51%) than any other archaeon. In comparison to hyper/thermophilic archaea, which aremore » subject to selection of synonymous codon usage, M. burtonii has evolved cold adaptation through a genomic capacity to accommodate highly skewed amino-acid content, while retaining codon usage in common with its mesophilic Methanosarcina cousins. Polysaccharide biosynthesis genes comprise at least 3.3% of protein coding genes in the genome, and Cell wall, membrane, envelope biogenesis COG genes are overrepresented. Likewise, signal transduction (COG category T) genes are overrepresented and M. burtonii has a high 'IQ' (a measure of adaptive potential) compared to many methanogens. Numerous genes in these two overrepresented COG categories appear to have been acquired from - and -Proteobacteria, as do specific genes involved in central metabolism such as a novel B form of aconitase. Transposases also distinguish M. burtonii from other archaea, and their genomic characteristics indicate they have an important role in evolving the M. burtonii genome. Our study reveals a capacity for this model psychrophile to evolve through genome plasticity (including nucleotide skew, horizontal gene transfer and transposase activity) that enables adaptation to the cold, and to the biological and physical changes that have occurred over the last several thousand years

  11. Molecular Structural Basis for the Cold Adaptedness of the Psychrophilic β-Glucosidase BglU in Micrococcus antarcticus

    PubMed Central

    Miao, Li-Li; Hou, Yan-Jie; Fan, Hong-Xia; Qu, Jie; Qi, Chao; Liu, Ying

    2016-01-01

    Psychrophilic enzymes play crucial roles in cold adaptation of microbes and provide useful models for studies of protein evolution, folding, and dynamic properties. We examined the crystal structure (2.2-Å resolution) of the psychrophilic β-glucosidase BglU, a member of the glycosyl hydrolase 1 (GH1) enzyme family found in the cold-adapted bacterium Micrococcus antarcticus. Structural comparison and sequence alignment between BglU and its mesophilic and thermophilic counterpart enzymes (BglB and GlyTn, respectively) revealed two notable features distinct to BglU: (i) a unique long-loop L3 (35 versus 7 amino acids in others) involved in substrate binding and (ii) a unique amino acid, His299 (Tyr in others), involved in the stabilization of an ordered water molecule chain. Shortening of loop L3 to 25 amino acids reduced low-temperature catalytic activity, substrate-binding ability, the optimal temperature, and the melting temperature (Tm). Mutation of His299 to Tyr increased the optimal temperature, the Tm, and the catalytic activity. Conversely, mutation of Tyr301 to His in BglB caused a reduction in catalytic activity, thermostability, and the optimal temperature (45 to 35°C). Loop L3 shortening and H299Y substitution jointly restored enzyme activity to the level of BglU, but at moderate temperatures. Our findings indicate that loop L3 controls the level of catalytic activity at low temperatures, residue His299 is responsible for thermolability (particularly heat lability of the active center), and long-loop L3 and His299 are jointly responsible for the psychrophilic properties. The described structural basis for the cold adaptedness of BglU will be helpful for structure-based engineering of new cold-adapted enzymes and for the production of mutants useful in a variety of industrial processes at different temperatures. PMID:26801571

  12. Molecular Structural Basis for the Cold Adaptedness of the Psychrophilic β-Glucosidase BglU in Micrococcus antarcticus.

    PubMed

    Miao, Li-Li; Hou, Yan-Jie; Fan, Hong-Xia; Qu, Jie; Qi, Chao; Liu, Ying; Li, De-Feng; Liu, Zhi-Pei

    2016-01-22

    Psychrophilic enzymes play crucial roles in cold adaptation of microbes and provide useful models for studies of protein evolution, folding, and dynamic properties. We examined the crystal structure (2.2-Å resolution) of the psychrophilic β-glucosidase BglU, a member of the glycosyl hydrolase 1 (GH1) enzyme family found in the cold-adapted bacterium Micrococcus antarcticus. Structural comparison and sequence alignment between BglU and its mesophilic and thermophilic counterpart enzymes (BglB and GlyTn, respectively) revealed two notable features distinct to BglU: (i) a unique long-loop L3 (35 versus 7 amino acids in others) involved in substrate binding and (ii) a unique amino acid, His299 (Tyr in others), involved in the stabilization of an ordered water molecule chain. Shortening of loop L3 to 25 amino acids reduced low-temperature catalytic activity, substrate-binding ability, the optimal temperature, and the melting temperature (Tm). Mutation of His299 to Tyr increased the optimal temperature, the Tm, and the catalytic activity. Conversely, mutation of Tyr301 to His in BglB caused a reduction in catalytic activity, thermostability, and the optimal temperature (45 to 35°C). Loop L3 shortening and H299Y substitution jointly restored enzyme activity to the level of BglU, but at moderate temperatures. Our findings indicate that loop L3 controls the level of catalytic activity at low temperatures, residue His299 is responsible for thermolability (particularly heat lability of the active center), and long-loop L3 and His299 are jointly responsible for the psychrophilic properties. The described structural basis for the cold adaptedness of BglU will be helpful for structure-based engineering of new cold-adapted enzymes and for the production of mutants useful in a variety of industrial processes at different temperatures. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. Functional responses and adaptation of mesophilic microbial communities to psychrophilic anaerobic digestion.

    PubMed

    Gunnigle, Eoin; Nielsen, Jeppe L; Fuszard, Matthew; Botting, Catherine H; Sheahan, Jerome; O'Flaherty, Vincent; Abram, Florence

    2015-12-01

    Psychrophilic (<20°C) anaerobic digestion (AD) represents an attractive alternative to mesophilic wastewater treatment. In order to investigate the AD microbiome response to temperature change, with particular emphasis on methanogenic archaea, duplicate laboratory-scale AD bioreactors were operated at 37°C followed by a temperature drop to 15°C. A volatile fatty acid-based wastewater (composed of propionic acid, butyric acid, acetic acid and ethanol) was used to provide substrates representing the later stages of AD. Community structure was monitored using 16S rRNA gene clone libraries, as well as DNA and cDNA-based DGGE analysis, while the abundance of relevant methanogens was followed using qPCR. In addition, metaproteomics, microautoradiography-fluorescence in situ hybridization, and methanogenic activity measurements were employed to investigate microbial activities and functions. Methanomicrobiales abundance increased at low temperature, which correlated with an increased contribution of CH4 production from hydrogenotrophic methanogenesis at 15°C. Methanosarcinales utilized acetate and H2/CO2 as CH4 precursors at both temperatures and a partial shift from acetoclastic to hydrogenotrophic methanogenesis was observed for this archaeal population at 15°C. An upregulation of protein expression was reported at low temperature as well as the detection of chaperones indicating that mesophilic communities experienced stress during long-term exposure to 15°C. Overall, changes in microbial community structure and function were found to underpin the adaptation of mesophilic sludge to psychrophilic AD. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Cloning and in-silico analysis of beta-1,3-xylanase from psychrophilic yeast, Glaciozyma antarctica PI12

    NASA Astrophysics Data System (ADS)

    Nor, Nooraisyah Mohamad; Bakar, Farah Diba Abu; Mahadi, Nor Muhammad; Murad, Abdul Munir Abdul

    2015-09-01

    A beta-1,3-xylanase (EC 3.2.1.32) gene from psychrophilic yeast, Glaciozyma antarctica has been identified via genome data mining. The enzyme was grouped into GH26 family based on Carbohydrate Active Enzyme (CaZY) database. The molecular weight of this protein was predicted to be 42 kDa and is expected to be soluble for expression. The presence of signal peptide suggested that this enzyme may be released extracellularly into the marine environment of the host's habitat. This supports the theory that such enzymatic activity is required for degradation of nutrients of polysaccharide origins into simpler carbohydrates outside the environment before it could be taken up inside the cell. The sequence for this protein showed very little conservation (< 30%) with other beta-1,3-xylanases from available databases. Based on the phylogenetic analysis, this protein also showed distant relationship to other xylanases from eukaryotic origin. The protein may have undergone major substitution in its gene sequence order to adapt to the cold climate. This is the first report of beta-1,3-xylanase gene isolated from a psychrophilic yeast.

  15. Origin of Cyanide in Cultures of a Psychrophilic Basidiomycete1

    PubMed Central

    Stevens, Dennis L.; Strobel, Gary A.

    1968-01-01

    An unidentified psychrophilic basidiomycete used valine and isoleucine as precursors to hydrocyanic acid (HCN). As probable intermediates in the pathway from valine and isoleucine two cyanogenic glucosides, linamarin and lotaustralin, were demonstrated in fungus cultures. The fungus contained two β-glucosidases and an oxynitrilase which, acting together, were capable of releasing cyanide from both linamarin and lotaustralin. The two β-glucosidases were purified and compared as to pH optimum, Michaelis constant, energy of activation, thermal stability, and substrate specificity. The products of methyl ethyl ketone cyanohydrin and acetone cyanohydrin dissociation by the oxynitrilase were demonstrated to be HCN together with methyl ethyl ketone and acetone, respectively. The oxynitrilase attacked aliphatic hydroxynitriles, but showed no activity on aromatic hydroxynitriles. Images PMID:5651322

  16. [Evolution of pathogenic micro-organisms as a challenge for medicine].

    PubMed

    Vaara, Martti

    2009-01-01

    Successful parasitic micro-organisms are able to adapt to the circumstances of the host's organ system, and it is usually not expedient for them to kill their host. Under selection pressure, the evolution of micro-organisms is vastly quicker that that of man. The selection pressure brought about by rapid ecological changes and alterations associated with human action provides for the development of new, dangerous pathogens and transformation of familiar pathogens to become more dangerous. Progress in molecular biology has thus far not yielded as many new tools for the treatment of infectious diseases as the hopes were in the early 2000's.

  17. Antarctomyces pellizariae sp. nov., a new, endemic, blue, snow resident psychrophilic ascomycete fungus from Antarctica.

    PubMed

    de Menezes, Graciéle C A; Godinho, Valéria M; Porto, Bárbara A; Gonçalves, Vívian N; Rosa, Luiz H

    2017-03-01

    In the present study, we have identified and characterised a new snow resident ascomycete blue stain fungus from Antarctica named Antarctomyces pellizariae sp. nov. Menezes, Godinho, Porto, Gonçalves and Rosa, using polyphasic taxonomy techniques. This fungal species was recovered from the seasonal snow of the Antarctic Peninsula. Antarctomyces pellizariae displayed different macro- and micromorphology when compared with A. psychrotrophicus Stchigel and Guarro, the only other Antarctomyces species reported until date. Antarctomyces pellizariae showed psychrophilic behavior and very low growth rate at 22-25 °C, quite different from A. psychrotrophicus that has a higher growth rate at mesophilic temperatures. In addition, micromorphological characteristics and the analysis of the nuclear rDNA internal transcribed spacer, β-tubulin, and RNA polymerase II regions revealed that A. pellizariae is a new species that is related to A. psychrotrophicus and Thelebolus species. Since the Antarctic Peninsula is reported to be one of the main regions of the earth experiencing the effects of global change in climate, species, such as A. pellizariae, might provide information about these effects on the endemic Antarctic biota. In addition, A. pellizariae displayed psychrophilic behavior and might be a source of interesting anti-freeze compounds that might prove useful in biotechnological processes.

  18. Low-temperature chemotaxis, halotaxis and chemohalotaxis by the psychrophilic marine bacterium Colwellia psychrerythraea 34H.

    PubMed

    Showalter, G M; Deming, J W

    2018-02-01

    A variety of ecologically important processes are driven by bacterial motility and taxis, yet these basic bacterial behaviours remain understudied in cold habitats. Here, we present a series of experiments designed to test the chemotactic ability of the model marine psychrophilic bacterium Colwellia psychrerythraea 34H, when grown at optimal temperature and salinity (8°C, 35 ppt) or its original isolation conditions (-1°C, 35 ppt), towards serine and mannose at temperatures from -8°C to 27°C (above its upper growth temperature of 18°C), and at salinities of 15, 35 and 55 ppt (at 8°C and -1°C). Results indicate that C. psychrerythraea 34H is capable of chemotaxis at all temperatures tested, with strongest chemotaxis at the temperature at which it was first grown, whether 8°C or -1°C. This model marine psychrophile also showed significant halotaxis towards 15 and 55 ppt solutions, as well as strong substrate-specific chemohalotaxis. We suggest that such patterns of taxis may enable bacteria to colonize sea ice, position themselves optimally within its extremely cold, hypersaline and temporally fluctuating microenvironments, and respond to various chemical signals therein. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and JohnWiley & Sons Ltd.

  19. Drug resistance in eukaryotic microorganisms

    PubMed Central

    Fairlamb, Alan H.; Gow, Neil A. R.; Matthews, Keith R.; Waters, Andrew P.

    2016-01-01

    Eukaryotic microbial pathogens are major contributors to illness and death globally. Although much of their impact can be controlled by drug therapy as with prokaryotic microorganisms, the emergence of drug resistance has threatened these treatment efforts. Here, we discuss the challenges posed by eukaryotic microbial pathogens and how these are similar to, or differ from, the challenges of prokaryotic antibiotic resistance. The therapies used for several major eukaryotic microorganisms are then detailed, and the mechanisms that they have evolved to overcome these therapies are described. The rapid emergence of resistance and the restricted pipeline of new drug therapies pose considerable risks to global health and are particularly acute in the developing world. Nonetheless, we detail how the integration of new technology, biological understanding, epidemiology and evolutionary analysis can help sustain existing therapies, anticipate the emergence of resistance or optimize the deployment of new therapies. PMID:27572976

  20. Exploring Protein Stability by Comparative Molecular Dynamics Simulations of Homologous Hyperthermophilic, Mesophilic, and Psychrophilic Proteins.

    PubMed

    Khan, Sara; Farooq, Umar; Kurnikova, Maria

    2016-11-28

    In the present studies, we analyzed the influence of temperature on the stability and dynamics of the α subunit of tryptophan synthase (TRPS) from hyperthermophilic, mesophilic, and psychrophilic homologues at different temperatures by molecular dynamics simulations. Employing different indicators such as root-mean-square deviations, root-mean-square fluctuations, principal component analysis, and free energy landscapes, this study manifests the diverse behavior of these homologues with changes in temperature. Especially, an enhancement in the collective motions, classified as representative motions, is observed at high temperature. Similarly, the criterion for the selection of electrostatic interactions in terms of their life span (duty cycle) has indeed helped in identifying the short- and long-lived electrostatic interactions and how they affect the protein's overall stability at different temperatures. Rigidity and flexibility patterns of the homologous proteins are examined using FIRST software along with the calculation of duty cycles with various threshold limits at different temperatures. Rigid cluster decomposition in TRPS of psychrophilic, mesophilic, and hyperthermophilic origin identifies the flexible and rigid regions in the protein. Early loss of rigidity is observed in mesophilic TRPS via loss of contact between the major fragments of the protein compared with the other homologues. In spite of the high similarity of their three-dimensional structures, the overall responses of the three proteins to varying temperatures are significantly different.

  1. The Genome Sequence of the psychrophilic archaeon, Methanococcoides burtonii: the Role of Genome Evolution in Cold-adaptation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Michelle A.; Lauro, Federico M.; Williams, Timothy J.

    2009-04-01

    Psychrophilic archaea are abundant and perform critical roles throughout the Earth's expansive cold biosphere. Here we report the first complete genome sequence for a psychrophilic methanogenic archaeon, Methanococcoides burtonii. The genome sequence was manually annotated including the use of a five tiered Evidence Rating system that ranked annotations from Evidence Rating (ER) 1 (gene product experimentally characterized from the parent organism) to ER5 (hypothetical gene product) to provide a rapid means of assessing the certainty of gene function predictions. The genome is characterized by a higher level of aberrant sequence composition (51%) than any other archaeon. In comparison to hyper/thermophilicmore » archaea which are subject to selection of synonymous codon usage, M. burtonii has evolved cold adaptation through a genomic capacity to accommodate highly skewed amino acid content, while retaining codon usage in common with its mesophilic Methanosarcina cousins. Polysaccharide biosynthesis genes comprise at least 3.3% of protein coding genes in the genome, and Cell wall/membrane/envelope biogenesis COG genes are over-represented. Likewise, signal transduction (COG category T) genes are over-represented and M. burtonii has a high 'IQ' (a measure of adaptive potential) compared to many methanogens. Numerous genes in these two over-represented COG categories appear to have been acquired from {var_epsilon}- and {delta}-proteobacteria, as do specific genes involved in central metabolism such as a novel B form of aconitase. Transposases also distinguish M. burtonii from other archaea, and their genomic characteristics indicate they play an important role in evolving the M. burtonii genome. Our study reveals a capacity for this model psychrophile to evolve through genome plasticity (including nucleotide skew, horizontal gene transfer and transposase activity) that enables adaptation to the cold, and to the biological and physical changes that have occurred over

  2. A study of psychrophilic organisms isolated from the manufacture and assembly areas of spacecraft to be used in the Viking mission

    NASA Technical Reports Server (NTRS)

    Foster, T. L.

    1974-01-01

    The effect of storage of dry heat treated Teflon ribbons under nitrogen gas followed by high vacuum on the recovery of hardy organisms from the ribbons was studied. A similar experiment was performed on spore crops of hardy organisms recovered previously from Cape Canaveral. Hardy organisms have been inoculated onto slides and subjected to an artificial Martian environment in an attempt to demonstrate their growth in this environment. Additional experiments using the artificial Martian environment include response of soil samples from the VAB with both constant temperature and freeze-thaw cycles. These experiments were performed with dried soil and soil containing added water. Other investigations included the effect of heatshock on soil samples, psychrophilic counts of new soil samples from the manufacture area of the Viking spacecraft, effect of pour plate versus spread plate on psychrophilic counts, and preparation of spore crops of hardy organisms from Cape Canaveral.

  3. Construction of a simple biocatalyst using psychrophilic bacterial cells and its application for efficient 3-hydroxypropionaldehyde production from glycerol.

    PubMed

    Tajima, Takahisa; Fuki, Koji; Kataoka, Naoya; Kudou, Daizou; Nakashimada, Yutaka; Kato, Junichi

    2013-12-05

    Most whole cell biocatalysts have some problems with yields and productivities because of various metabolites produced as byproducts and limitations of substrate uptake. We propose a psychrophile-based simple biocatalyst for efficient bio-production using mesophilic enzymes expressed in psychrophilic Shewanella livingstonensis Ac10 cells whose basic metabolism was inactivated by heat treatment. The 45°C heat-treated cells expressing lacZ showed maximum beta-galactosidase activity as well as chloroform/SDS-treated cells to increase membrane permeability. The fluorescent dye 5-cyano-2,3-ditolyl-tetrazolium chloride staining indicated that most basic metabolism of Ac10 was lost by heat treatment at 45˚C for 10 min. The simple biocatalyst was applied for 3-HPA production by using Klebsiella pneumoniae dhaB genes. 3-HPA was stoichiometrically produced with the complete consumption of glycerol at a high production rate of 8.85 mmol 3-HPA/g dry cell/h. The amount of 3-HPA production increased by increasing the concentrations of biocatalyst and glycerol. Furthermore, it could convert biodiesel-derived crude glycerol to 3-HPA.

  4. Temperature-Sensitive Salmonella enterica Serovar Enteritidis PT13a Expressing Essential Proteins of Psychrophilic Bacteria.

    PubMed

    Duplantis, Barry N; Puckett, Stephanie M; Rosey, Everett L; Ameiss, Keith A; Hartman, Angela D; Pearce, Stephanie C; Nano, Francis E

    2015-10-01

    Synthetic genes based on deduced amino acid sequences of the NAD-dependent DNA ligase (ligA) and CTP synthetase (pyrG) of psychrophilic bacteria were substituted for their native homologues in the genome of Salmonella enterica serovar Enteritidis phage type 13a (PT13a). The resulting strains were rendered temperature sensitive (TS) and did not revert to temperature resistance at a detectable level. At permissive temperatures, TS strains grew like the parental strain in broth medium and in macrophage-like cells, but their growth was slowed or stopped when they were shifted to a restrictive temperature. When injected into BALB/c mice at the base of the tail, representing a cool site of the body, the strains with restrictive temperatures of 37, 38.5, and 39°C persisted for less than 1 day, 4 to 7 days, and 20 to 28 days, respectively. The wild-type strain persisted at the site of inoculation for at least 28 days. The wild-type strain, but not the TS strains, was also found in spleen-plus-liver homogenates within 1 day of inoculation of the tail and was detectable in these organs for at least 28 days. Intramuscular vaccination of White Leghorn chickens with the PT13a strain carrying the psychrophilic pyrG gene provided some protection against colonization of the reproductive tract and induced an anti-S. enterica antibody response. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Temperature-Sensitive Salmonella enterica Serovar Enteritidis PT13a Expressing Essential Proteins of Psychrophilic Bacteria

    PubMed Central

    Duplantis, Barry N.; Puckett, Stephanie M.; Rosey, Everett L.; Ameiss, Keith A.; Hartman, Angela D.; Pearce, Stephanie C.

    2015-01-01

    Synthetic genes based on deduced amino acid sequences of the NAD-dependent DNA ligase (ligA) and CTP synthetase (pyrG) of psychrophilic bacteria were substituted for their native homologues in the genome of Salmonella enterica serovar Enteritidis phage type 13a (PT13a). The resulting strains were rendered temperature sensitive (TS) and did not revert to temperature resistance at a detectable level. At permissive temperatures, TS strains grew like the parental strain in broth medium and in macrophage-like cells, but their growth was slowed or stopped when they were shifted to a restrictive temperature. When injected into BALB/c mice at the base of the tail, representing a cool site of the body, the strains with restrictive temperatures of 37, 38.5, and 39°C persisted for less than 1 day, 4 to 7 days, and 20 to 28 days, respectively. The wild-type strain persisted at the site of inoculation for at least 28 days. The wild-type strain, but not the TS strains, was also found in spleen-plus-liver homogenates within 1 day of inoculation of the tail and was detectable in these organs for at least 28 days. Intramuscular vaccination of White Leghorn chickens with the PT13a strain carrying the psychrophilic pyrG gene provided some protection against colonization of the reproductive tract and induced an anti-S. enterica antibody response. PMID:26187965

  6. The polar lipids of Clostridium psychrophilum, an anaerobic psychrophile

    PubMed Central

    Guan, Ziqiang; Tian, Bing; Perfumo, Amedea; Goldfine, Howard

    2013-01-01

    We have examined the polar lipids of Clostridium psychrophilum, a recently characterized psychrophilic Clostridium isolated from an Antarctic microbial mat. Lipids were extracted from cells grown near the optimal growth temperature (+5 °C) and at −5 °C, and analyzed by two-dimensional thin layer chromatography and liquid chromatography coupled with mass spectrometry. The major phospholipids of this species are: cardiolipin, phosphatidylethanolamine, and phosphatidylglycerol. Phosphatidylserine and lyso-phosphatidylethanolamine were found as minor components. The most abundant glycolipids are a monoglycosyldiradylglycerol (MGDRG) and a diglycosyldiradylglycerol (DGDRG). The latter was only seen in cells grown at −5 °C. An ethanolamine-phosphate derivative of N-acetylglucosaminyldiradylglycerol was seen in cells grown at −5 °C and an ethanolamine-phosphate derivative of MGDRG was found in cells grown at +5 °C. All lipids were present in both the all acyl and plasmalogen (alk-1′-enyl acyl) forms with the exception of PS and MGDRG, which were predominantly in the diacyl form. The significance of lipid changes at the two growth temperatures is discussed. PMID:23454375

  7. Thermotropic Properties of Thermophilic, Mesophilic, and Psychrophilic Blue-green Algae

    PubMed Central

    Chen, Chang-Hwei; Berns, Donald S.

    1980-01-01

    Thermotropic properties of blue-green algae grown at high, room, and low temperatures in H2O and D2O media were studied by highly sensitive differential scanning microcalorimetry. The thermograms of these organisms contain an endothermal peak in the temperature range of 50 to 70 C with an endothermal heat ranging from 0.14 to 1.91 joules per gram organism. The temperature at which the endothermal peak occurs is comparable with the thermal denaturation temperature of phycocyanin, the major biliprotein isolated from these algae. A good correlation can be found for the relative thermal stability of various organisms with that of the isolated biliproteins. The ability of these algae to resist thermal disruption is correlated with the thermal environments in which these algal cells grow. The thermal stability of normal algae is in the order of thermophile > mesophile > psychrophile. It was found that the deuterated mesophilic algae were less able to resist thermal disruption than ordinary mesophilic algae. PMID:16661485

  8. Microorganism immobilization

    DOEpatents

    Compere, Alicia L.; Griffith, William L.

    1981-01-01

    Live metabolically active microorganisms are immobilized on a solid support by contacting particles of aggregate material with a water dispersible polyelectrolyte such as gelatin, crosslinking the polyelectrolyte by reacting it with a crosslinking agent such as glutaraldehyde to provide a crosslinked coating on the particles of aggregate material, contacting the coated particles with live microorganisms and incubating the microorganisms in contact with the crosslinked coating to provide a coating of metabolically active microorganisms. The immobilized microorganisms have continued growth and reproduction functions.

  9. Identification of Microorganisms by Modern Analytical Techniques.

    PubMed

    Buszewski, Bogusław; Rogowska, Agnieszka; Pomastowski, Paweł; Złoch, Michał; Railean-Plugaru, Viorica

    2017-11-01

    Rapid detection and identification of microorganisms is a challenging and important aspect in a wide range of fields, from medical to industrial, affecting human lives. Unfortunately, classical methods of microorganism identification are based on time-consuming and labor-intensive approaches. Screening techniques require the rapid and cheap grouping of bacterial isolates; however, modern bioanalytics demand comprehensive bacterial studies at a molecular level. Modern approaches for the rapid identification of bacteria use molecular techniques, such as 16S ribosomal RNA gene sequencing based on polymerase chain reaction or electromigration, especially capillary zone electrophoresis and capillary isoelectric focusing. However, there are still several challenges with the analysis of microbial complexes using electromigration technology, such as uncontrolled aggregation and/or adhesion to the capillary surface. Thus, an approach using capillary electrophoresis of microbial aggregates with UV and matrix-assisted laser desorption ionization time-of-flight MS detection is presented.

  10. Biogas generation from in-storage psychrophilic anaerobic digestion.

    PubMed

    Giard, David; Choiniere, Denis; Cordeau, Sébastien; Barrington, Suzelle

    2013-01-01

    In-storage psychrophilic anaerobic digestion (ISPAD) is a technology allowing livestock producers to operate an anaerobic digester with minimum technological know-how and for the cost of a conventional storage cover. Nevertheless, the system is exposed to ambient temperatures and biogas production is expected to vary with climatic conditions. The objective of the project was therefore to measure ISPAD biogas production during the winter and fall seasons for a region east of Montreal, Canada. A calibrated biogas monitoring system was used to monitor biogas methane and carbon dioxide concentrations inside a two-year-old field installation with a 1000 m3 storage capacity. Despite a leaking pumping hatch, winter 2010 (January to March) methane concentrations varied directly with solar radiation and maximum exterior temperature, rather than with manure temperature at 2.4 and 1.2 m depths which remained relatively constant between 1 and 5 degrees C. During a six-month-period from November 2009 to April 2010, inclusively, the field ISPAD degraded 34% of the manure volatile solids corresponding to an average methane production of 40 m3/d. The ISPAD biogas production could be further increased by improving its air tightness and intrusion and by regularly pumping out the biogas.

  11. Microbial deterioration of vacuum-packaged chilled beef cuts and techniques for microbiota detection and characterization: a review.

    PubMed

    Hernández-Macedo, Maria Lucila; Barancelli, Giovana Verginia; Contreras-Castillo, Carmen Josefina

    2011-01-01

    Gas production from microbial deterioration in vacuum-packs of chilled meat leads to pack distension, which is commonly referred as blown pack. This phenomenon is attributed to some psychrophilic and psychrotrophic Clostridium species, as well as Enterobacteria. The ability of these microorganisms to grow at refrigeration temperatures makes the control by the meat industry a challenge. This type of deterioration has been reported in many countries including some plants in the Midwestern and Southeastern regions of Brazil. In addition to causing economic losses, spoilage negatively impacts the commercial product brand, thereby impairing the meat industry. In the case of strict anaerobes species they are difficult to grow and isolate using culture methods in conventional microbiology laboratories. Furthermore, conventional culture methods are sometimes not capable of distinguishing species or genera. DNA-based molecular methods are alternative strategies for detecting viable and non-cultivable microorganisms and strict anaerobic microorganisms that are difficult to cultivate. Here, we review the microorganisms and mechanisms involved in the deterioration of vacuum-packaged chilled meat and address the use of molecular methods for detecting specific strict anaerobic microorganisms and microbial communities in meat samples.

  12. Optimization of culture conditions for production of a novel cold-active lipase from Pichia lynferdii NRRL Y-7723

    USDA-ARS?s Scientific Manuscript database

    Lipases with abnormal properties such as thermo stability, alkalinity, acidity and cold-activity receive industrial attention because of their usability under restricted reaction conditions. Most microbial cold-active lipases originate from psychrotrophic and psychrophilic microorganisms found in An...

  13. Local entropy difference upon a substrate binding of a psychrophilic α-amylase and a mesophilic homologue

    NASA Astrophysics Data System (ADS)

    Kosugi, Takahiro; Hayashi, Shigehiko

    2011-01-01

    Psychrophilic α-amylase from the antarctic bacterium pseudoalteromonashaloplanktis (AHA) and its mesophilic homologue, porcine pancreatic α-amylase (PPA) are theoretically investigated with molecular dynamics (MD) simulations. We carried out 240-ns MD simulations for four systems, AHA and PPA with/without the bound substrate, and examined protein conformational entropy changes upon the substrate binding. We developed an analysis that decomposes the entropy changes into contributions of individual amino acids, and successfully identified protein regions responsible for the entropy changes. The results provide a molecular insight into the structural flexibilities of those enzymes related to the temperature dependences of the enzymatic activity.

  14. Spirochaeta psychrophila sp. nov., a psychrophilic spirochaete isolated from subseafloor sediment, and emended description of the genus Spirochaeta.

    PubMed

    Miyazaki, Masayuki; Sakai, Sanae; Yamanaka, Yuko; Saito, Yumi; Takai, Ken; Imachi, Hiroyuki

    2014-08-01

    An obligately anaerobic, psychrophilic spirochaete, strain MO-SPC1(T), was isolated from a methanogenic microbial community grown in a continuous-flow bioreactor. Originally, this community was obtained from subseafloor sediments off the Shimokita Peninsula of Japan in the north-western Pacific Ocean. The cells were motile, Gram-stain-negative, helical, 0.25-0.55×3.6-15 µm, with a wavelength of approximately 0.5-0.6 µm. Strain MO-SPC1(T) grew at 0-18 °C (optimally at 15 °C), at pH 6.0-7.5 (optimally at pH 6.8-7.0) and in 20-70 g NaCl l(-1) (optimally at 30-40 NaCl l(-1)). The strain grew chemo-organotrophically with mono-, di- and polysaccharides. The major end products of glucose fermentation were acetate, ethanol, hydrogen and carbon dioxide. The abundant polar lipids of strain MO-SPC1(T) were diphosphatidylglycerol, phosphatidylglycerol, unknown phospholipids and an unknown lipid. The major cellular fatty acids (>5% of the total) were C(14 : 0), C(16 : 0), iso-C(13 : 0), iso-C(14 : 0), iso-C(15 : 0), anteiso-C(13 : 0) and anteiso-C(15 : 0). To the best of our knowledge, this is the first report of the fatty acids iso-C(13 : 0) and anteiso-C(13 : 0) from a species of the genus Spirochaeta. Isoprenoid quinones were not found. The G+C content of the genomic DNA was 39.8 mol%. 16S rRNA gene sequence-based phylogenetic analysis showed that strain MO-SPC1(T) was affiliated with the genus Spirochaeta, and its closest relatives were Spirochaeta isovalerica MA-2(T) (95.6% sequence identity) and Spirochaeta litoralis R1(T) (89.4%). Based on its phenotypic characteristics and phylogenetic traits, strain MO-SPC1(T) is placed in a separate taxon at the level of a novel species within the genus Spirochaeta, for which the name Spirochaeta psychrophila sp. nov. is proposed, reflecting its true psychrophilic physiology. The type strain is MO-SPC1(T) ( = JCM 17280(T) = DSM 23951(T)). To our knowledge, this is the first report of an

  15. Toward understanding life under subzero conditions: the significance of exploring psychrophilic "cold-shock" proteins.

    PubMed

    Kuhn, Emanuele

    2012-11-01

    Understanding the behavior of proteins under freezing conditions is vital for detecting and locating extraterrestrial life in cold environments, such as those found on Mars and the icy moons of Jupiter and Saturn. This review highlights the importance of studying psychrophilic "cold-shock" proteins, a topic that has yet to be explored. A strategy for analyzing the psychrophilic RNA helicase protein CsdA (Psyc_1082) from Psychrobacter arcticus 273-4 as a key protein for life under freezing temperatures is proposed. The experimental model presented here was developed based on previous data from investigations of Escherichia coli, P. arcticus 273-4, and RNA helicases. P. arcticus 273-4 is considered a model for life in freezing environments. It is capable of growing in temperatures as cold as -10°C by using physiological strategies to survive not only in freezing temperatures but also under low-water-activity and limited-nutrient-availability conditions. The analyses of its genome, transcriptome, and proteome revealed specific adaptations that allow it to inhabit freezing environments by adopting a slow metabolic strategy rather than a cellular dormancy state. During growth at subzero temperatures, P. arcticus 273-4 genes related to energy metabolism and carbon substrate incorporation are downregulated, and genes for maintenance of membranes, cell walls, and nucleic acid motion are upregulated. At -6°C, P. arcticus 273-4 does not upregulate the expression of either RNA or protein chaperones; however, it upregulates the expression of its cold-shock induced DEAD-box RNA helicase protein A (CsdA - Psyc_1082). CsdA - Psyc_1082 was investigated as a key helper protein for sustaining life in subzero conditions. Proving CsdA - Psyc_1082 to be functional as a key protein for life under freezing temperatures may extend the known minimum growth temperature of a mesophilic cell and provide key information about the mechanisms that underlie cold-induced biological systems in

  16. Draft genome sequence of Paenisporosarcina sp. strain TG-14, a psychrophilic bacterium isolated from sediment-laden stratified basal ice from Taylor Glacier, McMurdo Dry Valleys, Antarctica.

    PubMed

    Koh, Hye Yeon; Lee, Sung Gu; Lee, Jun Hyuck; Doyle, Shawn; Christner, Brent C; Kim, Hak Jun

    2012-12-01

    The psychrophilic bacterium Paenisporosarcina sp. TG-14 was isolated from sediment-laden stratified basal ice from Taylor Glacier, McMurdo Dry Valleys, Antarctica. Here we report the draft genome sequence of this strain, which may provide useful information on the cold adaptation mechanism in extremely variable environments.

  17. Sources of psychrophilic and psychrotolerant clostridia causing spoilage of vacuum-packed chilled meats, as determined by PCR amplification procedure.

    PubMed

    Broda, D M; Boerema, J A; Brightwell, G

    2009-07-01

    To determine possible preslaughter and processing sources of psychrophilic and psychrotolerant clostridia causing spoilage of vacuum-packed chilled meats. Molecular methods based on the polymerase chain reaction (PCR) amplification of specific 16S rDNA fragments were used to detect the presence of Clostridium gasigenes, Clostridium estertheticum, Clostridium algidicarnis and Clostridium putrefaciens in a total of 357 samples collected from ten slaughter stock supply farms, slaughter stock, two lamb-processing plants, their environments, dressed carcasses and final vacuum-packed meat stored at -0.5 degrees C for 5(1/2) weeks. Clostridium gasigenes, C. estertheticum and C. algidicarnis/C. putrefaciens were commonly detected in farm, faeces, fleece and processing environmental samples collected at the slaughter floor operations prior to fleece removal, but all these micro-organisms were detected in only 4 out of 26 cooling floor and chiller environmental samples. One out of 42 boning room environmental samples tested positive for the presence of C. gasigenes and C. estertheticum, but 25 out of 42 of these samples were positive for C. algidicarnis/C. putrefaciens. Nearly all of the 31 faecal samples tested positive for the presence of C. gasigenes and C. estertheticum; however, only two of these samples were positive for C. algidicarnis and/or C. putrefaciens. Clostridial species that were subject to this investigation were frequently detected on chilled dressed carcasses. The major qualitative and quantitative differences between the results of PCR detection obtained with the primers specific for 'blown pack' -causing clostridia (C. gasigenes and C. estertheticum) and those obtained with primers specific for C. algidicarnis and C. putrefaciens suggest that the control of meat spoilage caused by different groups of meat clostridia is best approached individually for each group. This paper provides information significant for controlling meat spoilage-causing clostridia

  18. Crystal structures of the psychrophilic alpha-amylase from Alteromonas haloplanctis in its native form and complexed with an inhibitor.

    PubMed Central

    Aghajari, N.; Feller, G.; Gerday, C.; Haser, R.

    1998-01-01

    Alteromonas haloplanctis is a bacterium that flourishes in Antarctic sea-water and it is considered as an extreme psychrophile. We have determined the crystal structures of the alpha-amylase (AHA) secreted by this bacterium, in its native state to 2.0 angstroms resolution as well as in complex with Tris to 1.85 angstroms resolution. The structure of AHA, which is the first experimentally determined three-dimensional structure of a psychrophilic enzyme, resembles those of other known alpha-amylases of various origins with a surprisingly greatest similarity to mammalian alpha-amylases. AHA contains a chloride ion which activates the hydrolytic cleavage of substrate alpha-1,4-glycosidic bonds. The chloride binding site is situated approximately 5 angstroms from the active site which is characterized by a triad of acid residues (Asp 174, Glu 200, Asp 264). These are all involved in firm binding of the Tris moiety. A reaction mechanism for substrate hydrolysis is proposed on the basis of the Tris inhibitor binding and the chloride activation. A trio of residues (Ser 303, His 337, Glu 19) having a striking spatial resemblance with serine-protease like catalytic triads was found approximately 22 angstroms from the active site. We found that this triad is equally present in other chloride dependent alpha-amylases, and suggest that it could be responsible for autoproteolytic events observed in solution for this cold adapted alpha-amylase. PMID:9541387

  19. A start-up of psychrophilic anaerobic sequence batch reactor digesting a 35 % total solids feed of dairy manure and wheat straw.

    PubMed

    Saady, Noori M Cata; Massé, Daniel I

    2015-12-01

    Zero liquid discharge is currently an objective in livestock manure management to minimize water pollution. This paper reports the start-up phase of a novel psychrophilic (20 °C) dry anaerobic digestion of dairy manure with bedding fed at 35 % total solids and an organic loading rate of 3.0 g total chemical oxygen demand kg(-1) inoculum day(-1) in anaerobic sequence batch reactors. The specific methane (CH4) yield ranged from 165.4 ± 9.8 to 213.9 ± 13.6 NL CH4 kg(-1) volatile solids (VS) with an overall average of 188 ± 17 NL CH4 kg(-1) VS during 11 successive start-up cycles (231 days) and a maximum CH4 production rate of 10.2 ± 0.6 NL CH4 kg(-1) VS day(-1). The inoculum-to-substrate (VS-based) ratio ranged from 4.06 to 4.47. Although methanogenesis proceeded fairly well the hydrolysis seemed to be the rate limiting step. It is possible start up psychrophilic dry anaerobic digestion of cow feces and wheat straw at feed TS of 35 % within 7-10 successive cycles (147-210 days).

  20. Micro-Organ Device

    NASA Technical Reports Server (NTRS)

    Sun, Wei (Inventor); Chang, Robert C. (Inventor); Starly, Binil (Inventor); Holtorf, Heidi L. (Inventor); Leslie, Julia (Inventor); Culbertson, Christopher (Inventor); Gonda, Steve R. (Inventor)

    2013-01-01

    A method for fabricating a micro-organ device comprises providing a microscale support having one or more microfluidic channels and one or more micro-chambers for housing a micro-organ and printing a micro-organ on the microscale support using a cell suspension in a syringe controlled by a computer-aided tissue engineering system, wherein the cell suspension comprises cells suspended in a solution containing a material that functions as a three-dimensional scaffold. The printing is performed with the computer-aided tissue engineering system according to a particular pattern. The micro-organ device comprises at least one micro-chamber each housing a micro-organ; and at least one microfluidic channel connected to the micro-chamber, wherein the micro-organ comprises cells arranged in a configuration that includes microscale spacing between portions of the cells to facilitate diffusion exchange between the cells and a medium supplied from the at least one microfluidic channel.

  1. Micro-organ device

    NASA Technical Reports Server (NTRS)

    von Gustedt-Gonda, legal representative, Iris (Inventor); Holtorf, Heidi L. (Inventor); Gonda, Steve R. (Inventor); Leslie, Julia (Inventor); Chang, Robert C. (Inventor); Sun, Wei (Inventor); Starly, Binil (Inventor); Culbertson, Christopher (Inventor)

    2013-01-01

    A method for fabricating a micro-organ device comprises providing a microscale support having one or more microfluidic channels and one or more micro-chambers for housing a micro-organ and printing a micro-organ on the microscale support using a cell suspension in a syringe controlled by a computer-aided tissue engineering system, wherein the cell suspension comprises cells suspended in a solution containing a material that functions as a three-dimensional scaffold. The printing is performed with the computer-aided tissue engineering system according to a particular pattern. The micro-organ device comprises at least one micro-chamber each housing a micro-organ; and at least one microfluidic channel connected to the micro-chamber, wherein the micro-organ comprises cells arranged in a configuration that includes microscale spacing between portions of the cells to facilitate diffusion exchange between the cells and a medium supplied from the at least one microfluidic channel.

  2. Acidification of In-Storage-Psychrophilic-Anaerobic-Digestion (ISPAD) process to reduce ammonia volatilization: Model development and validation.

    PubMed

    Madani-Hosseini, Mahsa; Mulligan, Catherine N; Barrington, Suzelle

    2016-06-01

    In-Storage-Psychrophilic-Anaerobic-Digestion (ISPAD) is an ambient temperature treatment system for wastewaters stored for over 100days under temperate climates, which produces a nitrogen rich digestate susceptible to ammonia (NH3) volatilization. Present acidification techniques reducing NH3 volatilization are not only expensive and with secondary environmental effects, but do not apply to ISPAD relying on batch-to-batch inoculation. The objectives of this study were to identify and validate sequential organic loading (OL) strategies producing imbalances in acidogen and methanogen growth, acidifying ISPAD content one week before emptying to a pH of 6, while also preserving the inoculation potential. This acidification process is challenging as wastewaters often offer a high buffering capacity and ISPAD operational practices foster low microbial populations. A model simulating the ISPAD pH regime was used to optimize 3 different sequential OLs to decrease the ISPAD pH to 6.0. All 3 strategies were compared in terms of biogas production, volatile fatty acid (VFA) concentration, microbial activity, glucose consumption, and pH decrease. Laboratory validation of the model outputs confirmed that a sequential OL of 13kg glucose/m(3) of ISPAD content over 4days could indeed reduce the pH to 6.0. Such OL competes feasibly with present acidification techniques. Nevertheless, more research is required to explain the 3-day lag between the model results and the experimental data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Dry anaerobic digestion of high solids content dairy manure at high organic loading rates in psychrophilic sequence batch reactor.

    PubMed

    Massé, Daniel I; Saady, Noori M Cata

    2015-05-01

    Cow manure with bedding is renewable organic biomass available around the year on dairy farms. Developing efficient and cost-effective psychrophilic dry anaerobic digestion (PDAD) processes could contribute to solving farm-related environmental, energy, and manure management problems in cold-climate regions. This study was to increase the organic loading rate (OLR), fed to a novel psychrophilic (20 °C) dry anaerobic digestion of 27% total solid dairy manure (cow feces and wheat straw) in sequence batch reactor (PDAD-SBR), by 133 to 160%. The PDAD-SBR process operated at treatment cycle length of 21 days and OLR of 7.0 and 8.0 g total chemical oxygen demand (TCOD) kg(-1) inoculum day(-1) (5.2 ± 0.1 and 5.8 ± 0.0 g volatile solids (VS) kg(-1) inoculum day(-1)) for four successive cycles (84 days) produced average specific methane yields (SMYs) of 147.1 ± 17.2 and 143.2 ± 11.7 normalized liters (NL) CH4 kg(-1) VS fed, respectively. PDAD of cow feces and wheat straw is possible with VS-based inoculum-to-substrate ratio of 1.45 at OLR of 8.0 g TCOD kg(-1) inoculum day(-1). Hydrolysis was the limiting step reaction. The VS removal averaged around 57.4 ± 0.5 and 60.5 ± 5.7% at OLR 7.0 and 8.0 g TCOD kg(-1) inoculum day(-1), respectively.

  4. Biodegradation potentiality of psychrophilic bacterial strain Oleispira antarctica RB-8(T).

    PubMed

    Gentile, G; Bonsignore, M; Santisi, S; Catalfamo, M; Giuliano, L; Genovese, L; Yakimov, M M; Denaro, R; Genovese, M; Cappello, S

    2016-04-15

    The present study is focused on assessing the growth and hydrocarbon-degrading capability of the psychrophilic strain Oleispira antarctica RB-8(T). This study considered six hydrocarbon mixtures that were tested for 22days at two different cultivation temperatures (4 and 15°C). During the incubation period, six sub-aliquots of each culture at different times were processed for total bacterial abundance and GC-FID (gas chromatography-flame ionization detection) hydrocarbon analysis. Results from DNA extraction and DAPI (4',6-diamidino-2-phenylindole) staining showed a linear increase during the first 18days of the experiment in almost all the substrates used; both techniques showed a good match, but the difference in values obtained was approximately one order of magnitude. GC-FID results revealed a substantial hydrocarbon degradation rate in almost all hydrocarbon sources and in particular at 15°C rather than 4°C (for commercial oil engine, oily waste, fuel jet, and crude oil). A more efficient degradation was observed in cultures grown with diesel and bilge water at 4°C. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Psychrophile spoilers dominate the bacterial microbiome in musculature samples of slaughter pigs.

    PubMed

    Mann, Evelyne; Wetzels, Stefanie U; Pinior, Beate; Metzler-Zebeli, Barbara U; Wagner, Martin; Schmitz-Esser, Stephan

    2016-07-01

    The aim of this study was to disentangle the microbial diversity on porcine musculature. The hypervariable V1-V2 region of the 16S rRNA gene was amplified from DNA samples of clinically healthy slaughter pigs (n=8). Pyrosequencing yielded 37,000 quality-controlled reads and a diverse microbiome with 54-159 OTUs per sample was detected. Interestingly, 6 out of 8 samples were strongly dominated by 1-2 highly abundant OTUs (best hits of highly abundant OTUs: Serratia proteamaculans, Pseudomonas syringae, Aeromonas allosaccharophila, Brochothrix thermosphacta, Acidiphilium cryptum and Escherichia coli). In 1g musculature scraping, 3.20E+06 16S rRNA gene copies and 4.45E+01 Enterobacteriaceae rRNA gene copies were detected with qPCR. We conclude that i.) next-generation sequencing technologies help encompass the full content of complex, bacterial contamination, ii.) psychrophile spoilers dominated the microbiota and iii.) E. coli is an effective marker species for pork contamination, as it was one of very few abundant species being present in all samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Identification of Microorganisms by High Resolution Tandem Mass Spectrometry with Accurate Statistical Significance

    NASA Astrophysics Data System (ADS)

    Alves, Gelio; Wang, Guanghui; Ogurtsov, Aleksey Y.; Drake, Steven K.; Gucek, Marjan; Suffredini, Anthony F.; Sacks, David B.; Yu, Yi-Kuo

    2016-02-01

    Correct and rapid identification of microorganisms is the key to the success of many important applications in health and safety, including, but not limited to, infection treatment, food safety, and biodefense. With the advance of mass spectrometry (MS) technology, the speed of identification can be greatly improved. However, the increasing number of microbes sequenced is challenging correct microbial identification because of the large number of choices present. To properly disentangle candidate microbes, one needs to go beyond apparent morphology or simple `fingerprinting'; to correctly prioritize the candidate microbes, one needs to have accurate statistical significance in microbial identification. We meet these challenges by using peptidome profiles of microbes to better separate them and by designing an analysis method that yields accurate statistical significance. Here, we present an analysis pipeline that uses tandem MS (MS/MS) spectra for microbial identification or classification. We have demonstrated, using MS/MS data of 81 samples, each composed of a single known microorganism, that the proposed pipeline can correctly identify microorganisms at least at the genus and species levels. We have also shown that the proposed pipeline computes accurate statistical significances, i.e., E-values for identified peptides and unified E-values for identified microorganisms. The proposed analysis pipeline has been implemented in MiCId, a freely available software for Microorganism Classification and Identification. MiCId is available for download at http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html.

  7. Triacylglyceride composition and fatty acyl saturation profile of a psychrophilic and psychrotolerant fungal species grown at different temperatures.

    PubMed

    Pannkuk, Evan L; Blair, Hannah B; Fischer, Amy E; Gerdes, Cheyenne L; Gilmore, David F; Savary, Brett J; Risch, Thomas S

    2014-01-01

    Pseudogymnoascus destructans is a psychrophilic fungus that infects cutaneous tissues in cave dwelling bats, and it is the causal agent for white nose syndrome (WNS) in North American (NA) bat populations. Geomyces pannorum is a related psychrotolerant keratinolytic species that is rarely a pathogen of mammals. In this study, we grew P. destructans and G. pannorum in static liquid cultures at favourable and suboptimal temperatures to: 1) determine if triacylglyceride profiles are species-specific, and 2) determine if there are differences in fatty acyl (FA) saturation levels with respect to temperature. Total lipids isolated from both fungal spp. were separated by thin-layer chromatography and determined to be primarily sterols (∼15 %), free fatty acids (FFAs) (∼45 %), and triacylglycerides (TAGs) (∼50 %), with minor amounts of mono-/diacylglycerides and sterol esters. TAG compositions were profiled by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF). Total fatty acid methyl esters (FAMEs) and acyl lipid unsaturation levels were determined by gas chromatography-mass spectrometry (GC-MS). Pseudogymnoascus destructans produced higher proportions of unsaturated 18C fatty acids and TAGs than G. pannorum. Pseudogymnoascus destructans and G. pannorum produced up to a two-fold increase in 18:3 fatty acids at 5 °C than at higher temperatures. TAG proportion for P. destructans at upper and lower temperature growth limits was greater than 50 % of total dried mycelia mass. These results indicate fungal spp. alter acyl lipid unsaturation as a strategy to adapt to cold temperatures. Differences between their glycerolipid profiles also provide evidence for a different metabolic strategy to support psychrophilic growth, which may influence P. destructans' pathogenicity to bats. Copyright © 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  8. Cryobacterium levicorallinum sp. nov., a psychrophilic bacterium isolated from glacier ice.

    PubMed

    Liu, Qing; Liu, Hongcan; Zhang, Jianli; Zhou, Yuguang; Xin, Yuhua

    2013-08-01

    In this study, two psychrophilic bacterial strains were isolated from the China No. 1 glacier in Xinjiang, north-west China. Cells were Gram-positive rods. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the strains belonged to the genus Cryobacterium. Phylogenetic analysis showed that they clustered together and are most closely related to Cryobacterium luteum CGMCC 1.11210(T), Cryobacterium flavum CGMCC 1.11215(T), Cryobacterium psychrophilum CGMCC 1.4292(T), Cryobacterium psychrotolerans CGMCC 1.5382(T) and Cryobacterium roopkundense CGMCC 1.10672(T). The major cellular fatty acids of the novel strains were anteiso-C15 : 0, anteiso-C15 : 1 A, iso-C16 : 0 and iso-C15 : 0. Both strains contained diphosphatidylglycerol, phosphatidylglycerol and one unidentified glycolipid in the cell membrane. The results of DNA-DNA hybridization and physiological tests allowed the genotypic and phenotypic differentiation of strains Hh34(T) and Hh28 from related species. However, their high DNA-DNA relatedness showed that they belong to the same novel species. Strain Hh34(T) (= NBRC 107883(T) = CGMCC 1.11211(T)) was selected as the type strain to represent this novel species, for which the name Cryobacterium levicorallinum sp. nov. is proposed.

  9. The Glaciozyma antarctica genome reveals an array of systems that provide sustained responses towards temperature variations in a persistently cold habitat

    PubMed Central

    Hashim, Noor Haza Fazlin; Bharudin, Izwan; Abu Bakar, Mohd Faizal; Huang, Kie Kyon; Alias, Halimah; Lee, Bernard K. B.; Mat Isa, Mohd Noor; Mat-Sharani, Shuhaila; Sulaiman, Suhaila; Tay, Lih Jinq; Zolkefli, Radziah; Muhammad Noor, Yusuf; Law, Douglas Sie Nguong; Abdul Rahman, Siti Hamidah; Md-Illias, Rosli; Abu Bakar, Farah Diba; Najimudin, Nazalan; Abdul Murad, Abdul Munir; Mahadi, Nor Muhammad

    2018-01-01

    Extremely low temperatures present various challenges to life that include ice formation and effects on metabolic capacity. Psyhcrophilic microorganisms typically have an array of mechanisms to enable survival in cold temperatures. In this study, we sequenced and analysed the genome of a psychrophilic yeast isolated in the Antarctic region, Glaciozyma antarctica. The genome annotation identified 7857 protein coding sequences. From the genome sequence analysis we were able to identify genes that encoded for proteins known to be associated with cold survival, in addition to annotating genes that are unique to G. antarctica. For genes that are known to be involved in cold adaptation such as anti-freeze proteins (AFPs), our gene expression analysis revealed that they were differentially transcribed over time and in response to different temperatures. This indicated the presence of an array of adaptation systems that can respond to a changing but persistent cold environment. We were also able to validate the activity of all the AFPs annotated where the recombinant AFPs demonstrated anti-freeze capacity. This work is an important foundation for further collective exploration into psychrophilic microbiology where among other potential, the genes unique to this species may represent a pool of novel mechanisms for cold survival. PMID:29385175

  10. Identification and expression of the tig gene coding for trigger factor from psychrophilic bacteria with no information of genome sequence available.

    PubMed

    Lee, Kyunghee; Choi, Hyojung; Im, Hana

    2009-08-01

    Trigger factor (TF) plays a key role as a molecular chaperone with a peptidyl-prolyl cis-trans isomerase (PPIase) activity by which cells promote folding of newly synthesized proteins coming out of ribosomes. Since psychrophilic bacteria grow at a quite low temperature, between 4 and 15 degrees C, TF from such bacteria was investigated and compared with that of mesophilic bacteria E. coli in order to offer an explanation of cold-adaptation at a molecular level. Using a combination of gradient PCRs with homologous primers and LA PCR in vitro cloning technology, the tig gene was fully identified from Psychromonas arctica, whose genome sequence is not yet available. The resulting amino acid sequence of the TF was compared with other homologous TFs using sequence alignments to search for common domains. In addition, we have developed a protein expression system, by which TF proteins from P. arctica (PaTF) were produced by IPTG induction upon cloning the tig gene on expression vectors, such as pAED4. We have further examined the role of expressed psychrophilic PaTF on survival against cold treatment at 4 degrees C. Finally, we have attempted the in vitro biochemical characterization of TF proteins with His-tags expressed in a pET system, such as the PPIase activity of PaTF protein. Our results demonstrate that the expressed PaTF proteins helped cells survive against cold environments in vivo and the purified PaTF in vitro display the functional PPIase activity in a concentration dependent manner.

  11. Plants and microorganisms as drivers of mineral weathering

    NASA Astrophysics Data System (ADS)

    Dontsova, K.; Chorover, J.; Maier, R.; Hunt, E.; Zaharescu, D. G.

    2011-12-01

    Plants and microorganisms play important role in mineral weathering and soil formation modifying their environment to make it more hospitable for life. This presentation summarizes several collaborative studies that focused on understanding how interactions between plants and microorganisms, where plants provide the energy through photosynthesis, drive mineral weathering and result in soil formation. Plants influence weathering through multiple mechanisms that have been previously established, such as increase in CO2 concentration in the soil through root respiration and degradation of plant residues and exudates by heterotrophic microorganisms, release of organic acids that promote mineral dissolution, removal of weathering products from soil solution through uptake, and water redistribution. Weathering processes result in nutrient release that satisfies immediate needs of the plants and microorganisms, as well as precipitation of secondary phases, that provide surfaces for retention of nutrients and organic carbon accumulation. What makes understanding contribution of plants and microorganisms, such as bacteria and fungi, to mineral weathering challenging is the fact that they closely interact, enhancing and amplifying each other's contribution. In order to address multiple processes that contribute to and result from biological weathering a combination of chemical, biological, mineralogical, and computational techniques and methodologies is needed. This complex array of methodologies includes bulk techniques, such as determination of total dissolved organic and inorganic carbon and nitrogen, ion chromatography and high performance liquid chromatography to characterize amount and composition of exuded organic acids, inductively coupled plasma mass spectrometry to determine concentrations of lithogenic elements in solution, X-ray diffraction to characterize changes in mineral composition of the material, DNA extraction to characterize community structure, as well

  12. Beneficial microorganisms [Chapter 14

    Treesearch

    Kim M. Wilkinson

    2009-01-01

    The web of life depends on microorganisms, a vast network of small and unseen allies that permeate the soil, water, and air of our planet. For people who work with plants, the greatest interest in microorganisms is in the complex communities that are part of the soil. Beneficial microorganisms are naturally occurring bacteria, fungi, and other microbes that play a...

  13. Efficient conversion of mannitol derived from brown seaweed to fructose for fermentation with a thraustochytrid.

    PubMed

    Tajima, Takahisa; Tomita, Kousuke; Miyahara, Hiroyuki; Watanabe, Kenshi; Aki, Tsunehiro; Okamura, Yoshiko; Matsumura, Yukihiko; Nakashimada, Yutaka; Kato, Junichi

    2018-02-01

    Macroalgae are a promising biomass feedstock for energy and valuable chemicals. Mannitol and alginate are the major carbohydrates found in the microalga Laminaria japonica (Konbu). To convert mannitol to fructose for its utilization as a carbon source in mannitol non-assimilating bacteria, a psychrophile-based simple biocatalyst (PSCat) was constructed using a psychrophile as a host by expressing mesophilic enzymes, including mannitol 2-dehydrogenase for mannitol oxidation, and NADH oxidase and alkyl hydroxyperoxide reductase for NAD + regeneration. PSCat was treated at 40 °C to inactivate the psychrophilic enzymes responsible for byproduct formation and to increase the membrane permeability of the substrate. PSCat efficiently converted mannitol to fructose with high conversion yield without additional input of NAD + . Konbu extract containing mannitol was converted to fructose with hydroperoxide scavenging, inhibiting the mannitol dehydrogenase activity. Auranthiochytrium sp. could grow well in the presence of fructose converted by PSCat. Thus, PSCat is a potential carbohydrate converter for mannitol non-assimilating microorganism. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Microorganisms for producing organic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  15. Microorganisms for producing organic acids

    DOEpatents

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-09-30

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  16. Marine microorganisms and global nutrient cycles

    NASA Astrophysics Data System (ADS)

    Arrigo, Kevin R.

    2005-09-01

    The way that nutrients cycle through atmospheric, terrestrial, oceanic and associated biotic reservoirs can constrain rates of biological production and help structure ecosystems on land and in the sea. On a global scale, cycling of nutrients also affects the concentration of atmospheric carbon dioxide. Because of their capacity for rapid growth, marine microorganisms are a major component of global nutrient cycles. Understanding what controls their distributions and their diverse suite of nutrient transformations is a major challenge facing contemporary biological oceanographers. What is emerging is an appreciation of the previously unknown degree of complexity within the marine microbial community.

  17. Electrode Cultivation and Interfacial Electron Transport in Subsurface Microorganisms

    NASA Astrophysics Data System (ADS)

    Karbelkar, A. A.; Jangir, Y.; Reese, B. K.; Wanger, G.; Anderson, C.; El-Naggar, M.; Amend, J.

    2016-12-01

    Continental subsurface environments can present significant energetic challenges to the resident microorganisms. While these environments are geologically diverse, potentially allowing energy harvesting by microorganisms that catalyze redox reactions, many of the abundant electron donors and acceptors are insoluble and therefore not directly bioavailable. Microbes can use extracellular electron transfer (EET) as a metabolic strategy to interact with redox active surfaces. This process can be mimicked on electrode surfaces and hence can lead to enrichment and quantification of subsurface microorganisms A primary bioelectrochemical enrichment with different oxidizing and reducing potentials set up in a single bioreactor was applied in situ to subsurface microorganisms residing in iron oxide rich deposits in the Sanford Underground Research Facility. Secondary enrichment revealed a plethora of classified and unclassified subsurface microbiota on both oxidizing and reducing potentials. From this enrichment, we have isolated a Gram-positive Bacillus along with Gram-negative Cupriavidus and Anaerospora strains (as electrode reducers) and Comamonas (as an electrode oxidizer). The Bacillus and Comamonas isolates were subjected to a detailed electrochemical characterization in half-reactors at anodic and cathodic potentials, respectively. An increase in cathodic current upon inoculation and cyclic voltammetry measurements confirm the hypothesis that Comamonas is capable of electron uptake from electrodes. In addition, measurements of Bacillus on anodes hint towards novel mechanisms that allow EET from Gram-positive bacteria. This study suggests that electrochemical approaches are well positioned to dissect such extracellular interactions that may be prevalent in the subsurface, while using physical electrodes to emulate the microhabitats, redox and geochemical gradients, and the spatially dependent interspecies interactions encountered in the subsurface. Electrochemical

  18. Detecting the presence of microorganisms

    NASA Technical Reports Server (NTRS)

    Wilkins, Judd R. (Inventor); Stoner, Glenn E. (Inventor)

    1977-01-01

    The presence of microorganisms in a sample is determined by culturing microorganisms in a growth medium which is in contact with a measuring electrode and a reference electrode and detecting a change in potential between the electrodes caused by the presence of the microorganisms in the medium with a high impedance potentiometer.

  19. Fossil Microorganisms in Archaean

    NASA Technical Reports Server (NTRS)

    Astafleva, Marina; Hoover, Richard; Rozanov, Alexei; Vrevskiy, A.

    2006-01-01

    Ancient Archean and Proterozoic rocks are the model objects for investigation of rocks comprising astromaterials. The first of Archean fossil microorganisms from Baltic shield have been reported at the last SPIE Conference in 2005. Since this confeence biomorphic structures have been revealed in Archean rocks of Karelia. It was determined that there are 3 types of such bion structures: 1. structures found in situ, in other words microorganisms even-aged with rock matrix, that is real Archean fossils biomorphic structures, that is to say forms inhabited early formed rocks, and 3. younger than Archean-Protherozoic minerali microorganisms, that is later contamination. We made attempt to differentiate these 3 types of findings and tried to understand of burial of microorganisms. The structures belongs (from our point of view) to the first type, or real Archean, forms were under examination. Practical investigation of ancient microorganisms from Green-Stone-Belt of Northern Karelia turns to be very perspective. It shows that even in such ancient time as Archean ancient diverse world existed. Moreover probably such relatively highly organized cyanobacteria and perhaps eukaryotic formes existed in Archean world.

