Electrochemical Generation of a Hydrogen Bubble at a Recessed Platinum Nanopore Electrode.
Chen, Qianjin; Luo, Long; White, Henry S
2015-04-21
We report the electrochemical generation of a single hydrogen bubble within the cavity of a recessed Pt nanopore electrode. The recessed Pt electrode is a conical pore in glass that contains a micrometer-scale Pt disk (1-10 μm radius) at the nanopore base and a nanometer-scale orifice (10-100 nm radius) that restricts diffusion of electroactive molecules and dissolved gas between the nanopore cavity and bulk solution. The formation of a H2 bubble at the Pt disk electrode in voltammetric experiments results from the reduction of H(+) in a 0.25 M H2SO4 solution; the liquid-to-gas phase transformation is indicated in the voltammetric response by a precipitous decrease in the cathodic current due to rapid bubble nucleation and growth within the nanopore cavity. Finite element simulations of the concentration distribution of dissolved H2 within the nanopore cavity, as a function of the H(+) reduction current, indicate that H2 bubble nucleation at the recessed Pt electrode surface occurs at a critical supersaturation concentration of ∼0.22 M, in agreement with the value previously obtained at (nonrecessed) Pt disk electrodes (∼0.25 M). Because the nanopore orifice limits the diffusion of H2 out of the nanopore cavity, an anodic peak corresponding to the oxidation of gaseous and dissolved H2 trapped in the recessed cavity is readily observed on the reverse voltammetric scan. Integration of the charge associated with the H2 oxidation peak is found to approach that of the H(+) reduction peak at high scan rates, confirming the assignment of the anodic peak to H2 oxidation. Preliminary results for the electrochemical generation of O2 bubbles from water oxidation at a recessed nanopore electrode are consistent with the electrogeneration of H2 bubbles.
Ha, Yejin; Myung, Dongshin; Shim, Jun Ho; Kim, Myung Hwa; Lee, Youngmi
2013-09-21
In this study, a dual microsensing electrochemical probe for measuring oxygen (O2) and pH levels was developed based on a dual recessed Pt disk electrode (each disk diameter, 10 μm) with the use of two Ag/AgCl reference electrodes (one for each disk of the dual electrode). One of the recessed Pt disks of the dual electrode was electrodeposited with a porous Pt layer and then coated with a hydrophobic photocured polymer (partially fluorinated epoxy diacrylate, abbreviated as FED). The Pt-FED covered disk was used as an amperometric O2 sensor and exhibited a linear current increase that was proportional to the PO2 level (partial O2 pressure) with high sensitivity (168.4 ± 33.8 pA mmHg(-1)) and fast response time (t90% = 0.17 ± 0.05 s). The other recessed Pt disk was electrodeposited with an IrO2 layer. The potential between the IrO2 deposited electrode and the Ag/AgCl reference electrode produced a reliable Nernstian response to pH changes (58.3 ± 1.5 mV pH(-1)) with a t90% of 0.43 ± 0.09 s. The sensor displayed high stability in the in vitro organ tissue measurements for at least 2.5 h. By using the developed dual O2/pH microsensor as a probe tip for scanning electrochemical microscopy, the two-dimensional images of the location-dependent PO2 and pH levels were simultaneously acquired and could be used to assess the surface of a rat kidney tissue slice. When compared to the corresponding medullary levels, both PO2 and pH were observed to be higher in the cortex area, while the modest level gradient was observed near the cortex-medulla border. This finding suggests that there is a direct relationship between the tissue O2 supply/consumption and pH, which is mainly determined by metabolite, such as CO2, production.
NASA Astrophysics Data System (ADS)
Mahoney, Elizabeth G.; Sheng, Wenchao; Cheng, Mei; Lee, Kevin X.; Yan, Yushan; Chen, Jingguang G.
2016-02-01
Platinum modified gold (Pt/Au) catalysts are evaluated for the electrooxidation of ethylene glycol (EG) and glucose (Glc). The Pt/Au catalysts are synthesized on an Au disk and supported Au/C particles through the galvanic displacement of a copper monolayer with Pt. The Pt/Au catalysts are compared to monometallic Pt and Au catalysts for the oxidation of EG and Glc in alkaline electrolyte. The Pt/Au disk has an onset potential for these reactions that is similar to Pt and is lower than Au. The supported catalysts are less active toward the electrooxidation of EG and Glc than the corresponding disk electrodes, but the Pt/Au/C also has an onset potential similar to Pt/C. In-situ FTIR is used to analyze the C-C bond scission in both reactions on the surfaces of Pt, Au, and Pt/Au disks. While the Pt/Au disk is found to have a low onset potential for the oxidation of EG, it does not produce as much CO2 as bulk Pt. On the other hand, the FTIR results show that CO2 is produced for the oxidation of Glc on the Pt/Au disk. These results show promise for the possibility of decreasing the amount of Pt needed for the electrooxidation of polyol molecules.
Inaba, Masanori; Quinson, Jonathan; Bucher, Jan Rudolf; Arenz, Matthias
2018-03-16
We present a step-by-step tutorial to prepare proton exchange membrane fuel cell (PEMFC) catalysts, consisting of Pt nanoparticles (NPs) supported on a high surface area carbon, and to test their performance in thin film rotating disk electrode (TF-RDE) measurements. The TF-RDE methodology is widely used for catalyst screening; nevertheless, the measured performance sometimes considerably differs among research groups. These uncertainties impede the advancement of new catalyst materials and, consequently, several authors discussed possible best practice methods and the importance of benchmarking. The visual tutorial highlights possible pitfalls in the TF-RDE testing of Pt/C catalysts. A synthesis and testing protocol to assess standard Pt/C catalysts is introduced that can be used together with polycrystalline Pt disks as benchmark catalysts. In particular, this study highlights how the properties of the catalyst film on the glassy carbon (GC) electrode influence the measured performance in TF-RDE testing. To obtain thin, homogeneous catalyst films, not only the catalyst preparation, but also the ink deposition and drying procedures are essential. It is demonstrated that an adjustment of the ink's pH might be necessary, and how simple control measurements can be used to check film quality. Once reproducible TF-RDE measurements are obtained, determining the Pt loading on the catalyst support (expressed as Pt wt%) and the electrochemical surface area is necessary to normalize the determined reaction rates to either surface area or Pt mass. For the surface area determination, so-called CO stripping, or the determination of the hydrogen underpotential deposition (Hupd) charge, are standard. For the determination of the Pt loading, a straightforward and cheap procedure using digestion in aqua regia with subsequent conversion of Pt(IV) to Pt(II) and UV-vis measurements is introduced.
Inaba, Masanori; Quinson, Jonathan; Bucher, Jan Rudolf; Arenz, Matthias
2018-01-01
We present a step-by-step tutorial to prepare proton exchange membrane fuel cell (PEMFC) catalysts, consisting of Pt nanoparticles (NPs) supported on a high surface area carbon, and to test their performance in thin film rotating disk electrode (TF-RDE) measurements. The TF-RDE methodology is widely used for catalyst screening; nevertheless, the measured performance sometimes considerably differs among research groups. These uncertainties impede the advancement of new catalyst materials and, consequently, several authors discussed possible best practice methods and the importance of benchmarking. The visual tutorial highlights possible pitfalls in the TF-RDE testing of Pt/C catalysts. A synthesis and testing protocol to assess standard Pt/C catalysts is introduced that can be used together with polycrystalline Pt disks as benchmark catalysts. In particular, this study highlights how the properties of the catalyst film on the glassy carbon (GC) electrode influence the measured performance in TF-RDE testing. To obtain thin, homogeneous catalyst films, not only the catalyst preparation, but also the ink deposition and drying procedures are essential. It is demonstrated that an adjustment of the ink's pH might be necessary, and how simple control measurements can be used to check film quality. Once reproducible TF-RDE measurements are obtained, determining the Pt loading on the catalyst support (expressed as Pt wt%) and the electrochemical surface area is necessary to normalize the determined reaction rates to either surface area or Pt mass. For the surface area determination, so-called CO stripping, or the determination of the hydrogen underpotential deposition (Hupd) charge, are standard. For the determination of the Pt loading, a straightforward and cheap procedure using digestion in aqua regia with subsequent conversion of Pt(IV) to Pt(II) and UV-vis measurements is introduced. PMID:29608166
Mauger, Scott A.; Neyerlin, K. C.; Alia, Shaun M.; ...
2018-03-13
Platinum-nickel nanowire (PtNiNW) catalysts have shown exceptionally high oxygen reduction mass activity in rotating disk electrode measurements. However, the ability to successfully incorporate PtNiNWs into high performance membrane electrode assemblies (MEAs) has been challenging due to their size, shape, density, dispersion characteristics, and corrosion-susceptible nickel core. We have investigated the impact of specific processing steps and electrode composition on observed fuel cell performance and electrochemical properties in order to optimize performance. We have found that nickel ion contamination is a major concern for PtNiNWs that can be addressed through ion exchange in fabricated/tested MEAs or by acid leaching of catalystmore » materials prior to MEA incorporation, with the latter being the more successful method. Additionally, decreased ionomer incorporation has led to the highest performance demonstrating 238 mA/mg Pt (0.9 V IR-free) for PtNiNWs (pre-leached to 80 wt% Pt) with 9 wt% ionomer incorporation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauger, Scott A.; Neyerlin, K. C.; Alia, Shaun M.
Platinum-nickel nanowire (PtNiNW) catalysts have shown exceptionally high oxygen reduction mass activity in rotating disk electrode measurements. However, the ability to successfully incorporate PtNiNWs into high performance membrane electrode assemblies (MEAs) has been challenging due to their size, shape, density, dispersion characteristics, and corrosion-susceptible nickel core. We have investigated the impact of specific processing steps and electrode composition on observed fuel cell performance and electrochemical properties in order to optimize performance. We have found that nickel ion contamination is a major concern for PtNiNWs that can be addressed through ion exchange in fabricated/tested MEAs or by acid leaching of catalystmore » materials prior to MEA incorporation, with the latter being the more successful method. Additionally, decreased ionomer incorporation has led to the highest performance demonstrating 238 mA/mg Pt (0.9 V IR-free) for PtNiNWs (pre-leached to 80 wt% Pt) with 9 wt% ionomer incorporation.« less
Oxygen reduction reaction on stepped platinum surfaces in alkaline media.
Rizo, Ruben; Herrero, Enrique; Feliu, Juan M
2013-10-07
The oxygen reduction reaction (ORR) in 0.1 M NaOH on platinum single crystal electrodes has been studied using hanging meniscus rotating disk electrode configuration. Basal planes and stepped surfaces with (111) and (100) terraces have been employed. The results indicate that the Pt(111) electrode has the highest electrocatalytic activity among all the studied surfaces. The addition of steps on this electrode surface significantly diminishes the reactivity of the surface towards the ORR. In fact, the reactivity of the steps on the surfaces with wide terraces can be considered negligible with respect to that measured for the terrace. On the other hand, Pt(100) and Pt(110) electrodes have much lower activity than the Pt(111) electrode. These results have been compared with those obtained in acid media to understand the effect of the pH and the adsorbed OH on the mechanism. It is proposed that the surface covered by adsorbed OH is active for the reduction of the oxygen molecules.
Sode, Aya; Li, Winton; Yang, Yanguo; Wong, Phillip C; Gyenge, Elod; Mitchell, Keith A R; Bizzotto, Dan
2006-05-04
The characterization of an electrochemically created Pt/Zn alloy by Auger electron spectroscopy is presented indicating the formation of the alloy, the oxidation of the alloy, and the room temperature diffusion of the Zn into the Pt regions. The Pt/Zn alloy is stable up to 1.2 V/RHE and can only be removed with the oxidation of the base Pt metal either electrochemically or in aqua regia. The Pt/Zn alloy was tested for its effectiveness toward oxygen reduction. Kinetics of the oxygen reduction reaction (ORR) were measured using a rotating disk electrode (RDE), and a 30 mV anodic shift in the potential of ORR was found when comparing the Pt/Zn alloy to Pt. The Tafel slope was slightly smaller than that measured for the pure Pt electrode. A simple procedure for electrochemically modifying a Pt-containing gas diffusion electrode (GDE) with Zn was developed. The Zn-treated GDE was pressed with an untreated GDE anode, and the created membrane electrode assembly was tested. Fuel cell testing under two operating conditions (similar anode and cathode inlet pressures, and a larger cathode inlet pressure) indicated that the 30 mV shift observed on the RDE was also evident in the fuel cell tests. The high stability of the Pt/Zn alloy in acidic environments has a potential benefit for fuel cell applications.
Christ, J. M.; Neyerlin, K. C.; Richards, R.; ...
2014-10-04
A rotating disk electrode (RDE) along with cyclic voltammetry (CV) and linear sweep voltammetry (LSV), were used to investigate the impact of two model compounds representing degradation products of Nafion and 3M perfluorinated sulfonic acid membranes on the electrochemical surface area (ECA) and oxygen reduction reaction (ORR) activity of polycrystalline Pt, nano-structured thin film (NSTF) Pt (3M), and Pt/Vulcan carbon (Pt/Vu) (TKK) electrodes. ORR kinetic currents (measured at 0.9 V and transport corrected) were found to decrease linearly with the log of concentration for both model compounds on all Pt surfaces studied. Ultimately, model compound adsorption effects on ECA weremore » more abstruse due to competitive organic anion adsorption on Pt surfaces superimposing with the hydrogen underpotential deposition (HUPD) region.« less
Sánchez, Carolina Ramírez; Taurino, Antonietta; Bozzini, Benedetto
2016-01-01
This paper reports on the quantitative assessment of the oxygen reduction reaction (ORR) electrocatalytic activity of electrodeposited Mn/polypyrrole (PPy) nanocomposites for alkaline aqueous solutions, based on the Rotating Disk Electrode (RDE) method and accompanied by structural characterizations relevant to the establishment of structure-function relationships. The characterization of Mn/PPy films is addressed to the following: (i) morphology, as assessed by Field-Emission Scanning Electron Microscopy (FE-SEM) and Atomic Force Microscope (AFM); (ii) local electrical conductivity, as measured by Scanning Probe Microscopy (SPM); and (iii) molecular structure, accessed by Raman Spectroscopy; these data provide the background against which the electrocatalytic activity can be rationalised. For comparison, the properties of Mn/PPy are gauged against those of graphite, PPy, and polycrystalline-Pt (poly-Pt). Due to the literature lack of accepted protocols for precise catalytic activity measurement at poly-Pt electrode in alkaline solution using the RDE methodology, we have also worked on the obtainment of an intralaboratory benchmark by evidencing some of the time-consuming parameters which drastically affect the reliability and repeatability of the measurement. PMID:28042491
Reaction kinetics and product distributions in photoelectrochemical cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koval, C.A.
1992-01-01
Hot electron reaction studies at p-InP/CH[sub 3]CN interface revealed essential/desirable features for redox systems used to investigate hot carriers in photoelectrocehmical cells. Reduction of dibromoethylbenzene (DBEB) in presence of metallocene couples is being studied using rotating rink disk electrodes of n-and p-InP disks and Pt rings. At highly doped p-InP electrodes, reduction of DBEB can be very efficient (>30%). A minielectrochemical cell was used to investigate electron transfer at nonilluminated n-WSe[sub 2]/dimethylferrocene[sup +/0] interfaces.
Shinozaki, Kazuma; Zack, Jason W.; Pylypenko, Svitlana; ...
2015-09-17
Platinum electrocatalysts supported on high surface area and Vulcan carbon blacks (Pt/HSC, Pt/V) were characterized in rotating disk electrode (RDE) setups for electrochemical area (ECA) and oxygen reduction reaction (ORR) area specific activity (SA) and mass specific activity (MA) at 0.9 V. Films fabricated using several ink formulations and film-drying techniques were characterized for a statistically significant number of independent samples. The highest quality Pt/HSC films exhibited MA 870 ± 91 mA/mgPt and SA 864 ± 56 μA/cm 2 Pt while Pt/V had MA 706 ± 42 mA/mgPt and SA 1120 ± 70 μA/cm 2 Pt when measured in 0.1more » M HClO 4, 20 mV/s, 100 kPa O 2 and 23±2°C. An enhancement factor of 2.8 in themeasured SA was observable on eliminating Nafion ionomer and employing extremely thin, uniform films (~4.5 μg/cm 2 Pt) of Pt/HSC. The ECA for Pt/HSC (99 ± 7 m2/gPt) and Pt/V (65 ± 5 m 2/gPt) were statistically invariant and insensitive to film uniformity/thickness/fabrication technique; accordingly, enhancements in MA are wholly attributable to increases in SA. Impedance measurements coupled with scanning electron microscopy were used to de-convolute the losses within the catalyst layer and ascribed to the catalyst layer resistance, oxygen diffusion, and sulfonate anion adsorption/blocking. The ramifications of these results for proton exchange membrane fuel cells have also been examined.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinozaki, Kazuma; Zack, Jason W.; Pylypenko, Svitlana
Platinum electrocatalysts supported on high surface area and Vulcan carbon blacks (Pt/HSC, Pt/V) were characterized in rotating disk electrode (RDE) setups for electrochemical area (ECA) and oxygen reduction reaction (ORR) area specific activity (SA) and mass specific activity (MA) at 0.9 V. Films fabricated using several ink formulations and film-drying techniques were characterized for a statistically significant number of independent samples. The highest quality Pt/HSC films exhibited MA 870 ± 91 mA/mgPt and SA 864 ± 56 μA/cm 2 Pt while Pt/V had MA 706 ± 42 mA/mgPt and SA 1120 ± 70 μA/cm 2 Pt when measured in 0.1more » M HClO 4, 20 mV/s, 100 kPa O 2 and 23±2°C. An enhancement factor of 2.8 in themeasured SA was observable on eliminating Nafion ionomer and employing extremely thin, uniform films (~4.5 μg/cm 2 Pt) of Pt/HSC. The ECA for Pt/HSC (99 ± 7 m2/gPt) and Pt/V (65 ± 5 m 2/gPt) were statistically invariant and insensitive to film uniformity/thickness/fabrication technique; accordingly, enhancements in MA are wholly attributable to increases in SA. Impedance measurements coupled with scanning electron microscopy were used to de-convolute the losses within the catalyst layer and ascribed to the catalyst layer resistance, oxygen diffusion, and sulfonate anion adsorption/blocking. The ramifications of these results for proton exchange membrane fuel cells have also been examined.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koval, C.A.
1992-12-01
Hot electron reaction studies at p-InP/CH{sub 3}CN interface revealed essential/desirable features for redox systems used to investigate hot carriers in photoelectrocehmical cells. Reduction of dibromoethylbenzene (DBEB) in presence of metallocene couples is being studied using rotating rink disk electrodes of n-and p-InP disks and Pt rings. At highly doped p-InP electrodes, reduction of DBEB can be very efficient (>30%). A minielectrochemical cell was used to investigate electron transfer at nonilluminated n-WSe{sub 2}/dimethylferrocene{sup +/0} interfaces.
Yun, Su-Won; Park, Shin-Ae; Kim, Tae-June; Kim, Jun-Hyuk; Pak, Gi-Woong; Kim, Yong-Tae
2017-02-08
A simple, inexpensive approach is proposed for enhancing the durability of automotive proton exchange membrane fuel cells by selective promotion of the hydrogen oxidation reaction (HOR) and suppression of the oxygen reduction reaction (ORR) at the anode in startup/shutdown events. Dodecanethiol forms a self-assembled monolayer (SAM) on the surface of Pt particles, thus decreasing the number of Pt ensemble sites. Interestingly, by controlling the dodecanethiol concentration during SAM formation, the number of ensemble sites can be precisely optimized such that it is sufficient for the HOR but insufficient for the ORR. Thus, a Pt surface with an SAM of dodecanethiol clearly effects HOR-selective electrocatalysis. Clear HOR selectivity is demonstrated in unit cell tests with the actual membrane electrode assembly, as well as in an electrochemical three-electrode setup with a thin-film rotating disk electrode configuration. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kocha, Shyam S.; Shinozaki, Kazuma; Zack, Jason W.; ...
2017-05-02
Thin-film-rotating disk electrodes (TF-RDEs) are the half-cell electrochemical system of choice for rapid screening of oxygen reduction reaction (ORR) activity of novel Pt supported on carbon black supports (Pt/C) electrocatalysts. It has been shown that the magnitude of the measured ORR activity and reproducibility are highly dependent on the system cleanliness, evaluation protocols, and operating conditions as well as ink formulation, composition, film drying, and the resultant film thickness and uniformity. Accurate benchmarks of baseline Pt/C catalysts evaluated using standardized protocols and best practices are necessary to expedite ultra-low-platinum group metal (PGM) catalyst development that is crucial for the imminentmore » commercialization of fuel cell vehicles. We report results of evaluation in three independent laboratories of Pt/C electrocatalysts provided by commercial fuel cell catalyst manufacturers (Johnson Matthey, Umicore, Tanaka Kikinzoku Kogyo - TKK). The studies were conducted using identical evaluation protocols/ink formulation/film fabrication albeit employing unique electrochemical cell designs specific to each laboratory. Furthermore, the ORR activities reported in this work provide a baseline and criteria for selection and scale-up of novel high activity ORR electrocatalysts for implementation in proton exchange membrane fuel cells (PEMFCs).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocha, Shyam S.; Shinozaki, Kazuma; Zack, Jason W.
Abstract Thin-film-rotating disk electrodes (TF-RDEs) are the half-cell electrochemical system of choice for rapid screening of oxygen reduction reaction (ORR) activity of novel Pt supported on carbon black supports (Pt/C) electrocatalysts. It has been shown that the magnitude of the measured ORR activity and reproducibility are highly dependent on the system cleanliness, evaluation protocols, and operating conditions as well as ink formulation, composition, film drying, and the resultant film thickness and uniformity. Accurate benchmarks of baseline Pt/C catalysts evaluated using standardized protocols and best practices are necessary to expedite ultra-low-platinum group metal (PGM) catalyst development that is crucial for themore » imminent commercialization of fuel cell vehicles. We report results of evaluation in three independent laboratories of Pt/C electrocatalysts provided by commercial fuel cell catalyst manufacturers (Johnson Matthey, Umicore, Tanaka Kikinzoku Kogyo—TKK). The studies were conducted using identical evaluation protocols/ink formulation/film fabrication albeit employing unique electrochemical cell designs specific to each laboratory. The ORR activities reported in this work provide a baseline and criteria for selection and scale-up of novel high activity ORR electrocatalysts for implementation in proton exchange membrane fuel cells (PEMFCs).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocha, Shyam S.; Shinozaki, Kazuma; Zack, Jason W.
Thin-film-rotating disk electrodes (TF-RDEs) are the half-cell electrochemical system of choice for rapid screening of oxygen reduction reaction (ORR) activity of novel Pt supported on carbon black supports (Pt/C) electrocatalysts. It has been shown that the magnitude of the measured ORR activity and reproducibility are highly dependent on the system cleanliness, evaluation protocols, and operating conditions as well as ink formulation, composition, film drying, and the resultant film thickness and uniformity. Accurate benchmarks of baseline Pt/C catalysts evaluated using standardized protocols and best practices are necessary to expedite ultra-low-platinum group metal (PGM) catalyst development that is crucial for the imminentmore » commercialization of fuel cell vehicles. We report results of evaluation in three independent laboratories of Pt/C electrocatalysts provided by commercial fuel cell catalyst manufacturers (Johnson Matthey, Umicore, Tanaka Kikinzoku Kogyo - TKK). The studies were conducted using identical evaluation protocols/ink formulation/film fabrication albeit employing unique electrochemical cell designs specific to each laboratory. Furthermore, the ORR activities reported in this work provide a baseline and criteria for selection and scale-up of novel high activity ORR electrocatalysts for implementation in proton exchange membrane fuel cells (PEMFCs).« less
NASA Astrophysics Data System (ADS)
Mo, Yibo
In situ X-ray absorption (XAS), surface enhanced Raman spectroscopy (SERS) and rotating ring disk electrode techniques have been employed for the characterization of materials of relevance to electrochemical energy storage and electrocatalysis. In particular, analysis of in situ Ir LIII-edge extended X-ray absorption fine structure (EXAFS) of IrO2 films electrodeposited on Au substrates yielded Ir-O bond lengths decreasing in the sequence 2.02, 1.97 and 1.93 A, for Ir3+, Ir4+ and Ir5+ sites, respectively. Although features consistent with the presence of crystalline IrO2 in the highly hydrated films were found from in situ SERS, the lack of intense shells in the FT of the EXAFS function beyond the nearest oxygen neighbors indicates that the films by and large do not display long range order. In similar studies, the Fourier transform of the k3-weighted Ru K-edge EXAFS of electrodeposited RuO2 films recorded in situ were characterized by two shells attributed to Ru-O and Ru-Ru interactions at 1.94(1) and 3.12(2) A, in agreement with results obtained ex situ for Ru4+ in hydrous RuO2, whereas films in the reduced state yielded a single Ru-O interaction shell at 2.02(1) A. Extensions of these in situ XAS to the study of electrocatalysts for the nitrite reduction made it possible to identify and characterize the electronic and structural properties of a nitrosyl iron porphyrin adduct adsorbed on an electrode surface via the analysis of Fe K-edge XAS data. The effects of Se and S ad-atoms on the electrocatalytic activity of Pt electrodes have been examined using RRDE techniques. In acid, within a rather narrow range of coverages, both S- and Se-modified Pt surfaces promote the 2-electron reduction of dioxygen to hydrogen peroxide at ca. 100% faradaic efficiency over a wide potential region. Also developed were methods for immobilizing unsupported dispersed high area Pt particles a glassy carbon (GC) disk of a rotating Pt(ring)/GC(disk) electrode assembly allowing electrochemical measurements to be performed under forced convection with only minimal losses of Pt from the surface.
2015-01-01
The electrochemical reduction of highly oxidized unsupported graphene oxide nanosheets and its platinum electrodeposition was done by the rotating disk slurry electrode technique. Avoiding the use of a solid electrode, graphene oxide was electrochemically reduced in a slurry solution with a scalable process without the use of a reducing agent. Graphene oxide nanosheets were synthesized from carbon platelet nanofibers to obtain highly hydrophilic layers of less than 250 nm in width. The graphene oxide and electrochemically reduced graphene oxide/Pt (erGOx/Pt) hybrid materials were characterized through different spectroscopy and microscopy techniques. Pt nanoparticles with 100 facets, clusters, and atoms at erGOx were identified by high resolution transmission electron microscopy (HRTEM). Cyclic voltammetry was used to characterize the electrocatalytic activity of the highly dispersed erGOx/Pt hybrid material toward the oxidation of ammonia, which showed a 5-fold current density increase when compared with commercially available Vulcan/Pt 20%. This is in agreement with having Pt (100) facets present in the HRTEM images of the erGOx/Pt material. PMID:24417177
Chen, Guangyu; Li, Meng; Kuttiyiel, Kurian A.; ...
2016-04-11
Here, an accurate and efficient assessment of activity is critical for the research and development of electrocatalysts for oxygen reduction reaction (ORR). Currently, the methodology combining the thin-film rotating disk electrode (TF-RDE) and potentiodynamic polarization is the most commonly used to pre-evaluate ORR activity, acquire kinetic data (i.e., kinetic current, Tafel slope, etc.), and gain understanding of the ORR mechanism. However, it is often neglected that appropriate potentiodynamic parameters have to be chosen to obtain reliable results. We first evaluate the potentiodynamic and potentiostatic polarization measurements with TF-RDE to examine the ORR activity of Pt nanoelectrocatalyst. Furthermore, our results demonstratemore » that besides depending on the nature of electrocatalyst, the apparent ORR kinetics also strongly depends on the associated potentiodynamic parameters, such as scan rate and scan region, which have a great effect on the coverage of adsorbed OH ad/O ad on Pt surface, thereby affecting the ORR activities of both nanosized and bulk Pt. However, the apparent Tafel slopes remained nearly the same, indicating that the ORR mechanism in all the measurements was not affected by different potentiodynamic parameters.« less
Shinozaki, Kazuma; Zack, Jason W.; Richards, Ryan M.; ...
2015-07-22
The rotating disk electrode (RDE) technique is being extensively used as a screening tool to estimate the activity of novel PEMFC electrocatalysts synthesized in lab-scale (mg) quantities. Discrepancies in measured activity attributable to glassware and electrolyte impurity levels, as well as conditioning, protocols and corrections are prevalent in the literature. Moreover, the electrochemical response to a broad spectrum of commercially sourced perchloric acid and the effect of acid molarity on impurity levels and solution resistance were also assessed. Our findings reveal that an area specific activity (SA) exceeding 2.0 mA/cm 2 (20 mV/s, 25°C, 100 kPa, 0.1 M HClO 4)more » for polished poly-Pt is an indicator of impurity levels that do not impede the accurate measurement of the ORR activity of Pt based catalysts. After exploring various conditioning protocols to approach maximum utilization of the electrochemical area (ECA) and peak ORR activity without introducing catalyst degradation, an investigation of measurement protocols for ECA and ORR activity was conducted. Down-selected protocols were based on the criteria of reproducibility, duration of experiments, impurity effects and magnitude of pseudo-capacitive background correction. In sum, statistical reproducibility of ORR activity for poly-Pt and Pt supported on high surface area carbon was demonstrated.« less
New Electrochemical Methods for Studying Nanoparticle Electrocatalysis and Neuronal Exocytosis
NASA Astrophysics Data System (ADS)
Cox, Jonathan T.
This dissertation presents the construction and application of micro and nanoscale electrodes for electroanalytical analysis. The studies presented herein encompass two main areas: electrochemical catalysis, and studies of the dynamics of single cell exocytosis. The first portion of this dissertation engages the use of Pt nanoelectrodes to study the stability and electrocatalytic properties of materials. A single nanoparticle electrode (SNPE) was fabricated by immobilizing a single Au nanoparticle on a Pt disk nanoelectrode via an amine-terminated silane cross linker. In this manner we were able to effectively study the electrochemistry and electrocatalytic activity of single Au nanoparticles and found that the electrocatalytic activity is dependent on nanoparticle size. This study can further the understanding of the structure-function relationship in nanoparticle based electrocatalysis. Further work was conducted to probe the stability of Pt nanoelectrodes under conditions of potential cycling. Pt based catalysts are known to deteriorate under such conditions due to losses in electrochemical surface area and Pt dissolution. By using Pt disk nanoelectrodes we were able to study Pt dissolution via steady-state voltammetry. We observed an enhanced dissolution rate and higher charge density on nanoelectrodes than that previously found on macro scale electrodes. The goal of the second portion of this dissertation is to develop new analytical methods to study the dynamics of exocytosis from single cells. The secretion of neurotransmitters plays a key role in neuronal communication, and our studies highlight how bipolar electrochemistry can be employed to enhance detection of neurotransmitters from single cells. First, we developed a theory to quantitatively characterize the voltammetric behavior of bipolar carbon fiber microelectrodes and secondly applied those principles to single cell detection. We showed that by simply adding an additional redox mediator to the back-fill solution of a carbon fiber microelectrode, there is a significant enhancement in detection. Additionally we used solid state nanopores to detect individual phospholipid vesicles in solution. Vesicles are key cellular components that play essential biological roles especially in neurotransmission. This work represents preliminary studies in detection and size determination from vesicles isolated from individual cells.
Pt-Ni/WC Alloy Nanorods Arrays as ORR Catalyst for PEM Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Begum, Mahbuba; Yurukcu, Mesut; Yurtsever, Fatma
Polymer electrolyte membrane fuel cells (PEMFCs) among the other types of fuel cell technology are attractive power sources, especially for electric vehicle applications. While significant progress and plausible prospects of PEMFCs have been achieved, there are still some challenges related to the performance, durability, and cost that need to be overcome to make them economically viable for widespread commercialization. Our strategy is to develop thin films of high-active and stable catalyst coated on vertically aligned nanorod arrays of conductive and stable support. In this work, we fabricated tungsten carbide (WC) nanorods as support and coated them with a platinum-nickel (Pt-Ni)more » alloy shell denoted as Pt-Ni/WC catalysts. The Pt- Ni/WC nanorods were deposited on glassy carbon disks as well as on silicon substrates for evaluation of their electrocatalytic oxygen reduction reaction (ORR) activity and physical properties. Cyclic voltammetry experiments using rotating disk electrode were performed in perchloric acid (0.1 M HClO4) electrolyte at room temperature to characterize the ORR activity and stability of Pt-Ni/WC nanorods catalysts. Scanning electron microscopy and X-ray diffraction techniques were utilized to study the morphology and crystallographic properties, respectively.« less
NASA Astrophysics Data System (ADS)
Shinozaki, Kazuma; Morimoto, Yu; Pivovar, Bryan S.; Kocha, Shyam S.
2016-09-01
The impact of Nafion on the oxygen reduction reaction (ORR) activity is studied for Pt/C and Pt-alloy/C catalysts using thin-film rotating disk electrode (TF-RDE) methods in 0.1 M HClO4. Ultrathin uniform catalyst layers and standardized activity measurement protocols are employed to obtain accurate and reproducible ORR activity. Nafion lowers the ORR activity which plateaus with increasing loading on Pt catalysts. Pt particle size is found not to have significant influence on the extent of the SA decrease upon Nafion incorporation. Catalysts using high surface area carbon (HSC) support exhibit attenuated activity loss resulting from lower ionomer coverage on catalyst particles located within the deep pores. The impact of metallic composition on the activity loss due to Nafion incorporation is also discussed.
NASA Astrophysics Data System (ADS)
Saha, Shibely; Cabrera Rodas, José Andrés; Tan, Shuai; Li, Dongmei
2018-02-01
An alternative catalyst platform, consisting of a phase-pure transition carbide (TMC) support and Pt nanoparticles (NPs) in the range of subnanometer to < 2.7 nm, is established that can be used in both anode and cathode catalyst layers. While some TMCs with low Pt loadings have demonstrated similar activity as commercial Pt catalyst in idealized disk electrode screening tests, few to none have been applied in a realistic fuel cell membrane electrode assembly (MEA). We recently reported that β-Mo2C hollow nanotubes modified with Pt NPs via atomic layer deposition (ALD) possess better activity and durability than 20% Pt/C. This paper presents systematic evaluation of the Pt/Mo2C catalysts in a MEA, investigating effects of different MEA preparation techniques, gas diffusion layers (GDL) and various Pt loadings in the ultralow range (<0.04 mg/cm2) on MEA performance. Most importantly, we demonstrate, for the first time, that Pt/Mo2C catalyst on both anode and cathode, with a loading of 0.02 mg (Pt) cm-2, generated peak power density of 414 mW cm-2 that corresponds to 10.35 kWgPt-1 using hydrogen (H2) and oxygen (O2). Accelerated degradation tests (ADT) on Pt/Mo2C catalysts show 111% higher power density than commercial 20% Pt/C after the vigorous ADT.
NASA Astrophysics Data System (ADS)
Horiguchi, Genki; Chikaoka, Yu; Shiroishi, Hidenobu; Kosaka, Shinpei; Saito, Morihiro; Kameta, Naohiro; Matsuda, Naoki
2018-04-01
In the preparation of metallic nanoparticles by conventional solution plasma (SP) techniques, unstable plasma emission becomes an issue when the voltage and frequency of the waves applied between two electrodes placed in solution are lowered to avoid the boiling of the solution. In this study, we confirm that, in the presence of microbubbles, plasma is generated stably at low voltage (440 V) and low frequency (50-100 Hz) and small-size (≤10 nm) Pt nanoparticles (PtNPs) are synthesized in succession using a flow cell. The smallest PtNPs, ∼3.3 nm in diameter, are obtained using half-wave rectification, a tungsten wire anode, and a platinum wire cathode. The PtNPs are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and thermogravimeter-differential thermal analysis. The oxygen reduction reaction (ORR) is investigated in 0.1 M HClO4 solution on carbon-supported PtNPs using a rotating ring-disk electrode. The catalytic activities per initial electrochemical active surface area of the carbon-supported PtNPs synthesized employing the low-voltage, low-frequency (LVLF)-SP technique is higher than that of the commercially available 20 wt% Pt on Vulcan XC-72R. These results indicate that the LVLF-SP technique is a promising approach to producing carbon-supported PtNPs that catalyze ORR with low energy consumption.
Parrondo, Javier; Han, Taehee; Niangar, Ellazar; Wang, Chunmei; Dale, Nilesh; Adjemian, Kev; Ramani, Vijay
2014-01-01
We report a unique and highly stable electrocatalyst—platinum (Pt) supported on titanium–ruthenium oxide (TRO)—for hydrogen fuel cell vehicles. The Pt/TRO electrocatalyst was exposed to stringent accelerated test protocols designed to induce degradation and failure mechanisms identical to those seen during extended normal operation of a fuel cell automobile—namely, support corrosion during vehicle startup and shutdown, and platinum dissolution during vehicle acceleration and deceleration. These experiments were performed both ex situ (on supports and catalysts deposited onto a glassy carbon rotating disk electrode) and in situ (in a membrane electrode assembly). The Pt/TRO was compared against a state-of-the-art benchmark catalyst—Pt supported on high surface-area carbon (Pt/HSAC). In ex situ tests, Pt/TRO lost only 18% of its initial oxygen reduction reaction mass activity and 3% of its oxygen reduction reaction-specific activity, whereas the corresponding losses for Pt/HSAC were 52% and 22%. In in situ-accelerated degradation tests performed on membrane electrode assemblies, the loss in cell voltage at 1 A · cm−2 at 100% RH was a negligible 15 mV for Pt/TRO, whereas the loss was too high to permit operation at 1 A · cm−2 for Pt/HSAC. We clearly show that electrocatalyst support corrosion induced during fuel cell startup and shutdown is a far more potent failure mode than platinum dissolution during fuel cell operation. Hence, we posit that the need for a highly stable support (such as TRO) is paramount. Finally, we demonstrate that the corrosion of carbon present in the gas diffusion layer of the fuel cell is only of minor concern. PMID:24367118
Parrondo, Javier; Han, Taehee; Niangar, Ellazar; Wang, Chunmei; Dale, Nilesh; Adjemian, Kev; Ramani, Vijay
2014-01-07
We report a unique and highly stable electrocatalyst-platinum (Pt) supported on titanium-ruthenium oxide (TRO)-for hydrogen fuel cell vehicles. The Pt/TRO electrocatalyst was exposed to stringent accelerated test protocols designed to induce degradation and failure mechanisms identical to those seen during extended normal operation of a fuel cell automobile-namely, support corrosion during vehicle startup and shutdown, and platinum dissolution during vehicle acceleration and deceleration. These experiments were performed both ex situ (on supports and catalysts deposited onto a glassy carbon rotating disk electrode) and in situ (in a membrane electrode assembly). The Pt/TRO was compared against a state-of-the-art benchmark catalyst-Pt supported on high surface-area carbon (Pt/HSAC). In ex situ tests, Pt/TRO lost only 18% of its initial oxygen reduction reaction mass activity and 3% of its oxygen reduction reaction-specific activity, whereas the corresponding losses for Pt/HSAC were 52% and 22%. In in situ-accelerated degradation tests performed on membrane electrode assemblies, the loss in cell voltage at 1 A · cm(-2) at 100% RH was a negligible 15 mV for Pt/TRO, whereas the loss was too high to permit operation at 1 A · cm(-2) for Pt/HSAC. We clearly show that electrocatalyst support corrosion induced during fuel cell startup and shutdown is a far more potent failure mode than platinum dissolution during fuel cell operation. Hence, we posit that the need for a highly stable support (such as TRO) is paramount. Finally, we demonstrate that the corrosion of carbon present in the gas diffusion layer of the fuel cell is only of minor concern.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinozaki, Kazuma; Morimoto, Yu; Pivovar, Bryan S.
The impact of Nafion on the oxygen reduction reaction (ORR) activity is studied for Pt/C and Pt-alloy/C catalysts using thin-film rotating disk electrode (TF-RDE) methods in 0.1 M HClO4. Ultrathin uniform catalyst layers and standardized activity measurement protocols are employed to obtain accurate and reproducible ORR activity. Nafion lowers the ORR activity which plateaus with increasing loading on Pt catalysts. Pt particle size is found not to have significant influence on the extent of the SA decrease upon Nafion incorporation. Catalysts using high surface area carbon (HSC) support exhibit attenuated activity loss resulting from lower ionomer coverage on catalyst particlesmore » located within the deep pores. The impact of metallic composition on the activity loss due to Nafion incorporation is also discussed.« less
Oxygen Reduction Reaction on PtCo Nanocatalyst: (Bi)sulfate Anion Poisoning
NASA Astrophysics Data System (ADS)
Liu, Jie; Huang, Yan
2018-05-01
Pt alloy electrocatalysts are susceptible to anion adsorption in the working environment of fuel cells. In this work, the unavoidable bisulfate and sulfate ((bi)sulfate) poisoning of the oxygen reduction reaction (ORR) on a common PtCo nanocatalyst was studied by the rotating disk electrode (RDE) technique, for the first time to the best of our knowledge. The specific activity decreases linearly with the logarithm of (bi)sulfate concentration under various high potentials. This demonstrates that the (bi)sulfate adsorption does not affect the free energy of ORR activation at a given potential. Moreover, it is speculated that these two conditions, the adsorption of one O2 molecule onto two Pt sites and this adsorption as a rate-determining step of ORR reaction, are unlikely to exist simultaneously.
Rotating disk electrode system for elevated pressures and temperatures.
Fleige, M J; Wiberg, G K H; Arenz, M
2015-06-01
We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H2SO4, the setup can easily be operated in a pressure range of 1-101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells.
Rotating disk electrode system for elevated pressures and temperatures
NASA Astrophysics Data System (ADS)
Fleige, M. J.; Wiberg, G. K. H.; Arenz, M.
2015-06-01
We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H2SO4, the setup can easily be operated in a pressure range of 1-101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells.
Platinum Nickel Nanowires as Methanol Oxidation Electrocatalysts
Alia, Shaun M.; Pylypenko, Svitlana; Neyerlin, Kenneth C.; ...
2015-08-27
We investigated platinum(Pt) nickel (Ni) nanowires (PtNiNWs) as methanol oxidation reaction (MOR) catalysts in rotating disk electrode (RDE) half-cells under acidic conditions. Pt-ruthenium (Ru) nanoparticles have long been the state of the art MOR catalyst for direct methanol fuel cells (DMFCs) where Ru provides oxophilic sites, lowering the potential for carbon monoxide oxidation and the MOR onset. Ru, however, is a precious metal that has long term durability concerns. Ni/Ni oxide species offer a potential to replace Ru in MOR electrocatalysis. PtNiNWs were investigated for MOR and oxygen annealing was investigated as a route to improve catalyst performance (mass activitymore » 65% greater) and stability to potential cycling. Our results presented show that PtNiNWs offer significant promise in the area, but also result in Ni ion leaching that is a concern requiring further evaluation in fuel cells.« less
NASA Astrophysics Data System (ADS)
Kaplan, D.; Goor, M.; Alon, M.; Tsizin, S.; Burstein, L.; Rosenberg, Y.; Popov, I.; Peled, E.
2016-02-01
Pt-surface-enriched nanosize catalysts (Pt-SENS catalysts) with ruthenium and iridium cores, supported on XC72, were synthesized and characterized. The structure and composition of the catalysts are determined by Energy-Dispersive X-ray Spectroscopy (EDS), X-ray Photoelectron Spectroscopy (XPS), Scanning Transmission Electron Microscopy (STEM) and X-Ray Diffraction (XRD). Electrochemical characterization tests, including oxygen-reduction-catalysis activity and durability studies of catalysts are performed with the use of cyclic-voltammetry and rotating-disk-electrode (RDE) techniques at room temperature. The ORR activity of the homemade catalysts is also compared to ORR activity of commercial 50%Pt/C catalyst. It is determined that the Ir-based catalyst (Pt/Ir/XC72) shows higher ORR activity in terms of A g-1 of Pt (at 0.85 V vs. RHE) than the Ru-based catalyst (Pt/Ru/XC72) and the commercial 50%Pt/C. The Ru-based catalyst shows similar ORR activity in terms of A g-1 of Pt, to that of the commercial 50%Pt/C, but with much lower durability.
NASA Astrophysics Data System (ADS)
Pech-Pech, I. E.; Gervasio, Dominic F.; Godínez-Garcia, A.; Solorza-Feria, O.; Pérez-Robles, J. F.
2015-02-01
Silver (Ag) nanoparticles enriched with platinum (Pt) and palladium (Pd) on their surfaces (Ag@Pt0.1Pd0.1) are supported on Vulcan XC-72 carbon (C) to form a new catalyst (Ag@Pt0.1Pd0.1/C) for the oxygen reduction reaction (ORR) in acid electrolytes. This catalyst is prepared in one pot by reducing Ag and then Pt and Pd metal salts with sodium borohydride in the presence of trisodium citrate then adding XC-72 while applying intense ultrasound. The metallic Ag@Pt0.1Pd0.1 nanoparticles contain 2 weight percent of Pt, are spherical and have an average size less than 10 nm as determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). At the ORR potentials, Ag nanoparticles on carbon (Ag/C) rapidly lose Ag by dissolution and show no more catalytic activity for the ORR than the carbon support, whereas Ag@Pt0.1Pd0.1/C is a stable catalyst and exhibits 1.4 and 1.6 fold greater specific activity, also 3.6 and 2.8 fold greater mass activity for ORR in 0.5 M H2SO4 solution than comparable Pt/C and Pt0.5Pd0.5/C catalysts with the same Pt loading as determined for thin-films of these catalysts on a rotating-disk electrode (TF-RDE). Using silver nanoparticles increases Pt utilization and therefore decreases Pt-loading and cost of a catalyst for a proton exchange membrane fuel cell (PEMFC) electrode.
Effect of Organic Cations on Hydrogen Oxidation Reaction of Carbon Supported Platinum
Chung, Hoon Taek; Choe, Yong-Kee; Martinez, Ulises; ...
2016-11-02
Effect of organic cations on hydrogen oxidation reaction (HOR) of carbon supported platinum (Pt/C) is investigated using three 0.1 M alkaline electrolytes, tetramethylammonium hydroxide (TMAOH), tetrabutylammonium hydroxide (TBAOH) and tetrabutylphosphonium hydroxide (TBPOH). Rotating disk electrode experiments indicate that the HOR of Pt/C is adversely impacted by time-dependent and potential-driven chemisorption of organic cations. In-situ infrared reflection adsorption spectroscopy experiments indicated that the specific chemisorption of organic cations drives the hydroxide co-adsorption on Pt surface. The co-adsorption of TMA + and hydroxide at 0.1 V vs. reversible hydrogen electrode is the strongest; consequently, complete removal of the co-adsorbed layer from Ptmore » surface is difficult even after exposure the Pt surface to 1.2 V. Conversely, the chemisorption of TBP+ is the weakest, yet notable decrease of HOR current density is still observed. The adsorption energies, ΔE, for TMA +, TBA +, and TBP + on Pt (111) surface from density functional theory are computed to be -2.79, -2.42 and -2.00 eV, respectively. The relatively low adsorption energy of TBP + is explained by the steric hindrance and electronic effect. This study emphasizes the importance of cationic group on HOR activity of alkaline anion exchange membrane fuel cells.« less
Lambert, Timothy N.; Vigil, Julian A.
2016-08-22
Manganese oxide/poly(3,4-ethylene-dioxythiophene) (MnO x/ PEDOT) nanostructured hybrid thin films were prepared using a simple anodic electrodeposition process from aqueous solution, and then tested for oxygen reduction reaction (ORR) activity in alkaline electrolyte using rotating disk electrode and rotating ring disk electrode methods. MnO x/PEDOT provided improvements over MnO x-only and PEDOT-only control films, with > 0.2 V decrease in onset and half-wave overpotentials, and > 1.5 times increase in terminal current density. The MnO x/PEDOT film exhibited only a slightly lower n value (n = 3.86-3.92) than the 20% Pt/C benchmark electrocatalyst (n = 3.98) across all potentials. MnO x/PEDOTmore » also displayed a more positive half-wave potential and superior electrocatalytic selectivity for the ORR upon methanol exposure than 20% Pt/C. Here, the high activity and synergism of MnO x/PEDOT towards the ORR is attributed to effective intermixing/dispersion of the two materials, intimate substrate contact with improved charge transfer processes attained by co-electrodepositing MnO x with PEDOT and due to the increase in Mn 3+ content at the surface of the oxide.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, Timothy N.; Vigil, Julian A.
Manganese oxide/poly(3,4-ethylene-dioxythiophene) (MnO x/ PEDOT) nanostructured hybrid thin films were prepared using a simple anodic electrodeposition process from aqueous solution, and then tested for oxygen reduction reaction (ORR) activity in alkaline electrolyte using rotating disk electrode and rotating ring disk electrode methods. MnO x/PEDOT provided improvements over MnO x-only and PEDOT-only control films, with > 0.2 V decrease in onset and half-wave overpotentials, and > 1.5 times increase in terminal current density. The MnO x/PEDOT film exhibited only a slightly lower n value (n = 3.86-3.92) than the 20% Pt/C benchmark electrocatalyst (n = 3.98) across all potentials. MnO x/PEDOTmore » also displayed a more positive half-wave potential and superior electrocatalytic selectivity for the ORR upon methanol exposure than 20% Pt/C. Here, the high activity and synergism of MnO x/PEDOT towards the ORR is attributed to effective intermixing/dispersion of the two materials, intimate substrate contact with improved charge transfer processes attained by co-electrodepositing MnO x with PEDOT and due to the increase in Mn 3+ content at the surface of the oxide.« less
NASA Astrophysics Data System (ADS)
Expósito, E.; Sánchez-Sánchez, C. M.; Solla-Gullón, J.; Montiel, V.
The influence of Pb 2+ ions in sulfuric acid medium on the behavior of a platinum catalyzed hydrogen diffusion electrode (HDE) in a filter press reactor has been studied. A voltammetric study of the H 2 oxidation reaction on a polyoriented platinum electrode and a platinum rotating disk electrode (RDE) in presence of lead ions in solution has also been carried out. Potential oscillations were found in galvanostatic experiments of H 2 oxidation using a HDE catalyzed with platinum when Pb 2+ ions are present in solution. This oscillatory phenomenon was also observed when hydrogen oxidation was carried out in presence of Pb 2+ ions using a platinum RDE. The oscillatory behavior observed has been attributed to an adsorption-oxidation-desorption process of lead on the platinum surface. Due to the low solubility of Pb 2+ in sulfuric acid, at high values of coverage, lead is oxidised to insoluble lead sulfate that blocks the Pt surface. The coupling of the dissolution of lead sulfate and the Pb electrochemical adsorption-oxidation processes cause the oscillatory phenomenon.
The Effect of PtRuIr Nanoparticle Crystallinity in Electrocatalytic Methanol Oxidation
Ma, Yanjiao; Wang, Rongfang; Wang, Hui; Liao, Shijun; Key, Julian; Linkov, Vladimir; Ji, Shan
2013-01-01
Two structural forms of a ternary alloy PtRuIr/C catalyst, one amorphous and one highly crystalline, were synthesized and compared to determine the effect of their respective structures on their activity and stability as anodic catalysts in methanol oxidation. Characterization techniques included TEM, XRD, and EDX. Electrochemical analysis using a glassy carbon disk electrode for cyclic voltammogram and chronoamperometry were tested in a solution of 0.5 mol L−1 CH3OH and 0.5 mol L−1 H2SO4. Amorphous PtRuIr/C catalyst was found to have a larger electrochemical surface area, while the crystalline PtRuIr/C catalyst had both a higher activity in methanol oxidation and increased CO poisoning rate. Crystallinity of the active alloy nanoparticles has a big impact on both methanol oxidation activity and in the CO poisoning rate. PMID:28809233
Millán, María; Zamora, Héctor; Rodrigo, Manuel A; Lobato, Justo
2017-02-22
PtCo alloy catalysts for high temperature PEMFCs (protonic exchange membrane fuel cells) were synthesized on a novel noncarbonaceous support (SiCTiC) using the impregnation method with NaBH 4 as the reducing agent at different synthesis temperatures to evaluate the effect of this variable on their physicochemical and electrochemical properties. The catalysts were characterized by inductively coupled plasma optical emission spectrometry, scanning electron microscopy-energy dispersive X-ray spectroscopy, X-ray diffraction, transmission electron microscope-energy dispersive X-ray,and temperature-programmed reduction. In addition, the electrochemical characterization (i.e., cyclic voltammetry, oxygen reduction reaction, and chronoamperometry) was carried out with a rotating disk electrode. For the cyclic voltammetry investigation, 400 cycles were performed in hot phosphoric acid and a half-cell to evaluate the stability of the synthesized catalysts. The catalyst synthesized on SiCTiC exhibited excellent durability compared to the catalyst synthesized on a Vulcan support. In addition, all synthesized catalysts exhibited better catalytic activity than that of the PtCo/C catalysts. The best results were observed for the catalyst synthesized at 80 °C due to its shorter Pt-Pt nearest-neighbor and higher alloy degree. Finally, a preliminary stability test was conducted in an HT-PEMFC, and promising results in terms of stability and performance were observed.
The Nucleation Rate of Single O2 Nanobubbles at Pt Nanoelectrodes.
Soto, Álvaro Moreno; German, Sean R; Ren, Hang; van der Meer, Devaraj; Lohse, Detlef; Edwards, Martin A; White, Henry S
2018-06-13
Nanobubble nucleation is a problem that affects efficiency in electrocatalytic reactions since those bubbles can block the surface of the catalytic sites. In this article, we focus on the nucleation rate of O 2 nanobubbles resulting from the electrooxidation of H 2 O 2 at Pt disk nanoelectrodes. Bubbles form almost instantaneously when a critical peak current, i nb p , is applied, but for lower currents, bubble nucleation is a stochastic process in which the nucleation (induction) time, t ind , dramatically decreases as the applied current approaches i nb p , a consequence of the local supersaturation level, ζ, increasing at high currents. Here, by applying different currents below i nb p , nanobubbles take some time to nucleate and block the surface of the Pt electrode at which the reaction occurs, providing a means to measure the stochastic t ind . We study in detail the different conditions in which nanobubbles appear, concluding that the electrode surface needs to be preconditioned to achieve reproducible results. We also measure the activation energy for bubble nucleation, E a , which varies in the range from (6 to 30) kT, and assuming a spherically cap-shaped nanobubble nucleus, we determine the footprint diameter L = 8-15 nm, the contact angle to the electrode surface θ = 135-155°, and the number of O 2 molecules contained in the nucleus (50 to 900 molecules).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Anant; Artyushkova, Kateryna; Atanassov, Plamen
2011-12-01
Changes that carbon-supported platinum electrocatalysts undergo in a proton exchange membrane fuel cell environment were simulated by ex situ heat treatment of catalyst powder samples at 150 C and 100% relative humidity. In order to study modifications that are introduced to chemistry, morphology, and performance of electrocatalysts, XPS, HREELS and three-electrode rotating disk electrode experiments were performed. Before heat treatment, graphitic content varied by 20% among samples with different types of carbon supports, with distinct differences between bulk and surface compositions within each sample. Following the aging protocol, the bulk and surface chemistry of the samples were similar, with graphitemore » content increasing or remaining constant and Pt-carbide decreasing for all samples. From the correlation of changes in chemical composition and losses in performance of the electrocatalysts, we conclude that relative distribution of Pt particles on graphitic and amorphous carbon is as important for electrocatalytic activity as the absolute amount of graphitic carbon present« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinozaki, Kazuma; Morimoto, Yu; Pivovar, Bryan S.
The platinum 'particle size effect' on the oxygen reduction reaction (ORR) has been re-evaluated using commercial Pt/C catalysts (2-10 nm Pt particle) and polycrystalline Pt (poly-Pt) in 0.1 M HClO4 with a rotating disk electrode method. Nafion-free catalyst layers were employed to obtain specific activities (SA) that were not perturbed (suppressed) by sulfonate anion adsorption/blocking. By using ultrathin uniform catalyst layers, O2 diffusion limitation was minimized as confirmed from the high SAs of our supported catalysts that were comparable to unsupported sputtered Pt having controlled sizes. The specific activity (SA) steeply increased for the particle sizes in the range -2-10more » nm (0.8-1.8 mA/cm2Pt at 0.9 V vs. RHE) and plateaued over -10 nm to 2.7 mA/cm2Pt for bulk poly-Pt. On the basis of the activity trend for the range of particle sizes studied, it appears that the effect of carbon support on activity is negligible. The experimental results and the concomitant profile of SA vs. particle size was found to be in an agreement to a truncated octahedral particle model that assumes active terrace sites.« less
Pt-Pd bimetallic nanoparticles on MWCNTs: catalyst for hydrogen peroxide electrosynthesis
NASA Astrophysics Data System (ADS)
Félix-Navarro, R. M.; Beltrán-Gastélum, M.; Salazar-Gastélum, M. I.; Silva-Carrillo, C.; Reynoso-Soto, E. A.; Pérez-Sicairos, S.; Lin, S. W.; Paraguay-Delgado, F.; Alonso-Núñez, G.
2013-08-01
Bimetallic nanoparticles of Pt-Pd were deposited by the microemulsion method on a multiwall carbon nanotube (MWCNTs) to obtain a Pt-Pd/MWCNTs for electrocatalytic reduction of O2 to H2O2. The activity and selectivity of the catalyst was determined qualitatively by the rotating disk electrode method in acidic medium. The catalyst was spray-coated onto a reticulated vitreous carbon substrate and quantitatively was tested in bulk electrolysis for 20 min under potentiostatic conditions (0.5 V vs Ag/AgCl) in a 0.5 M H2SO4 electrolyte using dissolved O2. The bulk electrolysis experiments show that the Pt-Pd/MWCNTs catalyst is more efficient for H2O2 electrogeneration than a MWCNTs catalyst. Nitrobenzene degradation by electrogenerated H2O2 alone and Electro-Fenton process were also tested. Our results show that both processes decompose nitrobenzene, but the Electro-Fenton process does it more efficiently. The prepared nanoparticulated catalyst shows a great potential in environmental applications.
NASA Astrophysics Data System (ADS)
Srivastava, Ratndeep
Renewable hydrogen-fuelled proton exchange membrane (PEMFC) fuel cells have consistently demonstrated great promise as a future source of energy due to their high conversion efficiency, lower temperature of operation and lack of greenhouse emissions. One of the major impediments in the commercialization of polymer electrolyte membrane fuel cells is the insufficient catalytic reactivity and higher cost of Pt electrocatalysts which are utilized for the electroreduction of oxygen from air. This dissertation focuses primarily on a family of Pt alloy fuel cell electrocatalysts referred to as de-alloyed core-shell electrocatalysts. These materials are bimetallic or multimetallic nanoparticles, mostly supported on conductive supports which were first described in a dissertation by Dr. S. Koh earlier in 2009.1 De-alloyed Pt nanoparticle electrocatalysts are formed from base metal rich binary Pt-M and ternary Pt-M1-M 2 (M, M1, M2 = Cu, Co, Ni, Fe and Cr) alloy nanoparticle precursors. The precursors are transformed and activated by electrochemical selective dissolution of the less noble metal component of the precursors (de-alloying). They have shown exceptional activity for oxygen reduction reaction (ORR) in idealized electrochemical half cell measurements, in particular rotating disk electrode experiments. However, these materials were never tested or implemented in realistic Membrane Electrode Assemblies (MEA) and single PEM fuel cells. The objective of this work was to implement de-alloyed Pt particle catalysts in realistic fuel cell electrode layers as well as a detailed characterization of their behavior and stability. The major challenges of MEA implementation consists of the behavior of the new nanostructured electrocatalysts inside the complex three-phase interface of polymer membrane ionomer, liquid water, metal catalyst, support, and reactant gas. Activity measurements were followed by medium and long-term durability analysis by potential cycling of the membrane electrode assemblies to high potentials. These de-alloyed catalysts show improved resistance to electro-chemical surface area degradation as compared to state of the art available commercial Pt/C catalysts. TEM imaging with combination of electrochemical characterization helps in determining the mechanisms for particle growth and failures. Anomalous small angle x-ray scattering (ASAXS) and x-ray diffraction (XRD) techniques were also used in the characterization of these materials.
High Pt utilization PEMFC electrode obtained by alternative ion-exchange/electrodeposition.
Chen, Siguo; Wei, Zidong; Li, Hua; Li, Li
2010-12-14
High Pt utilization PEMFC electrodes were prepared by an alternative ion-exchange/electrodeposition (AIEE) technique. The results demonstrated that the MEA employing an AIEE electrode with a Pt loading of 0.014 mg Pt cm(-2) exhibits performance approximately 2.2 times larger than that employing a conventional Nafion-bonded Pt/C electrode with a same Pt loading.
Omura, J; Yano, H; Tryk, D A; Watanabe, M; Uchida, H
2014-01-14
To gain deeper insight into the role of adsorbed oxygenated species in the O2 reduction reaction (ORR) kinetics on platinum and platinum-cobalt alloys for fuel cells, we carried out a series of measurements with the electrochemical quartz crystal microbalance (EQCM) and the rotating disk electrode (RDE) in acid solution. The effects of anion adsorption on the activities for the ORR were first assessed in HClO4 and HF electrolyte solutions at various concentrations. In our previous work (Part 1), we reported that the perchlorate anion adsorbs specifically on bulk-Pt, with a Frumkin-Temkin isotherm, that is, a linear relationship between Δm and log[HClO4]. Here, we find that the specific adsorption on the Pt-skin/Pt3Co alloy was significantly stronger than that on bulk-Pt, in line with its modified electronic properties. The kinetically controlled current density j(k) for the O2 reduction at the Pt-skin/Pt3Co-RDE was about 9 times larger than that of the bulk-Pt-RDE in 0.01 M HClO4 saturated with air, but the j(k) values on Pt-skin/Pt3Co decreased with increasing [HClO4] more steeply than in the case of Pt, due to the blocking of the active sites by the specifically adsorbed ClO4(-). We have detected reversible mass changes for one or more adsorbed oxygen-containing species (Ox = O2, O, OH, H2O) on the Pt-skin/Pt3Co-EQCM and Pt-EQCM in O2-saturated and He-purged 0.01 M HClO4 solutions, in which the specific adsorption of ClO4(-) anions was negligible. The coverages of oxygen species θ(Ox) on the Pt-skin/Pt3Co in the potential range from 0.86 to 0.96 V in the O2-saturated solution were found to be larger than those on pure Pt, providing strong evidence that the higher O2 reduction activity on the Pt3Co is correlated with higher θ(Ox), contrary to the conventional view.
Solvothermal synthesis of platinum alloy nanoparticles for oxygen reduction electrocatalysis.
Carpenter, Michael K; Moylan, Thomas E; Kukreja, Ratandeep Singh; Atwan, Mohammed H; Tessema, Misle M
2012-05-23
Platinum alloy nanoparticles show great promise as electrocatalysts for the oxygen reduction reaction (ORR) in fuel cell cathodes. We report here on the use of N,N-dimethylformamide (DMF) as both solvent and reductant in the solvothermal synthesis of Pt alloy nanoparticles (NPs), with a particular focus on Pt-Ni alloys. Well-faceted alloy nanocrystals were generated with this method, including predominantly cubic and cuboctahedral nanocrystals of Pt(3)Ni, and octahedral and truncated octahedral nanocrystals of PtNi. X-ray diffraction (XRD) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), coupled with energy dispersive spectroscopy (EDS), were used to characterize crystallite morphology and composition. ORR activities of the alloy nanoparticles were measured with a rotating disk electrode (RDE) technique. While some Pt(3)Ni alloy nanoparticle catalysts showed specific activities greater than 1000 μA/cm(2)(Pt), alloy catalysts prepared with a nominal composition of PtNi displayed activities close to 3000 μA/cm(2)(Pt), or almost 15 times that of a state-of-the-art Pt/carbon catalyst. XRD and EDS confirmed the presence of two NP compositions in this catalyst. HAADF-STEM examination of the PtNi nanoparticle catalyst after RDE testing revealed the development of hollows in a number of the nanoparticles due to nickel dissolution. Continued voltage cycling caused further nickel dissolution and void formation, but significant activity remained even after 20,000 cycles.
NASA Astrophysics Data System (ADS)
Kim, In Gyeom; Nah, In Wook; Oh, In-Hwan; Park, Sehkyu
2017-10-01
Three-dimensional (3D) crumpled reduced graphene oxide supported Pt-Ir alloys that served as bifunctional oxygen catalysts for use in untized regenerative fuel cells were synthesized by a facile spray pyrolysis method. Pt-Ir catalysts supported on rGO (Pt-Ir/rGOs) were physically characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA) to observe change in composition by heat treatment, alloying, and morphological transition of the catalysts. Their catalytic activities and stabilities for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) conditions were electrochemically investigated using cyclic voltammetry (CV), linear sweep voltammetry (LSV), potential cycling and hold tests on the rotating disk electrode (RDE). Pt-Ir/rGO with no post heat-treatment (Pt-Ir/rGO_NP) showed a lower activity for ORR and OER although metal nanoparticles decorated on the support are relatively small. However, Pt-Ir/rGO showed remarkably enhanced activity following heat treatment, depending on temperature. Pt-Ir/rGO heat-treated at 600 °C after spray pyrolysis (Pt-Ir/rGO_P600) exhibited a higher activity and stability than a commercially available Pt/C catalyst kept under the ORR condition, and it also revealed a comparable OER activity and durability versus the commercial unsupported Ir catalyst.
Electrocatalytic performance of fuel cell reactions at low catalyst loading and high mass transport.
Zalitis, Christopher M; Kramer, Denis; Kucernak, Anthony R
2013-03-28
An alternative approach to the rotating disk electrode (RDE) for characterising fuel cell electrocatalysts is presented. The approach combines high mass transport with a flat, uniform, and homogeneous catalyst deposition process, well suited for studying intrinsic catalyst properties at realistic operating conditions of a polymer electrolyte fuel cell (PEFC). Uniform catalyst layers were produced with loadings as low as 0.16 μgPt cm(-2) and thicknesses as low as 200 nm. Such ultra thin catalyst layers are considered advantageous to minimize internal resistances and mass transport limitations. Geometric current densities as high as 5.7 A cm(-2)Geo were experimentally achieved at a loading of 10.15 μgPt cm(-2) for the hydrogen oxidation reaction (HOR) at room temperature, which is three orders of magnitude higher than current densities achievable with the RDE. Modelling of the associated diffusion field suggests that such high performance is enabled by fast lateral diffusion within the electrode. The electrodes operate over a wide potential range with insignificant mass transport losses, allowing the study of the ORR at high overpotentials. Electrodes produced a specific current density of 31 ± 9 mA cm(-2)Spec at a potential of 0.65 V vs. RHE for the oxygen reduction reaction (ORR) and 600 ± 60 mA cm(-2)Spec for the peak potential of the HOR. The mass activity of a commercial 60 wt% Pt/C catalyst towards the ORR was found to exceed a range of literature PEFC mass activities across the entire potential range. The HOR also revealed fine structure in the limiting current range and an asymptotic current decay for potentials above 0.36 V. These characteristics are not visible with techniques limited by mass transport in aqueous media such as the RDE.
Long, Zhi; Li, Yankai; Deng, Guangrong; Liu, Changpeng; Ge, Junjie; Ma, Shuhua; Xing, Wei
2017-06-20
An in situ micro-MEA technique, which could precisely measure the performance of ORR electrocatalyst using Nafion as electrolyte, was designed and compared with regular thin-film rotating-disk electrode (TFRDE) (0.1 M HClO 4 ) and normal in situ membrane electrode assembly (MEA) tests. Compared to the traditional TFRDE method, the micro-MEA technique makes the acquisition of catalysts' behavior at low potential values easily achieved without being limited by the solubility of O 2 in water. At the same time, it successfully mimics the structure of regular MEAs and obtains similar results to a regular MEA, thus providing a new technique to simply measure the electrode activity without being bothered by complicated fabrication of regular MEA. In order to further understand the importance of in situ measurement, Fe-N-C as a typical oxygen reduction reaction (ORR) free-Pt catalyst was evaluated by TFRDE and micro-MEA. The results show that the half wave potential of Fe-N-C only shifted negatively by -135 mV in comparison with state-of-the-art Pt/C catalysts from TFRDE tests. However, the active site density, mass transfer of O 2 , and the proton transfer conductivity are found to strongly influence the catalyst activity in the micro-MEA, thereby resulting in a much lower limiting current density than Pt/C (8.7 times lower). Hence, it is suggested that the micro-MEA is better in evaluating the in situ ORR performance, where the catalysts are characterized more thoroughly in terms of intrinsic activity, active site density, proton transfer, and mass transfer properties.
Han, Xinyi; Wang, Dawei; Liu, Dong; Huang, Jianshe; You, Tianyan
2012-02-01
Gold/Platinum (Au/Pt) bimetallic nanodendrites were successfully synthesized through seeded growth method using preformed Au nanodendrites as seeds and ascorbic acid as reductant. Cyclic voltammograms (CVs) of a series of Au/Pt nanodendrites modified electrodes in 1M KOH solution containing 1M ethanol showed that the electrocatalyst with a molar ratio (Au:Pt) of 3 exhibited the highest peak current density and the lowest onset potential. The peak current density of ethanol electro-oxidation on the Au(3)Pt(1) nanodendrites modified glassy carbon electrode (Au(3)Pt(1) electrode) is about 16, 12.5, and 4.5 times higher than those on the polycrystalline Pt electrode, polycrystalline Au electrode, and Au nanodendrites modified glassy carbon electrode (Au dendrites electrode), respectively. The oxidation peak potential of ethanol electro-oxidation on the Au(3)Pt(1) electrode is about 299 and 276 mV lower than those on the polycrystalline Au electrode and Au dendrites electrode, respectively. These results demonstrated that the Au/Pt bimetallic nanodendrites may find potential application in alkaline direct ethanol fuel cells (ADEFCs). Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hu, Yang; Jiang, Yiliang; Jensen, Jens Oluf; Cleemann, Lars N.; Li, Qingfeng
2018-01-01
Phosphoric acid is the common electrolyte for high-temperature polymer electrolyte fuel cells (HT-PEMFCs) that have advantages such as enhanced CO tolerance and simplified heat and water management. The currently used rotating disk electrode technique is limited to tests in dilute solutions at low temperatures and hence is not suitable for catalyst evaluation for HT-PEMFCs. In this study, we have designed and constructed a half-cell setup to measure the intrinsic activities of catalysts towards the oxygen reduction reaction (ORR) in conditions close to HT-PEMFC cathodes. By optimization of the hydrophobic characteristics of electrodes and the catalyst layer thickness, ORR activities of typical Pt/C catalysts are successfully measured in concentrated phosphoric acid at temperatures above 100 °C. In terms of mass-specific activities, the catalyst exhibits about two times higher activity in the half-cell electrode than that observed in fuel cells, indicating the feasibility of the technique as well as the potential for further improvement of fuel cell electrode performance.
You, Jyun-Guo; Liu, Yao-Wen; Lu, Chi-Yu; Tseng, Wei-Lung; Yu, Cheng-Ju
2017-06-15
We report citrate-capped platinum nanoparticles (Pt NPs) as oxidase mimetics for effectively catalyzing the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB), 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid), dopamine, and methylene blue in the presence of O 2 . To confirm oxidase-like activity of citrate-capped Pt NPs, their activity toward oxygen reduction reaction was studied using cyclic voltammetry and rotating ring-disk electrode method. The results obtained showed that Pt NP NPs can catalyze the oxidation of organic substrates to the colored product and the reduction of oxygen to water through a four-electron exchange process. Because the aggregation of Pt NPs can inhibit their oxidase-like activity and protamine can recognize heparin, we prepared the protamine-modified Pt NPs through direct adsorption on the surface of citrate-capped Pt NPs. The electrostatic attraction between heparin and protamine-stabilized Pt NPs induced nanoparticle aggregation, inhibiting their catalytic activity. Therefore, the lowest detectable heparin concentrations through UV-vis absorption and by the naked eye were estimated to be 0.3 and 60nM, respectively. Moreover, the proposed system enabled the determination of the therapeutic heparin concentration in a single drop of blood. Copyright © 2016 Elsevier B.V. All rights reserved.
Evidence for the Formation of Nitrogen-Rich Platinum and Palladium Nitride Nanoparticles
Veith, Gabriel M.; Lupini, Andrew R.; Baggetto, Loïc; ...
2013-12-03
Here, we report evidence for the formation of nitrogen-rich precious metal nanoparticles (Pt, Pd) prepared by reactive sputtering of the pure metal in a N 2 plasma. The composition of the nanoparticles varies as a function of particle size and growth conditions. For the smallest particles the nitrogen content appears to be as high as 6.7 N atoms for each Pd atom or 5.9 N atoms for each Pt atom whereas bulk films have nominal compositions of Pt 7.3N and Pd 2.5N. The nanoparticles are metastable in air and moisture, slowly decomposing over several years. This paper describes the synthesismore » of these materials along with experimental evidence of the composition, oxidation state, and growth modes. Moreover, the catalytic properties of these N-rich nanoparticles were accessed by rotating disk electrode electrochemical studies, the liquid phase oxidation of benzyl alcohol and gas phase CO oxidation and support the experimental evidence for the materials composition.« less
NASA Astrophysics Data System (ADS)
Luo, Mingchuan; Wei, Lingli; Wang, Fanghui; Han, Kefei; Zhu, Hong
2014-12-01
Over the past decade, Pt based core-shell structured alloys have been studied extensively as oxygen reduction reaction (ORR) catalysts for proton exchange membrane fuel cells (PEMFCs) because of their distinctive electrochemical performance and low Pt loading. In this paper, a facile route based on microwave-assisted polyol method and chemical dealloying process is proposed to synthesize carbon supported core-shell structured nanoparticles (NPs) in gram-level for ORR electrocatalysis in PEMFCs. The obtained samples are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), inductively coupled plasma atomic emission spectroscopy (ICP-AES), and X-ray photoelectron spectroscopy (XPS). These physical characterization indicate that the final synthesized NPs are highly dispersed on the carbon support, and in a core-shell structure with CuPt alloy as the core and Pt as the shell. Electrochemical measurements, conducted by cyclic voltammetry (CV) and rotating disk electrode (RDE) tests, show the core-shell structured catalyst exhibit a 3× increase in mass activity and a 2× increase in specific activity over the commercial Pt/C catalyst, respectively. These results demonstrate that this route can be a reliable way to synthesize low-Pt catalyst in large-scale for PEMFCs.
