Real-Time Optical Monitoring of Pt Catalyst Under the Potentiodynamic Conditions
NASA Astrophysics Data System (ADS)
Song, Hyeon Don; Lee, Minzae; Kim, Gil-Pyo; Choi, Inhee; Yi, Jongheop
2016-12-01
In situ monitoring of electrode materials reveals detailed physicochemical transition in electrochemical device. The key challenge is to explore the localized features of electrode surfaces, since the performance of an electrochemical device is determined by the summation of local architecture of the electrode material. Adaptive in situ techniques have been developed for numerous investigations; however, they require restricted measurement environments and provide limited information, which has impeded their widespread application. In this study, we realised an optics-based electrochemical in situ monitoring system by combining a dark-field micro/spectroscopy with an electrochemical workstation to investigate the physicochemical behaviours of Pt catalyst. We found that the localized plasmonic trait of a Pt-decorated Au nanoparticle as a model system varied in terms of its intensity and wavelength during the iterations of a cyclic voltammetry test. Furthermore, we show that morphological and compositional changes of the Pt catalyst can be traced in real time using changes in quantified plasmonic characteristics, which is a distinct advantage over the conventional electrochemistry-based in situ monitoring systems. These results indicate the substantial promise of online operando observation in a wide range of electrical energy conversion systems and electrochemical sensing areas.
40 CFR Table 1 to Subpart Llllll... - Applicability of General Provisions to Subpart LLLLLL
Code of Federal Regulations, 2011 CFR
2011-07-01
... Modacrylic Fibers Production Area Sources Pt. 63, Subpt. LLLLLL, Table 1 Table 1 to Subpart LLLLLL of Part 63... not include opacity or visible emissions standards or require a continuous opacity monitoring system... does not require a continuous opacity monitoring system or continuous emissions monitoring system. 63.9...
40 CFR Table 1 to Subpart Llllll... - Applicability of General Provisions to Subpart LLLLLL
Code of Federal Regulations, 2010 CFR
2010-07-01
... Modacrylic Fibers Production Area Sources Pt. 63, Subpt. LLLLLL, Table 1 Table 1 to Subpart LLLLLL of Part 63... not include opacity or visible emissions standards or require a continuous opacity monitoring system... does not require a continuous opacity monitoring system or continuous emissions monitoring system. 63.9...
Wireless Hydrogen Smart Sensor Based on Pt/Graphene-Immobilized Radio-Frequency Identification Tag.
Lee, Jun Seop; Oh, Jungkyun; Jun, Jaemoon; Jang, Jyongsik
2015-08-25
Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus, appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen-gas leak detection and surveillance systems are needed; additionally, the ability to monitor large areas (e.g., cities) via wireless networks is becoming increasingly important. In this report, we introduce a radio frequency identification (RFID)-based wireless smart-sensor system, composed of a Pt-decorated reduced graphene oxide (Pt_rGO)-immobilized RFID sensor tag and an RFID-reader antenna-connected network analyzer to detect hydrogen gas. The Pt_rGOs, produced using a simple chemical reduction process, were immobilized on an antenna pattern in the sensor tag through spin coating. The resulting Pt_rGO-based RFID sensor tag exhibited a high sensitivity to hydrogen gas at unprecedentedly low concentrations (1 ppm), with wireless communication between the sensor tag and RFID-reader antenna. The wireless sensor tag demonstrated flexibility and a long lifetime due to the strong immobilization of Pt_rGOs on the substrate and battery-independent operation during hydrogen sensing, respectively.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Emission Monitoring Systems (CEMS) 4 Table 4 to Subpart FFFF of Part 60 Protection of Environment... Construction On or Before December 9, 2004 Pt. 60, Subpt. FFFF, Table 4 Table 4 to Subpart FFFF of Part 60—Model Rule—Requirements for Continuous Emission Monitoring Systems (CEMS) As stated in § 60.3039, you...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Emission Monitoring Systems (CEMS) 4 Table 4 to Subpart FFFF of Part 60 Protection of Environment... Construction On or Before December 9, 2004 Pt. 60, Subpt. FFFF, Table 4 Table 4 to Subpart FFFF of Part 60—Model Rule—Requirements for Continuous Emission Monitoring Systems (CEMS) As stated in § 60.3039, you...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Emission Monitoring Systems (CEMS) 4 Table 4 to Subpart FFFF of Part 60 Protection of Environment... Construction On or Before December 9, 2004 Pt. 60, Subpt. FFFF, Table 4 Table 4 to Subpart FFFF of Part 60—Model Rule—Requirements for Continuous Emission Monitoring Systems (CEMS) As stated in § 60.3039, you...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Continuous Monitoring Systems for HAP Emissions From Sulfur Recovery Units 31 Table 31 to Subpart UUU of Part 63 Protection of Environment... Units Pt. 63, Subpt. UUU, Table 31 Table 31 to Subpart UUU of Part 63—Continuous Monitoring Systems for...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Continuous Monitoring Systems for HAP Emissions From Sulfur Recovery Units 31 Table 31 to Subpart UUU of Part 63 Protection of Environment... Units Pt. 63, Subpt. UUU, Table 31 Table 31 to Subpart UUU of Part 63—Continuous Monitoring Systems for...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Continuous Monitoring Systems for HAP Emissions From Sulfur Recovery Units 31 Table 31 to Subpart UUU of Part 63 Protection of Environment... Units Pt. 63, Subpt. UUU, Table 31 Table 31 to Subpart UUU of Part 63—Continuous Monitoring Systems for...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Monitoring Systems (CEMS) 3 Table 3 to Subpart EEEE of Part 60 Protection of Environment ENVIRONMENTAL... December 9, 2004, or for Which Modification or Reconstruction is Commenced on or After June 16, 2006 Pt. 60, Subpt. EEEE, Table 3 Table 3 to Subpart EEEE of Part 60—Requirements for Continuous Emission Monitoring...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Monitoring Systems (CEMS) 3 Table 3 to Subpart EEEE of Part 60 Protection of Environment ENVIRONMENTAL... December 9, 2004, or for Which Modification or Reconstruction is Commenced on or After June 16, 2006 Pt. 60, Subpt. EEEE, Table 3 Table 3 to Subpart EEEE of Part 60—Requirements for Continuous Emission Monitoring...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Monitoring Systems (CEMS) 3 Table 3 to Subpart EEEE of Part 60 Protection of Environment ENVIRONMENTAL... December 9, 2004, or for Which Modification or Reconstruction is Commenced on or After June 16, 2006 Pt. 60, Subpt. EEEE, Table 3 Table 3 to Subpart EEEE of Part 60—Requirements for Continuous Emission Monitoring...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Continous Monitoring Systems for Metal HAP Emissions From Catalytic Cracking Units 3 Table 3 to Subpart UUU of Part 63 Protection of... Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 3 Table 3 to Subpart UUU of Part 63—Continous Monitoring...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Continous Monitoring Systems for Metal HAP Emissions From Catalytic Cracking Units 3 Table 3 to Subpart UUU of Part 63 Protection of... Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 3 Table 3 to Subpart UUU of Part 63—Continous Monitoring...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Continous Monitoring Systems for Metal HAP Emissions From Catalytic Cracking Units 3 Table 3 to Subpart UUU of Part 63 Protection of... Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 3 Table 3 to Subpart UUU of Part 63—Continous Monitoring...
40 CFR Appendix A to Subpart Uuuuu - Hg Monitoring Provisions
Code of Federal Regulations, 2012 CFR
2012-07-01
... “cold standby” and may be reinstalled in the event of a primary monitoring system outage. A non... 40 Protection of Environment 15 2012-07-01 2012-07-01 false Hg Monitoring Provisions A Appendix A... Generating Units Pt. 63, Subpt. UUUUU, App. A Appendix A to Subpart UUUUU—Hg Monitoring Provisions 1. General...
Oskarsdóttir, Alma Rut; Gudmundsdottir, Brynja R; Indridason, Olafur S; Lund, Sigrun H; Arnar, David O; Bjornsson, Einar S; Magnusson, Magnus K; Jensdottir, Hulda M; Vidarsson, Brynjar; Francis, Charles W; Onundarson, Pall T
2017-05-01
Fiix-prothrombin time (Fiix-PT) differs from traditional PT in being affected by reduced factor (F) II or FX only. In the randomized controlled Fiix-trial, patients on warfarin monitored with Fiix-PT (Fiix-warfarin patients) had fewer thromboembolisms (TE), similar major bleeding (MB) and more stable anticoagulation than patients monitored with PT (PT-warfarin patients). In the current Fiix-trial report we analyzed how reduced anticoagulation variability during Fiix-PT monitoring was reflected in patients with TE or bleeding. Data from 1143 randomized patients was used. We analyzed the groups for anticoagulation intensity (time within target range; TTR), international normalized ratio (INR) variability (variance growth rate B 1 ; VGR) and dose adjustment frequency. We assessed how these parameters associated with clinically relevant vascular events (CRVE), ie TE or MB or clinically relevant non-MB. TTR was highest in Fiix-warfarin patients without CRVE (median 82%;IQR 72-91) and lowest in PT-warfarin patients with TE (62%;56-81). VGR was lowest in Fiix-warfarin patients without CRVE (median VGR B 1 0.17; 95% CI 0.08-0.38) and with TE (0.20;0.07-0.26) and highest in PT-warfarin patients with TE (0.50;0.27-0.90) or MB (0.59;0.07-1.36). The mean annual dose adjustment frequency was lowest in Fiix-warfarin patients with TE (mean 5.4;95% CI 3.9-7.3) and without CRVE (mean 6.0; 5.8-6.2) and highest in PT-warfarin patients with TE (14.2;12.2-16.3). Frequent dose changes predicted MB in both study arms. Compared to patients monitored with PT, high anticoagulation stability in Fiix-warfarin patients coincided with their low TE rate. Those with bleeding had high variability irrespective of monitoring method. Thus, although further improvements are needed to reduce bleeding, stabilization of anticoagulation by Fiix-PT monitoring associates with reduced TE.
40 CFR Table 8 to Subpart IIIii of... - Requirements for Cell Room Monitoring Program
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 13 2010-07-01 2010-07-01 false Requirements for Cell Room Monitoring... Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII, Table 8 Table 8 to Subpart IIIII of Part 63—Requirements for Cell Room Monitoring Program As stated in § 63.8192(g)(1), your mercury monitoring system must...
40 CFR Table 8 to Subpart IIIii of... - Requirements for Cell Room Monitoring Program
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 13 2011-07-01 2011-07-01 false Requirements for Cell Room Monitoring... Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII, Table 8 Table 8 to Subpart IIIII of Part 63—Requirements for Cell Room Monitoring Program As stated in § 63.8192(g)(1), your mercury monitoring system must...
40 CFR Table 8 to Subpart IIIii of... - Requirements for Cell Room Monitoring Program
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 14 2013-07-01 2013-07-01 false Requirements for Cell Room Monitoring... Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII, Table 8 Table 8 to Subpart IIIII of Part 63—Requirements for Cell Room Monitoring Program As stated in § 63.8192(g)(1), your mercury monitoring system must...
40 CFR Table 8 to Subpart IIIii of... - Requirements for Cell Room Monitoring Program
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 14 2012-07-01 2011-07-01 true Requirements for Cell Room Monitoring... Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII, Table 8 Table 8 to Subpart IIIII of Part 63—Requirements for Cell Room Monitoring Program As stated in § 63.8192(g)(1), your mercury monitoring system must...
40 CFR Table 8 to Subpart IIIii of... - Requirements for Cell Room Monitoring Program
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 14 2014-07-01 2014-07-01 false Requirements for Cell Room Monitoring... Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII, Table 8 Table 8 to Subpart IIIII of Part 63—Requirements for Cell Room Monitoring Program As stated in § 63.8192(g)(1), your mercury monitoring system must...
Li, Jingwen; Lyv, Zhonglin; Li, Yanli; Liu, Huan; Wang, Jinkui; Zhan, Wenjun; Chen, Hong; Chen, Huabing; Li, Xinming
2015-05-01
Due to their high NIR-optical absorption and high specific surface area, graphene oxide and graphene oxide-based nanocomposites have great potential in both drug delivery and photothermal therapy. In the work reported herein we successfully integrate a Pt(IV) complex (c,c,t-[Pt(NH3)2Cl2(OH)2]), PEGylated nano-graphene oxide (PEG-NGO), and a cell apoptosis sensor into a single platform to generate a multifunctional nanocomposite (PEG-NGO-Pt) which shows potential for targeted drug delivery and combined photothermal-chemotherapy under near infrared laser irradiation (NIR), and real-time monitoring of its therapeutic efficacy. Non-invasive imaging using a fluorescent probe immobilized on the GO shows an enhanced therapeutic effect of PEG-NGO-Pt in cancer treatment via apoptosis and cell death. Due to the enhanced cytotoxicity of cisplatin and the highly specific tumor targeting of PEG-NGO-Pt at elevated temperatures, this nanocomposite displays a synergistic effect in improving the therapeutic efficacy of the Pt drug with complete destruction of tumors, no tumor recurrence and minimal systemic toxicity in comparison with chemotherapy or photothermal treatment alone, highlighting the advantageous effects of integrating Pt(IV) with GO for anticancer treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Wentao; Zhang, Hui; Lynch, Jerome P.; Cesnik, Carlos E. S.; Li, Hui
2017-04-01
A novel d36-type piezoelectric wafer fabricated from lead magnesium niobate-lead titanate (PMN-PT) is explored for the generation of in-plane horizontal shear waves in plate structures. The study focuses on the development of a linear phased array (PA) of PMN-PT wafers to improve the damage detection capabilities of a structural health monitoring (SHM) system. An attractive property of in-plane horizontal shear waves is that they are nondispersive yet sensitive to damage. This study characterizes the directionality of body waves (Lamb and horizontal shear) created by a single PMN-PT wafer bonded to the surface of a metallic plate structure. Second, a linear PA is designed from PMN-PT wafers to steer and focus Lamb and horizontal shear waves in a plate structure. Numerical studies are conducted to explore the capabilities of a PMN-PT-based PA to detect damage in aluminum plates. Numerical simulations are conducted using the Local Interaction Simulation Approach (LISA) implemented on a parallelized graphical processing unit (GPU) for high-speed execution. Numerical studies are further validated using experimental tests conducted with a linear PA. The study confirms the ability of an PMN-PT phased array to accurately detect and localize damage in aluminum plates.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Emission Monitoring Systems (CEMS) 7 Table 7 to Subpart BBBB of Part 60 Protection of Environment... or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 7 Table 7 to Subpart BBBB of Part 60—Model Rule... sulfur dioxide emissions of the municipal waste combustion unit 4. Carbon Monoxide 125 percent of the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Emission Monitoring Systems (CEMS) 3 Table 3 of Subpart AAAA of Part 60 Protection of Environment... Definitions What definitions must I know? Pt. 60, Subpt. AAAA, Table 3 Table 3 of Subpart AAAA of Part 60... levels Use the following methods in appendix A of this part to measure oxygen (or carbon dioxide) 1...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Monitoring Systems (CEMS) 4 Table 4 of Subpart AAAA of Part 60 Protection of Environment ENVIRONMENTAL... Definitions What definitions must I know? Pt. 60, Subpt. AAAA, Table 4 Table 4 of Subpart AAAA of Part 60... dioxide emissions of the municipal waste combustion unit P.S. 2 Method 6C. 4. Carbon Monoxide 125 percent...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Monitoring Systems (CEMS) 4 Table 4 of Subpart AAAA of Part 60 Protection of Environment ENVIRONMENTAL... Definitions What definitions must I know? Pt. 60, Subpt. AAAA, Table 4 Table 4 of Subpart AAAA of Part 60... dioxide emissions of the municipal waste combustion unit P.S. 2 Method 6C. 4. Carbon Monoxide 125 percent...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Emission Monitoring Systems (CEMS) 7 Table 7 to Subpart BBBB of Part 60 Protection of Environment... or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 7 Table 7 to Subpart BBBB of Part 60—Model Rule... sulfur dioxide emissions of the municipal waste combustion unit 4. Carbon Monoxide 125 percent of the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Emission Monitoring Systems (CEMS) 3 Table 3 of Subpart AAAA to Part 60 Protection of Environment... SOURCES Pt. 60, Subpt. AAAA, Table 3 Table 3 of Subpart AAAA to Part 60—Requirements for Validating... following methods in appendix A of this part to measure oxygen (or carbon dioxide) 1. Nitrogen Oxides (Class...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Emission Monitoring Systems (CEMS) 7 Table 7 to Subpart BBBB of Part 60 Protection of Environment... or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 7 Table 7 to Subpart BBBB of Part 60—Model Rule... sulfur dioxide emissions of the municipal waste combustion unit 4. Carbon Monoxide 125 percent of the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Requirements for Installation, Operation, and Maintenance of Continuous Parameter Monitoring Systems 41 Table 41 to Subpart UUU of Part 63... Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 41 Table 41 to Subpart UUU of Part 63—Requirements for...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Requirements for Installation, Operation, and Maintenance of Continuous Parameter Monitoring Systems 41 Table 41 to Subpart UUU of Part 63... Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 41 Table 41 to Subpart UUU of Part 63...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Requirements for Installation, Operation, and Maintenance of Continuous Parameter Monitoring Systems 41 Table 41 to Subpart UUU of Part 63... Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 41 Table 41 to Subpart UUU of Part 63...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Requirements for Installation, Operation, and Maintenance of Continuous Parameter Monitoring Systems 41 Table 41 to Subpart UUU of Part 63... Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 41 Table 41 to Subpart UUU of Part 63...
Lin, Shu-Wen; Kang, Wen-Yi; Lin, Dong-Tsamn; Lee, James; Wu, Fe-Lin; Chen, Chuen-Liang; Tseng, Yufeng J
2014-01-01
Computerized alert and reminder systems have been widely accepted and applied to various patient care settings, with increasing numbers of clinical laboratories communicating critical laboratory test values to professionals via either manual notification or automated alerting systems/computerized reminders. Warfarin, an oral anticoagulant, exhibits narrow therapeutic range between treatment response and adverse events. It requires close monitoring of prothrombin time (PT)/international normalized ratio (INR) to ensure patient safety. This study was aimed to evaluate clinical outcomes of patients on warfarin therapy following implementation of a Personal Handy-phone System-based (PHS) alert system capable of generating and delivering text messages to communicate critical PT/INR laboratory results to practitioners' mobile phones in a large tertiary teaching hospital. A retrospective analysis was performed comparing patient clinical outcomes and physician prescribing behavior following conversion from a manual laboratory result alert system to an automated system. Clinical outcomes and practitioner responses to both alert systems were compared. Complications to warfarin therapy, warfarin utilization, and PT/INR results were evaluated for both systems, as well as clinician time to read alert messages, time to warfarin therapy modification, and monitoring frequency. No significant differences were detected in major hemorrhage and thromboembolism, warfarin prescribing patterns, PT/INR results, warfarin therapy modification, or monitoring frequency following implementation of the PHS text alert system. In both study periods, approximately 80% of critical results led to warfarin discontinuation or dose reduction. Senior physicians' follow-up response time to critical results was significantly decreased in the PHS alert study period (46.3% responded within 1 day) compared to the manual notification study period (24.7%; P = 0.015). No difference in follow-up response time was detected for junior physicians. Implementation of an automated PHS-based text alert system did not adversely impact clinical or safety outcomes of patients on warfarin therapy. Approximately 80% immediate recognition of text alerts was achieved. The potential benefits of an automated PHS alert for senior physicians were demonstrated.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Continuous Emission Monitoring Systems (CEMS) 6 Table 6 to Subpart BBBB of Part 60 Protection of Environment... or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 6 Table 6 to Subpart BBBB of Part 60—Model Rule... levels Use the following methods in appendix A of this part to measure oxygen (or carbon dioxide) 1...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Continuous Emission Monitoring Systems (CEMS) 6 Table 6 to Subpart BBBB of Part 60 Protection of Environment... or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 6 Table 6 to Subpart BBBB of Part 60—Model Rule... levels Use the following methods in appendix A of this part to measure oxygen (or carbon dioxide) 1...
Mouthguard biosensor with telemetry system for monitoring of saliva glucose: A novel cavitas sensor.
Arakawa, Takahiro; Kuroki, Yusuke; Nitta, Hiroki; Chouhan, Prem; Toma, Koji; Sawada, Shin-Ichi; Takeuchi, Shuhei; Sekita, Toshiaki; Akiyoshi, Kazunari; Minakuchi, Shunsuke; Mitsubayashi, Kohji
2016-10-15
We develop detachable "Cavitas sensors" to apply to the human oral cavity for non-invasive monitoring of saliva glucose. A salivary biosensor incorporating Pt and Ag/AgCl electrodes on a mouthguard support with an enzyme membrane is developed and tested. Electrodes are formed on the polyethylene terephthalate glycol (PETG) surface of the mouthguard. The Pt working electrode is coated with a glucose oxidase (GOD) membrane. The biosensor seamlessly is integrated with a glucose sensor and a wireless measurement system. When investigating in-vitro performance, the biosensor exhibits a robust relationship between output current and glucose concentration. In artificial saliva composed of salts and proteins, the glucose sensor is capable of highly sensitive detection over a range of 5-1000µmol/L of glucose, which encompasses the range of glucose concentrations found in human saliva. We demonstrate the ability of the sensor and wireless communication module to monitor saliva glucose in a phantom jaw imitating the structure of the human oral cavity. Stable and long-term real-time monitoring (exceeding 5h) with the telemetry system is achieved. The mouthguard biosensor will be useful as a novel method for real-time non-invasive saliva glucose monitoring for better management of dental patients. Copyright © 2015 Elsevier B.V. All rights reserved.
Monitoring of anticoagulant therapy in heart disease: considerations for the current assays.
Boroumand, Mohammadali; Goodarzynejad, Hamidreza
2010-01-01
Clinicians should be aware of new developments to familiarize themselves with pharmacokinetic and pharmacodynamic characteristics of new anticoagulant agents to appropriately and safely use them. For the moment, cardiologists and other clinicians also require to master currently available drugs, realizing the mechanism of action, side effects, and laboratory monitoring to measure their anticoagulant effects. Warfarin and heparin have narrow therapeutic window with high inter- and intra-patient variability, thereby the use of either drug needs careful laboratory monitoring and dose adjustment to ensure proper antithrombotic protection while minimizing the bleeding risk. The prothrombin time (PT) and the activated partial thromboplastin time (aPTT) are laboratory tests commonly used to monitor warfarin and heparin, respectively. These two tests depend highly on the combination of reagent and instrument utilized. Results for a single specimen tested in different laboratories are variable; this is mostly attributable to the specific reagents and to a much lesser degree to the instrument used. The PT stands alone as the single coagulation test that has undergone the most extensive attempt at assay standardization. The international normalized ratio (INR) was introduced to "normalize" all PT reagents to a World Health Organization (WHO) reference thromboplastin preparation standard, such that a PT measured anywhere in the world would result in an INR value similar to that which would have been achieved had the WHO reference thromboplastin been utilized. However, INRs are reproducible between laboratories for only those patients who are stably anticoagulated with vitamin K antagonists (VKAs) (i.e., at least 6 weeks of VKA therapy), and are not reliable or reproducible between laboratories for patients for whom VKA therapy has recently been started or any other clinical conditions associated with a prolonged PT such as liver disease, disseminated intravascular coagulation, and congenital factor deficiencies. In contrast to marked progress in the standardization of PT reagents for INR reporting, no standardization system has been globally adopted for standardization of PTT reagents. Recently College of American Pathologists recommend that individual laboratories establish their own therapeutic range by using aPTT values calibrated against accepted therapeutic unfractionated heparin (UFH) levels calibrated against accepted therapeutic UFH levels performing anti-Xa test (which is the most accurate assay for monitoring UFH therapy).Herein, we review recent data on the monitoring of conventional anticoagulant agents. Marked interlaboratory variability still exists for PT, INR, and PTT tests. Further research should be focused on improving the standardization and calibration of these assays.
de Miguel, Dunia; Burgaleta, Carmen; Reyes, Eduardo; Pascual, Teresa
2003-07-01
We evaluated a new portable monitor (AvoSure PT PRO, Menarini Diagnostics, Firenze, Italy) developed to test the prothrombin time in capillary blood and plasma by comparing it with the standard laboratory determination. We studied 62 patients receiving acenocoumarol therapy. The international normalized ratio (INR) in capillary blood was analyzed by 2 methods: AvoSure PT PRO and Thrombotrack Nycomed Analyzer (Axis-Shield, Dundee, Scotland). Parallel studies were performed in plasma samples by a reference method using the Behring Coagulation Timer (Behring Diagnostics, Marburg, Germany). Plasma samples also were tested with the AvoSure PT PRO. Correlation was good for INR values for capillary blood and plasma samples by AvoSure PT PRO and our reference method (R2 = 0.8596) and for capillary blood samples tested by the AvoSure PT PRO and Thrombotrack Nycomed Analyzer (R2 = 0.8875). The correlation for INR in capillary blood and plasma samples by AvoSure PT PRO was 0.6939 (P < .0004). Capillary blood determinations are rapid and effective for monitoring oral anticoagulation therapy and have a high correlation to plasma determinations. AvoSure PT PRO is accurate for controlling INR in plasma and capillary blood samples, may be used in outpatient clinics, and has advantages over previous portable monitors.
29 CFR Appendix A to Subpart M of... - Determining Roof Widths
Code of Federal Regulations, 2013 CFR
2013-07-01
..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Fall Protection Pt. 1926... monitoring system alone as a means of providing fall protection during the performance of roofing operations...
29 CFR Appendix A to Subpart M of... - Determining Roof Widths
Code of Federal Regulations, 2014 CFR
2014-07-01
..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Fall Protection Pt. 1926... monitoring system alone as a means of providing fall protection during the performance of roofing operations...
29 CFR Appendix A to Subpart M of... - Determining Roof Widths
Code of Federal Regulations, 2010 CFR
2010-07-01
..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Fall Protection Pt. 1926... monitoring system alone as a means of providing fall protection during the performance of roofing operations...
29 CFR Appendix A to Subpart M of... - Determining Roof Widths
Code of Federal Regulations, 2012 CFR
2012-07-01
..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Fall Protection Pt. 1926... monitoring system alone as a means of providing fall protection during the performance of roofing operations...
29 CFR Appendix A to Subpart M of... - Determining Roof Widths
Code of Federal Regulations, 2011 CFR
2011-07-01
..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Fall Protection Pt. 1926... monitoring system alone as a means of providing fall protection during the performance of roofing operations...
NASA Astrophysics Data System (ADS)
Ray, Nathan J.; Styrov, Vladislav V.; Karpov, Eduard G.
2017-12-01
We report on conversion of energy released due to chemical reactions into current for the decomposition of aqueous hydrogen peroxide solution on single phases Pt and TiO2, in addition to Pt and TiO2 simultaneously. We observe that H2O2 decomposition-induced current on TiO2 drastically overshadows the current generated by H2O2 decomposition on Pt. Photo-effects avoided, H2O2 decomposition was found to yield a conversion efficiency of 10-3 electrons generated per H2O2 molecule. Further understanding of chemical reaction-induced current shows promise as a metric with which the surface reaction may be monitored and could be greatly extended into the field of analytical chemistry.
Reuma.pt contribution to the knowledge of immune-mediated systemic rheumatic diseases.
Santos, Maria José; Canhão, Helena; Mourão, Ana Filipa; Oliveira Ramos, Filipa; Ponte, Cristina; Duarte, Cátia; Barcelos, Anabela; Martins, Fernando; Melo Gomes, José António
2017-01-01
Patient registries are key instruments aimed at a better understanding of the natural history of diseases, at assessing the effectiveness of therapeutic interventions, as well as identifying rare events or outcomes that are not captured in clinical trials. However, the potential of registries goes far beyond these aspects. For example, registries promote the standardization of clinical practice, can also provide information on domains that are not routinely collected in clinical practice and can support decision-making. Being aware of the importance of registries, the Portuguese Society of Rheumatology developed the Rheumatic Diseases Portuguese Register- Reuma.pt - which proved to be an innovative instrument essential to a better understanding of systemic immune-mediated rheumatic diseases. To describe the contribution of Reuma.pt to the knowledge of systemic immune-mediated rheumatic diseases. Reuma.pt is widely implemented, with 77 centres actively contributing to the recruitment and follow-up of patients. Reuma.pt follows in a standardized way patients with the following systemic inflammatory rheumatic diseases: rheumatoid arthritis (n=6218), psoriatic arthritis (n=1498), spondyloarthritis (n=2529), juvenile idiopathic arthritis (n =1561), autoinflammatory syndromes (n=122), systemic lupus erythematosus (n =1718), systemic sclerosis (n=180) and vasculitis (n=221). This platform is intended for use as an electronic medical record, provides standardized assessment of patients and support to the clinical decision, thereby contributing to a better quality of care of rheumatic patients. The research based on Reuma.pt identified genetic determinants of susceptibility and response to therapy, characterized in detail systemic rheumatic diseases and their long-term impact, critically appraised the performance of instruments for monitoring the disease activity, established the effectiveness and safety of biologic therapies and identified predictors of response, and proactively engaged patients in the management of their disease. Reuma.pt is an innovative tool, widely established in the country that contributes to a clinical practice of excellence and simultaneously to increase the knowledge of systemic immune-mediated rheumatic diseases. Additionally, Reuma.pt fosters patients' participation in the management of the disease.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Which Construction is Commenced After June 20, 1996 Pt. 60, Subpt. Ec, Table 3 Table 3 to Subpart Ec of... Operating parameters to be monitored Minimum frequency Data measurement Data recording Control system Dry scrubber followed by fabric filter Wet scrubber Dry scrubber followed by fabric filter and wet scrubber...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bratlie, Kaitlin
Catalytic reactions of cyclohexene, benzene, n-hexane, 2-methylpentane, 3-methylpentane, and 1-hexene on platinum catalysts were monitored in situ via sum frequency generation (SFG) vibrational spectroscopy and gas chromatography (GC). SFG is a surface specific vibrational spectroscopic tool capable of monitoring submonolayer coverages under reaction conditions without gas-phase interference. SFG was used to identify the surface intermediates present during catalytic processes on Pt(111) and Pt(100) single-crystals and on cubic and cuboctahedra Pt nanoparticles in the Torr pressure regime and at high temperatures (300K-450K). At low pressures (<10 -6 Torr), cyclohexene hydrogenated and dehydrogenates to form cyclohexyl (C 6H 11) and π-allyl Cmore » 6H 9, respectively, on Pt(100). Increasing pressures to 1.5 Torr form cyclohexyl, π-allyl C 6H 9, and 1,4-cyclohexadiene, illustrating the necessity to investigate catalytic reactions at high-pressures. Simultaneously, GC was used to acquire turnover rates that were correlated to reactive intermediates observed spectroscopically. Benzene hydrogenation on Pt(111) and Pt(100) illustrated structure sensitivity via both vibrational spectroscopy and kinetics. Both cyclohexane and cyclohexene were produced on Pt(111), while only cyclohexane was formed on Pt(100). Additionally, π-allyl c-C 6H 9 was found only on Pt(100), indicating that cyclohexene rapidly dehydrogenates on the (100) surface. The structure insensitive production of cyclohexane was found to exhibit a compensation effect and was analyzed using the selective energy transfer (SET) model. The SET model suggests that the Pt-H system donates energy to the E 2u mode of free benzene, which leads to catalysis. Linear C 6 (n-hexane, 2-methylpentane, 3-methylpentane, and 1-hexene) hydrocarbons were also investigated in the presence and absence of excess hydrogen on Pt(100). Based on spectroscopic signatures, mechanisms for catalytic isomerization and dehydrocyclization of n-hexane were identified. The structure sensitivity of benzene hydrogenation on shape controlled platinum nanoparticles was also studied. The nanoparticles showed similar selectivities to those found for Pt(111) and Pt(100) single-crystals. Additionally, the nanoparticles have lower activation energies than their single-crystal counterparts.« less
Xu, Qiao; Wei, Fang; Wang, Zhan; Yang, Qin; Zhao, Yuan-Di; Chen, Hong
2010-01-01
Since the mechanism of Cd(2+) stress for plants is not clear, an in vivo method to monitor Cd(2+) stress for plants is necessary. However, oxidative burst (OB) is a signal messenger in the process of Cd(2+) stress for plants. To establish an electrochemical method with poly-o-phenylenediamine and Pt microparticle modified Pt electrode (POPD-Pt-MP-Pt) as a microbiosensor for the in vivo detection of oxidative burst induced by Cd(2+) stress in oilseed rape (Brassica napus L.). The optimal fabrication of POPD-Pt-MP-Pt biosensor was achieved. Electrochemical signal was collected by amperometry. After oilseed rape was exposed to 84.9 mM CdCl(2) stress, three oxidative bursts were observed in oilseed rape by amperometry at 3.3 h, 8.4 h and 13.2 h, respectively. However, there was no obvious signal observed in the controlled assay. This contribution presents the in vivo monitoring of the OB process induced by Cd(2+) stress in oilseed rape by POPD-Pt-MP-Pt microbiosensor in real-time. The novel electrochemical microbiosensor not only facilitates the real-time study in plant self-defence response to the adverse environment such as Cd(2+) stress, but also provides an effective tool for probing the self-defence mechanism in plants.
NASA Astrophysics Data System (ADS)
Vasudevan, Srivathsan; Chen, George Chung Kit; Andika, Marta; Agarwal, Shuchi; Chen, Peng; Olivo, Malini
2010-09-01
Red blood cells (RBCs) have been found to undergo ``programmed cell death,'' or eryptosis, and understanding this process can provide more information about apoptosis of nucleated cells. Photothermal (PT) response, a label-free photothermal noninvasive technique, is proposed as a tool to monitor the cell death process of living human RBCs upon glucose depletion. Since the physiological status of the dying cells is highly sensitive to photothermal parameters (e.g., thermal diffusivity, absorption, etc.), we applied linear PT response to continuously monitor the death mechanism of RBC when depleted of glucose. The kinetics of the assay where the cell's PT response transforms from linear to nonlinear regime is reported. In addition, quantitative monitoring was performed by extracting the relevant photothermal parameters from the PT response. Twofold increases in thermal diffusivity and size reduction were found in the linear PT response during cell death. Our results reveal that photothermal parameters change earlier than phosphatidylserine externalization (used for fluorescent studies), allowing us to detect the initial stage of eryptosis in a quantitative manner. Hence, the proposed tool, in addition to detection of eryptosis earlier than fluorescence, could also reveal physiological status of the cells through quantitative photothermal parameter extraction.
Monitoring Location and Angular Orientation of a Pill
NASA Technical Reports Server (NTRS)
Schipper, John F.
2012-01-01
A mobile pill transmitter system moves through, or adjacent to, one or more organs in an animal or human body, while transmitting signals from its present location and/or present angular orientation. The system also provides signals from which the present roll angle of the pill, about a selected axis, can be determined. When the location coordinates angular orientation and the roll angle of the pill are within selected ranges, an aperture on the pill container releases a selected chemical into, or onto, the body. Optionally, the pill, as it moves, provides a sequence of visually perceptible images. The times for image formation may correspond to times at which the pill transmitter system location or image satisfies one of at least four criteria. This invention provides and supplies an algorithm for exact determination of location coordinates and angular orientation coordinates for a mobile pill transmitter (PT), or other similar device that is introduced into, and moves within, a GI tract of a human or animal body. A set of as many as eight nonlinear equations has been developed and applied, relating propagation of a wireless signal between either two, three, or more transmitting antennas located on the PT, to four or more non-coplanar receiving antennas located on a signal receiver appliance worn by the user. The equations are solved exactly, without approximations or iterations, and are applied in several environments: (1) association of a visual image, transmitted by the PT at each of a second sequence of times, with a PT location and PT angular orientation at that time; (2) determination of a position within the body at which a drug or chemical substance or other treatment is to be delivered to a selected portion of the body; (3) monitoring, after delivery, of the effect(s) of administration of the treatment; and (4) determination of one or more positions within the body where provision and examination of a finer-scale image is warranted.
A hydrogen fuel cell for rapid, enzyme-catalysed organic synthesis with continuous monitoring.
Wan, Lei; Megarity, Clare F; Siritanaratkul, Bhavin; Armstrong, Fraser A
2018-01-23
A one-pot fuel cell for specific, enzyme-catalysed organic synthesis, with continuous monitoring of rate and reaction progress, combines an electrode catalysing rapid, reversible and diffusion-controlled interconversion of NADP + and NADPH with a Pt electrode catalysing 2H + /H 2 interconversion. This Communication demonstrates its performance and characteristics using the reductive amination of 2-oxoglutarate as a test system.
The Celanese site is located in Shelby, North Carolina. Operation of the P&T system was discontinued on a trial basis for two years to evaluate monitored natural attenuation as a potential ground water remedy.
RFID Tag Helix Antenna Sensors for Wireless Drug Dosage Monitoring
Huang, Haiyu; Zhao, Peisen; Chen, Pai-Yen; Ren, Yong; Liu, Xuewu; Ferrari, Mauro; Hu, Ye; Akinwande, Deji
2014-01-01
Miniaturized helix antennas are integrated with drug reservoirs to function as RFID wireless tag sensors for real-time drug dosage monitoring. The general design procedure of this type of biomedical antenna sensors is proposed based on electromagnetic theory and finite element simulation. A cost effective fabrication process is utilized to encapsulate the antenna sensor within a biocompatible package layer using PDMS material, and at the same time form a drug storage or drug delivery unit inside the sensor. The in vitro experiment on two prototypes of antenna sensor-drug reservoir assembly have shown the ability to monitor the drug dosage by tracking antenna resonant frequency shift from 2.4–2.5-GHz ISM band with realized sensitivity of 1.27 \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\mu~{\\rm l}/{\\rm MHz}$\\end{document} for transdermal drug delivery monitoring and 2.76-\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\mu~{\\rm l}/{\\rm MHz}$\\end{document} sensitivity for implanted drug delivery monitoring. PMID:27170865
Yue, Ludan; Wang, Jinlong; Dai, Zhichao; Hu, Zunfu; Chen, Xue; Qi, Yafei; Zheng, Xiuwen; Yu, Dexin
2017-02-15
Multifunctional nanotheranostic agents have been highly commended due to the application to image-guided cancer therapy. Herein, based on the chemically disordered face centered cubic (fcc) FePt nanoparticles (NPs) and graphene oxide (GO), we develop a pH-responsive FePt-based multifunctional theranostic agent for potential in vivo and in vitro dual modal MRI/CT imaging and in situ cancer inhibition. The fcc-FePt will release highly active Fe ions due to the low pH in tumor cells, which would catalyze H 2 O 2 decomposition into reactive oxygen species (ROS) within the cells and further induce cancer cell apoptosis. Conjugated with folic acid (FA), the iron platinum-dimercaptosuccinnic acid/PEGylated graphene oxide-folic acid (FePt-DMSA/GO-PEG-FA) composite nanoassemblies (FePt/GO CNs) could effectively target and show significant toxicity to FA receptor-positive tumor cells, but no obvious toxicity to FA receptor-negative normal cells, which was evaluated by WST-1 assay. The FePt-based multifunctional nanoparticles allow real-time monitoring of Fe release by T 2 -weighted MRI, and the selective contrast enhancement in CT could be estimated in vivo after injection. The results showed that FePt-based NPs displayed excellent biocompatibility and favorable MRI/CT imaging ability in vivo and in vitro. Meanwhile, the decomposition of FePt will dramatically decrease the T 2 -weighted MRI signal and increase the ROS signal, which enables real-time and in situ visualized monitoring of Fe release in tumor cells. In addition, the self-sacrificial decomposition of fcc-FePt will be propitious to the self-clearance of the as-prepared FePt-based nanocomposite in vivo. Therefore, the FePt/GO CNs could serve as a potential multifunctional theranostic nanoplatform of MRI/CT imaging guided cancer diagnosis and therapy in the clinic.
Bottom-up meets top-down: tailored raspberry-like Fe3O4-Pt nanocrystal superlattices.
Qiu, Fen; Vervuurt, René H J; Verheijen, Marcel A; Zaia, Edmond W; Creel, Erin B; Kim, Youngsang; Urban, Jeffrey J; Bol, Ageeth A
2018-03-29
Supported catalysts are widely used in industry and can be optimized by tuning the composition, chemical structure, and interface of the nanoparticle catalyst and oxide support. Here we firstly combine a bottom up colloidal synthesis method with a top down atomic layer deposition (ALD) process to achieve a raspberry-like Pt-decorated Fe3O4 (Fe3O4-Pt) nanoparticle superlattices. This nanocomposite ensures the precision of the catalyst/support interface, improving the catalytic efficiency of the Fe3O4-Pt nanocomposite system. The morphology of the hybrid nanocomposites resulting from different cycles of ALD was monitored by scanning transmission electron microscopy, giving insight into the nucleation and growth mechanism of the ALD process. X-ray photoelectron spectroscopy studies confirm the anticipated electron transfer from Fe3O4 to Pt through the nanocomposite interface. Photocurrent measurement further suggests that Fe3O4 superlattices with controlled decoration of Pt have substantial promise for energy-efficient photoelectrocatalytic oxygen evolution reaction. This work opens a new avenue for designing supported catalyst architectures via precisely controlled decoration of single component superlattices with noble metals.
Wireless enzyme sensor system for real-time monitoring of blood glucose levels in fish.
Endo, Hideaki; Yonemori, Yuki; Hibi, Kyoko; Ren, Huifeng; Hayashi, Tetsuhito; Tsugawa, Wakako; Sode, Koji
2009-01-01
Periodic checks of fish health and the rapid detection of abnormalities are thus necessary at fish farms. Several studies indicate that blood glucose levels closely correlate to stress levels in fish and represent the state of respiratory or nutritional disturbance. We prepared a wireless enzyme sensor system to determine blood glucose levels in fish. It can be rapidly and conveniently monitored using the newly developed needle-type enzyme sensor, consisting of a Pt-Ir wire, Ag/AgCl paste, and glucose oxidase. To prevent the effects of interfering anionic species, such as uric acid and ascorbic acid, on the sensor response, the Pt-Ir electrode was coated with Nafion, and then glucose oxidase was immobilized on the coated electrode. The calibration curve of the glucose concentration was linear, from 0.18 to 144mg/dl, and the detection limit was 0.18mg/dl. The sensor was used to wirelessly monitor fish glucose levels. The sensor-calibrated glucose levels and actual blood glucose levels were in excellent agreement. The fluid of the inner sclera of the fish eyeball (EISF) was a suitable site for sensor implantation to obtain glucose sample. There was a close correlation between glucose concentrations in the EISF and those in the blood. Glucose concentrations in fish blood could be monitored in free-swimming fish in an aquarium for 3 days.
Photothermal technique in cell microscopy studies
NASA Astrophysics Data System (ADS)
Lapotko, Dmitry; Chebot'ko, Igor; Kutchinsky, Georgy; Cherenkevitch, Sergey
1995-01-01
Photothermal (PT) method is applied for a cell imaging and quantitative studies. The techniques for cell monitoring, imaging and cell viability test are developed. The method and experimental set up for optical and PT-image acquisition and analysis is described. Dual- pulsed laser set up combined with phase contrast illumination of a sample provides visualization of temperature field or absorption structure of a sample with spatial resolution 0.5 micrometers . The experimental optics, hardware and software are designed using the modular principle, so the whole set up can be adjusted for various experiments: PT-response monitoring or photothermal spectroscopy studies. Sensitivity of PT-method provides the imaging of the structural elements of live (non-stained) white blood cells. The results of experiments with normal and subnormal blood cells (red blood cells, lymphocytes, neutrophyles and lymphoblasts) are reported. Obtained PT-images are different from optical analogs and deliver additional information about cell structure. The quantitative analysis of images was used for cell population comparative diagnostic. The viability test for red blood cell differentiation is described. During the study of neutrophyles in norma and sarcoidosis disease the differences in PT-images of cells were found.
Lerman, Yaffa; Werber, Moshe M; Fine, Ilya; Kemelman, Polina
2011-01-01
The feasibility of the noninvasive assessment of blood 'coagulability' (the tendency to coagulate) has been tested by using a novel device, the Thrombo-Monitor. It monitors, by using the principles of near infra-red (NIR) dynamic light scattering, the tendency of blood to create clots. The Thrombo-Monitor observes the very initial changes of blood viscosity, which occurs due to the temporarily induced stasis of capillary blood of the finger. One hundred and fifteen patients aged >65 years (matched by age and sex) participated in the study. Patients were initially divided into four groups based on the patient's medical therapy. The study groups were: warfarin, enoxaparin, aspirin and/or clopidogrel, and a control group. The medications were given according to the patient's comorbidities (eg, atrial fibrillation [AF], status post pulmonary embolism [S/p PE], status post cerebrovascular accident [S/p CVA]). The Thrombo-Monitor Index (TMI) is a noninvasive index, derived on the basis of laboratory test results of international normalized ratio (INR) and prothrombin time (PT) values. For the group of patients who were treated only with warfarin, TMI was adjusted by using the jackknife statistical approach to create maximum correlation and linearity with INR and PT values that ranged from 1.1 to 5.0. For all warfarin patients (N = 35) the TMI was found to have a good correlation with INR and PT values (R(2) = 0.64, P < 0.00001); mean TMI = 1.86 (SD = 0.91); mean INR and PT = 2.3 (SD = 0.91). The calibration curve thus generated was used to calculate the TMI for all other groups: aspirin group, mean TMI = 1.3 (SD = 0.14, N = 23), corresponding approximately to INR and PT values of 1.036; enoxaparin group (N = 24), mean TMI = 1.34 (SD = 0.304), corresponding to mean INR and PT values of 1.07 (SD = 0.3); control group, INR and PT ≥ 1 (N = 32), mean TMI = 1.24 (SD = 0.32). R(2) of all control and warfarin patients (N = 67) was 0.55 (P < 0.00001). In summary, the newly introduced TMI index is significantly correlated with INR and PT values.
Runtime verification of embedded real-time systems.
Reinbacher, Thomas; Függer, Matthias; Brauer, Jörg
We present a runtime verification framework that allows on-line monitoring of past-time Metric Temporal Logic (ptMTL) specifications in a discrete time setting. We design observer algorithms for the time-bounded modalities of ptMTL, which take advantage of the highly parallel nature of hardware designs. The algorithms can be translated into efficient hardware blocks, which are designed for reconfigurability, thus, facilitate applications of the framework in both a prototyping and a post-deployment phase of embedded real-time systems. We provide formal correctness proofs for all presented observer algorithms and analyze their time and space complexity. For example, for the most general operator considered, the time-bounded Since operator, we obtain a time complexity that is doubly logarithmic both in the point in time the operator is executed and the operator's time bounds. This result is promising with respect to a self-contained, non-interfering monitoring approach that evaluates real-time specifications in parallel to the system-under-test. We implement our framework on a Field Programmable Gate Array platform and use extensive simulation and logic synthesis runs to assess the benefits of the approach in terms of resource usage and operating frequency.
Permanent downhole fiber optic pressure and temperature monitoring during CO2 injection
NASA Astrophysics Data System (ADS)
Schmidt-Hattenberger, C.; Moeller, F.; Liebscher, A.; Koehler, S.
2009-04-01
Permanent downhole monitoring of pressure and temperature, ideally over the entire length of the injection string, is essential for any smooth and safe CO2 injection within the framework of geological CO2 storage: i) To avoid fracturing of the cap-rock, a certain, site dependent pressure threshold within the reservoir should not be exceeded; ii) Any CO2 phase transition within the injection string, i.e. either condensation or evaporation, should be avoided. Such phase transitions cause uncontrolled and undetermined P-T regimes within the injection string that may ultimately result in a shut-in of the injection facility; and iii) Precise knowledge of the P and T response of the reservoir to the CO2 injection is a prerequisite to any reservoir modeling. The talk will present first results from our permanent downhole P-T monitoring program from the Ketzin CO2 storage test site (CO2SINK). At Ketzin, a fiber Bragg grating pressure sensor has been installed at the end of the injection string in combination with distributed temperature profiling over the entire length (about 550 m) of the string for continuous P-T monitoring during operation. Such fiber optic monitoring technique is used by default in the oil and gas industry but has not yet been applied as standard on a long-term routine mode for CO2 injection. Pressure is measured every 5 seconds with a resolution of < 1 bar. The data are later processed by user-defined program. The temperature logs along the injection string are measured every 3 minutes with a spatial resolution of one meter and with a temperature resolution of about 0.1°C. The long-term stability under full operational conditions is currently under investigation. The main computer of the P-T system operates as a stand-alone data-acquisition unit, and is connected with a secure intranet in order to ensure remote data access and system maintenance. The on-line measurements are displayed on the operator panel of the injection facility for direct control. The monitoring program started already prior to CO2 injection and runs since 6 months without any fatal errors. The recorded data cover the pre-injection well-testing phase, the initial injection phase as well as several shut-in and re-start phases during routine injection. Especially during the initial and re-start phases the monitoring results significantly optimized and improved the operation of the injection facility in terms of injection rate and injection temperature. Due to the high qualitative and also quantitative resolution of this technique even shortest-term transient disturbances of the reservoir and injection regime could be monitored as they may occur due to fluid sampling or logging in neighboring wells. Such short-term transient effects are normally overlooked using non-permanent monitoring techniques. On the long-term perspective, this monitoring technique will also support the control of CO2 injection tubing integrity, which is a prerequisite for any secure long-lasting CO2 injection and storage.
Flexible Microsensor Array for the Root Zone Monitoring of Porous Tube Plant Growth System
NASA Technical Reports Server (NTRS)
Sathyan, Sandeep; Kim, Chang-Soo; Porterfield, D. Marshall; Nagle, H. Troy; Brown, Christopher S.
2004-01-01
Control of oxygen and water in the root zone is vital to support plant growth in the microgravity environment. The ability to control these sometimes opposing parameters in the root zone is dependent upon the availability of sensors to detect these elements and provide feedback for control systems. In the present study we demonstrate the feasibility of using microsensor arrays on a flexible substrate for dissolved oxygen detection, and a 4-point impedance microprobe for surface wetness detection on the surface of a porous tube (PT) nutrient delivery system. The oxygen microsensor reported surface oxygen concentrations that correlated with the oxygen concentrations of the solution inside the PT when operated at positive pressures. At negative pressures the microsensor shows convergence to zero saturation (2.2 micro mol/L) values due to inadequate water film formation on porous tube surface. The 4-point microprobe is useful as a wetness detector as it provides a clear differentiation between dry and wet surfaces. The unique features of the dissolved oxygen microsensor array and 4-point microprobe include small and simple design, flexibility and multipoint sensing. The demonstrated technology is anticipated to provide low cost, and highly reliable sensor feedback monitoring plant growth nutrient delivery system in both terrestrial and microgravity environments.
Intercept Panel Trap (INT PT) effective in management of forest Coleoptera
D. Czokajlo; J. McLaughlin; L. I. Abu Ayyash; S. Teale; J. Wickham; J. Warren; R. Hoffman; B. Aukema; K. Raffa; P. Kirsch
2003-01-01
Trap efficacy in capturing economically important forest Coleoptera was measured in field trials comparing the Intercept Panel Trap (INT PT) with the Multi-Funnel Trap. The INT PT was designed to provide a better option for the monitoring of forest Coleoptera. The trap is made of corrugated plastic and is very robust under rigorous field conditions, but still...
Photothermal monitoring of interaction of carcinoma cells with cytostatic drugs in vitro
NASA Astrophysics Data System (ADS)
Lapotko, Dmitri; Hanna, Ehab; Cannon, Martin
2003-06-01
Background/problem. Monitoring of tumor response to cancer chemotherapy and dose optimization for specific patients are the key factors for successful application of anti-tumor drugs. Using patient's tumor cells for preliminary in vitro drug screening may allow optimal selection of drug type and dose. Method. Single cell state was studied with photothermal microscope. Carcinoma cells were irradiated at 427 nm with 8 ns laser pulse with energy 30 - 40 μJ. Cell photothermal (PT) response amplitude and shape from each cell were analyzed and amount of cells that produced specific PT response was used as PT parameter. Parallel experiment included cell viability control. Results were obtained for two cytotoxic chemotherapy agents -- Platinol-aq and Adrucil. Incubation of cell suspensions for 90 min at 20 and 37°C caused changes in cell PT parameters. Reaction of carcinoma cells to the drug was very similar to reaction of hepatocytes to respiratory chain inhibition and reaction of RBC to osmotic pressure decrease. PT effect was found to be dose-dependent. PT method allows detecting drug-induced changes before cell death or morphological changes and therefore can be fast and sensitive modality for control of chemotherapy.
NASA Astrophysics Data System (ADS)
Huan, Qiang; Miao, Hongchen; Li, Faxin
2018-02-01
Structural health monitoring (SHM) is of great importance for engineering structures as it may detect the early degradation and thus avoid life and financial loss. Guided wave based inspection is very useful in SHM due to its capability for long distance and wide range monitoring. The fundamental shear horizontal (SH0) wave based method should be most promising since SH0 is the unique non-dispersive wave mode in plate-like structures. In this work, a sparse array SHM system based on omnidirectional SH wave piezoelectric transducers (OSH-PT) was proposed and the multi data fusion method was used for defect inspection in a 2 mm thick aluminum plate. Firstly, the performances of three types OSH-PTs was comprehensively compared and the thickness-poled d15 mode OSH-PT used in this work was demonstrated obviously superior to the other two. Then, the signal processing method and imaging algorithm for this SHM system was presented. Finally, experiments were carried out to examine the performance of the proposed SHM system in defect localization and imaging. Results indicated that this SHM system can locate a through hole as small as 0.12λ (4 mm) in diameter (where λ is the wavelength corresponding to the central operation frequency) under frequencies from 90 to 150 kHz. It can also locate multiple defects accurately based on the baseline subtraction method. Obviously, this SHM system can detect larger areas with sparse sensors because of the adopted single mode, non-dispersive and low frequency SH0 wave which can propagate long distance with small attenuation. Considering its good performances, simple data processing and sparse array, this SH0 wave-based SHM system is expected to greatly promote the applications of guided wave inspection.
Evaluation of MOSFET-type glucose sensor using platinum electrode with glucose oxidase
NASA Astrophysics Data System (ADS)
Ooe, Katsutoshi; Hamamoto, Yasutaro; Hirano, Yoshiaki
2005-02-01
As the population ages, health management will be one of the important issues. The development of a safe medical machine based on MEMS technologies for the human body will be the primary research project in the future. We have developed the glucose sensor, as one of the medical based devices, for use in the Health Monitoring System (HMS). HMS is the device that continuously monitors human health conditions. For example, blood is the monitoring target of HMS. The glucose sensor specifically detects the glucose levels of the blood and monitors the glucose concentration as the blood sugar level. This glucose sensor has a "separated Au electrode", which immobilizes GOx. In our previous work, GOx was immobilized onto Au electrode by the SAMs (Self-Assembled Monolayer) method, and the sensor, using this working electrode, detected the glucose concentration of an aqueous glucose solution. In this report, we used a Pt electrode, which immobilized GOx, as a working electrode. Au electrode, which was used previously, was dissolved by the application of current in the presence of chloride ions. Based on the above-mentioned fact, a new working electrode, which immobilized GOx, was produced using Pt, which did not possess such characteristics. These Pt working electrodes were produced using the covalent binding method and the cross-link method, and both the electrodes displayed a good sensing property. In addition, the electrode using glutaraldehyde (GA) and bovine serum albumin (BSA) as crosslinking agents was produced, and it displayed better characteristics as compared with those displayed by the electrode that used only GA. Based on the above-mentioned techniques, the improvement in performance of the sensor was confirmed.
Shimakura, J; Fujimoto, K; Komuro, S; Nakano, M; Kanamaru, H
2002-05-01
1. The disposition of SM-11355, an anticancer platinum complex for hepatocellular carcinoma, was investigated in dog by measuring platinum (Pt) and radioactivity levels following intrahepatic arterial administration of (14)C-SM-11355 suspended in Lipiodol, an oily lymphographic agent. Plasma and excretion profiles were monitored in six animals, with tissue distribution studied after 1 day, 4 and 13 weeks (n = 2/time point). 2. SM-11355 was released very slowly into the systemic circulation from Lipiodol, resulting in very low levels of Pt compounds in plasma, urine, faeces and organs. Plasma levels of Pt and radioactivity declined with apparent half-lives of 5-7 weeks. Excretion continued even at 3 months after the administration with proportions excreted for Pt and radioactivity up to 30-60% in urine and 8-10% in faeces. 3. The Pt and radioactivity in the liver accounted for 80-100% of the dose at 1 day and for 20-50% at 13 weeks after the administration, predominately as intact SM-11355. The concentrations were highest in the left lobe of the liver, the administration site, but levels in the remainder of the liver were also markedly higher than those in plasma and other tissues. 4. The results strongly support the concept that SM-11355 targets the liver with highly selectivity and sustained release of Pt compounds.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Systems 40 Table 40 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 40 Table 40 to Subpart UUU of Part 63—Requirements for Installation, Operation, and Maintenance of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Systems 40 Table 40 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 40 Table 40 to Subpart UUU of Part 63—Requirements for Installation, Operation, and Maintenance of Continuous...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Systems 40 Table 40 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 40 Table 40 to Subpart UUU of Part 63—Requirements for Installation, Operation, and Maintenance of...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Systems 40 Table 40 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 40 Table 40 to Subpart UUU of Part 63—Requirements for Installation, Operation, and Maintenance of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Systems 40 Table 40 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 40 Table 40 to Subpart UUU of Part 63—Requirements for Installation, Operation, and Maintenance of Continuous...
Results of the performance verification of the CoaguChek XS system.
Plesch, W; Wolf, T; Breitenbeck, N; Dikkeschei, L D; Cervero, A; Perez, P L; van den Besselaar, A M H P
2008-01-01
This is the first paper reporting a performance verification study of a point-of-care (POC) monitor for prothrombin time (PT) testing according to the requirements given in chapter 8 of the International Organization for Standardization (ISO) 17593:2007 standard "Clinical laboratory testing and in vitro medical devices - Requirements for in vitro monitoring systems for self-testing of oral anticoagulant therapy". The monitor under investigation was the new CoaguChek XS system which is designed for use in patient self testing. Its detection principle is based on the amperometric measurement of the thrombin activity generated by starting the coagulation cascade using a recombinant human thromboplastin. The system performance verification study was performed at four study centers using venous and capillary blood samples on two test strip lots. Laboratory testing was performed from corresponding frozen plasma samples with six commercial thromboplastins. Samples from 73 normal donors and 297 patients on oral anticoagulation therapy were collected. Results were assessed using a refined data set of 260 subjects according to the ISO 17593:2007 standard. Each of the two test strip lots met the acceptance criteria of ISO 17593:2007 versus all thromboplastins (bias -0.19 to 0.18 INR; >97% of data within accuracy limits). The coefficient of variation for imprecision of the PT determinations in INR ranged from 2.0% to 3.2% in venous, and from 2.9% to 4.0% in capillary blood testing. Capillary versus venous INR data showed agreement of results with regression lines equal to the line of identity. The new system demonstrated a high level of trueness and accuracy, and low imprecision in INR testing. It can be concluded that the CoaguChek XS system complies with the requirements in chapter 8 of the ISO standard 17593:2007.
A Smart-Home System to Unobtrusively and Continuously Assess Loneliness in Older Adults
Dodge, Hiroko H.; Riley, Thomas; Jacobs, Peter G.; Thielke, Stephen; Kaye, Jeffrey
2016-01-01
Loneliness is a common condition in older adults and is associated with increased morbidity and mortality, decreased sleep quality, and increased risk of cognitive decline. Assessing loneliness in older adults is challenging due to the negative desirability biases associated with being lonely. Thus, it is necessary to develop more objective techniques to assess loneliness in older adults. In this paper, we describe a system to measure loneliness by assessing in-home behavior using wireless motion and contact sensors, phone monitors, and computer software as well as algorithms developed to assess key behaviors of interest. We then present results showing the accuracy of the system in detecting loneliness in a longitudinal study of 16 older adults who agreed to have the sensor platform installed in their own homes for up to 8 months. We show that loneliness is significantly associated with both time out-of-home (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$ {\\beta } = -0.88$ \\end{document} and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$p<0.01$ \\end{document}) and number of computer sessions (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$ {\\beta } = 0.78$ \\end{document} and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$p<0.05$ \\end{document}). \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$R^{2}$ \\end{document} for the model was 0.35. We also show the model’s ability to predict out-of-sample loneliness, demonstrating that the correlation between true loneliness and predicted out-of-sample loneliness is 0.48. When compared with the University of California at Los Angeles loneliness score, the normalized mean absolute error of the predicted loneliness scores was 0.81 and the normalized root mean squared error was 0.91. These results represent first steps toward an unobtrusive, objective method for the prediction of loneliness among older adults, and mark the first time multiple objective behavioral measures that have been related to this key health outcome. PMID:27574577
Dissolution of Pt during Oxygen Reduction Reaction Produces Pt Nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bae, Je Hyun; Brocenschi, Ricardo F.; Kisslinger, Kim
The loss of Pt during the oxygen reduction reaction (ORR) affects the performance and economic viability of fuel cells and sensors. Our group previously observed the dissolution of Pt nanoelectrodes at moderately negative potentials during the ORR. Here we report a more detailed study of this process and identify its product. The nanoporous Pt surface formed during the ORR was visualized by AFM and high-resolution SEM, which also showed ~5 nm sized Pt particles on the glass surface surrounding the electrode. Furthermore, the release of these nanoparticles into the solution was confirmed by monitoring their catalytically amplified collisions with amore » Hg-coated microelectrode used as the tip in the scanning electrochemical microscope (SECM).« less
Dissolution of Pt during Oxygen Reduction Reaction Produces Pt Nanoparticles
Bae, Je Hyun; Brocenschi, Ricardo F.; Kisslinger, Kim; ...
2017-11-15
The loss of Pt during the oxygen reduction reaction (ORR) affects the performance and economic viability of fuel cells and sensors. Our group previously observed the dissolution of Pt nanoelectrodes at moderately negative potentials during the ORR. Here we report a more detailed study of this process and identify its product. The nanoporous Pt surface formed during the ORR was visualized by AFM and high-resolution SEM, which also showed ~5 nm sized Pt particles on the glass surface surrounding the electrode. Furthermore, the release of these nanoparticles into the solution was confirmed by monitoring their catalytically amplified collisions with amore » Hg-coated microelectrode used as the tip in the scanning electrochemical microscope (SECM).« less
SiC Sensors in Extreme Environments: Real-time Hydrogen Monitoring for Energy Plant Applications
NASA Astrophysics Data System (ADS)
Ghosh, Ruby
2008-03-01
Clean, efficient energy production, such as the gasification of coal (syngas), requires physical and chemical sensors for exhaust gas monitoring as well as real-time control of the combustion process. Wide-bandgap semiconducting materials systems can meet the sensing demands in these extreme environments consisting of chemically corrosive gases at high temperature and pressure. We have developed a SiC based micro-sensor for detection of hydrogen containing species with millisecond response at 600 C. The sensor is a Pt-SiO2-SiC device with a dense Pt catalytic sensing film, capable of withstanding months of continuous high temperature operation. The device was characterized in robust sensing module that is compatible with an industrial reactor. We report on the performance of the SiC sensor in a simulated syngas ambient at 370 C containing the common interferants CO2, CH4 and CO [1]. In addition we demonstrate that hours of exposure to >=1000 ppm H2S and 15% water vapor does not degrade the sensor performance. To elucidate the mechanisms responsible for the hydrogen response of the sensor we have modeled the hydrogen adsorptions kinetics at the internal Pt-SiO2 interface, using both the Tempkin and Langmuir isotherms. Under the conditions appropriate for energy plant applications, the response of our sensor is significantly larger than that obtained from ultra-high vacuum electrochemical sensor measurements at high temperatures. We will discuss the role of morphology, at the nano to micro scale, on the enhanced catalytic activity observed for our Pt sensing films in response to a heated hydrogen gas stream at atmospheric pressure. [1] R. Loloee, B. Chorpening, S. Beers & R. Ghosh, Hydrogen monitoring for power plant applications using SiC sensors, Sens. Actuators B:Chem. (2007), doi:10.1016/j.snb.2007.07.118
NASA Astrophysics Data System (ADS)
Bennett, P. F. D.; Underhill, P. R.; Morelli, J.; Krause, T. W.
2018-04-01
Fuel channels in CANDU® (CANada Deuterium Uranium) nuclear reactors consist of two non-concentric tubes; an inner pressure tube (PT) and a larger diameter calandria tube (CT). Up to 400 horizontally mounted fuel channels are contained within a calandria vessel, which also holds the heavy water moderator. Certain fuel channels pass perpendicularly over horizontally oriented tubes (nozzles) that are part of the reactor's liquid injection shutdown system (LISS). Due to sag, these fuel channels are at risk of coming into contact with the LISS nozzles. In the event of contact between the LISS nozzle and CT, flow-induced vibrations from within the moderator could lead to fretting and deformation of the CT. LISS nozzle proximity to CTs is currently measured optically from within the calandria vessel, but from outside the fuel channels. Measurement by an independent means would provide confidence in optical results and supplement cases where optical observations are not possible. Separation of PT and CT, known as gap, is monitored from within the PT using a transmit-receive eddy current probe. Investigation of the eddy current based gap probe as a tool to also measure proximity of LISS nozzles was carried out experimentally in this work. Eddy current response as a function of LISS-PT proximity was recorded. When PT-CT gap, PT wall thickness, PT resistivity and probe lift-off variations were not present this dependence could be used to determine the LISS-PT proximity. This method has the potential to provide LISS-CT proximity using existing gap measurement data. Obtaining LISS nozzle proximity at multiple inspection intervals could be used to provide an estimate of the time to LISS-CT contact, and thereby provide a means of optimizing maintenance schedules.
Spatiotemporal norepinephrine mapping using a high-density CMOS microelectrode array.
Wydallis, John B; Feeny, Rachel M; Wilson, William; Kern, Tucker; Chen, Tom; Tobet, Stuart; Reynolds, Melissa M; Henry, Charles S
2015-10-21
A high-density amperometric electrode array containing 8192 individually addressable platinum working electrodes with an integrated potentiostat fabricated using Complementary Metal Oxide Semiconductor (CMOS) processes is reported. The array was designed to enable electrochemical imaging of chemical gradients with high spatiotemporal resolution. Electrodes are arranged over a 2 mm × 2 mm surface area into 64 subarrays consisting of 128 individual Pt working electrodes as well as Pt pseudo-reference and auxiliary electrodes. Amperometric measurements of norepinephrine in tissue culture media were used to demonstrate the ability of the array to measure concentration gradients in complex media. Poly(dimethylsiloxane) microfluidics were incorporated to control the chemical concentrations in time and space, and the electrochemical response at each electrode was monitored to generate electrochemical heat maps, demonstrating the array's imaging capabilities. A temporal resolution of 10 ms can be achieved by simultaneously monitoring a single subarray of 128 electrodes. The entire 2 mm × 2 mm area can be electrochemically imaged in 64 seconds by cycling through all subarrays at a rate of 1 Hz per subarray. Monitoring diffusional transport of norepinephrine is used to demonstrate the spatiotemporal resolution capabilities of the system.
Reliability of sensor-based real-time workflow recognition in laparoscopic cholecystectomy.
Kranzfelder, Michael; Schneider, Armin; Fiolka, Adam; Koller, Sebastian; Reiser, Silvano; Vogel, Thomas; Wilhelm, Dirk; Feussner, Hubertus
2014-11-01
Laparoscopic cholecystectomy is a very common minimally invasive surgical procedure that may be improved by autonomous or cooperative assistance support systems. Model-based surgery with a precise definition of distinct procedural tasks (PT) of the operation was implemented and tested to depict and analyze the process of this procedure. Reliability of real-time workflow recognition in laparoscopic cholecystectomy ([Formula: see text] cases) was evaluated by continuous sensor-based data acquisition. Ten PTs were defined including begin/end preparation calots' triangle, clipping/cutting cystic artery and duct, begin/end gallbladder dissection, begin/end hemostasis, gallbladder removal, and end of operation. Data acquisition was achieved with continuous instrument detection, room/table light status, intra-abdominal pressure, table tilt, irrigation/aspiration volume and coagulation/cutting current application. Two independent observers recorded start and endpoint of each step by analysis of the sensor data. The data were cross-checked with laparoscopic video recordings serving as gold standard for PT identification. Bland-Altman analysis revealed for 95% of cases a difference of annotation results within the limits of agreement ranging from [Formula: see text]309 s (PT 7) to +368 s (PT 5). Laparoscopic video and sensor data matched to a greater or lesser extent within the different procedural tasks. In the majority of cases, the observer results exceeded those obtained from the laparoscopic video. Empirical knowledge was required to detect phase transit. A set of sensors used to monitor laparoscopic cholecystectomy procedures was sufficient to enable expert observers to reliably identify each PT. In the future, computer systems may automate the task identification process provided a more robust data inflow is available.
Baş, Salih Zeki; Gülce, Handan; Yıldız, Salih; Gülce, Ahmet
2011-12-15
In this study, new xanthine biosensors, XO/Au/PVF/Pt and XO/Pt/PVF/Pt, based on electroless deposition of gold(Au) and platinum(Pt) nanoparticles on polyvinylferrocene(PVF) coated Pt electrode for detection of xanthine were presented. The amperometric responses of the enzyme electrodes were measured at the constant potential, which was due to the electrooxidation of enzymatically produced H(2)O(2). Compared with XO/PVF/Pt electrode, XO/Au/PVF/Pt and XO/Pt/PVF/Pt exhibited excellent electrocatalytic activity towards the oxidation of the analyte. Effect of Au and Pt nanoparticles was investigated by monitoring the response currents at the different deposition times and the different concentrations of KAuCl(4) and PtBr(2). Under the optimal conditions, the calibration curves of XO/Au/PVF/Pt and XO/Pt/PVF/Pt were obtained over the range of 2.5 × 10(-3) to 0.56 mM and 2.0 × 10(-3) to 0.66 mM, respectively. The detection limits were 7.5 × 10(-4)mM for XO/Au/PVF/Pt and 6.0 × 10(-4)mM for XO/Pt/PVF/Pt. The effects of interferents, the operational and the storage stabilities of the biosensors and the applicabilities of the proposed biosensors to the drug samples analysis were also evaluated. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mirabelli, R.; Battistoni, G.; Giacometti, V.; Patera, V.; Pinci, D.; Sarti, A.; Sciubba, A.; Traini, G.; Marafini, M.
2018-01-01
In Particle Therapy (PT) accelerated charged particles and light ions are used for treating tumors. One of the main limitation to the precision of PT is the emission of secondary particles due to the beam interaction with the patient: secondary emitted neutrons can release a significant dose far from the tumor. Therefore, a precise characterization of their flux, production energy and angle distribution is eagerly needed in order to improve the Treatment Planning Systems (TPS) codes. The principal aim of the MONDO (MOnitor for Neutron Dose in hadrOntherapy) project is the development of a tracking device optimized for the detection of fast and ultra-fast secondary neutrons emitted in PT. The detector consists of a matrix of scintillating square fibres coupled with a CMOS-based readout. Here, we present the characterization of the detector tracker prototype and CMOS-based digital SPAD (Single Photon Avalanche Diode) array sensor tested with protons at the Beam Test Facility (Frascati, Italy) and at the Proton Therapy Centre (Trento, Italy), respectively.
Zharov, Vladimir P.; Mercer, Kelly E.; Galitovskaya, Elena N.; Smeltzer, Mark S.