  20. Marine Microorganism: An Underexplored Source of l-Asparaginase.

    PubMed

    Prihanto, A A; Wakayama, M

    l-Asparaginase (EC 3.5.1.1) is an enzyme that catalyzes the hydrolysis of l-asparagine to l-aspartic acid. This enzyme has an important role in medicine and food. l-Asparaginase is a potential drug in cancer therapy. Furthermore, it is also applied for reducing acrylamide, a carcinogenic compound in baked and fried foods. Until now, approved l-asparaginases for both applications are few due to their lack of appropriate properties. As a result, researchers have been enthusiastically seeking new sources of enzyme with better performance. A great number of terrestrial l-asparaginase-producing microorganisms have been reported but unfortunately, almost all failed to meet criteria for cancer therapy and acrylamide reducing agent. As a largest area than Earth, marine environment, by contrast, has not been optimally explored yet. So far, a great challenge facing an exploration of marine microorganisms is mainly due to their harsh, mysterious, and dangerous environment. It is clear that marine environment, a gigantic potential source for marine natural products is scantily revealed, although several approaches and technologies have been developed. This chapter presents the historical of l-asparaginase discovery and applications. It is also discussed, how the marine environment, even though offering a great potency but is still one of the less explored area for l-asparaginase-producing microorganisms. © 2016 Elsevier Inc. All rights reserved.

  1. Turbulence from a microorganism's perspective: Does the open ocean feel different than a coral reef?

    NASA Astrophysics Data System (ADS)

    Pepper, Rachel; Variano, Evan; Koehl, M. A. R.

    2012-11-01

    Microorganisms in the ocean live in turbulent flows. Swimming microorganisms navigate through the water (e.g. larvae land on suitable substrata, predators find patches of prey), but the mechanisms by which they do so in turbulent flow are poorly understood as are the roles of passive transport versus active behaviors. Because microorganisms are smaller than the Kolmagorov length (the smallest scale of eddies in turbulent flow), they experience turbulence as a series of linear gradients in the velocity that vary in time. While the average strength of these gradients and a timescale can be computed from some typical characteristics of the flow, such as the turbulent kinetic energy or the dissipation rate, there are indications that organisms are disproportionally affected by rare, extreme events. Understanding the frequency of such events in different environments will be critical to understanding how microorganisms respond to and navigate in turbulence. To understand the hydrodynamic cues that microorganisms experience in the ocean we must measure velocity gradients in realistic turbulent flow on the spatial and temporal scales encountered by microorganisms. We have been exploring the effect of the spatial resolution of PIV and DNS of turbulent flow on the presence of velocity gradients of different magnitudes at the scale of microorganisms. Here we present some results of PIV taken at different resolutions in turbulent flow over rough biological substrata to illustrate the challenges of quantifying the fluctuations in velocity gradients encountered by aquatic microorganisms.

  2. Rhodoferax antarcticus sp. nov., a moderately psychrophilic purple nonsulfur bacterium isolated from an Antarctic microbial mat

    NASA Technical Reports Server (NTRS)

    Madigan, M. T.; Jung, D. O.; Woese, C. R.; Achenbach, L. A.

    2000-01-01

    A new species of purple nonsulfur bacteria isolated from an Antarctic microbial mat is described. The organism, designated strain ANT.BR, was mildly psychrophilic, growing optimally at 15-18 degrees C with a growth temperature range of 0-25 degrees C. Cells of strain ANT.BR were highly motile curved rods and spirals, contained bacteriochlorophyll a, and showed a multicomponent in vivo absorption spectrum. A specific phylogenetic relationship was observed between strain ANT.BR and the purple bacterium Rhodoferax fermentans FR2T, and the two organisms shared several physiological and other phenotypic properties, with the notable exception of growth temperature optimum. Tests of genomic DNA hybridization, however, showed Rfx. fermentans FR2T and strain ANT.BR to be genetically distinct bacteria. Because of its unique set of properties, especially its requirement for low growth temperatures, we propose to recognize strain ANT.BR as a new species of the genus Rhodoferax, Rhodoferax antarcticus, named for its known habitat, the Antarctic.

  3. Optimization of cold-adapted lysozyme production from the psychrophilic yeast Debaryomyces hansenii using statistical experimental methods.

    PubMed

    Wang, Quanfu; Hou, Yanhua; Yan, Peisheng

    2012-06-01

    Statistical experimental designs were employed to optimize culture conditions for cold-adapted lysozyme production of a psychrophilic yeast Debaryomyces hansenii. In the first step of optimization using Plackett-Burman design (PBD), peptone, glucose, temperature, and NaCl were identified as significant variables that affected lysozyme production, the formula was further optimized using a four factor central composite design (CCD) to understand their interaction and to determine their optimal levels. A quadratic model was developed and validated. Compared to the initial level (18.8 U/mL), the maximum lysozyme production (65.8 U/mL) observed was approximately increased by 3.5-fold under the optimized conditions. Cold-adapted lysozymes production was first optimized using statistical experimental methods. A 3.5-fold enhancement of microbial lysozyme was gained after optimization. Such an improved production will facilitate the application of microbial lysozyme. Thus, D. hansenii lysozyme may be a good and new resource for the industrial production of cold-adapted lysozymes. © 2012 Institute of Food Technologists®

  4. Perspective: researching the transition from non-living to the first microorganisms: methods and experiments are major challenges.

    PubMed

    Trevors, J T

    2010-06-01

    Methods to research the origin of microbial life are limited. However, microorganisms were the first organisms on the Earth capable of cell growth and division, and interactions with their environment, other microbial cells, and eventually with diverse eukaryotic organisms. The origin of microbial life and the supporting scientific evidence are both an enigma and a scientific priority. Numerous hypotheses have been proposed, scenarios imagined, speculations presented in papers, insights shared, and assumptions made without supporting experimentation, which have led to limited progress in understanding the origin of microbial life. The use of the human imagination to envision the origin of life events, without supporting experimentation, observation and independently replicated experiments required for science, is a significant constraint. The challenge remains how to better understand the origin of microbial life using observations and experimental methods as opposed to speculation, assumptions, scenarios, envisioning events and un-testable hypotheses. This is not an easy challenge as experimental design and plausible hypothesis testing are difficult. Since past approaches have been inconclusive in providing evidence for the origin of microbial life mechanisms and the manner in which genetic instructions was encoded into DNA/RNA, it is reasonable and logical to propose that progress will be made when testable, plausible hypotheses and methods are used in the origin of microbial life research, and the experimental observations are, or are not reproduced in independent laboratories. These perspectives will be discussed in this article as well as the possibility that a pre-biotic film preceded a microbial biofilm as a possible micro-location for the origin of microbial cells capable of growth and division. 2010 Elsevier B.V. All rights reserved.

  5. Gene Cloning and Characterization of the Very Large NAD-Dependent l-Glutamate Dehydrogenase from the Psychrophile Janthinobacterium lividum, Isolated from Cold Soil▿

    PubMed Central

    Kawakami, Ryushi; Sakuraba, Haruhiko; Ohshima, Toshihisa

    2007-01-01

    NAD-dependent l-glutamate dehydrogenase (NAD-GDH) activity was detected in cell extract from the psychrophile Janthinobacterium lividum UTB1302, which was isolated from cold soil and purified to homogeneity. The native enzyme (1,065 kDa, determined by gel filtration) is a homohexamer composed of 170-kDa subunits (determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis). Consistent with these findings, gene cloning and sequencing enabled deduction of the amino acid sequence of the subunit, which proved to be comprised of 1,575 amino acids with a combined molecular mass of 169,360 Da. The enzyme from this psychrophile thus appears to belong to the GDH family characterized by very large subunits, like those expressed by Streptomyces clavuligerus and Pseudomonas aeruginosa (about 180 kDa). The entire amino acid sequence of the J. lividum enzyme showed about 40% identity with the sequences from S. clavuligerus and P. aeruginosa enzymes, but the central domains showed higher homology (about 65%). Within the central domain, the residues related to substrate and NAD binding were highly conserved, suggesting that this is the enzyme's catalytic domain. In the presence of NAD, but not in the presence of NADP, this GDH exclusively catalyzed the oxidative deamination of l-glutamate. The stereospecificity of the hydride transfer to NAD was pro-S, which is the same as that of the other known GDHs. Surprisingly, NAD-GDH activity was markedly enhanced by the addition of various amino acids, such as l-aspartate (1,735%) and l-arginine (936%), which strongly suggests that the N- and/or C-terminal domains play regulatory roles and are involved in the activation of the enzyme by these amino acids. PMID:17526698

  6. Gene cloning and characterization of the very large NAD-dependent l-glutamate dehydrogenase from the psychrophile Janthinobacterium lividum, isolated from cold soil.

    PubMed

    Kawakami, Ryushi; Sakuraba, Haruhiko; Ohshima, Toshihisa

    2007-08-01

    NAD-dependent l-glutamate dehydrogenase (NAD-GDH) activity was detected in cell extract from the psychrophile Janthinobacterium lividum UTB1302, which was isolated from cold soil and purified to homogeneity. The native enzyme (1,065 kDa, determined by gel filtration) is a homohexamer composed of 170-kDa subunits (determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis). Consistent with these findings, gene cloning and sequencing enabled deduction of the amino acid sequence of the subunit, which proved to be comprised of 1,575 amino acids with a combined molecular mass of 169,360 Da. The enzyme from this psychrophile thus appears to belong to the GDH family characterized by very large subunits, like those expressed by Streptomyces clavuligerus and Pseudomonas aeruginosa (about 180 kDa). The entire amino acid sequence of the J. lividum enzyme showed about 40% identity with the sequences from S. clavuligerus and P. aeruginosa enzymes, but the central domains showed higher homology (about 65%). Within the central domain, the residues related to substrate and NAD binding were highly conserved, suggesting that this is the enzyme's catalytic domain. In the presence of NAD, but not in the presence of NADP, this GDH exclusively catalyzed the oxidative deamination of l-glutamate. The stereospecificity of the hydride transfer to NAD was pro-S, which is the same as that of the other known GDHs. Surprisingly, NAD-GDH activity was markedly enhanced by the addition of various amino acids, such as l-aspartate (1,735%) and l-arginine (936%), which strongly suggests that the N- and/or C-terminal domains play regulatory roles and are involved in the activation of the enzyme by these amino acids.

  7. Diversity of culturable psychrophilic and psychrotrophic anaerobic bacteria isolated from beef abattoirs and their environments.

    PubMed

    Moschonas, G; Bolton, D J; McDowell, D A; Sheridan, J J

    2011-07-01

    This study identified 431 psychrophilic or psychrotrophic isolates from commercial Irish beef abattoir environments and "blown packs" of vacuum-packed beef, using PCR and 16S rRNA sequencing, and estimated their intraspecies genetic diversity using restriction fragment length polymorphism (RFLP) analysis and spacer region PCR (SR-PCR). Twenty-five species were identified in the 431 isolates, with the most frequently recovered species being Clostridium gasigenes (n=315), Clostridium estertheticum (n=17), and a potentially novel species designated strain TC1 (n=52). These species were previously found to be associated with a particular type of spoilage known as blown-pack spoilage (BPS), which occurs in chilled-stored (i.e., -1.5°C to 4°C) vacuum-packaged meat within 2 to 4 weeks and involves the production of large volumes of gas. Overall, the study demonstrates the considerable and not previously reported diversity of the anaerobic microflora in abattoirs and the presence of a wide range of organisms capable of causing BPS at chilled temperatures.

  8. Micro-Organ Devices

    NASA Technical Reports Server (NTRS)

    Gonda, Steven R.; Leslie, Julia; Chang, Robert C.; Starly, Binil; Sun, Wei; Culbertson, Christopher; Holtorf, Heidi

    2009-01-01

    Micro-organ devices (MODs) are being developed to satisfy an emerging need for small, lightweight, reproducible, biological-experimentati on apparatuses that are amenable to automated operation and that imp ose minimal demands for resources (principally, power and fluids). I n simplest terms, a MOD is a microfluidic device containing a variety of microstructures and assemblies of cells, all designed to mimic a complex in vivo microenvironment by replicating one or more in vivo micro-organ structures, the architectures and composition of the extr acellular matrices in the organs of interest, and the in vivo fluid flows. In addition to microscopic flow channels, a MOD contains one or more micro-organ wells containing cells residing in microscopic e xtracellular matrices and/or scaffolds, the shapes and compositions o f which enable replication of the corresponding in vivo cell assembl ies and flows.

  9. Multicellular microorganisms: laboratory versus nature.

    PubMed

    Palková, Zdena

    2004-05-01

    Our present in-depth knowledge of the physiology and regulatory mechanisms of microorganisms has arisen from our ability to remove them from their natural, complex ecosystems into pure liquid cultures. These cultures are grown under optimized laboratory conditions and allow us to study microorganisms as individuals. However, microorganisms naturally grow in conditions that are far from optimal, which causes them to become organized into multicellular communities that are better protected against the harmful environment. Moreover, this multicellular existence allows individual cells to differentiate and acquire specific properties, such as forming resistant spores, which benefit the whole population. The relocation of natural microorganisms to the laboratory can result in their adaptation to these favourable conditions, which is accompanied by complex changes that include the repression of some protective mechanisms that are essential in nature. Laboratory microorganisms that have been cultured for long periods under optimized conditions might therefore differ markedly from those that exist in natural ecosystems.

  10. Predatory Microorganisms Would Help Reclaim Water

    NASA Technical Reports Server (NTRS)

    Benjaminson, Morris A.; Lehrer, Stanley

    1995-01-01

    Wastewater-reclamation systems of proposed type use predatory, nonpathogenic microorganisms to consume pathogenic microorganisms. Unlike some other wastewater-reclamation systems, these systems do not require use of toxic chemicals, intense heat, or ionizing radiation (conductivity rays or ultraviolet) to destroy microorganisms.

  11. Recent trends in ionic liquid (IL) tolerant enzymes and microorganisms for biomass conversion.

    PubMed

    Portillo, Maria Del Carmen; Saadeddin, Anas

    2015-01-01

    Second generation biofuel production depends on lignocellulosic (LC) biomass transformation into simple sugars and their subsequent fermentation into alcohols. However, the main obstacle in this process is the efficient breakdown of the recalcitrant cellulose to sugar monomers. Hence, efficient feedstock pretreatment and hydrolysis are necessary to produce a cost effective biofuel. Recently, ionic liquids (ILs) have been recognized as a promising solvent able to dissolve different biomass feedstocks, providing higher sugar yields. However, most of the hydrolytic enzymes and microorganisms are inactivated, completely or partially, in the presence of even low concentrations of IL, making necessary the discovery of novel hydrolytic enzymes and fermentative microorganisms that are tolerant to ILs. In this review, the current state and the challenges of using ILs as a pretreatment of LC biomass was evaluated, underlining the advances in the discovery and identification of new IL-tolerant enzymes and microorganisms that could improve the bioprocessing of biomass to fuels and chemicals.

  12. Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants - a review.

    PubMed

    Suriyamongkol, Pornpa; Weselake, Randall; Narine, Suresh; Moloney, Maurice; Shah, Saleh

    2007-01-01

    The increasing effect of non-degradable plastic wastes is a growing concern. Polyhydroxyalkanoates (PHAs), macromolecule-polyesters naturally produced by many species of microorganisms, are being considered as a replacement for conventional plastics. Unlike petroleum-derived plastics that take several decades to degrade, PHAs can be completely bio-degraded within a year by a variety of microorganisms. This biodegradation results in carbon dioxide and water, which return to the environment. Attempts based on various methods have been undertaken for mass production of PHAs. Promising strategies involve genetic engineering of microorganisms and plants to introduce production pathways. This challenge requires the expression of several genes along with optimization of PHA synthesis in the host. Although excellent progress has been made in recombinant hosts, the barriers to obtaining high quantities of PHA at low cost still remain to be solved. The commercially viable production of PHA in crops, however, appears to be a realistic goal for the future.

  13. 40 CFR 725.85 - Microorganism identity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Microorganism identity. 725.85 Section... to Information § 725.85 Microorganism identity. (a) Claims applicable to the period prior to... specific microorganism identity at the time of submission of the information. This claim will apply only to...

  14. 40 CFR 725.85 - Microorganism identity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Microorganism identity. 725.85 Section... to Information § 725.85 Microorganism identity. (a) Claims applicable to the period prior to... specific microorganism identity at the time of submission of the information. This claim will apply only to...

  15. 40 CFR 725.85 - Microorganism identity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Microorganism identity. 725.85 Section... to Information § 725.85 Microorganism identity. (a) Claims applicable to the period prior to... specific microorganism identity at the time of submission of the information. This claim will apply only to...

  16. 40 CFR 725.85 - Microorganism identity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Microorganism identity. 725.85 Section... to Information § 725.85 Microorganism identity. (a) Claims applicable to the period prior to... specific microorganism identity at the time of submission of the information. This claim will apply only to...

  17. 40 CFR 725.85 - Microorganism identity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Microorganism identity. 725.85 Section... to Information § 725.85 Microorganism identity. (a) Claims applicable to the period prior to... specific microorganism identity at the time of submission of the information. This claim will apply only to...

  18. Textiles for protection against microorganism

    NASA Astrophysics Data System (ADS)

    Sauperl, O.

    2016-04-01

    Concerning micro-organisms such as bacteria, viruses and fungi, there is a huge progress in the development of textile materials and procedures which should effectively protect against these various pathogens. In this sense there is especially problematic hospital environment, where it is necessary to take into account properly designed textile material which, when good selected and composed, act as a good barrier against transfer of micro-organisms through material mainly in its wet state. Respect to this it is necessary to be familiar with the rules regarding selection of the input material, the choice of proper yarn construction, the choice of the proper weaving mode, the rules regarding selection of antimicrobial-active compound suitable for (eco-friendly) treatment, and the choice of the most appropriate test method by which it is possible objectively to conclude on the reduction of selected microorganism. As is well known, fabrics are three-dimensional structures with void and non-void areas. Therefore, the physical-chemical properties of the textile material/fabric, the surface characteristics together with the shape of microorganism, and the carriers' characteristics contribute to control the transfer of microorganism through textile material. Therefore, careful planning of textile materials and treatment procedure with the compound which is able to reduce micro-organism satisfactory is particularly important, especially due to the fact that in hospital environment population with impaired immune system is mainly presented.

  19. TOPICAL REVIEW: Protein stability and enzyme activity at extreme biological temperatures

    NASA Astrophysics Data System (ADS)

    Feller, Georges

    2010-08-01

    Psychrophilic microorganisms thrive in permanently cold environments, even at subzero temperatures. To maintain metabolic rates compatible with sustained life, they have improved the dynamics of their protein structures, thereby enabling appropriate molecular motions required for biological activity at low temperatures. As a consequence of this structural flexibility, psychrophilic proteins are unstable and heat-labile. In the upper range of biological temperatures, thermophiles and hyperthermophiles grow at temperatures > 100 °C and synthesize ultra-stable proteins. However, thermophilic enzymes are nearly inactive at room temperature as a result of their compactness and rigidity. At the molecular level, both types of extremophilic proteins have adapted the same structural factors, but in opposite directions, to address either activity at low temperatures or stability in hot environments. A model based on folding funnels is proposed accounting for the stability-activity relationships in extremophilic proteins.

  20. Biotechnological uses of desiccation-tolerant microorganisms for the rhizoremediation of soils subjected to seasonal drought.

    PubMed

    Vilchez, S; Manzanera, Maximino

    2011-09-01

    Plant growth-promoting rhizobacteria (PGPR) increase the viability and health of host plants when they colonize roots and engage in associative symbiosis (Bashan et al. 2004). In return, PGPR viability is increased by host plant roots by the provision of nutrients and a more protective environment (Richardson et al. in Plant Soil 321:305-339, 2009). The PGPR have great potential in agriculture since the combination of certain microorganisms and plants can increase crop production and increase protection against frost, salinity, drought and other environmental stresses such as the presence of xenobiotic pollutants. But there is a great challenge in combining plants and microorganisms without compromising the viability of either microorganisms or seeds. In this paper, we review how anhydrobiotic engineering can be used for the formulation of biotechnological tools that guarantee the supply of both plants and microorganisms in the dry state. We also describe the application of this technology for the selection of desiccation-tolerant PGPR for polycyclic aromatic hydrocarbons bioremediation, in soils subjected to seasonal drought, by the rhizoremediation process.

  1. Diversity of Culturable Psychrophilic and Psychrotrophic Anaerobic Bacteria Isolated from Beef Abattoirs and Their Environments ▿

    PubMed Central

    Moschonas, G.; Bolton, D. J.; McDowell, D. A.; Sheridan, J. J.

    2011-01-01

    This study identified 431 psychrophilic or psychrotrophic isolates from commercial Irish beef abattoir environments and “blown packs” of vacuum-packed beef, using PCR and 16S rRNA sequencing, and estimated their intraspecies genetic diversity using restriction fragment length polymorphism (RFLP) analysis and spacer region PCR (SR-PCR). Twenty-five species were identified in the 431 isolates, with the most frequently recovered species being Clostridium gasigenes (n = 315), Clostridium estertheticum (n = 17), and a potentially novel species designated strain TC1 (n = 52). These species were previously found to be associated with a particular type of spoilage known as blown-pack spoilage (BPS), which occurs in chilled-stored (i.e., −1.5°C to 4°C) vacuum-packaged meat within 2 to 4 weeks and involves the production of large volumes of gas. Overall, the study demonstrates the considerable and not previously reported diversity of the anaerobic microflora in abattoirs and the presence of a wide range of organisms capable of causing BPS at chilled temperatures. PMID:21498765

  2. Non-Psychrophilic Methanogens Capable of Growth Following Long-Term Extreme Temperature Changes, with Application to Mars.

    PubMed

    Mickol, Rebecca L; Laird, Sarah K; Kral, Timothy A

    2018-04-23

    Although the martian environment is currently cold and dry, geomorphological features on the surface of the planet indicate relatively recent (<4 My) freeze/thaw episodes. Additionally, the recent detections of near-subsurface ice as well as hydrated salts within recurring slope lineae suggest potentially habitable micro-environments within the martian subsurface. On Earth, microbial communities are often active at sub-freezing temperatures within permafrost, especially within the active layer, which experiences large ranges in temperature. With warming global temperatures, the effect of thawing permafrost communities on the release of greenhouse gases such as carbon dioxide and methane becomes increasingly important. Studies examining the community structure and activity of microbial permafrost communities on Earth can also be related to martian permafrost environments, should life have developed on the planet. Here, two non-psychrophilic methanogens, Methanobacterium formicicum and Methanothermobacter wolfeii , were tested for their ability to survive long-term (~4 year) exposure to freeze/thaw cycles varying in both temperature and duration, with implications both for climate change on Earth and possible life on Mars.

  3. Production of plant-derived polyphenols in microorganisms: current state and perspectives.

    PubMed

    Milke, Lars; Aschenbrenner, Jennifer; Marienhagen, Jan; Kallscheuer, Nicolai

    2018-02-01

    Plants synthesize several thousand different polyphenols of which many have the potential to aid in preventing or treating cancer, cardiovascular, and neurodegenerative diseases. However, plants usually contain complex polyphenol mixtures impeding access to individual compounds in larger quantities. In contrast, functional integration of biosynthetic plant polyphenol pathways into microorganisms allows for the production of individual polyphenols as chemically distinct compounds, which can be synthesized in large amounts and can be more easily isolated. Over the last decade, microbial synthesis of many plant polyphenols could be achieved, and along the way, many decisive bottlenecks in the endogenous microbial host metabolism as well as in the heterologous plant pathways could be identified. In this review, we present recent advancements in metabolic engineering of microorganisms for the production of plant polyphenols and discuss how current challenges could be addressed in the future.

  4. Recombinant microorganisms for increased production of organic acids

    DOEpatents

    Yi, Jian [East Lansing, MI; Kleff, Susanne [East Lansing, MI; Guettler, Michael V [Holt, MI

    2012-02-21

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  5. Recombinant microorganisms for increased production of organic acids

    DOEpatents

    Yi, Jian; Kleff, Susanne; Guettler, Michael V

    2013-04-30

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  6. Bioplastics from microorganisms.

    PubMed

    Luengo, José M; García, Belén; Sandoval, Angel; Naharro, Germán; Olivera, Elías R

    2003-06-01

    The term 'biomaterials' includes chemically unrelated products that are synthesised by microorganisms (or part of them) under different environmental conditions. One important family of biomaterials is bioplastics. These are polyesters that are widely distributed in nature and accumulate intracellularly in microorganisms in the form of storage granules, with physico-chemical properties resembling petrochemical plastics. These polymers are usually built from hydroxy-acyl-CoA derivatives via different metabolic pathways. Depending on their microbial origin, bioplastics differ in their monomer composition, macromolecular structure and physical properties. Most of them are biodegradable and biocompatible, which makes them extremely interesting from the biotechnological point of view.

  7. Analysis of Membrane Lipids of Airborne Micro-Organisms

    NASA Technical Reports Server (NTRS)

    MacNaughton, Sarah

    2006-01-01

    A method of characterization of airborne micro-organisms in a given location involves (1) large-volume filtration of air onto glass-fiber filters; (2) accelerated extraction of membrane lipids of the collected micro-organisms by use of pressurized hot liquid; and (3) identification and quantitation of the lipids by use of gas chromatography and mass spectrometry. This method is suitable for use in both outdoor and indoor environments; for example, it can be used to measure airborne microbial contamination in buildings ("sick-building syndrome"). The classical approach to analysis of airborne micro-organisms is based on the growth of cultureable micro-organisms and does not provide an account of viable but noncultureable micro-organisms, which typically amount to more than 90 percent of the micro-organisms present. In contrast, the present method provides an account of all micro-organisms, including cultureable, noncultureable, aerobic, and anaerobic ones. The analysis of lipids according to this method makes it possible to estimate the number of viable airborne micro-organisms present in the sampled air and to obtain a quantitative profile of the general types of micro-organisms present along with some information about their physiological statuses.

  8. AIRBORNE MICROORGANISMS IN BROILER PROCESSING PLANTS.

    PubMed

    KOTULA, A W; KINNER, J A

    1964-05-01

    Concentrations of total aerobic bacteria, molds, yeasts, coliforms, enterococci, and psychrophiles were determined in the air of two poultry processing plants with Andersen samplers and a mobile power supply. Total aerobic bacterial counts were highest in the dressing room, with diminishing numbers in the shackling, eviscerating, and holding rooms, when sampling was carried out during plant operation. The average counts per ft(3) of air in these four rooms were 2,200; 560; 230; and 62, respectively. (Each value is the average of 36 observations.) The number of organisms increased in the shackling and dressing rooms once processing was begun. Average total aerobic bacterial counts increased from 70 to 870 to 3,000 in the shackling room and from 310 to 4,900 to 7,000 in the dressing room when sampling was carried out at 5:00 am (before plant operations), 9:00 am, and 2:00 pm, respectively. (Each value is the mean of 12 observations.) Airborne molds might originate from a source other than the poultry being processed.

  9. Airborne Microorganisms in Broiler Processing Plants

    PubMed Central

    Kotula, Anthony W.; Kinner, Jack A.

    1964-01-01

    Concentrations of total aerobic bacteria, molds, yeasts, coliforms, enterococci, and psychrophiles were determined in the air of two poultry processing plants with Andersen samplers and a mobile power supply. Total aerobic bacterial counts were highest in the dressing room, with diminishing numbers in the shackling, eviscerating, and holding rooms, when sampling was carried out during plant operation. The average counts per ft3 of air in these four rooms were 2,200; 560; 230; and 62, respectively. (Each value is the average of 36 observations.) The number of organisms increased in the shackling and dressing rooms once processing was begun. Average total aerobic bacterial counts increased from 70 to 870 to 3,000 in the shackling room and from 310 to 4,900 to 7,000 in the dressing room when sampling was carried out at 5:00 am (before plant operations), 9:00 am, and 2:00 pm, respectively. (Each value is the mean of 12 observations.) Airborne molds might originate from a source other than the poultry being processed. Images FIG. 3 PMID:14170951

  10. Application of flow cytometry to wine microorganisms.

    PubMed

    Longin, Cédric; Petitgonnet, Clément; Guilloux-Benatier, Michèle; Rousseaux, Sandrine; Alexandre, Hervé

    2017-04-01

    Flow cytometry (FCM) is a powerful technique allowing detection and enumeration of microbial populations in food and during food process. Thanks to the fluorescent dyes used and specific probes, FCM provides information about cell physiological state and allows enumeration of a microorganism in a mixed culture. Thus, this technique is increasingly used to quantify pathogen, spoilage microorganisms and microorganisms of interest. Since one decade, FCM applications to the wine field increase greatly to determine population and physiological state of microorganisms performing alcoholic and malolactic fermentations. Wine spoilage microorganisms were also studied. In this review we briefly describe FCM principles. Next, a deep revision concerning enumeration of wine microorganisms by FCM is presented including the fluorescent dyes used and techniques allowing a yeast and bacteria species specific enumeration. Then, the last chapter is dedicated to fluorescent dyes which are used to date in fluorescent microscopy but applicable in FCM. This chapter also describes other interesting "future" techniques which could be applied to study the wine microorganisms. Thus, this review seeks to highlight the main advantages of the flow cytometry applied to wine microbiology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Challenges and Opportunities of Airborne Metagenomics

    PubMed Central

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-01-01

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles. PMID:25953766

  12. Systems metabolic engineering of microorganisms for natural and non-natural chemicals.

    PubMed

    Lee, Jeong Wook; Na, Dokyun; Park, Jong Myoung; Lee, Joungmin; Choi, Sol; Lee, Sang Yup

    2012-05-17

    Growing concerns over limited fossil resources and associated environmental problems are motivating the development of sustainable processes for the production of chemicals, fuels and materials from renewable resources. Metabolic engineering is a key enabling technology for transforming microorganisms into efficient cell factories for these compounds. Systems metabolic engineering, which incorporates the concepts and techniques of systems biology, synthetic biology and evolutionary engineering at the systems level, offers a conceptual and technological framework to speed the creation of new metabolic enzymes and pathways or the modification of existing pathways for the optimal production of desired products. Here we discuss the general strategies of systems metabolic engineering and examples of its application and offer insights as to when and how each of the different strategies should be used. Finally, we highlight the limitations and challenges to be overcome for the systems metabolic engineering of microorganisms at more advanced levels.

  13. A universal TagModule collection for parallel genetic analysis of microorganisms

    PubMed Central

    Oh, Julia; Fung, Eula; Price, Morgan N.; Dehal, Paramvir S.; Davis, Ronald W.; Giaever, Guri; Nislow, Corey; Arkin, Adam P.; Deutschbauer, Adam

    2010-01-01

    Systems-level analyses of non-model microorganisms are limited by the existence of numerous uncharacterized genes and a corresponding over-reliance on automated computational annotations. One solution to this challenge is to disrupt gene function using DNA tag technology, which has been highly successful in parallelizing reverse genetics in Saccharomyces cerevisiae and has led to discoveries in gene function, genetic interactions and drug mechanism of action. To extend the yeast DNA tag methodology to a wide variety of microorganisms and applications, we have created a universal, sequence-verified TagModule collection. A hallmark of the 4280 TagModules is that they are cloned into a Gateway entry vector, thus facilitating rapid transfer to any compatible genetic system. Here, we describe the application of the TagModules to rapidly generate tagged mutants by transposon mutagenesis in the metal-reducing bacterium Shewanella oneidensis MR-1 and the pathogenic yeast Candida albicans. Our results demonstrate the optimal hybridization properties of the TagModule collection, the flexibility in applying the strategy to diverse microorganisms and the biological insights that can be gained from fitness profiling tagged mutant collections. The publicly available TagModule collection is a platform-independent resource for the functional genomics of a wide range of microbial systems in the post-genome era. PMID:20494978

  14. From the Lab to the Farm: An Industrial Perspective of Plant Beneficial Microorganisms

    PubMed Central

    Parnell, J. Jacob; Berka, Randy; Young, Hugh A.; Sturino, Joseph M.; Kang, Yaowei; Barnhart, D. M.; DiLeo, Matthew V.

    2016-01-01

    Any successful strategy aimed at enhancing crop productivity with microbial products ultimately relies on the ability to scale at regional to global levels. Microorganisms that show promise in the lab may lack key characteristics for widespread adoption in sustainable and productive agricultural systems. This paper provides an overview of critical considerations involved with taking a strain from discovery to the farmer’s field. In addition, we review some of the most effective microbial products on the market today, explore the reasons for their success and outline some of the major challenges involved in industrial production and commercialization of beneficial strains for widespread agricultural application. General processes associated with commercializing viable microbial products are discussed in two broad categories, biofertility inoculants and biocontrol products. Specifically, we address what farmers desire in potential microbial products, how mode of action informs decisions on product applications, the influence of variation in laboratory and field study data, challenges with scaling for mass production, and the importance of consistent efficacy, product stability and quality. In order to make a significant impact on global sustainable agriculture, the implementation of plant beneficial microorganisms will require a more seamless transition between laboratory and farm application. Early attention to the challenges presented here will improve the likelihood of developing effective microbial products to improve crop yields, decrease disease severity, and help to feed an increasingly hungry planet. PMID:27540383

  15. Polyesters from microorganisms.

    PubMed

    Kim, Y B; Lenz, R W

    2001-01-01

    Bacterial polyesters have been found to have useful properties for applications as thermoplastics, elastomers, and adhesives and are biodegradable and biocompatible. Poly(3-hydroxyalkanoates) (PHAs) and poly(beta-malate) are the most representative polyesters synthesized by microorganisms. PHAs containing a wide variety of repeating units can be produced by bacteria, including those containing many types of pendant functional groups which can be synthesized by microorganisms that are grown on unnatural organic substrates. Poly(beta-malate) is of interest primarily for medical applications, especially for drug delivery systems. In this chapter, the bacterial production and properties of poly(3-hydroxyalkanoates) and poly(beta-malate) are described with emphasis on the former.

  16. Distribution and prevalence of airborne microorganisms in three commercial poultry processing plants.

    PubMed

    Whyte, P; Collins, J D; McGill, K; Monahan, C; O'Mahony, H

    2001-03-01

    Airborne microbial contaminants and indicator organisms were monitored within three poultry processing plants (plants A, B, and C). In total, 15 cubic feet (c.f.) of air was sampled per location during 15 visits to each plant and quantitatively analyzed for total mesophilic and psychrophilic aerobic counts, thermophilic campylobacters, Escherichia coli, and Enterobacteriaceae. The prevalence of Salmonella spp. in air samples was also evaluated. Significant reductions in total aerobic counts were observed between defeathering and evisceration areas of the three plants (P < 0.05). Mesophilic plate counts were highest in the defeathering areas of all plants compared to equivalent psychrophilic plate counts. Enterobacteriaceae counts were highest in the defeathering areas of all three plants with counts of log10 1.63, 1.53, and 1.18 CFU/15 c.f. recovered in plants A, B, and C, respectively. E. coli enumerated from air samples in the defeathering areas exhibited a similar trend to those obtained for Enterobacteriaceae with log10 1.67, 1.58, and 1.18 CFU for plants A, B, and C, respectively. Thermophilic campylobacters were most frequently isolated from samples in the defeathering areas followed by the evisceration areas. The highest mean counts of the organism were observed in plant A at 21 CFU/15 c.f. sample with plants B and C at 9 and 8 CFU/sample, respectively. With the exception of low levels of Enterobacteriaceae recovered from samples in the on-line air chill in plant A, E. coli, Enterobacteriaceae, or Campylobacter spp. were not isolated from samples in postevisceration sites in any of the plants examined. Salmonella spp. were not recovered from any samples during the course of the investigation.

  17. Microorganisms within Human Follicular Fluid: Effects on IVF

    PubMed Central

    Pelzer, Elise S.; Allan, John A.; Waterhouse, Mary A.; Ross, Tara; Beagley, Kenneth W.; Knox, Christine L.

    2013-01-01

    Our previous study reported microorganisms in human follicular fluid. The objective of this study was to test human follicular fluid for the presence of microorganisms and to correlate these findings with the in vitro fertilization (IVF) outcomes. In this study, 263 paired follicular fluids and vaginal swabs were collected from women undergoing IVF cycles, with various causes for infertility, and were cultured to detect microorganisms. The cause of infertility and the IVF outcomes for each woman were correlated with the microorganisms detected within follicular fluid collected at the time of trans-vaginal oocyte retrieval. Microorganisms isolated from follicular fluids were classified as: (1) ‘colonizers’ if microorganisms were detected within the follicular fluid, but not within the vaginal swab (at the time of oocyte retrieval); or (2) ‘contaminants’ if microorganisms detected in the vagina at the time of oocyte retrieval were also detected within the follicular fluid. The presence of Lactobacillus spp. in ovarian follicular fluids was associated with embryo maturation and transfer. This study revealed microorganisms in follicular fluid itself and that the presence of particular microorganisms has an adverse affect on IVF outcomes as seen by an overall decrease in embryo transfer rates and pregnancy rates in both fertile and infertile women, and live birth rates in women with idiopathic infertility. Follicular fluid microorganisms are a potential cause of adverse pregnancy outcomes in IVF in both infertile women and in fertile women with infertile male partners. PMID:23554970

  18. Large-scale production of diesel-like biofuels - process design as an inherent part of microorganism development.

    PubMed

    Cuellar, Maria C; Heijnen, Joseph J; van der Wielen, Luuk A M

    2013-06-01

    Industrial biotechnology is playing an important role in the transition to a bio-based economy. Currently, however, industrial implementation is still modest, despite the advances made in microorganism development. Given that the fuels and commodity chemicals sectors are characterized by tight economic margins, we propose to address overall process design and efficiency at the start of bioprocess development. While current microorganism development is targeted at product formation and product yield, addressing process design at the start of bioprocess development means that microorganism selection can also be extended to other critical targets for process technology and process scale implementation, such as enhancing cell separation or increasing cell robustness at operating conditions that favor the overall process. In this paper we follow this approach for the microbial production of diesel-like biofuels. We review current microbial routes with both oleaginous and engineered microorganisms. For the routes leading to extracellular production, we identify the process conditions for large scale operation. The process conditions identified are finally translated to microorganism development targets. We show that microorganism development should be directed at anaerobic production, increasing robustness at extreme process conditions and tailoring cell surface properties. All the same time, novel process configurations integrating fermentation and product recovery, cell reuse and low-cost technologies for product separation are mandatory. This review provides a state-of-the-art summary of the latest challenges in large-scale production of diesel-like biofuels. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Presidential Green Chemistry Challenge: 2005 Small Business Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2005 award winner, Metabolix, used biotechnology to develop microorganisms that produce polyhydroxyalkanoates: natural, biodegradable plastics with a range of environmental benefits.

  20. Let microorganisms do the talking, let us talk more about microorganisms.

    PubMed

    Nai, Corrado; Magrini, Boris; Offe, Julia

    2016-01-01

    Microorganisms are of uttermost importance, yet in the eyes of the general public they are often associated with dirt and diseases. At the same time, microbiologists have access to and comprehensive knowledge of just a tiny minority of the microbial diversity existing in nature. In this commentary, we present these issues of public misconception and scientific limitations and their possible consequences, and propose ways to overcome them. A particular interest is directed toward the secondary metabolism of filamentous fungi as well as novel outreach activities, including so-called "science slams" and interactions between the arts and the sciences, to raise awareness about the relevance of microorganisms.

  1. Defensive properties of pyrrolizidine alkaloids against microorganisms.

    PubMed

    Joosten, Lotte; van Veen, Johannes A

    2011-03-01

    The understanding of the selection factors that drive chemical diversification of secondary metabolites of constitutive defence systems in plants, such as pyrrolizidine alkaloids (PAs), is still incomplete. Historically, plants always have been confronted with microorganisms. Long before herbivores existed on this planet, plants had to cope with microbial pathogens. Therefore, plant pathogenic microorganisms may have played an important role in the early evolution of the secondary metabolite diversity. In this review, we discuss the impact that plant-produced PAs have on plant-associated microorganisms. The objective of the review is to present the current knowledge on PAs with respect to anti-microbial activities, adaptation and detoxification by microorganisms, pathogenic fungi, root protection and PA induction. Many in vitro experiments showed effects of PAs on microorganisms. These results point to the potential of microorganisms to be important for the evolution of PAs. However, only a few in vivo studies have been published and support the results of the in vitro studies. In conclusion, the topics pointed out in this review need further exploration by carrying out ecological experiments and field studies.

  2. In silico analysis of β-1,3-glucanase from a psychrophilic yeast, Glaciozyma antarctica PI12

    NASA Astrophysics Data System (ADS)

    Mohammadi, Salimeh; Bakar, Farah Diba Abu; Rabu, Amir; Murad, Abdul Munir Abdul

    2014-09-01

    1,3-beta-glucanase is an industrially important enzyme having wide range of applications especially in food industry. It is crucial to gain an understanding about the structure and functional aspects of various beta-1,3-glucanase produced from diverse sources. In this, study a cDNA encoding β-1,3-glucanase (GaExg55) was isolated from a psychrophilic yeast, Glaciozyma antarctica PI12. The cDNA sequence has been submitted to Genbank with an accession number (KJ436377). Subsequently, the perdition protein was analyzed using various bioinformatics tools to explore the properties of the protein. GaEXG55 is consisting of 1,440-bp nucleotides encoding 480 amino acid residues. Alignment of the deduced amino acid for GaExg55 with other exo-β-1,3-glucanase available at the NCBI database indicate that deduced amino acids shared a consensus motif NEP, which is signature pattern of GH5 hydrolases. Predicted molecular weight of GaExg55 is 53.66 kDa. GaExg55 sequences possesses signal peptide sequence and it is highly conserved with other fungal exo-beta-1,3 glucanase.

  3. Classifying Microorganisms.

    ERIC Educational Resources Information Center

    Baker, William P.; Leyva, Kathryn J.; Lang, Michael; Goodmanis, Ben

    2002-01-01

    Focuses on an activity in which students sample air at school and generate ideas about how to classify the microorganisms they observe. The results are used to compare air quality among schools via the Internet. Supports the development of scientific inquiry and technology skills. (DDR)

  4. Venturing into new realms? Microorganisms in space.

    PubMed

    Moissl-Eichinger, Christine; Cockell, Charles; Rettberg, Petra

    2016-09-01

    One of the biggest challenges of science is the determination of whether extraterrestrial life exists. Although potential habitable areas might be available for complex life, it is more likely that microbial life could exist in space. Many extremotolerant and extremophilic microbes have been found to be able to withstand numerous, combined environmental factors, such as high or low temperatures and pressures, high-salt conditions, high doses of radiation, desiccation or nutrient limitations. They may even survive the transit from one planet to another. Terrestrial Mars-analogue sites are one focus of researchers, in order to understand the microbial diversity in preparation for upcoming space missions aimed at the detection of life. However, such missions could also pose a risk with respect to contamination of the extraterrestrial environment by accidentally transferred terrestrial microorganisms. Closer to the Earth, the International Space Station is the most enclosed habitat, where humans work and live-and with them numerous microorganisms. It is still unknown how microbes adapt to this environment, possibly even creating a risk for the crew. Information on the microbiology of the ISS will have an impact on the planning and implementation of long-term human spaceflights in order to ensure a safe, stable and balanced microbiome on board. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Effect of different film packaging on microbial growth in minimally processed cactus pear (Opuntia ficus-indica).

    PubMed

    Palma, A; Mangia, N P; Fadda, A; Barberis, A; Schirra, M; D'Aquino, S

    2013-01-01

    Microorganisms are natural contaminants of fresh produce and minimally processed products, and contamination arises from a number of sources, including the environment, postharvest handling and processing. Fresh-cut products are particularly susceptible to microbial contaminations because of the changes occurring in the tissues during processing. In package gas composition of modified atmosphere packaging (MAP) in combination with low storage temperatures besides reducing physiological activity of packaged produce, can also delay pathogen growth. Present study investigated on the effect of MAPs, achieved with different plastic films, on microbial growth of minimally processed cactus pear (Opuntio ficus-indica) fruit. Five different plastic materials were used for packaging the manually peeled fruit. That is: a) polypropylene film (Termoplast MY 40 micron thickness, O2 transmission rate 300 cc/m2/24h); b) polyethylene film (Bolphane BHE, 11 micron thickness, O2 transmission rate 19000 cc/m2/24h); c) polypropylene laser-perforated films (Mach Packaging) with 8, 16 or 32 100-micron holes. Total aerobic psychrophilic, mesophilic microorganisms, Enterobacteriaceae, yeast, mould populations and in-package CO2, O2 and C2H4 were determined at each storage time. Different final gas compositions, ranging from 7.8 KPa to 17.1 KPa O2, and 12.7 KPa to 2.6 KPa CO2, were achieved with MY and micro perforated films, respectively. Differences were detected in the mesophilic, Enterobacteriaceae and yeast loads, while no difference was detected in psychrophilic microorganisms. At the end of storage, microbial load in fruits sealed with MY film was significantly lower than in those sealed with BHE and micro perforated films. Furthermore, fruits packed with micro-perforated films showed the highest microbial load. This occurrence may in part be related to in-package gas composition and in part to a continuous contamination of microorganisms through micro-holes.

  6. [From persistence to symbiosis of microorganisms].

    PubMed

    Bukharin, O V

    2012-01-01

    Primary results of study of problem of microorganism persistence over the last 2 decades on 7 all-Russian conferences in Orenburg are examined in the article. Milestones of both fundamental research and practically significant studies are designated, the role of persistent potential of microorganisms in infectious pathology is evaluated. The emerging turn of studies from persistence to symbiosis is consonant with the idea of international project "Human microbiom" and allows to use the persistent potential of microorganisms as one of the instruments of resolving issues of infectology.

  7. Extracellular electron transfer mechanisms between microorganisms and minerals.

    PubMed

    Shi, Liang; Dong, Hailiang; Reguera, Gemma; Beyenal, Haluk; Lu, Anhuai; Liu, Juan; Yu, Han-Qing; Fredrickson, James K

    2016-10-01

    Electrons can be transferred from microorganisms to multivalent metal ions that are associated with minerals and vice versa. As the microbial cell envelope is neither physically permeable to minerals nor electrically conductive, microorganisms have evolved strategies to exchange electrons with extracellular minerals. In this Review, we discuss the molecular mechanisms that underlie the ability of microorganisms to exchange electrons, such as c-type cytochromes and microbial nanowires, with extracellular minerals and with microorganisms of the same or different species. Microorganisms that have extracellular electron transfer capability can be used for biotechnological applications, including bioremediation, biomining and the production of biofuels and nanomaterials.

  8. Marine microorganisms as a promising and sustainable source of bioactive molecules.

    PubMed

    Romano, G; Costantini, M; Sansone, C; Lauritano, C; Ruocco, N; Ianora, A

    2017-07-01

    There is an urgent need to discover new drug entities due to the increased incidence of severe diseases as cancer and neurodegenerative pathologies, and reducing efficacy of existing antibiotics. Recently, there is a renewed interest in exploring the marine habitat for new pharmaceuticals also thanks to the advancement in cultivation technologies and in molecular biology techniques. Microorganisms represent a still poorly explored resource for drug discovery. The possibility of obtaining a continuous source of bioactives from marine microorganisms, more amenable to culturing compared to macro-organisms, may be able to meet the challenging demands of pharmaceutical industries. This would enable a more environmentally-friendly approach to drug discovery and overcome the over-utilization of marine resources and the use of destructive collection practices. The importance of the topic is underlined by the number of EU projects funded aimed at improving the exploitation of marine organisms for drug discovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. High rate psychrophilic anaerobic digestion of high solids (35%) dairy manure in sequence batch reactor.

    PubMed

    Saady, Noori M Cata; Massé, Daniel I

    2015-06-01

    Zero liquid discharge is increasingly adopted as an objective for waste treatment process. The objective of this study was to increase the feed total solids (TS) and the organic loading rate (OLR) fed to a novel psychrophilic (20°C) dry anaerobic digestion (PDAD). Duplicate laboratory-scale bioreactors were fed cow feces and wheat straw (35% TS in feed) at OLR of 6.0 g TCOD kg(-1) inoculum d(-1) during long-term operation (147 days consisting of 7 successive cycles). An overall average specific methane yield (SMY) of 151.8±7.9 N L CH4 kg(-1) VS fed with an averaged volatile solids removal of 42.4±4.3% were obtained at a volatile solids-based inoculum-to-substrate ratio (ISR) of 2.13±0.2. The operation was stable as indicated by biogas and VFAs profiles and the results were reproducible in successive cycles; a maximum SMY of 163.3±5.7 N L CH4 kg(-1) VS fed was obtained. Hydrolysis was the reaction limiting step. High rate PDAD of 35% TS dairy manure is possible in sequential batch reactor within 21 days treatment cycle length. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  10. Challenges and opportunities of airborne metagenomics.

    PubMed

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-05-06

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. Metal resistance in acidophilic microorganisms and its significance for biotechnologies.

    PubMed

    Dopson, Mark; Holmes, David S

    2014-10-01

    Extremely acidophilic microorganisms have an optimal pH of <3 and are found in all three domains of life. As metals are more soluble at acid pH, acidophiles are often challenged by very high metal concentrations. Acidophiles are metal-tolerant by both intrinsic, passive mechanisms as well as active systems. Passive mechanisms include an internal positive membrane potential that creates a chemiosmotic gradient against which metal cations must move, as well as the formation of metal sulfate complexes reducing the concentration of the free metal ion. Active systems include efflux proteins that pump metals out of the cytoplasm and conversion of the metal to a less toxic form. Acidophiles are exploited in a number of biotechnologies including biomining for sulfide mineral dissolution, biosulfidogenesis to produce sulfide that can selectively precipitate metals from process streams, treatment of acid mine drainage, and bioremediation of acidic metal-contaminated milieux. This review describes how acidophilic microorganisms tolerate extremely high metal concentrations in biotechnological processes and identifies areas of future work that hold promise for improving the efficiency of these applications.

  12. Extracellular electron transfer mechanisms between microorganisms and minerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Liang; Dong, Hailiang; Reguera, Gemma

    Electrons can be transferred from microorganisms to multivalent metal ions that are associated with minerals and vice versa. As the microbial cell envelope is neither physically permeable to minerals nor electrically conductive, microorganisms have evolved strategies to exchange electrons with extracellular minerals. In this Review, we discuss the molecular mechanisms that underlie the ability of microorganisms to exchange electrons, such as c-type cytochromes and microbial nanowires, with extracellular minerals and with microorganisms of the same or different species. Microorganisms that have extracellular electron transfer capability can be used for biotechnological applications, including bioremediation, biomining and the production of biofuels andmore » nanomaterials.« less

  13. Modern Approach to Medical Diagnostics - the Use of Separation Techniques in Microorganisms Detection.

    PubMed

    Chylewska, Agnieszka; Ogryzek, M; Makowski, Mariusz

    2017-10-23

    New analytical and molecular methods for microorganisms are being developed on various features of identification i.e. selectivity, specificity, sensitivity, rapidity and discrimination of the viable cell. The presented review was established following the current trends in improved pathogens separation and detection methods and their subsequent use in medical diagnosis. This contribution also focuses on the development of analytical and biological methods in the analysis of microorganisms, with special attention paid to bio-samples containing microbes (blood, urine, lymph, wastewater). First, the paper discusses microbes characterization, their structure, surface, properties, size and then it describes pivotal points in the bacteria, viruses and fungi separation procedure obtained by researchers in the last 30 years. According to the above, detection techniques can be classified into three categories, which were, in our opinion, examined and modified most intensively during this period: electrophoretic, nucleic-acid-based, and immunological methods. The review covers also the progress, limitations and challenges of these approaches and emphasizes the advantages of new separative techniques in selective fractionating of microorganisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Airborne microorganisms from waste containers.

    PubMed

    Jedlicka, Sabrina S; Stravitz, David M; Lyman, Charles E

    2012-01-01

    In physician's offices and biomedical labs, biological waste is handled every day. This waste is disposed of in waste containers designed for holding red autoclave bags. The containers used in these environments are closed hands-free containers, often with a step pedal. While these containers protect the user from surface-borne microorganisms, the containers may allow airborne microorganisms to escape via the open/close mechanism because of the air current produced upon open/close cycles. In this study, the air current was shown to be sufficient to allow airborne escape of microorganisms held in the container, including Aspergillus niger. However, bacterial cultures, such as Escherichia coli and Lactococcus lactis did not escape. This may be due to the choice of bacterial cultures and the absence of solid waste, such as dust or other particulate matter in the waste containers, that such strains of bacteria could travel on during aerosolization. We compared these results to those obtained using a re-designed receptacle, which mimimizes air currents, and detected no escaping microorganisms. This study highlights one potential source of airborne contamination in labs, hospitals, and other environments that dispose of biological waste.

  15. [Superbugs viewed from cosmobiology].

    PubMed

    Kawasaki, Y

    2000-12-01

    Superbugs (microorganisms living in unfamiliar and very harsh environments) are located in the center of scientific interests in the sense that 1) most of their habitats belong to marginal regions of the biosphere, 2) clues for the elucidation of the origin of life can be deduced from them, and 3) they are deeply correlated to the extraterrestrial life. Not only for the basic scientific interests, but also for the applied fields, the spot light is shed to them. We, human beings, have been deeply dependent on other organisms through the global material flow they make. Microorganisms together with plants are the leading characters in this process. Also implicit, our future is surely correlated to microorganisms including superbugs. In this special issue, superbugs; thermophilic, psychrophilic barophilic etc. are summarized, and future development on the study on the superbugs are introduced.

  16. Mini-Review: Antifouling Natural Products from Marine Microorganisms and Their Synthetic Analogs

    PubMed Central

    Wu, Ze-Hong; Wang, Yu; Wang, Chang-Yun; Xu, Ying

    2017-01-01

    Biofouling causes huge economic loss and generates serious ecological issues worldwide. Marine coatings incorporated with antifouling (AF) compounds are the most common practices to prevent biofouling. With a ban of organotins and an increase in the restrictions regarding the use of other AF alternatives, exploring effective and environmentally friendly AF compounds has become an urgent demand for marine coating industries. Marine microorganisms, which have the largest biodiversity, represent a rich and important source of bioactive compounds and have many medical and industrial applications. This review summarizes 89 natural products from marine microorganisms and 13 of their synthetic analogs with AF EC50 values ≤ 25 μg/mL from 1995 (the first report about marine microorganism-derived AF compounds) to April 2017. Some compounds with the EC50 values < 5 μg/mL and LC50/EC50 ratios > 50 are highlighted as potential AF compounds, and the preliminary analysis of structure-relationship (SAR) of these compounds is also discussed briefly. In the last part, current challenges and future research perspectives are proposed based on opinions from many previous reviews. To provide clear guidance for the readers, the AF compounds from microorganisms and their synthetic analogs in this review are categorized into ten types, including fatty acids, lactones, terpenes, steroids, benzenoids, phenyl ethers, polyketides, alkaloids, nucleosides and peptides. In addition to the major AF compounds which targets macro-foulers, this review also includes compounds with antibiofilm activity since micro-foulers also contribute significantly to the biofouling communities. PMID:28846626

  17. Mini-Review: Antifouling Natural Products from Marine Microorganisms and Their Synthetic Analogs.

    PubMed

    Wang, Kai-Ling; Wu, Ze-Hong; Wang, Yu; Wang, Chang-Yun; Xu, Ying

    2017-08-28

    Biofouling causes huge economic loss and generates serious ecological issues worldwide. Marine coatings incorporated with antifouling (AF) compounds are the most common practices to prevent biofouling. With a ban of organotins and an increase in the restrictions regarding the use of other AF alternatives, exploring effective and environmentally friendly AF compounds has become an urgent demand for marine coating industries. Marine microorganisms, which have the largest biodiversity, represent a rich and important source of bioactive compounds and have many medical and industrial applications. This review summarizes 89 natural products from marine microorganisms and 13 of their synthetic analogs with AF EC 50 values ≤ 25 μg/mL from 1995 (the first report about marine microorganism-derived AF compounds) to April 2017. Some compounds with the EC 50 values < 5 μg/mL and LC 50 /EC 50 ratios > 50 are highlighted as potential AF compounds, and the preliminary analysis of structure-relationship (SAR) of these compounds is also discussed briefly. In the last part, current challenges and future research perspectives are proposed based on opinions from many previous reviews. To provide clear guidance for the readers, the AF compounds from microorganisms and their synthetic analogs in this review are categorized into ten types, including fatty acids, lactones, terpenes, steroids, benzenoids, phenyl ethers, polyketides, alkaloids, nucleosides and peptides. In addition to the major AF compounds which targets macro-foulers, this review also includes compounds with antibiofilm activity since micro-foulers also contribute significantly to the biofouling communities.

  18. Inactivation of Microorganisms

    NASA Astrophysics Data System (ADS)

    Alzamora, Stella Maris; Guerrero, Sandra N.; Schenk, Marcela; Raffellini, Silvia; López-Malo, Aurelio

    Minimal processing techniques for food preservation allow better retention of product flavor, texture, color, and nutrient content than comparable conventional treatments. A wide range of novel alternative physical factors have been intensely investigated in the last two decades. These physical factors can cause inactivation of microorganisms at ambient or sublethal temperatures (e.g., high hydrostatic pressure, pulsed electric fields, ultrasound, pulsed light, and ultraviolet light). These technologies have been reported to reduce microorganism population in foods while avoiding the deleterious effects of severe heating on quality. Among technologies, high-energy ultrasound (i.e., intensities higher than 1 W/cm2, frequencies between 18 and 100 kHz) has attracted considerable interest for food preservation applications (Mason et al., 1996; Povey and Mason, 1998).

  19. Biofouling of marbles by oxygenic photosynthetic microorganisms.

    PubMed

    Karaca, Zeki; Öztürk, Ayten; Çolak, Emel

    2015-08-01

    Phototrophic microorganisms disfigure the surfaces of different types of stone. Stone structure is damaged by the activity of photoautotrophic and other microorganisms. However, to date few, investigations have been undertaken into the relationship between microorganisms and the properties of different types of marble. In this study, biological activity of photoautotrophic microorganisms on three types of marble (Yatagan White, Giallo Anticato and Afyon White) was investigated under laboratory conditions over a short period of time. The three types of marble supported the growth of phototrophic microbial communities on their outer and inner layers, turning their original colour from white to a yellowish green colour. The porosity of the marble types facilitated filamentous microbial growth in the presence of water. Scanning electron microscope analysis revealed the accumulation of aggregates such as small spherical, fibrillar, calcified globular bodies on the inner surfaces of the marbles. This suggests that the microscopic characteristics of particular marble types may stimulate the growth of certain types of microorganisms.

  20. DENTINE CARIES: ACID-TOLERANT MICROORGANISMS AND ASPECTS ON COLLAGEN DEGRADATION.

    PubMed

    Lager, Anders Hedenbjörk

    2014-01-01

    Dental caries is a common disease all over the world, despite the fact that it can be both effectively prevented and treated. It is driven by acids produced by oral microorganisms as a consequence of their metabolism of dietary carbohydrates. Given enough acid challenge, eventually the tooth enamel barrier will be broken down, and the carious lesion will extend into underlying hard tissue, forming a macroscopic cavity in the dentine. In comparison to biofilm on enamel, a dentine carious lesion provides a vastly different environment for the residing microorganisms. The environment influences the types and numbers of microorganisms that can colonize the dentine caries lesion. The overall aims for this thesis are to enumerate and further study microorganisms found in established dentine caries lesions and also to illuminate how host-derived proteolytic enzymes might contribute to this degradation, not only to better understand the caries process in dentine but also to find incitements for new methods to influence the natural progression of caries lesions. In Paper I, the numbers of remaining viable microorganisms after completed excavation using two excavation methods were investigated. Samples of carious dentine tissue were collected before and after excavation and cultivated on different agar media in different atmospheres. Analysis was performed by counting the number of colony-forming units (CFUs). Key findings: The number of remaining microorganisms after excavation was low for both methods, but some microorganisms always remained in the cavity floors even when the cavities were judged as caries free using normal clinical criteria. In Paper II, the acid tolerant microbiota in established dentine caries lesions was investigated. Samples were taken as in Paper I, but on three levels (superficial, center of lesion, floor of lesion after completed excavation). The samples were cultivated in anaerobic conditions on solid pH-selective agar media of different acidity

  1. Climate change effects on beneficial plant-microorganism interactions.

    PubMed

    Compant, Stéphane; van der Heijden, Marcel G A; Sessitsch, Angela

    2010-08-01

    It is well known that beneficial plant-associated microorganisms may stimulate plant growth and enhance resistance to disease and abiotic stresses. The effects of climate change factors such as elevated CO(2), drought and warming on beneficial plant-microorganism interactions are increasingly being explored. This now makes it possible to test whether some general patterns occur and whether different groups of plant-associated microorganisms respond differently or in the same way to climate change. Here, we review the results of 135 studies investigating the effects of climate change factors on beneficial microorganisms and their interaction with host plants. The majority of studies showed that elevated CO(2) had a positive influence on the abundance of arbuscular and ectomycorrhizal fungi, whereas the effects on plant growth-promoting bacteria and endophytic fungi were more variable. In most cases, plant-associated microorganisms had a beneficial effect on plants under elevated CO(2). The effects of increased temperature on beneficial plant-associated microorganisms were more variable, positive and neutral, and negative effects were equally common and varied considerably with the study system and the temperature range investigated. Moreover, numerous studies indicated that plant growth-promoting microorganisms (both bacteria and fungi) positively affected plants subjected to drought stress. Overall, this review shows that plant-associated microorganisms are an important factor influencing the response of plants to climate change.

  2. Dioszegia antarctica sp. nov. and Dioszegia cryoxerica sp. nov., psychrophilic basidiomycetous yeasts from polar desert soils in Antarctica

    USGS Publications Warehouse

    Rodriguez, Russell J.; Connell, L.; Redman, R.; Barrett, A.; Iszard, M.; Fonseca, A.

    2010-01-01

    During a survey of the culturable soil fungal population in samples collected in Taylor Valley, South Victoria Land, Antarctica, 13 basidiomycetous yeast strains with orange-coloured colonies were isolated. Phylogenetic analyses of internal transcribed spacer (ITS) and partial LSU rRNA gene sequences showed that the strains belong to the Dioszegia clade of the Tremellales (Tremellomycetes, Agaricomycotina), but did not correspond to any of the hitherto recognized species. Two novel species, Dioszegia antarctica sp. nov. (type strain ANT-03-116T =CBS 10920T =PYCC 5970T) and Dioszegia cryoxerica sp. nov. (type strain ANT-03-071T =CBS 10919T =PYCC 5967T), are described to accommodate ten and three of these strains, respectively. Analysis of ITS sequences demonstrated intrastrain sequence heterogeneity in D. cryoxerica. The latter species is also notable for producing true hyphae with clamp connections and haustoria. However, no sexual structures were observed. The two novel species can be considered obligate psychrophiles, since they failed to grow above 20 °C and grew best between 10 and 15 °C.

  3. Presidential Green Chemistry Challenge: 2010 Small Business Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2010 award winner, LS9, engineered microorganisms to convert fermentable sugars selectively to alkanes, olefins, fatty alcohols, or fatty esters, each in a single-unit biorefinery.

  4. Isolation and characterization of Arctic microorganisms decomposing bioplastics.

    PubMed

    Urbanek, Aneta K; Rymowicz, Waldemar; Strzelecki, Mateusz C; Kociuba, Waldemar; Franczak, Łukasz; Mirończuk, Aleksandra M

    2017-12-01

    The increasing amount of plastic waste causes significant environmental pollution. In this study, screening of Arctic microorganisms which are able to degrade bioplastics was performed. In total, 313 microorganisms were isolated from 52 soil samples from the Arctic region (Spitsbergen). Among the isolated microorganisms, 121 (38.66%) showed biodegradation activity. The ability of clear zone formation on emulsified poly(butylene succinate-co-adipate) (PBSA) was observed for 116 microorganisms (95.87%), on poly(butylene succinate) (PBS) for 73 microorganisms (60.33%), and on poly(ɛ-caprolactone) (PCL) for 102 microorganisms (84.3%). Moreover, the growth of microorganisms on poly(lactic acid) (PLA) agar plates was observed for 56 microorganisms (46.28%). Based on the 16S rRNA sequence, 10 bacterial strains which showed the highest ability for biodegradation were identified as species belonging to Pseudomonas sp. and Rhodococcus sp. The isolated fungal strains were tested for polycaprolactone films and commercial corn and potato starch bags degradation under laboratory conditions. Strains 16G (based on the analysis of a partial 18S rRNA sequence, identified as Clonostachys rosea) and 16H (identified as Trichoderma sp.) showed the highest capability for biodegradation. A particularly high capability for biodegradation was observed for the strain Clonostachys rosea, which showed 100% degradation of starch films and 52.91% degradation of PCL films in a 30-day shake flask experiment. The main advantage of the microorganisms isolated from Arctic environment is the ability to grow at low temperature and efficient biodegradation under this condition. The data suggest that C. rosea can be used in natural and laboratory conditions for degradations of bioplastics.