Zhao, Bo; Zhu, Wenkun; Mu, Tao; Hu, Zuowen; Duan, Tao
2017-01-01
A novel Pt/ACF (Pt supported on activated carbon fibers) electrode was successfully prepared with impregnation and electrodeposition method. Characterization of the electrodes indicated that the Pt/ACF electrode had a larger effective area and more active sites. Electrochemical degradation of ethylenediaminetetra-acetic acid (EDTA) in aqueous solution with Pt/ACF electrodes was investigated. The results showed that the 3% Pt/ACF electrode had a better effect on EDTA removal. The operational parameters influencing the electrochemical degradation of EDTA with 3% Pt/ACF electrode were optimized and the optimal removal of EDTA and chemical oxygen demand (COD) were 94% and 60% after 100 min on condition of the electrolyte concentration, initial concentration of EDTA, current density and initial value of pH were 0.1 mol/L, 300 mg/L, 40 mA/cm2 and 5.0, respectively. The degradation intermediates of EDTA in electrochemical oxidation with 3% Pt/ACF electrode were identified by gas chromatography-mass spectrum (GC-MS). PMID:28754016
Electrodeposited Co-Pt thin films for magnetic hard disks
NASA Astrophysics Data System (ADS)
Bozzini, B.; De Vita, D.; Sportoletti, A.; Zangari, G.; Cavallotti, P. L.; Terrenzio, E.
1993-03-01
ew baths for Co-Pt electrodeposition have been developed and developed and ECD thin films (≤0.3μm) have been prepared and characterized structurally (XRD), morphologically (SEM), chemically (EDS) and magnetically (VSM); their improved corrosion, oxidation and wear resistance have been ascertained. Such alloys appear suitable candidates for magnetic storage systems, from all technological viewpoints. The originally formulated baths contain Co-NH 3-citrate complexes and Pt-p salt (Pt(NH 3) 2(NO 2) 2). Co-Pt thin films of fcc structure are deposited obtaining microcrystallites of definite composition. At Pt ⋍ 30 at% we obtain fcc films with a=0.369 nm, HC=80 kA m, and high squareness; increasing Co and decreasing Pt content in the bath it is possible to reduce the Pt content of the deposit, obtaining fcc structures containing two types of microcrystals with a = 0.3615 nm and a = 0.369 nm deposited simultaneously. NaH 2PO 2 additions to the bath have a stabilizing influence on the fcc structure of a = 0.3615 nm, Pt ⋍ 20 at% and HC as high as 200 kA/m, with hysteresis loops suitable for both longitudinal or perpendicular recording, depending on the thickness. We have prepared 2.5 in. hard disks for magnetic recording with ECD Co-Pt 20 at% with a polished and texturized ACD Ni-P underlayer. Pulse response, 1F & 2F frequency and frequency sweep response behaviour, as well as noise and overwrite characteristics have been measured for both our disks and high-standard sputtered Co-Cr-Ta production disks, showin improved D50 for Co-Pt ECD disks. The signal-to-noise ratio could be improved by pulse electrodeposition and etching post-treatments.
Bifunctional alkaline oxygen electrodes
NASA Technical Reports Server (NTRS)
Swette, L.; Kackley, N.; Mccatty, S. A.
1991-01-01
The authors describe the identification and testing of electrocatalysts and supports for the positive electrode of moderate-temperature, single-unit, rechargeable alkaline fuel cells. Recent work on Na(x)Pt3O4, a potential bifunctional catalyst, is described, as well as the application of novel approaches to the development of more efficient bifunctional electrode structures. The three dual-character electrodes considered here showed similar superior performance; the Pt/RhO2 and Rh/RhO2 electrodes showed slightly better performance than the Pt/IrO2 electrode. It is concluded that Na(x)Pt3O4 continues to be a promising bifunctional oxygen electrode catalyst but requires further investigation and development.
NASA Astrophysics Data System (ADS)
Vidal, F.; Busson, B.; Six, C.; Pluchery, O.; Tadjeddine, A.
2002-04-01
The Pt( hkl)/methanol in acidic solution interface which constitutes a model of the anodic part of a fuel cell is studied by infrared-visible sum frequency generation vibrational spectroscopy. Methanol dissociative adsorption leads to CO poisoning of the Pt electrode surfaces. The structure of the CO/Pt( hkl) interface depends strongly on the orientation of the surface electrode.
NASA Astrophysics Data System (ADS)
Choe, Ju Eun; Ahmed, Mohammad Shamsuddin; Jeon, Seungwon
2015-05-01
Poly(3,4-ethylenedioxythiophene) functionalized graphene with palladium nanoparticles (denoted as Pd/PEDOT/rGO) has been synthesized for electrochemical oxygen reduction reaction (ORR) in alkaline solution. The structural features of catalyst are characterized by scanning electron microscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The TEM images suggest a well dispersed PdNPs onto PEDOT/rGO film. The ORR activity of Pd/PEDOT/rGO has been investigated via cyclic voltammetry (CV), rotating disk electrode (RDE) and rotating ring disk electrode (RRDE) techniques in 0.1 M KOH aqueous solution. Comparative CV analysis suggests a general approach of intermolecular charge-transfer in between graphene sheet and PdNPs via PEDOT which leads to the better PdNPs dispersion and subsequently superior ORR kinetics. The results from ORR measurements show that Pd/PEDOT/rGO has remarkable electrocatalytic activity and stability compared to Pd/rGO and state-of-the-art Pt/C. The Koutecky-Levich and Tafel analysis suggest that the proposed main path in the ORR mechanism has direct four-electron transfer process with faster transfer kinetic rate on the Pd/PEDOT/rGO.
NASA Astrophysics Data System (ADS)
Kwok, Y. H.; Tsang, Alpha C. H.; Wang, Yifei; Leung, Dennis Y. C.
2017-05-01
Platinum-decorated graphene aerogel as a porous electrode for flow-through direct methanol microfluidic fuel cell is introduced. Ultra-fine platinum nanoparticles with size ranged from diameter 1.5 nm-3 nm are evenly anchored on the graphene nanosheets without agglomeration. The electrode is characterized by scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy. Catalytic activity is confirmed by cyclic voltammetry. The electroactive surface area and catalytic activity of platinum on graphene oxide (Pt/GO) are much larger than commercial platinum on carbon black (Pt/C). A counterflow microfluidic fuel cell is designed for contrasting the cell performance between flow-over type and flow-through type electrodes using Pt/C on carbon paper and Pt/GO, respectively. The Pt/GO electrode shows 358% increment in specific power compared with Pt/C anode. Apart from catalytic activity, the effect of porous electrode conductivity to cell performance is also studied. The conductivity of the porous electrode should be further enhanced to achieve higher cell performance.
78 FR 11563 - Airworthiness Directives; Pratt & Whitney Canada Corp Turboshaft Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-19
... and repetitive borescope inspections to verify the presence of a retaining ring securing the power... states: There have been 5 reported incidents of second stage Power Turbine (PT) disk damage caused by the... investigation has determined that the root cause for the PT baffle displacement and the resultant PT disk damage...
Liu, Xingpeng; Peng, Bin; Zhang, Wanli; Zhu, Jun; Liu, Xingzhao; Wei, Meng
2017-12-01
In order to develop film electrodes for the surface acoustic wave (SAW) devices operating in harsh high-temperature environments, novel Al₂O₃/Pt/ZnO/Al₂O₃ multilayered film electrodes were prepared by laser molecular beam epitaxy (LMBE) at 150 °C. The first Al₂O₃ layer was used as a barrier layer to prevent the diffusion of Ga, La, and Si atoms from the La₃Ga₅SiO 14 (LGS) substrate to the film electrode and thus improved the crystalline quality of ZnO and Pt films. It was found that the resistance of the Al₂O₃/Pt/ZnO/Al₂O₃ electrode did not vary up to a temperature of 1150 °C, suggesting a high reliability of electrode under harsh high-temperature environments. The mechanism of the stable resistance of the Al₂O₃/Pt/ZnO/Al₂O₃ film electrodes at high temperature was investigated by analyzing its microstructure. The proposed Al₂O₃/Pt/ZnO/Al₂O₃ film electrode has great potential for application in high-temperature SAW devices.
KOH-activated multi-walled carbon nanotubes as platinum supports for oxygen reduction reaction
NASA Astrophysics Data System (ADS)
He, Chaoxiong; Song, Shuqin; Liu, Jinchao; Maragou, Vasiliki; Tsiakaras, Panagiotis
In the present investigation, multi-walled carbon nanotubes (MWCNTs) thermally treated by KOH were adopted as the platinum supporting material for the oxygen reduction reaction electrocatalysts. FTIR and Raman spectra were used to investigate the surface state of MWCNTs treated by KOH at different temperatures (700, 800, and 900 °C) and showed MWCNTs can be successfully functionalized. The structural properties of KOH-activated MWCNTs supported Pt were determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM), and their electrochemical performance was evaluated by the aid of cyclic voltammetry (CV) and rotating disk electrode (RDE) voltammetry. According to the experimental findings of the present work, the surrface of MWCNTs can be successfully functionalized with oxygen-containing groups after activation by KOH, favoring the good dispersion of Pt nanoparticles with narrow size distribution. The as-prepared Pt catalysts supported on KOH treated MWCNTs at higher temperature, possess higher electrochemical surface area and exhibit desirable activity towards oxygen reduction reaction (ORR). More precisely, it has been found that the electrochemical active area of Pt/MWCNTs-900 is approximately two times higher than that of Pt/MWCNTs. It can be concluded that KOH activation is an effective way to decorate MWCNTs' surface with oxygen-containing groups and bigger surface area, which makes them more suitable as electrocatalyst support materials.
Fast chirality reversal of the magnetic vortex by electric current
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, W. L., E-mail: wlimnd@gmail.com; Liu, R. H.; Urazhdin, S., E-mail: sergei.urazhdin@emory.edu
2014-12-01
The possibility of high-density information encoding in magnetic materials by topologically stable inhomogeneous magnetization configurations such as domain walls, skyrmions, and vortices has motivated intense research into mechanisms enabling their control and detection. While the uniform magnetization states can be efficiently controlled by electric current using magnetic multilayer structures, this approach has proven much more difficult to implement for inhomogeneous states. Here, we report direct observation of fast reversal of magnetic vortex by electric current in a simple planar structure based on a bilayer of spin Hall material Pt with a single microscopic ferromagnetic disk contacted by asymmetric electrodes. Themore » reversal is enabled by a combination of the chiral Oersted field and spin current generated by the nonuniform current distribution in Pt. Our results provide a route for the efficient control of inhomogeneous magnetization configurations by electric current.« less
Pullamsetty, Ashok; Sundara, Ramaprabhu
2016-10-01
Boron doped graphene was prepared by a facile method and platinum (Pt) decoration over boron doped graphene was done in various chemical reduction methods such as sodium borohydride (NaBH4), polyol and modified polyol. X-ray diffraction analysis indicates that the synthesized catalyst particles are present in a nanocrystalline structure and transmission and scanning electron microscopy were employed to investigate the morphology and particle distribution. The electrochemical properties were investigated with the help of the rotating disk electrode (RDE) technique and cyclic voltammetry. The results show that the oxygen reduction reaction (ORR) takes place by a four-electron process. The kinetics of the ORR was evaluated using K-L and Tafel plots. The electrocatalyst obtained in modified polyol reduction method has shown the better catalytic activity compared to other two electrocatalysts. Copyright © 2016 Elsevier Inc. All rights reserved.
Stretchable Platinum Network-Based Transparent Electrodes for Highly Sensitive Wearable Electronics.
Wang, Yuting; Cheng, Jing; Xing, Yan; Shahid, Muhammad; Nishijima, Hiroki; Pan, Wei
2017-07-01
A platinum network-based transparent electrode has been fabricated by electrospinning. The unique nanobelt structured electrode demonstrates low sheet resistance (about 16 Ω sq -1 ) and high transparency of 80% and excellent flexibility. One of the most interesting demonstrations of this Pt nanobelt electrode is its excellent reversibly resilient characteristic. The electric conductivity of the flexible Pt electrode can recover to its initial value after 160% extending and this performance is repeatable and stable. The good linear relationship between the resistance and strain of the unique structured Pt electrode makes it possible to assemble a wearable high sensitive strain sensor. Present reported Pt nanobelt electrode also reveals potential applications in electrode for flexible fuel cells and highly transparent ultraviolet (UV) sensors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Higuchi, Eiji; Takase, Tomonori; Chiku, Masanobu; Inoue, Hiroshi
2014-10-01
Pt, Rh and SnO2 nanoparticle-loaded carbon black (Pt/Rh/SnO2/CB) catalysts with different contents of Pt and Rh were prepared by the modified Bönnemann method. The mean size and size distribution of Pt, Rh and SnO2 for Pt-71/Rh-4/SnO2/CB (Pt : Rh : Sn = 71 at.%: 4 at.%: 25 at.%) were 3.8 ± 0.7, 3.2 ± 0.7 and 2.6 ± 0.5 nm, respectively, indicating that Pt, Rh and SnO2 were all nanoparticles. The onset potential of ethanol oxidation current for the Pt-65/Rh-10/SnO2/CB and Pt-56/Rh-19/SnO2/CB electrodes was ca. 0.2 V vs. RHE which was ca. 0.2 V less positive than that for the Pt/CB electrode. The oxidation current at 0.6 V for the Pt/Rh/SnO2/CB electrode (ca. 2% h-1) decayed more slowly than that at the Pt/SnO2/CB electrode (ca. 5% h-1), indicating that the former was superior in durability to the latter. The main product of EOR in potentiostatic electrolysis at 0.6 V for the Pt-71/Rh-4/SnO2/CB electrode was acetic acid.
Ma, Chaoxiong; Zaino III, Lawrence P.; Bohn, Paul W.
2015-03-25
Self-induced redox cycling at nanopore ring-disk electrodes is coupled, through a bipolar electrode, to a remote fluorigenic reporter reaction. We present a new configuration for coupling fluorescence microscopy and voltammetry using self-induced redox cycling for ultrasensitive electrochemical measurements. An array of nanopores, each supporting a recessed disk electrode separated by 100 nm in depth from a planar multiscale bipolar top electrode, was fabricated using multilayer deposition, nanosphere lithography, and reactive-ion etching. Self-induced redox cycling was induced on the disk electrode producing ~30× current amplification, which was independently confirmed by measuring induced electrogenerated chemiluminescence from Ru(bpy) 3 2/3+/tri-n-propylamine on the floatingmore » bipolar electrode. In this design, redox cycling occurs between the recessed disk and the top planar portion of a macroscopic thin film bipolar electrode in each nanopore. Electron transfer also occurs on a remote (mm-distance) portion of the planar bipolar electrode to maintain electroneutrality. This couples the electrochemical reactions of the target redox pair in the nanopore array with a reporter, such as a potential-switchable fluorescent indicator, in the cell at the distal end of the bipolar electrode. Oxidation or reduction of reversible analytes on the disk electrodes were accompanied by reduction or oxidation, respectively, on the nanopore portion of the bipolar electrode and then monitored by the accompanying oxidation of dihydroresorufin or reduction of resorufin at the remote end of the bipolar electrode, respectively. In both cases, changes in fluorescence intensity were triggered by the reaction of the target couple on the disk electrode, while recovery was largely governed by diffusion of the fluorescent indicator. Reduction of 1 nM of Ru(NH 3) 6 3+ on the nanoelectrode array was detected by monitoring the fluorescence intensity of resorufin, demonstrating high sensitivity fluorescence-mediated electrochemical sensing coupled to self-induced redox cycling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Chaoxiong; Zaino III, Lawrence P.; Bohn, Paul W.
Self-induced redox cycling at nanopore ring-disk electrodes is coupled, through a bipolar electrode, to a remote fluorigenic reporter reaction. We present a new configuration for coupling fluorescence microscopy and voltammetry using self-induced redox cycling for ultrasensitive electrochemical measurements. An array of nanopores, each supporting a recessed disk electrode separated by 100 nm in depth from a planar multiscale bipolar top electrode, was fabricated using multilayer deposition, nanosphere lithography, and reactive-ion etching. Self-induced redox cycling was induced on the disk electrode producing ~30× current amplification, which was independently confirmed by measuring induced electrogenerated chemiluminescence from Ru(bpy) 3 2/3+/tri-n-propylamine on the floatingmore » bipolar electrode. In this design, redox cycling occurs between the recessed disk and the top planar portion of a macroscopic thin film bipolar electrode in each nanopore. Electron transfer also occurs on a remote (mm-distance) portion of the planar bipolar electrode to maintain electroneutrality. This couples the electrochemical reactions of the target redox pair in the nanopore array with a reporter, such as a potential-switchable fluorescent indicator, in the cell at the distal end of the bipolar electrode. Oxidation or reduction of reversible analytes on the disk electrodes were accompanied by reduction or oxidation, respectively, on the nanopore portion of the bipolar electrode and then monitored by the accompanying oxidation of dihydroresorufin or reduction of resorufin at the remote end of the bipolar electrode, respectively. In both cases, changes in fluorescence intensity were triggered by the reaction of the target couple on the disk electrode, while recovery was largely governed by diffusion of the fluorescent indicator. Reduction of 1 nM of Ru(NH 3) 6 3+ on the nanoelectrode array was detected by monitoring the fluorescence intensity of resorufin, demonstrating high sensitivity fluorescence-mediated electrochemical sensing coupled to self-induced redox cycling.« less
NASA Astrophysics Data System (ADS)
Zhu, Xiaohong; Defaÿ, Emmanuel; Aïd, Marc; Ren, Yinjuan; Zhang, Caiyun; Zhu, Jiliang; Zhu, Jianguo; Xiao, Dingquan
2013-03-01
Ba0.7Sr0.3TiO3 (BST) thin films, about 100 nm in thickness, were prepared on unannealed and 700 °C-preannealed Pt bottom electrodes by the ion beam sputtering and post-deposition annealing method. It was found that the preannealed Pt layer has a more compact structure, making it not only a bottom electrode but also a good template for high-quality BST thin film growth. The BST films deposited on preannealed Pt bottom electrodes showed (0 0 l)-preferred orientation, dense and uniform microstructure with no intermediate phase formed at the film/electrode interface, and thus enhanced dielectric properties. As a result, the typical relative dielectric constant and tunability (under a dc electric field of 1 MV cm-1) reach 180 and 50.1%, respectively, for the BST thin films with preannealed Pt bottom electrodes, which are significantly higher than those (166 and 41.3%, respectively) for the BST thin films deposited on unannealed Pt bottom electrodes.
Kwon, Jeong; Ganapathy, Veerappan; Kim, Young Hun; Song, Kyung-Deok; Park, Hong-Gyu; Jun, Yongseok; Yoo, Pil J; Park, Jong Hyeok
2013-09-07
A low-cost nanopatterned highly conductive poly(3,4-ethylenedioxythiophene) (PEDOT) thin film was fabricated on a flexible plastic substrate via a chemical polymerization method combined with a nanoimprinting technique and used as a platinum (Pt), TCO-free counter electrode for dye-sensitized solar cells (DSSCs). The catalytic properties of the nanopatterned PEDOT as the counter electrode in DSSCs were studied using cyclic voltammetry, J-V measurements, impedance spectroscopy, and finite-difference time-domain (FDTD) simulations. The nanopatterned PEDOT counter electrodes exhibit better functionality as a counter electrode for tri-iodide reduction when compared to non-patterned PEDOT-based counter electrodes. The Pt and TCO-free DSSCs with a nanopatterned PEDOT-based counter electrode exhibited a power conversion efficiency of 7.1% under one sunlight illumination (100 mW cm(-2)), which is comparable to that of conventional DSSCs with standard platinum Pt/FTO paired counter electrodes. The ability to modulate catalytic functionality with changes in nanoscale morphology represents a promising route for developing new counter electrodes of Pt and TCO-free DSSCs.
Highly active nitrogen-doped nanocarbon electrocatalysts for alkaline direct methanol fuel cell
NASA Astrophysics Data System (ADS)
Kruusenberg, Ivar; Ratso, Sander; Vikkisk, Merilin; Kanninen, Petri; Kallio, Tanja; Kannan, Arunachala M.; Tammeveski, Kaido
2015-05-01
Direct methanol fuel cells are assembled and evaluated using Fumatech FAA3 alkaline anion exchange membrane. Two novel metal-free cathode catalysts are synthesised, investigated and compared with the commercial Pt-based catalyst. In this work nitrogen-doped few-layer graphene/multi-walled carbon nanotube (N-FLG/MWCNT) composite and nitrogen-doped MWCNT (N-MWCNT) catalyst are prepared by pyrolysing the mixture of dicyandiamide (DCDA) and carbon nanomaterials at 800 °C. The resulting cathode catalyst material shows a remarkable electrocatalytic activity for oxygen reduction reaction (ORR) in 0.1 M KOH solution employing the rotating disk electrode (RDE) method. Fuel cell tests are performed by using 1 M methanol as anode and pure oxygen gas cathode feed. The maximum power density obtained with the N-FLG/MWCNT material (0.72 mW cm-2) is similar to that of the Pt/C catalyst (0.72 mW cm-2), whereas the N-MWCNT material shows higher peak power density (0.92 mW cm-2) than the commercial Pt/C catalyst.
NASA Astrophysics Data System (ADS)
Tang, Tiantian; Li, Kan; Shen, Zhemin; Sun, Tonghua; Wang, Yalin; Jia, Jinping
2016-01-01
Polypyrrole functionalized nickel foam is facilely prepared through the potentiostatic electrodeposition. The PPy-functionalized Ni foam functions as a hydrogen-evolution cathode in a rotating disk photocatalytic fuel cell, in which hydrogen energy and electric power are generated by consuming organic wastes. The PPy-functionalized Ni foam cathode exhibits stable catalytic activities after thirteen continuous runs. Compared with net or plate structure, the Ni foam with a unique three-dimensional reticulate structure is conducive to the electrodeposition of PPy. Compared with Pt-group electrode, PPy-coated Ni foam shows a satisfactory catalytic performance for the H2 evolution. The combination of PPy and Ni forms a synergistic effect for the rapid trapping and removal of proton from solution and the catalytic reduction of proton to hydrogen. The PPy-functionalized Ni foam could be applied in photocatalytic and photoelectrochemical generation of H2. In all, we report a low cost, high efficient and earth abundant PPy-functionalized Ni foam with a satisfactory catalytic activities comparable to Pt for the practical application of poly-generation of hydrogen and electricity.
NASA Astrophysics Data System (ADS)
Liu, B. T.; Zhao, J. W.; Li, X. H.; Zhou, Y.; Bian, F.; Wang, X. Y.; Zhao, Q. X.; Wang, Y. L.; Guo, Q. L.; Wang, L. X.; Zhang, X. Y.
2010-06-01
Both FePt/PbZr0.4Ti0.6O3(PZT)/Pt and Pt/PZT/Pt ferroelectric capacitors have been fabricated on Si substrates. It is found that up to 109 switching cycles, the FePt/PZT/Pt capacitor, measured at 50 kHz, with polarization decreased by 57%, is superior to the Pt/PZT/Pt capacitor by 82%, indicating that an intermetallic FePt top electrode can also improve the fatigue-resistance of a PZT capacitor. Maximum dielectric constants are 980 and 770 for PZT capacitors with FePt and Pt, respectively. This is attributed to the interface effect between PZT film and the top electrode since the interfacial capacitance of FePt/PZT is 3.5 times as large as that of Pt/PZT interface.
Zhang, Changkun; Yu, Hongmei; Li, Yongkun; Gao, Yuan; Zhao, Yun; Song, Wei; Shao, Zhigang; Yi, Baolian
2013-04-01
Hydrogen-treated TiO2 nanotube (H-TNT) arrays serve as highly ordered nanostructured electrode supports, which are able to significantly improve the electrochemical performance and durability of fuel cells. The electrical conductivity of H-TNTs increases by approximately one order of magnitude in comparison to air-treated TNTs. The increase in the number of oxygen vacancies and hydroxyl groups on the H-TNTs help to anchor a greater number of Pt atoms during Pt electrodeposition. The H-TNTs are pretreated by using a successive ion adsorption and reaction (SIAR) method that enhances the loading and dispersion of Pt catalysts when electrodeposited. In the SIAR method a Pd activator can be used to provide uniform nucleation sites for Pt and leads to increased Pt loading on the H-TNTs. Furthermore, fabricated Pt nanoparticles with a diameter of 3.4 nm are located uniformly around the pretreated H-TNT support. The as-prepared and highly ordered electrodes exhibit excellent stability during accelerated durability tests, particularly for the H-TNT-loaded Pt catalysts that have been annealed in ultrahigh purity H2 for a second time. There is minimal decrease in the electrochemical surface area of the as-prepared electrode after 1000 cycles compared to a 68 % decrease for the commercial JM 20 % Pt/C electrode after 800 cycles. X-ray photoelectron spectroscopy shows that after the H-TNT-loaded Pt catalysts are annealed in H2 for the second time, the strong metal-support interaction between the H-TNTs and the Pt catalysts enhances the electrochemical stability of the electrodes. Fuel-cell testing shows that the power density reaches a maximum of 500 mWcm(-2) when this highly ordered electrode is used as the anode. When used as the cathode in a fuel cell with extra-low Pt loading, the new electrode generates a specific power density of 2.68 kWg(Pt) (-1) . It is indicated that H-TNT arrays, which have highly ordered nanostructures, could be used as ordered electrode supports. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas E. Springer
Carbon monoxide poisoning of polymer electrolyte fuel cell anodes is a key problem to be overcome when operating a polymer electrolyte fuel cell (PEFC) on reformed fuels. CO adsorbs preferentially on the precious metal surface leading to substantial performance losses. Some recent work has explored this problem, primarily using various Pt alloys in attempts to lower the degree of surface deactivation. In their studies of hydrogen oxidation on Pt and Pt alloy (Pt/Sn, Pt/Ru) rotating disk electrodes exposed to H{sub 2}/CO mixtures, Gasteiger et al. showed that a small hydrogen oxidation current is observed well before the onset of majormore » CO oxidative stripping (ca. 0.4 V) on Pt/Ru. However, these workers concluded that such current observed at low anode overpotentials was too low to be of practical value. Nonetheless, MST-11 researchers and others have found experimentally that it is possible to run a PEFC, e.g., with a Pt/Ru anode, in the presence of CO levels in the range 10--100 ppm with little voltage loss. Such experimental results suggest that, in fact, PEFC operation at significant current densities under low anode overpotentials is possible in the presence of such levels of CO, even before resorting to air bleeding into the anode feed stream. The latter approach has been shown to be effective in elimination of Pt anode catalyst poisoning effects at CO levels of 20--50 ppm for cells operating at 80 C with low Pt catalyst loading. The effect of oxygen bleeding is basically to lower P{sub CO} down to extremely low levels in the anode plenum thanks to the catalytic (chemical) oxidation of CO by dioxygen at the anode catalyst. In this modeling work the authors do not include specific description of oxygen bleeding effects and concentrate on the behavior of the anode with feed streams of H{sub 2} or reformate containing low levels of CO. The anode loss is treated in this work as a hydrogen and carbon monoxide electrode kinetics problem, but includes the effects of dilution of the feedstream with significant fractions of carbon dioxide and nitrogen and of mass transport losses in the gas diffusion backing. Not included in the anode model are ionic resistance and diffusion losses in the catalyst layer. They are looking to see if the overall pattern of polarization curves calculated based on such a purely kinetic model indeed mimics the central features of polarization curves observed for PEFCs operating on hydrogen with low levels of CO.« less
Li, Zhiyang; Leung, Calvin; Gao, Fan; Gu, Zhiyong
2015-01-01
In this paper, vertically aligned Pt nanowire arrays (PtNWA) with different lengths and surface roughnesses were fabricated and their electrochemical performance toward hydrogen peroxide (H2O2) detection was studied. The nanowire arrays were synthesized by electroplating Pt in nanopores of anodic aluminum oxide (AAO) template. Different parameters, such as current density and deposition time, were precisely controlled to synthesize nanowires with different surface roughnesses and various lengths from 3 μm to 12 μm. The PtNWA electrodes showed better performance than the conventional electrodes modified by Pt nanowires randomly dispersed on the electrode surface. The results indicate that both the length and surface roughness can affect the sensing performance of vertically aligned Pt nanowire array electrodes. Generally, longer nanowires with rougher surfaces showed better electrochemical sensing performance. The 12 μm rough surface PtNWA presented the largest sensitivity (654 μA·mM−1·cm−2) among all the nanowires studied, and showed a limit of detection of 2.4 μM. The 12 μm rough surface PtNWA electrode also showed good anti-interference property from chemicals that are typically present in the biological samples such as ascorbic, uric acid, citric acid, and glucose. The sensing performance in real samples (river water) was tested and good recovery was observed. These Nafion-free, vertically aligned Pt nanowires with surface roughness control show great promise as versatile electrochemical sensors and biosensors. PMID:26404303
Ferreira Santos, Mauro Sérgio; Silva Lopes, Fernando; Gutz, Ivano Gebhardt Rolf
2017-11-01
An EC-CE-C 4 D flow system was applied to the investigation of electrocatalytic processes by monitoring carboxylic acids formed during the electro-oxidation at various potentials of primary alcohols (mixture of 1 mmol/L of ethanol, n-propanol, n-butanol and n-pentanol) in acidic, neutral and alkaline media. The electro-oxidation was carried out on gold and platinum disk electrodes (3 mm of diameter) in a thin-layer electrochemical flow cell. Products were sampled 50 μm apart from the electrode directly into the capillary. All the generated carboxylates were determined in near real time (less than 2 min) by CE-C 4 D in counter-flow mode, with Tris/HCl buffer solution (pH 8.6) as BGE. Long sequences of 5-min experiments were run automatically, exploring the applied potential, electrolysis time and solution composition. Electro-oxidation at 1.5 V (versus Ag/AgCl quasi-reference) during 50 s in acidic medium was found appropriate for both Pt and Au electrodes when the determination of alcohols after derivatization is intended. A noteworthy selectivity effect was observed on the Au electrode. The signal corresponding to pentanoate is similar on both electrodes while the signal of ethanoate (acetate) is four times larger on gold than on platinum. The carboxylate signals were lower in alkaline medium (below the determination limit on Pt) than in acidic and neutral media. On gold, the formation of carboxylates was anticipated (0.85 V in alkaline medium versus 1.40 V in neutral medium). The automatic online monitoring of electrochemical processes by EC-CE-C 4 D holds great potential to investigate ionic/ionizable intermediates/products of new electrocatalysts and/or alternative fuels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Disposable sensor based on enzyme-free Ni nanowire array electrode to detect glutamate.
Jamal, Mamun; Hasan, Maksudul; Mathewson, Alan; Razeeb, Kafil M
2013-02-15
Enzyme free electrochemical sensor platform based on a vertically aligned nickel nanowire array (NiNAE) and Pt coated nickel nanowire array (Pt/NiNAE) have been developed to detect glutamate. Morphological characterisation of Ni electrodes was carried out using scanning and transmission electron microscopy combined with energy dispersive X-ray (SEM-EDX), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Cyclic voltammetry (CV) and amperometry were used to evaluate the catalytic activity of the NiNAE and the Pt/NiNAE for glutamate. It has been found that both NiNAE and Pt/NiNAE electrodes showed remarkably enhanced electrocatalytic activity towards glutamate compared to planar Ni electrodes, and showed higher catalytic activity when compared to other metallic nanostructure electrodes such as gold nanowire array electrodes (AuNAE) and Pt coated gold nanowire array electrode (Pt/AuNAE). The sensitivity of NiNAE and Pt/NiNAE has been found to be 65 and 96 μA mM(-1) cm(-2), respectively, which is approximately 6 to 9 times higher than the state of the art glutamate sensor. Under optimal detection conditions, the as prepared sensors exhibited linear behaviour for glutamate detection in the concentration up to 8mM for both NiNAE and Pt/NiNAE with a limit of detection of 68 and 83 μM, respectively. Experimental results show that the vertically aligned ordered nickel nanowire array electrode (NiNAE) has significant promise for fabricating cost effective, enzyme-less, sensitive, stable and selective sensor platform. Copyright © 2012 Elsevier B.V. All rights reserved.
Baş, Salih Zeki; Gülce, Handan; Yıldız, Salih; Gülce, Ahmet
2011-12-15
In this study, new xanthine biosensors, XO/Au/PVF/Pt and XO/Pt/PVF/Pt, based on electroless deposition of gold(Au) and platinum(Pt) nanoparticles on polyvinylferrocene(PVF) coated Pt electrode for detection of xanthine were presented. The amperometric responses of the enzyme electrodes were measured at the constant potential, which was due to the electrooxidation of enzymatically produced H(2)O(2). Compared with XO/PVF/Pt electrode, XO/Au/PVF/Pt and XO/Pt/PVF/Pt exhibited excellent electrocatalytic activity towards the oxidation of the analyte. Effect of Au and Pt nanoparticles was investigated by monitoring the response currents at the different deposition times and the different concentrations of KAuCl(4) and PtBr(2). Under the optimal conditions, the calibration curves of XO/Au/PVF/Pt and XO/Pt/PVF/Pt were obtained over the range of 2.5 × 10(-3) to 0.56 mM and 2.0 × 10(-3) to 0.66 mM, respectively. The detection limits were 7.5 × 10(-4)mM for XO/Au/PVF/Pt and 6.0 × 10(-4)mM for XO/Pt/PVF/Pt. The effects of interferents, the operational and the storage stabilities of the biosensors and the applicabilities of the proposed biosensors to the drug samples analysis were also evaluated. Copyright © 2011 Elsevier B.V. All rights reserved.
Jin, Li-Na; Liu, Ping; Jin, Chun; Zhang, Jia-Nan; Bian, Shao-Wei
2018-01-15
In this work, a flexible and porous WO 3 /grapheme/polyester (WO 3 /G/PT) textile electrode was successfully prepared by in situ growing WO 3 on the fiber surface inside G/PT composite fabrics. The unique electrode structure facilitates to enhance the energy storage performance because the 3D conductive network constructed by the G/PT increase the electron transportation rate, nanotructured WO 3 exposed enhanced electrochemically active surface area and the hierarchically porous structure improved the electrolyte ion diffusion rate. The optimized WO 3 /G/PT textile electrode exhibited good electrochemical performance with a high areal capacitance of 308.2mFcm -2 at a scan rate of 2mVs -1 and excellent cycling stability. A flexible asymmetric supercapacitor (ASC) device was further fabricated by using the WO 3 /G/PT electrode and G/PT electrode, which exhibited a good specific capacitance of 167.6mFcm -3 and high energy density of 60μWhcm -3 at the power density of 2320 μWcm -3 . Copyright © 2017 Elsevier Inc. All rights reserved.
First-principles calculations of perpendicular magnetic anisotropy for spintronic applications
NASA Astrophysics Data System (ADS)
Ansarino, Masoud; Ravan, Bahram Abedi
2017-01-01
A combination of density functional theory and non-equilibrium Green’s function methods are used to simulate spin-dependent electronic transport in monatomic Au-nanowires sandwiched between ferromagnetic electrodes. Electrodes of the junction are in turn composed of tetragonal FeCo, FePd and FePt alloys. Magnetic anisotropy energies of the electrodes are calculated for different values of the c/a ratios of the electrode lattice constants and it is shown that at c/a = 1.05, the FePt electrodes gain a relatively large amount of magnetic anisotropy energy (MAE). Hence, it is concluded that the ferromagnetic FePt alloy can be used as a suitable type of electrode for applications in perpendicular magnetic tunnel junctions (MTJs). We observe that increasing the c/a ratio leads to notable improvements in the spin filtering of the FeCo and FePd MTJs while it only has a slight effect on the filtering of the FePt MTJ. Later, we show that by removing the interfacial Pt atoms of the FePt MTJ, we are able to enhance its filtering property.
NASA Astrophysics Data System (ADS)
Lin, Lin; Li, Meng; Jiang, Liqing; Li, Yongfeng; Liu, Dajun; He, Xingquan; Cui, Lili
2014-12-01
To realize the large-scale commercial application of direct methanol fuel cells (DMFCs), the catalysts for oxygen reduction reaction (ORR) are the crucial obstacle. Here, an efficient non-noble-metal catalyst for ORR, denoted FePPc/PSS-Gr, has been obtained by anchoring p-phenyl-bis(3,4-dicyanophenyl) ether iron(Ⅱ) polyphthalocyanine (FePPc) on poly(sodium-p-styrenesulfonate) (PSS) modified graphene (PSS-Gr) through a solvothermally assisted π-π assembling approach. The Ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) results reveal the π-π interaction between FePPc and PSS-Gr. The rotating disk electrode (RDE) and rotating ring disk electrode (RRDE) measurements show that the proposed catalyst possesses an excellent catalytic performance towards ORR comparable with the commercial Pt/C catalyst in alkaline medium, such as high onset potential (-0.08 V vs. SCE), half-wave potential (-0.19 V vs. SCE), better tolerance to methanol crossover, excellent stability (81.1%, retention after 10,000 s) and an efficient four-electron pathway. The enhanced electrocatalytic performance could be chiefly attributed to its large electrochemically accessible surface area, fast electron transfer rate of PSS-Gr, in particular, the synergistic effect between the FePPc moieties and the PSS-Gr sheets.
NASA Astrophysics Data System (ADS)
Billy, E.; Maillard, F.; Morin, A.; Guetaz, L.; Emieux, F.; Thurier, C.; Doppelt, P.; Donet, S.; Mailley, S.
This study focuses on the elaboration of PEMFC electrodes containing ultra-low platinum (Pt) loadings by direct liquid injection metal organic chemical vapor deposition (DLI-MOCVD). DLI-MOCVD offers a large number of advantages for the elaboration of model PEMFC electrodes. First, by using different metal precursors or elaboration temperature, the size of the Pt nanoparticles and thus the intrinsic catalytic activity can easily be tailored in the nanometer range. In this work, Pt nanoparticles (1-5 nm) with remarkable low degree of agglomeration and uniform distribution were deposited onto the microporous side of a commercial gas-diffusion layer (GDL). Second, reduction of the Pt loading is made possible by varying the Pt deposition time and its influence of the cell performance can be extracted without variation of the thickness of the catalytic layer (in previous studies, a decrease of the catalyst utilization was observed when increasing the Pt loading, i.e. the thickness of the catalytic layer (CL)). The electrocatalytic activity of home-made Pt nanoparticles elaborated by DLI-MOCVD was measured in liquid electrolyte or in complete fuel cell operating on H 2/O 2 or H 2/air and compared vs. that of a commercially available electrode containing 500 μg Pt cm -2 (Pt Ref500). At the cathode, the performance of the electrodes containing 104-226 μg of Pt per cm 2 of electrode compares favorably with that of the Pt Ref500 in H 2/O 2 conditions. In H 2/air conditions, additional mass-transport losses are detected in the low-current density region but the high effectiveness of our electrodes improves the performance in the high-current density region. At the anode, the Pt loading can be reduced to 35 μg Pt cm -2 without any voltage loss in agreement with previous observations.
Influence of different nanoparticles on electrochemical behavior of glucose biosensor
NASA Astrophysics Data System (ADS)
Nenkova, R. D.; Ivanov, Y. L.; Godjevargova, T. I.
2017-02-01
The influence of nanosized particles on the glucose oxidase loading and the performance of amperometric glucose bionsensors were studied. Four enzyme electrodes (Pt/PAN/GOD, Pt/PAN/NZ/GOD, Pt/PAN/NZ/MNP/GOD, Pt/PAN/NZ/MWNT/GOD) were prepared by cross-linking of glucose oxidase (GOD) on nanocomposite material. Nanocomposites were prepared by entrapping nanozeolite (NZ), multiwalled carbon nanotubes (MWNT) and magnetic nanoparticles (MNP) in polyacrylonitrile (PAN) film. Cyclic voltammetric kinetic studies have been carried out with the four biosensors and the surface concentration of the adsorbed electroactive species on the electrodes was estimated. The highest enzyme concentration on the electrode surface corresponded to the electrodes prepared by nanozeolite separate (Pt/PAN/NZ/GOD) and combined with multi-walled carbon nanotubes (Pt/PAN/NZ/MWNT/GOD). The sensitivity of these two biosensors was the highest and that is in accordance with the greater amount of the adsorbed electroactive species on the electrodes (0.373 mol.cm-2). This was indication that a good synergistic effect happened when MWNTs and NZ were combined and these greatly improve the electron transfer ability of the sensor interface. Amperometric measurement of the two glucose oxidase electrodes (Pt/PAN/NZ/GOD and Pt/PAN/NZ/MWNT/GOD) with best results was carried out. The linear concentration interval of the Pt/PAN/NZ/MWNT/GOD biosensor was up to 3 mM, the detection limit - 0.02 mM glucose and the storage stability - 81% of its initial current response after 30 days.
High-Performance Direct Methanol Fuel Cells with Precious-Metal-Free Cathode.
Li, Qing; Wang, Tanyuan; Havas, Dana; Zhang, Hanguang; Xu, Ping; Han, Jiantao; Cho, Jaephil; Wu, Gang
2016-11-01
Direct methanol fuel cells (DMFCs) hold great promise for applications ranging from portable power for electronics to transportation. However, apart from the high costs, current Pt-based cathodes in DMFCs suffer significantly from performance loss due to severe methanol crossover from anode to cathode. The migrated methanol in cathodes tends to contaminate Pt active sites through yielding a mixed potential region resulting from oxygen reduction reaction and methanol oxidation reaction. Therefore, highly methanol-tolerant cathodes must be developed before DMFC technologies become viable. The newly developed reduced graphene oxide (rGO)-based Fe-N-C cathode exhibits high methanol tolerance and exceeds the performance of current Pt cathodes, as evidenced by both rotating disk electrode and DMFC tests. While the morphology of 2D rGO is largely preserved, the resulting Fe-N-rGO catalyst provides a more unique porous structure. DMFC tests with various methanol concentrations are systematically studied using the best performing Fe-N-rGO catalyst. At feed concentrations greater than 2.0 m, the obtained DMFC performance from the Fe-N-rGO cathode is found to start exceeding that of a Pt/C cathode. This work will open a new avenue to use nonprecious metal cathode for advanced DMFC technologies with increased performance and at significantly reduced cost.
NASA Astrophysics Data System (ADS)
Olu, Pierre-Yves; Deschamps, Fabien; Caldarella, Giuseppe; Chatenet, Marian; Job, Nathalie
2015-11-01
Platinum and palladium are investigated as anodic catalysts for direct borohydride and direct ammonia borane fuel cells (DBFC and DABFC). Half-cell characterizations performed at 25 °C using NH3BH3 or NaBH4 alkaline electrolytes demonstrate the lowest open-circuit potential and highest electrocatalytic activity for the NH3BH3 alkaline electrolyte for Pd and Pt rotating disk electrodes, respectively. Voltammograms performed in fuel cell configuration at 25 °C confirm this trend: the highest open circuit voltage (1.05 V) and peak power density (181 mW·cm-2) are monitored for DABFC using Pd/C and Pt/C anodes, respectively. Increasing the temperature heightens the peak power density (that reaches 420 mW·cm-2 at 60 °C for DBFC using Pt/C anodes), but strongly generates gas from the fuel hydrolysis, hindering the overall fuel cells performances. The anode texture strongly influences the fuel cell performances, highlighting: (i) that an open anode texture is required to efficiently circulate the anolyte and (ii) the difficulty to compare potential anodic catalysts characterized using different fuel cell setups within the literature. Furthermore, TEM imaging of Pt/C and Pd/C catalysts prior/post DBFC and DABFC operation shows fast degradation of the carbon-supported nanoparticles.
Pt skin on AuCu intermetallic substrate: a strategy to maximize Pt utilization for fuel cells.
Wang, Gongwei; Huang, Bing; Xiao, Li; Ren, Zhandong; Chen, Hao; Wang, Deli; Abruña, Héctor D; Lu, Juntao; Zhuang, Lin
2014-07-09
The dependence on Pt catalysts has been a major issue of proton-exchange membrane (PEM) fuel cells. Strategies to maximize the Pt utilization in catalysts include two main approaches: to put Pt atoms only at the catalyst surface and to further enhance the surface-specific catalytic activity (SA) of Pt. Thus far there has been no practical design that combines these two features into one single catalyst. Here we report a combined computational and experimental study on the design and implementation of Pt-skin catalysts with significantly improved SA toward the oxygen reduction reaction (ORR). Through screening, using density functional theory (DFT) calculations, a Pt-skin structure on AuCu(111) substrate, consisting of 1.5 monolayers of Pt, is found to have an appropriately weakened oxygen affinity, in comparison to that on Pt(111), which would be ideal for ORR catalysis. Such a structure is then realized by substituting the Cu atoms in three surface layers of AuCu intermetallic nanoparticles (AuCu iNPs) with Pt. The resulting Pt-skinned catalyst (denoted as Pt(S)AuCu iNPs) has been characterized in depth using synchrotron XRD, XPS, HRTEM, and HAADF-STEM/EDX, such that the Pt-skin structure is unambiguously identified. The thickness of the Pt skin was determined to be less than two atomic layers. Finally the catalytic activity of Pt(S)AuCu iNPs toward the ORR was measured via rotating disk electrode (RDE) voltammetry through which it was established that the SA was more than 2 times that of a commercial Pt/C catalyst. Taking into account the ultralow Pt loading in Pt(S)AuCu iNPs, the mass-specific catalytic activity (MA) was determined to be 0.56 A/mg(Pt)@0.9 V, a value that is well beyond the DOE 2017 target for ORR catalysts (0.44 A/mg(Pt)@0.9 V). These findings provide a strategic design and a realizable approach to high-performance and Pt-efficient catalysts for fuel cells.
NASA Astrophysics Data System (ADS)
Xian, Cheng-Ji; Park, Jong-Hyun; Ahn, Kyung-Chan; Yoon, Soon-Gil; Lee, Jeong-Won; Kim, Woon-Chun; Lim, Sung-Taek; Sohn, Seung-Hyun; Moon, Jin-Seok; Jung, Hyung-Mi; Lee, Seung-Eun; Lee, In-Hyung; Chung, Yul-Kyo; Jeon, Min-Ku; Woo, Seong-Ihl
2007-01-01
200-nm-thick BMN films were deposited on Pt /TiO2/SiO2/Si and Cu /Ti/SiO2/Si substrates at various temperatures by pulsed laser deposition. The dielectric constant and capacitance density of the films deposited on Pt and Cu electrodes show similar tendency with increasing deposition temperature. On the other hand, dielectric loss of the films deposited on Cu electrode varies from 0.7% to 1.3%, while dielectric loss of films on Pt constantly shows 0.2% even though the deposition temperature increases. The low value of breakdown strength in BMN films on Pt compared to films deposited on Cu electrode was attributed to the increase of surface roughness by the formation of secondary phases at interface between BMN films and Pt electrodes.
Highly sensitive room temperature ammonia gas sensor based on Ir-doped Pt porous ceramic electrodes
NASA Astrophysics Data System (ADS)
Liu, Wenlong; Liu, Yen-Yu; Do, Jing-Shan; Li, Jing
2016-12-01
Room temperature NH3 gas sensors based on Pt and Pt-Ir (Ir doping Pt) porous ceramic electrodes have been fabricated by both electroplating and sputtering methods. The properties of the gaseous ammonia sensors have been examined by polarization and chronoamperometry techniques. The influence of humidity on the features of the resulting sensors in the system has also been discussed, and the working potential was optimized. Water vapors seem to hugely improve the electrochemical activity of the electrode. With increasing the relative humidity, the response of the Pt-Ir(E)/Pt(S)/PCP sensor to NH3 gas could be enhanced remarkably, and the sensitivity increases from 1.14 to 12.06 μA ppm-1 cm-2 .Then we have also discussed the sensing mechanism of the Pt-Ir sensor and the result has been confirmed by X-ray photoelectron spectroscopy of the electrode surface before and after reaction in the end.
Development of a DNA Sensor Based on Nanoporous Pt-Rich Electrodes
NASA Astrophysics Data System (ADS)
Van Hao, Pham; Thanh, Pham Duc; Xuan, Chu Thi; Hai, Nguyen Hoang; Tuan, Mai Anh
2017-06-01
Nanoporous Pt-rich electrodes with 72 at.% Pt composition were fabricated by sputtering a Pt-Ag alloy, followed by an electrochemical dealloying process to selectively etch away Ag atoms. The surface properties of nanoporous membranes were investigated by energy-dispersive x-ray spectroscopy (EDS), scanning electron microscopy (SEM), atomic force microscopy (AFM), a documentation system, and a gel image system (Gel Doc Imager). A single strand of probe deoxyribonucleic acid (DNA) was immobilized onto the electrode surface by physical adsorption. The DNA probe and target hybridization were measured using a lock-in amplifier and an electrochemical impedance spectroscope (EIS). The nanoporous Pt-rich electrode-based DNA sensor offers a fast response time of 3.7 s, with a limit of detection (LOD) of 4.35 × 10-10 M of DNA target.
Wang, Qiang; Cha, Chuan-Sin; Lu, Juntao; Zhuang, Lin
2009-01-28
The nature and properties of Pt surfaces in contact with pure water in PEM-H2O reactors were mimetically studied by employing CV measurements with microelectrode techniques. These "Pt/water" interfaces were found to be electrochemically polarizable, and the local interfacial potential relative to reversible hydrogen electrode (RHE) potential in pure water is numerically the same as the potential value measured against a RHE in contact with PEM as the reference electrode. However, the structural parameters of the electric double layer at the "Pt/water" interfaces can be quite different from those at the "Pt/PEM" interfaces, and the kinetics of electrode processes could be seriously affected by the structure of electric double layer in pure water media. Besides, there is active diffusional flow of intermediates of electrode reactions between the "Pt/water" and the "Pt/PEM" interfaces, thus facilitating the active involvement of the "Pt/water" interfaces in the current-generation mechanism of PEM fuel cells and other types of PEM-H2O reactors.
Bergman, Werner
1986-01-01
An electric disk filter provides a high efficiency at high temperature. A hollow outer filter of fibrous stainless steel forms the ground electrode. A refractory filter material is placed between the outer electrode and the inner electrically isolated high voltage electrode. Air flows through the outer filter surfaces through the electrified refractory filter media and between the high voltage electrodes and is removed from a space in the high voltage electrode.
Bergman, W.
1985-01-09
An electric disk filter provides a high efficiency at high temperature. A hollow outer filter of fibrous stainless steel forms the ground electrode. A refractory filter material is placed between the outer electrode and the inner electrically isolated high voltage electrode. Air flows through the outer filter surfaces through the electrified refractory filter media and between the high voltage electrodes and is removed from a space in the high voltage electrode.
NASA Astrophysics Data System (ADS)
Gifford, Kenneth Douglas
Ferroelectric thin film capacitor structures containing lead zirconate titanate (PZT) as the dielectric, with the chemical formula Pb(rm Zr_{x }Ti_{1-x})O_3, were synthesized in-situ with an automated ion beam sputter deposition system. Platinum (Pt), conductive ruthenium oxide (RuO_2), and two types of Pt-RuO_2 hybrid electrodes were used as the electrode materials. The capacitor structures are characterized in terms of microstructure and electrical characteristics. Reduction or elimination of non-ferroelectric phases, that nucleate during PZT processing on Pt/TiO _2/MgO and RuO_2/MgO substrates, is achieved by reducing the thickness of the individually deposited layers and by interposing a buffer layer (~100-200A) of PbTiO _3 (PT) between the bottom electrode and the PZT film. Capacitor structures containing a Pt electrode exhibit poor fatigue resistance, irregardless of the PZT microstructure or the use of a PT buffer layer. From these results, and results from similar capacitors synthesized with sol-gel and laser ablation, PZT-based capacitor structures containing Pt electrodes are considered to be unsuitable for use in memory devices. Using a PT buffer layer, in capacitor structures containing RuO_2 top and bottom electrodes and polycrystalline, highly (101) oriented PZT, reduces or eliminates the nucleation of zirconium-titanium oxide, non-ferroelectric species at the bottom electrode interface during processing. This results in good fatigue resistance up to ~2times10^ {10} switching cycles. DC leakage current density vs. time measurements follow the Curie-von Schweidler law, J(t) ~ t^ {rm -n}. Identification of the high electric field current conduction mechanism is inconclusive. The good fatigue resistance, low dc leakage current, and excellent retention, qualifies the use of these capacitor structures in non-volatile random access (NVRAM) and dynamic random access (DRAM) memory devices. Excellent fatigue resistance (10% loss in remanent polarization up to ~2times10^ {10} switching cycles), low dc leakage current, and excellent retention are observed in capacitor structures containing polycrystalline PZT (exhibiting dominant (001) and (100) XRD reflections), a Pt-RuO_2 hybrid bottom electrode (Type IA), and an RuO _2 top electrode. These results, and electrical characterization results on capacitors containing co-deposited Pt-RuO_2 hybrid electrodes (Type II), show potential for application of these capacitor structures in NVRAM and DRAM memory devices.
Robust Platinum-Based Electrocatalysts for Fuel Cell Applications
NASA Astrophysics Data System (ADS)
Coleman, Eric James
Polymer electrolyte fuel cells (PEMFCs) are energy conversion devices that exploit the energetics of the reaction between hydrogen fuel and O 2 to generate electricity with water as the only byproduct. PEMFCs have attracted substantial attention due to their high conversion efficiency, high energy density, and low carbon footprint. However, PEMFC performance is hindered by the high activation barrier and slow reaction rates at the cathode where O2 undergoes an overall 4-electron reduction to water. The most efficient oxygen reduction reaction (ORR) catalyst materials to date are Pt group metals due to their high catalytic activity and stability in a wide range of operating conditions. Before fuel cells can become economically viable, efforts must be taken to decrease Pt content while maintaining a high level of ORR activity. This work describes the design and synthesis of a Pt-Cu electrocatalyst with ORR activity exceeding that of polycrystalline Pt. Production of this novel catalyst is quite simple and begins with synthesis of a porous Cu substrate, formed by etching Al from a Cu-Al alloy. The porous Cu substrate is then coated with a Pt layer via a spontaneous electrochemical process known as galvanic replacement. The Pt layer enhances the ORR activity (as measured by a rotating ring-disk electrode (RRDE)) and acts as a barrier towards corrosion of the Cu understructure. Growth of the Pt layer can be manipulated by time, temperature, concentration of Pt precursor, and convection rate during galvanic replacement. Data from analytical and electrochemical techniques confirm multiple Pt loadings have been achieved via the galvanic replacement process. The boost in ORR activity for the PtCu catalyst was determined to be a result of its lower affinity towards (site-blocking) OH adsorption. A unique catalyst degradation study explains the mechanism of initial catalyst ORR deactivation for both monometallic and bimetallic Pt-based catalysts. Finally, a rigorous and pioneering examination of how Pt surface passivation affects ORR dynamics is presented.
Bar piezoelectric ceramic transformers.
Erhart, Jiří; Pulpan, Půlpán; Rusin, Luboš
2013-07-01
Bar-shaped piezoelectric ceramic transformers (PTs) working in the longitudinal vibration mode (k31 mode) were studied. Two types of the transformer were designed--one with the electrode divided into two segments of different length, and one with the electrodes divided into three symmetrical segments. Parameters of studied transformers such as efficiency, transformation ratio, and input and output impedances were measured. An analytical model was developed for PT parameter calculation for both two- and three-segment PTs. Neither type of bar PT exhibited very high efficiency (maximum 72% for three-segment PT design) at a relatively high transformation ratio (it is 4 for two-segment PT and 2 for three-segment PT at the fundamental resonance mode). The optimum resistive loads were 20 and 10 kΩ for two- and three-segment PT designs for the fundamental resonance, respectively, and about one order of magnitude smaller for the higher overtone (i.e., 2 kΩ and 500 Ω, respectively). The no-load transformation ratio was less than 27 (maximum for two-segment electrode PT design). The optimum input electrode aspect ratios (0.48 for three-segment PT and 0.63 for two-segment PT) were calculated numerically under no-load conditions.
Nantaphol, Siriwan; Watanabe, Takeshi; Nomura, Naohiro; Siangproh, Weena; Chailapakul, Orawon; Einaga, Yasuaki
2017-12-15
The enormous demand for medical diagnostics has encouraged the fabrication of high- performance sensing platforms for the detection of glucose. Nonenzymatic glucose sensors are coming ever closer to being used in practical applications. Bimetallic catalysts have been shown to be superior to single metal catalysts in that they have greater activity and selectivity. Here, we demonstrate the preparation, characterization, and electrocatalytic characteristics of a new bimetallic Pt/Au nanocatalyst. This nanocatalyst can easily be synthesized by electrodeposition by sequentially depositing Au and Pt on the surface of a boron-doped diamond (BDD) electrode. We characterized the nanocatalyst by scanning electron microscopy (SEM), X-ray diffraction (XRD), and voltammetry. The morphology and composition of the nanocatalyst can be easily controlled by adjusting the electrodeposition process and the molar ratio between the Pt and Au precursors. The electrocatalytic characteristics of a Pt/Au/BDD electrode for the nonenzymatic oxidation of glucose were systematically investigated by cyclic voltammetry. The electrode exhibits higher catalytic activity for glucose oxidation than Pt/BDD and Au/BDD electrodes. The best catalytic activity and stability was obtained with a Pt:Au molar ratio of 50:50. Moreover, the presence of Au can significantly enhance the long-term stability and poisoning tolerance during the electro-oxidation of glucose. Measurements of glucose using the Pt/Au/BDD electrode were linear in the range from 0.01 to 7.5mM, with a detection limit of 0.0077mM glucose. The proposed electrode performs selective electrochemical analysis of glucose in the presence of common interfering species (e.g., acetaminophen, uric and ascorbic acids), avoiding the generation of overlapping signals from such species. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Cahan, Boris D.
1991-01-01
The Iterative Boundary Integral Equation Method (I-BIEM) has been applied to the problem of frequency dispersion at a disk electrode in a finite geometry. The I-BIEM permits the direct evaluation of the AC potential (a complex variable) using complex boundary conditions. The point spacing was made highly nonuniform, to give extremely high resolution in those regions where the variables change most rapidly, i.e., in the vicinity of the edge of the disk. Results are analyzed with respect to IR correction, equipotential surfaces, and reference electrode placement. The current distribution is also examined for a ring-disk configuration, with the ring and the disk at the same AC potential. It is shown that the apparent impedance of the disk is inductive at higher frequencies. The results are compared to analytic calculations from the literature, and usually agree to better than 0.001 percent.
NASA Technical Reports Server (NTRS)
Cahan, Boris D.
1991-01-01
The Iterative Boundary Integral Equation Method (I-BIEM) has been applied to the problem of frequency dispersion at a disk electrode in a finite geometry. The I-BIEM permits the direct evaluation of the AC potential (a complex variable) using complex boundary conditions. The point spacing was made highly nonuniform, to give extremely high resolution in those regions where the variables change most rapidly, i.e., in the vicinity of the edge of the disk. Results are analyzed with respect to IR correction, equipotential surfaces, and reference electrode placement. The current distribution is also examined for a ring-disk configuration, with the ring and the disk at the same AC potential. It is shown that the apparent impedance of the disk is inductive at higher frequencies. The results are compared to analytic calculations from the literature, and usually agree to better than 0.001 percent.
Xia, Zhigang; Wang, Jihao; Hou, Yubin; Lu, Qingyou
2014-09-01
In this paper, we provide and demonstrate a design of a unique cell with Pt single crystal bead electrode for electrochemical scanning tunneling microscope (ECSTM) measurements. The active metal Pt electrode can be protected from air contamination during the preparation process. The transparency of the cell allows the tip and bead to be aligned by direct observation. Based on this, a new and effective alignment method is introduced. The high-quality bead preparations through this new cell have been confirmed by the ECSTM images of Pt (111).
Effects of electrodes on the properties of sol-gel PZT based capacitors in FeRAM
NASA Astrophysics Data System (ADS)
Zhang, Ming-Ming; Jia, Ze; Ren, Tian-Ling
2009-05-01
The effects of electrodes on the properties of capacitors applied in ferroelectric random access memories (FeRAM) are investigated in this work. Pt and Ir are used as bottom and top electrodes (BE and TE), respectively, in sol-gel Pb(Zr xTi 1-x)O 3 (PZT) based capacitors. Bottom electrodes are found to play a dominant role in the properties of PZT films and capacitors. Capacitors using Pt as bottom electrode have larger remnant polarization (2Pr) than those using Ir which may result from the different orientations of PZT films. The higher Schottky barrier, more dense film and smaller roughness are believed to be the reasons for the better leakage performance of capacitors using Pt as bottom electrodes. Different vacancies types and interface conditions are believed to be the main reasons for the better fatigue (less than 10% initial 2Pr loss after 10 11 fatigue cycles) and better imprint properties of TE/PZT/Ir capacitors. Top electrodes are found to have smaller impact on the properties of capacitors compared with bottom electrodes. A decrease in 2Pr is found when Ir is used as top electrode instead of Pt for PZT/Pt, which is believed to be caused by the stress resulting from lattice mismatch. The different thermal processes that top and bottom electrodes suffered are believed to be the reason for the different impacts they have on capacitors.
Ring and peg electrodes for minimally-Invasive and long-term sub-scalp EEG recordings.
Benovitski, Y B; Lai, A; McGowan, C C; Burns, O; Maxim, V; Nayagam, D A X; Millard, R; Rathbone, G D; le Chevoir, M A; Williams, R A; Grayden, D B; May, C N; Murphy, M; D'Souza, W J; Cook, M J; Williams, C E
2017-09-01
Minimally-invasive approaches are needed for long-term reliable Electroencephalography (EEG) recordings to assist with epilepsy diagnosis, investigation and more naturalistic monitoring. This study compared three methods for long-term implantation of sub-scalp EEG electrodes. Three types of electrodes (disk, ring, and peg) were fabricated from biocompatible materials and implanted under the scalp in five ambulatory ewes for 3months. Disk electrodes were inserted into sub-pericranial pockets. Ring electrodes were tunneled under the scalp. Peg electrodes were inserted into the skull, close to the dura. EEG was continuously monitored wirelessly. High resolution CT imaging, histopathology, and impedance measurements were used to assess the status of the electrodes at the end of the study. EEG amplitude was larger in the peg compared with the disk and ring electrodes (p<0.05). Similarly, chewing artifacts were lower in the peg electrodes (p<0.05). Electrode impedance increased after long-term implantation particularly for those within the bone (p<0.01). Micro-CT scans indicated that all electrodes stayed within the sub-scalp layers. All pegs remained within the burr holes as implanted with no evidence of extrusion. Eight of 10 disks partially eroded into the bone by 1.0mm from the surface of the skull. The ring arrays remained within the sub-scalp layers close to implantation site. Histology revealed that the electrodes were encapsulated in a thin fibrous tissue adjacent to the pericranium. Overlying this was a loose connective layer and scalp. Erosion into the bone occurred under the rim of the sub-pericranial disk electrodes. The results indicate that the peg electrodes provided high quality EEG, mechanical stability, and lower chewing artifact. Whereas, ring electrode arrays tunneled under the scalp enable minimal surgical techniques to be used for implantation and removal. Copyright © 2017 Elsevier B.V. All rights reserved.
A study of Na(x)Pt3O4 as an O2 electrode bifunctional electrocatalyst
NASA Technical Reports Server (NTRS)
Fielder, William L.; Singer, Joseph
1991-01-01
The present study suggests that polytetrafluoroethylene (PTFE) bonded Na(X)Pt3O4 gas porous diffusion electrodes may be a viable candidate for bifunctional O2 reduction and evolution activity. The electrodes exhibited Tafel slopes of about 0.06 V/decade for both O2 reduction an evolution. For O2 reduction, the 0.06 slope doubled to 0.12 V/decade at larger current densities. Preliminary stability testing at 24 C suggest that the Na(x)Pt3O4 electrodes were relatively stable at reducing and oxidizing potentials typically encountered at the O2 electrodes in a regenerative fuel cell.
78 FR 11565 - Airworthiness Directives; Pratt & Whitney Canada Corp. Turboshaft Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-19
... Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for... (PT) disks were made to specific heat codes that may not achieve the maximum in- service life. This AD requires re-identification of the PT disk to a part number (P/N) with a lower life limit. We are issuing...
NASA Astrophysics Data System (ADS)
Taurino, Irene; Sanzó, Gabriella; Mazzei, Franco; Favero, Gabriele; de Micheli, Giovanni; Carrara, Sandro
2015-10-01
Novel methods to obtain Pt nanostructured electrodes have raised particular interest due to their high performance in electrochemistry. Several nanostructuration methods proposed in the literature use costly and bulky equipment or are time-consuming due to the numerous steps they involve. Here, Pt nanostructures were produced for the first time by one-step template-free electrodeposition on Pt bare electrodes. The change in size and shape of the nanostructures is proven to be dependent on the deposition parameters and on the ratio between sulphuric acid and chloride-complexes (i.e., hexachloroplatinate or tetrachloroplatinate). To further improve the electrochemical properties of electrodes, depositions of Pt nanostructures on previously synthesised Pt nanostructures are also performed. The electroactive surface areas exhibit a two order of magnitude improvement when Pt nanostructures with the smallest size are used. All the biosensors based on Pt nanostructures and immobilised glucose oxidase display higher sensitivity as compared to bare Pt electrodes. Pt nanostructures retained an excellent electrocatalytic activity towards the direct oxidation of glucose. Finally, the nanodeposits were proven to be an excellent solid contact for ion measurements, significantly improving the time-stability of the potential. The use of these new nanostructured coatings in electrochemical sensors opens new perspectives for multipanel monitoring of human metabolism.
NASA Astrophysics Data System (ADS)
Holst-Olesen, Kaspar; Nesselberger, Markus; Perchthaler, Markus; Hacker, Viktor; Arenz, Matthias
2014-12-01
In the presented work we systematically study the influence of phosphoric acid, ammonium trifluoromethanesulfonate (ATFMS), and polyvinylidene difluoride (PVDF) on the oxygen reduction reaction (ORR) activity of carbon supported, Pt based catalysts. The influence of phosphoric acid is investigated in a mixed solution of perchloric acid with small amounts of phosphoric acid added. Thin-film rotating disk electrode (TF-RDE) measurements show that such a mixed electrolyte is advantageous as the oxygen reduction reaction (ORR) is inhibited without influencing the oxygen solubility in the electrolyte. In contrast to previous reports it is seen when investigating additives that ATFMS acts as a catalyst poison; whereas the results provide evidence of a better performance in case of the PVDF incorporated catalysts as compared to reference samples without PVDF. The technological relevance of the PVDF improvements and its stability over prolonged time was validated by membrane electrode assembly (MEA) tests.
Influence of calcium on glucose biosensor response and on hydrogen peroxide detection.
Labat-Allietta, N; Thévenot, D R
1998-01-01
Of small species capable of reaching a platinum working electrode from biological samples, calcium cations have been found to inhibit significantly glucose biosensor responses. The sensitivities to glucose of sensors immersed in carbonate buffer saline solutions decreased when 0.5 mM calcium chloride was added. The degree of inhibition was proportional to the glucose response in the absence of calcium (0-17% of the normalized current). Likewise, sensor sensitivities to hydrogen peroxide decreased, in the 5-90% range, in the presence of 0.5 mM calcium. Bare Pt-lr wires show a reversible inhibition of hydrogen peroxide sensitivity. This reversible inhibition is directly related to the decrease of hydrogen peroxide oxidation rate at the platinum anode: this has been evidenced, using rotating disk electrodes, by plotting Koutecky-Levich plots. Such inhibition has been found both for free and chelated calcium cations at levels below 1 mM. Several hypotheses for possible reactions between platinum, hydrogen peroxide and calcium are discussed.
NASA Astrophysics Data System (ADS)
Lee, Choong-Gon; Umeda, Minoru; Uchida, Isamu
The effect of temperature on methanol, ethanol, 2-propanol, and 2-butanol electrooxidation is investigated with Pt/C and Pt-Ru/C microporous electrodes. Cyclic voltammetry is employed in temperatures ranging from 25 to 80 °C to provide quantitative and qualitative information on the kinetics of alcohol oxidation. Methanol displays the greatest activity atom alcohols. The addition of ruthenium reduces the poisoning effect, although it is ineffective with secondary alcohols. Secondary alcohols undergo a different oxidation mechanism at higher temperatures. Microporous electrodes provide detailed information on alcohol oxidation.
Commercial materials as cathode for hydrogen production in microbial electrolysis cell.
Farhangi, Sara; Ebrahimi, Sirous; Niasar, Mojtaba Shariati
2014-10-01
The use of commercial electrodes as cathodes in a single-chamber microbial electrolysis cell has been investigated. The cell was operated in sequencing batch mode and the performance of the electrodes was compared with carbon cloth containing 0.5 mg Pt cm(-2). Overall H2 recovery [Formula: see text] was 66.7 ± 1.4, 58.7 ± 1.1 and 55.5 ± 1.5 % for Pt/CC, Ni and Ti mesh electrodes, respectively. Columbic efficiencies of the three cathodes were in the same range (74.8 ± 1.5, 77.6 ± 1.7 and 75.7 ± 1.2 % for Pt/CC, Ni and Ti mesh electrodes, respectively). A similar performance for the three cathodes under near-neutral pH and ambient temperature was obtained. The commercial electrodes are much cheaper than carbon cloth containing Pt. Low cost and good performance of these electrodes suggest they are suitable cathode materials for large scale application.
Single-wall carbon nanotube-based proton exchange membrane assembly for hydrogen fuel cells.
Girishkumar, G; Rettker, Matthew; Underhile, Robert; Binz, David; Vinodgopal, K; McGinn, Paul; Kamat, Prashant
2005-08-30
A membrane electrode assembly (MEA) for hydrogen fuel cells has been fabricated using single-walled carbon nanotubes (SWCNTs) support and platinum catalyst. Films of SWCNTs and commercial platinum (Pt) black were sequentially cast on a carbon fiber electrode (CFE) using a simple electrophoretic deposition procedure. Scanning electron microscopy and Raman spectroscopy showed that the nanotubes and the platinum retained their nanostructure morphology on the carbon fiber surface. Electrochemical impedance spectroscopy (EIS) revealed that the carbon nanotube-based electrodes exhibited an order of magnitude lower charge-transfer reaction resistance (R(ct)) for the hydrogen evolution reaction (HER) than did the commercial carbon black (CB)-based electrodes. The proton exchange membrane (PEM) assembly fabricated using the CFE/SWCNT/Pt electrodes was evaluated using a fuel cell testing unit operating with H(2) and O(2) as input fuels at 25 and 60 degrees C. The maximum power density obtained using CFE/SWCNT/Pt electrodes as both the anode and the cathode was approximately 20% better than that using the CFE/CB/Pt electrodes.
NASA Astrophysics Data System (ADS)
Furukawa, Hiroto; Matsuda, Shofu; Tanaka, Shoji; Shironita, Sayoko; Umeda, Minoru
2018-03-01
The objective of this study was to overcome the issue about the underpotential adsorption of the CO2 electroreductant on the surface of the Pt electrocatalyst under acidic conditions by the alloying of Pt and Ru. As evaluation parameters, the CO2 reduction onset potential and CO2-reductant reoxidation onset potential were employed. We prepared a porous microelectrode filled with Pt-Ru/C powder and a Pt-Ru sputtered electrode. For the Pt-Ru/C powder electrocatalyst, the CO2 reduction onset potential as well as the CO2-reductant reoxidation onset potential shifted in the direction of the CO2/CO2-reductant standard redox potential dependent on the Ru content, which is indicative of a decrease in the underpotential-adsorption energy of the CO2 reductant. For the Pt-Ru sputtered electrode, only the CO2 reduction onset potential shifted in the direction of the redox potential. Consequently, we demonstrated that the Pt-Ru/C powder electrode improved the reactivity of the CO2/CO2-reductant when discussing the relationship between the CO2 reduction onset potential and the CO2-reductant reoxidation onset potential. Based on our findings, the Pt-Ru/C (1:9) powder is the most effective electrocatalyst for the CO2 reduction, which could minimize the underpotential adsorption.
Electrocatalytic cermet sensor
Shoemaker, E.L.; Vogt, M.C.
1998-06-30
A sensor is described for O{sub 2} and CO{sub 2} gases. The gas sensor includes a plurality of layers driven by a cyclic voltage to generate a unique plot characteristic of the gas in contact with the sensor. The plurality of layers includes an alumina substrate, a reference electrode source of anions, a lower electrical reference electrode of Pt coupled to the reference source of anions, a solid electrolyte containing tungsten and coupled to the lower reference electrode, a buffer layer for preventing flow of Pt ions into the solid electrolyte and an upper catalytically active Pt electrode coupled to the buffer layer. 16 figs.
Electrocatalytic cermet sensor
Shoemaker, Erika L.; Vogt, Michael C.
1998-01-01
A sensor for O.sub.2 and CO.sub.2 gases. The gas sensor includes a plurality of layers driven by a cyclic voltage to generate a unique plot characteristic of the gas in contact with the sensor. The plurality of layers includes an alumina substrate, a reference electrode source of anions, a lower electrical reference electrode of Pt coupled to the reference source of anions, a solid electrolyte containing tungsten and coupled to the lower reference electrode, a buffer layer for preventing flow of Pt ions into the solid electrolyte and an upper catalytically active Pt electrode coupled to the buffer layer.
Çete, Servet; Bal, Özgür
2013-12-01
A film electrode with electropolymerization of pyrrole (Py) and para-toluene sulfonate (pTS) as a anionic dopant is prepared and its sensitivity to hydrogen peroxide is investigated. The polypyrrole is deposited on a 0.5 cm(2) Pt plate an electrochemically prepared pTS ion-doped polypyrrole film by scanning the electrode potential between - 0.8 and + 0.8 V at a scan rate of 20 mV/s. The electrode's sensitivity to hydrogen peroxide is investigated at room temperature using 0.1 M phosphate buffer at pH 7.5. The working potential is found as a 0.3 V. The concentrations of pyrrole and pTS are 50mM M and 25 mM. Polypyrrole was coated on the electrode surface within 10 cycles. İmmobilization of glucose oxidase carried out on Pt/polypyrrole-para toluene sulfonate (Pt/PPy-pTS) film by cross-linking with glutaraldehyde. The morphology of electrodes was characterized by SEM and AFM. Moreover, contact angle measurements were made with 1 μL water of polymer film and enzyme electrode. It has shown that enzyme electrode is very sensitive against to glucose.