2006-01-01
We describe a new method for selective laser killing of bacteria targeted with light-absorbing gold nanoparticles conjugated with specific antibodies. The multifunctional photothermal (PT) microscope/spectrometer provides a real-time assessment of this new therapeutic intervention. In this integrated system, strong laser-induced overheating effects accompanied by the bubble-formation phenomena around clustered gold nanoparticles are the main cause of bacterial damage. PT imaging and time-resolved monitoring of the integrated PT responses assessed these effects. Specifically, we used this technology for selective killing of the Gram-positive bacterium Staphylococcus aureus by targeting the bacterial surface using 10-, 20-, and 40-nm gold particles conjugated with anti-protein A antibodies. Labeled bacteria were irradiated with focused laser pulses (420–570 nm, 12 ns, 0.1–5 J/cm2, 100 pulses), and laser-induced bacterial damage observed at different laser fluences and nanoparticle sizes was verified by optical transmission, electron microscopy, and conventional viability testing. PMID:16239330
46 CFR 11.950 - Subjects for engineer endorsements.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., Valves P-T P-T P-T P-T P-T P-T P-T P-T P-T P-T P-T P-T P-T P P P P-T P Hydraulics P-T P-T P-T P-T P-T P-T... P-T Boiler Water P-T P-T P-T P-T P-T P-T P-T P-T P-T P P-T P P P P-T P-T P Control Systems P-T P-T P...
46 CFR 11.950 - Subjects for engineer endorsements.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., Valves P-T P-T P-T P-T P-T P-T P-T P-T P-T P-T P-T P-T P-T P P P P-T P Hydraulics P-T P-T P-T P-T P-T P-T... P-T Boiler Water P-T P-T P-T P-T P-T P-T P-T P-T P-T P P-T P P P P-T P-T P Control Systems P-T P-T P...
46 CFR 11.950 - Subjects for engineer endorsements.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., Valves P-T P-T P-T P-T P-T P-T P-T P-T P-T P-T P-T P-T P-T P P P P-T P Hydraulics P-T P-T P-T P-T P-T P-T... P-T Boiler Water P-T P-T P-T P-T P-T P-T P-T P-T P-T P P-T P P P P-T P-T P Control Systems P-T P-T P...
46 CFR 11.950 - Subjects for engineer endorsements.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., Valves P-T P-T P-T P-T P-T P-T P-T P-T P-T P-T P-T P-T P-T P P P P-T P Hydraulics P-T P-T P-T P-T P-T P-T... P-T Boiler Water P-T P-T P-T P-T P-T P-T P-T P-T P-T P P-T P P P P-T P-T P Control Systems P-T P-T P...
Development of GUI Type On-Line Condition Monitoring Program for a Turboprop Engine Using Labview
NASA Astrophysics Data System (ADS)
Kong, Changduk; Kim, Keonwoo
2011-12-01
Recently, an aero gas turbine health monitoring system has been developed for precaution and maintenance action against faults or performance degradations of the advanced propulsion system which occurs in severe environments such as high altitude, foreign object damage particles, hot and heavy rain and snowy atmospheric conditions. However to establish this health monitoring system, the online condition monitoring program is firstly required, and the program must monitor the engine performance trend through comparison between measured engine performance data and base performance results calculated by base engine performance model. This work aims to develop a GUI type on-line condition monitoring program for the PT6A-67 turboprop engine of a high altitude and long endurance operation UAV using LabVIEW. The base engine performance of the on-line condition monitoring program is simulated using component maps inversely generated from the limited performance deck data provided by engine manufacturer. The base engine performance simulation program is evaluated because analysis results by this program agree well with the performance deck data. The proposed on-line condition program can monitor the real engine performance as well as the trend through precise comparison between clean engine performance results calculated by the base performance simulation program and measured engine performance signals. In the development phase of this monitoring system, a signal generation module is proposed to evaluate the proposed online monitoring system. For user friendly purpose, all monitoring program are coded by LabVIEW, and monitoring examples are demonstrated using the proposed GUI type on-condition monitoring program.
Gibbons, John P.; Antolak, John A.; Followill, David S.; Huq, M. Saiful; Klein, Eric E.; Lam, Kwok L.; Palta, Jatinder R.; Roback, Donald M.; Reid, Mark; Khan, Faiz M.
2014-01-01
A protocol is presented for the calculation of monitor units (MU) for photon and electron beams, delivered with and without beam modifiers, for constant source-surface distance (SSD) and source-axis distance (SAD) setups. This protocol was written by Task Group 71 of the Therapy Physics Committee of the American Association of Physicists in Medicine (AAPM) and has been formally approved by the AAPM for clinical use. The protocol defines the nomenclature for the dosimetric quantities used in these calculations, along with instructions for their determination and measurement. Calculations are made using the dose per MU under normalization conditions, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$D_0^\\prime $\\end{document}D0′, that is determined for each user's photon and electron beams. For electron beams, the depth of normalization is taken to be the depth of maximum dose along the central axis for the same field incident on a water phantom at the same SSD, where \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$D_0^\\prime $\\end{document}D0′ = 1 cGy/MU. For photon beams, this task group recommends that a normalization depth of 10 cm be selected, where an energy-dependent \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$D_0^\\prime $\\end{document}D0′ ≤ 1 cGy/MU is required. This recommendation differs from the more common approach of a normalization depth of dm, with \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$D_0^\\prime $\\end{document}D0′ = 1 cGy/MU, although both systems are acceptable within the current protocol. For photon beams, the formalism includes the use of blocked fields, physical or dynamic wedges, and (static) multileaf collimation. No formalism is provided for intensity modulated radiation therapy calculations, although some general considerations and a review of current calculation techniques are included. For electron beams, the formalism provides for calculations at the standard and extended SSDs using either an effective SSD or an air-gap correction factor. Example tables and problems are included to illustrate the basic concepts within the presented formalism. PMID:24593704
Development and Validation of Radiation-Responsive Protein Bioassays for Biodosimetry Applications
2005-01-01
radiation protein biomarker studies using an in vivo murine radiation model. Male BALB/c mice were exposed to 25-cGy 60Co- gamma radiation. Dosimetry ...Csoke, I. Hejja, An on-board TLD system for dose monitor- ing on the International Space Station, Radiation Protection Dosimetry , 84(1-4 Pt1): 321-323...diagnostic information after exposure. Using an ex vivo model system of human peripheral lymphocytes as well as an in vivo murine model, we demonstrated
Study on the failure temperature of Ti/Pt/Au and Pt5Si2-Ti/Pt/Au metallization systems
NASA Astrophysics Data System (ADS)
Zhang, Jie; Han, Jianqiang; Yin, Yijun; Dong, Lizhen; Niu, Wenju
2017-09-01
The Ti/Pt/Au metallization system has an advantage of resisting KOH or TMAH solution etching. To form a good ohmic contact, the Ti/Pt/Au metallization system must be alloyed at 400 °C. However, the process temperatures of typical MEMS packaging technologies, such as anodic bonding, glass solder bonding and eutectic bonding, generally exceed 400 °C. It is puzzling if the Ti/Pt/Au system is destroyed during the subsequent packaging process. In the present work, the resistance of doped polysilicon resistors contacted by the Ti/Pt/Au metallization system that have undergone different temperatures and time are measured. The experimental results show that the ohmic contacts will be destroyed if heated to 500 °C. But if a 20 nm Pt film is sputtered on heavily doped polysilicon and alloyed at 700 °C before sputtering Ti/Pt/Au films, the Pt5Si2-Ti/Pt/Au metallization system has a higher service temperature of 500 °C, which exceeds process temperatures of most typical MEMS packaging technologies. Project supported by the National Natural Science Foundation of China (No. 61376114).
ERIC Educational Resources Information Center
Couch, Richard W.
Precision teaching (PT) is an approach to the science of human behavior that focuses on precise monitoring of carefully defined behaviors in an attempt to construct an environmental analysis of that behavior and its controlling variables. A variety of subjects have been used with PT, ranging in academic objectives from beginning reading to college…
Algorithms for Monitoring Heart Rate and Respiratory Rate From the Video of a User’s Face
Sanyal, Shourjya
2018-01-01
Smartphone cameras can measure heart rate (HR) by detecting pulsatile photoplethysmographic (iPPG) signals from post-processing the video of a subject’s face. The iPPG signal is often derived from variations in the intensity of the green channel as shown by Poh et. al. and Verkruysse et. al.. In this pilot study, we have introduced a novel iPPG method where by measuring variations in color of reflected light, i.e., Hue, and can therefore measure both HR and respiratory rate (RR) from the video of a subject’s face. This paper was performed on 25 healthy individuals (Ages 20–30, 15 males and 10 females, and skin color was Fitzpatrick scale 1–6). For each subject we took two 20 second video of the subject’s face with minimal movement, one with flash ON and one with flash OFF. While recording the videos we simultaneously measuring HR using a Biosync B-50DL Finger Heart Rate Monitor, and RR using self-reporting. This paper shows that our proposed approach of measuring iPPG using Hue (range 0–0.1) gives more accurate readings than the Green channel. HR/Hue (range 0–0.1) (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$r=0.9201$ \\end{document}, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$p$ \\end{document}-value = 4.1617, and RMSE = 0.8887) is more accurate compared with HR/Green (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$r=0.4916$ \\end{document}, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$p$ \\end{document}-value = 11.60172, and RMSE = 0.9068). RR/Hue (range 0–0.1) (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$r=0.6575$ \\end{document}, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$p$ \\end{document}-value = 0.2885, and RMSE = 3.8884) is more accurate compared with RR/Green (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$r=0.3352$ \\end{document}, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$p$ \\end{document}-value = 0.5608, and RMSE = 5.6885). We hope that this hardware agnostic approach for detection of vital signals will have a huge potential impact in telemedicine, and can be used to tackle challenges, such as continuous non-contact monitoring of neo-natal and elderly patients. An implementation of the algorithm can be found at https://pulser.thinkbiosolution.com
A survey of Pharmacy and Therapeutic committees across Canada: scope and responsibilities.
Mittmann, Nicole; Knowles, Sandra
2009-01-01
Pharmacy and Therapeutics (P&T) committees have traditionally evaluated and developed policies for the clinical use of medications and for ensuring safe and effective drug use and administration. The objective of this study was to determine the current activities of hospital P&T committees across Canada. Surveys were mailed to 856 (693 English, 163 French translations) Canadian hospitals (acute, chronic or rehabilitation) across Canada. Questions consisted of information on P&T membership, scope and responsibilities. Completed surveys were returned by fax. All data was entered into Excel and analyzed for descriptive statistics. 123 surveys were returned, representing 207 hospitals, for an effective response rate of 24%. Four hospitals returned incomplete surveys. Surveys were returned from all areas of Canada, except the territories. On average, P&T committees met six times per year. The average size of the committees was 11 members, with physicians comprising half the membership. Pharmacists and nurses had equal representation; other members were community representatives, dieticians, quality assurance personnel and/or administrators. The top responsibilities of the P&T committee were inpatient formulary management (93% of respondents), drug-use policy making (92%), adverse drug reaction monitoring (83%), patient safety (80%) and drug-use monitoring (80%). Subcommittees were utilized by 46% of P&T committees including antimicrobial (38%), medication safety (25%) and nutrition (14%). Economic evaluations were most frequently completed by a pharmacist who had some previous pharmacoeconomic experience. This survey reports on the current status and responsibilities, namely formulary management and policy making, of P&T committees in Canada.
NASA Astrophysics Data System (ADS)
Warncke, Kurt
2009-03-01
Challenges to the understanding of how protein structure and dynamics contribute to catalysis in enzymes, and the use of time-resolved electron paramagnetic resonance (EPR) spectroscopic techniques to address the challenges, are examined in the context of the coenzyme B12-dependent enzyme, ethanolamine ammonia-lyase (EAL), from Salmonella typhimurium. EAL conducts the homolytic cleavage of the coenzyme cobalt-carbon bond, intraprotein radical migration (5-6 å), and hydrogen atom transfers, which enable the core radical-mediated rearrangement reaction. Thermodynamic and activation parameters are measured in two experimental systems, which were developed to isolate sub-sequences from the multi-step catalytic cycle, as follows: (1) A dimethylsulfoxide (DMSO)/water cryosolvent system is used to prepare the kinetically-arrested enzyme/coenzyme/substrate ternary complex in fluid solution at 230 K.[1] Temperature-step initiated cobalt-carbon bond cleavage and radical pair separation to form the Co(II)-substrate radical pair are monitored by using time-resolved, full-spectrum EPR spectroscopy (234<=T<=250 K).[1] (2) The Co(II)-substrate radical pair is cryotrapped in frozen aqueous solution at T<150 K, and then promoted to react by a temperature step. The reaction of the substrate radical along the native pathway to form the diamagnetic bound products is monitored by using time-resolved, full-spectrum EPR spectroscopy (187<=T<=217 K).[2] High temporal resolution is achieved, because the reactions are dramatically slowed at the low temperatures, relative to the initiation and spectrum acquistion times. The results are combined with high resolution structures of the reactant centers, obtained by pulsed-EPR spectroscopies,[3] and the protein, obtained by structural proteomics[4] and EPR and electron spin echo envelope modulation (ESEEM) in combination with site directed mutagenesis,[5] to approach a molecular level description of protein contributions to catalysis in EAL. [4pt] [1] Wang, M. & Warncke, K. J. Am. Chem. Soc. 2008, 130, 4846. [0pt] [2] Chen, Z. and Warncke, K. Biophys. J. 2008, 95 (December) [0pt] [3] Canfield, J. M. and Warncke, K. J. Phys. Chem. B 2002, 106, 8831. [0pt] [4] Sun, L. and Warncke, K. Proteins 2006, 64, 308. [0pt] [5] Sun, L., Groover, O., Canfield, J. M., and Warncke, K. Biochemistry 2008, 47, 5523.
Miao, Hongchen; Huan, Qiang; Li, Faxin; Kang, Guozheng
2018-04-24
Focusing the incident wave beam along a given direction is very useful in guided wave based structural health monitoring (SHM), as it will not only save input power but also simplify the interpretation of signals. Although the fundamental shear horizontal (SH 0 ) wave is of practical importance in SHM due to its non-dispersive characteristics so far there have been very limited transducers which can control the radiation patterns of SH 0 wave. In this work, a variable-frequency bidirectional SH 0 wave piezoelectric transducer (BSH-PT) is proposed, which consists of two rectangular face-shear (d 24 ) PZT wafers. The opposite face-shear deformation of the two PZT wafers under applied electric fields makes the BSH-PT capable of exciting SH 0 wave along two opposite directions (0° and 180°). Both finite element simulations and experimental testings are conducted to examine the performance of the proposed BSH-PT. Results show that pure SH 0 wave can be generated by this BSH-PT and its wave beam can be focused bi-directionally. Moreover, the bidirectional characteristics of the BSH-PT can be kept over a wide frequency range from 150 kHz to 250 kHz. As the circumferential SH 0 (CSH 0 ) wave in a thin hollow cylindrical structure is essentially equivalent to the SH 0 wave in a plate, the proposed BSH-PT may also be very useful to develop a CSH 0 -wave-based SHM system for hollow cylindrical structures. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Vlakh, E. G.; Grachova, E. V.; Zhukovsky, D. D.; Hubina, A. V.; Mikhailova, A. S.; Shakirova, J. R.; Sharoyko, V. V.; Tunik, S. P.; Tennikova, T. B.
2017-02-01
The growing attention to the luminescent nanocarriers is strongly stimulated by their potential application as drug delivery systems and by the necessity to monitor their distribution in cells and tissues. In this communication we report on the synthesis of amphiphilic polypeptides bearing C-terminal phosphorescent label together with preparation of nanoparticles using the polypeptides obtained. The approach suggested is based on a unique and highly technological process where the new phosphorescent Pt-cysteine complex serves as initiator of the ring-opening polymerization of α-amino acid N-carboxyanhydrides to obtain the polypeptides bearing intact the platinum chromophore covalently bound to the polymer chain. It was established that the luminescent label retains unchanged its emission characteristics not only in the polypeptides but also in more complicated nanoaggregates such as the polymer derived amphiphilic block-copolymers and self-assembled nanoparticles. The phosphorescent nanoparticles display no cytotoxicity and hemolytic activity in the tested range of concentrations and easily internalize into living cells that makes possible in vivo cell visualization, including prospective application in time resolved imaging and drug delivery monitoring.
Twofold Transition in PT-symmetric Coupled Oscillators
2013-12-26
theoretical model exhibits two PT transitions depending on the size of the coupling parameter . For small , the PT symmetry is broken and the system is...small , the PT symmetry is broken and the system is not in equilibrium, but when becomes sufficiently large, the system undergoes a transition to...an equilibrium phase in which the PT symmetry is unbroken. For very large , the system undergoes a second transition and is no longer in
Oxygen sensing glucose biosensors based on alginate nano-micro systems
NASA Astrophysics Data System (ADS)
Chaudhari, Rashmi; Joshi, Abhijeet; Srivastava, Rohit
2014-04-01
Clinically glucose monitoring in diabetes management is done by point-measurement. However, an accurate, continuous glucose monitoring, and minimally invasive method is desirable. The research aims at developing fluorescence-mediated glucose detecting biosensors based on near-infrared radiation (NIR) oxygen sensitive dyes. Biosensors based on Glucose oxidase (GOx)-Rudpp loaded alginate microspheres (GRAM) and GOx-Platinum-octaethylporphyrin (PtOEP)-PLAalginate microsphere system (GPAM) were developed using air-driven atomization and characterized using optical microscopy, CLSM, fluorescence spectro-photometry etc. Biosensing studies were performed by exposing standard solutions of glucose. Uniform sized GRAM and GPAM with size 50+/-10μm were formed using atomization. CLSM imaging of biosensors suggests that Rudpp and PtOEP nanoparticles are uniformly distributed in alginate microspheres. The GRAM and GPAM showed a good regression constant of 0.974 and of 0.9648 over a range of 0-10 mM of glucose with a high sensitivity of 3.349%/mM (625 nm) and 2.38%/mM (645 nm) at 10 mM of glucose for GRAM and GPAM biosensor. GRAM and GPAM biosensors show great potential in development of an accurate and minimally invasive glucose biosensor. NIR dye based assays can aid sensitive, minimally-invasive and interference-free detection of glucose in diabetic patients.
40 CFR Appendix A to Subpart Uuuuu... - Hg Monitoring Provisions
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 15 2014-07-01 2014-07-01 false Hg Monitoring Provisions A Appendix A... Steam Generating Units Pt. 63, Subpt. UUUUU, App. A Appendix A to Subpart UUUUU of Part 63—Hg Monitoring Provisions 1. General Provisions 1.1Applicability. These monitoring provisions apply to the measurement of...
40 CFR Appendix A to Subpart Uuuuu... - Hg Monitoring Provisions
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 15 2013-07-01 2013-07-01 false Hg Monitoring Provisions A Appendix A... Steam Generating Units Pt. 63, Subpt. UUUUU, App. A Appendix A to Subpart UUUUU of Part 63—Hg Monitoring Provisions 1. General Provisions 1.1Applicability. These monitoring provisions apply to the measurement of...
32 CFR Appendix H to Part 57 - Monitoring
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 1 2010-07-01 2010-07-01 false Monitoring H Appendix H to Part 57 National... PROVISION OF EARLY INTERVENTION AND SPECIAL EDUCATION SERVICES TO ELIGIBLE DOD DEPENDENTS Pt. 57, App. H Appendix H to Part 57—Monitoring A. Monitoring (1) The DoDEA and the Military Medical Departments shall...
Runnacles, Patrício; Arrais, Cesar Augusto Galvão; Pochapski, Marcia Thais; Dos Santos, Fábio André; Coelho, Ulisses; Gomes, João Carlos; De Goes, Mário Fernando; Gomes, Osnara Maria Mongruel; Rueggeberg, Frederick Allen
2015-05-01
This in vivo study evaluated pulp temperature (PT) rise in human premolars during exposure to a light curing unit (LCU) using selected exposure modes (EMs). After local Ethics Committee approval, intact first upper premolars, requiring extraction for orthodontic reasons, from 8 volunteers, received infiltrative and intraligamental anesthesia. The teeth (n=15) were isolated using rubber dam and a minute pulp exposure was attained. A sterile probe from a wireless, NIST-traceable, temperature acquisition system was inserted directly into the coronal pulp chamber, and real time PT (°C) was continuously monitored while the buccal surface was exposed to polywave light from a LED LCU (Bluephase 20i, Ivoclar Vivadent) using selected EMs allowing a 7-min span between each exposure: 10-s either in low (10-s/L) or high (10-s/H); 5-s-turbo (5-s/T); and 60-s-high (60-s/H) intensities. Peak PT values and PT increases from baseline (ΔT) after exposure were subjected to one-way, repeated measures ANOVAs, and Bonferroni's post hoc tests (α=0.05). Linear regression analysis was performed to establish the relationship between applied radiant exposure and ΔT. All EMs produced higher peak PT than the baseline temperature (p<0.001). The 60-s/H mode generated the highest peak PT and ΔT (p<0.001), with some teeth exhibiting ΔT higher than 5.5°C. A significant, positive relationship between applied radiant exposure and ΔT (r(2)=0.916; p<0.001) was noted. Exposing intact, in vivo anesthetized human upper premolars to a polywave LED LCU increases PT, and depending on EM and the tooth, PT increase can be higher than the critical ΔT, thought to be associated with pulpal necrosis. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Development and validation of the Overlap Muon Track Finder for the CMS experiment
NASA Astrophysics Data System (ADS)
Dobosz, J.; Mietki, P.; Zawistowski, K.; Żarnecki, G.
2016-09-01
Present article is a description of the authors contribution in upgrade and analysis of performance of the Level-1 Muon Trigger of the CMS experiment. The authors are students of University of Warsaw and Gdansk University of Technology. They are collaborating with the CMS Warsaw Group. This article summarises students' work presented during the Students session during the Workshop XXXVIII-th IEEE-SPIE Joint Symposium Wilga 2016. In the first section the CMS experiment is briefly described and the importance of the trigger system is explained. There is also shown basic difference between old muon trigger strategy and the upgraded one. The second section is devoted to Overlap Muon Track Finder (OMTF). This is one of the crucial components of the Level-1 Muon Trigger. The algorithm of OMTF is described. In the third section there is discussed one of the event selection aspects - cut on the muon transverse momentum pT . Sometimes physical muon with pT bigger than a certain threshold is unnecessarily cut and physical muon with lower pT survives. To improve pT selection modified algorithm was proposed and its performance was studied. One of the features of the OMTF is that one physical muon often results in several muon candidates. The Ghost-Buster algorithm is designed to eliminate surplus candidates. In the fourth section this algorithm and its performance on different data samples are discussed. In the fifth section Local Data Acquisition System (Local DAQ) is briefly described. It supports initial system commissioning. The test done with OMTF Local DAQ are described. In the sixth section there is described development of web application used for the control and monitoring of CMS electronics. The application provides access to graphical user interface for manual control and the connection to the CMS hierarchical Run Control.
Okuda, Masahiro; Taniguchi, Tomokuni; Takamiya, Osamu
2012-09-01
Tissue factor (TF), or thromboplastin, is a glycoprotein that triggers the extrinsic coagulation pathway. In blood coagulation testing, TF has been used as a natural source for determining Quick prothrombin time (PT) or the Owren PT (OBT). Currently, natural sources are being replaced with recombinant proteins because of their uniform characteristics and the possibility of stable mass production of PT reagents. Because bovine spongiform encephalopathy (BSE)-infected cows are widespread in Japan, we prepared a recombinant bovine TF (rbTF) with a baculovirus expression system using silkworms. To overcome the limitations of natural TF, especially in bovine brain, we expressed a full-length rbTF protein in Silkworm pupae with a baculovirus expression system. Baculovirus inactivation and the presence of DNA fragments in the rbTF fraction were confirmed using Reed-Muench and polymerase chain reaction methods after inactivation with a detergent. The rbTF fraction prepared by an immobilized anti-Silkworm pupae fluid protein Sepharose 4B column was identified as a visible band on western blots with a polyclonal antibody against human TF with cross-reactivity with TFs. The inhibition of the polyclonal antibody against human TF by the clotting assay for PT was identified, and amidolytic biological activity through activated factor VII on S-2288 substrate was observed. In conclusion, the rbTF expressed by the baculovirus system using Silkworm pupae was uniformly specific for bovine TF. The OBT reagent incorporated by this rbTF was similar to those of commercial reagents. It also showed a suitable International Sensitivity Index and reproducibility precision, thereby allowing for diagnostic use. Copyright © 2012 Elsevier Ltd. All rights reserved.
Tsui, Lok-kun; Benavidez, Angelica; Palanisamy, Ponnusamy; ...
2017-04-13
The development of on-board sensors for emissions monitoring is necessary for continuous monitoring of the performance of catalytic systems in automobiles. We have fabricated mixed potential electrochemical gas sensing devices with Pt, La 0.8Sr 0.2CrO 3 (LSCO), and Au/Pd alloy electrodes and a porous yttria-stabilized zirconia electrolyte. The three-electrode design takes advantage of the preferential selectivity of the Pt + Au/Pd and Pt + LSCO pairs towards different species of gases and has additional tunable selectivity achieved by applying a current bias to the latter pair. Voltages were recorded in single, binary, and ternary gas streams of NO, NO 2,more » C 3H 8, and CO. We have also trained artificial neural networks to examine the voltage output from sensors in biased and unbiased modes to both identify which single test gas or binary mixture of two test gases is present in a gas stream as well as extract concentration values. We were then able to identify single and binary mixtures of these gases with accuracy of at least 98%. For determining concentration, the peak in the error distribution for binary mixtures was 5% and 80% of test data fell under <12% error. The sensor stability was also evaluated over the course of over 100 days and the ability to retrain ANNs with a small dataset was demonstrated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsui, Lok-kun; Benavidez, Angelica; Palanisamy, Ponnusamy
The development of on-board sensors for emissions monitoring is necessary for continuous monitoring of the performance of catalytic systems in automobiles. We have fabricated mixed potential electrochemical gas sensing devices with Pt, La 0.8Sr 0.2CrO 3 (LSCO), and Au/Pd alloy electrodes and a porous yttria-stabilized zirconia electrolyte. The three-electrode design takes advantage of the preferential selectivity of the Pt + Au/Pd and Pt + LSCO pairs towards different species of gases and has additional tunable selectivity achieved by applying a current bias to the latter pair. Voltages were recorded in single, binary, and ternary gas streams of NO, NO 2,more » C 3H 8, and CO. We have also trained artificial neural networks to examine the voltage output from sensors in biased and unbiased modes to both identify which single test gas or binary mixture of two test gases is present in a gas stream as well as extract concentration values. We were then able to identify single and binary mixtures of these gases with accuracy of at least 98%. For determining concentration, the peak in the error distribution for binary mixtures was 5% and 80% of test data fell under <12% error. The sensor stability was also evaluated over the course of over 100 days and the ability to retrain ANNs with a small dataset was demonstrated.« less
NASA Astrophysics Data System (ADS)
Shu, Jian; Qiu, Zhenli; Wei, Qiaohua; Zhuang, Junyang; Tang, Dianping
2015-10-01
5,10,15,20-Tetraphenyl-21H,23H-porphine cobalt flat stacking on the reduced graphene oxide with platinum nanoparticles (PtNPs/CoTPP/rGO) were first synthesized and functionalized with monoclonal rabbit anti-aflatoxin B1 antibody (anti-AFB1) for highly efficient electrochemical immunoassay of aflatoxin B1 (AFB1) in this work. Transmission electron microscopy (TEM), atomic force microscope (AFM) and spectral techniques were employed to characterize the PtNPs/CoTPP/rGO hybrids. Using anti-AFB1-conjugated PtNPs/CoTPP/rGO as the signal-transduction tag, a novel non-enzymatic electrochemical immunosensing system was designed for detection of target AFB1 on the AFB1-bovine serum albumin-functionalized sensing interface. Experimental results revealed that the designed immunoassay could exhibit good electrochemical responses for target analyte and allowed the detection of AFB1 at a concentration as low as 5.0 pg mL-1 (5.0 ppt). Intra- and inter-assay coefficients of variation were below 10%. Importantly, the methodology was further validated for analyzing naturally contaminated or spiked blank peanut samples with consistent results obtained by AFB1 ELISA kit, thus providing a promising approach for quantitative monitoring of organic pollutants.
Gray whale sightings in the Canadian Beaufort Sea, September 2014
NASA Astrophysics Data System (ADS)
Iwahara, Yuka; Fujiwara, Amane; Ito, Keizo; Miyashita, Kazushi; Mitani, Yoko
2016-06-01
Gray whales (Eschrichtius robustus) are distributed within the productive neritic and estuarine waters of the North Pacific Ocean, the Bering Sea, and adjacent waters of the Arctic Ocean. They migrate to high-latitude feeding grounds each spring. Their main feeding grounds in the Arctic include the Chirikov Basin, the northeastern Chukchi Sea from Pt. Hope to Cape Lisburne and Pt. Lay to Pt. Barrow, and the northwestern Chukchi Sea along the Chukotka coast. Although sightings are rare in the Canadian Beaufort Sea, we observed three gray whales in two groups in this area in September 2014. A mud plume was observed near one of the whales, suggesting the animal had been feeding. In the Alaskan Beaufort Sea, large-scale monitoring of the distributions of marine mammals has been continuously conducted since 1979; however, there has been less monitoring in the Canadian Beaufort Sea. Therefore, it is necessary to record opportunistic sightings, such as those described here.
Sheny, D S; Philip, Daizy; Mathew, Joseph
2013-10-01
An environment friendly approach for the synthesis of Pt nanoparticles (NPs) using dried leaf powder of Anacardium occidentale is reported. The formation of Pt NPs is monitored using UV-Vis spectrophotometer. FTIR spectra reveal that proteins are bound to Pt nanoparticles. TEM images show irregular rod shaped particles which are crystalline. The quantity of leaf powder plays a vital role in determining the size of particles. Synthesized NPs exhibit good catalytic activity in the reduction of aromatic nitrocompound. The effective thermal conductivity of synthesized Pt/water nanofluid has been measured and found to be enhanced to a good extent. Copyright © 2013 Elsevier B.V. All rights reserved.
Development of a low-cost temperature data monitoring. An upgrade for hot box apparatus
NASA Astrophysics Data System (ADS)
de Rubeis, T.; Nardi, I.; Muttillo, M.
2017-11-01
The monitoring phase has gained a fundamental role in the energy efficiency evaluation of a system. Number and typology of the probes depend on the physical quantity to be monitored, and on the size and complexity of the system. Moreover, a measurement equipment should be designed to allow the employment of probes different for number and measured physical quantities. For this reason, a scalable equipment represents a good way for easily carrying out a system monitoring. Proprietary software and high costs characterize instruments of current use, thus limiting the possibilities to realize customized monitoring. In this paper, a temperature measuring instrument, conceived, designed, and realized for real time applications, is presented. The proposed system is based on digital thermometers and on open-source code. A remarkable feature of the instrument is the possibility of acquiring data from a high and variable number of probes (order of hundred), assuring flexibility of the software, since it can be programmed, and low-cost of the hardware components. The contemporary use of multiple temperature probes suggested to apply this instrument for a hot box apparatus, although the software can be set for recording different physical quantities. A hot box compliant with standard EN ISO 8990 should be equipped with several temperature probes to investigate heat exchanges of a specimen wall and thermal field of the chambers. In this work, preliminary tests have been carried out focusing only on the evaluation of the prototypal system’s performance. The tests were realized by comparing different sensors, such as thermocouples and resistance thermometers, traditionally employed in hot box experiments. A preliminary test was realized imposing a dynamic condition with a thermoelectric Peltier cell. Data obtained by digital thermometers DS18B20, compared with the ones of Pt100 probes, show a good correlation. Based on these encouraging results, a further test was carried out in hot box, comparing the data measured by digital thermometers, Pt100 and T-type thermocouples. In this case also, the analyses show a good correlation between either digital thermometers and analog sensors. From these results, it is reasonable to foresee that this measuring instrument could help those willing to realize or refurbish a hot box apparatus, and those who want to undertake temperature monitoring.
Synthesis and Exciton Dynamics of Triplet Sensitized Conjugated Polymers.
Andernach, Rolf; Utzat, Hendrik; Dimitrov, Stoichko D; McCulloch, Iain; Heeney, Martin; Durrant, James R; Bronstein, Hugo
2015-08-19
We report the synthesis of a novel polythiophene-based host-guest copolymer incorporating a Pt-porphyrin complex (TTP-Pt) into the backbone for efficient singlet to triplet polymer exciton sensitization. We elucidated the exciton dynamics in thin films of the material by means of Transient Absorption Spectrosopcy (TAS) on multiple time scales and investigated the mechanism of triplet exciton formation. During sensitization, singlet exciton diffusion is followed by exciton transfer from the polymer backbone to the complex where it undergoes intersystem crossing to the triplet state of the complex. We directly monitored the triplet exciton back transfer from the Pt-porphyrin to the polymer and found that 60% of the complex triplet excitons were transferred with a time constant of 1087 ps. We propose an equilibrium between polymer and porphyrin triplet states as a result of the low triplet diffusion length in the polymer backbone and hence an increased local triplet population resulting in increased triplet-triplet annihilation. This novel system has significant implications for the design of novel materials for triplet sensitized solar cells and upconversion layers.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 12 2014-07-01 2014-07-01 false Wastewater-Inspection and Monitoring... Production Pt. 63, Subpt. GGG, Table 7 Table 7 to Subpart GGG of Part 63—Wastewater—Inspection and Monitoring Requirements for Waste Management Units To comply with Inspection or monitoring requirement Frequency of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 12 2013-07-01 2013-07-01 false Wastewater-Inspection and Monitoring... Production Pt. 63, Subpt. GGG, Table 7 Table 7 to Subpart GGG of Part 63—Wastewater—Inspection and Monitoring Requirements for Waste Management Units To comply with Inspection or monitoring requirement Frequency of...
A facile method utilizing microwave irradiation is described that accomplishes the cross-linking reaction of PVA with metallic and bimetallic systems. Nanocomposites of PVA-cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-Pt, Pt-Fe, Cu...
List of Laboratories Approved by EPA for the Fourth Unregulated Contaminant Monitoring Rule (UCMR 4)
This document provides a list of laboratories that met the Unregulated Contaminant Monitoring Rule 4 (UCMR 4) Laboratory Approval Program application and Proficiency Testing (PT) criteria for the methods indicated.
List of Laboratories Approved by EPA for the Third Unregulated Contaminant Monitoring Rule (UCMR 3)
This document provides a list of laboratories that met the Unregulated Contaminant Monitoring Rule 3 (UCMR 3) Laboratory Approval Program application and Proficiency Testing (PT) criteria for the methods indicated.
Continuous minimally-invasive alcohol monitoring using microneedle sensor arrays.
Mohan, A M Vinu; Windmiller, Joshua Ray; Mishra, Rupesh K; Wang, Joseph
2017-05-15
The present work describes an attractive skin-worn microneedle sensing device for the minimally invasive electrochemical monitoring of subcutaneous alcohol. The device consists of an assembly of pyramidal microneedle structures integrated with Pt and Ag wires, each with a microcavity opening. The microneedle aperture was modified by electropolymerizing o-phenylene diamine onto the Pt wire microtransducer, followed by the immobilization of alcohol oxidase (AOx) in an intermediate chitosan layer, along with an outer Nafion layer. The resulting microneedle-based enzyme electrode displays an interference-free ethanol detection in artificial interstitial fluid without compromising its sensitivity, stability and response time. The skin penetration ability and the efficaciousness of the biosensor performance towards subcutaneous alcohol monitoring was substantiated by the ex vivo mice skin model analysis. Our results reveal that the new microneedle sensor holds considerable promise for continuous non-invasive alcohol monitoring in real-life situations. Copyright © 2017 Elsevier B.V. All rights reserved.
Continuous minimally-invasive alcohol monitoring using microneedle sensor arrays
Vinu Mohan, A. M.; Windmiller, Joshua Ray; Mishra, Rupesh K.; Wang, Joseph
2017-01-01
The present work describes an attractive skin-worn microneedle sensing device for the minimally invasive electrochemical monitoring of subcutaneous alcohol. The device consists of an assembly of pyramidal microneedle structures integrated with Pt and Ag wires, each with a microcavity opening. The microneedle aperture was modified by electropolymerizing o-phenylene diamine onto the Pt wire microtransducer, followed by the immobilization of alcohol oxidase (AOx) in an intermediate chitosan layer, along with an outer Nafion layer. The resulting microneedle-based enzyme electrode displays an interference-free ethanol detection in artificial interstitial fluid without compromising its sensitivity, stability and response time. The skin penetration ability and the efficaciousness of the biosensor performance towards subcutaneous alcohol monitoring was substantiated by the ex vivo mice skin model analysis. Our results reveal that the new microneedle sensor holds considerable promise for continuous non-invasive alcohol monitoring in real-life situations. PMID:28088750
Geilfus, Christoph-Martin; Mühling, Karl H; Kaiser, Hartmut; Plieth, Christoph
2014-01-01
Ratiometric analysis with H(+)-sensitive fluorescent sensors is a suitable approach for monitoring apoplastic pH dynamics. For the acidic range, the acidotropic dual-excitation dye Oregon Green 488 is an excellent pH sensor. Long lasting (hours) recordings of apoplastic pH in the near neutral range, however, are more problematic because suitable pH indicators that combine a good pH responsiveness at a near neutral pH with a high photostability are lacking. The fluorescent pH reporter protein from Ptilosarcus gurneyi (Pt-GFP) comprises both properties. But, as a genetically encoded indicator and expressed by the plant itself, it can be used almost exclusively in readily transformed plants. In this study we present a novel approach and use purified recombinant indicators for measuring ion concentrations in the apoplast of crop plants such as Vicia faba L. and Avena sativa L. Pt-GFP was purified using a bacterial expression system and subsequently loaded through stomata into the leaf apoplast of intact plants. Imaging verified the apoplastic localization of Pt-GFP and excluded its presence in the symplast. The pH-dependent emission signal stood out clearly from the background. PtGFP is highly photostable, allowing ratiometric measurements over hours. By using this approach, a chloride-induced alkalinizations of the apoplast was demonstrated for the first in oat. Pt-GFP appears to be an excellent sensor for the quantification of leaf apoplastic pH in the neutral range. The presented approach encourages to also use other genetically encoded biosensors for spatiotemporal mapping of apoplastic ion dynamics.
NASA Astrophysics Data System (ADS)
Wu, Wei
(Pb(Mg1/3Nb2/3)O3)0.65-(PbTiO 3)0.35 (PMN-PT) piezoelectric plate sensor (PEPS) showed enhanced sensitivity in chemical and biological sensing applications which has been attributed to binding-induced crystalline orientation switching in the PMN-PT layer. However, so far there has been no direct demonstration of PEPS crystalline orientation switching upon target-analyte binding. Using biotin and streptavidin binding as a model detection system and by direct X-Ray diffraction observations after analyte binding we have unambiguously demonstrated that switching of the crystalline orientations of the PMN-PT layer indeed occurred. In addition, we have shown that PEPS sensitivity enhancement increased with an increasing transverse electromechanical coupling constant, -k31, of the PMN-PT layer--which is known to correlate with the crystalline orientation switching capability--by increasing the grain size of the PMN-PT layer or by applying a DC bias electric field. Finally, unprecedented high sensitivity of PEPS with high -k31, (i.e., -k31 > 0.3) were illustrated by the aM (10-18 M) sensitivity of in situ DNA hybridization detection without amplification and by the 100 fg/ml (10-13 g/ml) sensitivity of rapid, in situ protein detection in biological fluids such as troponin I detection in serum for early sign of myocardial infarction (heart attack), Her2 detection in serum for cancer treatment and monitoring, Tn antigen and anti-Tn antibody detection in serum for early cancer detection, and Toxins detection in stool for Clostridium difficile infection detection.
Two- and four-dimensional representations of the PT - and CPT -symmetric fermionic algebras
NASA Astrophysics Data System (ADS)
Beygi, Alireza; Klevansky, S. P.; Bender, Carl M.
2018-03-01
Fermionic systems differ from their bosonic counterparts, the main difference with regard to symmetry considerations being that T2=-1 for fermionic systems. In PT -symmetric quantum mechanics an operator has both PT and CPT adjoints. Fermionic operators η , which are quadratically nilpotent (η2=0 ), and algebras with PT and CPT adjoints can be constructed. These algebras obey different anticommutation relations: η ηPT+ηPTη =-1 , where ηPT is the PT adjoint of η , and η ηCPT+ηCPTη =1 , where ηCPT is the CPT adjoint of η . This paper presents matrix representations for the operator η and its PT and CPT adjoints in two and four dimensions. A PT -symmetric second-quantized Hamiltonian modeled on quantum electrodynamics that describes a system of interacting fermions and bosons is constructed within this framework and is solved exactly.
Structural health monitoring of glass/epoxy composite plates with MEMS PMN-PT sensors
NASA Astrophysics Data System (ADS)
Simon, Brenton R.; Tang, Hong-Yue; Horsley, David A.; La Saponara, Valeria; Lestari, Wahyu
2009-03-01
Sensors constructed with single-crystal PMN-PT, i.e. Pb(Mg1/3Nb2/3)O3-PbTiO3 or PMN, are developed in this paper for structural health monitoring of composite plates. To determine the potential of PMN-PT for this application, glass/epoxy composite specimens were created containing an embedded delamination-starter. Two different piezoelectric materials were bonded to the surface of each specimen: PMN-PT, the test material, was placed on one side of the specimen, while a traditional material, PZT-4, was placed on the other. A comparison of the ability of both materials to transmit and receive an ultrasonic pulse was conducted, with the received signal detected by both a second surface-bonded transducer constructed of the same material, as well as a laser Doppler vibrometer (LDV) analyzing the same location. The optimal frequency range of both sets of transducers is discussed and a comparison is presented of the experimental results to theory. The specimens will be fatigued until failure with further data collected every 3,000 cycles to characterize the ability of each material to detect the growing delamination in the composite structure. This additional information will be made available during the conference.
NASA Astrophysics Data System (ADS)
Taurino, Irene; Sanzó, Gabriella; Mazzei, Franco; Favero, Gabriele; de Micheli, Giovanni; Carrara, Sandro
2015-10-01
Novel methods to obtain Pt nanostructured electrodes have raised particular interest due to their high performance in electrochemistry. Several nanostructuration methods proposed in the literature use costly and bulky equipment or are time-consuming due to the numerous steps they involve. Here, Pt nanostructures were produced for the first time by one-step template-free electrodeposition on Pt bare electrodes. The change in size and shape of the nanostructures is proven to be dependent on the deposition parameters and on the ratio between sulphuric acid and chloride-complexes (i.e., hexachloroplatinate or tetrachloroplatinate). To further improve the electrochemical properties of electrodes, depositions of Pt nanostructures on previously synthesised Pt nanostructures are also performed. The electroactive surface areas exhibit a two order of magnitude improvement when Pt nanostructures with the smallest size are used. All the biosensors based on Pt nanostructures and immobilised glucose oxidase display higher sensitivity as compared to bare Pt electrodes. Pt nanostructures retained an excellent electrocatalytic activity towards the direct oxidation of glucose. Finally, the nanodeposits were proven to be an excellent solid contact for ion measurements, significantly improving the time-stability of the potential. The use of these new nanostructured coatings in electrochemical sensors opens new perspectives for multipanel monitoring of human metabolism.
Pt/Cr and Pt/Ni catalysts for oxygen reduction reaction: to alloy or not to alloy?
Escaño, Mary Clare; Gyenge, Elod; Nakanishi, Hiroshi; Kasai, Hideaki
2011-04-01
Bimetallic systems such as Pt-based alloys or non-alloys have exhibited interesting catalytic properties but pose a major challenge of not knowing a priori how the electronic and chemical properties will be modified relative to the parent metals. In this work, we present the origin of the changes in the reactivity of Pt/Cr and Pt/Ni catalysts, which have been of wide interest in fuel cell research. Using spin-polarized density functional theory calculations, we have shown that the modification of Pt surface reactivity in Pt/Ni is purely of geometric origin (strain). We have also found that the Pt-Ni bonding is very weak, which explains the observed instability of Pt-Ni catalysts under electrochemical measurements. On the other hand, Pt/Cr systems are governed by strong ligand effect (metal-metal interaction), which explains the experimentally observed reactivity dependence on the relative composition of the alloying components. The general characteristics of the potential energy curves for O2 dissociative adsorption on the bimetallic systems and the pure Pt clarify why the d-band center still works for Pt/Cr despite the strong Pt-Cr bonding and high spin polarization of Pt d-states. On the basis of the above clarifications, viable Pt-Cr and Pt-Ni structures, which involve nano-sized alloys and non-alloy bulk catalyst, which may strike higher than the currently observed oxidation reduction reaction activity are proposed.
40 CFR Appendix A to Part 75 - Specifications and Test Procedures
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Specifications and Test Procedures A... (CONTINUED) CONTINUOUS EMISSION MONITORING Pt. 75, App. A Appendix A to Part 75—Specifications and Test... concentration monitor and diluent gas monitor) will pass the relative accuracy test (see section 6 of this...
49 CFR Appendix G to Part 227 - Schedule of Civil Penalties
Code of Federal Regulations, 2010 CFR
2010-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION OCCUPATIONAL NOISE EXPOSURE Pt. 227, App. G Appendix G to Part 227... Requirements 227.103Noise monitoring program: (a) Failure to develop and/or implement a noise monitoring... levels and/or make noise measurements as required 2,500 5,000 (d) Failure to repeat noise monitoring...
Information Retrieval and Criticality in Parity-Time-Symmetric Systems.
Kawabata, Kohei; Ashida, Yuto; Ueda, Masahito
2017-11-10
By investigating information flow between a general parity-time (PT-)symmetric non-Hermitian system and an environment, we find that the complete information retrieval from the environment can be achieved in the PT-unbroken phase, whereas no information can be retrieved in the PT-broken phase. The PT-transition point thus marks the reversible-irreversible criticality of information flow, around which many physical quantities such as the recurrence time and the distinguishability between quantum states exhibit power-law behavior. Moreover, by embedding a PT-symmetric system into a larger Hilbert space so that the entire system obeys unitary dynamics, we reveal that behind the information retrieval lies a hidden entangled partner protected by PT symmetry. Possible experimental situations are also discussed.
Design of PID temperature control system based on STM32
NASA Astrophysics Data System (ADS)
Zhang, Jianxin; Li, Hailin; Ma, Kai; Xue, Liang; Han, Bianhua; Dong, Yuemeng; Tan, Yue; Gu, Chengru
2018-03-01
A rapid and high-accuracy temperature control system was designed using proportional-integral-derivative (PID) control algorithm with STM32 as micro-controller unit (MCU). The temperature control system can be applied in the fields which have high requirements on the response speed and accuracy of temperature control. The temperature acquisition circuit in system adopted Pt1000 resistance thermometer as temperature sensor. Through this acquisition circuit, the monitoring actual temperature signal could be converted into voltage signal and transmitted into MCU. A TLP521-1 photoelectric coupler was matched with BD237 power transistor to drive the thermoelectric cooler (TEC) in FTA951 module. The effective electric power of TEC was controlled by the pulse width modulation (PWM) signals which generated by MCU. The PWM signal parameters could be adjusted timely by PID algorithm according to the difference between monitoring actual temperature and set temperature. The upper computer was used to input the set temperature and monitor the system running state via serial port. The application experiment results show that the temperature control system is featured by simple structure, rapid response speed, good stability and high temperature control accuracy with the error less than ±0.5°C.
Floroff, Catherine K; Rieger, Krista L; Veasey, Tara M; Strout, Sara E; DeNino, Walter F; Meadows, Holly B; Stroud, Martha R; Toole, John M; Heyward, Dawn P; Brisco-Bacik, Meredith A; Cook, Jennifer L; Lazarchick, John; Uber, Walter E
Pump thrombosis (PT) is a severe complication of left ventricular assist device (LVAD) support. This study evaluated PT and bleeding after LVAD placement in patients responsive to a standard aspirin dose of 81 mg using platelet inhibition monitoring compared with initial nonresponders who were then titrated upward to achieve therapeutic response. Patients ≥ 18 years of age with initial placement of HeartMate II LVAD at our institution and at least one VerifyNow Aspirin test performed during initial hospitalization were included. The primary endpoints were bleeding and PT compared between initial aspirin responders and nonresponders. Of 85 patients, 19 (22%) were nonresponsive to initial aspirin therapy. Responders and nonresponders showed similar survival (p = 0.082), freedom from suspected/confirmed PT (p = 0.941), confirmed PT (p = 0.273), bleeding (p = 0.401), and incidence rates in PT and bleeding. Among the initial responders (<500 vs. 500-549 aspirin reaction units), there were no significant differences in survival (p = 0.177), freedom from suspected/confirmed PT (p = 0.542), confirmed PT (p = 0.159), bleeding (p = 0.879), and incidence of PT and bleeding. Platelet function testing may detect resistance to standard aspirin regimens used in LVAD patients. Dose escalation in initially nonresponsive patients to achieve responsiveness may confer a similar PT risk to patients initially responsive to standard aspirin dosing without increased bleeding risk.
NASA Astrophysics Data System (ADS)
Loomans, M. E.; Chi, D. Z.; Chua, S. J.
2004-10-01
Bulk-phase equilibria in Ni-rich/Si-rich alloys of the Ni-Pt-Si and Ni-Pd-Si systems were investigated. Results suggest that a bulk monosilicide solid solution, containing up to at least 11 at. pct Pt, exists in the Ni-Pt-Si system. Monosilicides containing more than 11 at. pct Pt were not examined. Results from both ternary systems point convincingly to the existence of a NiSi+Si↔NiSi2 eutectoid reaction near 700 °C in the Ni-Si binary system; data from the Ni-Pt-Si system, which yield the more accurate determination of the eutectoid temperature, place it at roughly 710 °C. The Pt and Pd concentrations of monosilicide in equilibrium with disilicide and Si were measured using energy-dispersive spectrometry (EDS) and were found to increase with temperature.
Kim, Chang-Eun; Lim, Dong-Hee; Jang, Jong Hyun; Kim, Hyoung Juhn; Yoon, Sung Pil; Han, Jonghee; Nam, Suk Woo; Hong, Seong-Ahn; Soon, Aloysius; Ham, Hyung Chul
2015-01-21
The effect of a subsurface hetero layer (thin gold) on the activity and stability of Pt skin surface in Pt3M system (M = 3d transition metals) is investigated using the spin-polarized density functional theory calculation. First, we find that the heterometallic interaction between the Pt skin surface and the gold subsurface in Pt/Au/Pt3M system can significantly modify the electronic structure of the Pt skin surface. In particular, the local density of states projected onto the d states of Pt skin surface near the Fermi level is drastically decreased compared to the Pt/Pt/Pt3M case, leading to the reduction of the oxygen binding strength of the Pt skin surface. This modification is related to the increase of surface charge polarization of outmost Pt skin atoms by the electron transfer from the gold subsurface atoms. Furthermore, a subsurface gold layer is found to cast the energetic barrier to the segregation loss of metal atoms from the bulk (inside) region, which can enhance the durability of Pt3M based catalytic system in oxygen reduction condition at fuel cell devices. This study highlights that a gold subsurface hetero layer can provide an additional mean to tune the surface activity toward oxygen species and in turn the oxygen reduction reaction, where the utilization of geometric strain already reaches its practical limit.
NASA Astrophysics Data System (ADS)
Alsaad, A.; Ahmad, A. A.; Shukri, A. A.; Bani-Younes, O. A.
2018-02-01
The structural and magnetic properties of both L10 ordered FePt and CoPt nanoparticles make them potential candidates for optical-electronic and magneto-optical devices. First, we carried out an ab initio total energy minimization study to find the geometrical optimization of both L10 phases of FePt and CoPt nanoparticles. Then, we investigated the magnetocrystalline anisotropy energy (MAE) of both systems along special line joining the points of high symmetry (A,B and C points) using super-cell slap approach with alternating layers Fe/Co and Pt along the (001) direction. We found that the point (A) has the highest MAE value for both systems, where the value of MAE in FePt is 8.89 × 107 erg/cm3 and in CoPt is 6.40 × 107 erg/cm3. Our spin density based calculations indicate that large spin-orbit interaction and the hybridization between Pt 5d states and Fe/Co 3d states are the dominant factors in determining the MAE in both systems.
PT -symmetric slowing down of decoherence
Gardas, Bartlomiej; Deffner, Sebastian; Saxena, Avadh Behari
2016-10-27
Here, we invesmore » tigate PT -symmetric quantum systems ultraweakly coupled to an environment. We find that such open systems evolve under PT -symmetric, purely dephasing and unital dynamics. The dynamical map describing the evolution is then determined explicitly using a quantum canonical transformation. Furthermore, we provide an explanation of why PT -symmetric dephasing-type interactions lead to a critical slowing down of decoherence. This effect is further exemplified with an experimentally relevant system, a PT -symmetric qubit easily realizable, e.g., in optical or microcavity experiments.« less
PT -symmetric slowing down of decoherence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardas, Bartlomiej; Deffner, Sebastian; Saxena, Avadh Behari
Here, we invesmore » tigate PT -symmetric quantum systems ultraweakly coupled to an environment. We find that such open systems evolve under PT -symmetric, purely dephasing and unital dynamics. The dynamical map describing the evolution is then determined explicitly using a quantum canonical transformation. Furthermore, we provide an explanation of why PT -symmetric dephasing-type interactions lead to a critical slowing down of decoherence. This effect is further exemplified with an experimentally relevant system, a PT -symmetric qubit easily realizable, e.g., in optical or microcavity experiments.« less
Batista de Carvalho, A L M; Pilling, M; Gardner, P; Doherty, J; Cinque, G; Wehbe, K; Kelley, C; Batista de Carvalho, L A E; Marques, M P M
2016-06-23
Studies of drug-cell interactions in cancer model systems are essential in the preclinical stage of rational drug design, which relies on a thorough understanding of the mechanisms underlying cytotoxic activity and biological effects, at a molecular level. This study aimed at applying complementary vibrational spectroscopy methods to evaluate the cellular impact of two Pt(ii) and Pd(ii) dinuclear chelates with spermine (Pt2Spm and Pd2Spm), using cisplatin (cis-Pt(NH3)2Cl2) as a reference compound. Their effects on cellular metabolism were monitored in a human triple-negative metastatic breast cancer cell line (MDA-MB-231) by Raman and synchrotron-radiation infrared microspectroscopies, for different drug concentrations (2-8 μM) at 48 h exposure. Multivariate data analysis was applied (unsupervised PCA), unveiling drug- and concentration-dependent effects: apart from discrimination between control and drug-treated cells, a clear separation was obtained for the different agents studied - mononuclear vs. polynuclear, and Pt(ii) vs. Pd(ii). Spectral biomarkers of drug action were identified, as well as the cellular response to the chemotherapeutic insult. The main effect of the tested compounds was found to be on DNA, lipids and proteins, the Pd(ii) agent having a more significant impact on proteins while its Pt(ii) homologue affected the cellular lipid content at lower concentrations, which suggests the occurrence of distinct and unconventional pathways of cytotoxicity for these dinuclear polyamine complexes. Raman and FTIR microspectroscopies were confirmed as powerful non-invasive techniques to obtain unique spectral signatures of the biochemical impact and physiological reaction of cells to anticancer agents.
Crystallographic parameters of compounds and solid solutions in binary systems Cu-Pt and Ga-Pt
NASA Astrophysics Data System (ADS)
Potekaev, Alexandr; Probova, Svetlana; Klopotov, Anatolii; Vlasov, Viktor; Markov, Tatiana; Klopotov, Vladimir
2015-10-01
The study establishes that the packing index in compounds of the system Cu-Pt is close to the value 0.74 against a slight deviation from the Zen law of atomic volumes. The compounds in the system Ga-Pt have the highest values of the packing index in the range of the equiatomic composition, which greatly exceed ψ for close-packed structures based on FCC and HCP lattices for compounds made of the same kind of atoms. A correlation between singular points on the phase diagram of the system Ga-Pt and high values of the packing index in compounds is established.
Parametric amplification and bidirectional invisibility in PT -symmetric time-Floquet systems
NASA Astrophysics Data System (ADS)
Koutserimpas, Theodoros T.; Alù, Andrea; Fleury, Romain
2018-01-01
Parity-time (PT )-symmetric wave devices, which exploit balanced interactions between material gain and loss, exhibit extraordinary properties, including lasing and flux-conserving scattering processes. In a seemingly different research field, periodically driven systems, also known as time-Floquet systems, have been widely studied as a relevant platform for reconfigurable active wave control and manipulation. In this article, we explore the connection between PT -symmetry and parametric time-Floquet systems. Instead of relying on material gain, we use parametric amplification by considering a time-periodic modulation of the refractive index at a frequency equal to twice the incident signal frequency. We show that the scattering from a simple parametric slab, whose dynamics follows the Mathieu equation, can be described by a PT -symmetric scattering matrix, whose PT -breaking threshold corresponds to the Mathieu instability threshold. By combining different parametric slabs modulated out of phase, we create PT -symmetric time-Floquet systems that feature exceptional scattering properties, such as coherent perfect absorption (CPA)-laser operation and bidirectional invisibility. These bidirectional properties, rare for regular PT -symmetric systems, are related to a compensation of parametric amplification due to multiple scattering between two parametric systems modulated with a phase difference.
Chow, Cheuk-Fai; Gong, Fu-Wen; Gong, Cheng-Bin
2014-09-21
Detection of neutral biogenic sulfides plays a crucial role in food safety. A new heterobimetallic Re(I)-Pt(II) donor-acceptor complex--[Re(biq)(CO)3(CN)]-[Pt(DMSO)(Cl)2] (1, biq = 2,2'-biquinoline)--was synthesized and characterized. The X-ray crystallographic and photophysical data for 1 are reported in this study. Complex 1 indicated the luminescent chemodosimetric selectivity for dimethyl sulfide, which persisted even in the presence of a variety of interfering vapors, with a detection limit as low as 0.96 ppm. The binding constant (log K) of 1 toward dimethyl sulfide was 3.63 ± 0.03. The analyte selectivity of the complexes was found to be dependent on the ligand coordinated to the Re(I) center. Real samples (beef, chicken, and pork) were monitored real-time for gaseous dimethyl sulfide. Complex 1 shows a linear spectrofluorimetric response with increasing storage time of the meats at 30 °C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruiz-Calaforra, A., E-mail: ruiz@physik.uni-kl.de; Brächer, T.; Lauer, V.
2015-04-28
We present a study of the effective magnetization M{sub eff} and the effective damping parameter α{sub eff} by means of ferromagnetic resonance spectroscopy on the ferromagnetic (FM) materials Ni{sub 81}Fe{sub 19} (NiFe) and Co{sub 40}Fe{sub 40}B{sub 20} (CoFeB) in FM/Pt, FM/NM, and FM/NM/Pt systems with the non-magnetic (NM) materials Ru, Cr, Al, and MgO. Moreover, for NiFe layer systems, the influence of interface effects is studied by way of thickness dependent measurements of M{sub eff} and α{sub eff}. Additionally, spin pumping in NiFe/NM/Pt is investigated by means of inverse spin Hall effect (ISHE) measurements. We observe a large dependence ofmore » M{sub eff} and α{sub eff} of the NiFe films on the adjacent NM layer. While Cr and Al do not induce a large change in the magnetic properties, Ru, Pt, and MgO affect M{sub eff} and α{sub eff} in different degrees. In particular, NiFe/Ru and NiFe/Ru/Pt systems show a large perpendicular surface anisotropy and a significant enhancement of the damping. In contrast, the magnetic properties of CoFeB films do not have a large influence of the NM adjacent material and only CoFeB/Pt systems present an enhancement of α{sub eff}. However, this enhancement is much more pronounced in NiFe/Pt. By the introduction of the NM spacer material, this enhancement is reduced. Furthermore, a difference in symmetry between NiFe/NM/Pt and NiFe/NM systems in the output voltage signal from the ISHE measurements reveals the presence of spin pumping into the Pt layer in all-metallic NiFe/NM/Pt and NiFe/Pt systems.« less
An Imaging System to Monitor Efficacy of Adenovirus-Based Virotherapy Agents
2006-02-01
The essence of oncolytic ARTICLE IN PRESS J. Li et al. / Virology xx (2005) – 9virus function is to infect and kill target cells, a concept...protein– protein interactions in living animals. Methods 29 (1), 110–122 (Jan.) Meulenbroek, R.A., Sargent, K.L., Lunde, J., Jasmin , B.J., Parks, R.J...associated with nucleoli. J Gen Virol 79 ( Pt 7), 1671-1675. Meulenbroek, R. A., Sargent, K. L., Lunde, J., Jasmin , B. J., and Parks, R. J. (2004). Use
Performance analysis of Supply Chain Management with Supply Chain Operation reference model
NASA Astrophysics Data System (ADS)
Hasibuan, Abdurrozzaq; Arfah, Mahrani; Parinduri, Luthfi; Hernawati, Tri; Suliawati; Harahap, Bonar; Rahmah Sibuea, Siti; Krianto Sulaiman, Oris; purwadi, Adi
2018-04-01
This research was conducted at PT. Shamrock Manufacturing Corpora, the company is required to think creatively to implement competition strategy by producing goods/services that are more qualified, cheaper. Therefore, it is necessary to measure the performance of Supply Chain Management in order to improve the competitiveness. Therefore, the company is required to optimize its production output to meet the export quality standard. This research begins with the creation of initial dimensions based on Supply Chain Management process, ie Plan, Source, Make, Delivery, and Return with hierarchy based on Supply Chain Reference Operation that is Reliability, Responsiveness, Agility, Cost, and Asset. Key Performance Indicator identification becomes a benchmark in performance measurement whereas Snorm De Boer normalization serves to equalize Key Performance Indicator value. Analiytical Hierarchy Process is done to assist in determining priority criteria. Measurement of Supply Chain Management performance at PT. Shamrock Manufacturing Corpora produces SC. Responsiveness (0.649) has higher weight (priority) than other alternatives. The result of performance analysis using Supply Chain Reference Operation model of Supply Chain Management performance at PT. Shamrock Manufacturing Corpora looks good because its monitoring system between 50-100 is good.
Leonard, Mandy C; Thyagarajan, Rema; Wilson, Amy J; Sekeres, Mikkael A
2018-04-01
Lessons learned from the creation of a multihospital health-system formulary management and pharmacy and therapeutics (P&T) committee are described. A health system can create and implement a multihospital system formulary and P&T committee to provide evidence-based medications for ideal healthcare. The formulary and P&T process should be multidisciplinary and include adequate representation from system hospitals. The aim of a system formulary and P&T committee is standardization; however, the system should allow flexibility for differences. Key points for a successful multihospital system formulary and P&T committee are patience, collaboration, resilience, and communication. When establishing a multihospital health-system formulary and P&T committee, the needs of individual hospitals are crucial. A designated member of the pharmacy department needs to centrally coordinate and manage formulary requests, medication reviews and monographs, meeting agendas and minutes, and a summary of decisions for implementation. It is imperative to create a timeline for formulary reviews to set expectations, as well as a process for formulary appeals. Collaboration across the various hospitals is critical for successful formulary standardization. When implementing a health-system P&T committee or standardizing a formulary system, it is important to be patient and give local sites time to make practice changes. Evidence-based data and rationale must be provided to all sites to support formulary changes. Finally, there must be multidisciplinary collaboration. There are several options for formulary structures and P&T committees in a health system. Potential strengths and barriers should be evaluated before selecting a formulary management process. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
Metamorphic P-T paths and Precambrian crustal growth in East Antarctica
NASA Technical Reports Server (NTRS)
Harley, S. L.
1988-01-01
The metamorphic constraints on crustal thicknesses in Archean and post-Archean terranes are summarized along with possible implications for tectonic processes. It is important to recognize that P-T estimates represent perturbed conditions and should not be used to estimate steady state geothermal gradients or crustal thicknesses. The example is cited of the Dora Maira complex in the French Alps, where crustal rocks record conditions of 35 kbar and 800 C, implying their subduction to depths of 100 km or more, followed by subsequent uplift to the surface. Therefore such P-T estimates tell more about processes than crustal thicknesses. More importantly, according to the author, are determinations of P-T paths, particularly coupled with age measurements, because these may provide constraints on how and when perturbed conditions relax back to steady state conditions. P-T paths are illustrated that should be expected from specific tectonic processes, including Tibetan style collision, with and without subsequent extension, rifting of thin or thickened crust, and magmatic accretion. Growth of new crust, associated with magmatic accretion, for example, could possibly be monitored with these P-T paths.
Probing non-Hermitian physics with flying atoms
NASA Astrophysics Data System (ADS)
Wen, Jianming; Xiao, Yanhong; Peng, Peng; Cao, Wanxia; Shen, Ce; Qu, Weizhi; Jiang, Liang
2016-05-01
Non-Hermtian optical systems with parity-time (PT) symmetry provide new means for light manipulation and control. To date, most of experimental demonstrations on PT symmetry rely on advanced nanotechnologies and sophisticated fabrication techniques to manmade solid-state materials. Here, we report the first experimental realization of optical anti-PT symmetry, a counterpart of conventional PT symmetry, in a warm atomic-vapor cell. By exploiting rapid coherence transport via flying atoms, we observe essential features of anti-PT symmetry with an unprecedented precision on phase-transition threshold. Moreover, our system allows nonlocal interference of two spatially-separated fields as well as anti-PT assisted four-wave mixing. Besides, another intriguing feature offered by the system is refractionless (or unit-refraction) light propagation. Our results thus represent a significant advance in non-Hermitian physics by bridging a firm connection with the AMO field, where novel phenomena and applications in quantum and nonlinear optics aided by (anti-)PT symmetry can be anticipated.
Test-retest reliability of the multifocal photopic negative response.
Van Alstine, Anthony W; Viswanathan, Suresh
2017-02-01
To assess the test-retest reliability of the multifocal photopic negative response (mfPhNR) of normal human subjects. Multifocal electroretinograms were recorded from one eye of 61 healthy adult subjects on two separate days using a Visual Evoked Response Imaging System software version 4.3 (EDI, San Mateo, California). The visual stimulus delivered on a 75-Hz monitor consisted of seven equal-sized hexagons each subtending 12° of visual angle. The m-step exponent was 9, and the m-sequence was slowed to include at least 30 blank frames after each flash. Only the first slice of the first-order kernel was analyzed. The mfPhNR amplitude was measured at a fixed time in the trough from baseline (BT) as well as at the same fixed time in the trough from the preceding b-wave peak (PT). Additionally, we also analyzed BT normalized either to PT (BT/PT) or to the b-wave amplitude (BT/b-wave). The relative reliability of test-retest differences for each test location was estimated by the Wilcoxon matched-pair signed-rank test and intraclass correlation coefficients (ICC). Absolute test-retest reliability was estimated by Bland-Altman analysis. The test-retest amplitude differences for neither of the two measurement techniques were statistically significant as determined by Wilcoxon matched-pair signed-rank test. PT measurements showed greater ICC values than BT amplitude measurements for all test locations. For each measurement technique, the ICC value of the macular response was greater than that of the surrounding locations. The mean test-retest difference was close to zero for both techniques at each of the test locations, and while the coefficient of reliability (COR-1.96 times the standard deviation of the test-retest difference) was comparable for the two techniques at each test location when expressed in nanovolts, the %COR (COR normalized to the mean test and retest amplitudes) was superior for PT than BT measurements. The ICC and COR were comparable for the BT/PT and BT/b-wave ratios and were better than the ICC and COR for BT but worse than PT. mfPhNR amplitude measured at a fixed time in the trough from the preceding b-wave peak (PT) shows greater test-retest reliability when compared to amplitude measurement from baseline (BT) or BT amplitude normalized to either the PT or b-wave amplitudes.
NASA Astrophysics Data System (ADS)
Edi Nugroho Soebandrija, Khristian; Pratama, Yogi
2014-03-01
This paper has the objective to provide the innovation in information technology in both theoretical and empirical study. Precisely, both aspects relate to the Shortage Mispacking Quality Report (SMQR) Claims in Export and Import in Automotive Industry. This paper discusses the major aspects of Innovation, Information Technology, Performance and Competitive Advantage. Furthermore, In the empirical study of PT. Astra Honda Motor (AHM) refers to SMQR Claims, Communication Systems, Analysis and Design Systems. Briefly both aspects of the major aspects and its empirical study are discussed in the Introduction Session. Furthermore, the more detail discussion is conducted in the related aspects in other sessions of this paper, in particular in Literature Review in term classical and updated reference of current research. The increases of SMQR claim and communication problem at PT. Astra Daihatsu Motor (PT. ADM) which still using the email cause the time of claim settlement become longer and finally it causes the rejected of SMQR claim by supplier. With presence of this problem then performed to design the integrated communication system to manage the communication process of SMQR claim between PT. ADM with supplier. The systems was analyzed and designed is expected to facilitate the claim communication process so that can be run in accordance with the procedure and fulfill the target of claim settlement time and also eliminate the difficulties and problems on the previous manual communication system with the email. The design process of the system using the approach of system development life cycle method by Kendall & Kendall (2006)which design process covers the SMQR problem communication process, judgment process by the supplier, claim process, claim payment process and claim monitoring process. After getting the appropriate system designs for managing the SMQR claim, furthermore performed the system implementation and can be seen the improvement in claim communication process and settlement time become faster and achieve the target. The conclusion in this paper comprises two major aspects. The first one refers to the conclusion in term of theory and concept. The second one refers to the conclusion in term of the empirical study of one of automotive industries in Indonesia. Both of them are expected to have contribution in current and future research of related aspects that are discussed in this paper.
NASA Astrophysics Data System (ADS)
Ghasemifard, M.; Hosseini, S. M.; Bagheri-Mohagheghi, M. M.; Shahtahmasbi, N.
2009-09-01
We have synthesized and were performed a comparison of structures and optical properties between relaxor ferroelectric PMN-PT and PMN-PZT nanopowders. A gel-combustion method has been used to synthesize PMN-PT and PMN-PZT nanocrystalline with the perovskite structure. The precursors employed in the gel-combustion process were lead nitrate, magnesium acetate, niobium ammonium oxalate and zirconium nitrate. The nanopowders were characterized using the X-ray diffraction (XRD) and transmission electron microscopy (TEM) observation. Fourier transform infrared (FTIR) spectroscopy was employed to monitor the transformation of precursor solutions during the thermal reactions leading to the formation of perovskite phase.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Monitoring Device and High Voltage Facility 1 Figures 1 and 2 to Part 1204 Commercial Practices CONSUMER... CITIZENS BAND BASE STATION ANTENNAS Pt. 1204, Figs. 1, 2 Figures 1 and 2 to Part 1204—Suggested Instrumentation for Current Monitoring Device and High Voltage Facility EC03OC91.008 ...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Monitoring Device and High Voltage Facility 1 Figures 1 and 2 to Part 1204 Commercial Practices CONSUMER... CITIZENS BAND BASE STATION ANTENNAS Pt. 1204, Figs. 1, 2 Figures 1 and 2 to Part 1204—Suggested Instrumentation for Current Monitoring Device and High Voltage Facility EC03OC91.008 ...
Jarzynski equality in PT-symmetric quantum mechanics
Deffner, Sebastian; Saxena, Avadh
2015-04-13
We show that the quantum Jarzynski equality generalizes to PT -symmetric quantum mechanics with unbroken PT -symmetry. In the regime of broken PT -symmetry the Jarzynski equality does not hold as also the CPT -norm is not preserved during the dynamics. These findings are illustrated for an experimentally relevant system – two coupled optical waveguides. It turns out that for these systems the phase transition between the regimes of unbroken and broken PT -symmetry is thermodynamically inhibited as the irreversible work diverges at the critical point.