  5. Smaller Fleas: Viruses of Microorganisms

    PubMed Central

    Hyman, Paul; Abedon, Stephen T.

    2012-01-01

    Life forms can be roughly differentiated into those that are microscopic versus those that are not as well as those that are multicellular and those that, instead, are unicellular. Cellular organisms seem generally able to host viruses, and this propensity carries over to those that are both microscopic and less than truly multicellular. These viruses of microorganisms, or VoMs, in fact exist as the world's most abundant somewhat autonomous genetic entities and include the viruses of domain Bacteria (bacteriophages), the viruses of domain Archaea (archaeal viruses), the viruses of protists, the viruses of microscopic fungi such as yeasts (mycoviruses), and even the viruses of other viruses (satellite viruses). In this paper we provide an introduction to the concept of viruses of microorganisms, a.k.a., viruses of microbes. We provide broad discussion particularly of VoM diversity. VoM diversity currently spans, in total, at least three-dozen virus families. This is roughly ten families per category—bacterial, archaeal, fungal, and protist—with some virus families infecting more than one of these microorganism major taxa. Such estimations, however, will vary with further discovery and taxon assignment and also are dependent upon what forms of life one includes among microorganisms. PMID:24278736

  6. Microorganisms and psoriasis.

    PubMed Central

    Rosenberg, E. W.; Noah, P. W.; Skinner, R. B.

    1994-01-01

    It has been suggested previously that psoriasis is best explained as a distinctive inflammatory response to a variety of microbial stimuli, all acting primarily through activation of the alternative complement pathway. For the past several years we have conducted a "Problem Psoriasis Clinic" based on that premise. Patients are questioned, examined, and subjected to microbiologic laboratory investigations in an attempt to identify possibly relevant microorganisms, and then are treated with antibiotics. This article lists the most commonly found microorganisms in psoriasis patients and describes the usual treatment for each. Results obtained with this approach compare favorably with those achieved with more usual anti-psoriasis treatments. We recommend that a microbiologic investigation and a trial of antimicrobial treatment should precede any plan to treat psoriasis patients with anything more than the simplest topical agents. PMID:8040907

  7. Efficacy of photocatalytic HEPA filter on microorganism removal.

    PubMed

    Chuaybamroong, P; Chotigawin, R; Supothina, S; Sribenjalux, P; Larpkiattaworn, S; Wu, C-Y

    2010-06-01

    This study assessed the application of photocatalytic oxidation (PCO) to the high efficiency particulate air (HEPA) filter for disinfection of airborne microorganisms. Experiments were conducted at two TiO2 loadings (1870 +/- 169 and 3140 +/- 67 mg/m(2)) on the HEPA filter irradiated with UV-A at the intensity of 0.85 +/- 0.18 or 4.85 +/- 0.09 mW/cm(2) under two relative humidity conditions (45 +/- 5% and 75 +/- 5%). Inactivation and penetration of four microorganisms were tested, including Aspergillus niger, Penicillium citrinum, Staphylococcus epidermidis, and Bacillus subtilis. It was found that microorganisms retained on a photocatalytic filter were inactivated around 60-80% and even 100% for S. epidermidis when the PCO reactions occurred. Lower penetration was also found from the photocatalytic filter for all airborne microorganisms. High humidity decreased photocatalysis efficacy. Increasing TiO2 loading or irradiance intensity did not substantially affect its disinfection capability. The high efficiency particulate air filter is used widely to remove particulates and microorganisms from the air stream. However, the filter may become a source of microbes if those retained microorganisms proliferate and re-entrain back into the filtered air. This study demonstrates that such a problem can be handled effectively by using photocatalytic reactions to inactivate those confined microorganisms. A 60-100% microbe reduction can be achieved for a wide variety of microorganisms to provide better indoor air quality for hospitals, offices, and domestic applications.

  8. The microorganisms used for working in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Konovalova, E. Yu.; Stom, D. I.; Zhdanova, G. O.; Yuriev, D. A.; Li, Youming; Barbora, Lepakshi; Goswami, Pranab

    2018-04-01

    Investigated the use as biological object in microbial fuel cells (MFC) of various microorganisms performing the transport of electrons in the processing of various substrates. Most MFC, uses complex substrates. Such MFC filled with associations of microorganisms. The article deals with certain types of microorganisms for use in the MFC, shows the characteristics of molecular electron transfer mechanisms microorganisms into the environment.

  9. Functional microorganisms for functional food quality.

    PubMed

    Gobbetti, M; Cagno, R Di; De Angelis, M

    2010-09-01

    Functional microorganisms and health benefits represent a binomial with great potential for fermented functional foods. The health benefits of fermented functional foods are expressed either directly through the interactions of ingested live microorganisms with the host (probiotic effect) or indirectly as the result of the ingestion of microbial metabolites synthesized during fermentation (biogenic effect). Since the importance of high viability for probiotic effect, two major options are currently pursued for improving it--to enhance bacterial stress response and to use alternative products for incorporating probiotics (e.g., ice cream, cheeses, cereals, fruit juices, vegetables, and soy beans). Further, it seems that quorum sensing signal molecules released by probiotics may interact with human epithelial cells from intestine thus modulating several physiological functions. Under optimal processing conditions, functional microorganisms contribute to food functionality through their enzyme portfolio and the release of metabolites. Overproduction of free amino acids and vitamins are two classical examples. Besides, bioactive compounds (e.g., peptides, γ-amino butyric acid, and conjugated linoleic acid) may be released during food processing above the physiological threshold and they may exert various in vivo health benefits. Functional microorganisms are even more used in novel strategies for decreasing phenomenon of food intolerance (e.g., gluten intolerance) and allergy. By a critical approach, this review will aim at showing the potential of functional microorganisms for the quality of functional foods.

  10. Effects of beneficial microorganisms on lowland rice development.

    PubMed

    Nascente, Adriano Stephan; de Filippi, Marta Cristina Corsi; Lanna, Anna Cristina; de Sousa, Thatyane Pereira; de Souza, Alan Carlos Alves; da Silva Lobo, Valácia Lemes; da Silva, Gisele Barata

    2017-11-01

    Microorganisms can promote plant growth by increasing phytomass production, nutrient uptake, photosynthesis rates, and grain yield, which can result in higher profits for farmers. However, there is limited information available about the physiological characteristics of lowland rice after treatment with beneficial microorganisms in the tropical region. This study aimed to determine the effects of different beneficial microorganisms and various application forms on phytomass production, gas exchange, and nutrient contents in the lowland rice cultivar 'BRS Catiana' in a tropical region. The experiment was performed under greenhouse conditions utilizing a completely randomized design and a 7 × 3 + 1 factorial scheme with four replications. The treatments consisted of seven microorganisms, including the rhizobacterial isolates BRM 32113, BRM 32111, BRM 32114, BRM 32112, BRM 32109, and BRM 32110 and Trichoderma asperellum pooled isolates UFRA-06, UFRA-09, UFRA-12, and UFRA-52, which were applied using three different methods (microbiolized seed, microbiolized seed + soil drenched with a microorganism suspension at 7 and 15 days after sowing (DAS), and microbiolized seed + plant spraying with a microorganism suspension at 7 and 15 DAS) with a control (water). The use of microorganisms can provide numerous benefits for rice in terms of crop growth and development. The microorganism types and methods of application positively and differentially affected the physiological characteristics evaluated in the experimental lowland rice plants. Notably, the plants treated with the bioagent BRM 32109 on the seeds and on seeds + soil produced plants with the highest dry matter biomass, gas exchange rate, and N, P, Fe, and Mg uptake. Therefore, our findings indicate strong potential for the use of microorganisms in lowland rice cultivation systems in tropical regions. Currently, an additional field experiment is in its second year to validate the beneficial result reported

  11. Cold and Hot Extremozymes: Industrial Relevance and Current Trends

    PubMed Central

    Sarmiento, Felipe; Peralta, Rocío; Blamey, Jenny M.

    2015-01-01

    The development of enzymes for industrial applications relies heavily on the use of microorganisms. The intrinsic properties of microbial enzymes, e.g., consistency, reproducibility, and high yields along with many others, have pushed their introduction into a wide range of products and industrial processes. Extremophilic microorganisms represent an underutilized and innovative source of novel enzymes. These microorganisms have developed unique mechanisms and molecular means to cope with extreme temperatures, acidic and basic pH, high salinity, high radiation, low water activity, and high metal concentrations among other environmental conditions. Extremophile-derived enzymes, or extremozymes, are able to catalyze chemical reactions under harsh conditions, like those found in industrial processes, which were previously not thought to be conducive for enzymatic activity. Due to their optimal activity and stability under extreme conditions, extremozymes offer new catalytic alternatives for current industrial applications. These extremozymes also represent the cornerstone for the development of environmentally friendly, efficient, and sustainable industrial technologies. Many advances in industrial biocatalysis have been achieved in recent years; however, the potential of biocatalysis through the use of extremozymes is far from being fully realized. In this article, the adaptations and significance of psychrophilic, thermophilic, and hyperthermophilic enzymes, and their applications in selected industrial markets will be reviewed. Also, the current challenges in the development and mass production of extremozymes as well as future prospects and trends for their biotechnological application will be discussed. PMID:26539430

  12. Systems Biology of Industrial Microorganisms

    NASA Astrophysics Data System (ADS)

    Papini, Marta; Salazar, Margarita; Nielsen, Jens

    The field of industrial biotechnology is expanding rapidly as the chemical industry is looking towards more sustainable production of chemicals that can be used as fuels or building blocks for production of solvents and materials. In connection with the development of sustainable bioprocesses, it is a major challenge to design and develop efficient cell factories that can ensure cost efficient conversion of the raw material into the chemical of interest. This is achieved through metabolic engineering, where the metabolism of the cell factory is engineered such that there is an efficient conversion of sugars, the typical raw materials in the fermentation industry, into the desired product. However, engineering of cellular metabolism is often challenging due to the complex regulation that has evolved in connection with adaptation of the different microorganisms to their ecological niches. In order to map these regulatory structures and further de-regulate them, as well as identify ingenious metabolic engineering strategies that full-fill mass balance constraints, tools from systems biology can be applied. This involves both high-throughput analysis tools like transcriptome, proteome and metabolome analysis, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies. It is in fact expected that systems biology may substantially improve the process of cell factory development, and we therefore propose the term Industrial Systems Biology for how systems biology will enhance the development of industrial biotechnology for sustainable chemical production.

  13. Systems biology of industrial microorganisms.

    PubMed

    Papini, Marta; Salazar, Margarita; Nielsen, Jens

    2010-01-01

    The field of industrial biotechnology is expanding rapidly as the chemical industry is looking towards more sustainable production of chemicals that can be used as fuels or building blocks for production of solvents and materials. In connection with the development of sustainable bioprocesses, it is a major challenge to design and develop efficient cell factories that can ensure cost efficient conversion of the raw material into the chemical of interest. This is achieved through metabolic engineering, where the metabolism of the cell factory is engineered such that there is an efficient conversion of sugars, the typical raw materials in the fermentation industry, into the desired product. However, engineering of cellular metabolism is often challenging due to the complex regulation that has evolved in connection with adaptation of the different microorganisms to their ecological niches. In order to map these regulatory structures and further de-regulate them, as well as identify ingenious metabolic engineering strategies that full-fill mass balance constraints, tools from systems biology can be applied. This involves both high-throughput analysis tools like transcriptome, proteome and metabolome analysis, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies. It is in fact expected that systems biology may substantially improve the process of cell factory development, and we therefore propose the term Industrial Systems Biology for how systems biology will enhance the development of industrial biotechnology for sustainable chemical production.

  14. Presidential Green Chemistry Challenge: 2003 Greener Reaction Conditions Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2003 award winner, DuPont, developed a genetically engineered microorganism jointly with Genencor International to manufacture 1,3-propanediol, a building block for Sorona polyester.

  15. Mechanisms of nickel toxicity in microorganisms

    PubMed Central

    Macomber, Lee

    2014-01-01

    Summary Nickel has long been known to be an important human toxicant, including having the ability to form carcinomas, but until recently nickel was believed to be an issue only to microorganisms living in nickel-rich serpentine soils or areas contaminated by industrial pollution. This assumption was overturned by the discovery of a nickel defense system (RcnR/RcnA) found in microorganisms that live in a wide range of environmental niches, suggesting that nickel homeostasis is a general biological concern. To date, the mechanisms of nickel toxicity in microorganisms and higher eukaryotes are poorly understood. In this review, we summarize nickel homeostasis processes used by microorganisms and highlight in vivo and in vitro effects of exposure to elevated concentrations of nickel. On the basis of this evidence we propose four mechanisms of nickel toxicity: 1) nickel replaces the essential metal of metalloproteins, 2) nickel binds to catalytic residues of non-metalloenzymes; 3) nickel binds outside the catalytic site of an enzyme to inhibit allosterically, and 4) nickel indirectly causes oxidative stress. PMID:21799955

  16. RAPID IDENTIFICATION OF MICROORGANISMS BY CONTINUOUS PARTICLE ELECTROPHORESIS.

    DTIC Science & Technology

    MICROORGANISMS, IDENTIFICATION), (*ELECTROPHORESIS, MICROORGANISMS), MOBILITY, PH FACTOR, OPTICAL SCANNING, ESCHERICHIA COLI, SHIGELLA FLEXNERI, BACILLUS CEREUS, SERRATIA MARCESCENS , BACILLUS SUBTILIS

  17. Microorganisms detected by enzyme-catalyzed reaction

    NASA Technical Reports Server (NTRS)

    Vango, S. P.; Weetall, H. H.; Weliky, N.

    1966-01-01

    Enzymes detect the presence of microorganisms in soils. The enzyme lysozymi is used to release the enzyme catalase from the microorganisms in a soil sample. The catalase catalyzes the decomposition of added hydrogen peroxide to produce oxygen which is detected manometrically. The partial pressure of the oxygen serves as an index of the samples bacteria content.

  18. Presidential Green Chemistry Challenge: 1999 Designing Greener Chemicals Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 1999 award winner, Dow AgroSciences, developed spinosad, a highly selective, low-toxicity, nonpersistant insecticide made by a soil microorganism. It controls many chewing insect pests.

  19. Sensor arrays for detecting microorganisms

    NASA Technical Reports Server (NTRS)

    Lewis, Nathan S. (Inventor); Freund, Michael S. (Inventor)

    2000-01-01

    A sensor array for detecting a microorganism comprising first and second sensors electrically connected to an electrical measuring apparatus, wherein the sensors comprise a region of nonconducting organic material and a region of conducting material compositionally that is different than the nonconducting organic material and an electrical path through the regions of nonconducting organic material and the conducting material. A system for identifying microorganisms using the sensor array, a computer and a pattern recognition algorithm, such as a neural net are also disclosed.

  20. Antifungal and antibacterial activity of marine microorganisms.

    PubMed

    El Amraoui, B; El Amraoui, M; Cohen, N; Fassouane, A

    2014-03-01

    In order to explore marine microorganisms with pharmaceutical potential, marine bacteria, collected from different coastal areas of the Moroccan Atlantic Ocean, were previously isolated from seawater, sediment, marine invertebrates and seaweeds. The antimicrobial activities of these microorganisms were investigated against the pathogens involved in human pathologies. Whole cultures of 34 marine microorganisms were screened for antimicrobial activities using the method of agar diffusion against three Gram-positive bacteria, two Gram-negative bacteria, and against yeast. The results showed that among the 34 isolates studied, 28 (82%) strains have antimicrobial activity against at least one pathogen studied, 11 (32%) strains have antifungal activity and 24 (76%) strains are active against Gram-positive bacteria, while 21 (62%) strains are active against Gram-negative bacteria. Among isolates having antimicrobial activity, 14 were identified and were assigned to the genera Acinetobacter, Aeromonas, Alcaligenes, Bacillus, Chromobacterium, Enterococcus, Pantoea and Pseudomonas. Due to a competitive role for space and nutrient, the marine microorganisms can produce antibiotic substance; therefore, these marine microorganisms were expected to be potential resources of natural antibiotic products. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  1. Antimicrobial Compounds from Marine Invertebrates-Derived Microorganisms.

    PubMed

    Liu, Juan; Jung, Jee H; Liu, Yonghong

    2016-01-01

    It is known that marine invertebrates, including sponges, tunicates, cnidaria or mollusks, host affluent and various communities of symbiotic microorganisms. The microorganisms associated with the invertebrates metabolized various biologically active compounds, which could be an important resource for the discovery and development of potentially novel drugs. In this review, the new compounds with antimicrobial activity isolated from marine invertebrate-derived microorganisms in the last decade (2004-2014) will be presented, with focus on the relevant antimicrobial activities, origin of isolation, and information of strain species. New compounds without antimicrobial activity were not revealed.

  2. Microorganism Utilization for Synthetic Milk Production

    NASA Technical Reports Server (NTRS)

    Birmele, Michele; Morford, Megan; Khodadad, Christina; Spencer, Lashelle; Richards, Jeffrey; Strayer, Richard; Caro, Janicce; Hummerick, Mary; Wheeler, Ray

    2014-01-01

    A desired architecture for long duration spaceflight, such as aboard the International Space Station (ISS) or for future missions to Mars, is to provide a supply of fresh food crops for the astronauts. However, some crops can create a high proportion of inedible plant waste. The main goal of this project was to produce the components of milk (sugar, lipid, protein) from inedible plant waste by utilizing microorganisms (fungi, yeast, bacteria). Of particular interest was utilizing the valuable polysaccharide, cellulose, found in plant waste, to naturally fuel- through microorganism cellular metabolism- the creation of sugar (glucose), lipid (milk fat), and protein (casein) to produce a synthetic edible food product. Environmental conditions such as pH, temperature, carbon source, aeration, and choice microorganisms.

  3. High-resolution microcontact printing and transfer of massive arrays of microorganisms on planar and compartmentalized nanoporous aluminium oxide.

    PubMed

    Ingham, Colin; Bomer, Johan; Sprenkels, Ad; van den Berg, Albert; de Vos, Willem; van Hylckama Vlieg, Johan

    2010-06-07

    Handling microorganisms in high throughput and their deployment into miniaturized platforms presents significant challenges. Contact printing can be used to create dense arrays of viable microorganisms. Such "living arrays", potentially with multiple identical replicates, are useful in the selection of improved industrial microorganisms, screening antimicrobials, clinical diagnostics, strain storage, and for research into microbial genetics. A high throughput method to print microorganisms at high density was devised, employing a microscope and a stamp with a massive array of PDMS pins. Viable bacteria (Lactobacillus plantarum, Esherichia coli), yeast (Candida albicans) and fungal spores (Aspergillus fumigatus) were deposited onto porous aluminium oxide (PAO) using arrays of pins with areas from 5 x 5 to 20 x 20 microm. Printing onto PAO with up to 8100 pins of 20 x 20 microm area with 3 replicates was achieved. Printing with up to 200 pins onto PAO culture chips (divided into 40 x 40 microm culture areas) allowed inoculation followed by effective segregation of microcolonies during outgrowth. Additionally, it was possible to print mixtures of C. albicans and spores of A. fumigatus with a degree of selectivity by capture onto a chemically modified PAO surface. High resolution printing of microorganisms within segregated compartments and on functionalized PAO surfaces has significant advantages over what is possible on semi-solid surfaces such as agar.

  4. Continuing fascination of exploration in natural substances from microorganisms.

    PubMed

    Takahashi, Yoko

    2017-01-01

    In the search for novel organic compounds, I think it is of paramount importance not to overlook the pursuit of microorganism diversity and the abilities those microorganisms hold as a resource. In commemoration of Professor Satoshi Ōmura's Nobel Prize in Physiology or Medicine, I will briefly describe the microorganism that produces avermectin and then discuss how innovating isolation methods and pioneering isolation sources have opened the door to numerous new microorganism resources. Furthermore, as exploratory research of substances views the world from many different angles-from biological activity to a compound's physiochemical properties-it is possible to discover a novel compound from a well-known microorganism. Based on this, I will discuss the future prospects of exploratory research.

  5. Correlation of in vitro challenge testing with consumer use testing for cosmetic products.

    PubMed Central

    Brannan, D K; Dille, J C; Kaufman, D J

    1987-01-01

    An in vitro microbial challenge test has been developed to predict the likelihood of consumer contamination of cosmetic products. The challenge test involved inoculating product at four concentrations (30, 50, 70, and 100%) with microorganisms known to contaminate cosmetics. Elimination of these microorganisms at each concentration was followed over a 28-day period. The test was used to classify products as poorly preserved, marginally preserved, or well preserved. Consumer use testing was then used to determine whether the test predicted the risk of actual consumer contamination. Products classified by the challenge test as poorly preserved returned 46 to 90% contaminated after use. Products classified by the challenge test as well preserved returned with no contamination. Marginally preserved products returned with 0 to 21% of the used units contaminated. As a result, the challenge test described can be accurately used to predict the risk of consumer contamination of cosmetic products. PMID:3662517

  6. Polar Marine Microorganisms and Climate Change.

    PubMed

    Verde, C; Giordano, D; Bellas, C M; di Prisco, G; Anesio, A M

    2016-01-01

    The large diversity of marine microorganisms harboured by oceans plays an important role in planet sustainability by driving globally important biogeochemical cycles; all primary and most secondary production in the oceans is performed by microorganisms. The largest part of the planet is covered by cold environments; consequently, cold-adapted microorganisms have crucial functional roles in globally important environmental processes and biogeochemical cycles cold-adapted extremophiles are a remarkable model to shed light on the molecular basis of survival at low temperature. The indigenous populations of Antarctic and Arctic microorganisms are endowed with genetic and physiological traits that allow them to live and effectively compete at the temperatures prevailing in polar regions. Some genes, e.g. glycosyltransferases and glycosylsynthetases involved in the architecture of the cell wall, may have been acquired/retained during evolution of polar strains or lost in tropical strains. This present work focusses on temperature and its role in shaping microbial adaptations; however, in assessing the impacts of climate changes on microbial diversity and biogeochemical cycles in polar oceans, it should not be forgotten that physiological studies need to include the interaction of temperature with other abiotic and biotic factors. © 2016 Elsevier Ltd All rights reserved.

  7. Secondary metabolites from marine-derived microorganisms.

    PubMed

    Chen, Gang; Wang, Hai-Feng; Pei, Yue-Hu

    2014-01-01

    In the search for novel and bioactive molecules for drug discovery, marine-derived natural resources, especially marine microorganisms are becoming an important and interesting research area. This study covers the literature published after 2008 on secondary metabolites of marine-derived microorganisms. The emphasis was on new compounds with the relevant biological activities, strain information, and country of origin. New compounds without biological activity were not included.

  8. Microorganisms and Man.

    ERIC Educational Resources Information Center

    Noble, W. C.

    1983-01-01

    Provides information to update Institute of Biology's Studies in Biology No. 111, "Microorganisms and Man," by W. C. Noble and Jay Naidoo (Edward Arnold, 1979). Topics include: (1) food poisoning; (2) airborn infections in man; (3) infection in animals and plants; and (4) biodegradation and biosynthesis. (JN)

  9. The Tick Microbiome: Why Non-pathogenic Microorganisms Matter in Tick Biology and Pathogen Transmission

    PubMed Central

    Bonnet, Sarah I.; Binetruy, Florian; Hernández-Jarguín, Angelica M.; Duron, Olivier

    2017-01-01

    Ticks are among the most important vectors of pathogens affecting humans and other animals worldwide. They do not only carry pathogens however, as a diverse group of commensal and symbiotic microorganisms are also present in ticks. Unlike pathogens, their biology and their effect on ticks remain largely unexplored, and are in fact often neglected. Nonetheless, they can confer multiple detrimental, neutral, or beneficial effects to their tick hosts, and can play various roles in fitness, nutritional adaptation, development, reproduction, defense against environmental stress, and immunity. Non-pathogenic microorganisms may also play a role in driving transmission of tick-borne pathogens (TBP), with many potential implications for both human and animal health. In addition, the genetic proximity of some pathogens to mutualistic symbionts hosted by ticks is evident when studying phylogenies of several bacterial genera. The best examples are found within members of the Rickettsia, Francisella, and Coxiella genera: while in medical and veterinary research these bacteria are traditionally recognized as highly virulent vertebrate pathogens, it is now clear to evolutionary ecologists that many (if not most) Coxiella, Francisella, and Rickettsia bacteria are actually non-pathogenic microorganisms exhibiting alternative lifestyles as mutualistic ticks symbionts. Consequently, ticks represent a compelling yet challenging system in which to study microbiomes and microbial interactions, and to investigate the composition, functional, and ecological implications of bacterial communities. Ultimately, deciphering the relationships between tick microorganisms as well as tick symbiont interactions will garner invaluable information, which may aid in the future development of arthropod pest and vector-borne pathogen transmission control strategies. PMID:28642842

  10. The Tick Microbiome: Why Non-pathogenic Microorganisms Matter in Tick Biology and Pathogen Transmission.

    PubMed

    Bonnet, Sarah I; Binetruy, Florian; Hernández-Jarguín, Angelica M; Duron, Olivier

    2017-01-01

    Ticks are among the most important vectors of pathogens affecting humans and other animals worldwide. They do not only carry pathogens however, as a diverse group of commensal and symbiotic microorganisms are also present in ticks. Unlike pathogens, their biology and their effect on ticks remain largely unexplored, and are in fact often neglected. Nonetheless, they can confer multiple detrimental, neutral, or beneficial effects to their tick hosts, and can play various roles in fitness, nutritional adaptation, development, reproduction, defense against environmental stress, and immunity. Non-pathogenic microorganisms may also play a role in driving transmission of tick-borne pathogens (TBP), with many potential implications for both human and animal health. In addition, the genetic proximity of some pathogens to mutualistic symbionts hosted by ticks is evident when studying phylogenies of several bacterial genera. The best examples are found within members of the Rickettsia, Francisella , and Coxiella genera: while in medical and veterinary research these bacteria are traditionally recognized as highly virulent vertebrate pathogens, it is now clear to evolutionary ecologists that many (if not most) Coxiella, Francisella , and Rickettsia bacteria are actually non-pathogenic microorganisms exhibiting alternative lifestyles as mutualistic ticks symbionts. Consequently, ticks represent a compelling yet challenging system in which to study microbiomes and microbial interactions, and to investigate the composition, functional, and ecological implications of bacterial communities. Ultimately, deciphering the relationships between tick microorganisms as well as tick symbiont interactions will garner invaluable information, which may aid in the future development of arthropod pest and vector-borne pathogen transmission control strategies.

  11. Microorganisms meet solid minerals: interactions and biotechnological applications.

    PubMed

    Ng, Daphne H P; Kumar, Amit; Cao, Bin

    2016-08-01

    In natural and engineered environments, microorganisms often co-exist and interact with various minerals or mineral-containing solids. Microorganism-mineral interactions contribute significantly to environmental processes, including biogeochemical cycles in natural ecosystems and biodeterioration of materials in engineered environments. In this mini-review, we provide a summary of several key mechanisms involved in microorganism-mineral interactions, including the following: (i) solid minerals serve as substrata for biofilm development; (ii) solid minerals serve as an electron source or sink for microbial respiration; (iii) solid minerals provide microorganisms with macro or micronutrients for cell growth; and (iv) (semi)conductive solid minerals serve as extracellular electron conduits facilitating cell-to-cell interactions. We also highlight recent developments in harnessing microbe-mineral interactions for biotechnological applications.

  12. Secondary metabolites from marine microorganisms.

    PubMed

    Kelecom, Alphonse

    2002-03-01

    After 40 years of intensive research, chemistry of marine natural products has become a mature field. Since 1995, there are signals of decreased interest in the search of new metabolites from traditional sources such as macroalgae and octocorals, and the number of annual reports on marine sponges stabilized. On the contrary, metabolites from microorganisms is a rapidly growing field, due, at least in part, to the suspicion that a number of metabolites obtained from algae and invertebrates may be produced by associated microorganisms. Studies are concerned with bacteria and fungi, isolated from seawater, sediments, algae, fish and mainly from marine invertebrates such as sponges, mollusks, tunicates, coelenterates and crustaceans. Although it is still to early to define tendencies, it may be stated that the metabolites from microorganisms are in most cases quite different from those produced by the invertebrate hosts. Nitrogenated metabolites predominate over acetate derivatives, and terpenes are uncommon. Among the latter, sesquiterpenes, diterpenes and carotenes have been isolated; among nitrogenated metabolites, amides, cyclic peptides and indole alkaloids predominate.

  13. Microorganisms and methods for producing pyruvate, ethanol, and other compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, Jennifer L.; Zhang, Xiaolin

    Microorganisms comprising modifications for producing pyruvate, ethanol, and other compounds. The microorganisms comprise modifications that reduce or ablate activity of one or more of pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase, phosphate acetyltransferase, acetate kinase, pyruvate oxidase, lactate dehydrogenase, cytochrome terminal oxidase, succinate dehydrogenase, 6-phosphogluconate dehydrogenase, glutamate dehydrogenase, pyruvate formate lyase, pyruvate formate lyase activating enzyme, and isocitrate lyase. The microorganisms optionally comprise modifications that enhance expression or activity of pyruvate decarboxylase and alcohol dehydrogenase. The microorganisms are optionally evolved in defined media to enhance specific production of one or more compounds. Methods of producing compounds with the microorganisms are provided.

  14. Structure prediction of Fe(II) 2-oxoglutarate dioxygenase from a psychrophilic yeast Glaciozyma antarctica PI12

    NASA Astrophysics Data System (ADS)

    Yusof, Nik Yusnoraini; Bakar, Farah Diba Abu; Mahadi, Nor Muhammad; Raih, Mohd Firdaus; Murad, Abdul Munir Abdul

    2015-09-01

    A cDNA encoding Fe(II) 2-oxoglutarate (2OG) dependent dioxygenases was isolated from psychrophilic yeast, Glaciozyma antarctica PI12. We have successfully amplified 1,029 bp cDNA sequence that encodes 342 amino acid with predicted molecular weight 38 kDa. The prediction protein was analysed using various bioinformatics tools to explore the properties of the protein. Based on a BLAST search analysis, the Fe2OX amino acid sequence showed 61% identity to the sequence of oxoglutarate/iron-dependent oxygenase from Rhodosporidium toruloides NP11. SignalP prediction showed that the Fe2OX protein contains no putative signal peptide, which suggests that this enzyme most probably localised intracellularly.The structure of Fe2OX was predicted by homology modelling using MODELLER9v11. The model with the lowest objective function was selected from hundred models generated using MODELLER9v11. Analysis of the structure revealed the longer loop at Fe2OX from G.antarctica that might be responsible for the flexibility of the structure, which contributes to its adaptation to low temperatures. Fe2OX hold a highly conserved Fe(II) binding HXD/E…H triad motif. The binding site for 2-oxoglutarate was found conserved for Arg280 among reported studies, however the Phe268 was found to be different in Fe2OX.

  15. [DIFFERENTIAL SENSITIVITY OF MICROORGANISMS TO POLYHEXAMETHYLENEGUANIDINE].

    PubMed

    Lysytsya, A V; Mandygra, Y M; Bojko, O P; Romanishyna, O O; Mandygra, M S

    2015-01-01

    Factors identified that affect the sensitivity of microorganisms to polyhexamethyleneguanidine (PHMG). Salts of PHMG chloride, valerate, maleate, succinate was to use. Test strains of Esherichia coli, Staphylococcus aureus, Bacillus cereus, Leptospira interrogans, Paenibacillus larvae, Mycobacterium bovis, M. avium, M. fortuitum, Aspergillus niger and some strains of viruses are taken as objects of research. We have determined that the cytoplasm membrane phospholipids is main "target" for the polycation molecules of PHMG. A differential sensitivity of the microorganisms to this drug is primarily determined by relative amount of lipids in membrane and their accessibility. Such trends exist: increase the relative contents of anionic lipids and more negative surface electric potential of membrane, and reduction of the sizes fat acid remainder of lipids bring to increase of microorganism sensitivity. Types of anion salt PHMG just have a certain value. Biocide activity of PHMG chloride is more, than its salts with organic acid. Feasibility of combining PHMG with other biocides in the multicomponent disinfectants studied and analyzed. This combination does not lead to a significant increase in the sensitivity of microorganisms tested in most cases. Most species of pathogenic bacteria can be quickly neutralized by aqueous solutions of PHMG in less than 1% concentrations.

  16. Toxicological impacts of antibiotics on aquatic micro-organisms: A mini-review.

    PubMed

    Välitalo, Pia; Kruglova, Antonina; Mikola, Anna; Vahala, Riku

    2017-05-01

    Antibiotics are found globally in the environment at trace levels due to their extensive consumption, which raises concerns about the effects they can have on non-target organisms, especially environmental micro-organisms. So far the majority of studies have focused on different aspects of antibiotic resistance or on analyzing the occurrence, fate, and removal of antibiotics from hospital and municipal wastewaters. Little attention has been paid to ecotoxicological effects of antibiotics on aquatic micro-organisms although they play a critical role in most ecosystems and they are potentially sensitive to these substances. Here we review the current state of research on the toxicological impacts of antibiotics to aquatic micro-organisms, including proteobacteria, cyanobacteria, algae and bacteria commonly present in biological wastewater treatment processes. We focus on antibiotics that are poorly removed during wastewater treatment and thus end up in surface waters. We critically discuss and compare the available analytical methods and test organisms based on effect concentrations and identify the knowledge gaps and future challenges. We conclude that, in general, cyanobacteria and ammonium oxidizing bacteria are the most sensitive micro-organisms to antibiotics. It is important to include chronic tests in ecotoxicological assessment, because acute tests are not always appropriate in case of low sensitivity (for example for proteobacteria). However, the issue of rapid development of antibiotic resistance should be regarded in chronic testing. Furthermore, the application of other species of bacteria and endpoints should be considered in the future, not forgetting the mixture effect and bacterial community studies. Due to differences in the sensitivity of different test organisms to individual antibiotic substances, the application of several bioassays with varying test organisms would provide more comprehensive data for the risk assessment of antibiotics

  17. Risk of Adverse Health Effects Due to Host-Microorganism Interactions

    NASA Technical Reports Server (NTRS)

    Ott, C. Mark; Oubre, Cherie; Castro, Sarah; Mehta, Satish; Pierson, Duane

    2015-01-01

    While preventive measures limit the presence of many medically significant microorganisms during spaceflight missions, microbial infection of crewmembers cannot be completely prevented. Spaceflight experiments over the past 50 years have demonstrated a unique microbial response to spaceflight culture, although the mechanisms behind those responses and their operational relevance were unclear. In 2007, the operational importance of these microbial responses was emphasized as the results of an experiment aboard STS-115 demonstrated that the enteric pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) increased in virulence in a murine model of infection. The experiment was reproduced in 2008 aboard STS-123 confirming this finding. In response to these findings, the Institute of Medicine of the National Academies recommended that NASA investigate this risk and its potential impact on the health of the crew during spaceflight. NASA assigned this risk to the Human Research Program. To better understand this risk, evidence has been collected and reported from both spaceflight analog systems and actual spaceflight. Although the performance of virulence studies during spaceflight are challenging and often impractical, additional information has been and continues to be collected to better understand the risk to crew health. Still, the uncertainty concerning the extent and severity of these alterations in host-microorganism interactions is very large and requires more investigation.

  18. Extremophiles as sources of inorganic bio-nanoparticles.

    PubMed

    Beeler, Erik; Singh, Om V

    2016-09-01

    Industrial use of nanotechnology in daily life has produced an emphasis on the safe and efficient production of nanoparticles (NPs). Traditional chemical oxidation and reduction methods are seen as inefficient, environmentally unsound, and often dangerous to those exposed and involved in NP manufacturing. However, utilizing microorganisms for biosynthesis of NPs allows efficient green production of a range of inorganic NPs, while maintaining specific size, shape, stability, and dispersity. Microorganisms living under harsh environmental conditions, called "Extremophiles," are one group of microorganisms being utilized for this biosynthesis. Extremophiles' unique living conditions have endowed them with various processes that enable NP biosynthesis. This includes a range of extremophiles: thermophiles, acidophilus, halophiles, psychrophiles, anaerobes, and some others. Fungi, bacteria, yeasts, and archaea, i.e. Ureibacillus thermosphaericus, and Geobacillus stearothermophilus, among others, have been established for NP biosynthesis. This article highlights the extremophiles and methods found to be viable candidates for the production of varying types of NPs, as well as interpreting selective methods used by the organisms to synthesize NPs.

  19. Microbial communities to mitigate contamination of PAHs in soil--possibilities and challenges: a review.

    PubMed

    Fernández-Luqueño, F; Valenzuela-Encinas, C; Marsch, R; Martínez-Suárez, C; Vázquez-Núñez, E; Dendooven, L

    2011-01-01

    Although highly diverse and specialized prokaryotic and eukaryotic microbial communities in soil degrade polycyclic aromatic hydrocarbons (PAHs), most of these are removed slowly. This review will discuss the biotechnological possibilities to increase the microbial dissipation of PAHs from soil as well as the main biological and biotechnological challenges. Microorganism provides effective and economically feasible solutions for soil cleanup and restoration. However, when the PAHs contamination is greater than the microbial ability to dissipate them, then applying genetically modified microorganisms might help to remove the contaminant. Nevertheless, it is necessary to have a more holistic review of the different individual reactions that are simultaneously taking place in a microbial cell and of the interactions microorganism-microorganism, microorganism-plant, microorganism-soil, and microorganisms-PAHs. Elucidating the function of genes from the PAHs-polluted soil and the study in pure cultures of isolated PAHs-degrading organisms as well as the generation of microorganisms in the laboratory that will accelerate the dissipation of PAHs and their safe application in situ have not been studied extensively. There is a latent environmental risk when genetically engineered microorganisms are used to remedy PAHs-contaminated soil.

  20. Biodiesel production by various oleaginous microorganisms from organic wastes.

    PubMed

    Cho, Hyun Uk; Park, Jong Moon

    2018-05-01

    Biodiesel is a biodegradable and renewable fuel. A large amount of research has considered microbial oil production using oleaginous microorganisms, but the commercialization of microbial lipids produced in this way remains uncertain due to the high cost of feedstock or low lipid yield. Microbial lipids can be typically produced by microalgae, yeasts, and bacteria; the lipid yields of these microorganisms can be improved by using sufficient concentrations of organic carbon sources. Therefore, combining low-cost organic compounds contained in organic wastes with cultivation of oleaginous microorganisms can be a promising approach to obtain commercial viability. However, to achieve effective bioconversion of low-cost substrates to microbial lipids, the characteristics of each microorganism and each substrate should be considered simultaneously. This article discusses recent approaches to developing cost-effective microbial lipid production processes that use various oleaginous microorganisms and organic wastes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Bioremediation of Industrial Waste Through Enzyme Producing Marine Microorganisms.

    PubMed

    Sivaperumal, P; Kamala, K; Rajaram, R

    Bioremediation process using microorganisms is a kind of nature-friendly and cost-effective clean green technology. Recently, biodegradation of industrial wastes using enzymes from marine microorganisms has been reported worldwide. The prospectus research activity in remediation area would contribute toward the development of advanced bioprocess technology. To minimize industrial wastes, marine enzymes could constitute a novel alternative in terms of waste treatment. Nowadays, the evidence on the mechanisms of bioremediation-related enzymes from marine microorganisms has been extensively studied. This review also will provide information about enzymes from various marine microorganisms and their complexity in the biodegradation of comprehensive range of industrial wastes. © 2017 Elsevier Inc. All rights reserved.

  2. Biomachining: metal etching via microorganisms.

    PubMed

    Díaz-Tena, Estíbaliz; Barona, Astrid; Gallastegui, Gorka; Rodríguez, Adrián; López de Lacalle, L Norberto; Elías, Ana

    2017-05-01

    The use of microorganisms to remove metal from a workpiece is known as biological machining or biomachining, and it has gained in both importance and scientific relevance over the past decade. Conversely to mechanical methods, the use of readily available microorganisms is low-energy consuming, and no thermal damage is caused during biomachining. The performance of this sustainable process is assessed by the material removal rate, and certain parameters have to be controlled for manufacturing the machined part with the desired surface finish. Although the variety of microorganisms is scarce, cell concentration or density plays an important role in the process. There is a need to control the temperature to maintain microorganism activity at its optimum, and a suitable shaking rate provides an efficient contact between the workpiece and the biological medium. The system's tolerance to the sharp changes in pH is quite limited, and in many cases, an acid medium has to be maintained for effective performance. This process is highly dependent on the type of metal being removed. Consequently, the operating parameters need to be determined on a case-by-case basis. The biomachining time is another variable with a direct impact on the removal rate. This biological technique can be used for machining simple and complex shapes, such as series of linear, circular, and square micropatterns on different metal surfaces. The optimal biomachining process should be fast enough to ensure high production, a smooth and homogenous surface finish and, in sum, a high-quality piece. As a result of the high global demand for micro-components, biomachining provides an effective and sustainable alternative. However, its industrial-scale implementation is still pending.

  3. Phylogenetic Diversity and Metabolic Potential Revealed in a Glacier Ice Metagenome▿ †

    PubMed Central

    Simon, Carola; Wiezer, Arnim; Strittmatter, Axel W.; Daniel, Rolf

    2009-01-01

    The largest part of the Earth's microbial biomass is stored in cold environments, which represent almost untapped reservoirs of novel species, processes, and genes. In this study, the first metagenomic survey of the metabolic potential and phylogenetic diversity of a microbial assemblage present in glacial ice is presented. DNA was isolated from glacial ice of the Northern Schneeferner, Germany. Pyrosequencing of this DNA yielded 1,076,539 reads (239.7 Mbp). The phylogenetic composition of the prokaryotic community was assessed by evaluation of a pyrosequencing-derived data set and sequencing of 16S rRNA genes. The Proteobacteria (mainly Betaproteobacteria), Bacteroidetes, and Actinobacteria were the predominant phylogenetic groups. In addition, isolation of psychrophilic microorganisms was performed, and 13 different bacterial isolates were recovered. Analysis of the 16S rRNA gene sequences of the isolates revealed that all were affiliated to the predominant groups. As expected for microorganisms residing in a low-nutrient environment, a high metabolic versatility with respect to degradation of organic substrates was detected by analysis of the pyrosequencing-derived data set. The presence of autotrophic microorganisms was indicated by identification of genes typical for different ways of carbon fixation. In accordance with the results of the phylogenetic studies, in which mainly aerobic and facultative aerobic bacteria were detected, genes typical for central metabolism of aerobes were found. Nevertheless, the capability of growth under anaerobic conditions was indicated by genes involved in dissimilatory nitrate/nitrite reduction. Numerous characteristics for metabolic adaptations associated with a psychrophilic lifestyle, such as formation of cryoprotectants and maintenance of membrane fluidity by the incorporation of unsaturated fatty acids, were detected. Thus, analysis of the glacial metagenome provided insights into the microbial life in frozen habitats on

  4. Application of thermotolerant microorganisms for biofertilizer preparation.

    PubMed

    Chen, Kuo-Shu; Lin, Yann-Shying; Yang, Shang-Shyng

    2007-12-01

    Intensive agriculture is practised in Taiwan, and compost application is very popular as a means of improving the soil physical properties and supplying plant nutrition. We tested the potential of inoculation with thermotolerant microorganisms to shorten the maturity and improve the quality of biofertilizer prepared by composting. Thermotolerant microorganisms were isolated from compost and reinoculated for the preparation of biofertilizer. The physical, chemical and biological properties of the biofertilizer were determined during composting. The effects of biofertilizer application on the growth and yield of rape were also studied. Among 3823 colonies of thermotolerant microorganisms, Streptomyces thermonitrificans NTU-88, Streptococcus sp. NTU-130 and Aspergillus fumigatus NTU-132 exhibited high growth rates and cellulolytic and proteolytic activities. When a mixture of rice straw and swine manure were inoculated with these isolates and composted for 61 days, substrate temperature increased initially and then decreased gradually during composting. Substrate pH increased from 7.3 to 8.5. Microbial inoculation enhanced the rate of maturity, and increased the content of ash and total and immobilized nitrogen, improved the germination rate of alfalfa seed, and decreased the content of total organic carbon and the carbon/nitrogen ratio. Biofertilizer application increased the growth and yield of rape. Inoculation of thermotolerant and thermophilic microorganisms to agricultural waste for biofertilizer preparation enhances the rate of maturity and improves the quality of the resulting biofertilizer. Inoculation of appropriate microorganisms in biofertilizer preparation might be usefully applied to agricultural situations.

  5. Nitrogen acquisition by plants and microorganisms in a temperate grassland.

    PubMed

    Liu, Qianyuan; Qiao, Na; Xu, Xingliang; Xin, Xiaoping; Han, Jessie Yc; Tian, Yuqiang; Ouyang, Hua; Kuzyakov, Yakov

    2016-03-10

    Nitrogen (N) limitation is common in most terrestrial ecosystems, often leading to strong competition between microorganisms and plants. The mechanisms of niche differentiation to reduce this competition remain unclear. Short-term (15)N experiments with NH4(+), NO3(-), and glycine were conducted in July, August and September in a temperate grassland to evaluate the chemical, spatial and temporal niche differentiation by competition between plants and microorganisms for N. Microorganisms preferred NH4(+) and NO3(-), while plants preferred NO3(-). Both plants and microorganisms acquired more N in August and September than in July. The soil depth had no significant effects on microbial uptake, but significantly affected plant N uptake. Plants acquired 67% of their N from the 0-5 cm soil layer and 33% from the 5-15 cm layer. The amount of N taken up by microorganisms was at least seven times than plants. Although microorganisms efficiently compete for N with plants, the competition is alleviated through chemical partitioning mainly in deeper soil layer. In the upper soil layer, neither chemical nor temporal niche separation is realized leading to strong competition between plants and microorganisms that modifies N dynamics in grasslands.

  6. Microbial advanced biofuels production: overcoming emulsification challenges for large-scale operation.

    PubMed

    Heeres, Arjan S; Picone, Carolina S F; van der Wielen, Luuk A M; Cunha, Rosiane L; Cuellar, Maria C

    2014-04-01

    Isoprenoids and alkanes produced and secreted by microorganisms are emerging as an alternative biofuel for diesel and jet fuel replacements. In a similar way as for other bioprocesses comprising an organic liquid phase, the presence of microorganisms, medium composition, and process conditions may result in emulsion formation during fermentation, hindering product recovery. At the same time, a low-cost production process overcoming this challenge is required to make these advanced biofuels a feasible alternative. We review the main mechanisms and causes of emulsion formation during fermentation, because a better understanding on the microscale can give insights into how to improve large-scale processes and the process technology options that can address these challenges. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Challenges to Life on Mars --- Ecological Perspective

    NASA Astrophysics Data System (ADS)

    Sun, H.; McKay, C.; Friedmann, I.; McDonald, G.

    2003-12-01

    This talk will address the habitability of Mars by considering major environmental challenges against the tolerance limits of microorganisms from extreme terrestrial environments including the Antarctic desert and permafrost. At the planet surface, the combination of low atmospheric pressure (below the triple point of water), high fluxes of ultraviolet radiation, and one or more powerful oxidants are likely to create sterilizing conditions that will be a barrier to the colonization and dispersal of microorganisms. In the subsurface below, long-term survival is dependent upon the frequency and duration of warm, metabolically active periods that are needed to repair cellular damages. Low temperature itself does little harm to microorganisms, but a long dormant period will accrue lethal dosages of ionizing radiation and amino acid racemization. It is probable that within the depth range of current sampling technologies, there are no conditions for extant life, leaving organic or inorganic fossils as the only legitimate target in the search for life on Mars.

  8. Apparatus and process for determining the susceptibility of microorganisms to antibiotics

    NASA Technical Reports Server (NTRS)

    Gibson, Sandra F. (Inventor); Fadler, Norman L. (Inventor)

    1976-01-01

    A process for determining the susceptibility of microorganisms to antibiotics involves introducing a diluted specimen into discrete quantities of a selective culture medium which favors a specific microorganism in that the microorganism is sustained by the medium and when so sustained will change the optical characteristics of the medium. Only the specific microorganism will alter the optical characteristics. Some of the discrete quantities are blended with known antibiotics, while at least one is not. If the specimen contains the microorganisms favored by the selective medium, the optical characteristics of the discrete quantity of pure selective medium, that is the one without antibiotics, will change. If the antibiotics in any of the other discrete quantities are ineffective against the favored microorganisms, the optical characteristics of those quantities will likewise change. No change in the optical characteristics of a discrete quantity indicates that the favored microorganism is susceptible to the antibiotic in the quantity.

  9. RNA polymerase gene, microorganism having said gene and the production of RNA polymerase by the use of said microorganism

    DOEpatents

    Kotani, Hirokazu; Hiraoka, Nobutsugu; Obayashi, Akira

    1991-01-01

    SP6 bacteriophage RNA polymerase is produced by cultivating a new microorganism (particularly new strains of Escherichia coli) harboring a plasmid that carries SP6 bacteriophage RNA polymerase gene and recovering SP6 bacteriophage RNA polymerase from the culture broth. SP6 bacteriophage RNA polymerase gene is provided as are new microorganisms harboring a plasmid that carries SP6 bacteriophage RNA polymerase gene.

  10. Potential applications of nonthermal plasmas against biofilm-associated micro-organisms in vitro.

    PubMed

    Puligundla, P; Mok, C

    2017-05-01

    Biofilms as complex microbial communities attached to surfaces pose several challenges in different sectors, ranging from food and healthcare to desalination and power generation. The biofilm mode of growth allows microorganisms to survive in hostile environments and biofilm cells exhibit distinct physiology and behaviour in comparison with their planktonic counterparts. They are ubiquitous, resilient and difficult to eradicate due to their resistant phenotype. Several chemical-based cleaning and disinfection regimens are conventionally used against biofilm-dwelling micro-organisms in vitro. Although such approaches are generally considered to be effective, they may contribute to the dissemination of antimicrobial resistance and environmental pollution. Consequently, advanced green technologies for biofilm control are constantly emerging. Disinfection using nonthermal plasmas (NTPs) is one of the novel strategies having a great potential for control of biofilms of a broad spectrum of micro-organisms. This review discusses several aspects related to the inactivation of biofilm-associated bacteria and fungi by different types of NTPs under in vitro conditions. A brief introduction summarizes prevailing methods in biofilm inactivation, followed by introduction to gas discharge plasmas, active plasma species and their inactivating mechanism. Subsequently, significance and aspects of NTP inactivation of biofilm-associated bacteria, especially those of medical importance, including opportunistic pathogens, oral pathogenic bacteria, foodborne pathogens and implant bacteria, are discussed. The remainder of the review discusses majorly about the synergistic effect of NTPs and their activity against biofilm-associated fungi, especially Candida species. © 2017 The Society for Applied Microbiology.

  11. Cow, sheep and llama manure at psychrophilic anaerobic co-digestion with low cost tubular digesters in cold climate and high altitude.

    PubMed

    Martí-Herrero, J; Alvarez, R; Cespedes, R; Rojas, M R; Conde, V; Aliaga, L; Balboa, M; Danov, S

    2015-04-01

    The aim of this research is to evaluate the co-digestion of cow and llama manure combined with sheep manure, in psychrophilic conditions and real field low cost tubular digesters adapted to cold climate. Four digesters were monitored in cold climate conditions; one fed with cow manure, a second one with llama manure, the third one with co-digestion of cow-sheep manure and the fourth one was fed with llama-sheep manure. The slurry had a mean temperature of 16.6 °C, the organic load rate was 0.44 kgvs m(-3) d(-1) and the hydraulic retention time was 80 days. After one hundred days biogas production was stable, as was the methane content and the pH of the effluent. The co-digestion of cow-sheep manure results in a biogas production increase of 100% compared to the mono-digestion of cow manure, while co-digestion of llama-sheep manure results in a decrease of 50% in biogas production with respect to mono-digestion of llama manure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Nitrogen acquisition by plants and microorganisms in a temperate grassland

    PubMed Central

    Liu, Qianyuan; Qiao, Na; Xu, Xingliang; Xin, Xiaoping; Han, Jessie Yc; Tian, Yuqiang; Ouyang, Hua; Kuzyakov, Yakov

    2016-01-01

    Nitrogen (N) limitation is common in most terrestrial ecosystems, often leading to strong competition between microorganisms and plants. The mechanisms of niche differentiation to reduce this competition remain unclear. Short-term 15N experiments with NH4+, NO3−, and glycine were conducted in July, August and September in a temperate grassland to evaluate the chemical, spatial and temporal niche differentiation by competition between plants and microorganisms for N. Microorganisms preferred NH4+ and NO3−, while plants preferred NO3−. Both plants and microorganisms acquired more N in August and September than in July. The soil depth had no significant effects on microbial uptake, but significantly affected plant N uptake. Plants acquired 67% of their N from the 0–5 cm soil layer and 33% from the 5–15 cm layer. The amount of N taken up by microorganisms was at least seven times than plants. Although microorganisms efficiently compete for N with plants, the competition is alleviated through chemical partitioning mainly in deeper soil layer. In the upper soil layer, neither chemical nor temporal niche separation is realized leading to strong competition between plants and microorganisms that modifies N dynamics in grasslands. PMID:26961252

  13. Rotary Apparatus Concentrates And Separates Micro-Organisms

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1992-01-01

    Apparatus concentrates and separates swimming micro-organisms of different species into concentric rings in fluid. Fluid containing high concentration of desired species removed by use of small scoop placed into fluid at radius of one of rings formed by that species. Micro-organisms concentrated into concentric rings by combined dynamic effects of upward and horizontal components of swimming, rotation of dish, gravitation, and viscosity.

  14. Atmospheric Sampling of Microorganisms with UAS

    NASA Astrophysics Data System (ADS)

    Schmale, D. G., III

    2017-12-01

    Many microorganisms relevant to crops, domestic animals, and humans are transported over long distances through the atmosphere. Some of these atmospheric microbes catalyze the freezing of water at higher temperatures and facilitate the onset of precipitation. A few have crossed continents. New technologies are needed to study the movement of microorganisms in the atmosphere. We have used unmanned aircraft systems (UAS) to study the transport of microorganisms tens to hundreds of meters above the ground. These UAS are equipped with unique devices for collecting microbes in the atmosphere during flight. Autonomous systems enable teams of UAS to perform complex atmospheric sampling tasks, and coordinate flight missions with one another. Data collected with UAS can be used to validate and improve disease forecasting models along highways in the sky, connecting transport scales across farms, states, and continents. Though terrestrial environments are often considered a major contributor to atmospheric microbial aerosols, little is known about aquatic sources of microbial aerosols. Droplets containing microorganisms can aerosolize from the water surface, liberating them into the atmosphere. We are using teams of unmanned surface vehicles (USVs) and UAS to study the aerosolization of microbes from aquatic environments. Controlled flume studies using highspeed video have allowed us to observe unique aerosolization phenomena that can launch microbes out of the water and into the air. Unmanned systems may be used to excite the next generation of biologists and engineers, and raise important ethical considerations about the future of human-robot interactions.

  15. Cryobacterium aureum sp. nov., a psychrophilic bacterium isolated from glacier ice collected from the ice tongue surface.

    PubMed

    Liu, Qing; Xin, Yu-Hua; Chen, Xiu-Ling; Liu, Hong-Can; Zhou, Yu-Guang; Chen, Wen-Xin

    2018-04-01

    A psychrophilic, Gram-stain-positive, rod-shaped bacterium, designated strain Hh31 T , was isolated from Xinjiang No. 1 Glacier in China. Strain Hh31 T was catalase-positive, oxidase-negative and able to grow at between 0-18 °C. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain Hh31 T belonged to the genus Cryobacterium and was most closely related to the type strains of Cryobacterium levicorallinum, Cryobacterium luteum and Cryobacterium flavum. DNA-DNA hybridization, calculation of average nucleotide identity and digital DNA-DNA hybridization revealed that strain Hh31 T was distinct from its closest phylogenetic neighbours. The major cellular fatty acids of strain Hh31 T were anteiso-C15 : 0, anteiso-C15 : 1, iso-C15:0, iso-C16 : 0 and anteiso-C17 : 0. The predominant menaquinones of strain Hh31 T were MK-9 and MK-10. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, one unidentified phospholipid, one unidentified glycolipid and another unidentified lipid. Physiological tests such as carbon source utilization, showed phenotypic differentiation of strain Hh31 T from the closest related phylogenetic neighbours. Based on a polyphasic approach, a novel species, Cryobacterium aureum sp. nov., is proposed, with Hh31 T (=NBRC 107882 T =CGMCC 1.11213 T ) as the type strain.

  16. Multiorganismal insects: diversity and function of resident microorganisms.

    PubMed

    Douglas, Angela E

    2015-01-07

    All insects are colonized by microorganisms on the insect exoskeleton, in the gut and hemocoel, and within insect cells. The insect microbiota is generally different from microorganisms in the external environment, including ingested food. Specifically, certain microbial taxa are favored by the conditions and resources in the insect habitat, by their tolerance of insect immunity, and by specific mechanisms for their transmission. The resident microorganisms can promote insect fitness by contributing to nutrition, especially by providing essential amino acids, B vitamins, and, for fungal partners, sterols. Some microorganisms protect their insect hosts against pathogens, parasitoids, and other parasites by synthesizing specific toxins or modifying the insect immune system. Priorities for future research include elucidation of microbial contributions to detoxification, especially of plant allelochemicals in phytophagous insects, and resistance to pathogens; as well as their role in among-insect communication; and the potential value of manipulation of the microbiota to control insect pests.

  17. Screening of pectinase-producing microorganisms with polygalacturonase activity.

    PubMed

    Zeni, Jamile; Cence, Karine; Grando, Camila Elis; Tiggermann, Lídia; Colet, Rosicler; Lerin, Lindomar A; Cansian, Rogério L; Toniazzo, Geciane; de Oliveira, Débora; Valduga, Eunice

    2011-02-01

    The aim of this work was to perform the screening of microorganisms, previously isolated from samples of agro-industrial waste and belonging to the culture collection of our laboratory, able to produce polygalacturonases (PG). A total of 107 microorganisms, 92 newly isolated and 15 pre-identified, were selected as potential producers of enzymes with PG activity. From these microorganisms, 20 strains were able to synthesize PG with activities above 3 U mL(-1). After the kinetic study, the enzyme activity was increased up to 13 times and the microorganism identified as Aspergillus niger ATCC 9642 and the newly isolated W23, W43, and D2 (Penicillium sp.) after 24 h of fermentation led to PG activities of 30, 41, 43, and 45 U mL(-1), respectively. The RAPD analysis demonstrated that the selected strains differs genetically, indicating that no duplication of strains among them in the experiments for polygalacturonases production was verified.

  18. [Ants as carriers of microorganisms in hospital environments].

    PubMed

    Pereira, Rogério Dos Santos; Ueno, Mariko

    2008-01-01

    Concern exists regarding the real possibility of public health threats caused by pathogenic agents that are carried by urban ants. The present study had the objective of isolating and identifying the microorganisms that are associated with ants in hospital environments. One hundred and twenty-five ants of the same species were collected from different units of a university hospital. Each ant was collected using a swab soaked with physiological solution and was transferred to a tube containing brain heart infusion broth and incubated at 35 degrees C for 24 hours. From each tube, with growth, inoculations were made into specific culturing media, to isolate any microorganisms. The ants presented a high capacity for carrying microorganism groups: spore-producing Gram-positive bacilli 63.5%, Gram-negative bacilli 6.3%, Gram-positive cocci 23.1%, filamentous fungi 6.7% and yeast 0.5%. Thus, it can be inferred that ants may be one of the agents responsible for disseminating microorganisms in hospital environments.

  19. Technologies for Beneficial Microorganisms Inocula Used as Biofertilizers

    PubMed Central

    Malusá, E.; Sas-Paszt, L.; Ciesielska, J.

    2012-01-01

    The increasing need for environmentaly friendly agricultural practices is driving the use of fertilizers based on beneficial microorganisms. The latter belong to a wide array of genera, classes, and phyla, ranging from bacteria to yeasts and fungi, which can support plant nutrition with different mechanisms. Moreover, studies on the interactions between plant, soil, and the different microorganisms are shedding light on their interrelationships thus providing new possible ways to exploit them for agricultural purposes. However, even though the inoculation of plants with these microorganisms is a well-known practice, the formulation of inocula with a reliable and consistent effect under field conditions is still a bottleneck for their wider use. The choice of the technology for inocula production and of the carrier for the formulation is key to their successful application. This paper focuses on how inoculation issues can be approached to improve the performance of beneficial microorganisms used as a tool for enhancing plant growth and yield. PMID:22547984

  20. Production of volatile metabolites by grape-associated microorganisms.

    PubMed

    Verginer, Markus; Leitner, Erich; Berg, Gabriele

    2010-07-28

    Plant-associated microorganisms fulfill important functions for their hosts. Whereas promotion of plant growth and health is well-studied, little is known about the impact of microorganisms on plant or fruit flavor. To analyze the production of volatiles of grape-associated microorganisms, samples of grapes of the red cultivar 'Blaufraenkisch' were taken during harvest time from four different vineyards in Burgenland (Austria). The production of volatiles was analyzed for the total culturable microbial communities (bacteria, yeasts, fungi) found on and in the grapes as well as for single isolates. The microbial communities produced clearly distinct aroma profiles for each vineyard and phylogenetic group. Furthermore, half of the grape-associated microorganisms produced a broad spectrum of volatile organic compounds. Exemplary, the spectrum was analyzed more in detail for three single isolates of Paenibacillus sp., Sporobolomyces roseus , and Aureobasidium pullulans . Well-known and typical flavor components of red wine were detected as being produced by microbes, for example, 2-methylbutanoic acid, 3-methyl-1-butanol, and ethyl octanoate.

  1. Multiorganismal Insects: Diversity and Function of Resident Microorganisms

    PubMed Central

    Douglas, Angela E.

    2015-01-01

    All insects are colonized by microorganisms on the insect exoskeleton, in the gut and hemocoel, and within insect cells. The insect microbiota is generally different from microorganisms in the external environment, including ingested food. Specifically, certain microbial taxa are favored by the conditions and resources in the insect habitat, by their tolerance of insect immunity, and by specific mechanisms for their transmission. The resident microorganisms can promote insect fitness by contributing to nutrition, especially by providing essential amino acids, B vitamins, and, for fungal partners, sterols. Some microorganisms protect their insect hosts against pathogens, parasitoids, and other parasites by synthesizing specific toxins or modifying the insect immune system. Priorities for future research include elucidation of microbial contributions to detoxification, especially of plant allelochemicals in phytophagous insects, and resistance to pathogens; as well as their role in among-insect communication; and the potential value of manipulation of the microbiota to control insect pests. PMID:25341109

  2. Lateral gene exchanges shape the genomes of amoeba-resisting microorganisms.

    PubMed

    Bertelli, Claire; Greub, Gilbert

    2012-01-01

    Based on Darwin's concept of the tree of life, vertical inheritance was thought to be dominant, and mutations, deletions, and duplication were streaming the genomes of living organisms. In the current genomic era, increasing data indicated that both vertical and lateral gene inheritance interact in space and time to trigger genome evolution, particularly among microorganisms sharing a given ecological niche. As a paradigm to their diversity and their survival in a variety of cell types, intracellular microorganisms, and notably intracellular bacteria, were considered as less prone to lateral genetic exchanges. Such specialized microorganisms generally have a smaller gene repertoire because they do rely on their host's factors for some basic regulatory and metabolic functions. Here we review events of lateral gene transfer (LGT) that illustrate the genetic exchanges among intra-amoebal microorganisms or between the microorganism and its amoebal host. We tentatively investigate the functions of laterally transferred genes in the light of the interaction with their host as they should confer a selective advantage and success to the amoeba-resisting microorganisms (ARMs).