Electromechanical transducer for acoustic telemetry system
Drumheller, D.S.
1993-06-22
An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.
Electromechanical transducer for acoustic telemetry system
Drumheller, Douglas S.
1993-01-01
An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.
Conducting polymer electrodes for visual prostheses.
Green, R A; Devillaine, F; Dodds, C; Matteucci, P; Chen, S; Byrnes-Preston, P; Poole-Warren, L A; Lovell, N H; Suaning, G J
2010-01-01
Conducting polymers (CPs) have the potential to provide superior neural interfaces to conventional metal electrodes by introducing more efficient charge transfer across the same geometric area. In this study the conducting polymer poly(ethylene dioxythiophene) (PEDOT) was coated on platinum (Pt) microelectrode arrays. The in vitro electrical characteristics were assessed during biphasic stimulation regimes applied between electrode pairs. It was demonstrated that PEDOT could reduce the potential excursion at a Pt electrode interface by an order of magnitude. The charge injection limit of PEDOT was found to be 15 x larger than Pt. Additionally, PEDOT coated electrodes were acutely implanted in the suprachoroidal space of a cat retina. It was demonstrated that PEDOT coated electrodes also had lower potential excursions in vivo and electrically evoked potentials (EEPs) could be detected within the vision cortex.
Oleinick, Alexander; Zhu, Feng; Yan, Jiawei; Mao, Bingwei; Svir, Irina; Amatore, Christian
2013-06-24
Recessed generator-collector assemblies consisting of an array of recessed disks (generator electrodes) with a gold layer (collector electrode) deposited over the top-plane insulator reportedly allow increased selectivity and sensitivity during electrochemical detection of dopamine (DA) in the presence of ascorbic acid (AA), a situation which is frequently encountered. In sensor design, the potential of the disk electrodes is set to the wave plateau of DA, whereas the plane electrode is biased at the irreversible wave plateau of AA before the onset of the DA oxidation wave. Thus, AA is scavenged but DA is allowed to enter the nanocavities to be oxidized at the disk electrodes, and its signal is further amplified by redox cycling between disk and plane electrodes. Several different theoretical approaches are elaborated herein to analyze the behavior of the system, and their conclusions are successfully tested by experiments. This reveals the crucial role of the plane-electrode area which screens access to the recessed disks (i.e. acts as a diffusional Faraday cage) and simultaneously contributes to amplification of the analyte signal through positive feedback, as occurs in interdigitated arrays and scanning electrochemical microscopy. Simulations also allow for the evaluation of the benefits of different geometries inspired by the above design and different operating modes for increasing the sensor performance. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Maestro, Beatriz; Ortiz, Juan M; Schrott, Germán; Busalmen, Juan P; Climent, Víctor; Feliu, Juan M
2014-08-01
We have investigated the influence of electrode material and crystallographic structure on electron transfer and biofilm formation of Geobacter sulfurreducens. Single-crystal gold-Au(110), Au(111), Au(210)-and platinum-Pt(100), Pt(110), Pt(111), Pt(210)-electrodes were tested and compared to graphite rods. G. sulfurreducens electrochemically interacts with all these materials with different attachment kinetics and final current production, although redox species involved in the electron transfer to the anode are virtually the same in all cases. Initial bacterial colonization was fastest on graphite up to the monolayer level, whereas gold electrodes led to higher final current densities. Crystal geometry was shown to have an important influence, with Au(210) sustaining a current density of up to 1442±101μAcm(-2) at the steady state, over Au(111) with 961±94μAcm(-2) and Au(110) with 944±89μAcm(-2). On the other hand, the platinum electrodes displayed the lowest performances, including Pt(210). Our results indicate that both crystal geometry and electrode material are key parameters for the efficient interaction of bacteria with the substrate and should be considered for the design of novel materials and microbial devices to optimize energy production. Copyright © 2014 Elsevier B.V. All rights reserved.
Structure and electrical properties of Pb(ZrxTi1-x)O3 deposited on textured Pt thin films
NASA Astrophysics Data System (ADS)
Hong, Jongin; Song, Han Wook; Lee, Hee Chul; Lee, Won Jong; No, Kwangsoo
2001-08-01
The texturing of the bottom electrode plays a key role in the structure and electrical properties of Pb(Zr, Ti)O3 (PZT) thin films. We fabricated Pt bottom electrodes having a different thickness on MgO single crystals at 600 °C by rf magnetron sputtering. As the thickness of platinum (Pt) thin film increased, the preferred orientation of Pt thin film changed from (200) to (111). PZT thin films were fabricated at 450 °C by electron cyclotron resonance-plasma enhanced metal organic chemical vapor deposition on the textured Pt thin films. The texturing of the bottom electrode caused drastic changes in the C-V characteristics, P-E characteristics, and fatigue characteristics of metal/ferroelectric material/metal (MFM) capacitors. The difference of the electrical properties between the PZT thin films having different texturing was discussed in terms-of the x-y alignment and the interface between electrode and PZT in MFM capacitors.
Maldonado, Vanessa Y; Espinoza-Montero, Patricio J; Rusinek, Cory A; Swain, Greg M
2018-06-05
The electroanalytical performance of a new commercial boron-doped diamond disk and a traditional nanocrystalline thin-film electrode were compared for the anodic stripping voltammetric determination of Ag(I). The diamond disk electrode is more flexible than the planar film as the former is compatible with most electrochemical cell designs including those incorporating magnetic stirring. Additionally, mechanical polishing and surface cleaning are simpler to execute. Differential pulse anodic stripping voltammetry (DPASV) was used to detect Ag(I) in standard solutions after optimization of the deposition potential, deposition time and scan rate. The optimized conditions were used to determine the concentration of Ag(I) in a NASA simulated potable water sample and a NIST standard reference solution. The electrochemical results were validated by ICP-OES measurements of the same solutions. The detection figures of merit for the disk electrode were as good or superior to those for the thin-film electrode. Detection limits were ≤5 μg L -1 (S/N = 3) for a 120 s deposition period, and response variabilities were <5% RSD. The polished disk electrode presented a more limited linear dynamic range presumably because of the reduced surface area available for metal phase formation. The concentrations of Ag(I) in the two water samples, as determined by DPASV, were in good agreement with the concentrations determined by ICP-OES.
Electrodeposition of platinum nanoparticles in a room-temperature ionic liquid.
Zhang, Da; Chang, Wan Cheng; Okajima, Takeyoshi; Ohsaka, Takeo
2011-12-06
The electrochemistry of the [PtCl(6)](2-)-[PtCl(4)](2-)-Pt redox system on a glassy carbon (GC) electrode in a room-temperature ionic liquid (RTIL) [i.e., N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium tetrafluoroborate (DEMEBF(4))] has been examined. The two-step four-electron reduction of [PtCl(6)](2-) to Pt, i.e., reduction of [PtCl(6)](2-) to [PtCl(4)](2-) and further reduction of [PtCl(4)](2-) to Pt, occurs separately in this RTIL in contrast to the one-step four-electron reduction of [PtCl(6)](2-) to Pt in aqueous media. The cathodic and anodic peaks corresponding to the [PtCl(6)](2-)/[PtCl(4)](2-) redox couple were observed at ca. -1.1 and 0.6 V vs a Pt wire quasi-reference electrode, respectively, while those observed at -2.8 and -0.5 V were found to correspond to the [PtCl(4)](2-)/Pt redox couple. The disproportionation reaction of the two-electron reduction product of [PtCl(6)](2-) (i.e., [PtCl(4)](2-)) to [PtCl(6)](2-) and Pt metal was also found to occur significantly. The electrodeposition of Pt nanoparticles could be carried out on a GC electrode in DEMEBF(4) containing [PtCl(6)](2-) by holding the potential at -3.5 or -2.0 V. At -3.5 V, the four-electron reduction of [PtCl(6)](2-) to Pt can take place, while at -2.0 V the two-electron reduction of [PtCl(6)](2-) to [PtCl(4)](2-) occurs. The results obtained demonstrate that the electrodeposition of Pt at -3.5 V may occur via a series of reductions of [PtCl(6)](2-) to [PtCl(4)](2-) and further [PtCl(4)](2-) to Pt and at -2.0 V via a disproportionation reaction of [PtCl(4)](2-) to [PtCl(6)](2-) and Pt. Furthermore, the deposition potential of Pt nanoparticles was found to largely influence their size and morphology as well as the relative ratio of Pt(110) and Pt(100) crystalline orientation domains. The sizes of the Pt nanoparticles prepared by holding the electrode potential at -2.0 and -3.5 V are almost the same, in the range of ca. 1-2 nm. These small nanoparticles are "grown" to form bigger particles with different morphologies: In the case of the deposition at -2.0 V, the GC electrode surface is totally, relatively compactly covered with Pt particles of relatively uniform size of ca. 10-50 nm. On the other hand, in the case of the electrodeposition at -3.5 V, small particles of ca. 50-100 nm and the grown-up particles of ca. 100-200 nm cover the GC surface irregularly and coarsely. Interestingly, the Pt nanoparticles prepared by holding the potential at -2.0 and -3.5 V are relatively enriched in Pt(100) and Pt(110) facets, respectively. © 2011 American Chemical Society
Nitrogen Doped Graphene Supported Pt Nanoflowers as Electrocatalysts for Oxidation of Formaldehyde.
Xie, Aijuan; Zhou, Wenting; Luo, Shiping; Chen, Yu; Zhou, Xiaoqing; Chao, Yao
2017-02-01
A facile Pt nanoflowers/nitrogen-doped graphene (PtNFs/NG) electrocatalyst was prepared via depositing Pt nanoflowers (PtNFs) onto the nitrogen-doped graphene (NG) matrix with urea as the nitrogen source and PtNFs/NG modified glassy carbon electrode (GCE) was prepared by electro-chemical method. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscope, X-ray photoelectron spectroscopy (XPS) and Scanning electron microscope (SEM) were used to characterize the resulting composites. Also oxidation of formaldehyde on the resulting PtNFs/NG modified electrode was investigated. The influence of deposition time, electrodeposition potential and formaldehyde concentration on electrooxidation of formaldehyde was detected, the experimental results indicate the high performance of PtNFs/NG catalyst for formaldehyde oxidation is at electrodeposition time of 300 s with the applied potential of −0.3 V. Electrochemical process, electrocatalytic stability and chronoamperometry were also inspected, it was indicated that formalde-hyde oxidation reaction on the PtNFs/NG electrode is diffusion-controlled and PtNFs/NG exhibits a high catalytic activity, stability as well as excellent poisoning-tolerance towards formaldehyde oxidation, which is attributed to the synergistic effect of PtNFs and NG. It turns out that PtNFs/NG can be used in direct liquid-feed fuel cells as a promising alternative catalyst.
Suga, Hiroshi; Sumiya, Touru; Furuta, Shigeo; Ueki, Ryuichi; Miyazawa, Yosuke; Nishijima, Takuya; Fujita, Jun-ichi; Tsukagoshi, Kazuhito; Shimizu, Tetsuo; Naitoh, Yasuhisa
2012-10-24
A method for fabricating single-crystalline nanogaps on Si substrates was developed. Polycrystalline Pt nanowires on Si substrates were broken down by current flow under various gaseous environments. The crystal structure of the nanogap electrode was evaluated using scanning electron microscopy and transmission electron microscopy. Nanogap electrodes sandwiched between Pt-large-crystal-grains were obtained by the breakdown of the wire in an O(2) or H(2) atmosphere. These nanogap electrodes show intense spots in the electron diffraction pattern. The diffraction pattern corresponds to Pt (111), indicating that single-crystal grains are grown by the electrical wire breakdown process in an O(2) or H(2) atmosphere. The Pt wires that have (111)-texture and coherent boundaries can be considered ideal as interconnectors for single molecular electronics. The simple method for fabrication of a single-crystalline nanogap is one of the first steps toward standard nanogap electrodes for single molecular instruments and opens the door to future research on physical phenomena in nanospaces.
Soft landing of bare PtRu nanoparticles for electrochemical reduction of oxygen.
Johnson, Grant E; Colby, Robert; Engelhard, Mark; Moon, Daewon; Laskin, Julia
2015-08-07
Magnetron sputtering of two independent Pt and Ru targets coupled with inert gas aggregation in a modified commercial source has been combined with soft landing of mass-selected ions to prepare bare 4.5 nm diameter PtRu nanoparticles on glassy carbon electrodes with controlled size and morphology for electrochemical reduction of oxygen in solution. Employing atomic force microscopy (AFM) it is shown that the nanoparticles bind randomly to the glassy carbon electrode at a relatively low coverage of 7 × 10(4) ions μm(-2) and that their average height is centered at 4.5 nm. Scanning transmission electron microscopy images obtained in the high-angle annular dark field mode (HAADF-STEM) further confirm that the soft-landed PtRu nanoparticles are uniform in size. Wide-area scans of the electrodes using X-ray photoelectron spectroscopy (XPS) reveal the presence of both Pt and Ru in atomic concentrations of ∼9% and ∼33%, respectively. Deconvolution of the high energy resolution XPS spectra in the Pt 4f and Ru 3d regions indicates the presence of both oxidized Pt and Ru. The substantially higher loading of Ru compared to Pt and enrichment of Pt at the surface of the nanoparticles is confirmed by wide-area analysis of the electrodes using time-of-flight medium energy ion scattering (TOF-MEIS) employing both 80 keV He(+) and O(+) ions. The activity of electrodes containing 7 × 10(4) ions μm(-2) of bare 4.5 nm PtRu nanoparticles toward the electrochemical reduction of oxygen was evaluated employing cyclic voltammetry (CV) in 0.1 M HClO4 and 0.5 M H2SO4 solutions. In both electrolytes a pronounced reduction peak was observed during O2 purging of the solution that was not evident during purging with Ar. Repeated electrochemical cycling of the electrodes revealed little evolution in the shape or position of the voltammograms indicating high stability of the nanoparticles supported on glassy carbon. The reproducibility of the nanoparticle synthesis and deposition was evaluated by employing the same experimental parameters to prepare nanoparticles on glassy carbon electrodes on three occasions separated by several days. Surfaces with almost identical electrochemical behavior were observed with CV, demonstrating the highly reproducible preparation of bare nanoparticles using physical synthesis in the gas-phase combined with soft landing of mass-selected ions.
NASA Astrophysics Data System (ADS)
Merati, Zohreh; Basiri Parsa, Jalal
2018-03-01
Catalyst supports play important role in governing overall catalyst activity and durability. In this study metal oxides (SnO2, Sb and Nb doped SnO2) were electrochemically deposited on titanium substrate (Ti) as a new support material for Pt catalyst in order to electro-oxidation of methanol. Afterward platinum nanoparticles were deposited on metal oxide film via electro reduction of platinum salt in an acidic solution. The surface morphology of modified electrodes were evaluated by field-emission scanning electron microscopy (FESEM) and energy dispersive X-ray analysis (EDX) techniques. The electro-catalytic activities of prepared electrodes for methanol oxidation reaction (MOR) and oxidation of carbon monoxide (CO) absorbed on Pt was considered with cyclic voltammetry. The results showed high catalytic activity for Pt/Nb-SnO2/Ti electrode. The electrochemical surface area (ECSA) of a platinum electro-catalyst was determined by hydrogen adsorption. Pt/Nb-SnO2/Ti electrode has highest ECSA compared to other electrode resulting in high activity toward methanol electro-oxidation and CO stripping experiments. The doping of SnO2 with Sb and Nb improved ECSA and MOR activity, which act as electronic donors to increase electronic conductivity.
Use of Pd-Pt loaded graphene aerogel on nickel foam in direct ethanol fuel cell
NASA Astrophysics Data System (ADS)
Tsang, Chi Him A.; Leung, D. Y. C.
2018-01-01
A size customized binder-free bimetallic Pd-Pt loaded graphene aerogel deposited on nickel foam plate (Pd-Pt/GA/NFP) was prepared and used as an electrode for an alkaline direct ethanol fuel cell (DEFC) under room temperature. The effect of fuel concentration and metal composition on the output power density of the DEFC was systematically investigated. Under the optimum fuel concentration, the cell could achieve a value of 3.6 mW cm-2 at room temperature for the graphene electrode with Pd/Pt ratio approaching 1:1. Such results demonstrated the possibility of producing a size customized metal loaded GA/NFP electrode for fuel cell with high performance.
NASA Technical Reports Server (NTRS)
Swette, Larry L.; Laconti, Anthony B.; Mccatty, Stephen A.
1993-01-01
This paper will update the progress in developing electrocatalyst systems and electrode structures primarily for the positive electrode of single-unit solid polymer proton exchange membrane (PEM) regenerative fuel cells. The work was done with DuPont Nafion 117 in complete fuel cells (40 sq cm electrodes). The cells were operated alternately in fuel cell mode and electrolysis mode at 80 C. In fuel cell mode, humidified hydrogen and oxygen were supplied at 207 kPa (30 psi); in electrolysis mode, water was pumped over the positive electrode and the gases were evolved at ambient pressure. Cycling data will be presented for Pt-Ir catalysts and limited bifunctional data will be presented for Pt, Ir, Ru, Rh, and Na(x)Pt3O4 catalysts as well as for electrode structure variations.
Catalytic activity of platinum on ruthenium electrodes with modified (electro)chemical states.
Park, Kyung-Won; Sung, Yung-Eun
2005-07-21
Using Pt on Ru thin-film electrodes with various (electro)chemical states designed by the sputtering method, the effect of Ru states on the catalytic activity of Pt was investigated. The chemical and electrochemical properties of Pt/Ru thin-film samples were confirmed by X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry. In addition, Pt nanoparticles on Ru metal or oxide for an actual fuel cell system showed an effect of Ru states on the catalytic activity of Pt in methanol electrooxidation. Finally, it was concluded that such an enhancement of methanol electrooxidation on the Pt is responsible for Ru metallic and/or oxidation sites compared to pure Pt without any Ru state.
Hoffeditz, William L; Katz, Michael J; Deria, Pravas; Martinson, Alex B F; Pellin, Michael J; Farha, Omar K; Hupp, Joseph T
2014-06-11
Dye-sensitized solar cell (DSC) redox shuttles other than triiodide/iodide have exhibited significantly higher charge transfer resistances at the dark electrode. This often results in poor fill factor, a severe detriment to device performance. Rather than moving to dark electrodes of untested materials that may have higher catalytic activity for specific shuttles, the surface area of platinum dark electrodes could be increased, improving the catalytic activity by simply presenting more catalyst to the shuttle solution. A new copper-based redox shuttle that experiences extremely high charge-transfer resistance at conventional Pt dark electrodes yields cells having fill-factors of less than 0.3. By replacing the standard Pt dark electrode with an inverse opal Pt electrode fabricated via atomic layer deposition, the dark electrode surface area is boosted by ca. 50-fold. The resulting increase in interfacial electron transfer rate (decrease in charge-transfer resistance) nearly doubles the fill factor and therefore the overall energy conversion efficiency, illustrating the utility of this high-area electrode for DSCs.
NASA Astrophysics Data System (ADS)
Wei, Liguo; Wang, Ping; Yang, Yulin; Luo, Ruidong; Li, Jinqi; Gu, Xiaohu; Zhan, Zhaoshun; Dong, Yongli; Song, Weina; Fan, Ruiqing
2018-04-01
A nitrogen-doped reduced graphene oxide (N-RGO) nanosheet was synthesized by a simple hydrothermal method and characterized by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electrode microscopy. After being deposited as counter electrode film for dye-sensitized solar cells (DSSCs), it is found that the synthesized N-RGO nanosheet has smaller charge-transfer resistance and better electrocatalytic activity towards reduction of triiodide than the reduced graphene oxide (RGO) nanosheet. Consequently, the DSSCs based on the N-RGO counter electrode achieve an energy conversion efficiency of 4.26%, which is higher than that of the RGO counter electrode (2.85%) prepared under the same conditions, and comparable to the value (5.21%) obtained with the Pt counter electrode as a reference. This N-RGO counter electrode offers the advantages of not only saving the cost of Pt itself but also simplifying the process of counter electrode preparation. Therefore, an inexpensive N-RGO nanosheet is a promising counter electrode material to replace noble metal Pt. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Chen, Min-Chuan; Jiang, An-Quan
2011-07-01
We verify the domain sideway motion around the peripheral regions of the crossed capacitors of top and bottom electrode bars without electrode coverage. To avoid the crosstalk problem between adjacent memory cells, the safe distance between adjacent elements of Pt/SrBi2Ta2O9/Pt thin-film capacitors is estimated to be 0.156 μm. Moreover, the fatigue of Pt/SrBi2Ta2O9/Pt thin-film capacitors is independent of the individual memory size due to the absence of etching damage.
Soft Landing of Bare PtRu Nanoparticles for Electrochemical Reduction of Oxygen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Grant E.; Colby, Robert J.; Engelhard, Mark H.
2015-08-07
Magnetron sputtering of two independent Pt and Ru targets coupled with inert gas aggregation in a modified commercial source has been combined with soft landing of mass-selected ions to prepare bare 4.5 nm diameter PtRu alloy nanoparticles on glassy carbon electrodes with controlled size and morphology for electrochemical reduction of oxygen in solution. Employing atomic force microscopy (AFM) it is shown that the nanoparticles bind randomly to the glassy carbon electrode at a relatively low coverage of 7 x 104 ions µm-2 and that their average height is centered at 4 nm. Scanning transmission electron microscopy images obtained in themore » high-angle annular dark field mode (STEM-HAADF) further confirm that the soft-landed PtRu alloy nanoparticles are uniform in size and have a Ru core decorated with small regions of Pt on the surface. Wide-area scans of the electrodes using X-ray photoelectron spectroscopy (XPS) reveal the presence of both Pt and Ru in relative atomic concentrations of ~9% and ~33%, respectively. Deconvolution of the high energy resolution XPS spectra in the Pt4f and Ru3d regions indicates the presence of both oxidized Pt and Ru. The substantially higher loading of Ru compared to Pt and enrichment of Pt at the surface of the alloy nanoparticles is confirmed by wide-area analysis of the electrodes using time-of-flight medium energy ion scattering (TOF-MEIS) employing both 80 keV He+ and O+ ions. The activity of electrodes containing 7 x 104 ions µm-2 of bare 4.5 nm PtRu nanoparticles toward the electrochemical reduction of oxygen was evaluated employing cyclic voltammetry (CV) in 0.1 M HClO4 and 0.5 M H2SO4 solutions. In both electrolytes a pronounced reduction peak was observed during O2 purging of the solution that was not evident during purging with Ar. Repeated electrochemical cycling of the electrodes revealed little evolution in the shape or position of the voltammograms indicating high stability of the alloy nanoparticles supported on glassy carbon. The reproducibility of the nanoparticle synthesis and deposition was evaluated by employing the same experimental parameters to prepare nanoparticles on glassy carbon electrodes on three occasions separated by several days. Surfaces with almost identical electrochemical behavior were observed with CV, demonstrating the highly reproducible preparation of bare alloy nanoparticles using physical synthesis in the gas-phase combined with soft landing of mass-selected ions« less
Electrochemical and Structural Study of a Chemically Dealloyed PtCu Oxygen Reduction Catalyst
Dutta, Indrajit; Carpenter, Michael K; Balogh, Michael P; Ziegelbauer, Joseph M; Moylan, Thomas E; Atwan, Mohammed H; Irish, Nicholas P
2013-01-01
A carbon-supported, dealloyed platinum-copper (Pt-Cu) oxygen reduction catalyst was prepared using a multi-step synthetic procedure. Material produced at each step was characterized using high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), electron energy loss spectroscopy (EELS) mapping, x-ray absorption spectroscopy (XAS), x-ray diffraction (XRD), and cyclic voltammetry (CV), and its oxygen reduction reaction (ORR) activity was measured by a thin-film rotating disk electrode (TF-RDE) technique. The initial synthetic step, a co-reduction of metal salts, produced a range of poorly crystalline Pt, Cu, and Pt-Cu alloy nanoparticles that nevertheless exhibited good ORR activity. Annealing this material alloyed the metals and increased particle size and crystallinity. TEM shows the annealed catalyst to include particles of various sizes, large (>25 nm), medium (12–25 nm), and small (<12 nm). Most of the small and medium-sized particles exhibited a partial or complete coreshell (Cu-rich core and Pt shell) structure with the smaller particles typically having more complete shells. The appearance of Pt shells after annealing indicates that they are formed by a thermal diffusion mechanism. Although the specific activity of the catalyst material was more than doubled by annealing, the concomitant decrease in Pt surface area resulted in a drop in its mass activity. Subsequent dealloying of the catalyst by acid treatment to partially remove the copper increased the Pt surface area by changing the morphology of the large and some medium particles to a “Swiss cheese” type structure having many voids. The smaller particles retained their core-shell structure. The specific activity of the catalyst material was little reduced by dealloying, but its mass activity was more than doubled due to the increase in surface area. The possible origins of these results are discussed in this report. PMID:23807900
Raymundo-Pereira, Paulo A; Shimizu, Flávio M; Coelho, Dyovani; Piazzeta, Maria H O; Gobbi, Angelo L; Machado, Sergio A S; Oliveira, Osvaldo N
2016-12-15
We report on a bimetallic, bifunctional electrode where a platinum (Pt) surface was patterned with nanostructured gold (Au) fingers with different film thicknesses, which was functionalized with glucose oxidase (GOx) to yield a highly sensitive glucose biosensor. This was achieved by using selective adsorption of a self-assembled monolayer (SAM) onto Au fingers, which allowed GOx immobilization only onto the Au-SAM surface. This modified electrode was termed bifunctional because it allowed to simultaneously immobilize the biomolecule (GOx) on gold to catalyze glucose, and detect hydrogen peroxide on Pt sites. Optimized electrocatalytic activity was reached for the architecture Pt/Au-SAM/GOx with 50nm thickness of Au, where synergy between Pt and Au allowed for detection of hydrogen peroxide (H2O2) at a low applied potential (0V vs. Ag/AgCl). Detection was performed for H2O2 in the range between 4.7 and 102.7 nmol L(-1), with detection limit of 3.4×10(-9) mol L(-1) (3.4 nmol L(-1)) and an apparent Michaelis-Menten rate constant of 3.2×10(-6)molL(-1), which is considerably smaller than similar devices with monometallic electrodes. The methodology was validated by measuring glucose in artificial saliva, including in the presence of interferents. The synergy between Pt and Au was confirmed in electrochemical impedance spectroscopy measurements with an increased electron transfer, compared to bare Pt and Au electrodes. The approach for fabricating the reproducible bimetallic Pt/Au electrodes is entirely generic and may be explored for other types of biosensors and biodevices where advantage can be taken of the combination of the two metals. Copyright © 2016 Elsevier B.V. All rights reserved.
Hao, Feng; Dong, Pei; Zhang, Jing; Zhang, Yongchang; Loya, Phillip E; Hauge, Robert H; Li, Jianbao; Lou, Jun; Lin, Hong
2012-01-01
Vertically aligned single-walled carbon nanotubes (VASWCNTs) have been successfully transferred onto transparent conducting oxide glass and implemented as efficient low-cost, platinum-free counter electrode in sulfide -mediated dye-sensitized solar cells (DSCs), featuring notably improved electrocatalytic activity toward thiolate/disulfide redox shuttle over conventional Pt counter electrodes. Impressively, device with VASWCNTs counter electrode demonstrates a high fill factor of 0.68 and power conversion efficiency up to 5.25%, which is significantly higher than 0.56 and 3.49% for that with a conventional Pt electrode. Moreover, VASWCNTs counter electrode produces a charge transfer resistance of only 21.22 Ω towards aqueous polysulfide electrolyte commonly applied in quantum dots-sensitized solar cells (QDSCs), which is several orders of magnitude lower than that of a typical Pt electrode. Therefore, VASWCNTs counter electrodes are believed to be a versatile candidate for further improvement of the power conversion efficiency of other iodine-free redox couple based DSCs and polysulfide electrolyte based QDSCs.
Takada, Yoko; Okamoto, Naoki; Saito, Takeyasu; Yoshimura, Takeshi; Fujimura, Norifumi; Higuchi, Koji; Kitajima, Akira; Shishido, Rie
2016-10-01
Ferroelectric (Pb,La)(Zr,Ti)O 3 (PLZT) capacitors were fabricated with Pt, Al:ZnO (AZO), or Sn:In 2 O 3 (ITO) top electrodes. Hydrogen- or deuterium-induced degradation was investigated for the three capacitors by annealing in a 3% H 2 /balance N 2 or 3% D 2 /balance N 2 ambient environment at 200 °C and 1 torr. The remnant polarization of all capacitors decreased after annealing in both H 2 and D 2 ambient after 45 min, and the remnant polarization of the Pt/PLZT/Pt capacitor significantly decreased after 45-min annealing compared with that of the AZO/PLZT/Pt and ITO/PLZT/Pt capacitors, even though the initial remnant polarization for the Pt/PLZT/Pt capacitor was larger. Time-of-flight secondary ion mass spectrometry showed slight differences in hydrogen content for the three different capacitors after H 2 annealing. In contrast, the deuterium content of the Pt/PLZT/Pt and AZO/PLZT/Pt or ITO/PLZT/PT capacitors was significantly different after deuterium annealing. Deuterium depth profiles for the Pt/PLZT/Pt capacitor after annealing showed that deuterium conformally exists in the PLZT layer of the Pt/PLZT/Pt capacitor, and deuterium accumulation under the Pt bottom electrode was also observed. This result suggests that diffusion of deuterium in Pt was much higher than that in PLZT. AZO and ITO top electrodes could act as a hydrogen barrier layer for ferroelectric films.
Lee, Yi-Jae; Park, Jae-Yeong
2010-12-15
A sensitive macroporous Au electrode with a highly rough surface obtained through the use of with Pt nanoparticles (macroporous Au-/nPts) is reported. It has been designed for nonenzymatic free-cholesterol biosensor applications. A macroporous Au-/nPts electrode was fabricated by electroplating Pt nanoparticles onto a coral-like shaped macroporous Au electrode structure. The macroporous Au-/nPts electrode was physically characterized by field emission scanning electron microscopy (FESEM). It was confirmed that the Pt nanoparticles were well deposited on the surface of the macroporous Au electrode. The porosity and window pore size of the macroporous Au electrode were 50% and 100-300 nm, respectively. The electroplated Pt nanoparticle size was approximately 10-20 nm. Electrochemical experiments showed that the macroporous Au-/nPts exhibited a much larger surface activation area (roughness factor (RF)=2024.7) than the macroporous Au electrode (RF=46.07). The macroporous Au-/nPts also presented a much stronger electrocatalytic activity towards cholesterol oxidation than does the macroporous Au electrode. At 0.2 V, the electrode responded linearly up to a 5 mM cholesterol concentration in a neutral media, with a detection limit of 0.015 mM and detection sensitivity of 226.2 μA mM(-1) cm(-2). Meanwhile, interfering species such as ascorbic acid (AA), acetaminophen (AP), and uric acid (UA), were effectively avoided. This novel nonenzymatic detection electrode has strong applications as an electrochemically based cholesterol biosensor. Copyright © 2010 Elsevier B.V. All rights reserved.
Chandran, Priji; Ghosh, Arpita; Ramaprabhu, Sundara
2018-02-26
The integration of polymer electrolyte membrane fuel cell (PEMFC) stack into vehicles necessitates the replacement of high-priced platinum (Pt)-based electrocatalyst, which contributes to about 45% of the cost of the stack. The implementation of high-performance and durable Pt metal-free catalyst for both oxygen reduction reaction (ORR) and hydrogen oxidation reaction (HOR) could significantly enable large-scale commercialization of fuel cell-powered vehicles. Towards this goal, a simple, scalable, single-step synthesis method was adopted to develop palladium-cobalt alloy supported on nitrogen-doped reduced graphene oxide (Pd 3 Co/NG) nanocomposite. Rotating ring-disk electrode (RRDE) studies for the electrochemical activity towards ORR indicates that ORR proceeds via nearly four-electron mechanism. Besides, the mass activity of Pd 3 Co/NG shows an enhancement of 1.6 times compared to that of Pd/NG. The full fuel cell measurements were carried out using Pd 3 Co/NG at the anode, cathode in conjunction with Pt/C and simultaneously at both anode and cathode. A maximum power density of 68 mW/cm 2 is accomplished from the simultaneous use of Pd 3 Co/NG as both anode and cathode electrocatalyst with individual loading of 0.5 mg/cm 2 at 60 °C without any backpressure. To the best of our knowledge, the present study is the first of its kind of a fully non-Pt based PEM full cell.
Methanol and ethanol electroxidation using Pt electrodes prepared by the polymeric precursor method
NASA Astrophysics Data System (ADS)
Freitas, R. G.; Santos, M. C.; Oliveira, R. T. S.; Bulhões, L. O. S.; Pereira, E. C.
The results of methanol and ethanol oxidation in acidic medium on Pt electrodes deposited on Ti substrate using the Pechini method are presented. In this route the metallic salts were dissolved in a mixture of ethylene glycol (EG) and citric acid (CA) forming a polyester network, which is painted onto a Ti substrate and then heat treated at 600 °C in order to obtain the metallic Pt thin films. The X-ray diffraction analysis showed the presence of Pt pattern peaks. The presence of the (4 2 0) plane in a higher amount compared to bulk Pt was observed and the peak position of the planes (2 0 0) and (4 2 0) were displaced by approximately -0.3°. The roughness data presented almost the same values for Ti and Ti/Pt. The electrochemical characterization of the electrodes in 0.1 M HClO 4 showed a typical Pt voltammetric profile. Although the voltammetric profiles of Ti/Pt and bulk Pt were the same, the electrocatalytical behavior for methanol oxidation showed an enhancement of the oxidation current density peak, which increased by 170% compared to bulk platinum. Although, the current density peak for ethanol oxidation on Ti/Pt is smaller than for Pt, it began at 0.11 V less positive than the same process on bulk Pt. The chronoamperometric experiments for methanol and ethanol oxidation on Ti/Pt increased by almost 934% and 440%, respectively, compared with Pt bulk.
Shahrokhian, Saeed; Rastgar, Shokoufeh
2012-06-07
Mixtures of gold-platinum nanoparticles (Au-PtNPs) are fabricated consecutively on a multi-walled carbon nanotubes (MWNT) coated glassy carbon electrode (GCE) by the electrodeposition method. The surface morphology and nature of the hybrid film (Au-PtNPs/MWCNT) deposited on glassy carbon electrodes is characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. The modified electrode is used as a new and sensitive electrochemical sensor for the voltammetric determination of cefotaxime (CFX). The electrochemical behavior of CFX is investigated on the surface of the modified electrode using linear sweep voltammetry (LSV). The results of voltammetric studies exhibited a considerable improvement in the oxidation peak current of CFX compared to glassy carbon electrodes individually coated with MWCNT or Au-PtNPs. Under the optimized conditions, the modified electrode showed a wide linear dynamic range of 0.004-10.0 μM with a detection limit of 1.0 nM for the voltammetric determination of CFX. The modified electrode was successfully applied for the accurate determination of trace amounts of CFX in pharmaceutical and clinical preparations.
Köhler, Per; Granmo, Marcus; Schouenborg, Jens; Bengtsson, Martin; Wallman, Lars
2014-01-01
We have developed a multichannel electrode array—termed \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}\\(\\mu \\) \\end{document}-foil—that comprises ultrathin and flexible electrodes protruding from a thin foil at fixed distances. In addition to allowing some of the active sites to reach less compromised tissue, the barb-like protrusions that also serves the purpose of anchoring the electrode array into the tissue. This paper is an early evaluation of technical aspects and performance of this electrode array in acute in vitro/in vivo experiments. The interface impedance was reduced by up to two decades by electroplating the active sites with platinum black. The platinum black also allowed for a reduced phase lag for higher frequency components. The distance between the protrusions of the electrode array was tailored to match the architecture of the rat cerebral cortex. In vivo acute measurements confirmed a high signal-to-noise ratio for the neural recordings, and no significant crosstalk between recording channels. PMID:27170864
Photoelectrochemical NADH Regeneration using Pt-Modified p -GaAs Semiconductor Electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stufano, Paolo; Paris, Aubrey R.; Bocarsly, Andrew
Cofactor regeneration in enzymatic reductions is crucial for the application of enzymes to both biological and energy-related catalysis. Specifically, regenerating NADH from NAD + is of great interest, and using electrochemistry to achieve this end is considered a promising option. Here in this paper, we report the first example of photoelectrochemical NADH regeneration at the illuminated (λ >600 nm), metal-modified p-type semiconductor electrode Pt/p-GaAs. Although bare p-GaAs electrodes produce only enzymatically inactive NAD 2, NADH was produced at the illuminated Pt-modified p-GaAs surface. At low overpotential (–0.75 V vs. Ag/AgCl), Pt/p-GaAs exhibited a seven-fold greater Faradaic efficiency for the formationmore » of NADH than Pt alone, with reduced competition from the hydrogen evolution reaction. Improved Faradaic efficiency and low overpotential suggest the possible utility of Pt/p-GaAs in energy-related NADH-dependent enzymatic processes.« less
Photoelectrochemical NADH Regeneration using Pt-Modified p -GaAs Semiconductor Electrodes
Stufano, Paolo; Paris, Aubrey R.; Bocarsly, Andrew
2017-02-22
Cofactor regeneration in enzymatic reductions is crucial for the application of enzymes to both biological and energy-related catalysis. Specifically, regenerating NADH from NAD + is of great interest, and using electrochemistry to achieve this end is considered a promising option. Here in this paper, we report the first example of photoelectrochemical NADH regeneration at the illuminated (λ >600 nm), metal-modified p-type semiconductor electrode Pt/p-GaAs. Although bare p-GaAs electrodes produce only enzymatically inactive NAD 2, NADH was produced at the illuminated Pt-modified p-GaAs surface. At low overpotential (–0.75 V vs. Ag/AgCl), Pt/p-GaAs exhibited a seven-fold greater Faradaic efficiency for the formationmore » of NADH than Pt alone, with reduced competition from the hydrogen evolution reaction. Improved Faradaic efficiency and low overpotential suggest the possible utility of Pt/p-GaAs in energy-related NADH-dependent enzymatic processes.« less
Palladium Coated Copper Nanowires as a Hydrogen Oxidation Electrocatalyst in Base
Alia, Shaun M.; Yan, Yushan
2015-05-09
The palladium (Pd) nanotubes we synthesized by the spontaneous galvanic displacement of copper (Cu) nanowires, are forming extended surface nanostructures highly active for the hydrogen oxidation reaction (HOR) in base. The synthesized catalysts produce specific activities in rotating disk electrode half-cells 20 times greater than Pd nanoparticles and about 80% higher than polycrystalline Pd. Although the surface area of the Pd nanotubes was low compared to conventional catalysts, partial galvanic displacement thrifted the noble metal layer and increased the Pd surface area. Moreover, the use of Pd coated Cu nanowires resulted in a HOR mass exchange current density 7 timesmore » greater than the Pd nanoparticles. The activity of the Pd coated Cu nanowires further nears Pt/C, producing 95% of the mass activity.« less
Michaelidou, Urania; ter Heijne, Annemiek; Euverink, Gerrit Jan W.; Hamelers, Hubertus V. M.; Stams, Alfons J. M.; Geelhoed, Jeanine S.
2011-01-01
Four types of titanium (Ti)-based electrodes were tested in the same microbial fuel cell (MFC) anodic compartment. Their electrochemical performances and the dominant microbial communities of the electrode biofilms were compared. The electrodes were identical in shape, macroscopic surface area, and core material but differed in either surface coating (Pt- or Ta-coated metal composites) or surface texture (smooth or rough). The MFC was inoculated with electrochemically active, neutrophilic microorganisms that had been enriched in the anodic compartments of acetate-fed MFCs over a period of 4 years. The original inoculum consisted of bioreactor sludge samples amended with Geobacter sulfurreducens strain PCA. Overall, the Pt- and Ta-coated Ti bioanodes (electrode-biofilm association) showed higher current production than the uncoated Ti bioanodes. Analyses of extracted DNA of the anodic liquid and the Pt- and Ta-coated Ti electrode biofilms indicated differences in the dominant bacterial communities. Biofilm formation on the uncoated electrodes was poor and insufficient for further analyses. Bioanode samples from the Pt- and Ta-coated Ti electrodes incubated with Fe(III) and acetate showed several Fe(III)-reducing bacteria, of which selected species were dominant, on the surface of the electrodes. In contrast, nitrate-enriched samples showed less diversity, and the enriched strains were not dominant on the electrode surface. Isolated Fe(III)-reducing strains were phylogenetically related, but not all identical, to Geobacter sulfurreducens strain PCA. Other bacterial species were also detected in the system, such as a Propionicimonas-related species that was dominant in the anodic liquid and Pseudomonas-, Clostridium-, Desulfovibrio-, Azospira-, and Aeromonas-related species. PMID:21131513
NASA Astrophysics Data System (ADS)
Dupas-Bruzek, C.; Dréan, P.; Derozier, D.
2009-10-01
Chronic nerve recording and stimulation became possible through the use of implanted electrodes cuffs. In particular, self-sizing spiral electrode cuffs limit mechanical damage to the tissue: these have been shown to be suitable for long term implantation in animal and in man. However, up to now, such electrode cuffs were handmade and were hardly reproducible. They possessed a small number of electrodes (dot contacts), each being linked to its own wire. In order to improve the selectivity of nerve recording and/or stimulation (functional electrical stimulation), the numbers of electrodes and tracks have to be increased within the same electrode cuff surface. To fulfill this requirement, we have developed a fabrication process that uses an UV laser to induce surface modification, which activates the silicone rubber and is used with a mask to give high definition tracks and electrodes. After this primary step, silicone rubber is immersed in a Pt autocatalytic bath leading to a selective Pt metallization of the laser activated tracks and electrodes. We report our process as well as the results on the Pt metallization, including its morphology, how the DC resistance of Pt tracks depends on the laser used and the irradiation conditions, and also the electrical resistance of Pt tracks submitted to Scotch tape tests or to imposed strains. We show that (i) the type of laser and the irradiation conditions have a strong influence on the nucleation and growth rate of platinum and thus on the DC resistance of the tracks, (ii) the tracks of width 400 μm and thickness 10 μm have a sheet resistivity of 0.2 Ω/sq, (iii) DC resistance does not change much during a 6 month soak in saline, (iv) strains above 2% breaks the track continuity, and (v) when strains below 53% are relaxed, the DC resistance returns to a low value. This recovery from large tensile strains means that nerve cuffs with such metallization could be handled by the surgeon without great care before and during implantation.
NASA Astrophysics Data System (ADS)
Fujii, Keitaro; Ito, Mizuki; Sato, Yasushi; Takenaka, Sakae; Kishida, Masahiro
2015-04-01
Pd metal particles supported on a high surface area carbon black (Pd/CB) were covered with silica layers to improve the durability under severe cathode condition of proton exchange membrane fuel cells (PEMFCs). The performance and the durability of the silica-coated Pd/CB (SiO2/Pd/CB) were investigated by rotating disk electrode (RDE) in aqueous HClO4 and single cell test of the membrane-electrode assemblies (MEAs). SiO2/Pd/CB showed excellent durability exceeding Pt/CB during potential cycle in single cell test as well as in RDE measurement while Pd/CB significantly degraded. Furthermore, the MEA using SiO2/Pd/CB as the cathode catalyst showed higher performance than that using Pd/CB even in the initial state. The catalytic activity of SiO2/Pd/CB was higher than that of Pd/CB, and the drop of the cell performances due to the inhibition of electron conduction, proton conduction, and oxygen diffusion by the silica layer was not significant. It has been shown that the silica-coating is a very practical technique that can stabilize metal species originally unstable in the cathode condition of PEMFCs without a decrease in the cell performance.
Joshi, Prakash; Zhou, Zhengping; Poudel, Prashant; Thapa, Amit; Wu, Xiang-Fa; Qiao, Qiquan
2012-09-21
A nickel incorporated carbon nanotube/nanofiber composite (Ni-CNT-CNF) was used as a low cost alternative to Pt as counter electrode (CE) for dye-sensitized solar cells (DSCs). Measurements based on energy dispersive X-rays spectroscopy (EDX) showed that the majority of the composite CE was carbon at 88.49 wt%, while the amount of Ni nanoparticles was about 11.51 wt%. Measurements based on electrochemical impedance spectroscopy (EIS) showed that the charge transfer resistance (R(ct)) of the Ni-CNT-CNF composite electrode was 0.71 Ω cm(2), much lower than that of the Pt electrode (1.81 Ω cm(2)). Such a low value of R(ct) indicated that the Ni-CNT-CNF composite carried a higher catalytic activity than the traditional Pt CE. By mixing with CNTs and Ni nanoparticles, series resistance (R(s)) of the Ni-CNT-CNF electrode was measured as 5.96 Ω cm(2), which was close to the R(s) of 5.77 Ω cm(2) of the Pt electrode, despite the significant difference in their thicknesses: ∼22 μm for Ni-CNT-CNF composite, while ∼40 nm for Pt film. This indicated that use of a thick layer (tens of microns) of Ni-CNT-CNF counter electrode does not add a significant amount of resistance to the total series resistance (R(s-tot)) in DSCs. The DSCs based on the Ni-CNT-CNF composite CEs yielded an efficiency of 7.96% with a short circuit current density (J(sc)) of 15.83 mA cm(-2), open circuit voltage (V(oc)) of 0.80 V, and fill factor (FF) of 0.63, which was comparable to the device based on Pt, that exhibited an efficiency of 8.32% with J(sc) of 15.01 mA cm(-2), V(oc) of 0.83, and FF of 0.67.
Development of a spectro-electrochemical cell for soft X-ray photon-in photon-out spectroscopy
NASA Astrophysics Data System (ADS)
Ishihara, Tomoko; Tokushima, Takashi; Horikawa, Yuka; Kato, Masaru; Yagi, Ichizo
2017-10-01
We developed a spectro-electrochemical cell for X-ray absorption and X-ray emission spectroscopy, which are element-specific methods to study local electronic structures in the soft X-ray region. In the usual electrochemical measurement setup, the electrode is placed in solution, and the surface/interface region of the electrode is not normally accessible by soft X-rays that have low penetration depth in liquids. To realize soft X-ray observation of electrochemical reactions, a 15-nm-thick Pt layer was deposited on a 150-nm-thick film window with an adhesive 3-nm-thick Ti layer for use as both the working electrode and the separator window between vacuum and a sample liquid under atmospheric pressure. The designed three-electrode electrochemical cell consists of a Pt film on a SiC window, a platinized Pt wire, and a commercial Ag|AgCl electrode as the working, counter, and reference electrodes, respectively. The functionality of the cell was tested by cyclic voltammetry and X-ray absorption and emission spectroscopy. As a demonstration, the electroplating of Pb on the Pt/SiC membrane window was measured by X-ray absorption and real-time monitoring of fluorescence intensity at the O 1s excitation.
Hossain, Md Faruk; Park, Jae Y.
2017-01-01
A highly sensitive amperometric glucose sensor was developed by immobilization of glucose oxidase (GOx) onto multi-layer reduced graphene oxide (MRGO) sheets decorated with platinum and gold flower-like nanoparticles (PtAuNPs) modified Au substrate electrode. The fabricated MRGO/PtAuNPs modified hybrid electrode demonstrated high electrocatalytic activities toward oxidation of H2O2, to which it had a wide linear response that ranged from 0.5 to 8 mM (R2 = 0.997), and high sensitivity of 506.25 μA/mMcm2. Furthermore, glucose oxidase-chitosan composite and cationic polydiallyldimethylammonium chloride (PDDA) were assembled by a casting method on the surface of MRGO/PtAuNPs modified electrode. This as-fabricated hybrid biosensor electrode exhibited high electrocatalytic activity for the detection of glucose in PBS. It demonstrated good analytical properties in terms of a low detection limit of 1 μM (signal-to-noise ratio of 3), short response time (3 s), high sensitivity (17.85 μA/mMcm2), and a wide linear range (0.01–8 mM) for glucose sensing. These results reveal that the newly developed sensing electrode offers great promise for new type enzymatic biosensor applications. PMID:28333943
Analysis of forecasting and inventory control of raw material supplies in PT INDAC INT’L
NASA Astrophysics Data System (ADS)
Lesmana, E.; Subartini, B.; Riaman; Jabar, D. A.
2018-03-01
This study discusses the data forecasting sales of carbon electrodes at PT. INDAC INT L uses winters and double moving average methods, while for predicting the amount of inventory and cost required in ordering raw material of carbon electrode next period using Economic Order Quantity (EOQ) model. The result of error analysis shows that winters method for next period gives result of MAE, MSE, and MAPE, the winters method is a better forecasting method for forecasting sales of carbon electrode products. So that PT. INDAC INT L is advised to provide products that will be sold following the sales amount by the winters method.
Kim, Jongwook; Kang, Jonghyun; Jeong, Uiyoung; Kim, Heesuk; Lee, Hyunjung
2013-04-24
We report a multifunctional platinium nanofiber (PtNF) web that can act as a catalyst layer in dye-sensitized solar cell (DSSC) to simultaneously function as a transparent counter electrode (CE), i.e., without the presence of an indium-doped tin oxide (ITO) or fluorine-doped tin oxide (FTO) glass. This PtNF web can be easily produced by electrospinning, which is highly cost-effective and suitable for large-area industrial-scale production. Electrospun PtNFs are straight and have a length of a few micrometers, with a common diameter of 40-70 nm. Each nanofiber is composed of compact, crystalline Pt grains and they are well-fused and highly interconnected, which should be helpful to provide an efficient conductive network for free electron transport and a large surface area for electrocatalytic behavior. A PtNF web is served as a counter electrode in DSSC and the photovoltaic performance increases up to a power efficiency of 6.0%. It reaches up to 83% of that in a conventional DSSC using a Pt-coated FTO glass as a counter electrode. Newly designed DSSCs containing PtNF webs display highly stable photoelectric conversion efficiencies, and excellent catalytic, conductive, and transparent properties, as well as long-term stability. Also, while the DSSC function is retained, the fabrication cost is reduced by eliminating the transparent conducting layer on the counter electrode. The presented method of fabricating DSSCs based on a PtNF web can be extended to other electrocatalytic optoelectronic devices that combine superior catalytic activity with high conductivity and transparency.
NASA Astrophysics Data System (ADS)
Litkohi, Hajar Rajaei; Bahari, Ali; Ojani, Reza
2017-08-01
In order to use carbon nanotube (CNT)-supported catalyst as fuel cell electrodes, Pt-Ni-Fe/CNT/carbon paper (CP) electrode was prepared using an ethylene glycol reduction method. CNTs were directly synthesized on Ni-impregnated carbon paper, plain carbon cloth, and Teflonized carbon cloth using chemical vapor deposition. FESEM and TEM images and thermogravimetric analysis indicated that in situ CNT on carbon paper (ICNT/CP) possesses more appropriate structural quality and stronger adhesion to the substrate than other substrates. The contact angle analysis demonstrated that the degree of ICNT/CP surface hydrophobicity encountered a 24% increase in comparison to CP and promoted to superhydrophobicity from hydrophobicity. The polarization curves and electrochemical impedance spectroscopy results of the loaded Pt-Ni-Fe on in situ and ex situ CNT/CP illustrated that the power density increased and charge transfer resistance reduced compared to commercial Pt/C loaded on CP. The results can be attributed to the outstanding properties of CNTs and high catalytic activity of triple catalysts causing alloying of Pt with Ni and Fe, which makes them a proper candidate to be used as cathode electrodes in proton exchange membrane fuel cells.
NASA Astrophysics Data System (ADS)
Sun, Yimin; Zheng, Huaming; Wang, Chenxu; Yang, Mengmeng; Zhou, Aijun; Duan, Hongwei
2016-01-01
Here we fabricate a new type of flexible and versatile nanohybrid paper electrode by ultrasonic-electrodeposition of PtPd alloy nanoparticles on freestanding ionic liquid (IL)-functionalized graphene paper, and explore its multifunctional applications in electrochemical catalysis and sensing systems. The graphene-based paper materials demonstrate intrinsic flexibility, exceptional mechanical strength and high electrical conductivity, and therefore can serve as an ideal freestanding flexible electrode for electrochemical devices. Furthermore, the functionalization of graphene with IL (i.e., 1-butyl-3-methylimidazolium tetrafluoroborate) not only increases the electroactive surface area of a graphene-based nanohybrid paper electrode, but also improves the adhesion and dispersion of metal nanoparticles on the paper surface. These unique attributes, combined with the merits of an ultrasonic-electrodeposition method, lead to the formation of PtPd alloy nanoparticles on IL-graphene paper with high loading, uniform distribution, controlled morphology and favourable size. Consequently, the resultant nanohybrid paper electrode exhibits remarkable catalytic activity as well as excellent cycle stability and improved anti-poisoning ability towards electrooxidation of fuel molecules such as methanol and ethanol. Furthermore, for nonenzymatic electrochemical sensing of some specific biomarkers such as glucose and reactive oxygen species, the nanohybrid paper electrode shows high selectivity, sensitivity and biocompatibility in these bio-catalytic processes, and can be used for real-time tracking hydrogen peroxide secretion by living human cells. All these features demonstrate its promising application as a versatile nanohybrid electrode material in flexible and lightweight electrochemical energy conversion and biosensing systems such as bendable on-chip power sources, wearable/implantable detectors and in vivo micro-biosensors.Here we fabricate a new type of flexible and versatile nanohybrid paper electrode by ultrasonic-electrodeposition of PtPd alloy nanoparticles on freestanding ionic liquid (IL)-functionalized graphene paper, and explore its multifunctional applications in electrochemical catalysis and sensing systems. The graphene-based paper materials demonstrate intrinsic flexibility, exceptional mechanical strength and high electrical conductivity, and therefore can serve as an ideal freestanding flexible electrode for electrochemical devices. Furthermore, the functionalization of graphene with IL (i.e., 1-butyl-3-methylimidazolium tetrafluoroborate) not only increases the electroactive surface area of a graphene-based nanohybrid paper electrode, but also improves the adhesion and dispersion of metal nanoparticles on the paper surface. These unique attributes, combined with the merits of an ultrasonic-electrodeposition method, lead to the formation of PtPd alloy nanoparticles on IL-graphene paper with high loading, uniform distribution, controlled morphology and favourable size. Consequently, the resultant nanohybrid paper electrode exhibits remarkable catalytic activity as well as excellent cycle stability and improved anti-poisoning ability towards electrooxidation of fuel molecules such as methanol and ethanol. Furthermore, for nonenzymatic electrochemical sensing of some specific biomarkers such as glucose and reactive oxygen species, the nanohybrid paper electrode shows high selectivity, sensitivity and biocompatibility in these bio-catalytic processes, and can be used for real-time tracking hydrogen peroxide secretion by living human cells. All these features demonstrate its promising application as a versatile nanohybrid electrode material in flexible and lightweight electrochemical energy conversion and biosensing systems such as bendable on-chip power sources, wearable/implantable detectors and in vivo micro-biosensors. Electronic supplementary information (ESI) available: The stress-strain curve of the IL-rGOP, EDX spectrum of PtPd/IL-rGOP, the particle size and size distribution of Pt, PtPd and Pd nanoparticles electrodeposited on IL-rGOP derived from SEM, and the structural parameters of Pt, PtPd and Pd nanoparticles electrodeposited on IL-rGOP derived from XRD, influence of the potential interfering species towards glucose detection. See DOI: 10.1039/c5nr06912b
Vomero, Maria; Castagnola, Elisa; Ciarpella, Francesca; Maggiolini, Emma; Goshi, Noah; Zucchini, Elena; Carli, Stefano; Fadiga, Luciano; Kassegne, Sam; Ricci, Davide
2017-01-01
We report on the superior electrochemical properties, in-vivo performance and long term stability under electrical stimulation of a new electrode material fabricated from lithographically patterned glassy carbon. For a direct comparison with conventional metal electrodes, similar ultra-flexible, micro-electrocorticography (μ-ECoG) arrays with platinum (Pt) or glassy carbon (GC) electrodes were manufactured. The GC microelectrodes have more than 70% wider electrochemical window and 70% higher CTC (charge transfer capacity) than Pt microelectrodes of similar geometry. Moreover, we demonstrate that the GC microelectrodes can withstand at least 5 million pulses at 0.45 mC/cm2 charge density with less than 7.5% impedance change, while the Pt microelectrodes delaminated after 1 million pulses. Additionally, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) was selectively electrodeposited on both sets of devices to specifically reduce their impedances for smaller diameters (<60 μm). We observed that PEDOT-PSS adhered significantly better to GC than Pt, and allowed drastic reduction of electrode size while maintaining same amount of delivered current. The electrode arrays biocompatibility was demonstrated through in-vitro cell viability experiments, while acute in vivo characterization was performed in rats and showed that GC microelectrode arrays recorded somatosensory evoked potentials (SEP) with an almost twice SNR (signal-to-noise ratio) when compared to the Pt ones. PMID:28084398
NASA Astrophysics Data System (ADS)
Bełtowska-Brzezinska, M.; Łuczak, T.; Stelmach, J.; Holze, R.
2014-04-01
Kinetics and mechanism of formic acid (FA) oxidation on platinum and upd-lead ad-atoms modified platinum electrodes have been studied using unlabelled and deuterated compounds. Poisoning of the electrode surface by CO-like species was prevented by suppression of dissociative chemisorption of FA due to a fast competitive underpotential deposition of lead ad-atoms on the Pt surface from an acidic solution containing Pb2+ cations. Modification of the Pt electrode with upd lead induced a catalytic effect in the direct electrooxidation of physisorbed FA to CO2. With increasing degree of H/D substitution, the rate of this reaction decreased in the order: HCOOH > DCOOH ≥ HCOOD > DCOOD. HCOOH was oxidized 8.5-times faster on a Pt/Pb electrode than DCOOD. This primary kinetic isotope effect proves that the C-H- and O-H-bonds are simultaneously cleaved in the rate determining step. A secondary kinetic isotope effect was found in the dissociative chemisorption of FA in the hydrogen adsorption-desorption range on a bare Pt electrode after H/D exchange in the C-H bond, wherein the influence of deuterium substitution in the O-H group was negligibly small. Thus the C-H bond cleavage is accompanied by the C-OH and not the O-H bond split in the FA decomposition, producing CO-like species on the Pt surface sites.
1983-01-01
concentration, poten- tial sweep rate, rotation speed, deposition potential and other parameters -on the shape and height of the stripping peaks have...concentration, potential sweep rate, rotation speed, deposition potential and other parameters on the shape and height of the stripping peaks have been...of the greater surface area of a solid electrode compared to a dropping mercury electrode. Cathodic stripping voltametry at a rotating silver disk
NASA Astrophysics Data System (ADS)
Mayedwa, Noluthando; Matinise, Nolubabalo; Mongwaketsi, Nametso; Maaza, Malik
2018-05-01
The aim of this work was to study structural and kinetic parameters as well as the mechanism of platinum nanoparticles (PtNP) reduced with sodium borohydride (NaBH4) and capped with polyvinyl pyrrolidone (PVP). The nanoparticles were supported on Pt electrode for ammonia oxidation in fuel cell application. X-ray diffraction (XRD) was used to study structural composition and high resolution transmission electron microscopy (HRTEM) was used for morphological study of the nanoalloy. The electrocatalysts were studied in alkaline solution of potassium hydroxide (KOH) by cyclic voltammetry (CV), square wave voltammetry (SWV) and electrochemical impedance spectroscopy (EIS). CV showed that the ammonia oxidation over potential for PtNP was -431 mV and with exchange current density of 1.726 × 10-4 A. EIS showed that the charge transfer resistance (Rct) of PtNP was the lowest (Rct = 1.943 × 106 Ω) compared to that of bare Pt working electrode (2.0604 × 106 Ω), indicating that the Pt nanoparticles have good conductivity and played an important role in accelerating the transfer of electrons.
NASA Astrophysics Data System (ADS)
Ponken, Tanachai; Tagsin, Kamonlapron; Suwannakhun, Chuleerat; Luecha, Jakkrit; Choawunklang, Wijit
2017-09-01
Pt counter electrode was coated by electrochemical method. Electrolyte solution was synthesized by platinum (IV) choloride (PtCl4) powder dissolved in hydrochloric acid solution. Pt films were deposited on the FTO substrate. Deposition time of 10, 30 and 60 minutes, the coating current of 5, 10, 15 and 20 mA and electrolyte solution temperatures for Pt layer synthesis of 25, 30 and 40°C were varied. Surface morphology and optical properties was analyzed by digital microscopic and UV-vis spectrophotometer. Pt films exhibit uniform surface area highly for all the conditions of coating current in the deposition time of 30 and 40 minutes at 40°C. Transmittance values of Pt films deposited on FTO substrate has approximately of 5 to 50 % show that occur high reflection corresponding to dye molecule absorption increases. DSSC device was fabricated from the TiO2 standard and immersed in dye N719 for 24 hours. Efficiency was measured by solar simulator. Efficiency value obtains as high as 5.91 % for the coating current, deposition time and solution temperature of 15 mA, 30 minutes and 40°C. Summary, influence of temperature effects efficiency increasing. Pt counter electrode can be prepared easily and the suitable usefully for DSSC.
Advanced Catalysts for Fuel Cells
NASA Technical Reports Server (NTRS)
Narayanan, Sekharipuram R.; Whitacre, Jay; Valdez, T. I.
2006-01-01
This viewgraph presentation reviews the development of catalyst for Fuel Cells. The objectives of the project are to reduce the cost of stack components and reduce the amount of precious metal used in fuel cell construction. A rapid combinatorial screening technique based on multi-electrode thin film array has been developed and validated for identifying catalysts for oxygen reduction; focus shifted from methanol oxidation in FY05 to oxygen reduction in FY06. Multi-electrode arrays of thin film catalysts of Pt-Ni and Pt-Ni-Zr have been deposited. Pt-Ni and have been characterized electrochemically and structurally. Pt-Ni-Zr and Pt-Ni films show higher current density and onset potential compared to Pt. Electrocatalytic activity and onset potential are found to be strong function of the lattice constant. Thin film Pt(59)Ni(39)Zr(2) can provide 10 times the current density of thin film Pt. Thin film Pt(59)Ni(39)Zr(2) also shows 65mV higher onset potential than Pt.
NASA Astrophysics Data System (ADS)
Xiao, Mingshu; Yan, Yuhua; Feng, Kai; Tian, Yanping; Miao, Yuqing
2015-04-01
A new electrochemical technique to detect hydrogen peroxide (H2O2) was developed. The Pt nanoparticles and BiIII were subsequently assembled on agmatine sulfate (AS) modified glassy carbon electrode (GCE) and the prepared GCE-AS-Pt-BiIII was characterized by scanning electron microscopy (SEM) with result showing that the flower-like nanostructure of Pt-BiIII was yielded. Compared with Pt nanoparticles, the flower-like nanostructure of Pt-BiIII greatly enhanced the electrocatalysis of GCE-AS-Pt-BiIII towards H2O2, which is ascribed to more Pt-OH obtained on GCE-AS-Pt-BiIII surface for the presence of BiIII. Based on its high electrocatalysis, GCE-AS-Pt-BiIII was used to determine the content of H2O2 in the sample of sheet bean curd with standard addition method. Meantime, its electrocatalytic activity also was studied.
Dönmez, Soner; Arslan, Fatma; Sarı, Nurşen; Kurnaz Yetim, Nurdan; Arslan, Halit
2014-04-15
In this study, a novel carbon paste electrode that is sensitive to glucose was prepared using the nanoparticles modified (4-Formyl-3-methoxyphenoxymethyl) with polystyren (FMPS) with L-Glycine-Pt(IV) complexes. Polymeric nanoparticles having Pt(IV) ion were prepared from (4-Formyl-3-methoxyphenoxymethyl) polystyren, glycine and PtCl4 by template method. Glucose oxidase enzyme was immobilized to a modified carbon paste electrode (MCPE) by cross-linking with glutaraldehyde. Determination of glucose was carried out by oxidation of enzymatically produced H2O2 at 0.5 V vs. Ag/AgCl. Effects of pH and temperature were investigated, and optimum parameters were found to be 8.0 and 55°C, respectively. Linear working range of the electrode was 5.0×10(-6)-1.0×10(-3) M, R(2)=0.997. Storage stability and operational stability of the enzyme electrode were also studied. Glucose biosensor gave perfect reproducible results after 10 measurements with 2.3% relative standard deviation. Also, it had good storage stability (gave 53.57% of the initial amperometric response at the end of 33th day). © 2013 Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Abdul Razak, Khairunisak; Neoh, Soo Huan; Ridhuan, N. S.; Mohamad Nor, Noorhashimah
2016-09-01
The properties of ZnO nanorods (ZnONRs) decorated with platinum nanodendrites (PtNDs) were studied. Various sizes of PtNDs were synthesized and spin coated onto ZnONRs, which were grown on indium-titanium-oxide (ITO) substrates through a low-temperature hydrothermal method. Scanning electron microscopy and X-ray diffraction analyses were conducted to analyze the morphology and structural properties of the electrodes. The effects of PtND size, glucose concentration, and Nafion amount on glucose-sensing properties were investigated. The glucose-sensing properties of electrodes with immobilized glucose oxidase (GOx) were measured using cyclic voltammetry. The bio-electrochemical properties of Nafion/GOx/42 nm PtNDs/ZnONRs/ITO glucose sensor was observed with linear range within 1-18 mM, with a sensitivity value of 5.85 μA/mM and a limit of detection of 1.56 mM. The results of this study indicate that PtNDs/ZnONRs/ITO has potential in glucose sensor applications.
Carbon nanotubes based methanol sensor for fuel cells application.
Kim, D W; Lee, J S; Lee, G S; Overzet, L; Kozlov, M; Aliev, A E; Park, Y W; Yang, D J
2006-11-01
An electrochemical sensor is built using vertically grown multi-walled carbon nanotubes (MWNTs) micro-array to detect methanol concentration in water. This study is done for the potential use of the array as methanol sensor for portable units of direct methanol fuel cells (DMFCs). Platinum (Pt) nanoparticles electro-deposited CNTs (Pt/CNTs) electrode shows high sensitivity in the measurement of methanol concentration in water with cyclic voltammetry (CV) measurement at room temperature. Further investigation has also been undertaken to measure the concentration by changing the amount of the mixture of methanol and formic acid in water. We compared the performance of our micro array sensor built with Pt/CNTs electrodes versus that of Pt wire electrode using CV measurement. We found that our Pt/CNTs array sensor shows high sensitivity and detects methanol concentrations in the range of 0.04 M to 0.10 M. In addition, we found that co-use of formic acid as electrolyte enables us to measure up to 1.0 M methanol concentration.
Characterizing Electrolyte and Platinum Interface in PEM Fuel Cells Using CO Displacement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrick, Taylor R.; Moylan, Thomas E.; Yarlagadda, Venkata
Relatively large O 2 transport resistance at the ionomer and Pt interface has been thought to be responsible for the large performance loss at high power for a low Pt loading proton-exchange-membrane fuel cell. A facile method to characterize the interface in the fuel cell electrode is needed. In this study, the CO displacement method was explored on polycrystalline Pt and carbon-supported Pt nanoparticles. The displacement charge coverages were used to quantify the adsorption of perchlorate, sulfate, and perfluorosulfonic acid ionomer. The application of this method in a fuel cell electrode was demonstrated.
Characterizing Electrolyte and Platinum Interface in PEM Fuel Cells Using CO Displacement
Garrick, Taylor R.; Moylan, Thomas E.; Yarlagadda, Venkata; ...
2016-12-13
Relatively large O 2 transport resistance at the ionomer and Pt interface has been thought to be responsible for the large performance loss at high power for a low Pt loading proton-exchange-membrane fuel cell. A facile method to characterize the interface in the fuel cell electrode is needed. In this study, the CO displacement method was explored on polycrystalline Pt and carbon-supported Pt nanoparticles. The displacement charge coverages were used to quantify the adsorption of perchlorate, sulfate, and perfluorosulfonic acid ionomer. The application of this method in a fuel cell electrode was demonstrated.
Performance of conducting polymer electrodes for stimulating neuroprosthetics
NASA Astrophysics Data System (ADS)
Green, R. A.; Matteucci, P. B.; Hassarati, R. T.; Giraud, B.; Dodds, C. W. D.; Chen, S.; Byrnes-Preston, P. J.; Suaning, G. J.; Poole-Warren, L. A.; Lovell, N. H.
2013-02-01
Objective. Recent interest in the use of conducting polymers (CPs) for neural stimulation electrodes has been growing; however, concerns remain regarding the stability of coatings under stimulation conditions. These studies examine the factors of the CP and implant environment that affect coating stability. The CP poly(ethylene dioxythiophene) (PEDOT) is examined in comparison to platinum (Pt), to demonstrate the potential performance of these coatings in neuroprosthetic applications. Approach. PEDOT is coated on Pt microelectrode arrays and assessed in vitro for charge injection limit and long-term stability under stimulation in biologically relevant electrolytes. Physical and electrical stability of coatings following ethylene oxide (ETO) sterilization is established and efficacy of PEDOT as a visual prosthesis bioelectrode is assessed in the feline model. Main results. It was demonstrated that PEDOT reduced the potential excursion at a Pt electrode interface by 72% in biologically relevant solutions. The charge injection limit of PEDOT for material stability was found to be on average 30× larger than Pt when tested in physiological saline and 20× larger than Pt when tested in protein supplemented media. Additionally stability of the coating was confirmed electrically and morphologically following ETO processing. It was demonstrated that PEDOT-coated electrodes had lower potential excursions in vivo and electrically evoked potentials (EEPs) could be detected within the visual cortex. Significance. These studies demonstrate that PEDOT can be produced as a stable electrode coating which can be sterilized and perform effectively and safely in neuroprosthetic applications. Furthermore these findings address the necessity for characterizing in vitro properties of electrodes in biologically relevant milieu which mimic the in vivo environment more closely.
NASA Astrophysics Data System (ADS)
Khan, Bilal; Hodics, Timea; Hervey, Nathan; Kondraske, George; Stowe, Ann; Alexandrakis, George
2015-03-01
Transcranial direct current stimulation (tDCS) is a non-invasive cortical stimulation technique that can facilitate task specific plasticity that can improve motor performance. Current tDCS interventions uniformly apply a chosen electrode montage to a subject population without personalizing electrode placement for optimal motor gains. We propose a novel perturbation tDCS (ptDCS) paradigm for determining a personalized electrode montage in which tDCS intervention yields maximal motor performance improvements during stimulation. PtDCS was applied to ten healthy adults and five stroke patients with upper hemiparesis as they performed an isometric wrist flexion task with their non-dominant arm. Simultaneous recordings of torque applied to a stationary handle, muscle activity by electromyography (EMG), and cortical activity by functional near-infrared spectroscopy (fNIRS) during ptDCS helped interpret how cortical activity perturbations by any given electrode montage related to changes in muscle activity and task performance quantified by a Reaction Time (RT) X Error product. PtDCS enabled quantifying the effect on task performance of 20 different electrode pair montages placed over the sensorimotor cortex. Interestingly, the electrode montage maximizing performance in all healthy adults did not match any of the ones being explored in current literature as a means of improving the motor performance of stroke patients. Furthermore, the optimal montage was found to be different in each stroke patient and the resulting motor gains were very significant during stimulation. This study supports the notion that task-specific ptDCS optimization can lend itself to personalizing the rehabilitation of patients with brain injury.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papadias, D. D.; Ahluwalia, R. K.; Kariuki, N.
The durability of Pt-Co alloy cathode catalysts supported on high surface area carbon is investigated by subjecting them to accelerated stress tests (ASTs). The catalysts had different initial Co contents and nanoparticle morphologies: a “spongy” porous morphology for the high-Co (H) content catalyst, and a fully alloyed crystalline morphology for the medium-Co (M) and low-Co (L) content catalysts. The specific activity of the catalysts depends on their initial Co content, morphology and nanoparticle size, and remained higher than 1000 μA/cm 2-Pt after 27–50% Co loss. The H-catalyst electrode showed the smallest kinetic overpotentials (η c s) due to higher initialmore » Pt loading than the other two electrodes, but it had the fastest increase in ηcs with AST cycling due to lower Co retention; the L-catalyst electrode showed higher η c s due to a lower initial Pt loading, but had a smaller increase in η c s with aging due to higher Co retention; the M-catalyst electrode showed a similar increase in η c s with aging, but this increase was due to the combined effects of Co dissolution and electrochemically active surface area (ECSA) loss. In conclusion, the modeled increase in mass transfer overpotentials with aging correlates with the initial Pt loading, ECSA loss and the initial catalyst morphology« less
Papadias, D. D.; Ahluwalia, R. K.; Kariuki, N.; ...
2018-03-17
The durability of Pt-Co alloy cathode catalysts supported on high surface area carbon is investigated by subjecting them to accelerated stress tests (ASTs). The catalysts had different initial Co contents and nanoparticle morphologies: a “spongy” porous morphology for the high-Co (H) content catalyst, and a fully alloyed crystalline morphology for the medium-Co (M) and low-Co (L) content catalysts. The specific activity of the catalysts depends on their initial Co content, morphology and nanoparticle size, and remained higher than 1000 μA/cm 2-Pt after 27–50% Co loss. The H-catalyst electrode showed the smallest kinetic overpotentials (η c s) due to higher initialmore » Pt loading than the other two electrodes, but it had the fastest increase in ηcs with AST cycling due to lower Co retention; the L-catalyst electrode showed higher η c s due to a lower initial Pt loading, but had a smaller increase in η c s with aging due to higher Co retention; the M-catalyst electrode showed a similar increase in η c s with aging, but this increase was due to the combined effects of Co dissolution and electrochemically active surface area (ECSA) loss. In conclusion, the modeled increase in mass transfer overpotentials with aging correlates with the initial Pt loading, ECSA loss and the initial catalyst morphology« less
Lee, Seung Min; Kim, Jeong Hun; Park, Cheolsoo; Hwang, Ji-Young; Hong, Joung Sook; Lee, Kwang Ho; Lee, Sang Hoon
2016-01-01
We fabricated a carbon nanotube (CNT)/adhesive polydimethylsiloxane (aPDMS) composite-based dry electroencephalograph (EEG) electrode for capacitive measuring of EEG signals. As research related to brain-computer interface applications has advanced, the presence of hairs on a patient's scalp has continued to present an obstacle to recorder EEG signals using dry electrodes. The CNT/aPDMS electrode developed here is elastic, highly conductive, self-adhesive, and capable of making conformal contact with and attaching to a hairy scalp. Onto the conductive disk, hundreds of conductive pillars coated with Parylene C insulation layer were fabricated. A CNT/aPDMS layer was attached on the disk to transmit biosignals to the pillar. The top of disk was designed to be solderable, which enables the electrode to connect with a variety of commercial EEG acquisition systems. The mechanical and electrical characteristics of the electrode were tested, and the performances of the electrodes were evaluated by recording EEGs, including alpha rhythms, auditory-evoked potentials, and steady-state visually-evoked potentials. The results revealed that the electrode provided a high signal-to-noise ratio with good tolerance for motion. Almost no leakage current was observed. Although preamplifiers with ultrahigh input impedance have been essential for previous capacitive electrodes, the EEGs were recorded here by directly connecting a commercially available EEG acquisition system to the electrode to yield high-quality signals comparable to those obtained using conventional wet electrodes.