NASA Astrophysics Data System (ADS)
Song, Shaoqing; Wu, Xi; Lu, Changhai; Wen, Meicheng; Le, Zhanggao; Jiang, Shujuan
2018-06-01
Solid strong base nano-catalytic system of K-modification NaY zeolite supported 0.08% Pt (K-Pt/NaY) were constructed for eliminating HCHO at room temperature. In the catalytic process, activation energy over K-Pt/NaY nano-catalytic system was greatly decreased along with the enhanced reaction rate. Characterization and catalytic tests revealed the surface electron structure of K-Pt/NaY was improved, as reflected by the enhanced HCHO adsorption capability, high sbnd OH concentration, and low-temperature reducibility. Therefore, the optimal K-Pt/NaY showed high catalytic efficiency and strong H2O tolerance for HCHO elimination by directly promoting the reaction between active sbnd OH and formate species. These results may suggest a new way for probing the advanced solid strong base nano-catalytic system for the catalytic elimination of indoor HCHO.
Monte Carlo Study of Melting of a Model Bulk Ice.
NASA Astrophysics Data System (ADS)
Han, Kyu-Kwang
The methods of NVT (constant number, volume and temperature) and NPT (constant number, pressure and temperature) Monte Carlo computer simulations are used to examine the melting of a periodic hexagonal ice (ice Ih) sample with a unit cell of 192 (rigid) water molecules interacting via the revised central force potentials of Stillinger and Rahman (RSL2). In NVT Monte Carlo simulation of P-T plot for a constant density (0.904g/cm^3) is used to locate onset of the liquid-solid coexistence region (where the slope of the pressure changes sign) and estimate the (constant density) melting point. The slope reversal is a natural consequence of the constant density condition for substances which expand upon freezing and it is pointed out that this analysis is extremely useful for substances such as water. In this study, a sign reversal of the pressure slope is observed near 280 K, indicating that the RSL2 potentials reproduce the freezing expansion expected for water and support a bulk ice Ih system which melts <280 K. The internal energy, specific heat, and two dimensional structure factors for the constant density H_2O system are also examined at a range of temperatures between 100 and 370 K and support the P-T analysis for location of the melting point. This P-T analysis might likewise be useful for determining a (constant density) freezing point, or, with multiple simulations at appropriate densities, the triple point. For NPT Monte Carlo simulations preliminary results are presented. In this study the density, enthalpy, specific heat, and structure factor dependences on temperature are monitored during a sequential heating of the system from 100 to 370 K at a constant pressure (1 atm.). A jump in density upon melting is observed and indicates that the RSL2 potentials reproduce the melting contraction of ice. From the dependences of monitored physical properties on temperature an upper bound on the melting temperature is estimated. In this study we made the first analysis and calculation of the P-T curve for ice Ih melting at constant volume and the first NPT study of ice and of ice melting. In the NVT simulation we found for rho = 0.904g/cm^3 T_ {rm m} ~eq 280 K which is much closer to physical T_ {rm m} than any other published NVT simulation of ice. Finally it is shown that RSL2 potentials do a credible job of describing the thermodynamic properties of ice Ih near its melting point.
NASA Astrophysics Data System (ADS)
Wang, Li; Song, Yilin; Zhang, Yu; Xu, Shengwei; Xu, Huiren; Wang, Mixia; Wang, Yang; Cai, Xinxia
2017-11-01
Norepinephrine (NE), a common neurotransmitter released by locus coeruleus neurons, plays an essential role in the communication mechanism of the mammalian nervous system. In this work, a microelectrode array (MEA) was fabricated by micro-electromechanical system (MEMS) technology to provide a rapid, sensitive and reliable method for the direct determination in NE dynamic secretion. To improve the electrical performance, the MEA was electrodeposited with the reduced graphene oxide and Pt nanoparticles (rGOPNps). rGOPNps-MEA was investigated using scanning electron microscopy, atomic force microscopy and electrochemical impedance spectroscopy, differential pulse voltammetry exhibited remarkably electrocatalytic properties towards NE. Calibration results showed a sensitivity of 1.03 nA µM-1 to NE with a detection limit of 0.08 µM. In Particular, the MEA was successfully used for measuring dynamic extracellular NE secretion from the locus coeruleus brain slice, as well as monitoring spike firing from the hippocampal brain slice. This fabricated device has potential in studies of spatially resolved delivery of trace neurochemicals and electrophysiological activities of a variety of biological tissues in vitro.
Mapping the local reaction kinetics by PEEM: CO oxidation on individual (100)-type grains of Pt foil
Vogel, D.; Spiel, C.; Suchorski, Y.; Urich, A.; Schlögl, R.; Rupprechter, G.
2011-01-01
The locally-resolved reaction kinetics of CO oxidation on individual (100)-type grains of a polycrystalline Pt foil was monitored in situ using photoemission electron microscopy (PEEM). Reaction-induced surface morphology changes were studied by optical differential interference contrast microscopy and atomic force microscopy (AFM). Regions of high catalytic activity, low activity and bistability in a (p,T)-parameter space were determined, allowing to establish a local kinetic phase diagram for CO oxidation on (100) facets of Pt foil. PEEM observations of the reaction front propagation on Pt(100) domains reveal a high degree of propagation anisotropy both for oxygen and CO fronts on the apparently isotropic Pt(100) surface. The anisotropy vanishes for oxygen fronts at temperatures above 465 K, but is maintained for CO fronts at all temperatures studied, i.e. in the range of 417 to 513 K. A change in the front propagation mechanism is proposed to explain the observed effects. PMID:22140277
Metal and Metal Oxide Interactions and Their Catalytic Consequences for Oxygen Reduction Reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Qingying; Ghoshal, Shraboni; Li, Jingkun
2017-06-01
Many industrial catalysts are composed of metal particles supported on metal oxides (MMO). It is known that the catalytic activity of MMO materials is governed by metal and metal oxide interactions (MMOI), but how to optimize MMO systems via manipulation of MMOI remains unclear, due primarily to the ambiguous nature of MMOI. Herein, we develop a Pt/NbOx/C system with tunable structural and electronic properties via a modified arc plasma deposition method. We unravel the nature of MMOI by characterizing this system under reactive conditions utilizing combined electrochemical, microscopy, and in situ spectroscopy. We show that Pt interacts with the Nbmore » in unsaturated NbOx owing to the oxygen deficiency in the MMO interface, whereas Pt interacts with the O in nearly saturated NbOx, and further interacts with Nb when the oxygen atoms penetrate into the Pt cluster at elevated potentials. While the Pt–Nb interactions do not benefit the inherent activity of Pt toward oxygen reduction reaction (ORR), the Pt–O interactions improve the ORR activity by shortening the Pt–Pt bond distance. Pt donates electrons to NbOx in both Pt–Nb and Pt–O cases. The resultant electron efficiency stabilizes low-coordinated Pt sites, hereby stabilizing small Pt particles. This determines the two characteristic features of MMO systems: dispersion of small metal particles and high catalytic durability. These findings contribute to our understandings of MMO catalytic systems.« less
Fermi-surface topology of the heavy-fermion system Ce2PtIn8
NASA Astrophysics Data System (ADS)
Klotz, J.; Götze, K.; Green, E. L.; Demuer, A.; Shishido, H.; Ishida, T.; Harima, H.; Wosnitza, J.; Sheikin, I.
2018-04-01
Ce2PtIn8 is a recently discovered heavy-fermion system structurally related to the well-studied superconductor CeCoIn5. Here we report on low-temperature de Haas-van Alphen-effect measurements in high magnetic fields in Ce2PtIn8 and Pr2PtIn8 . In addition, we performed band-structure calculations for localized and itinerant Ce-4 f electrons in Ce2PtIn8 . Comparison with the experimental data of Ce2PtIn8 and of the 4 f -localized Pr2PtIn8 suggests the itinerant character of the Ce-4 f electrons. This conclusion is further supported by the observation of effective masses in Ce2PtIn8 , which are strongly enhanced with up to 26 bare electron masses.
Pt/Au nanoalloy supported on alumina and chlorided alumina: DFT and experimental analysis
NASA Astrophysics Data System (ADS)
Sharifi, N.; Falamaki, C.; Ghorbanzadeh Ahangari, M.
2018-04-01
Density functional theory (DFT) was used to explore the adsorption of Pt/Au nanoalloy onto a pure and chlorided γ-Al2O3(110) surface, which has been applied in numerous catalytic reactions. First, we considered the adsorption properties of Pt clusters (n ≤ 5) onto the Al2O3(110) surface to determine the most stable Pt cluster on alumina surface in reforming processes. After full structural relaxations of Pt clusters at various configurations on alumina, our computed results expressed that the minimum binding energy (‑5.67 eV) is accrued for Pt4 cluster and the distance between the nearest Pt atom in the cluster to the alumina surface is equal to 1.13 Å. Then, we investigated the binding energies, geometries, and electronic properties of adsorbed Aun clusters (n ≤ 6) on the γ-Al2O3(110) surface. Our studied showed that Au5 was the most thermodynamically stable structure on γ-Al2O3. Finally, we inspected these properties for adsorbed Au clusters onto the Pt4-decorated alumina (Aun/Pt4-alumina) system. The binding energy of the Au4/Pt4-alumina system was ‑5.01 eV, and the distance between Au4 cluster and Pt4-alumina was 1.33 Å. The Au4/Pt4alumina system was found to be the most stable nanometer-sized catalyst design. At last, our first-principles calculations predicted that the best position of embedment Cl on the Au4/Pt4-alumina.
NASA Astrophysics Data System (ADS)
Graff, Kévin; Viel, Vincent; Carlier, Benoit; Lissak, Candide; Arnaud-Fassetta, Gilles; Fort, Monique; Madelin, Malika
2016-04-01
In mountainous areas, especially in large catchments with torrential tributaries, the production and sediment transport significantly increase flood impacts in the valley bottoms. The quantification and characterisation of sedimentary transfers are therefore major challenges to provide better flood risk management. As a part of SAMCO (ANR 12 SENV-0004 SAMCO) project, for mountain hazard assessment in a context of global changes, we tried to improve the knowledge of these hydromorphological systems at both spatial and temporal scales, by identifying sediment supply and sediment dynamics from torrential tributaries to the main channel. A sediment budget was used as a tool for quantifying erosion, transport and deposition processes. This research is focused on the upper Guil catchment (Queyras, Southern French Alps - 317 km2) entrenched in "schistes lustrés" and ophiolitic bedrock. This catchment is prone to catastrophic summer floods [June 1957 (>R.I. 100 yr), June 2000 (R.I. 30 yr)] characterised by huge sediment transport from tributaries to downvalley, very much facilitated by strong hillslope-channel connectivity (about 12,000 m3 volume of sediment aggraded in the Peyronnelle fan during the June 2000 RI-30 year flood event). We intend to highlight sediment dynamics on small torrential channels and its connection with gravel-bed streams. Four study sites characterised by avalanche and debris flow-dominated channels located in the upper Guil catchment were investigated. In order to better assess sediment movement, we used the pit-tags technique. In total, 560 pit-tags (pt) have been implemented in four catchments: Peyronnelle (320pt), Combe Morel (40pt), Bouchouse (120pt), and Maloqueste (80pt). Distances and trajectories of gravels sediments have been monitored since two years during summer periods. We specifically describe results obtained along the Peyronnelle channel affected by a large debris-flow during august 2015. Data are used to discuss lag time, processes and thresholds needed to observe significant sediments fluxes. Results highlight the pulsating character of sediment fluxes associated with high magnitude and low frequency events and indicate the strongest functionality of debris flow-dominated channels. We intend to continue this monitoring long enough to observe sediment connection with gravel-bed streams.
40 CFR Appendix I to Part 258 - Constituents for Detection Monitoring
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Constituents for Detection Monitoring I Appendix I to Part 258 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Pt. 258, App. I Appendix I to Part 258—Constituents...
40 CFR Appendix I to Part 258 - Constituents for Detection Monitoring
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Constituents for Detection Monitoring I Appendix I to Part 258 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Pt. 258, App. I Appendix I to Part 258—Constituents...
Bonk, Sebastian M; Stubbe, Marco; Buehler, Sebastian M; Tautorat, Carsten; Baumann, Werner; Klinkenberg, Ernst-Dieter; Gimsa, Jan
2015-07-30
We combined a multi-sensor glass-chip with a microfluidic channel grid for the characterization of cellular behavior. The grid was imprinted in poly-dimethyl-siloxane. Mouse-embryonal/fetal calvaria fibroblasts (MC3T3-E1) were used as a model system. Thin-film platinum (Pt) sensors for respiration (amperometric oxygen electrode), acidification (potentiometric pH electrodes) and cell adhesion (interdigitated-electrodes structures, IDES) allowed us to monitor cell-physiological parameters as well as the cell-spreading behavior. Two on-chip electro-thermal micro-pumps (ETμPs) permitted the induction of medium flow in the system, e.g., for medium mixing and drug delivery. The glass-wafer technology ensured the microscopic observability of the on-chip cell culture. Connecting Pt structures were passivated by a 1.2 μm layer of silicon nitride (Si3N4). Thin Si3N4 layers (20 nm or 60 nm) were used as the sensitive material of the pH electrodes. These electrodes showed a linear behavior in the pH range from 4 to 9, with a sensitivity of up to 39 mV per pH step. The oxygen sensors were circular Pt electrodes with a sensor area of 78.5 μm(2). Their sensitivity was 100 pA per 1% oxygen increase in the range from 0% to 21% oxygen (air saturated). Two different IDES geometries with 30- and 50-μm finger spacings showed comparable sensitivities in detecting the proliferation rate of MC3T3 cells. These cells were cultured for 11 days in vitro to test the biocompatibility, microfluidics and electric sensors of our system under standard laboratory conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arevalo, Ryan Lacdao; Escaño, Mary Clare Sison; Kasai, Hideaki, E-mail: kasai@dyn.ap.eng.osaka-u.ac.jp
2015-03-15
Catalytic oxidation of NO to NO{sub 2} is a significant research interest for improving the quality of air through exhaust gas purification systems. In this paper, the authors studied this reaction on pure Pt and Pt overlayer on 3d transition metals using kinetic Monte Carlo simulations coupled with density functional theory based first principles calculations. The authors found that on the Pt(111) surface, NO oxidation proceeds via the Eley–Rideal mechanism, with O{sub 2} dissociative adsorption as the rate-determining step. The oxidation path via the Langmuir–Hinshelwood mechanism is very slow and does not significantly contribute to the overall reaction. However, inmore » the Pt overlayer systems, the oxidation of NO on the surface is more thermodynamically and kinetically favorable compared to pure Pt. These findings are attributed to the weaker binding of O and NO on the Pt overlayer systems and the binding configuration of NO{sub 2} that promotes easier N-O bond formation. These results present insights for designing affordable and efficient catalysts for NO oxidation.« less
Cheng, Ziyong; Dai, Yunlu; Kang, Xiaojiao; Li, Chunxia; Huang, Shanshan; Lian, Hongzhou; Hou, Zhiyao; Ma, Pingan; Lin, Jun
2014-08-01
A facile method for transferring hydrophobic iron oxide nanoparticles (IONPs) from chloroform to aqueous solution via encapsulation of FITC-modified gelatin based on the hydrophobic-hydrophobic interaction is described in this report. Due to the existence of large amount of active groups such as amine groups in gelatin, the fluorescent labeling molecules of fluorescein isothiocyanate (FITC) and platinum (IV) prodrug functionalized with carboxylic groups can be conveniently conjugated on the IONPs. The nanoparticles carrying Pt(IV) prodrug exhibit good anticancer activities when the Pt(IV) complexes are reduced to Pt(II) in the intracellular environment, while the pure Pt(IV) prodrug only presents lower cytotoxicity on cancer cells. Meanwhile, fluorescence of FITC on the surface of nanoparticles was completely quenched due to the possible Förster Resonance Energy Transfer (FRET) mechanism and showed a fluorescence recovery after gelatin release and detachment from IONPs. Therefore FITC as a fluorescence probe can be used for identification, tracking and monitoring the drug release. In addition, adding pancreatic enzyme can effectively promote the gelatin release from IONPs owing to the degradation of gelatin. Noticeable darkening in magnetic resonance image (MRI) was observed at the tumor site after in situ injection of nanoparticles, indicating the IONPs-enhanced T2-weighted imaging. Our results suggest that the gelatin encapsulated Fe3O4 nanoparticles have potential applications in multi-functional drug delivery system for disease therapy, MR imaging and fluorescence sensor. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kapp, Timo; Dullin, Anja; Gust, Ronald
2010-02-17
A set of polyamidoamine dendrimers were modified in such a way that they are able to act as carrier and drug delivery systems for cytostatics. The terminal binding of the non-proteinogenic D,L-2,3-diaminopropionic acid allowed the attachment of the cytotoxic PtX(2) moiety (X = Cl, I: A(PtI(2))(2), A(PtCl(2))(2), B(PtI(2))(2), B(PtCl(2))(2)), while the 2-carboxypentanedioic acid acted as leaving group for [meso-1,2-bis(4-fluorophenyl)ethylenediamine]platinum(II) ((m-4F-Pt)(3)C, (m-4F-Pt)(3)D). Poly(ethylene glycol) chains at C(PtI(2))(3) and C(PtCl(2))(3) as well as (m-4F-Pt)(3)C and (m-4F-Pt)(3)D mediated sufficient water solubility. Additional dansyl residues (B(PtI(2))(2) and (m-4F-Pt)(3)D) made a simultaneous determination of platinum (graphite furnace atomic absorption spectroscopy (GF-AAS)) and dendrimer (fluorimetry) possible. The ethylenediamine-terminated dendrimers were typically accumulated into MCF-7 cells in clathrin-dependent pathways and targeted the platinum moieties to the nuclear compartment. The highest intracellular platinum concentration and DNA binding caused the dendrimers A(PtX(2))(2) and B(PtX(2))(2). A coordinative DNA binding, however, is very unlikely because of low cytotoxic effects. (m-4F-Pt)(3)C and (m-4F-Pt)(3)D are labile conjugates and liberated the m-4F-Pt moiety in biological systems. The effects of these dendrimers were similar to that of the reference compounds m-4F-PtCl(2) and m-4F-Pt(H(2)O)(2).
Jamali, Sirous; Nabavizadeh, S Masoud; Rashidi, Mehdi
2008-06-16
The binuclear complex [Pt2Me2(ppy)2(mu-dppf)], 1, in which ppy = deprotonated 2-phenylpyridyl and dppf = 1,1'-bis(diphenylphosphino)ferrocene, was synthesized by the reaction of [PtMe(SMe2)(ppy)] with 0.5 equiv of dppf at room temperature. In this reaction when 1 equiv of dppf was used, the dppf chelating complex 2, [PtMe(dppf)(ppy-kappa1C)], was obtained. The reaction of Pt(II)-Pt(II) complex 1 with excess MeI gave the Pt(IV)-Pt(IV) complex [Pt2I2Me4(ppy)2(mu-dppf)], 3. When the reaction was performed with 1 equiv of MeI, a mixture containing unreacted complex 1, a mixed-valence Pt(II)-Pt(IV) complex [PtMe(ppy)(mu-dppf)PtIMe2(ppy)], 4, and complex 3 was obtained. In a comparative study, the reaction of [PtMe(SMe2)(ppy)] with 1 equiv of monodentate phosphine PPh3 gave [PtMe(ppy)(PPh3)], A. MeI was reacted with A to give the platinum(IV) complex [PtMe2I(ppy)(PPh3)], C. All the complexes were fully characterized using multinuclear (1H, 31P, 13C, and 195Pt) NMR spectroscopy, and complex 2 was further identified by single crystal X-ray structure determination. The reaction of binuclear Pt(II)-Pt(II) complex 1 with excess MeI was monitored by low temperature 31P NMR spectroscopy and further by 1H NMR spectroscopy, and the kinetics of the reaction was studied by UV-vis spectroscopy. On the basis of the data, a mechanism has been suggested for the reaction which overall involved stepwise oxidative addition of MeI to the two Pt(II) centers. In this suggested mechanism, the reaction proceeded through a number of Pt(II)-Pt(IV) and Pt(IV)-Pt(IV) intermediates. Although MeI in each step was trans oxidatively added to one of the Pt(II) centers, further trans to cis isomerizations of Me and I groups were also identified. A comparative kinetic study of the reaction of monomeric platinum(II) complex A with MeI was also performed. The rate of reaction of MeI with complex 1 was some 3.5 times faster than that with complex A, indicating that dppf in the complex 1, as compared with PPh 3 in the complex A, has significantly enhanced the electron richness of the platinum centers.
Molecular control of gut formation in the spider Parasteatoda tepidariorum.
Feitosa, Natália Martins; Pechmann, Matthias; Schwager, Evelyn E; Tobias-Santos, Vitória; McGregor, Alistair P; Damen, Wim G M; Nunes da Fonseca, Rodrigo
2017-05-01
The development of a digestive system is an essential feature of bilaterians. Studies of the molecular control of gut formation in arthropods have been studied in detail in the fruit fly Drosophila melanogaster. However, little is known in other arthropods, especially in noninsect arthropods. To better understand the evolution of arthropod alimentary system, we investigate the molecular control of gut development in the spider Parasteatoda tepidariorum (Pt), the primary chelicerate model species for developmental studies. Orthologs of the ectodermal genes Pt-wingless (Pt-wg) and Pt-hedgehog (Pt-hh), of the endodermal genes, Pt-serpent (Pt-srp) and Pt-hepatocyte-nuclear factor-4 (Pt-hnf4) and of the mesodermal gene Pt-twist (Pt-twi) are expressed in the same germ layers during spider gut development as in D. melanogaster. Thus, our expression data suggest that the downstream molecular components involved in gut development in arthropods are conserved. However, Pt-forkhead (Pt-fkh) expression and function in spiders is considerably different from its D. melanogaster ortholog. Pt-fkh is expressed before gastrulation in a cell population that gives rise to endodermal and mesodermal precursors, suggesting a possible role for this factor in specification of both germ layers. To test this hypothesis, we knocked down Pt-fkh via RNA interference. Pt-fkh RNAi embryos not only fail to develop a proper gut, but also lack the mesodermal Pt-twi expressing cells. Thus, in spiders Pt-fkh specifies endodermal and mesodermal germ layers. We discuss the implications of these findings for the evolution and development of gut formation in Ecdysozoans. © 2017 Wiley Periodicals, Inc.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII... and Cell Room Monitoring Plans Your Floor-Level Mercury Vapor Measurement Plan required by § 63.8192(d...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII... and Cell Room Monitoring Plans Your Floor-Level Mercury Vapor Measurement Plan required by § 63.8192(d...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII... and Cell Room Monitoring Plans Your Floor-Level Mercury Vapor Measurement Plan required by § 63.8192(d...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII... and Cell Room Monitoring Plans Your Floor-Level Mercury Vapor Measurement Plan required by § 63.8192(d...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII... and Cell Room Monitoring Plans Your Floor-Level Mercury Vapor Measurement Plan required by § 63.8192(d...
NASA Astrophysics Data System (ADS)
Nowicki, Waldemar; Gąsowska, Anna; Kirszensztejn, Piotr
2016-05-01
UV-vis spectroscopy measurements confirmed the reaction in heterogeneous system between Pt(II) ions and ethylenediamine type ligand, n-(2-aminoethyl)-3-aminopropyl-trimethoxysilane, immobilized at the silica surface. The formation of complexes is a consequence of interaction between the amine groups from the ligand grafted onto SiO2 and ions of platinum. A potentiometric titration technique was to determine the stability constants of complexes of Pt(II) with immobilized insoluble ligand (SG-L), on the silica gel. The results show the formation of three surface complexes of the same type (PtHSG-L, Pt(HSG-L)2, PtSG-L) with SG-L ligand, in a wide range of pH for different Debye length. The concentration distribution of the complexes in a heterogeneous system is evaluated.
Topologically protected bound states in photonic parity-time-symmetric crystals.
Weimann, S; Kremer, M; Plotnik, Y; Lumer, Y; Nolte, S; Makris, K G; Segev, M; Rechtsman, M C; Szameit, A
2017-04-01
Parity-time (PT)-symmetric crystals are a class of non-Hermitian systems that allow, for example, the existence of modes with real propagation constants, for self-orthogonality of propagating modes, and for uni-directional invisibility at defects. Photonic PT-symmetric systems that also support topological states could be useful for shaping and routing light waves. However, it is currently debated whether topological interface states can exist at all in PT-symmetric systems. Here, we show theoretically and demonstrate experimentally the existence of such states: states that are localized at the interface between two topologically distinct PT-symmetric photonic lattices. We find analytical closed form solutions of topological PT-symmetric interface states, and observe them through fluorescence microscopy in a passive PT-symmetric dimerized photonic lattice. Our results are relevant towards approaches to localize light on the interface between non-Hermitian crystals.
Mattei, I; Bini, F; Collamati, F; De Lucia, E; Frallicciardi, P M; Iarocci, E; Mancini-Terracciano, C; Marafini, M; Muraro, S; Paramatti, R; Patera, V; Piersanti, L; Pinci, D; Rucinski, A; Russomando, A; Sarti, A; Sciubba, A; Solfaroli Camillocci, E; Toppi, M; Traini, G; Voena, C; Battistoni, G
2017-02-21
Charged particle beams are used in particle therapy (PT) to treat oncological patients due to their selective dose deposition in tissues with respect to the photons and electrons used in conventional radiotherapy. Heavy (Z > 1) PT beams can additionally be exploited for their high biological effectiveness in killing cancer cells. Nowadays, protons and carbon ions are used in PT clinical routines. Recently, interest in the potential application of helium and oxygen beams has been growing. With respect to protons, such beams are characterized by their reduced multiple scattering inside the body, increased linear energy transfer, relative biological effectiveness and oxygen enhancement ratio. The precision of PT demands online dose monitoring techniques, crucial to improving the quality assurance of any treatment: possible patient mis-positioning and biological tissue changes with respect to the planning CT scan could negatively affect the outcome of the therapy. The beam range confined in the irradiated target can be monitored thanks to the neutral or charged secondary radiation emitted by the interactions of hadron beams with matter. Among these secondary products, prompt photons are produced by nuclear de-excitation processes, and at present, different dose monitoring and beam range verification techniques based on prompt-γ detection are being proposed. It is hence of importance to perform γ yield measurement in therapeutic-like conditions. In this paper we report on the yields of prompt photons produced by the interaction of helium, carbon and oxygen ion beams with a poly-methyl methacrylate (PMMA) beam stopping target. The measurements were performed at the Heidelberg Ion-Beam Therapy Center (HIT) with beams of different energies. An LYSO scintillator, placed at [Formula: see text] and [Formula: see text] with respect to the beam direction, was used as the photon detector. The obtained γ yields for the carbon ion beams are compared with results from the literature, while no other results from helium and oxygen beams have been published yet. A discussion on the expected resolution of a slit camera detector is presented, demonstrating the feasibility of a prompt-γ-based monitoring technique for PT treatments using helium, carbon and oxygen ion beams.
NASA Astrophysics Data System (ADS)
Mattei, I.; Bini, F.; Collamati, F.; De Lucia, E.; Frallicciardi, P. M.; Iarocci, E.; Mancini-Terracciano, C.; Marafini, M.; Muraro, S.; Paramatti, R.; Patera, V.; Piersanti, L.; Pinci, D.; Rucinski, A.; Russomando, A.; Sarti, A.; Sciubba, A.; Solfaroli Camillocci, E.; Toppi, M.; Traini, G.; Voena, C.; Battistoni, G.
2017-02-01
Charged particle beams are used in particle therapy (PT) to treat oncological patients due to their selective dose deposition in tissues with respect to the photons and electrons used in conventional radiotherapy. Heavy (Z > 1) PT beams can additionally be exploited for their high biological effectiveness in killing cancer cells. Nowadays, protons and carbon ions are used in PT clinical routines. Recently, interest in the potential application of helium and oxygen beams has been growing. With respect to protons, such beams are characterized by their reduced multiple scattering inside the body, increased linear energy transfer, relative biological effectiveness and oxygen enhancement ratio. The precision of PT demands online dose monitoring techniques, crucial to improving the quality assurance of any treatment: possible patient mis-positioning and biological tissue changes with respect to the planning CT scan could negatively affect the outcome of the therapy. The beam range confined in the irradiated target can be monitored thanks to the neutral or charged secondary radiation emitted by the interactions of hadron beams with matter. Among these secondary products, prompt photons are produced by nuclear de-excitation processes, and at present, different dose monitoring and beam range verification techniques based on prompt-γ detection are being proposed. It is hence of importance to perform γ yield measurement in therapeutic-like conditions. In this paper we report on the yields of prompt photons produced by the interaction of helium, carbon and oxygen ion beams with a poly-methyl methacrylate (PMMA) beam stopping target. The measurements were performed at the Heidelberg Ion-Beam Therapy Center (HIT) with beams of different energies. An LYSO scintillator, placed at {{60}\\circ} and {{90}\\circ} with respect to the beam direction, was used as the photon detector. The obtained γ yields for the carbon ion beams are compared with results from the literature, while no other results from helium and oxygen beams have been published yet. A discussion on the expected resolution of a slit camera detector is presented, demonstrating the feasibility of a prompt-γ-based monitoring technique for PT treatments using helium, carbon and oxygen ion beams.
NASA Astrophysics Data System (ADS)
Qiang, Liangliang
A miniature wireless implantable electrochemical glucose system for continuous glucose monitoring with good selectivity, sensitivity, linearity and long term stability was developed. First, highly sensitive, long-term stable and reusable planar H2O2 microelectrodes have been fabricated by microlithography. These electrodes composed of a 300 nm Pt black layer situated on a 5 um thick Au layer, provide effective protection to the underlying chromium adhesion layer. Using repeated cyclic voltammetric sweeps in flowing buffer solution, highly sensitive Pt black working electrodes were realized with five-decade linear dynamic range and low detection limit (10 nM) for H2O2 at low oxidation potentials. Second, a highly sensitive, low cost and flexible microwire biosensor was described using 25-mum thick gold wire as working electrode together with 125-mum thick Pt/Ir and Ag wires as counter and reference electrode, embedded within a PDMS-filled polyethylene tube. Surface area and activity of sensor was enhanced by converting gold electrode to nanoporous configuration followed by electrodeposition of platinum black. Glucose oxidase based biosensors by electrodeposition of poly(o-phenylenediamine) and glucose oxidase on the working electrode, displayed a higher glucose sensitivity (1.2 mA mM-1 cm-2) than highest literature reported. In addition it exhibits wide detection range (up to 20 mM) and selectivity (>95%). Third, novel miniaturized and flexible microelectrode arrays with 8 of 25 mum electrodes displayed the much needed 3D diffusion profiles similar to a single 25 mum microelectrode, but with one order increase in current levels. These microelectrode arrays displayed a H2O2 sensitivity of 13 mA mM-1 cm-2, a wide dynamic range of 100 nM to 10 mM, limit of detection of 10 nM. These microwire based edge plane microsensors incorporated flexibility, miniaturization and low operation potential are an promising approach for continuous in vivo metabolic monitoring. Fourth, homemade miniature wireless potentisotat was fabricated based on low power consumption integrated circuits and surface mount parts. The miniature wireless potentisotat with up to two week life-time for continuous glucose sensing has a size less than 9x22x10 mm and weight ˜3.4 grams. Primary in vivo experiment showed homemade system has the exactly same respond and trend as commercial glucose meter.
Yokotsuka, M; Aoyama, M; Kubota, K
2000-07-01
The Medical Dictionary for Regulatory Activities Terminology (MedDRA) version 2.1 (V2.1) was released in March 1999 accompanied by the MedDRA/J V2.1J specifically for Japanese users. In prescription-event monitoring in Japan (J-PEM), we have employed the MedDRA/J for data entry, signal generation and event listing. In J-PEM, the lowest level terms (LLTs) in the MedDRA/J are used in data entry because the richness of LLTs is judged to be advantageous. A signal is generated normally at the preferred term (PT) level, but it has been found that various reporters describe the same event using descriptions that are potentially encoded by LLTs under different PTs. In addition, some PTs are considered too specific to generate the proper signal. In the system used in J-PEM, when an LLT is selected as a candidate to encode an event, another LLT under a different PT, if any, is displayed on the computer screen so that it may be coded instead of, or in addition to, the candidate LLT. The five-level structure of the MedDRA is used when listing events but some modification is required to generate a functional event list.
Zarpellon, Driellen Christine; Runnacles, Patrício; Maucoski, Cristiane; Gross, Dayane Jaqueline; Coelho, Ulisses; Rueggeberg, Frederick Allen; Arrais, Cesar Augusto Galvão
2018-06-01
This in vivo study evaluated pulp temperature (PT) rise in human premolars having deep Class V preparations during exposure to a light curing unit (LCU) using selected exposure modes (EMs). After local Ethics Committee approval, intact first premolars (n=8) requiring extraction for orthodontic reasons, from 8 volunteers, received infiltrative and intraligamental anesthesia and were isolated using rubber dam. A minute pulp exposure was attained and sterile probe from a wireless, NIST-traceable, temperature acquisition system was inserted into the coronal pulp chamber to continuously monitor PT (°C). A deep buccal Class V preparation was prepared using a high speed diamond bur under air-water spray cooling. The surface was exposed to a Polywave ® LED LCU (Bluephase 20i, Ivoclar Vivadent) using selected EMs, allowing 7-min span between each exposure: 10-s in low (10-s/L), 10-s (10-s/H), 30-s (30-s/H), or 60-s (60-s/H) in high mode; and 5-s-Turbo (5-s/T). Peak PT values and PT increases over physiologic baseline levels (ΔT) were subjected to 1-way, repeated measures ANOVAs, and Bonferroni's post-hoc tests (α=0.05). Linear regression analysis was performed to establish the relationship between applied radiant exposure and ΔT. All EMs produced higher peak PT than the baseline temperature (p<0.001). Only 60-s/H mode generated an average ΔT of 5.5°C (p<0.001). A significant, positive relationship was noted between applied radiant exposure and ΔT (r 2 =0.8962; p<0.001). In vivo exposure of deep Class V preparation to Polywave ® LED LCU increases PT to values considered safe for the pulp, for most EMs. Only the longest evaluated EM caused higher PT increase than the critical ΔT, thought to be associated with pulpal necrosis. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.
Diffusion, phase equilibria and partitioning experiments in the Ni-Fe-Ru system
NASA Technical Reports Server (NTRS)
Blum, Joel D.; Wasserburg, G. J.; Hutcheon, I. D.; Beckett, J. R.; Stolper, E. M.
1989-01-01
Results are presented on thin-film diffusion experiments designed to investigate phase equilibria in systems containing high concentrations of Pt-group elements, such as Ni-Fe-Ru-rich systems containing Pt, at temperatures of 1273, 1073, and 873 K. The rate of Ru diffusion in Ni was determined as a function of temperature, and, in addition, the degree of Pt and Ir partitioning between phases in a Ni-Fe-Ru-rich system and of V between phases in a Ni-Fe-O-rich system at 873 were determined. It was found that Pt preferentially partitions into the (gamma)Ni-Fe phase, whereas Ir prefers the (epsilon)Ru-Fe phase. V partitions strongly into Fe oxides relative to (gamma)Ni-Fe. These results have direct application to the origin and thermal history of the alloys rich in Pt-group elements in meteorites.
Ultra-low-vibration pulse-tube cryocooler system - cooling capacity and vibration
NASA Astrophysics Data System (ADS)
Ikushima, Yuki; Li, Rui; Tomaru, Takayuki; Sato, Nobuaki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira
2008-09-01
This report describes the development of low-vibration cooling systems with pulse-tube (PT) cryocoolers. Generally, PT cryocoolers have the advantage of lower vibrations in comparison to those of GM cryocoolers. However, cooling systems for the cryogenic laser interferometer observatory (CLIO), which is a gravitational wave detector, require an operational vibration that is sufficiently lower than that of a commercial PT cryocooler. The required specification for the vibration amplitude in cold stages is less than ±1 μm. Therefore, during the development of low-vibration cooling systems for the CLIO, we introduced advanced countermeasures for commercial PT cryocoolers. The cooling performance and the vibration amplitude were evaluated. The results revealed that 4 K and 80 K PT cooling systems with a vibration amplitude of less than ±1 μm and cooling performance of 4.5 K and 70 K at heat loads of 0.5 W and 50 W, respectively, were developed successfully.
NASA Astrophysics Data System (ADS)
Alonso, Jose Maria; Bielen, Abraham A. M.; Olthuis, Wouter; Kengen, Servé W. M.; Zuilhof, Han; Franssen, Maurice C. R.
2016-10-01
Alkene-based self-assembled monolayers grafted on oxidized Pt surfaces were used as a scaffold to covalently immobilize oxidase enzymes, with the aim to develop an amperometric biosensor platform. NH2-terminated organic layers were functionalized with either aldehyde (CHO) or N-hydroxysuccinimide (NHS) ester-derived groups, to provide anchoring points for enzyme immobilization. The functionalized Pt surfaces were characterized by X-ray photoelectron spectroscopy (XPS), static water contact angle (CA), infrared reflection absorption spectroscopy (IRRAS) and atomic force microscopy (AFM). Glucose oxidase (GOX) was covalently attached to the functionalized Pt electrodes, either with or without additional glutaraldehyde crosslinking. The responses of the acquired sensors to glucose concentrations ranging from 0.5 to 100 mM were monitored by chronoamperometry. Furthermore, lactate oxidase (LOX) and human hydroxyacid oxidase (HAOX) were successfully immobilized onto the PtOx surface platform. The performance of the resulting lactate sensors was investigated for lactate concentrations ranging from 0.05 to 20 mM. The successful attachment of active enzymes (GOX, LOX and HAOX) on Pt electrodes demonstrates that covalently functionalized PtOx surfaces provide a universal platform for the development of oxidase enzyme-based sensors.
Echarri, Víctor; Espinosa, Almudena; Rizo, Carlos
2017-12-08
Opaque enclosures of buildings play an essential role in the level of comfort experienced indoors and annual energy demand. The impact of solar radiation and thermal inertia of the materials that make up the multi-layer enclosures substantially modify thermal transmittance behaviour of the enclosures. This dynamic form of heat transfer, additionally affected by indoor HVAC systems, has a substantial effect on the parameters that define comfort. It also has an impact on energy demand within a daily cycle as well as throughout a one-year use cycle. This study describes the destructive monitoring of an existing block of flats located in Alicante. Once the enclosure was opened, sensors of temperature (PT100), air velocity, and relative humidity were located in the different layers of the enclosure, as well as in the interior and exterior surfaces. A pyranometer was also installed to measure solar radiation levels. A temperature data correction algorithm was drawn up to address irregularities produced in the enclosure. The algorithm was applied using a Raspberry Pi processor in the data collection system. The comparative results of temperature gradients versus non-destructive monitoring systems are presented, providing measures of the transmittance value, surface temperatures and indoor and outdoor air temperatures. This remote sensing system can be used in future studies to quantify and compare the energy savings of different enclosure construction solutions.
Echarri, Víctor; Espinosa, Almudena; Rizo, Carlos
2017-01-01
Opaque enclosures of buildings play an essential role in the level of comfort experienced indoors and annual energy demand. The impact of solar radiation and thermal inertia of the materials that make up the multi-layer enclosures substantially modify thermal transmittance behaviour of the enclosures. This dynamic form of heat transfer, additionally affected by indoor HVAC systems, has a substantial effect on the parameters that define comfort. It also has an impact on energy demand within a daily cycle as well as throughout a one-year use cycle. This study describes the destructive monitoring of an existing block of flats located in Alicante. Once the enclosure was opened, sensors of temperature (PT100), air velocity, and relative humidity were located in the different layers of the enclosure, as well as in the interior and exterior surfaces. A pyranometer was also installed to measure solar radiation levels. A temperature data correction algorithm was drawn up to address irregularities produced in the enclosure. The algorithm was applied using a Raspberry Pi processor in the data collection system. The comparative results of temperature gradients versus non-destructive monitoring systems are presented, providing measures of the transmittance value, surface temperatures and indoor and outdoor air temperatures. This remote sensing system can be used in future studies to quantify and compare the energy savings of different enclosure construction solutions. PMID:29292781
Evaluation of Ambulatory Care Classification Systems for the Military Health Care System
1990-12-31
EXERCISE TRNG 06045 97118 FACILITATION/INHIBITION TECHS 06046 94667 POSTURAL DRAINAGE /CHEST 06047 97139 OTHER PROCEDURE (PT) 06048 97012 TRACTION AND HOT...NEEDLE ASP,CARINAL/PARATRACHEAL NOD 32001 32000 THORACENTESIS, THERAPEUTIC W/ DRAINAGE 36432 36430 TRANSFUSION, RBC 36433 36430 TRANSFUSION... CRANIOTOMY V5890 V571 AFTERCARE, AMPUTATION, OTHER (PT) V5891 VS71 AFTERCARE, AMPUTATION, UPPER ARM (PT) V5892 V571 AFTERCARE, AMPUTATION, FOREARM (PT) V5893
Dynamical Evolution of an Effective Two-Level System with {\\mathscr{P}}{\\mathscr{T}} Symmetry
NASA Astrophysics Data System (ADS)
Du, Lei; Xu, Zhihao; Yin, Chuanhao; Guo, Liping
2018-05-01
We investigate the dynamics of parity- and time-reversal (PT ) symmetric two-energy-level atoms in the presence of two optical and a radio-frequency (rf) fields. The strength and relative phase of fields can drive the system from unbroken to broken PT symmetric regions. Compared with the Hermitian model, Rabi-type oscillation is still observed, and the oscillation characteristics are also adjusted by the strength and relative phase in the region of unbroken PT symmetry. At exception point (EP), the oscillation breaks down. To better understand the underlying properties we study the effective Bloch dynamics and find the emergence of the z components of the fixed points is the feature of the PT symmetry breaking and the projections in x-y plane can be controlled with high flexibility compared with the standard two-level system with PT symmetry. It helps to study the dynamic behavior of the complex PT symmetric model.
Grinchuk, Oleg V; Yenamandra, Surya P; Iyer, Ramakrishnan; Singh, Malay; Lee, Hwee Kuan; Lim, Kiat Hon; Chow, Pierce Kah-Hoe; Kuznetsov, Vladamir A
2018-01-01
Currently, molecular markers are not used when determining the prognosis and treatment strategy for patients with hepatocellular carcinoma (HCC). In the present study, we proposed that the identification of common pro-oncogenic pathways in primary tumors (PT) and adjacent non-malignant tissues (AT) typically used to predict HCC patient risks may result in HCC biomarker discovery. We examined the genome-wide mRNA expression profiles of paired PT and AT samples from 321 HCC patients. The workflow integrated differentially expressed gene selection, gene ontology enrichment, computational classification, survival predictions, image analysis and experimental validation methods. We developed a 24-ribosomal gene-based HCC classifier (RGC), which is prognostically significant in both PT and AT. The RGC gene overexpression in PT was associated with a poor prognosis in the training (hazard ratio = 8.2, P = 9.4 × 10 -6 ) and cross-cohort validation (hazard ratio = 2.63, P = 0.004) datasets. The multivariate survival analysis demonstrated the significant and independent prognostic value of the RGC. The RGC displayed a significant prognostic value in AT of the training (hazard ratio = 5.0, P = 0.03) and cross-validation (hazard ratio = 1.9, P = 0.03) HCC groups, confirming the accuracy and robustness of the RGC. Our experimental and bioinformatics analyses suggested a key role for c-MYC in the pro-oncogenic pattern of ribosomal biogenesis co-regulation in PT and AT. Microarray, quantitative RT-PCR and quantitative immunohistochemical studies of the PT showed that DKK1 in PT is the perspective biomarker for poor HCC outcomes. The common co-transcriptional pattern of ribosome biogenesis genes in PT and AT from HCC patients suggests a new scalable prognostic system, as supported by the model of tumor-like metabolic redirection/assimilation in non-malignant AT. The RGC, comprising 24 ribosomal genes, is introduced as a robust and reproducible prognostic model for stratifying HCC patient risks. The adjacent non-malignant liver tissue alone, or in combination with HCC tissue biopsy, could be an important target for developing predictive and monitoring strategies, as well as evidence-based therapeutic interventions, that aim to reduce the risk of post-surgery relapse in HCC patients. © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.
40 CFR Appendix C to Part 75 - Missing Data Estimation Procedures
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Missing Data Estimation Procedures C... (CONTINUED) CONTINUOUS EMISSION MONITORING Pt. 75, App. C Appendix C to Part 75—Missing Data Estimation Procedures 1. Parametric Monitoring Procedure for Missing SO2 Concentration or NOX Emission Rate Data 1...
40 CFR Appendix C to Part 75 - Missing Data Estimation Procedures
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Missing Data Estimation Procedures C... (CONTINUED) CONTINUOUS EMISSION MONITORING Pt. 75, App. C Appendix C to Part 75—Missing Data Estimation Procedures 1. Parametric Monitoring Procedure for Missing SO2 Concentration or NOX Emission Rate Data 1...
40 CFR Appendix C to Part 75 - Missing Data Estimation Procedures
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Missing Data Estimation Procedures C... (CONTINUED) CONTINUOUS EMISSION MONITORING Pt. 75, App. C Appendix C to Part 75—Missing Data Estimation Procedures 1. Parametric Monitoring Procedure for Missing SO2 Concentration or NOX Emission Rate Data 1...
40 CFR Appendix C to Part 75 - Missing Data Estimation Procedures
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Missing Data Estimation Procedures C... (CONTINUED) CONTINUOUS EMISSION MONITORING Pt. 75, App. C Appendix C to Part 75—Missing Data Estimation Procedures 1. Parametric Monitoring Procedure for Missing SO2 Concentration or NOX Emission Rate Data 1...
40 CFR Table Hh-4 to Subpart Hh of... - Landfill Methane Oxidation Fractions
Code of Federal Regulations, 2014 CFR
2014-07-01
... gas sent off-site). If a single monitoring location is used to monitor volumetric flow and CH4... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Landfill Methane Oxidation Fractions... (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Municipal Solid Waste Landfills Pt...
Mc Cormick, Christine
2013-07-01
Children have been affected by the Israeli-Palestinian conflict for several generations. Recent reports state that they are subject to a number of grave violations, ranging from killing and maiming to detention and ill-treatment. The monitoring and reporting mechanism (MRM) for United Nations Security Council Resolution 1612 (2005), although not formally mandated in Israel and the occupied Palestinian territories (oPt), has been successfully adapted and used by humanitarian and human rights agencies to support monitoring, reporting, and responding to violations against children. However, agencies in Israel and the oPt face a number of challenges in doing so, which are common in other countries where the MRM is employed. These include limited recognition and understanding of the issues, insufficient resources, and a difficult operational environment. Despite these challenges, local adaptation of the mechanism to reflect the specific situation of children and close collaboration have enabled these agencies to monitor and respond to violations against children in a more effective manner. © 2013 The Author(s). Journal compilation © Overseas Development Institute, 2013.
Quality factor concept in piezoceramic transformer performance description.
Mezheritsky, Alex V
2006-02-01
A new general approach based on the quality factor concept to piezoceramic transformer (PT) performance description is proposed. The system's quality factor, material elastic anisotropy, and coupling factors of the input and output sections of an electrically excited and electrically loaded PT fully characterize its resonance and near-resonance behavior. The PT efficiency, transformation ratio, and input and output power were analytically analyzed and simulated as functions of the load and frequency for the simplest classical Langevin-type and Rosen-type PT designs. A new formulation of the electrical input impedance allows one to separate the power consumed by PT from the power transferred into the load. The system's PT quality factor takes into account losses in each PT "input-output-load" functional components. The loading process is changing PT input electrical impedance on the way that under loading the minimum series impedance is increasing and the maximum parallel impedance is decreasing coincidentally. The quality-factors ratio, between the states of fully loaded and nonloaded PT, is one of the best measures of PTs dynamic performance--practically, the lower the ratio is, the better PT efficiency. A simple and effective method for the loaded PT quality factor determination is proposed. As was found, a piezoceramic with low piezoelectric anisotropy is required to provide maximum PT efficiency and higher corresponding voltage gain. Limitations on the PT output voltage and power, caused by nonlinear effects in piezoceramics, were established.
A comparison of the performance of two advanced restraint systems in frontal impacts.
Lopez-Valdes, F J; Juste, O; Pipkorn, B; Garcia-Muñoz, I; Sunnevång, C; Dahlgren, M; Alba, J J
2014-01-01
The goal of the study is to compare the kinematics and dynamics of the THOR dummy in a frontal impact under the action of 2 state-of-the-art restraint systems. Ten frontal sled tests were performed with THOR at 2 different impact speeds (35 and 9 km/h). Two advanced restraint systems were used: a pretensioned force-limiting belt (PT+FL) and a pretensioned belt incorporating an inflatable portion (PT+BB). Dummy measurements included upper and lower neck reactions, multipoint thoracic deflection, and rib deformation. Data were acquired at 10,000 Hz. Three-dimensional motion of relevant dummy landmarks was tracked at 1,000 Hz. RESULTS are reported in a local coordinate system moving with the test buck. Average forward displacement of the head was greater when the PT+FL belt was used (35 km/h: 376.3±16.1 mm [PT+BB] vs. 393.6±26.1 mm [PT+FL]; 9 km/h: 82.1±26.0 mm [PT+BB] vs. 98.8±0.2 mm [PT+FL]). The forward displacement of T1 was greater for the PT+FL belt at 35 km/h but smaller at 9 km/h. The forward motion of the pelvis was greater when the PT+BB was used, exhibiting a difference of 82 mm in the 9 km/h tests and 95.5 mm in the 35 km/h test. At 35 km/h, upper shoulder belt forces were similar (PT+FL: 4,756.8±116.6 N; PT+BB: 4,957.7±116.4 N). At 9 km/h, the PT+BB belt force was significantly greater than the PT+FL one. Lower neck flexion moments were higher for the PT+BB at 35 km/h but lower at 9 km/h (PT+FL: 34.2±3.5 Nm; PT+BB: 26.8±2.1 Nm). Maximum chest deflection occurred at the chest upper left region for both belts and regardless of the speed. The comparison of the performance of different restraints requires assessing occupant kinematics and dynamics from a global point of view. Even if the force acting on the chest is similar, kinematics can be substantially different. The 2 advanced belts compared here showed that while the PT+BB significantly reduced peak and resultant chest deflection, the resulting kinematics indicated an increased forward motion of the pelvis and a reduced rotation of the occupant's torso. Further research is needed to understand how these effects can influence the protection of real occupants in more realistic vehicle environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jun-Hyuk; Kwon, Gihan; Lim, Hankwon
High cost and low durability are unresolved issues that impede the commercialization of proton exchange membrane fuel cells (PEMFCs). To overcome these limitations, Pt/TiO2 is reported as an alternative electrocatalyst for enhancing the oxygen reduction reaction (ORR) activity and/or durability of the system. However, the low electrical conductivity of TiO2 is a drawback that may be addressed by doping. To date, most reports related to Pt/doped-TiO2 focus on changes in the catalyst activity caused by the Pt-TiO2 interaction (metal -support interaction), instead of the effect of doping itself; doping is merely considered to enhance the electrical conductivity of TiO2. Inmore » this study, we discuss the variation in the electronic fine structure of Pt caused by the dopant, and its correlation with the ORR activity. More extensive contraction of the Pt lattice in Pt/M-TiO2 (M = V, Cr, and Nb) relative to Pt/TiO2 and Pt/C leads to outstanding ORR specific activity of Pt/M-TiO2. Notably, a fourfold increase of the specific activity is achieved with Pt/V-TiO2 relative to Pt/C. Furthermore, an accelerated durability test (ADT) of Pt/V-TiO2 demonstrates that this system is three times more durable than conventional Pt/C due to the metal support interaction.« less
Al-Jedai, Ahmed H; Algain, Roaa A; Alghamidi, Said A; Al-Jazairi, Abdulrazaq S; Amin, Rashid; Bin Hussain, Ibrahim Z
2017-10-01
In the last few decades, changes to formulary management processes have taken place in institutions with closed formulary systems. However, many P&T committees continued to operate using traditional paper-based systems. Paper-based systems have many limitations, including confidentiality, efficiency, open voting, and paper wastage. This becomes more challenging when dealing with a multisite P&T committee that handles formulary matters across the whole health care system. In this paper, we discuss the implementation of the first paperless, completely electronic, Web-based formulary management system across a large health care system in the Middle East. We describe the transitioning of a multisite P&T committee in a large tertiary care institution from a paper-based to an all-electronic system. The challenges and limitations of running a multisite P&T committee utilizing a paper system are discussed. The design and development of a Web-based committee floor management application that can be used from notebooks, tablets, and hand-held devices is described. Implementation of a flexible, interactive, easy-to-use, and efficient electronic formulary management system is explained in detail. The development of an electronic P&T committee meeting system that encompasses electronic document sharing, voting, and communication could help multisite health care systems unify their formularies across multiple sites. Our experience might not be generalizable to all institutions because this depends heavily on system features, existing processes and workflow, and implementation across different sites.
NASA Technical Reports Server (NTRS)
Okojie, Robert S.; Lukco, Dorothy
2017-01-01
The degradation of ohmic contacts to 4H-SiC pressure sensors over time at high temperature is primarily due to two failure mechanisms: migrating bond pad Au and atmospheric O toward the ohmic contact SiC interface and the inter-metallic mixing between diffusion barrier systems (DBS) and the underlying ohmic contact metallization. We investigated the effectiveness of Pt/TaSi2/Pt/W (DBS-A) and Pt/Ti/W (DBS-B) in preventing Au and O diffusion through the underlying binary Ti/W or alloyed W50:Ni50 ohmic contacts to 4H-SiC and the DBS ohmic contact intermixing at temperature up to 700 C.
Esposito, Susanna; Pugni, Lorenza; Mosca, Fabio; Principi, Nicola
2017-10-13
Rotavirus (RV) is the leading cause of severe acute gastroenteritis (GE) in infants worldwide. Several vaccines against RV were developed to reduce disease burden, hospitalization rates and health utilization costs. RV GE is a serious disease in preterm (PT) infants, and the administration of RV vaccine to these at-risk subjects at the proper time could have great clinical relevance. However, most data on the efficacy and safety of RV vaccinations were collected in healthy full-term infants, and few studies investigated PT infants. The lack of studies in PT infants may explain why neonatologists in several neonatal intensive care units (NICUs) do not follow the official recommendations, which indicate that RV vaccine may be administered in hospitals. Increasing neonatologists' knowledge on the efficacy and safety of RV vaccines and defining PT candidates for vaccination and the necessary precautions are extremely important to avoid potential vaccine virus transmission and improve RV vaccination coverage in PT infants. Further studies should analyse the impact of vaccination of PT infants of different gestational ages and various clinical histories in stable conditions in the NICU with a careful monitoring of adverse events to the vaccine and RV GE occurrence. Only data that confirm the efficacy and safety of RV vaccines in large numbers of PT infants with different characteristics will convince neonatologists to use RV vaccines in PT infants hospitalized in NICUs. Copyright © 2017. Published by Elsevier Ltd.
Al-Jedai, Ahmed H.; Algain, Roaa A.; Alghamidi, Said A.; Al-Jazairi, Abdulrazaq S.; Amin, Rashid; Bin Hussain, Ibrahim Z.
2017-01-01
Purpose In the last few decades, changes to formulary management processes have taken place in institutions with closed formulary systems. However, many P&T committees continued to operate using traditional paper-based systems. Paper-based systems have many limitations, including confidentiality, efficiency, open voting, and paper wastage. This becomes more challenging when dealing with a multisite P&T committee that handles formulary matters across the whole health care system. In this paper, we discuss the implementation of the first paperless, completely electronic, Web-based formulary management system across a large health care system in the Middle East. Summary We describe the transitioning of a multisite P&T committee in a large tertiary care institution from a paper-based to an all-electronic system. The challenges and limitations of running a multisite P&T committee utilizing a paper system are discussed. The design and development of a Web-based committee floor management application that can be used from notebooks, tablets, and hand-held devices is described. Implementation of a flexible, interactive, easy-to-use, and efficient electronic formulary management system is explained in detail. Conclusion The development of an electronic P&T committee meeting system that encompasses electronic document sharing, voting, and communication could help multisite health care systems unify their formularies across multiple sites. Our experience might not be generalizable to all institutions because this depends heavily on system features, existing processes and workflow, and implementation across different sites. PMID:29018301
Bound states, scattering states, and resonant states in PT -symmetric open quantum systems
NASA Astrophysics Data System (ADS)
Garmon, Savannah; Gianfreda, Mariagiovanna; Hatano, Naomichi
2015-08-01
We study a simple open quantum system with a PT -symmetric defect potential as a prototype in order to illustrate a number of general features of PT -symmetric open quantum systems; however, the potential itself could be mimicked by a number of PT systems that have been experimentally studied quite recently. One key feature is the resonance in continuum (RIC), which appears in both the discrete spectrum and the scattering spectrum of such systems. The RIC wave function forms a standing wave extending throughout the spatial extent of the system and in this sense represents a resonance between the open environment associated with the leads of our model and the central PT -symmetric potential. We also illustrate that as one deforms the system parameters, the RIC may exit the continuum by splitting into a bound state and a virtual bound state at the band edge, a process which should be experimentally observable. We also study the exceptional points appearing in the discrete spectrum at which two eigenvalues coalesce; we categorize these as either EP2As, at which two real-valued solutions coalesce before becoming complex-valued, and EP2Bs, for which the two solutions are complex on either side of the exceptional point. The EP2As are associated with PT -symmetry breaking; we argue that these are more stable against parameter perturbation than the EP2Bs. We also study complex-valued solutions of the discrete spectrum for which the wave function is nevertheless spatially localized, something that is not allowed in traditional open quantum systems; we illustrate that these may form quasibound states in continuum under some circumstances. We also study the scattering properties of the system, including states that support invisible propagation and some general features of perfect transmission states. We finally use our model as a prototype for the construction of scattering states that satisfy PT -symmetric boundary conditions; while these states do not conserve the traditional probability current, we introduce the PT current which is preserved. The perfect transmission states appear as a special case of the PT -symmetric scattering states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borodko, Yuri; Lee, Hyun Sook; Joo, Sang Hoon
2009-09-15
Poly(N-vinylpyrrolidone) (PVP) capped platinum and rhodium nanoparticles (7-12 nm) have been studied with UV-VIS, FTIR and Raman spectroscopy. The absorption bands in the region 190-900 nm are shown to be sensitive to the electronic structure of surface Rh and Pt atoms as well as to the aggregation of the nanoparticles. In-situ FTIR-DRIFT spectroscopy of the thermal decay of PVP stabilized Rh and Pt nanoparticles in H{sub 2} and O{sub 2} atmospheres in temperatures ranging from 30 C-350 C reveal that decomposition of PVP above 200 C, PVP transforms into a 'polyamidpolyene' - like material that is in turn converted intomore » a thin layer of amorphous carbon above 300 C. Adsorbed carbon monoxide was used as a probing molecule to monitor changes of electronic structure of surface Rh and Pt atoms and accessible surface area. The behavior of surface Rh and Pt atoms with ligated CO and amide groups of pyrrolidones resemble that of surface coordination compounds.« less
Masson, M; Angot, H; Le Bescond, C; Launay, M; Dabrin, A; Miège, C; Le Coz, J; Coquery, M
2018-05-10
Monitoring hydrophobic contaminants in surface freshwaters requires measuring contaminant concentrations in the particulate fraction (sediment or suspended particulate matter, SPM) of the water column. Particle traps (PTs) have been recently developed to sample SPM as cost-efficient, easy to operate and time-integrative tools. But the representativeness of SPM collected with PTs is not fully understood, notably in terms of grain size distribution and particulate organic carbon (POC) content, which could both skew particulate contaminant concentrations. The aim of this study was to evaluate the representativeness of SPM characteristics (i.e. grain size distribution and POC content) and associated contaminants (i.e. polychlorinated biphenyls, PCBs; mercury, Hg) in samples collected in a large river using PTs for differing hydrological conditions. Samples collected using PTs (n = 74) were compared with samples collected during the same time period by continuous flow centrifugation (CFC). The grain size distribution of PT samples shifted with increasing water discharge: the proportion of very fine silts (2-6 μm) decreased while that of coarse silts (27-74 μm) increased. Regardless of water discharge, POC contents were different likely due to integration by PT of high POC-content phytoplankton blooms or low POC-content flood events. Differences in PCBs and Hg concentrations were usually within the range of analytical uncertainties and could not be related to grain size or POC content shifts. Occasional Hg-enriched inputs may have led to higher Hg concentrations in a few PT samples (n = 4) which highlights the time-integrative capacity of the PTs. The differences of annual Hg and PCB fluxes calculated either from PT samples or CFC samples were generally below 20%. Despite some inherent limitations (e.g. grain size distribution bias), our findings suggest that PT sampling is a valuable technique to assess reliable spatial and temporal trends of particulate contaminants such as PCBs and Hg within a river monitoring network. Copyright © 2018 Elsevier B.V. All rights reserved.
Facile synthesis of Pt-Pd alloy nanocages and Pt nanorings by templating with Pd nanoplates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xue; Luo, Ming; Huang, Hongwen
We report a facile method for the synthesis of Pt-Pd nanocages and Pt nanorings by conformally coating Pd nanoplates with Pt-based shells using polyol- and water-based protocols, respectively, followed by selective removal of the Pd cores. For the polyol-based system, Pd nanoplates were conformally coated with Pt-Pd alloy shells due to the use of a high reaction temperature of 200 °C and a slow injection rate for the Pt precursor. In comparison, Pt shells were formed on Pd nanoplates (with a larger thickness on the side face than on the top/bottom face) in the water-based system due to the usemore » of a low reaction temperature of 80 °C and the presence of twin boundaries on the side face. As such, the Pd@Pt nanoplates prepared using the polyol- and water-based protocols evolved into Pt-Pd nanocages and Pt nanorings, respectively, when the Pd templates in the cores were selectively removed by wet etching. As a result, the wall thickness of the nanocages and the ridge thickness of the nanorings could be reduced down to 1.1 nm and 1.8 nm, respectively, without breaking the hollow structures.« less
Facile synthesis of Pt-Pd alloy nanocages and Pt nanorings by templating with Pd nanoplates
Wang, Xue; Luo, Ming; Huang, Hongwen; ...
2016-09-06
We report a facile method for the synthesis of Pt-Pd nanocages and Pt nanorings by conformally coating Pd nanoplates with Pt-based shells using polyol- and water-based protocols, respectively, followed by selective removal of the Pd cores. For the polyol-based system, Pd nanoplates were conformally coated with Pt-Pd alloy shells due to the use of a high reaction temperature of 200 °C and a slow injection rate for the Pt precursor. In comparison, Pt shells were formed on Pd nanoplates (with a larger thickness on the side face than on the top/bottom face) in the water-based system due to the usemore » of a low reaction temperature of 80 °C and the presence of twin boundaries on the side face. As such, the Pd@Pt nanoplates prepared using the polyol- and water-based protocols evolved into Pt-Pd nanocages and Pt nanorings, respectively, when the Pd templates in the cores were selectively removed by wet etching. As a result, the wall thickness of the nanocages and the ridge thickness of the nanorings could be reduced down to 1.1 nm and 1.8 nm, respectively, without breaking the hollow structures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozcan, Ahmet S.; Wall, Donald; Jordan-Sweet, Jean
Using temperature controlled Si and C ion implantation, we studied the effects of pre-amorphization implantation on NiPt alloy silicide phase formation. In situ synchrotron x-ray diffraction and resistance measurements were used to monitor phase and morphology evolution in silicide films. Results show that substrate amorphization strongly modulate the nucleation of silicide phases, regardless of implant species. However, morphological stability of the thin films is mainly enhanced by C addition, independently of the amorphization depth.
Charge optimized many body (COMB) potentials for Pt and Au.
Antony, A C; Akhade, S A; Lu, Z; Liang, T; Janik, M J; Phillpot, S R; Sinnott, S B
2017-06-07
Interatomic potentials for Pt and Au are developed within the third generation charge optimized many-body (COMB3) formalism. The potentials are capable of reproducing phase order, lattice constants, and elastic constants of Pt and Au systems as experimentally measured or calculated by density functional theory. We also fit defect formation energies, surface energies and stacking fault energies for Pt and Au metals. The resulting potentials are used to map a 2D contour of the gamma surface and simulate the tensile test of 16-grain polycrystalline Pt and Au structures at 300 K. The stress-strain behaviour is investigated and the primary slip systems {1 1 1}〈1 [Formula: see text] 0〉 are identified. In addition, we perform high temperature (1800 K for Au and 2300 K for Pt) molecular dynamics simulations of 30 nm Pt and Au truncated octahedron nanoparticles and examine morphological changes of each particle. We further calculate the activation energy barrier for surface diffusion during simulations of several nanoseconds and report energies of [Formula: see text] eV for Pt and [Formula: see text] eV for Au. This initial parameterization and application of the Pt and Au potentials demonstrates a starting point for the extension of these potentials to multicomponent systems within the COMB3 framework.
Ozawa, Tomoyuki; Osaka, Issey; Hamada, Satoshi; Murakami, Tatsuya; Miyazato, Akio; Kawasaki, Hideya; Arakawa, Ryuichi
2016-01-01
Plant leaves administered with systemic insecticides as agricultural chemicals were analyzed using imaging mass spectrometry (IMS). Matrix-assisted laser desorption/ionization (MALDI) is inadequate for the detection of insecticides on leaves because of the charge-up effect that occurs on the non-conductive surface of the leaves. In this study, surface-assisted laser desorption/ionization with a sputter-deposited platinum film (Pt-SALDI) was used for direct analysis of chemicals in plant leaves. Sputter-deposited platinum (Pt) films were prepared on leaves administered with the insecticides. A sputter-deposited Pt film with porous structure was used as the matrix for Pt-SALDI. Acephate and acetamiprid contained in the insecticides on the leaves could be detected using Pt-SALDI-MS, but these chemical components could not be adequately detected using MALDI-MS because of the charge-up effect. Enhancement of ion yields for the insecticides was achieved using Pt-SALDI, accompanied by prevention of the charge-up effect by the conductive Pt film. The movement of systemic insecticides in plants could be observed clearly using Pt-SALDI-IMS. The distribution and movement of components of systemic insecticides on leaves could be analyzed directly using Pt-SALDI-IMS. Additionally, changes in the properties of the chemicals with time, as an indicator of the permeability of the insecticides, could be evaluated.
Fabbri, Emiliana; Pătru, Alexandra; Rabis, Annett; Kötz, Rüdiger; Schmidt, Thomas J
2014-01-01
The development of stable catalyst systems for application at the cathode side of polymer electrolyte fuel cells (PEFCs) requires the substitution of the state-of-the-art carbon supports with materials showing high corrosion resistance in a strongly oxidizing environment. Metal oxides in their highest oxidation state can represent viable support materials for the next generation PEFC cathodes. In the present work a multilevel approach has been adopted to investigate the kinetics and the activity of Pt nanoparticles supported on SnO2-based metal oxides. Particularly, model electrodes made of SnO2 thin films supporting Pt nanoparticles, and porous catalyst systems made of Pt nanoparticles supported on Sb-doped SnO2 high surface area powders have been investigated. The present results indicate that SnO2-based supports do not modify the oxygen reduction reaction mechanism on the Pt nanoparticle surface, but rather lead to catalysts with enhanced specific activity compared to Pt/carbon systems. Different reasons for the enhancement in the specific activity are considered and discussed.
Makhabah, Dewi Nurul; Martino, Federica; Ambrosino, Nicolino
2013-01-23
Postoperative pulmonary complications (PPC) are a major cause of morbidity, mortality, prolonged hospital stay, and increased cost of care. Physiotherapy (PT) programs in post-surgical and critical area patients are aimed to reduce the risks of PPC due to long-term bed-rest, to improve the patient's quality of life and residual function, and to avoid new hospitalizations. At this purpose, PT programs apply advanced cost-effective therapeutic modalities to decrease complications and patient's ventilator-dependency. Strategies to reduce PPC include monitoring and reduction of risk factors, improving preoperative status, patient education, smoking cessation, intra-operative and postoperative pulmonary care. Different PT techniques, as a part of the comprehensive management of patients undergoing cardiac, upper abdominal, and thoracic surgery, may prevent and treat PPC such as secretion retention, atelectasis, and pneumonia.
40 CFR Table 3 to Subpart Oooo of... - Applicability of General Provisions to Subpart OOOO
Code of Federal Regulations, 2013 CFR
2013-07-01
... of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution Pt. 60, Subpt... Yes. § 60.4 Address Yes. § 60.5 Determination of construction or modification Yes. § 60.6 Review of... in subpart OOOO. § 60.12 Circumvention Yes. § 60.13 Monitoring requirements Yes Continuous monitors...
40 CFR Table 3 to Subpart Oooo of... - Applicability of General Provisions to Subpart OOOO
Code of Federal Regulations, 2014 CFR
2014-07-01
... of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution Pt. 60, Subpt... Yes. § 60.4 Address Yes. § 60.5 Determination of construction or modification Yes. § 60.6 Review of... in subpart OOOO. § 60.12 Circumvention Yes. § 60.13 Monitoring requirements Yes Continuous monitors...
Accessing the exceptional points of parity-time symmetric acoustics
Shi, Chengzhi; Dubois, Marc; Chen, Yun; Cheng, Lei; Ramezani, Hamidreza; Wang, Yuan; Zhang, Xiang
2016-01-01
Parity-time (PT) symmetric systems experience phase transition between PT exact and broken phases at exceptional point. These PT phase transitions contribute significantly to the design of single mode lasers, coherent perfect absorbers, isolators, and diodes. However, such exceptional points are extremely difficult to access in practice because of the dispersive behaviour of most loss and gain materials required in PT symmetric systems. Here we introduce a method to systematically tame these exceptional points and control PT phases. Our experimental demonstration hinges on an active acoustic element that realizes a complex-valued potential and simultaneously controls the multiple interference in the structure. The manipulation of exceptional points offers new routes to broaden applications for PT symmetric physics in acoustics, optics, microwaves and electronics, which are essential for sensing, communication and imaging. PMID:27025443
Shen, Bing; Yu, Li; Liu, Kai; ...
2017-06-01
We have carried out high-resolution angle-resolved photoemission measurements on the Cebased heavy fermion compound CePt 2In 7 that exhibits stronger two-dimensional character than the prototypical heavy fermion system CeCoIn 5. Multiple Fermi surface sheets and a complex band structure are clearly resolved. We have also performed detailed band structure calculations on CePt 2In 7. The good agreement found between our measurements and the calculations suggests that the band renormalization effect is rather weak in CePt 2In 7. A comparison of the common features of the electronic structure of CePt 2In 7 and CeCoIn5 indicates that CeCoIn 5 shows a muchmore » stronger band renormalization effect than CePt 2In 7. These results provide new information for understanding the heavy fermion behaviors and unconventional superconductivity in Ce-based heavy fermion systems.« less
Garimella, Surekha; Sheikh, Kabir
2016-01-01
Background: Posting and transfer (PT) of health personnel – placing the right health workers in the right place at the right time – is a core function of any large-scale health service. In the context of government health services, this may be seen as a simple process of bureaucratic governance and implementation of the rule of law. However the literature from India and comparable low and middle-income country health systems suggests that in reality PT is a contested domain, driven by varied expressions of private and public interest throughout the chain of implementation. Objective: To investigate policymaking for PT in the government health sector and implementation of policies as experienced by different health system actors and stakeholders at primary health care level. Methodology: We undertook an empirical case study of a PT reform policy at primary health care level in Tamil Nadu State, to understand how different groups of health systems actors experience PT. In-depth qualitative methods were undertaken to study processes of implementation of PT policies enacted through ‘counselling’ of health workers (individualized consultations to determine postings and transfers). Results: PT emerges as a complex phenomenon, shaped partially by the laws of the state and partially as a parallel system of norms and incentives requiring consideration and coordination of the interests of different groups. Micro-practices of governance represent homegrown coping mechanisms of health administrators that reconcile public and private interests and sustain basic health system functions. Beyond a functional perspective of PT, it also reflects justice and fairness as it plays out in the health system. It signifies how well a system treats its employees, and by inference, is an index of the overall health of the system. Conclusions: For a complex governance function such as PT, the roles of private actors and private interests are not easily separable from the public, but rather are intertwined within the complexities of delivery of a public service. This complexity blurs conventional boundaries of private and public ownership and behaviour, and raises critical questions for the interpretation of coordinated governance. Hence, the imperative of enforcing rules may need to be complemented with bottom-up policy approaches, including treating PT not merely as system dysfunction, but also as a potential instrument of governance innovations, procedural justice and the accountability of health services to communities they seek to serve. PMID:28217602
... Time and International Normalized Ratio (PT/INR) PSEN1 Quantitative Immunoglobulins Red Blood Cell (RBC) Antibody Identification Red ... monitor treatment: HCV RNA tests: HCV RNA test, Quantitative (HCV viral load) detects and measures the number ...