  3. Lateral gene exchanges shape the genomes of amoeba-resisting microorganisms

    PubMed Central

    Bertelli, Claire; Greub, Gilbert

    2012-01-01

    Based on Darwin's concept of the tree of life, vertical inheritance was thought to be dominant, and mutations, deletions, and duplication were streaming the genomes of living organisms. In the current genomic era, increasing data indicated that both vertical and lateral gene inheritance interact in space and time to trigger genome evolution, particularly among microorganisms sharing a given ecological niche. As a paradigm to their diversity and their survival in a variety of cell types, intracellular microorganisms, and notably intracellular bacteria, were considered as less prone to lateral genetic exchanges. Such specialized microorganisms generally have a smaller gene repertoire because they do rely on their host's factors for some basic regulatory and metabolic functions. Here we review events of lateral gene transfer (LGT) that illustrate the genetic exchanges among intra-amoebal microorganisms or between the microorganism and its amoebal host. We tentatively investigate the functions of laterally transferred genes in the light of the interaction with their host as they should confer a selective advantage and success to the amoeba-resisting microorganisms (ARMs). PMID:22919697

  4. Synergistic interface behavior of strontium adsorption using mixed microorganisms.

    PubMed

    Hu, Wenyuan; Dong, Faqin; Yang, Guangmin; Peng, Xin; Huang, Xiaojun; Liu, Mingxue; Zhang, Jing

    2017-08-10

    The proper handling of low-level radioactive waste is crucial to promote the sustainable development of nuclear power. Research into the mechanism for interactions between bacterium and radionuclides is the starting point for achieving successful remediation of radionuclides with microorganisms. Using Sr(II) as a simulation radionuclide and the mixed microorganisms of Saccharomyces cerevisiae and Bacillus subtilis as the biological adsorbent, this study investigates behavior at the interface between Sr(II) and the microorganisms as well as the mechanisms governing that behavior. The results show that the optimal ratio of mixed microorganisms is S. cerevisiae 2.0 g L -1 to B. subtilis 0.05 g L -1 , and the optimal pH is about 6.3. Sr(II) biosorption onto the mixed microorganisms is spontaneous and endothermic in nature. The kinetics and the equilibrium isotherm data of the biosorption process can be described with pseudo-second-order equation and the Langmuir isotherm equation, respectively. The key interaction between the biological adsorbent and Sr(II) involves shared electronic pairs arising from chemical reactions via bond complexation or electronic exchange, and spectral and energy spectrum analysis show that functional groups (e.g., hydroxyl, carboxyl, amino, amide) at the interface between the radionuclide and the mixed microorganisms are the main active sites of the interface reactions.

  5. Engineered microorganisms capable of producing target compounds under anaerobic conditions

    DOEpatents

    Buelter, Thomas [Denver, CO; Meinhold, Peter [Denver, CO; Feldman, Reid M. Renny [San Francisco, CA; Hawkins, Andrew C [Parker, CO; Urano, Jun [Irvine, CA; Bastian, Sabine [Pasadena, CA; Arnold, Frances [La Canada, CA

    2012-01-17

    The present invention is generally provides recombinant microorganisms comprising engineered metabolic pathways capable of producing C3-C5 alcohols under aerobic and anaerobic conditions. The invention further provides ketol-acid reductoisomerase enzymes which have been mutated or modified to increase their NADH-dependent activity or to switch the cofactor preference from NADPH to NADH and are expressed in the modified microorganisms. In addition, the invention provides isobutyraldehyde dehydrogenase enzymes expressed in modified microorganisms. Also provided are methods of producing beneficial metabolites under aerobic and anaerobic conditions by contacting a suitable substrate with the modified microorganisms of the present invention.

  6. Clostridiumm ljungdahlii, an anaerobic ethanol and acetate producing microorganism

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.

    1992-01-01

    A newly discovered microorganism was isolated in a biologically pure culture and designated Clostridium ljungdahlii, having the identifying characteristics of ATCC No. 49587. Cultured in an aqueous nutrient medium under anaerobic conditions, this microorganism is capable of producing ethanol and acetate from CO and H.sub.2 O and/or CO.sub.2 and H.sub.2 in synthesis gas. Under optimal growth conditions, the microorganism produces acetate in preference to ethanol. Conversely, under non-growth conditions, ethanol production is favored over acetate.

  7. Organic acid-tolerant microorganisms and uses thereof for producing organic acids

    DOEpatents

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-05-06

    Organic acid-tolerant microorganisms and methods of using same. The organic acid-tolerant microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid (3HP), acrylic acid, and propionic acid. Further modifications to the microorganisms such as increasing expression of malonyl-CoA reductase and/or acetyl-CoA carboxylase provide or increase the ability of the microorganisms to produce 3HP. Methods of generating an organic acid with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers include replacing acsA or homologs thereof in cells with genes of interest and selecting for the cells comprising the genes of interest with amounts of organic acids effective to inhibit growth of cells harboring acsA or the homologs.

  8. Microorganism Utilization for Synthetic Milk Production

    NASA Technical Reports Server (NTRS)

    Morford, Megan A.; Khodadad, Christina Louise; Spencer, LaShelle E.; Richards, Jeffrey T.; Strayer, Richard F.; Caro, Janicce; Hummerick, Mary; Birmele, Michele N.; Wheeler, Raymond M.

    2014-01-01

    A desired architecture for long duration spaceflight, such as aboard the International Space Station (ISS) or for future missions to Mars, is to provide a supply of fresh food crops for the astronauts. However, some crops can create a high proportion of inedible plant waste. The main goal of this project was to produce the components of milk (sugar, lipid, protein) from inedible plant waste by utilizing microorganisms (fungi, yeast, bacteria). Of particular interest was utilizing the valuable polysaccharide, cellulose, found in plant waste, to naturally fuel- through microorganism cellular metabolism- the creation of sugar (glucose), lipid (milk fat), and protein (casein) to produce a synthetic edible food product. Environmental conditions such as pH, temperature, carbon source, aeration, and choice microorganisms were optimized in the laboratory and the desired end-products, sugars and lipids, were analyzed. Trichoderma reesei, a known cellulolytic fungus, was utilized to drive the production of glucose, with the intent that the produced glucose would serve as the carbon source for milk fat production and be a substitute for the milk sugar lactose. Lipid production would be carried out by Rhodosporidium toruloides, yeast known to accumulate those lipids that are typically found in milk fat. Results showed that glucose and total lipid content were below what was expected during this phase of experimentation. In addition, individual analysis of six fatty acids revealed that the percentage of each fatty acid was lower than naturally produced bovine milk. Overall, this research indicates that microorganisms could be utilized to breakdown inedible solid waste to produce useable products.

  9. Identification of microorganisms associated with corrosion of offshore oil production systems

    NASA Astrophysics Data System (ADS)

    Sørensen, Ketil; Grigoryan, Aleksandr; Holmkvist, Lars; Skovhus, Torben; Thomsen, Uffe; Lundgaard, Thomas

    2010-05-01

    Microbiologically influenced corrosion (MIC) poses a major challenge to oil producers and distributors. The annual cost associated with MIC-related pipeline failures and general maintenance and surveillance of installations amounts to several billion dollar in the oil production sector alone. Hence, large efforts are undertaken by some producers to control and monitor microbial growth in pipelines and other installations, and extensive surveillance programs are carried out in order to detect and quantify potential MIC-promoting microorganisms. Traditionally, efforts to mitigate and survey microbial growth in oil production systems have focused on sulfate-reducing Bacteria (SRB), and microorganisms have usually been enumerated by the culture-dependent MPN (most probable number) -technique. Culture-independent molecular tools yielding much more detailed information about the microbial communities have now been implemented as a reliable tool for routine surveillance of oil production systems in the North Sea. This has resulted in new and hitherto unattainable information regarding the distribution of different microorganisms in hot reservoirs and associated oil production systems. This presentation will provide a review of recent insights regarding thermophilic microbial communities and their implication for steel corrosion in offshore oil production systems. Data collected from solids and biofilms in different corroded pipelines and tubes indicate that in addition to SRB, other groups such as methanogens and sulfate-reducing Archaea (SRA) are also involved in MIC. In the hot parts of the system where the temperature approaches 80 ⁰C, SRA closely related to Archaeoglobus fulgidus outnumber SRB by several orders of magnitude. Methanogens affiliated with the genus Methanothermococcus were shown to completely dominate the microbial community at the metal surface in a sample of highly corroded piping. Thus, the microbial communities associated with MIC appear to be more

  10. Clostridiumm ljungdahlii, an anaerobic ethanol and acetate producing microorganism

    DOEpatents

    Gaddy, J.L.; Clausen, E.C.

    1992-12-22

    A newly discovered microorganism was isolated in a biologically pure culture and designated Clostridium ljungdahlii, having the identifying characteristics of ATCC No. 49587. Cultured in an aqueous nutrient medium under anaerobic conditions, this microorganism is capable of producing ethanol and acetate from CO and H[sub 2]O and/or CO[sub 2] and H[sub 2] in synthesis gas. Under optimal growth conditions, the microorganism produces acetate in preference to ethanol. Conversely, under non-growth conditions, ethanol production is favored over acetate. 3 figs.

  11. Improved Method for Determination of Respiring Individual Microorganisms in Natural Waters

    PubMed Central

    Tabor, Paul S.; Neihof, Rex A.

    1982-01-01

    A method is reported that combines the microscopic determinations of specific, individual, respiring microorganisms by the detection of electron transport system activity and the total number of organisms of an estuarine population by epifluorescence microscopy. An active cellular electron transport system specifically reduces 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride (INT) to INT-formazan, which is recognized as opaque intracellular deposits in microorganisms stained with acridine orange. In a comparison of previously described sample preparation techniques, a loss of >70% of the counts of INT-reducing microorganisms was shown to be due to the dissolution of INT-formazan deposits by immersion oil (used in microscopy). In addition, significantly fewer fluorescing microorganisms and INT-formazan deposits, both ≤0.2 μm in size, were found for sample preparations that included a Nuclepore filter. Visual clarity was enhanced, and significantly greater direct counts and counts of INT-reducing microorganisms were recognized by transferring microorganisms from a filter to a gelatin film on a cover glass, followed by coating the sample with additional gelatin to produce a transparent matrix. With this method, the number of INT-reducing microorganisms determined for a Chesapeake Bay water sample was 2-to 10-fold greater than the number of respiring organisms reported previously for marine or freshwater samples. INT-reducing microorganisms constituted 61% of the total direct counts determined for a Chesapeake Bay water sample. This is the highest percentage of metabolically active microorganisms of any aquatic population reported using a method which determines both total counts and specific activity. PMID:16346025

  12. Improved method for determination of respiring individual microorganisms in natural waters.

    PubMed

    Tabor, P S; Neihof, R A

    1982-06-01

    A method is reported that combines the microscopic determinations of specific, individual, respiring microorganisms by the detection of electron transport system activity and the total number of organisms of an estuarine population by epifluorescence microscopy. An active cellular electron transport system specifically reduces 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride (INT) to INT-formazan, which is recognized as opaque intracellular deposits in microorganisms stained with acridine orange. In a comparison of previously described sample preparation techniques, a loss of >70% of the counts of INT-reducing microorganisms was shown to be due to the dissolution of INT-formazan deposits by immersion oil (used in microscopy). In addition, significantly fewer fluorescing microorganisms and INT-formazan deposits, both microorganisms were recognized by transferring microorganisms from a filter to a gelatin film on a cover glass, followed by coating the sample with additional gelatin to produce a transparent matrix. With this method, the number of INT-reducing microorganisms determined for a Chesapeake Bay water sample was 2-to 10-fold greater than the number of respiring organisms reported previously for marine or freshwater samples. INT-reducing microorganisms constituted 61% of the total direct counts determined for a Chesapeake Bay water sample. This is the highest percentage of metabolically active microorganisms of any aquatic population reported using a method which determines both total counts and specific activity.

  13. Transport of magnetohydrodynamic nanomaterial in a stratified medium considering gyrotactic microorganisms

    NASA Astrophysics Data System (ADS)

    Waqas, M.; Hayat, T.; Shehzad, S. A.; Alsaedi, A.

    2018-01-01

    Impact of gyrotactic microorganisms on two-dimensional (2D) stratified flow of an Oldroyd-B nanomaterial is highlighted. Applied magnetic field along with mixed convection is considered in the formulation. Theory of microorganisms is utilized just to stabilize the suspended nanoparticles through bioconvection induced by combined effects of buoyancy forces and magnetic field. Convergent series solutions for the obtained nonlinear differential systems are derived. Impacts of different emerging parameters on velocity, temperature, concentration, motile microorganisms density, density number of motile microorganisms and local Nusselt and Sherwood numbers are graphically addressed. It is observed that thermal, concentration and motile density stratification parameters result in reduction of temperature, concentration and motile microorganisms density distributions respectively.

  14. Compost supplementation with nutrients and microorganisms in composting process.

    PubMed

    Sánchez, Óscar J; Ospina, Diego A; Montoya, Sandra

    2017-11-01

    The composting is an aerobic, microorganism-mediated, solid-state fermentation process by which different organic materials are transformed into more stable compounds. The product obtained is the compost, which contributes to the improvement of physical, chemical and microbiological properties of the soil. However, the compost usage in agriculture is constrained because of its long-time action and reduced supply of nutrients to the crops. To enhance the content of nutrients assimilable by the plants in the compost, its supplementation with nutrients and inoculation with microorganisms have been proposed. The objective of this work was to review the state of the art on compost supplementation with nutrients and the role played by the microorganisms involved (or added) in their transformation during the composting process. The phases of composting are briefly compiled and different strategies for supplementation are analyzed. The utilization of nitrogenous materials and addition of microorganisms fixing nitrogen from the atmosphere or oxidizing ammonia into more assimilable for plants nitrogenous forms are analyzed. Several strategies for nitrogen conservation during composting are presented as well. The supplementation with phosphorus and utilization of microorganisms solubilizing phosphorus and potassium are also discussed. Main groups of microorganisms relevant during the composting process are described as well as most important strategies to identify them. In general, the development of this type of nutrient-enriched bio-inputs requires research and development not only in the supplementation of compost itself, but also in the isolation and identification of microorganisms and genes allowing the degradation and conversion of nitrogenous substances and materials containing potassium and phosphorus present in the feedstocks undergoing the composting process. In this sense, most important research trends and strategies to increase nutrient content in the compost

  15. MICROORGANISMS DIE-OFF RATES IN URBAN STORMWATER RUNOFF 2007

    EPA Science Inventory

    Stormwater best management practices (BMPs) are often considered effective tools to mitigate the effects of stormwater pollutants before they are discharged to receiving waters. However, BMP performance for microorganisms removal is not well documented. Microorganisms die-off in ...

  16. MICROORGANISMS DIE-OFF RATES IN URBAN STORMWATER RUNOFF 2007

    EPA Science Inventory

    Stormwater best management practices (BMPs) are often considered effective tools to mitigate the effects of stormwater pollutants before they are discharged to receiving waters. However, BMP performance for microorganisms removal is not well documented. Microorganisms die-off in...

  17. Interplay between microorganisms and geochemistry in geological carbon storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altman, Susan J.; Kirk, Matthew Fletcher; Santillan, Eugenio-Felipe U.

    Researchers at the Center for Frontiers of Subsurface Energy Security (CFSES) have conducted laboratory and modeling studies to better understand the interplay between microorganisms and geochemistry for geological carbon storage (GCS). We provide evidence of microorganisms adapting to high pressure CO 2 conditions and identify factors that may influence survival of cells to CO 2 stress. Factors that influenced the ability of cells to survive exposure to high-pressure CO 2 in our experiments include mineralogy, the permeability of cell walls and/or membranes, intracellular buffering capacity, and whether cells live planktonically or within biofilm. Column experiments show that, following exposure tomore » acidic water, biomass can remain intact in porous media and continue to alter hydraulic conductivity. Our research also shows that geochemical changes triggered by CO 2 injection can alter energy available to populations of subsurface anaerobes and that microbial feedbacks on this effect can influence carbon storage. Our research documents the impact of CO 2 on microorganisms and in turn, how subsurface microorganisms can influence GCS. Furthermore, we conclude that microbial presence and activities can have important implications for carbon storage and that microorganisms should not be overlooked in further GCS research.« less

  18. Interplay between microorganisms and geochemistry in geological carbon storage

    DOE PAGES

    Altman, Susan J.; Kirk, Matthew Fletcher; Santillan, Eugenio-Felipe U.; ...

    2016-02-28

    Researchers at the Center for Frontiers of Subsurface Energy Security (CFSES) have conducted laboratory and modeling studies to better understand the interplay between microorganisms and geochemistry for geological carbon storage (GCS). We provide evidence of microorganisms adapting to high pressure CO 2 conditions and identify factors that may influence survival of cells to CO 2 stress. Factors that influenced the ability of cells to survive exposure to high-pressure CO 2 in our experiments include mineralogy, the permeability of cell walls and/or membranes, intracellular buffering capacity, and whether cells live planktonically or within biofilm. Column experiments show that, following exposure tomore » acidic water, biomass can remain intact in porous media and continue to alter hydraulic conductivity. Our research also shows that geochemical changes triggered by CO 2 injection can alter energy available to populations of subsurface anaerobes and that microbial feedbacks on this effect can influence carbon storage. Our research documents the impact of CO 2 on microorganisms and in turn, how subsurface microorganisms can influence GCS. Furthermore, we conclude that microbial presence and activities can have important implications for carbon storage and that microorganisms should not be overlooked in further GCS research.« less

  19. Microbial genome-enabled insights into plant-microorganism interactions.

    PubMed

    Guttman, David S; McHardy, Alice C; Schulze-Lefert, Paul

    2014-12-01

    Advances in genome-based studies on plant-associated microorganisms have transformed our understanding of many plant pathogens and are beginning to greatly widen our knowledge of plant interactions with mutualistic and commensal microorganisms. Pathogenomics has revealed how pathogenic microorganisms adapt to particular hosts, subvert innate immune responses and change host range, as well as how new pathogen species emerge. Similarly, culture-independent community profiling methods, coupled with metagenomic and metatranscriptomic studies, have provided the first insights into the emerging field of research on plant-associated microbial communities. Together, these approaches have the potential to bridge the gap between plant microbial ecology and plant pathology, which have traditionally been two distinct research fields.

  20. Workshop on Spaceflight Alterations in Host-Microorganism Interactions

    NASA Technical Reports Server (NTRS)

    Ott, C. Mark

    2010-01-01

    On June 11, 2009, a workshop that included internal and external experts was convened to determine the risk of changes in microorganisms that could alter host-microorganism interactions during a mission. The evidence is based in part on multiple flight experiments which indicate altered virulence in Salmonella typhimurium when cultured in flight. The workshop participants were tasked to determine if adequate information was available to initiate changes in NASA's current approach to infectious disease risk assessment and medical operations. The consensus of the participants is that the current evidence was not adequate to provide direction for operational changes; however, the evidence is compelling and clearly indicates that changes to microorganisms were occurring during spaceflight and further research is required.

  1. Investigation to identify paint coatings resistive to microorganism growth

    NASA Technical Reports Server (NTRS)

    Cooper, C. W.; Kemp, H. T.

    1971-01-01

    All selected coatings contain nutrients that support microbial growth and survival. Incorporation of microbiocidal agents into coatings more susceptible to attack is recommended for improved inhibition of microorganism growth and for increased protection against deterioration of coatings by microorganisms.

  2. NH4+ transport system of a psychrophilic marine bacterium, Vibrio sp. strain ABE-1.

    PubMed

    Chou, M; Matsunaga, T; Takada, Y; Fukunaga, N

    1999-05-01

    NH4(+) transport system of a psychrophilic marine bacterium Vibrio sp. strain ABE-1 (Vibrio ABE-1) was examined by measuring the uptake of [14C]methylammonium ion (14CH3NH3+) into the intact cells. 14CH3NH3+ uptake was detected in cells grown in medium containing glutamate as the sole nitrogen source, but not in those grown in medium containing NH4Cl instead of glutamate. Vibrio ABE-1 did not utilize CH3NH3+ as a carbon or nitrogen source. NH4Cl and nonradiolabeled CH3NH3+ completely inhibited 14CH3NH3+ uptake. These results indicate that 14CH3NH3+ uptake in this bacterium is mediated via an NH4+ transport system and not by a specific carrier for CH3NH3+. The respiratory substrate succinate was required to drive 14CH3NH3+ uptake and the uptake was completely inhibited by KCN, indicating that the uptake was energy dependent. The electrochemical potentials of H+ and/or Na+ across membranes were suggested to be the driving forces for the transport system because the ionophores carbonylcyanide m-chlorophenylhydrazone and monensin strongly inhibited uptake activities at pH 6.5 and 8.5, respectively. Furthermore, KCl activated 14CH3NH3+ uptake. The 14CH3NH3+ uptake activity of Vibrio ABE-1 was markedly high at temperatures between 0 degrees and 15 degrees C, and the apparent Km value for CH3NH3+ of the uptake did not change significantly over the temperature range from 0 degrees to 25 degrees C. Thus, the NH4+ transport system of this bacterium was highly active at low temperatures.

  3. New and improved tools and methods for enhanced biosynthesis of natural products in microorganisms.

    PubMed

    Wang, Zhiqing; Cirino, Patrick C

    2016-12-01

    Engineering efficient biosynthesis of natural products in microorganisms requires optimizing gene expression levels to balance metabolite flux distributions and to minimize accumulation of toxic intermediates. Such metabolic optimization is challenged with identifying the right gene targets, and then determining and achieving appropriate gene expression levels. After decades of having a relatively limited set of gene regulation tools available, metabolic engineers are recently enjoying an ever-growing repertoire of more precise and tunable gene expression platforms. Here we review recent applications of natural and designed transcriptional and translational regulatory machinery for engineering biosynthesis of natural products in microorganisms. Customized trans-acting RNAs (sgRNA, asRNA and sRNA), along with appropriate accessory proteins, are allowing for unparalleled tuning of gene expression. Meanwhile metabolite-responsive transcription factors and riboswitches have been implemented in strain screening and evolution, and in dynamic gene regulation. Further refinements and expansions on these platform technologies will circumvent many long-term obstacles in natural products biosynthesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Microorganism Utilization for Synthetic Milk

    NASA Technical Reports Server (NTRS)

    Morford, Megan A.; Khodadad, Christina L.; Caro, Janicce I.; Spencer, LaShelle E.; Richards, Jeffery T.; Strayer, Richard F.; Birmele, Michele N.; Wheeler, Raymond M.

    2014-01-01

    A desired architecture for long duration spaceflight, like aboard the International Space Station or for future missions to Mars, is to provide a supply of fresh food crops for the astronauts. However, some crops can create a high proportion of inedible plant waste. The main goal of the Synthetic Biology project, Cow in a Column, was to produce the components of milk (sugar, lipid, protein) from inedible plant waste by utilizing microorganisms (fungi, yeast, bacteria). Of particular interest was utilizing the valuable polysaccharide, cellulose, found in plant waste, to naturally fuel-through microorganism cellular metabolism- the creation of sugar (glucose), lipid (milk fat), and protein (casein) in order to produce a synthetic edible food product. Environmental conditions such as pH, temperature, carbon source, aeration, and choice microorganisms were optimized in the laboratory and the desired end-products, sugars and lipids, were analyzed. Trichoderma reesei, a known cellulolytic fungus, was utilized to drive the production of glucose, with the intent that the produced glucose would serve as the carbon source for milk fat production and be a substitute for the milk sugar lactose. Lipid production would be carried out by Rhodosporidium toruloides, yeast known to accumulate those lipids that are typically found in milk fat. Results showed that glucose and total lipid content were below what was expected during this phase of experimentation. In addition, individual analysis of six fatty acids revealed that the percentage of each fatty acid was lower than naturally produced bovine milk. Overall, this research indicates that microorganisms could be utilized to breakdown inedible solid waste to produce useable products. For future work, the production of the casein protein for milk would require the development of a genetically modified organism, which was beyond the scope of the original project. Additional trials would be needed to further refine the required

  5. Mini-review: Inhibition of biofouling by marine microorganisms.

    PubMed

    Dobretsov, Sergey; Abed, Raeid M M; Teplitski, Max

    2013-01-01

    Any natural or artificial substratum exposed to seawater is quickly fouled by marine microorganisms and later by macrofouling species. Microfouling organisms on the surface of a substratum form heterogenic biofilms, which are composed of multiple species of heterotrophic bacteria, cyanobacteria, diatoms, protozoa and fungi. Biofilms on artificial structures create serious problems for industries worldwide, with effects including an increase in drag force and metal corrosion as well as a reduction in heat transfer efficiency. Additionally, microorganisms produce chemical compounds that may induce or inhibit settlement and growth of other fouling organisms. Since the last review by the first author on inhibition of biofouling by marine microbes in 2006, significant progress has been made in the field. Several antimicrobial, antialgal and antilarval compounds have been isolated from heterotrophic marine bacteria, cyanobacteria and fungi. Some of these compounds have multiple bioactivities. Microorganisms are able to disrupt biofilms by inhibition of bacterial signalling and production of enzymes that degrade bacterial signals and polymers. Epibiotic microorganisms associated with marine algae and invertebrates have a high antifouling (AF) potential, which can be used to solve biofouling problems in industry. However, more information about the production of AF compounds by marine microorganisms in situ and their mechanisms of action needs to be obtained. This review focuses on the AF activity of marine heterotrophic bacteria, cyanobacteria and fungi and covers publications from 2006 up to the end of 2012.

  6. Microorganisms in inorganic chemical analysis.

    PubMed

    Godlewska-Zyłkiewicz, Beata

    2006-01-01

    There are innumerable strains of microbes (bacteria, yeast and fungi) that degrade or transform chemicals and compounds into simpler, safer or less toxic substances. These bioprocesses have been used for centuries in the treatment of municipal wastes, in wine, cheese and bread making, and in bioleaching and metal recovery processes. Recent literature shows that microorganisms can be also used as effective sorbents for solid phase extraction procedures. This review reveals that fundamental nonanalytical studies on the parameters and conditions of biosorption processes and on metal-biomass interactions often result in efficient analytical procedures and biotechnological applications. Some selected examples illustrate the latest developments in the biosorption of metals by microbial biomass, which have opened the door to the application of microorganisms to analyte preconcentration, matrix separation and speciation analysis.

  7. Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance

    NASA Astrophysics Data System (ADS)

    Kuzyakov, Yakov; Xu, Xingliang

    2014-05-01

    Demand of all living organisms on the same nutrients forms the basis for interspecific competition between plants and microorganisms in soils. This competition is especially strong in the rhizosphere. To evaluate competitive and mutualistic interactions between plants and microorganisms and to analyse ecological consequences of these interactions, we analysed 424 data pairs from 41 15N-labelling studies that investigated 15N redistribution between roots and microorganisms. Calculated Michaelis-Menten kinetics based on Km (Michaelis constant) and Vmax (maximum uptake capacity) values from 77 studies on the uptake of nitrate, ammonia, and amino acids by roots and microorganisms clearly showed that, shortly after nitrogen (N) mobilization from soil organic matter and litter, microorganisms take up most N. Lower Km values of microorganisms suggest that they are especially efficient at low N concentrations, but can also acquire more N at higher N concentrations (Vmax) compared with roots. Because of the unidirectional flow of nutrients from soil to roots, plants are the winners for N acquisition in the long run. Therefore, despite strong competition between roots and microorganisms for N, a temporal niche differentiation reflecting their generation times leads to mutualistic relationships in the rhizosphere. This temporal niche differentiation is highly relevant ecologically because it: protects ecosystems from N losses by leaching during periods of slow or no root uptake; continuously provides roots with available N according to plant demand; and contributes to the evolutionary development of mutualistic interactions between roots and microorganisms.

  8. The application of powerful promoters to enhance gene expression in industrial microorganisms.

    PubMed

    Zhou, Shenghu; Du, Guocheng; Kang, Zhen; Li, Jianghua; Chen, Jian; Li, Huazhong; Zhou, Jingwen

    2017-02-01

    Production of useful chemicals by industrial microorganisms has been attracting more and more attention. Microorganisms screened from their natural environment usually suffer from low productivity, low stress resistance, and accumulation of by-products. In order to overcome these disadvantages, rational engineering of microorganisms to achieve specific industrial goals has become routine. Rapid development of metabolic engineering and synthetic biology strategies provide novel methods to improve the performance of industrial microorganisms. Rational regulation of gene expression by specific promoters is essential to engineer industrial microorganisms for high-efficiency production of target chemicals. Identification, modification, and application of suitable promoters could provide powerful switches at the transcriptional level for fine-tuning of a single gene or a group of genes, which are essential for the reconstruction of pathways. In this review, the characteristics of promoters from eukaryotic, prokaryotic, and archaea microorganisms are briefly introduced. Identification of promoters based on both traditional biochemical and systems biology routes are summarized. Besides rational modification, de novo design of promoters to achieve gradient, dynamic, and logic gate regulation are also introduced. Furthermore, flexible application of static and dynamic promoters for the rational engineering of industrial microorganisms is highlighted. From the perspective of powerful promoters in industrial microorganisms, this review will provide an extensive description of how to regulate gene expression in industrial microorganisms to achieve more useful goals.

  9. Sea ice microorganisms: environmental constraints and extracellular responses.

    PubMed

    Ewert, Marcela; Deming, Jody W

    2013-03-28

    Inherent to sea ice, like other high latitude environments, is the strong seasonality driven by changes in insolation throughout the year. Sea-ice organisms are exposed to shifting, sometimes limiting, conditions of temperature and salinity. An array of adaptations to survive these and other challenges has been acquired by those organisms that inhabit the ice. One key adaptive response is the production of extracellular polymeric substances (EPS), which play multiple roles in the entrapment, retention and survival of microorganisms in sea ice. In this concept paper we consider two main areas of sea-ice microbiology: the physico-chemical properties that define sea ice as a microbial habitat, imparting particular advantages and limits; and extracellular responses elicited in microbial inhabitants as they exploit or survive these conditions. Emphasis is placed on protective strategies used in the face of fluctuating and extreme environmental conditions in sea ice. Gaps in knowledge and testable hypotheses are identified for future research.

  10. Sea Ice Microorganisms: Environmental Constraints and Extracellular Responses

    PubMed Central

    Ewert, Marcela; Deming, Jody W.

    2013-01-01

    Inherent to sea ice, like other high latitude environments, is the strong seasonality driven by changes in insolation throughout the year. Sea-ice organisms are exposed to shifting, sometimes limiting, conditions of temperature and salinity. An array of adaptations to survive these and other challenges has been acquired by those organisms that inhabit the ice. One key adaptive response is the production of extracellular polymeric substances (EPS), which play multiple roles in the entrapment, retention and survival of microorganisms in sea ice. In this concept paper we consider two main areas of sea-ice microbiology: the physico-chemical properties that define sea ice as a microbial habitat, imparting particular advantages and limits; and extracellular responses elicited in microbial inhabitants as they exploit or survive these conditions. Emphasis is placed on protective strategies used in the face of fluctuating and extreme environmental conditions in sea ice. Gaps in knowledge and testable hypotheses are identified for future research. PMID:24832800

  11. Biomineralization of strontianite(SrCO3) by aerobic microorganisms enriched from rhodoliths

    NASA Astrophysics Data System (ADS)

    Kang, S.; Roh, Y.

    2012-12-01

    The transport and fate of trace metals and radionuclides in natural environments are controlled by physical, chemical, and microbiological processes. Especially, microbially induced precipitation of carbonates has drawn much attention in recent decades because of its numerous implications such as atmospheric CO2 fixation through mineral carbonation and solid phase capture of inorganic contaminants. The objectives of this study were to investigate the potential for microbially induced precipitation of strontianite (SrCO3) using microorganisms enriched from rhodoliths and to identify mineralogical characteristics of the precipitates of strontianite. Carbonate forming microorganisms were enriched from rhodoliths, which were sampled at Seogwang-ri coast in the western part of Wu Island, Jeju-do, Korea. Microorganisms enriched from rhodoliths were aerobically cultured at 25Ć in D-1 media containing 30 mM Sr-acetate, and the microorganisms were analyzed by 16S rRNA gene DGGE analysis to confirm microbial diversity. Mineralogical characteristics of the carbonate minerals precipitated by the enriched microorganisms were determined by XRD, TEM-EDS, and SEM-EDS analyses. A 16S rRNA sequence analysis showed the enriched microorganisms contained carbonate forming microorganisms such as Proteus mirailis. The enriched microorganisms precipitated carbonate minerals using D-1 media containing 30 mM Sr-acetate and mineralogy of the precipitate was strontianite (SrCO3). SEM/TEM-EDS analyses showed that the strontianite formed by the microorganisms had a spherical shape and consisted of mainly Sr, O and C. TEM-EDS analyses showed that the strontianite formed by the microorganisms had a rhombohedron shape and consisted of mainly Sr, O and C. These results indicate that the microorganisms induce precipitation of strontianite (SrCO3) on the cell walls and EPS via the accumulation of Sr ions on the cells. Therefore, microbial precipitation of carbonate minerals may play one of important

  12. Functional Properties of Microorganisms in Fermented Foods

    PubMed Central

    Tamang, Jyoti P.; Shin, Dong-Hwa; Jung, Su-Jin; Chae, Soo-Wan

    2016-01-01

    Fermented foods have unique functional properties imparting some health benefits to consumers due to presence of functional microorganisms, which possess probiotics properties, antimicrobial, antioxidant, peptide production, etc. Health benefits of some global fermented foods are synthesis of nutrients, prevention of cardiovascular disease, prevention of cancer, gastrointestinal disorders, allergic reactions, diabetes, among others. The present paper is aimed to review the information on some functional properties of the microorganisms associated with fermented foods and beverages, and their health-promoting benefits to consumers. PMID:27199913

  13. Metabolic activity of microorganisms in evaporites

    NASA Technical Reports Server (NTRS)

    Rothschild, L. J.; Giver, L. J.; White, M. R.; Mancinelli, R. L.

    1994-01-01

    Crystalline salt is generally considered so hostile to most forms of life that it has been used for centuries as a preservative. Here, we present evidence that prokaryotes inhabiting a natural evaporite crust of halite and gypsum are metabolically active while inside the evaporite for at least 10 months. In situ measurements demonstrated that some of these "endoevaporitic" microorganisms (probably the cyanobacterium Synechococcus Nageli) fixed carbon and nitrogen. Denitrification was not observed. Our results quantified the slow microbial activity that can occur in salt crystals. Implications of this study include the possibility that microorganisms found in ancient evaporite deposits may have been part of an evaporite community.

  14. Microorganisms in Food--Their Significance and Methods of Enumeration.

    ERIC Educational Resources Information Center

    Andrews, S.

    1980-01-01

    Described are laboratory methods for enumerating microorganisms in food. These methods are utilized to determine if foods are potentially hazardous to the consumer due to high concentrations of microorganisms. Discussed are indicator organisms, including coliforms, interococci, yeasts, and molds; food poisoning organisms (staphylococci and…

  15. Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms.

    PubMed

    Satpute, Surekha K; Banat, Ibrahim M; Dhakephalkar, Prashant K; Banpurkar, Arun G; Chopade, Balu A

    2010-01-01

    Marine biosphere offers wealthy flora and fauna, which represents a vast natural resource of imperative functional commercial grade products. Among the various bioactive compounds, biosurfactant (BS)/bioemulsifiers (BE) are attracting major interest and attention due to their structural and functional diversity. The versatile properties of surface active molecules find numerous applications in various industries. Marine microorganisms such as Acinetobacter, Arthrobacter, Pseudomonas, Halomonas, Myroides, Corynebacteria, Bacillus, Alteromonas sp. have been studied for production of BS/BE and exopolysaccharides (EPS). Due to the enormity of marine biosphere, most of the marine microbial world remains unexplored. The discovery of potent BS/BE producing marine microorganism would enhance the use of environmental biodegradable surface active molecule and hopefully reduce total dependence or number of new application oriented towards the chemical synthetic surfactant industry. Our present review gives comprehensive information on BS/BE which has been reported to be produced by marine microorganisms and their possible potential future applications.

  16. [The low-molecular weight antioxidants of microorganisms].

    PubMed

    Skorokhod, I O; Kurdysh, I K

    2014-01-01

    Support of optimum redox-homeostasis in the cells of microorganisms plays a substantial role in the processes of DNA synthesis, respiration, providing of immune and protective reactions, activity of enzymes, etc. The changes of the redox-status can be accompanied by the increase of the level of reactive oxygen species (ROS) which predetermine the damage of biologically active molecules. Adjusting of ROS concentrations is a very important process in development of microorganisms. Low-molecular antioxidants are effective inhibitors of free-radical processes. The authors of the review present the description of oxidants and consider the ways of origin and consequences of their influence on the living cells. An accent is done on phenomenological description of low-molecular antioxidants. The basic mechanisms of their action are considered. Special attention is given to the question of synergism between these protectors. The detailed study of mechanisms of functioning of low-molecular antioxidants in the cells of microorganisms will allow using these living objects in different spheres of human activity.

  17. Effective Dynamics of Microorganisms That Interact with Their Own Trail

    NASA Astrophysics Data System (ADS)

    Kranz, W. Till; Gelimson, Anatolij; Zhao, Kun; Wong, Gerard C. L.; Golestanian, Ramin

    2016-07-01

    Like ants, some microorganisms are known to leave trails on surfaces to communicate. We explore how trail-mediated self-interaction could affect the behavior of individual microorganisms when diffusive spreading of the trail is negligible on the time scale of the microorganism using a simple phenomenological model for an actively moving particle and a finite-width trail. The effective dynamics of each microorganism takes on the form of a stochastic integral equation with the trail interaction appearing in the form of short-term memory. For a moderate coupling strength below an emergent critical value, the dynamics exhibits effective diffusion in both orientation and position after a phase of superdiffusive reorientation. We report experimental verification of a seemingly counterintuitive perpendicular alignment mechanism that emerges from the model.

  18. Resin straw as an alternative system to securely store frozen microorganisms.

    PubMed

    Thammavongs, Bouachanh; Poncet, Jean-Marc; Desmasures, Nathalie; Guéguen, Micheline; Panoff, Jean-Michel

    2004-05-01

    Freezing of prokaryotic and eukaryotic microorganisms is the main interest in the study of cold stress responses of living organisms. In parallel, applications which arise from this approach are of two types: (i) optimization of the frozen starters used in food processing; and (ii) improvement of the ex situ preservation of microorganisms in collections. Currently, cryopreservation of microorganisms in collections is carried out in cryotubes, and bibliographical references related to freezing microorganisms packaged in straws are scarce. In this context, a preliminary study was completed to evaluate the technological potential of ionomeric resin straws compared to polycarbonate cryo-tubes. Survival under freezing stress was tested on three microorganisms selected for their biotechnological interest: two lactic acid bacteria, Lactococcus lactis subsp. cremoris and Lactobacillus delbrueckii subsp. bulgaricus and a deuteromycete fungus, Geotrichum candidum. The stress was carried out by repeated freezing-thawing cycles to artificially accelerate the lethal effect of freezing on the microorganisms. Two main results were obtained: (i) the survival rate values (per freezing-thawing cycle) seems to depend on the thermal type of the studied microorganism, and (ii) there was no, under our experimental conditions, significant difference between straws and tubes. However, conservation in the resin straws lead to a slight increase in the survival of L. cremoris and G. candidum compared to microtubes. In those conditions, straws seems an alternative system to securely store frozen microorganisms with three main characteristics: (i) a high resistance to thermal stress, (ii) a safe closing by hermetic weld, and (iii) a system for inviolable identification.

  19. Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance.

    PubMed

    Kuzyakov, Yakov; Xu, Xingliang

    2013-05-01

    Demand of all living organisms on the same nutrients forms the basis for interspecific competition between plants and microorganisms in soils. This competition is especially strong in the rhizosphere. To evaluate competitive and mutualistic interactions between plants and microorganisms and to analyse ecological consequences of these interactions, we analysed 424 data pairs from 41 (15)N-labelling studies that investigated (15)N redistribution between roots and microorganisms. Calculated Michaelis-Menten kinetics based on K(m) (Michaelis constant) and V(max) (maximum uptake capacity) values from 77 studies on the uptake of nitrate, ammonia, and amino acids by roots and microorganisms clearly showed that, shortly after nitrogen (N) mobilization from soil organic matter and litter, microorganisms take up most N. Lower K(m) values of microorganisms suggest that they are especially efficient at low N concentrations, but can also acquire more N at higher N concentrations (V(max)) compared with roots. Because of the unidirectional flow of nutrients from soil to roots, plants are the winners for N acquisition in the long run. Therefore, despite strong competition between roots and microorganisms for N, a temporal niche differentiation reflecting their generation times leads to mutualistic relationships in the rhizosphere. This temporal niche differentiation is highly relevant ecologically because it: protects ecosystems from N losses by leaching during periods of slow or no root uptake; continuously provides roots with available N according to plant demand; and contributes to the evolutionary development of mutualistic interactions between roots and microorganisms. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  20. Fossil Microorganisms and Formation of Early Precambrian Weathering Profiles

    NASA Technical Reports Server (NTRS)

    Rozanov, A. Yu; Astafieva, M. M.; Vrevsky, A. B.; Alfimova, N. A.; Matrenichev, V. A.; Hoover, R. B.

    2009-01-01

    Weathering crusts are the only reliable evidences of the existence of continental conditions. Often they are the only source of information about exogenous processes and subsequently about conditions under which the development of the biosphere occurred. A complex of diverse fossil microorganisms was discovered as a result of Scanning Electron Microscope investigations. The chemical composition of the discovered fossils is identical to that of the host rocks and is represented by Si, Al, Fe, Ca and Mg. Probably, the microorganisms fixed in rocks played the role of catalyst. The decomposition of minerals comprising the rocks and their transformation into clayey (argillaceous) minerals, most likely occurred under the influence of microorganisms. And may be unique weathering crusts of Early Precambrian were formed due to interaction between specific composition of microorganism assemblage and conditions of hypergene transformations. So it is possible to speak about colonization of land by microbes already at that time and about existence of single raw from weathering crusts (Primitive soils) to real soils.

  1. Indigenous microorganisms production and the effect on composting process

    NASA Astrophysics Data System (ADS)

    Abu-Bakar, Nurul-Ain; Ibrahim, Nazlina

    2013-11-01

    In this study, production of indigenous microorganisms (IMO) and effect on addition of IMO in composting process were done. Production of IMO was done in a series of steps to allow propagation of beneficial microorganisms. Effect of IMO addition in composting process was investigated by having 4 treatments; 1) rice straw without IMO nor manure and rice bran, 2) rice straw with IMO only, 3) rice straw with manure and rice bran, 4) rice straw with IMO, manure and rice bran. Production of IMO using cooked rice yields white molds. Addition of IMO during composting did not affect temperature increment. However, there were differences in numbers of microorganisms found during each stages of composting. Initial composting stage was dominated by mesophilic bacteria and actinomycetes, followed by thermophilic bacteria and later by actinomycetes upon composting completion. In conclusion, this study showed that IMO addition in composting increased microorganisms which are responsible in organic decomposition.

  2. Fluid flow enhances the effectiveness of toxin export by aquatic microorganisms: a first-passage perspective

    NASA Astrophysics Data System (ADS)

    Licata, Nicholas; Clark, Aaron

    2014-03-01

    Aquatic microorganisms face a variety of challenges in the course of development. One central challenge is efficiently regulating the export of toxic molecules inside the developing embryo. The strategies employed should be robust with respect to the variable ocean environment and limit the chances that exported toxins are reabsorbed. In this talk we consider the first-passage problem for the uptake of exported toxins by a spherical embryo. A perturbative solution of the advection-diffusion equation reveals that a concentration boundary layer forms in the vicinity of the embryo, and that fluid flow enhances the effectiveness of toxin export. We highlight connections between the model results and recent experiments on the development of sea urchin embryos. We acknowledge financial support from the University of Michigan-Dearobrn CASL Faculty Summer Research Grant.

  3. Grand challenges in bioengineered nanorobotics for cancer therapy.

    PubMed

    Lenaghan, Scott C; Wang, Yongzhong; Xi, Ning; Fukuda, Toshio; Tarn, Tzyhjong; Hamel, William R; Zhang, Mingjun

    2013-03-01

    One of the grand challenges currently facing engineering, life sciences, and medicine is the development of fully functional nanorobots capable of sensing, decision making, and actuation. These nanorobots may aid in cancer therapy, site-specific drug delivery, circulating diagnostics, advanced surgery, and tissue repair. In this paper, we will discuss, from a bioinspired perspective, the challenges currently facing nanorobotics, including core design, propulsion and power generation, sensing, actuation, control, decision making, and system integration. Using strategies inspired from microorganisms, we will discuss a potential bioengineered nanorobot for cancer therapy.

  4. Biofuel production by recombinant microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, James C.; Atsumi, Shota; Cann, Anthony F.

    Provided herein are metabolically-modified microorganisms useful for producing biofuels. More specifically, provided herein are methods of producing high alcohols including isobutanol, 1-butanol, 1-propanol, 2-methyl-1-butanol, 3-methyl-1-butanol and 2-phenylethanol from a suitable substrate.

  5. Cold-Adapted Enzymes

    NASA Astrophysics Data System (ADS)

    Georlette, D.; Bentahir, M.; Claverie, P.; Collins, T.; D'amico, S.; Delille, D.; Feller, G.; Gratia, E.; Hoyoux, A.; Lonhienne, T.; Meuwis, M.-a.; Zecchinon, L.; Gerday, Ch.

    In the last few years, increased attention has been focused on enzymes produced by cold-adapted micro-organisms. It has emerged that psychrophilic enzymes represent an extremely powerful tool in both protein folding investigations and for biotechnological purposes. Such enzymes are characterised by an increased thermosensitivity and, most of them, by a higher catalytic efficiency at low and moderate temperatures, when compared to their mesophilic counterparts. The high thermosensitivity probably originates from an increased flexibility of either a selected area of the molecular edifice or the overall protein structure, providing enhanced abilities to undergo conformational changes during catalysis at low temperatures. Structure modelling and recent crystallographic data have allowed to elucidate the structural parameters that could be involved in this higher resilience. It was demonstrated that each psychrophilic enzyme adopts its own adaptive strategy. It appears, moreover, that there is a continuum in the strategy of protein adaptation to temperature, as the previously mentioned structural parameters are implicated in the stability of thermophilic proteins. Additional 3D crystal structures, site-directed and random mutagenesis experiments should now be undertaken to further investigate the stability-flexibility-activity relationship.

  6. 9 CFR 114.5 - Micro-organisms used as seed.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... BIOLOGICAL PRODUCTS § 114.5 Micro-organisms used as seed. Micro-organisms used in the preparation of biological products at licensed establishments shall be free from the causative agents of other diseases or... Management and Budget under control number 0579-0059) [39 FR 16869, May 10, 1974, as amended at 48 FR 57473...

  7. 9 CFR 114.5 - Micro-organisms used as seed.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... BIOLOGICAL PRODUCTS § 114.5 Micro-organisms used as seed. Micro-organisms used in the preparation of biological products at licensed establishments shall be free from the causative agents of other diseases or... Management and Budget under control number 0579-0059) [39 FR 16869, May 10, 1974, as amended at 48 FR 57473...

  8. 9 CFR 114.5 - Micro-organisms used as seed.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... BIOLOGICAL PRODUCTS § 114.5 Micro-organisms used as seed. Micro-organisms used in the preparation of biological products at licensed establishments shall be free from the causative agents of other diseases or... Management and Budget under control number 0579-0059) [39 FR 16869, May 10, 1974, as amended at 48 FR 57473...

  9. 9 CFR 114.5 - Micro-organisms used as seed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... BIOLOGICAL PRODUCTS § 114.5 Micro-organisms used as seed. Micro-organisms used in the preparation of biological products at licensed establishments shall be free from the causative agents of other diseases or... Management and Budget under control number 0579-0059) [39 FR 16869, May 10, 1974, as amended at 48 FR 57473...

  10. 9 CFR 114.5 - Micro-organisms used as seed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... BIOLOGICAL PRODUCTS § 114.5 Micro-organisms used as seed. Micro-organisms used in the preparation of biological products at licensed establishments shall be free from the causative agents of other diseases or... Management and Budget under control number 0579-0059) [39 FR 16869, May 10, 1974, as amended at 48 FR 57473...

  11. Fluorescent antibody detection of microorganisms in terrestrial environments

    NASA Technical Reports Server (NTRS)

    Schmidt, E. L.

    1972-01-01

    The fluorescent antibody technique and its use in direct microscopic examination of the soil is discussed. Feasibility analyses were made to determine if the method could be used to simultaneously observe and recognize microorganisms in the soil. Some data indicate this may be possible. Data are also given on two related problems involving the interaction of soil microorganisms with plant roots to form symbiotic structures. One was concerned with the developmental ecology and biology of the root nodule of alder and the second was concerned with the ectotrophic mycorrhizal structure on forest trees, especially pines. In both, the fluorescent antibody detection of the microbial symbiont both as a free living form in soil, and as a root inhabiting form in the higher plant was emphasized. A third aspect of the research involved the detection of autotrophic ammonia oxidizing microorganisms in soil.

  12. Why Earth cryopegs are interesting to astrobiologists?

    NASA Astrophysics Data System (ADS)

    Rivkina, Elizaveta; Spirina, Elena; Demidov, Nikita; Shcherbakova, Viktoria; Yoshikawa, Kenji; Gilichinsky, David

    The lenses of perennially overcooled water brines (cryopegs) derived from ancient marine sedi-ments and sandwiched within permafrost 10 to 120,000 years ago after the placeArctic Ocean regressions. In these lenses freezing is prevented by freezing-point depression due to the dis-solved salt and they remain liquid at the in situ temperatures down to -11oC as a result of their high sodium-chloride concentration (3-5 mol/l). Cryopegs make up the only habitat on Earth that is characterized by permanently subzero temperatures, high salinity, and isolation from the influence of external factors during geological time. During last years the biodiversity of cryopeg's indigenous microbial community along the Arctic coast of placePlaceNamePolar PlaceTypeOcean (Kara and placeEast Siberian Sea, placePla-ceNameJamal PlaceTypePeninsula and placePlaceTypeCape PlaceNameBarrow) were studied and the new species representing the different genera have been isolated and described. There were found both aerobic and anaerobic microorganisms: Psychrobacters, Sulfate-reducers, Clostridia, etc. The isolated bacteria grew at subzero temperatures, and were also tolerant to salt concentra-tions up to metricconverterProductID3 M3 M NaCl. The microorganisms detected in cryopegs are halophilic and psychrophilic organisms at the same time. The microbial activity detected in cryopegs (14C-labeled glucose consumption) at temperatures as low as metricconverterProductID-15?C-15C-15° C documents the fact that subzero temper-atures themselves do not exclude biochemical reactions. In situ microbial activity and survival of microorganisms in a low-temperature high-salt aquatic environment on a geological time scale indicates the special type of microbial adaptation. From the astrobiological perspective, mineral-enriched brines provide the only opportunity for free water within the Martian subsurface permafrost, formed when Mars became dry and cold. These brines, just as terrestrial cryopegs, may contain

  13. Uptake and trans-membrane transport of petroleum hydrocarbons by microorganisms

    PubMed Central

    Hua, Fei; Wang, Hong Qi

    2014-01-01

    Petroleum-based products are a primary energy source in the industry and daily life. During the exploration, processing, transport and storage of petroleum and petroleum products, water or soil pollution occurs regularly. Biodegradation of the hydrocarbon pollutants by indigenous microorganisms is one of the primary mechanisms of removal of petroleum compounds from the environment. However, the physical contact between microorganisms and hydrophobic hydrocarbons limits the biodegradation rate. This paper presents an updated review of the petroleum hydrocarbon uptake and transport across the outer membrane of microorganisms with the help of outer membrane proteins. PMID:26740752

  14. MODELING THE FATE OF MICROORGANISMS IN WATER, WASTEWATER, AND SOIL

    EPA Science Inventory

    The natural environment is filled with microorganisms, most of which are natural residents and colonize various ecological niches. These microorganisms either live independently within the environment, or live in association with various host organisms. There also are places and ...

  15. Terrestrial analogs of possible Martian habitats

    NASA Astrophysics Data System (ADS)

    Friedmann, E. I.

    Four environmental factors are responsible for the apparent absence of life on or near the surface of Mars: radiation, reactive oxidants, aridity and low temperature. The three latter factors are also present in terrestrial environments that approximate, although do not reach, the intensity of Martian conditions. Nor do they occur together in the same environments, yet they allow studying the response of microorganisms separately to each of these environmental factors. 1. Most laboratory experiments on radiation "resistance" deal with the ability of microorganisms to repair (in a radiation-free environment) previously suffered radiation damage. Little is known on the response to continuous high radiation environments. 2. Mars-like soils with reactive oxidants have recently (2004) been discovered in the most arid regions of the Atacama Desert. 3. Extreme aridity (absence of liquid water) has been studied in the Negev, Gobi and other deserts. In these habitats the sole primary producer worldwide is the cyanobacterium Chroococcidiopsis. This organism tolerates total desiccation for decades and upon wetting it resumes full activity within a few minutes. However, it utilizes only liquid water, not water vapor from the atmosphere. Both heterotrophic and photosynthetic bacteria (primary producers) reach their limit of existence in the extreme arid core of the Atacama Desert, possibly the driest place on Earth. 4. Extreme cold, per se, is not harmful to life: organisms in frozen state can be preserved for very long times. On Earth, "psychrophiles" (cold adapted microorganisms) live in oceans and lakes, in thermally stable aquatic environments with temperature optima around +5o C, and are unable to tolerate temperatures above +15o C. Extreme cold conditions occur only in non-aquatic (terrestrial) environments. Here the limiting factor is not low temperature, but rather the lack of high temperature necessary to drive metabolic processes. Microorganisms of these habitats are

  16. Human recombinant lysosomal enzymes produced in microorganisms.

    PubMed

    Espejo-Mojica, Ángela J; Alméciga-Díaz, Carlos J; Rodríguez, Alexander; Mosquera, Ángela; Díaz, Dennis; Beltrán, Laura; Díaz, Sergio; Pimentel, Natalia; Moreno, Jefferson; Sánchez, Jhonnathan; Sánchez, Oscar F; Córdoba, Henry; Poutou-Piñales, Raúl A; Barrera, Luis A

    2015-01-01

    Lysosomal storage diseases (LSDs) are caused by accumulation of partially degraded substrates within the lysosome, as a result of a function loss of a lysosomal protein. Recombinant lysosomal proteins are usually produced in mammalian cells, based on their capacity to carry out post-translational modifications similar to those observed in human native proteins. However, during the last years, a growing number of studies have shown the possibility to produce active forms of lysosomal proteins in other expression systems, such as plants and microorganisms. In this paper, we review the production and characterization of human lysosomal proteins, deficient in several LSDs, which have been produced in microorganisms. For this purpose, Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris, Yarrowia lipolytica, and Ogataea minuta have been used as expression systems. The recombinant lysosomal proteins expressed in these hosts have shown similar substrate specificities, and temperature and pH stability profiles to those produced in mammalian cells. In addition, pre-clinical results have shown that recombinant lysosomal enzymes produced in microorganisms can be taken-up by cells and reduce the substrate accumulated within the lysosome. Recently, metabolic engineering in yeasts has allowed the production of lysosomal enzymes with tailored N-glycosylations, while progresses in E. coli N-glycosylations offer a potential platform to improve the production of these recombinant lysosomal enzymes. In summary, microorganisms represent convenient platform for the production of recombinant lysosomal proteins for biochemical and physicochemical characterization, as well as for the development of ERT for LSD. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Differentiation and detection of microorganisms using Fourier transform infrared photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Irudayaraj, Joseph; Yang, Hong; Sakhamuri, Sivakesava

    2002-03-01

    Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) was used to differentiate and identify microorganisms on a food (apple) surface. Microorganisms considered include bacteria (Lactobacillus casei, Bacillus cereus, and Escherichia coli), yeast (Saccharomyces cerevisiae), and fungi (Aspergillus niger and Fusarium verticilliodes). Discriminant analysis was used to differentiate apples contaminated with the different microorganisms from uncontaminated apple. Mahalanobis distances were calculated to quantify the differences. The higher the value of the Mahalanobis distance metric between different microorganisms, the greater is their difference. Additionally, pathogenic (O157:H7) E. coli was successfully differentiated from non-pathogenic strains. Results demonstrate that FTIR-PAS spectroscopy has the potential to become a non-destructive analysis tool in food safety related research.

  18. Transcriptome-wide analysis of DEAD-box RNA helicase gene family in an Antarctic psychrophilic alga Chlamydomonas sp. ICE-L.

    PubMed

    Liu, Chenlin; Huang, Xiaohang

    2015-09-01

    DEAD-box RNA helicase family proteins have been identified in almost all living organisms. Some of them play a crucial role in adaptation to environmental changes and stress response, especially in the low-temperature acclimation in different kinds of organisms. Compared with the full swing study in plants and bacteria, the characters and functions of DEAD-box family proteins had not been surveyed in algae. To identify genes critical for freezing acclimation in algae, we screened DEAD-box RNA helicase genes from the transcriptome sequences of a psychrophilic microalga Chlamydomonas sp. ICE-L which was isolated from Antarctic sea ice. Totally 39 DEAD-box RNA helicase genes had been identified. Most of the DEAD-box RNA helicase have 1:1 homologous relationships in Chlamydomonas reinhardtii and Chlamydomonas sp. ICE-L with several exceptions. The homologous proteins in ICE-L to the helicases critical for cold or freezing tolerance in Arabidopsis thaliana had been identified based on phylogenetic comparison studies. The response of these helicase genes is not always identical in the Chlamydomonas sp. ICE-L and Arabidopsis under the same low-temperature treatment. The expression of several DEAD-box RNA helicase genes including CiRH5, CiRH25, CiRH28, and CiRH55 were significantly up-regulated under freezing treatment of ICE-L and their function in freezing acclimation of ICE-L deserved further investigation.

  19. Solubilization of Australian lignites by microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catcheside, D.E.A.; Mallett, K.J.; Cox, R.E.

    1988-01-01

    Australia has substantial lignite deposits, particularly in the Latrobe Valley in Victoria where 4.10/sup 10/ tons are accessible with available technologies. The authors have investigated the susceptibility of these coal to solubilization by microorganisms, including species additional to those already identified as active on North American lignites. The data presented here show that acid oxidized lignites from the Latrobe Valley are solubilized by each of seven species of microorganisms previously found to be active on Leonardite and oxidized North American lignites. These are the wood rot fungi: Trametes versicolor, Poria placenta and Phanerochaete chrysosporium, the lignin degrading prokaryote Streptomyces viridosporusmore » and three fungi isolated from lignite in Mississippi: Candida ML-13, Cunninghamelia YML-1 and Penicillium waksmanii.« less

  20. Calculation of the radiative properties of photosynthetic microorganisms

    NASA Astrophysics Data System (ADS)

    Dauchet, Jérémi; Blanco, Stéphane; Cornet, Jean-François; Fournier, Richard

    2015-08-01

    A generic methodological chain for the predictive calculation of the light-scattering and absorption properties of photosynthetic microorganisms within the visible spectrum is presented here. This methodology has been developed in order to provide the radiative properties needed for the analysis of radiative transfer within photobioreactor processes, with a view to enable their optimization for large-scale sustainable production of chemicals for energy and chemistry. It gathers an electromagnetic model of light-particle interaction along with detailed and validated protocols for the determination of input parameters: morphological and structural characteristics of the studied microorganisms as well as their photosynthetic-pigment content. The microorganisms are described as homogeneous equivalent-particles whose shape and size distribution is characterized by image analysis. The imaginary part of their refractive index is obtained thanks to a new and quite extended database of the in vivo absorption spectra of photosynthetic pigments (that is made available to the reader). The real part of the refractive index is then calculated by using the singly subtractive Kramers-Krönig approximation, for which the anchor point is determined with the Bruggeman mixing rule, based on the volume fraction of the microorganism internal-structures and their refractive indices (extracted from a database). Afterwards, the radiative properties are estimated using the Schiff approximation for spheroidal or cylindrical particles, as a first step toward the description of the complexity and diversity of the shapes encountered within the microbial world. Finally, these predictive results are confronted to experimental normal-hemispherical transmittance spectra for validation. This entire procedure is implemented for Rhodospirillum rubrum, Arthrospira platensis and Chlamydomonas reinhardtii, each representative of the main three kinds of photosynthetic microorganisms, i.e. respectively

  1. Presidential Green Chemistry Challenge: 2010 Academic Award - James C. Liao and Easel Biotechnologies, LLC

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2010 award winner, Dr. James C. Liao, genetically engineered microorganisms to make higher alcohols (with 3 to 8 carbon atoms) from glucose or directly from carbon dioxide (CO2).

  2. Microorganisms having enhanced tolerance to inhibitors and stress

    DOEpatents

    Brown, Steven D.; Yang, Shihui

    2014-07-29

    The present invention provides genetically modified strains of microorganisms that display enhanced tolerance to stress and/or inhibitors such as sodium acetate and vanillin. The enhanced tolerance can be achieved by increasing the expression of a protein of the Sm-like superfamily such as a bacterial Hfq protein and a fungal Sm or Lsm protein. Further, the present invention provides methods of producing alcohol from biomass materials by using the genetically modified microorganisms of the present invention.

  3. Sequence determination and analysis of three plasmids of Pseudomonas sp. GLE121, a psychrophile isolated from surface ice of Ecology Glacier (Antarctica).

    PubMed

    Dziewit, Lukasz; Grzesiak, Jakub; Ciok, Anna; Nieckarz, Marta; Zdanowski, Marek K; Bartosik, Dariusz

    2013-09-01

    Pseudomonas sp. GLE121 (a psychrophilic Antarctic strain) carries three plasmids: pGLE121P1 (6899 bp), pGLE121P2 (8330 bp) and pGLE121P3 (39,583 bp). Plasmids pGLE121P1 and pGLE121P2 show significant sequence similarity to members of the IncP-9 and IncP-7 incompatibility groups, respectively, while the largest replicon, pGLE121P3, is highly related to plasmid pNCPPB880-40 of Pseudomonas syringae pathovar tomato NCPPB880. All three plasmids have a narrow host range, limited to members of the genus Pseudomonas. Plasmid pGLE121P3 encodes a conjugal transfer system, while pGLE121P1 carries only a putative MOB module, conserved in many mobilizable plasmids. Plasmid pGLE121P3 contains an additional load of genetic information, including a pair of genes with homology to the rulAB operon, responsible for ultraviolet radiation (UVR) tolerance. Given the increasing UV exposure in Antarctic regions, the expression of these genes is likely to be an important adaptive response. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. The novel extremely psychrophilic luciferase from Metridia longa: Properties of a high-purity protein produced in insect cells.