Towannang, Madsakorn; Thiangkaew, Anongnad; Maiaugree, Wasan; Ratchaphonsaenwong, Kunthaya; Jarernboon, Wirat; Pimanpang, Samuk; Amornkitbamrung, Vittaya
2018-02-01
Tungsten carbide (WC) particles (~1 μm) were dispersed in DI water and dropped onto conductive glass. The resulting WC films were used as dye-sensitized solar cell (DSSC) counter electrodes. The performance of the WC DSSC based on the organic thiolate/disulfide (T-/T2) electrolyte was ~0.78%. The cell efficiency was greatly improved after decorating palladium (Pd) or platinum (Pt) nanoparticles on WC particles with a promising efficiency of ~2.15% for Pd-WC DSSC and ~4.62% for Pt-WC DSSC. The efficiency improvement of the composited (Pd-WC and Pt-WC) cells is attributed to co-functioning catalysts, the large electrode interfacial area and a low charge-transfer resistance at the electrolyte/counter electrode interface.
1985-06-01
evaporated onto the resulting films. These films were then cut to form disks about 8 mm in diameter and 0.7 mm thick. While one electrode covered the full...surrounded by a heating coil, inside an airtight chamber. A spring loaded brass electrode presses the sample and the other electrode ." down onto the copper...cylinder. A sapphire disk insulates the lower " lectrodh( from the copper. This arrangement guarantees good thermal contact, arid electrical
NASA Astrophysics Data System (ADS)
Ko, Y. D.; Yang, H. N.; Züttel, Andreas; Kim, S. D.; Kim, W. J.
2017-11-01
The Pt-supported hollow structured Pt-HZrO2 with the shell thickness of 27 nm is successfully synthesized. The water retention ability of Pt-HZrO2 is significantly enhanced compared with that of SiO2@ZrO2 due to the hydrophilic hollow structured HZrO2with high BET surface area. Pt-C and Pt-HZrO2 are combined with different weight fractions to prepare the double catalyst electrode (DCE). The membrane electrode assembly with the DCE is fabricated and applied to both anode and cathode or anode side only. The water flooding and thus rapid voltage drop is affected by the presence/or absence of the DCE at the cathode side. The cell test and visual experiment suggests that the Pt-HZrO2 layer adsorb the water molecules generated by the oxygen reduction reaction (ORR), preventing the water flooding. The power generation under RH 0% strongly suggests the back-diffusion of water molecules generated by the ORR. The flow rate to the cathode significantly affects the water flooding and cell performance. Higher flow rate to the cathode is advantageous to expel the water generated by the ORR, thus preventing water flooding and enhancing the cell performance. Therefore, the weight fraction of Pt-C to Pt-HZrO2 and the flow rate to the cathode should be well balanced.
Martínez-Juárez, Iris E.; Makeyev, Oleksandr; Gaitanis, John N.; Blum, Andrew S.; Fisher, Robert S.; Medvedev, Andrei V.
2014-01-01
Epilepsy is the second most prevalent neurological disorder (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}\\(\\sim 1\\) \\end{document}% prevalence) affecting \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}\\(\\sim 67\\) \\end{document} million people worldwide with up to 75% from developing countries. The conventional electroencephalogram is plagued with artifacts from movements, muscles, and other sources. Tripolar concentric ring electrodes automatically attenuate muscle artifacts and provide improved signal quality. We performed basic experiments in healthy humans to show that tripolar concentric ring electrodes can indeed record the physiological alpha waves while eyes are closed. We then conducted concurrent recordings with conventional disc electrodes and tripolar concentric ring electrodes from patients with epilepsy. We found that we could detect high frequency oscillations, a marker for early seizure development and epileptogenic zone, on the scalp surface that appeared to become more narrow-band just prior to seizures. High frequency oscillations preceding seizures were present in an average of 35.5% of tripolar concentric ring electrode data channels for all the patients with epilepsy whose seizures were recorded and absent in the corresponding conventional disc electrode data. An average of 78.2% of channels that contained high frequency oscillations were within the seizure onset or irritative zones determined independently by three epileptologists based on conventional disc electrode data and videos. PMID:27170874
Effect of Particle Size and Operating Conditions on Pt 3Co PEMFC Cathode Catalyst Durability
Gummalla, Mallika; Ball, Sarah; Condit, David; ...
2015-05-29
The initial performance and decay trends of polymer electrolyte membrane fuel cells (PEMFC) cathodes with Pt 3Co catalysts of three mean particle sizes (4.9 nm, 8.1 nm, and 14.8 nm) with identical Pt loadings are compared. Even though the cathode based on 4.9 nm catalyst exhibited the highest initial electrochemical surface area (ECA) and mass activity, the cathode based on 8.1 nm catalyst showed better initial performance at high currents. Owing to the low mass activity of the large particles, the initial performance of the 14.8 nm Pt3Co-based electrode was the lowest. The performance decay rate of the electrodes withmore » the smallest Pt 3Co particle size was the highest and that of the largest Pt 3Co particle size was lowest. Interestingly, with increasing number of decay cycles (0.6 to 1.0 V, 50 mV/s), the relative improvement in performance of the cathode based on 8.1 nm Pt 3Co over the 4.9 nm Pt 3Co increased, owing to better stability of the 8.1 nm catalyst. The electron microprobe analysis (EMPA) of the decayed membrane-electrode assembly (MEA) showed that the amount of Co in the membrane was lower for the larger particles, and the platinum loss into the membrane also decreased with increasing particle size. This suggests that the higher initial performance at high currents with 8.1 nm Pt 3Co could be due to lower contamination of the ionomer in the electrode. Furthermore, lower loss of Co from the catalyst with increased particle size could be one of the factors contributing to the stability of ECA and mass activity of electrodes with larger cathode catalyst particles. To delineate the impact of particle size and alloy effects, these results are compared with prior work from our research group on size effects of pure platinum catalysts. The impact of PEMFC operating conditions, including upper potential, relative humidity, and temperature on the alloy catalyst decay trends, along with the EMPA analysis of the decayed MEAs, are reported.« less
A methodology for investigating new nonprecious metal catalysts for PEM fuel cells.
Susac, D; Sode, A; Zhu, L; Wong, P C; Teo, M; Bizzotto, D; Mitchell, K A R; Parsons, R R; Campbell, S A
2006-06-08
This paper reports an approach to investigate metal-chalcogen materials as catalysts for the oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells. The methodology is illustrated with reference to Co-Se thin films prepared by magnetron sputtering onto a glassy-carbon substrate. Scanning Auger microscopy (SAM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) have been used, in parallel with electrochemical activity and stability measurements, to assess how the electrochemical performance relates to chemical composition. It is shown that Co-Se thin films with varying Se are active for oxygen reduction, although the open circuit potential (OCP) is lower than for Pt. A kinetically controlled process is observed in the potential range 0.5-0.7 V (vs reversible hydrogen electrode) for the thin-film catalysts studied. An initial exposure of the thin-film samples to an acid environment served as a pretreatment, which modified surface composition prior to activity measurements with the rotating disk electrode (RDE) method. Based on the SAM characterization before and after electrochemical tests, all surfaces demonstrating activity are dominated by chalcogen. XRD shows that the thin films have nanocrystalline character that is based on a Co(1-x)Se phase. Parallel studies on Co-Se powder supported on XC72R carbon show comparable OCP, Tafel region, and structural phase as for the thin-film model catalysts. A comparison for ORR activity has also been made between this Co-Se powder and a commercial Pt catalyst.
A sample-to-result system for blood coagulation tests on a microfluidic disk analyzer
Lin, Chia-Hui; Liu, Cheng-Yuan; Shih, Chih-Hsin; Lu, Chien-Hsing
2014-01-01
In this report, we describe in detail a microfluidic analyzer, which is able to conduct blood coagulation tests using whole blood samples. Sample preparation steps, such as whole blood aliquoting and metering, plasma separation, decanting, and mixing with reagents were performed in sequence through microfluidic functions integrated on a disk. Both prothrombin time (PT) and activated partial thromboplastin time (aPTT) were carried out on the same platform and the test results can be reported in 5 min. Fifty clinical samples were tested for both PT and aPTT utilizing the microfluidic disk analyzer and the instrument used in hospitals. The test results showed good correlation and agreement between the two instruments. PMID:25332733
NASA Astrophysics Data System (ADS)
Tajabadi, M. T.; Sookhakian, M.; Zalnezhad, E.; Yoon, G. H.; Hamouda, A. M. S.; Azarang, Majid; Basirun, W. J.; Alias, Y.
2016-11-01
An efficient non-enzymatic biosensor electrode consisting of nitrogen-doped graphene (N-graphene) and platinum nanoflower (Pt NF) with different N-graphene loadings were fabricated on indium tin oxide (ITO) glass using a simple layer-by-layer electrophoretic and electrochemical sequential deposition approach. N-graphene was synthesized by annealing graphene oxide with urea at 900 °C. The structure and morphology of the as-fabricated non-enzymatic biosensor electrodes were determined using X-ray diffraction, field emission electron microscopy, transmission electron microscopy, Raman and X-ray photoelectron spectra. The as-fabricated Pt NF-N-graphene-modified ITO electrodes with different N-graphene loadings were utilized as a non-enzymatic biosensor electrode for the detection of hydrogen peroxide (H2O2). The behaviors of the hybrid electrodes towards H2O2 reduction were assessed using chronoamperometry, cyclic voltammetry and electrochemical impedance spectroscopy analysis. The Pt NF-N-graphene-modified ITO electrode with a 0.05 mg ml-1 N-graphene loading exhibited the lowest detection limit, fastest amperometric sensing, a wide linear response range, excellent stability and reproducibility for the non-enzymatic H2O2 detection, due to the synergistic effect between the electrocatalytic activity of the Pt NF and the high conductivity and large surface area of N-graphene.
Polarization fatigue of BiFeO3 films with ferromagnetic metallic electrodes
NASA Astrophysics Data System (ADS)
Chen, Chen; Wang, Ji; Li, Chen; Wen, Zheng; Xu, Qingyu; Du, Jun
2017-05-01
BiFeO3 (BFO) thin films were epitaxially grown on (001) SrTiO3 substrates using LaNiO3 as bottom electrode by pulsed laser deposition. The ferroelectric properties of BFO layer with ferromagnetic Ni21Fe79 (NiFe) or non-magnetic Pt electrode are investigated. Well saturated polarization-electric field (P-E) hysteresis loops are observed. Significant fatigue and associated drastic decrease in switchable polarization have been observed with cycling number exceeds 106, which can be explained by the domain wall pinning due to the oxygen vacancies trapping. With increasing cycle number to above 107, the polarization is rejuvenated. The polarization for BFO layer with NiFe electrode recovers to the initial value, while only about 75% of initial polarization is recovered for BFO layer with Pt electrode. Furthermore, the imprint is alleviated and the P-E hysteresis loops become more symmetric after the polarization recovery. The difference can be understood by the different interface state of NiFe/BFO and Pt/BFO.
Effect of nitrogen-accommodation ability of electrodes in SiNx-based resistive switching devices
NASA Astrophysics Data System (ADS)
Yang, Mei; Wang, Hong; Ma, Xiaohua; Gao, Haixia; Wang, Bin
2017-12-01
Nitrides could create opportunities of tuning resistive-switching (RS) characteristics due to their different electrical properties and ionic chemistry with oxides. Here, we reported on the effect of nitrogen-accommodation ability of electrodes in SiNx-based RS devices. The Ti/SiNx/Pt devices show a self-compliance bipolar RS with excellent reliability. The W/SiNx/Pt devices provide an unstable RS and fall to an intermediate resistance state (IRS) after a set process. The low resistance states of the Ti/SiNx/Pt devices obey Ohmic conduction and Frenkel-Poole emission from a conductive channel. The IRS of the W/SiNx/Pt devices conforms to Schottky emission and Fowler-Nordheim tunneling from a conductive channel/insulator/electrode structure. A nitrogen-ion-based model is proposed to explain the experimental results. According to the model, the nitrogen-accommodation ability of the electrodes dominates the nitrogen-reservoir size and the nitrogen-ion migration at the metal/SiNx interface, modulating the RS characteristics of the SiNx memory devices.
Electrode-Modified Zeolites - Electrode Microstructures Contained in and on a Heterogeneous Catalyst
1988-07-15
zeolite Type Y and Pt supported on gamma-alumina. The electrolytic response of zeolite-supported Pt in the absence of added electrolyte salt for water or...character of metals at sizes where’ bulk metallic properties may not be exhibited. Furthermore, electrolyses are now allowed using loadings of catalysts which...in water until the filtrate tested negatively for Cl with AgNO 3; PtY was then dried a- 135 C. Equilibrium exchnge occurs at these low weight
von Weber, Alexander; Baxter, Eric T; Proch, Sebastian; Kane, Matthew D; Rosenfelder, Michael; White, Henry S; Anderson, Scott L
2015-07-21
Understanding the factors that control electrochemical catalysis is essential to improving performance. We report a study of electrocatalytic ethanol oxidation - a process important for direct ethanol fuel cells - over size-selected Pt centers ranging from single atoms to Pt14. Model electrodes were prepared by soft-landing of mass-selected Ptn(+) on indium tin oxide (ITO) supports in ultrahigh vacuum, and transferred to an in situ electrochemical cell without exposure to air. Each electrode had identical Pt coverage, and differed only in the size of Pt clusters deposited. The small Ptn have activities that vary strongly, and non-monotonically with deposited size. Activity per gram Pt ranges up to ten times higher than that of 5 to 10 nm Pt particles dispersed on ITO. Activity is anti-correlated with the Pt 4d core orbital binding energy, indicating that electron rich clusters are essential for high activity.
Kim, Yong Hee; Kim, Ah Young; Kim, Gook Hwa; Han, Young Hwan; Chung, Myung-Ae; Jung, Sang-Don
2016-02-01
In order to complement the high impedance electrical property of gold nanoparticles (Au NPs) we have performed electro-co-deposition of gold-platinum nanoparticles (Au-Pt NPs) onto the Au multi-electrode array (MEA) and modified the Au-Pt NPs surface with cell adhesive poly-D-lysine via thiol chemistry based covalent binding. The Au-Pt NPs were analyzed to have bimetallic nature not the mixture of Au NPs and Pt NPs by X-ray diffraction analysis and to have impedance value (4.0 × 10(4) Ω (at 1 kHz)) comparable to that of Pt NPs. The performance of Au-Pt NP-modified MEAs was also checked in relation to neuronal signal recording. The noise level in Au-Pt NP-modified MEAs was lower than in that of Au NP-modified MEA.
NASA Astrophysics Data System (ADS)
Tsai, Chih-Hung; Shih, Chun-Jyun; Wang, Wun-Shiuan; Chi, Wen-Feng; Huang, Wei-Chih; Hu, Yu-Chung; Yu, Yuan-Hsiang
2018-03-01
In this study, macrocyclic Co complexes were successfully grafted onto graphene oxide (GO) to produce GO/Co nanocomposites with a large surface area, high electrical conductivity, and excellent catalytic properties. The novel GO/Co nanocomposites were applied as counter electrodes for Pt-free dye-sensitized solar cells (DSSCs). Various ratios of macrocyclic Co complexes were used as the reductant to react with the GO, with which the surface functional groups of the GO were reduced and the macrocyclic ligand of the Co complexes underwent oxidative dehydrogenation, after which the conjugated macrocyclic Co systems were grafted onto the surface of the reduced GO to form GO/Co nanocomposites. The surface morphology, material structure, and composition of the GO/Co composites and their influences on the power-conversion efficiency of DSSC devices were comprehensively investigated. The results showed that the GO/Co (1:10) counter electrode (CE) exhibited an optimal power conversion efficiency of 7.48%, which was higher than that of the Pt CE. The GO/Co (1:10) CE exhibited superior electric conductivity, catalytic capacity, and redox capacity. Because GO/Co (1:10) CEs are more efficient and cheaper than Pt CEs, they could potentially be used as a replacement for Pt electrodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huet, F.; Keddam, M.; Takenouti, H.
1993-07-01
By conferring frequency and time resolution on the rotating rink-disk electrode technique, original information can be obtained on the mechanism of corrosion processes involving the formation of intermediate, passive, or corrosion product layers. The methodology that allows the measurement of the actual flux of chemical species generated by a localized corrosion site is described which takes into account the usual parameters of the RRDE and the location of the active spot on the disk surface. Application to pitting corrosion of iron by Cl[sup [minus
Song, Dandan; Cui, Peng; Zhao, Xing; Li, Meicheng; Chu, Lihua; Wang, Tianyue; Jiang, Bing
2015-03-19
A tungsten trioxide (WO₃) nanoplate array is fabricated directly on the FTO/glass substrate and used as a platinum (Pt) nanoscale supporter for a highly efficient and low Pt-consumption counter electrode (CE) in dye-sensitized solar cells (DSCs). A Pt/WO₃ composite structure, with Pt nanoparticles having a diameter of 2-3 nm, increases the electrochemical catalytic activity in catalyzing the reduction of triiodide. Accordingly, the power conversion efficiency is increased from less than 1% for WO₃ CE and 8.1% for Pt CE, respectively, to 8.9% for Pt/WO₃ CE. Moreover, the use of Pt/WO₃ CE can dramatically reduce the consumption of scarce Pt material, with a relatively low Pt-loading of ∼2 μg cm(-2), while maintaining a much better performance. The excellent performance of Pt/WO₃ CE is attributed to the efficient electron injection and transport via WO₃ supporters, as well as the nanostructure array morphology of WO₃ for deposition of fine Pt nanoparticles. This work provides an approach for developing highly catalytic and low-cost Pt based CEs, which also has implications for the development of Pt/WO₃ nanoplate arrays for other applications.
Interpenetrating polyaniline-gold electrodes for SERS and electrochemical measurements
NASA Astrophysics Data System (ADS)
West, R. M.; Semancik, S.
2016-11-01
Facile fabrication of nanostructured electrode arrays is critical for development of bimodal SERS and electrochemical biosensors. In this paper, the variation of applied potential at a polyaniline-coated Pt electrode is used to selectivity deposit Au on the polyaniline amine sites or on the underlying Pt electrode. By alternating the applied potential, the Au is grown simultaneously from the top and the bottom of the polyaniline film, leading to an interpenetrated, nanostructured polymer-metal composite extending from the Pt electrode to the electrolyte solution. The resulting films have unique pH-dependent electrochemical properties, e.g. they retain electrochemical activity in both acidic and neutral solutions, and they also include SERS-active nanostructures. By varying the concentration of chloroaurate used during deposition, Au nanoparticles, nanodendrites, or nanosheets can be selectively grown. For the films deposited under optimal conditions, using 5 mmol/L chloroaurate, the SERS enhancement factor for Rhodamine 6G was found to be as high as 1.1 × 106 with spot-to-spot and electrode-to-electrode relative standard deviations as low as 8% and 12%, respectively. The advantages of the reported PANI-Au composite electrodes lie in their facile fabrication, enabling the targeted deposition of tunable nanostructures on sensing arrays, and their ability to produce orthogonal optical and electrochemical analytical results.
Harris, Clifton; Kamat, Prashant V
2010-12-28
The electrodic behavior of platinum nanoparticles (2.8 nm diameter) and their role in influencing the photocatalytic behavior of CdSe quantum dots (3.4 nm diameter) has been evaluated by confining both nanoparticles together in heptane/dioctyl sulphosuccinate/water reverse micelles. The particles spontaneously couple together within the micelles via micellar exchange processes and thus facilitate experimental observation of electron transfer reactions inside the water pools. Electron transfer from CdSe to Pt is found to occur with a rate constant of 1.22 × 10(9) s(-1). With the use of methyl viologen (MV(2+)) as a probe molecule, the role of Pt in the photocatalytic process is established. Ultrafast oxidation of the photogenerated MV(+•) radicals indicates that Pt acts as an electron sink, scavenging electrons from MV(+•) with a rate constant of 3.1 × 10(9) s(-1). The electron transfer between MV(+•) and Pt, and a drastically lower yield of MV(+•) under steady state irradiation, confirms the ability of Pt nanoparticles to discharge electrons quickly. The kinetic details of photoinduced processes in CdSe-Pt assemblies and the electrodic behavior of Pt nanoparticles provide important information for the development of light energy conversion devices.
NASA Astrophysics Data System (ADS)
Ehsani, Ali; Jaleh, Babak; Nasrollahzadeh, Mahmoud
2014-07-01
Reduced graphene oxide (rGO) was used to support Cu nanoparticles. As electro-active electrodes for supercapacitors composites of reduced graphene oxide/Cu nanoparticles (rGO/CuNPs) and polytyramine (PT) with good uniformity are prepared by electropolymerization. Composite of rGO/CuNPs-PT was synthesized by cyclic voltammetry (CV) methods and electrochemical properties of film were investigated by using electrochemical techniques. The results show that, the rGO/CuNPs-PT/G has better capacitance performance. This is mainly because of the really large surface area and the better electronic and ionic conductivity of rGO/CuNPs-PT/G, which lead to greater double-layer capacitance and faradic pseudo capacitance. Modified graphite electrodes (rGO/CuNPs-PT/G) were examined for their redox process and electrocatalytic activities towards the oxidation of methanol in alkaline solutions. The methods of cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) were employed. In comparison with a Cu-PT/G (Graphite), rGO/CuNPs-PT/G modified electrode shows a significantly higher response for methanol oxidation. A mechanism based on the electro-chemical generation of Cu(III) active sites and their subsequent consumptions by methanol have been discussed.
NASA Astrophysics Data System (ADS)
Dutta, Abhijit; Mondal, Achintya; Datta, Jayati
2015-06-01
Understanding of the electrode-kinetics and mechanism of ethanol oxidation reaction (EOR) is of considerable interest for optimizing electro-catalysis in direct ethanol fuel cell (DEFC). This work attempts to design Pt based electro-catalyst on carbon support, tuned with gold nano-particles (NPs), for their use in DEFC operating in alkaline medium. The platinum-gold alloyed NPs are synthesized at desired compositions and size (2-10 nm) by controlled borohydride reduction method and successfully characterized by XRD, TEM, EDS and XPS techniques. The kinetic parameters along with the activation energies for the EOR are evaluated over the temperature range 20-80 °C and the oxidation reaction products estimated through ion chromatographic analysis. Compared to single Pt/C catalyst, the over potential of EOR is reduced by ca. 500 mV, at the onset during the reaction, for PtAu/C alloy with only 23% Pt content demonstrating the ability of Au and/or its surface oxides providing oxygen species at much lower potentials compared to Pt. Furthermore, a considerable increase in the peak power density (>191%) is observed in an in-house fabricated direct ethanol anion exchange membrane fuel cell, DE(AEM)FC using the best performing Au covered Pt electrode (23% Pt) compared to the monometallic Pt catalyst.
NASA Astrophysics Data System (ADS)
Jeena, S. E.; Gnanaprakasam, P.; Selvaraju, T.
2017-01-01
A simple and an efficient tool for the direct growth of bimetallic Ag@Pt nanorods (NRDs) on electrochemically reduced graphene oxide (ERGO) nanosheets was developed at glassy carbon electrode (GCE). Initially, Cu shell was grown on Ag core as Ag@Cu NRD by the seed-mediated growth method. Accordingly, Cu shell has been successfully replaced by Pt using the electroless galvanic replacement method with ease by effective functionalization of L-tryptophan on ERGO surface (L-ERGO), which eventually plays an important role in the direct growth of one-dimensional bimetallic NRDs. As a result, the synthesized Ag@Pt NRD-supported L-ERGO nanosheets (Ag@Pt NRDs/L-ERGO/GCE) were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDAX) and Raman spectroscopy. Anodic stripping voltammetry was used to explore its electrochemical properties. Finally, the developed bimetallic Ag@Pt NRDs/L-ERGO/GCEs were studied as a better electrocatalyst compared to the commercial catalysts such as Pt40/C or Pt20/C-loaded electrode for the oxidation of ethanol or methanol with a high tolerance level and an enhanced current density. In addition, the long-term stability was studied using chronoamperometry for 1000 s at the bimetallic NRD electrode for alcohol oxidation which impedes the fouling properties. The unfavourable and favourable electrooxidation of ethanol at Ag@Cu NRDs/L-ERGO/GCE (a) and Ag@Pt NRDs/L-ERGO/GCE (b) is discussed. The synergistic effect of Ag core and catalytic properties of Pt shell at Ag@Pt NRDs/L-ERGO/GCE tend to strongly minimize the CO poisoning effect and enhanced ethanol electrooxidation.
Graphene-Supported Platinum Catalyst-Based Membrane Electrode Assembly for PEM Fuel Cell
NASA Astrophysics Data System (ADS)
Devrim, Yilser; Albostan, Ayhan
2016-08-01
The aim of this study is the preparation and characterization of a graphene-supported platinum (Pt) catalyst for proton exchange membrane fuel cell (PEMFC) applications. The graphene-supported Pt catalysts were prepared by chemical reduction of graphene and chloroplatinic acid (H2PtCl6) in ethylene glycol. X-ray powder diffraction, thermogravimetric analysis (TGA) and scanning electron microscopy have been used to analyze structure and surface morphology of the graphene-supported catalyst. The TGA results showed that the Pt loading of the graphene-supported catalyst was 31%. The proof of the Pt particles on the support surfaces was also verified by energy-dispersive x-ray spectroscopy analysis. The commercial carbon-supported catalyst and prepared Pt/graphene catalysts were used as both anode and cathode electrodes for PEMFC at ambient pressure and 70°C. The maximum power density was obtained for the Pt/graphene-based membrane electrode assembly (MEA) with H2/O2 reactant gases as 0.925 W cm2. The maximum current density of the Pt/graphene-based MEA can reach 1.267 and 0.43 A/cm2 at 0.6 V with H2/O2 and H2/air, respectively. The MEA prepared by the Pt/graphene catalyst shows good stability in long-term PEMFC durability tests. The PEMFC cell voltage was maintained at 0.6 V without apparent voltage drop when operated at 0.43 A/cm2 constant current density and 70°C for 400 h. As a result, PEMFC performance was found to be superlative for the graphene-supported Pt catalyst compared with the Pt/C commercial catalyst. The results indicate the graphene-supported Pt catalyst could be utilized as the electrocatalyst for PEMFC applications.
Nonfaradaic nanoporous electrochemistry for conductometry at high electrolyte concentration.
Bae, Je Hyun; Kang, Chung Mu; Choi, Hyoungseon; Kim, Beom Jin; Jang, Woohyuk; Lim, Sung Yul; Kim, Hee Chan; Chung, Taek Dong
2015-02-17
Nanoporous electrified surfaces create a unique nonfaradaic electrochemical behavior that is sensitively influenced by pore size, morphology, ionic strength, and electric field modulation. Here, we report the contributions of ion concentration and applied ac frequency to the electrode impedance through an electrical double layer overlap and ion transport along the nanopores. Nanoporous Pt with uniform pore size and geometry (L2-ePt) responded more sensitively to conductivity changes in aqueous solutions than Pt black with poor uniformity despite similar real surface areas and enabled the previously difficult quantitative conductometry measurements at high electrolyte concentrations. The nanopores of L2-ePt were more effective in reducing the electrode impedance and exhibited superior linear responses to not only flat Pt but also Pt black, leading to successful conductometric detection in ion chromatography without ion suppressors and at high ionic strengths.
NASA Astrophysics Data System (ADS)
Jambunathan, Krishnakumar
Low temperature fuel cells have many potential benefits, including high efficiency, high energy density and environmental friendliness. However, logistically appealing fuels for this system, such as reformed hydrocarbons or alcohols, exhibit poor performance because of catalyst poisoning that occurs during oxidation at the anode. This research focuses on the analysis of several model fuels and catalyst materials to understand the impact of catalyst poisoning on reactivity. Two novel experimental tools were developed based upon the local measurement of catalyst performance using scanning, reactivity mapping probes. The Scanning Electrochemical Microscope (SECM) was used to directly measure the rate constant for hydrogen oxidation in the presence and absence of dissolved CO. The Scanning Differential Electrochemical Mass Spectrometer (SDEMS) was exploited to measure the partial and complete oxidation products of methanol and ethanol oxidation. The reactivity of Pt and Pt/Ru catalysts towards the hydrogen oxidation reaction in the absence and presence of adsorbed CO was elucidated using the SECM. Steady state rate constant measurements in the absence of CO showed that the rate of hydrogen oxidation reaction exceeded 1 cms-1 . Steady state rate constant measurements in the presence of CO indicated that the platinum surface is completely inactive due to adsorbed CO. Addition of as little as 6% Ru to the Pt electrode was found to significantly improve the activity of the electrode towards CO removal. SDEMS was used to study the electro-oxidation of methanol on Pt xRuy electrodes at different electrode potentials and temperatures. Screening measurements performed with the SDEMS showed that PtxRu y electrodes containing 6--40% Ru had the highest activity for methanol oxidation. Current efficiencies for CO2 were also calculated under different conditions. SDEMS was also used to study the electro-oxidation of ethanol on Pt xRuy electrodes. The reaction was found to occur more slowly than the methanol oxidation reaction. Addition of 22%--40% Ru to the Pt electrode was found to increase the current densities and lower the onset potentials. The reaction was found to occur though a parallel path mechanism, which was confirmed by the detection of ethanol and acetic acid apart from CO2.
2017-03-01
Overall, the devices with IrO2 top electrode were less impacted by the irradiation compared to the Pt top electrode devices. Keywords: lead...displacement and ionization events. However, prior research has primarily concentrated only on the effects of irradiation as polarization degradation...thin films deposited on platinized silicon wafers, with IrO2 or Pt top electrodes. All samples were irradiated with 0.2, 0.5, 1, 2, 5, and 10
Electrochemical Studies of Redox Systems for Energy Storage
NASA Technical Reports Server (NTRS)
Wu, C. D.; Calvo, E. J.; Yeager, E.
1983-01-01
Particular attention was paid to the Cr(II)/Cr(III) redox couple in aqueous solutions in the presence of Cl(-) ions. The aim of this research has been to unravel the electrode kinetics of this redox couple and the effect of Cl(1) and electrode substrate. Gold and silver were studied as electrodes and the results show distinctive differences; this is probably due to the role Cl(-) ion may play as a mediator in the reaction and the difference in state of electrical charge on these two metals (difference in the potential of zero charge, pzc). The competition of hydrogen evolution with CrCl3 reduction on these surfaces was studied by means of the rotating ring disk electrode (RRDE). The ring downstream measures the flux of chromous ions from the disk and therefore separation of both Cr(III) and H2 generation can be achieved by analyzing ring and disk currents. The conditions for the quantitative detection of Cr(2+) at the ring electrode were established. Underpotential deposition of Pb on Ag and its effect on the electrokinetics of Cr(II)/Cr(III) reaction was studied.
NASA Astrophysics Data System (ADS)
Wei, Meng; Jiang, Min; Liu, Xiaobo; Wang, Min; Mu, Shichun
2016-09-01
A rational electrode structure can allow proton exchange membrane (PEM) fuel cells own high performance with a low noble metal loading and an optimal transport pathway for reaction species. In this study, we develop a graphene doped polyacrylonitile (PAN)/polyvinylident fluoride (PVDF) (GPP) electrospun nanofiber electrode with improved electrical conductivity and high porosity, which could enhance the triple reaction boundary and promote gas and water transport throughout the porous electrode. Thus the increased electrochemical active surface area (ECSA) of Pt catalysts and fuel cell performance can be expected. As results, the ECSA of hot-pressed electrospun electrodes with 2 wt% graphene oxide (GO) is up to 84.3 m2/g, which is greatly larger than that of the conventional electrode (59.5 m2/g). Significantly, the GPP nanofiber electrospun electrode with Pt loading of 0.2 mg/cm2 exhibits higher fuel cell voltage output and stability than the conventional electrode.
NASA Astrophysics Data System (ADS)
Niwa, Yoshimitsu; Kaneko, Eiji
Vacuum circuit breakers (VCB) have been widely used for power distribution systems. Vacuum Interrupters, which are the current interruption unit, have been increased its interruption capability with the development of vacuum arc control technology by magnetic field. There are three major type electrodes: disk shaped electrodes, radial magnetic field electrodes, axial magnetic field (AMF) electrodes. In the disk shaped electrode, the vacuum arc between the electrodes is not controlled. In the AMF electrode, the vacuum arc is diffused and stabilized by an axial magnetic field, which is parallel to the arc current. In the last type of electrodes, the vacuum arc column is rotated by magnetic force generated by the current flowing in the electrodes. The interruption current and the voltage of one break VCB is increased to 100 kA, 144 kV respectively. This paper describes basic configurations and functions of VCB, vacuum arc control technology in vacuum interrupters, recent researches and applications of VCB.
NASA Astrophysics Data System (ADS)
Asazawa, Koichiro; Yamada, Koji; Tanaka, Hirohisa; Taniguchi, Masatoshi; Oguro, Keisuke
Electrochemical oxidation of hydrazine and its derivatives on the surface of various metal electrodes in alkaline media was investigated. A comparison of various polycrystalline metal electrodes (Ni, Co, Fe, Cu, Ag, Au, and Pt) showed that Co and Ni electrodes have a lower onset potential for hydrazine oxidation than the Pt electrode. The onset oxidation potential of APA (aminopolyacrylamide), a hydrazine derivative (-0.127 V vs. reversible hydrogen electrode, RHE), was similar to that of hydrazine hydrate (-0.178 V vs. RHE) in the case of the Co electrode. APA oxidation was possible because of hydrazine desorption that was caused by APA hydrolysis. The hydrolysis reaction was brought about by a heat treatment. This result suggests that the hydrazine hydrolysis reaction of hydrazine derivatives makes it possible to store hydrazine hydrate safely.
NASA Astrophysics Data System (ADS)
Kuwabara, Hiroki; Sumi, Akihiro; Okamoto, Shoji; Hoko, Hiromasa; Cross, Jeffrey S.; Funakubo, Hiroshi
2009-04-01
Pb(Zr0.35Ti0.65)O3 (PZT) films 170 nm thick were prepared at 415 °C by pulsed metal-organic chemical vapor deposition. The (111)-oriented PZT films with local epitaxial growth were obtained on (111)SrRuO3/(111)Pt/TiO2/SiO2/Si substrates and their ferroelectricities were ascertained. Ferroelectricity was improved by postannealing under O2 gas flow up to 550 °C. Larger remanent polarization and better fatigue endurance were obtained using a SrRuO3 top electrode compared to a Pt top electrode for PZT films after annealing at 500 °C.
Means and method for nonuniform poling of piezoelectric transducers
Hsu, David K.; Margetan, Frank J.; Hasselbusch, Michael D.; Wormley, Samuel J.; Hughes, Michael S.; Thompson, Donald O.
1990-10-09
An apparatus and method for nonuniform poling of piezoelectric transducers includes machining one or more indentation into an end of a piezoelectric rod and cutting the rod to present a thickened disk shape. Highly electrically conductive material is deposited on at least the indentations in the one end and on at least portions of the opposite face of the member. One or more electrodes are configured to matingly fit within the indentations on the one face of the disk, with a like number of electrodes being positionable on the opposite face of the material. Electrical power is then applied to the electrodes in desired amounts, polarity, and duration. The indentations vary the electrical field produced within the piezoelectric material to produce nonuniform poling in the material. The thick disk is then cut to remove the indentations and to present a thin, flat two sided disk for installation in a conventional piezoelectric transducer probe. The indentations are selected to produce poling in accordance with desired transducer response profiles such as Gaussian or Bessel functions.
Effect of bottom electrode on dielectric property of sputtered-(Ba,Sr)TiO{sub 3} films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, Shinichi; Yamada, Tomoaki; Takahashi, Kenji
2009-03-15
(Ba{sub 0.5}Sr{sub 0.5})TiO{sub 3} (BST) films were deposited on (111)Pt/TiO{sub 2}/SiO{sub 2}/Al{sub 2}O{sub 3} substrates by rf sputtering. By inserting a thin layer of SrRuO{sub 3} in between BST film and (111)Pt electrode, the BST films grew fully (111)-oriented without any other orientations. In addition, it enables us to reduce the growth temperature of BST films while keeping the dielectric constant and tunability as high as those of BST films directly deposited on Pt at higher temperatures. The dielectric loss of the films on SrRuO{sub 3}-top substrates was comparable to that on Pt-top substrates for the same level of dielectricmore » constant. The results suggest that the SrRuO{sub 3} thin layer on (111)Pt electrode is an effective approach to growing highly crystalline BST films with (111) orientation at lower deposition temperatures.« less
The magnetic properties and microstructure of Co-Pt thin films using wet etching process.
Lee, Chang-Hyoung; Cho, Young-Lae; Lee, Won-Pyo; Suh, Su-Jeong
2014-11-01
Perpendicular magnetic recording (PMR) is a promising candidate for high density magnetic recording and has already been applied to hard disk drive (HDD) systems. However, media noise still limits the recording density. To reduce the media noise and achieve a high signal-to-noise ratio (SNR) in hard disk media, the grains of the magnetic layer must be magnetically isolated from each other. This study examined whether sputter-deposited Co-Pt thin films can have adjacent grains that are physically isolated. To accomplish this, the effects of the sputtering conditions and wet etching process on magnetic properties and the microstructure of the films were investigated. The film structure was Co-Pt (30 nm)/Ru (30 nm)/NiFe (10 nm)/Ta (5 nm). The composition of the Co-Pt thin films was Co-30.7 at.% Pt. The Co-Pt thin films were deposited in Ar gas at 5, 10, 12.5, and 15 mTorr. Wet etching process was performed using 7% nitric acid solution at room temperature. These films had high out-of-plane coercivity of up to 7032 Oe, which is twice that of the as-deposited film. These results suggest that wet etched Co-Pt thin films have weaker exchange coupling and enhanced out-of-plane coercivity, which would reduce the medium noise.
Extended foil capacitor with radially spoked electrodes
Foster, James C.
1990-01-01
An extended foil capacitor has a conductive disk electrically connected in oncrushing contact to the extended foil. A conductive paste is placed through spaces between radial spokes on the disk to electrically and mechanically connect the extended foil to the disk.
Du, Fuying; Fung, Ying Sing
2010-07-01
A new dual opposite carbon-fiber micro-disk electrode detector was fabricated and tested for hyphenation with CE in the polyphenol determination. Under optimized conditions, CE-dual opposite carbon-fiber micro-disk electrode was found able to baseline separate and determine five important polyphenols (trans-resveratrol, (+)-catechin, (-)-epicatechin, quercetin and gallic acid) in red wine within 16 min with low detection limit (0.031-0.21 mg/L) and satisfactory repeatability (2.0-3.3% RSD, n=5). The opposite dual electrode enables simultaneous determination of CE eluents for current ratio measured at +0.8 and +1.0 V versus Ag/AgCl for the peak purity assessment. The capability to identify the presence of co-migrating impurities in given polyphenol peaks was demonstrated in a mixed standard solution with overlapping (+)-catechin and (-)-epicatechin peaks and in commercial red wine with unknown impurities and confirming the reliability for polyphenol quantitation in red wine with matching migration time and current ratio.
Esmaeili, Chakavak; Ghasemi, Mostafa; Heng, Lee Yook; Hassan, Sedky H A; Abdi, Mahnaz M; Daud, Wan Ramli Wan; Ilbeygi, Hamid; Ismail, Ahmad Fauzi
2014-12-19
A novel nano-bio composite polypyrrole (PPy)/kappa-carrageenan(KC) was fabricated and characterized for application as a cathode catalyst in a microbial fuel cell (MFC). High resolution SEM and TEM verified the bud-like shape and uniform distribution of the PPy in the KC matrix. X-ray diffraction (XRD) has approved the amorphous structure of the PPy/KC as well. The PPy/KC nano-bio composites were then studied as an electrode material, due to their oxygen reduction reaction (ORR) ability as the cathode catalyst in the MFC and the results were compared with platinum (Pt) as the most common cathode catalyst. The produced power density of the PPy/KC was 72.1 mW/m(2) while it was 46.8 mW/m(2) and 28.8 mW/m(2) for KC and PPy individually. The efficiency of the PPy/KC electrode system is slightly lower than a Pt electrode (79.9 mW/m(2)) but due to the high cost of Pt electrodes, the PPy/KC electrode system has potential to be an alternative electrode system for MFCs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bozorgzadeh, Somayyeh; Hamidi, Hassan; Ortiz, Roberto; Ludwig, Roland; Gorton, Lo
2015-10-07
In the present work, platinum and palladium nanoparticles (PtNPs and PdNPs) were decorated on the surface of multi-walled carbon nanotubes (MWCNTs) by a simple thermal decomposition method. The prepared nanohybrids, PtNPs-MWCNTs and PdNPs-MWCNTs, were cast on the surface of spectrographic graphite electrodes and then Phanerochaete chrysosporium cellobiose dehydrogenase (PcCDH) was adsorbed on the modified layer. Direct electron transfer between PcCDH and the nanostructured modified electrodes was studied using flow injection amperometry and cyclic voltammetry. The maximum current responses (Imax) and the apparent Michaelis-Menten constants (K) for the different PcCDH modified electrodes were calculated by fitting the data to the Michaelis-Menten equation and compared. The sensitivity towards lactose was 3.07 and 3.28 μA mM(-1) at the PcCDH/PtNPs-MWCNTs/SPGE and PcCDH/PdNPs-MWCNTs/SPGE electrodes, respectively, which were higher than those measured at the PcCDH/MWCNTs/SPGE (2.60 μA mM(-1)) and PcCDH/SPGE (0.92 μA mM(-1)). The modified electrodes were additionally tested as bioanodes for biofuel cell applications.
Atomic structure of (111) SrTiO3/Pt interfaces
NASA Astrophysics Data System (ADS)
Schmidt, Steffen; Klenov, Dmitri O.; Keane, Sean P.; Lu, Jiwei; Mates, Thomas E.; Stemmer, Susanne
2006-03-01
Atomic resolution high-angle annular dark field (HAADF) imaging in scanning transmission electron microscopy was used to investigate the interface atomic structure of epitaxial, (111) oriented SrTiO3 films on epitaxial Pt electrodes grown on (0001) sapphire. The cube-on-cube orientation relationship of SrTiO3 on Pt was promoted by the use of a Ti adhesion layer underneath the Pt electrode. While a Ti-rich Pt surface was observed before SrTiO3 growth, HAADF images showed an atomically abrupt SrTiO3/Pt interface with no interfacial layers. The SrTiO3 films contained two twin variants that were related by a 180° rotation about the ⟨111⟩ surface normal. HAADF images showed two different interface atomic arrangements for the two twins. The role of Ti in promoting (111) epitaxy and the implications for the dielectric properties are discussed.
Abiotic-biotic characterization of Pt/Ir microelectrode arrays in chronic implants
Prasad, Abhishek; Xue, Qing-Shan; Dieme, Robert; Sankar, Viswanath; Mayrand, Roxanne C.; Nishida, Toshikazu; Streit, Wolfgang J.; Sanchez, Justin C.
2014-01-01
Pt/Ir electrodes have been extensively used in neurophysiology research in recent years as they provide a more inert recording surface as compared to tungsten or stainless steel. While floating microelectrode arrays (FMA) consisting of Pt/Ir electrodes are an option for neuroprosthetic applications, long-term in vivo functional performance characterization of these FMAs is lacking. In this study, we have performed comprehensive abiotic-biotic characterization of Pt/Ir arrays in 12 rats with implant periods ranging from 1 week up to 6 months. Each of the FMAs consisted of 16-channel, 1.5 mm long, and 75 μm diameter microwires with tapered tips that were implanted into the somatosensory cortex. Abiotic characterization included (1) pre-implant and post-explant scanning electron microscopy (SEM) to study recording site changes, insulation delamination and cracking, and (2) chronic in vivo electrode impedance spectroscopy. Biotic characterization included study of microglial responses using a panel of antibodies, such as Iba1, ED1, and anti-ferritin, the latter being indicative of blood-brain barrier (BBB) disruption. Significant structural variation was observed pre-implantation among the arrays in the form of irregular insulation, cracks in insulation/recording surface, and insulation delamination. We observed delamination and cracking of insulation in almost all electrodes post-implantation. These changes altered the electrochemical surface area of the electrodes and resulted in declining impedance over the long-term due to formation of electrical leakage pathways. In general, the decline in impedance corresponded with poor electrode functional performance, which was quantified via electrode yield. Our abiotic results suggest that manufacturing variability and insulation material as an important factor contributing to electrode failure. Biotic results show that electrode performance was not correlated with microglial activation (neuroinflammation) as we were able to observe poor performance in the absence of neuroinflammation, as well as good performance in the presence of neuroinflammation. One biotic change that correlated well with poor electrode performance was intraparenchymal bleeding, which was evident macroscopically in some rats and presented microscopically by intense ferritin immunoreactivity in microglia/macrophages. Thus, we currently consider intraparenchymal bleeding, suboptimal electrode fabrication, and insulation delamination as the major factors contributing toward electrode failure. PMID:24550823
NASA Astrophysics Data System (ADS)
Dao, Van-Duong; Bui, Van-Tien; Choi, Ho-Suk
2018-02-01
The Pt layer deposited on a cylindrical micro cavity patterned Petri dish, which is produced using a one-step solvent-immersion phase separation, is fabricated for the first time as an FTO-free counter electrode (CE) for dye-sensitized solar cells (DSCs). Due to the high specific active surface area of the Pt-deposited honeycomb substrate CE, the efficiency of the DSC using the developed CE substrate is enhanced by 14.5% compared with the device using a Pt-sputtered flat substrate. This design strategy has potential in fabricating highly efficient and low-cost CE materials with FTO-free substrates for DSCs.
Polythiophene coated aromatic polyimide enabled ultrafast and sustainable lithium ion batteries
Lyu, Hailong; Liu, Jiurong; Mahurin, Shannon; ...
2017-10-31
Organic composite electrode materials based on aromatic polyimide (PI) and electron conductive polythiophene (PT) have been prepared by a facilein situchemical oxidation polymerization method. The optimized composite electrode PI30PT delivers a remarkable high-rate cyclability, achieving a high capacity of 89.6 mA h g -1at 20 C with capacity retention of 94% after 1000 cycles.
Chemical fabrication of heterometallic nanogaps for molecular transport junctions.
Chen, Xiaodong; Yeganeh, Sina; Qin, Lidong; Li, Shuzhou; Xue, Can; Braunschweig, Adam B; Schatz, George C; Ratner, Mark A; Mirkin, Chad A
2009-12-01
We report a simple and reproducible method for fabricating heterometallic nanogaps, which are made of two different metal nanorods separated by a nanometer-sized gap. The method is based upon on-wire lithography, which is a chemically enabled technique used to synthesize a wide variety of nanowire-based structures (e.g., nanogaps and disk arrays). This method can be used to fabricate pairs of metallic electrodes, which exhibit distinct work functions and are separated by gaps as small as 2 nm. Furthermore, we demonstrate that a symmetric thiol-terminated molecule can be assembled into such heterometallic nanogaps to form molecular transport junctions (MTJs) that exhibit molecular diode behavior. Theoretical calculations demonstrate that the coupling strength between gold and sulfur (Au-S) is 2.5 times stronger than that of Pt-S. In addition, the structures form Raman hot spots in the gap, allowing the spectroscopic characterization of the molecules that make up the MTJs.
NASA Astrophysics Data System (ADS)
Nan, Hui; Han, Jianhua; Luo, Qiang; Yin, Xuewen; Zhou, Yu; Yao, Zhibo; Zhao, Xiaochong; Li, Xin; Lin, Hong
2018-04-01
Exploiting efficient Pt-free counter-electrode materials with low cost and highly catalytic property is a hot topic in the field of Dye-sensitized solar cells (DSCs). Here, NiCo2S4/reduced graphene oxide (RGO) was prepared via an economical synthesis route, and the as-prepared composite exhibited comparable electrocatalytic property with the conventional Pt electrode as the counter-electrode. Notably, the introduction of RGO into the NiCo2S4 counter-electrode induces a significantly promoted electrocatalytic rate towards the triiodide reduction than that of pristine NiCo2S4 by increasing surface area in the composite electrode, as revealed by electrochemical impedance spectroscopic measurement and Tafel polarization measurement. The easy synthesis, low cost and excellent electrochemical performance of the NiCo2S4/RGO composites enable themselves to serve as promising counter-electrode candidates for efficient DSCs.
Preparation and properties of low-cost graphene counter electrodes for dye-sensitized solar cells
NASA Astrophysics Data System (ADS)
Wu, Qishuang; Shen, Yue; Wang, Qiandi; Gu, Feng; Cao, Meng; Wang, Linjun
2013-12-01
With the advantages of excellent electrical properties, high catalytic activity and low-cost preparation, Graphene is one of the most expected carbon materials to replace the expensive Pt as counter electrodes for dye-sensitized solar cells (DSSCs). In this paper, graphene counter electrodes were obtained by simple doctor-blade coating method on fluorine tin oxides (FTOs). The samples were investigated by X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscope (SEM). Then the low-cost graphene electrodes were applied in typical sandwich-type DSSCs with TiO2 or ZnO as photoanodes, and their photoelectric conversion efficiency (η) were about 4.34% and 2.28%, respectively, which were a little lower than those of Pt electrodes but much higher than those of graphite electrodes. This law was consistent with the test results of electrochemical impedance spectroscopy (EIS). Low-cost graphene electrodes can be applied in DSSCs by process optimization.
Study of different nanostructured carbon supports for fuel cell catalysts
NASA Astrophysics Data System (ADS)
Mirabile Gattia, Daniele; Antisari, Marco Vittori; Giorgi, Leonardo; Marazzi, Renzo; Piscopiello, Emanuela; Montone, Amelia; Bellitto, Serafina; Licoccia, Silvia; Traversa, Enrico
Pt clusters were deposited by an impregnation process on three carbon supports: multi-wall carbon nanotubes (MWNT), single-wall carbon nanohorns (SWNH), and Vulcan XC-72 carbon black to investigate the effect of the carbon support structure on the possibility of reducing Pt loading on electrodes for direct methanol (DMFC) fuel cells without impairing performance. MWNT and SWNH were in-house synthesised by a DC and an AC arc discharge process between pure graphite electrodes, respectively. UV-vis spectrophotometry, scanning and transmission electron microscopy, X-ray diffraction, and cyclic voltammetry measurements were used to characterize the Pt particles deposited on the three carbon supports. A differential yield for Pt deposition, not strictly related to the surface area of the carbon support, was observed. SWNH showed the highest surface chemical activity toward Pt deposition. Pt deposited in different forms depending on the carbon support. Electrochemical characterizations showed that the Pt nanostructures deposited on MWNT are particularly efficient in the methanol oxidation reaction.
Gao, Yu; Liu, Yuwen; Chen, Shengli
2016-12-12
Considering that an electric-double-layer (EDL) structure may significantly impact on the mass transport and charge transfer kinetics at the interfaces of nanometer-sized electrodes, while EDL structures could be altered by the finite sizes of electrolyte and redox ions, the possible effects of ion sizes on EDL structures and voltammetric responses of nanometer-sized disk (nanodisk) electrodes are investigated. Modified Boltzmann and Nernst-Planck (NP) equations, which include the influence of the finite ion volumes, are combined with the Poisson equation and modified Butler-Volmer equation to gain knowledge on how the finite sizes of ions and the nanometer sizes of electrodes may couple with each other to affect the structures and reactivities of a nanoscale electrochemical interface. Two typical ion radii, 0.38 nm and 0.68 nm, which could represent the sizes of the commonly used aqueous electrolyte ions (e.g., the solvated K + ) and the organic electrolyte ions (e.g., the solvated TEA + ) respectively, are considered. The finite size of ions can result in decreased screening of electrode charges, therefore magnifying EDL effects on the ion transport and the electron transfer at electrochemical interfaces. This finite size effect of ions becomes more pronounced for larger ions and at smaller electrodes as the electrode radii is larger than 10 nm. For electrodes with radii smaller than 10 nm, however, the ion size effect may be less pronounced with decreasing the electrode size. This can be explained in terms of the increased edge effect of disk electrodes at nanometer scales, which could relax the ion crowding at/near the outer Helmholtz plane. The conditions and situations under which the ion sizes may have a significant effect on the voltammetry of electrodes are discussed.
Sun, Wei; Li, Linfang; Lei, Bingxin; Li, Tongtong; Ju, Xiaomei; Wang, Xiuzheng; Li, Guangjiu; Sun, Zhenfan
2013-05-01
In this paper a platinum (Pt) nanoparticle decorated graphene (GR) nanosheet was synthesized and used for the investigation on direct electrochemistry of myoglobin (Mb). By integrating GR-Pt nanocomposite with Mb on the surface of carbon ionic liquid electrode (CILE), a new electrochemical biosensor was fabricated. UV-Vis absorption and FT-IR spectra indicated that Mb remained its native structure in the nanocomposite film. Electrochemical behaviors of Nafion/Mb-GR-Pt/CILE were investigated with a pair of well-defined redox peak appeared, which indicated that direct electron transfer of Mb was realized on the underlying electrode with the usage of the GR-Pt nanocomposite. The fabricated electrode showed good electrocatalytic activity to the reduction of trichloroacetic acid in the linear range from 0.9 to 9.0 mmol/L with the detection limit as 0.32 mmol/L (3σ), which showed potential application for fabricating novel electrochemical biosensors and bioelectronic devices. Copyright © 2012 Elsevier B.V. All rights reserved.
Sun, Yimin; He, Kui; Zhang, Zefen; Zhou, Aijun; Duan, Hongwei
2015-06-15
In this work, we develop a new type of flexible and lightweight electrode based on highly dense Pt nanoparticles decorated free-standing graphene-carbon nanotube (CNT) hybrid paper (Pt/graphene-CNT paper), and explore its practical application as flexible electrochemical biosensor for the real-time tracking hydrogen peroxide (H2O2) secretion by live cells. For the fabrication of flexible nanohybrid electrode, the incorporation of CNT in graphene paper not only improves the electrical conductivity and the mechanical strength of graphene paper, but also increases its surface roughness and provides more nucleation sites for metal nanoparticles. Ultrafine Pt nanoparticles are further decorated on graphene-CNT paper by well controlled sputter deposition method, which offers several advantages such as defined particle size and dispersion, high loading density and strong adhesion between the nanoparticles and the substrate. Consequently, the resultant flexible Pt/graphene-CNT paper electrode demonstrates a variety of desirable electrochemical properties including large electrochemical active surface area, excellent electrocatalytic activity, high stability and exceptional flexibility. When used for nonenzymatic detection of H2O2, Pt/graphene-CNT paper exhibits outstanding sensing performance such as high sensitivity, selectivity, stability and reproducibility. The sensitivity is 1.41 µA µM(-1) cm(-2) with a linear range up to 25 µM and a low detection limit of 10 nM (S/N=3), which enables the resultant biosensor for the real-time tracking H2O2 secretion by live cells macrophages. Copyright © 2015. Published by Elsevier B.V.
Evaluation of MOSFET-type glucose sensor using platinum electrode with glucose oxidase
NASA Astrophysics Data System (ADS)
Ooe, Katsutoshi; Hamamoto, Yasutaro; Hirano, Yoshiaki
2005-02-01
As the population ages, health management will be one of the important issues. The development of a safe medical machine based on MEMS technologies for the human body will be the primary research project in the future. We have developed the glucose sensor, as one of the medical based devices, for use in the Health Monitoring System (HMS). HMS is the device that continuously monitors human health conditions. For example, blood is the monitoring target of HMS. The glucose sensor specifically detects the glucose levels of the blood and monitors the glucose concentration as the blood sugar level. This glucose sensor has a "separated Au electrode", which immobilizes GOx. In our previous work, GOx was immobilized onto Au electrode by the SAMs (Self-Assembled Monolayer) method, and the sensor, using this working electrode, detected the glucose concentration of an aqueous glucose solution. In this report, we used a Pt electrode, which immobilized GOx, as a working electrode. Au electrode, which was used previously, was dissolved by the application of current in the presence of chloride ions. Based on the above-mentioned fact, a new working electrode, which immobilized GOx, was produced using Pt, which did not possess such characteristics. These Pt working electrodes were produced using the covalent binding method and the cross-link method, and both the electrodes displayed a good sensing property. In addition, the electrode using glutaraldehyde (GA) and bovine serum albumin (BSA) as crosslinking agents was produced, and it displayed better characteristics as compared with those displayed by the electrode that used only GA. Based on the above-mentioned techniques, the improvement in performance of the sensor was confirmed.
SFG study of platinum electrodes in perchloric acid solutions
NASA Astrophysics Data System (ADS)
Zheng, W. Q.; Pluchery, O.; Tadjeddine, A.
2002-04-01
Infrared-visible sum-frequency generation (SFG) spectroscopy has been used to study the structure of water molecules (and/or its derivatives OH -, H 3O + etc.) at aqueous electrolyte/electrode interfaces. For Pt(1 1 0) and Pt(1 0 0) electrodes in 0.1 M perchloric acid solution, we did not observe any significant O-H stretching resonance. In striking contrast to the resonant SFG signal, the nonresonant SFG (NRSFG) signal varies sensitively with the applied electrochemical potential, indicating that the interaction of water molecules with platinum electrodes is relatively weak as compared to that of H + and ClO 4- ions. From changes in the NRSFG signal and on the basis of an ionic adsorption model, we can also deduce that the potential of zero charge of Pt(1 1 0) in 0.1 M HClO 4 should be located at about 0.22 V (vs. NHE). This value is in good agreement with that measured recently by electrochemical method.
NASA Astrophysics Data System (ADS)
Song, Dandan; Cui, Peng; Zhao, Xing; Li, Meicheng; Chu, Lihua; Wang, Tianyue; Jiang, Bing
2015-03-01
A tungsten trioxide (WO3) nanoplate array is fabricated directly on the FTO/glass substrate and used as a platinum (Pt) nanoscale supporter for a highly efficient and low Pt-consumption counter electrode (CE) in dye-sensitized solar cells (DSCs). A Pt/WO3 composite structure, with Pt nanoparticles having a diameter of 2-3 nm, increases the electrochemical catalytic activity in catalyzing the reduction of triiodide. Accordingly, the power conversion efficiency is increased from less than 1% for WO3 CE and 8.1% for Pt CE, respectively, to 8.9% for Pt/WO3 CE. Moreover, the use of Pt/WO3 CE can dramatically reduce the consumption of scarce Pt material, with a relatively low Pt-loading of ~2 μg cm-2, while maintaining a much better performance. The excellent performance of Pt/WO3 CE is attributed to the efficient electron injection and transport via WO3 supporters, as well as the nanostructure array morphology of WO3 for deposition of fine Pt nanoparticles. This work provides an approach for developing highly catalytic and low-cost Pt based CEs, which also has implications for the development of Pt/WO3 nanoplate arrays for other applications.A tungsten trioxide (WO3) nanoplate array is fabricated directly on the FTO/glass substrate and used as a platinum (Pt) nanoscale supporter for a highly efficient and low Pt-consumption counter electrode (CE) in dye-sensitized solar cells (DSCs). A Pt/WO3 composite structure, with Pt nanoparticles having a diameter of 2-3 nm, increases the electrochemical catalytic activity in catalyzing the reduction of triiodide. Accordingly, the power conversion efficiency is increased from less than 1% for WO3 CE and 8.1% for Pt CE, respectively, to 8.9% for Pt/WO3 CE. Moreover, the use of Pt/WO3 CE can dramatically reduce the consumption of scarce Pt material, with a relatively low Pt-loading of ~2 μg cm-2, while maintaining a much better performance. The excellent performance of Pt/WO3 CE is attributed to the efficient electron injection and transport via WO3 supporters, as well as the nanostructure array morphology of WO3 for deposition of fine Pt nanoparticles. This work provides an approach for developing highly catalytic and low-cost Pt based CEs, which also has implications for the development of Pt/WO3 nanoplate arrays for other applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06787h
Xia, Zhangxun; Wang, Suli; Jiang, Luhua; Sun, Hai; Liu, Shuang; Fu, Xudong; Zhang, Bingsen; Sheng Su, Dang; Wang, Jianqiang; Sun, Gongquan
2015-11-05
The significant use of platinum for catalyzing the cathodic oxygen reduction reactions (ORRs) has hampered the widespread use of polymer electrolyte membrane fuel cells (PEMFCs). The construction of well-defined electrode architecture in nanoscale with enhanced utilization and catalytic performance of Pt might be a promising approach to address such barrier. Inspired by the highly efficient catalytic processes in enzymes with active centers embedded in charge transport pathways, here we demonstrate for the first time a design that allocates platinum nanoparticles (Pt NPs) at the boundaries with dual-functions of conducting both electrons by aid of polypyrrole and protons via Nafion(®) ionomer within hierarchical nanoarrays. By mimicking enzymes functionally, an impressive ORR activity and stability is achieved. Using this brand new electrode architecture as the cathode and the anode of a PEMFC, a high mass specific power density of 5.23 W mg(-1)Pt is achieved, with remarkable durability. These improvements are ascribed to not only the electron decoration and the anchoring effects from the Nafion(®) ionomer decorated PPy substrate to the supported Pt NPs, but also the fast charge and mass transport facilitated by the electron and proton pathways within the electrode architecture.
NASA Astrophysics Data System (ADS)
Xia, Zhangxun; Wang, Suli; Jiang, Luhua; Sun, Hai; Liu, Shuang; Fu, Xudong; Zhang, Bingsen; Sheng Su, Dang; Wang, Jianqiang; Sun, Gongquan
2015-11-01
The significant use of platinum for catalyzing the cathodic oxygen reduction reactions (ORRs) has hampered the widespread use of polymer electrolyte membrane fuel cells (PEMFCs). The construction of well-defined electrode architecture in nanoscale with enhanced utilization and catalytic performance of Pt might be a promising approach to address such barrier. Inspired by the highly efficient catalytic processes in enzymes with active centers embedded in charge transport pathways, here we demonstrate for the first time a design that allocates platinum nanoparticles (Pt NPs) at the boundaries with dual-functions of conducting both electrons by aid of polypyrrole and protons via Nafion® ionomer within hierarchical nanoarrays. By mimicking enzymes functionally, an impressive ORR activity and stability is achieved. Using this brand new electrode architecture as the cathode and the anode of a PEMFC, a high mass specific power density of 5.23 W mg-1Pt is achieved, with remarkable durability. These improvements are ascribed to not only the electron decoration and the anchoring effects from the Nafion® ionomer decorated PPy substrate to the supported Pt NPs, but also the fast charge and mass transport facilitated by the electron and proton pathways within the electrode architecture.
Means and method for nonuniform poling of piezoelectric transducers
Hsu, D.K.; Margetan, F.J.; Hasselbusch, M.D.; Wormley, S.J.; Hughes, M.S.; Thompson, D.O.
1990-10-09
An apparatus and method are disclosed for nonuniform poling of piezoelectric transducers includes machining one or more indentation into an end of a piezoelectric rod and cutting the rod to present a thickened disk shape. Highly electrically conductive material is deposited on at least the indentations in the one end and on at least portions of the opposite face of the member. One or more electrodes are configured to matingly fit within the indentations on the one face of the disk, with a like number of electrodes being positionable on the opposite face of the material. Electrical power is then applied to the electrodes in desired amounts, polarity, and duration. The indentations vary the electrical field produced within the piezoelectric material to produce nonuniform poling in the material. The thick disk is then cut to remove the indentations and to present a thin, flat two sided disk for installation in a conventional piezoelectric transducer probe. The indentations are selected to produce poling in accordance with desired transducer response profiles such as Gaussian or Bessel functions. 14 figs.
Platinum-free, carbon-based materials as efficient counter electrodes for dye-sensitized solar cells
NASA Astrophysics Data System (ADS)
Widiyandari, Hendri; Prasetio, Adi; Purwanto, Agus; Subagio, Agus; Hidayat, Rachmat
2018-06-01
The electrocatalytic potential of carbon materials makes them the most viable candidate to replace Pt as a counter electrode (CE) in dye-sensitized solar cells (DSSCs). In this research, we report our study using graphite, CNT/graphite composite, CNT, and Pt-based CEs in DSSCs. The electrochemical impedance spectroscopy (EIS) measurement showed that the CNT-based CE (CNT-CE) has the lowest charge transport resistance (R ct) compared with graphite and the CNT/graphite composite. The photovoltaic performance measurement showed that the CNT-CE resulted in a short-circuit photocurrent density (J sc) of 3.59 mA·cm‑2 whereas the Pt-based CE (Pt-CE) resulted in a J sc of 2.76 mA·cm‑2.
Sherrell, Peter C; Zhang, Weimin; Zhao, Jie; Wallace, Gordon G; Chen, Jun; Minett, Andrew I
2012-07-01
Proton-exchange membrane fuel cells (PEMFCs) are expected to provide a complementary power supply to fossil fuels in the near future. The current reliance of fuel cells on platinum catalysts is undesirable. However, even the best-performing non-noble metal catalysts are not as efficient. To drive commercial viability of fuel cells forward in the short term, increased utilization of Pt catalysts is paramount. We have demonstrated improved power and energy densities in a single PEMFC using a designed cathode with a Pt loading of 0.1 mg cm(-2) on a mesoporous conductive entangled carbon nanotube (CNT)-based architecture. This electrode allows for rapid transfer of both fuel and waste to and from the electrode, respectively. Pt particles are bound tightly, directly to CNT sidewalls by a microwave-reduction technique, which provided increased charge transport at this interface. The Pt entangled CNT cathode, in combination with an E-TEK 0.2 mg cm(-2) anode, has a maximum power and energy density of 940 mW cm(-2) and 2700 mA cm(-2), respectively, and a power and energy density of 4.01 W mg(Pt)(-1) and 6.35 A mg(Pt)(-1) at 0.65 V. These power densities correspond to a specific mass activity of 0.81 g Pt per kW for the combined mass of both anode and cathode electrodes, approaching the current US Department of Energy efficiency target. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Direct and continuous strain control of catalysts with tunable battery electrode materials
Wang, Haotian; Xu, Shicheng; Tsai, Charlie; ...
2016-11-24
We report a method for using battery electrode materials to directly and continuously control the lattice strain of platinum (Pt) catalyst and thus tune its catalytic activity for the oxygen reduction reaction (ORR). Whereas the common approach of using metal overlayers introduces ligand effects in addition to strain, by electrochemically switching between the charging and discharging status of battery electrodes the change in volume can be precisely controlled to induce either compressive or tensile strain on supported catalysts. Lattice compression and tension induced by the lithium cobalt oxide substrate of ~5% were directly observed in individual Pt nanoparticles with aberration-correctedmore » transmission electron microscopy. As a result, we observed 90% enhancement or 40% suppression in Pt ORR activity under compression or tension, respectively, which is consistent with theoretical predictions.« less
NASA Astrophysics Data System (ADS)
Jeong, Du Won; Jung, Jongjin; Kim, Gook Hwa; Yang, Cheol-Soo; Kim, Ju Jin; Jung, Sang Don; Lee, Jeong-O.
2015-08-01
In this work, Cath.a-differentiated (CAD) cells were used in place of primary neuronal cells to assess the performance of vertically aligned carbon nanotubes (VACNTs) multi-electrode arrays (MEA). To fabricate high-performance MEA, VACNTs were directly grown on graphene/Pt electrodes via plasma enhanced chemical deposition technique. Here, graphene served as an intermediate layer lowering contact resistance between VACNTs and Pt electrode. In order to lower the electrode impedance and to enhance the cell adhesion, VACNTs-MEAs were treated with UV-ozone for 20 min. Impedance of VACNTs electrode at 1 kHz frequency exhibits a reasonable value (110 kΩ) for extracellular signal recording, and the signal to noise ratio the is good enough to measure low signal amplitude (15.7). Spontaneous firing events from CAD cells were successfully measured with VACNTs MEAs that were also found to be surprisingly robust toward the biological interactions.
Jeong, Du Won; Jung, Jongjin; Kim, Gook Hwa; Yang, Cheol-Soo; Kim, Ju Jin; Jung, Sang Don; Lee, Jeong-O
2015-08-21
In this work, Cath.a-differentiated (CAD) cells were used in place of primary neuronal cells to assess the performance of vertically aligned carbon nanotubes (VACNTs) multi-electrode arrays (MEA). To fabricate high-performance MEA, VACNTs were directly grown on graphene/Pt electrodes via plasma enhanced chemical deposition technique. Here, graphene served as an intermediate layer lowering contact resistance between VACNTs and Pt electrode. In order to lower the electrode impedance and to enhance the cell adhesion, VACNTs-MEAs were treated with UV-ozone for 20 min. Impedance of VACNTs electrode at 1 kHz frequency exhibits a reasonable value (110 kΩ) for extracellular signal recording, and the signal to noise ratio the is good enough to measure low signal amplitude (15.7). Spontaneous firing events from CAD cells were successfully measured with VACNTs MEAs that were also found to be surprisingly robust toward the biological interactions.
Impact of bimetal electrodes on dielectric properties of TiO2 and Al-doped TiO2 films.
Kim, Seong Keun; Han, Sora; Jeon, Woojin; Yoon, Jung Ho; Han, Jeong Hwan; Lee, Woongkyu; Hwang, Cheol Seong
2012-09-26
Rutile structured Al-doped TiO(2) (ATO) and TiO(2) films were grown on bimetal electrodes (thin Ru/thick TiN, Pt, and Ir) for high-performance capacitors. The work function of the top Ru layer decreased on TiN and increased on Pt and Ir when it was thinner than ~2 nm, suggesting that the lower metal within the electrodes influences the work function of the very thin Ru layer. The use of the lower electrode with a high work function for bottom electrode eventually improves the leakage current properties of the capacitor at a very thin Ru top layer (≤2 nm) because of the increased Schottky barrier height at the interface between the dielectric and the bottom electrode. The thin Ru layer was necessary to achieve the rutile structured ATO and TiO(2) dielectric films.
Barışçı, Sibel; Turkay, Ozge; Ulusoy, Ebru; Soydemir, Gülfem; Seker, Mine Gul; Dimoglo, Anatoli
2018-02-15
This study represents the electrooxidation of anti-cancer drug carboplatin (CrbPt) with different mixed metal oxide (MMO) and boron doped diamond (BDD) electrodes. The most effective anode was found as Ti/RuO 2 with the complete degradation of CrbPt in just 5min. The effect of applied current density, pH and electrolyte concentration on CrbPt degradation has been studied. The degradation of CrbPt significantly increased at the initial stages of the process with increasing current density. However, further increase in current density did not affect the degradation rate. While complete degradation of CrbPt was provided at pH 7, the degradation rates were 49% and 75% at pH 9 and 4, respectively. Besides, increasing supporting electrolyte (Na 2 SO 4 ) concentration provided higher degradation rate but further increase in Na 2 SO 4 concentration did not provide higher degradation rate due to excess amount of SO 4 -2 . According to the DFT calculations, the formation of [Pt(NH 3 ) 2 (H 2 O) 2 ] 2+ and [Pt(NH 3 ) 2 (OH) 2 ] takes place with molecular weights of 265 and 263gmol -1 , respectively. Toxicity of treated samples at BDD and Ti/RuO 2 electrodes has been also evaluated in this study. The results showed that Ti/RuO 2 anode provided zero toxicity at the end of the process. Copyright © 2017 Elsevier B.V. All rights reserved.
Siriviriyanun, Ampornphan; Imae, Toyoko
2013-04-14
Electrochemical sensors consisting of electrodes loaded with carbon nanotubes and Pt nanoparticles (PtNPs) protected by dendrimers have been developed using a facile method to fabricate them on two types of disposable electrochemical printed chips with a screen-printed circular gold or a screen-printed circular glassy carbon working electrode. The electrochemical performance of these sensors in the oxidation of methanol was investigated by cyclic voltammetry. It was revealed that such sensors possess stable durability and high electrocatalytic activity: the potential and the current density of an anodic peak in the oxidation of methanol increased with increasing content of PtNPs on the electrodes, indicating the promotion of electrocatalytic activity in relation to the amount of catalyst. The low anodic potential suggests the easy electrochemical reaction, and the high catalyst tolerance supports the almost complete oxidation of methanol to carbon dioxide. The significant performance of these sensors in the detection of methanol oxidation comes from the high electrocatalytic ability of PtNPs, excellent energy transfer of carbon nanotubes and the remarkable ability of dendrimers to act as binders. Thus these systems are effective for a wide range of applications as chemical, biomedical, energy and environmental sensors and as units of direct methanol fuel cells.
NASA Astrophysics Data System (ADS)
Jain, M.; Kang, B. S.; Jia, Q. X.
2006-12-01
Ferroelectric Bi3.25La0.75Ti3O12 (BLT) films were grown on Pt /Ti/SiO2/Si (Pt/Si), LaNiO3/Pt /Si, and LaNiO3/Si substrates using chemical solution deposition technique. X-ray diffraction analysis shows that films grown on conductive LaNiO3 electrodes had higher degree of (117) orientation as compared to that grown directly on Pt /Si substrate. High remanent polarization value (2Pr)˜43.14μC/cm2 (Ec of 111kV/cm) under an applied field of 396kV/cm was obtained for BLT film on LaNiO3/Pt /Si as compared to a value of 26μC/cm2 obtained for BLT film on Pt/Si directly. There was no degradation in the switchable polarization (Psw-Pns) after 1010 switching cycles.