... Time and International Normalized Ratio (PT/INR) PSEN1 Quantitative Immunoglobulins Red Blood Cell (RBC) Antibody Identification Red ... View Sources NOTE: This article is based on research that utilizes the sources cited here as well ...
Platinum Nanoparticles: Efficient and Stable Catechol Oxidase Mimetics.
Liu, Yi; Wu, Haohao; Chong, Yu; Wamer, Wayne G; Xia, Qingsu; Cai, Lining; Nie, Zhihong; Fu, Peter P; Yin, Jun-Jie
2015-09-09
Although enzyme-like nanomaterials have been extensively investigated over the past decade, most research has focused on the peroxidase-like, catalase-like, or SOD-like activity of these nanomaterials. Identifying nanomaterials having oxidase-like activities has received less attention. In this study, we demonstrate that platinum nanoparticles (Pt NPs) exhibit catechol oxidase-like activity, oxidizing polyphenols into the corresponding o-quinones. Four unique approaches are employed to demonstrate the catechol oxidase-like activity exerted by Pt NPs. First, UV-vis spectroscopy is used to monitor the oxidation of polyphenols catalyzed by Pt NPs. Second, the oxidized products of polyphenols are identified by ultrahigh-performance liquid chromatography (UHPLC) separation followed by high-resolution mass spectrometry (HRMS) identification. Third, electron spin resonance (ESR) oximetry techniques are used to confirm the O2 consumption during the oxidation reaction. Fourth, the intermediate products of semiquinone radicals formed during the oxidation of polyphenols are determined by ESR using spin stabilization. These results indicate Pt NPs possess catechol oxidase-like activity. Because polyphenols and related bioactive substances have been explored as potent antioxidants that could be useful for the prevention of cancer and cardiovascular diseases, and Pt NPs have been widely used in the chemical industry and medical science, it is essential to understand the potential effects of Pt NPs for altering or influencing the antioxidant activity of polyphenols.
The thermal stability of Pt/epitaxial Gd2O3/Si stacks and its dependence on heat-treatment ambient
NASA Astrophysics Data System (ADS)
Lipp, E.; Osten, H. J.; Eizenberg, M.
2009-12-01
The stability of Pt/epitaxial Gd2O3/Si stacks is studied by monitoring the chemical and electrical properties following heat treatments in forming gas and in vacuum at temperatures between 400 and 650 °C. Our results show that stack instability is realized via diffusion of Gd through the Pt grain boundaries, which was observed after forming-gas annealing at 550 °C for 30 min. The Gd diffusion kinetics in forming gas is studied by secondary ion mass spectrometry analysis, showing that the diffusion process occurs according to C-type kinetics with an activation energy of 0.73±0.04 eV. Following vacuum heat treatments at 600 °C for 30 min, Si outdiffusion is observed, in addition to Gd outdiffusion. Si outdiffusion results in the formation of PtSi clusters on the metal surface following vacuum annealing at 650 °C. In contrast, in the case of forming-gas treatments, Si diffusion and silicide formation were detected only after annealing at 700 °C. The better stability of Pt/Gd2O3/Si stacks in forming gas is correlated with the content of oxygen in the Pt layer during the treatment.
NASA Astrophysics Data System (ADS)
Owen, Cameron J.; Boles, Georgia C.; Chernyy, Valeriy; Bakker, Joost M.; Armentrout, P. B.
2018-01-01
A previous infrared multiple photon dissociation (IRMPD) action spectroscopy and density functional theory (DFT) study explored the structures of the [M,C,2H]+ products formed by dehydrogenation of methane by four, gas-phase 5d transition metal cations (M+ = Ta+, W+, Ir+, and Pt+). Complicating the analysis of these spectra for Ir and Pt was observation of an extra band in both spectra, not readily identified as a fundamental vibration. In an attempt to validate the assignment of these additional peaks, the present work examines the gas phase [M,C,2D]+ products of the same four metal ions formed by reaction with perdeuterated methane (CD4). As before, metal cations are formed in a laser ablation source and react with methane pulsed into a reaction channel downstream, and the resulting products are spectroscopically characterized through photofragmentation using the free-electron laser for intracavity experiments in the 350-1800 cm-1 range. Photofragmentation was monitored by the loss of D for [Ta,C,2D]+ and [W,C,2D]+ and of D2 in the case of [Pt,C,2D]+ and [Ir,C,2D]+. Comparison of the experimental spectra and DFT calculated spectra leads to structural assignments for all [M,C,2H/2D]+ systems that are consistent with previous identifications and allows a full description of the systematic spectroscopic shifts observed for deuterium labeling of these complexes, some of the smallest systems to be studied using IRMPD action spectroscopy. Further, full rotational contours are simulated for each vibrational band and explain several observations in the present spectra, such as doublet structures in several bands as well as the observed linewidths. The prominent extra bands in the [Pt,C,2D/2H]+ spectra appear to be most consistent with an overtone of the out-of-plane bending vibration of the metal carbene cation structure.
Controlling the bond scission sequence of oxygenates for energy applications
NASA Astrophysics Data System (ADS)
Stottlemyer, Alan L.
The so called "Holy Grail" of heterogeneous catalysis is a fundamental understanding of catalyzed chemical transformations which span multidimensional scales of both length and time, enabling rational catalyst design. Such an undertaking is realizable only with an atomic level understanding of bond formation and destruction with respect to intrinsic properties of the metal catalyst. In this study, we investigate the bond scission sequence of small oxygenates (methanol, ethanol, ethylene glycol) on bimetallic transition metal catalysts and transition metal carbide catalysts. Oxygenates are of interest both as hydrogen carriers for reforming to H2 and CO and as fuels in direct alcohol fuel cells (DAFC). To address the so-called "materials gap" and "pressure gap" this work adopted three parallel research approaches: (1) ultra high vacuum (UHV) studies including temperature programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS) on polycrystalline surfaces; (2) DFT studies including thermodynamic and kinetic calculations; (3) electrochemical studies including cyclic voltammetry (CV) and chronoamperometry (CA). Recent studies have suggested that tungsten monocarbide (WC) may behave similarly to Pt for the electrooxidation of oxygenates. TPD was used to quantify the activity and selectivity of oxygenate decomposition for WC and Pt-modifiedWC (Pt/WC) as compared to Pt. While decomposition activity was generally higher on WC than on Pt, scission of the C-O bond resulted in alkane/alkene formation on WC, an undesired product for DAFC. When Pt was added to WC by physical vapor deposition C-O bond scission was limited, suggesting that Pt synergistically modifies WC to improve the selectivity toward C-H bond scission to produce H2 and CO. Additionally, TPD confirmed WC and Pt/WC to be more CO tolerant than Pt. HREELS results verified that surface intermediates were different on Pt/WC as compared to Pt or WC and evidence of aldehyde intermediates was observed on the Pt and Pt/WC surfaces. For CH3OH decomposition, DFT calculations suggested that the bond scission sequence could be controlled using monolayer coverage of Pt on WC. The Ni/Pt bimetallic system was studied as an example for using oxygenates as a hydrogen source. There are two well characterized surface structures for the Ni/Pt system: the surface configuration, in which the Ni atoms reside primarily on the surface of the Pt bulk, and the subsurface configuration, in which the second atomic layer is enriched in Ni atoms and the surface is enriched in Pt atoms. These configurations are denoted NiPtPt and PtNiPt, respectively. DFT results revealed that trends established for the Ni/Pt(111) system extend to the Ni/Pt(100) analogue. TPD studies revealed that the NiPtPt surface was more active for oxygenate reforming than the Pt or PtNiPt surfaces. HREELS confirmed the presence of strongly bound reaction intermediates, including aldehyde-like species, and suggested that the first decomposition step was likely O-H bond scission. Thus, the binding energies of the deprotonated reaction intermediates are important parameters in controlling the decomposition pathways of oxygenates. These studies have demonstrated that the bond scission sequence of oxygenate decomposition can be controlled using bimetallic and transition metal carbide catalysts. While this study has focused on oxygenate decomposition for energy applications, the principles and methodology applied herein are universally applicable to the development of novel and marketable value-added products. The value in such a methodology is in the combination of both calculations to predict catalytic and chemical properties, and experiments to fine-tune theoretical predictions.
Hirano, Teruyuki; Kaneko, Hirokazu; Mishina, Sari; Wang, Feng; Morita, Satoshi
2017-10-01
Atrial fibrillation (AF) is the most common cardiac arrhythmia, with increasing prevalence in Japan. Although prothrombin time-international normalized ratio (PT-INR) targets for monitoring warfarin therapy in patients with nonvalvular AF (NVAF) are well defined, real-world patient characteristics and PT-INR levels remain unknown among Japanese patients with NVAF who initiate and continue warfarin (warfarin maintainers) versus those who switch from warfarin to direct oral anticoagulants (DOACs; warfarin switchers). Patients with NVAF receiving oral anticoagulants between February 2013 and June 2015 were identified using a nationwide electronic medical record (EMR) database from 69 hospitals in Japan. Demographics and characteristics of patients, PT-INR, time in therapeutic range (TTR), and frequency in range (FIR) of PT-INR between warfarin maintainers and warfarin switchers were assessed. A total of 1705 patients met inclusion criteria and were examined (1501 warfarin maintainers versus 204 warfarin switchers). CHADS 2 , CHA 2 DS 2 -VASc, and HAS-BLED scores were comparable between groups. However, these scores were significantly higher among warfarin switchers at the time of switching than at the time of warfarin initiation. Furthermore, TTR and FIR of PT-INR were lower in warfarin switchers than in maintainers. Nevertheless, TTR and FIR were below 50% (PT-INR, 1.6-2.6) in both patient groups. In this EMR-based clinical study, patients who switched to DOACs had both poor or inadequate PT-INR control and higher risk factors of stroke. Many patients receiving warfarin did not achieve sufficient PT-INR therapeutic range. DOACs could be recommended in Japanese patients with NVAF with inadequate PT-INR control and increased risk of stroke. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Surface science approach to Pt/carbon model catalysts: XPS, STM and microreactor studies
NASA Astrophysics Data System (ADS)
Motin, Abdul Md.; Haunold, Thomas; Bukhtiyarov, Andrey V.; Bera, Abhijit; Rameshan, Christoph; Rupprechter, Günther
2018-05-01
Pt nanoparticles supported on carbon are an important technological catalyst. A corresponding model catalyst was prepared by physical vapor deposition (PVD) of Pt on sputtered HOPG (highly oriented pyrolytic graphite). The carbon substrate before and after sputtering as well as the Pt/HOPG system before and after Pt deposition and annealing were examined by XPS and STM. This yielded information on the surface density of defects, which serve as nucleation centres for Pt, and on the size distribution (mean size/height) of the Pt nanoparticles. Two different model catalysts were prepared with mean sizes of 2.0 and 3.6 nm, both turned out to be stable upon UHV-annealing to 300 °C. After transfer into a UHV-compatible flow microreactor and subsequent cleaning in UHV and under mbar pressure, the catalytic activity of the Pt/HOPG model system for ethylene hydrogenation was examined under atmospheric pressure flow conditions. This enabled to determine temperature-dependent conversion rates, turnover frequencies (TOFs) and activation energies. The catalytic results obtained are in line with the characteristics of technological Pt/C, demonstrating the validity of the current surface science based model catalyst approach.
Zhang, Ren-Qin; Lee, Tae-Hun; Yu, Byung-Deok; Stampfl, Catherine; Soon, Aloysius
2012-12-28
As a first step towards a microscopic understanding of single-Pt atom-dispersed catalysts on non-conventional TiN supports, we present density-functional theory (DFT) calculations to investigate the adsorption properties of Pt atoms on the pristine TiN(100) surface, as well as the dominant influence of surface defects on the thermodynamic stability of platinized TiN. Optimized atomic geometries, energetics, and analysis of the electronic structure of the Pt/TiN system are reported for various surface coverages of Pt. We find that atomic Pt does not bind preferably to the clean TiN surface, but under typical PEM fuel cell operating conditions, i.e. strongly oxidizing conditions, TiN surface vacancies play a crucial role in anchoring the Pt atom for its catalytic function. Whilst considering the energetic stability of the Pt/TiN structures under varying N conditions, embedding Pt at the surface N-vacancy site is found to be the most favorable under N-lean conditions. Thus, the system of embedding Pt at the surface N-vacancy sites on TiN(100) surfaces could be promising catalysts for PEM fuel cells.
The K(ATP)+ channel is involved in a low-amplitude permeability transition in plant mitochondria.
Petrussa, Elisa; Casolo, Valentino; Peresson, Carlo; Braidot, Enrico; Vianello, Angelo; Macrì, Francesco
2004-04-01
Pea (Pisum sativum) stem mitochondria, energized by NADH, succinate or malate plus glutamate, underwent a spontaneous low-amplitude permeability transition (PT), which could be monitored by dissipation of the electrical potential (deltapsi) or swelling. The occurrence of the latter effects was dependent on O2 availability, because O2 shortage anticipated the manifestation of both deltapsi dissipation and swelling. Spontaneous deltapsi collapse was also monitored in sucrose-resuspended mitochondria and again O2 deprivation caused an anticipation of the phenomenon. However, in this case deltapsi dissipation was not accompanied by a parallel mitochondrial swelling. The latter effect was, indeed, evident only if mitochondria were resuspended in KCl (as osmoticum), or other cations with a molecular mass up to 100 Da (choline+). PT was also induced by protonophores (carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) or free fatty acids) or valinomycin (only in KCl). The FCCP-induced dissipation of deltapsi and swelling were inhibited by ATP and stimulated (anticipated) by cyclosporin A or O2 shortage. The FCCP-induced PT was accompanied by the release of pyridine nucleotides from the matrix and of cytochrome c from the intermembrane space of KCl-resuspended mitochondria. The spontaneous and FCCP-induced low-amplitude PT of plant mitochondria are interpreted as due to the activity of a recently identified K(ATP)+ channel whose open/closed state is dependent on polarization of the inner membrane and on the oxidoreductive state of some sulfhydryl groups.
A synthetic study and characterization of the Pt(II) complexes with bipyridines back-born system.
Jo, Woongkyu; Son, Seokhwan; Jo, Hyeongjun; Kim, Byeongcheol; Kwak, Cheehun; Jung, Sangchul; Lee, Jihoon; Ahn, Hogeun; Chung, Minchul
2014-08-01
The reaction of platinum [Pt(5,5-dmbpy)]Cl2 (5,5-dmbpy = 5,5'-dimethyl-2,2'-bipyridine) with 4,4'-dimethyl-2,2'-bipyridine (4,4-dmbpy), [Pt(dbbpy)]Cl2 (dbbpy = 4,4'-dibutyl-2,2'-bipyridine), [Pt(dpbpy)]Cl2 (dpbpy = 4,4'-dipentyl-2,2'-bipyridine) with 5,5'-dimethyl-2,2'-bipyridine (5,5-dmbpy) affords the following complexes: [(4,4-dmbpy)Pt(5,5-dmbpy)][PF6]2 (1) and [(dbbpy)Pt(5,5-dmbpy)][PF6]2 (2), [(dpbpy)Pt(5,5-dmbpy)][PF6]2 (3), [(5,5-dmbpy)Pt(5,5-dmbpy)][PF6]2 (4). This study was synthesized new platinum complex compounds utilizing ligand of 5,5'-Dimethyl-2,2'-dipyridyl System. To study the chemical composition was used 1H(13C)-NMR, UV-vis, Spectro photometer and Measurements about optical physics and chemical properties were measured to use spectrofluorometer. UV-vis absorption area was measured 310 nm to 383 nm and luminous wavelength was measured 390 nm to 419 nm.
Energetics and electronic properties of Pt wires of different topologies on monolayer MoSe{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jamdagni, Pooja, E-mail: j.poojaa1228@gmail.com; Ahluwalia, P. K.; Kumar, Ashok
2016-05-23
The energetics and electronic properties of different topology of Pt wires including linear, zigzag and ladder structures on MoSe{sub 2} monolayer have been investigated in the framework of density functional theory (DFT). The predicted order of stability of Pt wire on MoSe{sub 2} monolayer is found to be: linear > ladder > zigzag. Pt wires induce states near the Fermi level of MoSe{sub 2} that results into metallic characteristics of Pt-wire/MoSe{sub 2} assembled system. Valence band charge density signifies most of the contribution from Pt atoms near the Fermi energy of assembled wire/MoSe{sub 2} system. These findings are expected tomore » be important for the fabrication of devices based on MoSe{sub 2} layers for flexible nanoelectronics.« less
Elements for Effective Management of Operating Pump and Treat Systems
This fact sheet summarizes key aspects of effective management for operating pump and treat (P&T) systems based on lessons learned from conducting optimization evaluations at 20 Superfund-financed P&T systems.
PT-symmetry of coupled fiber lasers
NASA Astrophysics Data System (ADS)
Smirnov, Sergey V.; Churkin, Dmitry V.; Makarenko, Maxim; Vatnik, Ilya; Suchkov, Sergey V.; Sukhorukov, Andrey A.
2017-10-01
In this work, we propose a concept of a coupled fiber laser exhibiting PT-symmetry properties. We consider a system operated via Raman gain. The scheme comprises two identical fiber loops (ring cavities) connected by means of two fiber couplers with variable phase shift between them. We show that by changing the phase shift one can switch between generation regimes, realizing either PT-symmetric or PT-broken solution. Furthermore, the paper investigates some peculiarities of the system such as power oscillations and the role of nonlinear phase shift in fiber rings.
Drosos, Georgios I; Stavropoulos, Nikolaos I; Kazakos, Konstantinos; Tripsianis, Grigorios; Ververidis, Athanasios; Verettas, Dionisios-Alexandros
2011-04-01
The aim of the present study was to compare a new silicone ring tourniquet (SRT) with a classic pneumatic cuff tourniquet (PT) in terms of tolerance and recovery time following their use in healthy volunteers. Both tourniquets were applied in the arm and thigh of 15 healthy unmedicated volunteers. PT pressure was kept at 100 mmHg above the systolic blood pressure. The appropriate model of the SRT was used according to the systolic blood pressure. Pain was assessed by visual analogue scale and arterial blood pressure, pulse rate and oxygen saturation were monitored in all volunteers. There was no statistically significant difference in tolerance time between SRT and PT in the arm (19.13 vs. 18.25 min) and thigh (21.52 vs. 21.39 min) nor in recovery time between the two devices. The SRT performed similarly to the classic PT in terms of tolerance and recovery time when applied in the arm and thigh of unmedicated healthy volunteers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 14 2013-07-01 2013-07-01 false Periodic Monitoring for Compliance With Opacity and Visible Emissions Limits 6 Table 6 to Subpart AAAAA of Part 63 Protection of... Hazardous Air Pollutants for Lime Manufacturing Plants Pt. 63, Subpt. AAAAA, Table 6 Table 6 to Subpart...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 14 2014-07-01 2014-07-01 false Periodic Monitoring for Compliance With Opacity and Visible Emissions Limits 6 Table 6 to Subpart AAAAA of Part 63 Protection of... Hazardous Air Pollutants for Lime Manufacturing Plants Pt. 63, Subpt. AAAAA, Table 6 Table 6 to Subpart...
Yang, Ning; Wang, Tai
2017-01-05
The coordination of pollen tube (PT) growth, guidance and timely growth arrest and rupture mediated by PT-pistil interaction is crucial for the PT to transport sperm cells into ovules for double fertilization. The plasma membrane (PM) represents an important interface for cell-cell interaction, and PM proteins of PTs are pioneers for mediating PT integrity and interaction with pistils. Thus, understanding the mechanisms underlying these events is important for proteomics. Using the efficient aqueous polymer two-phase system and alkali buffer treatment, we prepared high-purity PM from mature and germinated pollen of rice. We used iTRAQ quantitative proteomic methods and identified 1,121 PM-related proteins (PMrPs) (matched to 899 loci); 192 showed differential expression in the two pollen cell types, 119 increased and 73 decreased in abundance during germination. The PMrP and differentially expressed PMrP sets all showed a functional skew toward signal transduction, transporters, wall remodeling/metabolism and membrane trafficking. Their genomic loci had strong chromosome bias. We found 37 receptor-like kinases (RLKs) from 8 kinase subfamilies and 209 transporters involved in flux of diversified ions and metabolites. In combination with the rice pollen transcriptome data, we revealed that in general, the protein expression of these PMrPs disagreed with their mRNA expression, with inconsistent mRNA expression for 74% of differentially expressed PMrPs. This study identified genome-wide pollen PMrPs, and provided insights into the membrane profile of receptor-like kinases and transporters important for pollen tube growth and interaction with pistils. These pollen PMrPs and their mRNAs showed discordant expression. This work provides resource and knowledge to further dissect mechanisms by which pollen or the PT controls PMrP abundance and monitors interactions and ion and metabolite exchanges with female cells in rice.
Le, Anh H; Liu, Brent; Schulte, Reinhard; Huang, H K
2011-11-01
Proton therapy (PT) utilizes high energy particle proton beam to kill cancer cells at the target region for target cancer therapy. Due to the physical properties of the proton beam, PT delivers dose with higher precision and no exit dose compared to conventional radiotherapy. In PT, patient data are distributed among multiple systems, a hindrance to research on efficacy and effectiveness. A data mining method and a treatment plan navigator utilizing the infrastructure and data repository of a PT electronic patient record (ePR) was developed to minimize radiation toxicity and improve outcomes in prostate cancer treatment. MATERIALS/METHOD(S): The workflow of a proton therapy treatment in a radiation oncology department was reviewed, and a clinical data model and data flow were designed. A prototype PT ePR system with DICOM compliance was developed to manage prostate cancer patient images, treatment plans, and related clinical data. The ePR system consists of four main components: (1) Data Gateway; (2) ePR Server; (3) Decision Support Tools; and (4) Visualization and Display Tools. Decision support and visualization tools are currently developed based on DICOM images, DICOM-RT and DICOM-RT-ION objects data from prostate cancer patients treated with hypofractionation protocol proton therapy were used for evaluating ePR system effectiveness. Each patient data set includes a set of computed tomography (CT) DICOM images and four DICOM-RT and RT-ION objects. In addition, clinical outcomes data collected from PT cases were included to establish a knowledge base for outcomes analysis. A data mining search engine and an intelligent treatment plan navigator (ITPN) were developed and integrated with the ePR system. Evaluation was based on a data set of 39 PT patients and a hypothetical patient. The ePR system was able to facilitate the proton therapy workflow. The PT ePR system was feasible for prostate cancer patient treated with hypofractionation protocol in proton therapy. This ePR system improves efficiency in data collection and integration to facilitate outcomes analysis.
NASA Astrophysics Data System (ADS)
Virshup, Ariel R.
With increasing attention on curbing the emission of pollutants into the atmosphere, chemical sensors that can be used to monitor and control these unwanted emissions are in great demand. Examples include monitoring of hydrocarbons from automobile engines and monitoring of flue gases such as CO emitted from power plants. One of the critical limitations in high-temperature SiC gas sensors, however, is the degradation of the metal-SiC contacts over time. In this dissertation, we investigated the high-temperature stability of Pt/TaSix/Ni/SiC ohmic contacts, which have been implemented in SiC-based gas sensors developed for applications in diesel engines and power plants. The high-temperature stability of a Pt/TaSi2/Ni/SiC ohmic contact metallization scheme was characterized using a combination of current-voltage measurements, Auger electron spectroscopy, secondary ion mass spectrometry, and transmission electron microscope imaging and associated analytical techniques. Increasing the thicknesses of the Pt and TaSi2 layers promoted electrical stability of the contacts, which remained ohmic at 600°C in air for over 300 h; the specific contact resistance showed only a gradual increase from an initial value of 5.2 x 10-5 O-cm 2. We observed a continuous silicon-oxide layer in the thinner contact structures, which failed after 36 h of heating. It was found that the interface between TaSix and NiySi was weakened by the accumulation of free carbon (produced by the reaction of Ni and SiC), which in turn facilitated oxygen diffusion from the contact edges. Additional oxygen diffusion occurred along grain boundaries in the Pt overlayer. Meanwhile, thicker contacts, with less interfacial free carbon and enhanced electrical stability contained a much lower oxygen concentration that was distributed across the contact layers, precluding the formation of an electrically insulating contact structure.
Real-time in vivo uric acid biosensor system for biophysical monitoring of birds.
Gumus, A; Lee, S; Karlsson, K; Gabrielson, R; Winkler, D W; Erickson, D
2014-02-21
Research on birds has long played an important role in ecological investigations, as birds are relatively easily observed, and their high metabolic rates and diurnal habits make them quite evidently responsive to changes in their environments. A mechanistic understanding of such avian responses requires a better understanding of how variation in physiological state conditions avian behavior and integrates the effects of recent environmental changes. There is a great need for sensor systems that will allow free-flying birds to interact with their environment and make unconstrained decisions about their spatial location at the same time that their physiological state is being monitored in real time. We have developed a miniature needle-based enzymatic sensor system suitable for continuous real-time amperometric monitoring of uric acid levels in unconstrained live birds. The sensor system was constructed with Pt/Ir wire and Ag/AgCl paste. Uricase enzyme was immobilized on a 0.7 mm sensing cavity of Nafion/cellulose inner membrane to minimize the influences of background interferents. The sensor response was linear from 0.05 to 0.6 mM uric acid, which spans the normal physiological range for most avian species. We developed a two-electrode potentiostat system that drives the biosensor, reads the output current, and wirelessly transmits the data. In addition to extensive characterization of the sensor and system, we also demonstrate autonomous operation of the system by collecting in vivo extracellular uric acid measurements on a domestic chicken. The results confirm our needle-type sensor system's potential for real-time monitoring of birds' physiological state. Successful application of the sensor in migratory birds could open up a new era of studying both the physiological preparation for migration and the consequences of sustained avian flight.
Purohit, Bhaskar; Martineau, Tim; Sheikh, Kabir
2016-08-22
Limited research on Posting and Transfer (P&T) policies and systems in the public sector health services and the reluctance for an open debate on the issue makes P&T as a black box. Limited research on P&T in India suggests that P&T policies and systems are either non-existent, weak, poorly implemented or characterized by corruption. Hence the current study aimed at opening the "black box" of P&T systems in public sector health services in India by assessing the implementation gaps between P&T policies and their actual implementation. This was a qualitative study carried out in Department of Health, in a Western State in India. To understand the extant P&T policies, a systems map was first developed with the help of document review and Key Informant (KI) Interviews. Next systems audit was carried out to assess the actual implementation of transfer policies by interviewing Medical Officers (MOs), the group mainly affected by the P&T policies. Job histories were constructed from the interviews to understand transfer processes like frequencies of transfers and to assess if transfer rules were adhered. The analysis is based on a synthesis of document review, 19 in-depth interviews with MOs working with state health department and five in-depth interviews with Key Informants (KIs). Framework analysis approach was used to analyze data using NVIVO. The state has a generic transfer guideline applicable to all government officers but there is no specific transfer policy or guideline for government health personnel. The generic transfer guidelines are weakly implemented indicating a significant gap between policy and actual implementation. The formal transfer guidelines are undermined by a parallel system in which desirable posts are attained, retained or sometimes given up by the use of political connections and money. MOs' experiences of transfers were marked by perceptions of unfairness and irregularities reflected through interviews as well as the job histories. The generic transfer rules and ambiguity in how transfers are treated may explain the discrepancy between policy and implementation leading to systems abuse. This discrepancy could have negative influence on MOs' morale which could in turn affect distribution of MOs. Where possible, ambiguity in the rules should be avoided and a greater transparency on implementation of the transfer rules is needed. However, it may not be possible to make any significant improvements to P&T policies and how they are implemented until the external pressure that creates parallel systems is greatly reduced in translating HR policy into HR practice. Effective P&T policies and implementation may have important implications for organizational performance and may help to improve Human Resource (HR) policy and HR expertise. Also there is a greater need for transparency on implementation of the rules. However, it may not be possible to make any significant improvements to P&T policies and how they are implemented until the external pressure that creates parallel systems is greatly reduced.
Potato growth in a porous tube water and nutrient delivery system
NASA Technical Reports Server (NTRS)
Bula, R. J.; Morrow, R. C.; Tibbitts, T. W.
1996-01-01
Potato (Solanum tuberosum L.) cv. 'Norland', vegetative growth and tuber productivity grown in the porous water and nutrient delivery system (PTNDS) developed by the Wisconsin Center for Space Automation and Robotics were compared with the vegetative growth and tuber productivity of plants grown in a peat:vermiculite potting mixture (PT/VR). The plants were grown at 12, 16, and 24-h light periods, 18 degrees C constant temperature, 70% relative humidity, and 300 micromol m-2 s-1 photosynthetic photon flux. Canopy height of plants grown in the PT/VR system was taller than that of plants grown in the PTNDS system. Canopy height differences were greatest when the plants were grown under a 24-h photoperiod. Leaf and stem dry masses were similar for plants grown in the two systems under the 12-h photoperiod. Under the 24-h photoperiod, leaf and stem dry masses of plants grown in the PT/VR system were more than 3 times those of plants grown in the PTNDS system. Tuber dry masses were similar for plants grown in the two systems under the 12-h photoperiod. Under the 24 h-photoperiod, tuber dry weights of plants grown in the PT/VR system were more than twice those of plants grown in the PTNDS system. A slightly higher harvest index (ratio of tuber weight to leaf plus stem weight) was noted for the plants grown in the PTNDS than for the plants grown in the PT/VR system. Plants grown in the PTNDS system at the 24-h photoperiod matured earlier than plants grown at this photoperiod in the PT/VR system. Vegetative growth and tuber productivity of plants grown under the 16-h photoperiod generally were intermediate to those noted for plants grown under the 12 and 24-h photoperiods. These results indicate that potato plants grown in a PTNDS system may require less plant growing volume, mature in a shorter time, and likely produce more tubers per unit area compared with plants grown in the PT/VR system. These plant characteristics are a distinct advantage for a plant growing unit of a CELSS.
Size-tunable drug-delivery capsules composed of a magnetic nanoshell.
Fuchigami, Teruaki; Kitamoto, Yoshitaka; Namiki, Yoshihisa
2012-01-01
Nano-sized FePt capsules with two types of ultrathin shell were fabricated using a template method for use in a nano-scale drug delivery system. One capsule was composed of an inorganic-organic hybrid shell of a water-soluble polymer and FePt nanoparticles, and the other capsule was composed of a network of fused FePt nanoparticles. We demonstrated that FePt nanoparticles selectively accumulated on the polymer molecules adsorbed on the template silica particles, and investigated the morphologies of the particle accumulation by changing the concentration of the polymer solution with which the template particles were treated. Capsular size was reduced from 340 to less than 90 nm by changing the size of the silica template particles, and the shell thickness was controlled by changing the amount of FePt nanoparticles adsorbed on the template particles. The hybrid shell was maintained by the connection of FePt nanoparticles and polymer molecules, and the shell thickness was 10 nm at the maximum. The FePt network shell was fabricated by hydrothermal treatment of the FePt/polymer-modified silica composite particles. The FePt network shell was produced from only the FePt alloy, and the shell thickness was 3 nm. Water-soluble anti-cancer drugs could be loaded into the hollow space of FePt network capsules, and lipid-coated FePt network capsules loaded with anti-cancer drugs showed cellular toxicity. The nano-sized capsular structure and the ultrathin shell suggest applicability as a drug carrier in magnetically guided drug delivery systems.
Size-tunable drug-delivery capsules composed of a magnetic nanoshell
Fuchigami, Teruaki; Kitamoto, Yoshitaka; Namiki, Yoshihisa
2012-01-01
Nano-sized FePt capsules with two types of ultrathin shell were fabricated using a template method for use in a nano-scale drug delivery system. One capsule was composed of an inorganic-organic hybrid shell of a water-soluble polymer and FePt nanoparticles, and the other capsule was composed of a network of fused FePt nanoparticles. We demonstrated that FePt nanoparticles selectively accumulated on the polymer molecules adsorbed on the template silica particles, and investigated the morphologies of the particle accumulation by changing the concentration of the polymer solution with which the template particles were treated. Capsular size was reduced from 340 to less than 90 nm by changing the size of the silica template particles, and the shell thickness was controlled by changing the amount of FePt nanoparticles adsorbed on the template particles. The hybrid shell was maintained by the connection of FePt nanoparticles and polymer molecules, and the shell thickness was 10 nm at the maximum. The FePt network shell was fabricated by hydrothermal treatment of the FePt/polymer-modified silica composite particles. The FePt network shell was produced from only the FePt alloy, and the shell thickness was 3 nm. Water-soluble anti-cancer drugs could be loaded into the hollow space of FePt network capsules, and lipid-coated FePt network capsules loaded with anti-cancer drugs showed cellular toxicity. The nano-sized capsular structure and the ultrathin shell suggest applicability as a drug carrier in magnetically guided drug delivery systems. PMID:23507895
Physical properties of FePt nanocomposite doped with Ag atoms: First-principles study
NASA Astrophysics Data System (ADS)
Jia, Yong-Fei; Shu, Xiao-Lin; Xie, Yong; Chen, Zi-Yu
2014-07-01
L10 FePt nanocomposite with high magnetocrystalline anisotropy energy has been extensively investigated in the fields of ultra-high density magnetic recording media. However, the order—disorder transition temperature of the nanocomposite is higher than 600 °C, which is a disadvantage for the use of the material due to the sustained growth of FePt grain under the temperature. To address the problem, addition of Ag atoms has been proposed, but the magnetic properties of the doped system are still unclear so far. Here in this paper, we use first-principles method to study the lattice parameters, formation energy, electronic structure, atomic magnetic moment and order—disorder transition temperature of L10 FePt with Ag atom doping. The results show that the formation energy of a Ag atom substituting for a Pt site is 1.309 eV, which is lower than that of substituting for an Fe site 1.346 eV. The formation energy of substituting for the two nearest Pt sites is 2.560 eV lower than that of substituting for the further sites 2.621 eV, which indicates that Ag dopants tend to segregate L10 FePt. The special quasirandom structures (SQSs) for the pure FePt and the FePt doped with two Ag atoms at the stable Pt sites show that the order—disorder transition temperatures are 1377 °C and 600 °C, respectively, suggesting that the transition temperature can be reduced with Ag atom, and therefore the FePt grain growth is suppressed. The saturation magnetizations of the pure FePt and the two Ag atoms doped FePt are 1083 emu/cc and 1062 emu/cc, respectively, indicating that the magnetic property of the doped system is almost unchanged.
Haorah, James; Rump, Travis J; Xiong, Huangui
2013-01-01
Neuropathy and neurocognitive deficits are common among chronic alcohol users, which are believed to be associated with mitochondrial dysfunction in the brain. The specific type of brain mitochondrial respiratory chain complexes (mRCC) that are adversely affected by alcohol abuse has not been studied. Thus, we examined the alterations of mRCC in freshly isolated mitochondria from mice brain that were pair-fed the ethanol (4% v/v) and control liquid diets for 7-8 weeks. We observed that alcohol intake severely reduced the levels of complex I and V. A reduction in complex I was associated with a decrease in carnitine palmitoyltransferase 1 (cPT1) and cPT2 levels. The mitochondrial outer (cPT1) and inner (cPT2) membrane transporter enzymes are specialized in acylation of fatty acid from outer to inner membrane of mitochondria for ATP production. Thus, our results showed that alterations of cPT1 and cPT2 paralleled a decrease β-oxidation of palmitate and ATP production, suggesting that impairment of substrate entry step (complex I function) can cause a negative impact on ATP production (complex V function). Disruption of cPT1/cPT2 was accompanied by an increase in cytochrome C leakage, while reduction of complex I and V paralleled a decrease in depolarization of mitochondrial membrane potential (ΔΨ, monitored by JC-1 fluorescence) and ATP production in alcohol intake. We noted that acetyl-L-carnitine (ALC, a cofactor of cPT1 and cPT2) prevented the adverse effects of alcohol while coenzyme Q10 (CoQ10) was not very effective against alcohol insults. These results suggest that understanding the molecular, biochemical, and signaling mechanisms of the CNS mitochondrial β-oxidation such as ALC can mitigate alcohol related neurological disorders.
Soma, Shogo; Saiki, Akiko; Yoshida, Junichi; Ríos, Alain; Kawabata, Masanori; Sakai, Yutaka; Isomura, Yoshikazu
2017-11-08
Two distinct motor areas, the primary and secondary motor cortices (M1 and M2), play crucial roles in voluntary movement in rodents. The aim of this study was to characterize the laterality in motor cortical representations of right and left forelimb movements. To achieve this goal, we developed a novel behavioral task, the Right-Left Pedal task, in which a head-restrained male rat manipulates a right or left pedal with the corresponding forelimb. This task enabled us to monitor independent movements of both forelimbs with high spatiotemporal resolution. We observed phasic movement-related neuronal activity (Go-type) and tonic hold-related activity (Hold-type) in isolated unilateral movements. In both M1 and M2, Go-type neurons exhibited bias toward contralateral preference, whereas Hold-type neurons exhibited no bias. The contralateral bias was weaker in M2 than M1. Moreover, we differentiated between intratelencephalic (IT) and pyramidal tract (PT) neurons using optogenetically evoked spike collision in rats expressing channelrhodopsin-2. Even in identified PT and IT neurons, Hold-type neurons exhibited no lateral bias. Go-type PT neurons exhibited bias toward contralateral preference, whereas IT neurons exhibited no bias. Our findings suggest a different laterality of movement representations of M1 and M2, in each of which IT neurons are involved in cooperation of bilateral movements, whereas PT neurons control contralateral movements. SIGNIFICANCE STATEMENT In rodents, the primary and secondary motor cortices (M1 and M2) are involved in voluntary movements via distinct projection neurons: intratelencephalic (IT) neurons and pyramidal tract (PT) neurons. However, it remains unclear whether the two motor cortices (M1 vs M2) and the two classes of projection neurons (IT vs PT) have different laterality of movement representations. We optogenetically identified these neurons and analyzed their functional activity using a novel behavioral task to monitor movements of the right and left forelimbs separately. We found that contralateral bias was reduced in M2 relative to M1, and in IT relative to PT neurons. Our findings suggest that the motor information processing that controls forelimb movement is coordinated by a distinct cell population. Copyright © 2017 the authors 0270-6474/17/3710904-13$15.00/0.
NASA Technical Reports Server (NTRS)
Aggarwal, Mohan D.; Kochary, F.; Penn, Benjamin G.; Miller, Jim
2007-01-01
There has been a growing interest in recent years in lead based perovskite ferroelectric and relaxor ferroelectric solid solutions because of their excellent dielectric, piezoelectric and electrostrictive properties that make them very attractive for various sensing, actuating and structural health monitoring (SHM) applications. We are interested in the development of highly sensitive and efficient PMN-PT sensors based on large single crystals for the structural health monitoring of composite materials that may be used in future spacecrafts. Highly sensitive sensors are needed for detection of defects in these materials because they often tend to fail by distributed and interacting damage modes and much of the damage occurs beneath the top surface of the laminate and not detectable by visual inspection. Research is being carried out for various combinations of solid solutions for PMN-PT piezoelectric materials and bigger size crystals are being sought for improved sensor applications. Single crystals of this material are of interest for sensor applications because of their high piezoelectric coefficient (d33 greater than 1700 pC/N) and electromechanical coefficients (k33 greater than 0.90). For comparison, the commonly used piezoelectric ceramic lead zirconate titanate (PZT) has a d33 of about 600 pC/N and electromechanical coefficients k33 of about 0.75. At the present time, these piezoelectric relaxor crystals are grown by high temperature flux growth method and the size of these crystals are rather small (3x4x5 mm(exp 3). In the present paper, we have attempted to grow bulk single crystals of PMN-PT in a 2 inch diameter platinum crucible and successfully grown a large size crystal of 67%PMN-33%PT using the vertical gradient freeze technique with no flux. Piezoelectric properties of the grown crystals are investigated. PMN-PT plates show excellent piezoelectric properties. Samples were poled under an applied electric field of 5 kV/cm. Dielectric properties at a frequency of 1 kHz are examined. The grown PMN-PT crystals show typical relaxor dielectric properties. Additionally, the thermal properties of the sample are tested. The results are in good agreement with those found in the literature and some are reported for the first time.
Shen, Ching-Chi; Tsai, Tsung-Ting; Wu, Jun-Yi; Ho, Jr-Wei; Chen, Yi-Wei; Cheng, Po-Yuan
2017-10-28
In this paper, we give a full account of our previous work [C. C. Shen et al., J. Chem. Phys. 141, 171103 (2014)] on the study of an ultrafast photoionization-induced proton transfer (PT) reaction in the phenol-ammonia (PhOH-NH 3 ) complex using ultrafast time-resolved ion photofragmentation spectroscopy implemented by the photoionization-photofragmentation pump-probe detection scheme. Neutral PhOH-NH 3 complexes prepared in a free jet are photoionized by femtosecond 1 + 1 resonance-enhanced multiphoton ionization via the S 1 state. The evolving cations are then probed by delayed pulses that result in ion fragmentation, and the ionic dynamics is followed by measuring the parent-ion depletion as a function of the pump-probe delay time. By comparing with systems in which PT is not feasible and the steady-state ion photofragmentation spectra, we concluded that the observed temporal evolutions of the transient ion photofragmentation spectra are consistent with an intracomplex PT reaction after photoionization from the initial non-PT to the final PT structures. Our experiments revealed that PT in [PhOH-NH 3 ] + cation proceeds in two distinct steps: an initial impulsive wave-packet motion in ∼70 fs followed by a slower relaxation of about 1 ps that stabilizes the system into the final PT configuration. These results indicate that for a barrierless PT system, even though the initial PT motions are impulsive and ultrafast, the time scale to complete the reaction can be much slower and is determined by the rate of energy dissipation into other modes.
NASA Astrophysics Data System (ADS)
Shen, Ching-Chi; Tsai, Tsung-Ting; Wu, Jun-Yi; Ho-Wei, Jr.; Chen, Yi-Wei; Cheng, Po-Yuan
2017-10-01
In this paper, we give a full account of our previous work [C. C. Shen et al., J. Chem. Phys. 141, 171103 (2014)] on the study of an ultrafast photoionization-induced proton transfer (PT) reaction in the phenol-ammonia (PhOH-NH3) complex using ultrafast time-resolved ion photofragmentation spectroscopy implemented by the photoionization-photofragmentation pump-probe detection scheme. Neutral PhOH-NH3 complexes prepared in a free jet are photoionized by femtosecond 1 + 1 resonance-enhanced multiphoton ionization via the S1 state. The evolving cations are then probed by delayed pulses that result in ion fragmentation, and the ionic dynamics is followed by measuring the parent-ion depletion as a function of the pump-probe delay time. By comparing with systems in which PT is not feasible and the steady-state ion photofragmentation spectra, we concluded that the observed temporal evolutions of the transient ion photofragmentation spectra are consistent with an intracomplex PT reaction after photoionization from the initial non-PT to the final PT structures. Our experiments revealed that PT in [PhOH-NH3]+ cation proceeds in two distinct steps: an initial impulsive wave-packet motion in ˜70 fs followed by a slower relaxation of about 1 ps that stabilizes the system into the final PT configuration. These results indicate that for a barrierless PT system, even though the initial PT motions are impulsive and ultrafast, the time scale to complete the reaction can be much slower and is determined by the rate of energy dissipation into other modes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samal, Saroj L.; Gulo, Fakhili; Corbett, John D.
Three new ternary polar intermetallic compounds, cubic Ca6Pt8Cd16, and tetragonal (Sr, Ba)Pt2Cd4 have been discovered during explorations of the Ae–Pt–Cd systems. Cubic Ca6Pt8Cd16 (Fm-3m, Z = 4, a = 13.513(1) Å) contains a 3D array of separate Cd8 tetrahedral stars (TS) that are both face capped along the axes and diagonally bridged by Pt atoms to generate the 3D anionic network Cd8[Pt(1)]6/2[Pt(2)]4/8. The complementary cationic surface of the cell consists of a face-centered cube of Pt(3)@Ca6 octahedra. This structure is an ordered ternary variant of Sc11Ir4 (Sc6Ir8Sc16), a stuffed version of the close relative Na6Au7Cd16, and a network inverse ofmore » the recent Er6Sb8Pd16 (compare Ca6Pt8Cd16). The three groups of elements each occur in only one structural version. The new AePt2Cd4, Ae = Sr, Ba, are tetragonal (P42/mnm,Z = 2, a ≈ 8.30 Å, c ≈ 4.47 Å) and contain chains of edge-sharing Cd4 tetrahedra along c that are bridged by four-bonded Ba/Sr. LMTO-ASA and ICOHP calculation results and comparisons show that the major bonding (Hamilton) populations in Ca6Pt8Cd16 and Er6Sb8Pd16 come from polar Pt–Cd and Pd–Sb interactions, that Pt exhibits larger relativistic contributions than Pd, that characteristic size and orbital differences are most evident for Sb 5s, Pt8, and Pd16, and that some terms remain incomparable, Ca–Cd versus Er–Pd.« less
The nature of the cataclysmic variable PT Per
NASA Astrophysics Data System (ADS)
Watson, M. G.; Bruce, A.; MacLeod, C.; Osborne, J. P.; Schwope, A. D.
2016-08-01
We present a study of the cataclysmic variable star PT Per based on archival XMM-Newton X-ray data and new optical spectroscopy from the William Herschel Telescope (WHT) with Intermediate dispersion Spectrograph and Imaging System (ISIS). The X-ray data show deep minima which recur at a period of 82 min and a hard, unabsorbed X-ray spectrum. The optical spectra of PT Per show a relatively featureless blue continuum. From an analysis of the X-ray and optical data we conclude that PT Per is likely to be a magnetic cataclysmic variable of the polar class in which the minima correspond to those phase intervals when the accretion column rotates out of the field of view of the observer. We suggest that the optical spectrum, obtained around 4 yr after the X-ray coverage, is dominated by the white dwarf in the system, implying that PT Per was in a low accretion state at the time of the observations. An analysis of the likely system parameters for PT Per suggests a distance of ≈90 pc and a very low mass secondary, consistent with the idea that PT Per is a `period-bounce' binary. Matching the observed absorption features in the optical spectrum with the expected Zeeman components constrains the white dwarf polar field to be Bp ≈ 25-27 MG.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Browning, Charles; Nesterov, Vladimir N.; Wang, Xiaoping
We report that the organic ligand 4,4'-diisopropoxyester-2,2'-bipyridine, C 18H 20N 2O 4 (1), crystallizes in the triclinic crystal system P-1 and the molecule occupies a special position in the unit cell. In the crystal, molecules form stacks with partial overlapping of the pyridine rings. The Pt(II) dichloro complex of 1 crystallizes from a mixture of ethanol/hexane and from dichloromethane to form orange and yellow crystals, respectively. The orange non-solvated crystals of the (bipyridine)(dichloro)platinum(II) complex C 18H 20N 2O 4PtCl 2 (2) crystallize in the triclinic crystal system P-1 as well with two independent molecules in the unit cell. In themore » crystal packing, molecules form two types of dimers with Pt1 ··· Pt1A and Pt2···Pt2A distances of 3.478 and 5.186 angstrom respectively. The yellow crystals, as a solvated pseudo-polymorph C 18H 20N 2O 4PtCl 2·1.5 CH 2Cl 2 (3) also crystallize in the triclinic crystal system P-1 with two independent molecules in the unit cell. In the crystal packing, molecules form Pt2 ···Pt1 ···Pt1A ···Pt2A intermolecular contacts with alternating distances 3.501 and 3.431 angstrom, respectively, forming infinite chains. Graphical Abstract The dichloro(bipyridine)platinum complex, dichloro(4,4'-diisopropoxyester-2,2'-bipyridine)platinum(II), forms single crystals as a stable non-solvated form and a solvated polymorph with dramatically different supramolecular structure and short contacts.« less
Browning, Charles; Nesterov, Vladimir N.; Wang, Xiaoping; ...
2015-06-03
We report that the organic ligand 4,4'-diisopropoxyester-2,2'-bipyridine, C 18H 20N 2O 4 (1), crystallizes in the triclinic crystal system P-1 and the molecule occupies a special position in the unit cell. In the crystal, molecules form stacks with partial overlapping of the pyridine rings. The Pt(II) dichloro complex of 1 crystallizes from a mixture of ethanol/hexane and from dichloromethane to form orange and yellow crystals, respectively. The orange non-solvated crystals of the (bipyridine)(dichloro)platinum(II) complex C 18H 20N 2O 4PtCl 2 (2) crystallize in the triclinic crystal system P-1 as well with two independent molecules in the unit cell. In themore » crystal packing, molecules form two types of dimers with Pt1 ··· Pt1A and Pt2···Pt2A distances of 3.478 and 5.186 angstrom respectively. The yellow crystals, as a solvated pseudo-polymorph C 18H 20N 2O 4PtCl 2·1.5 CH 2Cl 2 (3) also crystallize in the triclinic crystal system P-1 with two independent molecules in the unit cell. In the crystal packing, molecules form Pt2 ···Pt1 ···Pt1A ···Pt2A intermolecular contacts with alternating distances 3.501 and 3.431 angstrom, respectively, forming infinite chains. Graphical Abstract The dichloro(bipyridine)platinum complex, dichloro(4,4'-diisopropoxyester-2,2'-bipyridine)platinum(II), forms single crystals as a stable non-solvated form and a solvated polymorph with dramatically different supramolecular structure and short contacts.« less
NASA Astrophysics Data System (ADS)
Wu, Wei; Shih, Wei-Heng; Shih, Wan Y.
2016-03-01
We have examined the mechanism of the detection resonance frequency shift, Δf/f, of a 1370 μm long and 537 μm wide [Pb(Mg1/3Nb2/3)O3]0.65[PbTiO3]0.35 (PMN-PT) piezoelectric plate sensor (PEPS) made of a 8-μm thick PMN-PT freestanding film. The Δf/f of the PEPS was monitored in a three-step binding model detections of (1) binding of maleimide-activated biotin to the sulfhydryl on the PEPS surface followed by (2) binding of streptavidin to the bound biotin and (3) subsequent binding of biotinylated probe deoxyribonucleic acid to the bound streptavidin. We used a PMN-PT surrogate made of the same 8-μm thick PMN-PT freestanding film that the PEPS was made of but was about 1 cm in length and width to carry out crystalline orientation study using X-ray diffraction (XRD) scan around the (002)/(200) peaks after each of the binding steps. The result of the XRD studies indicated that each binding step caused the crystalline orientation of the PMN-PT thin layer to switch from the vertical (002) orientation to the horizontal (200) orientation, and most of the PEPS detection Δf/f was due to the change in the lateral Young's modulus of the PMN-PT thin layer as a result of the crystalline orientation change.
A study on indices of apixaban anticoagulation: A single-center prospective study.
Komiyama, Maki; Miyazaki, Yusuke; Wada, Hiromichi; Iguchi, Moritake; Abe, Mitsuru; Ogawa, Hisashi; Akao, Masaharu; Yamakage, Hajime; Satoh-Asahara, Noriko; Sunagawa, Yoichi; Morimoto, Tatsuya; Hasegawa, Koji
2018-05-16
Depending on the characteristics of patients, the blood concentration of apixaban can unexpectedly increase, possibly leading to bleeding events. Anti-FXa activity reflects the apixaban blood concentration; however, measurement of this activity is both time-consuming and expensive. The current study aimed to evaluate the usefulness of routinely measured coagulation indices as future indicators of the efficacy and safety of apixaban. Eighteen nonvalvular atrial fibrillation patients administered apixaban (average, 52.5 days) were prospectively enrolled in our hospital. The prothrombin time (PT) and the activated partial thromboplastin time (APTT) were measured by using the Coagpia® Reagent kits. The PT and the APTT increased significantly after the administration of apixaban (PT: p < 0.001, APTT: p < 0.001). While the apixaban plasma concentration by evaluating anti-FXa activity was not significantly correlated with the APTT after administration of apixaban, the concentration closely correlated with the PT (β = 0.765, p < 0.001) and the percentage change in the PT from before and after the administration of apixaban (β = 0.650, p = 0.005). The usefulness of routinely monitoring PT in patients administered apixaban during the ordinary clinical medicine should be investigated further by large clinical trials. Copyright © 2018 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
Relationship between Malnutrition and the Number of Permanent Teeth in Filipino 10- to 13-Year-Olds
Heinrich-Weltzien, Roswitha; Monse, Bella
2013-01-01
In the present study, we determined whether there is a delay in the eruption of permanent teeth (PT) among Filipino adolescents with stunting or thinness. Height, weight, and number of PT were recorded in 1554 Filipino 10- to 13-year-olds (711 boys; 843 girls). z-scores for height (HAZ) and body mass index (BMI) were calculated according to the WHO growth reference, and their correlations to the number of PT were assessed. 54.9% of the children have at least one form of malnutrition. Significantly, more boys (22.9%) than girls (16.5%) were thin, while no sex difference in stunting was noted (boys 48.5%; girls 44.0%). The number of PT was significantly correlated to HAZ and BMI-z-score. Stunted and thin students had significantly fewer PT than their nonaffected peers. These differences tended to be the result of delay in tooth eruption in thin and stunted adolescents. In 13-year-old girls, all PT were erupted regardless of their nutritional status indicating a catch-up. Thin and stunted boys had one tooth less than normal boys at this age. Impaired physical growth and dental development seem to have common risk factors. Therefore, regular monitoring of growth and dental development might be helpful for targeting support programmes in developing countries. PMID:24069590
Catalytic activity of platinum on ruthenium electrodes with modified (electro)chemical states.
Park, Kyung-Won; Sung, Yung-Eun
2005-07-21
Using Pt on Ru thin-film electrodes with various (electro)chemical states designed by the sputtering method, the effect of Ru states on the catalytic activity of Pt was investigated. The chemical and electrochemical properties of Pt/Ru thin-film samples were confirmed by X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry. In addition, Pt nanoparticles on Ru metal or oxide for an actual fuel cell system showed an effect of Ru states on the catalytic activity of Pt in methanol electrooxidation. Finally, it was concluded that such an enhancement of methanol electrooxidation on the Pt is responsible for Ru metallic and/or oxidation sites compared to pure Pt without any Ru state.
Malone, Daniel C; Brown, Mary; Hurwitz, Jason T; Peters, Loretta; Graff, Jennifer S
2018-03-01
To examine how real-world evidence (RWE) is currently perceived and used in managed care environments, especially to inform pharmacy and therapeutic (P&T) committee decisions, to assess which study factors (e.g., data, design, and funding source) contribute to RWE utility in decisions, and to identify barriers to consideration of RWE studies in P&T decision making. We conducted focus groups/telephone-based interviews and surveys to understand perceptions of RWE and assess awareness, quality, and relevance of two high-profile examples of published RWE studies. A purposive sample comprised 4 physicians, 15 pharmacists, and 1 researcher representing 18 US health plans and health system organizations. Participants reported that RWE was generally used, or useful, to inform safety monitoring, utilization management, and cost analysis, but less so to guide P&T decisions. Participants were not aware of the two sample RWE studies but considered both studies to be valuable. Relevant research questions and outcomes, transparent methods, study quality, and timely results contribute to the utility of published RWE. Perceived organizational barriers to the use of published RWE included lack of skill, training, and timely study results. Payers recognize the value of RWE, but use of such studies to inform P&T decisions varies from organization to organization and is limited. Relevance to payers, timeliness, and transparent methods were key concerns with RWE. Participants recognized the need for continuing education on evaluating and using RWE to better understand the study methods, findings, and applicability to their organizations. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Air Pollutants Emissions or a Limit of 20 Parts Per Million by Volume 3 Table 3 to Subpart G of Part... Process Vents, Storage Vessels, Transfer Operations, and Wastewater Pt. 63, Subpt. G, Table 3 Table 3 to.... Recapture devices The appropriate monitoring device identified in table 4 when, in the table, the term...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Air Pollutants Emissions or a Limit of 20 Parts Per Million by Volume 3 Table 3 to Subpart G of Part... Process Vents, Storage Vessels, Transfer Operations, and Wastewater Pt. 63, Subpt. G, Table 3 Table 3 to.... Recapture devices The appropriate monitoring device identified in table 4 when, in the table, the term...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Hazardous Air Pollutants Emissions or a Limit of 20 Parts Per Million by Volume 3 Table 3 to Subpart G of... Process Vents, Storage Vessels, Transfer Operations, and Wastewater Pt. 63, Subpt. G, Table 3 Table 3 to.... Recapture devices The appropriate monitoring device identified in table 4 when, in the table, the term...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Hazardous Air Pollutants Emissions or a Limit of 20 Parts Per Million by Volume 3 Table 3 to Subpart G of... Process Vents, Storage Vessels, Transfer Operations, and Wastewater Pt. 63, Subpt. G, Table 3 Table 3 to.... Recapture devices The appropriate monitoring device identified in table 4 when, in the table, the term...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Hazardous Air Pollutants Emissions or a Limit of 20 Parts Per Million by Volume 3 Table 3 to Subpart G of... Process Vents, Storage Vessels, Transfer Operations, and Wastewater Pt. 63, Subpt. G, Table 3 Table 3 to.... Recapture devices The appropriate monitoring device identified in table 4 when, in the table, the term...
Isert, Mecki; Miesbach, Wolfgang; Schüttfort, Gundolf; Weil, Yvonne; Tirneci, Vanessa; Kasper, Alexander; Weber, Adele; Lindhoff-Last, Edelgard; Herrmann, Eva; Linnemann, Birgit
2015-08-01
Because of the possible interference of antiphospholipid antibodies (APL) with the phospholipid component of thromboplastin reagents, concerns have been raised about the validity of international normalized ratio (INR) testing to monitor anticoagulant therapy with vitamin K antagonists in patients with antiphospholipid syndrome (APS). To investigate the reliability of the INR, we determined the INR using various prothrombin time (PT) assays and compared the results with those of a chromogenic factor X (CFX) assay. The study cohort consisted of 40 APS patients and 100 APL-negative patients who were on anticoagulant therapy for reasons other than APS. The agreement (i.e. the percentage of patients with a difference ≤0.5 INR units) between the PT-derived INR and CFX-derived INR equivalents was only moderate in both patient groups. The best agreement with CFX-derived INR equivalents was observed for the Thromborel S reagent in APS patients (69.1 %) and for Neoplastin Plus in APL-negative patients (72.0 %). Regarding the results for the point-of-care system CoaguChek XS, an agreement between the INR and the CFX-derived INR equivalent was less frequently observed in the APS patients (55.6 vs. 67.8 %; p = 0.050). When considering all 3058 pairs of INR tests within the international sensitivity index (ISI)-calibrated range of 1.5 to 4.5 s, we did not observe a higher variability of INR values in either the APS patient group or the subgroup of APS patients positive for lupus coagulants compared with the APL-negative controls. In conclusion, monitoring vitamin K antagonists (VKA) therapy with laboratory INR measurements seems to be suitable for the majority of APS patients.
Comparison of Salmonella enteritidis phage types isolated from layers and humans in Belgium in 2005.
Welby, Sarah; Imberechts, Hein; Riocreux, Flavien; Bertrand, Sophie; Dierick, Katelijne; Wildemauwe, Christa; Hooyberghs, Jozef; Van der Stede, Yves
2011-08-01
The aim of this study was to investigate the available results for Belgium of the European Union coordinated monitoring program (2004/665 EC) on Salmonella in layers in 2005, as well as the results of the monthly outbreak reports of Salmonella Enteritidis in humans in 2005 to identify a possible statistical significant trend in both populations. Separate descriptive statistics and univariate analysis were carried out and the parametric and/or non-parametric hypothesis tests were conducted. A time cluster analysis was performed for all Salmonella Enteritidis phage types (PTs) isolated. The proportions of each Salmonella Enteritidis PT in layers and in humans were compared and the monthly distribution of the most common PT, isolated in both populations, was evaluated. The time cluster analysis revealed significant clusters during the months May and June for layers and May, July, August, and September for humans. PT21, the most frequently isolated PT in both populations in 2005, seemed to be responsible of these significant clusters. PT4 was the second most frequently isolated PT. No significant difference was found for the monthly trend evolution of both PT in both populations based on parametric and non-parametric methods. A similar monthly trend of PT distribution in humans and layers during the year 2005 was observed. The time cluster analysis and the statistical significance testing confirmed these results. Moreover, the time cluster analysis showed significant clusters during the summer time and slightly delayed in time (humans after layers). These results suggest a common link between the prevalence of Salmonella Enteritidis in layers and the occurrence of the pathogen in humans. Phage typing was confirmed to be a useful tool for identifying temporal trends.
Magnetism of a Co monolayer on Pt(111) capped by overlayers of 5 d elements: A spin-model study
NASA Astrophysics Data System (ADS)
Simon, E.; Rózsa, L.; Palotás, K.; Szunyogh, L.
2018-04-01
Using first-principles calculations, we study the magnetic properties of a Co monolayer on a Pt(111) surface with a capping monolayer of selected 5 d elements (Re, Os, Ir, Pt, and Au). First we determine the tensorial exchange interactions and magnetic anisotropies characterizing the Co monolayer for all considered systems. We find a close relationship between the magnetic moment of the Co atoms and the nearest-neighbor isotropic exchange interaction, which is attributed to the electronic hybridization between the Co and the capping layers, in the spirit of the Stoner picture of ferromagnetism. The Dzyaloshinskii-Moriya interaction is decreased for all overlayers compared to the uncapped Co/Pt(111) system, while even the sign of the Dzyaloshinskii-Moriya interaction changes in the case of the Ir overlayer. We conclude that the variation of the Dzyaloshinskii-Moriya interaction is well correlated with the change of the magnetic anisotropy energy and of the orbital moment anisotropy. The unique influence of the Ir overlayer on the Dzyaloshinskii-Moriya interaction is traced by scaling the strength of the spin-orbit coupling of the Ir atoms in Ir/Co/Pt(111) and by changing the Ir concentration in the Au1 -xIrx /Co/Pt(111) system. Our spin dynamics simulations indicate that the magnetic ground state of Re/Co/Pt(111) thin film is a spin spiral with a tilted normal vector, while the other systems are ferromagnetic.
Lu, Ping; Campbell, Charles T; Xia, Younan
2013-10-09
A triphasic catalytic system (Pt/TiO2-SiO2) with an "islands in the sea" configuration was fabricated by controlling the selectivity of SiO2 deposition onto the surface of TiO2 versus the surface of Pt nanoparticles. The Pt surface was exposed, while the nanoparticles were supported on TiO2 and isolated from each other by SiO2 to achieve both significantly improved sinter resistance up to 700 °C and outstanding activity after high-temperature calcination. This work not only demonstrates the feasibility of using a new triphasic system with uncovered catalyst to maximize the thermal stability and catalytic activity but also offers a general approach to the synthesis of high-performance catalytic systems with tunable compositions.
NASA Astrophysics Data System (ADS)
Tang, Jian-Shun; Wang, Yi-Tao; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can
The experimental progress achieved in parity-time (PT) symmetry in classical optics is the most important accomplishment in the past decade and stimulates many new applications, such as unidirectional light transport and single-mode lasers. However, in the quantum regime, some controversial effects are proposed for PT-symmetric theory, for example, the potential violation of the no-signalling principle. It is therefore important to understand whether PT-symmetric theory is consistent with well-established principles. Here, we experimentally study this no-signalling problem related to the PT-symmetric theory using two space-like separated entangled photons, with one of them passing through a post-selected quantum gate, which effectively simulates a PT-symmetric evolution. Our results suggest that the superluminal information transmission can be simulated when the successfully PT-symmetrically evolved subspace is solely considered. However, considering this subspace is only a part of the full Hermitian system, additional information regarding whether the PT-symmetric evolution is successful is necessary, which transmits to the receiver at maximally light speed, maintaining the no-signalling principle.
Development of a DNA Sensor Based on Nanoporous Pt-Rich Electrodes
NASA Astrophysics Data System (ADS)
Van Hao, Pham; Thanh, Pham Duc; Xuan, Chu Thi; Hai, Nguyen Hoang; Tuan, Mai Anh
2017-06-01
Nanoporous Pt-rich electrodes with 72 at.% Pt composition were fabricated by sputtering a Pt-Ag alloy, followed by an electrochemical dealloying process to selectively etch away Ag atoms. The surface properties of nanoporous membranes were investigated by energy-dispersive x-ray spectroscopy (EDS), scanning electron microscopy (SEM), atomic force microscopy (AFM), a documentation system, and a gel image system (Gel Doc Imager). A single strand of probe deoxyribonucleic acid (DNA) was immobilized onto the electrode surface by physical adsorption. The DNA probe and target hybridization were measured using a lock-in amplifier and an electrochemical impedance spectroscope (EIS). The nanoporous Pt-rich electrode-based DNA sensor offers a fast response time of 3.7 s, with a limit of detection (LOD) of 4.35 × 10-10 M of DNA target.
Ahluwalia, Rajesh K.; Papadias, Dionissios D.; Kariuki, Nancy N.; ...
2018-02-09
An electrochemical flow cell system with catalyst-ionomer ink deposited on glassy carbon is used to investigate the aqueous stability of commercial PtCo alloys under cyclic potentials. An on-line inductively coupled plasma-mass spectrometer, capable of real-time measurements, is used to resolve the anodic and cathodic dissolution of Pt and Co during square-wave and triangle-wave potential cycles. We observe Co dissolution at all potentials, distinct peaks in anodic and cathodic Pt dissolution rates above 0.9 V, and potential-dependent Pt and Co dissolution rates. The amount of Pt that dissolves cathodically is smaller than the amount that dissolves anodically if the upper potentialmore » limit (UPL) is lower than 0.9 V. At the highest UPL investigated, 1.0 V, the cathodic dissolution greatly exceeds the anodic dissolution. A non-ideal solid solution model indicates that the anodic dissolution can be associated with the electrochemical oxidation of Pt and PtOH to Pt 2+, and the cathodic dissolution to electrochemical reduction of a higher Pt oxide, PtO x (x > 1), to Pt 2+. Pt also dissolves oxidatively during the cathodic scans but in smaller amounts than due to the reductive dissolution of PtO x. The relative amounts Pt dissolving oxidatively as Pt and PtOH depend on the potential cycle and UPL.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahluwalia, Rajesh K.; Papadias, Dionissios D.; Kariuki, Nancy N.
An electrochemical flow cell system with catalyst-ionomer ink deposited on glassy carbon is used to investigate the aqueous stability of commercial PtCo alloys under cyclic potentials. An on-line inductively coupled plasma-mass spectrometer, capable of real-time measurements, is used to resolve the anodic and cathodic dissolution of Pt and Co during square-wave and triangle-wave potential cycles. We observe Co dissolution at all potentials, distinct peaks in anodic and cathodic Pt dissolution rates above 0.9 V, and potential-dependent Pt and Co dissolution rates. The amount of Pt that dissolves cathodically is smaller than the amount that dissolves anodically if the upper potentialmore » limit (UPL) is lower than 0.9 V. At the highest UPL investigated, 1.0 V, the cathodic dissolution greatly exceeds the anodic dissolution. A non-ideal solid solution model indicates that the anodic dissolution can be associated with the electrochemical oxidation of Pt and PtOH to Pt 2+, and the cathodic dissolution to electrochemical reduction of a higher Pt oxide, PtO x (x > 1), to Pt 2+. Pt also dissolves oxidatively during the cathodic scans but in smaller amounts than due to the reductive dissolution of PtO x. The relative amounts Pt dissolving oxidatively as Pt and PtOH depend on the potential cycle and UPL.« less
Jensen, Michael P; Wick, Douglas D; Reinartz, Stefan; White, Peter S; Templeton, Joseph L; Goldberg, Karen I
2003-07-16
Reductive elimination of methane occurs upon solution thermolysis of kappa(3)-Tp(Me)2Pt(IV)(CH(3))(2)H (1, Tp(Me)2 = hydridotris(3,5-dimethylpyrazolyl)borate). The platinum product of this reaction is determined by the solvent. C-D bond activation occurs after methane elimination in benzene-d(6), to yield kappa(3)-Tp(Me)2Pt(IV)(CH(3))(C(6)D(5))D (2-d(6)), which undergoes a second reductive elimination/oxidative addition reaction to yield isotopically labeled methane and kappa(3)-Tp(Me)2Pt(IV)(C(6)D(5))(2)D (3-d(11)). In contrast, kappa(2)-Tp(Me)2Pt(II)(CH(3))(NCCD(3)) (4) was obtained in the presence of acetonitrile-d(3), after elimination of methane from 1. Reductive elimination of methane from these Pt(IV) complexes follows first-order kinetics, and the observed reaction rates are nearly independent of solvent. Virtually identical activation parameters (DeltaH(++)(obs) = 35.0 +/- 1.1 kcal/mol, DeltaS(++)(obs) = 13 +/- 3 eu) were measured for the reductive elimination of methane from 1 in both benzene-d(6) and toluene-d(8). A lower energy process (DeltaH(++)(scr) = 26 +/- 1 kcal/mol, DeltaS(++)(scr) = 1 +/- 4 eu) scrambles hydrogen atoms of 1 between the methyl and hydride positions, as confirmed by monitoring the equilibration of kappa(3)-Tp(Me)()2Pt(IV)(CH(3))(2)D (1-d(1)()) with its scrambled isotopomer, kappa(3)-Tp(Me)2Pt(IV)(CH(3))(CH(2)D)H (1-d(1'). The sigma-methane complex kappa(2)-Tp(Me)2Pt(II)(CH(3))(CH(4)) is proposed as a common intermediate in both the scrambling and reductive elimination processes. Kinetic results are consistent with rate-determining dissociative loss of methane from this intermediate to produce the coordinatively unsaturated intermediate [Tp(Me)2Pt(II)(CH(3))], which reacts rapidly with solvent. The difference in activation enthalpies for the H/D scrambling and C-H reductive elimination provides a lower limit for the binding enthalpy of methane to [Tp(Me)2Pt(II)(CH(3))] of 9 +/- 2 kcal/mol.
NASA Astrophysics Data System (ADS)
Okazaki, Tomohisa; Seino, Satoshi; Matsuura, Yoshiyuki; Otake, Hiroaki; Kugai, Junichiro; Ohkubo, Yuji; Nitani, Hiroaki; Nakagawa, Takashi; Yamamoto, Takao A.
2017-04-01
The process of nanoparticle formation by radiation chemical synthesis in a heterogeneous system has been investigated. Carbon-supported Pt-based bimetallic nanoparticles were synthesized using a high-energy electron beam. Rh, Cu, Ru, and Sn were used as counterpart metals. The nanoparticles were characterized by inductively coupled plasma atomic emission spectrometry, transmission electron microscopy, X-ray diffraction, and X-ray absorption spectroscopy. PtRh formed a uniform random alloy nanoparticle, while Cu partially formed an alloy with Pt and the remaining Cu existed as CuO. PtRu formed an alloy structure with a composition distribution of a Pt-rich core and Ru-rich shell. No alloying was observed in PtSn, which had a Pt-SnO2 structure. The alloy and oxide formation mechanisms are discussed considering the redox potentials, the standard enthalpy of oxide formation, and the solid solubilities of Pt and the counterpart metals.
Lopes, Pietro P.; Strmcnik, Dusan; Tripkovic, Dusan; ...