    PubMed

    Larionova, Marina D; Markova, Svetlana V; Vysotski, Eugene S

    2017-01-29

    The bright bioluminescence of copepod Metridia longa is conditioned by a small secreted coelenterazine-dependent luciferase (MLuc). To date, three isoforms of MLuc differing in length, sequences, and some properties were cloned and successfully applied as high sensitive bioluminescent reporters. In this work, we report cloning of a novel group of genes from M. longa encoding extremely psychrophilic isoforms of MLuc (MLuc2-type). The novel isoforms share only ∼54-64% of protein sequence identity with the previously cloned isoforms and, consequently, are the product of a separate group of paralogous genes. The MLuc2 isoform with consensus sequence was produced as a natively folded protein using baculovirus/insect cell expression system, purified, and characterized. The MLuc2 displays a very high bioluminescent activity and high thermostability similar to those of the previously characterized M. longa luciferase isoform MLuc7. However, in contrast to MLuc7 revealing the highest activity at 12-17 °C and 0.5 M NaCl, the bioluminescence optima of MLuc2 isoforms are at ∼5 °C and 1 M NaCl. The MLuc2 adaptation to cold is also accompanied by decrease of melting temperature and affinity to substrate suggesting a more conformational flexibility of a protein structure. The luciferase isoforms with different temperature optima may provide adaptability of the M. longa bioluminescence to the changes of water temperature during diurnal vertical migrations. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Phosphate Biomineralization of Cambrian Microorganisms

    NASA Technical Reports Server (NTRS)

    McKay, David S.; Rozanov, Alexei Yu.; Hoover, Richard B.; Westall, Frances

    1998-01-01

    As part of a long term study of biological markers (biomarkers), we are documenting a variety of features which reflect the previous presence of living organisms. As we study meteorites and samples returned from Mars, our main clue to recognizing possible microbial material may be the presence of biomarkers rather than the organisms themselves. One class of biomarkers consists of biominerals which have either been precipitated directly by microorganisms, or whose precipitation has been influenced by the organisms. Such microbe-mediated mineral formation may include important clues to the size, shape, and environment of the microorganisms. The process of fossilization or mineralization can cause major changes in morphologies and textures of the original organisms. The study of fossilized terrestrial organisms can help provide insight into the interpretation of mineral biomarkers. This paper describes the results of investigations of microfossils in Cambrian phosphate-rich rocks (phosphorites) that were found in Khubsugul, Northern Mongolia.

  6. Identification of beer spoilage microorganisms using the MALDI Biotyper platform.

    PubMed

    Turvey, Michelle Elizabeth; Weiland, Florian; Meneses, Jon; Sterenberg, Nick; Hoffmann, Peter

    2016-03-01

    Beer spoilage microorganisms present a major risk for the brewing industry and can lead to cost-intensive recall of contaminated products and damage to brand reputation. The applicability of molecular profiling using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) in combination with Biotyper software was investigated for the identification of beer spoilage microorganisms from routine brewery quality control samples. Reference mass spectrum profiles for three of the most common bacterial beer spoilage microorganisms (Lactobacillus lindneri, Lactobacillus brevis and Pediococcus damnosus), four commercially available brewing yeast strains (top- and bottom-fermenting) and Dekkera/Brettanomyces bruxellensis wild yeast were established, incorporated into the Biotyper reference library and validated by successful identification after inoculation into beer. Each bacterial species could be accurately identified and distinguished from one another and from over 5600 other microorganisms present in the Biotyper database. In addition, wild yeast contaminations were rapidly detected and distinguished from top- and bottom-fermenting brewing strains. The applicability and integration of mass spectrometry profiling using the Biotyper platform into existing brewery quality assurance practices within industry were assessed by analysing routine microbiology control samples from a local brewery, where contaminating microorganisms could be reliably identified. Brewery-isolated microorganisms not present in the Biotyper database were further analysed for identification using LC-MS/MS methods. This renders the Biotyper platform a promising candidate for biological quality control testing within the brewing industry as a more rapid, high-throughput and cost-effective technology that can be tailored for the detection of brewery-specific spoilage organisms from the local environment.

  7. [Survival of probiotic microorganisms in the conditions in vitro imitating the process of human digestion].

    PubMed

    Darmov, I V; Chicherin, I Iu; Pogorel'skiĭ, I P; Lundovskikh, I A

    2011-01-01

    Assessment of survival bifidobacteria and lactobacteria under the conditions in vitro, simulating digestion in human stomach and intestine, and study of survival probiotic and indigenous microorganisms in co-cultivation on solid nutrient medium. Probiotic microorganisms from commercial preparations Bifidobacterin and Lactobacterin, clinical isolates lactobacillus (Lactobacillus acidophilus No 1, L. brevis No 2) were used in experiments. Survival study of probiotic microorganisms was performed on a model in vitro, simulating the process of digestion in the human body. Assessment of the relationship of probiotic microorganisms and indigenous microorganisms was carried out in co-cultivation in vitro on solid nutrient medium. A significant reduction in the number of viable probiotic microorganisms during their incubation in model media was set as well as suppression of probiotic microorganisms growth by cultures of a clinical strains of lactobacillus, corresponding to biocompatibility by type "host against probiotic". While choosing probiotics in the treatment of dysbacterioses the character of relationship between probiotic microorganisms and indigenous microorganisms of a patient is recommended to be preliminarily tested. Also microorganisms of own microflora should be stimulated using modern prebiotics.

  8. Gut Microorganisms Found Necessary for Successful Cancer Therapy | Poster

    Cancer.gov

    By Nancy Parrish, Staff Writer Humans play host to trillions of microorganisms that help our bodies perform basic functions, like digestion, growth, and fighting disease. In fact, bacterial cells outnumber the human cells in our bodies by 10 to 1.1 The tens of trillions of microorganisms thriving in our intestines are known as gut microbiota, and those that are not harmful to

  9. Alkalizing Reactions Streamline Cellular Metabolism in Acidogenic Microorganisms

    PubMed Central

    Arioli, Stefania; Ragg, Enzio; Scaglioni, Leonardo; Fessas, Dimitrios; Signorelli, Marco; Karp, Matti; Daffonchio, Daniele; De Noni, Ivano; Mulas, Laura; Oggioni, Marco; Guglielmetti, Simone; Mora, Diego

    2010-01-01

    An understanding of the integrated relationships among the principal cellular functions that govern the bioenergetic reactions of an organism is necessary to determine how cells remain viable and optimise their fitness in the environment. Urease is a complex enzyme that catalyzes the hydrolysis of urea to ammonia and carbonic acid. While the induction of urease activity by several microorganisms has been predominantly considered a stress-response that is initiated to generate a nitrogen source in response to a low environmental pH, here we demonstrate a new role of urease in the optimisation of cellular bioenergetics. We show that urea hydrolysis increases the catabolic efficiency of Streptococcus thermophilus, a lactic acid bacterium that is widely used in the industrial manufacture of dairy products. By modulating the intracellular pH and thereby increasing the activity of β-galactosidase, glycolytic enzymes and lactate dehydrogenase, urease increases the overall change in enthalpy generated by the bioenergetic reactions. A cooperative altruistic behaviour of urease-positive microorganisms on the urease-negative microorganisms within the same environment was also observed. The physiological role of a single enzymatic activity demonstrates a novel and unexpected view of the non-transcriptional regulatory mechanisms that govern the bioenergetics of a bacterial cell, highlighting a new role for cytosol-alkalizing biochemical pathways in acidogenic microorganisms. PMID:21152088

  10. Anti-Candida and anti-Cryptococcus antifungal produced by marine microorganisms.

    PubMed

    El Amraoui, B; El Amraoui, M; Cohen, N; Fassouane, A

    2014-12-01

    In order to search for antifungal from biological origin, we performed a screening of marine microorganisms isolated from seawater, seaweed, sediment and marine invertebrates collected from different coastal areas of the Moroccan Atlantic Ocean. The antifungal activities of these isolates were investigated against the pathogenic yeasts involved in medical mycology. Whole cultures of 34 marine microorganisms were screened for antifungal activities using the method of agar diffusion against four yeasts. The results showed that among the 34 isolates studied, 13 (38%) strains have antifungal activity against at least one out of four yeast species, 11 isolates have anti-Candida albicans CIP 48.72 activity, 12 isolates have anti-C. albicans CIP 884.65 activity, 13 isolates have anti-Cryptococcus neoformans activity and only 6 isolates are actives against Candida tropicalis R2 resistant to nystatin and amphotericin B. Nine isolates showed strong fungicidal activity. Fourteen microorganisms were identified and assigned to the genera Acinetobacter, Aeromonas, Alcaligenes, Bacillus, Chromobacterium, Enterococcus, Pantoea, and Pseudomonas. Due to a competitive role for space and nutrient, the marine microorganisms could produce more antimicrobials; therefore these marine microorganisms were expected to be potential resources of natural products such as those we research: anti-Candida and anti-Cryptococcus fungicides. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. [Microorganisms responsible of nosocomial infections in the Mexican Social Security Institute].

    PubMed

    Arias-Flores, Rafael; Rosado-Quiab, Ulises; Vargas-Valerio, Alfredo; Grajales-Muñiz, Concepción

    2016-01-01

    The prevention and control of the nosocomial infections involve the knowledge of the most frequent type of microorganism isolated. In Mexico there are not national statistics to identify the main microorganisms that cause a nosocomial infection. It was conducted an analysis of all the culture results of the nosocomial infections reported by the Sistema de Vigilancia Epidemiológica Hospitalaria (Epidemiological Surveillance System) of the Instituto Mexicano del Seguro Social during the year 2013. The most frequent and relevant microorganisms were reported. 48 377 results from cultures of nosocomial infections were studied. Of these 13 207 (27.3 %) were from 25 high specialty medical units and 35 170 (72.6 %) from 197 second level medical units. The most frequently isolated microorganism was Escherichia coli with 8192 results (16.9 %), followed by the group of Coagulase-negative Staphylococci with 6771 cultures (14 %) and Pseudomonas aeruginosa with 5275 results (19.9 %). Slight differences between levels of care and specialized hospitals were observed. This study identifies the Escherichia coli, the group of Coagulase-negative Staphylococci and the Pseudomonas aeruginosa as the main microorganisms to prevent.

  12. Marine microorganisms as potential biofactories for synthesis of metallic nanoparticles.

    PubMed

    Manivasagan, Panchanathan; Nam, Seung Yun; Oh, Junghwan

    2016-11-01

    The use of marine microorganisms as potential biofactories for green synthesis of metallic nanoparticles is a relatively new field of research with considerable prospects. This method is eco-friendly, time saving, and inexpensive and can be easily scaled up for large-scale synthesis. The increasing need to develop simple, nontoxic, clean, and environmentally safe production methods for nanoparticles and to decrease environmental impact, minimize waste, and increase energy productivity has become important in this field. Marine microorganisms are tiny organisms that live in marine ecosystems and account for >98% of biomass of the world's ocean. Marine microorganisms synthesize metallic nanoparticles either intracellularly or extracellularly. Marine microbially-produced metallic nanoparticles have received considerable attention in recent years because of their expected impact on various applications such as medicine, energy, electronic, and space industries. The present review discusses marine microorganisms as potential biofactories for the green synthesis of metallic nanoparticles and their potential applications.

  13. Adaptive prediction of environmental changes by microorganisms.

    PubMed

    Mitchell, Amir; Romano, Gal H; Groisman, Bella; Yona, Avihu; Dekel, Erez; Kupiec, Martin; Dahan, Orna; Pilpel, Yitzhak

    2009-07-09

    Natural habitats of some microorganisms may fluctuate erratically, whereas others, which are more predictable, offer the opportunity to prepare in advance for the next environmental change. In analogy to classical Pavlovian conditioning, microorganisms may have evolved to anticipate environmental stimuli by adapting to their temporal order of appearance. Here we present evidence for environmental change anticipation in two model microorganisms, Escherichia coli and Saccharomyces cerevisiae. We show that anticipation is an adaptive trait, because pre-exposure to the stimulus that typically appears early in the ecology improves the organism's fitness when encountered with a second stimulus. Additionally, we observe loss of the conditioned response in E. coli strains that were repeatedly exposed in a laboratory evolution experiment only to the first stimulus. Focusing on the molecular level reveals that the natural temporal order of stimuli is embedded in the wiring of the regulatory network-early stimuli pre-induce genes that would be needed for later ones, yet later stimuli only induce genes needed to cope with them. Our work indicates that environmental anticipation is an adaptive trait that was repeatedly selected for during evolution and thus may be ubiquitous in biology.

  14. Plant development in the absence of epiphytic microorganisms

    NASA Astrophysics Data System (ADS)

    Kutschera, U.; Koopmann, V.; Grotha, R.

    2002-05-01

    Microorganisms (bacteria, fungi) are common residents of the roots, stems and leaves of higher plants. In order to explore the dependency of plant development on the presence of epiphytic microorganisms, the achenes (seeds) of sunflower (Helianthus annuus L.) were sterilized and germinated under aseptic conditions. The sterility of the seedlings was determined with the agar impression method. In seedlings from non-sterile seeds (control) that were likewise raised in a germ-free environment, all plant organs investigated (stem, cotyledons and primary leaves) were contaminated with bacteria. Hypocotyl elongation was not affected by epiphytic microorganisms. However, the growth rates of the cotyledons and primary leaves were higher in sterile seedlings compared with the control. The implications of this differential inhibition of organ development by epiphytic bacteria that are transmitted via the outer surface of the seed coat are discussed. We conclude that epiphytes in the above-ground phytosphere are not necessary for the development of the sunflower seedling.

  15. Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences.

    PubMed

    Hanada, Yuichi; Nishimiya, Yoshiyuki; Miura, Ai; Tsuda, Sakae; Kondo, Hidemasa

    2014-08-01

    Antifreeze proteins (AFPs) are structurally diverse macromolecules that bind to ice crystals and inhibit their growth to protect the organism from injuries caused by freezing. An AFP identified from the Antarctic bacterium Colwellia sp. strain SLW05 (ColAFP) is homologous to AFPs from a wide variety of psychrophilic microorganisms. To understand the antifreeze function of ColAFP, we have characterized its antifreeze activity and determined the crystal structure of this protein. The recombinant ColAFP exhibited thermal hysteresis activity of approximately 4 °C at a concentration of 0.14 mm, and induced rapid growth of ice crystals in the hexagonal direction. Fluorescence-based ice plane affinity analysis showed that ColAFP binds to multiple planes of ice, including the basal plane. These observations show that ColAFP is a hyperactive AFP. The crystal structure of ColAFP determined at 1.6 Å resolution revealed an irregular β-helical structure, similar to known homologs. Mutational and molecular docking studies showed that ColAFP binds to ice through a compound ice-binding site (IBS) located at a flat surface of the β-helix and the adjoining loop region. The IBS of ColAFP lacks the repetitive sequences that are characteristic of hyperactive AFPs. These results suggest that ColAFP exerts antifreeze activity through a compound IBS that differs from the characteristic IBSs shared by other hyperactive AFPs. This study demonstrates a novel method for protection from freezing by AFPs in psychrophilic microorganisms. Structural data for ColAFP have been submitted to the Protein Data Bank (PDB) under accession number 3WP9. © 2014 FEBS.

  16. Modelling the Ozone-Based Treatments for Inactivation of Microorganisms

    PubMed Central

    Brodowska, Agnieszka Joanna; Nowak, Agnieszka; Kondratiuk-Janyska, Alina; Piątkowski, Marcin; Śmigielski, Krzysztof

    2017-01-01

    The paper presents the development of a model for ozone treatment in a dynamic bed of different microorganisms (Bacillus subtilis, B. cereus, B. pumilus, Escherichia coli, Pseudomonas fluorescens, Aspergillus niger, Eupenicillium cinnamopurpureum) on a heterogeneous matrix (juniper berries, cardamom seeds) initially treated with numerous ozone doses during various contact times was studied. Taking into account various microorganism susceptibility to ozone, it was of great importance to develop a sufficiently effective ozone dose to preserve food products using different strains based on the microbial model. For this purpose, we have chosen the Weibull model to describe the survival curves of different microorganisms. Based on the results of microorganism survival modelling after ozone treatment and considering the least susceptible strains to ozone, we selected the critical ones. Among tested strains, those from genus Bacillus were recognized as the most critical strains. In particular, B. subtilis and B. pumilus possessed the highest resistance to ozone treatment because the time needed to achieve the lowest level of its survival was the longest (up to 17.04 min and 16.89 min for B. pumilus reduction on juniper berry and cardamom seed matrix, respectively). Ozone treatment allow inactivate microorganisms to achieving lower survival rates by ozone dose (20.0 g O3/m3 O2, with a flow rate of 0.4 L/min) and contact time (up to 20 min). The results demonstrated that a linear correlation between parameters p and k in Weibull distribution, providing an opportunity to calculate a fitted equation of the process. PMID:28991199

  17. Modelling the Ozone-Based Treatments for Inactivation of Microorganisms.

    PubMed

    Brodowska, Agnieszka Joanna; Nowak, Agnieszka; Kondratiuk-Janyska, Alina; Piątkowski, Marcin; Śmigielski, Krzysztof

    2017-10-09

    The paper presents the development of a model for ozone treatment in a dynamic bed of different microorganisms ( Bacillus subtilis , B. cereus , B. pumilus , Escherichia coli , Pseudomonas fluorescens , Aspergillus niger , Eupenicillium cinnamopurpureum ) on a heterogeneous matrix (juniper berries, cardamom seeds) initially treated with numerous ozone doses during various contact times was studied. Taking into account various microorganism susceptibility to ozone, it was of great importance to develop a sufficiently effective ozone dose to preserve food products using different strains based on the microbial model. For this purpose, we have chosen the Weibull model to describe the survival curves of different microorganisms. Based on the results of microorganism survival modelling after ozone treatment and considering the least susceptible strains to ozone, we selected the critical ones. Among tested strains, those from genus Bacillus were recognized as the most critical strains. In particular, B. subtilis and B. pumilus possessed the highest resistance to ozone treatment because the time needed to achieve the lowest level of its survival was the longest (up to 17.04 min and 16.89 min for B. pumilus reduction on juniper berry and cardamom seed matrix, respectively). Ozone treatment allow inactivate microorganisms to achieving lower survival rates by ozone dose (20.0 g O₃/m³ O₂, with a flow rate of 0.4 L/min) and contact time (up to 20 min). The results demonstrated that a linear correlation between parameters p and k in Weibull distribution, providing an opportunity to calculate a fitted equation of the process.

  18. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals.

    PubMed

    Zeldes, Benjamin M; Keller, Matthew W; Loder, Andrew J; Straub, Christopher T; Adams, Michael W W; Kelly, Robert M

    2015-01-01

    Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus, and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye toward potential technological advantages for high

  19. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals

    PubMed Central

    Zeldes, Benjamin M.; Keller, Matthew W.; Loder, Andrew J.; Straub, Christopher T.; Adams, Michael W. W.; Kelly, Robert M.

    2015-01-01

    Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus, and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye toward potential technological advantages for high

  20. Role of microorganisms for cycling of atmospheric constituents, emphasizing the greenhouse gas methane (Invited)

    NASA Astrophysics Data System (ADS)

    Conrad, R.

    2013-12-01

    Microorganisms have contributed significantly to the formation of the atmosphere and the habitability of Earth. Microbial methanogenesis probably helped overcoming the faint sun problem on young Earth. Later on, cyanobacterial photosynthesis produced oxygen and thus restricted the life zone of methanogenic microbial communities, which nowadays contribute only about 1% to total carbon cycle. Nevertheless, methanogenesis still dominates the budget of atmospheric methane and contributes significantly to the greenhouse effect. There are numerous habitats, which exchange methane with the atmosphere, and even more in which methane is intensively cycled albeit little emitted. Methane can be a byproduct of chemical reactions in plant leaves, or of aerobic methyl phosphonate consumption in ocean water. Most commonly, however, methane is a stoichiometric catabolic product in the degradation of organic matter by anaerobic microorganisms. The degradation is achieved by a complex microbial community consisting of various species of hydrolytic and fermentative Bacteria that produce hydrogen, carbon dioxide and acetate as major end products, and of methanogenic Archaea that eventually convert these compounds to methane and carbon dioxide. The composition of such methanogenic microbial communities, the rates and paths of methane formation, and the isotopic composition of the produced methane all exhibit quite some variability across the different habitats in which methane is produced from organic matter decomposition, such as flooded soils, lake sediments, peatlands, animal gut systems. The structure of the microbial communities often strongly affects their function. It is a challenging task to understand the environmental and biochemical basis of the interactions of abiotic factors and microorganisms shaping the structure and function of the microbial communities in the different methanogenic habitats.

  1. 21 CFR 500.35 - Animal feeds contaminated with Salmonella microorganisms.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Animal feeds contaminated with Salmonella microorganisms. 500.35 Section 500.35 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Decisions § 500.35 Animal feeds contaminated with Salmonella microorganisms. (a) Investigations by the Food...

  2. Exopolysaccharides from extremophiles: from fundamentals to biotechnology.

    PubMed

    Nicolaus, Barbara; Kambourova, Margarita; Oner, Ebru Toksoy

    2010-09-01

    Exopolysaccharides (EPSs) make up a substantial component of the extracellular polymers surrounding most microbial cells in extreme environments like Antarctic ecosystems, saline lakes, geothermal springs or deep sea hydrothermal vents. The extremophiles have developed various adaptations, enabling them to compensate for the deleterious effects of extreme conditions, e.g. high temperatures, salt, low pH or temperature, high radiation. Among these adaptation strategies, EPS biosynthesis is one of the most common protective mechanisms. The unusual metabolic pathways revealed in some extremophiles raised interest in extremophilic microorganisms as potential producers of EPSs with novel and unusual characteristics and functional activities under extreme conditions. Even though the accumulated knowledge on the structural and theological properties of EPSs from extremophiles is still very limited, it reveals a variety in properties, which may not be found in more traditional polymers. Both extremophilic microorganisms and their EPSs suggest several biotechnological advantages, like short fermentation processes for thermophiles and easily formed and stable emulsions of EPSs from psychrophiles. Unlike mesophilic producers of EPSs, many of them being pathogenic, extremophilic microorganisms provide non-pathogenic products, appropriate for applications in the food, pharmaceutical and cosmetics industries as emulsifiers, stabilizers, gel agents, coagulants, thickeners and suspending agents. The commercial value of EPSs synthesized by microorganisms from extreme habitats has been established recently.

  3. Microorganisms present on peripheral intravenous needleless connectors in the clinical environment.

    PubMed

    Slater, Karen; Cooke, Marie; Whitby, Michael; Fullerton, Fiona; Douglas, Joel; Hay, Jennine; Rickard, Claire

    2017-08-01

    The aim of this study was to quantify culturable microorganisms on needleless connectors (NCs) attached to peripheral intravenous catheters in hospitalized adult medical patients. Half (50%) of 40 NCs were contaminated with microorganisms commonly found on the skin or mouth. Staphylococcus capitis and Staphylococcus epidermidis were most commonly isolated. Emergency department insertion and higher patient dependency were statistically associated with positive NC microorganism growth. These results reaffirm the need for NC decontamination prior to access. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  4. Identification and Characterization of Extremophile Microorganisms with Significance to Astrobiology

    NASA Technical Reports Server (NTRS)

    Bej, Asim K.

    2003-01-01

    It is now well recognized that microorganisms thrive in extreme ecological conditions such as geothermal vents, polar region, acid and alkaline lakes, and the cold pressurized depth of the ocean floor of this planet. Morphological, physiological, biochemical and genetic adaptations to extreme environments by these extremophile microorganisms have generated immense interest amongst astrobiologists who increasingly believe in the existence of extraterrestrial life. The evidence collected by NASA's space probe Galileo suggested the presence of liquid water and volcanic activity on Mars and Jupiter's satellite Europa. Volcanic activity provides some of the heat necessary to keep the water on Europa from freezing that could provide important dissolved chemicals needed by living organisms. The possibility of the existence of hypersaline alkaline lakes and evaporites confined within closed volcanic basins and impact craters on Mars, and a layer of liquid water under the ice on Europa provide sufficient 'raison d'etre' to study microorganisms in similar extreme environments on Earth, which could provide us with a model that would help establish the existence of extraterrestrial life on other planetary bodies. The objectives of the summer research project were as follows: (1) application of molecular approaches to help establish new species of extremophile microorganisms isolated from a hypersaline alkaline lake; and (2) identification of a major cold-shock gene (cspA) homolog from a psychrotolerant microorganism, PmagG1.

  5. Final technical report for project titled Quantitative Characterization of Cell Aggregation/Adhesion as Predictor for Distribution and Transport of Microorganisms in Subsurface Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, April Z.; Wan, Kai-tak

    -surface interactions is essential for the field. To tackle this, we have developed a number of new Bio-nanomechanical techniques, including reflection interference contrast microscopy (RICM) and bio-AFM (Atomic Force Microscopy), for cell adhesion-detachment measurement of the long-range surface interactions, in combination with mathematical modeling, which would allow us to characterize the mechanical behavior from single cell to multi-cell aggregate, critical thresholds for large scale coaggregation and transportation of cells and aggregates in the presence of long range inter-surface forces etc. Although some technical and mathematical challenges remain, the preliminary results promise great breakthrough potential. In this study, we investigated the cellular surface characteristics of representative bio-remediating microorganisms relevant to DOE IFRC (Integrated Field-Scale Subsurface Research Challenges) sites and their transport behaviors in porous media, aiming to draw a groundbreaking correlation between the micro-scale genetic and biological origin-based cell surface properties, the consequent mechanical adhesion and aggregation behaviors, and the macro-scale microbial mobility and retention in porous media, which are unavailable in the literature. The long-term goal is to significantly improve the mechanistic and quantitative understanding of microbial mobility, sorption, and transport within reactive transport models as needed to manipulate subsurface contaminant fate and transport predictions.« less

  6. Uric acid in plants and microorganisms: Biological applications and genetics - A review.

    PubMed

    Hafez, Rehab M; Abdel-Rahman, Tahany M; Naguib, Rasha M

    2017-09-01

    Uric acid increased accumulation and/or reduced excretion in human bodies is closely related to pathogenesis of gout and hyperuricemia. It is highly affected by the high intake of food rich in purine. Uric acid is present in both higher plants and microorganisms with species dependent concentration. Urate-degrading enzymes are found both in plants and microorganisms but the mechanisms by which plant degrade uric acid was found to be different among them. Higher plants produce various metabolites which could inhibit xanthine oxidase and xanthine oxidoreductase, so prohibit the oxidation of hypoxanthine to xanthine then to uric acid in the purine metabolism. However, microorganisms produce group of degrading enzymes uricase, allantoinase, allantoicase and urease, which catalyze the degradation of uric acid to the ammonia. In humans, researchers found that several mutations caused a pseudogenization (silencing) of the uricase gene in ancestral apes which exist as an insoluble crystalloid in peroxisomes. This is in contrast to microorganisms in which uricases are soluble and exist either in cytoplasm or peroxisomes. Moreover, many recombinant uricases with higher activity than the wild type uricases could be induced successfully in many microorganisms. The present review deals with the occurrence of uric acid in plants and other organisms specially microorganisms in addition to the mechanisms by which plant extracts, metabolites and enzymes could reduce uric acid in blood. The genetic and genes encoding for uric acid in plants and microorganisms are also presented.

  7. PARTICLE-ASSOCIATED MICROORGANISMS IN STORMWATER RUNOFF

    EPA Science Inventory

    This research investigated the effects of blending and chemical addition before analysis of the concentration of microorganisms in stormwater runoff to determine whether clumped or particle-associated organisms play a significant role. All organisms, except for Escherichia coli, ...

  8. Stethoscopes as potential intrahospital carriers of pathogenic microorganisms.

    PubMed

    Campos-Murguía, Alejandro; León-Lara, Ximena; Muñoz, Juan M; Macías, Alejandro E; Alvarez, José A

    2014-01-01

    Stethoscopes can take part in the transmission of health care-associated infections. We cultured 112 stethoscopes by direct imprint on blood agar to estimate the prevalence of potentially pathogenic microorganisms. Forty-eight (47%) produced 50 potentially pathogenic microorganisms; from these, 43 (86%) were Staphylococcus aureus, of which 18 (42%) were methicillin-resistant S. aureus. We concluded that stethoscopes should be considered as potential fomites and must be disinfected routinely before and after each patient contact. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  9. Biology Students’ Initial Mental Model about Microorganism

    NASA Astrophysics Data System (ADS)

    Hamdiyati, Y.; Sudargo, F.; Redjeki, S.; Fitriani, A.

    2017-02-01

    The purpose of this study was to identify biology students’ initial mental model about microorganism. This research used descriptive method with 32 sixth semester biology students at Biology Education Departement-Universitas Pendidikan Indonesia as its respondents. Data was taken at the beginning of the 6th semester before respondents endure microbiology course. Instrument used to assess mental model was drawing-writing test in which it contains concepts such as structure of bacteria, archaea, virus, and fungi. Students were asked to describe their imagination about the structure of microorganisms and subsequently asked to explain the structure of microorganisms in writing through open-ended questions. Students’ response was then compared to scientists or experts’ mental models as the targeted mental model. Student mental models were categorized into five levels (levels 1-5), namely “there is no drawing/writing,” “wrong or irrelevant drawing/writing of question,” “partially correct drawing/writing,” “the drawing/writing that has some deficiencies,” and “completely correct and complete drawing/writing.” Results showed that the level of mental models through drawing or writing about the four concepts were varied. The highest level of mental models through drawing (D5) was found in the concept of bacteria, while the highest level of mental models through writing (W3) was found in the concept of bacteria, virus, and fungi. Mental model levels most commonly found in each concept through drawing-writing tests (D/W) were bacteria (D2/W2), Archaea (D1/W1 and D2/W2), virus (D3/W3), and fungi (D2/W1). From these results it is advisable to improve lectures and assessment strategy to enhance or complement students’ mental models about microorganisms.

  10. The injection of microorganisms into an atmospheric pressure rf-driven microplasma

    NASA Astrophysics Data System (ADS)

    Maguire, P. D.; Mahony, C. M. O.; Diver, D.; Mariotti, D.; Bennet, E.; Potts, H.; McDowell, D. A.

    2013-09-01

    The introduction of living organisms, such as bacteria, into atmospheric pressure microplasmas offers a unique means to study certain physical mechanisms in individual microorganisms and also help understand the impact of macroscopic entities and liquid droplets on plasma characteristics. We present the characterization of an RF-APD operating at 13.56 MHz and containing microorganisms in liquid droplets emitted from a nebulizer, with the spray entrained in a gas flow by a gas shroud and passed into the plasma source. We report successful microorganism injection and transmission through the plasma with stable plasma operation of at least one hour. Diagnostics include RF electrical characterization, optical emission spectrometry and electrostatic deflection to investigate microorganism charging. A close-coupled Impedans Octiv VI probe indicates source efficiencies of 10 to 15%. The introduction of the droplets/microorganisms results in increased plasma conductivity and reduced capacitance, due to their impact on electron density and temperature. An electrical model will be presented based on diagnostic data and deflection studies with input from simulations of charged aerosol diffusion and evaporation. Engineering and Physical Sciences Research Council EP/K006088, EP/K006142.

  11. Assessment of airborne microorganism contamination in an industrial area characterized by an open composting facility and a wastewater treatment plant.

    PubMed

    Grisoli, Pietro; Rodolfi, Marinella; Villani, Simona; Grignani, Elena; Cottica, Danilo; Berri, Angelo; Picco, Anna Maria; Dacarro, Cesare

    2009-02-01

    In order to assess the potential exposure hazard to workers and people living in the immediate surroundings of an area characterized by an open composting facility and a wastewater treatment plant, a quantitative and a qualitative analysis of airborne microorganisms were carried out. Air sampling was performed once a week for four consecutive weeks in summer and winter. Six sites were selected as air sampling sites: one was upwind at approximately 40 m from the facilities; the other five were downwind at increasing distances from the facilities, with the furthest at 100 m away. Monitoring permitted us to verify the influence that the composting activities and wastewater treatment had on the bacterial and fungal contamination of the air. The results obtained have been expressed by means of contamination indexes that have already been used in previous works: a major microbiological contamination near the plants was evidenced. Near the facilities, mesophilic bacteria, psychrophilic bacteria and microfungi showed the highest median concentrations, respectively, of 307.5, 327.5 and 257.5 CFU/m(3). Moreover, the season generally influenced the concentration of the bacteria as well as of the fungi; higher in summer than in winter. The contamination index global index of microbial contamination (GIMC/m(3)) showed mean values of 4058.9 in summer and 439.7 in winter and the contamination index-amplification index (AI) showed values of 4.5 and 1.1 in the same seasons, respectively. Controlling the seasonal effect, mesophilic bacteria, Pseudomonas spp. and Enterobacteriaceae showed a significant decline in concentration with respect to upwind air samples and with increasing distance. Both GIMC and AI showed a significant decline with respect to upwind air samples by increasing the distance from facilities after adjusting for the seasonal effect. In conclusion, even if these plants do not represent a potential risk for nearby populations, they may pose a potential health risk

  12. [Method of culturing microorganisms at constant concentrations of the nutrient components].

    PubMed

    Markvichev, N S; Manakov, M N

    1985-01-01

    A method for batch cultivation of microorganisms in a flow medium is described, characterized by slight changes in concentrations of medium components in time and by the absence of products of vital activity of microorganisms in the fermentation medium. The conditions are achieved due to application of a fermentation installation with a microfiltrative membrane that separates the cells of cultivated microorganisms from the culture fluid and due to increasing the flow rate to a value at which the inlet and outlet concentrations of the medium components are almost equal. The cells of cultivated microorganisms under such conditions remain in the fermentation medium volume. The system was called "Ekostat". If the process is performed in "Ekostat" system, a positive deviation from the logarithmic law is observed for the growth rate of the yeast Candida utilis VSB-651 on ethanol cultivation.

  13. The metabolism and biotechnological application of betaine in microorganism.

    PubMed

    Zou, Huibin; Chen, Ningning; Shi, Mengxun; Xian, Mo; Song, Yimin; Liu, Junhong

    2016-05-01

    Glycine betaine (betaine) is widely distributed in nature and can be found in many microorganisms, including bacteria, archaea, and fungi. Due to its particular functions, many microorganisms utilize betaine as a functional chemical and have evolved different metabolic pathways for the biosynthesis and catabolism of betaine. As in animals and plants, the principle role of betaine is to protect microbial cells against drought, osmotic stress, and temperature stress. In addition, the role of betaine in methyl group metabolism has been observed in a variety of microorganisms. Recent studies have shown that betaine supplementation can improve the performance of microbial strains used for the fermentation of lactate, ethanol, lysine, pyruvate, and vitamin B12, during which betaine can act as stress protectant or methyl donor for the biosynthesis of structurally complex compounds. In this review, we summarize the transport, synthesis, catabolism, and functions of betaine in microorganisms and discuss potential engineering strategies that employ betaine as a methyl donor for the biosynthesis of complex secondary metabolites such as a variety of vitamins, coenzymes, and antibiotics. In conclusion, the biocompatibility, C/N ratio, abundance, and comprehensive metabolic information of betaine collectively indicate that this molecule has great potential for broad applications in microbial biotechnology.

  14. Arylamine n-acetyltransferases in eukaryotic microorganisms

    USDA-ARS?s Scientific Manuscript database

    Microorganisms can survive highly toxic environments through numerous xenobiotic metabolizing enzymes, including arylamine N-acetyltransferases (NATs). NAT genes are present in bacteria, archaea, protists and fungi. In lower taxa of fungi, NAT genes are found in chytridiomycetes. In Dikarya, NAT gen...

  15. The fate of crop nutrients during digestion of swine manure in psychrophilic anaerobic sequencing batch reactors.

    PubMed

    Massé, D I; Croteau, F; Masse, L

    2007-11-01

    The objectives of the study were to measure the levels of manure nutrients retained in psychrophilic anaerobic sequencing batch reactors (PASBRs) digesting swine manure, and to determine the distribution of nutrients in the sludge and supernatant zones of settled bioreactor effluent. Anaerobic digestion reduced the total solids (TS) concentration and the soluble chemical oxygen demand (SCOD) of manure by 71.4% and 79.9%, respectively. The nitrogen, potassium, and sodium fed with the manure to the PASBRs were recovered in the effluent. The bioreactors retained on average 25.5% of the P, 8.7% of the Ca, 41.5% of the Cu, 18.4% of the Zn, and 67.7% of the S fed to the PASBRs. The natural settling of bioreactor effluent allowed further nutrient separation. The supernatant fraction, which represented 71.4% of effluent volume, contained 61.8% of the total N, 67.1% of the NH4-N, and 73.3% of the Na. The settled sludge fraction, which represented 28.6% of the volume, contained 57.6% of the solids, 62.3% of the P, 71.6% of the Ca, 89.6% of the Mg, 76.1% of the Al, 90.0% of the Cu, 74.2% of the Zn, and 52.2% of the S. The N/P ratio was increased from 3.9 in the raw manure to 5.2 in the bioreactor effluent and 9.2 in the supernatant fraction of the settled effluent. The PASBR technology will then substantially decrease the manure management costs of swine operations producing excess phosphorus, by reducing the volume of manure to export outside the farm. The separation of nutrients will also allow land spreading strategies that increase the agronomic value of manure by matching more closely the crop nutrient requirements.

  16. Raft-Like Membrane Domains in Pathogenic Microorganisms

    PubMed Central

    Farnoud, Amir M.; Toledo, Alvaro M.; Konopka, James B.; Del Poeta, Maurizio; London, Erwin

    2016-01-01

    The lipid bilayer of the plasma membrane is thought to be compartmentalized by the presence of lipid-protein microdomains. In eukaryotic cells, microdomains composed of sterols and sphingolipids packed in a liquid-ordered state, commonly known as lipid rafts, are believed to exist. While less studied in bacterial cells, reports on the presence of sterol or protein-mediated microdomains in bacterial cell membranes are also appearing with increasing frequency. Recent efforts have been focused on addressing the biophysical and biochemical properties of lipid rafts. However, most studies have been focused on synthetic membranes, mammalian cells, and/or model, non-pathogenic microorganisms. Much less is known about microdomains in the plasma membrane of pathogenic microorganisms. This review attempts to provide an overview of the current state of knowledge of lipid rafts in pathogenic fungi and the developing field of microdomains in pathogenic bacteria. The current literature on the structure and function and of microdomains is reviewed and the potential role of microdomains in growth, pathogenesis, and drug resistance of pathogens are discussed. Better insight into the structure and function of membrane microdomains in pathogenic microorganisms might lead to a better understanding of the process of pathogenesis and development of raft-mediated approaches for new methods of therapy. PMID:26015285

  17. Genomics, metagenomics and proteomics in biomining microorganisms.

    PubMed

    Valenzuela, Lissette; Chi, An; Beard, Simon; Orell, Alvaro; Guiliani, Nicolas; Shabanowitz, Jeff; Hunt, Donald F; Jerez, Carlos A

    2006-01-01

    The use of acidophilic, chemolithotrophic microorganisms capable of oxidizing iron and sulfur in industrial processes to recover metals from minerals containing copper, gold and uranium is a well established biotechnology with distinctive advantages over traditional mining. A consortium of different microorganisms participates in the oxidative reactions resulting in the extraction of dissolved metal values from ores. Considerable effort has been spent in the last years to understand the biochemistry of iron and sulfur compounds oxidation, bacteria-mineral interactions (chemotaxis, quorum sensing, adhesion, biofilm formation) and several adaptive responses allowing the microorganisms to survive in a bioleaching environment. All of these are considered key phenomena for understanding the process of biomining. The use of genomics, metagenomics and high throughput proteomics to study the global regulatory responses that the biomining community uses to adapt to their changing environment is just beginning to emerge in the last years. These powerful approaches are reviewed here since they offer the possibility of exciting new findings that will allow analyzing the community as a microbial system, determining the extent to which each of the individual participants contributes to the process, how they evolve in time to keep the conglomerate healthy and therefore efficient during the entire process of bioleaching.

  18. Plasma inactivation of microorganisms on sprout seeds in a dielectric barrier discharge.

    PubMed

    Butscher, Denis; Van Loon, Hanne; Waskow, Alexandra; Rudolf von Rohr, Philipp; Schuppler, Markus

    2016-12-05

    Fresh produce is frequently contaminated by microorganisms, which may lead to spoilage or even pose a threat to human health. In particular sprouts are considered to be among the most risky foods sold at retail since they are grown in an environment practically ideal for growth of bacteria and usually consumed raw. Because heat treatment has a detrimental effect on the germination abilities of sprout seeds, alternative treatment technologies need to be developed for microbial inactivation purposes. In this study, non-thermal plasma decontamination of sprout seeds is evaluated as a promising option to enhance food safety while maintaining the seed germination capabilities. In detail, investigations focus on understanding the efficiency of non-thermal plasma inactivation of microorganisms as influenced by the type of microbial contamination, substrate surface properties and moisture content, as well as variations in the power input to the plasma device. To evaluate the impact of these parameters, we studied the reduction of native microbiota or artificially applied E. coli on alfalfa, onion, radish and cress seeds exposed to non-thermal plasma in an atmospheric pressure pulsed dielectric barrier discharge streamed with argon. Plasma treatment resulted in a maximum reduction of 3.4 logarithmic units for E. coli on cress seeds. A major challenge in plasma decontamination of granular food products turned out to be the complex surface topology, where the rough surface with cracks and crevices can shield microorganisms from plasma-generated reactive species, thus reducing the treatment efficiency. However, improvement of the inactivation efficiency was possible by optimizing substrate characteristics such as the moisture level and by tuning the power supply settings (voltage, frequency) to increase the production of reactive species. While the germination ability of alfalfa seeds was considerably decreased by harsh plasma treatment, enhanced germination was observed under

  19. Accumulation of metals by microorganisms — processes and importance for soil systems

    NASA Astrophysics Data System (ADS)

    Ledin, Maria

    2000-08-01

    Metal accumulation by solid substances can counteract metal mobilization in the environment if the solid substance is immobile. Microorganisms have a high surface area-to-volume ratio because of their small size and therefore provide a large contact area that can interact with metals in the surrounding environment. Microbial metal accumulation has received much attention in the last years due to the potential use of microorganisms for cleaning metal-polluted water. However, considerably less attention has been paid to the role of microorganisms for metal mobility in soil even though the same processes may occur there. Therefore, this paper highlights this area. The different accumulation processes that microorganisms perform are analyzed and their potential significance in soil systems is discussed. Different kinds of mechanisms can be involved in the accumulation of metals by microorganisms, e.g. adsorption, precipitation, complexation and active transport into the cell. Physicochemical parameters like pH and ionic composition, as well as biological factors are of importance for the magnitude of accumulation. Often large amounts of metals can be accumulated with varying specificity, and microorganisms may provide nucleation sites for mineral formation. Several studies of microbial metal accumulation have been made with different methods and aims. Most of these studies concern single-component systems with one organism at a time. Data from accumulation experiments with pure cultures of microorganisms have been used to model the overall metal retention in soil. A further development is experimental model systems using various solid soil components in salt medium. Microbial metal accumulation is difficult to study in situ, but some experimental methods have been applied as tools for studying real soil systems, e.g. litter bags buried in soil containing microorganisms, a method where discs with microorganisms have been put onto agar plates with soil extracts, and

  20. Measuring micro-organism gas production

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.; Pearson, A. O.; Mills, S. M.

    1973-01-01

    Transducer, which senses pressure buildup, is easy to assemble and use, and rate of gas produced can be measured automatically and accurately. Method can be used in research, in clinical laboratories, and for environmental pollution studies because of its ability to detect and quantify rapidly the number of gas-producing microorganisms in water, beverages, and clinical samples.

  1. Quartz crystal microbalance biosensor for rapid detection of aerosolized microorganisms

    NASA Astrophysics Data System (ADS)

    Farka, Zdenĕk.; Kovár, David; Skládal, Petr

    2015-05-01

    Biological warfare agents (BWAs) represent the current menace of the asymmetric war. The early detection of BWAs, especially in the form of bioaerosol, is a challenging task for governments all around the world. Label-free quartz crystal microbalance (QCM) immunosensor and electrochemical immunosensor were developed and tested for rapid detection of BWA surrogate (E. coli) in the form of bioaerosol. Two immobilization strategies for the attachment of antibody were tested; the gold sensor surface was activated by cysteamine and then antibody was covalently linked either using glutaraldehyde, or the reduced antibodies were attached via Sulfo-SMCC. A portable bioaerosol chamber was constructed and used for safe manipulation with aerosolized microorganisms. The dissemination was done using a piezoelectric humidifier, distribution of bioaerosol inside the chamber was ensured using three 12-cm fans. The whole system was controlled remotely using LAN network. The disseminated microbial cells were collected and preconcentrated using the wetted-wall cyclone SASS 2300, the analysis was done using the on-line linked immunosensors. The QCM immunosensor had limit of detection 1×104 CFU·L-1 of air with analysis time 16 min, the whole experiment including dissemination and sensor surface regeneration took 40 min. In case of blank (disseminated sterile buffer), no signal change was observed. The electrochemical immunosensor was able to detect 150 CFU·L-1 of air in 20 min; also in this case, no interferences were observed. Reference measurements were done using particle counter Met One 3400 and by cultivation method on agar plates. The sensors have proved to be applicable for rapid screening of microorganisms in air.

  2. Oil Production by a Consortium of Oleaginous Microorganisms grown on primary effluent wastewater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Jacqueline; Hetrick, Mary; French, Todd

    Municipal wastewater could be a potential growth medium that has not been considered for cultivating oleaginous microorganisms. This study is designed to determine if a consortium of oleaginous microorganism can successfully compete for carbon and other nutrients with the indigenous microorganisms contained in primary effluent wastewater. RESULTS: The oleaginous consortium inoculated with indigenous microorganisms reached stationary phase within 24 h, reaching a maximum cell concentration of 0.58 g L -1. Water quality post-oleaginous consortium growth reached a maximum chemical oxygen demand (COD) reduction of approximately 81%, supporting the consumption of the glucose within 8 h. The oleaginous consortium increased themore » amount of oil produced per gram by 13% compared with indigenous microorganisms in raw wastewater. Quantitative polymerase chain reaction (qPCR) results show a substantial population increase in bacteria within the first 24 h when the consortium is inoculated into raw wastewater. This result, along with the fatty acid methyl esters (FAMEs) results, suggests that conditions tested were not sufficient for the oleaginous consortium to compete with the indigenous microorganisms.« less

  3. UV Radiation and Visible Light Induce hsp70 Gene Expression in the Antarctic Psychrophilic Ciliate Euplotes focardii.

    PubMed

    Fulgentini, Lorenzo; Passini, Valerio; Colombetti, Giuliano; Miceli, Cristina; La Terza, Antonietta; Marangoni, Roberto

    2015-08-01

    The psychrophilic ciliate Euplotes focardii inhabits the shallow marine coastal sediments of Antarctica, where, over millions of years of evolution, it has reached a strict molecular adaptation to such a constant-temperature environment (about -2 °C). This long evolution at sub-zero temperatures has made E. focardii unable to respond to heat stress with the activation of its heat shock protein (hsp) 70 genes. These genes can, however, be expressed in response to other stresses, like the oxidative one, thus indicating that the molecular adaptation has exclusively altered the heat stress signaling pathways, while it has preserved hsp70 gene activation in response to other environmental stressors. Since radiative stress has proved to be affine to oxidative stress in several organisms, we investigated the capability of UV radiation to induce hsp70 transcription. E. focardii cell cultures were exposed to several different irradiation regimes, ranging from visible only to a mixture of visible, UV-A and UV-B. The irradiation values of each spectral band have been set to be comparable with those recorded in a typical Antarctic spring. Using Northern blot analysis, we measured the expression level of hsp70 immediately after irradiation (0-h-labeled samples), 1 h, and 2 h from the end of the irradiation. Surprisingly, our results showed that besides UV radiation, the visible light was also able to induce hsp70 expression in E. focardii. Moreover, spectrophotometric measurements have revealed no detectable endogenous pigments in E. focardii, making it difficult to propose a possible explanation for the visible light induction of its hsp70 genes. Further research is needed to conclusively clarify this point.

  4. Assessment of cellulolytic microorganisms in soils of Nevados Park, Colombia

    PubMed Central

    Avellaneda-Torres, Lizeth Manuela; Pulido, Claudia Patricia Guevara; Rojas, Esperanza Torres

    2014-01-01

    A systematized survey was conducted to find soil-borne microbes that degrade cellulose in soils from unique ecosystems, such as the Superpáramo, Páramo, and the High Andean Forest in the Nevados National Natural Park (NNNP), Colombia. These high mountain ecosystems represent extreme environments, such as high levels of solar radiation, low atmospheric pressure, and extreme daily changes in temperature. Cellulolytic activity of the microorganisms was evaluated using qualitative tests, such as growth in selective media followed by staining with congo red and iodine, and quantitative tests to determine the activity of endoglucanase, β-glucosidase, exoglucanase, and total cellulase. Microorganisms were identified using molecular markers, such as the 16S rRNA gene for bacteria and the internal transcribed spacer region (ITS) of ribosomal DNA for fungi. Multivariate statistical analysis (MVA) was used to select microorganisms with high cellulolytic capacity. A total of 108 microorganisms were isolated from the soils and, in general, the enzymatic activities of fungi were higher than those of bacteria. Our results also found that none of the organisms studied were able to degrade all the components of the cellulose and it is therefore suggested that a combination of bacteria and/or fungi with various enzymatic activities be used to obtain high total cellulolytic activity. This study gives an overview of the potential microorganism that could be used for cellulose degradation in various biotechnological applications and for sustainable agricultural waste treatment. PMID:25763024

  5. Assessment of cellulolytic microorganisms in soils of Nevados Park, Colombia.

    PubMed

    Avellaneda-Torres, Lizeth Manuela; Pulido, Claudia Patricia Guevara; Rojas, Esperanza Torres

    2014-01-01

    A systematized survey was conducted to find soil-borne microbes that degrade cellulose in soils from unique ecosystems, such as the Superpáramo, Páramo, and the High Andean Forest in the Nevados National Natural Park (NNNP), Colombia. These high mountain ecosystems represent extreme environments, such as high levels of solar radiation, low atmospheric pressure, and extreme daily changes in temperature. Cellulolytic activity of the microorganisms was evaluated using qualitative tests, such as growth in selective media followed by staining with congo red and iodine, and quantitative tests to determine the activity of endoglucanase, β-glucosidase, exoglucanase, and total cellulase. Microorganisms were identified using molecular markers, such as the 16S rRNA gene for bacteria and the internal transcribed spacer region (ITS) of ribosomal DNA for fungi. Multivariate statistical analysis (MVA) was used to select microorganisms with high cellulolytic capacity. A total of 108 microorganisms were isolated from the soils and, in general, the enzymatic activities of fungi were higher than those of bacteria. Our results also found that none of the organisms studied were able to degrade all the components of the cellulose and it is therefore suggested that a combination of bacteria and/or fungi with various enzymatic activities be used to obtain high total cellulolytic activity. This study gives an overview of the potential microorganism that could be used for cellulose degradation in various biotechnological applications and for sustainable agricultural waste treatment.

  6. Marine Extremophiles: A Source of Hydrolases for Biotechnological Applications

    PubMed Central

    Dalmaso, Gabriel Zamith Leal; Ferreira, Davis; Vermelho, Alane Beatriz

    2015-01-01

    The marine environment covers almost three quarters of the planet and is where evolution took its first steps. Extremophile microorganisms are found in several extreme marine environments, such as hydrothermal vents, hot springs, salty lakes and deep-sea floors. The ability of these microorganisms to support extremes of temperature, salinity and pressure demonstrates their great potential for biotechnological processes. Hydrolases including amylases, cellulases, peptidases and lipases from hyperthermophiles, psychrophiles, halophiles and piezophiles have been investigated for these reasons. Extremozymes are adapted to work in harsh physical-chemical conditions and their use in various industrial applications such as the biofuel, pharmaceutical, fine chemicals and food industries has increased. The understanding of the specific factors that confer the ability to withstand extreme habitats on such enzymes has become a priority for their biotechnological use. The most studied marine extremophiles are prokaryotes and in this review, we present the most studied archaea and bacteria extremophiles and their hydrolases, and discuss their use for industrial applications. PMID:25854643

  7. Using natural biomass microorganisms for drinking water denitrification.

    PubMed

    Costa, Darleila Damasceno; Gomes, Anderson Albino; Fernandes, Mylena; Lopes da Costa Bortoluzzi, Roseli; Magalhães, Maria de Lourdes Borba; Skoronski, Everton

    2018-07-01

    Among the methods that are studied to eliminate nitrate from drinking water, biological denitrification is an attractive strategy. Although several studies report the use of denitrifying bacteria for nitrate removal, they usually involve the use of sewage sludge as biomass to obtain the microbiota. In the present study, denitrifying bacteria was isolated from bamboo, and variable parameters were controlled focusing on optimal bacterial performance followed by physicochemical analysis of water adequacy. In this way, bamboo was used as a source of denitrifying microorganisms, using either Immobilized Microorganisms (IM) or Suspended Microorganisms (SM) for nitrate removal. Denitrification parameters optimization was carried out by analysis of denitrification at different pH values, temperature, nitrate concentrations, carbon sources as well as different C/N ratios. In addition, operational stability and denitrification kinetics were evaluated. Microorganisms present in the biomass responsible for denitrification were identified as Proteus mirabilis. The denitrified water was submitted to physicochemical treatment such as coagulation and flocculation to adjust to the parameters of color and turbidity to drinking water standards. Denitrification using IM occurred with 73% efficiency in the absence of an external carbon source. The use of SM provided superior denitrification efficiency using ethanol (96.46%), glucose (98.58%) or glycerol (98.5%) as carbon source. The evaluation of the operational stability allowed 12 cycles of biomass reuse using the IM and 9 cycles using the SM. After physical-chemical treatment, only SM denitrified water remained within drinking water standards parameters of color and turbidity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Importance of amoebae as a tool to isolate amoeba-resisting microorganisms and for their ecology and evolution: the Chlamydia paradigm.

    PubMed

    Kebbi-Beghdadi, Carole; Greub, Gilbert

    2014-08-01

    Free-living amoebae are distributed worldwide and are frequently in contact with humans and animals. As cysts, they can survive in very harsh conditions and resist biocides and most disinfection procedures. Several microorganisms, called amoeba-resisting microorganisms (ARMs), have evolved to survive and multiply within these protozoa. Among them are many important pathogens, such as Legionella and Mycobacteria, and also several newly discovered Chlamydia-related bacteria, such as Parachlamydia acanthamoebae, Estrella lausannensis, Simkania negevensis or Waddlia chondrophila whose pathogenic role towards human or animal is strongly suspected. Amoebae represent an evolutionary crib for their resistant microorganisms since they can exchange genetic material with other ARMs and develop virulence traits that will be further used to infect other professional phagocytes. Moreover, amoebae constitute an ideal tool to isolate strict intracellular microorganisms from complex microbiota, since they will feed on other fast-growing bacteria, such as coliforms potentially present in the investigated samples. The paradigm that ARMs are likely resistant to macrophages, another phagocytic cell, and that they are likely virulent towards humans and animals is only partially true. Indeed, we provide examples of the Chlamydiales order that challenge this assumption and suggest that the ability to multiply in protozoa does not strictly correlate with pathogenicity and that we should rather use the ability to replicate in multiple and diverse eukaryotic cells as an indirect marker of virulence towards mammals. Thus, cell-culture-based microbial culturomics should be used in the future to try to discover new pathogenic bacterial species. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Prevalence of extended-spectrum beta-lactamases-producing microorganisms in nosocomial patients and molecular characterization of the shv type isolates

    PubMed Central

    de Oliveira, Caio Fernando; Salla, Adenilde; Lara, Valéria Maria; Rieger, Alexandre; Horta, Jorge André; Alves, Sydney Hartz

    2010-01-01

    The emergence of Extended-Spectrum Beta-Lactamase (ESBL)-producing microorganisms in Brazilian hospitals is a challenge that concerns scientists, clinicians and healthcare institutions due to the serious risk they pose to confined patients. The goal of this study was the detection of ESBL production by clinical strains of Escherichia coli and Klebsiella sp. isolated from pus, urine and blood of patients at Hospital Universitário Santa Maria, Rio Grande Sul, RS, Brazil and the genotyping of the isolates based on bla SHV genes. The ESBL study was carried out using the Combined Disc Method, while Polymerase Chain Reaction (PCR) was used to study the bla SHV genes. Of the 90 tested isolates, 55 (61.1%) were identified as ESBL-producing by the combined disk method. The bla SHV genes were found in 67.8% of these microorganisms. K. pneumoniae predominated in the samples, presenting the highest frequency of positive results from the combined disk and PCR. PMID:24031491

  10. Evidence Report: Risk of Adverse Health Effects Due to Host-Microorganism Interactions

    NASA Technical Reports Server (NTRS)

    Ott, C. Mark; Oubre, Cherie; Wallace, Sarah; Mehta, Satish; Pierson, Duane

    2016-01-01

    While preventive measures limit the presence of many medically significant microorganisms during spaceflight missions, microbial infection of crewmembers cannot be completely prevented. Spaceflight experiments over the past 50 years have demonstrated a unique microbial response to spaceflight culture, although the mechanisms behind those responses and their operational relevance were unclear. In 2007, the operational importance of these microbial responses was emphasized as the results of an experiment aboard STS-115 demonstrated that the enteric pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) increased in virulence in a murine model of infection. The experiment was reproduced in 2008 aboard STS-123 confirming this finding. In response to these findings, the Institute of Medicine of the National Academies recommended that NASA investigate this risk and its potential impact on the health of the crew during spaceflight. NASA assigned this risk to the Human Research Program. To better understand this risk, evidence has been collected and reported from both spaceflight analog systems and actual spaceflight including Mir, Space Shuttle, and ISS missions. Although the performance of virulence studies during spaceflight are challenging and often impractical, additional information has been and continues to be collected to better understand the risk to crew health. Still, the uncertainty concerning the extent and severity of these alterations in host-microorganism interactions is very large and requires more investigation as the focus of human spaceflight shifts to longer-duration exploration class missions.

  11. 2.3. Global-scale atmospheric dispersion of microorganisms

    USGS Publications Warehouse

    Griffin, Dale W.; Gonzalez-Martin, Cristina; Hoose, C.; Smith, D.J.; Delort, Anne-Marie; Amato, Pierre

    2018-01-01

    This chapter addresses long-range dispersion and the survival of microorganisms across a wide range of altitudes in Earth's atmosphere. Topics include mechanisms of dispersion, survivability of microorganisms known to be associated with long-range transport, natural and artificial sources of bioaerosols, residence time estimation through the use of proxy aerosols, transport and emission models, and monitoring assays (both culture and molecular based). We conclude with a discussion of the known limits for Earth's biosphere boundary, relating aerobiology studies to planetary exploration given the large degree of overlapping requirements for in situ studies (including low biomass life detection and contamination control).

  12. Screening of biosurfactants from cloud microorganisms

    NASA Astrophysics Data System (ADS)

    Sancelme, Martine; Canet, Isabelle; Traikia, Mounir; Uhliarikova, Yveta; Capek, Peter; Matulova, Maria; Delort, Anne-Marie; Amato, Pierre

    2015-04-01

    The formation of cloud droplets from aerosol particles in the atmosphere is still not well understood and a main source of uncertainties in the climate budget today. One of the principal parameters in these processes is the surface tension of atmospheric particles, which can be strongly affected by trace compounds called surfactants. Within a project devoted to bring information on atmospheric surfactants and their effects on cloud droplet formation, we focused on surfactants produced by microorganisms present in atmospheric waters. From our unique collection of microorganisms, isolated from cloud water collected at the Puy-de-Dôme (France),1 we undertook a screening of this bank for biosurfactant producers. After extraction of the supernatants of the pure cultures, surface tension of crude extracts was determined by the hanging drop technique. Results showed that a wide variety of microorganisms are able to produce biosurfactants, some of them exhibiting strong surfactant properties as the resulting tension surface decreases to values less then 35 mN.m-1. Preliminary analytical characterization of biosurfactants, obtained after isolation from overproducing cultures of Rhodococcus sp. and Pseudomonas sp., allowed us to identify them as belonging to two main classes, namely glycolipids and glycopeptides. 1. Vaïtilingom, M.; Attard, E.; Gaiani, N.; Sancelme, M.; Deguillaume, L.; Flossmann, A. I.; Amato, P.; Delort, A. M. Long-term features of cloud microbiology at the puy de Dôme (France). Atmos. Environ. 2012, 56, 88-100. Acknowledgements: This work is supported by the French-USA ANR SONATA program and the French-Slovakia programs Stefanik and CNRS exchange.

  13. One-Step Synthesis of Au-Ag Nanowires through Microorganism-Mediated, CTAB-Directed Approach.

    PubMed

    Xu, Luhang; Huang, Dengpo; Chen, Huimei; Jing, Xiaoling; Huang, Jiale; Odoom-Wubah, Tareque; Li, Qingbiao

    2018-05-28

    Synthesis and applications of one dimensional (1D) metal nanostructures have attracted much attention. However, one-step synthesis of bimetallic nanowires (NWs) has remained challenging. In this work, we developed a microorganism-mediated, hexadecyltrimethylammonium bromide (CTAB)-directed (MCD) approach to synthesize closely packed and long Au-Ag NWs with the assistance of a continuous injection pump. Characterization results confirmed that the branched Au-Ag alloy NWs was polycrystalline. And the Au-Ag NWs exhibited a strong absorbance at around 1950 nm in the near-infrared (NIR) region, which can find potential application in NIR absorption. In addition, the Au-Ag NWs showed excellent surface-enhanced Raman scattering (SERS) enhancement when 4-mercaptobenzoic acid (MBA) and rhodamine 6G (R6G) were used as probe molecules.

  14. Interenvironmental Transfer of Microorganisms on the Exterior Surfaces of Jet Aircraft

    PubMed Central

    Pfaender, Frederic K.; Swatek, Frank E.

    1970-01-01

    The likelihood of microorganisms being transferred to new environments by jet aircraft was investigated. Initial random sampling of the aircraft surface revealed the presence of microorganisms in varying numbers on different aerodynamic surfaces. Bacteria of the genus Bacillus were the most common isolates, comprising approximately one-third of the total organisms found. The most frequently isolated fungi were Cladosporium, Alternaria, Penicillium, and several yeasts. Sampling of surfaces before and immediately after a flight demonstrated that microorganisms were collected during flight in areas protected from the airstream and lost in those areas directly exposed to it. These experiments also showed that the majority of the organisms contaminating the aircraft were acquired from the air at ground level. The placement of microorganisms on the aircraft surface before a flight and determination of their survival after flight indicated that the test organisms were most likely to be transported in the areas protected from the airstream. The organisms showing the best chance of being transferred seem to be the sporeforming bacteria, arthrospore-forming fungi, and some yeasts. All phases of this work showed that microorganisms could be carried by jet aircraft to environments they could not reach by natural means of dispersal. PMID:5480099

  15. Impact of organic loading rate on the performance of psychrophilic dry anaerobic digestion of dairy manure and wheat straw: long-term operation.