Laser patterning of platinum electrodes for safe neurostimulation
NASA Astrophysics Data System (ADS)
Green, R. A.; Matteucci, P. B.; Dodds, C. W. D.; Palmer, J.; Dueck, W. F.; Hassarati, R. T.; Byrnes-Preston, P. J.; Lovell, N. H.; Suaning, G. J.
2014-10-01
Objective. Laser surface modification of platinum (Pt) electrodes was investigated for use in neuroprosthetics. Surface modification was applied to increase the surface area of the electrode and improve its ability to transfer charge within safe electrochemical stimulation limits. Approach. Electrode arrays were laser micromachined to produce Pt electrodes with smooth surfaces, which were then modified with four laser patterning techniques to produce surface structures which were nanosecond patterned, square profile, triangular profile and roughened on the micron scale through structured laser interference patterning (SLIP). Improvements in charge transfer were shown through electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and biphasic stimulation at clinically relevant levels. A new method was investigated and validated which enabled the assessment of in vivo electrochemically safe charge injection limits. Main results. All of the modified surfaces provided electrical advantage over the smooth Pt. The SLIP surface provided the greatest benefit both in vitro and in vivo, and this surface was the only type which had injection limits above the threshold for neural stimulation, at a level shown to produce a response in the feline visual cortex when using an electrode array implanted in the suprachoroidal space of the eye. This surface was found to be stable when stimulated with more than 150 million clinically relevant pulses in physiological saline. Significance. Critical to the assessment of implant devices is accurate determination of safe usage limits in an in vivo environment. Laser patterning, in particular SLIP, is a superior technique for improving the performance of implant electrodes without altering the interfacial electrode chemistry through coating. Future work will require chronic in vivo assessment of these electrode patterns.
NASA Astrophysics Data System (ADS)
Zhai, Chunyang; Hu, Jiayue; Sun, Mingjuan; Zhu, Mingshan
2018-02-01
Two dimensional (2D) BiOI nanoplates were synthesized and used as support for the deposition of Pt nanoparticles. Owing to broad visible light absorption (up to 660 nm), the as-obtained Pt-BiOI electrode was used as effective photoelectrocatalyst in the application of catalytic ethanol oxidation in alkaline media under visible light irradiation. Compared to dark condition, the Pt-BiOI modified electrode displayed 3 times improved catalytic activity towards ethanol oxidation under visible light irradiation. The synergistic effect of electrocatalytic and photocatalytic, and the unique of 2D structures contribute to the improvement of catalytic activity. The mechanism of enhanced photoelectrocatalytic process is proposed. The present results suggest that 2D visible-light-activated BiOI can be served as promising support for the decoration of Pt and applied in the fields of photoelectrochemical and photo-assisted fuel cell applications
Durability test with fuel starvation using a Pt/CNF catalyst in PEMFC.
Jung, Juhae; Park, Byungil; Kim, Junbom
2012-01-05
In this study, a catalyst was synthesized on carbon nanofibers [CNFs] with a herringbone-type morphology. The Pt/CNF catalyst exhibited low hydrophilicity, low surface area, high dispersion, and high graphitic behavior on physical analysis. Electrodes (5 cm2) were prepared by a spray method, and the durability of the Pt/CNF was evaluated by fuel starvation. The performance was compared with a commercial catalyst before and after accelerated tests. The fuel starvation caused carbon corrosion with a reverse voltage drop. The polarization curve, EIS, and cyclic voltammetry were analyzed in order to characterize the electrochemical properties of the Pt/CNF. The performance of a membrane electrode assembly fabricated from the Pt/CNF was maintained, and the electrochemical surface area and cell resistance showed the same trend. Therefore, CNFs are expected to be a good support in polymer electrolyte membrane fuel cells.
Durability test with fuel starvation using a Pt/CNF catalyst in PEMFC
2012-01-01
In this study, a catalyst was synthesized on carbon nanofibers [CNFs] with a herringbone-type morphology. The Pt/CNF catalyst exhibited low hydrophilicity, low surface area, high dispersion, and high graphitic behavior on physical analysis. Electrodes (5 cm2) were prepared by a spray method, and the durability of the Pt/CNF was evaluated by fuel starvation. The performance was compared with a commercial catalyst before and after accelerated tests. The fuel starvation caused carbon corrosion with a reverse voltage drop. The polarization curve, EIS, and cyclic voltammetry were analyzed in order to characterize the electrochemical properties of the Pt/CNF. The performance of a membrane electrode assembly fabricated from the Pt/CNF was maintained, and the electrochemical surface area and cell resistance showed the same trend. Therefore, CNFs are expected to be a good support in polymer electrolyte membrane fuel cells. PMID:22221426
Batra, Nitin M; Patole, Shashikant P; Abdelkader, Ahmed; Anjum, Dalaver H; Deepak, Francis L; Costa, Pedro M F J
2015-11-06
The use of electron and ion beam deposition to make devices containing discrete nanostructures as interconnectors is a well-known nanofabrication process. Classically, one-dimensional materials such as carbon nanotubes (CNTs) have been electrically characterized by resorting to these beam deposition methods. While much attention has been given to the interconnectors, less is known about the contacting electrodes (or leads). In particular, the structure and chemistry of the electrode-interconnector interface is a topic that deserves more attention, as it is critical to understand the device behavior. Here, the structure and chemistry of Pt electrodes, deposited either with electron or ion beams and contacted to a CNT, are analyzed before and after thermally annealing the device in a vacuum. Free-standing Pt nanorods, acting as beam-deposited electrode models, are also characterized pre- and post-annealing. Overall, the as-deposited leads contain a non-negligible amount of amorphous carbon that is consolidated, upon heating, as a partially graphitized outer shell enveloping a Pt core. This observation raises pertinent questions regarding the definition of electrode-nanostructure interfaces in electrical devices, in particular long-standing assumptions of metal-CNT contacts fabricated by direct beam deposition methods.
NASA Astrophysics Data System (ADS)
Lee, Chia-Chun; Wan, Ting-Hao; Hsu, Cheng-Che; Cheng, I.-Chun; Chen, Jian-Zhang
2018-04-01
Nitrogen dc-pulse atmospheric pressure plasma jet (APPJ) is used to fabricate Pt/ZnO composites as the counter electrodes (CEs) of dye-sensitized solar cells (DSSCs). Due to the synergetic effect of the reactive plasma species and heat in nitrogen APPJ, the spin-coated precursors including chloroplatinic acid and zinc acetate can be reduced on fluorine-doped tin oxide (FTO) glass substrates in a few seconds. X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) analyses indicate that the precursors are reduced to Pt/ZnO under APPJ calcination. Electrochemical impedance spectroscopy (EIS) and Tafel measurement show the promising catalytic activities of Pt/ZnO CEs with low charge transfer resistance and high exchange current density. The efficiency of a DSSC with a 30-s APPJ-calcined Pt/ZnO CE is similar to that with a conventional furnace-annealed Pt CE for 15 min. The results indicate that nitrogen dc-pulse APPJ treatment is an efficient tool for rapidly fabricating Pt/ZnO composite CEs of DSSCs.
Savych, Iuliia; Subianto, Surya; Nabil, Yannick; Cavaliere, Sara; Jones, Deborah; Rozière, Jacques
2015-07-14
Novel platinum-catalysed, corrosion-resistant, loose-tube-structured electrocatalysts for proton exchange membrane fuel cells have been obtained using single-needle electrospinning associated with a microwave-assisted polyol method. Monodisperse platinum particles supported on Nb-SnO2 demonstrated higher electrochemical stability than conventional Pt/C electrodes during ex situ potential cycling and comparable activity in the oxygen reduction reaction. In situ fuel cell operation under accelerated stress test conditions of a membrane electrode assembly elaborated using a Pt/C anode and Pt/Nb-SnO2 cathode confirmed that the voltage loss is significantly lower for the novel cathode than for an MEA prepared using conventional Pt/C supported electrocatalysts. Furthermore, the Nb-SnO2 stabilised the supported platinum nanoparticles against dissolution, migration and reprecipitation in the membrane. Pt/Nb-SnO2 loose-tubes constitute a mitigation strategy for two known degradation mechanisms in PEMFC: corrosion of the carbon support at the cathode, and dissolution of Pt at high cell voltages.
Ethanol oxidation on Pt single-crystal electrodes: surface-structure effects in alkaline medium.
Busó-Rogero, Carlos; Herrero, Enrique; Feliu, Juan M
2014-07-21
Ethanol oxidation in 0.1 M NaOH on single-crystal electrodes has been studied using electrochemical and FTIR techniques. The results show that the activity order is the opposite of that found in acidic solutions. The Pt(111) electrode displays the highest currents and also the highest onset potential of all the electrodes. The onset potential for the oxidation of ethanol is linked to the adsorption of OH on the electrode surface. However, small (or even negligible) amounts of CO(ads) and carbonate are detected by FTIR, which implies that cleavage of the C-C bond is not favored in this medium. The activity of the electrodes diminishes quickly upon cycling. The diminution of the activity is proportional to the measured currents and is linked to the formation and polymerization of acetaldehyde, which adsorbs onto the electrode surface and prevents further oxidation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jackson, Ariel; Strickler, Alaina; Higgins, Drew; Jaramillo, Thomas Francisco
2018-01-12
Improving the performance of oxygen reduction reaction (ORR) electrocatalysts is essential for the commercial efficacy of many renewable energy technologies, including low temperature polymer electrolyte fuel cells (PEFCs). Herein, we report highly active and stable carbon-supported Ru@Pt core-shell nanoparticles (Ru@Pt/C) prepared by a wet chemical synthesis technique. Through rotating disc electrode testing, the Ru@Pt/C achieves an ORR Pt mass-based activity of 0.50 A mg Pt -1 at 0.9 V versus the reversible hydrogen electrode (RHE), which exceeds the activity of the state-of-the-art commercial Pt/C catalyst as well as the Department of Energy 2020 PEFC electrocatalyst activity targets for transportation applications. The impact of various synthetic parameters, including Pt to Ru ratios and catalyst pretreatments (i.e., annealing) are thoroughly explored. Pt-based mass activity of all prepared Ru@Pt/C catalysts was found to exceed 0.4 mg Pt -1 across the range of compositions investigated, with the maximum activity catalyst having a Ru:Pt ratio of 1:1. This optimized composition of Ru@Pt/C catalyst demonstrated remarkable stability after 30,000 accelerated durability cycles (0.6 to 1.0 V vs. RHE at 125 mV s -1 ), maintaining 85% of its initial mass activity. Scanning transmission electron microscopy energy dispersive spectroscopy (STEM-EDS) analysis at various stages of electrochemical testing demonstrated that the Pt shell can provide sufficient protection against the dissolution of the otherwise unstable Ru core.
Oxygen reduction of several gold alloys in 1-molar potassium hydroxide
NASA Technical Reports Server (NTRS)
Miller, R. O.
1975-01-01
With rotated disk-and-ring equipment, polarograms and other electrochemical measurements were made of oxygen reduction in 1-molar potassium hydroxide on an equiatomic gold-copper (Au-Cu) alloy and a Au-Cu alloy doped with either indium (In) or cobalt (Co) and on Au doped with either nickel (Ni) or platinum (Pt). The results were compared with those for pure Au and pure Pt. The two-electron reaction dominated on all Au alloys as it did on Au. The polarographic results at lower polarization potentials were compared, assuming exclusively a two-step reduction. A qualified ranking of cathodic electrocatalytic activity on the freshly polished reduced disks was indicated: anodized Au Au-Cu-In Au-Cu Au-Cu-Co is equivalent or equal to Au-Pt Au-Ni. Aging in distilled water improved the electrocatalytic efficiency of Au-Cu-Co, Au-Cu, and (to a lesser extent) Au-Cu-In.
Effect of Polymer Electrode Morphology on Performance of a Lithium/Polypyrrole Battery. M.S. Thesis
NASA Technical Reports Server (NTRS)
Nicholson, Marjorie Anne
1991-01-01
A variety of conducting polymer batteries were described in the recent literature. In this work, a Li/Polypyrrole secondary battery is described. The effect of controlling the morphology of the polymer on enhancement of counterion diffusion in the polymer phase is explored. A method of preparing conducting polymers was developed which yields high surface area per unit volume of electrode material. A porous membrane is used as a template in which to electrochemically polymerize pyrrole, then the membrane is dissolved, leaving the polymer in a fibrillar form. Conventionally, the polymer is electrochemically polymerized as a dense polymer film on a smooth Pt disk electrode. Previous work has shown that when the polymer is electrochemically polymerized in fribrillar form, charge transport rates are faster and charge capacities are greater than for dense, conventionally grown films containing the same amount of polymer. The purpose is to expand previous work by further investigating the possibilities of the optimization of transport rates in polypyrrole films by controlling the morphology of the films. The utility of fibrillar polypyrrole as a cathode material in a lithium/polymer secondary battery is then assessed. The performance of the fibrillar battery is compared to the performance of an analogous battery which employed a conventionally grown polypyrrole film. The study includes a comparison of cyclic voltammetry, shape of charge/discharge curves, discharge time and voltage, cycle life, coulombic efficiencies, charge capacities, energy densities, and energy efficiencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takagi, Yasumasa, E-mail: ytakagi@ims.ac.jp; Uemura, Yohei; Yokoyama, Toshihiko
2014-09-29
We have constructed an ambient pressure X-ray photoelectron spectroscopy instrument that uses hard X-ray radiation at the high-performance undulator beamline BL36XU of SPring-8. The dependence of the Au 4f peak intensity from Au foil on the ambient N{sub 2} pressure was measured. At a photon energy of 7.94 keV, the Au 4f peak intensity maintained 40% at 3000 Pa compared with that at high vacuum. We designed a polymer electrolyte fuel cell that allows us to perform X-ray photoelectron spectroscopy measurements of an electrode under working conditions. The oxidized Pt peaks were observed in the Pt 3d{sub 5/2} level of Pt nanoparticlesmore » in the cathode, and the peaks clearly depended on the applied voltage between the anode and cathode. Our apparatus can be applied as a valuable in situ tool for the investigation of the electronic states and adsorbed species of polymer electrolyte fuel cell electrode catalysts under the reaction conditions.« less
Hsu, Shao-Hui; Li, Chun-Ting; Chien, Heng-Ta; Salunkhe, Rahul R.; Suzuki, Norihiro; Yamauchi, Yusuke; Ho, Kuo-Chuan; Wu, Kevin C.-W.
2014-01-01
We fabricated a highly efficient (with a solar-to-electricity conversion efficiency (η) of 8.1%) Pt-free dye-sensitized solar cell (DSSC). The counter electrode was made of cobalt sulfide (CoS) nanoparticles synthesized via surfactant-assisted preparation of a metal organic framework, ZIF-67, with controllable particle sizes (50 to 320 nm) and subsequent oxidation and sulfide conversion. In contrast to conventional Pt counter electrodes, the synthesized CoS nanoparticles exhibited higher external surface areas and roughness factors, as evidenced by X-ray diffraction (XRD), scanning electron microscopy (SEM) element mapping, and electrochemical analysis. Incident photon-to-current conversion efficiency (IPCE) results showed an increase in the open circuit voltage (VOC) and a decrease in the short-circuit photocurrent density (Jsc) for CoS-based DSSCs compared to Pt-based DSSCs, resulting in a similar power conversion efficiency. The CoS-based DSSC fabricated in the study show great potential for economically friendly production of Pt-free DSSCs. PMID:25382139
Sun-Mi Hwang; Choi, YongMan; Kim, Min Gyu; ...
2016-03-08
The high cost of Pt-based membrane electrode assemblies (MEAs) is a critical hurdle for the commercialization of polymer electrolyte fuel cells (PEFCs). Recently, non-precious metal-based catalysts (NPMCs) have demonstrated much enhanced activity but their oxygen reduction reaction (ORR) activity is still inferior to that of Pt-based catalysts resulting in a much thicker electrode in the MEA. For the reduction of mass transport and ohmic overpotential we adopted a new concept of catalyst that combines an ultra-low amount of Pt nanoclusters with metal–nitrogen (M–Nx) doped ordered mesoporous porphyrinic carbon (FeCo–OMPC(L)). The 5 wt% Pt/FeCo–OMPC(L) showed a 2-fold enhancement in activities comparedmore » to a higher loading of Pt. Our experimental results supported by first-principles calculations indicate that a trace amount of Pt nanoclusters on FeCo–OMPC(L) significantly enhances the ORR activity due to their electronic effect as well as geometric effect from the reduced active sites. Finally, in terms of fuel cell commercialization, this class of catalysts is a promising candidate due to the limited use of Pt in the MEA.« less
Luo, Wen-Bin; Pham, Thien Viet; Guo, Hai-Peng; Liu, Hua-Kun; Dou, Shi-Xue
2017-02-28
The nonaqueous lithium-oxygen battery is a promising candidate as a next-generation energy storage system because of its potentially high energy density (up to 2-3 kW kg -1 ), exceeding that of any other existing energy storage system for storing sustainable and clean energy to reduce greenhouse gas emissions and the consumption of nonrenewable fossil fuels. To achieve high round-trip efficiency and satisfactory cycling stability, the air electrode structure and the electrocatalysts play important roles. Here, a 3D array composed of one-dimensional TiN@Pt 3 Cu nanowires was synthesized and employed as a whole porous air electrode in a lithium-oxygen battery. The TiN nanowire was primarily used as an air electrode frame and catalyst support to provide a high electronic conductivity network because of the high-orientation one-dimensional crystalline structure. Meanwhile, deposited icosahedral Pt 3 Cu nanocrystals exhibit highly efficient catalytic activity owing to the abundant {111} active lattice facets and multiple twin boundaries. This porous air electrode comprises a one-dimensional TiN@Pt 3 Cu nanowire array that demonstrates excellent energy conversion efficiency and rate performance in full discharge and charge modes. The discharge capacity is up to 4600 mAh g -1 along with an 84% conversion efficiency at a current density of 0.2 mA cm -2 , and when the current density increased to 0.8 mA cm -2 , the discharge capacity is still greater than 3500 mAh g -1 together with a nearly 70% efficiency. This designed array is a promising bifunctional porous air electrode for lithium-oxygen batteries, forming a continuous conductive and high catalytic activity network to facilitate rapid gas and electrolyte diffusion and catalytic reaction throughout the whole energy conversion process.
Mechanical and thermal behavior of ionic polymer metal composites: effects of electroded metals
NASA Astrophysics Data System (ADS)
Park, Il-Seok; Kim, Sang-Mun; Kim, Kwang J.
2007-08-01
In this study, we investigated the mechanical properties of various types of ionic polymer-metal composites (IPMCs) and Pt, Au, Pd, and Pt electroded ionic liquid (IL-Pt) IPMCs, by testing tensile modulus and dynamic mechanical behavior. The SEM was utilized to investigate the characteristics of the doped electroding layer, and the DSC was probed in order to look into the thermal behavior of various types of IPMCs. Au IPMCs, having a 5-7 µm-doped layer and nanosized Au particles (ca. 10 nm), showed the highest tensile strength (56 MPa) and modulus (602 MPa) in dried conditions. With regards to thermal behavior, Au IPMC had the highest Tg (153 °C) and Tm (263 °C) in both the DMA and DSC results. The fracture behavior of various types of IPMCs followed the behavior of the base material, Nafion™, which is represented as the semicrystalline polymer characteristic.
Liu, Hai-Xia; Tian, Na; Ye, Jin-Yu; Lu, Bang-An; Ren, Jie; Huangfu, Zhi-Chao; Zhou, Zhi-You; Sun, Shi-Gang
2014-01-01
This study focuses on CO adsorption at tetrahexahedral Pt nanocrystals (THH Pt NCs) by using cyclic voltammetry and in situ FTIR spectroscopy. Since the electrochemically prepared THH Pt NCs in this study are enclosed by {730} facets which could be considered by a subfacet configuration of 2{210} + {310}, we have also studied CO adsorption on the interrelated Pt(310) and Pt(210) single crystal electrodes as a comparison. Cyclic voltammetry results demonstrated that CO adsorbs dominantly on the (100) sites of THH Pt NCs at low CO coverage (θ(CO)≤ 0.135), while on both (100) and (110) sites at higher CO coverage. On ordered Pt(310) and Pt(210), i.e. they were flame annealed and then cooled in H(2) + Ar, CO adsorption also illustrates relative priority on (100) sites at low CO coverage; while at high CO coverage or on oxygen-disordered Pt(310) and Pt(210) when they were cooled in air after flame annealing, the adsorption of CO presents a weak preference on (100) sites of Pt(310) and even no preference at all on (100) sites of Pt(210). In situ FTIR spectroscopic studies illustrated that CO adsorption on THH Pt NCs yields anomalous infrared effects (AIREs), which are depicted by the Fano-like IR feature on a dense distribution (60 μm(-2)) and the enhancement of abnormal IR absorption on a sparse distribution (22 μm(-2)) of THH Pt NCs on glassy carbon substrate. Systematic investigation of CO coverage dependence of IR features revealed that, on THH Pt NCs, the IR band center (ν(COL)) of linearly bonded CO (COL) is rapidly shifted to higher wavenumbers along with the increase of CO coverage to 0.184, yielding a fast linear increase rate with a high slope (dν(COL)/dθ(IR)(CO) = 219 cm(-1)); when θ > 0.184, the increase of ν(COL) with θCO slows down and deviates drastically from linearity. In contrast, the ν(COL) on the ordered Pt(310) electrode maintains a linear increase with θ(IR)(CO) for the whole range of θ(IR)(CO) variation, and gives a much smaller increase rate of slope 74.3 cm(-1). The significant differences in CO adsorption behavior on THH Pt NCs and on interrelated Pt single crystal planes demonstrated clearly the unique properties of nanoparticles enclosed by high-index facets.
A novel hierarchical Pt- and FTO-free counter electrode for dye-sensitized solar cell
2014-01-01
A novel hierarchical Pt- and FTO-free counter electrode (CE) for the dye-sensitized solar cell (DSSC) was prepared by spin coating the mixture of TiO2 nanoparticles and poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS) solution onto the glass substrate. Compared with traditional Pt/FTO CE, the cost of the new CE is dramatically reduced by the application of bilayer TiO2-PEDOT:PSS/PEDOT:PSS film and the glass substrate. The sheet resistance of this composite film is 35 Ω sq−1 and is low enough to be used as an electrode. The surface morphologies of TiO2-PEDOT:PSS layer and modified PEDOT:PSS layer were characterized by scanning electron microscope, which shows that the former had larger surface areas than the latter. Electrochemical impedance spectra and Tafel polarization curves prove that the catalytic activity of TiO2-PEDOT:PSS/PEDOT:PSS/glass CE is higher than that of PEDOT:PSS/FTO CE and is similar to Pt/FTO CE's. This new fabricated device with TiO2-PEDOT:PSS/PEDOT:PSS/glass CE achieves a high power conversion efficiency (PCE) of 4.67%, reaching 91.39% of DSSC with Pt/FTO CE (5.11%). PMID:24808802
Xia, Zhangxun; Wang, Suli; Jiang, Luhua; Sun, Hai; Liu, Shuang; Fu, Xudong; Zhang, Bingsen; Sheng Su, Dang; Wang, Jianqiang; Sun, Gongquan
2015-01-01
The significant use of platinum for catalyzing the cathodic oxygen reduction reactions (ORRs) has hampered the widespread use of polymer electrolyte membrane fuel cells (PEMFCs). The construction of well-defined electrode architecture in nanoscale with enhanced utilization and catalytic performance of Pt might be a promising approach to address such barrier. Inspired by the highly efficient catalytic processes in enzymes with active centers embedded in charge transport pathways, here we demonstrate for the first time a design that allocates platinum nanoparticles (Pt NPs) at the boundaries with dual-functions of conducting both electrons by aid of polypyrrole and protons via Nafion® ionomer within hierarchical nanoarrays. By mimicking enzymes functionally, an impressive ORR activity and stability is achieved. Using this brand new electrode architecture as the cathode and the anode of a PEMFC, a high mass specific power density of 5.23 W mg−1Pt is achieved, with remarkable durability. These improvements are ascribed to not only the electron decoration and the anchoring effects from the Nafion® ionomer decorated PPy substrate to the supported Pt NPs, but also the fast charge and mass transport facilitated by the electron and proton pathways within the electrode architecture. PMID:26537781
A novel fabrication method of carbon electrodes using 3D printing and chemical modification process.
Tian, Pan; Chen, Chaoyang; Hu, Jie; Qi, Jin; Wang, Qianghua; Chen, Jimmy Ching-Ming; Cavanaugh, John; Peng, Yinghong; Cheng, Mark Ming-Cheng
2017-11-23
Three-dimensional (3D) printing is an emerging technique in the field of biomedical engineering and electronics. This paper presents a novel biofabrication method of implantable carbon electrodes with several advantages including fast prototyping, patient-specific and miniaturization without expensive cleanroom. The method combines stereolithography in additive manufacturing and chemical modification processes to fabricate electrically conductive carbon electrodes. The stereolithography allows the structures to be 3D printed with very fine resolution and desired shapes. The resin is then chemically modified to carbon using pyrolysis to enhance electrochemical performance. The electrochemical characteristics of 3D printing carbon electrodes are assessed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The specific capacitance of 3D printing carbon electrodes is much higher than the same sized platinum (Pt) electrode. In-vivo electromyography (EMG) recording, 3D printing carbon electrodes exhibit much higher signal-to-noise ratio (40.63 ± 7.73) than Pt electrodes (14.26 ± 6.83). The proposed biofabrication method is envisioned to enable 3D printing in many emerging applications in biomedical engineering and electronics.
Electrodeposition of uranium and thorium onto small platinum electrodes
NASA Astrophysics Data System (ADS)
Reichenberger, Michael A.; Ito, Takashi; Ugorowski, Philip B.; Montag, Benjamin W.; Stevenson, Sarah R.; Nichols, Daniel M.; McGregor, Douglas S.
2016-03-01
Preparation of thin U- and Th-coated 0.3 mm diameter Pt working electrodes by the cyclic potential sweep method is described. Uranyl- and thorium hydroxide layers were electrodeposited from ethanol solutions containing 0.02 M natural uranyl and 0.02 M natural thorium nitrate, each with 3.6 M ammonium nitrate. The cell for electrodeposition was specially developed in order to accommodate the small working electrodes for this research by including a working electrode probe, 3-D translation stage, and microscope. The source material deposition was analyzed using digital microscopy and scanning electron microscopy, and confirmed using x-ray fluorescence measurements. The appropriate potential range for electrodeposition was determined to be -0.62 V to -0.64 V for a 0.3 mm diameter Pt working electrode placed 1 cm from the counter electrode. Smooth, uniform deposition was observed near the central region of the working electrode, while surface cracking and crystalline formations were found near the edge of the working electrode. The final procedure for sample substrate preparation, electrolytic solution preparation and electrodeposition are described.
Eckhard, Kathrin; Chen, Xingxing; Turcu, Florin; Schuhmann, Wolfgang
2006-12-07
In order to locally analyse catalytic activity on modified surfaces a transient redox competition mode of scanning electrochemical microscopy (SECM) has been developed. In a bi-potentiostatic experiment the SECM tip competes with the sample for the very same analyte. This leads to a current decrease at the SECM tip, if it is positioned in close proximity to an active catalyst site on the surface. Specifically, local catalytic activity of a Pt-catalyst modified sample with respect to the catalytic reduction of molecular oxygen was investigated. At higher local catalytic activity the local 02 partial pressure within the gap between accurately positioned SECM tip and sample is depleted, leading to a noticeable tip current decrease over active sites. A flexible software module has been implemented into the SECM to adapt the competition conditions by proper definition of tip and sample potentials. A potential pulse profile enables the localised electrochemically induced generation of molecular oxygen prior to the competition detection. The current decay curves are recorded over the entire duration of the applied reduction pulse. Hence, a time resolved processing of the acquired current values provides movies of the local oxygen concentration against x,y-position. The SECM redox competition mode was verified with a macroscopic Pt-disk electrode as a test sample to demonstrate the feasibility of the approach. Moreover, highly dispersed electro-deposited spots of gold and platinum on glassy carbon were visualised using the redox competition mode of SECM. Catalyst spots of different nature as well as activity inhomogeneities within one spot caused by local variations in Pt-loading were visualised successfully.
NASA Astrophysics Data System (ADS)
Sankar, Abhinandh; Michos, Ioannis; Dutta, Indrajit; Dong, Junhang; Angelopoulos, Anastasios P.
2018-05-01
Rotating Disk Electrode (RDE) measurements on model glassy carbon (GC) substrates and Cyclic Voltammetry on more practical commercial carbon supports are used to demonstrate that the kinetics of the positive VO2+/VO2+ redox reaction can be substantially enhanced by using electrostatic layer-by-layer assembly (LbL) to decorate their surface with graphene nanoplatelets (GNPs). An exchange current density, i0, is obtained that is more than two orders of magnitude greater than that observed with standard carbon supported Pt nanocatalyst with the deposition of only 20 GNP layers. Tafel slope analysis is compared to electron microscopy imaging to conclude that while faster redox kinetics is associated with an increase in the available active area, the prevalence of smaller GNPs and associated edge sites the can attenuate activity gains with increasing number of layers. Practical implementation to existing Vanadium Redox Flow Battery (VRFB) configurations was demonstrated through the application of a 370 nm (20 layer) LbL GNP coating on carbon felt (CF). The GNP coating yielded a 5% increase relative in voltage and overall efficiency of charge discharge curves obtained under typical VRFB cell operating conditions at 40 mA cm-2. Furthermore, a substantial increase in the discharge time is observed with this GNP coating on CF.
Low Fatigue in Epitaxial Pb(Zr0.2Ti0.8)O3 on Si Substrates with LaNiO3 Electrodes by RF Sputtering
NASA Astrophysics Data System (ADS)
Wang, Chun; Kryder, Mark H.
2009-09-01
Epitaxial PZT (001) thin films with a LaNiO3 bottom electrode were deposited by radio-frequency (RF) sputtering onto Si(001) single-crystal substrates with SrTiO3/TiN buffer layers. Pb(Zr0.2Ti0.8)O3 (PZT) samples were shown to consist of a single perovskite phase and to have an (001) orientation. The orientation relationship was determined to be PZT(001)[110]∥LaNiO3(001)[110]∥SrTiO3 (001)[110]∥TiN(001)[110]∥Si(001)[110]. Atomic force microscope (AFM) measurements showed the PZT films to have smooth surfaces with a roughness of 1.15 nm. The microstructure of the multilayer was studied using transmission electron microscopy (TEM). Electrical measurements were conducted using both Pt and LaNiO3 as top electrodes. The measured remanent polarization P r and coercive field E c of the PZT thin film with Pt top electrodes were 23 μC/cm2 and 75 kV/cm, and were 25 μC/cm2 and 60 kV/cm for the PZT film with LaNiO3 top electrodes. No obvious fatigue after 1010 switching cycles indicated good electrical endurance of the PZT films using LaNiO3 electrodes, compared with the PZT film with Pt top electrodes showing a significant polarization loss after 108 cycles. These PZT films with LaNiO3 electrodes could be potential recording media for probe-based high-density data storage.
Treufeld, Imre; Jebaraj, Adriel Jebin Jacob; Xu, Jing; Martins de Godoi, Denis; Scherson, Daniel
2012-06-19
A porous Teflon ring|solid disk electrode is herein described specifically designed for acquiring online mass spectrometric measurements under well-defined forced convection created by liquid emerging from a circular nozzle impinging on the disk under wall-jet conditions. Measurements were performed for the oxidation of hydrazine, N(2)H(4), in a deaerated phosphate buffer electrolyte (pH 7) on Au, a process known to yield dinitrogen as the product. The N(2)(+) ion currents, measured by the mass spectrometer, i(N(2)(+)), as well as the corresponding polarization curves recorded simultaneously displayed very similar s-like shapes when plotted as a function of the potential applied to the Au disk. In fact, the limiting currents observed both electrochemically and spectrometrically were found to be proportional to [N(2)H(4)]. However, the limiting values of i(N(2)(+)) did not increase monotonically with the flow rate, ν(f), reaching instead a maximum and then decreasing to values independent of ν(f). This behavior has been attributed in part to hindrances in the mass transport of gases through the porous materials.
Desai, Sharanya Arcot; Rolston, John D.; Guo, Liang; Potter, Steve M.
2010-01-01
Implantable microelectrode arrays (MEAs) have been a boon for neural stimulation and recording experiments. Commercially available MEAs have high impedances, due to their low surface area and small tip diameters, which are suitable for recording single unit activity. Lowering the electrode impedance, but preserving the small diameter, would provide a number of advantages, including reduced stimulation voltages, reduced stimulation artifacts and improved signal-to-noise ratio. Impedance reductions can be achieved by electroplating the MEAs with platinum (Pt) black, which increases the surface area but has little effect on the physical extent of the electrodes. However, because of the low durability of Pt black plating, this method has not been popular for chronic use. Sonicoplating (i.e. electroplating under ultrasonic agitation) has been shown to improve the durability of Pt black on the base metals of macro-electrodes used for cyclic voltammetry. This method has not previously been characterized for MEAs used in chronic neural implants. We show here that sonicoplating can lower the impedances of microwire multi-electrode arrays (MMEA) by an order of magnitude or more (depending on the time and voltage of electroplating), with better durability compared to pulsed plating or traditional DC methods. We also show the improved stimulation and recording performance that can be achieved in an in vivo implantation study with the sonicoplated low-impedance MMEAs, compared to high-impedance unplated electrodes. PMID:20485478
Huang, Hsin-Yi; Chen, Po-Yu
2010-12-15
Nonenzymatic electrochemical determination of ethanol and glucose was respectively achieved using PdNi- and Pd-coated electrodes prepared by electrodeposition from the novel metal-free ionic liquid (IL); N-butyl-N-methylpyrrolidinium dicyanamide (BMP-DCA). BMP-DCA provided an excellent environment and wide cathodic limit for electrodeposition of metals and alloys because many metal chlorides could dissolve in this IL where the reduction potentials of Pd(II) and Ni(II) indeed overlapped, leading to the convenience of potentiostatic codeposition. In aqueous solutions, the reduction potentials of Pd(II) and Ni(II) are considerably separated. The bimetallic PdNi coatings with atomic ratios of ∼ 80/20 showed the highest current for ethanol oxidation reaction (EOR). Ethanol was detected by either cyclic voltammetry (CV) or hydrodynamic amperometry (HA). Using CV, the dependence of EOR peak current on concentration was linear from 4.92 to 962 μM with a detection limit of 2.26 μM (σ=3), and a linearity was observed from 4.92 to 988 μM using HA (detection limit 0.83 μM (σ=3)). The Pd-coated electrodes prepared by electrodeposition from BMP-DCA showed electrocatalytic activity to glucose oxidation and CV, HA, and square-wave voltammetry (SWV) were employed to determine glucose. SWV showed the best sensitivity and linearity was observed from 2.86 μM to 107 μM, and from 2.99 mM to 10.88 mM with detection limits of 0.78 μM and 25.9 μM (σ=3), respectively. For glucose detection, the interference produced from ascorbic acid, uric acid, and acetaminophen was significantly suppressed, compared with a regular Pt disk electrode. Copyright © 2010 Elsevier B.V. All rights reserved.
Substrate dependent stability of conducting polymer coatings on medical electrodes.
Green, Rylie A; Hassarati, Rachelle T; Bouchinet, Lucie; Lee, Chaekyung S; Cheong, Gin L M; Yu, Jin F; Dodds, Christopher W; Suaning, Gregg J; Poole-Warren, Laura A; Lovell, Nigel H
2012-09-01
Conducting polymer (CP) coatings on medical electrodes have the potential to provide superior performance when compared to conventional metallic electrodes, but their stability is strongly dependant on the substrate properties. The aim of this study was to examine the effect of laser roughening of underlying platinum (Pt) electrode surfaces on the mechanical, electrical and biological performance of CP coatings. In addition, the impact of dopant type on electrical performance and stability was assessed. The CP poly(ethylene dioxythiophene) (PEDOT) was coated on Pt microelectrode arrays, with three conventional dopant ions. The in vitro electrical characteristics were assessed by cyclic voltammetry and biphasic stimulation. Results showed that laser roughening of the underlying substrate did not affect the charge injection limit of the coated material, but significantly improved the passive stability and chronic stimulation lifetime without failure of the coating. Accelerated material ageing and long-term biphasic stimulus studies determined that some PEDOT variants experienced delamination within as little as 10 days when the underlying Pt was smooth, but laser roughening to produce a surface index of 2.5 improved stability, such that more than 1.3 billion stimulation cycles could be applied without evidence of failure. PEDOT doped with paratoluene sulfonate (PEDOT/pTS) was found to be the most stable CP on roughened Pt, and presented a surface topography which encouraged neural cell attachment. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Ahadian, Samad; Ramón-Azcón, Javier; Ostrovidov, Serge; Camci-Unal, Gulden; Hosseini, Vahid; Kaji, Hirokazu; Ino, Kosuke; Shiku, Hitoshi; Khademhosseini, Ali; Matsue, Tomokazu
2012-09-21
Engineered skeletal muscle tissues could be useful for applications in tissue engineering, drug screening, and bio-robotics. It is well-known that skeletal muscle cells are able to differentiate under electrical stimulation (ES), with an increase in myosin production, along with the formation of myofibers and contractile proteins. In this study, we describe the use of an interdigitated array of electrodes as a novel platform to electrically stimulate engineered muscle tissues. The resulting muscle myofibers were analyzed and quantified in terms of their myotube characteristics and gene expression. The engineered muscle tissues stimulated through the interdigitated array of electrodes demonstrated superior performance and maturation compared to the corresponding tissues stimulated through a conventional setup (i.e., through Pt wires in close proximity to the muscle tissue). In particular, the ES of muscle tissue (voltage 6 V, frequency 1 Hz and duration 10 ms for 1 day) through the interdigitated array of electrodes resulted in a higher degree of C2C12 myotube alignment (∼80%) as compared to ES using Pt wires (∼65%). In addition, higher amounts of C2C12 myotube coverage area, myotube length, muscle transcription factors and protein biomarkers were found for myotubes stimulated through the interdigitated array of electrodes compared to those stimulated using the Pt wires. Due to the wide array of potential applications of ES for two- and three-dimensional (2D and 3D) engineered tissues, the suggested platform could be employed for a variety of cell and tissue structures to more efficiently investigate their response to electrical fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Ariel; Strickler, Alaina; Higgins, Drew
Improving the performance of oxygen reduction reaction (ORR) electrocatalysts is essential for the commercial efficacy of many renewable energy technologies, including low temperature polymer electrolyte fuel cells (PEFCs). Herein, we report highly active and stable carbon-supported Ru@Pt core-shell nanoparticles (Ru@Pt/C) prepared by a wet chemical synthesis technique. Through rotating disc electrode testing, the Ru@Pt/C achieves an ORR Pt mass-based activity of 0.50 A mg Pt -1 at 0.9 V versus the reversible hydrogen electrode (RHE), which exceeds the activity of the state-of-the-art commercial Pt/C catalyst as well as the Department of Energy 2020 PEFC electrocatalyst activity targets for transportation applications.more » The impact of various synthetic parameters, including Pt to Ru ratios and catalyst pretreatments (i.e., annealing) are thoroughly explored. Pt-based mass activity of all prepared Ru@Pt/C catalysts was found to exceed 0.4 mg Pt -1 across the range of compositions investigated, with the maximum activity catalyst having a Ru:Pt ratio of 1:1. This optimized composition of Ru@Pt/C catalyst demonstrated remarkable stability after 30,000 accelerated durability cycles (0.6 to 1.0 V vs. RHE at 125 mV s -1), maintaining 85% of its initial mass activity. Scanning transmission electron microscopy energy dispersive spectroscopy (STEM-EDS) analysis at various stages of electrochemical testing demonstrated that the Pt shell can provide sufficient protection against the dissolution of the otherwise unstable Ru core.« less
Jackson, Ariel; Strickler, Alaina; Higgins, Drew; ...
2018-01-12
Improving the performance of oxygen reduction reaction (ORR) electrocatalysts is essential for the commercial efficacy of many renewable energy technologies, including low temperature polymer electrolyte fuel cells (PEFCs). Herein, we report highly active and stable carbon-supported Ru@Pt core-shell nanoparticles (Ru@Pt/C) prepared by a wet chemical synthesis technique. Through rotating disc electrode testing, the Ru@Pt/C achieves an ORR Pt mass-based activity of 0.50 A mg Pt -1 at 0.9 V versus the reversible hydrogen electrode (RHE), which exceeds the activity of the state-of-the-art commercial Pt/C catalyst as well as the Department of Energy 2020 PEFC electrocatalyst activity targets for transportation applications.more » The impact of various synthetic parameters, including Pt to Ru ratios and catalyst pretreatments (i.e., annealing) are thoroughly explored. Pt-based mass activity of all prepared Ru@Pt/C catalysts was found to exceed 0.4 mg Pt -1 across the range of compositions investigated, with the maximum activity catalyst having a Ru:Pt ratio of 1:1. This optimized composition of Ru@Pt/C catalyst demonstrated remarkable stability after 30,000 accelerated durability cycles (0.6 to 1.0 V vs. RHE at 125 mV s -1), maintaining 85% of its initial mass activity. Scanning transmission electron microscopy energy dispersive spectroscopy (STEM-EDS) analysis at various stages of electrochemical testing demonstrated that the Pt shell can provide sufficient protection against the dissolution of the otherwise unstable Ru core.« less
Potentiometric sensors with carbon black supporting platinum nanoparticles.
Paczosa-Bator, Beata; Cabaj, Leszek; Piech, Robert; Skupień, Krzysztof
2013-11-05
For the first time, a single-piece, all-solid-state ion-selective electrode was fabricated with carbon black supporting platinum nanoparticles (PtNPs-CB) and a polymeric membrane. The PtNPs-CB, as an intermediate layer, was drop-casted directly on the solid substrate, and then an ionophore-doped solvent polymeric membrane was added in order to form a sensor. The performance of the newly developed electrodes was evaluated on the basis of potassium and nitrate ions. The stability of the electrical potential for the electrodes was examined by performing current-reversal chronopotentiometry, and the influence of the interfacial water film was assessed by the potentiometric aqueous-layer test. Fabricated potassium- and nitrate-selective electrodes displayed a Nernstian slope and several outstanding properties such as high long-term potential stability, potential repeatability, and reproducibility.
Choe, Junseok; Kim, Doyoung; Shim, Jinyong; Lee, Inhae; Tak, Yongsug
2011-08-01
A procedure to locate the Pt nanostructure inside the hydrophilic channel of a Nafion membrane was developed in order to enhance Pt utilization in PEMFCs. Nanosize Pt-embedded MEA was constructed by Cu electroless plating and subsequent Pt electrodeposition inside the hydrophilic channels of the Nafion membrane. The metallic Pt nanostructure fabricated inside the membrane was employed as an oxygen reduction catalyst for a PEMFC and facilitated effective use of the hydrophilic channels inside the membrane. Compared to the conventional MEA, a Pt-embedded MEA with only 68% Pt loading showed better PEMFC performance.
Dong, Pei; Pint, Cary L; Hainey, Mel; Mirri, Francesca; Zhan, Yongjie; Zhang, Jing; Pasquali, Matteo; Hauge, Robert H; Verduzco, Rafael; Jiang, Mian; Lin, Hong; Lou, Jun
2011-08-01
A novel dye-sensitized solar cell (DSSC) structure using vertically aligned single-walled carbon nanotubes (VASWCNTs) as the counter electrode has been developed. In this design, the VASWCNTs serve as a stable high surface area and highly active electrocatalytic counter-electrode that could be a promising alternative to the conventional Pt analogue. Utilizing a scalable dry transfer approach to form a VASWCNTs conductive electrode, the DSSCs with various lengths of VASWCNTs were studied. VASWCNTs-DSSC with 34 μm original length was found to be the optimal choice in the present study. The highest conversion efficiencies of VASWCNTs-DSSC achieved 5.5%, which rivals that of the reference Pt DSSC. From the electrochemical impedance spectroscopy analysis, it shows that the new DSSC offers lower interface resistance between the electrolyte and the counter electrode. This reproducible work emphasizes the promise of VASWCNTs as efficient and stable counter electrode materials in DSSC device design, especially taking into account the low-cost merit of this promising material.
NASA Astrophysics Data System (ADS)
Cetinbas, Firat C.; Ahluwalia, Rajesh K.; Kariuki, Nancy; De Andrade, Vincent; Fongalland, Dash; Smith, Linda; Sharman, Jonathan; Ferreira, Paulo; Rasouli, Somaye; Myers, Deborah J.
2017-03-01
The cost and performance of proton exchange membrane fuel cells strongly depend on the cathode electrode due to usage of expensive platinum (Pt) group metal catalyst and sluggish reaction kinetics. Development of low Pt content high performance cathodes requires comprehensive understanding of the electrode microstructure. In this study, a new approach is presented to characterize the detailed cathode electrode microstructure from nm to μm length scales by combining information from different experimental techniques. In this context, nano-scale X-ray computed tomography (nano-CT) is performed to extract the secondary pore space of the electrode. Transmission electron microscopy (TEM) is employed to determine primary C particle and Pt particle size distributions. X-ray scattering, with its ability to provide size distributions of orders of magnitude more particles than TEM, is used to confirm the TEM-determined size distributions. The number of primary pores that cannot be resolved by nano-CT is approximated using mercury intrusion porosimetry. An algorithm is developed to incorporate all these experimental data in one geometric representation. Upon validation of pore size distribution against gas adsorption and mercury intrusion porosimetry data, reconstructed ionomer size distribution is reported. In addition, transport related characteristics and effective properties are computed by performing simulations on the hybrid microstructure.
NASA Astrophysics Data System (ADS)
Sohn, Hyunmin; Liang, Cheng-yen; Nowakowski, Mark E.; Hwang, Yongha; Han, Seungoh; Bokor, Jeffrey; Carman, Gregory P.; Candler, Robert N.
2017-10-01
We demonstrate deterministic multi-step rotation of a magnetic single-domain (SD) state in Nickel nanodisks using the multiferroic magnetoelastic effect. Ferromagnetic Nickel nanodisks are fabricated on a piezoelectric Lead Zirconate Titanate (PZT) substrate, surrounded by patterned electrodes. With the application of a voltage between opposing electrode pairs, we generate anisotropic in-plane strains that reshape the magnetic energy landscape of the Nickel disks, reorienting magnetization toward a new easy axis. By applying a series of voltages sequentially to adjacent electrode pairs, circulating in-plane anisotropic strains are applied to the Nickel disks, deterministically rotating a SD state in the Nickel disks by increments of 45°. The rotation of the SD state is numerically predicted by a fully-coupled micromagnetic/elastodynamic finite element analysis (FEA) model, and the predictions are experimentally verified with magnetic force microscopy (MFM). This experimental result will provide a new pathway to develop energy efficient magnetic manipulation techniques at the nanoscale.
Fabbri, Emiliana; Pătru, Alexandra; Rabis, Annett; Kötz, Rüdiger; Schmidt, Thomas J
2014-01-01
The development of stable catalyst systems for application at the cathode side of polymer electrolyte fuel cells (PEFCs) requires the substitution of the state-of-the-art carbon supports with materials showing high corrosion resistance in a strongly oxidizing environment. Metal oxides in their highest oxidation state can represent viable support materials for the next generation PEFC cathodes. In the present work a multilevel approach has been adopted to investigate the kinetics and the activity of Pt nanoparticles supported on SnO2-based metal oxides. Particularly, model electrodes made of SnO2 thin films supporting Pt nanoparticles, and porous catalyst systems made of Pt nanoparticles supported on Sb-doped SnO2 high surface area powders have been investigated. The present results indicate that SnO2-based supports do not modify the oxygen reduction reaction mechanism on the Pt nanoparticle surface, but rather lead to catalysts with enhanced specific activity compared to Pt/carbon systems. Different reasons for the enhancement in the specific activity are considered and discussed.
Sandoval, Andrea P; Suárez-Herrera, Marco F; Feliu, Juan M
2015-01-01
Thin films of PEDOT synthesized on platinum single electrodes in contact with the ionic liquid 1-ethyl-2,3-dimethylimidazolium triflimide ([EMMIM]Tf2N) were studied by cyclic voltammetry, chronoamperometry, infrared spectroscopy and atomic force microscopy. It was found that the polymer grows faster on Pt(111) than on Pt(110) or Pt(100) and that the redox reactions associated with the PEDOT p-doping process are much more reversible in [EMMIM]Tf2N than in acetonitrile. Finally, the ion exchange and charge carriers' formation during the p-doping reaction of PEDOT were studied using in situ FTIR spectroscopy.
Ti Porous Film-Supported NiCo₂S₄ Nanotubes Counter Electrode for Quantum-Dot-Sensitized Solar Cells.
Deng, Jianping; Wang, Minqiang; Song, Xiaohui; Yang, Zhi; Yuan, Zhaolin
2018-04-17
In this paper, a novel Ti porous film-supported NiCo₂S₄ nanotube was fabricated by the acid etching and two-step hydrothermal method and then used as a counter electrode in a CdS/CdSe quantum-dot-sensitized solar cell. Measurements of the cyclic voltammetry, Tafel polarization curves, and electrochemical impedance spectroscopy of the symmetric cells revealed that compared with the conventional FTO (fluorine doped tin oxide)/Pt counter electrode, Ti porous film-supported NiCo₂S₄ nanotubes counter electrode exhibited greater electrocatalytic activity toward polysulfide electrolyte and lower charge-transfer resistance at the interface between electrolyte and counter electrode, which remarkably improved the fill factor, short-circuit current density, and power conversion efficiency of the quantum-dot-sensitized solar cell. Under illumination of one sun (100 mW/cm²), the quantum-dot-sensitized solar cell based on Ti porous film-supported NiCo₂S₄ nanotubes counter electrode achieved a power conversion efficiency of 3.14%, which is superior to the cell based on FTO/Pt counter electrode (1.3%).
Pt/Pd electrocatalyst electrons for fuel cells
Stonehart, P.
1981-11-03
This invention relates to improved electrochemical cells and to novel electrodes for use therein. In particular, the present invention comprises a fuel cell used primarily for the consumption of impure hydrogen fuels containing carbon monoxide or carbonaceous fuels where the electrode in contact with the fuel is not substantially poisoned by carbon monoxide. The anode of the fuel cell comprises a Pd/Pt alloy supported on a graphitized or partially graphitized carbon material. Fuel cells which comprise as essential elements a fuel electrode, an oxidizing electrode, and an electrolyte between said electrodes are devices for the direct production of electricity through the electrochemical combustion of a fuel and oxidant. These devices are recognized for their high efficiency as energy conversion units, since unlike conventional combustion engines, they are not subject to the limitations of the Carnot heat cycle. It is the primary object of the present invention to provide an electrode having high electrochemical activity for an electrochemical cell. It is another object of the present invention to provide an electrode having an electro-catalyst which is highly resistant to the corrosive environment of an electrochemical cell.
Real-Time Optical Monitoring of Pt Catalyst Under the Potentiodynamic Conditions
NASA Astrophysics Data System (ADS)
Song, Hyeon Don; Lee, Minzae; Kim, Gil-Pyo; Choi, Inhee; Yi, Jongheop
2016-12-01
In situ monitoring of electrode materials reveals detailed physicochemical transition in electrochemical device. The key challenge is to explore the localized features of electrode surfaces, since the performance of an electrochemical device is determined by the summation of local architecture of the electrode material. Adaptive in situ techniques have been developed for numerous investigations; however, they require restricted measurement environments and provide limited information, which has impeded their widespread application. In this study, we realised an optics-based electrochemical in situ monitoring system by combining a dark-field micro/spectroscopy with an electrochemical workstation to investigate the physicochemical behaviours of Pt catalyst. We found that the localized plasmonic trait of a Pt-decorated Au nanoparticle as a model system varied in terms of its intensity and wavelength during the iterations of a cyclic voltammetry test. Furthermore, we show that morphological and compositional changes of the Pt catalyst can be traced in real time using changes in quantified plasmonic characteristics, which is a distinct advantage over the conventional electrochemistry-based in situ monitoring systems. These results indicate the substantial promise of online operando observation in a wide range of electrical energy conversion systems and electrochemical sensing areas.
Application of photothermal effect to manufacture ultrasonic actuators (abstract)
NASA Astrophysics Data System (ADS)
Zhang, Shu-yi; Cheng, Li-ping; Shui, Xiu-ji; Yu, Jiong; Dong, Shu-xiang
2003-01-01
Photothermal (PT) effect has been applied to manufacture disks [A. C. Tam, a lecture at the Institute of Acoustics, Nanjing University, People's Republic of China (1996)] and magnetic head sliders for disk drives [A. C. Tam, C. C. Poon, and L. Crawforth, Analyt. Sci. 17, s 419 (2001)]. Now we apply the PT effect to manufacture ultrasonic motors (actuators). Recently, the ultrasonic actuators with different ultrasonic modes, such as Rayleigh (surface acoustic) mode, Lamb (plate) mode, etc., have been developed. We have designed and fabricated two rotary motors driven by surface acoustic wave (SAW) with different frequencies, but lower than 30 MHz [L. P. Cheng, G. M. Zhang, S. Y. Zhang, J. Yu, and X. J. Shui, Ultrasonics 39, 591 (2002)]. On the SAW motors (actuators), two Rayleigh wave beams were generated and propagating along the surface of a 128° YK-LiNbO3 substrate in opposite directions with each other as a stator, and a plastic disk with balls distributed along the circle of the disk was as a rotor. For miniaturizing the rotary SAW motors, and increasing the rotation velocity, the SAW frequency must be increased. Then we improve the manufacturing technology of the mechanical structure by PT effect instead of the conventional mechanical processes of the stator and rotor of the motor. A new type of rotary SAW motor (actuator) has been fabricated, in which both SAW beams with opposite propagating directions are excited by two pairs of interdigital transducers with the frequency between 30-50 MHz. In the surface of the stator (128° YX-LiNbO3 substrate), a hole with the depth about 500 μm is impinged by a focused pulsed Nd:YAG laser beam (PT effect) between two SAW propagating ways on the 128° YX-LiNbO3 substrate for fixing the axis of the motor, with the frequency between 30-50 MHz. In the bottom of the rotor (plastic disk), a lot of crown (flange) blocks with the high of 20-30 μm and the diameter of also 20-30 μm can be made by the focused pulsed Nd:YAG laser a focused continuous Ar+ laser heating (PT effect) for contacting with the stator. The symmetrical frictional force pairs produced between the crown blocks of the rotor with the local supporting SAW deformation points of the stator around the circle of the rotor to drive the motor to rotate. This kind of rotary SAW actuator can be applied to drive a recording head of HDD with satisfactory performance.
Discrimination of Inner- and Outer-Sphere Electrode Reactions by Cyclic Voltammetry Experiments
ERIC Educational Resources Information Center
Tanimoto, Sachiko; Ichimura, Akio
2013-01-01
A laboratory experiment for undergraduate students who are studying homogeneous and heterogeneous electron-transfer reactions is described. Heterogeneous or electrode reaction kinetics can be examined by using the electrochemical reduction of three Fe[superscript III]/Fe[superscript II] redox couples at platinum and glassy carbon disk electrodes.…
ELECTRODE MEASUREMENT OF REDOX POTENTIAL IN ANAEROBIC FERRIC/FERROUS CHLORIDE SYSTEMS
The behaviour of two inert redox electrodes (Pt and wax-impregnated graphite) was investigated in anaerobic ferrous and ferric chloride solutions in order to establish if these electrodes respond to the Fe3+/Fe2+ couple in a Nernstian manner. A new method fo...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, K.-S.; Green, M. L.; Suehle, J.
2006-10-02
The authors have fabricated combinatorial Ni-Ti-Pt ternary metal gate thin film libraries on HfO{sub 2} using magnetron co-sputtering to investigate flatband voltage shift ({delta}V{sub fb}), work function ({phi}{sub m}), and leakage current density (J{sub L}) variations. A more negative {delta}V{sub fb} is observed close to the Ti-rich corner than at the Ni- and Pt-rich corners, implying smaller {phi}{sub m} near the Ti-rich corners and higher {phi}{sub m} near the Ni- and Pt-rich corners. In addition, measured J{sub L} values can be explained consistently with the observed {phi}{sub m} variations. Combinatorial methodologies prove to be useful in surveying the large compositionalmore » space of ternary alloy metal gate electrode systems.« less
NASA Astrophysics Data System (ADS)
Nilsson, Sara; Björefors, Fredrik; Robinson, Nathaniel D.
2013-09-01
Coating hard materials such as Pt with soft polymers like poly-L-lysine is a well-established technique for increasing electrode biocompatibility. We have combined quartz crystal microgravimetry with dissipation with electrochemistry (EQCM-D) to study the deposition of PLL onto Pt electrodes under anodic potentials. Our results confirm the change in film growth over time previously reported by others. However, the dissipation data suggest that, after the short initial phase of the process, the rigidity of the film increases with time, rather than decreasing, as previously proposed. In addition to these results, we discuss how gas evolution from water electrolysis and Pt etching in electrolytes containing Cl- affect EQCM-D measurements, how to recognize these effects, and how to reduce them. Despite the challenges of using Pt as an anode in this system, we demonstrate that the various electrochemical processes can be understood and that PLL coatings can be successfully electrodeposited.
NASA Astrophysics Data System (ADS)
Shibata, Takayuki; Yamamoto, Kota; Sasano, Junji; Nagai, Moeto
2017-09-01
This paper presents a nanofabrication technique based on the electrochemically assisted chemical dissolution of zinc oxide (ZnO) single crystals in water at room temperature using a catalytically active Pt-coated atomic force microscopy (AFM) probe. Fabricated grooves featured depths and widths of several tens and several hundreds of nanometers, respectively. The material removal rate of ZnO was dramatically improved by controlling the formation of hydrogen ions (H+) on the surface of the catalytic Pt-coated probe via oxidation of H2O molecules; this reaction can be enhanced by applying a cathodic potential to an additional Pt-wire working electrode in a three-electrode configuration. Consequently, ZnO can be dissolved chemically in water as a soluble Zn2+ species via a reaction with H+ species present in high concentrations in the immediate vicinity of the AFM tip apex.
NASA Astrophysics Data System (ADS)
Verpekin, Victor V.; Vasiliev, Alexander D.; Kondrasenko, Alexander A.; Burmakina, Galina V.; Chudin, Oleg S.; Pavlenko, Nina I.; Zimonin, Dmitry V.; Rubaylo, Anatoly I.
2018-07-01
The novel heterobinuclear μ-vinylidene complex [Cp(CO)2Re(μ-C=CHPh)Pt(PPh3)(CO)] (1) was isolated from the reaction mixture of [Cp(CO)2Re(μ-C=CHPh)Fe(CO)4] and Pt(PPh3)4 for the first time. Alternative high-yield synthetic approaches to 1 were developed including the reactions of [Cp(CO)2Re(μ-C=CHPh)Pt(PPh3)2] (2) with Co2(CO)8 and Rh(acac)(CO)2. The complex was characterized by IR and 1H, 13C and 31P NMR spectroscopy, a molecular structure of 1 was determined by X-ray diffraction analysis. The electrochemical behavior of the new complex was studied by cyclic voltammetry at platinum or glassed carbon electrodes and by dc polarography at a dropping mercury electrode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Taehoon; Jung, Yong Chan; Seong, Sejong
The metal gate electrodes of Ni, W, and Pt have been investigated for their scavenging effect: a reduction of the GeO{sub x} interfacial layer (IL) between HfO{sub 2} dielectric and Ge substrate in metal/HfO{sub 2}/GeO{sub x}/Ge capacitors. All the capacitors were fabricated using the same process except for the material used in the metal electrodes. Capacitance-voltage measurements, scanning transmission electron microscopy, and electron energy loss spectroscopy were conducted to confirm the scavenging of GeO{sub x} IL. Interestingly, these metals are observed to remotely scavenge the interfacial layer, reducing its thickness in the order of Ni, W, and then Pt. Themore » capacitance equivalent thickness of these capacitors with Ni, W, and Pt electrodes are evaluated to be 2.7 nm, 3.0 nm, and 3.5 nm, and each final remnant physical thickness of GeO{sub x} IL layer is 1.1 nm 1.4 nm, and 1.9 nm, respectively. It is suggested that the scavenging effect induced by the metal electrodes is related to the concentration of oxygen vacancies generated by oxidation reaction at the metal/HfO{sub 2} interface.« less
Low-Temperature Co-Fired Unipoled Multilayer Piezoelectric Transformers.
Gao, Xiangyu; Yan, Yongke; Carazo, Alfredo Vazquez; Dong, Shuxiang; Priya, Shashank
2018-03-01
The reliability of piezoelectric transformers (PTs) is dependent upon the quality of fabrication technique as any heterogeneity, prestress, or misalignment can lead to spurious response. In this paper, unipoled multilayer PTs were investigated focusing on high-power composition and co-firing profile in order to provide low-temperature synthesized high-quality device measured in terms of efficiency and power density. The addition of 0.2 wt% CuO into Pb 0.98 Sr 0.02 (Mg 1/3 Nb 2/3 ) 0.06 (Mn 1/3 Nb 2/3 ) 0.06 (Zr 0.48 Ti 0.52 ) 0.88 O 3 (PMMnN-PZT) reduces the co-firing temperature from 1240 °C to 930 °C, which allows the use of Ag/Pd inner electrode instead of noble Pt inner electrode. Low-temperature synthesized material was found to exhibit excellent piezoelectric properties ( , , %, pC/N, and °C). The performance of the PT co-fired with Ag/Pd electrode at 930 °C was similar to that co-fired at 1240 °C with Pt electrode (25% reduction in sintering temperature). Both high- and low-temperature synthesized PTs demonstrated 5-W output power with >90% efficiency and 11.5 W/cm 3 power density.
Fox, Austin J; Drawl, Bill; Fox, Glen R; Gibbons, Brady J; Trolier-McKinstry, Susan
2015-01-01
Optimized processing conditions for Pt/TiO2/SiO2/Si templating electrodes were investigated. These electrodes are used to obtain [111] textured thin film lead zirconate titanate (Pb[ZrxTi1-x ]O3 0 ≤ x ≤ 1) (PZT). Titanium deposited by dc magnetron sputtering yields [0001] texture on a thermally oxidized Si wafer. It was found that by optimizing deposition time, pressure, power, and the chamber pre-conditioning, the Ti texture could be maximized while maintaining low surface roughness. When oxidized, titanium yields [100]-oriented rutile. This seed layer has as low as a 4.6% lattice mismatch with [111] Pt; thus, it is possible to achieve strongly oriented [111] Pt. The quality of the orientation and surface roughness of the TiO2 and the Ti directly affect the achievable Pt texture and surface morphology. A transition between optimal crystallographic texture and the smoothest templating surface occurs at approximately 30 nm of original Ti thickness (45 nm TiO2). This corresponds to 0.5 nm (2 nm for TiO2) rms roughness as determined by atomic force microscopy and a full-width at half-maximum (FWHM) of the rocking curve 0002 (200) peak of 5.5/spl degrees/ (3.1/spl degrees/ for TiO2). A Pb[Zr0.52Ti 0.48]O3 layer was deposited and shown to template from the textured Pt electrode, with a maximum [111] Lotgering factor of 87% and a minimum 111 FWHM of 2.4/spl degrees/ at approximately 30 nm of original Ti.
Sandoval, Andrea P; Suárez-Herrera, Marco F
2015-01-01
Summary Thin films of PEDOT synthesized on platinum single electrodes in contact with the ionic liquid 1-ethyl-2,3-dimethylimidazolium triflimide ([EMMIM]Tf2N) were studied by cyclic voltammetry, chronoamperometry, infrared spectroscopy and atomic force microscopy. It was found that the polymer grows faster on Pt(111) than on Pt(110) or Pt(100) and that the redox reactions associated with the PEDOT p-doping process are much more reversible in [EMMIM]Tf2N than in acetonitrile. Finally, the ion exchange and charge carriers’ formation during the p-doping reaction of PEDOT were studied using in situ FTIR spectroscopy. PMID:25815089
Meneses, Diogenes; Gunasekara, Dulan B.; Pichetsurnthorn, Pann; da Silva, José A. F.; de Abreu, Fabiane C.; Lunte, Susan M.
2015-01-01
In-channel amperometric detection combined with dual-channel microchip electrophoresis is evaluated using a two-electrode isolated potentiostat for reverse polarity separations. The device consists of two separate channels with the working and reference electrodes placed at identical positions relative to the end of the channel, enabling noise subtraction. In previous reports of this configuration, normal polarity and a three-electrode detection system were used. In the two-electrode detection system described here, the electrode in the reference channel acts as both the counter and reference. The effect of electrode placement in the channels on noise and detector response was investigated using nitrite, tyrosine, and hydrogen peroxide as model compounds. The effects of electrode material and size and type of reference electrode on noise and the potential shift of hydrodynamic voltammograms for the model compounds were determined. In addition, the performance of two- and three-electrode configurations using Pt and Ag/AgCl reference electrodes was compared. Although the signal was attenuated with the Pt reference, the noise was also significantly reduced. It was found that lower LOD were obtained for all three compounds with the dual-channel configuration compared to single-channel, in-channel detection. The dual-channel method was then used for the detection of nitrite in a dermal microdialysis sample obtained from a sheep following nitroglycerin administration. PMID:25256669
Fuel cell with Pt/Pd electrocatalyst electrode
Stonehart, Paul
1983-01-01
An electrode for use in a phosphoric acid fuel cell comprising a graphitized or partially graphitized carbon support having a platinum/palladium electrocatalyst thereon. Preferably, the platinum/palladium catalyst comprises 20 to 65 weight percent palladium.
Deng, Chunyan; Peng, Yong; Su, Lei; Liu, You-Nian; Zhou, Feimeng
2012-03-16
A porous reticulated vitreous carbon (RVC) electrode and a disk electrode coupled in tandem in an electrochemical flow cell has been used for electrolytic removal of interferents before amperometric glucose detection. The electrolytic efficiency at the upstream RVC electrode is 100% at a flow rate of 0.1 mL min(-1) or lower. Potential interferents such as acetaminophen, ascorbic acid, and uric acid can be completely eliminated by electrolysis at the RVC electrode. A mixed monolayer comprising glucose oxidase (GOD) and ferrocenyl-1-undecanethiol preformed at the downstream gold disk electrode was used as a mediator-based amperometric glucose sensor. The dependence of the amperometric current on the glucose concentration exhibits good linearity across over three orders of magnitude. The glucose measurements were also found to be reproducible (RSD<3.5%) and accurate. Unlike the chemiluminescence method, this device obviates the use of carcinogenic substrates and the glucose sensor performance is independent of the oxygen present in sample. On the basis that the RVC electrode requires minimal cleanup and the GOD-modified electrode remains stable for a week, the electrochemical flow cell should be amenable for automated on-line removal of redox interferents for other types of enzyme-based biosensors. Copyright © 2012 Elsevier B.V. All rights reserved.
Akman, Dilek; Cirik, Kevser; Ozdemir, Sebnem; Ozkaya, Bestamin; Cinar, Ozer
2013-12-01
The main aim of this study is to investigate the bioelectricity production in continuously-fed dual chambered microbial fuel cell (MFC). Initially, MFC was operated with different anode electrode material at constant hydraulic retention time (HRT) of 2d to evaluate the effect of electrode material on electricity production. Pt electrode yielded about 642 mW/m(2) power density, which was 4 times higher than that of the MFC with the mixed metal oxide titanium (Ti-TiO2). Further, MFC equipped with Pt electrode was operated at varying HRT (2-0.5d). The power density generation increased with decreasing HRT, corresponding to 1313 mW/m(2) which was maximum value obtained during this study. Additionally, decreasing HRT from 2 to 0.5d resulted in increasing effluent dissolved organic carbon (DOC) concentration from 1.92 g/L to 2.23 g/L, corresponding to DOC removal efficiencies of 46% and 38%, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Soo Kang, Jin; Park, Min-Ah; Kim, Jae-Yup; Ha Park, Sun; Young Chung, Dong; Yu, Seung-Ho; Kim, Jin; Park, Jongwoo; Choi, Jung-Woo; Jae Lee, Kyung; Jeong, Juwon; Jae Ko, Min; Ahn, Kwang-Soon; Sung, Yung-Eun
2015-05-01
Nickel nitride electrodes were prepared by reactive sputtering of nickel under a N2 atmosphere at room temperature for application in mesoscopic dye- or quantum dot- sensitized solar cells. This facile and reliable method led to the formation of a Ni2N film with a cauliflower-like nanostructure and tetrahedral crystal lattice. The prepared nickel nitride electrodes exhibited an excellent chemical stability toward both iodide and polysulfide redox electrolytes. Compared to conventional Pt electrodes, the nickel nitride electrodes showed an inferior electrocatalytic activity for the iodide redox electrolyte; however, it displayed a considerably superior electrocatalytic activity for the polysulfide redox electrolyte. As a result, compared to dye-sensitized solar cells (DSCs), with a conversion efficiency (η) = 7.62%, and CdSe-based quantum dot-sensitized solar cells (QDSCs, η = 2.01%) employing Pt counter electrodes (CEs), the nickel nitride CEs exhibited a lower conversion efficiency (η = 3.75%) when applied to DSCs, but an enhanced conversion efficiency (η = 2.80%) when applied to CdSe-based QDSCs.
Pootawang, Panuphong; Saito, Nagahiro; Takai, Osamu; Lee, Sang-Yul
2012-10-05
Arc discharge in solution, generated by applying a high voltage of unipolar pulsed dc to electrodes of Ag and Pt, was used as a method to form Ag/Pt bimetallic nanocomposites via electrode erosion by the effects of the electric arc at the cathode (Ag rod) and the sputtering at the anode (Pt rod). Ag/Pt bimetallic nanocomposites were formed as colloidal particles dispersed in solution via the reduction of hydrogen radicals generated during discharge without the addition of chemical precursor or reducing agent. At a discharge time of 30 s, the fine bimetallic nanoparticles with a mean particle size of approximately 5 nm were observed by transmission electron microscopy (TEM). With increasing discharge time, the bimetallic nanoparticle size tended to increase by forming an agglomeration. The presence of the relatively small amount of Pt dispersed in the Ag matrix could be observed by the analytical mapping mode of energy-dispersive x-ray spectroscopy and high-resolution TEM. This demonstrated that the synthesized particle was in the form of a nanocomposite. No contamination of other chemical substances was detected by x-ray photoelectron spectroscopy. Hence, solution plasma could be a clean and simple process to effectively synthesize Ag/Pt bimetallic nanocomposites and it is expected to be widely applicable in the preparation of several types of nanoparticle.
NASA Astrophysics Data System (ADS)
Du, Shangfeng; Lin, Kaijie; Malladi, Sairam K.; Lu, Yaxiang; Sun, Shuhui; Xu, Qiang; Steinberger-Wilckens, Robert; Dong, Hanshan
2014-09-01
In this work, we demonstrate an innovative approach, combing a novel active screen plasma (ASP) technique with green chemical synthesis, for a direct fabrication of uniform Pt nanowire arrays on large-area supports. The ASP treatment enables in-situ N-doping and surface modification to the support surface, significantly promoting the uniform growth of tiny Pt nuclei which directs the growth of ultrathin single-crystal Pt nanowire (2.5-3 nm in diameter) arrays, forming a three-dimensional (3D) nano-architecture. Pt nanowire arrays in-situ grown on the large-area gas diffusion layer (GDL) (5 cm2) can be directly used as the catalyst electrode in fuel cells. The unique design brings in an extremely thin electrocatalyst layer, facilitating the charge transfer and mass transfer properties, leading to over two times higher power density than the conventional Pt nanoparticle catalyst electrode in real fuel cell environment. Due to the similar challenges faced with other nanostructures and the high availability of ASP for other material surfaces, this work will provide valuable insights and guidance towards the development of other new nano-architectures for various practical applications.
Sun, Chia-Liang; Lee, Hsin-Hsien; Yang, Jen-Ming; Wu, Ching-Chou
2011-04-15
In this study, a graphene/Pt-modified glassy carbon (GC) electrode was created to simultaneously characterize ascorbic acid (AA), dopamine (DA), and uric acid (UA) levels via cyclic voltammetry (CV) and differential pulse voltammetry (DPV). During the preparation of the nanocomposite, size-selected Pt nanoparticles with a mean diameter of 1.7 nm were self-assembled onto the graphene surface. In the simultaneous detection of the three aforementioned analytes using CV, the electrochemical potential differences among the three detected peaks were 185 mV (AA to DA), 144 mV (DA to UA), and 329 mV (AA and UA), respectively. In comparison to the CV results of bare GC and graphene-modified GC electrodes, the large electrochemical potential difference that is achieved via the use of the graphene/Pt nanocomposites is essential to the distinguishing of these three analytes. An optimized adsorption of size-selected Pt colloidal nanoparticles onto the graphene surface results in a graphene/Pt nanocomposite that can provide a good platform for the routine analysis of AA, DA, and UA. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Alonso, Jose Maria; Bielen, Abraham A. M.; Olthuis, Wouter; Kengen, Servé W. M.; Zuilhof, Han; Franssen, Maurice C. R.
2016-10-01
Alkene-based self-assembled monolayers grafted on oxidized Pt surfaces were used as a scaffold to covalently immobilize oxidase enzymes, with the aim to develop an amperometric biosensor platform. NH2-terminated organic layers were functionalized with either aldehyde (CHO) or N-hydroxysuccinimide (NHS) ester-derived groups, to provide anchoring points for enzyme immobilization. The functionalized Pt surfaces were characterized by X-ray photoelectron spectroscopy (XPS), static water contact angle (CA), infrared reflection absorption spectroscopy (IRRAS) and atomic force microscopy (AFM). Glucose oxidase (GOX) was covalently attached to the functionalized Pt electrodes, either with or without additional glutaraldehyde crosslinking. The responses of the acquired sensors to glucose concentrations ranging from 0.5 to 100 mM were monitored by chronoamperometry. Furthermore, lactate oxidase (LOX) and human hydroxyacid oxidase (HAOX) were successfully immobilized onto the PtOx surface platform. The performance of the resulting lactate sensors was investigated for lactate concentrations ranging from 0.05 to 20 mM. The successful attachment of active enzymes (GOX, LOX and HAOX) on Pt electrodes demonstrates that covalently functionalized PtOx surfaces provide a universal platform for the development of oxidase enzyme-based sensors.