2016-03-07
The development of alternative energy systems for clean production, storage and conversion of energy is strongly dependent on our ability to understand, at atomic-molecular-levels, functional links between activity and stability of electrochemical interfaces. Whereas structure-activity relationships are rapidly evolving, the corresponding structure-stability relationships are still missing. Primarily, this is because there is no adequate experimental approach capable of monitoring in situ stability of well-defined single crystals. Here, by blending the power of Inductively Coupled Plasma-Mass Spectrometer (ICP-MS) connected to a stationary probe to measure in situ and real time dissolution rates of surface atoms (at above 0.4 pg cm-2s-1 levels)more » and a rotating disk electrode method for monitoring simultaneously the kinetic rates of electrochemical reactions in a single unite, it was possible to establish almost “atom-by-atom” the structure-stability-activity relationships for platinum single crystals in both acidic and alkaline environments. Furthermore, we found that the degree of stability is strongly dependent on the coordination of surface atoms (less coordinated yields less stable), the nature of covalent (adsorption of hydroxyl, oxygen atoms and halides species), and non-covalent interactions (interactions between hydrated Li cations and surface oxide), the thermodynamic driving force for Pt complexation (Pt ion speciation in solution) and the nature of the electrochemical reaction (the oxygen reduction/evolution and CO oxidation reactions). Consequently, these findings are opening new opportunities for elucidating key fundamental descriptors that govern both activity and stability trends, that ultimately, will assist to develop real energy conversion and storage systems.« less
Video luminescent barometry - The induction period
NASA Technical Reports Server (NTRS)
Uibel, Rory H.; Khalil, Gamal; Gouterman, Martin; Gallery, Jean; Callis, James B.
1993-01-01
Video monitoring of oxygen quenching of the photoluminescence of platinum octaethylporphyrin (PtOEP) in silicone polymer resin may be used to measure pressure distribution over an airfoil. A continuous increase of the luminescence intensity of PtOEP on exposure to the exciting light is known as the induction effect. The effect of several factors on PtOEP photoluminescence and the induction effect was investigated. The experimental apparatus is described and results are presented. It was observed that the relative induction amplitude and induction time increase at higher oxygen pressure and with thicker films. These observations may be explained if the singlet oxygen produced by oxygen quenching is consumed by the polymer and is therefore unavailable for further quenching. Researchers using this method for measuring pressure distribution on airfoil surfaces should be aware of the induction effect and its implications.
Reading magnetic ink patterns with magnetoresistive sensors
NASA Astrophysics Data System (ADS)
Merazzo, K. J.; Costa, T.; Franco, F.; Ferreira, R.; Zander, M.; Türr, M.; Becker, T.; Freitas, P. P.; Cardoso, S.
2018-05-01
Information storage and monitoring relies on sensitive transducers with high robustness and reliability. This paper shows a methodology enabling the qualification of magnetic sensors for magnetic pattern readout, in applications different than hard disk magnetic recording. A magnetic tunnel junction MTJ sensor was incorporated in a reader setup for recognition of the magnetization of patterned arrays made of CoCrPt thin films and magnetic ink. The geometry of the sensor (in particular, the footprint and vertical distance to the media) was evaluated for two sensor configurations. The readout conditions were optimized to cope for variable media field intensity, resulting from CoCrPt film or magnetic ink thickness, with fixed reading distance and dimensions of the pattern. The calibration of the ink magnetic signal could be inferred from the analytical calculations carried out to validate the CoCrPt results.
Mechanistic studies of the CO-oxidation reaction on catalysts for use in long-life CO2 lasers
NASA Technical Reports Server (NTRS)
Dawood, Talat; Richmond, John R.; Riley, Brian W.
1990-01-01
The catalytic recombination of carbon monoxide and oxygen was studied under conditions expected to be present in a sealed E-beam CO2 laser system. These conditions are typically a gas inlet temperature of 60 C, a substoichiometric CO/O2 ratio of ca. 2.5/1 with an oxygen feed rate of ca. 5 micromoles/s, a carrier gas comprising He, N2 and CO2 in the ratio of 3:2:1, near atmospheric pressure and a gas velocity of 4 m/s. Heterogeneous catalysts, based on precious metal supported on tin oxide, have been coated onto ceramic monoliths and tested for catalytic activity and stability after a reduction/passivation step. Two catalyst systems have been chosen. These are Pt/Pd/SnO2 and Pt/Ru/SnO2. Under the conditions described above, a characteristic decline in catalytic activity is apparent for both systems, and exit gas temperature has been recognized as a sensitive parameter by which to monitor the activity changes. A semilogarithmic plot of exit temperature as a function of time has revealed two distinct processes connected with the decline in activity: one process is associated with reduction of the oxidized precious metal (at Site A), whilst the other is related to the formation and approach to steady-state of an active site at the metal/support interface (Site B).
Complex magnetic structure of clusters and chains of Ni and Fe on Pt(111)
Bezerra-Neto, Manoel M.; Ribeiro, Marcelo S.; Sanyal, Biplab; Bergman, Anders; Muniz, Roberto B.; Eriksson, Olle; Klautau, Angela B.
2013-01-01
We present an approach to control the magnetic structure of adatoms adsorbed on a substrate having a high magnetic susceptibility. Using finite Ni-Pt and Fe-Pt nanowires and nanostructures on Pt(111) surfaces, our ab initio results show that it is possible to tune the exchange interaction and magnetic configuration of magnetic adatoms (Fe or Ni) by introducing different numbers of Pt atoms to link them, or by including edge effects. The exchange interaction between Ni (or Fe) adatoms on Pt(111) can be considerably increased by introducing Pt chains to link them. The magnetic ordering can be regulated allowing for ferromagnetic or antiferromagnetic configurations. Noncollinear magnetic alignments can also be stabilized by changing the number of Pt-mediated atoms. An Fe-Pt triangularly-shaped nanostructure adsorbed on Pt(111) shows the most complex magnetic structure of the systems considered here: a spin-spiral type of magnetic order that changes its propagation direction at the triangle vertices. PMID:24165828
Patch testing in Australia: Is it adequate?
Tizi, Stephanie; Nixon, Rosemary L
2016-08-01
Patch testing (PT) is essential for making the diagnosis of allergic contact dermatitis (ACD). However, the extent of PT undertaken by Australian dermatologists is unknown. The objectives of this study were to determine the rate and type of PT in Australia, the perceived obstacles to PT, and to explore the exposure to PT in dermatology training. Data were collected on private PT (analysing Medicare item numbers) and public hospital-based PT (estimated via verbal reports). An online survey on PT was sent to Fellows of the Australasian College of Dermatologists. It was found that total PT numbers, combining Medicare item number and public hospital data, were below the suggested optimum in all states and in Australia overall. Of the 173 respondents to the survey, 61% reported they patch tested and 78% reported they referred for PT. TrueTest was the most commonly used PT system, although it is known to be inadequate. Dermatologists who PT as registrars were significantly more likely to PT as consultants (P value = 0.0029). Cost, expertise required and staffing were considered major obstacles to performing PT. Accessibility and cost to the patient were common obstacles to referral. The combination of suboptimal PT rates and inadequate PT means that patients are missing out on being diagnosed with ACD in Australia. Increasing the exposure of registrars to PT, supporting specialised centres, the development of the Australian Baseline Series and the Contact Allergen Bank will, it is hoped, improve the rates of comprehensive PT in Australia. © 2015 The Australasian College of Dermatologists.
Anti-sleepiness sensor systems for sober mental condition
NASA Astrophysics Data System (ADS)
Han, Won Heum; Jung, Hyung Sik; Lee, Hyo Gun
2011-05-01
The anti-sleepiness sensor systems have been devised for soldier's sober mental condition. These systems judge whether the soldier is sleepy or not, on one hand by monitoring open or closed eyes, on the other hand by measuring the heart blood beat and rate on the carotid of human's neck. They reasonably adopt one of the following methods such as optical, mechanical, magnetic impedance and piezoelectric sensor and so on. In this paper, the characteristics of those sensors are compared to one another and subsequently the suitable ones are proposed from the viewpoint of measurement and judgment reliability.; as a sensor to directly monitor the soldier's open/closed eyes the IR (Infrared) sensor is recommended, which is equipped on glasses (so called the anti-sleepiness glasses), and as a sensor to measure the heart beat and rate of blood vein, the piezoelectric PMN-PT crystal sensor mounted on a necklace turns out to be the most suitable owing to its high sensitivity (i.e. the anti-sleepiness necklace). These systems and relevant ideas are also applicable to the civilian usage, namely to the student preparing an examination as well as to the car-driver for safety.
Effective anodic oxidation of naproxen by platinum nanoparticles coated FTO glass.
Chin, Ching-Ju Monica; Chen, Tsan-Yao; Lee, Menshan; Chang, Chiung-Fen; Liu, Yu-Ting; Kuo, Yu-Tsun
2014-07-30
This study investigated applications of the electrochemical anodic oxidation process with Pt-FTO and Pt/MWCNTs-FTO glasses as anodes on the treatment of one of the most important emerging contaminants, naproxen. The anodes used in this study have been synthesized using commercial FTO, MWCNTs and Pt nanoparticles (PtNP). XRD patterns of Pt nanoparticles coated on FTO and MWCNTs revealed that MWCNTs can prevent the surface of PtNPs from sintering and thus provide a greater reaction sites density to interact with naproxen, which have also been confirmed by higher degradation and mineralization efficiencies in the Pt/MWCNTs-FTO system. Results from the CV analysis showed that the Pt-FTO and Pt/MWCNTs-FTO electrodes possessed dual functions of decreasing activation energy and interactions between hydroxyl radicals to effectively degrade naproxen. The lower the solution pH value, the better the degradation efficiency. The existence of humic acid indeed inhibited the degradation ability of naproxen due to the competitions in the multiple-component system. The electrochemical degradation processes were controlled by diffusion mechanism and two major intermediates of 2-acetyl-6-methoxynaphthalene and 2-(6-Hydroxy-2-naphthyl)propanoic acid were identified. This study has successfully demonstrated new, easy, flexible and effective anodic materials which can be feasibly applied to the electrochemical oxidation of naproxen. Copyright © 2014 Elsevier B.V. All rights reserved.
Multiphoton Coherent Manipulation in Large Spin Qubits
NASA Astrophysics Data System (ADS)
Chiorescu, Irinel
2009-03-01
Manipulation of quantum information allows certain algorithms to be performed at unparalleled speeds. Photons are an ideal choice to manipulate qubits as they interact with quantum systems in predictable ways. They are a versatile tool for manipulating, reading/coupling qubits and for encoding/transferring quantum information over long distances. Spin-based qubits have well known behavior under photon driving and can be potentially operated up to room temperature. When diluted enough to avoid uncontrolled spin-spin interactions, a variety of spin qubits show long coherence times, e.g. the nitrogen vacancies in pure diamonds (1,2), nitrogen atoms trapped in a C60 cage (3), Ho3+ and Cr5+ ions (4,5) and molecular magnets (6,7). We have used large spin Mn2+ ions (S=5/2) to realize a six level system that can be operated by means of single as well as multi-photon coherent Rabi oscillations (8). This spin system has a very small anisotropy whose effect can be tuned in-situ to turn the system into a multi-level harmonic system. This offer new ways of manipulating, reading and resetting a spin qubit. Decoherence effects are strongly reduced by the quasi-isotropic electron interaction with the crystal field and with the 55Mn nuclear spins. [0pt] 1. R. Hanson et al., Science 320, 352 (2008). [0pt] 2. M.V. Gurudev Dutt et al., Science 316, 1312 (2007). [0pt] 3. G.W. Morley et al., Phys. Rev. Lett. 98, 220501 (2007). [0pt] 4. S. Bertaina et al., Nat. Nanotech. 2, 39 (2007). [0pt] 5. S. Nellutla et al., Phys. Rev. Lett. 99, 137601 (2007). [0pt] 6. A. Ardavan et al., Phys. Rev. Lett. 98, 057201 (2007). [0pt] 7. S. Bertaina et al., Nature 453, 203,(2008). [0pt] 8. S. Bertaina et al., submitted.
Symmetry recovery for coupled photonic modes with transversal PT symmetry.
Rivolta, Nicolas X A; Maes, Bjorn
2015-08-15
Typical parity-time (PT) symmetric structures switch from the unbroken to the broken phase when gain increases through an exceptional point. In contrast, we report on systems with the unusual, reverse behavior, where the symmetric phase is recovered after a broken phase. We study this phenomenon analytically and numerically in the simplest possible system, consisting of four coupled modes, and we present potential dielectric and plasmonic implementations. The complex mode merging scheme, with two distinct unbroken PT phases encompassing a broken one, appears for a specific proportion range of the coupling constants. This regime with "inverse" exceptional points is interesting for the design of novel PT devices.
NASA Astrophysics Data System (ADS)
Sakuma, Akimasa
2012-08-01
We adapt the tight-binding linear muffin-tin orbital (TB-LMTO) method to the torque-correlation model for the Gilbert damping constant α and perform the first-principles calculation for disordered transition metal alloys, Fe--Ni and Fe--Pt systems, within the framework of the CPA. Quantitatively, the calculated α values are about one-half of the experimental values, whereas the variations in the Fermi level dependence of α are much larger than these discrepancies. As expected, we confirm in the (Fe--Ni)1-XPtX and FePt systems that Pt atoms certainly enhance α owing to their large spin--orbit coupling. For the disordered alloys, we find that α decreases with increasing chemical degree of order in a wide range.
NASA Astrophysics Data System (ADS)
Song, Peng; He, Xuan; Xiong, Xiping; Ma, Hongqing; Song, Qunling; Lü, Jianguo; Lu, Jiansheng
2018-03-01
To investigate the effect of water vapor on the novel Pt-containing oxide growth behavior, Pt-addition within the oxide layer on the surface of NiCoCrAl coating and furnace cycle tests were carried out at 1050 °C in air and air plus water vapor. The thick Pt-containing oxide layer on NiCoCrAl exhibits a different oxidation growth behavior compared to the conventional Pt-diffusion metallic coatings. The Pt-containing oxide after oxidation in air plus water vapor showed a much thicker oxide layer compare to the ones without Pt addition, and also presented a much better coating adhesion. During the oxidation process in air, Pt promotes the spinel (NiCr2O4) formation. However, the Cr2O3 formed in air with water vapor and fixed Pt within the complex oxide layer. The water vapor promoted the Ni and Co outer-diffusion, and combined with Pt to form CoPt compounds on the surface of the NiCoCrAl coating system.
Yang, Bing; Khadra, Ghassan; Tuaillon-Combes, Juliette; ...
2016-08-25
In this study, Co 1–xPt x clusters of 2.9-nm size with a range of atomically precise Pt/Co atomic ratios (x = 0, 0.25, 0.5, 0.75, 1) were synthesized using the mass-selected low-energy cluster beam deposition (LECBD) technique and soft-landed onto an amorphous alumina thin film prepared by atomic layer deposition (ALD). Utilizing ex situ X-ray photoemission spectroscopy (XPS), the oxidation state of the as-made clusters supported on Al 2O 3 was determined after both a 1-h-long exposure to air and aging for several weeks while exposed to air. Next, the aged cluster samples were characterized by grazing-incidence X-ray absorption spectroscopymore » (GIXAS) and then pretreated with diluted hydrogen and further exposed to the mixture of diluted CO and H 2 up to 225°C at atmospheric pressure, and the temperature-dependent evolutions of the particle size/shape and the oxidation states of the individual metal components within the clusters were monitored using in situ grazing-incidence small-angle X-ray scattering and X-ray absorption spectroscopy (GISAXS/GIXAS). The changes in the oxidation states of Co and Pt exhibited a nonlinear dependence on the Pt/Co atomic ratio of the clusters. For example, a low Pt/Co ratio (x ≤ 0.5) facilitates the formation of Co(OH) 2, whereas a high Pt/Co ratio (x = 0.75) stabilizes the Co 3O 4 composition instead through the formation of a Co–Pt core–shell structure where the platinum shell inhibits the reduction of cobalt in the core of the Co 1–xPt x alloy clusters. Finally, the obtained results indicate methods for optimizing the composition and structure of binary alloy clusters for catalysis.« less
Analysis of Ethane and Diethylbenzene Bridged Sorbents
2017-12-13
Leska; P.T. Charles; B.J. Melde; J.R. Taft, "Electrochemical Detection with Preconcentration: Nitroenergetic Contaminants ," Chemosensors 2, 131...monitoring of contaminants in groundwater: Sorbent development; Naval Research Laboratory: 2013. Analysis of Ethane and Diethylbenzene Bridged Sorbents 7...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE AQUATIC PLANT CONTROL Pt.... Program accomplishments: a. Goals. Discuss practical control levels. b. Monitoring accomplishment level. 3...
Li, Luyao; Liu, Haiqing; Qin, Chao; ...
2018-02-28
Pt-based alloys denote promising catalysts for the methanol oxidation reaction (MOR) and the ethanol oxidation reaction (EOR), due to their enhanced activity toward alcohol-oxidation reactions and reduced cost as compared with Pt alone. Among all of these binary systems, PtSn has been reported to exhibit superior methanol/ethanol oxidation activity. In this paper, we deliberatively tailor chemical composition, reduce size, and optimize morphology of the catalyst in an effort to understand structure–property correlations that can be used to improve upon the electrocatalytic activity of these systems. Previous work performed by our group suggested that Pt-based catalysts, possessing an ultrathin one-dimensional (1D)more » structure, dramatically promote both cathodic and anodic reactions with respect to their zero-dimensional (0D) counterparts. Herein, a novel set of ultrathin binary Pt–Sn 1D nanowire (NW) catalysts with rationally controlled chemical compositions, i.e., Pt 9Sn 1, Pt 8Sn 2, and Pt 7Sn 3, has been synthesized using a facile, room-temperature, wet-solution-based method. The crystallinity and chemical composition of these as-prepared samples were initially characterized using XRD, XPS, and EDX. Results revealed that this synthetic protocol could successfully generate PtSn alloys with purposely tunable chemical compositions. TEM and HRTEM verified the structural integrity of our ultrathin 1D NW morphology for our Pt 9Sn 1, Pt 8Sn 2, and Pt 7Sn 3 samples. The effects of varying Sn content within these alloy samples toward the electro-oxidation reaction of methanol and ethanol were probed using cyclic voltammetry (CV) in acidic media. Finally, within this series, we find that the optimized chemical composition for both the MOR and the EOR is Pt 7Sn 3.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Luyao; Liu, Haiqing; Qin, Chao
Pt-based alloys denote promising catalysts for the methanol oxidation reaction (MOR) and the ethanol oxidation reaction (EOR), due to their enhanced activity toward alcohol-oxidation reactions and reduced cost as compared with Pt alone. Among all of these binary systems, PtSn has been reported to exhibit superior methanol/ethanol oxidation activity. In this paper, we deliberatively tailor chemical composition, reduce size, and optimize morphology of the catalyst in an effort to understand structure–property correlations that can be used to improve upon the electrocatalytic activity of these systems. Previous work performed by our group suggested that Pt-based catalysts, possessing an ultrathin one-dimensional (1D)more » structure, dramatically promote both cathodic and anodic reactions with respect to their zero-dimensional (0D) counterparts. Herein, a novel set of ultrathin binary Pt–Sn 1D nanowire (NW) catalysts with rationally controlled chemical compositions, i.e., Pt 9Sn 1, Pt 8Sn 2, and Pt 7Sn 3, has been synthesized using a facile, room-temperature, wet-solution-based method. The crystallinity and chemical composition of these as-prepared samples were initially characterized using XRD, XPS, and EDX. Results revealed that this synthetic protocol could successfully generate PtSn alloys with purposely tunable chemical compositions. TEM and HRTEM verified the structural integrity of our ultrathin 1D NW morphology for our Pt 9Sn 1, Pt 8Sn 2, and Pt 7Sn 3 samples. The effects of varying Sn content within these alloy samples toward the electro-oxidation reaction of methanol and ethanol were probed using cyclic voltammetry (CV) in acidic media. Finally, within this series, we find that the optimized chemical composition for both the MOR and the EOR is Pt 7Sn 3.« less
NASA Astrophysics Data System (ADS)
Hosseini, Farnaz; Safaei, Elham; Mohebbi, Sajjad
2017-07-01
This study has focused on catalytic and photocatalytic oxidation of aromatic alcohols using WO3 nanorod and a series of Pt/WO3 nanocomposite Pt nanoparticles was loaded on WO3 nanorod with several mass ratios 0.1, 0.2, and 0.3 via a photoreduction process (PRP) and characterized by TEM, FE-SEM imaging, EDAX, XRD, DRS, ICP, and XPS. WO3 nanorods were obtained monodispersed with average 40-nm diameter and square cross section without significant size change by the loading of platinum nanoparticles on it. Progress of oxidation reaction was monitored by GC and the yield of aerobic photocatalytic oxidation of alcohols reached up to 98% for Pt/WO3 and 69% for WO3 while, no oxidation was detected in the absence of light. The highest photocatalytic performance was obtained for mass ratio 0.2 with the selectivity >99%. So, this nanocomposite has potentials to be used as high-performance heterogeneous catalyst and photocatalyst under visible light irradiation with advantages of high activity, high selectivity, and reusability.
NASA Astrophysics Data System (ADS)
Tąta, Agnieszka; Gralec, Barbara; Proniewicz, Edyta
2018-03-01
Herein, surface-enhanced Raman scattering (SERS) activity of positively charged unsupported platinum nanoparticles (PtNPs) with ∼12 nm size and narrow size distribution, in an aqueous solution, towards neurotransmitters was monitored at 785 nm excitation wavelength. The pure PtNPs were synthetized by polyol method. Their morphology and structure were checked by scanning electron microscopy (SEM) and X-ray diffraction spectroscopy (XRD) measurements. As a neurotransmitter bombesin (BN), which exhibits autocrine effect on the growth of normal and tumour tissues, and its fragments from the C-terminal end: BN13-14, BN12-14, BN11-14, BN10-14, BN9-14, and BN8-14 (X-14 fragments of the BN amino acid sequence) were chosen. The collected spectra were interpreted and discussed. This is to determine the adsorption mode of bombesin onto the PtNPs surface and changes in this mode as a result of the bombesin backbone shortening from the N-terminal end. This is important from the point of using PtNPs as potential BN carrier into the cancerous tissue and antitumor drug.
Sologub, Oksana; Salamakha, Leonid; Rogl, Peter; Stöger, Berthold; Bauer, Ernst; Bernardi, Johannes; Giester, Gerald; Waas, Monika; Svagera, Robert
2015-11-16
On the basis of a detailed study applying X-ray single-crystal and powder diffraction, differential scanning calorimetry, and scanning electron microscopy analysis, it was possible to resolve existing uncertainties in the Pt-rich section (≥65 atom % Pt) of the binary Pt-B phase diagram above 600 °C. The formation of a unique structure has been observed for Pt2B [X-ray single-crystal data: space group C2/m, a = 1.62717(11) nm, b = 0.32788(2) nm, c = 0.44200(3) nm, β = 104.401(4)°, RF2 = 0.030]. Within the homogeneity range of "Pt3B", X-ray powder diffraction phase analysis prompted two structural modifications as a function of temperature. The crystal structure of "hT-Pt3B" complies with the hitherto reported structure of anti-MoS2 [space group P63/mmc, a = 0.279377(2) nm, c = 1.04895(1) nm, RF = 0.075, RI = 0.090]. The structure of the new "[Formula: see text]T-Pt3B" is still unknown. The formation of previously reported Pt∼4B has not been confirmed from binary samples. Exploration of the Pt-rich section of the Pt-Cu-B system at 600 °C revealed a new ternary compound, Pt12CuB6-y [X-ray single-crystal data: space group Im3̅, a = 0.75790(2) nm, y = 3, RF2 = 0.0129], which exhibits the filled WAl12-type structure accommodating boron in the interstitial trigonal-prismatic site 12e. The isotypic platinum-aluminum-boride was synthesized and studied. The solubility of copper in binary platinum borides has been found to attain ∼7 atom % Cu for Pt2B but to be insignificant for "[Formula: see text]T-Pt3B". The architecture of the new Pt2B structure combines puckered layers of boron-filled and empty [Pt6] octahedra (anti-CaCl2-type fragment) alternating along the x axis with a double layer of boron-semifilled [Pt6] trigonal prisms interbedded with a layer of empty tetrahedra and tetragonal pyramids (B-deficient α-T[Formula: see text]I fragment). Assuming boron vacancies ordering (space group R3), the Pt12CuB6-y structure exhibits serpentine-like columns of edge-connected boron-filled [Pt6] trigonal prisms running infinitely along the z axis and embedding the icosahedrally coordinated Cu atom. Pt2B, (Pt1-yCuy)2B (y = 0.045), and Pt12CuB6-y (y = 3) behave metallically, as revealed by temperature-dependent electrical resistivity measurements.
NASA Astrophysics Data System (ADS)
Dong, Qingchen; Qu, Wenshan; Liang, Wenqing; Guo, Kunpeng; Xue, Haibin; Guo, Yuanyuan; Meng, Zhengong; Ho, Cheuk-Lam; Leung, Chi-Wah; Wong, Wai-Yeung
2016-03-01
Ferromagnetic (L10 phase) CoPt alloy nanoparticles (NPs) with extremely high magnetocrystalline anisotropy are promising candidates for the next generation of ultrahigh-density data storage systems. It is a challenge to generate L10 CoPt NPs with high coercivity, controllable size, and a narrow size distribution. We report here the fabrication of L10 CoPt NPs by employing a heterobimetallic CoPt-containing polymer as a single-source precursor. The average size of the resulting L10 CoPt NPs is 3.4 nm with a reasonably narrow size standard deviation of 0.58 nm. The coercivity of L10 CoPt NPs is 0.54 T which is suitable for practical application. We also fabricated the L10 CoPt NP-based nanoline and nanodot arrays through nanoimprinting the polymer blend of CoPt-containing metallopolymer and polystyrene followed by pyrolysis. The successful transfer of the pre-defined patterns of the stamps onto the surface of the polymer blend implies that this material holds great application potential as a data storage medium.Ferromagnetic (L10 phase) CoPt alloy nanoparticles (NPs) with extremely high magnetocrystalline anisotropy are promising candidates for the next generation of ultrahigh-density data storage systems. It is a challenge to generate L10 CoPt NPs with high coercivity, controllable size, and a narrow size distribution. We report here the fabrication of L10 CoPt NPs by employing a heterobimetallic CoPt-containing polymer as a single-source precursor. The average size of the resulting L10 CoPt NPs is 3.4 nm with a reasonably narrow size standard deviation of 0.58 nm. The coercivity of L10 CoPt NPs is 0.54 T which is suitable for practical application. We also fabricated the L10 CoPt NP-based nanoline and nanodot arrays through nanoimprinting the polymer blend of CoPt-containing metallopolymer and polystyrene followed by pyrolysis. The successful transfer of the pre-defined patterns of the stamps onto the surface of the polymer blend implies that this material holds great application potential as a data storage medium. Electronic supplementary information (ESI) available: PXRD, EDX and SEM original data. See DOI: 10.1039/c6nr00034g
Metal adsorption on monolayer blue phosphorene: A first principles study
NASA Astrophysics Data System (ADS)
Khan, Imran; Son, Jicheol; Hong, Jisang
2018-01-01
We investigated the electronic structure, adsorption energies, magnetic properties, dipole moment and work function of metal adatoms (Mg, Cr, Mo, Pd, Pt, and Au) adsorption on a blue phosphorene monolayer. For Mg, Pt and Au metals, the most stable state was found in hollow site while for Cr, Mo and Pd metals we found an adsorption in valley site. We suggest that the Pd and Pt atoms prefer 2D growth mode while the Mg, Cr, Mo and Au atoms prefer 3D island growth mode on monolayer phosphorene. The electronic band structures and magnetic properties were dependent on the doping site and dopant materials. For instance, the semiconducting features were preserved in Mg, Pd, Pt, and Au doped systems. However, the Cr and Mo doped systems displayed half-metallic band structures. The total magnetic moment of 4.05, 2.0 and 0.77 μB /impurity atom were obtained in Cr, Mo and Au doped systems whereas the Mg, Pd and Pt doped systems remained nonmagnetic. We also investigated the magnetic interaction between two transition metal impurities. We observed ferromagnetic coupling between two transition metal impurities in Cr and Mo doped systems while the Au doped system displayed almost degenerated magnetic state. For Mg, Cr, and Mo adsorptions, we found relatively large values of dipole moments compared to those in the Pd, Pt and Au adsorptions. This resulted in a significant suppression of the work function in Mg, Cr and Mo adsorptions. Overall, adsorption can tune the physical and magnetic properties of phosphorene monolayer.
Health monitoring of prestressing tendons in post-tensioned concrete structures
NASA Astrophysics Data System (ADS)
Salamone, Salvatore; Bartoli, Ivan; Nucera, Claudio; Phillips, Robert; Lanza di Scalea, Francesco
2011-04-01
Currently 90% of bridges built in California are post-tensioned box-girder. In such structures the steel tendons are the main load-carrying components. The loss of prestress, as well as the presence of defects or the tendon breakage, can be catastrophic for the entire structure. Unfortunately, today there is no well-established method for the monitoring of prestressing (PS) tendons that can provide simultaneous information related to the presence of defects and the level of prestress in a continuous, real time manner. If such a monitoring system were available, considerable savings would be achieved in bridge maintenance since repairs would be implemented in a timely manner without traffic disruptions. This paper presents a health monitoring system for PS tendons in post-tensioned structures of interest to Caltrans. Such a system uses ultrasonic guided waves and embedded sensors to provide simultaneously and in real time, (a) measurements of the level of applied prestress, and (b) defect detection at early grow stages. The proposed PS measurement technique exploits the sensitivity of ultrasonic waves to the inter-wire contact developing in a multi-wire strand as a function of prestress level. In particular the nonlinear ultrasonic behavior of the tendon under changing levels of prestress is monitored by tracking higher-order harmonics at (nω) arising under a fundamental guided-wave excitation at (ω). Moreover this paper also present real-time damage detection and location in post-tensioned bridge joints using Acoustic Emission techniques. Experimental tests on large-scale single-tendon PT joint specimens, subjected to multiple load cycles, will be presented to validate the monitoring of PS loads (through nonlinear ultrasonic probing) and the monitoring of damage progression and location (through acoustic emission techniques). Issues and potential for the use of such techniques to monitor post-tensioned bridges in the field will be discussed.
Time-invariant PT product and phase locking in PT -symmetric lattice models
NASA Astrophysics Data System (ADS)
Joglekar, Yogesh N.; Onanga, Franck Assogba; Harter, Andrew K.
2018-01-01
Over the past decade, non-Hermitian, PT -symmetric Hamiltonians have been investigated as candidates for both a fundamental, unitary, quantum theory and open systems with a nonunitary time evolution. In this paper, we investigate the implications of the former approach in the context of the latter. Motivated by the invariance of the PT (inner) product under time evolution, we discuss the dynamics of wave-function phases in a wide range of PT -symmetric lattice models. In particular, we numerically show that, starting with a random initial state, a universal, gain-site location dependent locking between wave-function phases at adjacent sites occurs in the PT -symmetry-broken region. Our results pave the way towards understanding the physically observable implications of time invariants in the nonunitary dynamics produced by PT -symmetric Hamiltonians.
The role of symmetry-breaking-induced interface anisotropy in [Fe/Pt]{sub n} multilayer films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Zhenghua; Center for Geo-environment Science, Faculty of Engineering and Resource Science, Akita University, Tegatagakuen-machi 1-1, Akita 010-8502; Xie Hailong
2011-04-01
The FePt films were deposited with [Fe/Pt]{sub n} multilayer structure on preheated Corning 1737F glass substrate using pure Fe and Pt target in a CMS-18 sputtering system. The dependence of FePt's texture and magnetic properties on the multilayer structure was investigated. The XRD patterns indicate that (111) texture is dominant for all [Fe/Pt]{sub n} (n = 8, 16, 20, 32) multilayer films. However, the measured M-H loops show that the perpendicular anisotropy is greatly enhanced in samples with n = 16, 20, and 32. The origin of the increased perpendicular anisotropy of [Fe/Pt]{sub n} multilayer films is related to themore » contributions of the interfaces, which will be analyzed using the micromagnetic models, with careful discussions of the crystalline and interface anisotropies. Finally, it is confirmed that the Fe/Pt interfaces favor the perpendicular orientation in the multilayer structure.« less
Platinum-tin catalysts supported on silica highly selective for n-hexane dehydrogenation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Llorca, J.; Homs, N.; Sales, J.
Silica-supported Pt-Sn catalysts were prepared by two-step impregnation from [PtCl{sub 2}(PPh{sub 3}){sub 2}] and SnCl{sub 2} solutions of appropriate concentrations to yield Pt/Sn atomic ratios ranging from 0.2 to 5.0. In these systems, the presence of true Pt-Sn alloys was confirmed by X-ray diffraction, transmission electron microscopy, energy dispersive X-ray analysis and electron nanodiffraction. Pt and PtSn alloy phases were found on catalysts with Pt/Sn > 1, PtSn alloy alone on the catalyst with Pt/Sn = 1 and PtSn and PtSn{sub 2} alloys, together with Sn in the catalysts with Pt/Sn < 1. All these catalysts were tested in themore » skeletal reactions of n-hexane at 753 K and atmospheric pressure. The selectivity of Pt changed significantly when alloyed with tin. For Sn-rich compositions a segregation of tin toward the catalyst surface was shown by photoelectron spectroscopy, and high hydrogenolysis selectivity and fast deactivation were observed. In contrast, Pt-rich catalysts, in which a well defined PtSn alloy was observed, were much more stable and exhibited high selectivity to dehydrogenation reaction while maintaining low conversions to benzene and hydrogenolysis products. This selectivity pattern can be interpreted in terms of a change in adsorption properties due to differences in the number of adjacent Pt atoms required for the various reaction pathways. 24 refs., 11 figs., 3 tabs.« less
Modeling Population Exposure to Ultrafine Particles in a Major Italian Urban Area
Spinazzè, Andrea; Cattaneo, Andrea; Peruzzo, Carlo; Cavallo, Domenico M.
2014-01-01
Average daily ultrafine particles (UFP) exposure of adult Milan subpopulations (defined on the basis of gender, and then for age, employment or educational status), in different exposure scenarios (typical working day in summer and winter) were simulated using a microenvironmental stochastic simulation model. The basic concept of this kind of model is that time-weighted average exposure is defined as the sum of partial microenvironmental exposures, which are determined by the product of UFP concentration and time spent in each microenvironment. In this work, environmental concentrations were derived from previous experimental studies that were based on microenvironmental measurements in the city of Milan by means of personal or individual monitoring, while time-activity patterns were derived from the EXPOLIS study. A significant difference was observed between the exposures experienced in winter (W: 28,415 pt/cm3) and summer (S: 19,558 pt/cm3). Furthermore, simulations showed a moderate difference between the total exposures experienced by women (S: 19,363 pt/cm3; W: 27,623 pt/cm3) and men (S: 18,806 pt/cm3; W: 27,897 pt/cm3). In addition, differences were found as a function of (I) age, (II) employment status and (III) educational level; accordingly, the highest total exposures resulted for (I) 55–59 years old people, (II) housewives and students and (III) people with higher educational level (more than 10 years of scholarity). Finally, significant differences were found between microenvironment-specific exposures. PMID:25321878
Dogan, Didem C; Cho, Seonghun; Hwang, Sun-Mi; Kim, Young-Min; Guim, Hwanuk; Yang, Tae-Hyun; Park, Seok-Hee; Park, Gu-Gon; Yim, Sung-Dae
2016-10-10
Supportless Pt catalysts have several advantages over conventional carbon-supported Pt catalysts in that they are not susceptible to carbon corrosion. However, the need for high Pt loadings in membrane electrode assemblies (MEAs) to achieve state-of-the-art fuel cell performance has limited their application in proton exchange membrane fuel cells. Herein, we report a new approach to the design of a supportless Pt catalyst in terms of catalyst layer architecture, which is crucial for fuel cell performance as it affects water management and oxygen transport in the catalyst layers. Large Pt hollow spheres (PtHSs) 100 nm in size were designed and prepared using a carbon template method. Despite their large size, the unique structure of the PtHSs, which are composed of a thin-layered shell of Pt nanoparticles (ca. 7 nm thick), exhibited a high surface area comparable to that of commercial Pt black (PtB). The PtHS structure also exhibited twice the durability of PtB after 2000 potential cycles (0-1.3 V, 50 mV/s). A MEA fabricated with PtHSs showed significant improvement in fuel cell performance compared to PtB-based MEAs at high current densities (>800 mA/cm 2 ). This was mainly due to the 2.7 times lower mass transport resistance in the PtHS-based catalyst layers compared to that in PtB, owing to the formation of macropores between the PtHSs and high porosity (90%) in the PtHS catalyst layers. The present study demonstrates a successful example of catalyst design in terms of catalyst layer architecture, which may be applied to a real fuel cell system.
Xu, Jing; Ding, Yi-hong
2015-03-05
Designing and characterizing the compounds with exotic structures and bonding that seemingly contrast the traditional chemical rules are a never-ending goal. Although the silicon chemistry is dominated by the tetrahedral picture, many examples with the planar tetracoordinate-Si skeletons have been discovered, among which simple species usually contain the 17/18 valence electrons. In this work, we report hitherto the most extensive structural search for the pentaatomic ptSi with 14 valence electrons, that is, SiXnYm(q) (n + m = 4; q = 0, ±1, -2; X, Y = main group elements from H to Br). For 129 studied systems, 50 systems have the ptSi structure as the local minimum. Promisingly, nine systems, that is, Li3SiAs(2-), HSiY3 (Y = Al/Ga), Ca3SiAl(-), Mg4Si(2-), C2LiSi, Si3Y2 (Y = Li/Na/K), each have the global minimum ptSi. The former six systems represent the first prediction. Interestingly, in HSiY3 (Y = Al/Ga), the H-atom is only bonded to the ptSi-center via a localized 2c-2e σ bond. This sharply contradicts the known pentaatomic planar-centered systems, in which the ligands are actively involved in the ligand-ligand bonding besides being bonded to the planar center. Therefore, we proposed here that to generalize the 14e-ptSi, two strategies can be applied as (1) introducing the alkaline/alkaline-earth elements and (2) breaking the peripheral bonding. In light of the very limited global ptSi examples, the presently designed six systems with 14e are expected to enrich the exotic ptSi chemistry and welcome future laboratory confirmation. © 2014 Wiley Periodicals, Inc.
Očko, M.; Zadro, K.; Drobac, Đ.; ...
2016-11-16
Here, in order to study Kondo ferromagnetism of CePt, we have investigated the transport properties, resistivity and thermopower, of the Ce xY 1-xPt alloy system from 2 K to 320 K. The extracted magnetic contribution to the total resistivity cannot be scaled to the concentration and is much higher than in the Ce xLa 1-xPt alloy system. The maximum of the magnetic contribution of the resistivity moves to lower temperatures with decreasing the Ce content while the temperature of the minimum of the thermopower does not change with concentration. These two facts seem to be in contradiction. Usually one assumesmore » that these extrema represent the Kondo temperature. To the contrary, we show that the Kondo temperature increases with decreasing Ce content. The most intriguing observation in this alloy system is the linear relationship between the Curie temperature and the concentration of the Ce ions and, moreover, that it is the same as in Ce xLa 1-xPt. Lastly, this fact is in contradiction with the conventional picture of small moment Kondo magnetism.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, José A.; Ramírez, Pedro J.; Gutierrez, Ramón A.
We present that Pt/MoC and Pt/TiC(001) are excellent catalysts for the low-temperature water-gas shift (WGS, CO + H 2O → H 2 + CO 2) reaction. They exhibit high-activity, stability and selectivity. The highest catalytic activities are seen for small coverages of Pt on the carbide substrates. Synergistic effects at the metal-carbide interface produce an enhancement in chemical activity with respect to pure Pt, MoC and TiC. A clear correlation is found between the ability of the Pt/MoC and Pt/TiC(001) surfaces to partially dissociate water and their catalytic activity for the WGS reaction. Finally, an overall comparison of the resultsmore » for Pt/MoC and Pt/Mo 2C(001) indicates that the metal/carbon ratio in the carbide support can have a strong influence in the stability and selectivity of WGS catalysts and is a parameter that must be taken into consideration when designing these systems.« less
Rodriguez, José A.; Ramírez, Pedro J.; Gutierrez, Ramón A.
2016-09-20
We present that Pt/MoC and Pt/TiC(001) are excellent catalysts for the low-temperature water-gas shift (WGS, CO + H 2O → H 2 + CO 2) reaction. They exhibit high-activity, stability and selectivity. The highest catalytic activities are seen for small coverages of Pt on the carbide substrates. Synergistic effects at the metal-carbide interface produce an enhancement in chemical activity with respect to pure Pt, MoC and TiC. A clear correlation is found between the ability of the Pt/MoC and Pt/TiC(001) surfaces to partially dissociate water and their catalytic activity for the WGS reaction. Finally, an overall comparison of the resultsmore » for Pt/MoC and Pt/Mo 2C(001) indicates that the metal/carbon ratio in the carbide support can have a strong influence in the stability and selectivity of WGS catalysts and is a parameter that must be taken into consideration when designing these systems.« less
Villani, Kenneth; Vermandel, Walter; Smets, Koen; Liang, Duoduo; van Tendeloo, Gustaaf; Martens, Johan A
2006-04-15
Platinum metal was dispersed on microporous, mesoporous, and nonporous support materials including the zeolites Na-Y, Ba-Y, Ferrierite, ZSM-22, ETS-10, and AIPO-11, alumina, and titania. The oxidation of carbon black loosely mixed with catalyst powder was monitored gravimetrically in a gas stream containing nitric oxide, oxygen, and water. The carbon oxidation activity of the catalysts was found to be uniquely related to the Pt dispersion and little influenced by support type. The optimum dispersion is around 3-4% corresponding to relatively large Pt particle sizes of 20-40 nm. The carbon oxidation activity reflects the NO oxidation activity of the platinum catalyst, which reaches an optimum in the 20-40 nm Pt particle size range. The lowest carbon oxidation temperatures were achieved with platinum loaded ZSM-22 and AIPO-11 zeolite crystallites bearing platinum of optimum dispersion on their external surfaces.
Reaction between the Pt(II)-complexes and the amino acids of the β-amyloid peptide
NASA Astrophysics Data System (ADS)
Novato, Willian T. G.; Stroppa, Pedro Henrique F.; Da Silva, Adilson D.; Botezine, Naiara P.; Machado, Flávia C.; Costa, Luiz Antônio S.; Dos Santos, Hélio F.
2017-01-01
Reaction between [Pt(ophen)Cl2] and HIS was monitored and the solvolysis (k1) and Cl/HIS ligand exchange (k2) rate constants obtained. The k1 and k2 were (6.2 ± 0.4) × 10-5 s-1 and 52.8 × 10-2 M-1 s-1, respectively. The corresponding calculated values were 47.5 × 10-5 s-1 and 52.2 × 10-2 M-1 s-1, in agreement with the experiment. Calculations were used to establish the reactivity order for a set of amino acids: MET ∼ LYS ∼ HIS(ε) > GLU ∼ ASP >> ASN ∼ GLN. In spite of the similar reactivity among MET, LYS and HIS, the thermodynamics suggests the reactions with LYS and HIS more favorable than with MET. Therefore, N-containing amino acids should be potential targets of Pt(II)-complexes in β-amyloid.
Su, Huilan; Yuan, Ruo; Chai, Yaqin; Mao, Li; Zhuo, Ying
2011-07-15
A multiple amplification immunoassay was proposed to detect alpha-fetoprotein (AFP), which was based on ferrocenemonocarboxylic-HRP conjugated on Pt nanoparticles as labels for rolling circle amplification (RCA). Firstly, the capture antibody (anti-AFP) was immobilized on glass carbon electrode (GCE) deposited nano-sized gold particles. After a typical immuno-sandwich protocol, primary DNA was immobilized by labeling secondary antibody, which acted as a precursor to initiate RCA. The products of RCA provide large amount of sites to link detection DNAs, which were labeled by signal probes (ferrocenemonocarboxylic) and horseradish peroxidase (HRP). Moreover, the enzymatic amplification signals could be produced by the catalysis of HRP and Pt nanoparticles with the addition of H₂O₂. These lead to multiple amplification signals monitoring by electrochemical instrument and further resulted in high sensitivity of the immunoassay with the detection limit of 1.7 pg/mL. Copyright © 2011 Elsevier B.V. All rights reserved.
Temperature-programmed reduction of Pt-Ir/. gamma. -Al/sub 2/O/sub 3/ catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagstaff, N.; Prins, R.
1979-10-15
An intriguing feature of the evidence for the existence of Pt-Re clusters in the reduced state of the catalyst, Pt-Re/..gamma..-Al/sub 2/O/sub 3/ was the segregation of Pt and Re oxides observed after oxidation of the bimetallic clusters at temperatures above about 200/sup 0/C. Evidently, the oxide moieties are immiscible on the scale of the small clusters (up to 10 to 15 atoms) in the case of these metals. The present results for Pt-Ir/..gamma..-Al/sub 2/O/sub 3/ represent an example of a supported, highly dispersed system in which the intimacy of the metals remains intact even after fairly severe oxidation treatments. Studymore » of other bimetallic system on alumina by TPR should yield further valuable information on this interesting aspect of metal cluster behavior. 1 figure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Yunqian; Lim, Byungkwon; Yang, Yong
2010-10-25
Platinum is a key catalyst that is invaluable in many important industrial processes such as CO oxidation in catalytic converters, oxidation and reduction reactions in fuel cells, nitric acid production, and petroleum cracking.[1] Many of these applications utilize Pt nanoparticles supported on oxides or porous carbon.[2] However, in practical applications that involve high temperatures (typically higher than 3008C), the Pt nanoparticles tend to lose their specific surface area and thus catalytic activity during operation because of sintering. Recent studies have shown that a porous oxide shell can act as a physical barrier to prevent sintering of unsupported metal nanoparticles and,more » at the same time, provide channels for chemical species to reach the surface of the nanoparticles, thus allowing the catalytic reaction to occur. This concept has been demonstrated in several systems, including Pt@SiO2,[3] Pt@CoO,[4] Pt/CeO2@SiO2,[5] Pd@SiO2,[6] Au@SiO2,[7] Au@SnO2 [8] and Au@ZrO2 [9] core– shell nanostructures. Despite these results, a sinter-resistant system has not been realized in supported Pt nanoparticle catalysts.« less
Sharma, Pawana; Scotland, Graham; Cruickshank, Moira; Tassie, Emma; Fraser, Cynthia; Burton, Chris; Croal, Bernard; Ramsay, Craig R; Brazzelli, Miriam
2015-06-01
Self-monitoring (self-testing and self-management) could be a valid option for oral anticoagulation therapy monitoring in the NHS, but current evidence on its clinical effectiveness or cost-effectiveness is limited. We investigated the clinical effectiveness and cost-effectiveness of point-of-care coagulometers for the self-monitoring of coagulation status in people receiving long-term vitamin K antagonist therapy, compared with standard clinic monitoring. We searched major electronic databases (e.g. MEDLINE, MEDLINE In Process & Other Non-Indexed Citations, EMBASE, Bioscience Information Service, Science Citation Index and Cochrane Central Register of Controlled Trials) from 2007 to May 2013. Reports published before 2007 were identified from the existing Cochrane review (major databases searched from inception to 2007). The economic model parameters were derived from the clinical effectiveness review, other relevant reviews, routine sources of cost data and clinical experts' advice. We assessed randomised controlled trials (RCTs) evaluating self-monitoring in people with atrial fibrillation or heart valve disease requiring long-term anticoagulation therapy. CoaguChek(®) XS and S models (Roche Diagnostics, Basel, Switzerland), INRatio2(®) PT/INR monitor (Alere Inc., San Diego, CA USA), and ProTime Microcoagulation system(®) (International Technidyne Corporation, Nexus Dx, Edison, NJ, USA) coagulometers were compared with standard monitoring. Where possible, we combined data from included trials using standard inverse variance methods. Risk of bias assessment was performed using the Cochrane risk of bias tool. A de novo economic model was developed to assess the cost-effectiveness over a 10-year period. We identified 26 RCTs (published in 45 papers) with a total of 8763 participants. CoaguChek was used in 85% of the trials. Primary analyses were based on data from 21 out of 26 trials. Only four trials were at low risk of bias. Major clinical events: self-monitoring was significantly better than standard monitoring in preventing thromboembolic events [relative risk (RR) 0.58, 95% confidence interval (CI) 0.40 to 0.84; p = 0.004]. In people with artificial heart valves (AHVs), self-monitoring almost halved the risk of thromboembolic events (RR 0.56, 95% CI 0.38 to 0.82; p = 0.003) and all-cause mortality (RR 0.54, 95% CI 0.32 to 0.92; p = 0.02). There was greater reduction in thromboembolic events and all-cause mortality through self-management but not through self-testing. Intermediate outcomes: self-testing, but not self-management, showed a modest but significantly higher percentage of time in therapeutic range, compared with standard care (weighted mean difference 4.44, 95% CI 1.71 to 7.18; p = 0.02). Patient-reported outcomes: improvements in patients' quality of life related to self-monitoring were observed in six out of nine trials. High preference rates were reported for self-monitoring (77% to 98% in four trials). Net health and social care costs over 10 years were £7295 (self-monitoring with INRatio2); £7324 (standard care monitoring); £7333 (self-monitoring with CoaguChek XS) and £8609 (self-monitoring with ProTime). The estimated quality-adjusted life-year (QALY) gain associated with self-monitoring was 0.03. Self-monitoring with INRatio2 or CoaguChek XS was found to have ≈ 80% chance of being cost-effective, compared with standard monitoring at a willingness-to-pay threshold of £20,000 per QALY gained. Compared with standard monitoring, self-monitoring appears to be safe and effective, especially for people with AHVs. Self-monitoring, and in particular self-management, of anticoagulation status appeared cost-effective when pooled estimates of clinical effectiveness were applied. However, if self-monitoring does not result in significant reductions in thromboembolic events, it is unlikely to be cost-effective, based on a comparison of annual monitoring costs alone. Trials investigating the longer-term outcomes of self-management are needed, as well as direct comparisons of the various point-of-care coagulometers. This study is registered as PROSPERO CRD42013004944. The National Institute for Health Research Health Technology Assessment programme.
A facile microwave irradiation approach that results in a cross-linking reaction of poly (vinyl alcohol) (PVA) with metallic and bimetallic systems is described. Nanocomposites of PVA cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-P...
Hassan, Ayaz; Ticianelli, Edson A
2018-01-01
Studies aiming at improving the activity and stability of dispersed W and Mo containing Pt catalysts for the CO tolerance in proton exchange membrane fuel cell (PEMFC) anodes are revised for the following catalyst systems: (1) a carbon supported PtMo electrocatalyst submitted to heat treatments; (2) Pt and PtMo nanoparticles deposited on carbon-supported molybdenum carbides (Mo2C/C); (3) ternary and quaternary materials formed by PtMoFe/C, PtMoRu/C and PtMoRuFe/C and; (4) Pt nanoparticles supported on tungsten carbide/carbon catalysts and its parallel evaluation with carbon supported PtW catalyst. The heat-treated (600 oC) Pt-Mo/C catalyst showed higher hydrogen oxidation activity in the absence and in the presence of CO and better stability, compared to all other Mo-containing catalysts. PtMoRuFe, PtMoFe, PtMoRu supported on carbon and Pt supported on Mo2C/C exhibited similar CO tolerances but better stability, as compared to as-prepared PtMo supported on carbon. Among the tungsten-based catalysts, tungsten carbide supported Pt catalyst showed reasonable performance and reliable stability in comparison to simple carbon supported PtW catalyst, though an uneven level of catalytic activity towards H2 oxidation in presence of CO is observed for the former as compared to Mo containing catalyst. However, a small dissolution of Mo, Ru, Fe and W from the anodes and their migration toward cathodes during the cell operation is observed. These results indicate that the fuel cell performance and stability has been improved but not yet totally resolved.
Emteborg, Håkan; Zeleny, Reinhard; Charoud-Got, Jean; Martos, Gustavo; Lüddeke, Jörg; Schellin, Holger; Teipel, Katharina
2014-01-01
Coupling an infrared (IR) camera to a freeze dryer for on-line monitoring of freeze-drying cycles is described for the first time. Normally, product temperature is measured using a few invasive Pt-100 probes, resulting in poor spatial resolution. To overcome this, an IR camera was placed on a process-scale freeze dryer. Imaging took place every 120 s through a Germanium window comprising 30,000 measurement points obtained contact-free from −40°C to 25°C. Results are presented for an empty system, bulk drying of cheese slurry, and drying of 1 mL human serum in 150 vials. During freezing of the empty system, differences of more than 5°C were measured on the shelf. Adding a tray to the empty system, a difference of more than 8°C was observed. These temperature differences probably cause different ice structures affecting the drying speed during sublimation. A temperature difference of maximum 13°C was observed in bulk mode during sublimation. When drying in vials, differences of more than 10°C were observed. Gradually, the large temperature differences disappeared during secondary drying and products were transformed into uniformly dry cakes. The experimental data show that the IR camera is a highly versatile on-line monitoring tool for different kinds of freeze-drying processes. © 2014 European Union 103:2088–2097, 2014 PMID:24902839
Emteborg, Håkan; Zeleny, Reinhard; Charoud-Got, Jean; Martos, Gustavo; Lüddeke, Jörg; Schellin, Holger; Teipel, Katharina
2014-07-01
Coupling an infrared (IR) camera to a freeze dryer for on-line monitoring of freeze-drying cycles is described for the first time. Normally, product temperature is measured using a few invasive Pt-100 probes, resulting in poor spatial resolution. To overcome this, an IR camera was placed on a process-scale freeze dryer. Imaging took place every 120 s through a Germanium window comprising 30,000 measurement points obtained contact-free from -40 °C to 25 °C. Results are presented for an empty system, bulk drying of cheese slurry, and drying of 1 mL human serum in 150 vials. During freezing of the empty system, differences of more than 5 °C were measured on the shelf. Adding a tray to the empty system, a difference of more than 8 °C was observed. These temperature differences probably cause different ice structures affecting the drying speed during sublimation. A temperature difference of maximum 13 °C was observed in bulk mode during sublimation. When drying in vials, differences of more than 10 °C were observed. Gradually, the large temperature differences disappeared during secondary drying and products were transformed into uniformly dry cakes. The experimental data show that the IR camera is a highly versatile on-line monitoring tool for different kinds of freeze-drying processes. © 2014 European Union.
Double heterojunction nanowire photocatalysts for hydrogen generation
NASA Astrophysics Data System (ADS)
Tongying, P.; Vietmeyer, F.; Aleksiuk, D.; Ferraudi, G. J.; Krylova, G.; Kuno, M.
2014-03-01
Charge separation and charge transfer across interfaces are key aspects in the design of efficient photocatalysts for solar energy conversion. In this study, we investigate the hydrogen generating capabilities and underlying photophysics of nanostructured photocatalysts based on CdSe nanowires (NWs). Systems studied include CdSe, CdSe/CdS core/shell nanowires and their Pt nanoparticle-decorated counterparts. Femtosecond transient differential absorption measurements reveal how semiconductor/semiconductor and metal/semiconductor heterojunctions affect the charge separation and hydrogen generation efficiencies of these hybrid photocatalysts. In turn, we unravel the role of surface passivation, charge separation at semiconductor interfaces and charge transfer to metal co-catalysts in determining photocatalytic H2 generation efficiencies. This allows us to rationalize why Pt nanoparticle decorated CdSe/CdS NWs, a double heterojunction system, performs best with H2 generation rates of ~434.29 +/- 27.40 μmol h-1 g-1 under UV/Visible irradiation. In particular, we conclude that the CdS shell of this double heterojunction system serves two purposes. The first is to passivate CdSe NW surface defects, leading to long-lived charges at the CdSe/CdS interface capable of carrying out reduction chemistries. Upon photoexcitation, we also find that CdS selectively injects charges into Pt NPs, enabling simultaneous reduction chemistries at the Pt NP/solvent interface. Pt nanoparticle decorated CdSe/CdS NWs thus enable reduction chemistries at not one, but rather two interfaces, taking advantage of each junction's optimal catalytic activities.Charge separation and charge transfer across interfaces are key aspects in the design of efficient photocatalysts for solar energy conversion. In this study, we investigate the hydrogen generating capabilities and underlying photophysics of nanostructured photocatalysts based on CdSe nanowires (NWs). Systems studied include CdSe, CdSe/CdS core/shell nanowires and their Pt nanoparticle-decorated counterparts. Femtosecond transient differential absorption measurements reveal how semiconductor/semiconductor and metal/semiconductor heterojunctions affect the charge separation and hydrogen generation efficiencies of these hybrid photocatalysts. In turn, we unravel the role of surface passivation, charge separation at semiconductor interfaces and charge transfer to metal co-catalysts in determining photocatalytic H2 generation efficiencies. This allows us to rationalize why Pt nanoparticle decorated CdSe/CdS NWs, a double heterojunction system, performs best with H2 generation rates of ~434.29 +/- 27.40 μmol h-1 g-1 under UV/Visible irradiation. In particular, we conclude that the CdS shell of this double heterojunction system serves two purposes. The first is to passivate CdSe NW surface defects, leading to long-lived charges at the CdSe/CdS interface capable of carrying out reduction chemistries. Upon photoexcitation, we also find that CdS selectively injects charges into Pt NPs, enabling simultaneous reduction chemistries at the Pt NP/solvent interface. Pt nanoparticle decorated CdSe/CdS NWs thus enable reduction chemistries at not one, but rather two interfaces, taking advantage of each junction's optimal catalytic activities. Electronic supplementary information (ESI) available: Details of NW syntheses, processing and characterization. Additional TEM images of CdS, CdSe and CdSe/CdS core/shell NWs. NW concentration and cross section estimates. Details of the Pt NP decoration. Additional TEM images of Pt NP decorated CdS, CdSe and CdSe/CdS core/shell NWs. Size distribution of Pt NPs for CdSe/Pt NP and CdSe/CdS/Pt NP NWs. Xe arc lamp spectrum. Details of H2 generation experiments. Estimated photon absorption rate. Details of TDA measurements. TDA spectra and kinetics of CdS and CdS/Pt NP NWs. Plot illustrating CdSe NW band edge bleach kinetics. Comparison of CdSe band edge bleach kinetics in CdSe/CdS core/shell NWs when excited at λexc = 387 nm and λexc = 560 nm. Comparison of CdSe band edge bleach kinetics in CdSe/Pt NP NWs when excited at λexc = 387 nm and λexc = 560 nm. Bar graph showing H2 generation efficiencies of CdS and CdS/Pt NP NWs. Bleach kinetics of CdSe/CdS/Pt NP NWs at λexc = 387 nm and λexc = 560 nm. Comparison of CdS band edge bleach kinetics in CdS/Pt NP, and CdSe/CdS core/shell NWs when excited at λexc = 387 nm. See DOI: 10.1039/c4nr00298a
NASA Astrophysics Data System (ADS)
Helmy, Hassan M.; Fonseca, Raúl O. C.
2017-11-01
The behavior of Pt, Pd, Ni and Cu in Se-sulfide system and the role of Se in platinum-group elements (PGE) fractionation have been experimentally investigated at temperatures between 1050 and 700 °C in evacuated silica tubes. At 1050 °C, Se partially partitions into a vapor phase. At 980 °C, monosulfide solid solution (mss) and sulfide melt are the only stable phases. No Pt or Pd-bearing discrete selenide phases form down to 700 °C. Instead cooperite (PtS) forms at 900 °C. Both mss and sulfide melt can accommodate wt.% levels of Se over the whole temperature range covered by the experiments. The addition of Se in the sulfide system leads to an increase in the activity coefficients of Ni and Pd in sulfide melt. This is reflected by an increase in the partition coefficients of Ni and Pd between mss and sulfide melt. The Pt-Se activity coefficient in sulfide melt is lower than that of Pt-S. Owing to selenium's high solubility in sulfides, there never become oversaturated in Se to the extent that discrete selenides form. As such, base metal sulfides are expected to control the geochemical behavior of Se in natural systems. Interestingly, partition coefficients for the platinum-group elements (Os, Ir, Ru, Pt, Rh, Pd) between mss and sulfide melt are undistinguishable regardless of whether Se is present or not. These results imply that Se plays little role in the fractionation of PGE as sulfide melt cools down and crystallize. Furthermore, our experimental results provide evidence that Se is volatile at magmatic temperature and is likely to be degassed like sulfur.
2014-01-01
Background The purpose of this study was to compare the efficacy of nickel-titanium rotary systems with or without the retreatment instruments in the removal of gutta-percha from the apical third. Methods The systems compared were as follows: ProTaper Universal (PT), ProTaper Universal Retreatment (PTr), Mtwo (M2) and Mtwo Retreatment (M2r). Sixty extracted mandibular incisors were treated with a crown-down technique and filled with gutta-percha and sealer. The apical diameter was standardized in 0.30 mm, 1 mm from the apex. The teeth were distributed into 4 experimental groups: PT, PTr, M2 and M2r. In PTr and M2r groups, filling materials were removed by PTr/M2r followed by root canals preparation up to a PT F4/M2 40; in groups PT/M2, the filling materials were removed and the root canals were prepared by PT up to a PT F4/M2 up to a M2 40. The roots were split and photomicrographing. The percentage of clean area in the apical 5 mm was calculated using software. Data were analyzed with the Kruskal-Wallis test. Results Remaining material was found in all hemisections and there was no statistically significant difference between the groups (p = 0.09). Considering the surface of the canal walls of all teeth, the mean of the percentage of clean area was 54%. Conclusions Considering the applied methodology, remaining filling material was found in all hemisections, regardless of the retreatment technique and PT or M2 were as effective as PTr/PT or M2r/M2. PMID:25128277
On the origin of high-temperature phenomena in Pt/Al2O3.
Lisitsyn, Alexander S; Yakovina, Olga A
2018-01-24
Treatments of Pt/γ-Al 2 O 3 with H 2 under harsh conditions have long been known to strongly influence the properties of this important catalytic system, but the true causes of the high-temperature effects still remain unclear. We have performed a more detailed study of this issue, having used H 2 -TPD as a sensitive probe of metal-support interactions. The experimental results are in accordance with previous studies and demonstrate strong changes in adsorption and catalytic properties of Pt/γ-Al 2 O 3 after high-temperature H 2 treatments, as well as the possibility to reverse the changes, completely or in part, through O 2 and H 2 O treatments. Thorough examination has shown that such behaviour is an intrinsic property of Pt/γ-Al 2 O 3 and cannot be attributed to impurities or experimental artifacts. Moreover, there is no abrupt transition to a high-temperature state, but the system undergoes smooth and gradual changes upon increasing the H 2 -treatment temperature (T TR ), with the changes being already apparent at a T TR of ∼ 300 °C. The results suggest that hydrogen can generate oxygen vacancies on the surface of the support in close vicinity to the Pt particles, and the system appears under equilibrium to be kinetically driven by temperature and thermodynamically driven by the P H 2 /P H 2 O ratio or local concentration of surface hydroxyls near Pt particles. The generated vacancies change the properties of contacting particles, and the changes are most pronounced for sub-nanometric Pt clusters and single atoms. Implications of the phenomena for the synthesis, study, and use of Pt/γ-Al 2 O 3 and its related nanosystems are discussed.
Epitaxial Fe{sub 3}Pt/FePt nanocomposites on MgO and SrTiO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casoli, F., E-mail: casoli@imem.cnr.it; Nasi, L.; Cabassi, R.
We have exploited the pseudomorphic growth of the magnetically soft Fe{sub 3}Pt phase on top of L1{sub 0}-FePt to obtain fully epitaxial soft/hard nanocomposites on both MgO(100) and SrTiO{sub 3}(100). The magnetic properties of this new nanocomposite system, driven by the soft/hard exchange-coupling, can be tailored by varying soft phase thickness, soft phase magnetic anisotropy and substrate. Coercivity is strongly reduced by the addition of the soft phase, a reduction which is definitely affected by the nominal composition of the soft phase and by the substrate choice; similarly is the magnetic phase diagram of the composite system. Coercive field decreasesmore » down to 21% of the hard layer value for Fe{sub 3}Pt(5 nm)/FePt(3.55 nm) nanocomposites on SrTiO{sub 3}; this maximum coercivity reduction was obtained with a nominal atomic content of Fe in the soft phase of 80%.« less
Wu, Jiaye; Yang, Xiangbo
2017-10-30
In this paper, we construct a 1D PT-symmetric Thue-Morse aperiodic optical waveguide network (PTSTMAOWN) and mainly investigate the ultrastrong extraordinary transmission and reflection. We propose an approach to study the photonic modes and solve the problem of calculating photonic modes distributions in aperiodic networks due to the lack of dispersion functions and find that in a PTSTMAOWN there exist more photonic modes and more spontaneous PT-symmetric breaking points, which are quite different from other reported PT-symmetric optical systems. Additionally, we develop a method to sort spontaneous PT-symmetric breaking point zones to seek the strongest extraordinary point and obtain that at this point the strongest extraordinary transmission and reflection arrive at 2.96316 × 10 5 and 1.32761 × 10 5 , respectively, due to the PT-symmetric coupling resonance and the special symmetry pattern of TM networks. These enormous gains are several orders of magnitude larger than the previous results. This optical system may possess potential in designing optical amplifier, optical logic elements in photon computers and ultrasensitive optical switches with ultrahigh monochromatity.
Yin, Chunrong; Negreiros, Fabio R.; Barcaro, Giovanni; ...
2017-02-03
Catalytic CO oxidation is unveiled on size-selected Pt 10 clusters deposited on two very different ultrathin (≈0.5–0.7 nm thick) alumina films: (i) a highly ordered alumina obtained under ultra-high vacuum (UHV) by oxidation of the NiAl(110) surface and (ii) amorphous alumina obtained by atomic layer deposition (ALD) on a silicon chip that is a close model of real-world supports. Notably, when exposed to realistic reaction conditions, the Pt 10/UHV-alumina system undergoes a morphological transition in both the clusters and the substrate, and becomes closely akin to Pt 10/ALD-alumina, thus reconciling UHV-type surface-science and real-world experiments. The Pt 10 clusters, thoroughlymore » characterized via combined experimental techniques and theoretical analysis, exhibit among the highest CO oxidation activity per Pt atom reported for CO oxidation catalysts, due to the interplay of ultra-small size and support effects. Lastly, a coherent interdisciplinary picture then emerges for this catalytic system.« less
The selective hydrogenation of crotonaldehyde over bimetallic catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoeb, Ann M.
1997-10-17
The selective hydrogenation of crotonaldehyde has been investigated over a monometallic Pt/SiO 2 catalyst and platinum bimetallic catalysts where the second metal was either silver, copper, or tin. The effects of addition of a second metal to the Pt/SiO 2 system on the selectivity to crotyl alcohol were investigated. The Pt-Sn bimetallic catalysts were characterized by hydrogen chemisorption, 1H NMR and microcalorimetry. The Pt-Ag/SiO 2 and Pt-Cu/SiO 2 catalysts were characterized by hydrogen chemisorption. Pt-Sn/SiO 2 catalysts selectively hydrogenated crotonaldehyde to crotyl alcohol and the method of preparation of these catalysts affected the selectivity. The most selective Pt-Sn/SiO 2 catalystsmore » for the hydrogenation of crotonaldehyde to crotyl alcohol were those in which the Sn precursor was dissolved in a HCl solution. Sn increased both the rate of formation of butyraldehyde and the rate of formation of crotyl alcohol. The Pt/SiO 2, Pt-Ag/SiO 2 and Pt-Cu/SiO 2 catalysts produced only butyraldehyde. Initial heats of adsorption (~90 kJ/mol) measured using microcalorimetry were not affected by the presence of Sn on Pt. We can conclude that there is no through metal electronic interaction between Pt and Sn at least with respect to hydrogen surface bonds since the Pt and Pt-Sn at least with respect to hydrogen surface bonds since the Pt and Pt-Sn had similar initial heats of adsorption coupled with the invariance of the 1H NMR Knight shift.« less
NASA Astrophysics Data System (ADS)
Wang, Xuelin; Zhang, Yuxin; Guo, Rui; Wang, Hongzhang; Yuan, Bo; Liu, Jing
2018-03-01
Conformable epidermal printed electronics enabled from gallium-based liquid metals (LMs), highly conductive and low-melting-point alloys, are proposed as the core to achieving immediate contact between skin surface and electrodes, which can avoid the skin deformation often caused by conventional rigid electrodes. When measuring signals, LMs can eliminate resonance problems with shorter time to reach steady state than Pt and gelled Pt electrodes. By comparing the contact resistance under different working conditions, it is demonstrated that both ex vivo and in vivo LM electrode-skin models have the virtues of direct and immediate contact with skin surface without the deformation encountered with conventional rigid electrodes. In addition, electrocardio electrodes composed of conformable LM printed epidermal electronics are adopted as smart devices to monitor electrocardiogram signals of rabbits. Furthermore, simulation treatment for smart defibrillation offers a feasible way to demonstrate the effect of liquid metal electrodes (LMEs) on the human body with less energy loss. The remarkable features of soft epidermal LMEs such as high conformability, good conductivity, better signal stability, and fine biocompatibility represent a critical step towards accurate medical monitoring and future smart treatments.
Anisotropic multi-spot DBR porous silicon chip for the detection of human immunoglobin G.
Cho, Bomin; Um, Sungyong; Sohn, Honglae
2014-07-01
Asymmetric porous silicon multilayer (APSM)-based optical biosensor was developed to specify human Immunoglobin G (Ig G). APSM chip was generated by an electrochemical etching of silicon wafer using an asymmetric electrode configuration in aqueous ethanolic HF solution and constituted with nine arrayed porous silicon multilayer. APSM prepared from anisotropic etching conditions displayed a sharp reflection resonance in the reflectivity spectrum. Each spot displayed single reflection resonance at different wavelengths as a function of the lateral distance from the Pt counter electrode. The sensor system was consisted of the 3 x 3 spot array of APSM modified with protein A. The system was probed with an aqueous human Ig G. Molecular binding and specificity was monitored as a shift in wavelength of reflection resonance.
NASA Astrophysics Data System (ADS)
Feijoo, David; Zezyulin, Dmitry A.; Konotop, Vladimir V.
2015-12-01
We analyze a system of three two-dimensional nonlinear Schrödinger equations coupled by linear terms and with the cubic-quintic (focusing-defocusing) nonlinearity. We consider two versions of the model: conservative and parity-time (PT ) symmetric. These models describe triple-core nonlinear optical waveguides, with balanced gain and losses in the PT -symmetric case. We obtain families of soliton solutions and discuss their stability. The latter study is performed using a linear stability analysis and checked with direct numerical simulations of the evolutional system of equations. Stable solitons are found in the conservative and PT -symmetric cases. Interactions and collisions between the conservative and PT -symmetric solitons are briefly investigated, as well.
Tailoring Eigenmodes at Spectral Singularities in Graphene-based PT Systems.
Zhang, Weixuan; Wu, Tong; Zhang, Xiangdong
2017-09-12
The spectral singularity existing in PT-synthetic plasmonic system has been widely investigated. Only lasing-mode can be excited resulting from the passive characteristic of metallic materials. Here, we investigated the spectral singularity in the hybrid structure composed of the photoexcited graphene and one-dimensional PT-diffractive grating. In this system, both lasing- and absorption-modes can be excited with the surface conductivity of photoexcited graphene being loss and gain, respectively. Remarkably, the spectral singularity will disappear with the optically pumped graphene to be lossless. In particular, we find that spectral singularities can exhibit symmetry-modes, when the loss and gain of the grating is unbalanced. Meanwhile, by tuning the loss (gain) of graphene and non-PT diffraction grating, lasing- and absorption-modes can also be excited. We hope that tunable optical modes at spectral singularities can have some applications in designing novel surface-enhanced spectroscopies and plasmon lasers.