    PubMed

    Saady, Noori M Cata; Massé, Daniel I

    2015-04-01

    Development of efficient processes for valorising animal wastes would be a major advancement in cold-climate regions. This paper reports the results of long term (315 days experiment) of novel psychrophilic (20°C) dry anaerobic digestion (PDAD) of cow feces and wheat straw in laboratory scale sequence batch reactor operated at increasing organic loading rate. The PDAD process fed with a mixture of feces and straw (TS of 27%) over a treatment cycle length of 21 days at organic loading rate (OLR) 4.0, 5.0 and 6.0 g TCOD kg(-1) inoculum d(-1) (of 2.9 ± 0.1, 3.7 ± 0.1, and 4.4 ± 0.1g VS kg(-1) inoculum d(-1), respectively) resulted in average specific methane yield (SMY) of 187.3 ± 18.1, 163.6 ± 39.5, 150.8 ± 32.9 N L CH4 kg(-1)VS fed, respectively. PDAD of cow feces and wheat straw is possible with VS-based inoculum-to-substrate ratio of 1.4 at OLR of 6.0 g TCOD kg(-1) inoculum d(-1). Hydrolysis was the limiting step reaction. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  16. Four kingdoms on glacier ice: convergent energetic processes boost energy levels as temperatures fall.

    PubMed Central

    Napolitano, Michael J; Shain, Daniel H

    2004-01-01

    A diverse group of glacially obligate organisms coexist on temperate glaciers between Washington State and Alaska. A fundamental challenge for these and other cold-adapted species is the necessity to maintain an energy flux capable of sustaining life at low physiological temperatures. We show here that ice-adapted psychrophiles from four kingdoms (Animalia, Eubacteria, Fungi, Protista) respond to temperature fluctuations in a similar manner; namely, ATP levels and the total adenylate pool increase as temperatures fall (within their viable temperature limits, respectively), yet growth rate increases with temperature. By contrast, mesophilic representatives of each kingdom respond in an opposite manner (i.e. adenylates increase with temperature). These observations suggest that elevated adenylate levels in psychrophiles may offset inherent reductions in molecular diffusion at low physiological temperatures. PMID:15503992

  17. Physical Biology of the Materials-Microorganism Interface.

    PubMed

    Sakimoto, Kelsey K; Kornienko, Nikolay; Cestellos-Blanco, Stefano; Lim, Jongwoo; Liu, Chong; Yang, Peidong

    2018-02-14

    Future solar-to-chemical production will rely upon a deep understanding of the material-microorganism interface. Hybrid technologies, which combine inorganic semiconductor light harvesters with biological catalysis to transform light, air, and water into chemicals, already demonstrate a wide product scope and energy efficiencies surpassing that of natural photosynthesis. But optimization to economic competitiveness and fundamental curiosity beg for answers to two basic questions: (1) how do materials transfer energy and charge to microorganisms, and (2) how do we design for bio- and chemocompatibility between these seemingly unnatural partners? This Perspective highlights the state-of-the-art and outlines future research paths to inform the cadre of spectroscopists, electrochemists, bioinorganic chemists, material scientists, and biologists who will ultimately solve these mysteries.

  18. Electroactive microorganisms in bulk solution contribute significantly to methane production in bioelectrochemical anaerobic reactor.

    PubMed

    Feng, Qing; Song, Young-Chae; Ahn, Yongtae

    2018-07-01

    The role of anaerobic microorganisms suspended in the bulk solution on methane production was investigated in a bioelectrochemical anaerobic reactor with the electrode polarized at 0.5 V. The electron transfer from substrate to methane and hydrogen were 25% and 7.5%, respectively, in the absence of the anaerobic microorganisms in the bulk solution. As the anaerobic microorganisms increased to 4400 mg/L, the electrons transferred to methane increased to 83.3% but decreased to 0.3% in hydrogen. The electroactive microorganisms (EAM), including exoelectrogens and electrotrophs, enriched in the bulk solution that confirmed by the redox peaks in the cyclic voltammogram was proportional to the anaerobic microorganism. The methane yield based on COD removal was dependent on the anaerobic microorganisms in the bulk solution rather than on the bioelectrode surface. The EAM suspended in the bulk solution are enriched by the polarized electrode, and significantly improve methane production in bioelectrochemical anaerobic reactor. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Marine Microorganism-Invertebrate Assemblages: Perspectives to Solve the “Supply Problem” in the Initial Steps of Drug Discovery

    PubMed Central

    Leal, Miguel Costa; Sheridan, Christopher; Osinga, Ronald; Dionísio, Gisela; Rocha, Rui Jorge Miranda; Silva, Bruna; Rosa, Rui; Calado, Ricardo

    2014-01-01

    The chemical diversity associated with marine natural products (MNP) is unanimously acknowledged as the “blue gold” in the urgent quest for new drugs. Consequently, a significant increase in the discovery of MNP published in the literature has been observed in the past decades, particularly from marine invertebrates. However, it remains unclear whether target metabolites originate from the marine invertebrates themselves or from their microbial symbionts. This issue underlines critical challenges associated with the lack of biomass required to supply the early stages of the drug discovery pipeline. The present review discusses potential solutions for such challenges, with particular emphasis on innovative approaches to culture invertebrate holobionts (microorganism-invertebrate assemblages) through in toto aquaculture, together with methods for the discovery and initial production of bioactive compounds from these microbial symbionts. PMID:24983638

  20. Prokaryotic silicon utilizing microorganisms in the biosphere

    NASA Astrophysics Data System (ADS)

    Gupta, D.; Das, S.

    2012-12-01

    Although a little study has been done to determine the silicon utilizing prokaryotes, our previous experiments indicated that almost all Gram-positive bacteria are silicon utilizing; one of them, Streptococci survived exposure on the lunar surface for a long period in experiment done by others. Our initial experiments with these Gram positive microorganisms showed that there were limited growths of these microorganisms on carbon free silicate medium probably with the help of some carry over carbon and nitrogen during cultivation procedures. However, increase in growth rate after repeated subcultures could not be explained at present. The main groups of prokaryotes which were found silicon utilizing microorganisms were Mycobacterium, Bacillus, Nocardia, Streptomyces, Staphylococcus, Streptococcus, Lactobacillus, and Clostridium. In a another previous study by us when silicon level was studied in such grown up cells on carbon "free" silicate medium by electron prove microanalyser, it was found that silicon in cells grown on carbon "free" silicate medium was much higher (24.9%) than those grown on conventional carbon based medium (0.84%). However, these initial findings are encouraging for our future application of this group of organisms on extraterrestrial surfaces for artificial micro-ecosystem formation. It was found that when electropositive elements are less in extraterrestrial situation, then polymerization of silicon-oxygen profusion may occur easily, particularly in carbon and nitrogen paucity in the rocky worlds of the Universe.

  1. Challenges and perspectives of metaproteomic data analysis.

    PubMed

    Heyer, Robert; Schallert, Kay; Zoun, Roman; Becher, Beatrice; Saake, Gunter; Benndorf, Dirk

    2017-11-10

    In nature microorganisms live in complex microbial communities. Comprehensive taxonomic and functional knowledge about microbial communities supports medical and technical application such as fecal diagnostics as well as operation of biogas plants or waste water treatment plants. Furthermore, microbial communities are crucial for the global carbon and nitrogen cycle in soil and in the ocean. Among the methods available for investigation of microbial communities, metaproteomics can approximate the activity of microorganisms by investigating the protein content of a sample. Although metaproteomics is a very powerful method, issues within the bioinformatic evaluation impede its success. In particular, construction of databases for protein identification, grouping of redundant proteins as well as taxonomic and functional annotation pose big challenges. Furthermore, growing amounts of data within a metaproteomics study require dedicated algorithms and software. This review summarizes recent metaproteomics software and addresses the introduced issues in detail. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Toward a Predictive Understanding of Earth's Microbiomes to Address 21st Century Challenges.

    PubMed

    Blaser, Martin J; Cardon, Zoe G; Cho, Mildred K; Dangl, Jeffrey L; Donohue, Timothy J; Green, Jessica L; Knight, Rob; Maxon, Mary E; Northen, Trent R; Pollard, Katherine S; Brodie, Eoin L

    2016-05-13

    Microorganisms have shaped our planet and its inhabitants for over 3.5 billion years. Humankind has had a profound influence on the biosphere, manifested as global climate and land use changes, and extensive urbanization in response to a growing population. The challenges we face to supply food, energy, and clean water while maintaining and improving the health of our population and ecosystems are significant. Given the extensive influence of microorganisms across our biosphere, we propose that a coordinated, cross-disciplinary effort is required to understand, predict, and harness microbiome function. From the parallelization of gene function testing to precision manipulation of genes, communities, and model ecosystems and development of novel analytical and simulation approaches, we outline strategies to move microbiome research into an era of causality. These efforts will improve prediction of ecosystem response and enable the development of new, responsible, microbiome-based solutions to significant challenges of our time. Copyright © 2016 Blaser et al.

  3. [Microorganisms surviving in drinking water systems and related problems].

    PubMed

    Aulicino, F A; Pastoni, F

    2004-01-01

    Drinking water in distribution systems may show abnormal values of some parameters, such as turbidity, and may support particular phenomena, such as bacterial regrowth or presence of Viable Not Culturable (VNC) bacteria. Turbidity can provide shelter for opportunistic microorganisms and pathogens. The Milwaukee outbreak (400,000 people) is one example of waterborne disease caused by the presence of pathogens (Cryptosporidium) in drinking water characterized by high and intermittent levels of turbidity. Bacterial regrowth in drinking water distribution systems may cause high increments of microorganisms such as heterotrophic bacteria, coliforms and pathogens. Microorganisms isolated from biofilm including Pseudomonas, Aeromonas, Legionella may have a significant health hazard especially in hospital areas. The presence of VNC bacteria in drinking water may represent a problem for their discussed role in infectious diseases, but also for the possibility of a considerable underestimation of true microbial concentrations in drinking waters. To study this kind of problems is necessary to apply suitable methods for drinking water analyses.

  4. Airborne microorganisms associated with grain handling.

    PubMed

    Swan, J R; Crook, B

    1998-01-01

    There is substantial evidence that workers handling grain develop allergic respiratory symptoms. Microbiological contaminants are likely to be a significant contributing factor. Worker's exposure to microorganisms contaminating grain dust in the UK was therefore examined. Aerobiological studies were made when grain was being handled on farms and also during bulk handling of grain in dockside terminals. A quantitative and qualitative microbiological examination of the airborne grain dust was carried out. Samples of airborne grain dust were collected and viable bacteria, fungi and actinomycetes were grown, isolated and identified. It was found that workers handling grain or working close to grain at farms and docks were frequently exposed to more than 1 million bacteria and fungi per m3 air, and that airborne bacteria and fungi exceeded 10(4) per m3 air in all areas sampled. The qualitative examination of the samples showed that the predominant microorganisms present differed between freshly harvested grain and stored grain, but not between different types of grain.

  5. Activation of inoculum microorganism from dairy cattle feces

    NASA Astrophysics Data System (ADS)

    Ayuningtyas, Widya D.; Ridwan, Roni; Joni, I. M.; Marlina, E. T.; Harlia, Ellin

    2018-02-01

    Coal produces Coal Bed Methane (CBM) which is formed both biogenically and thermogenically. Lignite is not utilized optimally because it has low heat content and productivity time limit that decreases CBM production. In order to utilize lignite waste, adding inoculum consortium microorganism from dairy cattle waste as starter for biogas process can be a solution. This study aimed to produce inoculum consortium microorganism as biogas starter from dairy cattle feces through in vitro activation process by Theoudorou modification method. The research used complete randomized design with 3 replications. The treatments were blank (R0), 100% concentrate (R1), 70% concentrate+30% grass (R2), 70% grass+30% concentrate (R3) and 100% grass (R4). All treatments were added by buffer solution and feces with ratio of 2:1 into 100 ml serum injection bottle with anaerobic conditions. The parameters observed were gas production, pH and gas kinetics (orskov's equation) for 2, 4, 6, 8, 10, 12, 24 and 48 hours. The results showed that the treatment had significant effect (P <0.05) on the observed parameters. The highest total gas production was for R2 and R3 treatments with total production of 91.17 ml and 101.17 ml, pH (6.62 and 6.57), maximum gas production (94.03 and 97.62 ml), speed of gas production (0.066 and 0.084 ml/hour). There is not a significant difference for both the treatments. The source of inoculum consortium microorganisms for biogas starter selected based on the observed parameters and potential availability of proteolytic and fibrocytic microorganisms is R2 (70% concentrate +30% grass).

  6. Microorganisms: Good or Evil, MIRRI Provides Biosecurity Awareness.

    PubMed

    Smith, David; Martin, Dunja; Novossiolova, Tatyana

    2017-03-01

    The life-science community is a key stakeholder in the effort to ensure that the advances in biotechnology are not misused. Unfortunately, to date, the engagement of life scientists with issues of biosecurity has been limited. Microorganisms have been harnessed for the benefit of humankind but in the wrong hands could be used in direct or indirect acts against humans, livestock, crops, food, water infrastructure and other economically valuable entities. The Microbial Resources Research Infrastructure in its preparatory phase has addressed the topic implementing a code of conduct as part of its programme of prevention of malicious use and continues to work with the international community to raise awareness of best practice to avoid misuse of microorganisms. Biosecurity has become a major concern for several countries creating numerous activities to put in place counter measures, risk assessment, legislation and emergency response. The goal is to implement measures to protect us against malicious use of microorganisms, their products, information and technology transfer. Through this paper, we wish to discuss some of the activities that are underway, mention key educational tools and provide scientists with information on addressing biosecurity issues.

  7. Possibilities for extremophilic microorganisms in microbial electrochemical systems

    PubMed Central

    Dopson, Mark; Ni, Gaofeng; Sleutels, Tom HJA

    2015-01-01

    Microbial electrochemical systems exploit the metabolism of microorganisms to generate electrical energy or a useful product. In the past couple of decades, the application of microbial electrochemical systems has increased from the use of wastewaters to produce electricity to a versatile technology that can use numerous sources for the extraction of electrons on the one hand, while on the other hand these electrons can be used to serve an ever increasing number of functions. Extremophilic microorganisms grow in environments that are hostile to most forms of life and their utilization in microbial electrochemical systems has opened new possibilities to oxidize substrates in the anode and produce novel products in the cathode. For example, extremophiles can be used to oxidize sulfur compounds in acidic pH to remediate wastewaters, generate electrical energy from marine sediment microbial fuel cells at low temperatures, desalinate wastewaters and act as biosensors of low amounts of organic carbon. In this review, we will discuss the recent advances that have been made in using microbial catalysts under extreme conditions and show possible new routes that extremophilic microorganisms open for microbial electrochemical systems. PMID:26474966

  8. Methods, compounds and systems for detecting a microorganism in a sample

    DOEpatents

    Colston, Jr, Bill W.; Fitch, J. Patrick; Gardner, Shea N.; Williams, Peter L.; Wagner, Mark C.

    2016-09-06

    Methods to identify a set of probe polynucleotides suitable for detecting a set of targets and in particular methods for identification of primers suitable for detection of target microorganisms related polynucleotides, set of polynucleotides and compositions, and related methods and systems for detection and/or identification of microorganisms in a sample.

  9. Review: Diversity of Microorganisms in Global Fermented Foods and Beverages

    PubMed Central

    Tamang, Jyoti P.; Watanabe, Koichi; Holzapfel, Wilhelm H.

    2016-01-01

    Culturalable and non-culturable microorganisms naturally ferment majority of global fermented foods and beverages. Traditional food fermentation represents an extremely valuable cultural heritage in most regions, and harbors a huge genetic potential of valuable but hitherto undiscovered strains. Holistic approaches for identification and complete profiling of both culturalable and non-culturable microorganisms in global fermented foods are of interest to food microbiologists. The application of culture-independent technique has thrown new light on the diversity of a number of hitherto unknown and non-cultural microorganisms in naturally fermented foods. Functional bacterial groups (“phylotypes”) may be reflected by their mRNA expression in a particular substrate and not by mere DNA-level detection. An attempt has been made to review the microbiology of some fermented foods and alcoholic beverages of the world. PMID:27047484

  10. Systems biology for understanding and engineering of heterotrophic oleaginous microorganisms.

    PubMed

    Park, Beom Gi; Kim, Minsuk; Kim, Joonwon; Yoo, Heewang; Kim, Byung-Gee

    2017-01-01

    Heterotrophic oleaginous microorganisms continue to draw interest as they can accumulate a large amount of lipids which is a promising feedstock for the production of biofuels and oleochemicals. Nutrient limitation, especially nitrogen limitation, is known to effectively trigger the lipid production in these microorganisms. For the aim of developing improved strains, the mechanisms behind the lipid production have been studied for a long time. Nowadays, system-level understanding of their metabolism and associated metabolic switches is attainable with modern systems biology tools. This work reviews the systems biology studies, based on (i) top-down, large-scale 'omics' tools, and (ii) bottom-up, mathematical modeling methods, on the heterotrophic oleaginous microorganisms with an emphasis on further application to metabolic engineering. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Biodegradation of Guanidinium By Aquatic Microorganisms.

    DTIC Science & Technology

    1985-12-01

    16 * Metabolism of Guanidinium at Environmental Concentrations ............... 20 - DISCUSSION...17 * 4. Short-Term Metabolism of Guanidinium and Urea by Monocacy River Microorganisms...classical study has indicated that it can serve as a nitrogen source for growth of several bacterial and fungal species in pure cultures.9 Soil micro

  12. [Microorganism test systems and antibiograms useful for the proper use of antibacterial agents].

    PubMed

    Takahashi, Shunji

    2010-07-01

    Antimicrobial agents are used for the accurate diagnosis of infectious diseases and effective implementation of antibacterial chemotherapy. The role of microbiological technologists is to provide data from microorganism tests useful for rapid infection treatment. Gram strain can be used to observe microorganisms and neutrophils from specimens of a patient. It is also possible to estimate the kinds of microorganism. If bacterial infectious disease is negative, there is no need for antibacterial chemotherapy. The applied dose of antibacterial agents is different in every hospital. Also, there is a difference in the percentage antibacterial agent susceptibility of isolates. Antibiograms must be created to investigate local factors. For empiric therapy, antibiograms are useful when choosing antibacterial agents showing marked efficacy against the clinical isolate. Microorganism test systems which are useful for the proper use of antibacterial agents are necessary to facilitate safe antibacterial chemotherapy and prevent the development of resistant bacteria. We report a microorganism test system employed at the Sapporo City General Hospital.

  13. Microorganisms associated with chromosome destruction and reproductive isolation between two insect species.

    PubMed

    Breeuwer, J A; Werren, J H

    1990-08-09

    Microorganisms have been implicated in causing cytoplasmic incompatibility in a variety of insect species, including mosquitoes, fruitflies, beetles and wasps. The effect is typically unidirectional: incompatible crosses produce no progeny or sterile males, whereas the reciprocal crosses produce normal progeny. The parasitic wasp Nasonia vitripennis is one of the few species in which the cytogenetic mechanism of incompatibility is known. In this species the paternal chromosome set forms a tangled mass in a fertilized egg and is eventually lost. Here we report that cytoplasmic microorganisms are associated with complete bidirectional incompatibility between N. vitripennis and a closely related sympatric species, N. giraulti. Microorganisms can be seen in the eggs of both species. Hybrid offspring are normally not produced in crosses between the two species, but do occur after elimination of the microorganisms by antibiotic treatment. A cytogenetic and genetic study shows that bidirectional interspecific incompatibility is due to improper condensation of the paternal chromosomes. Microorganism-mediated reproductive isolation is of interest because it could provide a rapid mode of speciation. The mechanism of incompatibility in Nasonia is also of interest as a potential tool for studying chromosome imprinting and chromosome condensation.

  14. Single cell oils of the cold-adapted oleaginous yeast Rhodotorula glacialis DBVPG 4785

    PubMed Central

    2010-01-01

    Background The production of microbial lipids has attracted considerable interest during the past decade since they can be successfully used to produce biodiesel by catalyzed transesterification with short chain alcohols. Certain yeast species, including several psychrophilic isolates, are oleaginous and accumulate lipids from 20 to 70% of biomass under appropriate cultivation conditions. Among them, Rhodotorula glacialis is a psychrophilic basidiomycetous species capable to accumulate intracellular lipids. Results Rhodotorula glacialis DBVPG 4785 is an oleaginous psychrophilic yeast isolated from a glacial environment. Despite its origin, the strain abundantly grew and accumulated lipids between -3 to 20°C. The temperature did not influence the yield coefficients of both biomass and lipids production, but had positive effect on the growth rate and thus on volumetric productivity of lipid. In glucose-based media, cellular multiplication occurred first, while the lipogenic phase followed whenever the culture was limited by a nutrient other than glucose. The extent of the carbon excess had positive effects on triacylglycerols production, that was maximum with 120 g L-1 glucose, in terms of lipid concentration (19 g L-1), lipid/biomass (68%) and lipid/glucose yields (16%). Both glucose concentration and growth temperature influenced the composition of fatty acids, whose unsaturation degree decreased when the temperature or glucose excess increased. Conclusions This study is the first proposed biotechnological application for Rhodotorula glacialis species, whose oleaginous biomass accumulates high amounts of lipids within a wide range of temperatures through appropriate cultivation C:N ratio. Although R. glacialis DBVPG 4785 is a cold adapted yeast, lipid production occurs over a broad range of temperatures and it can be considered an interesting microorganism for the production of single cell oils. PMID:20863365

  15. Method for treating wastewater using microorganisms and vascular aquatic plants

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C. (Inventor)

    1983-01-01

    A method for treating wastewater compresses subjecting the wastewater to an anaerobic setting step for at least 6 hours and passing the liquid effluent from the anaerobic settling step through a filter cell in an upflow manner. There the effluent is subjected first to the action of anaerobic and facultative microorganisms, and then to the action of aerobic microorganisms and the roots of at least one vascular aquatic plant.

  16. Microorganisms having enhanced resistance to acetate and methods of use

    DOEpatents

    Brown, Steven D; Yang, Shihui

    2014-10-21

    The present invention provides isolated or genetically modified strains of microorganisms that display enhanced resistance to acetate as a result of increased expression of a sodium proton antiporter. The present invention also provides methods for producing such microbial strains, as well as related promoter sequences and expression vectors. Further, the present invention provides methods of producing alcohol from biomass materials by using microorganisms with enhanced resistance to acetate.

  17. Isolation, identification and sensitivity pattern of microorganisms isolated from the urine of pregnant women.

    PubMed

    Karim, S; Khan, K I

    1994-01-01

    The present studies were conducted to detect and identify the microorganism from the urine of pregnant women having urinary tract infection. The antibiotic susceptibility of these isolated microorganisms was also determined. The microorganisms found responsible for the infection were bacteria, fungi, yeast and protozoa. Among the bacteria two were identified as Gram-positive cocci i.e. Staphylococcus aureus and S. epidermidis, the remaining two were Gram-negative bacilli which were Escherichia coil and Pseudomonas aeruginosa. The fungus was identified as AspelEillus niger and the yeast like fungus Candida albican. The only protozoan found in some of the urine samples was Trichomonas vaginalis. These isolated and identified microorganisms were more susceptible to Norfloxacin, Velosef, Minocin, Nitrofurantoin, Malidixic acid and Metronidazole whereas antibiotics Penbritin and Cefaloridine were least effective against these microorganisms.

  18. Nature's Helpers: Using Microorganisms to Remove Trichloroethene (TCE) from Groundwater

    NASA Astrophysics Data System (ADS)

    Delgado, A. G.; Krajmlanik-Brown, R.; Fajardo-Williams, D.; Halloum, I.

    2015-12-01

    Organic chlorinated solvents, such as perchloroethene (PCE) and trichloroethene (TCE), are toxic pollutants threatening ground water quality worldwide and present at many superfund sites. Bioremediation using microorganisms is a promising, green, efficient, and sustainable approach to remove PCE and TCE contamination from soil and groundwater. Under anaerobic conditions, specialized microorganisms (dechlorinators) can reduce these chlorinated ethenes to ethene, an innocuous product, and gain energy for growth by a process known as reductive dechlorination. Dechlorinators are most often present in the environment and in dechlorinating cultures alongside other microbes such as fermenters, methanogens, and acetogens. Fermenters, methanogens, and acetogens syntrophically provide essential nutrients and growth factors to dechlorinators, most specifically to the only members able to reduce TCE all the way to ethene: Dehalococcoides; unfortunately, they also compete with dechlorinators for electron donors. My laboratory devises reductive chlorination platforms to study competition and syntrophy among Dehalococcoides, and other microbes to optimize remediation reactions and transport in the subsurface. We look at competing processes present as part of the natural soil chemistry and microbiology and address these challenges through a combination of enrichment techniques, molecular microbial ecology (deep sequencing), water chemistry, and electron balances. We have applied knowledge gathered in my laboratory to: 1) enrich microbial dechlorinating cultures capable of some of the fastest rates of TCE to ethene dechlorination ever reported, and 2) successfully design and operate three different continuous dechlorinating reactor types. We attribute our successful reactor operations to our multidisciplinary approach which links microbiology and engineering. Our reactors produce robust dechlorinating cultures used for in-situ bioaugmentation of PCE and TCE at contaminated sites

  19. Glaciimonas frigoris sp. nov., a psychrophilic bacterium isolated from ancient Siberian permafrost sediment, and emended description of the genus Glaciimonas.

    PubMed

    Margesin, Rosa; Zhang, De-Chao; Frasson, David; Brouchkov, Anatoli

    2016-02-01

    The bacterial strain N1-38 T was isolated from ancient Siberian permafrost sediment. The strain was Gram-reaction-negative, motile by gliding, rod-shaped and psychrophilic, and showed good growth over a temperature range of - 5 to 25 °C. Phylogenetic analysis of 16S rRNA gene sequences revealed that strain N1-38 T was most closely related to members of the genus Glaciimonas and shared the highest 16S rRNA gene sequence similarities with the type strains of Glaciimonas alpina (99.3 %), Glaciimonas immobilis (98.9 %) and Glaciimonas singularis (96.5 %). The predominant cellular fatty acids of strain N1-38 T were summed feature 3 (C 16 : 1 ω7 c and/or iso-C 15 : 0 2-OH), C 16 : 0 and C 18 : 1 ω7 c . The major respiratory quinone was ubiquinone 8 and the major polar lipids were phosphatidylethanolamine and diphosphatidylglycerol. The genomic DNA G+C content was 53.0 mol%. Combined data of phenotypic, phylogenetic and DNA-DNA relatedness studies demonstrated that strain N1-38 T represents a novel species of the genus Glaciimonas , for which the name Glaciimonas frigoris sp. nov. is proposed. The type strain is N1-38 T ( = LMG 28868 T  = CCOS 838 T ). An emended description of the genus Glaciimonas is also provided.

  20. Integrated micro-optofluidic platform for real-time detection of airborne microorganisms

    NASA Astrophysics Data System (ADS)

    Choi, Jeongan; Kang, Miran; Jung, Jae Hee

    2015-11-01

    We demonstrate an integrated micro-optofluidic platform for real-time, continuous detection and quantification of airborne microorganisms. Measurements of the fluorescence and light scattering from single particles in a microfluidic channel are used to determine the total particle number concentration and the microorganism number concentration in real-time. The system performance is examined by evaluating standard particle measurements with various sample flow rates and the ratios of fluorescent to non-fluorescent particles. To apply this method to real-time detection of airborne microorganisms, airborne Escherichia coli, Bacillus subtilis, and Staphylococcus epidermidis cells were introduced into the micro-optofluidic platform via bioaerosol generation, and a liquid-type particle collection setup was used. We demonstrate successful discrimination of SYTO82-dyed fluorescent bacterial cells from other residue particles in a continuous and real-time manner. In comparison with traditional microscopy cell counting and colony culture methods, this micro-optofluidic platform is not only more accurate in terms of the detection efficiency for airborne microorganisms but it also provides additional information on the total particle number concentration.

  1. Integrated micro-optofluidic platform for real-time detection of airborne microorganisms

    PubMed Central

    Choi, Jeongan; Kang, Miran; Jung, Jae Hee

    2015-01-01

    We demonstrate an integrated micro-optofluidic platform for real-time, continuous detection and quantification of airborne microorganisms. Measurements of the fluorescence and light scattering from single particles in a microfluidic channel are used to determine the total particle number concentration and the microorganism number concentration in real-time. The system performance is examined by evaluating standard particle measurements with various sample flow rates and the ratios of fluorescent to non-fluorescent particles. To apply this method to real-time detection of airborne microorganisms, airborne Escherichia coli, Bacillus subtilis, and Staphylococcus epidermidis cells were introduced into the micro-optofluidic platform via bioaerosol generation, and a liquid-type particle collection setup was used. We demonstrate successful discrimination of SYTO82-dyed fluorescent bacterial cells from other residue particles in a continuous and real-time manner. In comparison with traditional microscopy cell counting and colony culture methods, this micro-optofluidic platform is not only more accurate in terms of the detection efficiency for airborne microorganisms but it also provides additional information on the total particle number concentration. PMID:26522006

  2. Potentially pathogenic amoeba-associated microorganisms in cooling towers and their control.

    PubMed

    Pagnier, Isabelle; Merchat, Michèle; La Scola, Bernard

    2009-06-01

    Cooling towers provide a favorable environment for the proliferation of microorganisms. Cooling towers generate a biofilm and often aerosolize contaminated water, thereby increasing the risk of microorganism dissemination by human inhalation. This pathogen dissemination was first revealed by the epidemics of Legionnaires' disease that were directly related to the presence of cooling towers, and since then, the ecology of Legionella pneumophila has been well studied. Each country has specific standards regarding the acceptable amount of microorganisms in cooling tower systems. However, those standards typically only concern L. pneumophila, even though many other microorganisms can also be isolated from cooling towers, including protozoa, bacteria and viruses. Microbiological control of the cooling tower system can be principally achieved by chemical treatments and also by improving the system's construction. Several new treatments are being studied to improve the efficiency of disinfection. However, as most of these treatments continue to focus solely on L. pneumophila, reports of other types of pathogens continue to increase. Therefore, how their dissemination affects the human populous health should be addressed now.

  3. [The effect of selected antibiotics on microorganisms contaminating boar ejaculate].

    PubMed

    Mazurová, J; Vinter, P

    1991-04-01

    The occurrence of microorganisms, including their total counts in boar native ejaculates, was investigated in two stages; the objective of this investigation also was to determine contamination after the sperms were treated with diluents containing the antibiotics ampicillin, gentamycin, apramycin, cefoxitin, or antibiotic combinations penicillin + streptomycin, ampicillin + cefoxitin, gentamycin + cefoxitin and ampicillin + gentamycin. The representation of bacterial species and total counts of microbes in 1 ml diluted sperm stored at a temperature of about 18 degrees C were determined in 24, 48 and 72 h after dilution. The microorganisms were cultivated from all native ejaculates. Proteus sp. (63.3%) and Pseudomonas aeruginosa (51.5% of the total number of examined samples) were the most frequent species. The number of contaminated diluted ejaculates ranged from 12.5 to 95.8% in 24 h after dilution, from 12.5 to 98.5% in 48 h and from 16.8 to 95.8% of the total number of examined ejaculates in 72 h. The occurrence of microorganisms correlated mostly with the efficiency spectrum of the antibiotics or their combinations. The average counts of microorganisms in 1 ml of native ejaculate made 2,363,000 in stage I and 1,472,108 in stage II. The highest average counts in 1 ml of diluted sperm were found in ejaculates containing cefoxitin and apramycin. Gentamycin was the most effective antibiotic used as a sole component (average counts of microorganisms CPM in 1 ml were 416 in 24 h, 955 in 48 h and 2260 in 72 h after dilution); ampicillin and gentamycin were the most efficient combination (14--20--21). This combination exerted very good effects also on Proteus sp. and Pseudomonas aeruginosa.

  4. Halophilic microorganisms in deteriorated historic buildings: insights into their characteristics.

    PubMed

    Adamiak, Justyna; Otlewska, Anna; Gutarowska, Beata; Pietrzak, Anna

    2016-01-01

    Historic buildings are constantly being exposed to numerous climatic changes such as damp and rainwater. Water migration into and out of the material's pores can lead to salt precipitation and the so-called efflorescence. The structure of the material may be seriously threatened by salt crystallization. A huge pressure is produced when salt hydrates occupy larger spaces, which leads at the end to cracking, detachment and material loss. Halophilic microorganisms have the ability to adapt to high salinity because of the mechanisms of inorganic salt (KCl or NaCl) accumulation in their cells at concentrations isotonic to the environment, or compatible solutes uptake or synthesis. In this study, we focused our attention on the determination of optimal growth conditions of halophilic microorganisms isolated from historical buildings in terms of salinity, pH and temperature ranges, as well as biochemical properties and antagonistic abilities. Halophilic microorganisms studied in this paper could be categorized as a halotolerant group, as they grow in the absence of NaCl, as well as tolerate higher salt concentrations (Staphylococcus succinus, Virgibacillus halodenitrificans). Halophilic microorganisms have been also observed (Halobacillus styriensis, H. hunanensis, H. naozhouensis, H. litoralis, Marinococcus halophilus and yeast Sterigmatomyces halophilus). With respect to their physiological characteristics, cultivation at a temperature of 25-30°C, pH 6-7, NaCl concentration for halotolerant and halophilic microorganisms, 0-10% and 15-30%, respectively, provides the most convenient conditions. Halophiles described in this study displayed lipolytic, glycolytic and proteolytic activities. Staphylococcus succinus and Marinococcus halophilus showed strong antagonistic potential towards bacteria from the Bacillus genus, while Halobacillus litoralis displayed an inhibiting ability against other halophiles.

  5. Efficacy of Specific Plant Products on Microorganisms Causing Dental Caries.

    PubMed

    Kanth, M Rajini; Prakash, A Ravi; Sreenath, G; Reddy, Vikram Simha; Huldah, S

    2016-12-01

    Dental caries and periodontal diseases are the most common oral diseases seen globally, both in developed and developing countries. Oral microorganisms that is gram positive and gram negative bacteria are known to be involved in causation of these diseases. Nowadays commercially available dentrifices and mouth rinses are known to contain ingredients that can alter the oral microbial flora and have undesirable side effects such as vomiting, diarrhoea, disarrangement of oral, intestinal flora and tooth staining. Naturally available plant products are known to be less harmful with fewer side effects and also economical for the patient. The aim of this study was to determine the antimicrobial properties of 10 naturally available plant products against oral microorganisms causing caries and to check the efficacy of these products in-vitro and to use these in mouth washes and dentrifices. Sample of caries material was scrapped out from the extracted teeth and transferred to liquid broth, streaked over the agar media to allow for the growth of microorganisms. Plant products like clove oil, neem, ginger-garlic paste, tea tree oil, ginger, garlic, cinnamon oil, green tea, eucalyptus oil and turmeric were used. Antimicrobial efficacy of these products, was estimated by measuring zones of inhibition in the nutrient agar media. Clove oil was the most effective of all products against microorganisms causing caries with zone of inhibition - 30mm followed by ginger-garlic paste - 25mm, Neem - 15mm, tea tree oil - 15mm. Based on the above results, it can be inferred that these natural products have the maximum efficacy against microorganisms and can be recommended in dentifrices, mouth rinses, topical gels, etc.

  6. Production of gaba (γ - Aminobutyric acid) by microorganisms: a review.

    PubMed

    Dhakal, Radhika; Bajpai, Vivek K; Baek, Kwang-Hyun

    2012-10-01

    GABA (γ-aminobutyric acid) is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB), which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods.

  7. Phylogenetic analysis of anaerobic psychrophilic enrichment cultures obtained from a greenland glacier ice core

    NASA Technical Reports Server (NTRS)

    Sheridan, Peter P.; Miteva, Vanya I.; Brenchley, Jean E.

    2003-01-01

    The examination of microorganisms in glacial ice cores allows the phylogenetic relationships of organisms frozen for thousands of years to be compared with those of current isolates. We developed a method for aseptically sampling a sediment-containing portion of a Greenland ice core that had remained at -9 degrees C for over 100,000 years. Epifluorescence microscopy and flow cytometry results showed that the ice sample contained over 6 x 10(7) cells/ml. Anaerobic enrichment cultures inoculated with melted ice were grown and maintained at -2 degrees C. Genomic DNA extracted from these enrichments was used for the PCR amplification of 16S rRNA genes with bacterial and archaeal primers and the preparation of clone libraries. Approximately 60 bacterial inserts were screened by restriction endonuclease analysis and grouped into 27 unique restriction fragment length polymorphism types, and 24 representative sequences were compared phylogenetically. Diverse sequences representing major phylogenetic groups including alpha, beta, and gamma Proteobacteria as well as relatives of the Thermus, Bacteroides, Eubacterium, and Clostridium groups were found. Sixteen clone sequences were closely related to those from known organisms, with four possibly representing new species. Seven sequences may reflect new genera and were most closely related to sequences obtained only by PCR amplification. One sequence was over 12% distant from its closest relative and may represent a novel order or family. These results show that phylogenetically diverse microorganisms have remained viable within the Greenland ice core for at least 100,000 years.

  8. Three-dimensional motion measurements of free-swimming microorganisms using digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Sang Joon; Seo, Kyung Won; Choi, Yong Seok; Sohn, Myong Hwan

    2011-06-01

    A digital holographic microscope is employed to measure the 3D motion of free-swimming microorganisms. The focus function used to quantify image sharpness provides a better depth-directional accuracy with a smaller depth-of-focus compared with the intensity method in determining the depth-directional position of spherical particles of various diameters. The focus function is then applied to measure the 3D positions of free-swimming microorganisms, namely dinoflagellates C. polykrikoides and P. minimum. Both automatic segmentation and proper selection of a focus function for a selected segment are important processes in measuring the positional information of two free-swimming microorganisms of different shapes with various width-to-length ratios. The digital holographic microscopy technique improved in this work is useful for measuring 3D swimming trajectories, velocities and attitudes of hundreds of microorganisms simultaneously. It also exhibits exceptional depth-directional accuracy.

  9. Oblique transport of gyrotactic microorganisms and bioconvection nanoparticles with convective mass flux

    NASA Astrophysics Data System (ADS)

    Iqbal, Z.; Mehmood, Zaffar; Maraj, E. N.

    2017-04-01

    The present study deals with examination of steady two dimensional nanofluid containing both nanoparticles and gyrotactic microorganisms. Moreover the study comprises stagnation point flow of an obliquely striking nanofluid. The governing partial differential equations are complex and highly non-linear in nature. These are converted into system of ordinary differential equations using suitable transformations. The system is then solved numerically using shooting technique with Runge - Kutta Fehlberg method of order 5. Further, effect of different physical parameters on velocity f ‧ (η) , temperature θ (η) , density of motile microorganisms w (η) and concentration ϕ (η) along with skin friction coefficient Cf, local Nusselt Nux, Sherwood Shx and density of motile microorganism Nnx numbers have been discussed through graphs and tables. Results depict that temperature, concentration, density of motile microorganisms and local Nusselt number are increasing functions of thermophoresis parameter Nt. Whereas Nt contributes in lessening Sherwood and local density numbers.

  10. Biomining: metal recovery from ores with microorganisms.

    PubMed

    Schippers, Axel; Hedrich, Sabrina; Vasters, Jürgen; Drobe, Malte; Sand, Wolfgang; Willscher, Sabine

    2014-01-01

    Biomining is an increasingly applied biotechnological procedure for processing of ores in the mining industry (biohydrometallurgy). Nowadays the production of copper from low-grade ores is the most important industrial application and a significant part of world copper production already originates from heap or dump/stockpile bioleaching. Conceptual differences exist between the industrial processes of bioleaching and biooxidation. Bioleaching is a conversion of an insoluble valuable metal into a soluble form by means of microorganisms. In biooxidation, on the other hand, gold is predominantly unlocked from refractory ores in large-scale stirred-tank biooxidation arrangements for further processing steps. In addition to copper and gold production, biomining is also used to produce cobalt, nickel, zinc, and uranium. Up to now, biomining has merely been used as a procedure in the processing of sulfide ores and uranium ore, but laboratory and pilot procedures already exist for the processing of silicate and oxide ores (e.g., laterites), for leaching of processing residues or mine waste dumps (mine tailings), as well as for the extraction of metals from industrial residues and waste (recycling). This chapter estimates the world production of copper, gold, and other metals by means of biomining and chemical leaching (bio-/hydrometallurgy) compared with metal production by pyrometallurgical procedures, and describes new developments in biomining. In addition, an overview is given about metal sulfide oxidizing microorganisms, fundamentals of biomining including bioleaching mechanisms and interface processes, as well as anaerobic bioleaching and bioleaching with heterotrophic microorganisms.

  11. UV inactivation of pathogenic and indicator microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, J.C.; Ossoff, S.F.; Lobe, D.C.

    1985-06-01

    Survival was measured as a function of the dose of germicidal UV light for the bacteria Escherichia coli, Salmonella typhi, Shigella sonnei, Streptococcus faecalis, Staphylococcus aureus, and Bacillus subtilis spores, the enteric viruses poliovirus type 1 and simian rotavirus SA11, the cysts of the protozoan Acanthamoeba castellanii, as well as for total coliforms and standard plate count microorganisms from secondary effluent. The doses of UV light necessary for a 99.9% inactivation of the cultured vegetative bacteria, total coliforms, and standard plate count microorganisms were comparable. However, the viruses, the bacterial spores, and the amoebic cysts required about 3 to 4more » times, 9 times, and 15 times, respectively, the dose required for E. coli. These ratios covered a narrower relative dose range than that previously reported for chlorine disinfection of E. coli, viruses, spores, and cysts.« less

  12. Retooling microorganisms for the fermentative production of alcohols.

    PubMed

    Toogood, Helen S; Scrutton, Nigel S

    2018-04-01

    Bioengineering and synthetic biology approaches have revolutionised the field of biotechnology, enabling the introduction of non-native and de novo pathways for biofuels production. This 'retooling' of microorganisms is also applied to the utilisation of mixed carbon components derived from lignocellulosic biomass, a major technical barrier for the development of economically viable fermentations. This review will discuss recent advances in microorganism engineering for efficient production of alcohols from waste biomass. These advances span the introduction of new pathways to alcohols, host modifications for more cost-effective utilisation of lignocellulosic waste and modifications of existing pathways for generating new fuel additives. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. The examinations of microorganisms by correlation optics method

    NASA Astrophysics Data System (ADS)

    Bilyi, Olexander I.

    2004-06-01

    In report described methods of correlation optics, which are based on the analysis of intensity changes of quasielastic light scattering by micro-organisms and allow the type of correlation function to obtain information about the size of dispersive particles. The principle of new optical method of verification is described. In this method the gauging of intensity of an indirect illumination is carried out by static spectroscopy and processing of observed data by a method of correlation spectroscopy. The given mode of gauging allows measuring allocation of micro-organisms in size interval of 0.1 - 10.0 microns. In the report results of examinations of cultures Pseudomonas aeruginosa, Escherichia coli, Micrococcus lutteus, Lamprocystis and Triocapsa bacteriachlorofil are considered.

  14. Metabolic capability and in situ activity of microorganisms in an oil reservoir.

    PubMed

    Liu, Yi-Fan; Galzerani, Daniela Domingos; Mbadinga, Serge Maurice; Zaramela, Livia S; Gu, Ji-Dong; Mu, Bo-Zhong; Zengler, Karsten

    2018-01-05

    Microorganisms have long been associated with oxic and anoxic degradation of hydrocarbons in oil reservoirs and oil production facilities. While we can readily determine the abundance of microorganisms in the reservoir and study their activity in the laboratory, it has been challenging to resolve what microbes are actively participating in crude oil degradation in situ and to gain insight into what metabolic pathways they deploy. Here, we describe the metabolic potential and in situ activity of microbial communities obtained from the Jiangsu Oil Reservoir (China) by an integrated metagenomics and metatranscriptomics approach. Almost complete genome sequences obtained by differential binning highlight the distinct capability of different community members to degrade hydrocarbons under oxic or anoxic condition. Transcriptomic data delineate active members of the community and give insights that Acinetobacter species completely oxidize alkanes into carbon dioxide with the involvement of oxygen, and Archaeoglobus species mainly ferment alkanes to generate acetate which could be consumed by Methanosaeta species. Furthermore, nutritional requirements based on amino acid and vitamin auxotrophies suggest a complex network of interactions and dependencies among active community members that go beyond classical syntrophic exchanges; this network defines community composition and microbial ecology in oil reservoirs undergoing secondary recovery. Our data expand current knowledge of the metabolic potential and role in hydrocarbon metabolism of individual members of thermophilic microbial communities from an oil reservoir. The study also reveals potential metabolic exchanges based on vitamin and amino acid auxotrophies indicating the presence of complex network of interactions between microbial taxa within the community.

  15. Toward a Predictive Understanding of Earth’s Microbiomes to Address 21st Century Challenges

    PubMed Central

    Blaser, Martin J.; Cardon, Zoe G.; Cho, Mildred K.; Dangl, Jeffrey L.; Green, Jessica L.; Knight, Rob; Maxon, Mary E.; Northen, Trent R.; Pollard, Katherine S.

    2016-01-01

    ABSTRACT Microorganisms have shaped our planet and its inhabitants for over 3.5 billion years. Humankind has had a profound influence on the biosphere, manifested as global climate and land use changes, and extensive urbanization in response to a growing population. The challenges we face to supply food, energy, and clean water while maintaining and improving the health of our population and ecosystems are significant. Given the extensive influence of microorganisms across our biosphere, we propose that a coordinated, cross-disciplinary effort is required to understand, predict, and harness microbiome function. From the parallelization of gene function testing to precision manipulation of genes, communities, and model ecosystems and development of novel analytical and simulation approaches, we outline strategies to move microbiome research into an era of causality. These efforts will improve prediction of ecosystem response and enable the development of new, responsible, microbiome-based solutions to significant challenges of our time. PMID:27178263

  16. Methods and Compositions Based on Culturing Microorganisms in Low Sedimental Fluid Shear Conditions

    NASA Technical Reports Server (NTRS)

    Ott, C. Mark; Nickerson, Cheryl A.; Wilson, James W.; Sarker, Shameema; Nauman, Eric A.; Schurr, Michael J.; Nelman-Gonzalez, Mayra A.

    2012-01-01

    The benefits of applying a low sedimental fluid shear environment to manipulate microorganisms were examined. Microorganisms obtained from a low sedimental fluid shear culture, which exhibit modified phenotypic and molecular genetic characteristics, are useful for the development of novel and improved diagnostics, therapeutics, vaccines, and bio-industrial products. Furthermore, application of low sedimental fluid conditions to microorganisms permits identification of molecules uniquely expressed under these conditions, providing a basis for the design of new therapeutic targets.

  17. Immobilization of microorganisms for detection by solid-phase immunoassays.

    PubMed Central

    Ibrahim, G F; Lyons, M J; Walker, R A; Fleet, G H

    1985-01-01

    Several cultures of gram-negative and gram-positive bacteria were successfully immobilized with titanous hydroxide. The immobilization efficiency for the microorganisms investigated in saline and broth media ranged from 80.2 to 99.9%. The immobilization of salmonellae was effective over a wide pH range. The presence of buffers, particularly phosphate buffer, drastically reduced the immobilization rate. However, buffers may be added to immunoassay systems after immobilization of microorganisms. The immobilization process involved only one step, i.e., shaking 100 microliter of culture with 50 microliter of titanous hydroxide suspension in polystyrene tubes for only 10 min. The immobilized cells were so tenaciously bound that vigorous agitation for 24 h did not result in cell dissociation. The nonspecific binding of 125I-labeled antibody from rabbits and 125I-labeled protein A by titanous hydroxide was inhibited in the presence of 2% gelatin and amounted to only 5.6 and 3.9%, respectively. We conclude that this immobilization procedure is a potentially powerful tool which could be utilized in solid-phase immunoassays concerned with the diagnosis of microorganisms. PMID:3900128

  18. Statistical approach for the enhanced production of cold-active β-galactosidase from Thalassospira frigidphilosprofundus: a novel marine psychrophile from deep waters of Bay of Bengal.

    PubMed

    Pulicherla, K K; Kumar, P Suresh; Manideep, K; Rekha, V P B; Ghosh, Mrinmoy; Sambasiva Rao, K R S

    2013-01-01

    In the present investigation Thalassospira frigidphilosprofundus, a novel species from the deep waters of the Bay of Bengal, was explored for the production of cold-active β-galactosidase by submerged fermentation using marine broth medium as the basal medium. Effects of various medium constituents, namely, carbon, nitrogen source, pH, and temperature, were investigated using a conventional one-factor-at-a-time method. It was found that lactose, yeast extract, and bactopeptones are the most influential components for β-galactosidase production. Under optimal conditions, the production of β-galactosidase was found to be 3,864 U/mL at 20 ± 2°C, pH 6.5 ± 0.2, after 48 hr of incubation. β-Galactosidase production was further optimized by the Taguchi orthogonal array design of experiments and the central composite rotatable design (CCRD) of response surface methodology. Under optimal experimental conditions the cold-active β-galactosidase enzyme production from Thalassospira frigidphilosprofundus was enhanced from 3,864 U/mL to 10,657 U/mL, which is almost three times higher than the cold-active β-galactosidase production from the well-reported psychrophile Pseudoalteromonas haloplanktis.

  19. The role of viable airborne microorganisms deposition in the southeastern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Rahav, E.; Paytan, A.; Herut, B.

    2016-02-01

    Rahav Eyal1*, Paytan Adina2, Herut Barak1[1] Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 31080, Israel [2] Institute of Marine Science, University of California, Santa Cruz, CA, USA 95064. * Presenting author A high diversity of bacteria, fungi and virus are carried by atmospheric dust and deposit into the ocean. The oligotrophic southeastern Mediterranean Sea (SEMS) is known to receive relatively high amounts of atmospheric dust, thereby potentially be impacted by transport of air-borne microorganisms of diverse biogeographic origin. In this study, we characterized the genetic fingerprinting of microorganisms attached to dust in representative samples collected between 2006-2012 during storm events in the SEMS. Statistical analysis showed that dust of common origin was clustered together based on its genetic signature. Thus, microorganisms picked up in diverse geographical areas can interact differently with ambient populations. Further, microcosm dust addition experiments with surface SEMS filtered (0.2 µm) and killed (autoclaved) seawater showed that airborne microorganisms originated in dust collected in the SEMS significantly enhanced system's bacterial productivity, introduced new species and altered the abundance and activity of ambient surface microbial populations. Our results demonstrate that dust-borne microorganisms may play a significant role in the SEMS ecology.

  20. Engineering biofuel tolerance in non-native producing microorganisms.

    PubMed

    Jin, Hu; Chen, Lei; Wang, Jiangxin; Zhang, Weiwen

    2014-01-01

    Large-scale production of renewable biofuels through microbiological processes has drawn significant attention in recent years, mostly due to the increasing concerns on the petroleum fuel shortages and the environmental consequences of the over-utilization of petroleum-based fuels. In addition to native biofuel-producing microbes that have been employed for biofuel production for decades, recent advances in metabolic engineering and synthetic biology have made it possible to produce biofuels in several non-native biofuel-producing microorganisms. Compared to native producers, these non-native systems carry the advantages of fast growth, simple nutrient requirements, readiness for genetic modifications, and even the capability to assimilate CO2 and solar energy, making them competitive alternative systems to further decrease the biofuel production cost. However, the tolerance of these non-native microorganisms to toxic biofuels is naturally low, which has restricted the potentials of their application for high-efficiency biofuel production. To address the issues, researches have been recently conducted to explore the biofuel tolerance mechanisms and to construct robust high-tolerance strains for non-native biofuel-producing microorganisms. In this review, we critically summarize the recent progress in this area, focusing on three popular non-native biofuel-producing systems, i.e. Escherichia coli, Lactobacillus and photosynthetic cyanobacteria. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Nickel titanium alloy: Cytotoxicity evaluation on microorganism culture

    NASA Astrophysics Data System (ADS)

    Dinca, V. C.; Soare, S.; Barbalat, A.; Dinu, C. Z.; Moldovan, A.; Stoica, I.; Vassu, T.; Purice, A.; Scarisoareanu, N.; Birjega, R.; Craciun, V.; DeStefano, V. Ferrari; Dinescu, M.

    2006-04-01

    High purity nickel (Ni) and titanium (Ti) targets have been used to form well-defined thin films of nitinol on Ti substrate by pulsed laser deposition (PLD) technique. Their chemical composition, crystalline structure and surface properties have been investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). We have shown that by varying the deposition parameters such as laser fluence and number of laser pulses, we are able to control the film thickness as well as film's uniformity and roughness. Cytocompatibility tests have been performed through in vitro assays using microorganisms culture cells such as yeasts ( Saccharomyces cerevisiae) and bacteria ( Escherichia coli), in order to determine the thin film's toxic potential at the in vitro cellular level. Microorganism's adhesion on the nitinol surface was observed and the biofilm formation has been analyzed and quantified. Our results have shown no reactivity detected in cell culture exposed to NiTi films in comparison with the negative controls and a low adherence of the microorganisms on the nitinol surface that is an important factor for biofilm prevention. We can, therefore, conclude that NiTi is a good candidate material to be used for implants and medical devices.

  2. Electrokinetic transport of aerobic microorganisms under low-strength electric fields.

    PubMed

    Maillacheruvu, Krishnanand Y; Chinchoud, Preethi R

    2011-01-01

    To investigate the feasibility of utilizing low strength electric fields to transport commonly available mixed cultures such as those from an activated sludge process, bench scale batch reactor studies were conducted in sand and sandy loam soils. A readily biodegradable substrate, dextrose, was used to test the activity of the transported microorganisms. Electric field strengths of 7V, 10.5V, and 14V were used. Results from this investigation showed that an electric field strength of 0.46 Volts per cm was sufficient to transport activated sludge microorganisms across a sandy loam soil across a distance of about 8 cm in 72 h. More importantly, the electrokinetically transported microbial culture remained active and viable after the transport process and was biodegrade 44% of the dextrose in the soil medium. Electrokinetic treatment without microorganisms resulted in removal of 37% and the absence of any treatment yielded a removal of about 15%.

  3. Evaluation of the anti-hyperglycemic effect and safety of microorganism 1-deoxynojirimycin.

    PubMed

    Takasu, Soo; Parida, Isabella Supardi; Onose, Shinji; Ito, Junya; Ikeda, Ryoichi; Yamagishi, Kenji; Higuchi, Oki; Tanaka, Fukuyo; Kimura, Toshiyuki; Miyazawa, Teruo; Nakagawa, Kiyotaka

    2018-01-01

    1-Deoxynojirimycin (DNJ) is a potent α-glucosidase inhibitor and thus beneficial for prevention of diabetes. While we have succeeded in obtaining the culture supernatant extract (CSE) rich in DNJ from microorganism source, information regarding its anti-hyperglycemic effect and safety were still limited. Therefore, this study was aimed to evaluate the anti-hyperglycemic effect and safety of microorganism DNJ. Oral sucrose tolerance test was performed, and the result showed that CSE was able to significantly suppress the blood glucose elevation and suggested DNJ as the main active compound. To determine its safety, the absorption and excretion of microorganism DNJ were evaluated using 15N labeling method. Our findings investigated the recovery rate of 15N from DNJ reached 80% up to 48 hours after oral administration, suggesting its rapid excretion, suggesting the safety of DNJ. This study verified the functional properties and safety of DNJ from microorganisms, suggesting its potential use for functional purpose.

  4. Periodontal Microorganisms and Cardiovascular Risk Markers in Youth With Type 1 Diabetes and Without Diabetes.

    PubMed

    Merchant, Anwar T; Nahhas, Georges J; Wadwa, R Paul; Zhang, Jiajia; Tang, Yifan; Johnson, Lonnie R; Maahs, David M; Bishop, Franziska; Teles, Ricardo; Morrato, Elaine H

    2016-04-01

    A subset of periodontal microorganisms has been associated with cardiovascular disease (CVD), which is the leading complication of type 1 diabetes (t1DM). The authors therefore evaluated the association between periodontal microorganism groups and early markers of CVD in youth with t1DM. A cross-sectional analysis was conducted among youth aged 12 to 19 years at enrollment; 105 had t1DM for ≥5 years and were seeking care at the Barbara Davis Center, University of Colorado, from 2009 to 2011, and 71 did not have diabetes. Subgingival plaque samples were assessed for counts of 41 periodontal microorganisms using DNA-DNA hybridization. Microorganisms were classified using cluster analysis into four groups named red-orange, orange-green, blue/other, and yellow/other, modified from Socransky's color scheme for periodontal microorganisms. Subsamples (54 with t1DM and 48 without diabetes) also received a periodontal examination at the University of Colorado School of Dental Medicine. Participants were ≈15 years old on average, and 74% were white. Mean periodontal probing depth was 2 mm (SE 0.02), and 17% had bleeding on probing. In multivariable analyses, glycated hemoglobin (HbA1c) was inversely associated with the yellow/other cluster (microorganisms that are not associated with periodontal disease) among youth with t1DM. Blood pressure, triglycerides, low-density lipoprotein, high-density lipoprotein, and total cholesterol were not associated with microorganism clusters in this group. HbA1c was not associated with periodontal microorganism clusters among youth without diabetes. Among youth with t1DM who had good oral health, periodontal microorganisms were not associated with CVD risk factors.

  5. Gut Microorganisms Found Necessary for Successful Cancer Therapy | Poster

    Cancer.gov

    By Nancy Parrish, Staff Writer Humans play host to trillions of microorganisms that help our bodies perform basic functions, like digestion, growth, and fighting disease. In fact, bacterial cells outnumber the human cells in our bodies by 10 to 1.1 The tens of trillions of microorganisms thriving in our intestines are known as gut microbiota, and those that are not harmful to us are referred to as commensal microbiota. In a recent paper in Science, NCI scientists described their discovery that, in mice, the presence of commensal microbiota is needed for successful response to cancer therapy.

  6. [The interaction of pathogenic microorganisms with the sorbent polymethylsiloxane].

    PubMed

    Dikova, I G; Il'chenko, O I; Ruban, V I; Samodumova, I M; Sidel'nikova, L F

    1993-01-01

    The method of electron microscopy has been used to study adhesion of the microbic cells of standard strains of Staphylococcus aureus, Escherichia coli and fungi of genus Candida on the organosilicon sorbent polymethylsiloxane (PMS) and medicamentous complex containing it. This complex contains furazolidone and metronidazole immobilized on silver ions-modified PMS. It is shown that the adhesion of microorganisms is accompanied by their destruction whose rate on pure PMS and medicamentous complex is different. Using experimental data the assumptions are advanced concerning the mechanism of the PMS interaction with Gram-positive and Gram-negative microorganisms as well as with fungi of genus Candida.

  7. Circular harmonic filters for the recognition of marine microorganisms

    NASA Astrophysics Data System (ADS)

    Zavala-Hamz, Victor Antonio; Alvarez-Borrego, Josué

    1997-01-01

    We present an application of circular-harmonic filters (CHF s) for the recognition of planktonic microorganisms. CHF s discriminated both genera Acartia and Calanus . The symmetry of genus Acartia permitted discrimination to the species and sex levels, whereas the asymmetry of the genus Calanus permitted discrimination only to the generic level. The differences among organisms of different sex of the genus Calanus could not be detected by these particular CHF s. More research needs to be carried out with more complex CHF s to enhance their performance and to permit the implementation of an automated optodigital system to identify and count marine microorganisms.

  8. [Sorption of microorganisms by fiber materials].

    PubMed

    Nikovskaia, G N; Gordienko, A S; Globa, L I

    1986-01-01

    Candida guilliermondii and Escherichia coli cells were adsorbed on glass and basalt fibres with a similar specific surface, but with a different charge. The quantity of adsorbed microorganisms did not depend on the type and charge of a fibre surface. However, cells were adsorbed faster and more firmly on positively charged and uncharged fibres than on negatively charged fibres.

  9. Models of Micro-Organisms: Children's Knowledge and Understanding of Micro-Organisms from 7 to 14 Years Old

    ERIC Educational Resources Information Center

    Byrne, Jenny

    2011-01-01

    This paper describes the expressed models that children aged 7, 11, and 14 years have about micro-organisms and microbial activity. These were elicited using a variety of data collection techniques that complemented each other, resulting in a rich dataset, and provided information about the level of knowledge and progression of ideas across the…

  10. Thermophilic microorganisms in biomining.

    PubMed

    Donati, Edgardo Rubén; Castro, Camila; Urbieta, María Sofía

    2016-11-01

    Biomining is an applied biotechnology for mineral processing and metal extraction from ores and concentrates. This alternative technology for recovering metals involves the hydrometallurgical processes known as bioleaching and biooxidation where the metal is directly solubilized or released from the matrix for further solubilization, respectively. Several commercial applications of biomining can be found around the world to recover mainly copper and gold but also other metals; most of them are operating at temperatures below 40-50 °C using mesophilic and moderate thermophilic microorganisms. Although biomining offers an economically viable and cleaner option, its share of the world´s production of metals has not grown as much as it was expected, mainly considering that due to environmental restrictions in many countries smelting and roasting technologies are being eliminated. The slow rate of biomining processes is for sure the main reason of their poor implementation. In this scenario the use of thermophiles could be advantageous because higher operational temperature would increase the rate of the process and in addition it would eliminate the energy input for cooling the system (bioleaching reactions are exothermic causing a serious temperature increase in bioreactors and inside heaps that adversely affects most of the mesophilic microorganisms) and it would decrease the passivation of mineral surfaces. In the last few years many thermophilic bacteria and archaea have been isolated, characterized, and even used for extracting metals. This paper reviews the current status of biomining using thermophiles, describes the main characteristics of thermophilic biominers and discusses the future for this biotechnology.

  11. Local climatic adaptation in a widespread microorganism.

    PubMed

    Leducq, Jean-Baptiste; Charron, Guillaume; Samani, Pedram; Dubé, Alexandre K; Sylvester, Kayla; James, Brielle; Almeida, Pedro; Sampaio, José Paulo; Hittinger, Chris Todd; Bell, Graham; Landry, Christian R

    2014-02-22

    Exploring the ability of organisms to locally adapt is critical for determining the outcome of rapid climate changes, yet few studies have addressed this question in microorganisms. We investigated the role of a heterogeneous climate on adaptation of North American populations of the wild yeast Saccharomyces paradoxus. We found abundant among-strain variation for fitness components across a range of temperatures, but this variation was only partially explained by climatic variation in the distribution area. Most of fitness variation was explained by the divergence of genetically distinct groups, distributed along a north-south cline, suggesting that these groups have adapted to distinct climatic conditions. Within-group fitness components were correlated with climatic conditions, illustrating that even ubiquitous microorganisms locally adapt and harbour standing genetic variation for climate-related traits. Our results suggest that global climatic changes could lead to adaptation to new conditions within groups, or changes in their geographical distributions.

  12. Redox cofactor engineering in industrial microorganisms: strategies, recent applications and future directions.

    PubMed

    Liu, Jiaheng; Li, Huiling; Zhao, Guangrong; Caiyin, Qinggele; Qiao, Jianjun

    2018-05-01

    NAD and NADP, a pivotal class of cofactors, which function as essential electron donors or acceptors in all biological organisms, drive considerable catabolic and anabolic reactions. Furthermore, they play critical roles in maintaining intracellular redox homeostasis. However, many metabolic engineering efforts in industrial microorganisms towards modification or introduction of metabolic pathways, especially those involving consumption, generation or transformation of NAD/NADP, often induce fluctuations in redox state, which dramatically impede cellular metabolism, resulting in decreased growth performance and biosynthetic capacity. Here, we comprehensively review the cofactor engineering strategies for solving the problematic redox imbalance in metabolism modification, as well as their features, suitabilities and recent applications. Some representative examples of in vitro biocatalysis are also described. In addition, we briefly discuss how tools and methods from the field of synthetic biology can be applied for cofactor engineering. Finally, future directions and challenges for development of cofactor redox engineering are presented.