Li, Yongxin; Lu, Qiufang; Wu, Shengnan; Wang, Lun; Shi, Xianming
2013-03-15
Ultrathin platinum-coated gold (Pt@Au) nanoparticles with core@shell structure have been developed by under-potential deposition (UPD) redox replacement technique. A single UPD Cu replacement with Pt(2+) produced a uniform Pt monolayer on the surface of gold nanoparticles, which are immobilized on glassy carbon electrode (GCE) surface based on electrostatic interaction. The ultrathin Pt@Au nanoparticles were confirmed by cyclic voltammetry and X-ray photoelectron spectroscopy (XPS). Voltammetry and amperometric methodologies were used to evaluate the electrocatalytic activity of the Pt@Au nanoparticles modified electrode towards the reduction of hydrogen peroxide under the physiological condition. The present results show that ultrathin Pt coating greatly enhances the electrocatalytic activity towards the reduction of hydrogen peroxide, which can be utilized to fabricate the hydrogen peroxide sensor. Chronoamperometric experiments showed that at an applied potential of 0.08 V (vs. Ag/AgCl), the current reduction of hydrogen peroxide was linear to its concentration in the range of 1-450 μΜ, and the detection limit was found to be 0.18 μM (signal-to-noise ratio, S/N=3). Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, M.A.; Jeffries-Nakamura, B.; Williams, R.M.
1995-12-01
Current collection in porous thin film electrodes on solid electrolytes has been improved by using thick film grids to decrease sheet and contact resistance in RhW and PtW electrodes. The grids are directly deposited on the solid electrolyte either by sputter- or photodeposition and the electrode deposited over the grid. Comparison of the performance of electrodes having such underlying grids with that of electrodes without such grids has shown performance, as measured by current or power produced, to be improved by 10--30% in electrodes with grids.
NASA Technical Reports Server (NTRS)
Ryan, M. A.; Jeffries-Nakamura, B.; Williams, R. M.; Underwood, M. L.; OConnor, D.; Kikkert, S.
1995-01-01
Current collection in porous thin film electrodes on solid electrolytes has been improved by using thick film grids to decrease sheet and contact resistance in RhW and PtW electrodes. The grids are directly deposited on the solid electrolyte either by sputter- or photodeposition, and the electrode deposited over the grid. Comparison of the performance of electrodes having such underlying grids with that of electrodes without such grids has shown performance, as measured by current or power produced, to be improved by 10-30% in electrodes with grids.
Pt/Ceria-based Catalysts for Small Alcohol Electrooxidation
NASA Astrophysics Data System (ADS)
Menendez-Mora, Christian L.
High emissions of fossil-based energy sources have led to scientists around the world to develop new alternatives for the future. In this sense, fuel cells are a remarkable and promising energy option with less environmental impact. The most used fuels for this technology are hydrogen and small chain alcohols, which can be oxidized to transform their chemical energy into electrical power. To do this, fuel cells need catalysts that will act as an active surface where the oxidation can take place. The problem with platinum catalysts is its possible CO poisoning with intermediates that are produced before the complete oxidation of alcohol to CO2. Different approaches have been taken to try to resolve this issue. In this case, cerium oxide (ceria) was selected as a co-catalyst to mitigate the effect of CO poisoning of platinum. Ceria is a compound that has the ability to work as an "oxygen tank" and can donate oxygen to carbon monoxide that is strongly adsorbed at platinum surface to produce CO2 (carbon dioxide), regenerating the Pt surface for further alcohol oxidation. Therefore, enhancing the current density as well as the power output of a fuel cell. First, an occlusion deposition technique was used to prepare platinum/ceria composite electrodes and tested them towards small chain alcohol oxidation such as methanol oxidation reaction in acidic and alkaline media. The preliminary results demonstrated that the Pt/ceria electrodes were more efficient towards methanol electrooxidation when compared to Pt electrodes. This enhancement was attributed to the presence of ceria. A second preparation method was selected for the synthesis of ceria/Pt catalysts. In this case, a hydrothermal method was used and the catalysis were studied for the effect of MeOH, EtOH and n-BuOH oxidation. The observed effect was that electrodes made of Pt/Pt:CeO2-x showed better catalytic effect than Pt/ceria and platinum electrodes. Moreover, a comparison between ceria nanorods versus nanoparticles as substrates was done. The general result was that ceria nanoparticles showed better electrocatalytic behavior towards the oxidation of methanol in alkaline medium. Finally, as an outreach activity, an educational module to reinforce the electrochemical concepts in the General Chemistry Laboratory course at UPR-RP was developed. The module was based on Volta's Experiment and an improvement on students learning was detected when comparing this activity with the normal Daniel's cell experience that is used in most Universities at the undergraduate level. In summary, the findings of this thesis conclude that ceria is a compound that may enhance platinum catalytic activity by CO oxidation, promoting the oxidation of alcohols in acidic and alkaline medium. Moreover, catalysis depends on the morphology of the ceria that is used as the catalysts support.
NASA Astrophysics Data System (ADS)
Wang, Xuelin; Zhang, Yuxin; Guo, Rui; Wang, Hongzhang; Yuan, Bo; Liu, Jing
2018-03-01
Conformable epidermal printed electronics enabled from gallium-based liquid metals (LMs), highly conductive and low-melting-point alloys, are proposed as the core to achieving immediate contact between skin surface and electrodes, which can avoid the skin deformation often caused by conventional rigid electrodes. When measuring signals, LMs can eliminate resonance problems with shorter time to reach steady state than Pt and gelled Pt electrodes. By comparing the contact resistance under different working conditions, it is demonstrated that both ex vivo and in vivo LM electrode-skin models have the virtues of direct and immediate contact with skin surface without the deformation encountered with conventional rigid electrodes. In addition, electrocardio electrodes composed of conformable LM printed epidermal electronics are adopted as smart devices to monitor electrocardiogram signals of rabbits. Furthermore, simulation treatment for smart defibrillation offers a feasible way to demonstrate the effect of liquid metal electrodes (LMEs) on the human body with less energy loss. The remarkable features of soft epidermal LMEs such as high conformability, good conductivity, better signal stability, and fine biocompatibility represent a critical step towards accurate medical monitoring and future smart treatments.
Spatiotemporal norepinephrine mapping using a high-density CMOS microelectrode array.
Wydallis, John B; Feeny, Rachel M; Wilson, William; Kern, Tucker; Chen, Tom; Tobet, Stuart; Reynolds, Melissa M; Henry, Charles S
2015-10-21
A high-density amperometric electrode array containing 8192 individually addressable platinum working electrodes with an integrated potentiostat fabricated using Complementary Metal Oxide Semiconductor (CMOS) processes is reported. The array was designed to enable electrochemical imaging of chemical gradients with high spatiotemporal resolution. Electrodes are arranged over a 2 mm × 2 mm surface area into 64 subarrays consisting of 128 individual Pt working electrodes as well as Pt pseudo-reference and auxiliary electrodes. Amperometric measurements of norepinephrine in tissue culture media were used to demonstrate the ability of the array to measure concentration gradients in complex media. Poly(dimethylsiloxane) microfluidics were incorporated to control the chemical concentrations in time and space, and the electrochemical response at each electrode was monitored to generate electrochemical heat maps, demonstrating the array's imaging capabilities. A temporal resolution of 10 ms can be achieved by simultaneously monitoring a single subarray of 128 electrodes. The entire 2 mm × 2 mm area can be electrochemically imaged in 64 seconds by cycling through all subarrays at a rate of 1 Hz per subarray. Monitoring diffusional transport of norepinephrine is used to demonstrate the spatiotemporal resolution capabilities of the system.
Few-layer MoSe₂ possessing high catalytic activity towards iodide/tri-iodide redox shuttles.
Lee, Lawrence Tien Lin; He, Jian; Wang, Baohua; Ma, Yaping; Wong, King Young; Li, Quan; Xiao, Xudong; Chen, Tao
2014-02-14
Due to the two-dimensional confinement of electrons, single- and few-layer MoSe₂ nanostructures exhibit unusual optical and electrical properties and have found wide applications in catalytic hydrogen evolution reaction, field effect transistor, electrochemical intercalation, and so on. Here we present a new application in dye-sensitized solar cell as catalyst for the reduction of I₃(-) to I(-) at the counter electrode. The few-layer MoSe₂ is fabricated by surface selenization of Mo-coated soda-lime glass. Our results show that the few-layer MoSe₂ displays high catalytic efficiency for the regeneration of I(-) species, which in turn yields a photovoltaic energy conversion efficiency of 9.00%, while the identical photoanode coupling with "champion" electrode based on Pt nanoparticles on FTO glass generates efficiency only 8.68%. Thus, a Pt- and FTO-free counter electrode outperforming the best conventional combination is obtained. In this electrode, Mo film is found to significantly decrease the sheet resistance of the counter electrode, contributing to the excellent device performance. Since all of the elements in the electrode are of high abundance ratios, this type of electrode is promising for the fabrication of large area devices at low materials cost.
3D Printed Microfluidic Devices with Integrated Versatile and Reusable Electrodes
Erkal, Jayda L.; Selimovic, Asmira; Gross, Bethany C.; Lockwood, Sarah Y.; Walton, Eric L.; McNamara, Stephen; Martin, R. Scott; Spence, Dana M.
2014-01-01
We report two 3D printed devices that can be used for electrochemical detection. In both cases, the electrode is housed in commercially available, polymer-based fittings so that the various electrode materials (platinum, platinum black, carbon, gold, silver) can be easily added to a threaded receiving port printed on the device; this enables a module-like approach to the experimental design, where the electrodes are removable and can be easily repolished for reuse after exposure to biological samples. The first printed device represents a microfluidic platform with a 500 × 500 μm channel and a threaded receiving port to allow integration of either polyetheretherketone (PEEK) nut-encased glassy carbon or platinum black (Pt-black) electrodes for dopamine and nitric oxide (NO) detection, respectively. The embedded 1 mm glassy carbon electrode had a limit of detection (LOD) of 500 nM for dopamine and a linear response (R2= 0.99) for concentrations between 25-500 μM. When the glassy carbon electrode was coated with 0.05% Nafion, significant exclusion of nitrite was observed when compared to signal obtained from equimolar injections of dopamine. When using flow injection analysis with a Pt/Pt-black electrode and standards derived from NO gas, a linear correlation (R2 = 0.99) over a wide range of concentrations (7.6 - 190 μM) was obtained, with the LOD for NO being 1 μM. The second application showcases a 3D printed fluidic device that allows collection of the biologically relevant analyte adenosine triphosphate (ATP) while simultaneously measuring the release stimulus (reduced oxygen concentration). The hypoxic sample (4.76 ± 0.53 ppm oxygen) released 2.37 ± 0.37 times more ATP than the normoxic sample (8.22 ± 0.60 ppm oxygen). Importantly, the results reported here verify the reproducible and transferable nature of using 3D printing as a fabrication technique, as devices and electrodes were moved between labs multiple times during completion of the study. PMID:24763966
Tai, Qidong; Chen, Bolei; Guo, Feng; Xu, Sheng; Hu, Hao; Sebo, Bobby; Zhao, Xing-Zhong
2011-05-24
Highly uniform and transparent polyaniline (PANI) electrodes that can be used as counter electrodes in dye-sensitized solar cells (DSSCs) were prepared by a facile in situ polymerization method. They were used to fabricate a novel bifacially active transparent DSSC, which showed conversion efficiencies of 6.54 and 4.26% corresponding to front- and rear-side illumination, respectively. Meanwhile, the efficiency of the same photoanode employing a Pt counter electrode was 6.69%. Compared to conventional Pt-based DSSCs, the design of the bifacial DSSC fabricated in this work would help to bring down the cost of energy production due to the lower cost of the materials and the higher power-generating efficiency of such devices for their capabilities of utilizing the light from both sides. These promising results highlight the potential application of PANI in cost-effective, transparent DSSCs.
NASA Astrophysics Data System (ADS)
Yan, Yiran; Zhang, Miluo; Su, Heng Chia; Myung, Nosang V.; Haberer, Elaine D.
2014-08-01
Preliminary studies toward the assembly of a gold-polypyrrole (PPy) peapod-like chemiresistive ammonia (NH3) gas sensors are presented. The proposed synthesis process will use electropolymerization to embed gold nanoparticles in polypyrrole nanowires. Viral-templating of gold nanoparticles and PPy electrodeposition via cyclic voltammetry are the focus of this investigation. A gold-binding M13 bacteriophage was used as a bio-template to assemble continuous chains of gold nanoparticles on interdigitated Pt working electrodes. The dimensions of the resulting nanowire-like structures were examined and the electrical resistance measured. PPy films were electropolymerized using an interdigitated planar, Pt electrode integrated counter and reference electrode. Morphological characterization of the polymer films was completed.
Long-term hydrogen oxidation catalysts in alkaline fuel cells
NASA Astrophysics Data System (ADS)
Kiros, Y.; Schwartz, S.
Pt/Pd bimetallic combination and Raney Ni catalysts were employed in long-term electrochemical assessment of the hydrogen oxidation reaction (HOR) in 6 M KOH. Steady-state current vs. potential measurements of the gas diffusion electrodes have shown high activity for these types of catalysts. Durability tests of the electrodes have shown increased stability for the Pt/Pd-based catalysts than the Raney Ni at a constant load of 100 mA/cm 2 and at temperatures of 55°C and 60°C, respectively. Surface, structural and chemical analyses by BET surface area, transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) were used to characterize the composite electrode/catalyst both before and after the electrochemical testing.
Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor
NASA Astrophysics Data System (ADS)
Zhu, Zhigang; Song, Wenhui; Burugapalli, Krishna; Moussy, Francis; Li, Ya-Li; Zhong, Xiao-Hua
2010-04-01
A novel brush-like electrode based on carbon nanotube (CNT) nano-yarn fiber has been designed for electrochemical biosensor applications and its efficacy as an enzymatic glucose biosensor demonstrated. The CNT nano-yarn fiber was spun directly from a chemical-vapor-deposition (CVD) gas flow reaction using a mixture of ethanol and acetone as the carbon source and an iron nano-catalyst. The fiber, 28 µm in diameter, was made of bundles of double walled CNTs (DWNTs) concentrically compacted into multiple layers forming a nano-porous network structure. Cyclic voltammetry study revealed a superior electrocatalytic activity for CNT fiber compared to the traditional Pt-Ir coil electrode. The electrode end tip of the CNT fiber was freeze-fractured to obtain a unique brush-like nano-structure resembling a scale-down electrical 'flex', where glucose oxidase (GOx) enzyme was immobilized using glutaraldehyde crosslinking in the presence of bovine serum albumin (BSA). An outer epoxy-polyurethane (EPU) layer was used as semi-permeable membrane. The sensor function was tested against a standard reference electrode. The sensitivities, linear detection range and linearity for detecting glucose for the miniature CNT fiber electrode were better than that reported for a Pt-Ir coil electrode. Thermal annealing of the CNT fiber at 250 °C for 30 min prior to fabrication of the sensor resulted in a 7.5 fold increase in glucose sensitivity. The as-spun CNT fiber based glucose biosensor was shown to be stable for up to 70 days. In addition, gold coating of the electrode connecting end of the CNT fiber resulted in extending the glucose detection limit to 25 µM. To conclude, superior efficiency of CNT fiber for glucose biosensing was demonstrated compared to a traditional Pt-Ir sensor.
Hierarchically structured Co₃O₄@Pt@MnO₂ nanowire arrays for high-performance supercapacitors.
Xia, Hui; Zhu, Dongdong; Luo, Zhentao; Yu, Yue; Shi, Xiaoqin; Yuan, Guoliang; Xie, Jianping
2013-10-17
Here we proposed a novel architectural design of a ternary MnO2-based electrode - a hierarchical Co3O4@Pt@MnO2 core-shell-shell structure, where the complemental features of the three key components (a well-defined Co3O4 nanowire array on the conductive Ti substrate, an ultrathin layer of small Pt nanoparticles, and a thin layer of MnO2 nanoflakes) are strategically combined into a single entity to synergize and construct a high-performance electrode for supercapacitors. Owing to the high conductivity of the well-defined Co3O4 nanowire arrays, in which the conductivity was further enhanced by a thin metal (Pt) coating layer, in combination with the large surface area provided by the small MnO2 nanoflakes, the as-fabricated Co3O4@Pt@MnO2 nanowire arrays have exhibited high specific capacitances, good rate capability, and excellent cycling stability. The architectural design demonstrated in this study provides a new approach to fabricate high-performance MnO2-based nanowire arrays for constructing next-generation supercapacitors.
Hierarchically Structured Co3O4@Pt@MnO2 Nanowire Arrays for High-Performance Supercapacitors
NASA Astrophysics Data System (ADS)
Xia, Hui; Zhu, Dongdong; Luo, Zhentao; Yu, Yue; Shi, Xiaoqin; Yuan, Guoliang; Xie, Jianping
2013-10-01
Here we proposed a novel architectural design of a ternary MnO2-based electrode - a hierarchical Co3O4@Pt@MnO2 core-shell-shell structure, where the complemental features of the three key components (a well-defined Co3O4 nanowire array on the conductive Ti substrate, an ultrathin layer of small Pt nanoparticles, and a thin layer of MnO2 nanoflakes) are strategically combined into a single entity to synergize and construct a high-performance electrode for supercapacitors. Owing to the high conductivity of the well-defined Co3O4 nanowire arrays, in which the conductivity was further enhanced by a thin metal (Pt) coating layer, in combination with the large surface area provided by the small MnO2 nanoflakes, the as-fabricated Co3O4@Pt@MnO2 nanowire arrays have exhibited high specific capacitances, good rate capability, and excellent cycling stability. The architectural design demonstrated in this study provides a new approach to fabricate high-performance MnO2-based nanowire arrays for constructing next-generation supercapacitors.
NASA Astrophysics Data System (ADS)
Tomatsu, Masakazu; Hiramatsu, Mineo; Foord, John S.; Kondo, Hiroki; Ishikawa, Kenji; Sekine, Makoto; Takeda, Keigo; Hori, Masaru
2017-06-01
Fabrication of an electrochemical sensor for hydrogen peroxide (H2O2) detection was demonstrated. H2O2 is a major messenger molecule in various redox-dependent cellular signaling transductions. Therefore, sensitive detection of H2O2 is greatly important in health inspection and environmental protection. Carbon nanowalls (CNWs) are composed of few-layer graphenes standing almost vertically on a substrate forming a three-dimensional structure. In this work, CNWs were used as a platform for H2O2 sensing, which is based on the large surface area of conducting carbon and surface decoration with platinum (Pt) nanoparticles (NPs). CNWs were grown on carbon fiber paper (CFP) by inductively coupled plasma-enhanced chemical vapor deposition to increase the surface area. Then, the CNW surface was decorated with Pt-NPs by the reduction of H2PtCl6. Cyclic voltammetry results indicate that the Pt-decorated CNW/CFP electrode possesses excellent electrocatalytic activity for the reduction of H2O2. Amperometric responses indicate the high-sensitivity detection capability of the Pt-decorated CNW/CFP electrode for H2O2.
Kim, Jiyoung; Jang, Jin-Sung; Peck, Dong-Hyun; Lee, Byungrok; Yoon, Seong-Ho; Jung, Doo-Hwan
2016-01-01
Pt-Pd catalyst supported on nitrogen-doped carbon nanofiber (N-CNF) was prepared and evaluated as a cathode electrode of the direct methanol fuel cell (DMFC). The N-CNF, which was directly synthesized by the catalytic chemical vapor deposition from acetonitrile at 640 °C, was verified as having a change of electrochemical surface properties such as oxygen reduction reaction (ORR) activities and the electrochemical double layer compared with common carbon black (CB). To attain the competitive oxygen reduction reaction activity with methanol tolerance, the Pt and Pd metals were supported on the CB or the N-CNF. The physical and electrochemical characteristics of the N-CNF–supported Pt-Pd catalyst were examined and compared with catalyst supported on the CB. In addition, DMFC single cells using these catalysts as the cathode electrode were applied to obtain I-V polarization curves and constant current operating performances with high-concentration methanol as the fuel. Pt-Pd catalysts had obvious ORR activity even in the presence of methanol. The higher power density was obtained at all the methanol concentrations when it applied to the membrane electrode assembly (MEA) of the DMFC. When the N-CNF is used as the catalyst support material, a better performance with high-concentration methanol is expected. PMID:28335275
Kim, Jiyoung; Jang, Jin-Sung; Peck, Dong-Hyun; Lee, Byungrok; Yoon, Seong-Ho; Jung, Doo-Hwan
2016-08-15
Pt-Pd catalyst supported on nitrogen-doped carbon nanofiber (N-CNF) was prepared and evaluated as a cathode electrode of the direct methanol fuel cell (DMFC). The N-CNF, which was directly synthesized by the catalytic chemical vapor deposition from acetonitrile at 640 °C, was verified as having a change of electrochemical surface properties such as oxygen reduction reaction (ORR) activities and the electrochemical double layer compared with common carbon black (CB). To attain the competitive oxygen reduction reaction activity with methanol tolerance, the Pt and Pd metals were supported on the CB or the N-CNF. The physical and electrochemical characteristics of the N-CNF-supported Pt-Pd catalyst were examined and compared with catalyst supported on the CB. In addition, DMFC single cells using these catalysts as the cathode electrode were applied to obtain I-V polarization curves and constant current operating performances with high-concentration methanol as the fuel. Pt-Pd catalysts had obvious ORR activity even in the presence of methanol. The higher power density was obtained at all the methanol concentrations when it applied to the membrane electrode assembly (MEA) of the DMFC. When the N-CNF is used as the catalyst support material, a better performance with high-concentration methanol is expected.
High Rate Oxygen Reduction in Non-aqueous Electrolytes with the Addition of Perfluorinated Additives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y.; Yang, X.; Zheng, D.
2011-08-04
The discharge rate capability of Li-air batteries is substantially increased by using perfluorinated compounds as oxygen carriers. The solubility of oxygen in a non-aqueous electrolyte can be significantly increased by the introduction of such compounds, which leads to the increase in the diffusion-limited current of oxygen reduction on the gas diffusion electrode in a Li-air battery. The perfluorinated compound is found to be stable within the electrochemical window of the electrolyte. A powder microelectrode and a rotating disk electrode were used to study the gas diffusion-limited current together with a rotating disk electrode. A 5 mA cm{sup -2} discharge ratemore » is demonstrated in a lab Li-O{sub 2} cell.« less
Modification of Glucose Oxidase biofuel cell by multi-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Lotfi, Ladan; Farahbakhsh, Afshin; Aghili, Sina
2018-01-01
Biofuel cells are a subset of fuel cells that employ biocatalysts. Enzyme-based biofuel cells (EBFCs) generate electrical energy from biofuels such as glucose and ethanol, which are renewable and sustainable energy sources. Glucose biofuel cells (GBFCs) are particularly interesting nowadays due to continuous harvesting of oxygen and glucose from bioavailable substrates, activity inside the human body, and environmental benign, which generate electricity through oxidation of glucose on the anode and reduction of oxygen on the cathode. Promoting the electron transfer of redox enzymes at modified electrode utilizing Nano size materials, such as carbon nanotubes (CNT), to achieve the direct electrochemistry of enzymes has been reported. The polypyrrole-MWCNTs-glucose oxidase (PY-CNT-GOx) electrode has been investigated in the present work. Cyclic voltammetry tests were performed in a three-electrode electrochemical set-up with modified electrode (Pt/PPy/MWCNTs/GOx) was used as working electrode. Platinum flat and Ag/AgCl (saturated KCl) were used as counter electrode and the reference electrode, respectively. The biofuel cells probe was prepared by immobilizing MWCNTs at the tip of a platinum (Pt) electrode (0.5 cm2) with PPy as the support matrix We have demonstrated a well-dispersed nanomaterial PPy/MWNT, which is able to immobilize GOx firmly under the condition of the absence of any other cross-linking agent.
NASA Astrophysics Data System (ADS)
Seo, Min Ho; Choi, Sung Mook; Lee, Dong Un; Kim, Won Bae; Chen, Zhongwei
2015-12-01
The oxygen reduction reaction, ORR, performances of graphene-supported palladium (Pd) and palladium alloys (Pd3X: X = Ag, Co and Fe) catalysts with highly dispersed catalyst particles are investigated in acidic and alkaline conditions using a rotating disk electrode, RDE. Graphene nanosheet, GNS, supported Pd based catalysts are fabricated without surfactant through the impregnation of Pd and 2nd metal precursors on GNS, leading to small and uniformly dispersed nanoparticles, even when high metal loading of up to 60 wt.% are deposited on supports. The ab-initio density functional theory, DFT, calculations, which are based on the d-band center theory, have been applied to correlate with the results of the ORR performances obtained by half-cell tests. Additionally, the cohesive energy, Ecoh, and dissolution potential, Um, for the Pd nanoparticles have been calculated to understand thermodynamic stability. To elucidate the d-band center shift, the Pd 3d5/2 core-level binding energies for Pd/GNS, Pd3Ag/GNS, Pd3Fe/GNS and Pd3Co/GNS have been investigated by X-ray photoelectron spectroscopy, XPS. The GNS-supported Pd, or Pd-based alloy-nanoparticle catalyst shows good ORR activity under acidic and alkaline conditions, suggesting it may offer potential replacement for Pt for use in cathode electrodes of anion-exchange membrane fuel cell, AEMFC, and acid based polymer electrolyte fuel cell, PEMFC.
Mohanta, Paritosh Kumar; Regnet, Fabian; Jörissen, Ludwig
2018-05-28
Stability of cathode catalyst support material is one of the big challenges of polymer electrolyte membrane fuel cells (PEMFC) for long term applications. Traditional carbon black (CB) supports are not stable enough to prevent oxidation to CO₂ under fuel cell operating conditions. The feasibility of a graphitized carbon (GC) as a cathode catalyst support for low temperature PEMFC is investigated herein. GC and CB supported Pt electrocatalysts were prepared via an already developed polyol process. The physical characterization of the prepared catalysts was performed using transmission electron microscope (TEM), X-ray Powder Diffraction (XRD) and inductively coupled plasma optical emission spectrometry (ICP-OES) analysis, and their electrochemical characterizations were conducted via cyclic voltammetry(CV), rotating disk electrode (RDE) and potential cycling, and eventually, the catalysts were processed using membrane electrode assemblies (MEA) for single cell performance tests. Electrochemical impedance spectroscopy (EIS) and scanning electrochemical microscopy (SEM) have been used as MEA diagonostic tools. GC showed superior stability over CB in acid electrolyte under potential conditions. Single cell MEA performance of the GC-supported catalyst is comparable with the CB-supported catalyst. A correlation of MEA performance of the supported catalysts of different Brunauer⁻Emmett⁻Teller (BET) surface areas with the ionomer content was also established. GC was identified as a promising candidate for catalyst support in terms of both of the stability and the performance of fuel cell.
NASA Astrophysics Data System (ADS)
Lee, Su-Yoon; Jeong, Ye-Jin; Chae, So-Ryong; Yeon, Kyeong-Ho; Lee, Yunkyu; Kim, Chan-Soo; Jeong, Nam-Jo; Park, Jin-Soo
2016-04-01
Performance of graphite foil electrodes coated by porous carbon black (i.e., Vulcan) was investigated in comparison with metal electrodes for reverse electrodialysis (RED) application. The electrode slurry that was used for fabrication of the porous carbon-coated graphite foil is composed of 7.2 wt% of carbon black (Vulcan X-72), 0.8 wt% of a polymer binder (polyvinylidene fluoride, PVdF), and 92.0 wt% of a mixing solvent (dimethylacetamide, DMAc). Cyclic voltammograms of both the porous carbon (i.e., Vulcan)-coated graphite foil electrode and the graphite foil electrode without Vulcan showed good reversibility in the hexacyanoferrate(III) (i.e., Fe(CN)63-) and hexacyanoferrate(II) (i.e., Fe(CN)64-) redox couple and 1 M Na2SO4 at room temperature. However, anodic and cathodic current of the Vulcan-coated graphite foil electrode was much higher than those of the graphite foil electrode. Using a bench-scale RED stack, the current-voltage polarization curve of the Vulcan-coated graphite electrode was compared to that of metal electrodes such as iridium (Ir) and platinum (Pt). From the results, it was confirmed that resistance of four different electrodes increased with the following order: the Vulcan-coated graphite foil
Optimization of PZT Thin Film Crystalline Orientation Through Optimization of TiO2/Pt Templates
2011-01-01
with 90% textured volume fraction, which is expected to improve electrical properties of the PZT films. 15. SUBJECT TERMS Sputter film, Pt...INTENTIONALLY LEFT BLANK. 1 1. Introduction A wide variety of the physical properties of materials ...device fabrication. Because the Pt electrode crystallographic texture acts as a template for PZT film growth, the properties of ferroelectric PZT
Kazys, Rymantas J.; Sliteris, Reimondas; Sestoke, Justina
2017-01-01
For improvement of the efficiency of air-coupled ultrasonic transducers PMN-32%PT piezoelectric crystals which possess very high piezoelectric properties may be used. The electromechanical coupling factor of such crystals for all main vibration modes such as the thickness extension and transverse extension modes is more than 0.9. Operation of ultrasonic transducers with such piezoelectric elements in transmitting and receiving modes is rather different. Therefore, for transmission and reception of ultrasonic signals, separate piezoelectric elements with different dimensions must be used. The objective of this research was development of novel air-coupled ultrasonic receivers with PMN-32%PT strip-like piezoelectric elements vibrating in a transverse-extension mode with electromechanically controlled operation and suitable for applications in ultrasonic arrays. Performance of piezoelectric receivers made of the PMN-32%PT strip-like elements vibrating in this mode may be efficiently controlled by selecting geometry of the electrodes covering side surfaces of the piezoelectric element. It is equivalent to introduction of electromechanical damping which does not require any additional backing element. For this purpose; we have proposed the continuous electrodes to divide into two pairs of electrodes. The one pair is used to pick up the electric signal; another one is exploited for electromechanical damping. Two types of electrodes may be used—rectangular or non-rectangular—with a gap between them directed at some angle, usually 45°. The frequency bandwidth is wider (up to 9 kHz) in the case of non-rectangular electrodes. The strip-like acoustic matching element bonded to the tip of the PMN-32%PT crystal may significantly enhance the performance of the ultrasonic receiver. It was proposed to use for this purpose AIREX T10.110 rigid polymer foam, the acoustic impedance of which is close to the optimal value necessary for matching with air. It was found that in order to get a wide bandwidth the length of the matching strip should be selected not a quarter wavelength λ/4 at the antiresonance frequency but at lower frequency. It allowed achieving the frequency bandwidth (14–18)% with respect to the central frequency at −3 dB level. PMID:29035348
Kazys, Rymantas J; Sliteris, Reimondas; Sestoke, Justina
2017-10-16
For improvement of the efficiency of air-coupled ultrasonic transducers PMN-32%PT piezoelectric crystals which possess very high piezoelectric properties may be used. The electromechanical coupling factor of such crystals for all main vibration modes such as the thickness extension and transverse extension modes is more than 0.9. Operation of ultrasonic transducers with such piezoelectric elements in transmitting and receiving modes is rather different. Therefore, for transmission and reception of ultrasonic signals, separate piezoelectric elements with different dimensions must be used. The objective of this research was development of novel air-coupled ultrasonic receivers with PMN-32%PT strip-like piezoelectric elements vibrating in a transverse-extension mode with electromechanically controlled operation and suitable for applications in ultrasonic arrays. Performance of piezoelectric receivers made of the PMN-32%PT strip-like elements vibrating in this mode may be efficiently controlled by selecting geometry of the electrodes covering side surfaces of the piezoelectric element. It is equivalent to introduction of electromechanical damping which does not require any additional backing element. For this purpose; we have proposed the continuous electrodes to divide into two pairs of electrodes. The one pair is used to pick up the electric signal; another one is exploited for electromechanical damping. Two types of electrodes may be used-rectangular or non-rectangular-with a gap between them directed at some angle, usually 45°. The frequency bandwidth is wider (up to 9 kHz) in the case of non-rectangular electrodes. The strip-like acoustic matching element bonded to the tip of the PMN-32%PT crystal may significantly enhance the performance of the ultrasonic receiver. It was proposed to use for this purpose AIREX T10.110 rigid polymer foam, the acoustic impedance of which is close to the optimal value necessary for matching with air. It was found that in order to get a wide bandwidth the length of the matching strip should be selected not a quarter wavelength λ/4 at the antiresonance frequency but at lower frequency. It allowed achieving the frequency bandwidth (14-18)% with respect to the central frequency at -3 dB level.
NASA Astrophysics Data System (ADS)
Jia, Hongmei; Chang, Gang; Lei, Ming; He, Hanping; Liu, Xiong; Shu, Honghui; Xia, Tiantian; Su, Jie; He, Yunbin
2016-10-01
Platinum nanoparticles decorated dendrite-like gold nanostructure, bimetal composite materials on glassy carbon electrode (Pt/DGNs/GC) for enhancing electrocatalysis to glucose oxidation was designed and successfully fabricated by a facile two-step deposition method without any templates, surfactants, or stabilizers. Dendrite-like gold nanostructure was firstly deposited on the GC electrode via the potentiostatic method, and then platinum nanoparticles were decorated on the surface of gold substrate through chemical reduction deposition. X-ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) were applied to characterize the evolution of morphology and structure of the as-prepared Pt/DGNs/GC. Based on electrochemical measurements such as cyclic voltammetry, linear voltammetry and chronoamperometry, Pt/DGNs/GC exhibited significantly enhanced electrocatalytic performance to glucose oxidation compared those of pure dendrite-like Au nanoparticles in our previous report. Controlling chemical reduction deposition time, the amount of platinum nanoparticles on Au surface could be regulated, which further tuned electrocatalytic properties toward glucose oxidation. The dendrite-like gold surface partially covered by platinum nanoparticles dramatically enhanced the electrocatalytic performance for the oxidation of glucose because of excellent synergetic effects between gold and platinum species and the increased electrochemical active area from Pt nanoparticles loading. The non-enzymatic glucose biosensor based on Pt/DGNs/GC showed a rapid respond time (within 2 s), wide linear range (from 0.1 mM to 14 mM), low detection limit (0.01 mM), supernal sensitivity (275.44 μA cm-2 mM-1, R = 0.993), satisfactory reproducibility and good stability for glucose sensing. It was demonstrated that Pt/DGNs/GC could work as promising candidate for factual non-enzymatic glucose detection.
Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts.
Cheng, Fangyi; Chen, Jun
2012-03-21
Because of the remarkably high theoretical energy output, metal-air batteries represent one class of promising power sources for applications in next-generation electronics, electrified transportation and energy storage of smart grids. The most prominent feature of a metal-air battery is the combination of a metal anode with high energy density and an air electrode with open structure to draw cathode active materials (i.e., oxygen) from air. In this critical review, we present the fundamentals and recent advances related to the fields of metal-air batteries, with a focus on the electrochemistry and materials chemistry of air electrodes. The battery electrochemistry and catalytic mechanism of oxygen reduction reactions are discussed on the basis of aqueous and organic electrolytes. Four groups of extensively studied catalysts for the cathode oxygen reduction/evolution are selectively surveyed from materials chemistry to electrode properties and battery application: Pt and Pt-based alloys (e.g., PtAu nanoparticles), carbonaceous materials (e.g., graphene nanosheets), transition-metal oxides (e.g., Mn-based spinels and perovskites), and inorganic-organic composites (e.g., metal macrocycle derivatives). The design and optimization of air-electrode structure are also outlined. Furthermore, remarks on the challenges and perspectives of research directions are proposed for further development of metal-air batteries (219 references).
NASA Astrophysics Data System (ADS)
Chatterjee, A. K.; Sharon, Maheshwar; Banerjee, Rangan
The development of a hydrogen electrode using a porous ceramic coated with carbon nanobeads for an alkaline fuel cell (AFC) is reported. This electrode can provide necessary strength and porosity to enable hydrogen to diffuse without allowing electrolyte to percolate inside the electrode. Various catalysts (Pt, Ni, Co and Fe) are electrochemically dispersed over the carbon nanobeads to examine their performance in the alkaline fuel cell. Turpentine oil has been used as a precursor for preparing the carbon nanobeads by a chemical vapour deposition technique. Scanning electron microscopic and transmission electron microscopic images show that the carbon nanobeads have sizes between 500 and 650 nm and are spread uniformly over the entire ceramic substrate. X-ray diffraction (XRD) patterns indicate that the nanobeads are graphitic in nature. Thus, the electrode is highly conductive. The current-voltage characteristics and chronopotentiometry of a half cell (i.e. hydrogen electrode coated with different electrocatalysts) and a full cell (using both hydrogen and oxygen electrodes) with 30% KOH solution are measured. About 93% of the theoretical hydrogen dissociation voltage is obtained with Ni and Pt catalyst. All other metals (Co and Fe) give a lower voltage. Ni-coated carbon nanobeads deposited over a ceramic oxide can be used in place of Raney nickel electrode as their characteristics are similar to those of a platinum electrode.
NASA Astrophysics Data System (ADS)
Shen, Huanyu; Zhou, Xiaoxue; Dong, Wen; Su, Xiaodong; Fang, Liang; Wu, Xi; Shen, Mingrong
2017-09-01
Polycrystalline ferroelectric BiFeO3 (BFO) films deposited on transparent indium tin oxide (ITO) electrodes have shown to be an interesting photocathode for photoelectrochemical (PEC) water splitting; however, its PEC performance and stability are far from perfection. Herein, we reported an amorphous TiO2 buffer layer, inserted between BFO and Pt catalyst, improves significantly both its PEC activity and stability. A photocathodic current density of -460 μA/cm2 at 0 V vs. reversible hydrogen electrode (RHE) and an onset potential of 1.25 V vs. RHE were obtained in ITO/BFO/TiO2/Pt photocathode under 100 mW/cm2 Xe-lamp illumination. TiO2 functions as a buffer layer to remove the upward barrier between BFO and Pt, and makes the photogenerated carriers separate efficiently. The photocathode also shows high stability in acid solution after a 10-h PEC continuous testing.
Selective electrocatalysts toward a prototype of the membraneless direct methanol fuel cell.
Feng, Yan; Yang, Jinhua; Liu, Hui; Ye, Feng; Yang, Jun
2014-01-22
Mastery over the structure of nanomaterials enables control of their properties to enhance their performance for a given application. Herein we demonstrate the design and fabrication of Pt-based nanomaterials with enhanced catalytic activity and superior selectivity toward the reactions in direct methanol fuel cells (DMFCs) upon the deep understanding of the mechanisms of these electrochemical reactions. In particular, the ternary Au@Ag2S-Pt nanocomposites display superior methanol oxidation reaction (MOR) selectivity due to the electronic coupling effect among different domains of the nanocomposites, while the cage-bell structured Pt-Ru nanoparticles exhibit excellent methanol tolerance for oxygen reduction reaction (ORR) at the cathode because of the differential diffusion of methanol and oxygen in the porous Ru shell of the cage-bell nanoparticles. The good catalytic selectivity of these Pt-based nanomaterials via structural construction enables a DMFC to be built without a proton exchange membrane between the fuel electrode and the oxygen electrode.
Selective electrocatalysts toward a prototype of the membraneless direct methanol fuel cell
Feng, Yan; Yang, Jinhua; Liu, Hui; Ye, Feng; Yang, Jun
2014-01-01
Mastery over the structure of nanomaterials enables control of their properties to enhance their performance for a given application. Herein we demonstrate the design and fabrication of Pt-based nanomaterials with enhanced catalytic activity and superior selectivity toward the reactions in direct methanol fuel cells (DMFCs) upon the deep understanding of the mechanisms of these electrochemical reactions. In particular, the ternary Au@Ag2S-Pt nanocomposites display superior methanol oxidation reaction (MOR) selectivity due to the electronic coupling effect among different domains of the nanocomposites, while the cage-bell structured Pt-Ru nanoparticles exhibit excellent methanol tolerance for oxygen reduction reaction (ORR) at the cathode because of the differential diffusion of methanol and oxygen in the porous Ru shell of the cage-bell nanoparticles. The good catalytic selectivity of these Pt-based nanomaterials via structural construction enables a DMFC to be built without a proton exchange membrane between the fuel electrode and the oxygen electrode. PMID:24448514
1994-09-15
and Terrace Sites of Monocrystalline Platinum: Mixed-Isotope Studies at Pt(335) and Pt(1 11) in the Aqueous Electrochemical Environment by Chung S. Kim... monocrystalline metals. These materials have structurally well-defined step and kink structures, which serve as models for the surface defect sites found on...and molecular interactions at stepped monocrystalline electrode surfaces [3,4]. A notable property of Pt(335)/CO is that the CO occupancy at step and
2014-01-01
In this paper, single-stranded DNA (ss-DNA) is demonstrated to functionalize graphene (GR) and to further guide the growth of PtAu bimetallic nanoparticles (PtAuNPs) on GR with high densities and dispersion. The obtained nanocomposites (PtAuNPs/ss-DNA/GR) were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectrometer (EDS), and electrochemical techniques. Then, an enzyme nanoassembly was prepared by self-assembling glucose oxidase (GOD) on PtAuNP/ss-DNA/GR nanocomposites (GOD/PtAuNPs/ss-DNA/GR). The nanocomposites provided a suitable microenvironment for GOD to retain its biological activity. The direct and reversible electron transfer process between the active site of GOD and the modified electrode was realized without any extra electron mediator. Thus, the prepared GOD/PtAuNP/ss-DNA/GR electrode was proposed as a biosensor for the quantification of glucose. The effects of pH, applied potential, and temperature on the performance of the biosensor were discussed in detail and were optimized. Under optimal conditions, the biosensor showed a linearity with glucose concentration in the range of 1.0 to 1,800 μM with a detection limit of 0.3 μM (S/N = 3). The results demonstrate that the developed approach provides a promising strategy to improve the sensitivity and enzyme activity of electrochemical biosensors. PMID:24572068
Chemical vapor deposited carbon nanotubes for aqueous H2-Cl2 fuel cells.
Suryavanshi, U B; Bhosale, C H
2010-06-01
Carbon nanotubes having large surface area is an interesting material to develop H2-Cl2 fuel cell electrodes. The attempts were made to deposit carbon nanotubes on porous substrates by chemical vapour deposition. Turpentine oil (C10H16) was used as a precursor, decomposed at 1100 degrees C reactor temperature. Nickel, platinum, tin, Ni-Pt, Ni-Sn, Pt-Sn, Ni-Pt-Sn catalysts were used to grow carbon nanotubes. Nickel was deposited with electrodeposition, platinum with sputter coater and tin with vacuum deposition technique. The developed electrodes were characterized by XRD, SEM, TEM, FTIR, and resistivity by van-der Pauw method. Carbon nanotubes have been formed for 0.25 N nickel deposited for 45 and 60 min; 0.5 N, 0.75 N and 1 N nickel deposited for 15 to 60 min, at the interval of 15. Ni-Pt, Ni-Sn, Pt-Sn and Ni-Pt-Sn activated carbon also shows the well grown CNTs. Aqueous H2-Cl2 fuel cell performance was tested with these grown carbon nanotubes. 40% KCl with 1067 mohm(-1) cm(-1) conductivity was used as electrolyte. Linear sweep voltametry shows reduction potential for hydrogen gas. Chronoamperometry results show better half cell performance for nickel, deposited with 1 N, 45 min deposition time period; and combination of Ni-Pt-Sn with 140, and 110-100 mA/cm2 stable current density respectively.
Dhara, Keerthy; Ramachandran, T; Nair, Bipin G; Babu, T G Satheesh
2018-06-01
A highly sensitive nonenzymatic hydrogen peroxide (H2O2) sensor was fabricated using platinum nanoparticles decorated reduced graphene oxide (Pt/rGO) nanocomposite. The Pt/rGO nanocomposite was prepared by single-step chemical reduction method. Nanocomposite was characterized by various analytical techniques including Raman spectroscopy, X-ray diffraction, field emission scanning electron microscope and high-resolution transmission electron microscopy. Screen printed electrodes (SPEs) were fabricated and the nanocomposite was cast on the working area of the SPE. Cyclic voltammetry and amperometry demonstrated that the Pt/rGO/SPE displayed much higher electrocatalytic activity towards the reduction of H2O2 than the other modified electrodes. The sensor exhibited wide linear detection range (from 10 μM to 8 mM), very high sensitivity of 1848 μA mM-1 cm-2 and a lower limit of detection of 0.06 μM. The excellent performance of Pt/rGO/SPE sensor were attributed to the reduced graphene oxide being used as an effective matrix to load a number of Pt nanoparticles and the synergistic amplification effect of the two kinds of nanomaterials. Moreover, the sensor showed remarkable features such as good reproducibility, repeatability, long-term stability, and selectivity.
NASA Astrophysics Data System (ADS)
Srouji, A. K.; Zheng, L. J.; Dross, R.; Aaron, D.; Mench, M. M.
2017-10-01
Limiting current measurements are used to evaluate oxygen transport resistance in the catalyst layer of a polymer electrolyte fuel cell (PEFC). The pressure independent oxygen transport resistance in the electrode is quantified for two cell architectures and two cathode Pt loadings (0.4 and 0.07 mgPt.cm-2). The compounded effect of the flow field and Pt loading is used to shed light on the nature of the observed transport resistance, especially its response to fundamentally different flow fields, which is shown to directly or indirectly scale with Pt loading in the open literature. By varying gas pressure and using low oxygen concentrations, the total oxygen transport resistance is divided into intermolecular gas diffusion (a pressure-dependent component) and a pressure independent component, which can be attributed to Knudsen diffusion or dissolution film resistance. The pressure-independent oxygen transport resistance in the catalyst layer varies between 13.3 and 34.4 s/m. It is shown that the pressure independent oxygen transport resistance increases with reduced Pt loading, but that effect is greatly exacerbated by using conventional channel/lands. The results indicate that open metallic element architecture improves the oxygen transport resistance in ultra-low Pt loading electrodes, likely due to enhanced water management at the catalyst layer.
Influence of metal electrode on the performance of ZnO based resistance switching memories
NASA Astrophysics Data System (ADS)
Wang, Xueting; Qian, Haolei; Guan, Liao; Wang, Wei; Xing, Boran; Yan, Xiaoyuan; Zhang, Shucheng; Sha, Jian; Wang, Yewu
2017-10-01
Resistance random access memory (RRAM) is considered a promising candidate for the next generation of non-volatile memory. In this work, we fabricate metal (Ag, Ti, or Pt)/ZnO/Pt RRAM cells and then systematically investigate the effects of different top electrodes and their performance. With the formation and rupture of Ag-bridge and the shapeless oxygen vacancy filaments under a series of positive and negative bias, the set and reset processes have been successfully conducted in the Ag/ZnO/Pt device with very low work voltage, high on-off ratio, and good endurance. When applying the voltage bias to the Ti/ZnO/Pt device, the interfacial oxygen ions' migration causes the redox reaction of the conducting filament's oxygen vacancies, leading to the formation and rupture of the conducting filaments but in a relatively poor endurance. At the same time, for the Pt/ZnO/Pt device, once the filaments in the functional layer consisting of oxygen vacancies are formed, it is difficult to disrupt, resulting in the permanent low resistance state after a forming-like process. The results demonstrated that the devices with a metallic conductive bridge mechanism show much better switching behaviors than those with an oxygen ion/vacancy filament mechanism.
NASA Astrophysics Data System (ADS)
Liu, J.; Cornelissen, L. J.; Shan, J.; van Wees, B. J.; Kuschel, T.
2018-06-01
We study the magnon spin transport in the magnetic insulator yttrium iron garnet (YIG) in a nonlocal experiment and compare the magnon spin excitation and detection for the heavy metal paramagnetic electrodes platinum (Pt|YIG|Pt) and tantalum (Ta|YIG|Ta). The electrical injection and detection processes rely on the (inverse) spin Hall effect in the heavy metals and the conversion between the electron spin and magnon spin at the heavy metal|YIG interface. Pt and Ta possess opposite signs of the spin Hall angle. Furthermore, their heterostructures with YIG have different interface properties, i.e. spin mixing conductances. By varying the distance between injector and detector, the magnon spin transport is studied. Using a circuit model based on the diffusion-relaxation transport theory, a similar magnon relaxation length of ∼10 μm was extracted from both Pt and Ta devices. By changing the injector and detector material from Pt to Ta, the influence of interface properties on the magnon spin transport has been observed. For Ta devices on YIG the spin mixing conductance is reduced compared with Pt devices, which is quantitatively consistent when comparing the dependence of the nonlocal signal on the injector-detector distance with the prediction from the circuit model.
Charge Transfer in Multiple Site Chemical Systems.
1985-05-30
oxidation either chemically (using excess Ce+(IV)) or electrochemically (using a reticulated vitreous carbon electrode potentiostated at +1.20 V vs.. SCE...The resulting polymers form fairly stable, electrochemically active films on the cxidizing electrode, which can be Pt, SnO2 or vitreous carbon ...surface, including platinum and glassy carbon electrodes. The redox couples incorporated include polypyrydyl omplexes of iron, ruthenium and osmium
Anusha, J R; Fleming, Albin T; Kim, Hee-Je; Kim, Byung Chul; Yu, Kook-Hyun; Raj, C Justin
2015-08-01
An effective enzymatic glucose biosensor was developed by immobilizing glucose oxidase on chitosan submicron particles synthesized from the gladius of Todarodes pacificus (GCSP). The chemically synthesized chitosan from gladius was pulverized to submicron particles by ball milling technique, which was further characterized and compared with the standard chitosan (SCS). The degree of deacetylation of GCSP was determined using FTIR spectroscopy which was comparable to the value of standard chitosan. The glucose oxidase (GOx) was immobilized over GCSP on porous zinc oxide/platinum nanoparticle (ZnO/Pt) based electrode. The morphological and structural properties of the electrodes were analyzed using scanning electron microscopy and X-ray diffraction analysis. The glucose sensing behavior of electrode was estimated using electrochemical analysis and showed an excellent analytical performance. The electrode ZnO/Pt/GCSP conjugated with GOx displayed high sensitivity (88.76 μA mM(-1) cm(-2)) with low detection limit in short response time. In addition, the very low value of Michaelis-Menten constant for GCSP based electrode contributes a better affinity of the electrode surface towards glucose oxidase. Copyright © 2015 Elsevier B.V. All rights reserved.
Few-Layer MoSe2 Possessing High Catalytic Activity towards Iodide/Tri-iodide Redox Shuttles
Lee, Lawrence Tien Lin; He, Jian; Wang, Baohua; Ma, Yaping; Wong, King Young; Li, Quan; Xiao, Xudong; Chen, Tao
2014-01-01
Due to the two-dimensional confinement of electrons, single- and few-layer MoSe2 nanostructures exhibit unusual optical and electrical properties and have found wide applications in catalytic hydrogen evolution reaction, field effect transistor, electrochemical intercalation, and so on. Here we present a new application in dye-sensitized solar cell as catalyst for the reduction of I3− to I− at the counter electrode. The few-layer MoSe2 is fabricated by surface selenization of Mo-coated soda-lime glass. Our results show that the few-layer MoSe2 displays high catalytic efficiency for the regeneration of I− species, which in turn yields a photovoltaic energy conversion efficiency of 9.00%, while the identical photoanode coupling with “champion” electrode based on Pt nanoparticles on FTO glass generates efficiency only 8.68%. Thus, a Pt- and FTO-free counter electrode outperforming the best conventional combination is obtained. In this electrode, Mo film is found to significantly decrease the sheet resistance of the counter electrode, contributing to the excellent device performance. Since all of the elements in the electrode are of high abundance ratios, this type of electrode is promising for the fabrication of large area devices at low materials cost. PMID:24525919
Sifuna, Fred W; Orata, Francis; Okello, Veronica; Jemutai-Kimosop, Selly
2016-09-18
In this study, the electro-oxidation capacities of Na2SO4 and potassium phosphate buffer supporting electrolytes were tested and compared for destruction of the sulfamethoxazole (SMX) and diclofenac (DCF) on platinum (Pt) electrode and graphite carbon electrode in aqueous medium. The suitability of pharmaceutical active compounds (PhACs) for electrochemical oxidation was tested by cyclic voltammetry (CV) technique performed in the potential range -1.5 to +1.5 V versus Ag/AgCl, which confirmed the electro-activity of the selected PhACs. The degradation and mineralization were monitored by ultraviolet (UV)-Vis spectrophotometry and HPLC. 0.1 M Na2SO4 supporting electrolyte was found to be more effective for mineralization of SMX and DCF, with efficiency of 15-30% more than the 0.1 M phosphate buffer supporting electrolyte on the platinum (Pt) and carbon electrodes. The Pt electrode showed better performance in the degradation of the two PhACs while under the same conditions than the carbon electrode for both 0.1 M Na2SO4 and 0.1 M potassium phosphate buffer supporting electrolytes. The SMX and DCF degradation kinetics best fitted the second-order reaction, with rate constants ranging between 0.000389 and 0.006 mol(2) L(-2) min(-1) and correlation coefficient (R(2)) above 0.987. The second-order degradation kinetics indicated that the rate-determining step in the degradation could be a chemical process, thus suggesting the active involvement of electrolyte radical species in the degradation of SMX and DCF. Results obtained from a real field sample showed a more than 98% removal of the PhACs from the wastewater by electrochemical degradation.
Bonk, Sebastian M; Stubbe, Marco; Buehler, Sebastian M; Tautorat, Carsten; Baumann, Werner; Klinkenberg, Ernst-Dieter; Gimsa, Jan
2015-07-30
We combined a multi-sensor glass-chip with a microfluidic channel grid for the characterization of cellular behavior. The grid was imprinted in poly-dimethyl-siloxane. Mouse-embryonal/fetal calvaria fibroblasts (MC3T3-E1) were used as a model system. Thin-film platinum (Pt) sensors for respiration (amperometric oxygen electrode), acidification (potentiometric pH electrodes) and cell adhesion (interdigitated-electrodes structures, IDES) allowed us to monitor cell-physiological parameters as well as the cell-spreading behavior. Two on-chip electro-thermal micro-pumps (ETμPs) permitted the induction of medium flow in the system, e.g., for medium mixing and drug delivery. The glass-wafer technology ensured the microscopic observability of the on-chip cell culture. Connecting Pt structures were passivated by a 1.2 μm layer of silicon nitride (Si3N4). Thin Si3N4 layers (20 nm or 60 nm) were used as the sensitive material of the pH electrodes. These electrodes showed a linear behavior in the pH range from 4 to 9, with a sensitivity of up to 39 mV per pH step. The oxygen sensors were circular Pt electrodes with a sensor area of 78.5 μm(2). Their sensitivity was 100 pA per 1% oxygen increase in the range from 0% to 21% oxygen (air saturated). Two different IDES geometries with 30- and 50-μm finger spacings showed comparable sensitivities in detecting the proliferation rate of MC3T3 cells. These cells were cultured for 11 days in vitro to test the biocompatibility, microfluidics and electric sensors of our system under standard laboratory conditions.
NASA Astrophysics Data System (ADS)
Luhana, Charles; Bo, Xiang-Jie; Ju, Jian; Guo, Li-Ping
2012-10-01
A new glucose biosensor was developed based on hollow carbon spheres decorated with platinum nanoparticles (Pt/HCSs)-modified glassy carbon electrode immobilized with glucose oxidase (GOx) with the help of Nafion. The Pt nanoparticles were well dispersed on the HCSs with an average size of 2.29 nm. The detection of glucose was achieved via electrochemical detection of the enzymatically liberated H2O2 at +0.5 V versus Ag/AgCl at physiologic pH of 7.4. The Pt/HCSs-modified electrode exhibited excellent electrocatalytic activities toward both the oxidation and reduction of H2O2. The glucose biosensor showed good electrocatalytic performance in terms of high sensitivity (4.1 μA mM-1), low detection limit (1.8 μM), fast response time <3 s, and wide linear range (0.04-8.62 mM). The apparent Michaelis-Menten constant ( K m) and the maximum current density ( i max) values for the biosensor were 10.94 mM and 887 μA cm-2 respectively. Furthermore, this biosensor showed an acceptable reproducibility and high stability. The interfering signals from ascorbic acid and uric acid at concentration levels normally found in human blood were not much compared with the response to glucose. Blood serum samples were also tested with this biosensor and a good recovery was achieved for the two spiked serum samples.
Dasari, Radhika; Robinson, Donald A; Stevenson, Keith J
2013-01-16
Here we describe a very simple, reliable, low-cost electrochemical approach to detect single nanoparticles (NPs) and evaluate NP size distributions and catalytic activity in a fast and reproducible manner. Single NPs are detected through an increase in current caused by electrocatalytic oxidation of N(2)H(4) at the surface of the NP when it contacts a Hg-modified Pt ultramicroelectrode (Hg/Pt UME). Once the NP contacts the Hg/Pt UME, Hg poisons the Pt NP, deactivating the N(2)H(4) oxidation reaction. Hence, the current response is a "spike" that decays to the background current level rather than a stepwise "staircase" response as previously described for a Au UME. The use of Hg as an electrode material has several quantitative advantages including suppression of the background current by 2 orders of magnitude over a Au UME, increased signal-to-noise ratio for detection of individual collisions, precise integration of current transients to determine charge passed and NP size, reduction of surface-induced NP aggregation and electrode fouling processes, and reproducible and renewable electrodes for routine detection of catalytic NPs. The NP collision frequency was found to scale linearly with the NP concentration (0.016 to 0.024 pM(-1)s(-1)). NP size distributions of 4-24 nm as determined from the current-time transients correlated well with theory and TEM-derived size distributions.
Jiang, Xinya; Chai, Yaqin; Yuan, Ruo; Cao, Yaling; Chen, Yingfeng; Wang, Haijun; Gan, Xianxue
2013-06-14
In the present study, a novel and ultrasensitive electrochemiluminescence (ECL) immunosensor based on luminol cathodic ECL was fabricated by using Au nanoparticles and Pt nanoparticles (nano-AuPt) electrodeposited on graphene-carbon nanotubes nanocomposite as platform for the detection of carcinoembryonic antigen (CEA). For this introduced immunosensor, graphene (GR) and single wall carbon nanotubes (CNTs) dispersed in chitosan (Chi-GR-CNTs) were firstly decorated on the bare gold electrode (GE) surface. Then nano-AuPt were electrodeposited (DpAu-Pt) on the Chi-GR-CNTs modified electrode. Subsequently, glucose oxidase (GOD) was employed to block the non-specific sites of electrode surface. When glucose was present in the working buffer solution, GOD immediately catalyzed the oxidation of glucose to in situ generate hydrogen peroxide (H2O2), which could subsequently promote the oxidation of luminol with an amplified cathodic ECL signal. The proposed immunosensor was performed at low potential (-0.1 to 0.4V) and low concentration of luminol. The CEA was determined in the range of 0.1 pg mL(-1) to 40 ng mL(-1) with a limit of detection down to 0.03 pg mL(-1) (SN(-1)=3). Moreover, with excellent sensitivity, selectivity, stability and simplicity, the as-proposed luminol-based ECL immunosensor provided great potential in clinical applications. Copyright © 2013 Elsevier B.V. All rights reserved.
Hierarchically Structured Co3O4@Pt@MnO2 Nanowire Arrays for High-Performance Supercapacitors
Xia, Hui; Zhu, Dongdong; Luo, Zhentao; Yu, Yue; Shi, Xiaoqin; Yuan, Guoliang; Xie, Jianping
2013-01-01
Here we proposed a novel architectural design of a ternary MnO2-based electrode – a hierarchical Co3O4@Pt@MnO2 core-shell-shell structure, where the complemental features of the three key components (a well-defined Co3O4 nanowire array on the conductive Ti substrate, an ultrathin layer of small Pt nanoparticles, and a thin layer of MnO2 nanoflakes) are strategically combined into a single entity to synergize and construct a high-performance electrode for supercapacitors. Owing to the high conductivity of the well-defined Co3O4 nanowire arrays, in which the conductivity was further enhanced by a thin metal (Pt) coating layer, in combination with the large surface area provided by the small MnO2 nanoflakes, the as-fabricated Co3O4@Pt@MnO2 nanowire arrays have exhibited high specific capacitances, good rate capability, and excellent cycling stability. The architectural design demonstrated in this study provides a new approach to fabricate high-performance MnO2–based nanowire arrays for constructing next-generation supercapacitors. PMID:24132040
Jung, Chi-Young; Kim, Tae-Hyun; Yi, Sung-Chul
2014-02-01
A dual-electrode membrane electrode assembly (MEA) for proton exchange membrane fuel cells with enhanced polarization under zero relative humidity (RH) is fabricated by introducing a phase-separated morphology in an agglomerated catalyst layer of Pt/C (platinum on carbon black) and Nafion. In the catalyst layer, a sufficient level of phase separation is achieved by dispersing the Pt catalyst and the Nafion dispersion in a mixed-solvent system (propane-1,2,3-triol/1-methyl-2-pyrrolidinone).The high polymer chain mobility results in improved water uptake and regular pore-size distribution with small pore diameters. The electrochemical performance of the dual-film electrode assembly with different levels of phase separation is compared to conventional electrode assemblies. As a result, good performance at 0 % RH is obtained because self-humidification is dramatically improved by attaching this dense and phase-separated catalytic overlayer onto the conventional catalyst layer. A MEA prepared using the thin-film, dual-layered electrode exhibits 39-fold increased RH stability and 28-fold improved start-up recovery time during the on-off operation relative to the conventional device. We demonstrate the successful operation of the dual-layered electrode comprised of discriminatively phase-separated agglomerates with an ultrahigh zero RH fuel-cell performance reaching over 95 % performance of a fully humidified MEA. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xi, Zheng; Lv, Haifeng; Erdosy, Daniel P.; ...
2017-05-07
Here, we report an electrochemical method to deposit atomic scale Pt on a 5 nm Au nanoparticle (NP) surface in N 2-saturated 0.5 M H 2SO 4. Furthermore, Pt is provided by the Pt wire counter electrode via one-step Pt wire oxidation, dissolution, and deposition realized by controlled electrochemical scanning. Scanning from 0.6–1.0 V (vs. RHE) for 10 000 cycles gives Au 98.2Pt 1.8, which serves as an excellent catalyst for the formic acid oxidation reaction, showing 41 times higher specific activity (20.19 mA cm -2) and 25 times higher mass activity (10.80 A mg Pt -1) with much bettermore » CO-tolerance and stability than commercial Pt. This work demonstrates a unique strategy to minimize the use of Pt as a catalyst for electrochemical reactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xi, Zheng; Lv, Haifeng; Erdosy, Daniel P.
Here, we report an electrochemical method to deposit atomic scale Pt on a 5 nm Au nanoparticle (NP) surface in N 2-saturated 0.5 M H 2SO 4. Furthermore, Pt is provided by the Pt wire counter electrode via one-step Pt wire oxidation, dissolution, and deposition realized by controlled electrochemical scanning. Scanning from 0.6–1.0 V (vs. RHE) for 10 000 cycles gives Au 98.2Pt 1.8, which serves as an excellent catalyst for the formic acid oxidation reaction, showing 41 times higher specific activity (20.19 mA cm -2) and 25 times higher mass activity (10.80 A mg Pt -1) with much bettermore » CO-tolerance and stability than commercial Pt. This work demonstrates a unique strategy to minimize the use of Pt as a catalyst for electrochemical reactions.« less
Single-wire dye-sensitized solar cells wrapped by carbon nanotube film electrodes.
Zhang, Sen; Ji, Chunyan; Bian, Zhuqiang; Liu, Runhua; Xia, Xinyuan; Yun, Daqin; Zhang, Luhui; Huang, Chunhui; Cao, Anyuan
2011-08-10
Conventional fiber-shaped polymeric or dye-sensitized solar cells (DSSCs) are usually made into a double-wire structure, in which a secondary electrode wire (e.g., Pt) was twisted along the primary core wire consisting of active layers. Here, we report highly flexible DSSCs based on a single wire, by wrapping a carbon nanotube film around Ti wire-supported TiO(2) tube arrays as the transparent electrode. Unlike a twisted Pt electrode, the CNT film ensures full contact with the underlying active layer, as well as uniform illumination along circumference through the entire DSSC. The single-wire DSSC shows a power conversion efficiency of 1.6% under standard illumination (AM 1.5, 100 mW/cm(2)), which is further improved to more than 2.6% assisted by a second conventional metal wire (Ag or Cu). Our DSSC wires are stable and can be bent to large angles up to 90° reversibly without performance degradation.
Methanol-tolerant cathode catalyst composite for direct methanol fuel cells
Zhu, Yimin; Zelenay, Piotr
2006-09-05
A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of Pt.sub.3Cr/C so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.
1992-05-01
100"C under vacuum for 24 hours. The corresponding tetraethylammonium hexafluorophosphate (TEAH) was prepared similarly by using ammonium...the four electrolytes examined in acetonitrile (Table III). Nevertheless, use of lithium perchlorate in acetonitrile restricted the range of cluster
Capacitor electrode stimulates nerve or muscle without oxidation-reduction reactions.
Guyton, D L; Hambrecht, F T
1973-07-06
Porous tantalum disks, available as "slugs" from the capacitor industry, have large available surface area and a thin insulating coating of tantalum pentoxide. When implanted, they fill with extracellular fluid and operate as capacitor-stimulating electrodes having high capacitance per unit volume. Capable of stimulating excitable tissute without generating electrochemical by-products, these electrodes should provide a safer interface between neural prosthetic devices and human tissue.
NASA Astrophysics Data System (ADS)
Cui, Hangjun; Li, Yueming; Liu, Shimin
2018-03-01
In this report, a novel strategy by using the N, P co-doped mesoporous carbon structure as catalyst support to enhance the electrochemical catalytic activity of Pt-based catalysts is proposed. The as-synthesized PtCox@N, P-doped mesoporous carbon nanocomposties have been studied as an anode catalyst toward methanol oxidation, exhibiting greatly improved electrochemical activity and stability compared with Pt@mesoporous carbon. The synergistic effects of N, P dual-doping and porous carbon structure help to achieve better electron transport at the electrode surface, which eventually leads to greatly enhanced catalytic activity compared to the pristine Pt/mesoporous carbon.…
The impact of electrode materials on 1/f noise in piezoelectric AlN contour mode resonators
NASA Astrophysics Data System (ADS)
Kim, Hoe Joon; Jung, Soon In; Segovia-Fernandez, Jeronimo; Piazza, Gianluca
2018-05-01
This paper presents a detailed analysis on the impact of electrode materials and dimensions on flicker frequency (1/f) noise in piezoelectric aluminum nitride (AlN) contour mode resonators (CMRs). Flicker frequency noise is a fundamental noise mechanism present in any vibrating mechanical structure, whose sources are not generally well understood. 1 GHz AlN CMRs with three different top electrode materials (Al, Au, and Pt) along with various electrode lengths and widths are fabricated to control the overall damping acting on the device. Specifically, the use of different electrode materials allows control of thermoelastic damping (TED), which is the dominant damping mechanism for high frequency AlN CMRs and largely depends on the thermal properties (i.e. thermal diffusivities and expansion coefficients) of the metal electrode rather than the piezoelectric film. We have measured Q and 1/f noise of 68 resonators and the results show that 1/f noise decreases with increasing Q, with a power law dependence that is about 1/Q4. Interestingly, the noise level also depends on the type of electrode materials. Devices with Pt top electrode demonstrate the best noise performance. Our results help unveiling some of the sources of 1/f noise in these resonators, and indicate that a careful selection of the electrode material and dimensions could reduce 1/f noise not only in AlN-CMRs, but also in various classes of resonators, and thus enable ultra-low noise mechanical resonators for sensing and radio frequency applications.
Huang, K.; Bi, K.; Lu, Y. K.; Zhang, R.; Liu, J.; Wang, W. J.; Tang, H. L.; Wang, Y. G.; Lei, M.
2015-01-01
Novel nanocomposites of carbon nanotubes supported porous VOxNy nonoribbons (VOxNy-CNTs) have been synthesized by the annealing of the sol-gel mixture of CNTs and V2O5 under NH3 atmosphere as well as the ageing process in air. Besides the morphological and structural characterizations revealed by TEM, SEAD, EDS, XRD and XPS measurements, typical electrochemical tests including cyclic voltammetry (CV), rotating disk electrode (RDE) and chronoamperometry have been employed to determine the oxygen reduction reaction (ORR) performance of VOxNy-CNTs. Inspiringly, the results indicate that VOxNy-CNTs catalyst exhibits a 0.4 mA/cm2 larger diffusion-limited current density, a 0.10 V smaller onset potential value, a 10.73% less of ORR current decay and an excellent methanol-tolerance compared with commercial Pt/C catalyst. Therefore, we have reasonable grounds to believe that this new VOxNy-CNTs nanocomposites can be regarded as a promising non-precious methanol-tolerant ORR catalyst candidate for alkaline fuel cells. PMID:26616719
NASA Astrophysics Data System (ADS)
Liu, Di; Mo, Xiaoping; Li, Kexun; Liu, Yi; Wang, Junjie; Yang, Tingting
2017-08-01
Nano spinel bulk-like CoGa2O4 prepared via a facile hydrothermal method is used as a high efficient electrochemical catalyst in activated carbon (AC) air-cathode microbial fuel cell (MFC). The maximum power density of the modified MFC is 1911 ± 49 mW m-2, 147% higher than the MFC of untreated AC cathode. Transmission electron microscope (TEM) and X-ray diffraction (XRD) exhibit the morphology and crystal structure of CoGa2O4. Rotating disk electrode (RDE) confirms the four-electron pathway at the cathode during the oxygen reduction reaction (ORR). Thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) illustrate that the high rate oxygen vacancy exist in the CoGa2O4. The oxygen vacancy of CoGa2O4 plays an important role in catalytic activity. In a word, the prepared nano spinel bulk-like CoGa2O4 provides an alternative to the costly Pt in air-cathode for power output.
NASA Astrophysics Data System (ADS)
Huang, K.; Bi, K.; Lu, Y. K.; Zhang, R.; Liu, J.; Wang, W. J.; Tang, H. L.; Wang, Y. G.; Lei, M.
2015-11-01
Novel nanocomposites of carbon nanotubes supported porous VOxNy nonoribbons (VOxNy-CNTs) have been synthesized by the annealing of the sol-gel mixture of CNTs and V2O5 under NH3 atmosphere as well as the ageing process in air. Besides the morphological and structural characterizations revealed by TEM, SEAD, EDS, XRD and XPS measurements, typical electrochemical tests including cyclic voltammetry (CV), rotating disk electrode (RDE) and chronoamperometry have been employed to determine the oxygen reduction reaction (ORR) performance of VOxNy-CNTs. Inspiringly, the results indicate that VOxNy-CNTs catalyst exhibits a 0.4 mA/cm2 larger diffusion-limited current density, a 0.10 V smaller onset potential value, a 10.73% less of ORR current decay and an excellent methanol-tolerance compared with commercial Pt/C catalyst. Therefore, we have reasonable grounds to believe that this new VOxNy-CNTs nanocomposites can be regarded as a promising non-precious methanol-tolerant ORR catalyst candidate for alkaline fuel cells.
Huang, K; Bi, K; Lu, Y K; Zhang, R; Liu, J; Wang, W J; Tang, H L; Wang, Y G; Lei, M
2015-11-30
Novel nanocomposites of carbon nanotubes supported porous VO(x)N(y) nonoribbons (VO(x)N(y)-CNTs) have been synthesized by the annealing of the sol-gel mixture of CNTs and V2O5 under NH3 atmosphere as well as the ageing process in air. Besides the morphological and structural characterizations revealed by TEM, SEAD, EDS, XRD and XPS measurements, typical electrochemical tests including cyclic voltammetry (CV), rotating disk electrode (RDE) and chronoamperometry have been employed to determine the oxygen reduction reaction (ORR) performance of VO(x)N(y)-CNTs. Inspiringly, the results indicate that VO(x)N(y)-CNTs catalyst exhibits a 0.4 mA/cm(2) larger diffusion-limited current density, a 0.10 V smaller onset potential value, a 10.73% less of ORR current decay and an excellent methanol-tolerance compared with commercial Pt/C catalyst. Therefore, we have reasonable grounds to believe that this new VO(x)N(y)-CNTs nanocomposites can be regarded as a promising non-precious methanol-tolerant ORR catalyst candidate for alkaline fuel cells.
Solid state electro-optic color filter and iris
NASA Technical Reports Server (NTRS)
1974-01-01
The electro-optic properties of lanthanum-modified lead zirconate titanate (PLZT) ferroelectric ceramic material are evaluated when utilized as a variable density and/or spectral filter in conjunction with a television scanning system. Emphasis was placed on the development of techniques and procedures for processing the PLZT disks and for applying efficient electrode structures. A number of samples were processed using different combinations of cleaning, electrode material, and deposition process. Best overall performance resulted from the direct evaporation of gold over chrome electrodes. A ruggedized mounting holder assembly was designed, fabricated, and tested. The assembly provides electrical contacts, high voltage protection, and support for the fragile PLZT disk, and permits mounting and optical alignment of the associated polarizers. Operational measurements of a PLZT sample mounted in the holder assembly were performed in conjunction with a television camera and the associated drive circuits. The data verified achievement of the elimination of the observed white-line effect.
Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis
Bu, Lingzheng; Zhang, Nan; Guo, Shaojun; ...