NASA Astrophysics Data System (ADS)
Yu, Shuang; Sui, Jing-jing; Xu, Jing; Ding, Yi-hong
2018-05-01
Contrasting the big family of the planar tetracoordinate carbon (ptC), species featuring the planar tetracoordinate heavier group element M (ptM) have been largely limited. Effective structural frameworks to accommodate such ptM centres are thus highly desired. In the present article, we report an extensive computational study on 60 pentatomic systems C2X2Yq (X=Si,Ge,Sn,Pb; Y=C,Si,Ge,Sn,Pb; q = +1,0,-1) covering both the low and high spin states. Up to 34 systems were shown to have the very low-lying singlet planar tetracoordinate heavier group 14 (ptM with M=Si,Ge,Sn,Pb) structures bearing the 19 (q = +1), 20 (q = 0) and 21 (q = -1) valence electrons (ve). Structural and bonding analysis confirmed the effectiveness of the inherent π-type ligand skeleton XCCX or XCCY that each have several sets of π-bonding orbitals to stabilise the ptM centre. The structural and bonding motifs of these ptMs differ greatly from the classic ptMs, which have the σ-type ligand skeleton, smaller number of valence electrons (≤18ve), and the centre → ligand π-delocalisation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fanzani, Alessandro, E-mail: fanzani@med.unibs.it; Zanola, Alessandra; Rovetta, Francesca
2011-02-01
Cisplatin (cisPt) is an antineoplastic drug which causes an array of adverse effects on different organs and tissues, including skeletal muscle. In this work we show that cisPt behaves as a potent trigger to activate protein hypercatabolism in skeletal C2C12 myotubes. Within 24 h of 50 {mu}M cisPt administration, C2C12 myotubes displayed unchanged cell viability but showed a subset of hallmark signs typically recognized during atrophy, including severe reduction in body size, repression of Akt phosphorylation, transcriptional up-regulation of atrophy-related genes, such as atrogin-1, gabarap, beclin-1 and bnip-3, and loss of myogenic markers. As a consequence, proteasomal activity and formationmore » of autophagosomes were remarkably increased in cisPt-treated myotubes, but forced stimulation of Akt pathway, as obtained through insulin administration or delivery of a constitutively activated Akt form, was sufficient to counter the cisPt-induced protein breakdown, leading to rescue of atrophic size. Overall, these results indicate that cisPt induces atrophy of C2C12 myotubes via activation of proteasome and autophagy systems, suggesting that the Akt pathway represents one sensitive target of cisPt molecular action in skeletal muscle.« less
Kottoor, Jojo; Velmurugan, Natanasabapathy; Gopikrishna, Velayutham; Krithikadatta, Jogikalmat
2013-01-01
The purpose of this study was to evaluate the effect of multiple root canal usage on the surface topography and fracture of Twisted File (TF) and ProTaper (PT) rotary Ni-Ti file systems, using scanning electron microscope (SEM). Ten sets of PT and TF instruments were used to prepare the mesial canals of mandibular first molars. TF 25, 0.06 taper and PT F1 instruments were analyzed by SEM when new and thereafter every three root canal usages. This sequence was repeated for both the TF and PT groups until 12 uses. Two images of the instrument were recorded, one of the instrument tip and the other 5 mm from the tip, both at × 100 magnification. The sequential use was continued till the instrument fractured and the number of root canal usages for the file to fracture was noted. All fracture surfaces were examined under the SEM. Fresh TF instruments showed no surface wear when compared to PT instruments (P < 0.05). Spiral distortion scores remained the same for both the groups till the 6 th usage (P > 0.05), while at the 9 th usage TF showed a steep increase in the spiral distortion score when compared to PT (P < 0.05). PT instruments fractured at a mean root canal usage of 17.4, while TF instruments showed a mean root canal usage of 11.8. Fractographically, all the TF instruments failed due to torsion, while all the PT instruments failed because of cyclic fatigue. PT instruments showed more resistance to fracture than TF instruments.
Givaja, Gonzalo; Castillo, Oscar; Mateo, Eva; Gallego, Almudena; Gómez-García, Carlos J; Calzolari, Arrigo; di Felice, Rosa; Zamora, Félix
2012-11-26
Herein, we report the isolation of new heterobimetallic complexes [Ni(0.6)Pd(1.4)(EtCS(2))(4)] (1), [NiPt(EtCS(2))(4)] (2) and [Pd(0.4)Pt(1.6)(EtCS(2))(4)] (3), which were constructed by using transmetallation procedures. Subsequent oxidation with iodine furnished the MM'X monodimensional chains [Ni(0.6)Pt(1.4)(EtCS(2))(4)I] (4) and [Ni(0.1)Pd(0.3)Pt(1.6)(EtCS(2))(4)I] (5). The physical properties of these systems were investigated and the chain structures 4 and 5 were found to be reminiscent of the parent [Pt(2)(EtCS(2))(4)I] species. However, they were more sensitively dependent on the localised nature of the charge on the Ni ion, which caused spontaneous breaking of the conduction bands. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Activation of surface lattice oxygen in single-atom Pt/CeO 2 for low-temperature CO oxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, Lei; Mei, Donghai; Xiong, Haifeng
While single-atom catalysts can provide high catalytic activity and selectivity, application in industrial catalysts demands long term performance and the ability to regenerate the catalysts. We have investigated the factors that lead to improved catalytic activity of a Pt/CeO2 catalyst for low temperature CO oxidation. Single-atom Pt/CeO2 becomes active for CO oxidation under lean condition only at elevated temperatures, because CO is strongly bound to ionic Pt sites. Reducing the catalyst, even under mild conditions, leads to onset of CO oxidation activity even at room temperature. This high activity state involves the transformation of mononuclear Pt species to sub-nanometer sizedmore » Pt particles. Under oxidizing conditions, the Pt can be restored to its stable, single-atom state. The key to facile regeneration is the ability to create mobile Pt species and suitable trapping sites on the support, making this a prototypical catalyst system for industrial application of single-atom catalysis.« less
47 CFR Alphabetical Index - Part 78
Code of Federal Regulations, 2010 CFR
2010-10-01
... of towers 78.63 Modulation limits 78.115 Monitors and Measurements, Frequency 78.113 N [Reserved] O... SERVICE Technical Regulations Modulation limits. Pt. 78, Index Alphabetical Index—Part 78 A Antenna... Changes in equipment 78.109 Conditions for license 78.27 Coordination, frequencies 78.36 Cross reference...
Code of Federal Regulations, 2012 CFR
2012-07-01
... NEW STATIONARY SOURCES Standards of Performance for Hospital/Medical/Infectious Waste Incinerators for Which Construction is Commenced After June 20, 1996 Pt. 60, Subpt. Ec, Table 3 Table 3 to Subpart Ec of...
NASA Astrophysics Data System (ADS)
Guilarte, Juan Mateos; Plyushchay, Mikhail S.
2017-12-01
We investigate a special class of the PT -symmetric quantum models being perfectly invisible zero-gap systems with a unique bound state at the very edge of continuous spectrum of scattering states. The family includes the PT -regularized two particle Calogero systems (conformal quantum mechanics models of de Alfaro-Fubini-Furlan) and their rational extensions whose potentials satisfy equations of the KdV hierarchy and exhibit, particularly, a behaviour typical for extreme waves. We show that the two simplest Hamiltonians from the Calogero subfamily determine the fluctuation spectra around the PT -regularized kinks arising as traveling waves in the field-theoretical Liouville and SU(3) conformal Toda systems. Peculiar properties of the quantum systems are reflected in the associated exotic nonlinear supersymmetry in the unbroken or partially broken phases. The conventional N=2 supersymmetry is extended here to the N=4 nonlinear supersymmetry that involves two bosonic generators composed from Lax-Novikov integrals of the subsystems, one of which is the central charge of the superalgebra. Jordan states are shown to play an essential role in the construction.
NASA Astrophysics Data System (ADS)
Detwiler, Michael D.; Milligan, Cory A.; Zemlyanov, Dmitry Y.; Delgass, W. Nicholas; Ribeiro, Fabio H.
2016-06-01
Formic acid dehydrogenation turnover rates (TORs) were measured on Pt(111), Pt(100), and polycrystalline Pt foil surfaces at a total pressure of 800 Torr between 413 and 513 K in a batch reactor connected to an ultra-high vacuum (UHV) system. The TORs, apparent activation energies, and reaction orders are not sensitive to the structure of the Pt surface, within the precision of the measurements. CO introduced into the batch reactor depressed the formic acid dehydrogenation TOR and increased the reaction's apparent activation energies on Pt(111) and Pt(100), consistent with behavior predicted by the Temkin equation. Two reaction mechanisms were explored which explain the formic acid decomposition mechanism on Pt, both of which include dissociative adsorption of formic acid, rate limiting formate decomposition, and quasi-equilibrated hydrogen recombination and CO adsorption. No evidence was found that catalytic supports used in previous studies altered the reaction kinetics or mechanism.
Li, Viacheslav; Brustovetsky, Tatiana; Brustovetsky, Nickolay
2009-01-01
In the present study we tested the hypothesis that the cyclophilin D-dependent (CyD) mitochondrial permeability transition (CyD-mPT) plays an important role in glutamate-triggered delayed calcium deregulation (DCD) and excitotoxic neuronal death. We used cultured cortical neurons from wild-type C57BL/6 and cyclophilin D knockout mice (Ppif-/-). Induction of the mPT was identified by following the rapid secondary acidification of mitochondrial matrices monitored with mitochondrially targeted pH-sensitive yellow fluorescent protein. Suppression of the CyD-mPT due to genetic CyD ablation deferred DCD and mitochondrial depolarization, and increased the survival rate after exposure of neurons to 10μM glutamate, but not to 100μM glutamate. Ca2+ influx into Ppif-/- neurons was not diminished in comparison with WT neurons judging by 45Ca accumulation. In both types of neurons, 100μM glutamate produced greater Ca2+ influx than 10μM glutamate. We hypothesize that greater Ca2+ influx produced by higher glutamate rapidly triggered the CyD-independent mPT in both WT and Ppif-/- neurons equalizing their responses to supra-physiologic excitotoxic insults. In neurons exposed to moderate but pathophysiologically-relevant glutamate concentrations, an induction of the CyD-mPT appears to play an important role in mitochondrial injury contributing to DCD and cell death. PMID:19236863
ERIC Educational Resources Information Center
Yoshikawa, Masahiro; Koga, Nobuyoshi
2016-01-01
This study focuses on students' understandings of a liquid-gas system with liquid-vapor equilibrium in a closed system using a pressure-temperature ("P-T") diagram. By administrating three assessment questions concerning the "P-T" diagrams of liquid-gas systems to students at the beginning of undergraduate general chemistry…
Pt-Ni and Pt-Co Catalyst Synthesis Route for Fuel Cell Applications
NASA Technical Reports Server (NTRS)
Firdosy, Samad A.; Ravi, Vilupanur A.; Valdez, Thomas I.; Kisor, Adam; Narayan, Sri R.
2013-01-01
Oxygen reduction reactions (ORRs) at the cathode are the rate-limiting step in fuel cell performance. The ORR is 100 times slower than the corresponding hydrogen oxidation at the anode. Speeding up the reaction at the cathode will improve fuel cell efficiency. The cathode material is generally Pt powder painted onto a substrate (e.g., graphite paper). Recent efforts in the fuel cell area have focused on replacing Pt with Pt-X alloys (where X = Co, Ni, Zr, etc.) in order to (a) reduce cost, and (b) increase ORR rates. One of these strategies is to increase ORR rates by reducing the powder size, which would result in an increase in the surface area, thereby facilitating faster reaction rates. In this work, a process has been developed that creates Pt-Ni or Pt-Co alloys that are finely divided (on the nano scale) and provide equivalent performance at lower Pt loadings. Lower Pt loadings will translate to lower cost. Precursor salts of the metals are dissolved in water and mixed. Next, the salt mixtures are dried on a hot plate. Finally, the dried salt mixture is heattreated in a furnace under flowing reducing gas. The catalyst powder is then used to fabricate a membrane electrode assembly (MEA) for electrochemical performance testing. The Pt- Co catalyst-based MEA showed comparable performance to an MEA fabri cated using a standard Pt black fuel cell catalyst. The main objective of this program has been to increase the overall efficiencies of fuel cell systems to support power for manned lunar bases. This work may also have an impact on terrestrial programs, possibly to support the effort to develop a carbon-free energy source. This catalyst can be used to fabricate high-efficiency fuel cell units that can be used in space as regenerative fuel cell systems, and terrestrially as primary fuel cells. Terrestrially, this technology will become increasingly important when transition to a hydrogen economy occurs.
Posting and transfer: key to fostering trust in government health services.
Sheikh, Kabir; Freedman, Lynn; Ghaffar, Abdul; Marchal, Bruno; el-Jardali, Fadi; McCaffery, Jim; de Sardan, Jean-Pierre Olivier; Dal Poz, Mario; Flores, Walter; Garimella, Surekha; Schaaf, Marta
2015-10-13
Appropriate deployment or posting and transfer (P&T) of health workers - placing the right people in the right positions at the right time - lies at the heart of fostering communities' faith in government health services and cementing the role of the health system as a core social institution. The authors of this paper have been involved in an ongoing transnational dialogue about P&T practices and determinants. This dialogue seeks to call attention to the importance of P&T as a health system function; to urge donors and policy-makers working in health systems, HRH and public administration governance to consider how to address issues around P&T; and to suggest avenues and approaches to research. P&T is a vexed and unresolved issue in many low- and middle-income countries that requires, above all, political commitment to improving public sector services and to new thinking and research. It holds promise as a focal point for inter-disciplinary collaboration in research and implementation that can inform other areas in HRH and health systems strengthening. Innovative social science and management theorizing, and iterative, locally driven interventions that focus on establishing transparent professional norms and building the credibility of government administration, including the health services, are likely the way forward.
Shah, Dipali Yogesh; Wadekar, Swati Ishwara; Dadpe, Ashwini Manish; Jadhav, Ganesh Ranganath; Choudhary, Lalit Jayant; Kalra, Dheeraj Deepak
2017-01-01
The purpose of this study was to compare and evaluate the shaping ability of ProTaper (PT) and Self-Adjusting File (SAF) system using cone-beam computed tomography (CBCT) to assess their performance in oval-shaped root canals. Sixty-two mandibular premolars with single oval canals were divided into two experimental groups ( n = 31) according to the systems used: Group I - PT and Group II - SAF. Canals were evaluated before and after instrumentation using CBCT to assess centering ratio and canal transportation at three levels. Data were statistically analyzed using one-way analysis of variance, post hoc Tukey's test, and t -test. The SAF showed better centering ability and lesser canal transportation than the PT only in the buccolingual plane at 6 and 9 mm levels. The shaping ability of the PT was best in the apical third in both the planes. The SAF had statistically significant better centering and lesser canal transportation in the buccolingual as compared to the mesiodistal plane at the middle and coronal levels. The SAF produced significantly less transportation and remained centered than the PT at the middle and coronal levels in the buccolingual plane of oval canals. In the mesiodistal plane, the performance of both the systems was parallel.
The Insurgency Business: The Islamic State in Iraq and Syria, 2010-2016
2017-12-01
ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) N /A 10. SPONSORING / MONITORING AGENCY REPORT NUMBER 11...Hansen-Lewis, J., & Shapiro, J. N . (2015). Understanding the Daesh economy. Perspectives on Terrorism, 9(4), 142–155. Retrieved from http...www.terrorismanalysts.com/pt/index.php/pot/article/view/450 Johnston, P. B., Shapiro, J. N ., Shatz, H. J., Bahney, B., Jung, D. F., Ryan, P. K., & Wallace, J
Purgel, Mihály; Maliarik, Mikhail; Glaser, Julius; Platas-Iglesias, Carlos; Persson, Ingmar; Tóth, Imre
2011-07-04
The structure and bonding of a new Pt-Tl bonded complex formed in dimethylsulfoxide (dmso), (CN)(4)Pt-Tl(dmso)(5)(+), have been studied by multinuclear NMR and UV-vis spectroscopies, and EXAFS measurements in combination with density functional theory (DFT) and time dependent density functional theory (TDDFT) calculations. This complex is formed following the equilibrium reaction Pt(CN)(4)(2-) + Tl(dmso)(6)(3+) ⇆ (CN)(4)Pt-Tl(dmso)(5)(+) + dmso. The stability constant of the Pt-Tl bonded species, as determined using (13)C NMR spectroscopy, amounts to log K = 2.9 ± 0.2. The (NC)(4)Pt-Tl(dmso)(5)(+) species constitutes the first example of a Pt-Tl bonded cyanide complex in which the sixth coordination position around Pt (in trans with respect to the Tl atom) is not occupied. The spectral parameters confirm the formation of the metal-metal bond, but differ substantially from those measured earlier in aqueous solution for complexes (CN)(5)Pt-Tl(CN)(n)(H(2)O)(x)(n-) (n = 0-3). The (205) Tl NMR chemical shift, δ = 75 ppm, is at extraordinary high field, while spin-spin coupling constant, (1)J(Pt-Tl) = 93 kHz, is the largest measured to date for a Pt-Tl bond in the absence of supporting bridging ligands. The absorption spectrum is dominated by two strong absorption bands in the UV region that are assigned to MMCT (Pt → Tl) and LMCT (dmso → Tl) bands, respectively, on the basis of MO and TDDFT calculations. The solution of the complex has a bright yellow color as a result of a shoulder present on the low energy side of the band at 355 nm. The geometry of the (CN)(4)Pt-Tl core can be elucidated from NMR data, but the particular stoichiometry and structure involving the dmso ligands are established by using Tl and Pt L(III)-edge EXAFS measurements. The Pt-Tl bond distance is 2.67(1) Å, the Tl-O bond distance is 2.282(6) Å, and the Pt-C-N entity is linear with Pt-C and Pt···N distances amounting to 1.969(6) and 3.096(6) Å, respectively. Geometry optimizations on the (CN)(4)Pt-Tl(dmso)(5)(+) system by using DFT calculations (B3LYP model) provide bond distances in excellent agreement with the EXAFS data. The four cyanide ligands are located in a square around the Pt atom, while the Tl atom is coordinated in a distorted octahedral fashion with the metal being located 0.40 Å above the equatorial plane described by four oxygen atoms of dmso ligands. The four equatorial Tl-O bonds and the four cyano ligands around the Pt atom are arranged in an alternate geometry. The coordination environment around Pt may be considered as being square pyramidal, where the apical position is occupied by the Tl atom. The optimized geometry of (CN)(4)Pt-Tl(dmso)(5)(+) is asymmetrical (C(1) point group). This low symmetry might be responsible for the unusually large NMR linewidths observed due to intramolecular chemical exchange processes. The nature of the Pt-Tl bond has been studied by MO analysis. The metal-metal bond formation in (CN)(4)Pt-Tl(dmso)(5)(+) can be simply interpreted as the result of a Pt(5d(z(2)))(2) → Tl(6s)(0) donation. This bonding scheme may rationalize the smaller thermodynamic stability of this adduct compared to the related complexes with (CN)(5)Pt-Tl entity, where the linear C-Pt-Tl unit constitutes a very stable bonding system. © 2011 American Chemical Society
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ray, Manisha; Kafader, Jared O.; Topolski, Josey E.
The electronic structures of several small Ce–Pt oxide complexes were explored using a combination of anion photoelectron (PE) spectroscopy and density functional theory calculations. Pt and Pt{sub 2} both accept electron density from CeO diatomic molecules, in which the cerium atom is in a lower-than-bulk oxidation state (+2 versus bulk +4). Neutral [CeO]Pt and [CeO]Pt{sub 2} complexes are therefore ionic, with electronic structures described qualitatively as [CeO{sup +2}]Pt{sup −2} and [CeO{sup +}]Pt{sub 2}{sup −}, respectively. The associated anions are described qualitatively as [CeO{sup +}]Pt{sup −2} and [CeO{sup +}]Pt{sub 2}{sup −2}, respectively. In both neutrals and anions, the most stable molecularmore » structures determined by calculations feature a distinct CeO moiety, with the positively charged Ce center pointing toward the electron rich Pt or Pt{sub 2} moiety. Spectral simulations based on calculated spectroscopic parameters are in fair agreement with the spectra, validating the computationally determined structures. In contrast, when Pt is coupled with CeO{sub 2}, which has no Ce-localized electrons that can readily be donated to Pt, the anion is described as [CeO{sub 2}]Pt{sup −}. The molecular structure predicted computationally suggests that it is governed by charge-dipole interactions. The neutral [CeO{sub 2}]Pt complex lacks charge-dipole stabilizing interactions, and is predicted to be structurally very different from the anion, featuring a single Pt–O–Ce bridge bond. The PE spectra of several of the complexes exhibit evidence of photodissociation with Pt{sup −} daughter ion formation. The electronic structures of these complexes are related to local interactions in Pt-ceria catalyst-support systems.« less
Xie, Shuifen; Choi, Sang -Il; Lu, Ning; ...
2014-05-05
Here, an effective strategy for reducing the Pt content while retaining the activity of a Pt-based catalyst is to deposit the Pt atoms as ultrathin skins of only a few atomic layers thick on nanoscale substrates made of another metal. During deposition, however, the Pt atoms often take an island growth mode because of a strong bonding between Pt atoms. Here we report a versatile route to the conformal deposition of Pt as uniform, ultrathin shells on Pd nanocubes in a solution phase. The introduction of the Pt precursor at a relatively slow rate and high temperature allowed the depositedmore » Pt atoms to spread across the entire surface of a Pd nanocube to generate a uniform shell. The thickness of the Pt shell could be controlled from one to six atomic layers by varying the amount of Pt precursor added into the system. Compared to a commercial Pt/C catalyst, the Pd@Pt nL (n = 1–6) core–shell nanocubes showed enhancements in specific activity and durability toward the oxygen reduction reaction (ORR). Density functional theory (DFT) calculations on model (100) surfaces suggest that the enhancement in specific activity can be attributed to the weakening of OH binding through ligand and strain effects, which, in turn, increases the rate of OH hydrogenation. A volcano-type relationship between the ORR specific activity and the number of Pt atomic layers was derived, in good agreement with the experimental results. Both theoretical and experimental studies indicate that the ORR specific activity was maximized for the catalysts based on Pd@Pt 2–3L nanocubes. Because of the reduction in Pt content used and the enhancement in specific activity, the Pd@Pt 1L nanocubes showed a Pt mass activity with almost three-fold enhancement relative to the Pt/C catalyst.« less
NASA Astrophysics Data System (ADS)
Battistoni, G.; Bellini, F.; Bini, F.; Collamati, F.; Collini, F.; De Lucia, E.; Durante, M.; Faccini, R.; Ferroni, F.; Frallicciardi, P. M.; La Tessa, C.; Marafini, M.; Mattei, I.; Miraglia, F.; Morganti, S.; Ortega, P. G.; Patera, V.; Piersanti, L.; Pinci, D.; Russomando, A.; Sarti, A.; Schuy, C.; Sciubba, A.; Senzacqua, M.; Solfaroli Camillocci, E.; Vanstalle, M.; Voena, C.
2015-02-01
Particle Therapy (PT) is an emerging technique, which makes use of charged particles to efficiently cure different kinds of solid tumors. The high precision in the hadrons dose deposition requires an accurate monitoring to prevent the risk of under-dosage of the cancer region or of over-dosage of healthy tissues. Monitoring techniques are currently being developed and are based on the detection of particles produced by the beam interaction into the target, in particular: charged particles, result of target and/or projectile fragmentation, prompt photons coming from nucleus de-excitation and back-to-back γ s, produced in the positron annihilation from β + emitters created in the beam interaction with the target. It has been showed that the hadron beam dose release peak can be spatially correlated with the emission pattern of these secondary particles. Here we report about secondary particles production (charged fragments and prompt γ s) performed at different beam and energies that have a particular relevance for PT applications: 12C beam of 80 MeV/u at LNS, 12C beam 220 MeV/u at GSI, and 12C, 4He, 16O beams with energy in the 50-300 MeV/u range at HIT. Finally, a project for a multimodal dose-monitor device exploiting the prompt photons and charged particles emission will be presented.
NASA Astrophysics Data System (ADS)
Zotov, A. V.; Tagirov, B. R.; Koroleva, L. A.; Volchenkova, V. A.
2017-09-01
The coupled solubility of Au(cr) and Pt(cr) has been measured in acidic chloride solutions at 350-450°C and 0.5 and 1 kb using the autoclave technique with determination of dissolved metal contents after quenching. The constants of the reaction combining the dominant species of Au and Pt in high-temperature hydrothermal fluids ( K (Au-Pt)) have been determined: 2 Au(cr) + PtCl4 2- = Pt(cr) + 2AuCl2 -; log K (Au-Pt) =-1.02 ± 0.25 (450°C, 1 kb), 0.09 ± 0.15 (450°C, 0.5 kb), and -1.31 ± 0.20 (350°C, 1 kb). It has been established that the factors affecting the Au/Pt concentration ratio in hydrothermal fluids and precipitated ores are temperature, pressure, redox potential, and sulfur fugacity. An increase in temperature results in an increase in the Au/Pt concentration ratio (up to 550°C at P = 1 kb). A decrease in pressure and redox potential leads to enrichment of fluid in Au. An increase in sulfur fugacity in the stability field of Pt sulfides results in increase in the Au/Pt concentration ratio. Native platinum is replaced by sulfide mineral in low-temperature systems enriched in Pt (relative to Au).
Anions dramatically enhance proton transfer through aqueous interfaces
Mishra, Himanshu; Enami, Shinichi; Nielsen, Robert J.; Hoffmann, Michael R.; Goddard, William A.; Colussi, Agustín J.
2012-01-01
Proton transfer (PT) through and across aqueous interfaces is a fundamental process in chemistry and biology. Notwithstanding its importance, it is not generally realized that interfacial PT is quite different from conventional PT in bulk water. Here we show that, in contrast with the behavior of strong nitric acid in aqueous solution, gas-phase HNO3 does not dissociate upon collision with the surface of water unless a few ions (> 1 per 106 H2O) are present. By applying online electrospray ionization mass spectrometry to monitor in situ the surface of aqueous jets exposed to HNO3(g) beams we found that production increases dramatically on > 30-μM inert electrolyte solutions. We also performed quantum mechanical calculations confirming that the sizable barrier hindering HNO3 dissociation on the surface of small water clusters is drastically lowered in the presence of anions. Anions electrostatically assist in drawing the proton away from lingering outside the cluster, whose incorporation is hampered by the energetic cost of opening a cavity therein. Present results provide both direct experimental evidence and mechanistic insights on the counterintuitive slowness of PT at water-hydrophobe boundaries and its remarkable sensitivity to electrostatic effects. PMID:22689964
Evolution of fusion hindrance for asymmetric systems at deep sub-barrier energies
NASA Astrophysics Data System (ADS)
Shrivastava, A.; Mahata, K.; Pandit, S. K.; Nanal, V.; Ichikawa, T.; Hagino, K.; Navin, A.; Palshetkar, C. S.; Parkar, V. V.; Ramachandran, K.; Rout, P. C.; Kumar, Abhinav; Chatterjee, A.; Kailas, S.
2016-04-01
Measurements of fusion cross-sections of 7Li and 12C with 198Pt at deep sub-barrier energies are reported to unravel the role of the entrance channel in the occurrence of fusion hindrance. The onset of fusion hindrance has been clearly observed in 12C +198Pt system but not in 7Li +198Pt system, within the measured energy range. Emergence of the hindrance, moving from lighter (6,7Li) to heavier (12C, 16O) projectiles is explained employing a model that considers a gradual transition from a sudden to adiabatic regime at low energies. The model calculation reveals a weak effect of the damping of coupling to collective motion for the present systems as compared to that obtained for systems with heavier projectiles.
Alloy catalysts for fuel cell-based alcohol sensors
NASA Astrophysics Data System (ADS)
Ghavidel, Mohammadreza Zamanzad
Direct ethanol fuel cells (DEFCs) are attractive from both economic and environmental standpoints for generating renewable energy and powering vehicles and portable electronic devices. There is a great interest recently in developing DEFC systems. The cost and performance of the DEFCs are mainly controlled by the Pt-base catalysts used at each electrode. In addition to energy conversion, DEFC technology is commonly employed in the fuel-cell based breath alcohol sensors (BrAS). BrAS is a device commonly used to measure blood alcohol concentration (BAC) and enforce drinking and driving laws. The BrAS is non-invasive and has a fast respond time. However, one of the most important drawback of the commercially available BrAS is the very high loading of Pt employed. One well-known and cost effective method to reduce the Pt loading is developing Pt-alloy catalysts. Recent studies have shown that Pt-transition metal alloy catalysts enhanced the electroactivity while decreasing the required loadings of the Pt catalysts. In this thesis, carbon supported Pt-Mn and Pt-Cu electrocatalysts were synthesized by different methods and the effects of heat treatment and structural modification on the ethanol oxidation reaction (EOR) activity, oxygen reduction reaction (ORR) activity and durability of these samples were thoroughly studied. Finally, the selected Pt-Mn and Pt-Cu samples with the highest EOR activity were examined in a prototype BrAS system and compared to the Pt/C and Pt 3Sn/C commercial electrocatalysts. Studies on the Pt-Mn catalysts produced with and without additives indicate that adding trisodium citrate (SC) to the impregnation solution improved the particle dispersion, decreased particle sizes and reduced the time required for heat treatment. Further studies show that the optimum weight ratio of SC to the metal loading in the impregnation solution was 2:1 and optimum results achieved at pH lower than 4. In addition, powder X-ray diffraction (XRD) analyses indicate that the optimum heat treatment temperature was 700 °C where a uniform ordered PtMn intermetallic phase was formed. Although the electrochemical active surface area (ECSA) decreased due to the heat treatment, the EOR activity of Pt-Mn samples was improved. Moreover, it was shown that the heat-treated samples prepared in the presence of SC showed superior the EOR activity compared to the samples made without SC. The Pt-Cu/C alloys were produced by three different methods: impregnation, impregnation in the presence of sodium citrate and microwave assisted polyol methods. These studies showed that the polyol method was the optimum method to produce the Pt-Cu alloy. The XRD analysis indicates that the heat treatment at 700 °C developed catalysts rich in the PtCu and PtCu3 ordered phases. The highest EOR activity was measured for the Pt-Cu/C-POL (sample made by the polyol method) and heat treated at 700 °C for 1h. Comparing the EOR activity of the Pt-Cu and Pt-Mn samples also demonstrates that the heat treated Pt-Cu/C-POL sample showed higher EOR activity compared to the Pt-Mn samples. These results indicate that the benefits of thermally treating alloy nanoparticles could outweigh any activity losses that may occur due to the particle size growth and the ECSA loss. Besides, accelerated stress tests (ASTs) illustrate that the heat treatment improved the durability of the Pt-Mn and Pt-Cu samples. The durability and EOR activity of the heat treated Pt-Mn and Pt-Cu samples was similar or better than commercial samples. On the other hand, the ORR activity of Pt-Mn and Pt-Cu after the heat treatment was slightly lower than the commercial samples but the ORR activity loss can be compensated by the economic benefits from using the lower Pt loading. Finally, studying the alcohol sensing characteristic of different samples shows that the heat treated Pt-Mn and Pt-Cu catalysts could be used for the ethanol sensing. Additionally, among the different commercial samples tested for ethanol sensing, Pt-Sn/C showed the highest sensitivity but with slightly higher standard deviation. Further studies on the Pt- Cu/C and Pt-Mn/C samples indicate that the heat treatment improved the sensitivity of these samples and the highest normalized sensitivity among all the samples belonged to the Pt- Cu/C-POL (sample produced by polyol method) and heat treated at 700 °C. It can be concluded that the heat treated Pt-Mn and Pt-Cu samples could be used as an alternative to replace Pt black in commercial sensors which would dramatically decrease the Pt loading. This could reduce the price and increase the sensitivity of commercial alcohol sensors.
Electrodeposition of platinum nanoparticles in a room-temperature ionic liquid.
Zhang, Da; Chang, Wan Cheng; Okajima, Takeyoshi; Ohsaka, Takeo
2011-12-06
The electrochemistry of the [PtCl(6)](2-)-[PtCl(4)](2-)-Pt redox system on a glassy carbon (GC) electrode in a room-temperature ionic liquid (RTIL) [i.e., N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium tetrafluoroborate (DEMEBF(4))] has been examined. The two-step four-electron reduction of [PtCl(6)](2-) to Pt, i.e., reduction of [PtCl(6)](2-) to [PtCl(4)](2-) and further reduction of [PtCl(4)](2-) to Pt, occurs separately in this RTIL in contrast to the one-step four-electron reduction of [PtCl(6)](2-) to Pt in aqueous media. The cathodic and anodic peaks corresponding to the [PtCl(6)](2-)/[PtCl(4)](2-) redox couple were observed at ca. -1.1 and 0.6 V vs a Pt wire quasi-reference electrode, respectively, while those observed at -2.8 and -0.5 V were found to correspond to the [PtCl(4)](2-)/Pt redox couple. The disproportionation reaction of the two-electron reduction product of [PtCl(6)](2-) (i.e., [PtCl(4)](2-)) to [PtCl(6)](2-) and Pt metal was also found to occur significantly. The electrodeposition of Pt nanoparticles could be carried out on a GC electrode in DEMEBF(4) containing [PtCl(6)](2-) by holding the potential at -3.5 or -2.0 V. At -3.5 V, the four-electron reduction of [PtCl(6)](2-) to Pt can take place, while at -2.0 V the two-electron reduction of [PtCl(6)](2-) to [PtCl(4)](2-) occurs. The results obtained demonstrate that the electrodeposition of Pt at -3.5 V may occur via a series of reductions of [PtCl(6)](2-) to [PtCl(4)](2-) and further [PtCl(4)](2-) to Pt and at -2.0 V via a disproportionation reaction of [PtCl(4)](2-) to [PtCl(6)](2-) and Pt. Furthermore, the deposition potential of Pt nanoparticles was found to largely influence their size and morphology as well as the relative ratio of Pt(110) and Pt(100) crystalline orientation domains. The sizes of the Pt nanoparticles prepared by holding the electrode potential at -2.0 and -3.5 V are almost the same, in the range of ca. 1-2 nm. These small nanoparticles are "grown" to form bigger particles with different morphologies: In the case of the deposition at -2.0 V, the GC electrode surface is totally, relatively compactly covered with Pt particles of relatively uniform size of ca. 10-50 nm. On the other hand, in the case of the electrodeposition at -3.5 V, small particles of ca. 50-100 nm and the grown-up particles of ca. 100-200 nm cover the GC surface irregularly and coarsely. Interestingly, the Pt nanoparticles prepared by holding the potential at -2.0 and -3.5 V are relatively enriched in Pt(100) and Pt(110) facets, respectively. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Rezanezhad, F.; Milojevic, T.; Parsons, C. T.; Smeaton, C. M.; Van Cappellen, P.
2017-12-01
Molecular oxygen (O2) measurements in field and laboratory soil and sediment systems provide useful insight into the biogeochemical functioning of natural environments. However, monitoring soil and sediment O2 is often challenging due to high costs, analyte consumption, and limited customizability and durability of existing O2 sensors. To meet this challenge, an in-house luminescence-based Multi Fibre Optode (MuFO) microsensor system was developed to monitor O2 levels under changing moisture and temperature regimes. The design is simplified by the use of a basic DSLR camera, LED light and fibre optic cables. The technique is based on O2 quenching the luminescent light intensity emitted from a luminophore (platinum(II) meso-tetra(pentafluorophenyl)porphyrin, PtTFPP) that is dip-coated onto the tips of the fibre optic cables, where increasing O2 corresponds to decreasing light intensity, based on the classic Stern-Volmer relationship. High-resolution digital images of the sensor-emitted light are then converted into % O2 saturation. The method was successfully tested in two artificial soil (20% peat, 80% sand) column experiments designed to simulate freeze-thaw cycles (temperature cycling from -10°C to 25°C) and water table fluctuations under controlled conditions. Depth distributions of O2 levels were monitored without interruption for multiple freeze-thaw and water table cycles. No degradation of optode performance or O2 signals were observed for the duration of the column experiments, which supports the long-term deployment of the microsensors for continuous O2 monitoring in field and laboratory settings. The technical specifications of the system are fair, with a detection limit of 0.2% O2 saturation. The main advantages of the MuFO system over commercial applications are the comparatively low cost ($1,800 USD; about ¼ the cost of commercial versions) and ease of customizability. The system has been further developed for near real-time monitoring in the field, where the imaged data is transmitted remotely using a photo-logging system. The MuFO sensor is currently being tested at a Southern Ontario field site in a year-long experiment. Here we present the field and laboratory results of soil O2 monitoring by this newly developed MuFO microsensor system under varying environmental conditions.
NASA Astrophysics Data System (ADS)
Halverson, G. H.; Fisher, J.; Magnuson, M.; John, L.
2017-12-01
An operational system to produce and disseminate remotely sensed evapotranspiration using the PT-JPL model and support its analysis and use in water resources decision making is being integrated into the New Mexico state government. A partnership between the NASA Western Water Applications Office (WWAO), the Jet Propulsion Laboratory (JPL), and the New Mexico Office of the State Engineer (NMOSE) has enabled collaboration with a variety of state agencies to inform decision making processes for agriculture, rangeland, and forest management. This system improves drought understanding and mobilization, litigation support, and economic, municipal, and ground-water planning through interactive mapping of daily rates of evapotranspiration at 1 km spatial resolution with near real-time latency. This is facilitated by daily remote sensing acquisitions of land-surface temperature and near-surface air temperature and humidity from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument on the Terra satellite as well as the short-term composites of Normalized Difference Vegetation Index (NDVI) and albedo provided by MODIS. Incorporating evapotranspiration data into agricultural water management better characterizes imbalances between water requirements and supplies. Monitoring evapotranspiration over rangeland areas improves remediation and prevention of aridification. Monitoring forest evapotranspiration improves wildlife management and response to wildfire risk. Continued implementation of this decision support system should enhance water and food security.
Anti-PT symmetry in dissipatively coupled optical systems
NASA Astrophysics Data System (ADS)
Yang, Fan; Liu, Yong-Chun; You, Li
2017-11-01
We show that anti-PT symmetry can be realized in dissipatively coupled optical systems. Its emergence gives rise to spontaneous phase transitions for the guided and localized photonic eigenmodes in the waveguide and cavity systems studied, respectively. As a ubiquitous feature we demonstrate that constant refraction [analogous to unit refraction in [Nat. Phys. 12, 1139 (2016), 10.1038/nphys3842
Code of Federal Regulations, 2010 CFR
2010-07-01
... of Plastic Parts and Products Pt. 63, Subpt. PPPP, Table 2 Table 2 to Subpart PPPP of Part 63...) Data Reduction No Sections 63.4567 and 63.4568 specify monitoring data reduction. § 63.9(a)-(d...
Localized Single Frequency Lasing States in a Finite Parity-Time Symmetric Resonator Chain
Phang, Sendy; Vukovic, Ana; Creagh, Stephen C.; Sewell, Phillip D.; Gradoni, Gabriele; Benson, Trevor M.
2016-01-01
In this paper a practical case of a finite periodic Parity Time chain made of resonant dielectric cylinders is considered. The paper analyzes a more general case where PT symmetry is achieved by modulating both the real and imaginary part of the material refractive index along the resonator chain. The band-structure of the finite periodic PT resonator chains is compared to infinite chains in order to understand the complex interdependence of the Bloch phase and the amount of the gain/loss in the system that causes the PT symmetry to break. The results show that the type of the modulation along the unit cell can significantly affect the position of the threshold point of the PT system. In all cases the lowest threshold is achieved near the end of the Brillouin zone. In the case of finite PT-chains, and for a particular type of modulation, early PT symmetry breaking is observed and shown to be caused by the presence of termination states localized at the edges of the finite chain resulting in localized lasing and dissipative modes at each end of the chain. PMID:26848095
pT spectra in pp and AA collisions at RHIC and LHC energies using the Tsallis-Weibull approach
NASA Astrophysics Data System (ADS)
Dash, Sadhana; Mahapatra, D. P.
2018-04-01
The Tsallis q -statistics have been incorporated in the Weibull model of particle production, in the form of q-Weibull distribution, to describe the transverse momentum (pT) distribution of charged hadrons at mid-rapidity, measured at RHIC and LHC energies. The q-Weibull distribution is found to describe the observed pT distributions over all ranges of measured pT. Below 2.2 GeV/c, while going from peripheral to central collisions, the parameter q is found to decrease systematically towards unity, indicating an evolution from a non-equilibrated system in peripheral collisions, towards a more thermalized system in central collisions. However, the trend is reversed in the all inclusive pT regime. This can be attributed to an increase in relative contribution of hard pQCD processes in central collisions. The λ-parameter is found to be associated with the mean pT or the collective expansion velocity of the produced hadrons, which shows an expected increase with centrality of collisions. The k parameter is observed to increase with the onset of hard QCD scatterings, initial fluctuations, and other processes leading to non-equilibrium conditions.
Magnetic properties of CexY1-xPt compared to CexLa1-xPt ones
NASA Astrophysics Data System (ADS)
Očko, M.; Zadro, K.; Drobac, Đ.; Aviani, I.; Salamon, K.; Mixon, D.; Bauer, E. D.; Sarrao, J. L.
2018-04-01
We have investigated the magnetic properties of the CexY1-xPt Kondo ferromagnetic alloy system in the temperature range from 1.8 K to 320 K. The results of these investigations can be summarized as follows: dc-susceptibility can be described by the Curie-Weiss law at higher temperatures down to about 100 K, but also at low temperatures above the ferromagnetic phase transition. At higher temperatures, the extracted Curie-Weiss parameter, θp, is negative and at low temperature θC is positive. The extracted effective magnetic moment above 100 K increases with the Ce content up to almost the theoretical value of the isolated Ce3+ ion, μ = 2.54 μB, for CePt. This suggests an increase of the hybridization with decreasing Ce content, or said equivalently, it means that the increase of the Kondo interaction diminishes effective magnetic moment. These observations confirm the main conclusions inferred from an earlier transport properties investigation of this alloy system. The corresponding θC differs within 1 K from the Curie temperature, TC, which is determined by the resistivity measurements. The most intriguing result of the investigation of CexY1-xPt is the linear concentration dependence of TC vs. x and, moreover, it is the same as in CexLa1-xPt although in the former system the hybridization diminishes considerably the effective magnetic moment per Ce ion, while in the latter system, hybridization is minor and independent of x. We offer the explanations of these intriguing experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, Ananya; Hou, Gao-Lei; Wang, Xue B.
2015-08-05
We report the first low-temperature photodetachment photoelectron spectra of isolated gas-phase complexes of the platinum II cyanide dianion bound to nucleobases. These systems are model systems for understanding platinum-complex photodynamic therapies, and knowledge of the intrinsic photodetachment properties is crucial for understanding their broader photophysical properties. Well-resolved, distinct peaks are observed in the spectra consistent with the complexes where the Pt(CN)42- moiety is largely intact. The adiabatic electron detachment energies for the dianion-nucleobase complexes are measured to be between 2.39-2.46 eV. The magnitudes of the repulsive Coulomb barriers of the complexes are estimated to be between 1.9 and 2.1 eV,more » values that are lower than for the bare Pt(CN)42- dianion as a result of charge solvation by the nucleobases. In addition to the resolved spectral features, broad featureless bands indicative of delayed electron detachment are observed in the 193 nm photodetachment spectra of the four nucleobase-dianion complexes, and also in the 266 nm spectra of the Pt(CN)42-∙thymine and Pt(CN)42-∙adenine complexes. The selective excitation of these features in the 266 nm spectra is attributed to one-photon excitation of [Pt(CN)42-∙T]* and [Pt(CN)42-∙A]* long-lived excited states that can effectively couple to the electron detachment continuum, producing strong electron detachment signals. We attribute the resonant electron detachment bands observed here for Pt(CN)42-∙T and Pt(CN)42-∙A but not for Pt(CN)42-∙U and Pt(CN)42-∙C to fundamental differences in the individual nucleobase photophysics following 266 nm excitation. This indicates that the Pt(CN)42- dianion in the Pt(CN)42-∙M clusters can be viewed as a “dynamic tag” which has the propensity to emit electrons when the attached nucleobase disaplys a long-lived excited state.« less
Observation of Bloch oscillations in complex PT-symmetric photonic lattices
Wimmer, Martin; Miri, Mohammed-Ali; Christodoulides, Demetrios; Peschel, Ulf
2015-01-01
Light propagation in periodic environments is often associated with a number of interesting and potentially useful processes. If a crystalline optical potential is also linearly ramped, light can undergo periodic Bloch oscillations, a direct outcome of localized Wannier-Stark states and their equidistant eigenvalue spectrum. Even though these effects have been extensively explored in conservative settings, this is by no means the case in non-Hermitian photonic lattices encompassing both amplification and attenuation. Quite recently, Bloch oscillations have been predicted in parity-time-symmetric structures involving gain and loss in a balanced fashion. While in a complex bulk medium, one intuitively expects that light will typically follow the path of highest amplification, in a periodic system this behavior can be substantially altered by the underlying band structure. Here, we report the first experimental observation of Bloch oscillations in parity-time-symmetric mesh lattices. We show that these revivals exhibit unusual properties like secondary emissions and resonant restoration of PT symmetry. In addition, we present a versatile method for reconstructing the real and imaginary components of the band structure by directly monitoring the light evolution during a cycle of these oscillations. PMID:26639941
Observation of Bloch oscillations in complex PT-symmetric photonic lattices
NASA Astrophysics Data System (ADS)
Wimmer, Martin; Miri, Mohammed-Ali; Christodoulides, Demetrios; Peschel, Ulf
2015-12-01
Light propagation in periodic environments is often associated with a number of interesting and potentially useful processes. If a crystalline optical potential is also linearly ramped, light can undergo periodic Bloch oscillations, a direct outcome of localized Wannier-Stark states and their equidistant eigenvalue spectrum. Even though these effects have been extensively explored in conservative settings, this is by no means the case in non-Hermitian photonic lattices encompassing both amplification and attenuation. Quite recently, Bloch oscillations have been predicted in parity-time-symmetric structures involving gain and loss in a balanced fashion. While in a complex bulk medium, one intuitively expects that light will typically follow the path of highest amplification, in a periodic system this behavior can be substantially altered by the underlying band structure. Here, we report the first experimental observation of Bloch oscillations in parity-time-symmetric mesh lattices. We show that these revivals exhibit unusual properties like secondary emissions and resonant restoration of PT symmetry. In addition, we present a versatile method for reconstructing the real and imaginary components of the band structure by directly monitoring the light evolution during a cycle of these oscillations.
Effect of Yttrium on the Microstructure and Properties of Pt-Ir Electrical Contact Materials
NASA Astrophysics Data System (ADS)
Wang, Saibei; Sun, Yong; Wang, Song; Peng, Mingjun; Liu, Manmen; Duan, Yonghua; Chen, Yongtai; Yang, Youcai; Chen, Song; Li, Aikun; Xie, Ming
2017-10-01
The Pt-10Ir and Pt-10Ir-1Y were prepared by high frequency induction melting, then the samples were obtained by powder metallurgy, hot extrusion and drawing. The influence of Y addition on microstructure and electrical contact properties of Pt-10Ir alloy has been investigated by using optical microscopy, SEM, electronic balance and the contact material test system. The results show that the addition of Y leads to the micro-structural refinement and directional change of material transfer, but has almost no influence on erosion morphology.
Brayshaw, Simon K; Schiffers, Stephanie; Stevenson, Anna J; Teat, Simon J; Warren, Mark R; Bennett, Robert D; Sazanovich, Igor V; Buckley, Alastair R; Weinstein, Julia A; Raithby, Paul R
2011-04-11
We introduce a new highly efficient photochromic organometallic dithienylethene (DTE) complex, the first instance of a DTE core symmetrically modified by two Pt(II) chromophores [Pt(PEt(3))(2)(C≡C)(DTE)(C≡C)Pt(PEt(3))(2)Ph] (1), which undergoes ring-closure when activated by visible light in solvents of different polarity, in thin films and even in the solid state. Complex 1 has been synthesised and fully photophysically characterised by (resonance) Raman and transient absorption spectroscopy complemented by calculations. The ring-closing photoconversion in a single crystal of 1 has been followed by X-ray crystallography. This process occurs with the extremely high yield of 80%--considerably outperforming the other DTE derivatives. Remarkably, the photocyclisation of 1 occurs even under visible light (>400 nm), which is not absorbed by the non-metallated DTE core HC≡C(DTE)C≡CH (2) itself. This unusual behaviour and the high photocyclisation yields in solution are attributed to the presence of a heavy atom in 1 that enables a triplet-sensitised photocyclisation pathway, elucidated by transient absorption spectroscopy and DFT calculations. The results of resonance Raman investigation confirm the involvement of the alkynyl unit in the frontier orbitals of both closed and open forms of 1 in the photocyclisation process. The changes in the Raman spectra upon cyclisation have permitted the identification of Raman marker bands, which include the acetylide stretching vibration. Importantly, these bands occur in the spectral region unobstructed by other vibrations and can be used for non-destructive monitoring of photocyclisation/photoreversion processes and for optical readout in this type of efficiently photochromic thermally stable systems. This study indicates a strategy for generating efficient solid-state photoswitches in which modification of the Pt(II) units has the potential to tune absorption properties and hence operational wavelength across the visible range. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effects of a TiC substrate on the catalytic activity of Pt for NO reduction.
Chu, Xingli; Fu, Zhaoming; Li, Shasha; Zhang, Xilin; Yang, Zongxian
2016-05-11
Density functional theory calculations are used to elucidate the catalytic properties of a Pt monolayer supported on a TiC(001) substrate (Pt/TiC) toward NO reduction. It is found that the compound system of Pt/TiC has a good stability due to the strong Pt-TiC interaction. The diverse dissociation paths (namely the direct dissociation mechanism and the dimeric mechanism) are investigated. The transition state searching calculations suggest that NO has strong diffusion ability and small activation energy for dissociation on the Pt/TiC. For NO reduction on the Pt/TiC surface, we have found that the direct dissociation mechanisms (NO + N + O → NO2 + N and NO + N + O → N2 + O + O) are easier with a smaller dissociation barrier than those on the Pt(111) surface; and the dimeric process (NO + NO → (NO)2 → N2O + O → N2 + O + O) is considered to be dominant or significant with even a lower energy barrier than that of the direct dissociation. The results show that Pt/TiC can serve as an efficient catalyst for NO reduction.
Platinum(iv) prodrug conjugated Pd@Au nanoplates for chemotherapy and photothermal therapy
NASA Astrophysics Data System (ADS)
Shi, Saige; Chen, Xiaolan; Wei, Jingping; Huang, Yizhuan; Weng, Jian; Zheng, Nanfeng
2016-03-01
Owing to the excellent near infrared (NIR) light absorption and efficient passive targeting toward tumor tissue, two-dimensional (2D) core-shell PEGylated Pd@Au nanoplates have great potential in both photothermal therapy and drug delivery systems. In this work, we successfully conjugate Pd@Au nanoplates with a platinum(iv) prodrug c,c,t-[Pt(NH3)2Cl2(O2CCH2CH2CO2H)2] to obtain a nanocomposite (Pd@Au-PEG-Pt) for combined photothermal-chemotherapy. The prepared Pd@Au-PEG-Pt nanocomposite showed excellent stability in physiological solutions and efficient Pt(iv) prodrug loading. Once injected into biological tissue, the Pt(iv) prodrug was easily reduced by physiological reductants (e.g. ascorbic acid or glutathione) into its cytotoxic and hydrophilic Pt(ii) form and released from the original nanocomposite, and the NIR laser irradiation could accelerate the release of Pt(ii) species. More importantly, Pd@Au-PEG-Pt has high tumor accumulation (29%ID per g), which makes excellent therapeutic efficiency at relatively low power density possible. The in vivo results suggested that, compared with single therapy the combined thermo-chemotherapy treatment with Pd@Au-PEG-Pt resulted in complete destruction of the tumor tissue without recurrence, while chemotherapy using Pd@Au-PEG-Pt without irradiation or photothermal treatment using Pd@Au-PEG alone did not. Our work highlights the prospects of a feasible drug delivery strategy of the Pt prodrug by using 2D Pd@Au nanoplates as drug delivery carriers for multimode cancer treatment.Owing to the excellent near infrared (NIR) light absorption and efficient passive targeting toward tumor tissue, two-dimensional (2D) core-shell PEGylated Pd@Au nanoplates have great potential in both photothermal therapy and drug delivery systems. In this work, we successfully conjugate Pd@Au nanoplates with a platinum(iv) prodrug c,c,t-[Pt(NH3)2Cl2(O2CCH2CH2CO2H)2] to obtain a nanocomposite (Pd@Au-PEG-Pt) for combined photothermal-chemotherapy. The prepared Pd@Au-PEG-Pt nanocomposite showed excellent stability in physiological solutions and efficient Pt(iv) prodrug loading. Once injected into biological tissue, the Pt(iv) prodrug was easily reduced by physiological reductants (e.g. ascorbic acid or glutathione) into its cytotoxic and hydrophilic Pt(ii) form and released from the original nanocomposite, and the NIR laser irradiation could accelerate the release of Pt(ii) species. More importantly, Pd@Au-PEG-Pt has high tumor accumulation (29%ID per g), which makes excellent therapeutic efficiency at relatively low power density possible. The in vivo results suggested that, compared with single therapy the combined thermo-chemotherapy treatment with Pd@Au-PEG-Pt resulted in complete destruction of the tumor tissue without recurrence, while chemotherapy using Pd@Au-PEG-Pt without irradiation or photothermal treatment using Pd@Au-PEG alone did not. Our work highlights the prospects of a feasible drug delivery strategy of the Pt prodrug by using 2D Pd@Au nanoplates as drug delivery carriers for multimode cancer treatment. Electronic supplementary information (ESI) available: Synthesis process of Pt(iv) prodrug, mass data and FT-IR spectra of the intermediate product and Pt(iv) prodrug, TEM images of Pd@Au and Au NPs, thermal gravimetric analysis of nanoparticles, dispersion stability of Pd@Au-PEG-Pt NSs in different solutions, chemical reduction of Pt(ii) in a water bath, viability of different cell lines incubated with different concentrations of materials, uptake of different drugs by HeLa cells, size distribution of nanoparticles, tissue distribution by measuring the Pt amounts and zeta potential information of prodrug function nanomaterials. See DOI: 10.1039/c5nr09120a
Sui, Mao; Li, Ming-Yu; Kunwar, Sundar; Pandey, Puran; Zhang, Quanzhen; Lee, Jihoon
2017-01-01
Metallic nanostructures (NSs) have been widely adapted in various applications and their physical, chemical, optical and catalytic properties are strongly dependent on their surface morphologies. In this work, the morphological and optical evolution of self-assembled Pt nanostructures on c-plane sapphire (0001) is demonstrated by the control of annealing temperature and dwelling duration with the distinct thickness of Pt films. The formation of Pt NSs is led by the surface diffusion, agglomeration and surface and interface energy minimization of Pt thin films, which relies on the growth parameters such as system temperature, film thickness and annealing duration. The Pt layer of 10 nm shows the formation of overlaying NPs below 650°C and isolated Pt nanoparticles above 700°C based on the enhanced surface diffusion and Volmer-Weber growth model whereas larger wiggly nanostructures are formed with 20 nm thick Pt layers based on the coalescence growth model. The morphologies of Pt nanostructures demonstrate a sharp distinction depending on the growth parameters applied. By the control of dwelling duration, the gradual transition from dense Pt nanoparticles to networks-like and large clusters is observed as correlated to the Rayleigh instability and Ostwald ripening. The various Pt NSs show a significant distinction in the reflectance spectra depending on the morphology evolution: i.e. the enhancement in UV-visible and NIR regions and the related optical properties are discussed in conjunction with the Pt NSs morphology and the surface coverage.
NASA Astrophysics Data System (ADS)
Phuoc, Nguyen N.; Ong, C. K.
2017-06-01
Multiferroic structures of FeCo/NiFe/[Pb(Mg1/3Nb2/3)O3]0.68-[PbTiO3]0.32 (PMN-PT) with three different crystal orientations of PMN-PT(0 1 1), PMN-PT(0 0 1) and PMN-PT(1 1 1) were fabricated by a sputtering deposition system. Their dynamic magnetic properties were characterized under various applied electrical fields. The sample with PMN-PT(0 1 1) orientation shows a large tuning of the permeability spectra while the ones with PMN-PT(0 0 1) and PMN-PT(1 1 1) orientations exhibit a moderate and little change in the permeability spectra, respectively. The result can be explained via the magnetoelectric effect by considering the role of the piezoelectric coefficients being highly dependent on the crystal orientation along which the PMN-PT is poled. This explanation is consistent with the static magnetic characteristics of the samples before and after poling.
Zheng, Wenfu; Jiang, Bo; Hao, Yi; Zhao, Yuyun; Zhang, Wei; Jiang, Xingyu
2014-09-12
Hyperglycemia, hyperlipidemia and inflammation are key risk factors for atherosclerosis and can lead to overproduction of reactive oxygen species (ROS), which plays a critical role in vascular endothelial dysfunction and subsequent progress of atherosclerosis. However, there is currently a lack of effective drugs that deal with ROS. Platinum nanoparticles (Pt-NPs) have proven to be promising antioxidant drugs in vitro and in vivo. To optimize the efficacy of Pt-NP based drugs, we synthesized and characterized the ROS scavenging properties of three kinds of small molecules that capped Pt-NPs (Pt-AMP-NPs, Pt-ATT-NPs, Pt-MI-NPs) on a blood vessel-mimicking microfluidic chip. The Pt-NPs showed superior superoxide dismutase (SOD)-like functions and can scavenge ROS and recover compromised cell-cell junctions under hyperglycemic, hyperlipidemic and proinflammatory conditions. Amongst these NPs, Pt-AMP-NPs showed the most superior antioxidant properties, suggesting its potency to serve as a novel drug to treat vascular diseases such as atherosclerosis. Our microfluidic chip, providing physiological hemodynamic conditions for the experiments, is potentially a promising tool for a wide range of biological research on the vascular system.
Barlas, Stephen
2016-01-01
The agreement between Harvard Pilgrim and Amgen on a "pay for performance" deal involving evolocumab could encourage other manufacturers, health plans, and policy-makers to press for value-based pricing as drug costs continue to escalate.
49 CFR Appendix - Part 238, Subpart C, Figure 1
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Part 238, Subpart C, Figure 1 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PASSENGER EQUIPMENT SAFETY STANDARDS Specific Requirements for Tier I Passenger Equipment Automated monitoring. Pt. 238, Subpt, C, Fig....
49 CFR Appendix - Part 238, Subpart C, Figure 1
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Part 238, Subpart C, Figure 1 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PASSENGER EQUIPMENT SAFETY STANDARDS Specific Requirements for Tier I Passenger Equipment Automated monitoring. Pt. 238, Subpt, C, Fig....
PT -symmetric currents of a Bose-Einstein condensate in a triple well
NASA Astrophysics Data System (ADS)
Haag, Daniel; Dast, Dennis; Cartarius, Holger; Wunner, Günter
2015-11-01
We study the case of PT -symmetric perturbations of Hermitian Hamiltonians with degenerate eigenvalues using the example of a triple-well system. The degeneracy complicates the question of whether or not a stationary current through such a system can be established, i.e., whether or not the PT -symmetric states are stable. It is shown that this is only the case for perturbations that do not couple to any of the degenerate states. The physical explanation for the inhibition of stable currents is discussed. However, introducing an on-site interaction restores the capability to support stable currents.
Electrical detection of microwave assisted magnetization reversal by spin pumping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Siddharth; Subhra Mukherjee, Sankha; Elyasi, Mehrdad
2014-03-24
Microwave assisted magnetization reversal has been investigated in a bilayer system of Pt/ferromagnet by detecting a change in the polarity of the spin pumping signal. The reversal process is studied in two material systems, Pt/CoFeB and Pt/NiFe, for different aspect ratios. The onset of the switching behavior is indicated by a sharp transition in the spin pumping voltage. At a threshold value of the external field, the switching process changes from partial to full reversal with increasing microwave power. The proposed method provides a simple way to detect microwave assisted magnetization reversal.
Li, Xi; Mu, Jing; Liu, Fang; Tan, Eddy Wei Ping; Khezri, Bahareh; Webster, Richard D; Yeow, Edwin Kok Lee; Xing, Bengang
2015-05-20
Current anticancer chemotherapy often suffers from poor tumor selectivity and serious drug resistance. Proper vectors for targeted delivery and controlled drug release play crucial roles in improving the therapeutic selectivity to tumor areas and also overcoming the resistance of cancer cells. In this work, we developed a novel human serum albumin (HSA) protein-based nanocarrier system, which combines the photoactivatable Pt(IV) antitumor prodrug for realizing the controlled release and fluorescent light-up probe for evaluations of drug action and efficacy. The constructed Pt(IV)-probe@HSA platform can be locally activated by light irradiation to release the active Pt species, which results in enhanced cell death at both drug-sensitive A2780 and cisplatin-resistant A2780cis cell lines when compared to the free prodrug molecules. Simultaneously, the cytotoxicity caused by light controlled drug release would further lead to the cellular apoptosis and trigger the activation of caspases 3, one crucial protease enzyme in apoptotic process, which could cleave the recognition peptide moiety (DEVD) with a flanking fluorescent resonance energy transfer (FRET) pair containing near-infrared (NIR) fluorophore Cy5 and quencher Qsy21 on the HSA nanocarrier surface. The turn-on fluorescence in response to caspase-3 could be assessed by fluorescence microscopy and flow cytometry analysis. Our results supported the hypothesis that such a unique design may present a successful platform for multiple roles: (i) a biocompatible protein-based nanocarrier for drug delivery, (ii) the controlled drug release with strengthened therapeutic effects, (iii) real-time monitoring of antitumor drug efficacy at the earlier stage.
Ferreira Santos, Mauro Sérgio; Silva Lopes, Fernando; Gutz, Ivano Gebhardt Rolf
2017-11-01
An EC-CE-C 4 D flow system was applied to the investigation of electrocatalytic processes by monitoring carboxylic acids formed during the electro-oxidation at various potentials of primary alcohols (mixture of 1 mmol/L of ethanol, n-propanol, n-butanol and n-pentanol) in acidic, neutral and alkaline media. The electro-oxidation was carried out on gold and platinum disk electrodes (3 mm of diameter) in a thin-layer electrochemical flow cell. Products were sampled 50 μm apart from the electrode directly into the capillary. All the generated carboxylates were determined in near real time (less than 2 min) by CE-C 4 D in counter-flow mode, with Tris/HCl buffer solution (pH 8.6) as BGE. Long sequences of 5-min experiments were run automatically, exploring the applied potential, electrolysis time and solution composition. Electro-oxidation at 1.5 V (versus Ag/AgCl quasi-reference) during 50 s in acidic medium was found appropriate for both Pt and Au electrodes when the determination of alcohols after derivatization is intended. A noteworthy selectivity effect was observed on the Au electrode. The signal corresponding to pentanoate is similar on both electrodes while the signal of ethanoate (acetate) is four times larger on gold than on platinum. The carboxylate signals were lower in alkaline medium (below the determination limit on Pt) than in acidic and neutral media. On gold, the formation of carboxylates was anticipated (0.85 V in alkaline medium versus 1.40 V in neutral medium). The automatic online monitoring of electrochemical processes by EC-CE-C 4 D holds great potential to investigate ionic/ionizable intermediates/products of new electrocatalysts and/or alternative fuels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Hunt, Alison C.; Ek, Mattias; Schönbächler, Maria
2017-11-01
Platinum isotopes are sensitive to the effects of galactic cosmic rays (GCR), which can alter isotope ratios and mask nucleosynthetic isotope variations. Platinum also features one p-process isotope, 190Pt, which is very low abundance and therefore challenging to analyse. Platinum-190 is relevant for early solar-system chronology because of its decay to 186Os. Here, we present new Pt isotope data for five iron meteorite groups (IAB, IIAB, IID, IIIAB and IVA), including high-precision measurements of 190Pt for the IAB, IIAB and IIIAB irons, determined by multi-collector ICPMS. New data are in good agreement with previous studies and display correlations between different Pt isotopes. The slopes of these correlations are well-reproduced by the available GCR models. We report Pt isotope ratios for the IID meteorite Carbo that are consistently higher than the predicted effects from the GCR model. This suggests that the model predictions do not fully account for all the GCR effects on Pt isotopes, but also that the pre-atmospheric radii and exposure times calculated for Carbo may be incorrect. Despite this, the good agreement of relative effects in Pt isotopes with the predicted GCR trends confirms that Pt isotopes are a useful in-situ neutron dosimeter. Once GCR effects are accounted for, our new dataset reveals s- and r-process homogeneity between the iron meteorite groups studied here and the Earth. New 190Pt data for the IAB, IIAB and IIIAB iron meteorites indicate the absence of GCR effects and homogeneity in the p-process isotope between these groups and the Earth. This corresponds well with results from other heavy p-process isotopes and suggests their homogenous distribution in the inner solar system, although it does not exclude that potential p-process isotope variations are too diluted to be currently detectable.
Yamada, Kanae; Kato, Naoyuki; Takagi, Akimitsu; Koi, Minoru; Hemmi, Hiromichi
2005-08-01
Platinum (Pt)-DNA adducts formed by the anti-tumor agent cisplatin are recognized by the DNA mismatch repair (MMR) system. To investigate the involvement of MMR proteins including hMLH1 in the removal of these adducts, we developed a mL-scale wet-digestion method for inductively coupled plasma mass spectrometry (ICP-MS). The detection limit was 0.01 ng mL(-1) Pt, which corresponded to 2 pg Pt/microg DNA when 10 microg of DNA was used. The mean relative errors were 5.4% or better for a dynamic range of 0.01-10 ng mL(-1) Pt. DNA (approximately 500 microg) had no matrix effect. To improve the accuracy, DNA preparations were treated with ribonuclease and the apparent reduction in the concentration of Pt was corrected using cellular DNA levels, which were determined with Hoechst 33258. No significant differences were observed, in terms of the formation of Pt-DNA adducts or their removal over 6 h, between hMLH1-deficient HCT116 cells, a human colorectal cancer cell line, and hMLH1-complemented HCT116+ch3 cells (n=5; P>0.05), indicating that the hMLH1-dependent DNA repair systems contribute to neither the formation nor the removal of the adducts at detectable levels. In addition, approximately 19% of the adducts were removed within 6 h in both cell lines. A time course analysis (~24 h) suggested that the removal of cisplatin-generated Pt-DNA adducts follows first-order kinetics (t(1/2)=32 h). The amount of Pt-DNA adduct formed by oxaliplatin in 1 h was 56% (ratio of means) of that generated by an equimolar concentration of cisplatin in HCT116. The proposed procedure could be useful for determining Pt-DNA adducts formed by Pt(II) complexes.
Applications of the 190Pt-186Os isotope system to geochemistry and cosmochemistry
Walker, R.J.; Morgan, J.W.; Beary, E.S.; Smoliar, M.I.; Czamanske, G.K.; Horan, M.F.
1997-01-01
Platinum is fractionated from osmium primarily as a consequence of processes involving sulfide and metal crystallization. Consequently, the 190Pt-186Os isotope system (190Pt ??? 186Os + ??) shows promise for dating some types of magmatic sulfide ores and evolved iron meteorites. The first 190Pt-186Os isochrons are presented here for ores from the ca. 251 Ma Noril'sk, Siberia plume, and for group IIAB magmatic iron meteorites. Given the known age of the Noril'sk system, a decay constant for 190Pt is determined to be 1.542 ?? 10-12a-1, with ??1% uncertainty. The isochron generated for the IIAB irons is consistent with this decay constant and the known age of the group. The 186Os/188Os ratios of presumably young, mantle-derived osmiridiums and also the carbonaceous chondrite Allende were measured to high-precision to constrain the composition of the modern upper mantle. These compositions overlap, indicating that the upper mantle is chondritic within the level of resolution now available. Our best estimate for this 186Os/188Os ratio is 0.119834 ?? 2 (2??M). The 190Pt/186Os ratios determined for six enstatite chondrites average 0.001659 ?? 75, which is very similar to published values for carbonaceous chondrites. Using this ratio and the presumed composition of the modern upper mantle and chondrites, a solar system initial 186Os/188Os ratio of 0.119820 is calculated. In comparison to the modern upper mantle composition, the 186Os/188Os ratio of the Noril'sk plume was approximately 0.012% enriched in 186Os. Possible reasons for this heterogeneity include the recycling of Pt-rich crust into the mantle source of the plume and derivation of the osmium from the outer core. Derivation of the osmium from the outer core is our favored model. Copyright ?? 1997 Elsevier Science Ltd.
NASA Astrophysics Data System (ADS)
Jackson, David A.
2015-12-01
A conceptual coaxial Pitot tube (PT) has been developed using fiber optic sensors combined with actuators to monitor and maintain its correct operation under different environmental conditions. Experiments were performed showing that the dynamic and static tubes can be cleared of ice. It was also demonstrated that the dynamic tube could be cleared of dust and sand which was not the case for the static tube in the coaxial configuration. An approach was proposed to overcome this problem involving a conventional configuration where the static tube was operated independently orthogonal to the dynamic tube, and a second set of sensors and actuators was used. Sensors and associated actuators were developed for temperature and intensity for a linear PT. The aim of this work is to propose a solution for a problem that has caused the loss of the lives of many passengers and crew of aircraft. Resources were not available to test a full implementation of a PT incorporating the proposed modifications.
Nesbitt, A; Ravel, A; Murray, R; McCormick, R; Savelli, C; Finley, R; Parmley, J; Agunos, A; Majowicz, S E; Gilmour, M
2012-10-01
Salmonella enteritidis has emerged as the most prevalent cause of human salmonellosis in Canada. Recent trends of S. enteritidis subtypes and their potential sources were described by integrating Salmonella data from several Canadian surveillance and monitoring programmes. A threefold increase in S. enteritidis cases from 2003 to 2009 was identified to be primarily associated with phage types 13, 8 and 13a. Other common phage types (4, 1, 6a) showed winter seasonality and were more likely to be associated with cases linked to international travel. Conversely, phage types 13, 8 and 13a had summer seasonal peaks and were associated with cases of domestically acquired infections. During agri-food surveillance, S. enteritidis was detected in various commodities, most frequently in chicken (with PT13, PT8 and PT13a predominating). Antimicrobial resistance was low in human and non-human isolates. Continued integrated surveillance and collaborative prevention and control efforts are required to mitigate future illness.
NESBITT, A.; RAVEL, A.; MURRAY, R.; McCORMICK, R.; SAVELLI, C.; FINLEY, R.; PARMLEY, J.; AGUNOS, A.; MAJOWICZ, S. E.; GILMOUR, M.