  13. A search for microorganisms producing medium-chain alkanes from aldehydes.

    PubMed

    Ito, Masakazu; Kambe, Hiromi; Kishino, Shigenobu; Muramatsu, Masayoshi; Ogawa, Jun

    2018-01-01

    Microorganisms with medium-chain alkane-producing activity are promising for the bio-production of drop-in fuel. In this study, we screened for microorganisms producing tridecane from tetradecanal. The activity of aldehyde decarbonylation was found in a wide range of microbes. In particular, the genus Klebsiella in the Enterobacteriaceae family was found to have a high ability to produce alkanes from aldehydes via enzyme catalyzed reaction. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Biological Synthesis of Nanoparticles from Plants and Microorganisms.

    PubMed

    Singh, Priyanka; Kim, Yu-Jin; Zhang, Dabing; Yang, Deok-Chun

    2016-07-01

    Nanotechnology has become one of the most promising technologies applied in all areas of science. Metal nanoparticles produced by nanotechnology have received global attention due to their extensive applications in the biomedical and physiochemical fields. Recently, synthesizing metal nanoparticles using microorganisms and plants has been extensively studied and has been recognized as a green and efficient way for further exploiting microorganisms as convenient nanofactories. Here, we explore and detail the potential uses of various biological sources for nanoparticle synthesis and the application of those nanoparticles. Furthermore, we highlight recent milestones achieved for the biogenic synthesis of nanoparticles by controlling critical parameters, including the choice of biological source, incubation period, pH, and temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Ecological aspects of microorganisms inhabiting uranium mill tailings

    USGS Publications Warehouse

    Miller, C.L.; Landa, E.R.; Updegraff, D.M.

    1987-01-01

    Numbers and types of microorganisms in uranium mill tailings were determined using culturing techniques. Arthrobacter were found to be the predominant microorganism inhabiting the sandy tailings, whereas Bacillus and fungi predominated in the slime tailings. Sulfate-reducing bacteria, capable of leaching radium, were isolated in low numbers from tailings samples but were isolated in significantly high numbers from topsoil in contact with the tailings. The results are placed in the context of the magnitude of uranium mill tailings in the United States, the hazards posed by the tailings, and how such hazards could be enhanced or diminished by microbial activities. Patterns in the composition of the microbial population are evaluated with respect to the ecological variables that influence microbial growth. ?? 1987 Springer-Verlag New York Inc.

  16. Status and future of disease protection and grape berry quality alteration by micro-organisms in viticulture.

    PubMed

    Otoguro, M; Suzuki, S

    2018-06-16

    Grapevine is one of the most widely grown fruit crops in the world. At present, however, there is much concern regarding chemical pollution in viticulture due to the application of chemical fungicides and fertilizers. One viticultural practice to resolve this issue is the application of micro-organisms to grapevine as a substitute for chemicals. Some micro-organisms act as an enhancer of grape berry quality as well as a suppresser of disease in grapevine through their antagonistic ability and/or systemic resistance inducing ability. Herein, we review current and prospective applications of micro-organisms in viticulture. In this review, we evaluate the applicability of micro-organisms in viticulture. Micro-organisms can improve grape berry quality through grapevine disease protection and grape berry quality alteration. Because the use of micro-organisms to protect grapevine from plant diseases is safer than the use of chemical fungicides, the use of biofungicides in viticulture is expected to be enhanced by the increasing consumer concern towards chemical fungicides. Micro-organisms also modify plant secondary metabolites for use as flavours, pharmaceuticals and food additives. Studies of micro-organisms that promote polyphenol, anthocyanin and aroma compound biosynthesis are in progress with an eye to improving grape berry quality. © 2018 The Society for Applied Microbiology.

  17. Yeast-like microorganisms in the scale insect Kermes quercus (Insecta, Hemiptera, Coccomorpha: Kermesidae). Newly acquired symbionts?

    PubMed

    Podsiadło, Elżbieta; Michalik, Katarzyna; Michalik, Anna; Szklarzewicz, Teresa

    2018-01-01

    Scale insects, like other plant sap-consumers, are host to symbiotic microorganisms which provide them with the substances missing from their diet. In contrast to most scale insects, Kermes quercus (Linnaeus) was regarded as asymbiotic. Our histological and ultrastructural observations show that in the body of the feeding stages of K. quercus collected in two locations (Warsaw and Cracow), numerous yeast-like microorganisms occur. These microorganisms were localized in the cytoplasm of fat body cells. The yeast-like microorganisms were observed neither in other organs of the host insect nor in the eggs. These microorganisms did not cause any damage to the structure of the ovaries and the course of oogenesis of the host insect. The females infected by them produced about 1300 larvae. The lack of these microorganisms in the cytoplasm of eggs indicates that they are not transmitted transovarially from mother to offspring. Molecular analyses indicated that the microorganisms which reside in the body of K. quercus are closely related to the entomopathogenic fungi Cordyceps and Ophiocordyceps, which belong to the Sordariomycetes class within the Ascomycota. The role of yeast-like microorganisms to their host insects remains unknown; however, it has been suggested that they may represent newly acquired symbionts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Phylogenetic Analysis of Anaerobic Psychrophilic Enrichment Cultures Obtained from a Greenland Glacier Ice Core

    PubMed Central

    Sheridan, Peter P.; Miteva, Vanya I.; Brenchley, Jean E.

    2003-01-01

    The examination of microorganisms in glacial ice cores allows the phylogenetic relationships of organisms frozen for thousands of years to be compared with those of current isolates. We developed a method for aseptically sampling a sediment-containing portion of a Greenland ice core that had remained at −9°C for over 100,000 years. Epifluorescence microscopy and flow cytometry results showed that the ice sample contained over 6 × 107 cells/ml. Anaerobic enrichment cultures inoculated with melted ice were grown and maintained at −2°C. Genomic DNA extracted from these enrichments was used for the PCR amplification of 16S rRNA genes with bacterial and archaeal primers and the preparation of clone libraries. Approximately 60 bacterial inserts were screened by restriction endonuclease analysis and grouped into 27 unique restriction fragment length polymorphism types, and 24 representative sequences were compared phylogenetically. Diverse sequences representing major phylogenetic groups including alpha, beta, and gamma Proteobacteria as well as relatives of the Thermus, Bacteroides, Eubacterium, and Clostridium groups were found. Sixteen clone sequences were closely related to those from known organisms, with four possibly representing new species. Seven sequences may reflect new genera and were most closely related to sequences obtained only by PCR amplification. One sequence was over 12% distant from its closest relative and may represent a novel order or family. These results show that phylogenetically diverse microorganisms have remained viable within the Greenland ice core for at least 100,000 years. PMID:12676695

  19. Determining the relationship between atherosclerosis and periodontopathogenic microorganisms in chronic periodontitis patients.

    PubMed

    Bozoglan, Alihan; Ertugrul, Abdullah Seckin; Taspınar, Mehmet; Yuzbasioglu, Betul

    2017-05-01

    The aim of this study is to determine the relationship between atherosclerosis and periodontopathogenic microorganisms in chronic periodontitis patients following periodontal treatment. A total of 40 patients were included in the study. 20 of these patients diagnosed with atherosclerosis and chronic periodontitis formed the test group. The remaining 20 patients were systemically healthy patients diagnosed with chronic periodontitis and formed the control group. All patients had nonsurgical periodontal treatment. The periodontopathogenic microorganism levels were determined at baseline and at 6 months in microbial dental plaque samples and WBC, LDL, HDL, PLT, fibrinogen, creatinine and hs-CRP levels were determined by blood samples. Statistically significant reduction has been achieved in clinical periodontal parameters following non-surgical periodontal treatment in test and control groups. Following periodontal treatment, WBC, LDL, PLT, fibrinogen, creatinine and hs-CRP levels significantly decreased and HDL levels significantly increased in both test and control groups. Similarly, the periodontopathogenic microorganism levels significantly decreased following periodontal treatment in the test and control groups. A statistically significant positive correlation has been determined between the periodontopathogenic microorganism levels and WBC, LDL, PLT, fibrinogen, creatinine, and hs-CRP levels in the test group. The association between hs-CRP, WBC, LDL, PLT, fibrinogen, creatinine, and the amount of periodontopathogenic microorganisms indicates the possibility that periodontal treatment could decrease the risk atherosclerosis. More studies must be conducted in order for these results to be supported.

  20. Comparison of methods for the identification of microorganisms isolated from blood cultures.

    PubMed

    Monteiro, Aydir Cecília Marinho; Fortaleza, Carlos Magno Castelo Branco; Ferreira, Adriano Martison; Cavalcante, Ricardo de Souza; Mondelli, Alessandro Lia; Bagagli, Eduardo; da Cunha, Maria de Lourdes Ribeiro de Souza

    2016-08-05

    Bloodstream infections are responsible for thousands of deaths each year. The rapid identification of the microorganisms causing these infections permits correct therapeutic management that will improve the prognosis of the patient. In an attempt to reduce the time spent on this step, microorganism identification devices have been developed, including the VITEK(®) 2 system, which is currently used in routine clinical microbiology laboratories. This study evaluated the accuracy of the VITEK(®) 2 system in the identification of 400 microorganisms isolated from blood cultures and compared the results to those obtained with conventional phenotypic and genotypic methods. In parallel to the phenotypic identification methods, the DNA of these microorganisms was extracted directly from the blood culture bottles for genotypic identification by the polymerase chain reaction (PCR) and DNA sequencing. The automated VITEK(®) 2 system correctly identified 94.7 % (379/400) of the isolates. The YST and GN cards resulted in 100 % correct identifications of yeasts (15/15) and Gram-negative bacilli (165/165), respectively. The GP card correctly identified 92.6 % (199/215) of Gram-positive cocci, while the ANC card was unable to correctly identify any Gram-positive bacilli (0/5). The performance of the VITEK(®) 2 system was considered acceptable and statistical analysis showed that the system is a suitable option for routine clinical microbiology laboratories to identify different microorganisms.

  1. Characteristics of airborne micro-organisms in a neurological intensive care unit: Results from China.

    PubMed

    Yu, Yao; Yin, Sufeng; Kuan, Yi; Xu, Yingjun; Gao, Xuguang

    2015-06-01

    To describe the characteristics of airborne micro-organisms in the environment in a Chinese neurological intensive care unit (NICU). This prospective study monitored the air environment in two wards (large and small) of an NICU in a tertiary hospital in China for 12 months, using an LWC-1 centrifugal air sampler. Airborne micro-organisms were identified using standard microbiology techniques. The mean ± SD number of airborne bacteria was significantly higher in the large ward than in the small ward (200 ± 51 colony-forming units [CFU]/m(3) versus 110 ± 40 CFU/m(3), respectively). In the large ward only, the mean number of airborne bacteria in the autumn was significantly higher than in any of the other three seasons. A total of 279 airborne micro-organisms were identified (large ward: 195; small ward: 84). There was no significant difference in the type and distribution of airborne micro-organisms between the large and small wards. The majority of airborne micro-organisms were Gram-positive cocci in both wards. These findings suggest that the number of airborne micro-organisms was related to the number of patients on the NICU ward. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  2. Burkholderia mallei and Burkholderia pseudomallei: the causative micro-organisms of glanders and melioidosis.

    PubMed

    Gilad, Jacob

    2007-11-01

    Burkholderia mallei and Burkholderia pseudomallei are the causative micro-organisms of Glanders and Melioidosis, respectively. Although now rare in Western countries, both micro-organisms have recently gained much interest because of their unique potential as bioterrorism agents. This paper reviews the epidemiology, pathogenesis, diagnosis and treatment of Melioidosis and Glanders. Recent patents relating to these micro-organisms, especially potential vaccines, are presented. Continued research and development is urgently needed, especially in regard to rapid and accurate diagnosis of melioidosis and glanders, efficacious therapy and primary and secondary prevention.

  3. Antimicrobial activity of jasmine oil against oral microorganisms

    NASA Astrophysics Data System (ADS)

    Thaweboon, S.; Thaweboon, B.; Kaypetch, R.

    2018-02-01

    Jasmine sambac is a species of jasmine indigenous to the tropical and warm temperature regions in particular West and Southeast Asia. Essential oil extracted from the flowers of J. sambac has been shown to have anti-oxidant activity. However, very little information regarding antimicrobial activity especially oral microorganisms exists. Objective: To investigate antimicrobial effect of essential oil extracted from flowers of J. sambac against various oral microorganisms. Materials and Methods: Oral microbial strains used in the study were Streptococcus mutans KPSK2, Staphylococcus aureus ATCC 5638, Lactobacillus casei ATCC 6363, Klebsiella pneumoniae (clinical isolate), Escherichia coli ATCC 25922, Candida albicans ATCC 10231, Candida krusei ATCC 6258, Candida parapsilosis ATCC 22019, Candida tropicalis (clinical isolate), Candida glabrata ATCC 90030, Candida pseudotropicalis (clinical isolate) and Candida stellatoidia (clinical isolate). The potential of microbial growth inhibition of the oil was firstly screened by Kirby-Bauer disk diffusion method and then the minimum inhibitory concentration (MIC) was determined by agar dilution method. Results: Jasmine oil showed antimicrobial activities against S. mutans, L. casei, E. coli and all strains of Candida species with the zones of inhibition ranging from 9 to 26 mm and MIC values of 0.19-1.56 %v/v. Conclusion: Results from the present study are scientific evidence to demonstrate that jasmine oil could be employed as a natural antimicrobial agent against oral microorganisms.

  4. Undersized description on motile gyrotactic micro-organisms individualities in MHD stratified water-based Newtonian nanofluid

    NASA Astrophysics Data System (ADS)

    Rehman, Khalil Ur; Malik, Aneeqa Ashfaq; Tahir, M.; Malik, M. Y.

    2018-03-01

    The current pagination summarized the influence of bio-convection Schmidt number, bio-convection Peclet number and micro-organisms concentration difference parameter on the density of motile gyrotactic micro-organisms when they have interaction with the thermally stratified magneto-nanofluid flow past a vertical stretching surface. It is observed that the density of motile microorganisms is the decreasing function of the bio-convection Schmidt and Peclet numbers. It is trusted that the outcomes of present analysis will serve as a helping source for the upcoming developments regarding individualities of motile gyrotactic micro-organisms subject to boundary layer flows induced by stretching surfaces.

  5. Assessment of microorganisms from Indonesian Oil Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadarwati, S.; Udiharto, M.; Rahman, M.

    1995-12-31

    Petroleum resources have been the mainstay of the national development in Indonesia. However, resources are being depleted after over a century of exploitation, while the demand continues to grow with the rapid economic development of the country. In facing the problem, EOR has been applied in Indonesia, such as the steamflooding project in Duri field, but a more energy efficient technology would be preferable. Therefore, MEOR has been recommended as a promising solution. Our study, aimed at finding indigenous microorganisms which can be developed for application in MEOR, has isolated microbes from some oil fields of Indonesia. These microorganisms havemore » been identified, their activities studied, and the effects of their metabolisms examined. This paper describes the research carried out by LEMIGAS in this respect, giving details on the methods of sampling, incubation, identification, and activation of the microbes as well as tests on the effects of their metabolites, with particular attention to those with potential for application in MEOR.« less

  6. Raft-like membrane domains in pathogenic microorganisms.

    PubMed

    Farnoud, Amir M; Toledo, Alvaro M; Konopka, James B; Del Poeta, Maurizio; London, Erwin

    2015-01-01

    The lipid bilayer of the plasma membrane is thought to be compartmentalized by the presence of lipid-protein microdomains. In eukaryotic cells, microdomains composed of sterols and sphingolipids, commonly known as lipid rafts, are believed to exist, and reports on the presence of sterol- or protein-mediated microdomains in bacterial cell membranes are also appearing. Despite increasing attention, little is known about microdomains in the plasma membrane of pathogenic microorganisms. This review attempts to provide an overview of the current state of knowledge of lipid rafts in pathogenic fungi and bacteria. The current literature on characterization of microdomains in pathogens is reviewed, and their potential role in growth, pathogenesis, and drug resistance is discussed. Better insight into the structure and function of membrane microdomains in pathogenic microorganisms might lead to a better understanding of their pathogenesis and development of raft-mediated approaches for therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. How could haloalkaliphilic microorganisms contribute to biotechnology?

    PubMed

    Zhao, Baisuo; Yan, Yanchun; Chen, Shulin

    2014-11-01

    Haloalkaliphiles are microorganisms requiring Na(+) concentrations of at least 0.5 mol·L(-1) and an alkaline pH of 9 for optimal growth. Their unique features enable them to make significant contributions to a wide array of biotechnological applications. Organic compatible solutes produced by haloalkaliphiles, such as ectoine and glycine betaine, are correlated with osmoadaptation and may serve as stabilizers of intracellular proteins, salt antagonists, osmoprotectants, and dermatological moisturizers. Haloalkaliphiles are an important source of secondary metabolites like rhodopsin, polyhydroxyalkanoates, and exopolysaccharides that play essential roles in biogeocycling organic compounds. These microorganisms also can secrete unique exoenzymes, including proteases, amylases, and cellulases, that are highly active and stable in extreme haloalkaline conditions and can be used for the production of laundry detergent. Furthermore, the unique metabolic pathways of haloalkaliphiles can be applied in the biodegradation and (or) biotransformation of a broad range of toxic industrial pollutants and heavy metals, in wastewater treatment, and in the biofuel industry.

  8. Microorganisms detection on substrates using QCL spectroscopy

    NASA Astrophysics Data System (ADS)

    Padilla-Jiménez, Amira C.; Ortiz-Rivera, William; Castro-Suarez, John R.; Ríos-Velázquez, Carlos; Vázquez-Ayala, Iris; Hernández-Rivera, Samuel P.

    2013-05-01

    Recent investigations have focused on the improvement of rapid and accurate methods to develop spectroscopic markers of compounds constituting microorganisms that are considered biological threats. Quantum cascade lasers (QCL) systems have revolutionized many areas of research and development in defense and security applications, including his area of research. Infrared spectroscopy detection based on QCL was employed to acquire mid infrared (MIR) spectral signatures of Bacillus thuringiensis (Bt), Escherichia coli (Ec) and Staphylococcus epidermidis (Se), which were used as biological agent simulants of biothreats. The experiments were carried out in reflection mode on various substrates such as cardboard, glass, travel baggage, wood and stainless steel. Chemometrics statistical routines such as principal component analysis (PCA) regression and partial least squares-discriminant analysis (PLS-DA) were applied to the recorded MIR spectra. The results show that the infrared vibrational techniques investigated are useful for classification/detection of the target microorganisms on the types of substrates studied.

  9. Challenges and Advances for Genetic Engineering of Non-model Bacteria and Uses in Consolidated Bioprocessing

    PubMed Central

    Yan, Qiang; Fong, Stephen S.

    2017-01-01

    Metabolic diversity in microorganisms can provide the basis for creating novel biochemical products. However, most metabolic engineering projects utilize a handful of established model organisms and thus, a challenge for harnessing the potential of novel microbial functions is the ability to either heterologously express novel genes or directly utilize non-model organisms. Genetic manipulation of non-model microorganisms is still challenging due to organism-specific nuances that hinder universal molecular genetic tools and translatable knowledge of intracellular biochemical pathways and regulatory mechanisms. However, in the past several years, unprecedented progress has been made in synthetic biology, molecular genetics tools development, applications of omics data techniques, and computational tools that can aid in developing non-model hosts in a systematic manner. In this review, we focus on concerns and approaches related to working with non-model microorganisms including developing molecular genetics tools such as shuttle vectors, selectable markers, and expression systems. In addition, we will discuss: (1) current techniques in controlling gene expression (transcriptional/translational level), (2) advances in site-specific genome engineering tools [homologous recombination (HR) and clustered regularly interspaced short palindromic repeats (CRISPR)], and (3) advances in genome-scale metabolic models (GSMMs) in guiding design of non-model species. Application of these principles to metabolic engineering strategies for consolidated bioprocessing (CBP) will be discussed along with some brief comments on foreseeable future prospects. PMID:29123506

  10. Rhodonellum psychrophilum gen. nov., sp. nov., a novel psychrophilic and alkaliphilic bacterium of the phylum Bacteroidetes isolated from Greenland.

    PubMed

    Schmidt, Mariane; Priemé, Anders; Stougaard, Peter

    2006-12-01

    A novel alkaliphilic and psychrophilic bacterium was isolated from the cold and alkaline ikaite tufa columns of the Ikka Fjord in south-west Greenland. According to 16S rRNA gene sequence analysis, strain GCM71(T) belonged to the family 'Flexibacteraceae' in the phylum Bacteroidetes. Strain GCM71(T), together with five related isolates from ikaite columns, formed a separate cluster with 86-93 % gene sequence similarity to their closest relative, Belliella baltica. The G+C content of the DNA from strain GCM71(T) was 43.1 mol%, whereas that of B. baltica was reported to be 35 mol%. DNA-DNA hybridization between strain GCM71(T) and B. baltica was 9.5 %. The strain was red pigmented, Gram-negative, strictly aerobic with non-motile, rod-shaped cells. The optimal growth conditions for strain GCM71(T) were pH 9.2-10.0, 5 degrees C and 0.6 % NaCl. The fatty acid profile of the novel strain was dominated by branched and unsaturated fatty acids (90-97 %), with a high abundance of iso-C(17 : 1)omega9c (17.5 %), iso-C(17 : 0) 3-OH (17.5 %) and summed feature 3, comprising iso-C(15 : 0) 2-OH and/or C(16 : 1)omega7c (12.6 %). Phylogenetic, chemotaxonomic and physiological characteristics showed that the novel strain could not be affiliated to any known genus. A new genus, Rhodonellum gen. nov., is proposed to accommodate the novel strain. Strain GCM71(T) (=DSM 17998(T)=LMG 23454(T)) is proposed as the type strain of the type species, Rhodonellum psychrophilum sp. nov.

  11. FAST TRACK COMMUNICATION: Selective inactivation of micro-organisms with near-infrared femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Tsen, K. T.; Tsen, Shaw-Wei D.; Sankey, Otto F.; Kiang, Juliann G.

    2007-11-01

    We demonstrate an unconventional and revolutionary method for selective inactivation of micro-organisms by using near-infrared femtosecond laser pulses. We show that if the wavelength and pulse width of the excitation femtosecond laser are appropriately selected, there exists a window in power density that enables us to achieve selective inactivation of target viruses and bacteria without causing cytotoxicity in mammalian cells. This strategy targets the mechanical (vibrational) properties of micro-organisms, and thus its antimicrobial efficacy is likely unaffected by genetic mutation in the micro-organisms. Such a method may be effective against a wide variety of drug resistant micro-organisms and has broad implications in disinfection as well as in the development of novel treatments for viral and bacterial pathogens.

  12. [Effects of copper on biodegradation mechanism of trichloroethylene by mixed microorganisms].

    PubMed

    Gao, Yanhui; Zhao, Tiantao; Xing, Zhilin; He, Zhi; Zhang, Lijie; Peng, Xuya

    2016-05-25

    We isolated and enriched mixed microorganisms SWA1 from landfill cover soils supplemented with trichloroethylene (TCE). The microbial mixture could degrade TCE effectively under aerobic conditions. Then, we investigated the effect of copper ion (0 to 15 μmol/L) on TCE biodegradation. Results show that the maximum TCE degradation speed was 29.60 nmol/min with 95.75% degradation when copper ion was at 0.03 μmol/L. In addition, genes encoding key enzymes during biodegradation were analyzed by Real-time quantitative reverse transcription PCR (RT-qPCR). The relative expression abundance of pmoA gene (4.22E-03) and mmoX gene (9.30E-06) was the highest when copper ion was at 0.03 μmol/L. Finally, we also used MiSeq pyrosequencing to investigate the diversity of microbial community. Methylocystaceae that can co-metabolic degrade TCE were the dominant microorganisms; other microorganisms with the function of direct oxidation of TCE were also included in SWA1 and the microbial diversity decreased significantly along with increasing of copper ion concentration. Based on the above results, variation of copper ion concentration affected the composition of SWA1 and degradation mechanism of TCE. The degradation mechanism of TCE included co-metabolism degradation of methanotrophs and oxidation metabolism directly at copper ion of 0.03 μmol/L. When copper ion at 5 μmol/L (biodegradation was 84.75%), the degradation mechanism of TCE included direct-degradation and co-metabolism degradation of methanotrophs and microorganisms containing phenol hydroxylase. Therefore, biodegradation of TCE by microorganisms was a complicated process, the degradation mechanism included co-metabolism degradation of methanotrophs and bio-oxidation of non-methanotrophs.

  13. Production of gaba (γ – Aminobutyric acid) by microorganisms: a review

    PubMed Central

    Dhakal, Radhika; Bajpai, Vivek K.; Baek, Kwang-Hyun

    2012-01-01

    GABA (γ-aminobutyric acid) is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB), which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods. PMID:24031948

  14. Identification of selected microorganisms from activated sludge capable of benzothiazole and benzotriazole transformation.

    PubMed

    Kowalska, Katarzyna; Felis, Ewa

    2015-01-01

    Benzothiazole (BT) and benzotriazole (BTA) are present in the environment - especially in urban and industrial areas, usually as anthropogenic micropollutants. BT and BTA have been found in the municipal and industrial wastewater, rivers, soil, groundwater, sediments and sludge. The origins of those substances' presence in the environment are various industry branches (food, chemical, metallurgical, electrical), households and surface runoff from industrial areas. Increasingly strict regulations on water quality and the fact that the discussed compounds are poorly biodegradable, make them a serious problem in the environment. Considering this, it is important to look for environmentally friendly and socially acceptable ways to remove BT and BTA. The aim of this study was to identify microorganisms capable of BT and BTA transformation or/and degradation in aquatic environment. Selected microorganisms were isolated from activated sludge. The identification of microorganisms capable of BT and BTA removal was possible using molecular biology techniques (PCR, DNA sequencing). Among isolated microorganisms of activated sludge are bacteria potentially capable of BT and BTA biotransformation and/or removal. The most common bacteria capable of BT and BTA transformation were Rhodococcus sp., Enterobacter sp., Arthrobacter sp. They can grow in a medium with BT and BTA as the only carbon source. Microorganisms previously adapted to the presence of the studied substances at a concentration of 10 mg/l, showed a greater rate of growth of colonies on media than microorganisms unconditioned to the presence of such compounds. Results of the biodegradation test suggest that BT was degraded to a greater extent than BTA, 98-100% and 11-19%, respectively.

  15. Identifying possible non-thermal effects of radio frequency energy on inactivating food microorganisms.

    PubMed

    Kou, Xiaoxi; Li, Rui; Hou, Lixia; Zhang, Lihui; Wang, Shaojin

    2018-03-23

    Radio frequency (RF) heating has been successfully used for inactivating microorganisms in agricultural and food products. Athermal (non-thermal) effects of RF energy on microorganisms have been frequently proposed in the literature, resulting in difficulties for developing effective thermal treatment protocols. The purpose of this study was to identify if the athermal inactivation of microorganisms existed during RF treatments. Escherichia coli and Staphylococcus aureus in apple juice and mashed potato were exposed to both RF and conventional thermal energies to compare their inactivation populations. A thermal death time (TDT) heating block system was used as conventional thermal energy source to simulate the same heating treatment conditions, involving heating temperature, heating rate and uniformity, of a RF treatment at a frequency of 27.12 MHz. Results showed that a similar and uniform temperature distribution in tested samples was achieved in both heating systems, so that the central sample temperature could be used as representative one for evaluating thermal inactivation of microorganisms. The survival patterns of two target microorganisms in two food samples were similar both for RF and heating block treatments since their absolute difference of survival populations was <1 log CFU/ml. The statistical analysis indicated no significant difference (P > 0.05) in inactivating bacteria between the RF and the heating block treatments at each set of temperatures. The solid temperature and microbial inactivation data demonstrated that only thermal effect of RF energy at 27.12 MHz was observed on inactivating microorganisms in foods. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. The ecology of micro-organisms in a closed environment

    NASA Technical Reports Server (NTRS)

    Fox, L.

    1971-01-01

    Microorganisms under closed environmental ecological conditions with reference to astronauts infectious diseases, discussing bacteria growth in Biosatellite 2 and earth based closed chamber experiments

  17. Enhance the anti-microorganism activity of cinnamon oil by xanthan gum as emulsifying agent

    NASA Astrophysics Data System (ADS)

    Lieu, Dong M.; Dang, Thuy T. K.; Nguyen, Huong T.

    2018-04-01

    The aim of this study was to evaluate the effect of emulsifying agents (tween 20, DMSO (Dimethyl Sulfoxide) and xanthan gum) to inhibit Escherichia coli; Staphylococcus aureus; Saccharomyces cerevisiae and Aspergillus niger by cinnamon oil (Cinnamomum Cassia). Cinnamon oil was added in the emulsifying agents independently: tween 20 (0.3% v/v). DMSO (0.3% v/v) and xanthan gum (0.3% w/v) at different concentrations and evaluated their anti-microorganism activity by agar disk diffusion, mycelial growth inhibition and growth inhibition in liquid phase. The result indicated that, cinnamon oil diluted in different emulsifying agents showed the difference of the anti-microorganism activity, in which DMSO showed the lowest result. Xanthan gum and tween 20 show good stable emulsion. The anti-microorganism effect of cinnamon oil in tween 20 and xanthan gum was not significant difference. However, cinnamon oil in xanthan gum showed anti-microorganism activity better than tween 20 at low concentration in agar disk diffusion. This suggests that, cinnamon oil could be encapsulated by xanthan gum to enhance the anti-microorganism activity.

  18. Genomic and metagenomic challenges and opportunities for bioleaching: a mini-review.

    PubMed

    Cárdenas, Juan Pablo; Quatrini, Raquel; Holmes, David S

    2016-09-01

    High-throughput genomic technologies are accelerating progress in understanding the diversity of microbial life in many environments. Here we highlight advances in genomics and metagenomics of microorganisms from bioleaching heaps and related acidic mining environments. Bioleaching heaps used for copper recovery provide significant opportunities to study the processes and mechanisms underlying microbial successions and the influence of community composition on ecosystem functioning. Obtaining quantitative and process-level knowledge of these dynamics is pivotal for understanding how microorganisms contribute to the solubilization of copper for industrial recovery. Advances in DNA sequencing technology provide unprecedented opportunities to obtain information about the genomes of bioleaching microorganisms, allowing predictive models of metabolic potential and ecosystem-level interactions to be constructed. These approaches are enabling predictive phenotyping of organisms many of which are recalcitrant to genetic approaches or are unculturable. This mini-review describes current bioleaching genomic and metagenomic projects and addresses the use of genome information to: (i) build metabolic models; (ii) predict microbial interactions; (iii) estimate genetic diversity; and (iv) study microbial evolution. Key challenges and perspectives of bioleaching genomics/metagenomics are addressed. Copyright © 2016 The Author(s). Published by Elsevier Masson SAS.. All rights reserved.

  19. A Comparative Evaluation of Adherence of Microorganism to Different Types of Brackets: A Scanning Electron Microscopic Study.

    PubMed

    Shashidhar, E P; Sahitya, M; Sunil, T; Murthy, Anup R; Rani, M S

    2015-09-01

    The purpose of this study was to evaluate and compare the adherence of microorganism to different types of brackets using the scanning electron microscope (SEM). A double-blinded study was undertaken to evaluate and adherence of microorganisms to different types of brackets using SEM. At random, 12 patients reporting for treatment to the department of Orthodontics VS Dental College and Hospital were selected. Four types of brackets were included in the present study stainless steel, titanium, composite, and ceramic. Brackets were bonded to teeth of the patient on all the four quadrants. The teeth included for bonding were lateral incisor, canine, first premolar, and second premolar. The brackets were left for 72 h. After 72 h brackets were debonded, and they were evaluated by SEM for adherence of microorganism in the slot and tie wings surface. The SEM images were graded, and the adherence of microorganism to the brackets in the surfaces and the four different quadrants were recorded. There is a significant difference in adherence of microorganisms to the various types of brackets (P < 0.001) and the surfaces (P < 0.05) included in the study. However, there is no significance in the mean adherence of microorganisms in the different quadrants (P > 0.05) included in the study. The interaction of bracket/surface, bracket/quadrant, surface/quadrants was analyzed, there was no significance of comparison of bracket/surfaces/quadrant but the interaction of bracket/quadrant was found to be significant (<0.011). The interaction of bracket/surfaces/quadrant was also found to be significant (<0.003). The maximum adherence of microorganisms was observed with the composite bracket material and the least adherence of microorganisms was observed with the titanium bracket material. The adherence of microorganisms is relatively more in the slot area, when compare to the tie wings surface maximum adherence of microorganism is observed in the upper left quadrant and least adherence

  20. A Comparative Evaluation of Adherence of Microorganism to Different Types of Brackets: A Scanning Electron Microscopic Study

    PubMed Central

    Shashidhar, E P; Sahitya, M; Sunil, T; Murthy, Anup R; Rani, M S

    2015-01-01

    Background: The purpose of this study was to evaluate and compare the adherence of microorganism to different types of brackets using the scanning electron microscope (SEM). A double-blinded study was undertaken to evaluate and adherence of microorganisms to different types of brackets using SEM. Materials and Methods: At random, 12 patients reporting for treatment to the department of Orthodontics VS Dental College and Hospital were selected. Four types of brackets were included in the present study stainless steel, titanium, composite, and ceramic. Brackets were bonded to teeth of the patient on all the four quadrants. The teeth included for bonding were lateral incisor, canine, first premolar, and second premolar. The brackets were left for 72 h. After 72 h brackets were debonded, and they were evaluated by SEM for adherence of microorganism in the slot and tie wings surface. The SEM images were graded, and the adherence of microorganism to the brackets in the surfaces and the four different quadrants were recorded. Results: There is a significant difference in adherence of microorganisms to the various types of brackets (P < 0.001) and the surfaces (P < 0.05) included in the study. However, there is no significance in the mean adherence of microorganisms in the different quadrants (P > 0.05) included in the study. The interaction of bracket/surface, bracket/quadrant, surface/quadrants was analyzed, there was no significance of comparison of bracket/surfaces/quadrant but the interaction of bracket/quadrant was found to be significant (<0.011). The interaction of bracket/surfaces/quadrant was also found to be significant (<0.003). Conclusion: The maximum adherence of microorganisms was observed with the composite bracket material and the least adherence of microorganisms was observed with the titanium bracket material. The adherence of microorganisms is relatively more in the slot area, when compare to the tie wings surface maximum adherence of microorganism is

  1. 40 CFR 725.12 - Identification of microorganisms for Inventory and other listing purposes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for the purpose of taxonomic classification. Upon EPA's request to the submitter, data supporting the taxonomic designation must be provided to EPA. The genetic history of the recipient microorganism should be... distinguishing genotypic characteristics of a microorganism, such as the identity of the introduced genetic...

  2. Influence of Food Microorganisms on Staphylococcal Growth and Enterotoxin Production in Meat

    PubMed Central

    McCoy, D. W.; Faber, J. E.

    1966-01-01

    Forty-four microorganisms were studied for their influence on staphylococcal growth and enterotoxin production. Inhibition was found to be more common than stimulation. Two types of inhibition were observed: inhibition of staphylococcal growth, and inhibition of enterotoxin formation with no apparent effect on growth. By use of a plate test, 12 of the 44 food microorganisms were found to inhibit staphylococcal growth at 35 C. Of the 12, 3 also inhibited growth at 25 C. No significant differences in inhibition were observed with the 15 strains of enterotoxigenic staphylococci. In meat slurries, inhibition of staphylococcal growth was found to be greater at 25 C than at 35 C. Results on inhibition obtained from the plate test could not be correlated with the effect of the organisms in slurries. Environmental conditions were found to affect markedly the influence of food microorganisms on staphylococci. Of the 44 food microorganisms studied, only Bacillus cereus was observed to stimulate significantly staphylococcal growth and enterotoxin formation. Stimulation was more pronounced with Staphylococcus aureus 196E than with other strains of enterotoxigenic staphylococci. Bacillus megaterium and Brevibacterium linens were inhibited by staphylococci. These organisms were completely inhibited when inoculated in mixed cultures with staphylococci. In pure cultures, good staphylococcal growth was found to be accompanied by enterotoxin production; however, in the presence of food microorganisms, good staphylococcal growth occurred without the formation of detectable levels of enterotoxin A. PMID:5970822

  3. Lead Speciation in Microorganisms.

    PubMed

    Stewart, Theodora J

    2017-04-10

    The biogeochemical cycles of lead (Pb) have been largely affected by anthropogenic activities as a result of its high natural abundance and use over the centuries [1]. At sites more strongly impacted by urbanization [2] and mining [3], Pb is found at high nano to low micromolar concentrations in surface waters, and can be significantly higher in soil and sediment [4]. Microorganisms are found everywhere and their responses to Pb exposure can range from resistant to highly sensitive [5, 6]. These varying levels of toxicity can be attributed to the cellular handling of Pb, making it important to understand the role of intracellular Pb speciation for more accurate toxicity predictions.

  4. Mass Spectrometer for Airborne Micro-Organisms

    NASA Technical Reports Server (NTRS)

    Sinha, M. P.; Friedlander, S. K.

    1986-01-01

    Bacteria and other micro-organisms identified continously with aid of new technique for producing samples for mass spectrometer. Technique generates aerosol of organisms and feeds to spectrometer. Given species of organism produces characteristic set of peaks in mass spectrum and thereby identified. Technique useful for monitoring bacterial makeup in environmental studies and in places where cleanliness is essential, such as hospital operating rooms, breweries, and pharmaceutical plants.

  5. Changes of physicochemical and microbiologicalparameters of infiltration water at Debina intake in Poznan, unique conditions - a flood

    NASA Astrophysics Data System (ADS)

    Kołaska, Sylwia; Jeż-Walkowiak, Joanna; Dymaczewski, Zbysław

    2018-02-01

    The paper presents characteristics of Debina infiltration intake which provides water for Poznan and neighbouring communes. The evaluation of effectiveness of infiltration process has been done based on the quality parameters of river water and infiltration water. The analysed water quality parameters are as follows: temperature, iron, manganese, DOCKMnO4, TOC, turbidity, colour, dissolved oxygen, free carbon dioxide, conductivity, total hardness, carbonate hardness, pH, heavy metals, detergents and microorganisms. The paper also includes an assessment of the impact of flood conditions on the quality of infiltration water and operation of infiltration intake. In this part of the paper the following parameters were taken into account: iron, manganese, DOCKMnO4, TOC, turbidity, colour, dissolved oxygen, free carbon dioxide, conductivity, total hardness, the total number of microorganisms in 36°C (mesophilic), the total number of microorganisms in 22°C (psychrophilic), coli bacteria, Clostridium perfringens, Escherichia coli, Enterococci. Analysis of the effects of flood on infiltration process leads to the following conclusions: the deterioration of infiltration water quality was due to the deterioration of river water quality, substantial shortening of groundwater passage and partial disappearance of the aeration zone. The observed deterioration of infiltration water quality did not affect the treated water quality, produced at water treatment plant.

  6. Effect of gamma irradiation on hyperthermal composting microorganisms for feasible application in space

    NASA Astrophysics Data System (ADS)

    Yoon, Minchul; Choi, Jong-il; Yamashita, Masamichi

    2013-05-01

    The composting system is the most efficient method for processing organic waste in space; however, the composting activity of microorganisms can be altered by cosmic rays. In this study, the effect of ionizing irradiation on composting bacteria was investigated. Sequence analyses of amplified 16S rRNA, 18S rRNA, and amoA genes were used to identify hyperthermal composting microorganisms. The viability of microorganisms in compost soil after gamma irradiation was directly determined using LIVE/DEAD BacLight viability kit. The dominant bacterial genera were Weissella cibaria and Leuconostoc sp., and the fungal genera were Metschnikowia bicuspidata and Pichia guilliermondii. Gamma irradiation up to a dose of 10 kGy did not significantly alter the microbial population. Furthermore, amylase and cellulase activities were maintained after high-dose gamma irradiation. Our results show that hyperthermal microorganisms can be used to recycle agricultural and fermented material in space stations and other human-inhabiting facilities on the Moon, Mars, and other planets.

  7. Microbial Diversity in Extreme Marine Habitats and Their Biomolecules

    PubMed Central

    Poli, Annarita; Finore, Ilaria; Romano, Ida; Gioiello, Alessia; Lama, Licia; Nicolaus, Barbara

    2017-01-01

    Extreme marine environments have been the subject of many studies and scientific publications. For many years, these environmental niches, which are characterized by high or low temperatures, high-pressure, low pH, high salt concentrations and also two or more extreme parameters in combination, have been thought to be incompatible to any life forms. Thanks to new technologies such as metagenomics, it is now possible to detect life in most extreme environments. Starting from the discovery of deep sea hydrothermal vents up to the study of marine biodiversity, new microorganisms have been identified, and their potential uses in several applied fields have been outlined. Thermophile, halophile, alkalophile, psychrophile, piezophile and polyextremophile microorganisms have been isolated from these marine environments; they proliferate thanks to adaptation strategies involving diverse cellular metabolic mechanisms. Therefore, a vast number of new biomolecules such as enzymes, polymers and osmolytes from the inhabitant microbial community of the sea have been studied, and there is a growing interest in the potential returns of several industrial production processes concerning the pharmaceutical, medical, environmental and food fields. PMID:28509857

  8. The solubilization of low-ranked coals by microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strandberg, G.W.

    1987-07-09

    Late in 1984, our Laboratory was funded by the Pittsburgh Energy Technology Center, US Department of Energy, to investigate the potential utility of microorganisms for the solubilization of low-ranked coals. Our approach has been multifacited, including studies of the types of microorganisms involved, appropriate conditions for their growth and coal-solubilization, the suceptibility of different coals to microbial action, the chemical and physical nature of the product, and potential bioprocess designs. A substantial number of fungal species have been shown to be able to solubilize coal. Cohen and Gabrielle reported that two lignin-degrading fungi, Polyporous (Trametes) versicolor and Poria monticola couldmore » solubilize lignite. Ward has isolated several diverse fungi from nature which are capable of degrading different lignites, and our Laboratory has isolated three coal-solubilizing fungi which were found growing on a sample of Texas lignite. The organisms we studied are shown in Table 1. The perceived significance of lignin degradation led us to examine two lignin-degrading strains of the genus Streptomyces. As discussed later, these bacteria were capable of solubilizing coal; but, in the case of at least one, the mechanism was non-enzymatic. The coal-solubilizing ability of other strains of Streptomyces was recently reported. Fakoussa and Trueper found evidence that a strain of Pseudomonas was capble of solubizing coal. It would thus appear that a diverse array of microorganisms possess the ability to solubilize coal. 16 refs.« less

  9. Production of succinic acid by metabolically engineered microorganisms.

    PubMed

    Ahn, Jung Ho; Jang, Yu-Sin; Lee, Sang Yup

    2016-12-01

    Succinic acid (SA) has been recognized as one of the most important bio-based building block chemicals due to its numerous potential applications. For the economical bio-based production of SA, extensive research works have been performed on developing microbial strains by metabolic engineering as well as fermentation and downstream processes. Here we review metabolic engineering strategies applied for bio-based production of SA using representative microorganisms, including Saccharomyces cerevisiae, Pichia kudriavzevii, Escherichia coli, Mannheimia succiniciproducens, Basfia succiniciproducens, Actinobacillus succinogenes, and Corynebacterium glutamicum. In particular, strategies employed for developing engineered strains of these microorganisms leading to the best performance indices (titer, yield, and productivity) are showcased based on the published papers as well as patents. Those processes currently under commercialization are also analyzed and future perspectives are provided. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Global microbial commons: institutional challenges for the global exchange and distribution of microorganisms in the life sciences.

    PubMed

    Dedeurwaerdere, Tom

    2010-01-01

    Exchanges of microorganisms between culture collections, laboratories and researchers worldwide have historically occurred in an informal way. These informal exchanges have facilitated research activities, and, as a consequence, our knowledge and exploitation of microbial resources have advanced rapidly. During the last decades of the twentieth century, the increasing economic importance of biotechnology and the introduction of new legislation concerning the use of and access to biological resources has subjected exchanges of genetic resources to greater controls. Their access and distribution are more strictly regulated and, therefore, exchanges are becoming more and more formalized. This paper analyzes one of the main drivers of the movement toward more formal worldwide exchange regimes, which is increasing global interdependency of access to genetic resources. Its main finding is that formalization of exchange practices as such is not necessarily leading to more restrictive licensing conditions. The goal of further formalization and harmonization of institutional frameworks should therefore be to provide the broadest possible access to essential research materials (within the constraints set by biosecurity and quality management requirements), while maximizing the reciprocity benefits of access and exchange (which motivate the exchange practices to start with). (c) 2010 Elsevier Masson SAS. All rights reserved.

  11. Ionic liquid-tolerant microorganisms and microbial communities for lignocellulose conversion to bioproducts

    DOE PAGES

    Yu, Chaowei; Simmons, Blake A.; Singer, Steven W.; ...

    2016-11-12

    Chemical and physical pretreatment of biomass is a critical step in the conversion of lignocellulose to biofuels and bioproducts. Ionic liquid (IL) pretreatment has attracted significant attention due to the unique ability of certain ILs to solubilize some or all components of the plant cell wall. However, these ILs inhibit not only the enzyme activities but also the growth and productivity of microorganisms used in downstream hydrolysis and fermentation processes. While pretreated biomass can be washed to remove residual IL and reduce inhibition, extensive washing is costly and not feasible in large-scale processes. IL-tolerant microorganisms and microbial communities have beenmore » discovered from environmental samples and studies begun to elucidate mechanisms of IL tolerance. The discovery of IL tolerance in environmental microbial communities and individual microbes has lead to the proposal of molecular mechanisms of resistance. Here, we review recent progress on discovering IL-tolerant microorganisms, identifying metabolic pathways and mechanisms of tolerance, and engineering microorganisms for IL tolerance. Research in these areas will yield new approaches to overcome inhibition in lignocellulosic biomass bioconversion processes and increase opportunities for the use of ILs in biomass pretreatment.« less

  12. Ionic liquid-tolerant microorganisms and microbial communities for lignocellulose conversion to bioproducts.

    PubMed

    Yu, Chaowei; Simmons, Blake A; Singer, Steven W; Thelen, Michael P; VanderGheynst, Jean S

    2016-12-01

    Chemical and physical pretreatment of biomass is a critical step in the conversion of lignocellulose to biofuels and bioproducts. Ionic liquid (IL) pretreatment has attracted significant attention due to the unique ability of certain ILs to solubilize some or all components of the plant cell wall. However, these ILs inhibit not only the enzyme activities but also the growth and productivity of microorganisms used in downstream hydrolysis and fermentation processes. While pretreated biomass can be washed to remove residual IL and reduce inhibition, extensive washing is costly and not feasible in large-scale processes. IL-tolerant microorganisms and microbial communities have been discovered from environmental samples and studies begun to elucidate mechanisms of IL tolerance. The discovery of IL tolerance in environmental microbial communities and individual microbes has lead to the proposal of molecular mechanisms of resistance. In this article, we review recent progress on discovering IL-tolerant microorganisms, identifying metabolic pathways and mechanisms of tolerance, and engineering microorganisms for IL tolerance. Research in these areas will yield new approaches to overcome inhibition in lignocellulosic biomass bioconversion processes and increase opportunities for the use of ILs in biomass pretreatment.

  13. Process and apparatus for analyzing specimens for the presence of microorganisms therein

    NASA Technical Reports Server (NTRS)

    Vannest, Richard D. (Inventor); Meyer, Michael C. (Inventor); Gibson, Sandra F. (Inventor); Keyser, George F. (Inventor); Jones, Paul W. (Inventor); Aldridge, Jr., Clifton (Inventor); Holen, James T. (Inventor)

    1980-01-01

    Microorganisms in a specimen are detected, identified, and enumerated by introducing the specimen into a sampling cartridge and diluting the specimen with a known volume of water within the cartridge. The cartridge has a manifold and several cassettes attached to the manifold. Each cassette contains a serpentine flow channel having a series of filters therein and a detection cell located downstream from each filter. The flow channel in each cassette also contains a culture medium which is freeze dried and is highly selective in the sense that it promotes the growth of one type of microorganism, but not others. The mixture of the specimen and water flows from the manifold into the flow channel of each cassette where it rehydrates the culture medium therein and further flows through the filters. Each filter removes a known proportion of the microorganisms from the mixture of specimen, water and medium, thereby effecting a serial dilution. After the cassettes are heated to incubate the microoganisms, the detection cells are observed for growth of the microorganisms therein which is manifested in a change in the light transmitting characteristics of the mixtures within the cells.

  14. Ionic liquid-tolerant microorganisms and microbial communities for lignocellulose conversion to bioproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Chaowei; Simmons, Blake A.; Singer, Steven W.

    Chemical and physical pretreatment of biomass is a critical step in the conversion of lignocellulose to biofuels and bioproducts. Ionic liquid (IL) pretreatment has attracted significant attention due to the unique ability of certain ILs to solubilize some or all components of the plant cell wall. However, these ILs inhibit not only the enzyme activities but also the growth and productivity of microorganisms used in downstream hydrolysis and fermentation processes. While pretreated biomass can be washed to remove residual IL and reduce inhibition, extensive washing is costly and not feasible in large-scale processes. IL-tolerant microorganisms and microbial communities have beenmore » discovered from environmental samples and studies begun to elucidate mechanisms of IL tolerance. The discovery of IL tolerance in environmental microbial communities and individual microbes has lead to the proposal of molecular mechanisms of resistance. Here, we review recent progress on discovering IL-tolerant microorganisms, identifying metabolic pathways and mechanisms of tolerance, and engineering microorganisms for IL tolerance. Research in these areas will yield new approaches to overcome inhibition in lignocellulosic biomass bioconversion processes and increase opportunities for the use of ILs in biomass pretreatment.« less

  15. Consolidated bioprocessing method using thermophilic microorganisms

    DOEpatents

    Mielenz, Jonathan Richard

    2016-02-02

    The present invention is directed to a method of converting biomass to biofuel, and particularly to a consolidated bioprocessing method using a co-culture of thermophilic and extremely thermophilic microorganisms which collectively can ferment the hexose and pentose sugars produced by degradation of cellulose and hemicelluloses at high substrate conversion rates. A culture medium therefor is also provided as well as use of the methods to produce and recover cellulosic ethanol.

  16. Transfer rates of enteric microorganisms in recycled water during machine clothes washing.

    PubMed

    O'Toole, Joanne; Sinclair, Martha; Leder, Karin

    2009-03-01

    Approximately 15% of overall Australian household water usage is in the laundry; hence, a significant reduction in household drinking water demand could be achieved if potable-quality water used for clothes washing is replaced with recycled water. To investigate the microbiological safety of using recycled water in washing machines, bacteriophages MS-2 and PRD-1, Escherichia coli, and Cryptosporidium parvum oocysts were used in a series of experiments to investigate the transfer efficiency of enteric microorganisms from washing machine water to objects including hands, environmental surfaces, air, and fabric swatches. By determining the transference efficiency, it is possible to estimate the numbers of microorganisms that the user will be exposed to if recycled water with various levels of residual microorganisms is used in washing machines. Results, expressed as transfer rates to a given surface area per object, showed that the mean transfer efficiency of E. coli, bacteriophages MS-2 and PRD-1, and C. parvum oocysts from seeded water to fabric swatches ranged from 0.001% to 0.090%. Greatest exposure to microorganisms occurred through direct contact of hands with seeded water and via hand contact with contaminated fabric swatches. No microorganisms were detected in the air samples during the washing machine spin cycle, and transfer rates of bacteriophages from water to environmental surfaces were 100-fold less than from water directly to hands. Findings from this study provide relevant information that can be used to refine regulations governing recycled water and to allay public concerns about the use of recycled water.

  17. Real-time characterization of motion of motile microorganisms by means of a hybrid laser Doppler velocimeter technique

    NASA Astrophysics Data System (ADS)

    Zheng, Bin; Pleass, Charles M.; Ih, Charles S.

    1993-11-01

    A hybrid three-axis laser Doppler velocimeter system has been demonstrated in our laboratory. The system can monitor the motion of microorganisms in an unconstrained environment. During measurement, a computer system collects and processes time series data from the transit of a microorganism through the measurement volume. The fast Fourier transform of this data contains the motion signature of this microorganism. Because individual microorganisms can be selected from the field, ambiguity caused by multiscattering among two or more microorganisms can be avoided. Using this new system, we can obtain a feature vector that relates to features of the microorganism, such as its size, average translational velocity, rotation or wobbling, and its flagellum beat frequency. Such a vector appears to be a useful criterion for distinguishing the species using statistical pattern recognition. Successful experiments demonstrate that the new system and technique has some unique advantages.

  18. Macrocycle peptides delineate locked-open inhibition mechanism for microorganism phosphoglycerate mutases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Hao; Dranchak, Patricia; Li, Zhiru

    Glycolytic interconversion of phosphoglycerate isomers is catalysed in numerous pathogenic microorganisms by a cofactor-independent mutase (iPGM) structurally distinct from the mammalian cofactor-dependent (dPGM) isozyme. The iPGM active site dynamically assembles through substrate-triggered movement of phosphatase and transferase domains creating a solvent inaccessible cavity. Here we identify alternate ligand binding regions using nematode iPGM to select and enrich lariat-like ligands from an mRNA-display macrocyclic peptide library containing >1012 members. Functional analysis of the ligands, named ipglycermides, demonstrates sub-nanomolar inhibition of iPGM with complete selectivity over dPGM. The crystal structure of an iPGM macrocyclic peptide complex illuminated an allosteric, locked-open inhibition mechanismmore » placing the cyclic peptide at the bi-domain interface. This binding mode aligns the pendant lariat cysteine thiolate for coordination with the iPGM transition metal ion cluster. The extended charged, hydrophilic binding surface interaction rationalizes the persistent challenges these enzymes have presented to small-molecule screening efforts highlighting the important roles of macrocyclic peptides in expanding chemical diversity for ligand discovery.« less

  19. Scavenging of ice-nucleating microorganisms from the atmosphere by artificial rain events

    NASA Astrophysics Data System (ADS)

    Hanlon, Regina; Powers, Craig; Failor, Kevin; Vinatzer, Boris; Schmale, David

    2015-04-01

    Little is known about how microorganisms are scavenged from the atmosphere during rainfall. Microorganisms are abundant and diverse in rain (precipitation) collected near the surface of the earth. Some of these rain-associated microorganisms produce proteins that catalyze the nucleation of ice crystals at significantly warmer temperatures than would normally be required for ice formation, suggesting that they may play important roles in weather, including the onset of precipitation. We conducted a series of field experiments to test the hypothesis that ice-nucleating microorganisms are scavenged from the atmosphere by rainfall. Thirteen artificial rain events were conducted off the side of the Smart Road Bridge in Blacksburg, VA, USA. In each event, sterile water was dispensed over the side of the bridge (simulated rainfall), and recovered in sterile containers following gravitational settling from the side of the bridge to an open fallow agricultural field below (a distance of ~55m from the release site to the collection site). Microbes scavenged from the artificial rain events were cultured on six different types of agar media (R2A, TSA, CA; +/- cycloheximide) and the ice nucleation activity was examined for colonies cultured from the different media types. Mean CFUs scavenged by artificial rain ranged from 83 to 196 CFUs/mL across all six media types. Ice-nucleating microorganisms were recovered from 85% (11/13) of the simulated rain events, and represented about 1% of the total number of colonies assayed from each event. Strikingly, this percentage is nearly identical to the percentage of culturable ice-nucleating microorganisms occurring in about half of the natural rain events studied to date in Blacksburg, Virginia. This work expands our knowledge of the scavenging properties of rain, and suggests that at least some ice nucleators in natural precipitation events may have been stripped from the atmosphere during rainfall, thus negating their potential role in

  20. Effectiveness of chitosan against wine-related microorganisms.

    PubMed

    Bağder Elmaci, Simel; Gülgör, Gökşen; Tokatli, Mehmet; Erten, Hüseyin; İşci, Asli; Özçelik, Filiz

    2015-03-01

    The antimicrobial action of chitosan against wine related microorganisms, including Lactobacillus plantarum, Saccharomyces cerevisiae, Oeonococcus oeni, Lactobacillus hilgardii, Brettanomyces bruxellensis, Hanseniaspora uvarum and Zygosaccharomyces bailii was examined in laboratory media. In order to assess the potential applicability of chitosan as a microbial control agent for wine, the effect of chitosan, applied individually and/or in combination with sulphur dioxide (SO2), on the growth of microorganisms involved in various stages of winemaking and on the fermentative performance of S. cerevisiae was investigated. Of the seven wine-related microorganisms studied, S. cerevisiae exhibited the strongest resistance to antimicrobial action of chitosan in laboratory media with a minimum inhibitory concentration (MIC) greater than 2 g/L. L. hilgardii, O. oeni and B. bruxellensis were the most susceptible to chitosan since they were completely inactivated by chitosan at 0.2 g/L. The MIC of chitosan for L. plantarum, H. uvarum and Z. bailii was 2, 0.4 and 0.4 g/L, respectively. In wine experiments, it was found that chitosan had a retarding effect on alcoholic fermentation without significantly altering the viability and the fermentative performance of S. cerevisiae. With regard to non-Saccharomyces yeasts (H. uvarum and Z. bailii) involved in winemaking, the early deaths of these yeasts in mixed cultures with S. cerevisiae were not probably due to the antimicrobial action of chitosan but rather due to ethanol produced by the yeasts. The complex interactions between chitosan and wine ingredients as well as microbial interactions during wine fermentation considerably affect the efficacy of chitosan. It was concluded that chitosan was worthy of further investigation as an alternative or complementary preservative to SO2 in wine industry.

  1. Practical Considerations and Challenges Involved in Surfactant Enhanced Bioremediation of Oil

    PubMed Central

    Mohanty, Sagarika; Jasmine, Jublee

    2013-01-01

    Surfactant enhanced bioremediation (SEB) of oil is an approach adopted to overcome the bioavailability constraints encountered in biotransformation of nonaqueous phase liquid (NAPL) pollutants. Fuel oils contain n-alkanes and other aliphatic hydrocarbons, monoaromatics, and polynuclear aromatic hydrocarbons (PAHs). Although hydrocarbon degrading cultures are abundant in nature, complete biodegradation of oil is rarely achieved even under favorable environmental conditions due to the structural complexity of oil and culture specificities. Moreover, the interaction among cultures in a consortium, substrate interaction effects during the degradation and ability of specific cultures to alter the bioavailability of oil invariably affect the process. Although SEB has the potential to increase the degradation rate of oil and its constituents, there are numerous challenges in the successful application of this technology. Success is dependent on the choice of appropriate surfactant type and dose since the surfactant-hydrocarbon-microorganism interaction may be unique to each scenario. Surfactants not only enhance the uptake of constituents through micellar solubilization and emulsification but can also alter microbial cell surface characteristics. Moreover, hydrocarbons partitioned in micelles may not be readily bioavailable depending on the microorganism-surfactant interactions. Surfactant toxicity and inherent biodegradability of surfactants may pose additional challenges as discussed in this review. PMID:24350261

  2. The cellular slime mold: eukaryotic model microorganism.

    PubMed

    Urushihara, Hideko

    2009-04-01

    Cellular slime molds are eukaryotic microorganisms in the soil. They feed on bacteria as solitary amoebae but conditionally construct multicellular forms in which cell differentiation takes place. Therefore, they are attractive for the study of fundamental biological phenomena such as phagocytosis, cell division, chemotactic movements, intercellular communication, cell differentiation, and morphogenesis. The most widely used species, Dictyostelium discoideum, is highly amenable to experimental manipulation and can be used with most recent molecular biological techniques. Its genome and cDNA analyses have been completed and well-annotated data are publicly available. A larger number of orthologues of human disease-related genes were found in D. discoideum than in yeast. Moreover, some pathogenic bacteria infect Dictyostelium amoebae. Thus, this microorganism can also offer a good experimental system for biomedical research. The resources of cellular slime molds, standard strains, mutants, and genes are maintained and distributed upon request by the core center of the National BioResource Project (NBRP-nenkin) to support Dictyostelium community users as well as new users interested in new platforms for research and/or phylogenic consideration.

  3. Antimicrobial Effects of Garcinia Mangostana on Cariogenic Microorganisms.

    PubMed

    Janardhanan, Sunitha; Mahendra, Jaideep; Girija, A S Smiline; Mahendra, Little; Priyadharsini, Vijayashree

    2017-01-01

    Garcinia mangostana commonly called as Mangosteen fruit has been used as an antibacterial agent since age old times. The mangosteen pericarp has proven to have antibacterial effect, but the effect of the same on cariogenic organisms has not been explored. The present study was an attempt to gain a better understanding of the antibacterial effect of mangosteen pericarp on the cariogenic bacteria, to unravel the therapeutic potential for the same. The aim of the study was to assess the antibacterial efficacy of the crude chloroform extract of mangosteen pericarp against cariogenic bacteria. The study was done under laboratory settings using an in vitro design. The microorganisms namely Streptococcus mutans, Streptococcus sanguis, Streptococcus salivarius, Streptococcus oralis and Lactobacillus acidophilus were procured from American Type Cell Culture (ATCC) and Microbial Type Culture Collection (MTCC) were revived and lawn cultured. The antibacterial effect of mangosteen pericarp was tested using agar well diffusion method on Trypticase Soy Agar-Blood Agar (TSA-BA) and de Man, Rogosa and Sharpe (MRS) agar media. The standard antiplaque agent chlorhexidine was used as the positive control. This cross-sectional, experimental study was done in Central Research laboratory, Meenakshi Ammal Dental College for period of eight weeks. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) values were determined by microbroth dilution method. Statistical analysis was done by calculating the mean of the zones of inhibition on tested microorganisms. Mann-Whitney test was done to compare the zones of inhibition of mangosteen and chlorhexidine. The antibacterial bioassay showed the highest activity for Lactobacillus acidophilus (13.6 mm) and Streptococcus sanguis (13.6 mm), whereas, it showed a medium and low activity for Streptococcus oralis (11.3 mm), Streptococcus mutans (10.6 mm) and Streptococcus salivarius (3 mm) respectively. The MBC and MIC

  4. Microbiological challenge of four protective devices for the reconstitution of cytotoxic agents.

    PubMed

    De Prijck, K; D'Haese, E; Vandenbroucke, J; Coucke, W; Robays, H; Nelis, H J

    2008-12-01

    To evaluate the susceptibility to microbial contamination that occurs during simulated handling of protective devices for the preparation of cytotoxic drug solutions. Four devices, i.e. Chemoprotect spike, Clave connector, PhaSeal and Securmix were challenged with low and high inocula of micro-organisms. The cells, transferred to the connected vials during repeated manipulations of the devices were counted by means of solid-phase cytometry. Of the four devices, PhaSeal afforded the lowest transfer of micro-organisms. Secondly, the efficiency of procedures for the disinfection of an artificially contaminated rubber stopper was compared prior to connection of the vial to the PhaSeal device. Spraying or swabbing alone was inadequate, as opposed to a combination of spraying [0.5% or 2.0% (w/v) chlorhexidine in isopropanol] and swabbing [70% (v/v) isopropanol]. Although Phaseal afforded the lowest transfer of micro-organisms, adequate disinfection of the vial prior to connection remains required. Unlike aspects of operator protection, which are well documented, the microbiological safety of protective devices for the preparation of cytotoxic drugs has not been addressed in the literature. This study estimates the susceptibility to microbial contamination during handling of four commonly used devices.

  5. DETECTION AND ENUMERATION OF PATHOGENS AND INDICATOR MICROORGANISMS

    EPA Science Inventory

    Pathogenic microorganisms are routinely discharged to collection systems throughout the world along with a myriad of commensal organisms, organic and inorganic wastes. It is not surprising then that the density of any given pathogen is relatively small in relationship to the popu...