2016-12-16
Compressive surface strains have been necessary to boost oxygen reduction reaction (ORR) activity in core/shell M/Pt catalysts (where M can be Ni, Co, Fe). We report a class of PtPb/Pt core/shell nanoplate catalysts that exhibit large biaxial tensile strains. The stable Pt (110) facets of the nanoplates have high ORR specific and mass activities that reach 7.8 milliampere per centimeter square and 4.3 ampere per milligram of platinum at 0.9 volts versus the reversible hydrogen electrode (RHE), respectively. Density functional theory calculations revealed that the edge-Pt and top (bottom)-Pt (110) facets undergo large tensile strains that help optimize the Pt-Omore » bond strength. The intermetallic core and uniform 4 layers of Pt shell of the PtPb/Pt nanoplates appear to underlie the high endurance of these catalysts, which can undergo 50,000 voltage cycles with negligible activity decay and no apparent structure and composition changes.« less
Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bu, Lingzheng; Zhang, Nan; Guo, Shaojun
Compressive surface strains have been necessary to boost oxygen reduction reaction (ORR) activity in core/shell M/Pt catalysts (where M can be Ni, Co, Fe). We report a class of PtPb/Pt core/shell nanoplate catalysts that exhibit large biaxial tensile strains. The stable Pt (110) facets of the nanoplates have high ORR specific and mass activities that reach 7.8 milliampere per centimeter square and 4.3 ampere per milligram of platinum at 0.9 volts versus the reversible hydrogen electrode (RHE), respectively. Density functional theory calculations revealed that the edge-Pt and top (bottom)-Pt (110) facets undergo large tensile strains that help optimize the Pt-Omore » bond strength. The intermetallic core and uniform 4 layers of Pt shell of the PtPb/Pt nanoplates appear to underlie the high endurance of these catalysts, which can undergo 50,000 voltage cycles with negligible activity decay and no apparent structure and composition changes.« less
Liu, Bing; Mei, Hua; DesMarteau, Darryl; Creager, Stephen E
2014-12-11
A monoprotic [(trifluoromethyl)benzenesulfonyl]imide (SI) superacid electrolyte was used to covalently modify a mesoporous carbon xerogel (CX) support via reaction of the corresponding trifluoromethyl aryl sulfonimide diazonium zwitterion with the carbon surface. Electrolyte attachment was demonstrated by elemental analysis, acid-base titration, and thermogravimetric analysis. The ion-exchange capacity of the fluoroalkyl-aryl-sulfonimide-grafted carbon xerogel (SI-CX) was ∼0.18 mequiv g(-1), as indicated by acid-base titration. Platinum nanoparticles were deposited onto the SI-grafted carbon xerogel samples by the impregnation and reduction method, and these materials were employed to fabricate polyelectrolyte membrane fuel-cell (PEMFC) electrodes by the decal transfer method. The SI-grafted carbon-xerogel-supported platinum (Pt/SI-CX) was characterized by X-ray diffraction and transmission electron microscopy to determine platinum nanoparticle size and distribution, and the findings are compared with CX-supported platinum catalyst without the grafted SI electrolyte (Pt/CX). Platinum nanoparticle sizes are consistently larger on Pt/SI-CX than on Pt/CX. The electrochemically active surface area (ESA) of platinum catalyst on the Pt/SI-CX and Pt/CX samples was measured with ex situ cyclic voltammetry (CV) using both hydrogen adsorption/desorption and carbon monoxide stripping methods and by in situ CV within membrane electrode assemblies (MEAs). The ESA values for Pt/SI-CX are consistently lower than those for Pt/CX. Some possible reasons for the behavior of samples with and without grafted SI layers and implications for the possible use of SI-grafted carbon layers in PEMFC devices are discussed.
Direct synthesis of few-layer graphene supported platinum nanocatalyst for methanol oxidation
NASA Astrophysics Data System (ADS)
Tan, Hong; Ma, Xiaohui; Sheng, Leimei; An, Kang; Yu, Liming; Zhao, Hongbin; Xu, Jiaqiang; Ren, Wei; Zhao, Xinluo
2014-11-01
High-crystalline few-layer graphene supported Pt nanoparticles have been synthesized by arc discharge evaporation of carbon electrodes containing Pt element. A high-temperature treatment under hydrogen atmosphere has been carried out to obtain a new type of Pt/graphene catalyst for methanol oxidation in direct methanol fuel cell. The morphology and structure characterizations of as-grown few-layer graphene supported Pt nanoparticles and Pt/graphene catalysts have been studied by Raman spectroscopy, scanning electron microscopy with energy-dispersive spectroscopy, and high-resolution transmission electron microscopy. Cyclic voltammograms and chronoamperometric curves show that our present Pt/graphene catalysts have larger current density for methanol oxidation, higher tolerance to carbon monoxide poisoning, and better stability during the operating procedure, compared to commercial Pt/C catalysts.
NASA Astrophysics Data System (ADS)
Bauer, Alex; Gyenge, Előd L.; Oloman, Colin W.
Pressed graphite felt (thickness ∼350 μm) with electrodeposited PtRu (43 g m -2, 1.4:1 atomic ratio) or PtRuMo (52 g m -2, 1:1:0.3 atomic ratio) nanoparticle catalysts was investigated as an anode for direct methanol fuel cells. At temperatures above 333 K the fuel cell performance of the PtRuMo catalyst was superior compared to PtRu. The power density was 2200 W m -2 with PtRuMo at 5500 A m -2 and 353 K while under the same conditions PtRu yielded 1925 W m -2. However, the degradation rate of the Mo containing catalyst formulation was higher. Compared to conventional gas diffusion electrodes with comparable PtRu catalyst composition and load, the graphite felt anodes gave higher power densities mainly due to the extended reaction zone for methanol oxidation.
Nonvolatile resistive switching in metal/La-doped BiFeO3/Pt sandwiches.
Li, Mi; Zhuge, Fei; Zhu, Xiaojian; Yin, Kuibo; Wang, Jinzhi; Liu, Yiwei; He, Congli; Chen, Bin; Li, Run-Wei
2010-10-22
The resistive switching (RS) characteristics of a Bi(0.95)La(0.05)FeO(3) (La-BFO) film sandwiched between a Pt bottom electrode and top electrodes (TEs) made of Al, Ag, Cu, and Au have been studied. Devices with TEs made of Ag and Cu showed stable bipolar RS behaviors, whereas those with TEs made of Al and Au exhibited unstable bipolar RS. The Ag/La-BFO/Pt structure showed an on/off ratio of 10(2), a retention time > 10(5) s, and programming voltages < 1 V. The RS effect can be attributed to the formation/rupture of nanoscale metal filaments due to the diffusion of the TEs under a bias voltage. The maximum current before the reset process (on-to-off switching) was found to increase linearly with the current compliance applied during the set process (off-to-on switching).
The mechanical properties of ionic polymer-metal composites
NASA Astrophysics Data System (ADS)
Park, Il-Seok; Kim, Sang-Mun; Kim, Doyeon; Kim, Kwang J.
2007-04-01
In this study, we investigated the mechanical properties of various type ionic polymer-metal composites (IPMCs) and Pt, Au, Pd, and Pt electroded ionic liquid (IL-Pt) IPMCs, by testing tensile modulus and dynamic mechanical behavior. The SEM was utilized to investigate the characteristics of the doped electroding layer, and the DSC was probed in order to look into the thermal behavior of various types of IPMCs. Au IPMCs, having a 5~7 μm doped layer and nano-sized Au particles (ca. 10 nm), showed the highest tensile strength (56 MPa) and modulus (602 MPa) in a dried condition. In a thermal behavior, Au IPMC has the highest T g (153°C) and T m (263°C) in both the DMA and DSC results. The fracture behavior of various types IPMCs followed base material's behavior, Nafion TM, which is represented as the semicrystalline polymer characteristic.
NASA Astrophysics Data System (ADS)
Jung, WooChul; Kim, Jae Jin; Tuller, Harry L.
2015-02-01
Highly porous Pt thin films, with nano-scale porosity, were fabricated by reactive sputtering. The strategy involved deposition of thin film PtOx at room temperature, followed by the subsequent decomposition of the oxide by rapid heat treatment. The resulting films exhibited percolating Pt networks infiltrated with interconnected nanosized pores, critical for superior solid oxide fuel cell cathode performance. This approach is particularly attractive for micro-fabricated solid oxide fuel cells, since it enables fabrication of the entire cell stack (anode/electrolyte/cathode) within the sputtering chamber, without breaking vacuum. In this work, the morphological, crystallographic and chemical properties of the porous electrode were systematically varied by control of deposition conditions. Oxygen reduction reaction kinetics were investigated by means of electrochemical impedance spectroscopy, demonstrating the critical role of nano-pores in achieving satisfactory micro-SOFC cathode performance.
Resistive switching mechanism of Ag/ZrO2:Cu/Pt memory cell
NASA Astrophysics Data System (ADS)
Long, Shibing; Liu, Qi; Lv, Hangbing; Li, Yingtao; Wang, Yan; Zhang, Sen; Lian, Wentai; Zhang, Kangwei; Wang, Ming; Xie, Hongwei; Liu, Ming
2011-03-01
Resistive switching mechanism of zirconium oxide-based resistive random access memory (RRAM) devices composed of Cu-doped ZrO2 film sandwiched between an oxidizable electrode and an inert electrode was investigated. The Ag/ZrO2:Cu/Pt RRAM devices with crosspoint structure fabricated by e-beam evaporation and e-beam lithography show reproducible bipolar resistive switching. The linear I- V relationship of low resistance state (LRS) and the dependence of LRS resistance ( R ON) and reset current ( I reset) on the set current compliance ( I comp) indicate that the observed resistive switching characteristics of the Ag/ZrO2:Cu/Pt device should be ascribed to the formation and annihilation of localized conductive filaments (CFs). The physical origin of CF was further analyzed by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). CFs were directly observed by cross-sectional TEM. According to EDS and elemental mapping analysis, the main chemical composition of CF is determined by Ag atoms, coming from the Ag top electrode. On the basis of these experiments, we propose that the set and reset process of the device stem from the electrochemical reactions in the zirconium oxide under different external electrical stimuli.
Boota, Muhammad; Houwman, Evert P.; Dekkers, Matthijn; Nguyen, Minh D.; Vergeer, Kurt H.; Lanzara, Giulia; Koster, Gertjan; Rijnders, Guus
2016-01-01
Abstract Epitaxial (PbMg1/3Nb2/3O3)2/3-(PbTiO3)1/3 (PMN-PT) films with different out-of-plane orientations were prepared using a CeO2/yttria stabilized ZrO2 bilayer buffer and symmetric SrRuO3 electrodes on silicon substrates by pulsed laser deposition. The orientation of the SrRuO3 bottom electrode, either (110) or (001), was controlled by the deposition conditions and the subsequent PMN-PT layer followed the orientation of the bottom electrode. The ferroelectric, dielectric and piezoelectric properties of the (SrRuO3/PMN-PT/SrRuO3) ferroelectric capacitors exhibit orientation dependence. The properties of the films are explained in terms of a model based on polarization rotation. At low applied fields domain switching dominates the polarization change. The model indicates that polarization rotation is easier in the (110) film, which is ascribed to a smaller effect of the clamping on the shearing of the pseudo-cubic unit cell compared to the (001) case. PMID:27877857
NASA Astrophysics Data System (ADS)
Jurzinsky, Tilman; Kurzhals, Philipp; Cremers, Carsten
2018-06-01
The oxygen reduction reaction is in research focus since several decades due to its importance for the overall fuel cell performance. In direct methanol fuel cells, the crossover of methanol and its subsequent parasitic oxidation are main issues when it comes to preventing fuel cell performance losses. In this work, we present a novel differential electrochemical mass spectrometry method to evaluate oxygen reduction reaction catalysts on their tolerance to methanol being present at the cathode. Besides this, the setup allows to measure under more realistic fuel cell conditions than typical rotating disc electrode measurements, because the oxygen reduction reaction is evaluated in gaseous phase and a gas diffusion electrode is used as working electrode. Due to the new method, it was possible to investigate the oxygen reduction reaction on two commonly used catalysts (Pt/C and Pt3Co/C) in absence and presence of methanol. It was found, that Pt3Co/C is less prone to parasitic current losses due to methanol oxidation reaction. By connecting a mass spectrometer to the electrochemical cell, the new method allows to determine the products formed on the catalysts due to parasitic methanol electrooxidation.
Enhanced electrodes for solid state gas sensors
Garzon, Fernando H.; Brosha, Eric L.
2001-01-01
A solid state gas sensor generates an electrical potential between an equilibrium electrode and a second electrode indicative of a gas to be sensed. A solid electrolyte substrate has the second electrode mounted on a first portion of the electrolyte substrate and a composite equilibrium electrode including conterminous transition metal oxide and Pt components mounted on a second portion of the electrolyte substrate. The composite equilibrium electrode and the second electrode are electrically connected to generate an electrical potential indicative of the gas that is being sensed. In a particular embodiment of the present invention, the second electrode is a reference electrode that is exposed to a reference oxygen gas mixture so that the electrical potential is indicative of the oxygen in a gas stream.
NASA Astrophysics Data System (ADS)
Hengge, K.; Heinzl, C.; Perchthaler, M.; Varley, D.; Lochner, T.; Scheu, C.
2017-10-01
The work in hand presents an electron microscopy based in-depth study of micro- and nanoscale degradation processes that take place during the operation of high-temperature polymer-electrolyte-membrane fuel cells (HT-PEMFCs). Carbon supported Pt particles were used as cathodic catalyst material and the bimetallic, carbon supported Pt/Ru system was applied as anode. As membrane, cross-linked polybenzimidazole was used. Scanning electron microscopy analysis of cross-sections of as-prepared and long-term operated membrane-electrode-assemblies revealed insight into micrometer scale degradation processes: operation-caused catalyst redistribution and thinning of the membrane and electrodes. Transmission electron microscopy investigations were performed to unravel the nanometer scale phenomena: a band of Pt and Pt/Ru nanoparticles was detected in the membrane adjacent to the cathode catalyst layer. Quantification of the elemental composition of several individual nanoparticles and the overall band area revealed that they stem from both anode and cathode catalyst layers. The results presented do not demonstrate any catastrophic failure but rather intermediate states during fuel cell operation and indications to proceed with targeted HT-PEMFC optimization.
Chen, Xu; He, Daping; Wu, Hui; Zhao, Xiaofeng; Zhang, Jian; Cheng, Kun; Wu, Peng; Mu, Shichun
2015-01-01
For the first time a novel oxygen reduction catalyst with a 3D platinized graphene/nano-ceramic sandwiched architecture is successfully prepared by an unusual method. Herein the specific gravity of graphene nanosheets (GNS) is tailored by platinizing graphene in advance to shorten the difference in the specific gravity between carbon and SiC materials, and then nano-SiC is well intercalated into GNS interlayers. This nano-architecture with highly dispersed Pt nanoparticles exhibits a very high oxygen reduction reaction (ORR) activity and polymer electrolyte membrane (PEM) fuel cell performance. The mass activity of half cells is 1.6 times of that of the GNS supported Pt, and 2.4 times that of the commercial Pt/C catalyst, respectively. Moreover, after an accelerated stress test our catalyst shows a predominantly electrochemical stability compared with benchmarks. Further fuel cell tests show a maximum power density as high as 747 mW/cm2 at low Pt loading, which is more than 2 times higher than that of fuel cells with the pristine graphene electrode. PMID:26538366
Chen, Xu; He, Daping; Wu, Hui; Zhao, Xiaofeng; Zhang, Jian; Cheng, Kun; Wu, Peng; Mu, Shichun
2015-11-05
For the first time a novel oxygen reduction catalyst with a 3D platinized graphene/nano-ceramic sandwiched architecture is successfully prepared by an unusual method. Herein the specific gravity of graphene nanosheets (GNS) is tailored by platinizing graphene in advance to shorten the difference in the specific gravity between carbon and SiC materials, and then nano-SiC is well intercalated into GNS interlayers. This nano-architecture with highly dispersed Pt nanoparticles exhibits a very high oxygen reduction reaction (ORR) activity and polymer electrolyte membrane (PEM) fuel cell performance. The mass activity of half cells is 1.6 times of that of the GNS supported Pt, and 2.4 times that of the commercial Pt/C catalyst, respectively. Moreover, after an accelerated stress test our catalyst shows a predominantly electrochemical stability compared with benchmarks. Further fuel cell tests show a maximum power density as high as 747 mW/cm(2) at low Pt loading, which is more than 2 times higher than that of fuel cells with the pristine graphene electrode.
NASA Astrophysics Data System (ADS)
Chen, Xu; He, Daping; Wu, Hui; Zhao, Xiaofeng; Zhang, Jian; Cheng, Kun; Wu, Peng; Mu, Shichun
2015-11-01
For the first time a novel oxygen reduction catalyst with a 3D platinized graphene/nano-ceramic sandwiched architecture is successfully prepared by an unusual method. Herein the specific gravity of graphene nanosheets (GNS) is tailored by platinizing graphene in advance to shorten the difference in the specific gravity between carbon and SiC materials, and then nano-SiC is well intercalated into GNS interlayers. This nano-architecture with highly dispersed Pt nanoparticles exhibits a very high oxygen reduction reaction (ORR) activity and polymer electrolyte membrane (PEM) fuel cell performance. The mass activity of half cells is 1.6 times of that of the GNS supported Pt, and 2.4 times that of the commercial Pt/C catalyst, respectively. Moreover, after an accelerated stress test our catalyst shows a predominantly electrochemical stability compared with benchmarks. Further fuel cell tests show a maximum power density as high as 747 mW/cm2 at low Pt loading, which is more than 2 times higher than that of fuel cells with the pristine graphene electrode.
Pt-Al2O3 dual layer atomic layer deposition coating in high aspect ratio nanopores.
Pardon, Gaspard; Gatty, Hithesh K; Stemme, Göran; van der Wijngaart, Wouter; Roxhed, Niclas
2013-01-11
Functional nanoporous materials are promising for a number of applications ranging from selective biofiltration to fuel cell electrodes. This work reports the functionalization of nanoporous membranes using atomic layer deposition (ALD). ALD is used to conformally deposit platinum (Pt) and aluminum oxide (Al(2)O(3)) on Pt in nanopores to form a metal-insulator stack inside the nanopore. Deposition of these materials inside nanopores allows the addition of extra functionalities to nanoporous materials such as anodic aluminum oxide (AAO) membranes. Conformal deposition of Pt on such materials enables increased performances for electrochemical sensing applications or fuel cell electrodes. An additional conformal Al(2)O(3) layer on such a Pt film forms a metal-insulator-electrolyte system, enabling field effect control of the nanofluidic properties of the membrane. This opens novel possibilities in electrically controlled biofiltration. In this work, the deposition of these two materials on AAO membranes is investigated theoretically and experimentally. Successful process parameters are proposed for a reliable and cost-effective conformal deposition on high aspect ratio three-dimensional nanostructures. A device consisting of a silicon chip supporting an AAO membrane of 6 mm diameter and 1.3 μm thickness with 80 nm diameter pores is fabricated. The pore diameter is reduced to 40 nm by a conformal deposition of 11 nm Pt and 9 nm Al(2)O(3) using ALD.
Pt-Al2O3 dual layer atomic layer deposition coating in high aspect ratio nanopores
NASA Astrophysics Data System (ADS)
Pardon, Gaspard; Gatty, Hithesh K.; Stemme, Göran; van der Wijngaart, Wouter; Roxhed, Niclas
2013-01-01
Functional nanoporous materials are promising for a number of applications ranging from selective biofiltration to fuel cell electrodes. This work reports the functionalization of nanoporous membranes using atomic layer deposition (ALD). ALD is used to conformally deposit platinum (Pt) and aluminum oxide (Al2O3) on Pt in nanopores to form a metal-insulator stack inside the nanopore. Deposition of these materials inside nanopores allows the addition of extra functionalities to nanoporous materials such as anodic aluminum oxide (AAO) membranes. Conformal deposition of Pt on such materials enables increased performances for electrochemical sensing applications or fuel cell electrodes. An additional conformal Al2O3 layer on such a Pt film forms a metal-insulator-electrolyte system, enabling field effect control of the nanofluidic properties of the membrane. This opens novel possibilities in electrically controlled biofiltration. In this work, the deposition of these two materials on AAO membranes is investigated theoretically and experimentally. Successful process parameters are proposed for a reliable and cost-effective conformal deposition on high aspect ratio three-dimensional nanostructures. A device consisting of a silicon chip supporting an AAO membrane of 6 mm diameter and 1.3 μm thickness with 80 nm diameter pores is fabricated. The pore diameter is reduced to 40 nm by a conformal deposition of 11 nm Pt and 9 nm Al2O3 using ALD.
NASA Astrophysics Data System (ADS)
Xing, Songling; Lin, Luchan; Zou, Guisheng; Liu, Lei; Peng, Peng; Wu, Aiping; Duley, Walter W.; Zhou, Y. Norman
2017-10-01
In this paper, we show that tightly focused femtosecond laser irradiation is effective in improving nanojoining of an oxide nanowire (NW) (TiO2) to a metal electrode (Pt), and how this process can be used to modify contact states. Enhanced chemical bondings are created due to localized plasmonically enhanced optical absorption at the Pt/TiO2 interface as confirmed by finite element simulations of the localized field distribution during irradiation. Nano Auger electron spectroscopy shows that the resulting heterojunction is depleted in oxygen, suggesting that a TiO2-x layer is formed between the Pt electrode and the TiO2 NW. The presence of this redox layer at the metal/oxide interface plays an important role in decreasing the Schottky barrier height and in facilitating chemical bonding. After laser irradiation at the cathode for 10 s at a fluence of 5.02 mJ cm-2, the Pt/TiO2 NW/Pt structure displays different electrical properties under forward and reverse bias voltage, respectively. The creation of this asymmetric electrical characteristic shows the way in which modification of the electronic interface by laser engineering can replace the electroforming process in resistive switching devices and how it can be used to control contact states in a metal/oxide interface.
Xing, Songling; Lin, Luchan; Zou, Guisheng; Liu, Lei; Peng, Peng; Wu, Aiping; Duley, Walter W; Zhou, Y Norman
2017-10-06
In this paper, we show that tightly focused femtosecond laser irradiation is effective in improving nanojoining of an oxide nanowire (NW) (TiO 2 ) to a metal electrode (Pt), and how this process can be used to modify contact states. Enhanced chemical bondings are created due to localized plasmonically enhanced optical absorption at the Pt/TiO 2 interface as confirmed by finite element simulations of the localized field distribution during irradiation. Nano Auger electron spectroscopy shows that the resulting heterojunction is depleted in oxygen, suggesting that a TiO 2-x layer is formed between the Pt electrode and the TiO 2 NW. The presence of this redox layer at the metal/oxide interface plays an important role in decreasing the Schottky barrier height and in facilitating chemical bonding. After laser irradiation at the cathode for 10 s at a fluence of 5.02 mJ cm -2 , the Pt/TiO 2 NW/Pt structure displays different electrical properties under forward and reverse bias voltage, respectively. The creation of this asymmetric electrical characteristic shows the way in which modification of the electronic interface by laser engineering can replace the electroforming process in resistive switching devices and how it can be used to control contact states in a metal/oxide interface.
Manivannan, Shanmugam; Kang, Inhak; Seo, Yeji; Jin, Hyo-Eon; Lee, Seung-Wuk; Kim, Kyuwon
2017-09-27
We report a virus-incorporated biological template (biotemplate) on electrode surfaces and its use in electrochemical nucleation of metal nanocomposites as an electrocatalytic material for energy applications. The biotemplate was developed with M13 virus (M13) incorporated in a silicate sol-gel matrix as a scaffold to nucleate Au-Pt alloy nanostructures by electrodeposition, together with reduced graphene oxide (rGO). The phage when engineered with Y3E peptides could nucleate Au-Pt alloy nanostructures, which ensured adequate packing density, simultaneous stabilization of rGO, and a significantly increased electrochemically active surface area. Investigation of the electrocatalytic activity of the resulting sol-gel composite catalyst toward methanol oxidation in an alkaline medium showed that this catalyst had mass activity greater than that of the biotemplate containing wild-type M13 and that of monometallic Pt and other Au-Pt nanostructures with different compositions and supports. M13 in the nanocomposite materials provided a close contact between the Au-Pt alloy nanostructures and rGO. In addition, it facilitated the availability of an OH - -rich environment to the catalyst. As a result, efficient electron transfer and a synergistic catalytic effect of the Au and Pt in the alloy nanostructures toward methanol oxidation were observed. Our nanocomposite synthesis on the novel biotemplate and its application might be useful for developing novel clean and green energy-generating and energy-storage materials.
Dissolution of Pt during Oxygen Reduction Reaction Produces Pt Nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bae, Je Hyun; Brocenschi, Ricardo F.; Kisslinger, Kim
The loss of Pt during the oxygen reduction reaction (ORR) affects the performance and economic viability of fuel cells and sensors. Our group previously observed the dissolution of Pt nanoelectrodes at moderately negative potentials during the ORR. Here we report a more detailed study of this process and identify its product. The nanoporous Pt surface formed during the ORR was visualized by AFM and high-resolution SEM, which also showed ~5 nm sized Pt particles on the glass surface surrounding the electrode. Furthermore, the release of these nanoparticles into the solution was confirmed by monitoring their catalytically amplified collisions with amore » Hg-coated microelectrode used as the tip in the scanning electrochemical microscope (SECM).« less
Dissolution of Pt during Oxygen Reduction Reaction Produces Pt Nanoparticles
Bae, Je Hyun; Brocenschi, Ricardo F.; Kisslinger, Kim; ...
2017-11-15
The loss of Pt during the oxygen reduction reaction (ORR) affects the performance and economic viability of fuel cells and sensors. Our group previously observed the dissolution of Pt nanoelectrodes at moderately negative potentials during the ORR. Here we report a more detailed study of this process and identify its product. The nanoporous Pt surface formed during the ORR was visualized by AFM and high-resolution SEM, which also showed ~5 nm sized Pt particles on the glass surface surrounding the electrode. Furthermore, the release of these nanoparticles into the solution was confirmed by monitoring their catalytically amplified collisions with amore » Hg-coated microelectrode used as the tip in the scanning electrochemical microscope (SECM).« less
Photoconducting positions monitor and imaging detector
Shu, Deming; Kuzay, Tuncer M.
2000-01-01
A photoconductive, high energy photon beam detector/monitor for detecting x-rays and gamma radiation, having a thin, disk-shaped diamond substrate with a first and second surface, and electrically conductive coatings, or electrodes, of a predetermined configuration or pattern, disposed on the surfaces of the substrate. A voltage source and a current amplifier is connected to the electrodes to provide a voltage bias to the electrodes and to amplify signals from the detector.
NASA Astrophysics Data System (ADS)
Qin, Yanyan; Li, Yilian; Tian, Zhen; Wu, Yangling; Cui, Yanping
2016-01-01
A constant current deposition method was selected to load highly dispersed Pt nanoparticles on TiO2 nanotubes in this paper, to extend the excited spectrum range of TiO2-based photocatalysts to visible light. The morphology, elemental composition, and light absorption capability of as-obtained Pt/TiO2 nanotubes electrodes were characterized by FE-SEM, energy dispersive spectrometer (EDS), X-ray photoelectron spectrometer (XPS), and UV-vis spectrometer. The photocatalytic and photoelectrocatalytic oxidation of As(III) using a Pt/TiO2 nanotube arrays electrode under visible light ( λ > 420 nm) irradiation were investigated in a divided anode/cathode electrolytic tank. Compared with pure TiO2 which had no As(III) oxidation capacity under visible light, Pt/TiO2 nanotubes exhibited excellent visible-light photocatalytic performance toward As(III), even at dark condition. In anodic cell, As(III) could be oxidized with high efficiency by photoelectrochemical process with only 1.2 V positive biasing. Experimental results showed that photoelectrocatalytic oxidation process of As(III) could be well described by pseudo-first-order kinetic model. Rate constants depended on initial concentration of As(III), applied bias potential and solution pH. At the same time, it was interesting to find that in cathode cell, As(III) was also continuously oxidized to As(V). Furthermore, high-arsenic groundwater sample (25 m underground) with 0.32 mg/L As(III) and 0.35 mg/L As(V), which was collected from Daying Village, Datong basin, Northern China, could totally transform to As(V) after 200 min under visible light in this system.
Corrosion Modeling and Testing of Riveted Aluminum Alloy Panel
2012-08-28
Curve Measurement • V-I measurement using rotating disk electrode ( RDE ) captures mass transport contribution • Mass transport can be important for...curve measurement needed Rotating Disk Electrode ( RDE ) y = 0.0353x + 0.1796 0 10 20 30 40 50 60 70 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 5 10 15 B ou nd...ar y la ye r t hi ck ne ss , um D iff us io n Li m ite d C ur re nt ( m A /c m 2 ) Rotation Rate, w1/2 (radian s-1)1/2 Cu RDE Tests IL, mA
NASA Technical Reports Server (NTRS)
Srinivasan, Supramaniam; Velev, Omourtag A.; Parthasathy, Arvind; Manko, David J.; Appleby, A. John
1991-01-01
The development of proton exchange membrane (PEM) fuel cell power plants with high energy efficiencies and high power densities is gaining momentum because of the vital need of such high levels of performance for extraterrestrial (space, underwater) and terrestrial (power source for electric vehicles) applications. Since 1987, considerable progress has been made in achieving energy efficiencies of about 60 percent at a current density of 200 mA/sq cm and high power densities (greater than 1 W/sq cm) in PEM fuel cells with high (4 mg/sq cm) or low (0.4 mg/sq cm) platinum loadings in electrodes. The following areas are discussed: (1) methods to obtain these high levels of performance with low Pt loading electrodes - by proton conductor impregnation into electrodes, localization of Pt near front surface; (2) a novel microelectrode technique which yields electrode kinetic parameters for oxygen reduction and mass transport parameters; (3) demonstration of lack of water transport from anode to cathode; (4) modeling analysis of PEM fuel cell for comparison with experimental results and predicting further improvements in performance; and (5) recommendations of needed research and development for achieving the above goals.
2010-01-01
Cu2S nanocrystal particles were in situ deposited on graphite paper to prepare nano-sulfide/carbon composite counter electrode for CdS/CdSe quantum-dot-sensitized solar cell (QDSC). By optimization of deposition time, photovoltaic conversion efficiency up to 3.08% was obtained. In the meantime, this composite counter electrode was superior to the commonly used Pt, Au and carbon counter electrodes. Electrochemical impedance spectra further confirmed that low charge transfer resistance at counter electrode/electrolyte interface was responsible for this, implied the potential application of this composite counter electrode in high-efficiency QDSC. PMID:20672135
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawakita, Masatoshi; Okabe, Kyota; Kimura, Takashi
2016-01-11
We have developed a fabrication process for a laterally configured resistive switching device based on a Gd oxide. A nano-gap electrode connected by a Gd oxide with the ideal interfaces has been created by adapting the electro-migration method in a metal/GdO{sub x} bilayer system. Bipolar set and reset operations have been clearly observed in the Pt/GdO{sub x} system similarly in the vertical device based on GdO{sub x}. Interestingly, we were able to observe a clear bipolar switching also in a ferromagnetic CoFeB nano-gap electrode with better stability compared to the Pt/GdO{sub x} device. The superior performance of the CoFeB/GdO{sub x}more » device implies the importance of the spin on the resistive switching.« less
NASA Technical Reports Server (NTRS)
Parthasarathy, Arvind; Dave, Bhasker; Srinivasan, Supramaniam; Appleby, John A.; Martin, Charles R.
1992-01-01
The objectives of this study were to use electrochemical impedance spectroscopy (EIS) to study the oxygen-reduction reaction under lower humidification conditions than previously studied. The EIS technique permits the discrimination of electrode kinetics of oxygen reduction, mass transport of O2 in the membrane, and the electrical characteristics of the membrane. Electrode-kinetic parameters for the oxygen-reduction reaction, corrosion current densities for Pt, and double-layer capacitances were calculated. The production of water due to electrochemical reduction of oxygen greatly influenced the EIS response and the electrode kinetics at the Pt/Nafion interface. From the finite-length Warburg behavior, a measure of the diffusion coefficient of oxygen in Nafion and diffusion-layer thickness was obtained. An analysis of the EIS data in the high-frequency domain yielded membrane and interfacial characteristics such as ionic conductivity of the membrane, membrane grain-boundary capacitance and resistance, and uncompensated resistance.
NASA Astrophysics Data System (ADS)
Jayaraman, Shrisudersan; Baeck, Sung-Hyeon; Jaramillo, Thomas F.; Kleiman-Shwarsctein, Alan; McFarland, Eric W.
2005-06-01
An automated system for high-throughput electrochemical synthesis and screening of fuel cell electro-oxidation catalysts is described. This system consists of an electrode probe that contains counter and reference electrodes that can be positioned inside an array of electrochemical cells created within a polypropylene block. The electrode probe is attached to an automated of X-Y-Z motion system. An externally controlled potentiostat is used to apply the electrochemical potential to the catalyst substrate. The motion and electrochemical control are integrated using a user-friendly software interface. During automated synthesis the deposition potential and/or current may be controlled by a pulse program triggered by the software using a data acquisition board. The screening includes automated experiments to obtain cyclic voltammograms. As an example, a platinum-tungsten oxide (Pt-WO3) library was synthesized and characterized for reactivity towards methanol electro-oxidation.
Zhai, Yunfeng; Baturina, Olga; Ramaker, David; Farquhar, Erik; St-Pierre, Jean; Swider-Lyons, Karen
2015-01-01
The platinum electrocatalysts found in proton exchange membrane fuel cells are poisoned both reversibly and irreversibly by air pollutants and residual manufacturing contaminants. In this work, the poisoning of a Pt/C PEMFC cathode was probed by a trace of chlorobenzene in the air feed. Chlorobenzene inhibits the oxygen reduction reaction and causes significant cell performance loss. The performance loss is largely restored by neat air operation and potential cycling between 0.08 V and 1.2 V under H2/N2 (anode/cathode). The analysis of emissions, in situ X-ray absorption spectroscopy and electrochemical impedance spectra show the chlorobenzene adsorption/reaction and molecular orientation on Pt surface depend on the electrode potential. At low potentials, chlorobenzene deposits either on top of adsorbed H atoms or on the Pt surface via the benzene ring and is converted to benzene (ca. 0.1 V) or cyclohexane (ca. 0 V) upon Cl removal. At potentials higher than 0.2 V, chlorobenzene binds to Pt via the Cl atom and can be converted to benzene (less than 0.3 V) or desorbed. Cl− is created and remains in the membrane electrode assembly. Cl− binds to the Pt surface much stronger than chlorobenzene, but can slowly be flushed out by liquid water. PMID:26388963
Nguyen, Minh D; Yuan, Huiyu; Houwman, Evert P; Dekkers, Matthijn; Koster, Gertjan; Ten Elshof, Johan E; Rijnders, Guus
2016-11-16
Ca 2 Nb 3 O 10 (CNOns) and Ti 0.87 O 2 (TiOns) metal oxide nanosheets (ns) are used as a buffer layer for epitaxial growth of piezoelectric capacitor stacks on Si and Pt/Ti/SiO 2 /Si (Pt/Si) substrates. Highly (001)- and (110)-oriented Pb(Zr 0.52 Ti 0.48 )O 3 (PZT) films are achieved by utilizing CNOns and TiOns, respectively. The piezoelectric capacitors are characterized by polarization and piezoelectric hysteresis loops and by fatigue measurements. The devices fabricated with SrRuO 3 top and bottom electrodes directly on nanosheets/Si have ferroelectric and piezoelectric properties well comparable with devices that use more conventional oxide buffer layers (stacks) such as YSZ, CeO 2 /YSZ, or SrTiO 3 on Si. The devices grown on nanosheets/Pt/Si with Pt top electrodes show significantly improved polarization fatigue properties over those of similar devices grown directly on Pt/Si. The differences in properties are ascribed to differences in the crystalline structures and the density of the films. These results show a route toward the fabrication of single crystal piezoelectric thin films and devices with high quality, long-lifetime piezoelectric capacitor structures on nonperovskite and even noncrystalline substrates such as glass or polished metal surfaces.
Direct alcohol fuel cells: Increasing platinum performance by modification with sp-group metals
NASA Astrophysics Data System (ADS)
Figueiredo, Marta C.; Sorsa, Olli; Doan, Nguyet; Pohjalainen, Elina; Hildebrand, Helga; Schmuki, Patrik; Wilson, Benjamin P.; Kallio, Tanja
2015-02-01
By using sp group metals as modifiers, the catalytic properties of Pt can be improved toward alcohols oxidation. In this work we report the performance increase of direct alcohol fuel cells (DAFC) fuelled with ethanol or 2-propanol with platinum based anode electrodes modified with Bi and Sb adatoms. For example, by simply adding Sb to the Pt/C based anode ink during membrane electrode assembly fabrication of a direct ethanol fuel cell (DEFC) its performance is improved three-fold, with more than 100 mV increase in the open circuit potential. For the fuel cell fuelled with 2-propanol high power densities are obtained at very high potentials with these catalyst materials suggesting a great improvement for practical applications. Particularly in the case of Pt/C-Bi, the improvement is such that within 0.6 V (from 0.7 to 0.1 V) the power densities are between 7 and 9 mW/cm2. The results obtained with these catalysts are in the same range as those obtained with other bimetallic catalysts comprising of PtRu and PtSn, which are currently considered to be the best for these type of fuel cells and that are obtained by more complicated (and consequently more expensive) methods.
NASA Astrophysics Data System (ADS)
Gao, Wei; Shi, Liqin; Hasegawa, Yuki; Katsube, Teruaki
In order to develop a high temperature (200°C˜400°C) and high sensitive NOx gas sensor, we developed a new structure of SiC-based hetero-junction device Pt/SnO2/SiC/Ni, Pt/In2O3/SiC/Ni and Pt/WO3/SiC/Ni using a laser ablation method for the preparation of both metal (Pt) electrode and metal-oxide film. It was found that Pt/In2O3/SiC/Ni sensor shows higher sensitivity to NO2 gas compared with the Pt/SnO2/SiC/Ni and Pt/WO3/SiC/Ni sensor, whereas the Pt/WO3/SiC/Ni sensor had better sensitivity to NO gas. These results suggest that selective detection of NO and NO2 gases may be obtained by choosing different metal oxide films.
Segmentally structured disk triboelectric nanogenerator
Wang, Zhong Lin; Zhu, Guang; Lin, Long; Wang, Sihong; Chen, Jun
2016-11-01
A generator includes a disc shaped first unit, a disc shaped second unit and an axle. The first unit includes a substrate layer, a double complementary electrode layer and an electrification material layer. The electrode layer includes a first electrode member and a second electrode member. The first electrode member includes evenly spaced apart first electrode legs extending inwardly. The second electrode member is complementary in shape to the first electrode member. The legs of the first electrode member and the second electrode member are interleaved with each other and define a continuous gap therebetween. The electrification material includes a first material that is in a first position on the triboelectric series. The second unit defines elongated openings and corresponding elongated leg portions, and includes a second material that is at a second position on a triboelectric series, different than the first position.
Rechargeable Al/Cl2 battery with molten AlCl4/-/ electrolyte.
NASA Technical Reports Server (NTRS)
Holleck, G. L.; Giner, J.; Burrows, B.
1972-01-01
A molten salt system based on Al- and Cl2 carbon electrodes, with an AlCl3 alkali chloride eutectic as electrolyte, offers promise as a rechargeable, high energy density battery which can operate at a relatively low temperature. Electrode kinetic studies showed that the electrode reactions at the Al anode were rapid and that the observed passivation phenomena were due to the formation at the electrode surface of a solid salt layer resulting from concentration changes on anodic or cathodic current flow. It was established that carbon electrodes were intrinsically active for chlorine reduction in AlCl3-alkali chloride melts. By means of a rotating vitreous carbon disk electrode, the kinetic parameters were determined.
Jung, Suho; Kortlever, Ruud; Jones, Ryan J R; Lichterman, Michael F; Agapie, Theodor; McCrory, Charles C L; Peters, Jonas C
2017-01-03
Rotating disk electrodes (RDEs) are widely used in electrochemical characterization to analyze the mechanisms of various electrocatalytic reactions. RDE experiments often make use of or require collection and quantification of gaseous products. The combination of rotating parts and gaseous analytes makes the design of RDE cells that allow for headspace analysis challenging due to gas leaks at the interface of the cell body and the rotator. In this manuscript we describe a new, hermetically sealed electrochemical cell that allows for electrode rotation while simultaneously providing a gastight environment. Electrode rotation in this new cell design is controlled by magnetically coupling the working electrode to a rotating magnetic driver. Calibration of the RDE using a tachometer shows that the rotation speed of the electrode is the same as that of the magnetic driver. To validate the performance of this cell for hydrodynamic measurements, limiting currents from the reduction of a potassium ferrocyanide (K 4 [Fe(CN) 6 ]·3H 2 O) were measured and shown to compare favorably with calculated values from the Levich equation and with data obtained using more typical, nongastight RDE cells. Faradaic efficiencies of ∼95% were measured in the gas phase for oxygen evolution in alkaline media at an Inconel 625 alloy electrocatalyst during rotation at 1600 rpm. These data verify that a gastight environment is maintained even during rotation.
Laurila, Tomi; Rautiainen, Antti; Sintonen, Sakari; Jiang, Hua; Kaivosoja, Emilia; Koskinen, Jari
2014-01-01
The effect of thermal post-treatments and the use of Ti adhesion layer on the performance of thin film diamond like carbon bioelectrodes (DLC) have been investigated in this work. The following results were obtained: (i) The microstructure of the DLC layer after the deposition was amorphous and thermal annealing had no marked effect on the structure, (ii) formation of oxygen containing SiOx and Ti[O,C] layers were detected at the Si/Ti and Ti/DLC interfaces with the help of transmission electron microscope (TEM), (iii) thermal post-treatments increased the polar fraction of the surface energy, (iv) cyclic voltammetry (CV) measurements showed that the DLC films had wide water windows and were stable in contact with dilute sulphuric acid and phosphate buffered saline (PBS) solutions, (v) use of Ti interlayer between Pt(Ir) microwire and DLC layer was crucial for the electrodes to survive the electrochemical measurements without the loss of adhesion of the DLC layer, (vi) DLC electrodes with small exposed Pt areas were an order of magnitude more sensitive towards dopamine than Pt electrodes and (vii) thermal post-treatments did not markedly change the electrochemical behavior of the electrodes despite the significant increase in the polar nature of the surfaces. It can be concluded that thin DLC bioelectrodes are stable under physiological conditions and can detect dopamine in micro molar range, but their sensitivity must be further improved. © 2013 Elsevier B.V. All rights reserved.
Zhao, Zongya; Gong, Ruxue; Zheng, Liang; Wang, Jue
2016-01-01
In order to reduce the impedance and improve in vivo neural recording performance of our developed Michigan type silicon electrodes, rough-surfaced AuPt alloy nanoparticles with nanoporosity were deposited on gold microelectrode sites through electro-co-deposition of Au-Pt-Cu alloy nanoparticles, followed by chemical dealloying Cu. The AuPt alloy nanoparticles modified gold microelectrode sites were characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and in vivo neural recording experiment. The SEM images showed that the prepared AuPt alloy nanoparticles exhibited cauliflower-like shapes and possessed very rough surfaces with many different sizes of pores. Average impedance of rough-surfaced AuPt alloy nanoparticles modified sites was 0.23 MΩ at 1 kHz, which was only 4.7% of that of bare gold microelectrode sites (4.9 MΩ), and corresponding in vitro background noise in the range of 1 Hz to 7500 Hz decreased to 7.5 μVrms from 34.1 μVrms at bare gold microelectrode sites. Spontaneous spike signal recording was used to evaluate in vivo neural recording performance of modified microelectrode sites, and results showed that rough-surfaced AuPt alloy nanoparticles modified microelectrode sites exhibited higher average spike signal-to-noise ratio (SNR) of 4.8 in lateral globus pallidus (GPe) due to lower background noise compared to control microelectrodes. Electro-co-deposition of Au-Pt-Cu alloy nanoparticles combined with chemical dealloying Cu was a convenient way for increasing the effective surface area of microelectrode sites, which could reduce electrode impedance and improve the quality of in vivo spike signal recording. PMID:27827893
Ferroelectric enhancement in heterostructured ZnO /BiFeO3-PbTiO3 film
NASA Astrophysics Data System (ADS)
Yu, Shengwen; Chen, Rui; Zhang, Guanjun; Cheng, Jinrong; Meng, Zhongyan
2006-11-01
The authors have prepared heterostructured ZnO /BiFeO3-PbTiO3 (BFO-PT) composite film and BFO-PT film on Pt /Ti/SiO2/Si substrates by pulsed-laser deposition. The structure and morphologies of the films were characterized by x-ray diffraction (XRD) and scanning electron microscope. XRD results show that both films are perovskite structured last with different orientations. The leakage current density in the ZnO /BFO-PT film was found to be nearly two orders of magnitude lower. This could be due to the introduced ZnO layer behaving as a Schottky barrier between the BFO-PT film and top electrodes. The dramatic ferroelectric enhancement in ZnO /BFO-PT film is mostly ascribed to the improved insulation.
NASA Astrophysics Data System (ADS)
Wu, Facai; Si, Shuyao; Shi, Tuo; Zhao, Xiaolong; Liu, Qi; Liao, Lei; Lv, Hangbing; Long, Shibing; Liu, Ming
2018-02-01
Pt/SiO2:metal nanoparticles/Pt sandwich structure is fabricated with the method of metal ion (Ag) implantation. The device exhibits multilevel storage with appropriate R off/R on ratio, good endurance and retention properties. Based on transmission electron microscopy and energy dispersive spectrometer analysis, we confirm that Pt nanoparticles are spurted into SiO2 film from Pt bottom electrode by Ag implantation; during electroforming, the local electric field can be enhanced by these Pt nanoparticles, meanwhile the Ag nanoparticles constantly migrate toward the Pt nanoparticles. The implantation induced nanoparticles act as trap sites in the resistive switching layer and play critical roles in the multilevel storage, which is evidenced by the negative differential resistance effect in the current-voltage (I-V) measurements.
Optically transparent FTO-free cathode for dye-sensitized solar cells.
Kavan, Ladislav; Liska, Paul; Zakeeruddin, Shaik M; Grätzel, Michael
2014-12-24
The woven fabric containing electrochemically platinized tungsten wire is an affordable flexible cathode for liquid-junction dye-sensitized solar cells with the I3(-)/I(-) redox mediator and electrolyte solution consisting of ionic liquids and propionitrile. The fabric-based electrode outperforms the thermally platinized FTO in serial ohmic resistance and charge-transfer resistance for triiodide reduction, and it offers comparable or better optical transparency in the visible and particularly in the near-IR spectral region. The electrode exhibits good stability during electrochemical loading and storage at open circuit. The dye-sensitized solar cells with a C101-sensitized titania photoanode and either Pt-W/PEN or Pt-FTO cathodes show a comparable performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yanjuan; College of Material Science and Engineering, Key Laboratory of Automobile Materials of Ministry of Education, Jilin University, 2699 Qianjin Street, Changchun 130012; Li, Nan, E-mail: lin@jlu.edu.cn
2015-05-15
Highlights: • Highly crystalline RuS{sub 2} nanoparticles have been first synthesized by a “one-step” hydrothermal method. • The product presents a pure cubic phase of stoichiometric ratio RuS{sub 2} with average particle size of 14.8 nm. • RuS{sub 2} nanoparticles were used as cathodic catalysts in methanol fuel cell and hydrochloric acid electrolysis. • The catalyst outperforms commercial Pt/C in methanol tolerance and stability towards Cl{sup −}. - Abstract: Highly crystalline ruthenium sulfide (RuS{sub 2}) nanoparticles have been first synthesized by a “one-step” hydrothermal method at 400 °C, using ruthenium chloride and thiourea as reactants. The products were characterized bymore » powder X-ray diffraction (XRD), scanning electron microscopy/energy disperse spectroscopy (SEM/EDS), thermo gravimetric-differential thermal analyze (TG-DTA), transmission electron microscopy equipped with selected area electron diffraction (TEM/SAED). Fourier transform infrared spectra (IR), and X-ray photoelectron spectroscopy (XPS). XRD result illustrates that the highly crystalline product presents a pure cubic phase of stoichiometric ratio RuS{sub 2} and the average particle size is 14.8 nm. SEM and TEM images display the products have irregular shape of 6–25 nm. XPS analyst indicates that the sulfur exists in the form of S{sub 2}{sup 2−}. Cyclic voltammetry (CV), rotating disk electrode (RDE), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) measurements are conducted to evaluate the electrocatalytic activity and stability of the highly crystalline RuS{sub 2} nanoparticles in oxygen reduction reaction (ORR) for methanol fuel cell and hydrochloric acid electrolysis. The results illustrate that RuS{sub 2} is active towards oxygen reduction reaction. Although the activity of RuS{sub 2} is lower than that of Pt/C, the RuS{sub 2} catalyst outperforms commercial Pt/C in methanol tolerance and stability towards Cl{sup −}.« less
Loaiza, Oscar A; Lamas-Ardisana, Pedro J; Añorga, Larraitz; Jubete, Elena; Ruiz, Virginia; Borghei, Maryam; Cabañero, Germán; Grande, Hans J
2015-02-01
This work describes the fabrication of a new lactate biosensor. The strategy is based on the use of a novel hybrid nanomaterial for amperometric biosensors i.e. platinum nanoparticles (PtNps) supported on graphitized carbon nanofibers (PtNps/GCNF) prepared by chemical reduction of the Pt precursor at GCNF surfaces. The biosensors were constructed by covalent immobilization of lactate oxidase (LOx) onto screen printed carbon electrodes (SPCEs) modified with PtNps (PtNps/GCNF-SPCEs) using polyethyleneimine (PEI) and glutaraldehyde (GA). Experimental variables concerning both the biosensor design and the detection process were investigated for an optimal analytical performance. Lactate biosensors show good reproducibility (RSD 4.9%, n=10) and sensitivity (41,302±546) μA/Mcm(2), with a good limit of detection (6.9μM). Covalent immobilization of the enzyme allows the reuse of the biosensor for several measurements, converting them in a cheap alternative to the solid electrodes. The long-term stability of the biosensors was also evaluated. 90% of the signal was kept after 3months of storage at room temperature (RT), while 95% was retained after 18months at -20°C. These results demonstrate that the method provides sensitive electrochemical lactate biosensors where the stability of the enzymatic activity can be preserved for a long period of time in adequate storage conditions. Copyright © 2014 Elsevier B.V. All rights reserved.
Takao, Shinobu; Sekizawa, Oki; Samjeské, Gabor; Nagamatsu, Shin-ichi; Kaneko, Takuma; Yamamoto, Takashi; Higashi, Kotaro; Nagasawa, Kensaku; Uruga, Tomoya; Iwasawa, Yasuhiro
2015-06-04
We have made the first success in the same-view imagings of 2D nano-XAFS and TEM/STEM-EDS under a humid N2 atmosphere for Pt/C cathode catalyst layers in membrane electrode assemblies (MEAs) of polymer electrolyte fuel cells (PEFCs) with Nafion membrane to examine the degradation of Pt/C cathodes by anode gas exchange cycles (start-up/shut-down simulations of PEFC vehicles). The same-view imaging under the humid N2 atmosphere provided unprecedented spatial information on the distribution of Pt nanoparticles and oxidation states in the Pt/C cathode catalyst layer as well as Nafion ionomer-filled nanoholes of carbon support in the wet MEA, which evidence the origin of the formation of Pt oxidation species and isolated Pt nanoparticles in the nanohole areas of the cathode layer with different Pt/ionomer ratios, relevant to the degradation of PEFC catalysts.
The influence of different modified graphene on property of DSSCs
NASA Astrophysics Data System (ADS)
Xu, Kai; Shen, Yue; Zhang, Zongkun; Cao, Meng; Gu, Feng; Wang, Linjun
2016-01-01
Two kinds of modified reduced graphene oxide (rGO) power with different hydrophilic property were synthesized in NH3/hydrazine hydrate (N-rGO) and KOH/hydrazine hydrate (K-rGO) reduction systems, respectively, and be used as counter electrode materials. The as-prepared rGO counter electrodes were confirmed as substitution for Pt counter electrode in dye-sensitized solar cells (DSSCs). The efficiency (η) of DSSCs based on N-rGO counter electrodes achieved 4.72% while that of K-rGO counter electrode was just 3.38%. The electrochemical impedance spectroscopy (EIS) measurements revealed that the hydrophilic K-rGO counter electrode has a low charge transfer resistance (Rct) and the hydrophobic N-rGO counter electrode has a low series resistance (Rs).
NASA Astrophysics Data System (ADS)
Inaba, Masanori; Quinson, Jonathan; Arenz, Matthias
2017-06-01
We investigated the influence of the ink properties of proton exchange membrane fuel cell (PEMFC) catalysts on the oxygen reduction reaction (ORR) activity determined in thin film rotating disk electrode (TF-RDE) measurements. It was found that the adaption of a previously reported ink recipe to home-made catalysts does not lead to satisfying results, although reported work could be reproduced using commercial catalyst samples. It is demonstrated that the pH of the catalyst ink, which has not been addressed in previous TF-RDE studies, is an important parameter that needs to be carefully controlled to determine the intrinsic ORR activity of high surface area catalysts.
Oxygen Reduction Reaction Activity of Platinum Thin Films with Different Densities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ergul, Busra; Begum, Mahbuba; Kariuki, Nancy
Platinum thin films with different densities were grown on glassy carbon electrodes by high pressure sputtering deposition and evaluated as oxygen reduction reaction catalysts for polymer electrolyte fuel cells using cyclic voltammetry and rotating disk electrode techniques in aqueous perchloric acid electrolyte. The electrochemically active surface area, ORR mass activity (MA) and specific activity (SA) of the thin film electrodes were obtained. MA and SA were found to be higher for low-density films than for high-density film.
Cathodic and anodic biofilms in Single Chamber Microbial Fuel Cells.
Cristiani, P; Carvalho, M L; Guerrini, E; Daghio, M; Santoro, C; Li, B
2013-08-01
The oxygen reduction due to microaerophilic biofilms grown on graphite cathodes (biocathodes) in Single Chamber Microbial Fuel Cells (SCMFCs) is proved and analysed in this paper. Pt-free cathode performances are compared with those of different platinum-loaded cathodes, before and after the biofilm growth. Membraneless SCMFCs were operating in batch-mode, filled with wastewater. A substrate (fuel) of sodium acetate (0.03 M) was periodically added and the experiment lasted more than six months. A maximum of power densities, up to 0.5 W m(-2), were reached when biofilms developed on the electrodes and the cathodic potential decreased (open circuit potential of 50-200 mV vs. SHE). The power output was almost constant with an acetate concentration of 0.01-0.05 M and it fell down when the pH of the media exceeded 9.5, independently of the Pt-free/Pt-loading at the cathodes. Current densities varied in the range of 1-5 Am(-2) (cathode area of 5 cm(2)). Quasi-stationary polarization curves performed with a three-electrode configuration on cathodic and anodic electrodes showed that the anodic overpotential, more than the cathodic one, may limit the current density in the SCMFCs for a long-term operation. Copyright © 2012 Elsevier B.V. All rights reserved.
Basori, Rabaya; Kumar, Manoranjan; Raychaudhuri, Arup K.
2016-01-01
We report a new type of sustained and reversible unipolar resistive switching in a nanowire device made from a single strand of Cu:7,7,8,8-tetracyanoquinodimethane (Cu:TCNQ) nanowire (diameter <100 nm) that shows high ON/OFF ratio (~103), low threshold voltage of switching (~3.5 V) and large cycling endurance (>103). This indicates a promising material for high density resistive random access memory (ReRAM) device integration. Switching is observed in Cu:TCNQ single nanowire devices with two different electrode configuration: symmetric (C-Pt/Cu:TCNQ/C-Pt) and asymmetric (Cu/Cu:TCNQ/C-Pt), where contacts connecting the nanowire play an important role. This report also developed a method of separating out the electrode and material contributions in switching using metal-semiconductor-metal (MSM) device model along with a direct 4-probe resistivity measurement of the nanowire in the OFF as well as ON state. The device model was followed by a phenomenological model of current transport through the nanowire device which shows that lowering of potential barrier at the contacts likely occur due to formation of Cu filaments in the interface between nanowire and contact electrodes. We obtain quantitative agreement of numerically analyzed results with the experimental switching data. PMID:27245099
Glucose sensing based on Pt-MWCNT and MWCNT
NASA Astrophysics Data System (ADS)
Aryasomayajula, Lavanya; Xie, Jining; Wang, Shouyan; Varadan, Vijay K.
2007-04-01
It is known that multi walled carbon nanotubes (MWCNTs) is an excellent materials for biosensing applications and with the introduction of Pt nanoparticles (Pt-MWCNTs) of about 3nm in diameter in MWCNTs greatly increases the current sensitivity and also the signal to noise ratio. We fabricated the CNT- based glucose sensor by immobilization the bio enzyme, glucose oxidase (GoX), on the Pt-MWCNT and electrode were prepared. The sensor has been tested effectively for both the abnormal blood glucose levels- greater than 6.9 mM and less than 3.5 mM which are the prediabetic and diabetic glucose levels, respectively. The current signal obtained from the Pt-MWCNT was much higher compared to the MWCNT based sensors.
Metallofullerenes as fuel cell electrocatalysts: a theoretical investigation of adsorbates on C59Pt.
Gabriel, Margaret A; Genovese, Luigi; Krosnicki, Guillaume; Lemaire, Olivier; Deutsch, Thierry; Franco, Alejandro A
2010-08-28
Nano-structured electrode degradation in state-of-the-art polymer electrolyte membrane fuel cells (PEMFCs) is one of the main shortcomings that limit the large-scale development and commercialization of this technology. During normal operating conditions of the fuel cell, the PEMFC lifetime tends to be limited by coarsening of the cathode's Pt-based catalyst and by corrosion of the cathode's carbon black support. Because of their chemical properties, metallofullerenes such as C(59)Pt may be more electrochemically stable than the Pt/C mixture. In this paper we investigate, by theoretical methods, the stability of oxygen reduction reaction (ORR) adsorbates on the metallofullerene C(59)Pt and evaluate its potential as a PEMFC fuel cell catalyst.
1994-02-01
electrochemically etched in near- saturated CaC1 2 and coated with a thermosetting plastic[13]. The quasi-reference electrode was a gold wire. The Pt(lll...annealing procedure, display arrays of small (ca 3-5 nm) terrace domains, these being separated from each other by monoatomic steps running in various
Hollow optical fiber induced solar cells with optical energy storage and conversion.
Ding, Jie; Zhao, Yuanyuan; Duan, Jialong; Duan, Yanyan; Tang, Qunwei
2017-11-09
Hollow optical fiber induced dye-sensitized solar cells are made by twisting Ti wire/N719-TiO 2 nanotube photoanodes and Ti wire/Pt (CoSe, Pt 3 Ni) counter electrodes, yielding a maximized efficiency of 0.7% and good stability. Arising from optical energy storage ability, the solar cells can generate electricity without laser illumination.
Spin injection into Pt-polymers with large spin-orbit coupling
NASA Astrophysics Data System (ADS)
Sun, Dali; McLaughlin, Ryan; Siegel, Gene; Tiwari, Ashutosh; Vardeny, Z. Valy
2014-03-01
Organic spintronics has entered a new era of devices that integrate organic light-emitting diodes (OLED) in organic spin valve (OSV) geometry (dubbed bipolar organic spin valve, or spin-OLED), for actively manipulating the device electroluminescence via the spin alignment of two ferromagnetic electrodes (Science 337, 204-209, 2012; Appl. Phys. Lett. 103, 042411, 2013). Organic semiconductors that contain heavy metal elements have been widely used as phosphorescent dopants in white-OLEDs. However such active materials are detrimental for OSV operation due to their large spin-orbit coupling (SOC) that may limit the spin diffusion length and thus spin-OLED based on organics with large SOC is a challenge. We report the successful fabrication of OSVs based on pi-conjugated polymers which contain intrachain Platinum atoms (dubbed Pt-polymers). Spin injection into the Pt-polymers is investigated by the giant magnetoresistance (GMR) effect as a function of bias voltage, temperature and polymer layer thickness. From the GMR bias voltage dependence we infer that the ``impendence mismatch'' between ferromagnetic electrodes and Pt-polymer may be suppressed due to the large SOC. Research sponsored by the NSF (Grant No. DMR-1104495) and NSF-MRSEC (DMR 1121252) at the University of Utah.
Highly-sensitive cholesterol biosensor based on platinum-gold hybrid functionalized ZnO nanorods.
Wang, Chengyan; Tan, Xingrong; Chen, Shihong; Yuan, Ruo; Hu, Fangxin; Yuan, Dehua; Xiang, Yun
2012-05-30
A novel scheme for the fabrication of gold/platinum hybrid functionalized ZnO nanorods (Pt-Au@ZnONRs) and multiwalled carbon nanotubes (MWCNTs) modified electrode is presented and its application for cholesterol biosensor is investigated. Firstly, Pt-Au@ZnONRs was prepared by the method of chemical synthesis. Then, the Pt-Au@ZnONRs suspension was dropped on the MWCNTs modified glass carbon electrode, and followed with cholesterol oxidase (ChOx) immobilization by the adsorbing interaction between the nano-material and ChOx as well as the electrostatic interaction between ZnONRs and ChOx molecules. The combination of MWCNTs and Pt-Au@ZnONRs provided a favorable environment for ChOx and resulted in the enhanced analytical response of the biosensor. The resulted biosensor exhibited a linear response to cholesterol in the wide range of 0.1-759.3 μM with a low detection limit of 0.03 μM and a high sensitivity of 26.8 μA mM(-1). The calculated apparent Michaelis constant K(M)(app) was 1.84 mM, indicating a high affinity between ChOx and cholesterol. Copyright © 2012 Elsevier B.V. All rights reserved.
Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions
NASA Astrophysics Data System (ADS)
Liu, Rongji; Liu, Huibiao; Li, Yuliang; Yi, Yuanping; Shang, Xinke; Zhang, Shuangshuang; Yu, Xuelian; Zhang, Suojiang; Cao, Hongbin; Zhang, Guangjin
2014-09-01
Fuel cells and metal-air batteries will only become widely available in everyday life when the expensive platinum-based electrocatalysts used for the oxygen reduction reactions are replaced by other efficient, low-cost and stable catalysts. We report here the use of nitrogen-doped graphdiyne as a metal-free electrode with a comparable electrocatalytic activity to commercial Pt/C catalysts for the oxygen reduction reaction in alkaline fuel cells. Nitrogen-doped graphdiyne has a better stability and increased tolerance to the cross-over effect than conventional Pt/C catalysts.Fuel cells and metal-air batteries will only become widely available in everyday life when the expensive platinum-based electrocatalysts used for the oxygen reduction reactions are replaced by other efficient, low-cost and stable catalysts. We report here the use of nitrogen-doped graphdiyne as a metal-free electrode with a comparable electrocatalytic activity to commercial Pt/C catalysts for the oxygen reduction reaction in alkaline fuel cells. Nitrogen-doped graphdiyne has a better stability and increased tolerance to the cross-over effect than conventional Pt/C catalysts. Electronic supplementary information (ESI) available: Detailed RDE and RRDE experiments, additional tables and figures. See DOI: 10.1039/c4nr03185g
Diamond nanoparticles as a support for Pt and PtRu catalysts for direct methanol fuel cells.
La-Torre-Riveros, Lyda; Guzman-Blas, Rolando; Méndez-Torres, Adrián E; Prelas, Mark; Tryk, Donald A; Cabrera, Carlos R
2012-02-01
Diamond in nanoparticle form is a promising material that can be used as a robust and chemically stable catalyst support in fuel cells. It has been studied and characterized physically and electrochemically, in its thin film and powder forms, as reported in the literature. In the present work, the electrochemical properties of undoped and boron-doped diamond nanoparticle electrodes, fabricated using the ink-paste method, were investigated. Methanol oxidation experiments were carried out in both half-cell and full fuel cell modes. Platinum and ruthenium nanoparticles were chemically deposited on undoped and boron doped diamond nanoparticles through the use of NaBH(4) as reducing agent and sodium dodecyl benzene sulfonate (SDBS) as a surfactant. Before and after the reduction process, samples were characterized by electron microscopy and spectroscopic techniques. The ink-paste method was also used to prepare the membrane electrode assembly with Pt and Pt-Ru modified undoped and boron-doped diamond nanoparticle catalytic systems, to perform the electrochemical experiments in a direct methanol fuel cell system. The results obtained demonstrate that diamond supported catalyst nanomaterials are promising for methanol fuel cells.
Circular chemiresistors for microchemical sensors
Ho, Clifford K [Albuquerque, NM
2007-03-13
A circular chemiresistor for use in microchemical sensors. A pair of electrodes is fabricated on an electrically insulating substrate. The pattern of electrodes is arranged in a circle-filling geometry, such as a concentric, dual-track spiral design, or a circular interdigitated design. A drop of a chemically sensitive polymer (i.e., chemiresistive ink) is deposited on the insulating substrate on the electrodes, which spreads out into a thin, circular disk contacting the pair of electrodes. This circularly-shaped electrode geometry maximizes the contact area between the pair of electrodes and the polymer deposit, which provides a lower and more stable baseline resistance than with linear-trace designs. The circularly-shaped electrode pattern also serves to minimize batch-to-batch variations in the baseline resistance due to non-uniform distributions of conductive particles in the chemiresistive polymer film.
Hussain, Javed; Jónsson, Hannes; Skúlason, Egill
2016-12-22
An atomic scale model of the electrical double layer is used to calculate the mechanism and rate of electrochemical reduction of CO 2 as well as H 2 formation at a Pt(111) electrode. The water layer contains solvated protons and the electrode has excess electrons at the surface. Density functional theory within the generalized gradient approximation is used to describe the electronic structure while the mechanism and activation energy of the various elementary reactions is obtained by calculating minimum energy paths using the nudged elastic band method. The applied electrical potential is deduced from the calculated work function. The optimal reaction mechanism for CO 2 reduction to either methane or methanol is found and the estimated rate compared with that of the competing reaction, H 2 formation. When the free energy of only the intermediates and reactants is taken into account, not the activation energy, Pt(111) would seem to be a good electrocatalyst for CO 2 reduction, significantly better than Cu(111). This, however, contradicts experimental findings. Detailed calculations reported here show that the activation energy for CO 2 reduction is high for both Heyrovsky and Tafel mechanisms on Pt(111) in the relevant range of applied potential. The rate-limiting step of the Heyrovsky mechanism, *COOH + H + + e - → *CO + H 2 O, is estimated to have an activation energy of 0.95 eV at -0.9 V vs. standard hydrogen electrode. Under the same conditions, the activation energy for H 2 formation is estimated to be only 0.5 eV. This explains why attempts to reduce CO 2 using platinum electrodes have produced only H 2 . A comparison is made with analogous results for Cu(111) [J. Hussain et al., Procedia Comput. Sci., 2015, 51, 1865] where a reaction mechanism with low activation energy for CO 2 electroreduction to methane was identified. The difference between the two electrocatalysts is discussed.
Cao, H; Besio, W; Jones, S; Medvedev, A
2009-01-01
Tripolar electrodes have been shown to have less mutual information and higher spatial resolution than disc electrodes. In this work, a four-layer anisotropic concentric spherical head computer model was programmed, then four configurations of time-varying dipole signals were used to generate the scalp surface signals that would be obtained with tripolar and disc electrodes, and four important EEG artifacts were tested: eye blinking, cheek movements, jaw movements, and talking. Finally, a fast fixed-point algorithm was used for signal independent component analysis (ICA). The results show that signals from tripolar electrodes generated better ICA separation results than from disc electrodes for EEG signals with these four types of artifacts.
Longitudinal recording on FePt and FePtX (X = B, Ni) intermetallic compounds
NASA Astrophysics Data System (ADS)
Li, Ning
1999-11-01
Near field recording on high coercivity FePt intermetallic compound media using a high Bsat write element was investigated. Untextured FePt media were prepared by magnetron sputtering on ZrO2 disks at a substrate temperature of 450°C, with post annealing at 450°C for 8 hrs. Both multilayer and cosputtered precursors produced the ordered tetragonal L10 phase with high coercivity between 5kOe and 12kOe. To improve readback noise decrease magnetic domain size, FePtB media were subsequently prepared by cosputtering. Over-write, roll-off, signal to noise ratio and non-linear transition shift (NLTS) ere measured by both metal in gap (MIG) and merged MR heads. FePtB media showed similar NLTS to commercial CoCrPtTa longitudinal media, but 5dB lower signal to noise ratio. By operating recording transducers in near contact, reasonable values of (>30dB) could be obtained. VSM Rotational Transverse Magnetization has been used for measuring the anisotropy field of magnetic thin films. Magnetization reversal during rotation of a 2D isotropic an applied field is discussed. The relationship between the transverse magnetization My and the applied field H was numerically solved. An excellent approximation for the transverse magnetization is found to be: My/Ms=A(1- H/Hk) 2.5, where A = 1.1434, and Hk is the anisotropy field. For curve fitting to experimental data, both A and Hk were used as fitting parameters. Comparison between a constructed torque hysteresis method and this VSM RTM method have been made theoretically and experimentally. Both results showed that VSM RTM will give better extrapolation of the anisotropy field. The torque measurement will slightly overestimate the anisotropy field. The anisotropy fields of FePt and FePtX (X = B, Ni) films were characterized using this VSM RTM technique with comparison to a CoCrTaPt disk. Anisotropy energy was derived. Hc/Hk was used as an indicator for coherent rotation of a single domain. Interactions between magnetic domains were characterized by Kelly-Henkel plot and interactive field factor (IFF). Correlation between coercive force and magnetic anisotropy of grains and the degree of magnetic isolation among grains were discussed. B and Ni were used as diluting agents to the FePt system to decrease saturation magnetization, coercivity, anisotropy field and anisotropy energy. They also decrease the magnetic coupling between neighboring domains, and promote coherent rotation inside each domain.
Hsieh, Chien-Kuo; Tsai, Ming-Chi; Su, Ching-Yuan; Wei, Sung-Yen; Yen, Ming-Yu; Ma, Chen-Chi M; Chen, Fu-Rong; Tsai, Chuen-Horng
2011-11-07
We directly synthesized a platinum-nanoparticles/graphitic-nanofibers (PtNPs/GNFs) hybrid nanostructure on FTO glass. We applied this structure as a three-dimensional counter electrode in dye-sensitized solar cells (DSSCs), and investigated the cells' photoconversion performance. This journal is © The Royal Society of Chemistry 2011
Polymer electrolyte fuel cells
NASA Astrophysics Data System (ADS)
Gottesfeld, S.
The recent increase in attention to polymer electrolyte fuel cells (PEFC's) is the result of significant technical advances in this technology and the initiation of some projects for the demonstration of complete PEFC-based power system in a bus or in a passenger car. A PEFC powered vehicle has the potential for zero emission, high energy conversion efficiency and extended range compared to present day battery powered EV's. This paper describes recent achievements in R&D on PEFC's. The major thrust areas have been: (1) demonstration of membrane/electrode assemblies with stable high performance in life tests lasting 4000 hours, employing ultra-low Pt loadings corresponding to only 1/2 oz of Pt for the complete power source of a passenger car; (2) effective remedies for the high sensitivity of the Pt electrocatalyst to impurities in the fuel feed stream; and (3) comprehensive evaluation of the physicochemical properties of membrane and electrodes in the PEFC, clarifying the water management issues and enabling effective codes and diagnostics for this fuel cell.
NASA Astrophysics Data System (ADS)
Atwan, Mohammed H.; Macdonald, Charles L. B.; Northwood, Derek O.; Gyenge, Elod L.
Supported colloidal Au and Au-alloys (Au-Pt and Au-Pd, 1:1 atomic ratio) on Vulcan XC-72 (with 20 wt% metal load) were prepared by the Bönneman method. The electrocatalytic activity of the colloidal metals with respect to borohydride electro-oxidation for fuel cell applications was investigated by voltammetry on static and rotating electrodes, chronoamperometry, chronopotentiometry and fuel cell experiments. The fundamental electrochemical techniques showed that alloying Au, a metal that leads to the maximum eight-electron oxidation of BH 4 -, with Pd or Pt, well-known catalysts of dehydrogenation reactions, improved the electrode kinetics of BH 4 - oxidation. Fuel cell experiments corroborated the kinetic studies. Using 5 mg cm -2 colloidal metal load on the anode, it was found that Au-Pt was the most active catalyst giving a cell voltage of 0.47 V at 100 mA cm -2 and 333 K, while under identical conditions the cell voltage using colloidal Au was 0.17 V.