2012-01-01
SUMMARY Salmonella Enteritidis has emerged as the most prevalent cause of human salmonellosis in Canada. Recent trends of S. Enteritidis subtypes and their potential sources were described by integrating Salmonella data from several Canadian surveillance and monitoring programmes. A threefold increase in S. Enteritidis cases from 2003 to 2009 was identified to be primarily associated with phage types 13, 8 and 13a. Other common phage types (4, 1, 6a) showed winter seasonality and were more likely to be associated with cases linked to international travel. Conversely, phage types 13, 8 and 13a had summer seasonal peaks and were associated with cases of domestically acquired infections. During agri-food surveillance, S. Enteritidis was detected in various commodities, most frequently in chicken (with PT13, PT8 and PT13a predominating). Antimicrobial resistance was low in human and non-human isolates. Continued integrated surveillance and collaborative prevention and control efforts are required to mitigate future illness. PMID:22166269
Shah, Dipali Yogesh; Wadekar, Swati Ishwara; Dadpe, Ashwini Manish; Jadhav, Ganesh Ranganath; Choudhary, Lalit Jayant; Kalra, Dheeraj Deepak
2017-01-01
Context and Aims: The purpose of this study was to compare and evaluate the shaping ability of ProTaper (PT) and Self-Adjusting File (SAF) system using cone-beam computed tomography (CBCT) to assess their performance in oval-shaped root canals. Materials and Methods: Sixty-two mandibular premolars with single oval canals were divided into two experimental groups (n = 31) according to the systems used: Group I – PT and Group II – SAF. Canals were evaluated before and after instrumentation using CBCT to assess centering ratio and canal transportation at three levels. Data were statistically analyzed using one-way analysis of variance, post hoc Tukey's test, and t-test. Results: The SAF showed better centering ability and lesser canal transportation than the PT only in the buccolingual plane at 6 and 9 mm levels. The shaping ability of the PT was best in the apical third in both the planes. The SAF had statistically significant better centering and lesser canal transportation in the buccolingual as compared to the mesiodistal plane at the middle and coronal levels. Conclusions: The SAF produced significantly less transportation and remained centered than the PT at the middle and coronal levels in the buccolingual plane of oval canals. In the mesiodistal plane, the performance of both the systems was parallel. PMID:28855757
Preparation and Thermoelectric Characteristics of ITO/PtRh:PtRh Thin Film Thermocouple
NASA Astrophysics Data System (ADS)
Zhao, Xiaohui; Wang, Hongmin; Zhao, Zixiang; Zhang, Wanli; Jiang, Hongchuan
2017-12-01
Thin film thermocouples (TFTCs) can provide more precise in situ temperature measurement for aerospace propulsion systems without disturbance of gas flow and surface temperature distribution of the hot components. ITO /PtRh:PtRh TFTC with multilayer structure was deposited on alumina ceramic substrate by magnetron sputtering. After annealing, the TFTC was statically calibrated for multiple cycles with temperature up to 1000 °C. The TFTC with excellent stability and repeatability was realized for the negligible variation of EMF in different calibration cycles. It is believed that owing to oxygen diffusion barriers by the oxidation of top PtRh layer and Schottky barriers formed at the grain boundaries of ITO, the variation of the carrier concentration of ITO film is minimized. Meanwhile, the life time of TFTC is more than 30 h in harsh environment. This makes ITO/PtRh:PtRh TFTC a promising candidate for precise surface temperature measurement of hot components of aeroengines.
Highly sensitive room temperature ammonia gas sensor based on Ir-doped Pt porous ceramic electrodes
NASA Astrophysics Data System (ADS)
Liu, Wenlong; Liu, Yen-Yu; Do, Jing-Shan; Li, Jing
2016-12-01
Room temperature NH3 gas sensors based on Pt and Pt-Ir (Ir doping Pt) porous ceramic electrodes have been fabricated by both electroplating and sputtering methods. The properties of the gaseous ammonia sensors have been examined by polarization and chronoamperometry techniques. The influence of humidity on the features of the resulting sensors in the system has also been discussed, and the working potential was optimized. Water vapors seem to hugely improve the electrochemical activity of the electrode. With increasing the relative humidity, the response of the Pt-Ir(E)/Pt(S)/PCP sensor to NH3 gas could be enhanced remarkably, and the sensitivity increases from 1.14 to 12.06 μA ppm-1 cm-2 .Then we have also discussed the sensing mechanism of the Pt-Ir sensor and the result has been confirmed by X-ray photoelectron spectroscopy of the electrode surface before and after reaction in the end.
Preparation and Thermoelectric Characteristics of ITO/PtRh:PtRh Thin Film Thermocouple.
Zhao, Xiaohui; Wang, Hongmin; Zhao, Zixiang; Zhang, Wanli; Jiang, Hongchuan
2017-12-15
Thin film thermocouples (TFTCs) can provide more precise in situ temperature measurement for aerospace propulsion systems without disturbance of gas flow and surface temperature distribution of the hot components. ITO/PtRh:PtRh TFTC with multilayer structure was deposited on alumina ceramic substrate by magnetron sputtering. After annealing, the TFTC was statically calibrated for multiple cycles with temperature up to 1000 °C. The TFTC with excellent stability and repeatability was realized for the negligible variation of EMF in different calibration cycles. It is believed that owing to oxygen diffusion barriers by the oxidation of top PtRh layer and Schottky barriers formed at the grain boundaries of ITO, the variation of the carrier concentration of ITO film is minimized. Meanwhile, the life time of TFTC is more than 30 h in harsh environment. This makes ITO/PtRh:PtRh TFTC a promising candidate for precise surface temperature measurement of hot components of aeroengines.
Kong, Fred Ka-Wai; Chan, Alan Kwun-Wa; Ng, Maggie; Low, Kam-Hung; Yam, Vivian Wing-Wah
2017-11-20
Discrete pentanuclear Pt II stacks were prepared by the host-guest adduct formation between multinuclear tweezer-type Pt II complexes. The formation of the Pt II stacks in solution was accompanied by color changes and the turning on of near-infrared emission resulting from Pt⋅⋅⋅Pt and π-π interactions. The X-ray crystal structure revealed the formation of a discrete 1:1 adduct, in which a linear stack of five Pt II centers with extended Pt⋅⋅⋅Pt interactions was observed. Additional binding affinity and stability have been achieved through a multinuclear host-guest system. The binding behaviors can be fine-tuned by varying the spacer between the two Pt II moieties in the guests. This work provides important insights for the construction of discrete higher-order supramolecular metal-ligand aggregates using a tweezer-directed approach. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reproducible fabrication of stable small nano Pt with high activity for sensor applications.
Ye, Pingping; Guo, Xiaoyu; Liu, Guiting; Chen, Huifen; Pan, Yuxia; Wen, Ying; Yang, Haifeng
2013-07-26
Pt nanoparticles with an average size of 2-3 nm in diameter were reproducibly synthesized by reduction of H₂PtCl₆ solution containing inositol hexaphosphate (IP₆) as the stabilizing agent. Single crystals with Pt(111) faces of the resulting cubic nanoparticles were revealed by the electron diffraction pattern. The PtNPs-IP₆ nanoparticles were used to modify an electrode as a nonenzymatic sensor for H₂O₂ detection, exhibiting a fast response and high sensitivity. A low detection limit of 2.0 × 10⁻⁷ M (S/N = 3) with two linear ranges between 2.4 × 10⁻⁷ and 1.3 × 10⁻³ M (R² = 0.9987) and between 1.3 × 10⁻³ and 1.3 × 10⁻² M (R² = 0.9980) was achieved. The attractive electrochemical performance of PtNPs-IP₆ enables it to be employed as a promising material for the development of Pt-based analytical systems and other applications.
Environmental and biological monitoring on an oncology ward during a complete working week.
Koller, Michael; Böhlandt, Antje; Haberl, Christopher; Nowak, Dennis; Schierl, Rudolf
2018-05-05
Workplace exposure to antineoplastic drugs (AD) is still of evident concern to all occupationally exposed persons in the healthcare sector as residues in relevant concentrations continue to be present. With respect to the carcinogenic and mutagenic potential of ADs and their toxicity on reproduction, occupational exposure should be kept as low as reasonably achievable (ALARA). In the oncology patient care, the medical staff is involved both in chemotherapy administration and handling of AD-contaminated body fluids of the patients. For this purpose, in this study, surface monitoring on an oncology ward and concurrent urine monitoring of the complete healthcare staff was performed during five consecutive days for 5-fluorouracil (5-FU), cyclophosphamide (CP) and platinum (Pt). Contamination was detected on all surfaces in various ranges (5-FU 0.7-12,600 pg/cm 2 , Pt 0.2-181,800 pg/cm 2 , CP (
Baquero, Edwin A; Tricard, Simon; Coppel, Yannick; Flores, Juan C; Chaudret, Bruno; de Jesús, Ernesto
2018-03-28
The synthesis of metal nanoparticles (NPs) under controlled conditions in water remains a challenge in nanochemistry. Two different approaches to obtain platinum NPs, which involve the treatment of aqueous solutions of preformed sulfonated (NHC)Pt(ii) dimethyl complexes with carbon monoxide, and of (NHC)Pt(0) diolefin complexes with dihydrogen (NHC = N-heterocyclic carbene), are disclosed here. The resulting NPs were found to be highly stable in water under air for an indefinite time period. Coordination of the NHC ligands to the platinum surface via the carbenic carbon was monitored by solid-state NMR spectroscopy, and the presence of a platinum-carbon bond was unambiguously evidenced by the determination of a 13 C- 195 Pt coupling constant (1106 and 1050 Hz for NPs containing 13 C labeled-NHC ligands and prepared under CO and H 2 , respectively). The coordination of CO to the (NHC)Pt(ii) precursors prior to formation of the NPs was confirmed by NMR spectroscopy. When using a disulfonated NHC ligand, a second coordination sphere containing bis(NHC)Pt(ii) complexes is described. Under CO, the formation of NPs was found to be slower than in a previously reported thermal method (Angew. Chem., Int. Ed., 2014, 53, 13220-13224), but led to NPs of similar sizes, whereas under H 2 , the synthesis of platinum NPs progressed even more slowly and produced larger NPs. In addition to the influence of the synthetic approach, the present study highlights the importance of ligand design for NP stabilization.
Weinstein, Julia A; Blake, Alexander J; Davies, E Stephen; Davis, Adrienne L; George, Michael W; Grills, David C; Lileev, Igor V; Maksimov, Alexander M; Matousek, Pavel; Mel'nikov, Mikhail Ya; Parker, Anthony W; Platonov, Vyacheslav E; Towrie, Michael; Wilson, Claire; Zheligovskaya, Natalia N
2003-11-03
The synthesis of new Pt(II) diimine complexes bearing perfluorinated thiolate ligands, Pt(II)(NN)(4-X-C(6)F(4)-S)(2), where NN = 2,2'-bipyridine or 1,10-phenanthroline and X = F or CN, is reported, together with an investigation of the nature and dynamics of their lowest excited states. A combined UV-vis, (spectro)electrochemical, resonance Raman, and time-resolved infrared (TRIR) study has suggested that the HOMO is mainly composed of thiolate(pi)/S(p)/Pt(d) orbitals and that the LUMO is largely localized on the pi*(diimine) orbital, thus revealing the [charge-transfer-to-diimine] nature of the lowest excited state. An enhancement of the thiolate ring vibrations, C-F vibrations, and the vibration of the CN-substituent on the thiolate moiety was observed in the resonance Raman spectra, whereas no such enhancement was seen for the nonfluorinated analogues. Thus, the introduction of fluorine substituents on the thiolate moiety probably leads to a more pronounced contribution of the intrathiolate modes to the HOMO compared to the analogous complexes with nonfluorinated thiolates. Furthermore, the introduction of the p-CN group into the thiolate moiety has allowed the dynamics of the lowest excited state of Pt(bpy)(4-CN-C(6)F(4)-S)(2) to be monitored by picosecond TRIR spectroscopy. The dynamics of the lowest [charge-transfer-to-diimine] excited state are governed by ca. 2-ps vibrational cooling and 35-ps back electron transfer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Wei; Shih, Wei-Heng; Shih, Wan Y., E-mail: shihwy@drexel.edu
We have examined the mechanism of the detection resonance frequency shift, Δf/f, of a 1370 μm long and 537 μm wide [Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}]{sub 0.65}[PbTiO{sub 3}]{sub 0.35} (PMN-PT) piezoelectric plate sensor (PEPS) made of a 8-μm thick PMN-PT freestanding film. The Δf/f of the PEPS was monitored in a three-step binding model detections of (1) binding of maleimide-activated biotin to the sulfhydryl on the PEPS surface followed by (2) binding of streptavidin to the bound biotin and (3) subsequent binding of biotinylated probe deoxyribonucleic acid to the bound streptavidin. We used a PMN-PT surrogate made of the same 8-μm thick PMN-PTmore » freestanding film that the PEPS was made of but was about 1 cm in length and width to carry out crystalline orientation study using X-ray diffraction (XRD) scan around the (002)/(200) peaks after each of the binding steps. The result of the XRD studies indicated that each binding step caused the crystalline orientation of the PMN-PT thin layer to switch from the vertical (002) orientation to the horizontal (200) orientation, and most of the PEPS detection Δf/f was due to the change in the lateral Young's modulus of the PMN-PT thin layer as a result of the crystalline orientation change.« less
Fabrication of CuO-Pt core-shell nanohooks by in situ reconstructing the Pt-shells.
Cao, Fan; Zheng, He; Zhao, Ligong; Huang, Rui; Jia, Shuangfeng; Liu, Huihui; Li, Lei; Wang, Zhao; Hu, Yongming; Gu, Haoshuang; Wang, Jianbo
2018-05-25
The design of various nanostructures with specific compositions and shapes is highly demanded due to the widespread use of micro/nano electro-mechanical systems. In this work, one-dimensional CuO-Pt core-shell nanowires (NWs) are acquired by depositing Pt nanoparticles onto CuO NWs and then mechanically-shaped into nanohooks. Subsequently, the hook-like shape is maintained by the Pt-shell which is reconstructed via Joule heat and re-solidified after cooling down, during which the elastic strain energy is stored in the CuO-core. The results provide a simple strategy to design nanostructures with various compositions and shapes, implying the potential applications in mechanical energy storage and shape memory nanodevices.
Fabrication of CuO–Pt core–shell nanohooks by in situ reconstructing the Pt-shells
NASA Astrophysics Data System (ADS)
Cao, Fan; Zheng, He; Zhao, Ligong; Huang, Rui; Jia, Shuangfeng; Liu, Huihui; Li, Lei; Wang, Zhao; Hu, Yongming; Gu, Haoshuang; Wang, Jianbo
2018-05-01
The design of various nanostructures with specific compositions and shapes is highly demanded due to the widespread use of micro/nano electro-mechanical systems. In this work, one-dimensional CuO–Pt core–shell nanowires (NWs) are acquired by depositing Pt nanoparticles onto CuO NWs and then mechanically-shaped into nanohooks. Subsequently, the hook-like shape is maintained by the Pt-shell which is reconstructed via Joule heat and re-solidified after cooling down, during which the elastic strain energy is stored in the CuO-core. The results provide a simple strategy to design nanostructures with various compositions and shapes, implying the potential applications in mechanical energy storage and shape memory nanodevices.
Magnetic properties of Ce xY 1-xPt compared to Ce xLa 1-xPt ones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ocko, M.; Zadro, K.; Drobac, D.
In this paper, we have investigated the magnetic properties of the Ce xY 1-xPt Kondo ferromagnetic alloy system in the temperature range from 1.8 K to 320 K. The results of these investigations can be summarized as follows: dc-susceptibility can be described by the Curie-Weiss law at higher temperatures down to about 100 K, but also at low temperatures above the ferromagnetic phase transition. At higher temperatures, the extracted Curie-Weiss parameter, θ p, is negative and at low temperature θ C is positive. The extracted effective magnetic moment above 100 K increases with the Ce content up to almost themore » theoretical value of the isolated Ce 3+ ion, μ = 2.54 μ B, for CePt. This suggests an increase of the hybridization with decreasing Ce content, or said equivalently, it means that the increase of the Kondo interaction diminishes effective magnetic moment. These observations confirm the main conclusions inferred from an earlier transport properties investigation of this alloy system. The corresponding θ C differs within 1 K from the Curie temperature, T C, which is determined by the resistivity measurements. The most intriguing result of the investigation of Ce xY 1-xPt is the linear concentration dependence of T C vs. x and, moreover, it is the same as in Ce xLa 1-xPt although in the former system the hybridization diminishes considerably the effective magnetic moment per Ce ion, while in the latter system, hybridization is minor and independent of x. Finally, we offer the explanations of these intriguing experimental results.« less
Magnetic properties of Ce xY 1-xPt compared to Ce xLa 1-xPt ones
Ocko, M.; Zadro, K.; Drobac, D.; ...
2017-12-05
In this paper, we have investigated the magnetic properties of the Ce xY 1-xPt Kondo ferromagnetic alloy system in the temperature range from 1.8 K to 320 K. The results of these investigations can be summarized as follows: dc-susceptibility can be described by the Curie-Weiss law at higher temperatures down to about 100 K, but also at low temperatures above the ferromagnetic phase transition. At higher temperatures, the extracted Curie-Weiss parameter, θ p, is negative and at low temperature θ C is positive. The extracted effective magnetic moment above 100 K increases with the Ce content up to almost themore » theoretical value of the isolated Ce 3+ ion, μ = 2.54 μ B, for CePt. This suggests an increase of the hybridization with decreasing Ce content, or said equivalently, it means that the increase of the Kondo interaction diminishes effective magnetic moment. These observations confirm the main conclusions inferred from an earlier transport properties investigation of this alloy system. The corresponding θ C differs within 1 K from the Curie temperature, T C, which is determined by the resistivity measurements. The most intriguing result of the investigation of Ce xY 1-xPt is the linear concentration dependence of T C vs. x and, moreover, it is the same as in Ce xLa 1-xPt although in the former system the hybridization diminishes considerably the effective magnetic moment per Ce ion, while in the latter system, hybridization is minor and independent of x. Finally, we offer the explanations of these intriguing experimental results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Bing; Khadra, Ghassan; Tuaillon-Combes, Juliette
2016-09-29
Co1-xPtx clusters of 2.9-nm size with a range of atomically precise Pt/Co atomic ratios (x = 0, 0.25, 0.5, 0.75, 1) were synthesized using the mass-selected low-energy cluster beam deposition (LECBD) technique and soft-landed onto an amorphous alumina thin film prepared by atomic layer deposition (ALD). Utilizing ex situ X-ray photoemission spectroscopy (XPS), the oxidation state of the as-made clusters supported on Al2O3 was determined after both a 1-h-long exposure to air and aging for several weeks while exposed to air. Next, the aged duster samples were characterized by grazing-incidence X-ray absorption spectroscopy (GIXAS) and then pretreated with diluted hydrogenmore » and further exposed to the mixture of diluted CO and H-2 up to 225 degrees C at atmospheric pressure, and the temperature-dependent evolutions of the particle size/shape and the oxidation states of the individual metal components within the dusters were monitored using in situ grazing-incidence small-angle X-ray scattering and X-ray absorption spectroscopy (GISAXS/GIXAS). The changes in the oxidation states of Co and Pt exhibited a nonlinear dependence on the Pt/Co atomic ratio of the dusters. For example, a low Pt/Co ratio (x <= 0.5) facilitates the formation of Co(OH)(2), whereas a high Pt/Co ratio (x = 0.75) stabilizes the Co3O4 composition instead through the formation of a Co-Pt core-shell structure where the platinum shell inhibits the reduction of cobalt in the core of the Co1-xPtx alloy dusters. The obtained results indicate methods for optimizing the composition and structure of binary alloy clusters for catalysis.« less
NASA Astrophysics Data System (ADS)
Yu, Changlin; Yang, Kai; Xie, Yu; Fan, Qizhe; Yu, Jimmy C.; Shu, Qing; Wang, Chunying
2013-02-01
Noble metal/semiconductor nanocomposites play an important role in high efficient photocatalysis. Herein, we demonstrate a facile strategy for fabrication of hollow Pt-ZnO nanocomposite microspheres with hierarchical structure under mild solvothermal conditions using Zn (CH3COO)2.2H2O and HPtCl4 as the precursors, and polyethylene glycol-6000 (PEG-6000) and ethylene glycol as the reducing agent and solvent, respectively. The as-synthesized ZnO and Pt-ZnO composite nanocrystals were well characterized by powder X-ray diffraction (XRD), nitrogen-physical adsorption, scanning electron microscopy (SEM), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (DRS), and photoluminescence (PL) emission spectroscopy. It was found that Pt content greatly influences the morphology of Pt-ZnO composite nanocrystals. Suitable concentration of HPtCl4 in the reaction solution system can produce well hierarchically hollow Pt-ZnO nanocomposite microspheres, which are composed of an assembly of fine Pt-ZnO nanocrystals. Photocatalytic tests of the Pt-ZnO microspheres for the degradation of the dye acid orange II revealed extremely high photocatalytic activity and stability compared with those of pure ZnO and corresponding Pt deposited ZnO. The remarkable photocatalytic performance of hollow Pt-ZnO microspheres mainly originated from their unique nanostructures and the low recombination rate of the e-/h+ pairs by the platinum nanoparticles embedded in ZnO nanocrystals.Noble metal/semiconductor nanocomposites play an important role in high efficient photocatalysis. Herein, we demonstrate a facile strategy for fabrication of hollow Pt-ZnO nanocomposite microspheres with hierarchical structure under mild solvothermal conditions using Zn (CH3COO)2.2H2O and HPtCl4 as the precursors, and polyethylene glycol-6000 (PEG-6000) and ethylene glycol as the reducing agent and solvent, respectively. The as-synthesized ZnO and Pt-ZnO composite nanocrystals were well characterized by powder X-ray diffraction (XRD), nitrogen-physical adsorption, scanning electron microscopy (SEM), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (DRS), and photoluminescence (PL) emission spectroscopy. It was found that Pt content greatly influences the morphology of Pt-ZnO composite nanocrystals. Suitable concentration of HPtCl4 in the reaction solution system can produce well hierarchically hollow Pt-ZnO nanocomposite microspheres, which are composed of an assembly of fine Pt-ZnO nanocrystals. Photocatalytic tests of the Pt-ZnO microspheres for the degradation of the dye acid orange II revealed extremely high photocatalytic activity and stability compared with those of pure ZnO and corresponding Pt deposited ZnO. The remarkable photocatalytic performance of hollow Pt-ZnO microspheres mainly originated from their unique nanostructures and the low recombination rate of the e-/h+ pairs by the platinum nanoparticles embedded in ZnO nanocrystals. Electronic supplementary information (ESI) available: Fig. S1-S3. See DOI: 10.1039/c2nr33595f
Undercooling studies on Nb-Pt and Nb-Si alloys using the 105 meter drop tube
NASA Technical Reports Server (NTRS)
Robinson, M. B.; Bayuzick, R. J.; Hofmeister, W. H.
1988-01-01
Niobium-platinum samples of compositions ranging from 16 to 32 at. pct have been undercooled to as much as 540 K in the low gravity, containerless environment of a 105 meter drop tube. Undercooling was terminated in the Nb-Pt samples by the nucleation and growth of the Nb3Pt phase. In the 16-18 at. pct Pt samples, this resulted in samples which are completely Nb3Pt, in contrast to both the equilibrium phase diagram and the nonundercooled samples which formed with Nb dendrites and interdendritic Nb3Pt. Undercoolings for the Nb-Si samples were up to 670 K, which corresponds to 27 percent of the liquidus temperature or 80 percent of the estimated hypercooling limit. In the Nb-Si system, a coupled zone was identified as well as a metastable extension of the solubility limit of Si in Nb due to deep undercooling.
Bould, Jonathan; Kennedy, John D
2008-06-07
The formally closo twelve-vertex {ortho-M2B10} dimetallaborane system has been predictively tailored for reversible uptake of SO2 across the metal-metal bond, as exemplified by the formation of [(PMe2Ph)2Pt(SO2)Pd(phen)B10H10] from [(PMe2Ph)2PtPd(phen)B10H10].
Decoherence: Intrinsic, Extrinsic, and Environmental
NASA Astrophysics Data System (ADS)
Stamp, Philip
2012-02-01
Environmental decoherence times have been difficult to predict in solid-state systems. In spin systems, environmental decoherence is predicted to arise from nuclear spins, spin-phonon interactions, and long-range dipolar interactions [1]. Recent experiments have confirmed these predictions quantitatively in crystals of Fe8 molecules [2]. Coherent spin dynamics was observed over macroscopic volumes, with a decoherence Q-factor Qφ= 1.5 x10^6 (the upper predicted limit in this system being Qφ= 6 x10^7). Decoherence from dipolar interactions is particularly complex, and depends on the shape and the quantum state of the system. No extrinsic ``noise'' decoherence was observed. The generalization to quantum dot and superconducting qubit systems is also discussed. We then discuss searches for ``intrinsic'' decoherence [3,4], coming from non-linear corrections to quantum mechanics. Particular attention is paid to condensed matter tests of such intrinsic decoherence, in hybrid spin/optomechanical systems, and to ways of distinguishing intrinsic decoherence from environmental and extrinsic decoherence sources. [4pt] [1] Morello, A. Stamp, P. C. E. & Tupitsyn, Phys. Rev. Lett. 97, 207206 (2006).[0pt] [2] S. Takahashi et al., Nature 476, 76 (2011).[0pt] [3] Stamp, P. C. E., Stud. Hist. Phil. Mod. Phys. 37, 467 (2006). [0pt] [4] Stamp, P.C.E., Phil. Trans. Roy. Soc. A (to be published)
Lateral diffusion study of the Pt-Al system using the NAC nuclear microprobe.
NASA Astrophysics Data System (ADS)
de Waal, H.; Pretorius, R.
1999-10-01
In this study a nuclear microprobe (NMP) was used to analyse phase formation during reaction in Pt-Al lateral diffusion couples. Phase identification was done by Rutherford backscattering spectroscopy. These results were compared with phase formation during conventional thin film Pt-Al interactions. The co-existence of multiple phases in lateral diffusion couples is discussed with reference to the effective heat of formation (EHF) model.
Crystalline Electric Field Level Scheme of the Non-Centrosymmetric CePtSi3
NASA Astrophysics Data System (ADS)
Ueta, Daichi; Kobuke, Tomohiro; Yoshida, Masahiro; Yoshizawa, Hideki; Ikeda, Yoichi; Itoh, Shinichi; Yokoo, Tetsuya
2018-05-01
The crystalline electric field (CEF) excitations in CePtSi3 with the non-centrosymmetric structure were investigated by inelastic neutron scattering (INS) experiment. CEF excitations were observed at 5.3 and 17.5 meV. We discuss the CEF parameters and wave function of CePtSi3 by comparing those of other CeTX3(T: transition metal, X: Si, Ge) systems.
Roughness evolution in dewetted Ag and Pt nanoscale films
NASA Astrophysics Data System (ADS)
Ruffino, F.; Grimaldi, M. G.
2018-01-01
The surface roughness of nanoscale metal systems plays a key role in determining the systems properties and, therefore, the electrical, optical, etc. response of nanodevices based on them. In this work, we experimentally analyze the roughness evolution in dewetting Ag and Pt films deposited on SiO2 substrate. In particular, after depositing 15 nm-thick Ag or Pt films on the SiO2 substrate, standard annealing processes were performed below the melting temperatures of the metals so to induce the solid-state dewetting of the films. The surface morphology evolution of the Ag and Pt films was studied by means of Atomic Force Microscopy analysis as a function of the annealing temperature T and of the annealing time t. In particular, these analysis allowed to quantify the roughness σ of the Ag and Pt films versus the annealing temperature T and the annealing time t. The analysis of these plots allowed us to draw combined insights on the dewetting process characteristics, on the dewetting-induced roughening properties, and on the material-dependent parameters by the comparison of the results obtained for the Ag film and the Pt film. These analysis, in addition, open perspectives towards the development of a method to produce supported metal films with controlled surface roughness for designed applications.
Sguizzato, Maddalena; Cortesi, Rita; Gallerani, Eleonora; Drechsler, Markus; Marvelli, Lorenza; Mariani, Paolo; Carducci, Federica; Gavioli, Riccardo; Esposito, Elisabetta; Bergamini, Paola
2017-05-01
The use of solid lipid nanoparticles (SLN) is a promising route for the delivery of platinum complexes aimed to anticancer activity. This paper describes the production and characterization of SLN suitable for the loading of Pt complexes containing the biocompatible phosphine 1,3,5-triaza-7-phosphaadamantane (PTA) as neutral ligand. After a screening of several lipidic phases, stearic acid-based SLN were identified as the most appropriate for the purpose. They were produced by emulsion-dilution method and then characterized in terms of dimension, polydispersity, time stability, pH balance and morphological aspect. Stearic acid SLN are designed as a system able to coordinate to platinum, acting as anionic carboxylic ligands, replacing the base carbonate of the Pt synthon [PtCO 3 (DMSO) 2 ], where also DMSO can subsequently be substituted by phosphinic ligands, namely PTA. SLN functionalised with Pt-PTA were produced and characterized by this synthetic route. The toxicity of plain SLN and the antiproliferative effect of SLN functionalised with Pt-PTA were evaluated on two human cancer cell lines K562 and A2780. The results indicate that SLN can be exploited as a delivery system for Pt complexes with potential anticancer activity. Copyright © 2016 Elsevier B.V. All rights reserved.
Le Scao, Y; Robier, A; Baulieu, J L; Beutter, P; Pourcelot, L
1992-01-01
Brain activation procedures associated with single photon emission tomography (SPET) have recently been developed in healthy controls and diseased patients in order to help in their diagnosis and treatment. We investigated the effects of a promontory test (PT) on the cerebral distribution of technetium-99m hexamethylpropylene amine oxime (99mTc-HMPAO) in 7 profoundly deaf patients, 6 PT+ and one PT-. The count variation in the temporal lobe was calculated on 6 coronal slices using the ratio (Rstimulation-Rdeprivation)/Rdeprivation where R = counts in the temporal lobe/whole-brain count. A count increase in the temporal lobe was observed in all patients and was higher in all patients with PT+ than in the patient with PT-. The problems of head positioning and resolution of the system were taken into account, and we considered that the maximal count increment was related to the auditory cortex response to the stimulus. Further clinical investigations with high-resolution systems have to be performed in order to validate this presurgery test in cochlear implant assessment.
The Use of Adenovirus Dodecahedron in the Delivery of an Enzymatic Activity in the Cell
Sumarheni; Gallet, Benoit; Fender, Pascal
2016-01-01
Penton-dodecahedron (Pt-Dd) derived from adenovirus type 3 is a symmetric complex of pentameric penton base plus fiber which can be produced in the baculovirus system at a high concentration. The size of Pt-Dd is smaller than the virus, but this virus-like particle (VLP) has the major proteins recognized by specific receptors on the surface of almost all types of cell. In this study, by direct observation with fluorescence microscopy on a fixed and living cell, the intracellular trafficking and localization of Pt-Dd labeled with fluorescence dyes in the cytoplasm of HeLa Tub-GFP showed a rapid internalization characteristic. Subsequently, the linkage of horseradish peroxidase (HRP) with Pt-Dd as the vector demonstrated an efficient system to deliver this enzyme into the cell without interfering its enzymatic activity as shown by biochemical and cellular experiments. These results were supported by additional studies using Bs-Dd or free form of the HRP used as the control. Overall, this study strengthens the potential role of Pt-Dd as an alternative vector for delivering therapeutic agents. PMID:27242929
Grimm, Alexandra; Meyer, Heiko; Nickel, Marcel D; Nittka, Mathias; Raithel, Esther; Chaudry, Oliver; Friedberger, Andreas; Uder, Michael; Kemmler, Wolfgang; Quick, Harald H; Engelke, Klaus
2018-06-01
The purpose of this study is to evaluate and compare 2-point (2pt), 3-point (3pt), and 6-point (6pt) Dixon magnetic resonance imaging (MRI) sequences with flexible echo times (TE) to measure proton density fat fraction (PDFF) within muscles. Two subject groups were recruited (G1: 23 young and healthy men, 31 ± 6 years; G2: 50 elderly men, sarcopenic, 77 ± 5 years). A 3-T MRI system was used to perform Dixon imaging on the left thigh. PDFF was measured with six Dixon prototype sequences: 2pt, 3pt, and 6pt sequences once with optimal TEs (in- and opposed-phase echo times), lower resolution, and higher bandwidth (optTE sequences) and once with higher image resolution (highRes sequences) and shortest possible TE, respectively. Intra-fascia PDFF content was determined. To evaluate the comparability among the sequences, Bland-Altman analysis was performed. The highRes 6pt Dixon sequences served as reference as a high correlation of this sequence to magnetic resonance spectroscopy has been shown before. The PDFF difference between the highRes 6pt Dixon sequence and the optTE 6pt, both 3pt, and the optTE 2pt was low (between 2.2% and 4.4%), however, not to the highRes 2pt Dixon sequence (33%). For the optTE sequences, difference decreased with the number of echoes used. In conclusion, for Dixon sequences with more than two echoes, the fat fraction measurement was reliable with arbitrary echo times, while for 2pt Dixon sequences, it was reliable with dedicated in- and opposed-phase echo timing. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winnerl, Andrea, E-mail: andrea.winnerl@wsi.tum.de; Pereira, Rui N.; Stutzmann, Martin
2015-10-21
In this work, we use GaN with different deposited Pt nanostructures as a controllable model system to investigate the kinetics of photo-generated charge carriers in hybrid photocatalysts. We combine conductance and contact potential difference measurements to investigate the influence of Pt on the processes involved in the capture and decay of photo-generated charge carriers at and close to the GaN surface. We found that in the presence of Pt nanostructures the photo-excitation processes are similar to those found in Pt free GaN. However, in GaN with Pt nanostructures, photo-generated holes are preferentially trapped in surface states of the GaN coveredmore » with Pt and/or in electronic states of the Pt and lead to an accumulation of positive charge there, whereas negative charge is accumulated in localized states in a shallow defect band of the GaN covered with Pt. This preferential accumulation of photo-generated electrons close to the surface is responsible for a dramatic acceleration of the turn-off charge transfer kinetics and a stronger dependence of the surface photovoltage on light intensity when compared to a Pt free GaN surface. Our study shows that in hybrid photocatalysts, the metal nanostructures induce a spatially inhomogeneous surface band bending of the semiconductor that promotes a lateral drift of photogenerated charges towards the catalytic nanostructures.« less
3D Analysis of Fuel Cell Electrocatalyst Degradation on Alternate Carbon Supports.
Sneed, Brian T; Cullen, David A; Reeves, Kimberly S; Dyck, Ondrej E; Langlois, David A; Mukundan, Rangachary; Borup, Rodney L; More, Karren L
2017-09-06
Understanding the mechanisms associated with Pt/C electrocatalyst degradation in proton exchange membrane fuel cell (PEMFC) cathodes is critical for the future development of higher-performing materials; however, there is a lack of information regarding Pt coarsening under PEMFC operating conditions within the cathode catalyst layer. We report a direct and quantitative 3D study of Pt dispersions on carbon supports (high surface area carbon (HSAC), Vulcan XC-72, and graphitized carbon) with varied surface areas, graphitic character, and Pt loadings ranging from 5 to 40 wt %. This is accomplished both before and after catalyst-cycling accelerated stress tests (ASTs) through observations of the cathode catalyst layer of membrane electrode assemblies. Electron tomography results show Pt nanoparticle agglomeration occurs predominantly at junctions and edges of aggregated graphitized carbon particles, leading to poor Pt dispersion in the as-prepared catalysts and increased coalescence during ASTs. Tomographic reconstructions of Pt/HSAC show much better initial Pt dispersions, less agglomeration, and less coarsening during ASTs in the cathode. However, a large loss of the electrochemically active surface area (ECSA) is still observed and is attributed to accelerated Pt dissolution and nanoparticle coalescence. Furthermore, a strong correlation between Pt particle/agglomerate size and measured ECSA is established and is proposed as a more useful metric than average crystallite size in predicting degradation behavior across different catalyst systems.
NASA Astrophysics Data System (ADS)
Xie, Shijun; Li, Fuhua; Zhang, Xiaojun; Zhang, Jiquan; Xiang, Jianhai
2017-11-01
The peritrophic membrane plays an important role in the defense system of the arthropod gut. The digestive tract is considered one of the major tissues targeted by white spot syndrome virus (WSSV) in shrimp. In this study, the nucleotide sequence encoding peritrophin-like protein of Litopenaeus vannamei (LvPT) was amplified from a yeast two-hybrid library of L. vannamei. The epitope peptide of LvPT was predicted with the GenScript OptimumAntigen™ design tool. An anti-LvPT polyclonal antibody was produced and shown to specifically bind a band at 27 kDa, identified as LvPT. The LvPT protein was expressed and its concentration determined. LvPT dsRNA (4 μg per shrimp) was used to inhibit LvPT expression in shrimp, and a WSSV challenge experiment was then performed with reverse gavage. The pleopods, stomachs, and guts were collected from the shrimp at 0, 24, 48, and 72 h post-infection (hpi). Viral load quantification showed that the levels of WSSV were significantly lower in the pleopods, stomachs, and guts of shrimp after LvPT dsRNA interference than in those of the controls at 48 and 72 hpi. Our results imply that LvPT plays an important role during WSSV infection of the digestive tract.
3D Analysis of Fuel Cell Electrocatalyst Degradation on Alternate Carbon Supports
Sneed, Brian T.; Cullen, David A.; Reeves, Kimberly S.; ...
2017-08-15
Understanding the mechanisms associated with Pt/C electrocatalyst degradation in proton exchange membrane fuel cell (PEMFC) cathodes is critical for the future development of higher-performing materials; however, there is a lack of information regarding Pt coarsening under PEMFC operating conditions within the cathode catalyst layer. We report a direct and quantitative 3D study of Pt dispersions on carbon supports (high surface area carbon (HSAC), Vulcan XC-72, and graphitized carbon) with varied surface areas, graphitic character, and Pt loadings ranging from 5 to 40 wt %. This is accomplished both before and after catalyst-cycling accelerated stress tests (ASTs) through observations of themore » cathode catalyst layer of membrane electrode assemblies. Electron tomography results show Pt nanoparticle agglomeration occurs predominantly at junctions and edges of aggregated graphitized carbon particles, leading to poor Pt dispersion in the as-prepared catalysts and increased coalescence during ASTs. Tomographic reconstructions of Pt/HSAC show much better initial Pt dispersions, less agglomeration, and less coarsening during ASTs in the cathode. However, a large loss of the electrochemically active surface area (ECSA) is still observed and is attributed to accelerated Pt dissolution and nanoparticle coalescence. Moreover, a strong correlation between Pt particle/agglomerate size and measured ECSA is established and is proposed as a more useful metric than average crystallite size in predicting degradation behavior across different catalyst systems.« less
Ta-Pt Alloys as Gate Materials for Metal-Oxide-Semiconductor Field Effect Transistor Application
NASA Astrophysics Data System (ADS)
Huang, Chih-Feng; Tsui, Bing-Yue
2009-03-01
In this work we explore the thermal stability of sputter-deposited Ta-rich Ta-Pt alloys. The effects of group III and V impurities on their work function are also investigated. The Ta content ranges from 65 to 82 at. %. The main phase is σ Ta-Pt. The binding energies of core-level electrons of Ta and Pt are changed due to the intermixing of Ta and Pt, which is evidence that the work function of alloys is changed in metallic alloy systems. Binding energies are thermally stable up to 800 °C. Moreover, the incorporation of Pt in Ta film induces poor crystallization and a compound phase of Ta-Pt alloys. Transmission electron microscopy analysis confirmed the absence of a clear grain boundary in Ta-Pt alloys. The Ta and Pt depth profile shows uniformity in depth after 800 °C annealing for 30 min. The diffusion and distribution of impurities in the alloys were studied by secondary ion mass spectroscopy. Arsenic cannot diffuse in the alloys following annealing at 800 °C for 30 s. In contrast, boron can easily diffuse at 800 °C. The incorporation of impurities with a dosage of 5 ×1015 cm-2 in 60 nm Ta-Pt alloy by implantation did not significantly change the flat-band voltage following annealing at 800 °C.
3D Analysis of Fuel Cell Electrocatalyst Degradation on Alternate Carbon Supports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sneed, Brian T.; Cullen, David A.; Reeves, Kimberly S.
Understanding the mechanisms associated with Pt/C electrocatalyst degradation in proton exchange membrane fuel cell (PEMFC) cathodes is critical for the future development of higher-performing materials; however, there is a lack of information regarding Pt coarsening under PEMFC operating conditions within the cathode catalyst layer. We report a direct and quantitative 3D study of Pt dispersions on carbon supports (high surface area carbon (HSAC), Vulcan XC-72, and graphitized carbon) with varied surface areas, graphitic character, and Pt loadings ranging from 5 to 40 wt %. This is accomplished both before and after catalyst-cycling accelerated stress tests (ASTs) through observations of themore » cathode catalyst layer of membrane electrode assemblies. Electron tomography results show Pt nanoparticle agglomeration occurs predominantly at junctions and edges of aggregated graphitized carbon particles, leading to poor Pt dispersion in the as-prepared catalysts and increased coalescence during ASTs. Tomographic reconstructions of Pt/HSAC show much better initial Pt dispersions, less agglomeration, and less coarsening during ASTs in the cathode. However, a large loss of the electrochemically active surface area (ECSA) is still observed and is attributed to accelerated Pt dissolution and nanoparticle coalescence. Moreover, a strong correlation between Pt particle/agglomerate size and measured ECSA is established and is proposed as a more useful metric than average crystallite size in predicting degradation behavior across different catalyst systems.« less
Aluri, Geetha S; Motayed, Abhishek; Davydov, Albert V; Oleshko, Vladimir P; Bertness, Kris A; Sanford, Norman A; Mulpuri, Rao V
2012-05-04
We demonstrate a new method for tailoring the selectivity of chemical sensors using semiconductor nanowires (NWs) decorated with metal and metal oxide multicomponent nanoclusters (NCs). Here we present the change of selectivity of titanium dioxide (TiO(2)) nanocluster-coated gallium nitride (GaN) nanowire sensor devices on the addition of platinum (Pt) nanoclusters. The hybrid sensor devices were developed by fabricating two-terminal devices using individual GaN NWs followed by the deposition of TiO(2) and/or Pt nanoclusters (NCs) using the sputtering technique. This paper present the sensing characteristics of GaN/(TiO(2)-Pt) nanowire-nanocluster (NWNC) hybrids and GaN/(Pt) NWNC hybrids, and compare their selectivity with that of the previously reported GaN/TiO(2) sensors. The GaN/TiO(2) NWNC hybrids showed remarkable selectivity to benzene and related aromatic compounds, with no measurable response for other analytes. Addition of Pt NCs to GaN/TiO(2) sensors dramatically altered their sensing behavior, making them sensitive only to methanol, ethanol and hydrogen, but not to any other chemicals we tested. The GaN/(TiO(2)-Pt) hybrids were able to detect ethanol and methanol concentrations as low as 100 nmol mol(-1) (ppb) in air in approximately 100 s, and hydrogen concentrations from 1 µmol mol(-1) (ppm) to 1% in nitrogen in less than 60 s. However, GaN/Pt NWNC hybrids showed limited sensitivity only towards hydrogen and not towards any alcohols. All these hybrid sensors worked at room temperature and are photomodulated, i.e. they responded to analytes only in the presence of ultraviolet (UV) light. We propose a qualitative explanation based on the heat of adsorption, ionization energy and solvent polarity to explain the observed selectivity of the different hybrids. These results are significant from the standpoint of applications requiring room-temperature hydrogen sensing and sensitive alcohol monitoring. These results demonstrate the tremendous potential for tailoring the selectivity of the hybrid nanosensors for a multitude of environmental and industrial sensing applications.
A Silicon Carbide Wireless Temperature Sensing System for High Temperature Applications
Yang, Jie
2013-01-01
In this article, an extreme environment-capable temperature sensing system based on state-of-art silicon carbide (SiC) wireless electronics is presented. In conjunction with a Pt-Pb thermocouple, the SiC wireless sensor suite is operable at 450 °C while under centrifugal load greater than 1,000 g. This SiC wireless temperature sensing system is designed to be non-intrusively embedded inside the gas turbine generators, acquiring the temperature information of critical components such as turbine blades, and wirelessly transmitting the information to the receiver located outside the turbine engine. A prototype system was developed and verified up to 450 °C through high temperature lab testing. The combination of the extreme temperature SiC wireless telemetry technology and integrated harsh environment sensors will allow for condition-based in-situ maintenance of power generators and aircraft turbines in field operation, and can be applied in many other industries requiring extreme environment monitoring and maintenance. PMID:23377189
Ma, Jiwei; Habrioux, Aurélien; Morais, Cláudia; Alonso-Vante, Nicolas
2014-07-21
We reported herein on the use of tolerant cathode catalysts such as carbon supported Pt(x)Ti(y) and/or Pt(x)Se(y) nanomaterials in an air-breathing methanol microfluidic fuel cell. In order to show the improvement of mixed-reactant fuel cell (MRFC) performances obtained with the developed tolerant catalysts, a classical Pt/C nanomaterial was used for comparison. Using 5 M methanol concentration in a situation where the fuel crossover is 100% (MRFC-mixed reactant fuel cell application), the maximum power density of the fuel cell with a Pt/C cathodic catalyst decreased by 80% in comparison with what is observed in the laminar flow fuel cell (LFFC) configuration. With Pt(x)Ti(y)/C and Pt(x)Se(y)/C cathode nanomaterials, the performance loss was only 55% and 20%, respectively. The evaluation of the tolerant cathode catalysts in an air-breathing microfluidic fuel cell suggests the development of a novel nanometric system that will not be size restricted. These interesting results are the consequence of the high methanol tolerance of these advanced electrocatalysts via surface electronic modification of Pt. Herein we used X-ray photoelectron and in situ FTIR spectroscopies to investigate the origin of the high methanol tolerance on modified Pt catalysts.
Structure Determination of Au on Pt(111) Surface: LEED, STM and DFT Study
Krupski, Katarzyna; Moors, Marco; Jóźwik, Paweł; Kobiela, Tomasz; Krupski, Aleksander
2015-01-01
Low-energy electron diffraction (LEED), scanning tunneling microscopy (STM) and density functional theory (DFT) calculations have been used to investigate the atomic and electronic structure of gold deposited (between 0.8 and 1.0 monolayer) on the Pt(111) face in ultrahigh vacuum at room temperature. The analysis of LEED and STM measurements indicates two-dimensional growth of the first Au monolayer. Change of the measured surface lattice constant equal to 2.80 Å after Au adsorption was not observed. Based on DFT, the distance between the nearest atoms in the case of bare Pt(111) and Au/Pt(111) surface is equal to 2.83 Å, which gives 1% difference in comparison with STM values. The first and second interlayer spacing of the clean Pt(111) surface are expanded by +0.87% and contracted by −0.43%, respectively. The adsorption energy of the Au atom on the Pt(111) surface is dependent on the adsorption position, and there is a preference for a hollow fcc site. For the Au/Pt(111) surface, the top interlayer spacing is expanded by +2.16% with respect to the ideal bulk value. Changes in the electronic properties of the Au/Pt(111) system below the Fermi level connected to the interaction of Au atoms with Pt(111) surface are observed.
Development of a spectro-electrochemical cell for soft X-ray photon-in photon-out spectroscopy
NASA Astrophysics Data System (ADS)
Ishihara, Tomoko; Tokushima, Takashi; Horikawa, Yuka; Kato, Masaru; Yagi, Ichizo
2017-10-01
We developed a spectro-electrochemical cell for X-ray absorption and X-ray emission spectroscopy, which are element-specific methods to study local electronic structures in the soft X-ray region. In the usual electrochemical measurement setup, the electrode is placed in solution, and the surface/interface region of the electrode is not normally accessible by soft X-rays that have low penetration depth in liquids. To realize soft X-ray observation of electrochemical reactions, a 15-nm-thick Pt layer was deposited on a 150-nm-thick film window with an adhesive 3-nm-thick Ti layer for use as both the working electrode and the separator window between vacuum and a sample liquid under atmospheric pressure. The designed three-electrode electrochemical cell consists of a Pt film on a SiC window, a platinized Pt wire, and a commercial Ag|AgCl electrode as the working, counter, and reference electrodes, respectively. The functionality of the cell was tested by cyclic voltammetry and X-ray absorption and emission spectroscopy. As a demonstration, the electroplating of Pb on the Pt/SiC membrane window was measured by X-ray absorption and real-time monitoring of fluorescence intensity at the O 1s excitation.
NASA Astrophysics Data System (ADS)
Olu, Pierre-Yves; Deschamps, Fabien; Caldarella, Giuseppe; Chatenet, Marian; Job, Nathalie
2015-11-01
Platinum and palladium are investigated as anodic catalysts for direct borohydride and direct ammonia borane fuel cells (DBFC and DABFC). Half-cell characterizations performed at 25 °C using NH3BH3 or NaBH4 alkaline electrolytes demonstrate the lowest open-circuit potential and highest electrocatalytic activity for the NH3BH3 alkaline electrolyte for Pd and Pt rotating disk electrodes, respectively. Voltammograms performed in fuel cell configuration at 25 °C confirm this trend: the highest open circuit voltage (1.05 V) and peak power density (181 mW·cm-2) are monitored for DABFC using Pd/C and Pt/C anodes, respectively. Increasing the temperature heightens the peak power density (that reaches 420 mW·cm-2 at 60 °C for DBFC using Pt/C anodes), but strongly generates gas from the fuel hydrolysis, hindering the overall fuel cells performances. The anode texture strongly influences the fuel cell performances, highlighting: (i) that an open anode texture is required to efficiently circulate the anolyte and (ii) the difficulty to compare potential anodic catalysts characterized using different fuel cell setups within the literature. Furthermore, TEM imaging of Pt/C and Pd/C catalysts prior/post DBFC and DABFC operation shows fast degradation of the carbon-supported nanoparticles.
Nguyen, Shon; Ramos, Artur; Chang, Joy; Li, Bin; Shanmugam, Vedapuri; Boeras, Debrah; Nkengasong, John N; Yang, Chunfu; Ellenberger, Dennis
2015-04-01
HIV-1 viral load (VL) levels are used for monitoring disease progression and antiretroviral therapy outcomes in HIV-infected patients. To assess the performance of laboratories conducting HIV-1 VL testing in resource-limited settings, the U.S. Centers for Disease Control and Prevention implemented a voluntary, free-of-charge, external quality assurance program using dried tube specimens (DTSs). Between 2010 and 2012, DTS proficiency testing (PT) panels consisting of 5 specimens were distributed at ambient temperature to participants. The results from the participants (n≥6) using the same assay were grouped, analyzed, and graded as acceptable within a group mean±3 standard deviations. Mean proficiency scores were calculated by dividing the combined PT scores by the number of testing cycles using a linear regression model. Between 2010 and 2012, the number of participants enrolled increased from 32 in 16 countries to 114 in 44 countries. A total of 78.2% of the participants reported results using 10 different VL assays. The rates of reporting of acceptable results by the participants were 96.6% for the Abbott assay, 96.3% for the Roche Cobas assay, 94.5% for the Roche Amplicor assay, 93.0% for the Biocentric assay, and 89.3% for the NucliSens assay. The overall mean proficiency scores improved over time (P=0.024). DTSs are a good alternative specimen type to plasma specimens for VL PT programs, as they do not require cold chain transportation and can be used on PCR-based assays. Our data suggest that the CDC HIV-1 VL PT program using DTSs positively impacts the testing performance of the participants, which might translate into better and more accurate VL testing services for patients. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
PT -symmetric gain and loss in a rotating Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Haag, Daniel; Dast, Dennis; Cartarius, Holger; Wunner, Günter
2018-03-01
PT -symmetric quantum mechanics allows finding stationary states in mean-field systems with balanced gain and loss of particles. In this work we apply this method to rotating Bose-Einstein condensates with contact interaction which are known to support ground states with vortices. Due to the particle exchange with the environment transport phenomena through ultracold gases with vortices can be studied. We find that even strongly interacting rotating systems support stable PT -symmetric ground states, sustaining a current parallel and perpendicular to the vortex cores. The vortices move through the nonuniform particle density and leave or enter the condensate through its borders creating the required net current.
Large spin-orbit torques in Pt/Co-Ni/W heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Jiawei; Qiu, Xuepeng; Legrand, William
2016-07-25
The spin orbit torques (SOTs) in perpendicularly magnetized Co-Ni multilayers sandwiched between two heavy metals (HM) have been studied. By exploring various HM materials, we show an efficient enhancement or cancellation of the total SOT, depending on the combination of the two HM materials. The maximum SOT effective field is obtained in Pt/Co-Ni/W heterostructures. We also model our double HM system and show that the effective spin Hall angle has a peak value at certain HM thicknesses. Measuring the SOT in Pt/Co-Ni/W for various W thicknesses confirms an effective spin Hall angle up to 0.45 in our double HM system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lingerfelt, David B.; Lestrange, Patrick J.; Radler, Joseph J.
Materials and molecular systems exhibiting long-lived electronic coherence can facilitate coherent transport, opening the door to efficient charge and energy transport beyond traditional methods. Recently, signatures of a possible coherent, recurrent electronic motion were identified in femtosecond pump-probe spectroscopy experiments on a binuclear platinum complex, where a persistent periodic beating in the transient absorption signal’s anisotropy was observed. In this study, we investigate the excitonic dynamics that underlie the suspected electronic coherence for a series of binuclear platinum complexes exhibiting a range of interplatinum distances. Results suggest that the long-lived coherence can only result when competitive electronic couplings are inmore » balance. At longer Pt-Pt distances, the electronic couplings between the two halves of the binuclear system weaken, and exciton localization and recombination is favored on short time scales. For short Pt-Pt distances, electronic couplings between the states in the coherent superposition are stronger than the coupling with other excitonic states, leading to long-lived coherence.« less
Ravell, Estefanía; Jalife, Said; Barroso, Jorge; Orozco-Ic, Mesías; Hernández-Juárez, Gerardo; Ortiz-Chi, Filiberto; Pan, Sudip; Cabellos, José Luis; Merino, Gabriel
2018-03-24
The structure, bonding, and stability of clusters with the empirical formula CE 5 - (E=Al-Tl) have been analyzed by means of high-level computations. The results indicate that, whereas aluminum and gallium clusters have C 2v structures with a planar tetracoordinate carbon (ptC), their heavier homologues prefer three-dimensional C 4v forms with a pentacoordinate carbon center over the ptC one. The reason for such a preference is a delicate balance between the interaction energy of the fifth E atom with CE 4 and the distortion energy. Moreover, bonding analysis shows that the ptC systems can be better described as CE 4 - , with 17-valence electrons interacting with E. The ptC core in these systems exhibits double aromatic (both σ and π) behavior, but the σ contribution is dominating. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characterizing heterogeneous dynamics at hydrated electrode surfaces.
Willard, Adam P; Limmer, David T; Madden, Paul A; Chandler, David
2013-05-14
In models of Pt 111 and Pt 100 surfaces in water, motions of molecules in the first hydration layer are spatially and temporally correlated. To interpret these collective motions, we apply quantitative measures of dynamic heterogeneity that are standard tools for considering glassy systems. Specifically, we carry out an analysis in terms of mobility fields and distributions of persistence times and exchange times. In so doing, we show that dynamics in these systems is facilitated by transient disorder in frustrated two-dimensional hydrogen bonding networks. The frustration is the result of unfavorable geometry imposed by strong metal-water bonding. The geometry depends upon the structure of the underlying metal surface. Dynamic heterogeneity of water on the Pt 111 surface is therefore qualitatively different than that for water on the Pt 100 surface. In both cases, statistics of this ad-layer dynamic heterogeneity responds asymmetrically to applied voltage.
Characterizing heterogeneous dynamics at hydrated electrode surfaces
NASA Astrophysics Data System (ADS)
Willard, Adam P.; Limmer, David T.; Madden, Paul A.; Chandler, David
2013-05-01
In models of Pt 111 and Pt 100 surfaces in water, motions of molecules in the first hydration layer are spatially and temporally correlated. To interpret these collective motions, we apply quantitative measures of dynamic heterogeneity that are standard tools for considering glassy systems. Specifically, we carry out an analysis in terms of mobility fields and distributions of persistence times and exchange times. In so doing, we show that dynamics in these systems is facilitated by transient disorder in frustrated two-dimensional hydrogen bonding networks. The frustration is the result of unfavorable geometry imposed by strong metal-water bonding. The geometry depends upon the structure of the underlying metal surface. Dynamic heterogeneity of water on the Pt 111 surface is therefore qualitatively different than that for water on the Pt 100 surface. In both cases, statistics of this ad-layer dynamic heterogeneity responds asymmetrically to applied voltage.
Optomechanically-induced transparency in parity-time-symmetric microresonators
Jing, H.; Özdemir, Şahin K.; Geng, Z.; Zhang, Jing; Lü, Xin-You; Peng, Bo; Yang, Lan; Nori, Franco
2015-01-01
Optomechanically-induced transparency (OMIT) and the associated slowing of light provide the basis for storing photons in nanoscale devices. Here we study OMIT in parity-time (PT)-symmetric microresonators with a tunable gain-to-loss ratio. This system features a sideband-reversed, non-amplifying transparency , i.e., an inverted-OMIT. When the gain-to-loss ratio is varied, the system exhibits a transition from a PT-symmetric phase to a broken-PT-symmetric phase. This PT-phase transition results in the reversal of the pump and gain dependence of the transmission rates. Moreover, we show that by tuning the pump power at a fixed gain-to-loss ratio, or the gain-to-loss ratio at a fixed pump power, one can switch from slow to fast light and vice versa. These findings provide new tools for controlling light propagation using nanofabricated phononic devices. PMID:26169253
NASA Astrophysics Data System (ADS)
Shin, Weon Sup; Han, Jiyou; Kumar, Rajesh; Lee, Gyung Gyu; Sessler, Jonathan L.; Kim, Jong-Hoon; Kim, Jong Seung
2016-07-01
We report here a tumor-targeting masked phototherapeutic agent 1 (PT-1). This system contains SN-38—a prodrug of the topoisomerase I inhibitor irinotecan. Topoisomerase I is a vital enzyme that controls DNA topology during replication, transcription, and recombination. An elevated level of topoisomerase I is found in many carcinomas, making it an attractive target for the development of effective anticancer drugs. In addition, PT-1 contains both a photo-triggered moiety (nitrovanillin) and a cancer targeting unit (biotin). Upon light activation in cancer cells, PT-1 interferes with DNA re-ligation, diminishes the expression of topoisomerase I, and enhances the expression of inter alia mitochondrial apoptotic genes, death receptors, and caspase enzymes, inducing DNA damage and eventually leading to apoptosis. In vitro and in vivo studies showed significant inhibition of cancer growth and the hybrid system PT-1 thus shows promise as a programmed photo-therapeutic (“phototheranostic”).
NASA Astrophysics Data System (ADS)
Yildiz, A. K.; Celik, F. A.
2017-04-01
The solidification process of Platinum-Rhodium alloy from liquid phase to solid state is investigated at the nano-scale by using Molecular Dynamics Simulation (MDS) for different atomic concentration ratios of Pt. The critical nucleus radius, the bond order parameter, interfacial free energies and total energy based on nucleation theory of the alloy are examined with respect to the temperature changes. The heat of fusion from high temperatures to low temperatures during solidification of the alloy system is determined from molecular dynamics simulation. The structural development is determined from the radial distribution function. It is observed from the results that the melting point of the alloy system decreases with increasing concentration of Pt and that variation of Pt ratio in the alloy shows a remarkable effect on solidification to understand the cooling process of thermal effects.
NASA Astrophysics Data System (ADS)
Xiao, R. C.; Cheung, C. H.; Gong, P. L.; Lu, W. J.; Si, J. G.; Sun, Y. P.
2018-06-01
k paths exactly with symmetry allow to find triply degenerate points (TDPs) in band structures. The paths that host the type-II Dirac points in PtSe2 family materials also have the spatial symmetry. However, due to Kramers degeneracy (the systems have both inversion symmetry and time reversal symmetry), the crossing points in them are Dirac ones. In this work, based on symmetry analysis, first-principles calculations, and method, we predict that PtSe2 family materials should undergo topological transitions if the inversion symmetry is broken, i.e. the Dirac fermions in PtSe2 family materials split into TDPs in PtSeTe family materials (PtSSe, PtSeTe, and PdSeTe) with orderly arranged S/Se (Se/Te). It is different from the case in high-energy physics that breaking inversion symmetry I leads to the splitting of Dirac fermion into Weyl fermions. We also address a possible method to achieve the orderly arranged in PtSeTe family materials in experiments. Our study provides a real example that Dirac points transform into TDPs, and is helpful to investigate the topological transition between Dirac fermions and TDP fermions.
Qi, Zhiyuan; Xiao, Chaoxian; Liu, Cong; ...
2017-03-08
Atomically ordered intermetallic nanoparticles (iNPs) have sparked considerable interest in fuel cell applications by virtue of their exceptional electronic and structural properties. However, the synthesis of small iNPs in a controllable manner remains a formidable challenge because of the high temperature generally required in the formation of intermetallic phases. Here in this paper we report a general method for the synthesis of PtZn iNPs (3.2 ± 0.4 nm) on multiwalled carbon nanotubes (MWNT) via a facile and capping agent free strategy using a sacrificial mesoporous silica (mSiO 2) shell. The as-prepared PtZn iNPs exhibited ca. 10 times higher mass activitymore » in both acidic and basic solution toward the methanol oxidation reaction (MOR) compared to larger PtZn iNPs synthesized on MWNT without the mSiO 2 shell. Density functional theory (DFT) calculations predict that PtZn systems go through a “non-CO” pathway for MOR because of the stabilization of the OH* intermediate by Zn atoms, while a pure Pt system forms highly stable COH* and CO* intermediates, leading to catalyst deactivation. Experimental studies on the origin of the backward oxidation peak of MOR coincide well with DFT predictions. Moreover, the calculations demonstrate that MOR on smaller PtZn iNPs is energetically more favorable than larger iNPs, due to their high density of corner sites and lower-lying energetic pathway. Therefore, smaller PtZn iNPs not only increase the number but also enhance the activity of the active sites in MOR compared with larger ones. This work opens a new avenue for the synthesis of small iNPs with more undercoordinated and enhanced active sites for fuel cell applications.« less
Investigation of the annealing temperature dependence of the spin pumping in Co20Fe60B20/Pt systems
NASA Astrophysics Data System (ADS)
Belmeguenai, M.; Aitoukaci, K.; Zighem, F.; Gabor, M. S.; Petrisor, T.; Mos, R. B.; Tiusan, C.
2018-03-01
Co20Fe60B20/Pt systems with variable thicknesses of Co20Fe60B20 and of Pt have been sputtered and then annealed at various temperatures (Ta) up to 300 °C. Microstrip line ferromagnetic resonance (MS-FMR) has been used to investigate Co20Fe60B20 and Pt thickness dependencies of the magnetic damping enhancement due to the spin pumping. Using diffusion and ballistic models for spin pumping, the spin mixing conductance and the spin diffusion length have been deduced from the Co20Fe60B20 and the Pt thickness dependencies of the Gilbert damping parameter α of the Co20Fe60B20/Pt heterostructures, respectively. Within the ballistic simple model, both the spin mixing conductance at the CoFeB/Pt interface and the spin-diffusion length of Pt increase with the increasing annealing temperature and show a strong enhancement at 300 °C annealing temperature. In contrast, the spin mixing conductance, which increases with Ta, shows a different trend to the spin diffusion length when using the diffusion model. Moreover, MS-FMR measurements revealed that the effective magnetization varies linearly with the Co20Fe60B20 inverse thickness due to the perpendicular interface anisotropy, which is found to decrease as the annealing temperature increases. It also revealed that the angular dependence of the resonance field is governed by small uniaxial anisotropy which is found to vary linearly with the Co20Fe60B20 inverse thickness of the annealed films, in contrast to that of the as grown ones.
Bender, Carl M; DeKieviet, Maarten; Klevansky, S P
2013-04-28
PT-symmetric quantum mechanics (PTQM) has become a hot area of research and investigation. Since its beginnings in 1998, there have been over 1000 published papers and more than 15 international conferences entirely devoted to this research topic. Originally, PTQM was studied at a highly mathematical level and the techniques of complex variables, asymptotics, differential equations and perturbation theory were used to understand the subtleties associated with the analytic continuation of eigenvalue problems. However, as experiments on PT-symmetric physical systems have been performed, a simple and beautiful physical picture has emerged, and a PT-symmetric system can be understood as one that has a balanced loss and gain. Furthermore, the PT phase transition can now be understood intuitively without resorting to sophisticated mathematics. Research on PTQM is following two different paths: at a fundamental level, physicists are attempting to understand the underlying mathematical structure of these theories with the long-range objective of applying the techniques of PTQM to understanding some of the outstanding problems in physics today, such as the nature of the Higgs particle, the properties of dark matter, the matter-antimatter asymmetry in the universe, neutrino oscillations and the cosmological constant; at an applied level, new kinds of PT-synthetic materials are being developed, and the PT phase transition is being observed in many physical contexts, such as lasers, optical wave guides, microwave cavities, superconducting wires and electronic circuits. The purpose of this Theme Issue is to acquaint the reader with the latest developments in PTQM. The articles in this volume are written in the style of mini-reviews and address diverse areas of the emerging and exciting new area of PT-symmetric quantum mechanics.
Natoli, Sean N; Hight, Lauren M; Zeller, Matthias; McMillin, David R
2018-06-04
This report describes the synthesis and characterization of a series of eight [Pt(NNN)X] + complexes where the tridentate NNN ligand is (2,2'-bipyrid-6-yl)(pyrid-2-yl)sulfide (btp) or methyl(2,2'-bipyrid-6-yl)(pyrid-2-yl)amine (bmap) and X is OMe, Cl, phenylethynyl (C 2 Ph), or cyclohexylethynyl (C 2 Cy). The expectation was that inserting a heteroatom into the backbone of 2,2':6',2″-terpyridine (trpy) would expand the overall intraligand bite angle, introduce ILCT character into the excited states, and improve the photophysical properties. Crystal structures of [Pt(bmap)C 2 Ph] + and [Pt(btp)Cl] + reveal that atom insertion into the trpy backbone successfully expands the bite angle of the ligand by 8-10°. However, the impact on the photophysics is minimal. Indeed, of the eight systems investigated, only the [Pt(bmap)C 2 Ph] + and [Pt(btp)C 2 Ph] + complexes display appreciable emission in fluid solution, and they exhibit shorter emission lifetimes than [Pt(trpy)C 2 Ph] + . One reason is that the bond angle preferences of platinum and the inserted heteroatom induce the six-membered rings to deviate from planarity and adopt a boat-like conformation, impairing charge delocalization within the ligand. In addition, angle strain induces the donor atoms about platinum to assume a pseudotetrahedral arrangement, which offsets any benefit due to the increase in overall bite angle by promoting deactivation via d-d excited states. The results reveal that, in order to improve the luminescence of a [Pt(NNN)X] + system, one must take care to avoid trading one kind of angle strain for another.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Zhiyuan; Xiao, Chaoxian; Liu, Cong
2017-03-22
Atomically ordered intermetallic nanoparticles (iNPs) have sparked considerable interest in fuel cell applications by virtue of their exceptional electronic and structural properties. However, the synthesis of small iNPs in a controllable manner remains a formidable challenge because of the high temperature generally required in the formation of intermetallic phases. Here we report a general method for the synthesis of PtZn. iNPs (3.2 +/- 0.4 nm) on multiwalled carbon nanotubes (MWNT) via a facile and capping agent free strategy using a sacrificial mesoporous silica (mSiO(2)) shell. The as-prepared PtZn iNPs exhibited ca. 10 times higher mass activity in both acidic andmore » basic solution toward the methanol oxidation reaction (MOR) compared to larger PtZn iNPs synthesized on MWNT without the mSiO2 shell. Density functional theory (DFT) calculations predict that PtZn systems go through a "non-CO" pathway for MOR because of the stabilization of the OH* intermediate by Zn atoms, while a pure Pt system forms highly stable COH* and CO* intermediates, leading to catalyst deactivation. Experimental studies on the origin of the backward oxidation peak of MOR coincide well with DFT predictions. Moreover, the calculations demonstrate that MOR on smaller PtZn iNPs is energetically more favorable than larger iNPs, due to their high density of corner sites and lower-lying energetic pathway. Therefore, smaller PtZn iNPs not only increase the number but also enhance the activity of the active sites in MOR compared with larger ones. This work opens a new avenue for the synthesis of small iNPs with more undercoordinated and enhanced active sites for fuel cell applications.« less
40 CFR Appendix A to Part 75 - Specifications and Test Procedures
Code of Federal Regulations, 2012 CFR
2012-07-01
... appendix. RE = Expected average design removal efficiency of control equipment (%). 2.1.1.3Span Value(s... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Specifications and Test Procedures A... (CONTINUED) CONTINUOUS EMISSION MONITORING Pt. 75, App. A Appendix A to Part 75—Specifications and Test...
40 CFR Appendix A to Part 75 - Specifications and Test Procedures
Code of Federal Regulations, 2013 CFR
2013-07-01
... appendix. RE = Expected average design removal efficiency of control equipment (%). 2.1.1.3Span Value(s... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Specifications and Test Procedures A... (CONTINUED) CONTINUOUS EMISSION MONITORING Pt. 75, App. A Appendix A to Part 75—Specifications and Test...
Stanger, Catherine; Ryan, Stacy R.; Fu, Hongyun; Budney, Alan J.
2011-01-01
Background Children of substance abusers are at risk for behavioral/emotional problems. To improve outcomes for these children, we developed and tested an intervention that integrated a novel contingency management (CM) program designed to enhance compliance with an empirically-validated parent training curriculum. CM provided incentives for daily monitoring of parenting and child behavior, completion of home practice assignments, and session attendance. Methods Forty-seven mothers with substance abuse or dependence were randomly assigned to parent training + incentives (PTI) or parent training without incentives (PT). Children were 55% male, ages 2-7 years. Results Homework completion and session attendance did not differ between PTI and PT mothers, but PTI mothers had higher rates of daily monitoring. PTI children had larger reductions in child externalizing problems in all models. Complier Average Causal Effects (CACE) analyses showed additional significant effects of PTI on child internalizing problems, parent problems and parenting. These effects were not significant in standard Intent-to-Treat analyses. Conclusion Results suggest our incentive program may offer a method for boosting outcomes. PMID:21466925
NASA Astrophysics Data System (ADS)
Zhu, Jun
Ru and Pt are candidate additional component for improving the high temperature properties of Ni-base superalloys. A thermodynamic description of the Ni-Al-Cr-Ru-Pt system, serving as an essential knowledge base for better alloy design and processing control, was developed in the present study by means of thermodynamic modeling coupled with experimental investigations of phase equilibria. To deal with the order/disorder transition occurring in the Ni-base superalloys, a physical sound model, Cluster/Site Approximation (CSA) was used to describe the fcc phases. The CSA offers computational advantages, without loss of accuracy, over the Cluster Variation Method (CVM) in the calculation of multicomponent phase diagrams. It has been successfully applied to fcc phases in calculating technologically important Ni-Al-Cr phase diagrams. Our effort in this study focused on the two key ternary systems: Ni-Al-Ru and Ni-Al-Pt. The CSA calculated Ni-Al-Ru ternary phase diagrams are in good agreement with the experimental results in the literature and from the current study. A thermodynamic description of quaternary Ni-Al-Cr-Ru was obtained based on the descriptions of the lower order systems and the calculated results agree with experimental data available in literature and in the current study. The Ni-Al-Pt system was thermodynamically modeled based on the limited experimental data available in the literature and obtained from the current study. With the help of the preliminary description, a number of alloy compositions were selected for further investigation. The information obtained was used to improve the current modeling. A thermodynamic description of the Ni-Al-Cr-Pt quaternary was then obtained via extrapolation from its constituent lower order systems. The thermodynamic description for Ni-base superalloy containing Al, Cr, Ru and Pt was obtained via extrapolation. It is believed to be reliable and useful to guide the alloy design and further experimental investigation.
Convergence of DNA methylation and phosphorothioation epigenetics in bacterial genomes.