  6. Plant Growth-Promoting Microorganisms for Environmental Sustainability.

    PubMed

    Abhilash, P C; Dubey, Rama Kant; Tripathi, Vishal; Gupta, Vijai K; Singh, Harikesh B

    2016-11-01

    Agrochemicals used to meet the needs of a rapidly growing human population can deteriorate the quality of ecosystems and are not affordable to farmers in low-resource environments. Here, we propose the use of plant growth-promoting microorganisms (PGPMs) as a tool for sustainable food production without compromising ecosystems services. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. 40 CFR 725.239 - Use of specific microorganisms in activities conducted outside a structure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... activities conducted outside a structure. 725.239 Section 725.239 Protection of Environment ENVIRONMENTAL... MICROORGANISMS Exemptions for Research and Development Activities § 725.239 Use of specific microorganisms in activities conducted outside a structure. (a) Bradyrhizobium japonicum. To qualify for an exemption under...

  8. 40 CFR 725.239 - Use of specific microorganisms in activities conducted outside a structure.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... activities conducted outside a structure. 725.239 Section 725.239 Protection of Environment ENVIRONMENTAL... MICROORGANISMS Exemptions for Research and Development Activities § 725.239 Use of specific microorganisms in activities conducted outside a structure. (a) Bradyrhizobium japonicum. To qualify for an exemption under...

  9. Identification of crude-oil components and microorganisms that cause souring under anaerobic conditions.

    PubMed

    Hasegawa, R; Toyama, K; Miyanaga, K; Tanji, Y

    2014-02-01

    Oil souring has important implications with respect to energy resources. Understanding the physiology of the microorganisms that play a role and the biological mechanisms are both important for the maintenance of infrastructure and mitigation of corrosion processes. The objective of this study was to identify crude-oil components and microorganisms in oil-field water that contribute to crude-oil souring. To identify the crude-oil components and microorganisms that are responsible for anaerobic souring in oil reservoirs, biological conversion of crude-oil components under anaerobic conditions was investigated. Microorganisms in oil field water in Akita, Japan degraded alkanes and aromatics to volatile fatty acids (VFAs) under anaerobic conditions, and fermenting bacteria such as Fusibacter sp. were involved in VFA production. Aromatics such as toluene and ethylbenzene were degraded by sulfate-reducing bacteria (Desulfotignum sp.) via the fumarate-addition pathway and not only degradation of VFA but also degradation of aromatics by sulfate-reducing bacteria was the cause of souring. Naphthenic acid and 2,4-xylenol were not converted.

  10. Endocarpic microorganisms of two types of windrow-dried peanut fruit (Arachis hypogaea L.).

    PubMed

    Porter, D M; Garren, K H

    1970-07-01

    The endocarpic microorganisms of peanut fruit dried in either a random windrow (plants left as they fell from the digger) or an inverted windrow (plants inverted to expose fruit to sunlight) were different from that of freshly dug fruit. Chaetomium, Penicillium, Trichoderma, Rhizoctonia, and Fusarium were the dominant fungi found associated with shells (pericarp) of freshly dug fruit. The dominant fungi of shells of windrowed fruit included Chaetomium, Rhizoctonia, Fusarium, Sclerotium, and Alternaria. Seeds of freshly dug fruit were dominated by Penicillium and Aspergillus. The only dominant species in seed of windrowed fruit was Penicillium. Microorganisms were isolated from shells and seed of freshly dug fruit at a frequency of 79% and 52%, respectively. The percentage of infestation was reduced by drying in the field. This was particularly true of the inverted windrow. The proportion of shells and seed infested with a microorganism was reduced 13% and 36%, respectively, after field drying for 5 to 7 days in random and inverted windrows. Microorganisms were isolated much more frequently from shell pieces (73%) than from seed (36%).

  11. The crystal structures of the psychrophilic subtilisin S41 and the mesophilic subtilisin Sph reveal the same calcium-loaded state.

    PubMed

    Almog, Orna; González, Ana; Godin, Noa; de Leeuw, Marina; Mekel, Marlene J; Klein, Daniela; Braun, Sergei; Shoham, Gil; Walter, Richard L

    2009-02-01

    We determine and compare the crystal structure of two proteases belonging to the subtilisin superfamily: S41, a cold-adapted serine protease produced by Antarctic bacilli, at 1.4 A resolution and Sph, a mesophilic serine protease produced by Bacillus sphaericus, at 0.8 A resolution. The purpose of this comparison was to find out whether multiple calcium ion binding is a molecular factor responsible for the adaptation of S41 to extreme low temperatures. We find that these two subtilisins have the same subtilisin fold with a root mean square between the two structures of 0.54 A. The final models for S41 and Sph include a calcium-loaded state of five ions bound to each of these two subtilisin molecules. None of these calcium-binding sites correlate with the high affinity known binding site (site A) found for other subtilisins. Structural analysis of the five calcium-binding sites found in these two crystal structures indicate that three of the binding sites have two side chains of an acidic residue coordinating the calcium ion, whereas the other two binding sites have either a main-chain carbonyl, or only one acidic residue side chain coordinating the calcium ion. Thus, we conclude that three of the sites are of high affinity toward calcium ions, whereas the other two are of low affinity. Because Sph is a mesophilic subtilisin and S41 is a psychrophilic subtilisin, but both crystal structures were found to bind five calcium ions, we suggest that multiple calcium ion binding is not responsible for the adaptation of S41 to low temperatures. Copyright 2008 Wiley-Liss, Inc.

  12. Sphaerochaeta multiformis sp. nov., an anaerobic, psychrophilic bacterium isolated from subseafloor sediment, and emended description of the genus Sphaerochaeta.

    PubMed

    Miyazaki, Masayuki; Sakai, Sanae; Ritalahti, Kirsti M; Saito, Yayoi; Yamanaka, Yuko; Saito, Yumi; Tame, Akihiko; Uematsu, Katsuyuki; Löffler, Frank E; Takai, Ken; Imachi, Hiroyuki

    2014-12-01

    An anaerobic, psychrophilic bacterium, strain MO-SPC2(T), was isolated from a methanogenic microbial community in a continuous-flow bioreactor that was established from subseafloor sediments collected from off the Shimokita Peninsula of Japan in the north-western Pacific Ocean. Cells were pleomorphic: spherical, annular, curved rod, helical and coccoid cell morphologies were observed. Motility only occurred in helical cells. Strain MO-SPC2(T) grew at 0-17 °C (optimally at 9 °C), at pH 6.0-8.0 (optimally at pH 6.8-7.2) and in 20-40 g NaCl l(-1) (optimally at 20-30 NaCl l(-1)). The strain grew chemo-organotrophically with mono-, di- and polysaccharides. The major end products of glucose fermentation were acetate, ethanol, hydrogen and carbon dioxide. The abundant polar lipids of strain MO-SPC2(T) were phosphatidylglycolipids, phospholipids and glycolipids. The major cellular fatty acids were C14 : 0, C16 : 0 and C16 : 1ω9. Isoprenoid quinones were not detected. The G+C content of the DNA was 32.3 mol%. 16S rRNA gene-based phylogenetic analysis showed that strain MO-SPC2(T) was affiliated with the genus Sphaerochaeta within the phylum Spirochaetes, and its closest relatives were Sphaerochaeta pleomorpha Grapes(T) (88.4 % sequence identity), Sphaerochaeta globosa Buddy(T) (86.7 %) and Sphaerochaeta coccoides SPN1(T) (85.4 %). Based on phenotypic characteristics and phylogenetic traits, strain MO-SPC2(T) is considered to represent a novel species of the genus Sphaerochaeta, for which the name Sphaerochaeta multiformis sp. nov. is proposed. The type strain is MO-SPC2(T) ( = JCM 17281(T) = DSM 23952(T)). An emended description of the genus Sphaerochaeta is also proposed. © 2014 IUMS.

  13. On the Isolation of Halophilic Microorganisms from Salt Deposits of Great Geological Age

    NASA Technical Reports Server (NTRS)

    Stan-Lotter, Helga; Denner, Ewald; Orans, Robin (Editor)

    1993-01-01

    From salt sediments of Triassic or Permian ace from various locations in the world halophilic microorganisms were isolated. Molecular characteristics of several of the isolates suggested they belong to the archaebacteriae. One group appears to represent novel strains; several properties or one such isolate, strain BIp, are described here. The existence of viable microorganisms in ancient sediments would have great implications with respect to our notions on evolution, the search for life in extraterrestrial environments and the long- term survival of functional biological structures. Of crucial importance is thus the question if these microorganisms existed in the salt since the time of deposition or invaded at some later date. Some suggestions to address these issues experimentally are discussed.

  14. On the isolation of halophilic microorganisms from salt deposits of great geological age

    NASA Technical Reports Server (NTRS)

    Stan-Lotter, Helga; Denner, Ewald

    1993-01-01

    From salt sediments of Triassic or Permian age from various locations in the world halophilic microorganisms were isolated. Molecular characteristics of several of the isolates suggested they belong to the archaebacteria. One group appears to represent novel strains; several properties of one such isolate, strain BIp, are described here. The existence of viable microorganisms in ancient sediment would have great implications with respect to our notions on evolution, the research for life in extraterrestrial environments, and the longterm survival of functional biological structures. Of crucial importance is thus the question if these microorganisms existed in the salt since the time of deposition or invaded at some later date. Some suggestions to address these issues experimentally are discussed.

  15. Rapid detection of foodborne microorganisms on food surface using Fourier transform Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Hong; Irudayaraj, Joseph

    2003-02-01

    Fourier transform (FT) Raman spectroscopy was used for non-destructive characterization and differentiation of six different microorganisms including the pathogen Escherichia coli O157:H7 on whole apples. Mahalanobis distance metric was used to evaluate and quantify the statistical differences between the spectra of six different microorganisms. The same procedure was extended to discriminate six different strains of E. coli. The FT-Raman procedure was not only successful in discriminating the different E. coli strain but also accurately differentiated the pathogen from non-pathogens. Results demonstrate that FT-Raman spectroscopy can be an excellent tool for rapid examination of food surfaces for microorganism contamination and for the classification of microbial cultures.

  16. Hydrodynamic interaction of two swimming model micro-organisms

    NASA Astrophysics Data System (ADS)

    Ishikawa, Takuji; Simmonds, M. P.; Pedley, T. J.

    2006-12-01

    In order to understand the rheological and transport properties of a suspension of swimming micro-organisms, it is necessary to analyse the fluid-dynamical interaction of pairs of such swimming cells. In this paper, a swimming micro-organism is modelled as a squirming sphere with prescribed tangential surface velocity, referred to as a squirmer. The centre of mass of the sphere may be displaced from the geometric centre (bottom-heaviness). The effects of inertia and Brownian motion are neglected, because real micro-organisms swim at very low Reynolds numbers but are too large for Brownian effects to be important. The interaction of two squirmers is calculated analytically for the limits of small and large separations and is also calculated numerically using a boundary-element method. The analytical and the numerical results for the translational rotational velocities and for the stresslet of two squirmers correspond very well. We sought to generate a database for an interacting pair of squirmers from which one can easily predict the motion of a collection of squirmers. The behaviour of two interacting squirmers is discussed phenomenologically, too. The results for the trajectories of two squirmers show that first the squirmers attract each other, then they change their orientation dramatically when they are in near contact and finally they separate from each other. The effect of bottom-heaviness is considerable. Restricting the trajectories to two dimensions is shown to give misleading results. Some movies of interacting squirmers are available with the online version of the paper.

  17. [Increasing incidence of community-acquired pneumonia caused by atypical microorganisms].

    PubMed

    Tazón-Varela, M A; Alonso-Valle, H; Muñoz-Cacho, P; Gallo-Terán, J; Piris-García, X; Pérez-Mier, L A

    2017-09-01

    Knowing the most common microorganisms in our environment can help us to make proper empirical treatment decisions. The aim is to identify those microorganisms causing community-acquired pneumonia. An observational, descriptive and prospective study was conducted, including patients over 14 years with a clinical and radiographic diagnosis of community-acquired pneumonia during a 383 consecutive day period. A record was made of sociodemographic variables, personal history, prognostic severity scales, progress, and pathogenic agents. The aetiological diagnosis was made using blood cultures, detection of Streptococcus pneumoniae and Legionella pneumophila urinary antigens, sputum culture, influenza virus and Streptococcus pyogenes detection. Categorical variables are presented as absolute values and percentages, and continuous variables as their means and standard deviations. Of the 287 patients included in the study (42% women, mean age 66±22 years), 10.45% died and 70% required hospital admission. An aetiological diagnosis was achieved in 43 patients (14.98%), with 16 microorganisms found in 59 positive samples. The most frequently isolated pathogen was Streptococcus pneumonia (24/59, 41%), followed by gram-negative enteric bacilli, Klebsiella pneumonia, Escherichia coli, Serratia marcescens and Enterobacter cloacae isolated in 20% of the samples (12/59), influenza virus (5/59, 9%), methicillin-resistant Staphylococcus aureus (3/59, 5%), Pseudomonas aeruginosa (2/59, 3%), Moraxella catarrhalis (2/59, 3%), Legionella pneumophila (2/59, 3%), and Haemophilus influenza (2/59, 3%). Polymicrobial infections accounted for 14% (8/59). A high percentage of atypical microorganisms causing community-acquired pneumonia were found. Copyright © 2016 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Generation of PHB from Spent Sulfite Liquor Using Halophilic Microorganisms.

    PubMed

    Weissgram, Michaela; Gstöttner, Janina; Lorantfy, Bettina; Tenhaken, Raimund; Herwig, Christoph; Weber, Hedda K

    2015-06-08

    Halophilic microorganisms thrive at elevated concentrations of sodium chloride up to saturation and are capable of growing on a wide variety of carbon sources like various organic acids, hexose and also pentose sugars. Hence, the biotechnological application of these microorganisms can cover many aspects, such as the treatment of hypersaline waste streams of different origin. Due to the fact that the high osmotic pressure of hypersaline environments reduces the risk of contamination, the capacity for cost-effective non-sterile cultivation can make extreme halophilic microorganisms potentially valuable organisms for biotechnological applications. In this contribution, the stepwise use of screening approaches, employing design of experiment (DoE) on model media and subsequently using industrial waste as substrate have been implemented to investigate the applicability of halophiles to generate PHB from the industrial waste stream spent sulfite liquor (SSL). The production of PHB on model media as well as dilutions of industrial substrate in a complex medium has been screened for by fluorescence microscopy using Nile Blue staining. Screening was used to investigate the ability of halophilic microorganisms to withstand the inhibiting substances of the waste stream without negatively affecting PHB production. It could be shown that neither single inhibiting substances nor a mixture thereof inhibited growth in the investigated range, hence, leaving the question on the inhibiting mechanisms open. However, it could be demonstrated that some haloarchaea and halophilic bacteria are able to produce PHB when cultivated on 3.3% w/w dry matter spent sulfite liquor, whereas H. halophila was even able to thrive on 6.6% w/w dry matter spent sulfite liquor and still produce PHB.

  19. Generation of PHB from Spent Sulfite Liquor Using Halophilic Microorganisms

    PubMed Central

    Weissgram, Michaela; Gstöttner, Janina; Lorantfy, Bettina; Tenhaken, Raimund; Herwig, Christoph; Weber, Hedda K.

    2015-01-01

    Halophilic microorganisms thrive at elevated concentrations of sodium chloride up to saturation and are capable of growing on a wide variety of carbon sources like various organic acids, hexose and also pentose sugars. Hence, the biotechnological application of these microorganisms can cover many aspects, such as the treatment of hypersaline waste streams of different origin. Due to the fact that the high osmotic pressure of hypersaline environments reduces the risk of contamination, the capacity for cost-effective non-sterile cultivation can make extreme halophilic microorganisms potentially valuable organisms for biotechnological applications. In this contribution, the stepwise use of screening approaches, employing design of experiment (DoE) on model media and subsequently using industrial waste as substrate have been implemented to investigate the applicability of halophiles to generate PHB from the industrial waste stream spent sulfite liquor (SSL). The production of PHB on model media as well as dilutions of industrial substrate in a complex medium has been screened for by fluorescence microscopy using Nile Blue staining. Screening was used to investigate the ability of halophilic microorganisms to withstand the inhibiting substances of the waste stream without negatively affecting PHB production. It could be shown that neither single inhibiting substances nor a mixture thereof inhibited growth in the investigated range, hence, leaving the question on the inhibiting mechanisms open. However, it could be demonstrated that some haloarchaea and halophilic bacteria are able to produce PHB when cultivated on 3.3% w/w dry matter spent sulfite liquor, whereas H. halophila was even able to thrive on 6.6% w/w dry matter spent sulfite liquor and still produce PHB. PMID:27682089

  20. Microorganisms in desert rocks: the edge of life on Earth.

    PubMed

    Wierzchos, Jacek; de los Ríos, Asunción; Ascaso, Carmen

    2012-12-01

    This article reviews current knowledge on microbial communities inhabiting endolithic habitats in the arid and hyper-arid regions of our planet. In these extremely dry environments, the most common survival strategy is to colonize the interiors of rocks. This habitat provides thermal buffering, physical stability, and protection against incident UV radiation, excessive photosynthetically active radiation, and freeze-thaw events. Above all, through water retention in the rocks' network of pores and fissures, moisture is made available. Some authors have argued that dry environments pose the most extreme set of conditions faced by microorganisms. Microbial cells need to withstand the biochemical stresses created by the lack of water, along with temperature fluctuations and/or high salinity. In this review, we also address the variety of ways in which microorganisms deal with the lack of moisture in hyper-arid environments and point out the diversity of microorganisms that are able to cope with only the scarcest presence of water. Finally, we discuss the important clues to the history of life on Earth, and perhaps other places in our solar system, that have emerged from the study of extreme microbial ecosystems.

  1. Periodontopathic microorganisms in peripheric blood after scaling and root planing.

    PubMed

    Lafaurie, Gloria Inés; Mayorga-Fayad, Isabel; Torres, María Fernanda; Castillo, Diana Marcela; Aya, Maria Rosario; Barón, Alexandra; Hurtado, Paola Andrea

    2007-10-01

    The objective of this study was to evaluate the frequency of periodontopathic and other subgingival anaerobic and facultative bacteria in the bloodstream following scaling and root planing (SRP). Forty-two patients with severe generalized chronic periodontitis (GChP) and generalized aggressive periodontitis (GAgP) were included in the study. Four samples of peripheric blood were drawn from the cubital vein at different times: Pre-treatment: immediately before the SRP procedure (T1), immediately after treatment (T2), 15 min. post-treatment (T3) and 30 min. post-treatment (T4). In order to identify the presence of microorganisms in blood, subcultures were conducted under anaerobic conditions. 80.9% of the patients presented positive cultures after SRP and it occurred more frequently immediately after treatment; however, 19% of the patients still had microorganisms in the bloodstream 30 min. after the procedure. The periodontopathic microorganisms more frequently identified were Porphyromonas gingivalis and Micromonas micros. Campylobacter spp., Eikenella corrodens, Tannerella forsythensis, Fusobacterium spp. and Prevotella intermedia were isolated less often. Actinomyces spp. were also found frequently during bacteraemia after SRP. SRP induced bacteraemia associated with anaerobic bacteria, especially in patients with periodontal disease.

  2. Procedure for Adaptive Laboratory Evolution of Microorganisms Using a Chemostat.

    PubMed

    Jeong, Haeyoung; Lee, Sang J; Kim, Pil

    2016-09-20

    Natural evolution involves genetic diversity such as environmental change and a selection between small populations. Adaptive laboratory evolution (ALE) refers to the experimental situation in which evolution is observed using living organisms under controlled conditions and stressors; organisms are thereby artificially forced to make evolutionary changes. Microorganisms are subject to a variety of stressors in the environment and are capable of regulating certain stress-inducible proteins to increase their chances of survival. Naturally occurring spontaneous mutations bring about changes in a microorganism's genome that affect its chances of survival. Long-term exposure to chemostat culture provokes an accumulation of spontaneous mutations and renders the most adaptable strain dominant. Compared to the colony transfer and serial transfer methods, chemostat culture entails the highest number of cell divisions and, therefore, the highest number of diverse populations. Although chemostat culture for ALE requires more complicated culture devices, it is less labor intensive once the operation begins. Comparative genomic and transcriptome analyses of the adapted strain provide evolutionary clues as to how the stressors contribute to mutations that overcome the stress. The goal of the current paper is to bring about accelerated evolution of microorganisms under controlled laboratory conditions.

  3. Native and heterologous production of bacteriocins from gram-positive microorganisms.

    PubMed

    Muñoz, Mabel; Jaramillo, Diana; Melendez, Adelina Del Pilar; J Alméciga-Diaz, Carlos; Sánchez, Oscar F

    2011-12-01

    In nature, microorganisms can present several mechanisms for setting intercommunication and defense. One of these mechanisms is related to the production of bacteriocins, which are peptides with antimicrobial activity. Bacteriocins can be found in Gram-positive and Gram-negative bacteria. Nevertheless, bacteriocins produced by Gram-positive bacteria are of particular interest due to the industrial use of several strains that belong to this group, especially lactic acid bacteria (LAB), which have the status of generally recognized as safe (GRAS) microorganisms. In this work, we will review recent tendencies in the field of invention and state of art related to bacteriocin production by Gram-positive microorganism. Hundred-eight patents related to Gram-positive bacteriocin producers have been disclosed since 1965, from which 57% are related bacteriocins derived from Lactococcus, Lactobacillus, Streptococcus, and Pediococcus strains. Surprisingly, patents regarding heterologous bacteriocins production were mainly presented just in the last decade. Although the major application of bacteriocins is concerned to food industry to control spoilage and foodborne bacteria, during the last years bacteriocin applications have been displacing to the diagnosis and treatment of cancer, and plant disease resistance and growth promotion.

  4. Nanomaterials-based biosensors for detection of microorganisms and microbial toxins.

    PubMed

    Sutarlie, Laura; Ow, Sian Yang; Su, Xiaodi

    2017-04-01

    Detection of microorganisms and microbial toxins is important for health and safety. Due to their unique physical and chemical properties, nanomaterials have been extensively used to develop biosensors for rapid detection of microorganisms with microbial cells and toxins as target analytes. In this paper, the design principles of nanomaterials-based biosensors for four selected analyte categories (bacteria cells, toxins, mycotoxins, and protozoa cells), closely associated with the target analytes' properties is reviewed. Five signal transducing methods that are less equipment intensive (colorimetric, fluorimetric, surface enhanced Raman scattering, electrochemical, and magnetic relaxometry methods) is described and compared for their sensory performance (in term oflimit of detection, dynamic range, and response time) for all analyte categories. In the end, the suitability of these five sensing principles for on-site or field applications is discussed. With a comprehensive coverage of nanomaterials, design principles, sensing principles, and assessment on the sensory performance and suitability for on-site application, this review offers valuable insight and perspective for designing suitable nanomaterials-based microorganism biosensors for a given application. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Algicidal microorganisms and secreted algicides: New tools to induce microalgal cell disruption.

    PubMed

    Demuez, Marie; González-Fernández, Cristina; Ballesteros, Mercedes

    2015-12-01

    Cell disruption is one of the most critical steps affecting the economy and yields of biotechnological processes for producing biofuels from microalgae. Enzymatic cell disruption has shown competitive results compared to mechanical or chemical methods. However, the addition of enzymes implies an associated cost in the overall production process. Recent studies have employed algicidal microorganisms to perform enzymatic cell disruption and degradation of microalgae biomass in order to reduce this associated cost. Algicidal microorganisms induce microalgae growth inhibition, death and subsequent lysis. Secreted algicidal molecules and enzymes produced by bacteria, cyanobacteria, viruses and the microalga themselves that are capable of inducing algal death are classified, and the known modes of action are described along with insights into cell-to-cell interaction and communication. This review aims to provide information regarding microalgae degradation by microorganisms and secreted algicidal substances that would be useful for microalgae cell breakdown in biofuels production processes. A better understanding of algae-to-algae communication and the specific mechanisms of algal cell lysis is expected to be an important breakthrough for the broader application of algicidal microorganisms in biological cell disruption and the production of biofuels from microalgae biomass. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Current challenges and future directions for bacterial self-healing concrete.

    PubMed

    Lee, Yun Suk; Park, Woojun

    2018-04-01

    Microbially induced calcium carbonate precipitation (MICP) has been widely explored and applied in the field of environmental engineering over the last decade. Calcium carbonate is naturally precipitated as a byproduct of various microbial metabolic activities. This biological process was brought into practical use to restore construction materials, strengthen and remediate soil, and sequester carbon. MICP has also been extensively examined for applications in self-healing concrete. Biogenic crack repair helps mitigate the high maintenance costs of concrete in an eco-friendly manner. In this process, calcium carbonate precipitation (CCP)-capable bacteria and nutrients are embedded inside the concrete. These bacteria are expected to increase the durability of the concrete by precipitating calcium carbonate in situ to heal cracks that develop in the concrete. However, several challenges exist with respect to embedding such bacteria; harsh conditions in concrete matrices are unsuitable for bacterial life, including high alkalinity (pH up to 13), high temperatures during manufacturing processes, and limited oxygen supply. Additionally, many biological factors, including the optimum conditions for MICP, the molecular mechanisms involved in MICP, the specific microorganisms suitable for application in concrete, the survival characteristics of the microorganisms embedded in concrete, and the amount of MICP in concrete, remain unclear. In this paper, metabolic pathways that result in conditions favorable for calcium carbonate precipitation, current and potential applications in concrete, and the remaining biological challenges are reviewed.

  7. Development of novel drugs from marine surface associated microorganisms.

    PubMed

    Penesyan, Anahit; Kjelleberg, Staffan; Egan, Suhelen

    2010-03-01

    While the oceans cover more than 70% of the Earth's surface, marine derived microbial natural products have been largely unexplored. The marine environment is a habitat for many unique microorganisms, which produce biologically active compounds ("bioactives") to adapt to particular environmental conditions. For example, marine surface associated microorganisms have proven to be a rich source for novel bioactives because of the necessity to evolve allelochemicals capable of protecting the producer from the fierce competition that exists between microorganisms on the surfaces of marine eukaryotes. Chemically driven interactions are also important for the establishment of cross-relationships between microbes and their eukaryotic hosts, in which organisms producing antimicrobial compounds ("antimicrobials"), may protect the host surface against over colonisation in return for a nutrient rich environment. As is the case for bioactive discovery in general, progress in the detection and characterization of marine microbial bioactives has been limited by a number of obstacles, such as unsuitable culture conditions, laborious purification processes, and a lack of de-replication. However many of these limitations are now being overcome due to improved microbial cultivation techniques, microbial (meta-) genomic analysis and novel sensitive analytical tools for structural elucidation. Here we discuss how these technical advances, together with a better understanding of microbial and chemical ecology, will inevitably translate into an increase in the discovery and development of novel drugs from marine microbial sources in the future.

  8. Ice Recrystallization Inhibiting Polymers Enable Glycerol-Free Cryopreservation of Micro-organisms.

    PubMed

    Hasan, Muhammad; Fayter, Alice E R; Gibson, Matthew I

    2018-06-22

    All modern molecular biology and microbiology is underpinned not only by the tools to handle and manipulate microorganisms, but also those to store, bank and transport them. Glycerol is the current gold-standard cryoprotectant but it is intrinsically toxic to most micro-organisms: only a fraction of cells survive freezing and the presence of glycerol can impact down-stream applications and assays. Extremophile organisms survive repeated freeze/thaw cycles by producing antifreeze proteins which are potent ice recrystallization inhibitors. Here we introduce a new concept for the storage/transport of micro-organisms by using ice recrystallization inhibiting poly(vinyl alcohol) in tandem with poly(ethylene glycol). This cryopreserving formulation is shown to result in a 4-fold increase in E. coli yield post-thaw, compared to glycerol, utilizing lower concentrations, with successful cryopreservation at just 1.1 weight percent of additive. The mechanism of protection is demonstrated to be linked to inhibiting ice recrystallization (by comparison to a recombinant antifreeze protein) but also to the significantly lower toxicity of the polymers compared to glycerol. Optimized formulations are presented and shown to be broadly applicable to the cryopreservation of a panel of Gram negative, Gram positive and Mycobacteria strains. This represents a step-change in how micro-organisms will be stored by the design of new macromolecular ice growth inhibitors; it should enable a transition from traditional solvent-based to macromolecular microbiology storage methods.

  9. [Domestication study about desulfuration microorganism from oxidation ditch by low concentration SO2].

    PubMed

    Huang, Bing; Shi, Zhe; Wang, Yan-Yan; Zhang, Shi-Ling

    2010-06-01

    An excellent desulfuration microorganism with a quick growth and propagation, high activation, high efficiency of removing SO2 is obtained from oxidation ditch of a city sewage treatment plant by inductive acclimatization over 6 d with low concentration SO2 gas (100-2 000 mg/m3). The desulfurition microorganism get their energy sources for growth from transforming SO2 (SO3(2-)) to SO4(2-). The predominant bacterium of the desulfuration microorganism has the same characteristic with Thiobacillus ferrooxidans (T. ferrooxidans), which showed that it was Gram negative, short rod bacteria with a single polar flagellum under a microscopic examination, and obtained its nourishment through the oxidation of inorganic compounds. The technology process condition of domestication and desulfuration of microorganism are particular studied, and the results showed that aerating time, SO2 flux and time to provide nutriment contained N, P, K to microorganism were very important. They have an ability with degradation rate of 160g/ (m3 x h) and degradation efficiency over 50% to transform sulfite to sulfate in liquid phase. The bacteria have a 98% of removing efficiency and over 80% of biodegradation efficiency for the 5 500 mg/m3 SO2 gas and the outlet concentration of SO2 is lower than 100 mg/m3, and also have a 95% of removing efficiency for 15 000 mg/m3 SO2 gas in the packed tower reactor with Raschig ring at 3s contact time.

  10. Functional Basis of Microorganism Classification.

    PubMed

    Zhu, Chengsheng; Delmont, Tom O; Vogel, Timothy M; Bromberg, Yana

    2015-08-01

    Correctly identifying nearest "neighbors" of a given microorganism is important in industrial and clinical applications where close relationships imply similar treatment. Microbial classification based on similarity of physiological and genetic organism traits (polyphasic similarity) is experimentally difficult and, arguably, subjective. Evolutionary relatedness, inferred from phylogenetic markers, facilitates classification but does not guarantee functional identity between members of the same taxon or lack of similarity between different taxa. Using over thirteen hundred sequenced bacterial genomes, we built a novel function-based microorganism classification scheme, functional-repertoire similarity-based organism network (FuSiON; flattened to fusion). Our scheme is phenetic, based on a network of quantitatively defined organism relationships across the known prokaryotic space. It correlates significantly with the current taxonomy, but the observed discrepancies reveal both (1) the inconsistency of functional diversity levels among different taxa and (2) an (unsurprising) bias towards prioritizing, for classification purposes, relatively minor traits of particular interest to humans. Our dynamic network-based organism classification is independent of the arbitrary pairwise organism similarity cut-offs traditionally applied to establish taxonomic identity. Instead, it reveals natural, functionally defined organism groupings and is thus robust in handling organism diversity. Additionally, fusion can use organism meta-data to highlight the specific environmental factors that drive microbial diversification. Our approach provides a complementary view to cladistic assignments and holds important clues for further exploration of microbial lifestyles. Fusion is a more practical fit for biomedical, industrial, and ecological applications, as many of these rely on understanding the functional capabilities of the microbes in their environment and are less concerned with

  11. Unexpected thermal destruction of dried, glass bead-immobilized microorganisms as a function of water activity.

    PubMed

    Laroche, C; Gervais, P

    2003-05-01

    To help us understand the factors and mechanisms implicated in the death of microorganisms or their resistance to temperature in a low water activity environment, microorganisms were dried on the surface of glass beads before being subjected to high temperatures for a short period followed by rapid cooling. Two microorganisms were studied: the yeast Saccharomyces cerevisiae and the bacterium Lactobacillus plantarum. Experiments were carried out at 150, 200, and 250 degrees C, with four durations of heat treatment and seven levels of initial water activity between 0.10 and 0.70. We observed an unexpected range of water activity, between 0.30 and 0.50, at which microorganisms were more resistant to the various treatments, with maximal viability at 0.35 for L. plantarum and 0.40 for S. cerevisiae.

  12. Mechanism of lethal action of 2,450-MHz radiation on microorganisms.

    PubMed Central

    Vela, G R; Wu, J F

    1979-01-01

    Various bacteria, actinomycetes, fungi, and bacteriophages were exposed to microwaves of 2,450 +/- 20 MHz in the presence and in the absence of water. It was found that microorganisms were inactivated only when in the presence of water and that dry or lyophilized organisms were not affected even by extended exposures. The data presented here prove that microorganisms are killed by "thermal effect" only and that, most likely, there is no "nonthermal effect"; cell constituents other than water do not absorb sufficient energy to kill microbial cells. PMID:453828

  13. Improved Method for Direct Detection of Environmental Microorganisms Using an Amplification of 16S rDNA Region

    NASA Astrophysics Data System (ADS)

    Tsujimura, M.; Akutsu, J.; Zhang, Z.; Sasaki, M.; Tajima, H.; Kawarabayasi, Y.

    2004-12-01

    The thermostable proteins or enzymes were expected to be capable to be utilized in many areas of industries. Many thermophilic microorganisms, which possess the thermostable proteins or enzymes, were identified from the extreme environment. However, many unidentified and uncultivable microorganisms are still remaining in the environment on the earth. It is generally said that the cultivable microorganisms are less than 1% of entire microorganisms living in the earth, remaining over 99% are still uncultivable. As an approach to the uncultivable microorganisms, the PCR amplification of 16S rDNA region using primer sets designed from the conserved region has been generally utilized for detection and community analysis of microorganism in the environment. However, the facts, that PCR amplification introduces the mutation in the amplified DNA fragment and efficiency of PCR amplification is depend on the sequences of primer sets, indicated that the improving of PCR analysis was necessary for more correct detection of microorganisms. As the result of evaluation for the quality of DNA polymerases, sequences of primers used for amplification and conditions of PCR amplification, the DNA polymerase, the primer set and the conditions for amplification, which did not amplify the DNA fragment from the DNA contaminated within the DNA polymerase itself, were successfully selected. Also the rate of mutation in the DNA fragment amplified was evaluated using this conditions and the genomic DNA from cultivable microbes as a template. The result indicated the rate of mutation introduced by PCR was approximately 0.1% to 0.125%. The improved method using these conditions and error rate calculated was applied for the analysis of microorganisms in the geothermal environment. The result indicated that four kinds of dominant microorganisms, including both of bacteria and archaea, were alive within soil in the hot spring in Tohoku Area. We would like to apply this improved method to detection

  14. Role and functions of beneficial microorganisms in sustainable aquaculture.

    PubMed

    Zhou, Qunlan; Li, Kangmin; Jun, Xie; Bo, Liu

    2009-08-01

    This paper aims to review the development of scientific concepts of microecology and ecology of microbes and the role and functions of beneficial microorganisms in aquaculture and mariculture. Beneficial microorganisms play a great role in natural and man-made aquatic ecosystems based on the co-evolution theory in living biosphere on earth. Their functions are to adjust algal population in water bodies so as to avoid unwanted algal bloom; to speed up decomposition of organic matter and to reduce CODmn, NH3-N and NO2-N in water and sediments so as to improve water quality; to suppress fish/shrimp diseases and water-borne pathogens; to enhance immune system of cultured aquatic animals and to produce bioactive compounds such as vitamins, hormones and enzymes that stimulate growth, thus to decrease the FCR of feed.

  15. Inactivation pathogenic microorganisms in water by laser methods

    NASA Astrophysics Data System (ADS)

    Iakovlev, Alexey; Grishkanich, Aleksandr; Kascheev, Sergey; Ruzankina, Julia; Afanasyev, Mikhail; Hafizov, Nail

    2017-02-01

    As a result of the research the following methods have been proposed for controlling harmful microorganisms: sterilization of water by laser radiation at wavelengths of 425 nm, 355 nm and 308 nm. The results of theoretical and experimental studies on the development and establishment of a system of ultraviolet disinfection of water for injection (UFOVI) intended for research sterilized water for injections. The pipe created a strong turbulent water flow. Performance irradiation laminar flow of 1.5 liters per second. Irradiation was carried out at three wavelengths 425 nm, 355 nm and 308 nm with energies semiconductor laser diode arrays to 4 MJ / cm3. Wavelength tuning implemented current in the range of 10 nm. For large capacities, we have developed a miniature solid state laser, which was used in fluid microorganisms inactivator. In the water treatment process breaks up to 98% of microbes, but can be left among pathogenic viruses destruction which requires special handling.

  16. Lignocellulosic ethanol production at high-gravity: challenges and perspectives.

    PubMed

    Koppram, Rakesh; Tomás-Pejó, Elia; Xiros, Charilaos; Olsson, Lisbeth

    2014-01-01

    In brewing and ethanol-based biofuel industries, high-gravity fermentation produces 10-15% (v/v) ethanol, resulting in improved overall productivity, reduced capital cost, and reduced energy input compared to processing at normal gravity. High-gravity technology ensures a successful implementation of cellulose to ethanol conversion as a cost-competitive process. Implementation of such technologies is possible if all process steps can be performed at high biomass concentrations. This review focuses on challenges and technological efforts in processing at high-gravity conditions and how these conditions influence the physiology and metabolism of fermenting microorganisms, the action of enzymes, and other process-related factors. Lignocellulosic materials add challenges compared to implemented processes due to high inhibitors content and the physical properties of these materials at high gravity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Two-dimensional tracking of a motile micro-organism allowing high-resolution observation with various imaging techniques

    NASA Astrophysics Data System (ADS)

    Oku, H.; Ogawa, N.; Ishikawa, M.; Hashimoto, K.

    2005-03-01

    In this article, a micro-organism tracking system using a high-speed vision system is reported. This system two dimensionally tracks a freely swimming micro-organism within the field of an optical microscope by moving a chamber of target micro-organisms based on high-speed visual feedback. The system we developed could track a paramecium using various imaging techniques, including bright-field illumination, dark-field illumination, and differential interference contrast, at magnifications of 5 times and 20 times. A maximum tracking duration of 300s was demonstrated. Also, the system could track an object with a velocity of up to 35 000μm/s (175diameters/s), which is significantly faster than swimming micro-organisms.

  18. Process for producing modified microorganisms for oil treatment at high temperatures, pressures and salinity

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow

    1996-02-20

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. The processes are comprised of steps which successively limit the carbon sources and increase the temperature, pressure and salinity of the media. This is done until microbial strains are obtained that are capable of growing in essentially crude oil as a carbon source and at a temperature range from about 70.degree. C. to 90.degree. C., at a pressure range from about 2,000 to 2,500 psi and at a salinity range from about 1.3 to 35%.

  19. Process for producing modified microorganisms for oil treatment at high temperatures, pressures and salinity

    DOEpatents

    Premuzic, E.T.; Lin, M.

    1996-02-20

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. The processes are comprised of steps which successively limit the carbon sources and increase the temperature, pressure and salinity of the media. This is done until microbial strains are obtained that are capable of growing in essentially crude oil as a carbon source and at a temperature range from about 70 C to 90 C, at a pressure range from about 2,000 to 2,500 psi and at a salinity range from about 1.3 to 35%. 68 figs.

  20. Metabolic engineering of microorganisms for the synthesis of plant natural products.

    PubMed

    Marienhagen, Jan; Bott, Michael

    2013-01-20

    Of more than 200,000 plant natural products known to date, many demonstrate important pharmacological activities or are of biotechnological significance. However, isolation from natural sources is usually limited by low abundance and environmental, seasonal as well as regional variation, whereas total chemical synthesis is typically commercially unfeasible considering the complex structures of most plant natural products. With advances in DNA sequencing and recombinant DNA technology many of the biosynthetic pathways responsible for the production of these valuable compounds have been elucidated, offering the opportunity of a functional integration of biosynthetic pathways in suitable microorganisms. This approach offers promise to provide sufficient quantities of the desired plant natural products from inexpensive renewable resources. This review covers recent advancements in the metabolic engineering of microorganisms for the production of plant natural products such as isoprenoids, phenylpropanoids and alkaloids, and highlights general approaches and strategies to gain access to the rich biochemical diversity of plants by employing the biosynthetic power of microorganisms. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Salt influence on surface microorganisms and ripening of soft ewe cheese.

    PubMed

    Tabla, Rafael; Gómez, Antonia; Rebollo, José E; Roa, Isidro

    2015-05-01

    The effect of different brining treatments on salt uptake and diffusion during the first 30 d of ripening was determined in soft ewe cheese. Additionally, salt influence on surface microorganisms and physicochemical parameters was evaluated. Cheeses were placed into different brine solutions (14, 18 and 24°Bé) at 5 and 10 °C for 1, 2 or 3 h. Samples from rind, outer core and inner core were analysed at 0, 7, 15 and 30 d. Complete salt diffusion from rind to the inner core took about 15 d. The resulting salt gradient favoured the development of a pH gradient from the surface to the inner core. Salt concentration also had a significant effect on the growth of surface microorganisms (mesophiles, pseudomonads and halotolerants). However, mould and yeasts were not affected throughout ripening by the salt levels achieved. Brine salting by immersion for 3 h at 10 °C in 24°B brine was found to be the most suitable treatment to control pseudomonads in cheese rind, as spoilage microorganism.

  2. [Research on biological detoxification of Chinese medicine containing aristolochic acid A by ten microorganisms].

    PubMed

    Cao, Yi; Tan, Zhou-jin; Xia, Bo-hou; Xie, Jia-chi; Lin, Lin-mei; Liao, Duan-fang

    2015-05-01

    This paper was aim to screen microorganisms with attenualed efficiency for Chinese medicine containing aristolochic acid A by liquid-state fermentation. Twelve Chinese medicine were detected by UPLC and aristolochic acid A was only founded in four species of Aristolochia, those were Caulis Aristolochiae Manshuriensis, Aristolochiae Radix, Aistolochia Contorta Bunge and Herba Aristolochiae Mollissima,but not in the others. With the four Chinese medicine containing aristolochic acid A as raw material, ten microorganisms were tested, and the content of aristolochic acid A was detected by UPLC. The results showed that one microorganism can decrease content of aristolochic acid A in all those four Chinese medicine.

  3. Infectious microorganisms in mice (Mus musculus) purchased from commercial pet shops in Germany.

    PubMed

    Dammann, P; Hilken, G; Hueber, B; Köhl, W; Bappert, M T; Mähler, M

    2011-10-01

    In this study, we investigated the prevalence of infectious microorganisms (viruses, bacteria, fungi and eukaryotic parasites) in mice from different pet shops in Germany; such animals may compromise the hygienic integrity of laboratory animal vivaria if private pet holders act as unintended vectors of infections carried by them. House mice sold as pets or feed specimens were purchased from different pet shops and tested for a comprehensive panel of unwanted microorganisms. We found a number of microorganisms in these pet shop mice, the most prevalent of which were Helicobacter species (92.9%), mouse parvovirus (89.3%), mouse hepatitis virus (82.7%), Pasteurella pneumotropica (71.4%) and Syphacia species (57.1%). Several microorganisms (e.g. mouse parvovirus, Theiler's murine encephalomyelitis virus, pneumonia virus of mice, Encephalitozoon cuniculi, Clostridium piliforme) had considerably higher prevalences than those reported in similar studies on wild mice from North America, Europe or Australia. Our study shows that direct contact with pet shop mice may constitute a risk for laboratory animal vivaria if hygienic precautions are not taken. However, even relatively simple precautions seem effective enough to hold the risk at bay.

  4. Antibiotic-Resistant Acinetobacter baumannii Increasing Success Remains a Challenge as a Nosocomial Pathogen

    PubMed Central

    Gonzalez-Villoria, Ana Maria; Valverde-Garduno, Veronica

    2016-01-01

    Antibiotic-resistant infectious bacteria currently imply a high risk and therefore constitute a strong challenge when treating patients in hospital settings. Characterization of these species and of particular strains is a priority for the establishment of diagnostic tests and preventive procedures. The relevance of Acinetobacter baumannii as a problematic microorganism in inpatient facilities, particularly intensive care units, has increased over time. This review aims to draw attention to (i) the historical emergence of carbapenem-resistant Acinetobacter baumannii, (ii) the current status of surveillance needs in Latin America, and (iii) recent data suggesting that A. baumannii continues to spread and evolve in hospital settings. First, we present synopsis of the series of events leading to the discovery and precise identification of this microorganism in hospital settings. Then key events in the acquisition of antibiotic-resistant genes by this microorganism are summarized, highlighting the race between new antibiotic generation and emergence of A. baumannii resistant strains. Here we review the historical development of this species as an infectious threat, the current state of its distribution, and antibiotic resistance characteristics, and we discuss future prospects for its control. PMID:26966582

  5. Medical Significance of Microorganisms in Spacecraft Environment

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Ott, C. Mark

    2007-01-01

    Microorganisms can spoil food supplies, contaminate drinking water, release noxious volatile compounds, initiate allergic responses, contaminate the environment, and cause infectious diseases. International acceptability limits have been established for bacterial and fungal contaminants in air and on surfaces, and environmental monitoring is conducted to ensure compliance. Allowable levels of microorganism in water and food have also been established. Environmental monitoring of the space shuttle, the Mir, and the ISS have allowed for some general conclusions. Generally, the bacteria found in air and on interior surfaces are largely of human origin such as Staphylococcus spp., Micrococcus spp. Common environmental genera such as Bacillus spp. are the most commonly isolated bacteria from all spacecraft. Yeast species associated with humans such as Candida spp. are commonly found. Aspergillus spp., Penicillium spp., and Cladosporium spp. are the most commonly isolated filamentous fungi. Microbial levels in the environment differ significantly depending upon humidity levels, condensate accumulation, and availability of carbon sources. However, human "normal flora" of bacteria and fungi can result in serious, life-threatening diseases if human immunity is compromised. Disease incidence is expected to increase as mission duration increases.

  6. Methylamine as a nitrogen source for microorganisms from a coastal marine environment.

    PubMed

    Taubert, Martin; Grob, Carolina; Howat, Alexandra M; Burns, Oliver J; Pratscher, Jennifer; Jehmlich, Nico; von Bergen, Martin; Richnow, Hans H; Chen, Yin; Murrell, J Colin

    2017-06-01

    Nitrogen is a key limiting resource for biomass production in the marine environment. Methylated amines, released from the degradation of osmolytes, could provide a nitrogen source for marine microbes. Thus far, studies in aquatic habitats on the utilization of methylamine, the simplest methylated amine, have mainly focussed on the fate of the carbon from this compound. Various groups of methylotrophs, microorganisms that can grow on one-carbon compounds, use methylamine as a carbon source. Non-methylotrophic microorganisms may also utilize methylamine as a nitrogen source, but little is known about their diversity, especially in the marine environment. In this proof-of-concept study, stable isotope probing (SIP) was used to identify microorganisms from a coastal environment that assimilate nitrogen from methylamine. SIP experiments using 15 N methylamine combined with metagenomics and metaproteomics facilitated identification of active methylamine-utilizing Alpha- and Gammaproteobacteria. The draft genomes of two methylamine utilizers were obtained and their metabolism with respect to methylamine was examined. Both bacteria identified in these SIP experiments used the γ-glutamyl-methylamide pathway, found in both methylotrophs and non-methylotrophs, to metabolize methylamine. The utilization of 15 N methylamine also led to the release of 15 N ammonium that was used as nitrogen source by other microorganisms not directly using methylamine. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Magnesium Fertilizer-Induced Increase of Symbiotic Microorganisms Improves Forage Growth and Quality.

    PubMed

    Chen, Jihui; Li, Yanpeng; Wen, Shilin; Rosanoff, Andrea; Yang, Gaowen; Sun, Xiao

    2017-04-26

    Magnesium (Mg) plays important roles in photosynthesis and protein synthesis; however, latent Mg deficiencies are common phenomena that can influence food quality. Nevertheless, the effects of Mg fertilizer additions on plant carbon (C):nitrogen (N):phosphorus (P) stoichiometry, an important index of food quality, are unclear and the underlying mechanisms unexplored. We conducted a greenhouse experiment using low-Mg in situ soil without and with a gradient of Mg additions to investigate the effect of Mg fertilizer on growth and stoichiometry of maize and soybean and also measure these plants' main symbiotic microorganisms: arbuscular mycorrhizal fungi (AMF) and rhizobium, respectively. Our results showed that Mg addition significantly improved both plant species' growth and also increased N and P concentrations in soybean and maize, respectively, resulting in low C:N ratio and high N:P ratio in soybean and low C:P and N:P ratios in maize. These results presumably stemmed from the increase of nutrients supplied by activation-enhanced plant symbiotic microorganisms, an explanation supported by statistically significant positive correlations between plant stoichiometry and plants' symbiotic microorganisms' increased growth with Mg addition. We conclude that Mg supply can improve plant growth and alter plant stoichiometry via enhanced activity of plant symbiotic microorganisms. Possible mechanisms underlying this positive plant-soil feedback include an enhanced photosynthetic product flow to roots caused by adequate Mg supply.

  8. Microorganisms in periradicular tissues: Do they exist? A perennial controversy

    PubMed Central

    Dudeja, Pooja Gupta; Dudeja, Krishan Kumar; Srivastava, Dhirendra; Grover, Shibani

    2015-01-01

    There is no greater association between the basic science and the practice of endodontics than that of microbiology. One of the strongest factors contributing to the controversies often encountered in the endodontic field is the lack of understanding that the disease processes of the pulp and periradicular tissues generally have a microbiological etiology. The vast majority of diseases of dental pulp and periradicular tissues are associated with microorganisms. After the microbial invasion of these tissues, the host responds with both nonspecific inflammatory responses and with specific immunologic responses to encounter such infections. The aim of this study is to fill the gaps in our knowledge regarding the role of microorganisms in endodontics and to discuss in depth whether their presence in periradicular lesions is a myth or a reality. An electronic search was carried out on PubMed database (custom range of almost 50 years) and Google using specific keywords and phrases. Inclusion and exclusion criteria were specified and around 50 articles were found suitable for inclusion. Full text of all the articles was retrieved and studied. Appropriate data were extracted and pooled and finally synthesized. It is important to understand the close relationship between the presence of microorganisms and endodontic disease process to develop an effective rationale for treatment. PMID:26980965

  9. Children's Anthropomorphic and Anthropocentric Ideas about Micro-Organisms

    ERIC Educational Resources Information Center

    Byrne, Jenny; Grace, Marcus; Hanley, Pam

    2009-01-01

    Different views exist about whether anthropomorphic ideas assist or hinder learning in biology. This paper discusses the anthropomorphic and anthropocentric ideas children have about micro-organisms, and whether they affect their understanding. The research was carried out in primary and secondary schools in the South of England and involved 414…

  10. The ecology of microorganisms in a small closed system: Potential benefits and problems for space station

    NASA Technical Reports Server (NTRS)

    Rodgers, E. B.

    1986-01-01

    The inevitble presence on the space station of microorganisms associated with crew members and their environment will have the potential for both benefits and a range of problems including illness and corrosion of materials. This report reviews the literature presenting information about microorganisms pertinent to Environmental Control and Life Support (ECLS) on the space station. The perspective of the report is ecological, viewing the space station as an ecosystem in which biological relationships are affected by factors such as zero gravity and by closure of a small volume of space. Potential sites and activities of microorganisms on the space station and their environmental limits, microbial standards for the space station, monitoring and control methods, effects of space factors on microorganisms, and extraterrestrial contamination are discussed.

  11. Potential application of glycerol in the production of plant beneficial microorganisms.

    PubMed

    Vassilev, Nikolay; Malusa, Eligio; Requena, Antonia Reyes; Martos, Vanessa; López, Ana; Maksimovic, Ivana; Vassileva, Maria

    2017-05-01

    This review highlights the importance of research for development of biofertilizer and biocontrol products based on the use of glycerol for further process scale-up to industrial microbiology. Glycerol can be used successfully in all stages of production of plant beneficial microorganisms. It serves as an excellent substrate in both submerged and solid-state fermentation processes with free and immobilized microbial cells. Glycerol is also one of the most attractive formulation agents that ensures high cell density and viability including in harsh environmental conditions. Future research is discussed to make this inexpensive material a base for industrial production of plant beneficial microorganisms.

  12. Molecular genetics of biosurfactant synthesis in microorganisms.

    PubMed

    Satpute, Surekha K; Bhuyan, Smita S; Pardesi, Karishma R; Mujumdar, Shilpa S; Dhakephalkar, Prashant K; Shete, Ashvini M; Chopade, Balu A

    2010-01-01

    Biosurfactant (BS)/bioemulsifier (BE) produced by varied microorganisms exemplify immense structural/functional diversity and consequently signify the involvement of particular molecular machinery in their biosynthesis. The present chapter aims to compile information on molecular genetics of BS/BE production in microorganisms. Polymer synthesis in Acinetobacter species is controlled by an intricate operon system and its further excretion being controlled by enzymes. Quorum sensing system (QSS) plays a fundamental role in rhamnolipid and surfactin synthesis. Depending upon the cell density, signal molecules (autoinducers) of regulatory pathways accomplish the biosynthesis of BS. The regulation of serrawettin production by Serratia is believed to be through non ribosomal peptide synthetases (NRPSs) and N-acylhomoserine lactones (AHLs) encoded by QSS located on mobile transposon. This regulation is under positive as well as negative control of QSS operon products. In case of yeast and fungi, glycolipid precursor production is catalyzed by genes that encode enzyme cytochrome P450 monooxygenase. BS/BE production is dictated by genes present on the chromosomes. This chapter also gives a glimpse of recent biotechnological developments which helped to realize molecular genetics of BS/BE production in microorganisms. Hyper-producing recombinants as well as mutant strains have been constructed successfully to improve the yield and quality of BS/BE. Thus promising biotechnological advances have expanded the applicability of BS/BE in therapeutics, cosmetics, agriculture, food, beverages and bioremediation etc. In brief, our knowledge on genetics of BS/BE production in prokaryotes is extensive as compared to yeast and fungi. Meticulous and concerted study will lead to an understanding of the molecular phenomena in unexplored microbes. In addition to this, recent promising advances will facilitate in broadening applications of BS/BE to diverse fields. Over the decades, valuable

  13. Functional Basis of Microorganism Classification

    PubMed Central

    Zhu, Chengsheng; Delmont, Tom O.; Vogel, Timothy M.; Bromberg, Yana

    2015-01-01

    Correctly identifying nearest “neighbors” of a given microorganism is important in industrial and clinical applications where close relationships imply similar treatment. Microbial classification based on similarity of physiological and genetic organism traits (polyphasic similarity) is experimentally difficult and, arguably, subjective. Evolutionary relatedness, inferred from phylogenetic markers, facilitates classification but does not guarantee functional identity between members of the same taxon or lack of similarity between different taxa. Using over thirteen hundred sequenced bacterial genomes, we built a novel function-based microorganism classification scheme, functional-repertoire similarity-based organism network (FuSiON; flattened to fusion). Our scheme is phenetic, based on a network of quantitatively defined organism relationships across the known prokaryotic space. It correlates significantly with the current taxonomy, but the observed discrepancies reveal both (1) the inconsistency of functional diversity levels among different taxa and (2) an (unsurprising) bias towards prioritizing, for classification purposes, relatively minor traits of particular interest to humans. Our dynamic network-based organism classification is independent of the arbitrary pairwise organism similarity cut-offs traditionally applied to establish taxonomic identity. Instead, it reveals natural, functionally defined organism groupings and is thus robust in handling organism diversity. Additionally, fusion can use organism meta-data to highlight the specific environmental factors that drive microbial diversification. Our approach provides a complementary view to cladistic assignments and holds important clues for further exploration of microbial lifestyles. Fusion is a more practical fit for biomedical, industrial, and ecological applications, as many of these rely on understanding the functional capabilities of the microbes in their environment and are less concerned

  14. Microorganism gram-type differentiation based on pyrolysis-mass spectrometry of bacterial Fatty Acid methyl ester extracts.

    PubMed

    Basile, F; Voorhees, K J; Hadfield, T L

    1995-04-01

    Curie-point pyrolysis (Py)-mass spectrometry has been used to differentiate 19 microorganisms by Gram type on the basis of the methyl esters of their fatty acid distribution. The mass spectra of gram-negative microorganisms were characterized by the presence of palmitoleic acid (C(inf16:1)) and oleic acid (C(inf18:1)), as well as a higher abundance of palmitic acid (C(inf16:0)) than pentadecanoic acid (C(inf15:0)). For gram-positive microorganisms, a signal of branched C(inf15:0) (isoC(inf15:0) and/or anteisoC(inf15:0)) more intense than that of palmitic acid was observed in the mass spectra. Principal components analysis of these mass spectral data segregated the microorganisms investigated in this study into three discrete clusters that correlated to their gram reactions and pathogenicities. Further tandem mass spectrometric analysis demonstrated that the nature of the C(inf15:0) fatty acid isomer (branched or normal) present in the mass spectrum of each microorganism was important for achieving the classification into three clusters.

  15. MICROORGANISMS IN BIOSOLIDS: ANALYTICAL METHODS DEVELOPMENT, STANDARDIZATION, AND VALIDATION

    EPA Science Inventory

    The objective of this presentation is to discuss pathogens of concern in biosolids, the analytical techniques used to evaluate microorganisms in biosolids, and to discuss standardization and validation of analytical protocols for microbes within such a complex matrix. Implicatio...

  16. Free-Living Amoebae as Hosts for and Vectors of Intracellular Microorganisms with Public Health Significance.

    PubMed

    Balczun, Carsten; Scheid, Patrick L

    2017-04-01

    Free-living amoebae (FLA) are parasites within both humans and animals causing a wide range of symptoms and act as hosts of, and vehicles for phylogenetically diverse microorganisms, called endocytobionts. The interaction of the FLA with sympatric microorganisms leads to an exceptional diversity within FLA. Some of these bacteria, viruses, and even eukaryotes, can live and replicate intracellularly within the FLA. This relationship provides protection to the microorganisms from external interventions and a dispersal mechanism across various habitats. Among those intracellularly-replicating or -residing organisms there are obligate and facultative pathogenic microorganisms affecting the health of humans or animals and are therefore of interest to Public Health Authorities. Mimiviruses, Pandoraviruses, and Pithoviruses are examples for interesting viral endocytobionts within FLA. Future research is expected to reveal further endocytobionts within free-living amoebae and other protozoa through co-cultivation studies, genomic, transcriptomic, and proteomic analyses.

  17. Free-Living Amoebae as Hosts for and Vectors of Intracellular Microorganisms with Public Health Significance

    PubMed Central

    Balczun, Carsten; Scheid, Patrick L.

    2017-01-01

    Free-living amoebae (FLA) are parasites within both humans and animals causing a wide range of symptoms and act as hosts of, and vehicles for phylogenetically diverse microorganisms, called endocytobionts. The interaction of the FLA with sympatric microorganisms leads to an exceptional diversity within FLA. Some of these bacteria, viruses, and even eukaryotes, can live and replicate intracellularly within the FLA. This relationship provides protection to the microorganisms from external interventions and a dispersal mechanism across various habitats. Among those intracellularly-replicating or -residing organisms there are obligate and facultative pathogenic microorganisms affecting the health of humans or animals and are therefore of interest to Public Health Authorities. Mimiviruses, Pandoraviruses, and Pithoviruses are examples for interesting viral endocytobionts within FLA. Future research is expected to reveal further endocytobionts within free-living amoebae and other protozoa through co-cultivation studies, genomic, transcriptomic, and proteomic analyses. PMID:28368313

  18. High-density natural luffa sponge as anaerobic microorganisms carrier for degrading 1,1,1-TCA in groundwater.

    PubMed

    Wang, Wenbing; Wu, Yanqing; Zhang, Chi

    2017-03-01

    Anaerobic microorganisms were applied to degrade organic contaminants in groundwater with permeable reactive barriers (PRBs). However, anaerobic microorganisms need to select optimal immobilizing material as carrier. The potential of high-density natural luffa sponge (HDLS) (a new variety of luffa) for the immobilization and protection of anaerobic microorganisms was investigated. The HDLS has a dense structure composed of a complicated interwoven fibrous network. Therefore, the abrasion rate of HDLS (0.0068 g s -1 ) was the smallest among the four carriers [HDLS, ordinary natural luffa sponge (OLS), polyurethane sponge (PS), and gel carrier AQUAPOROUSGEL (APG)]. The results suggest that it also had the greatest water retention (10.26 H 2 O-g dry carrier-g -1 ) and SS retention (0.21 g dry carrier-g -1 ). In comparison to well-established commercialized gel carrier APG, HDLS was of much better mechanical strength, hydrophilicity and stability. Microbial-immobilized HDLS also had the best performance for the remediation of 1,1,1-TCA simulated groundwater. Analysis of the clone libraries from microorganism-immobilized HDLS showed the HDLS could protect microorganisms from the toxicity of 1,1,1-TCA and maintain the stability of microbial community diversity. The mechanism of HDLS immobilizing and protecting microorganisms was proposed as follows. The HDLS had a micron-scale honeycomb structure (30-40 μm) and an irregular ravine structure (4-20 μm), which facilitate the immobilization of anaerobic microorganisms and protect the anaerobic microorganisms.

  19. Antimicrobial activity of isothiocyanates (ITCs) extracted from horseradish (Armoracia rusticana) root against oral microorganisms.

    PubMed

    Park, Ho-Won; Choi, Kyu-Duck; Shin, Il-Shik

    2013-01-01

    The antimicrobial activity of isothiocyanates (ITCs) extracted from horseradish root was investigated against oral microorganisms: 6 strains of facultative anaerobic bacteria, Streptococcus mutans, Streptococcus sobrinus, Lactobacillus casei, Staphylococcus aureus, Enterococcus faecalis and Aggregatibacter actinomycetemcomitans; one strain of yeast, Candida albicans, and 3 strains of anaerobic bacteria, Fusobacterium nucleatum, Prevotella nigrescens, and Clostridium perfringens. The ITCs extracted from horseradish root showed antimicrobial activity against all oral microorganisms by the paper disk method. The minimum bactericidal concentration (MBC) of the ITCs extracted from horseradish root ranged from 1.25 to 5.00 mg/ml against 6 strains of facultative anaerobic bacteria and one strain of yeast, and 4.17 to 16.67 mg/ml against 3 strains of anaerobic bacteria. The ITCs extracted from horseradish root showed the strongest antimicrobial activity, with a MBC of 1.25 mg/ml, against C. albicans among facultative microorganisms, and 4.17 mg/ml against F. nucleatum among anaerobic bacteria. These results suggest that the ITCs extracted from horseradish root may be a candidate for use as an antimicrobial agent against oral microorganisms.

  20. Endocarpic Microorganisms of Two Types of Windrow-Dried Peanut Fruit (Arachis hypogaea L.) 1

    PubMed Central

    Porter, D. Morris; Garren, Kenneth H.

    1970-01-01

    The endocarpic microorganisms of peanut fruit dried in either a random windrow (plants left as they fell from the digger) or an inverted windrow (plants inverted to expose fruit to sunlight) were different from that of freshly dug fruit. Chaetomium, Penicillium, Trichoderma, Rhizoctonia, and Fusarium were the dominant fungi found associated with shells (pericarp) of freshly dug fruit. The dominant fungi of shells of windrowed fruit included Chaetomium, Rhizoctonia, Fusarium, Sclerotium, and Alternaria. Seeds of freshly dug fruit were dominated by Penicillium and Aspergillus. The only dominant species in seed of windrowed fruit was Penicillium. Microorganisms were isolated from shells and seed of freshly dug fruit at a frequency of 79% and 52%, respectively. The percentage of infestation was reduced by drying in the field. This was particularly true of the inverted windrow. The proportion of shells and seed infested with a microorganism was reduced 13% and 36%, respectively, after field drying for 5 to 7 days in random and inverted windrows. Microorganisms were isolated much more frequently from shell pieces (73%) than from seed (36%). Images PMID:5466133