NASA Astrophysics Data System (ADS)
Gokhale, Rohan; Agarkar, Shruti; Debgupta, Joyashish; Shinde, Deodatta; Lefez, Benoit; Banerjee, Abhik; Jog, Jyoti; More, Mahendra; Hannoyer, Beatrice; Ogale, Satishchandra
2012-10-01
A laser photochemical process is introduced to realize superhydrophobic conducting carbon coatings with broccoli-type hierarchical morphology for use as a metal-free counter electrode in a dye sensitized solar cell. The process involves pulsed excimer laser irradiation of a thin layer of liquid haloaromatic organic solvent o-dichlorobenzene (DCB). The coating reflects a carbon nanoparticle-self assembled and process-controlled morphology that yields solar to electric power conversion efficiency of 5.1% as opposed to 6.2% obtained with the conventional Pt-based electrode.A laser photochemical process is introduced to realize superhydrophobic conducting carbon coatings with broccoli-type hierarchical morphology for use as a metal-free counter electrode in a dye sensitized solar cell. The process involves pulsed excimer laser irradiation of a thin layer of liquid haloaromatic organic solvent o-dichlorobenzene (DCB). The coating reflects a carbon nanoparticle-self assembled and process-controlled morphology that yields solar to electric power conversion efficiency of 5.1% as opposed to 6.2% obtained with the conventional Pt-based electrode. Electronic supplementary information (ESI) available: Materials and equipment details, solar cell fabrication protocol, electrolyte spreading time measurement details, XPS spectra, electronic study, film adhesion test detailed analysis and field emission results. See DOI: 10.1039/c2nr32082g
Sea urchin-likeNiCoO2@C nanocompositesforLi-ionbatteries and supercapacitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Jin; Xi, Kai; Tan, Guoqiang
The rational construction of battery electrode architecture that offers both high energy and power densities on a gravimetric and volumetric basis is a critical concern but achieving this aim is beset by many fundamental and practical challenges. Here we report a new sea urchin-like NiCoO2@C composite electrode architecture composed of NiCoO2 nanosheets grown on hollow concave carbon disks. Such a unique structural design not only preserves all the advantages of hollow structures but also increases the packing density of the active materials. NiCoO2 nanosheets grown on carbon disks promote a high utilization of active materials in redox reactions by reducingmore » the path length for Li+ ions and for electron transfer. Meanwhile, the hollow concave carbon not only reduces the volume change, but also improves the volumetric energy density of the entire composite electrode. As a result, the nanocomposites exhibit superior electrochemical performance measured in terms of high capacity/capacitance, stable cycling performance and good rate capability in both Li-ion battery and supercapacitor applications. Such nanostructured composite electrode may also have great potential for application in other electrochemical devices.« less
Illathvalappil, Rajith; Dhavale, Vishal M; Bhange, Siddheshwar N; Kurungot, Sreekumar
2017-07-06
A highly active and durable CuPt alloy catalyst with trigonal bipyramidal and truncated cube-type mixed morphologies, anchored on the nitrogen-doped graphene (NGr) surface (CuPt-TBTC/NGr), was prepared by a simple and fast method. The obtained CuPt alloy showed improved oxygen reduction reaction (ORR) activity, with a 30 mV positive shift in the half-wave potential value, as compared to the state-of-the-art Pt/C catalyst in a 0.1 M KOH solution. The CuPt alloy with the trigonal bipyramidal morphology possesses porous type inter-connected sides, which help to achieve improved mass transport of oxygen during the ORR. The exposure of the (111) plane of the CuPt alloy further improved the catalytic activity towards the dioxygen reduction in alkaline media. The ORR activity of the NGr-supported CuPt alloy was found to be dependent on the reaction time, and improved activity was obtained on the material derived at a reaction time of 90 min (CuPt-TBTC/NGr-90). The material synthesized at a lower or higher reaction time than 90 min resulted in a partially formed trigonal bipyramidal morphology with more truncated cubes or agglomerated trigonal bipyramidal and truncated cubes with closed type structures, respectively. Along with the high intrinsic ORR activity, CuPt-TBTC/NGr-90 displayed excellent electrochemical stability. Even after repeated 1000 potential cycling in a window ranging from 0.10 to 1.0 V (vs. RHE), the system clearly outperformed the state-of-the-art Pt/C catalyst with 15 and 60 mV positive shifts in the onset and half-wave potentials, respectively. CuPt-TBTC/NGr-90 also exhibited 2.1 times higher mass activity and 2.2 times higher specific activity, compared to Pt/C at 0.90 V (vs. RHE). Finally, a zinc-air battery fabricated with the alloy catalyst as the air electrode displayed a peak power density of 300 mW cm -2 , which is much higher than the peak power density of 253 mW cm -2 obtained for the state-of-the-art Pt/C catalyst as the air electrode.
NASA Astrophysics Data System (ADS)
Cortes-Huerto, R.; Sondon, T.; Saúl, A.
2014-11-01
We have performed molecular dynamics (MD) simulations of stretched Aux-Co1 - x and Ptx-Co1 - x nanowires to investigate the formation of bimetallic monoatomic wires between two electrodes. We have considered nanowires with two concentrations x = 0.2 and 0.8, aspect ratio of 13, a cross section of 1 nm2 and a wide range of temperatures (from 10 to 400 K). For the MD simulations we have used a semi-empirical interatomic potential based on the second moment approximation (SMA) of the density of states to the tight-binding Hamiltonian. For Au-Co alloys, Au atoms tends to migrate towards the narrowed region to form almost pure Au wires. In the PtCo case the formed chains usually consist of Pt enriched alternating structures. The most striking result is probably the Au0.2-Co0.8 alloy where pure monoatomic Au chains form between two Co electrodes constituting a potential 1D spin valve. Despite the known ease with which the 5d metals (Pt, Ir, and Au) form monoatomic chains (MACS), our results show that in the presence of Co (x = 0.2), the percentage of chain formation is higher than in the Pt and Au rich cases (x = 0.8).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hongsen; Abruña, Héctor D.
2015-05-21
The study of the electrooxidation mechanism of COad on Pt based catalysts is very important for designing more effective CO-tolerant electrocatalysts for fuel cells. We have studied the origin of multiple peaks in the cyclic voltammograms of CO stripping from polycrystalline Pt and Ru modified polycrystalline Pt (Pt/Ru) surfaces in both acidic and alkaline media by differential electrochemical mass spectrometry (DEMS), DFT calculations, and kinetic Monte Carlo (KMC) simulations. A new COad electrooxidation kinetic model on heterogeneous Pt and Pt/Ru catalysts is proposed to account for the multiple peaks experimentally observed. In this model, OH species prefer to adsorb atmore » low-coordination sites or Ru sites and, thus, suppress CO repopulation from high-coordination sites onto these sites. Therefore, COad oxidation occurs on different facets or regions, leading to multiplicity of CO stripping peaks. This work provides a new insight into the CO electrooxidation mechanism and kinetics on heterogeneous catalysts.« less
Characterization of the Ternary Compound Pd5Pt3Ni2 for PEMFC Cathode Electrocatalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarvis, Karalee; Zhao, J; Allard Jr, Lawrence Frederick
2010-01-01
Research on proton exchange membrane fuel cells (PEMFC) has increased over the last decade due to an increasing demand for alternative energy solutions. Most PEMFCs use Pt on carbon support as electrocatalysts for oxygen reduction reactions (ORR) [1]. Due to the high cost of Pt, there is a strong drive to develop less expensive catalysts that meet or exceed the performance of Pt. Binary and ternary Pt alloys with less expensive metals are a possible route [1]. In this work, a ternary alloy with composition Pd5Pt3Ni2 was studied as a potential cathode material. Preliminary results showed similar catalytic performance tomore » pure Pt in single-cell tests. However, to enhance its performance, it is necessary to understand how this ternary catalyst behaves during fuel cell operation. Various electron microscopy techniques were used to characterize the ternary Pd5Pt3Ni2 catalysts within the membrane-electrode assembly (MEA) both before and after fuel cell operation.« less
Cao, Yaling; Yuan, Ruo; Chai, Yaqin; Liu, Huijing; Liao, Yuhong; Zhuo, Ying
2013-09-15
An ultrasensitive electrochemiluminescence (ECL) immunosensor was constructed for ultrasensitive detection of carcinoembryonic antigen (CEA) based on an amplified cathodic ECL of luminol at low potential. Firstly, Au nanoparticles (AuNPs) were electrodeposited onto single walled carbon nanotube-graphene composites (CNTs-Gra) coated glass carbon electrode (GCE) with enhanced surface area and good biocompatibility to capture primary antibody (Ab1) and then bind the antigen analytes. Secondly, Pd and Pt nanoparticles (Pd&PtNPs) decorated reduced graphene oxide (Pd&PtNPs@rGO) and glucose oxidase (GOD) labeled secondary antibody (Pd&PtNPs@ rGO-GOD-Ab2) could be captured onto the electrode surface by a sandwich immunoassay protocol to generate amplified cathodic ECL signals of luminol in the presence of glucose. The Pd&PtNPs@rGO composites and loaded GOD promoted luminol cathodic ECL response by efficiently catalyzing glucose to in-situ produce amount of hydrogen peroxide (H2O2) working as a coreactant of luminol. Then in turn Pd&PtNPs catalyzed H2O2 to generate various reactive oxygen species (ROSs), which accelerated the cathodic ECL reaction of luminol, enhanced the cathodic ECL intensity of luminol and improved the sensitivity of the immunosensor. The as-proposed ECL immunosensor exhibited sensitive response on the detection of CEA ranging from 0.0001 ng mL(-1) to 160 ng mL(-1) with a detection limit of 0.03 pg mL(-1) (S/N=3). Moreover, the stability, specificity, lifetime and reproducibility tests demonstrated the feasibility of the developed immunoassay, which can be further extended to the detection of other disease biomarkers. Copyright © 2013 Elsevier B.V. All rights reserved.
Sassin, Megan B; Garsany, Yannick; Gould, Benjamin D; Swider-Lyons, Karen E
2017-01-03
Custom catalyst-coated membranes (CCMs) and membrane electrode assemblies (MEAs) are necessary for the evaluation of advanced electrocatalysts, gas diffusion media (GDM), ionomers, polymer electrolyte membranes (PEMs), and electrode structures designed for use in next-generation fuel cells, electrolyzers, or flow batteries. This Feature provides a reliable and reproducible fabrication protocol for laboratory scale (10 cm 2 ) fuel cells based on ultrasonic spray deposition of a standard Pt/carbon electrocatalyst directly onto a perfluorosulfonic acid PEM.
L10 FePtCu bit patterned media
NASA Astrophysics Data System (ADS)
Brombacher, C.; Grobis, M.; Lee, J.; Fidler, J.; Eriksson, T.; Werner, T.; Hellwig, O.; Albrecht, M.
2012-01-01
Chemically ordered 5 nm-thick L10 FePtCu films with strong perpendicular magnetic anisotropy were post-patterned by nanoimprint lithography into a dot array over a 3 mm-wide circumferential band on a 3 inch Si wafer. The dots with a diameter of 30 nm and a center-to-center pitch of 60 nm appear as single domain and reveal an enhanced switching field as compared to the continuous film. We demonstrate successful recording on a single track using shingled writing with a conventional hard disk drive write/read head.
Properties of dielectric dead layers for SrTiO3 thin films on Pt electrodes
NASA Astrophysics Data System (ADS)
Finstrom, Nicholas H.; Cagnon, Joel; Stemmer, Susanne
2007-02-01
Dielectric measurements as a function of temperature were used to characterize the properties of the dielectric dead layers in parallel-plate capacitors with differently textured SrTiO3 thin films and Pt electrodes. The apparent thickness dependence of the permittivity was described with low-permittivity passive (dead) layers at the interfaces connected in series with the bulk of the SrTiO3 film. Interfacial capacitance densities changed with the film microstructure and were weakly temperature dependent. Estimates of the dielectric dead layer thickness and permittivity were limited by the film surface roughness (˜5nm ). The consequences for the possible origins of dielectric dead layers that have been proposed in the literature are discussed.
NASA Astrophysics Data System (ADS)
Huang, Huihong; Hu, Xiulan; Zhang, Jianbo; Su, Nan; Cheng, Jiexu
2017-03-01
Decreasing the cost associated with platinum-based catalysts along with improving their catalytic properties is a major challenge for commercial direct methanol fuel cells. In this work, a simple and facile strategy was developed for the more efficient preparation of multi-walled carbon nanotube (MWCNT) -supported Pt/CoPt composite nanoparticles (NPs) via solution plasma sputtering with subsequent thermal annealing. Quite different from general wet synthesis methods, Pt/CoPt composite NPs were directly derived from metal wire electrodes without any additions. The obtained Pt/CoPt/MWCNTs composite catalysts exhibited tremendous improvement in the electro-oxidation of methanol in acidic media with mass activities of 1719 mA mg-1Pt. This value is much higher than that of previous reports of Pt-Co alloy and commercial Pt/C (3.16 times) because of the many active sites and clean surface of the catalysts. The catalysts showed good stability due to the special synergistic effects of the CoPt alloy. Pt/CoPt/MWCNTs can be used as a promising catalyst for direct methanol fuel cells. In addition, this solution plasma sputtering-assisted synthesis method introduces a general and feasible route for the synthesis of binary alloys.
Huang, Huihong; Hu, Xiulan; Zhang, Jianbo; Su, Nan; Cheng, JieXu
2017-03-30
Decreasing the cost associated with platinum-based catalysts along with improving their catalytic properties is a major challenge for commercial direct methanol fuel cells. In this work, a simple and facile strategy was developed for the more efficient preparation of multi-walled carbon nanotube (MWCNT) -supported Pt/CoPt composite nanoparticles (NPs) via solution plasma sputtering with subsequent thermal annealing. Quite different from general wet synthesis methods, Pt/CoPt composite NPs were directly derived from metal wire electrodes without any additions. The obtained Pt/CoPt/MWCNTs composite catalysts exhibited tremendous improvement in the electro-oxidation of methanol in acidic media with mass activities of 1719 mA mg -1 Pt . This value is much higher than that of previous reports of Pt-Co alloy and commercial Pt/C (3.16 times) because of the many active sites and clean surface of the catalysts. The catalysts showed good stability due to the special synergistic effects of the CoPt alloy. Pt/CoPt/MWCNTs can be used as a promising catalyst for direct methanol fuel cells. In addition, this solution plasma sputtering-assisted synthesis method introduces a general and feasible route for the synthesis of binary alloys.
Electrochemistry of Metal Surfaces
1990-06-30
i) 3-pyridine carboxylic acid ( nicotinic acid, NA) binds to Pt surfaces through both the nitrogen atom and an oxygen atom of the carboxylate group...formed from aqueous electrolytes at Pt(1l1) electrode surfaces have been compared with the IR and Raman spectra of the unadsorbed compounds in order...vibrational absorptivities between EELS spectra of adsorbed species and IR and Raman spectra of the corresponding unadsorbed compounds (146). Of
Chang, Kuo-Tsai; Lee, Chun-Wei
2008-04-01
This paper investigates design, fabrication and test of thin disc piezoelectric transformers (PTs) based on piezoelectric buzzers with gap circles at different diameters of the gap circles. The performance test is focused on characteristics of voltage gains, including maximum voltage gains and maximum-gain frequencies, for each piezoelectric transformer under different load conditions. Both a piezoelectric buzzer and a gap circle on a silver electrode of the buzzer are needed to build any type of the PTs. Here, the gap circle is used to form a ring-shaped input electrode and a circle-shaped output electrode for each piezoelectric transformer. To do so, both structure and connection of a PT are first expressed. Then, operating principle of a PT and its related vibration mode observed by a carbon-power imaging technique are described. Moreover, an experimental setup for characterizing each piezoelectric transformer is constructed. Finally, effects of diameters of the gap circles on characteristics of voltage gains at different load resistances are discussed.
NASA Astrophysics Data System (ADS)
Yu, Mei; Zhang, Jindan; Li, Songmei; Meng, Yanbing; Liu, Jianhua
2016-03-01
Three-dimensional nitrogen doped holey reduced graphene oxide framework (NHGF) with hierarchical porosity structure was developed as high-performance metal-free counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). With plenty of exposed active sites, efficient electron and ion transport pathways as well as a high surface hydrophilicity, NHGF-CE exhibits good electrocatalytic performances for I- /I3- redox couple and a low charge transfer resistance (Rct). The Rct of NHGF-CE is 1.46 Ω cm2, which is much lower than that of Pt-CE (4.02 Ω cm2). The DSSC with NHGF-CE reaches a power conversion efficiency of 5.56% and a fill factor of 65.5%, while those of the DSSC with Pt-CE are only 5.45% and 62.3%, respectively. The achievement of the highly efficient 3D structure presents a potential way to fabricate low-cost and metal-free counter electrodes with excellent performance.
Yoon, Yeoheung; Samanta, Khokan; Lee, Hanleem; Lee, Keunsik; Tiwari, Anand P; Lee, JiHun; Yang, Junghee; Lee, Hyoyoung
2015-09-18
The emergence of stretchable devices that combine with conductive properties offers new exciting opportunities for wearable applications. Here, a novel, convenient and inexpensive solution process was demonstrated to prepare in situ silver (Ag) or platinum (Pt) nanoparticles (NPs)-embedded rGO hybrid materials using formic acid duality in the presence of AgNO3 or H2PtCl6 at low temperature. The reduction duality of the formic acid can convert graphene oxide (GO) to rGO and simultaneously deposit the positively charged metal ion to metal NP on rGO while the formic acid itself is converted to a CO2 evolving gas that is eco-friendly. The AgNP-embedded rGO hybrid electrode on an elastomeric substrate exhibited superior stretchable properties including a maximum conductivity of 3012 S cm(-1) (at 0 % strain) and 322.8 S cm(-1) (at 35 % strain). Its fabrication process using a printing method is scalable. Surprisingly, the electrode can survive even in continuous stretching cycles.
NASA Astrophysics Data System (ADS)
Towannang, Madsakorn; Kumlangwan, Pantiwa; Maiaugree, Wasan; Ratchaphonsaenwong, Kunthaya; Harnchana, Viyada; Jarenboon, Wirat; Pimanpang, Samuk; Amornkitbamrung, Vittaya
2015-07-01
Pt-free TiC based electrodes were hydrothermally deposited onto FTO/glass substrates and used as dye-sensitized solar cell (DSSC) counter electrodes. A promising efficiency of 3.07% was obtained from the annealed hydrothermal TiC DSSCs based on a disulfide/thiolate electrolyte. A pronounced improvement in performance of 3.59% was achieved by compositing TiC with carbon, compared to that of a Pt DSSC, 3.84%. TEM analysis detected that the TiC particle surfaces were coated by thin carbon layer (7 nm). The SAED pattern and Raman spectrum of TiC-carbon films suggested that the carbon layer was composed of amorphous and graphite carbon. The formation of graphite on the TiC nanoparticles plays a crucial role in enhancing the film's reduction current to 10.12 mA/cm2 and in reducing the film impedance to 237.63 Ω, resulting in a high efficiency of the TiC-carbon DSSC. [Figure not available: see fulltext.
Lonsdale, W; Maurya, D K; Wajrak, M; Alameh, K
2017-03-01
The effect of contact layer on the pH sensing performance of a sputtered RuO 2 thin film pH sensor is investigated. The response of pH sensors employing RuO 2 thin film electrodes on screen-printed Pt, carbon and ordered mesoporous carbon (OMC) contact layers are measured over a pH range from 4 to 10. Working electrodes with OMC contact layer are found to have Nernstian pH sensitivity (-58.4mV/pH), low short-term drift rate (5.0mV/h), low hysteresis values (1.13mV) and fast reaction times (30s), after only 1h of conditioning. A pH sensor constructed with OMC carbon contact layer displays improved sensing performance compared to Pt and carbon-based counterparts, making this electrode more attractive for applications requiring highly-accurate pH sensing with reduced conditioning time. Copyright © 2016 Elsevier B.V. All rights reserved.
Feldberg, Stephen W
2010-06-15
For an outer-sphere heterogeneous electron transfer, Ox + e = Red, between an electrode and a redox couple, the Butler-Volmer formalism predicts that the operative heterogeneous rate constant, k(red) (cm s(-1)) for reduction (or k(ox) for oxidation) increases without limit as an exponential function of -alpha (E - E(0)) for reduction (or (1 - alpha)(E - E(0)) for oxidation), where E is the applied electrode potential, alpha (~1/2) is the transfer coefficient and E(0) is the formal potential. The Marcus-Hush formalism, as exposited by Chidsey (Chidsey, C. E. D. Science 1991, 215, 919), predicts that the value of k(red) or k(ox) limits at sufficiently large values of -(E - E(0)) or (E - E(0)). The steady-state currents at an inlaid disk electrode obtained for a redox species in solution were computed using both formalisms with the Oldham-Zoski approximation (Oldham, K. B.; Zoski, C. G. J. Electroanal. Chem. 1988, 256, 11). Significant differences are noted for the two formalisms. When k(0)r(0)/D is sufficiently small (k(0) is the standard rate constant, r(0) is the radius of the disk electrode, and D is the diffusion coefficient of the redox species), the Marcus-Hush formalism effects a limiting current that can be significantly smaller than the mass transport limited current. This is easily explained in terms of the limiting values of k(red) and k(ox) predicted by the Marcus-Hush formalism. The experimental conditions that must be met to effect significant differences in behavior are discussed; experimental conditions that effect virtually identical behavior are also discussed. As a caveat for experimentalists, applications of the Butler-Volmer formalism to systems that are more properly described using the Marcus-Hush formalism are shown to yield incorrect values of k(0) and meaningless values of alpha, which serves only as a fitting parameter.
Large thermoelectric efficiency of doped polythiophene junction: A density functional study
NASA Astrophysics Data System (ADS)
Golsanamlou, Zahra; Bagheri Tagani, Meysam; Rahimpour Soleimani, Hamid
2018-06-01
The thermoelectric properties of polythiophene (PT) coupled to the Au (111) electrodes are studied based on density functional theory with nonequilibrium Green function formalism. Specially, the effect of Li and Cl adsorbents on the thermoelectric efficiency of the PT junction is investigated in different concentrations of the dopants for two lengths of the PT. Results show that the presence of dopants can bring the structural changes in the oligomer and modify the arrangement of the molecular levels leading to the dramatic changes in the transmission spectra of the junction. Therefore, the large enhancement in thermopower and consequently figure of merit is obtained by dopants which makes the doped PT junction as a beneficial thermoelectric device.
NASA Astrophysics Data System (ADS)
Imai, Shun; Kondo, Hiroki; Cho, Hyungjun; Kano, Hiroyuki; Ishikawa, Kenji; Sekine, Makoto; Hiramatsu, Mineo; Ito, Masafumi; Hori, Masaru
2017-10-01
For polymer electrolyte fuel cell applications, carbon nanowalls (CNWs) were synthesized by radical-injection plasma-enhanced chemical vapor deposition, and a high density of Pt nanoparticles (>1012 cm-2) was supported on the CNWs using a supercritical fluid deposition system. The high potential cycle tests were applied and the electrochemical surface area of the Pt nanoparticle-supported CNWs did not change significantly, even after 20 000 high potential cycles. According to transmission electron microscopy observations, the mean diameter of Pt changed slightly after the cycle tests, while the crystallinity of the CNWs evaluated using Raman spectroscopy showed almost no change.
Yong, P; Paterson-Beedle, M; Mikheenko, I P; Macaskie, L E
2007-04-01
Biosynthesis of nano-scale platinum and palladium was achieved via enzymatically-mediated deposition of metal ions from solution. The bio-accumulated Pt(0) and Pd(0) crystals were dried, applied onto carbon paper and tested as anodes in a polymer electrolyte membrane (PEM) fuel cell for power production. Up to 100% and 81% of the maximum power generation was achieved by the bio-Pt and bio-Pd catalysts, respectively, compared to commercial fuel cell grade Pt catalyst. Hence, biomineralisation could pave the way for economical production of fuel cell catalysts since previous studies have shown that precious metals can be biorecovered from wastes into catalytically active bionanomaterials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stamate, Eugen, E-mail: eust@dtu.dk; Venture Business Laboratory, Nagoya University, C3-1, Chikusa-ku, Nagoya 464-8603; Yamaguchi, Masahito
2015-08-31
Modal and discrete focusing effects associated with three-dimensional plasma-sheath-lenses show promising potential for applications in ion beam extraction, mass spectrometry, plasma diagnostics and for basic studies of plasma sheath. The ion focusing properties can be adjusted by controlling the geometrical structure of the plasma-sheath-lens and plasma parameters. The positive and negative ion kinetics within the plasma-sheath-lens are investigated both experimentally and theoretically and a modal focusing ring is identified on the surface of disk electrodes. The focusing ring is very sensitive to the sheath thickness and can be used to monitor very small changes in plasma parameters. Three dimensional simulationsmore » are found to be in very good agreement with experiments.« less
NASA Astrophysics Data System (ADS)
Fu, Tao; Huang, Jianxing; Lai, Shaobo; Zhang, Size; Fang, Jun; Zhao, Jinbao
2017-10-01
The catalytic activity and stability of electrocatalyst is critical for the commercialization of fuel cells, and recent reports reveal the great potential of the hollow structures with Pt skin coat for developing high-powered electrocatalysts due to their highly efficient utilization of the Pt atoms. Here, we provide a novel strategy to prepare the Pt skin coated hollow Ag-Pt structure (Ag-Pt@Pt) of ∼8 nm size at room temperature. As loaded on the graphene, the Ag-Pt@Pt exhibits a remarkable mass activity of 0.864 A/mgPt (at 0.9 V, vs. reversible hydrogen electrode (RHE)) towards oxygen reduction reaction (ORR), which is 5.30 times of the commercial Pt/C catalyst, and the Ag-Pt@Pt also shows a better stability during the ORR catalytic process. The mechanism of this significant enhancement can be attributed to the higher Pt utilization and the unique Pt on Ag-Pt surface structure, which is confirmed by the density functional theory (DFT) calculations and other characterization methods. In conclusion, this original work offers a low-cost and environment-friendly method to prepare a high active electrocatalyst with cheaper price, and this work also discloses the correlation between surface structures and ORR catalytic activity for the hollow structures with Pt skin coat, which can be instructive for designing novel advanced electrocatalysts for fuel cells.
Finite-element analysis of vibrational modes in piezoelectric ceramic disks.
Kunkel, H A; Locke, S; Pikeroen, B
1990-01-01
The natural vibrational modes of axially symmetric piezoelectric ceramic disks have been calculated by the finite-element method. The disks are of the type used as active elements in compressional wave ultrasonic transducers, and are electrically polarized in thickness with full electrodes on the disk's major faces. To optimize disk geometry for ultrasonic transducer application, the dependence of the vibrational modes on the disk diameter-to-thickness ratio for ratios from 0.2 (a tall cylinder) to 10.0 (a thin disk) has been studied. Series and parallel resonance frequencies for each of the modes are determined through an eigenfrequency analysis, and effective electromechanical coupling coefficients are calculated. The modal displacement fields in the disk are calculated to determine the physical nature of each mode. An analysis of the complete spectrum of piezoelectrically active modes as a function of diameter-thickness ratio is presented for the ceramic PZT-5H, including and identification of radial, edge, length expander, thickness shear, and thickness extensional vibrations. From this analysis, optimal diameter-to-thickness ratios for good transducer performance are discussed.
The development of a multichannel electrode array for retinal prostheses.
Terasawa, Yasuo; Tashiro, Hiroyuki; Uehara, Akihiro; Saitoh, Tohru; Ozawa, Motoki; Tokuda, Takashi; Ohta, Jun
2006-01-01
The development of a multielectrode array is the key issue for retinal prostheses. We developed a 10 x 10 platinum electrode array that consists of an 8-microm polyimide layer sandwiched between 5-microm polymonochloro-para-xylylene (parylene-C) layers. Each electrode was formed as a 30-microm-high bump by Pt/Au double-layer electroplating. We estimated the charge delivery capability (CDC) of the electrode by measuring the CDCs of two-channel electrode arrays. The dimensions of each electrode of the two-channel array were the same as those of each electrode formed on the 10 x 10 array. The results suggest that for cathodic-first (CF) pulses, 80% of electrodes surpassed our development target of 318 microC/cm2, which corresponds to the charge density of pulses of 500 micros duration and 200 microA amplitude for a 200-microm-diameter planar electrode.
Pt-Free Counter Electrodes with Carbon Black and 3D Network Epoxy Polymer Composites
NASA Astrophysics Data System (ADS)
Kang, Gyeongho; Choi, Jongmin; Park, Taiho
2016-03-01
Carbon black (CB) and a 3D network epoxy polymer composite, representing dual functions for conductive corrosion protective layer (CCPL) and catalytic layer (CL) by the control of CB weight ratio against polymer is developed. Our strategy provides a proper approach which applies high catalytic ability and chemical stability of CB in corrosive triiodide/iodide (I3-/I-) redox electrolyte system. The CB and a 3D network epoxy polymer composite coated on the stainless steel (SS) electrode to alternate counter electrodes in dye sensitized solar cells (DSSCs). A two-step spray pyrolysis process is used to apply a solution containing epoxy monomers and a polyfunctional amine hardener with 6 wt% CB to a SS substrate, which forms a CCPL. Subsequently, an 86 wt% CB is applied to form a CL. The excellent catalytic properties and corrosion protective properties of the CB and 3D network epoxy polymer composites produce efficient counter electrodes that can replace fluorine-doped tin oxide (FTO) with CCPL/SS and Pt/FTO with CL/CCPL/SS in DSSCs. This approach provides a promising approach to the development of efficient, stable, and cheap solar cells, paving the way for large-scale commercialization.
Rettew, Robert E; Allam, Nageh K; Alamgir, Faisal M
2011-02-01
The surface atomic structure and chemical state of Pt is consequential in a variety of surface-intensive devices. Herein we present the direct interrelationship between the growth scheme of Pt films, the resulting atomic and electronic structure of Pt species, and the consequent activity for methanol electro-oxidation in Pt/TiO(2) nanotube hybrid electrodes. X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) measurements were performed to relate the observed electrocatalytic activity to the oxidation state and the atomic structure of the deposited Pt species. The atomic structure as well as the oxidation state of the deposited Pt was found to depend on the pretreatment of the TiO(2) nanotube surfaces with electrodeposited Cu. Pt growth through Cu replacement increases Pt dispersion, and a separation of surface Pt atoms beyond a threshold distance from the TiO(2) substrate renders them metallic, rather than cationic. The increased dispersion and the metallic character of Pt results in strongly enhanced electrocatalytic activity toward methanol oxidation. This study points to a general phenomenon whereby the growth scheme and the substrate-to-surface-Pt distance dictates the chemical state of the surface Pt atoms, and thereby, the performance of Pt-based surface-intensive devices.
EFFECTS OF TiOx INTERLAYER ON RESISTANCE SWITCHING OF Pt/TiOx/ZnO/n+-Si STRUCTURES
NASA Astrophysics Data System (ADS)
Li, Hongxia; Lv, Xiaojun; Xi, Junhua; Wu, Xin; Mao, Qinan; Liu, Qingmin; Ji, Zhenguo
2014-08-01
In this paper, we fabricated Pt/TiOx/ZnO/n+-Si structures by inserting TiOx interlayer between Pt top electrode (TE) and ZnO thin film for non-volatile resistive random access memory (ReRAM) applications. Effects of TiOx interlayer with different thickness on the resistance switching of Pt/TiOx/ZnO/n+-Si structures were investigated. Conduction behaviors in high and low resistance state (HRS and LRS) fit well with the trap-controlled space-charge-limited conduction (SCLC) and Ohmic behavior, respectively. Variations of set and reset voltages and HRS and LRS resistances of Pt/TiOx/ZnO/n+-Si structures were investigated as a function of TiOx thickness. Switching cycling tests were attempted to evaluate the endurance reliability of Pt/TiOx/ZnO/n+-Si structures. Additionally, the switching mechanism was analyzed by the filament model.
A mathematical model for predicting cyclic voltammograms of electronically conductive polypyrrole
NASA Technical Reports Server (NTRS)
Yeu, Taewhan; Nguyen, Trung V.; White, Ralph E.
1988-01-01
Polypyrrole is an attractive polymer for use as a high-energy-density secondary battery because of its potential as an inexpensive, lightweight, and noncorrosive electrode material. A mathematical model to simulate cyclic voltammograms for polypyrrole is presented. The model is for a conductive porous electrode film on a rotating disk electrode (RDE) and is used to predict the spatial and time dependence of concentration, overpotential, and stored charge profiles within a polypyrrole film. The model includes both faradic and capacitance charge components in the total current density expression.
A mathematical model for predicting cyclic voltammograms of electronically conductive polypyrrole
NASA Technical Reports Server (NTRS)
Yeu, Taewhan; Nguyen, Trung V.; White, Ralph E.
1987-01-01
Polypyrrole is an attractive polymer for use as a high-energy-density secondary battery because of its potential as an inexpensive, lightweight, and noncorrosive electrode material. A mathematical model to simulate cyclic voltammograms for polypyrrole is presented. The model is for a conductive porous electrode film on a rotating disk electrode (RDE) and is used to predict the spatial and time dependence of concentration, overpotential, and stored charge profiles within a polypyrrole film. The model includes both faradic and capacitance charge components in the total current density expression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahluwalia, R. K.; Wang, X.; Peng, J. -K.
Here, the durability of de-alloyed platinum-nickel catalysts supported on high-surface area carbon (d-PtNi/C) in optimized electrodes and membrane electrode assemblies (MEAs) under an accelerated stress test (AST) protocol is investigated with the objective of developing a quantitative understanding of the degradation mechanisms and their relationship to the electrode structure, pre-conditioning, and operating conditions. It is found that the cell degradation can be mitigated by controlling the voltage cycle, acid washing the MEA to remove Ni contaminants that enter the electrode and membrane during fabrication, and monitoring the operating conditions. For example, the electrochemical surface area (ECSA) loss is <25% aftermore » 30,000 triangle cycles with 0.925 V upper potential limit if the MEA is acid washed and extensive diagnostics are avoided. The parameters that exacerbate the cell degradation also accelerate the rate at which Ni leaches out from the catalyst. A mechanistic model is presented for the degradation in performance of d-PtNi/C electrodes. The model correlates a) the degradation in ORR mass and specific activities with ECSA and Ni losses, b) the decrease in limiting current density ( iL), which is inversely proportional to the O 2 mass transport resistance, with the degradation in catalyst roughness factor, and c) the increase in mass transfer overpotentials with the reduced current density, i/iL .« less
Ahluwalia, R. K.; Wang, X.; Peng, J. -K.; ...
2018-04-25
Here, the durability of de-alloyed platinum-nickel catalysts supported on high-surface area carbon (d-PtNi/C) in optimized electrodes and membrane electrode assemblies (MEAs) under an accelerated stress test (AST) protocol is investigated with the objective of developing a quantitative understanding of the degradation mechanisms and their relationship to the electrode structure, pre-conditioning, and operating conditions. It is found that the cell degradation can be mitigated by controlling the voltage cycle, acid washing the MEA to remove Ni contaminants that enter the electrode and membrane during fabrication, and monitoring the operating conditions. For example, the electrochemical surface area (ECSA) loss is <25% aftermore » 30,000 triangle cycles with 0.925 V upper potential limit if the MEA is acid washed and extensive diagnostics are avoided. The parameters that exacerbate the cell degradation also accelerate the rate at which Ni leaches out from the catalyst. A mechanistic model is presented for the degradation in performance of d-PtNi/C electrodes. The model correlates a) the degradation in ORR mass and specific activities with ECSA and Ni losses, b) the decrease in limiting current density ( iL), which is inversely proportional to the O 2 mass transport resistance, with the degradation in catalyst roughness factor, and c) the increase in mass transfer overpotentials with the reduced current density, i/iL .« less
Axnanda, Stephanus; Crumlin, Ethan J.; Mao, Baohua; ...
2015-05-07
We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a “dip & pull” method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, “dip & pull” approach, with a “tender” X-ray synchrotron source (2 keV–7 keV), we are able to access the interface between liquidmore » and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt²⁺ and Pt⁴⁺ interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of “tender” AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry.« less
Rana, Anwar Manzoor; Akbar, Tahira; Ismail, Muhammad; Ahmad, Ejaz; Hussain, Fayyaz; Talib, Ijaz; Imran, Muhammad; Mehmood, Khalid; Iqbal, Khalid; Nadeem, M. Younus
2017-01-01
Resistance switching characteristics of CeO2/Ti/CeO2 tri-layered films sandwiched between Pt bottom electrode and two different top electrodes (Ti and TaN) with different work functions have been investigated. RRAM memory cells composed of TaN/CeO2/Ti/CeO2/Pt reveal better resistive switching performance instead of Ti/CeO2/Ti/CeO2/Pt memory stacks. As compared to the Ti/CeO2 interface, much better ability of TaN/CeO2 interface to store and exchange plays a key role in the RS performance improvement, including lower forming/SET voltages, large memory window (~102) and no significant data degradation during endurance test of >104 switching cycles. The formation of TaON thinner interfacial layer between TaN TE and CeO2 film is found to be accountable for improved resistance switching behavior. Partial charge density of states is analyzed using density functional theory. It is found that the conductive filaments formed in CeO2 based devices is assisted by interstitial Ti dopant. Better stability and reproducibility in cycle-to-cycle (C2C) resistance distribution and Vset/Vreset uniformity were achieved due to the modulation of current conduction mechanism from Ohmic in low field region to Schottky emission in high field region. PMID:28079056
DOE Office of Scientific and Technical Information (OSTI.GOV)
Axnanda, Stephanus; Crumlin, Ethan J.; Mao, Baohua
We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a “dip & pull” method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, “dip & pull” approach, with a “tender” X-ray synchrotron source (2 keV–7 keV), we are able to access the interface between liquidmore » and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt²⁺ and Pt⁴⁺ interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of “tender” AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry.« less
NASA Astrophysics Data System (ADS)
Yen, Shih-Hsiang; Hung, Yu-Chen; Yeh, Ping-Hung; Su, Ya-Wen; Wang, Chiu-Yen
2017-09-01
ZnS nanowires were synthesized via a vapor-liquid-solid mechanism and then fabricated into a single-nanowire field-effect transistor by focused ion beam (FIB) deposition. The field-effect electrical properties of the FIB-fabricated ZnS nanowire device, namely conductivity, mobility and hole concentration, were 9.13 Ω-1 cm-1, 13.14 cm2 V-1 s-1and 4.27 × 1018 cm-3, respectively. The photoresponse properties of the ZnS nanowires were studied and the current responsivity, current gain, response time and recovery time were 4.97 × 106 A W-1, 2.43 × 107, 9 s and 24 s, respectively. Temperature-dependent I-V measurements were used to analyze the interfacial barrier height between ZnS and the FIB-deposited Pt electrode. The results show that the interfacial barrier height is as low as 40 meV. The energy-dispersive spectrometer elemental line scan shows the influence of Ga ions on the ZnS nanowire surface on the FIB-deposited Pt contact electrodes. The results of temperature-dependent I-V measurements and the elemental line scan indicate that Ga ions were doped into the ZnS nanowire, reducing the barrier height between the FIB-deposited Pt electrodes and the single ZnS nanowire. The small barrier height results in the FIB-fabricated ZnS nanowire device acting as a high-gain photosensor.
NASA Astrophysics Data System (ADS)
Ting, Chao-Cheng; Chao, Chih-Hsuan; Tsai, Cheng Yu; Cheng, I.-Kai; Pan, Fu-Ming
2017-09-01
We sputter-deposited Pt nanoparticles with an average size ranging from 2.0 nm to 8.5 nm on the indium-tin oxide (ITO) glass substrate, and studied the effect of the size of Pt nanoparticles on electrocatalytic activity of the Pt/ITO electrode toward methanol oxidation reaction (MOR) in acidic solution. X-ray photoelectron spectroscopy (XPS) reveals an interfacial oxidized Pt layer present between Pt nanoparticles and the ITO substrate, which may modify the surface electronic structure of Pt nanoparticles and thus influences the electrocatalytic properties of the Pt catalyst toward MOR. According to electrochemical analyses, smaller Pt nanoparticles exhibit slower kinetics for CO electrooxidation and MOR. However, a smaller particle size enables better CO tolerance because the bifunctional mechanism is more effective on smaller Pt nanoparticles. The electrocatalytic activity decays rapidly for Pt nanoparticles with a size smaller than 3 nm and larger than 8 nm. The rapid activity decay is attributed to Pt dissolution for smaller nanoparticles and to CO poisoning for larger ones. Pt nanoparticles of 5-6 nm in size loaded on ITO demonstrate a greatly improved electrocatalytic activity and stability compared with those deposited on different substrates in our previous studies.
Zhang, Sen; Hao, Yizhou; Su, Dong; ...
2014-10-28
We report a size-controllable synthesis of monodisperse core/shell Ni/FePt nanoparticles (NPs) via a seed-mediated growth and their subsequent conversion to Ni/Pt NPs. Preventing surface oxidation of the Ni seeds is essential for the growth of uniform FePt shells. These Ni/FePt NPs have a thin (≈ 1 nm) FePt shell, and can be converted to Ni/Pt by acetic acid wash to yield active catalysts for oxygen reduction reaction (ORR). Tuning the core size allow for optimization of their electrocatalytic activity. The specific activity and mass activity of 4.2 nm/0.8 nm core/shell Ni/FePt reach 1.95 mA/cm² and 490 mA/mg Pt at 0.9more » V ( vs. reversible hydrogen electrode, RHE), which are much higher than those of benchmark commercial Pt catalyst (0.34 mA/cm² and 92 mA/mg Pt at 0.9 V). Our studies provide a robust approach to monodisperse core/shell NPs with non-precious metal core, making it possible to develop advanced NP catalysts with ultralow Pt content for ORR and many other heterogeneous reactions.« less
Evaluation of focused multipolar stimulation for cochlear implants: a preclinical safety study
NASA Astrophysics Data System (ADS)
Shepherd, Robert K.; Wise, Andrew K.; Enke, Ya Lang; Carter, Paul M.; Fallon, James B.
2017-08-01
Objective. Cochlear implants (CIs) have a limited number of independent stimulation channels due to the highly conductive nature of the fluid-filled cochlea. Attempts to develop highly focused stimulation to improve speech perception in CI users includes the use of simultaneous stimulation via multiple current sources. Focused multipolar (FMP) stimulation is an example of this approach and has been shown to reduce interaction between stimulating channels. However, compared with conventional biphasic current pulses generated from a single current source, FMP is a complex stimulus that includes extended periods of stimulation before charge recovery is achieved, raising questions on whether chronic stimulation with this strategy is safe. The present study evaluated the long-term safety of intracochlear stimulation using FMP in a preclinical animal model of profound deafness. Approach. Six cats were bilaterally implanted with scala tympani electrode arrays two months after deafening, and received continuous unilateral FMP stimulation at levels that evoked a behavioural response for periods of up to 182 d. Electrode impedance, electrically-evoked compound action potentials (ECAPs) and auditory brainstem responses (EABRs) were monitored periodically over the course of the stimulation program from both the stimulated and contralateral control cochleae. On completion of the stimulation program cochleae were examined histologically and the electrode arrays were evaluated for evidence of platinum (Pt) corrosion. Main results. There was no significant difference in electrode impedance between control and chronically stimulated electrodes following long-term FMP stimulation. Moreover, there was no significant difference between ECAP and EABR thresholds evoked from control or stimulated cochleae at either the onset of stimulation or at completion of the stimulation program. Chronic FMP stimulation had no effect on spiral ganglion neuron (SGN) survival when compared with unstimulated control cochleae. Long-term implantation typically evoked a mild foreign body reaction proximal to the electrode array; however stimulated cochleae exhibited a small but statistically significant increase in the tissue response. Finally, there was no evidence of Pt corrosion following long-term FMP stimulation; stimulated electrodes exhibited the same surface features as the unstimulated control electrodes. Significance. Chronic intracochlear FMP stimulation at levels used in the present study did not adversely affect electrically-evoked neural thresholds or SGN survival but evoked a small, benign increase in inflammatory response compared to control ears. Moreover chronic FMP stimulation does not affect the surface of Pt electrodes at suprathreshold stimulus levels. These findings support the safe clinical application of an FMP stimulation strategy.
Yang, G.; Li, D. L.; Wang, S. G.; ...
2015-02-24
In this study, epitaxial FePt(001)/MgO/FePt magnetic tunnel junctions with L1 0-FePt electrodes showing perpendicular magnetic anisotropy were fabricated by molecular beam epitaxial growth. Tunnel magnetoresistance ratios of 21% and 53% were obtained at 300 K and 10 K, respectively. Our previous work, based on transmission electron microscopy, confirmed a semi-coherent interfacial structure with atomic steps (Kohn et al., APL 102, 062403 (2013)). Here, we show by x-ray photoemission spectroscopy and first-principles calculation that the bottom FePt/MgO interface is either Pt-terminated for regular growth or when an Fe layer is inserted at the interface, it is chemically bonded to O. Finally,more » both these structures have a dominant role in spin dependent tunneling across the MgO barrier resulting in a decrease of the tunneling magnetoresistance ratio compared with previous predictions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, G.; Li, D. L.; Wang, S. G., E-mail: Sgwang@iphy.ac.cn
2015-02-28
Epitaxial FePt(001)/MgO/FePt magnetic tunnel junctions with L1{sub 0}-FePt electrodes showing perpendicular magnetic anisotropy were fabricated by molecular beam epitaxial growth. Tunnel magnetoresistance ratios of 21% and 53% were obtained at 300 K and 10 K, respectively. Our previous work, based on transmission electron microscopy, confirmed a semi-coherent interfacial structure with atomic steps (Kohn et al., APL 102, 062403 (2013)). Here, we show by x-ray photoemission spectroscopy and first-principles calculation that the bottom FePt/MgO interface is either Pt-terminated for regular growth or when an Fe layer is inserted at the interface, it is chemically bonded to O. Both these structures have a dominantmore » role in spin dependent tunneling across the MgO barrier resulting in a decrease of the tunneling magnetoresistance ratio compared with previous predictions.« less
Reproducible fabrication of stable small nano Pt with high activity for sensor applications.
Ye, Pingping; Guo, Xiaoyu; Liu, Guiting; Chen, Huifen; Pan, Yuxia; Wen, Ying; Yang, Haifeng
2013-07-26
Pt nanoparticles with an average size of 2-3 nm in diameter were reproducibly synthesized by reduction of H₂PtCl₆ solution containing inositol hexaphosphate (IP₆) as the stabilizing agent. Single crystals with Pt(111) faces of the resulting cubic nanoparticles were revealed by the electron diffraction pattern. The PtNPs-IP₆ nanoparticles were used to modify an electrode as a nonenzymatic sensor for H₂O₂ detection, exhibiting a fast response and high sensitivity. A low detection limit of 2.0 × 10⁻⁷ M (S/N = 3) with two linear ranges between 2.4 × 10⁻⁷ and 1.3 × 10⁻³ M (R² = 0.9987) and between 1.3 × 10⁻³ and 1.3 × 10⁻² M (R² = 0.9980) was achieved. The attractive electrochemical performance of PtNPs-IP₆ enables it to be employed as a promising material for the development of Pt-based analytical systems and other applications.
Photocatalytic and Photoelectrochemically Degradation of Chlorsulfuron herbicide
NASA Astrophysics Data System (ADS)
Guo, Xu; Liu, Hongwei; Miao, Jinjie; Ma, Zhen
2017-12-01
Photocatalytic and photo electrochemical (PEC) degradation of chlorsulfuron herbicide were studied. Two novel PEC electrodes Ti/IrO2-Pt-WO3 (TIW) and Ti/IrO2-Pt-Ag3PO4 (TIA) were designed and some important factors were studied. Lower current density showed lower removal efficiency than higher conditions by electrochemical method. Furthermore, PEC showed higher degradation efficiency than the sum of individual EO and photocatalytic methode.
Boehler, Christian; Oberueber, Felix; Schlabach, Sabine; Stieglitz, Thomas; Asplund, Maria
2017-01-11
Conducting polymers (CPs) have frequently been described as outstanding coating materials for neural microelectrodes, providing significantly reduced impedance or higher charge injection compared to pure metals. Usability has until now, however, been limited by poor adhesion of polymers like poly(3,4-ethylenedioxythiophene) (PEDOT) to metallic substrates, ultimately precluding long-term applications. The aim of this study was to overcome this weakness of CPs by introducing two novel adhesion improvement strategies that can easily be integrated with standard microelectrode fabrication processes. Iridium Oxide (IrOx) demonstrated exceptional stability for PEDOT coatings, resulting in polymer survival over 10 000 redox cycles and 110 days under accelerated aging conditions at 60 °C. Nanostructured Pt was furthermore introduced as a purely mechanical adhesion promoter providing 10-fold adhesion improvement compared to smooth Pt substrates by simply altering the morphology of Pt. This layer can be realized in a very simple process that is compatible with any electrode design, turning nanostructured Pt into a universal adhesion layer for CP coatings. By the introduction of these adhesion-promoting strategies, the weakness of CP-based neural probes can ultimately be eliminated and true long-term stable use of PEDOT on neural probes will be possible in future electrode generations.
Carbon nanotube yarns for deep brain stimulation electrode.
Jiang, Changqing; Li, Luming; Hao, Hongwei
2011-12-01
A new form of deep brain stimulation (DBS) electrode was proposed that was made of carbon nanotube yarns (CNTYs). Electrode interface properties were examined using cyclic voltammetry (CV) and electrochemical impedance spectrum (EIS). The CNTY electrode interface exhibited large charge storage capacity (CSC) of 12.3 mC/cm(2) which increased to 98.6 mC/cm(2) after acid treatment, compared with 5.0 mC/cm(2) of Pt-Ir. Impedance spectrum of both untreated and treated CNTY electrodes showed that finite diffusion process occurred at the interface due to their porous structure and charge was delivered through capacitive mechanism. To evaluate stability electrical stimulus was exerted for up to 72 h and CV and EIS results of CNTY electrodes revealed little alteration. Therefore CNTY could make a good electrode material for DBS.
Unidirectional magnetoresistance in magnetic thin films with non-uniform thickness
NASA Astrophysics Data System (ADS)
Jia, M. W.; Zhou, C.; Zeng, F. L.; Wu, Y. Z.
2018-05-01
The magnetoresistance (MR) of Co film and Co/Pt bilayers was studied systematically as a function of Co and Pt thickness at room temperature. In the samples with the wedge shape, we found the unidirectional MR which has the characteristics of R (Mz )≠R (-Mz ) with the magnetization normal to the film. The measured unidirectional MR is attributed to the differential anomalous Hall resistance due to the thickness difference at the electrodes for the longitudinal resistance measurements. The unidirectional MR effect in the Co/Pt bilayers can be greatly suppressed by a non-magnetic Cu inserting layer.
Thiolate/disulfide organic redox couples for efficient organic dye-sensitized solar cells
NASA Astrophysics Data System (ADS)
Li, Wen-Yan; Zheng, Hai-Kuo; Wang, Jian-Wen; Zhang, Le-Le; Han, Hui-Min; Wu, Ming-Xing
2017-08-01
A series of organic thiolate/disulfide redox couples based on benz-imidazole/othiazole/oxazole have been synthesized and applied to dye-sensitized solar cells (DSCs). Platinum (Pt) and carbon material are introduced as counter electrode (CE) catalysts towards this kind of organic redox couples regeneration and the photovoltaic performance of the DSCs using this organic redox couples has been investigated. The carbon CE shows high catalytic activity than Pt for the organic redox couples and the DSCs using carbon CE exhibit much higher efficiencies than those of the Pt CE-based devices.
Capacitive Behavior of Single Gallium Oxide Nanobelt
Cai, Haitao; Liu, Hang; Zhu, Huichao; Shao, Pai; Hou, Changmin
2015-01-01
In this research, monocrystalline gallium oxide (Ga2O3) nanobelts were synthesized through oxidation of metal gallium at high temperature. An electronic device, based on an individual Ga2O3 nanobelt on Pt interdigital electrodes (IDEs), was fabricated to investigate the electrical characteristics of the Ga2O3 nanobelt in a dry atmosphere at room temperature. The current-voltage (I-V) and I/V-t characteristics show the capacitive behavior of the Ga2O3 nanobelt, indicating the existence of capacitive elements in the Pt/Ga2O3/Pt structure. PMID:28793506
Exner, Jörg; Albrecht, Gaby; Schönauer-Kamin, Daniela; Kita, Jaroslaw; Moos, Ralf
2017-01-01
The pulsed polarization technique on solid electrolytes is based on alternating potential pulses interrupted by self-discharge pauses. Since even small concentrations of nitrogen oxides (NOx) in the ppm range significantly change the polarization and discharge behavior, pulsed polarization sensors are well suited to measure low amounts of NOx. In contrast to all previous investigations, planar pulsed polarization sensors were built using an electrolyte thick film and platinum interdigital electrodes on alumina substrates. Two different sensor layouts were investigated, the first with buried Pt electrodes under the electrolyte and the second one with conventional overlying Pt electrodes. Electrolyte thick films were either formed by aerosol deposition or by screen-printing, therefore exhibiting a dense or porous microstructure, respectively. For screen-printed electrolytes, the influence of the electrolyte resistance on the NOx sensing ability was investigated as well. Sensors with buried electrodes showed little to no response even at higher NOx concentrations, in good agreement with the intended sensor mechanism. Electrolyte films with overlying electrodes, however, allowed the quantitative detection of NOx. In particular, aerosol deposited electrolytes exhibited high sensitivities with a sensor output signal ΔU of 50 mV and 75 mV for 3 ppm of NO and NO2, respectively. For screen-printed electrolytes, a clear trend indicated a decrease in sensitivity with increased electrolyte resistance. PMID:28933736
NASA Astrophysics Data System (ADS)
Spassov, D.; Paskaleva, A.; Fröhlich, K.; Ivanov, Tz
2017-01-01
The influence of the oxygen content in the dielectric layer and the effect of the bottom electrode on the resistive switching in Au/Pt/TaOx/TiN and Au/Pt/TaOx/Ta structures have been studied. The sputtered TaOx layers have been prepared by using oxygen concentrations of 10 or 7% O 2 in the Ar+O2 working ambient as well as by a gradual variation of the O2 content in the deposition process from 5 to 10%. Two deposition regimes for TiN electrodes have been investigated: reactive sputtering of Ti target in Ar+N2 ambient, and sputtering of TiN target in pure Ar. Bipolar resistive switching behavior is observed in all examined structures. It is demonstrated that the resistive switching effect is affected by the oxygen content in the working ambient as well as by the type and the deposition conditions of the bottom electrodes. Most stable effect, with ON/OFF ratio above 100 is obtained in TaOx deposited with variable O2 content in the ambient. The obtained switching voltage between the high resistive and low resistive state (SET) is about -1.5 V and the reverse changeover (RESET) is ∼2 V. A well pronounced resistive switching is achieved with reactively sputtered TiN while for the other bottom electrodes the effect is negligible.
Lv, Peiling; Ito, Takenori; Oogushi, Akihide; Nakashima, Kensaku; Nagao, Masahiro; Hibino, Takashi
2016-11-18
In recent years, exhaust sensors have become increasingly attractive for use in energy and environmental technologies. Important issues regarding practical applications of these sensors, especially for soot measurements, include the further development of ion-conductive electrolytes and active electrode catalysts for meeting performance and durability requirements. Herein, we design a proton conductor with a high breakdown voltage and a sensing electrode with high sensitivity to electrochemical carbon oxidation, enabling continuous soot monitoring with self-regeneration of the sensor. A Si 0.97 Al 0.03 H x P 2 O 7-δ layer with an excellent balance between proton conductivity and voltage endurance was grown on the surface of a Si 0.97 Al 0.03 O 2-δ substrate by reacting it with liquid H 3 PO 4 at 600 °C. Specific reactivity of the electrochemically formed active oxygen toward soot was accomplished by adding a Pt-impregnated Sn 0.9 In 0.1 H x P 2 O 7-δ catalyst into a Pt sensing electrode. To make the best use of these optimized materials, a unipolar electrochemical device was fabricated by configuring the sensing and counter electrodes on the same surface of the electrolyte layer. The resulting amperometric mode sensor successfully produced a current signal that corresponded to the quantity of soot.
Lv, Peiling; Ito, Takenori; Oogushi, Akihide; Nakashima, Kensaku; Nagao, Masahiro; Hibino, Takashi
2016-01-01
In recent years, exhaust sensors have become increasingly attractive for use in energy and environmental technologies. Important issues regarding practical applications of these sensors, especially for soot measurements, include the further development of ion-conductive electrolytes and active electrode catalysts for meeting performance and durability requirements. Herein, we design a proton conductor with a high breakdown voltage and a sensing electrode with high sensitivity to electrochemical carbon oxidation, enabling continuous soot monitoring with self-regeneration of the sensor. A Si0.97Al0.03HxP2O7-δ layer with an excellent balance between proton conductivity and voltage endurance was grown on the surface of a Si0.97Al0.03O2-δ substrate by reacting it with liquid H3PO4 at 600 °C. Specific reactivity of the electrochemically formed active oxygen toward soot was accomplished by adding a Pt-impregnated Sn0.9In0.1HxP2O7-δ catalyst into a Pt sensing electrode. To make the best use of these optimized materials, a unipolar electrochemical device was fabricated by configuring the sensing and counter electrodes on the same surface of the electrolyte layer. The resulting amperometric mode sensor successfully produced a current signal that corresponded to the quantity of soot. PMID:27857193
NASA Astrophysics Data System (ADS)
Lv, Peiling; Ito, Takenori; Oogushi, Akihide; Nakashima, Kensaku; Nagao, Masahiro; Hibino, Takashi
2016-11-01
In recent years, exhaust sensors have become increasingly attractive for use in energy and environmental technologies. Important issues regarding practical applications of these sensors, especially for soot measurements, include the further development of ion-conductive electrolytes and active electrode catalysts for meeting performance and durability requirements. Herein, we design a proton conductor with a high breakdown voltage and a sensing electrode with high sensitivity to electrochemical carbon oxidation, enabling continuous soot monitoring with self-regeneration of the sensor. A Si0.97Al0.03HxP2O7-δ layer with an excellent balance between proton conductivity and voltage endurance was grown on the surface of a Si0.97Al0.03O2-δ substrate by reacting it with liquid H3PO4 at 600 °C. Specific reactivity of the electrochemically formed active oxygen toward soot was accomplished by adding a Pt-impregnated Sn0.9In0.1HxP2O7-δ catalyst into a Pt sensing electrode. To make the best use of these optimized materials, a unipolar electrochemical device was fabricated by configuring the sensing and counter electrodes on the same surface of the electrolyte layer. The resulting amperometric mode sensor successfully produced a current signal that corresponded to the quantity of soot.
Exner, Jörg; Albrecht, Gaby; Schönauer-Kamin, Daniela; Kita, Jaroslaw; Moos, Ralf
2017-07-26
The pulsed polarization technique on solid electrolytes is based on alternating potential pulses interrupted by self-discharge pauses. Since even small concentrations of nitrogen oxides (NO x ) in the ppm range significantly change the polarization and discharge behavior, pulsed polarization sensors are well suited to measure low amounts of NO x . In contrast to all previous investigations, planar pulsed polarization sensors were built using an electrolyte thick film and platinum interdigital electrodes on alumina substrates. Two different sensor layouts were investigated, the first with buried Pt electrodes under the electrolyte and the second one with conventional overlying Pt electrodes. Electrolyte thick films were either formed by aerosol deposition or by screen-printing, therefore exhibiting a dense or porous microstructure, respectively. For screen-printed electrolytes, the influence of the electrolyte resistance on the NO x sensing ability was investigated as well. Sensors with buried electrodes showed little to no response even at higher NO x concentrations, in good agreement with the intended sensor mechanism. Electrolyte films with overlying electrodes, however, allowed the quantitative detection of NO x . In particular, aerosol deposited electrolytes exhibited high sensitivities with a sensor output signal Δ U of 50 mV and 75 mV for 3 ppm of NO and NO₂, respectively. For screen-printed electrolytes, a clear trend indicated a decrease in sensitivity with increased electrolyte resistance.
NASA Astrophysics Data System (ADS)
Chen, Feng; Schafranek, Robert; Wachau, André; Zhukov, Sergey; Glaum, Julia; Granzow, Torsten; von Seggern, Heinz; Klein, Andreas
2010-11-01
The influence of Pt, tin-doped In2O3, and RuO2 electrodes on the electrical fatigue of bulk ceramic Pb(Zr,Ti)O3 (PZT) has been studied. Schottky barrier heights at the ferroelectric/electrode interfaces vary by more than one electronvolt for different electrode materials and do not depend on crystallographic orientation of the interface. Despite different barrier heights, hysteresis loops of polarization, strain, permittivity, and piezoelectric constant and the switching kinetics are identical for all electrodes. A 20% reduction in polarization after 106 bipolar cycles is observed for all the samples. In contrast to PZT thin films, the loss of remanent polarization with bipolar switching cycles does not significantly depend on the electrode material.
SFG experiment and ab initio study of the chemisorption of CN - on low-index platinum surfaces
NASA Astrophysics Data System (ADS)
Tadjeddine, M.; Flament, J.-P.; Le Rille, A.; Tadjeddine, A.
2006-05-01
A dual analysis is proposed in order to have a better understanding of the adsorption of the cyanide ions on a platinum electrode. The SFG (Sum Frequency Generation) spectroscopy allows the in situ vibrational study and the SFG spectra of the CN - species adsorbed on single crystal Pt electrode allow a systematic study of the low-index platinum surfaces. This experimental work is supported by ab initio calculations using density functional theory and cluster models. For each surface orientation and each geometry, a cluster model of 20-30 Pt atoms has been built in order to interpret the chemisorption of the CN - ions through four kinds of adsorption geometry: on-top or bridge site, bonding via C or N atoms. Geometries have been optimized and adsorption energies, electronic properties and vibrational frequencies have been computed. From the electronic properties, we can propose an analysis of the bonding mechanism for each studied kind of adsorption. The SFG spectra of the CN -/Pt(1 1 1) system present an unique resonance owing to the top C adsorption. It is mainly the same for the CN -/Pt(1 0 0) system. It is also the case for the SFG spectra of the CN -/Pt(1 1 0) system recorded at negative electrochemical voltage; at more positive voltage, a second resonance appears at a lower frequency, owing to the top N adsorption. Experimental and theoretical values of the C-N stretching frequencies are in excellent agreement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yazhou; Yen, Clive H.; Hu, Yun Hang
2016-01-01
Three-dimensional (3D) graphene showed an advanced support for designing porous electrode materials due to its high specific surface area, large pore volume, and excellent electronic property. However, the electrochemical properties of reported porous electrode materials still need to be improved further. The current challenge is how to deposit desirable nanoparticles (NPs) with controllable structure, loading and composition in 3D graphene while maintaining the high dispersion. Herein, we demonstrate a modified supercritical fluid (SCF) technique to address this issue by controlling the SCF system. Using this superior method, a series of Pt-based/3D graphene materials with the ultrafine-sized, highly dispersive and controllablemore » composition multimetallic NPs were successfully synthesized. Specifically, the resultant Pt40Fe60/3D graphene showed a significant enhancement in electrocatalytic performance for the oxygen reduction reaction (ORR), including a factor of 14.2 enhancement in mass activity (1.70 A mgPt 1), a factor of 11.9 enhancement in specific activity (1.55 mA cm 2), and higher durability compared with that of Pt/C catalyst. After careful comparison, the Pt40Fe60/3D graphene catalyst shows the higher ORR activity than most of the reported similar 3D graphene-based catalysts. The successful synthesis of such attractive materials by this method also paves the way to develop 3D graphene in widespread applications.« less
Safavi, Afsaneh; Farjami, Fatemeh
2011-01-15
An electrodeposition method was applied to form gold-platinum (AuPt) alloy nanoparticles on the glassy carbon electrode (GCE) modified with a mixture of an ionic liquid (IL) and chitosan (Ch) (AuPt-Ch-IL/GCE). AuPt nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical methods. AuPt-Ch-IL/GCE electrocatalyzed the reduction of H(2)O(2) and thus was suitable for the preparation of biosensors. Cholesterol oxidase (ChOx) was then, immobilized on the surface of the electrode by cross-linking ChOx and chitosan through addition of glutaraldehyde (ChOx/AuPt-Ch-IL/GCE). The fabricated biosensor exhibited two wide linear ranges of responses to cholesterol in the concentration ranges of 0.05-6.2 mM and 6.2-11.2 mM. The sensitivity of the biosensor was 90.7 μA mM(-1) cm(-2) and the limit of detection was 10 μM of cholesterol. The response time was less than 7 s. The Michaelis-Menten constant (K(m)) was found as 0.24 mM. The effect of the addition of 1 mM ascorbic acid and glucose was tested on the amperometric response of 0.5 mM cholesterol and no change in response current of cholesterol was observed. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Barr, Jordan A.; Lin, Fang-Yin; Ashton, Michael; Hennig, Richard G.; Sinnott, Susan B.
2018-02-01
High-throughput density functional theory calculations are conducted to search through 1572 A B O3 compounds to find a potential replacement material for lead zirconate titanate (PZT) that exhibits the same excellent piezoelectric properties as PZT and lacks both its use of the toxic element lead (Pb) and the formation of secondary alloy phases with platinum (Pt) electrodes. The first screening criterion employed a search through the Materials Project database to find A -B combinations that do not form ternary compounds with Pt. The second screening criterion aimed to eliminate potential candidates through first-principles calculations of their electronic structure, in which compounds with a band gap of 0.25 eV or higher were retained. Third, thermodynamic stability calculations were used to compare the candidates in a Pt environment to compounds already calculated to be stable within the Materials Project. Formation energies below or equal to 100 meV/atom were considered to be thermodynamically stable. The fourth screening criterion employed lattice misfit to identify those candidate perovskites that have low misfit with the Pt electrode and high misfit of potential secondary phases that can be formed when Pt alloys with the different A and B components. To aid in the final analysis, dynamic stability calculations were used to determine those perovskites that have dynamic instabilities that favor the ferroelectric distortion. Analysis of the data finds three perovskites warranting further investigation: CsNb O3 , RbNb O3 , and CsTa O3 .
Advances in direct oxidation methanol fuel cells
NASA Technical Reports Server (NTRS)
Surampudi, S.; Narayanan, S. R.; Vamos, E.; Frank, H.; Halpert, G.; Laconti, Anthony B.; Kosek, J.; Prakash, G. K. Surya; Olah, G. A.
1993-01-01
Fuel cells that can operate directly on fuels such as methanol are attractive for low to medium power applications in view of their low weight and volume relative to other power sources. A liquid feed direct methanol fuel cell has been developed based on a proton exchange membrane electrolyte and Pt/Ru and Pt catalyzed fuel and air/O2 electrodes, respectively. The cell has been shown to deliver significant power outputs at temperatures of 60 to 90 C. The cell voltage is near 0.5 V at 300 mA/cm(exp 2) current density and an operating temperature of 90 C. A deterrent to performance appears to be methanol crossover through the membrane to the oxygen electrode. Further improvements in performance appear possible by minimizing the methanol crossover rate.
Shanks, H.R.; Bevolo, A.J.; Danielson, G.C.; Weber, M.F.
An oxygen electrode for a fuel cell utilizing an acid electrolyte has a substrate of an alkali metal tungsten bronze of the formula: A/sub x/WO/sub 3/ where A is an alkali metal and x is at least 0.2, which is covered with a thin layer of platinum tungsten bronze of the formula: Pt/sub y/WO/sub 3/ where y is at least 0.8.
ERIC Educational Resources Information Center
Popa, Adriana; Abenojar, Eric C.; Vianna, Adam; Buenviaje, Czarina Y. A.; Yang, Jiahua; Pascual, Cherrie B.; Samia, Anna Cristina S.
2015-01-01
A laboratory experiment in which students synthesize Ag, Au, and Pt nanoparticles (NPs) and use them to modify screen printed carbon electrodes for the electroanalysis of the hydrogen peroxide content in commercially available teeth whitening strips is described. This experiment is designed for two 3-h laboratory periods and can be adapted for…
Shanks, Howard R.; Bevolo, Albert J.; Danielson, Gordon C.; Weber, Michael F.
1980-11-04
An oxygen electrode for a fuel cell utilizing an acid electrolyte has a substrate of an alkali metal tungsten bronze of the formula: A.sub.x WO.sub.3 where A is an alkali metal and x is at least 0.2, which is covered with a thin layer of platinum tungsten bronze of the formula: Pt.sub.y WO.sub.3 where y is at least 0.8.
A hydrogen fuel cell for rapid, enzyme-catalysed organic synthesis with continuous monitoring.
Wan, Lei; Megarity, Clare F; Siritanaratkul, Bhavin; Armstrong, Fraser A
2018-01-23
A one-pot fuel cell for specific, enzyme-catalysed organic synthesis, with continuous monitoring of rate and reaction progress, combines an electrode catalysing rapid, reversible and diffusion-controlled interconversion of NADP + and NADPH with a Pt electrode catalysing 2H + /H 2 interconversion. This Communication demonstrates its performance and characteristics using the reductive amination of 2-oxoglutarate as a test system.
NASA Astrophysics Data System (ADS)
Yoon, Yeung-Pil; Kim, Jae-Hong; Kang, Soon-Hyung; Kim, Hyunsoo; Choi, Chel-Jong; Kim, Kyong-Kook; Ahn, Kwang-Soon
2014-08-01
Au was electrodeposited potentiostatically at 0.3 V for 5 min on nanoporous Pt nanoparticle-coated F-doped SnO2 (FTO/Pt) substrates. For comparison, Au-electrodeposited FTO (FTO/Au) and Au-uncoated FTO/Pt were prepared. FTO/Au showed large-sized Au clusters dispersed sparsely over FTO, which resulted in lower electrocatalytic activity than FTO/Pt. In contrast, FTO/Pt exhibited poor stability unlike FTO/Au due to poisoning by the adsorption of sulfur species. The Au-electrodeposited FTO/Pt (FTO/Pt/Au) consisted of small Au clusters deposited over the entire area of Pt due to the effective Au nucleation provided by nanoporous metallic Pt. FTO/Pt/Au exhibited enhanced electrocatalytic activity and excellent stability because the small Au particles well-dispersed over the nanoporous metallic Pt network provided numerous electrochemical reaction sites, and the Pt surface was not exposed to the electrolyte. When FTO/Pt/Au was used as the counter electrode (CE) of a quantum dot-sensitized solar cell, the significantly enhanced electrocatalytic activity of the FTO/Pt/Au CE facilitated the reduction reaction of Sn2- + 2e- (CE) → Sn-12- + S2- at the CE/electrolyte interface, resulting in a significantly hindered recombination reaction, Sn2- + 2e- (TiO2 in the photoanode) → Sn-12- + S2-, and significantly improved overall energy conversion efficiency.
Electrochemical determination of the onset of bacterial surface adhesion
NASA Astrophysics Data System (ADS)
Jones, Akhenaton-Andrew; Buie, Cullen
2017-11-01
Microbial biofouling causes economic loss through corrosion and drag losses on ship hulls, and in oil and food distribution. Microorganisms interacting with surfaces under these open channel flows contend with high shear rates and active transport to the surface. The metallic surfaces they interact with carry charge at various potentials that are little addressed in literature. In this study we demonstrate that the Levich curve, chronoamperometry, and cyclic voltammetry in a rotating disk electrode are ideal for studying adhesion of microbes to metallic surfaces. We study the adhesion of Escherichia coli, Bacillus subtilis, and 1 μm silica microspheres over a 0.15 - 37.33 dynes .cm-2 or shear rates of 14.73 - 3727.28 s-1 range. Our results agree with literature on red blood cells in rotating disk electrodes, deposition rates from optical systems, and show that we can quantify changes in active electrode area by bacteria adhesion and protein secretion. These methods measure changes in area instead of mass, are more accurate than fluorescence microscopy, and apply to a larger range of problems than on-chip flow devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, S., E-mail: shailesh.sharma6@mail.dcu.ie; National Centre for Plasma Science and Technology, Dublin City University, Glasnevin, Dublin 9; Gahan, D., E-mail: david.gahan@impedans.com
2014-04-15
A novel retarding field energy analyzer design capable of measuring the spatial uniformity of the ion energy and ion flux across the surface of a semiconductor wafer is presented. The design consists of 13 individual, compact-sized, analyzers, all of which are multiplexed and controlled by a single acquisition unit. The analyzers were tested to have less than 2% variability from unit to unit due to tight manufacturing tolerances. The main sensor assembly consists of a 300 mm disk to mimic a semiconductor wafer and the plasma sampling orifices of each sensor are flush with disk surface. This device is placedmore » directly on top of the rf biased electrode, at the wafer location, in an industrial capacitively coupled plasma reactor without the need for any modification to the electrode structure. The ion energy distribution, average ion energy, and average ion flux were measured at the 13 locations over the surface of the powered electrode to determine the degree of spatial nonuniformity. The ion energy and ion flux are shown to vary by approximately 20% and 5%, respectively, across the surface of the electrode for the range of conditions investigated in this study.« less
Zhu, Zhixiang; Wang, Jian; Qiu, Keqing; Liu, Chengyuan; Qi, Fei; Pan, Yang
2014-04-01
A novel vacuum ultraviolet (VUV) light source assembly (VUVLSA) for enhancing the ionization efficiency of photoionization mass spectrometer has been described. The VUVLSA composes of a Krypton lamp and a pair of disk electrodes with circular center cavities. The two interior surfaces that face the photoionization region were aluminum-coated. VUV light can be reflected back and forth in the photoionization region between the electrodes, thus the photoionization efficiency can be greatly enhanced. The performances of two different shaped electrodes, the coated double flat electrodes (DFE), and double conical electrodes, were studied. We showed that the signal amplification of coated DFE is around 4 times higher than that of uncoated electrodes without VUV light reflection. The relationship between the pressure of ionization chamber and mass signal enhancement has also been studied.
Huang, Huihong; Hu, Xiulan; Zhang, Jianbo; Su, Nan; Cheng, JieXu
2017-01-01
Decreasing the cost associated with platinum-based catalysts along with improving their catalytic properties is a major challenge for commercial direct methanol fuel cells. In this work, a simple and facile strategy was developed for the more efficient preparation of multi-walled carbon nanotube (MWCNT) -supported Pt/CoPt composite nanoparticles (NPs) via solution plasma sputtering with subsequent thermal annealing. Quite different from general wet synthesis methods, Pt/CoPt composite NPs were directly derived from metal wire electrodes without any additions. The obtained Pt/CoPt/MWCNTs composite catalysts exhibited tremendous improvement in the electro-oxidation of methanol in acidic media with mass activities of 1719 mA mg−1Pt. This value is much higher than that of previous reports of Pt-Co alloy and commercial Pt/C (3.16 times) because of the many active sites and clean surface of the catalysts. The catalysts showed good stability due to the special synergistic effects of the CoPt alloy. Pt/CoPt/MWCNTs can be used as a promising catalyst for direct methanol fuel cells. In addition, this solution plasma sputtering-assisted synthesis method introduces a general and feasible route for the synthesis of binary alloys. PMID:28358143
Effects of electrode surface structure on the mechanoelectrical transduction of IPMC sensors
NASA Astrophysics Data System (ADS)
Palmre, Viljar; Pugal, David; Kim, Kwang
2014-03-01
This study investigates the effects of electrode surface structure on the mechanoelectrical transduction of IPMC sensors. A physics-based mechanoelectrical transduction model was developed that takes into account the electrode surface profile (shape) by describing the polymer-electrode interface as a Koch fractal structure. Based on the model, the electrode surface effects were experimentally investigated in case of IPMCs with Pd-Pt electrodes. IPMCs with different electrode surface structures were fabricated through electroless plating process by appropriately controlling the synthesis parameters and conditions. The changes in the electrode surface morphology and the corresponding effects on the IPMC mechanoelectrical transduction were examined. Our experimental results indicate that increasing the dispersion of Pd particles near the membrane surface, and thus the polymer-electrode interfacial area, leads to a higher peak mechanoelectrically induced voltage of IPMC. However, the overall effect of the electrode surface structure is relatively low compared to the electromechanical transduction, which is in good agreement with theoretical prediction.