Chen, Chao; Wang, Lianrong; Chen, Si; Wu, Xiaolin; Gu, Meijia; Chen, Xi; Jiang, Susu; Wang, Yunfu; Deng, Zixin; Dedon, Peter C; Chen, Shi
2017-04-25
Explosive growth in the study of microbial epigenetics has revealed a diversity of chemical structures and biological functions of DNA modifications in restriction-modification (R-M) and basic genetic processes. Here, we describe the discovery of shared consensus sequences for two seemingly unrelated DNA modification systems, 6m A methylation and phosphorothioation (PT), in which sulfur replaces a nonbridging oxygen in the DNA backbone. Mass spectrometric analysis of DNA from Escherichia coli B7A and Salmonella enterica serovar Cerro 87, strains possessing PT-based R-M genes, revealed d(G PS 6m A) dinucleotides in the G PS 6m AAC consensus representing ∼5% of the 1,100 to 1,300 PT-modified d(G PS A) motifs per genome, with 6m A arising from a yet-to-be-identified methyltransferase. To further explore PT and 6m A in another consensus sequence, G PS 6m ATC, we engineered a strain of E. coli HST04 to express Dnd genes from Hahella chejuensis KCTC2396 (PT in G PS ATC) and Dam methyltransferase from E. coli DH10B ( 6m A in G 6m ATC). Based on this model, in vitro studies revealed reduced Dam activity in G PS ATC-containing oligonucleotides whereas single-molecule real-time sequencing of HST04 DNA revealed 6m A in all 2,058 G PS ATC sites (5% of 37,698 total GATC sites). This model system also revealed temperature-sensitive restriction by DndFGH in KCTC2396 and B7A, which was exploited to discover that 6m A can substitute for PT to confer resistance to restriction by the DndFGH system. These results point to complex but unappreciated interactions between DNA modification systems and raise the possibility of coevolution of interacting systems to facilitate the function of each.
A review of tin oxide-based catalytic systems: Preparation, characterization and catalytic behavior
NASA Technical Reports Server (NTRS)
Hoflund, Gar B.
1987-01-01
This paper reviews the important aspects of the preparation, characterization and catalytic behavior of tin oxide-based catalytic systems including doped tin oxide, mixed oxides which contain tin oxide, Pt supported on tin oxide and Pt/Sn supported on alumina. These systems have a broad range of applications and are continually increasing in importance. However, due to their complex nature, much remains to be understood concerning how they function catalytically.
Formation of metastable phases during heat treatment of multilayers in the Al-Pt system
NASA Astrophysics Data System (ADS)
Lábár, János L.; Kovács, András; Barna, Péter B.; Gas, Patrick
2001-12-01
This communication reports that several metastable phases form subsequently during heat treatment (up to 500 °C) of Al-rich Al-Pt multilayers. Besides the known a(amorphous)-Al2Pt, formation of two metastable phases with a composition close to Al5Pt was also observed in a transmission electron microscope. One of them corresponds to a phase given by space group P4 in Pearson's collection of intermetallic compounds. The other, a hexagonal phase (a=12.4 Å and c=26.2 Å) is the one that was observed in rapidly solidified Al-Pt alloys [L. Ma, R. Wang, and K. H. Kuo, J. Less-Common Met. 163, 37 (1990)]. Formation of these phases under different conditions is reported here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Chi; Arvapally, Ravi K.; Tekarli, Sammer M.
The trinuclear triangle-shaped system [tris{3,5-bis(heptafluoropropyl)-1,2,4-triazolatosilver(I)}] (1) and the multi-armed square-shaped metalloporphyrin PtOEP or the free porphyrin base H2OEP serve as excellent octopus hosts (OEP=2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine). Coupling of the fluorous/organic molecular octopi 1 and H2OEP or PtOEP by strong quadrupole-quadrupole and metal- interactions affords the supramolecular assemblies [1PtOEP] or [1H(2)OEP] (2a), which feature nanoscopic cavities surrounding the upper triangular and lower square cores. The fluorous/organic biphasic configuration of [1PtOEP] leads to an increase in the phosphorescence of PtOEP under ambient conditions. Guest molecules can be included in the biphasic double-octopus assembly in three different site-selective modes.
Integrable discrete PT symmetric model.
Ablowitz, Mark J; Musslimani, Ziad H
2014-09-01
An exactly solvable discrete PT invariant nonlinear Schrödinger-like model is introduced. It is an integrable Hamiltonian system that exhibits a nontrivial nonlinear PT symmetry. A discrete one-soliton solution is constructed using a left-right Riemann-Hilbert formulation. It is shown that this pure soliton exhibits unique features such as power oscillations and singularity formation. The proposed model can be viewed as a discretization of a recently obtained integrable nonlocal nonlinear Schrödinger equation.
NASA Astrophysics Data System (ADS)
Telaga, Abdi Suryadinata; Hartanto, Indra Dwi; Audina, Debby Rizky; Prabowo, Fransiscus Dimas
2017-06-01
Environmental awareness, stringent regulation and soaring energy costs, together make energy efficiency as an important pillar for every company. Particularly, in 2020, the ministry of energy and mineral resources of Indonesia has set a target to reduce carbon emission by 26%. For that reason, companies in Indonesia have to comply with the emission target. However, there is trade-off between company's productivity and carbon emission. Therefore, the companies' productivity must be weighed against the environmental effect such as carbon emission. Nowadays, distinguish excessive energy in a company is still challenging. The company rarely has skilled person that capable to audit energy consumed in the company. Auditing energy consumption in a company is a lengthy and time consuming process. As PT Astra International (AI) have 220 affiliated companies (AFFCOs). Occasionally, direct visit to audit energy consumption in AFFCOs is inevitable. However, capability to conduct on-site energy audit was limited by the availability of PT AI energy auditors. For that reason, PT AI has developed a set of audit energy tools or Astra green energy (AGEn) tools to aid the AFFCOs auditor to be able to audit energy in their own company. Fishbone chart was developed as an analysis tool to gather root cause of audit energy problem. Following the analysis results, PT AI made an improvement by developing an AGEn web-based system. The system has capability to help AFFCOs to conduct energy audit on-site. The system was developed using prototyping methodology, object-oriented system analysis and design (OOSAD), and three-tier architecture. The implementation of system used ASP.NET, Microsoft SQL Server 2012 database, and web server IIS 8.
Tsipis, Athanassios C; Gkekas, George N
2013-02-14
The molecular and electronic structures, stabilities, bonding features, magnetotropic and spectroscopic properties of the triangular Pt(3)(μ(2)-L)(3)(L')(3) clusters and their [(μ(3)-Tl)Pt(3)(μ(2)-L)(3)(L')(3)](+) (L = CO, SnR(2), SnH(2), SiR(2), SiH(2), CH(3)CN, PH(2), C(6)F(5), SO(2) or HCN and L' = CO, PH(3), CH(3)CN, C(6)F(5), HCN) half-sandwiches have been studied by means of density functional theory (DFT) calculations. It is found that the optimized Pt-Pt intermetallic distances in the clusters are well below the sum of the van der Waals radii of the two Pt metal atoms (3.44 Å). The triangular Pt(3)(μ(2)-L)(3)(L')(3) clusters trap a thallium(I) cation forming stable "open face" half-sandwiches. The distance between Tl(I) and the centroids of the Pt(3) rings in the half-sandwiches is calculated to be within the range 2.52-2.86 Å. Energy decomposition analysis (EDA) calculations using a dispersion corrected B3LYP-D functional reveal that the interaction of Tl(I) with the Pt(3) ring in the half-sandwiches is dominated by the interplay of electrostatic and orbital interactions with a small contribution from dispersion forces as well. In addition, charge decomposition analysis (CDA) calculations indicate strong donor-acceptor interactions between Tl(I) and the rings. The estimated proton affinities (PAs) of the triangular Pt(3)(μ(2)-L)(3)(L')(3) clusters illustrate their relatively strong π-basic character. Furthermore, an excellent linear relationship between the PAs of the Pt(3)(μ(2)-L)(3)(L')(3) clusters and the bond dissociation energies (D(0)) of the [(μ(3)-Tl)Pt(3)(μ(2)-L)(3)(L')(3)](+) half-sandwiches was established. The magnetotropicity of these systems was studied by calculating the NICS(zz)-scan profiles. The spectroscopic properties of the triangular Pt(3) clusters and their TlPt(3) half-sandwiches were studied by means of TDDFT calculations. The simulated absorption spectra are dominated by strong absorption bands in the UV region. The emission band maxima of the triangular Pt(3) clusters are predicted to lie within the IR region. In order to gain insight into the phosphorescence process of these systems, we have optimized their first triplet excited state, T(1). The estimated deep HOMO energy for these compounds makes them promising candidates for use as "hole" blocking materials in LED devices. Also, it is expected to exhibit small non-radiative decay rate constants due to their relatively large S(0)-T(1) energy difference making them suitable PHOLED emitters or dopants in organic polymer matrices constituting the recombination layer of an OLED device.
Kimmel, Lara A; Holland, Anne E; Simpson, Pam M; Edwards, Elton R; Gabbe, Belinda J
2014-07-01
Early, accurate prediction of discharge destination from the acute hospital assists individual patients and the wider hospital system. The Trauma Rehabilitation and Prediction Tool (TRaPT), developed using registry data, determines probability of inpatient rehabilitation discharge for patients with isolated lower limb fractures. The aims of this study were: (1) to prospectively validatate the TRaPT, (2) to assess whether its performance could be improved by adding additional demographic data, and (3) to simplify it for use as a bedside tool. This was a cohort, measurement-focused study. Patients with isolated lower limb fractures (N=114) who were admitted to a major trauma center in Melbourne, Australia, were included. The participants' TRaPT scores were calculated from admission data. Performance of the TRaPT score alone, and in combination with frailty, weight-bearing status, and home supports, was assessed using measures of discrimination and calibration. A simplified TRaPT was developed by rounding the coefficients of variables in the original model and grouping age into 8 categories. Simplified TRaPT performance measures, including specificity, sensitivity, and positive and negative predictive values, were evaluated. Prospective validation of the TRaPT showed excellent discrimination (C-statistic=0.90 [95% confidence interval=0.82, 0.97]), a sensitivity of 80%, and specificity of 94%. All participants able to weight bear were discharged directly home. Simplified TRaPT scores had a sensitivity of 80% and a specificity of 88%. Generalizability may be limited given the compensation system that exists in Australia, but the methods used will assist in designing a similar tool in any population. The TRaPT accurately predicted discharge destination for 80% of patients and may form a useful aid for discharge decision making, with the simplified version facilitating its use as a bedside tool. © 2014 American Physical Therapy Association.
Synthesis of Platinum-nickel Nanowires and Optimization for Oxygen Reduction Performance.
Alia, Shaun M; Pivovar, Bryan S
2018-04-27
Platinum-nickel (Pt-Ni) nanowires were developed as fuel cell electrocatalysts, and were optimized for the performance and durability in the oxygen reduction reaction. Spontaneous galvanic displacement was used to deposit Pt layers onto Ni nanowire substrates. The synthesis approach produced catalysts with high specific activities and high Pt surface areas. Hydrogen annealing improved Pt and Ni mixing and specific activity. Acid leaching was used to preferentially remove Ni near the nanowire surface, and oxygen annealing was used to stabilize near-surface Ni, improving durability and minimizing Ni dissolution. These protocols detail the optimization of each post-synthesis processing step, including hydrogen annealing to 250 °C, exposure to 0.1 M nitric acid, and oxygen annealing to 175 °C. Through these steps, Pt-Ni nanowires produced increased activities more than an order of magnitude than Pt nanoparticles, while offering significant durability improvements. The presented protocols are based on Pt-Ni systems in the development of fuel cell catalysts. These techniques have also been used for a variety of metal combinations, and can be applied to develop catalysts for a number of electrochemical processes.
NASA Astrophysics Data System (ADS)
Barnes, Stephen J.; Fisher, Louise A.; Godel, Bélinda; Pearce, Mark A.; Maier, Wolfgang D.; Paterson, David; Howard, Daryl L.; Ryan, Christopher G.; Laird, Jamie S.
2016-03-01
An unusual occurrence of Pt-enriched pyroxenites in the Monts de Cristal igneous complex is characterized by unusually high ratios of Pt to other platinum-group elements (PGEs) and very low Cu and sulfide contents. Synchrotron X-ray fluorescence microscopy was used to identify over a hundred discrete grains of platinum minerals and relate their occurrence to textural associations in the host heteradcumulate orthopyroxenites. Element associations, backed up by FIB-SEM and PIXE probe observations, indicate that most of the Pt is associated with either As- or trace Cu-Ni-rich sulfides, or both. Some of the Pt-As grains can be identified as sperrylite, and most are likely to be Pt-Fe alloy. The relative abundances and volumes of Pt minerals to sulfide minerals are very large compared with typical magmatic sulfides. Almost all of the grains observed lie at or within a few tens of μm of cumulus orthopyroxene grain boundaries, and there is no significant difference between the populations of grains located inside or outside plagioclase oikocrysts. These oikocrysts are inferred to have crystallized either at the cumulus stage or very shortly thereafter, on the basis of their relationship to Ti enrichment in the margins of pyroxene grains not enclosed in oikocrysts. This relationship precludes a significant role of trapped intercumulus liquid in Pt deposition or mobilization and also allows a confident inference that Pt-rich and Pt-As-enriched phases precipitated directly from the magma at the cumulus stage. These observations lead to the conclusion that fractionation of Pt from other PGEs in this magmatic system is a consequence of a solubility limit for solid Pt metal and/or Pt arsenide.
Sinclair, Jonathan; Taylor, Paul J
2014-10-01
Musculoskeletal injuries in the lower extremities are common in military recruits. Army boots have frequently been cited as a potential mechanism behind these high injury rates. In response to this, the British Army introduced new footwear models, the PT-03 (cross-trainer) and PT1000 (running shoes), which are issued to each new recruit in an attempt to reduce the incidence of these injuries. The aim of the current investigation was to examine the kinetics and kinematic of the PT-03 and PT1000 footwear in relation to conventional army boots. Thirteen participants ran at 4.0 m·s in each footwear condition. Three-dimensional kinematics from the hip, knee, and ankle were measured using an 8-camera motion analysis system. In addition, simultaneous ground reaction forces were obtained. Kinetic parameters were obtained alongside joint kinematics and compared using repeated-measures analyses of variance. The kinetic analysis revealed that impact parameters were significantly greater when running in the army boot compared with the PT-03 and PT1000. The kinematic analysis indicated that, in comparison with the PT-03 and PT1000, running in army boots was associated with significantly greater eversion and tibial internal rotation. It was also found that when running in the PT-03 footwear, participants exhibited significantly greater hip adduction and knee abduction compared with the army boots and PT1000. The results of this study suggest that the army boots and PT-03 footwear are associated with kinetic and kinematic parameters that have been linked to the etiology of injury; thus, it is recommended that the PT1000 footwear be adopted for running exercises.
Links between dissipation and Rényi divergences in PT -symmetric quantum mechanics
NASA Astrophysics Data System (ADS)
Wei, Bo-Bo
2018-01-01
Thermodynamics and information theory have been intimately related since the times of Maxwell and Boltzmann. Recently it was shown that the dissipated work in an arbitrary nonequilibrium process is related to the Rényi divergences between two states along the forward and reversed dynamics. Here we show that the relation between dissipated work and Renyi divergences generalizes to PT -symmetric quantum mechanics with unbroken PT symmetry. In the regime of broken PT symmetry, the relation between dissipated work and Renyi divergences does not hold as the norm is not preserved during the dynamics. This finding is illustrated for an experimentally relevant system of two-coupled cavities.
Electrochemical atomic force microscopy: In situ monitoring of electrochemical processes
NASA Astrophysics Data System (ADS)
Reggente, Melania; Passeri, Daniele; Rossi, Marco; Tamburri, Emanuela; Terranova, Maria Letizia
2017-08-01
The in-situ electrodeposition of polyaniline (PANI), one of the most attractive conducting polymers (CP), has been monitored performing electrochemical atomic force microscopy (EC-AFM) experiments. The electropolymerization of PANI on a Pt working electrode has been observed performing cyclic voltammetry experiments and controlling the evolution of current flowing through the electrode surface, together with a standard AFM image. The working principle and the potentialities of this emerging technique are briefly reviewed and factors limiting the studying of the in-situ electrosynthesis of organic compounds discussed.
Cui, Zhiming; Li, Chang Ming; Jiang, San Ping
2011-09-28
A simple self-assembly approach has been developed to functionalize carbon nanotubes (CNTs) with chitosan (CS) and heteropolyacids (HPAs) of phosphomolybdic acid (H(3)PMo(12)O(40), HPMo) and phosphotungstic acid (H(3)PW(12)O(40), HPW). The non-covalent functionalization method, which introduces homogenous surface functional groups with no detrimental effect on graphene structures of CNTs, can be carried out at room temperature without the use of corrosive acids. The PtRu nanoparticles supported on HPAs-CS-CNTs have a uniform distribution and much smaller size as compared to those of the PtRu nanoparticles supported on conventional acid treated CNTs (PtRu/AO-CNTs). The onset and peak potentials for CO(ad) oxidation on PtRu/HPAs-CS-CNTs catalysts are more negative than those on PtRu/AO-CNTs, indicating that HPAs facilitate the electro-oxidation of CO. The PtRu/HPMo-CS-CNTs catalyst has a higher electrocatalytic activity for methanol oxidation and higher tolerance toward CO poisoning than PtRu/HPW-CS-CNTs. The better electrocatalytic enhancement of HPMo on the PtRu/HPAs-CS-CNTs catalyst is most likely related to the fact that molybdenum-containing HPAs such as HPMo have more labile terminal oxygen to provide additional active oxygen sites while accelerating the CO and methanol oxidation in a similar way to that of Ru in the PtRu binary alloy system.
NASA Astrophysics Data System (ADS)
Wang, Weiguo; Zou, Yake; Yan, Jinwu; Liu, Jing; Chen, Huixiong; Li, Shan; Zhang, Lei
2018-03-01
In this paper, an ultrasensitive colorimetric biosensor for human chorionic gonadotrophin (hCG) detection was designed from bottom-up method based on the dual catalysis of the horseradish peroxidase (HRP) and Au@Pt nanoparticles (NPs) relative to H2O2-TEM system. HRP and monoclonal mouse anti-hCG antibody (β-submit, mAb1) were co-immobilized onto the Au@Pt NP surface to improve catalytic efficiency and specificity, which formed a dual functionalized Au@Pt-HRP probe with the mean size of 42.8 nm (D50). The colorimetric immunoassay was developed for the hCG detection, and the Au@Pt-HRP probe featured a higher sensitivity in the concentration range of 0.4-12.8 IU L- 1 with a low limit of detection (LOD) of 0.1 IU L- 1 compared with the LODs of 0.8 IU L- 1 for BA-ELISA and of 2.0 IU L- 1 for Au@Pt, which indicated that the Au@Pt-HRP probe possessed higher catalytic efficiency with 2.8-fold increase over Au@Pt and 33.8-fold increase over HRP. Also, the Au@Pt-HRP probe exhibited good precision and reproducibility, high specificity and acceptable accuracy with CV being less than 15%. The dual functionalized Au@Pt-HRP probe as a type of signal amplified method was firstly applied in the colorimetric immunoassay for the hCG detection.
Evaluation of nanoparticle delivered cisplatin in beagles
NASA Astrophysics Data System (ADS)
Feldhaeusser, Brittany; Platt, Simon R.; Marrache, Sean; Kolishetti, Nagesh; Pathak, Rakesh K.; Montgomery, David J.; Reno, Lisa R.; Howerth, Elizabeth; Dhar, Shanta
2015-08-01
Intracranial neoplasia is a significant cause of morbidity and mortality in both human and veterinary patients, and is difficult to treat with traditional therapeutic methods. Cisplatin is a platinum (Pt)-containing chemotherapeutic agent approved by the Food and Drug Administration; however, substantial limitations exist for its application in canine brain tumor treatment due to the difficulty in crossing the blood-brain barrier (BBB), development of resistance, and toxicity. A modified Pt(iv)-prodrug of cisplatin, Platin-M, was recently shown to be deliverable to the brain via a biocompatible mitochondria-targeted lipophilic polymeric nanoparticle (NP) that carries the drug across the BBB and to the mitochondria. NP mediated controlled release of Platin-M and subsequent reduction of this prodrug to cisplatin allowed cross-links to be formed with the mitochondrial DNA, which have no nucleotide excision repair system, forcing the overactive cancer cells to undergo apoptosis. Here, we report in vitro effects of targeted Platin-M NPs (T-Platin-M-NPs) in canine glioma and glioblastoma cell lines with results indicating that this targeted NP formulation is more effective than cisplatin. In both the cell lines, T-Platin-M-NP was significantly more efficacious compared to carboplatin, another Pt-based chemotherapy, which is used in the settings of recurrent high-grade glioblastoma. Mitochondrial stress analysis indicated that T-Platin-M-NP is more effective in disrupting the mitochondrial bioenergetics in both the cell types. A 14-day distribution study in healthy adult beagles using a single intravenous injection at 0.5 mg kg-1 (with respect to Platin-M) of T-Platin-M-NPs showed high levels of Pt accumulation in the brain, with negligible amounts in the other analyzed organs. Safety studies in the beagles monitoring physical, hematological, and serum chemistry evaluations were within the normal limits on days 1, 7, and 14 after injection of either 0.5 mg kg-1 or 2 mg kg-1 or 2.2 mg kg-1 (with respect to Platin-M) of T-Platin-M-NPs. At all doses over the 14-day period, no neurotoxicity was observed based upon periodic neurological examinations and cerebrospinal fluid analysis. These studies demonstrated the translational nature of T-Platin-M-NPs for applications in the treatment of brain tumors.Intracranial neoplasia is a significant cause of morbidity and mortality in both human and veterinary patients, and is difficult to treat with traditional therapeutic methods. Cisplatin is a platinum (Pt)-containing chemotherapeutic agent approved by the Food and Drug Administration; however, substantial limitations exist for its application in canine brain tumor treatment due to the difficulty in crossing the blood-brain barrier (BBB), development of resistance, and toxicity. A modified Pt(iv)-prodrug of cisplatin, Platin-M, was recently shown to be deliverable to the brain via a biocompatible mitochondria-targeted lipophilic polymeric nanoparticle (NP) that carries the drug across the BBB and to the mitochondria. NP mediated controlled release of Platin-M and subsequent reduction of this prodrug to cisplatin allowed cross-links to be formed with the mitochondrial DNA, which have no nucleotide excision repair system, forcing the overactive cancer cells to undergo apoptosis. Here, we report in vitro effects of targeted Platin-M NPs (T-Platin-M-NPs) in canine glioma and glioblastoma cell lines with results indicating that this targeted NP formulation is more effective than cisplatin. In both the cell lines, T-Platin-M-NP was significantly more efficacious compared to carboplatin, another Pt-based chemotherapy, which is used in the settings of recurrent high-grade glioblastoma. Mitochondrial stress analysis indicated that T-Platin-M-NP is more effective in disrupting the mitochondrial bioenergetics in both the cell types. A 14-day distribution study in healthy adult beagles using a single intravenous injection at 0.5 mg kg-1 (with respect to Platin-M) of T-Platin-M-NPs showed high levels of Pt accumulation in the brain, with negligible amounts in the other analyzed organs. Safety studies in the beagles monitoring physical, hematological, and serum chemistry evaluations were within the normal limits on days 1, 7, and 14 after injection of either 0.5 mg kg-1 or 2 mg kg-1 or 2.2 mg kg-1 (with respect to Platin-M) of T-Platin-M-NPs. At all doses over the 14-day period, no neurotoxicity was observed based upon periodic neurological examinations and cerebrospinal fluid analysis. These studies demonstrated the translational nature of T-Platin-M-NPs for applications in the treatment of brain tumors. Electronic supplementary information (ESI) available. See DOI: 10.1039/C5NR03447G
NASA Astrophysics Data System (ADS)
Coggon, J. A.; Nowell, G.; Pearson, G.; Oberthür, T.; Lorand, J.; Melcher, F.; Parman, S. W.
2010-12-01
Discrete platinum-group minerals (PGM) occur as accessory phases in mafic-ultamafic intrusions and ophiolitic chromitites, as well as numerous detrital deposits globally. The 190Pt-186Os decay system, measured by laser ablation MC-ICPMS (LA-MC-ICPMS) provides a useful geochronometric tool for direct dating of PGM. Here we present two examples that verify the accuracy of the technique in geologically well constrained situations and demonstrate the potential for using the 190Pt-186Os PGM method to accurately date layered mafic intrusions, ophiolitic chromitites and detrital PGM deposits. Fifty PGM grains from three different horizons within the Bushveld complex yield a Pt-Os isochron age of 2012 ± 47 Ma (2σ, MSWD = 1.19, 186Os/188Osi = 0.119818 ± 0.000006). This is consistent with the published U-Pb zircon age of 2054 Ma (Scoates and Friedman, 2008). The younger PGM isochron age is not likely to be a function of difference in blocking temperatures in the different systems. Pt-Os model ages are possible in high pt grains because initial 186Os/188Os can be well constrained. Using this approach we obtained Pt-Os model ages of 2113 ± 106 Ma and 2042 ± 102 Ma for a Bushveld Pt-Fe alloy and sperrylite respectively. Detrital PGM derived from the Meratus ophiolite, southeast Borneo yield a 190Pt-186Os isochron age of 202.5 Ma ± 8.3 Ma (2σ, n = 260, MSWD = 0.90, 186Os/188Osi = 0.119830 ± 0.000003), consistent with radiometric and biostratigraphic age constraints (Wakita et al., 1998). We interpret this as the age of formation of the PGM grains in during chromitite genesis in the lower oceanic lithosphere. Our combined data demonstrate the utility of the LA-MC-ICPMS method as a tool for accurate Pt-Os dating of detrital PGM as well as their igneous parent bodies. We can constrain Pt/Os fractionation at the ablation site as being < 2.5%, while within-grain heterogeneity is ultimately one of the strongest controls on isochron and single-grain ages given the partial sampling represented by laser ablation. Scoates, J.S. and Friedman, R.M. 2008. Precise age of the platiniferous Merensky reef, Bushveld Complex, South Africa, by the U-Pb zircon chemical abrasion ID-TIMS technique; Economic Geology 103, p. 465-471. Wakita, K., Miyazaki, K., Zulkarnain, I., Sopaheluwakan, J. and Sanyoto, P. 1998. Tectonic implications of new age data for the Meratus complex of south Kalimantan, Indonesia; Island Arc 7, p. 202-222.
Symmetry-protected coherent relaxation of open quantum systems
NASA Astrophysics Data System (ADS)
van Caspel, Moos; Gritsev, Vladimir
2018-05-01
We compute the effect of Markovian bulk dephasing noise on the staggered magnetization of the spin-1/2 XXZ Heisenberg chain, as the system evolves after a Néel quench. For sufficiently weak system-bath coupling, the unitary dynamics are found to be preserved up to a single exponential damping factor. This is a consequence of the interplay between PT symmetry and weak symmetries, which strengthens previous predictions for PT -symmetric Liouvillian dynamics. Requirements are a nondegenerate PT -symmetric generator of time evolution L ̂, a weak parity symmetry, and an observable that is antisymmetric under this parity transformation. The spectrum of L ̂ then splits up into symmetry sectors, yielding the same decay rate for all modes that contribute to the observable's time evolution. This phenomenon may be realized in trapped ion experiments and has possible implications for the control of decoherence in out-of-equilibrium many-body systems.
Parity-Time-Symmetric Whispering-Gallery Microcavities
2014-04-06
Stone, A. D. PT - symmetry breaking and laser -absorber modes in optical scattering systems. Phys. Rev. Lett. 106, 093902 (2011). 31. Liang, G. Q. & Chong...see that only when the PT - symmetry is broken, the field is localized in the active resonator and thus the signal at the output port of the fiber ...peaks. Fig.S9. Localization of the optical field in the active resonator in the broken- PT symmetry phase. Fiber taper waveguide with ports 1 and
Ledge-type Co/L1{sub 0}-FePt exchange-coupled composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Speliotis, Th.; Giannopoulos, G.; Niarchos, D.
2016-06-21
FePt-based exchange-coupled composites consisting of a magnetically hard L1{sub 0}-FePt phase exchange-coupled with a soft ferromagnetic material are promising candidates for future ultra-high density (>1 Tbit/in{sup 2}) perpendicular magnetic recording media, also being of interest for other applications including spin torque oscillators and micro-electro-mechanical systems, among others. In this paper, the effect of the thickness of a soft Co layer (3 < th{sub Co} < 20 nm) on the magnetic behavior of ledge-type fcc(100)-Co/L1{sub 0}(001)-FePt composites deposited on an MgO (100) substrate is systematically studied by combining morpho-structural analyses and angular magnetization measurements. Starting from a film consisting of isolated L1{submore » 0}(001)–FePt islands, the ledge-type structure was obtained by depositing a Co layer that either covered the FePt islands or filled-up the inter-island region, gradually forming a continuous layer with increasing Co thickness. A perpendicular anisotropy was maintained up to th{sub Co} ∼ 9.5 nm and a significant reduction in the coercivity (about 50% for th{sub Co} ∼ 3 nm) with the increase in th{sub Co} was observed, indicating that, by coupling hard FePt and soft Co phases in a ledge-type configuration, the writability can be greatly improved. Recoil loops' measurements confirmed the exchange-coupled behavior, reinforcing a potential interest in these systems for future magnetic recording media.« less
Yuan, Youyong; Kwok, Ryan T K; Tang, Ben Zhong; Liu, Bin
2014-02-12
Targeted drug delivery to tumor cells with minimized side effects and real-time in situ monitoring of drug efficacy is highly desirable for personalized medicine. In this work, we report the synthesis and biological evaluation of a chemotherapeutic Pt(IV) prodrug whose two axial positions are functionalized with a cyclic arginine-glycine-aspartic acid (cRGD) tripeptide for targeting integrin αvβ3 overexpressed cancer cells and an apoptosis sensor which is composed of tetraphenylsilole (TPS) fluorophore with aggregation-induced emission (AIE) characteristics and a caspase-3 enzyme specific Asp-Glu-Val-Asp (DEVD) peptide. The targeted Pt(IV) prodrug can selectively bind to αvβ3 integrin overexpressed cancer cells to facilitate cellular uptake. In addition, the Pt(IV) prodrug can be reduced to active Pt(II) drug in cells and release the apoptosis sensor TPS-DEVD simultaneously. The reduced Pt(II) drug can induce the cell apoptosis and activate caspase-3 enzyme to cleave the DEVD peptide sequence. Due to free rotation of the phenylene rings, TPS-DEVD is nonemissive in aqueous media. The specific cleavage of DEVD by caspase-3 generates the hydrophobic TPS residue, which tends to aggregate, resulting in restriction of intramolecular rotations of the phenyl rings and ultimately leading to fluorescence enhancement. Such noninvasive and real-time imaging of drug-induced apoptosis in situ can be used as an indicator for early evaluation of the therapeutic responses of a specific anticancer drug.
Zhu, Xiang; Liu, Tingting; Zhao, Hongli; Shi, Libo; Li, Xiaoqing; Lan, Minbo
2016-05-15
Considering the critical roles of superoxide anion (O2(∙-)) in pathological conditions, it is of great urgency to establish a reliable and durable approach for real-time determination of O2(∙-). In this study, we propose a porous Pt-Pd decorated superoxide dismutase (SOD) sensor for qualitative and quantitative detection O2(∙-). The developed biosensor exhibits a fast, selective and linear amperometric response upon O2(∙-) in the concentration scope of 16 to 1,536 μM (R(2)=0.9941), with a detection limit of 0.13 μM (S/N=3) and a low Michaelis-Menten constant of 1.37 μM which indicating a high enzymatic activity and affinity to O2(∙-). Inspiringly, the proposed sensor possesses an ultrahigh sensitivity of 1270 μA mM(-1)cm(-2). In addition, SOD/porous Pt-Pd sensor exhibits excellent anti-interference property, reproducibility and long-term storage stability. Beyond our expectation, the trace level of O2(∙-) released from living cells has also been successfully captured. These satisfactory results are mainly ascribed to (1) the porous interface with larger surface area and more active sites to provide a biocompatible environment for SOD (2) the specific biocatalysis of SOD towards O2(∙-) and (3) porous Pt-Pd nanomaterials fastening the electron transfer. The superior electrochemical performance makes SOD/porous Pt-Pd sensor a promising candidate for monitoring the dynamic changes of O2(∙-)in vivo. Copyright © 2015 Elsevier B.V. All rights reserved.
Hemispherical platinum : silver core : shell nanoparticles for miRNA detection.
Spain, Elaine; Adamson, Kellie; Elshahawy, Mohammad; Bray, Isabella; Keyes, Tia E; Stallings, Raymond L; Forster, Robert J
2017-02-27
Defects within a self-assembled monolayer (SAM) of dodecanethiol on gold have been used as nucleation sites for the electrodeposition of mushroom shaped platinum nanoparticles (PtNPs). The top surfaces of these PtNPs were then decorated with a layer of silver creating a hemispherical - platinum : silver core : shell nanoparticle (Pt-AgNP). Thiolated probe strand miRNA was then immobilised onto the upper silver surface. These regioselectively modified particles were desorbed by applying a current jump to yield nanoparticles capable of hybridising to a complementary miRNA target with electrocatalysis occurring on the non-functionalized lower surface. A second electrode was functionalized with single stranded capture miRNA that has a sequence that is complementary to an miRNA, miR-132, associated with the childhood cancer, Neuroblastoma but leaves a section of the target available to bind the nucleic acid sequence on the core : shell Pt-AgNPs. Following hybridization of the target and capture strands the surface was exposed to the miRNA labelled electrocatalytic Pt-AgNPs. The concentration of the target was then determined by monitoring the current associated with the reduction of hydrogen peroxide in a solution of H 2 SO 4 . Calibration plots of the log[miRNA] vs. faradaic current were linear from 1 aM to 1 μM and aM concentrations could be detected without the need for chemical amplification of the target, e.g., using PCR or NASBA. The regioselectively modified particles were also immobilised within the interior of gold microcavity arrays via miRNA hybridisation and their Raman properties investigated.
Caboré, Raissa Nadège; Piérard, Denis; Huygen, Kris
2016-05-10
Serosurveillance and seroprevalence studies are an essential tool to monitor vaccine-preventable diseases. We have developed a magnetic bead-based pentaplex immunoassay (MIA) for the simultaneous detection of IgG antibodies against diphtheria toxin (DT), tetanus toxin (TT), pertussis toxin (PT), filamentous hemagglutinin (FHA) and pertactin (Prn). The in-house pentaplex MIA showed a good correlation with commercial ELISAs with correlation coefficients between 0.89 for PT and 0.98 for TT. Intra- and inter-assay variability was <10%. A total of 670 anonymized serum samples collected in 2012 in Belgian adults (ages 20-29.9 years) were analyzed. Geometric mean concentrations (GMC) were 0.2 (0.13-0.29) IU/mL for DT, 0.63 (0.45-0.82) IU/mL for TT, 3.9 (2.6-5.8) IU/mL for PT, 16.3 (11.7-22.7) IU/mL for FHA and 15.4 (10.1-23.6) IU/mL for Prn. Antibody concentrations were below the protective level of 0.1 IU/mL in 26.4% of the sera for DT and in 8.6% of the sera for TT. Anti-PT IgG concentrations indicative of recent pertussis infection (>125 IU/mL) were detected in 1.2% of the subjects. High anti-PT antibodies were not correlated with high antibodies against any of the four other vaccine antigens. This pentaplex MIA will be used for a new large-scale Belgian serosurveillance/seroprevalence study of diphtheria, tetanus and pertussis.
Galanzha, Ekaterina I.; Shashkov, Evgeny; Sarimollaoglu, Mustafa; Beenken, Karen E.; Basnakian, Alexei G.; Shirtliff, Mark E.; Kim, Jin-Woo; Smeltzer, Mark S.; Zharov, Vladimir P.
2012-01-01
Bacterial infections are a primary cause of morbidity and mortality worldwide. Bacteremia is a particular concern owing to the possibility of septic shock and the development of metastatic infections. Treatment of bacteremia is increasingly compromised by the emergence of antibiotic resistant strains, creating an urgent need for alternative therapy. Here, we introduce a method for in vivo photoacoustic (PA) detection and photothermal (PT) eradication of Staphylococcus aureus in tissue and blood. We show that this method could be applicable for label-free diagnosis and treatment of in the bloodstream using intrinsic near-infrared absorption of endogenous carotenoids with nonlinear PA and PT contrast enhancement. To improve sensitivity and specificity for detection of circulating bacteria cells (CBCs), two-color gold and multilayer magnetic nanoparticles with giant amplifications of PA and PT contrasts were functionalized with an antibody cocktail for molecular targeting of S. aureus surface-associated markers such as protein A and lipoprotein. With a murine model, the utility of this approach was demonstrated for ultrasensitive detection of CBCs with threshold sensitivity as low as 0.5 CBCs/mL, in vivo magnetic enrichment of CBCs, PT eradication of CBCs, and real-time monitoring of therapeutic efficacy by CBC counting. Our PA-PT nano-theranostic platform, which integrates in vivo multiplex targeting, magnetic enrichment, signal amplification, multicolor recognition, and feedback control, could be used as a biological tool to gain insights on dissemination pathways of CBCs, infection progression by bacteria re-seeding, and sepsis development and treatment, and could potentially be feasible in humans, especially using bypass schematic. PMID:23049814
Tamburri, Emanuela; Cassani, Maria Cristina; Ballarin, Barbara; Tomellini, Massimo; Femoni, Cristina; Mignani, Adriana; Terranova, Maria Letizia; Orlanducci, Silvia
2016-05-23
Self-supporting membranes built entirely of carbon nanotubes have been prepared by wet methods and characterized by Raman spectroscopy. The membranes are used as supports for the electrodeposition of Pt nanoparticles without the use of additional additives and/or stabilizers. The Pt precursor is an ad hoc synthesized ammonium-ethylimidazolium chloroplatinate(IV) salt, [NH3 (CH2 )2 MIM)][PtCl6 ]. The Pt complex was characterized using NMR spectroscopy, XRD, ESI-MS, and FTIR spectroscopy. The interaction between the Pt-carbon nanotubes nanocomposites and hydrogen is analyzed using electrochemical and quartz microbalance measurements under near-ambient conditions. The contribution of the Pt phase to the hydrogen adsorption on nanotube is found and explained by a kinetic model that takes into account a spillover event. Such a phenomenon may be exploited conveniently for catalysis and electrocatalysis applications in which the hybrid systems could act as a hydrogen transfer agent in specific hydrogenation reactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jezierski, Andrzej, E-mail: andrzej.jezierski@ifmpan.poznan.pl; Szytuła, Andrzej
2016-02-15
The electronic structures and thermodynamic properties of LaPtIn and CePtIn are studied by means of ab-initio full-relativistic full-potential local orbital basis (FPLO) method within densities functional (DFT) methodologies. We have also examined the influence of hydrogen on the electronic structure and stability of CePtInH and LaPtInH systems. The positions of the hydrogen atoms have been found from the minimum of the total energy. Our calculations have shown that band structure and topology of the Fermi surfaces changed significantly during the hydrogenation. The thermodynamic properties (bulk modulus, Debye temperatures, constant pressure heat capacity) calculated in quasi-harmonic Debye-Grüneisen model are in amore » good agreement with the experimental data. We have applied different methods of the calculation of the equation of states (EOS) (Murnaghan, Birch-Murnaghan, Poirier–Tarantola, Vinet). The thermodynamic properties are presented for the pressure 0« less
Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C-H activation
NASA Astrophysics Data System (ADS)
Marcinkowski, Matthew D.; Darby, Matthew T.; Liu, Jilei; Wimble, Joshua M.; Lucci, Felicia R.; Lee, Sungsik; Michaelides, Angelos; Flytzani-Stephanopoulos, Maria; Stamatakis, Michail; Sykes, E. Charles H.
2018-03-01
The recent availability of shale gas has led to a renewed interest in C-H bond activation as the first step towards the synthesis of fuels and fine chemicals. Heterogeneous catalysts based on Ni and Pt can perform this chemistry, but deactivate easily due to coke formation. Cu-based catalysts are not practical due to high C-H activation barriers, but their weaker binding to adsorbates offers resilience to coking. Using Pt/Cu single-atom alloys (SAAs), we examine C-H activation in a number of systems including methyl groups, methane and butane using a combination of simulations, surface science and catalysis studies. We find that Pt/Cu SAAs activate C-H bonds more efficiently than Cu, are stable for days under realistic operating conditions, and avoid the problem of coking typically encountered with Pt. Pt/Cu SAAs therefore offer a new approach to coke-resistant C-H activation chemistry, with the added economic benefit that the precious metal is diluted at the atomic limit.
Synthesis, Structure and bonding Analysis of the Polar Intermetallic Phase Ca2Pt2Cd
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samal, Saroj L.; Corbett, John D.
The polar intermetallic phase Ca2Pt2Cd was discovered during explorations of the Ca-Pt-Cd system. The compound was synthesized by high temperature reactions, and its structure refined by single-crystal X-ray diffraction as orthorhombic, Immm, a = 4.4514(5), b = 5.8415(6), c = 8.5976(9) Å, Z = 2. The structure formally contains infinite, planar networks of [Pt2Cd]4– along the ab plane, which can be described as tessellation of six and four-member rings of the anions, with cations stuffed between the anion layers. The infinite condensed platinum chains show a substantial long–short distortion of 0.52 Å, an appreciable difference between Ca2Pt2Cd (26 valence electrons)more » and the isotypic but regular Ca2Cu2Ga (29 VE). The relatively large cation proportion diminishes the usual dominance of polar (Pt–Cd) and 5d–5d (Pt–Pt) contributions to the total Hamilton populations.« less
Li, Xing-Tai; Zhang, Ya-Kui; Kuang, Hai-Xue; Jin, Feng-Xin; Liu, De-Wen; Gao, Ming-Bo; Liu, Ze; Xin, Xiao-Juan
2012-01-01
The current study was performed to investigate mitochondrial protection and anti-aging activity of Astragalus polysaccharides (APS) and the potential underlying mechanism. Lipid peroxidation of liver and brain mitochondria was induced by Fe2+–Vit C in vitro. Thiobarbituric acid (TBA) colorimetry was used to measure the content of thiobarbituric acid reactive substances (TBARS). Mouse liver mitochondrial permeability transition (PT) was induced by calcium overload in vitro and spectrophotometry was used to measure it. The scavenging activities of APS on superoxide anion (O2•−) and hydroxyl radical (•OH), which were produced by reduced nicotinamide adenine dinucleotide (NADH)—N-Methylphenazonium methyl sulfate (PMS) and hydrogen peroxide (H2O2)–Fe2+ system respectively, were measured by 4-nitrobluetetrazolium chloride (NBT) reduction and Fenton reaction colorimetry respectively. The Na2S2O3 titration method was used to measure the scavenging activities of APS on H2O2. APS could inhibit TBARS production, protect mitochondria from PT, and scavenge O2•−, •OH and H2O2 significantly in a concentration-dependent manner respectively. The back of the neck of mice was injected subcutaneously with D-galactose to induce aging at a dose of 100 mg/kg/d for seven weeks. Moreover, the activities of catalase (CAT), surperoxide dismutase (SOD) and glutathione peroxidase (GPx) and anti-hydroxyl radical which were assayed by using commercial monitoring kits were increased significantly in vivo by APS. According to this research, APS protects mitochondria by scavenging reactive oxygen species (ROS), inhibiting mitochondrial PT and increasing the activities of antioxidases. Therefore, APS has the effect of promoting health. PMID:22408421
Spin pumping damping and magnetic proximity effect in Pd and Pt spin-sink layers
NASA Astrophysics Data System (ADS)
Caminale, M.; Ghosh, A.; Auffret, S.; Ebels, U.; Ollefs, K.; Wilhelm, F.; Rogalev, A.; Bailey, W. E.
2016-07-01
We investigated the spin pumping damping contributed by paramagnetic layers (Pd, Pt) in both direct and indirect contact with ferromagnetic Ni81Fe19 films. We find a nearly linear dependence of the interface-related Gilbert damping enhancement Δ α on the heavy-metal spin-sink layer thicknesses tN in direct-contact Ni81Fe19 /(Pd, Pt) junctions, whereas an exponential dependence is observed when Ni81Fe19 and (Pd, Pt) are separated by 3 nm Cu. We attribute the quasilinear thickness dependence to the presence of induced moments in Pt, Pd near the interface with Ni81Fe19 , quantified using x-ray magnetic circular dichroism measurements. Our results show that the scattering of pure spin current is configuration-dependent in these systems and cannot be described by a single characteristic length.
Enhanced room-temperature spin Seebeck effect in a YIG/C60/Pt layered heterostructure
NASA Astrophysics Data System (ADS)
Das, R.; Kalappattil, V.; Geng, R.; Luong, H.; Pham, M.; Nguyen, T.; Liu, Tao; Wu, Mingzhong; Phan, M. H.; Srikanth, H.
2018-05-01
We report on large enhancement of the longitudinal spin Seebeck effect (LSSE) in the Y3Fe5O12 (YIG)/Pt system at room temperature due to the addition of a thin layer of organic semiconductor (C60) in between the YIG and the Pt. LSSE measurements show that the LSSE voltage increases significantly, from the initial value of 150 nV for the YIG/Pt structure to 240 nV for the YIG/C60(5nm)/Pt structure. Radio-frequency transverse susceptibility experiments reveal a significant decrease in the surface perpendicular magnetic anisotropy (PMA) of the YIG film when C60 is deposited on it. These results suggest that the LSSE enhancement may be attributed to increased spin mixing conductance, the decreased PMA, and the large spin diffusion length of C60.
Electricity generation of microbial fuel cell with waterproof breathable membrane cathode
NASA Astrophysics Data System (ADS)
Xing, Defeng; Tang, Yu; Mei, Xiaoxue; Liu, Bingfeng
2015-12-01
Simplification of fabrication and reduction of capital cost are important for scale-up and application of microbial electrochemical systems (MES). A fast and inexpensive method of making cathode was developed via assembling stainless steel mesh (SSM) with waterproof breathable membrane (WBM). Three assemble types of cathodes were fabricated; Pt@SSM/WBM (SSM as cathode skeleton, WBM as diffusion layer, platinum (Pt) catalyst applied on SSM), SSM/Pt@WBM and Pt@WBM. SSM/Pt@WBM cathode showed relatively preferable with long-term stability and favorable power output (24.7 W/m3). Compared to conventional cathode fabrication, air-cathode was made for 0.5 h. The results indicated that the novel fabrication method could remarkably reduce capital cost and simplify fabrication procedures with a comparable power output, making MFC more prospective for future application.
Dimensionality effects on magnetic properties of FexCo1-x nanoclusters on Pt(1 1 1)
NASA Astrophysics Data System (ADS)
Miranda, I. P.; Igarashi, R. N.; Klautau, A. B.; Petrilli, H. M.
2017-11-01
The behavior of local magnetic moments and exchange coupling parameters of FexCo1-x nanostructures (nanowires and compact clusters) on the fcc Pt(1 1 1) surface is here investigated using the first-principles real-space RS-LMTO-ASA method, in the framework of the DFT. Different configurations of FexCo1-x trimers and heptamers on Pt(1 1 1) are considered, varying the positions and the concentration of Fe or Co atoms. We discuss the influence of dimensionality and stoichiometry changes on the magnetic properties, specially on the orbital moments, which are very important in establishing a nanoscopic understanding of delocalized electron systems. We demonstrate the existence of a strictly decreasing nonlinear trend of the average orbital moments with the Fe concentration for the compact clusters, different from what was found for FexCo1-x nanowires on Pt(1 1 1) and also for corresponding higher-dimensional systems (FexCo1-x monolayer on Pt(1 1 1) and FexCo1-x bulk). The average spin moments, however, are invariably described by a linear function with respect to stoichiometry. In all studied cases, the nearest neighbors exchange couplings have shown to be strongly ferromagnetic.
NASA Astrophysics Data System (ADS)
Ou, Yongxi; Ralph, D. C.; Buhrman, R. A.
2018-03-01
Robust spin Hall effects (SHE) have recently been observed in nonmagnetic heavy metal systems with strong spin-orbit interactions. These SHE are either attributed to an intrinsic band-structure effect or to extrinsic spin-dependent scattering from impurities, namely, side jump or skew scattering. Here we report on an extraordinarily strong spin Hall effect, attributable to spin fluctuations, in ferromagnetic FexPt1 -x alloys near their Curie point, tunable with x . This results in a dampinglike spin-orbit torque being exerted on an adjacent ferromagnetic layer that is strongly temperature dependent in this transition region, with a peak value that indicates a lower bound 0.34 ±0.02 for the peak spin Hall ratio within the FePt. We also observe a pronounced peak in the effective spin-mixing conductance of the FM /FePt interface, and determine the spin diffusion length in these FexPt1 -x alloys. These results establish new opportunities for fundamental studies of spin dynamics and transport in ferromagnetic systems with strong spin fluctuations, and a new pathway for efficiently generating strong spin currents for applications.
Control over the branched structures of platinum nanocrystals for electrocatalytic applications.
Ma, Liang; Wang, Chengming; Gong, Ming; Liao, Lingwen; Long, Ran; Wang, Jinguo; Wu, Di; Zhong, Wei; Kim, Moon J; Chen, Yanxia; Xie, Yi; Xiong, Yujie
2012-11-27
Structural control of branched nanocrystals allows tuning two parameters that are critical to their catalytic activity--the surface-to-volume ratio, and the number of atomic steps, ledges, and kinks on surface. In this work, we have developed a simple synthetic system that allows tailoring the numbers of branches in Pt nanocrystals by tuning the concentration of additional HCl. In the synthesis, HCl plays triple functions in tuning branched structures via oxidative etching: (i) the crystallinity of seeds and nanocrystals; (ii) the number of {111} or {100} faces provided for growth sites; (iii) the supply kinetics of freshly formed Pt atoms in solution. As a result, tunable Pt branched structures--tripods, tetrapods, hexapods, and octopods with identical chemical environment--can be rationally synthesized in a single system by simply altering the etching strength. The controllability in branched structures enables to reveal that their electrocatalytic performance can be optimized by constructing complex structures. Among various branched structures, Pt octopods exhibit particularly high activity in formic acid oxidation as compared with their counterparts and commercial Pt/C catalysts. It is anticipated that this work will open a door to design more complex nanostructures and to achieve specific functions for various applications.
NASA Astrophysics Data System (ADS)
Wang, Lai-Guo; Zhang, Wei; Chen, Yan; Cao, Yan-Qiang; Li, Ai-Dong; Wu, Di
2017-01-01
In this work, a kind of new memristor with the simple structure of Pt/HfOx/ZnOx/TiN was fabricated completely via combination of thermal-atomic layer deposition (TALD) and plasma-enhanced ALD (PEALD). The synaptic plasticity and learning behaviors of Pt/HfOx/ZnOx/TiN memristive system have been investigated deeply. Multilevel resistance states are obtained by varying the programming voltage amplitudes during the pulse cycling. The device conductance can be continuously increased or decreased from cycle to cycle with better endurance characteristics up to about 3 × 103 cycles. Several essential synaptic functions are simultaneously achieved in such a single double-layer of HfOx/ZnOx device, including nonlinear transmission properties, such as long-term plasticity (LTP), short-term plasticity (STP), and spike-timing-dependent plasticity. The transformation from STP to LTP induced by repetitive pulse stimulation is confirmed in Pt/HfOx/ZnOx/TiN memristive device. Above all, simple structure of Pt/HfOx/ZnOx/TiN by ALD technique is a kind of promising memristor device for applications in artificial neural network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jahangir, S.; Cheng, Xuan; Huang, H. H.
2014-10-28
Solid state dewetting and the subsequent morphological changes for platinum thin films grown on zinc oxide (ZnO) buffered (001) silicon substrates (Pt/ZnO/SiO{sub 2}/(001)Si system) is investigated under vacuum conditions via a custom-designed confocal laser microscope coupled with a laser heating system. Live imaging of thin film dewetting under a range of heating and quenching vacuum ambients reveals events including hillock formation, hole formation, and hole growth that lead to formation of a network of Pt ligaments, break up of Pt ligaments to individual islands and subsequent Pt islands shape reformation, in chronological fashion. These findings are corroborated by ex-situ materialsmore » characterization and quantitative electron microscopy analysis. A secondary hole formation via blistering before film rupture is revealed to be the critical stage, after which a rapid dewetting catastrophe occurs. This process is instantaneous and cannot be captured by ex-situ methods. Finally, an intermetallic phase forms at 900 °C and alters the morphology of Pt islands, suggesting a practical limit to the thermal environments that may be used for these platinized silicon wafers in vacuum conditions.« less
Antiplatelet, anticoagulant, and profibrinolytic activities of withaferin A.
Ku, Sae-Kwang; Bae, Jong-Sup
2014-03-01
Withaferin A (WFA), an active compound from Withania somnifera, is widely researched for its anti-inflammatory, cardioactive and central nervous system effects. However, antiplatelet, anticoagulant, and profibrinolytic properties of WFA have not been studied. In this study, the anticoagulant activities of WFA were measured by monitoring activated partial thromboplastin-time (aPTT), prothrombin time (PT), fibrin polymerization, platelet aggregation, thrombus formation, and the activities of cell-based thrombin and activated factor X (FXa). The effects of WFA on the expressions of plasminogen activator inhibitor type 1 (PAI-1) and tissue-type plasminogen activator (t-PA) were also tested in tumor necrosis factor-α (TNF-α) activated human umbilical vein endothelial cells (HUVECs). Our data showed that WFA inhibited thrombin-catalyzed fibrin polymerization and platelet aggregation, FeCl3-induced thrombus formation, prolonged aPTT and PT significantly and inhibited the activities and production of thrombin and FXa. WFA prolonged in vivo and ex vivo bleeding time and inhibited TNF-α induced PAI-1 production. Furthermore, PAI-1/t-PA ratio was significantly decreased by WFA. Collectively, these results indicate that WFA possesses antithrombotic activities and suggest that the current study could provide bases for the development of new anticoagulant agents. Copyright © 2014 Elsevier Inc. All rights reserved.
Glucose biosensor based on functionalized ZnO nanowire/graphite films dispersed on a Pt electrode
NASA Astrophysics Data System (ADS)
Gallay, P.; Tosi, E.; Madrid, R.; Tirado, M.; Comedi, D.
2016-10-01
We present a glucose biosensor based on ZnO nanowire self-sustained films grown on compacted graphite flakes by the vapor transport method. Nanowire/graphite films were fragmented in water, filtered to form a colloidal suspension, subsequently functionalized with glucose oxidase and finally transferred to a metal electrode (Pt). The obtained devices were evaluated using scanning electron microscopy, energy-dispersive x-ray spectroscopy, cyclic voltammetry and chronoamperometry. The electrochemical responses of the devices were determined in buffer solutions with successive glucose aggregates using a tripolar electrode system. The nanostructured biosensors showed excellent analytical performance, with linear response to glucose concentrations, high sensitivity of up to ≈17 μA cm-2 mM-1 in the 0.03-1.52 mM glucose concentration range, relatively low Michaelis-Menten constant, excellent reproducibility and a fast response. The detection limits are more than an order of magnitude lower than those achievable in commercial biosensors for glucose control, which is promising for the development of glucose monitoring methods that do not require blood extraction from potentially diabetic patients. The strong detection enhancements provided by the functionalized nanostructures are much larger than the electrode surface-area increase and are discussed in terms of the physical and chemical mechanisms involved in the detection and transduction processes.
Some studies on a solid-state sulfur probe for coal gasification systems
NASA Technical Reports Server (NTRS)
Jacob, K. T.; Rao, D. B.; Nelson, H. G.
1978-01-01
As a part of a program for the development of a sulfur probe for monitoring the sulfur potential in coal gasification reactors, an investigation was conducted regarding the efficiency of the solid electrolyte cell Ar+H2+H2S/CaS+CaF2+(Pt)//CaF2//Pt)+CaF2+CaS/H2S+H2+Ar. A demonstration is provided of the theory, design, and operation of a solid-state sulfur probe based on CaF2 electrolyte. It was found that the cell responds to changes in sulfur potential in a manner predicted by the Nernst equation. The response time of the cell at 1225 K, after a small change in temperature or gas composition, was 2.5 Hr, while at a lower temperature of 990 K the response time was approximately 9 hr. The cell emf was insensitive to a moderate increase in the flow rate of the test gas and/or the reference gas. The exact factors affecting the slow response time of galvanic cells based on a CaF2 electrolyte have not yet been determined. The rate-limiting steps may be either the kinetics of electrode reactions or the rate of transport through the electrolyte.
Liu, Li; Tian, Lihui; Zhao, Guanhui; Huang, Yuzhen; Wei, Qin; Cao, Wei
2017-09-15
An ultrasensitive sandwich-type electrochemical immunosensor was developed for quantitative monitoring of Alpha fetoprotein (AFP). To achieve this objective, an incorporated signal amplification strategy of platinum nanoparticles anchored on cobalt oxide/graphene nanosheets (Pt NPs/Co 3 O 4 /graphene) was proposed by acting as the label of secondary antibodies. The prepared label not only empowered by advantages of each component but exhibited better electrochemical performance than single Pt NPs, Co 3 O 4 and graphene, which has shown large specific surface area and good catalytic activity towards the reduction of H 2 O 2 . Meanwhile, the nanocomposite of gold nanoparticles adhered on 3-mercaptopropyltriethoxysilane functionalized graphene sheets (Au@MPTES-GS) was used as matrix to accelerate electron transfer and immobilize primary antibodies in this system. The signal amplification mechanism of the matrix and the label were explored successfully. Under optimal conditions, the electrochemical immunosensor exhibited a wide linear range from 0.1 pg mL -1 to 60 ng mL -1 with a low detection limit of 0.029 pg mL -1 for AFP. The proposed immunosensor may have promising application in the clinical diagnosis of AFP and other tumor markers. Copyright © 2017 Elsevier B.V. All rights reserved.
Cardiovascular Stress During Inpatient Spinal Cord Injury Rehabilitation.
Zbogar, Dominik; Eng, Janice J; Noble, Jeremy W; Miller, William C; Krassioukov, Andrei V; Verrier, Mary C
2017-12-01
(1) To measure the amount of cardiovascular stress, self-reported physical activity, and accelerometry-measured physical activity by individuals with spinal cord injury (SCI) during physical therapy (PT) and occupational therapy (OT); and (2) to investigate the relations between these measures. Observational study. Two inpatient SCI rehabilitation centers. Patients with SCI (N=87) were recruited from consecutive admissions to rehabilitation. Not applicable. Heart rate was recorded by a Holter monitor, whereas physical activity was captured by self-report (Physical Activity Recall Assessment for People with SCI questionnaire) and real-time wrist accelerometry during a total of 334 PT and OT inpatient sessions. Differences between individuals with paraplegia and tetraplegia were assessed via Mann-Whitney U tests. Spearman correlations were used to explore the relation between measurements of physical activity and heart rate. Time spent at a heart rate within a cardiovascular training zone (≥40% heart rate reserve) was low and did not exceed a median of 5 minutes. In contrast, individuals reported at least 60 minutes of higher-intensity time during therapy. There was a low but statistically significant correlation between all measures. The cardiovascular stress incurred by individuals with SCI during inpatient PT and OT sessions is low and not sufficient to obtain a cardiovascular training effect to optimize their neurologic, cardiovascular, or musculoskeletal health; this represents a lost opportunity to maximize rehabilitation. Self-reported minutes of higher-intensity physical activity do not reflect actual time spent at a higher intensity measured objectively via a heart rate monitor. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Walker, M J; Rohde, M; Wehland, J; Timmis, K N
1991-01-01
Appropriately detoxified pertussis toxin (PT) of Bordetella pertussis is considered to be an essential component of new-generation whooping cough vaccines, but the development of a procedure to obtain high levels of purified toxin has been and continues to be a major difficulty. To produce a system enabling the biological separation of PT from other virulence determinants of B. pertussis and the attainment of high yields of the toxin, minitransposons containing the PT operon were constructed and stably integrated into the chromosome of Bordetella virulence regulatory gene (bvg)-negative Bordetella bronchiseptica ATCC 10580. Since the minitransposons introduced into Bordetella spp. lack the cognate transposase function, they are unable to undergo further transposition events or mediate gene deletions and rearrangements that lead to strain instability. The TnPtacPT minitransposon contains the PT operon under the control of the tac promoter and directs IPTG (isopropyl-beta-D-thiogalactopyranoside)-inducible expression of PT in B. bronchiseptica ATCC 10580. The level of IPTG-induced PT expression was, however, lower than that found for the wild-type B. pertussis Tohama I strain. The TnfusPT minitransposon contains a promoterless PT operon which is only expressed after insertion of the transposon downstream of an appropriately oriented indigenous promoter. After "promoter probing" of B. bronchiseptica with the transposon, clones were screened for PT production by immunoblotting with specific monoclonal antibodies. One clone, designated B. bronchiseptica 10580:: TnfusPT1, expresses significantly higher levels of PT than does B. pertussis Tohama I. The recombinant toxin produced was biologically active in the Chinese hamster ovary cell-clustering assay. High-level expression of PT from a B. bronchiseptica host promoter should provide better yields of the toxin from bacteria not producing other bvg-regulated pathogenesis factors that may play a role in the undesired side effects of current pertussis vaccine preparations. Images PMID:1682257
Feasibility of using shape memory alloys to develop self post-tensioned concrete bridge girders.
DOT National Transportation Integrated Search
2013-08-01
Post-tensioned (PT) structural elements are used quite often in bridges due to their ability to span long widths : economically while providing an aesthetically pleasing structure. PT systems are also preferred in bridge construction : because they g...
Code of Federal Regulations, 2011 CFR
2011-07-01
... STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry Pt. 63, Subpt. F, Table... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Organic Hazardous Air Pollutants...
Code of Federal Regulations, 2014 CFR
2014-07-01
... STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry Pt. 63, Subpt. F, Table... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Organic Hazardous Air Pollutants...
Code of Federal Regulations, 2013 CFR
2013-07-01
... STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry Pt. 63, Subpt. F, Table... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Organic Hazardous Air Pollutants...
49 CFR Appendix G to Part 227 - Schedule of Civil Penalties
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Schedule of Civil Penalties G Appendix G to Part... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION OCCUPATIONAL NOISE EXPOSURE Pt. 227, App. G Appendix G to Part 227... omitted 2,500 5,000 (f) Failure to provide opportunity to observe monitoring 2,000 4,000 (g) Reporting of...
49 CFR Appendix G to Part 227 - Schedule of Civil Penalties
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Schedule of Civil Penalties G Appendix G to Part... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION OCCUPATIONAL NOISE EXPOSURE Pt. 227, App. G Appendix G to Part 227... omitted 2,500 5,000 (f) Failure to provide opportunity to observe monitoring 2,000 4,000 (g) Reporting of...
49 CFR Appendix G to Part 227 - Schedule of Civil Penalties
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Schedule of Civil Penalties G Appendix G to Part... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION OCCUPATIONAL NOISE EXPOSURE Pt. 227, App. G Appendix G to Part 227... omitted 2,500 5,000 (f) Failure to provide opportunity to observe monitoring 2,000 4,000 (g) Reporting of...
40 CFR Appendix A to Part 75 - Specifications and Test Procedures
Code of Federal Regulations, 2011 CFR
2011-07-01
...-1b in section 2.1.1.1 of this appendix. RE = Expected average design removal efficiency of control... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Specifications and Test Procedures A... (CONTINUED) CONTINUOUS EMISSION MONITORING Pt. 75, App. A Appendix A to Part 75—Specifications and Test...
40 CFR Table 1 to Subpart H of... - Batch Processes
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Batch Processes 1 Table 1 to Subpart H... Standards for Organic Hazardous Air Pollutants for Equipment Leaks Pt. 63, Subpt. H, Table 1 Table 1 to Subpart H of Part 63—Batch Processes Monitoring Frequency for Equipment Other than Connectors Operating...
Code of Federal Regulations, 2014 CFR
2014-07-01
... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutant Emissions for Polyether Polyols Production Pt. 63, Subpt. PPP, Table 7... regeneration stream mass or volumetric flow during carbon bed regeneration cycle; and temperature of the carbon...
NASA Astrophysics Data System (ADS)
Lee, Jun Seop; Kim, Minkyu; Lee, Choonghyeon; Cho, Sunghun; Oh, Jungkyun; Jang, Jyongsik
2015-02-01
With recent developments in technology, tremendous effort has been devoted to producing materials for flexible device systems. As a promising approach, solution-processed conducting polymers (CPs) have been extensively studied owing to their facile synthesis, high electrical conductivity, and various morphologies with diverse substrates. Here, we report the demonstration of platinum decorated reduced graphene oxide intercalated polyanililne:poly(4-styrenesulfonate) (Pt_rGO/PANI:PSS) hybrid paste for flexible electric devices. First, platinum decorated reduced graphene oxide (Pt_rGO) was fabricated through the chemical reduction of platinum cations and subsequent heat reduction of GO sheets. Then, the Pt_rGO was mixed with PANI:PSS solution dispersed in diethylene glycol (DEG) using sonication to form a hybrid PANI-based paste (Pt_rGO/PANI:PSS). The Pt_rGO/PANI:PSS was printed as a micropattern and exhibited high electrical conductivity (245.3 S cm-1) with flexible stability. Moreover, it was used in a dipole tag antenna application, where it displayed 0.15 GHz bandwidth and high transmitted power efficiency (99.6%).With recent developments in technology, tremendous effort has been devoted to producing materials for flexible device systems. As a promising approach, solution-processed conducting polymers (CPs) have been extensively studied owing to their facile synthesis, high electrical conductivity, and various morphologies with diverse substrates. Here, we report the demonstration of platinum decorated reduced graphene oxide intercalated polyanililne:poly(4-styrenesulfonate) (Pt_rGO/PANI:PSS) hybrid paste for flexible electric devices. First, platinum decorated reduced graphene oxide (Pt_rGO) was fabricated through the chemical reduction of platinum cations and subsequent heat reduction of GO sheets. Then, the Pt_rGO was mixed with PANI:PSS solution dispersed in diethylene glycol (DEG) using sonication to form a hybrid PANI-based paste (Pt_rGO/PANI:PSS). The Pt_rGO/PANI:PSS was printed as a micropattern and exhibited high electrical conductivity (245.3 S cm-1) with flexible stability. Moreover, it was used in a dipole tag antenna application, where it displayed 0.15 GHz bandwidth and high transmitted power efficiency (99.6%). Electronic supplementary information (ESI) available: TEM images of Pr_rGOs, XRD spectra of various PANI-based hybrid materials, electrical conductivity of Pt_rGO/PANI:PSS with different Pt amounts, surface resistance changes of micropatterns, return loss of the antenna with bending deformation, and transmitted power efficiency of the antenna with bending cycles. See DOI: 10.1039/c4nr06189f
Tsai, Jang-Zern; Chang, Ming-Lang; Yang, Jiun-Yue; Kuo, Dar; Lin, Ching-Hsiung; Kuo, Cheng-Deng
2017-01-01
Though lung sounds auscultation is important for the diagnosis and monitoring of lung diseases, the spectral characteristics of lung sounds have not been fully understood. This study compared the spectral characteristics of lung sounds between the right and left lungs and between healthy male and female subjects using a dual-channel auscultation system. Forty-two subjects aged 18–22 years without smoking habits and any known pulmonary diseases participated in this study. The lung sounds were recorded from seven pairs of auscultation sites on the chest wall simultaneously. We found that in four out of seven auscultation pairs, the lung sounds from the left lung had a higher total power (PT) than those from the right lung. The PT of male subjects was higher than that of female ones in most auscultation pairs. The ratio of inspiration power to expiration power (RI/E) of lung sounds from the right lung was greater than that from the left lung at auscultation pairs on the anterior chest wall, while this phenomenon was reversed at auscultation pairs on the posterior chest wall in combined subjects, and similarly in both male and female subjects. Though the frequency corresponding to maximum power density of lung sounds (FMPD) from the left and right lungs was not significantly different, the frequency that equally divided the power spectrum of lung sounds (F50) from the left lung was significantly smaller than that from the right lung at auscultation site on the anterior and lateral chest walls, while it was significantly larger than that of from the right lung at auscultation site on the posterior chest walls. In conclusion, significant differences in the PT, FMPD, F50, and RI/E between the left and right lungs at some auscultation pairs were observed by using a dual-channel auscultation system in this study. Structural differences between the left and the right lungs, between the female and male subjects, and between anterior and posterior lungs might account for the observed differences in the spectral characteristics of lung sounds. The dual-channel auscultation system might be useful for future development of digital stethoscopes and power spectral analysis of lung sounds in patients with various kinds of cardiopulmonary diseases. PMID:28590447
NASA Astrophysics Data System (ADS)
Yang, Jianke; Nixon, Sean
2016-11-01
Stability of soliton families in one-dimensional nonlinear Schrödinger equations with non-parity-time (PT)-symmetric complex potentials is investigated numerically. It is shown that these solitons can be linearly stable in a wide range of parameter values both below and above phase transition. In addition, a pseudo-Hamiltonian-Hopf bifurcation is revealed, where pairs of purely-imaginary eigenvalues in the linear-stability spectra of solitons collide and bifurcate off the imaginary axis, creating oscillatory instability, which resembles Hamiltonian-Hopf bifurcations of solitons in Hamiltonian systems even though the present system is dissipative and non-Hamiltonian. The most important numerical finding is that, eigenvalues of linear-stability operators of these solitons appear in quartets (λ , - λ ,λ* , -λ*), similar to conservative systems and PT-symmetric systems. This quartet eigenvalue symmetry is very surprising for non- PT-symmetric systems, and it has far-reaching consequences on the stability behaviors of solitons.
Stabilization of Pt monolayer catalysts under harsh conditions of fuel cells
Zhang, Xiaoming; Liu, Ping; Yu, Shansheng; ...
2015-05-21
We employed density functional theory (DFT) to explore the stability of core (M = Cu, Ru, Rh, Pd, Ag, Os, Ir, Au)-shell (Pt) catalysts under harsh conditions, including solutions and reaction intermediates involved in the oxygen reduction reaction (ORR) in fuel cells. A pseudomorphic surface alloy (PSA) with a Pt monolayer (Pt 1ML) supported on an M surface, Pt 1ML/M(111) or (001), was considered as a model system. Different sets of candidate M cores were identified to achieve a stable Pt 1ML shell depending on the conditions. In vacuum conditions, the Pt 1ML shell can be stabilized on the mostmore » of M cores except Cu, Ag, and Au. The situation varies under various electrochemical conditions. Depending on the solutions and the operating reaction pathways of the ORR, different M should be considered. Pd and Ir are the only core metals studied, being able to keep the Pt ML shell intact in perchloric acid, sulfuric acid, phosphoric acid, and alkaline solutions as well as under the ORR conditions via different pathways. Ru and Os cores should also be paid attention, which only fall during the ORR via the *OOH intermediate. Rh core works well as long as the ORR does not undergo the pathway via *O intermediate. Our results show that PSAs can behave differently from the near surface alloy, Pt 1ML/M 1ML/Pt(111), highlighting the importance of considering both chemical environments and the atomic structures in rational design of highly stable core-shell nanocatalysts. Finally, the roles that d-band center of a core M played in determining the stability of supported Pt 1ML shell were also discussed.« less
Electrodeposited Co-Pt thin films for magnetic hard disks
NASA Astrophysics Data System (ADS)
Bozzini, B.; De Vita, D.; Sportoletti, A.; Zangari, G.; Cavallotti, P. L.; Terrenzio, E.
1993-03-01
ew baths for Co-Pt electrodeposition have been developed and developed and ECD thin films (≤0.3μm) have been prepared and characterized structurally (XRD), morphologically (SEM), chemically (EDS) and magnetically (VSM); their improved corrosion, oxidation and wear resistance have been ascertained. Such alloys appear suitable candidates for magnetic storage systems, from all technological viewpoints. The originally formulated baths contain Co-NH 3-citrate complexes and Pt-p salt (Pt(NH 3) 2(NO 2) 2). Co-Pt thin films of fcc structure are deposited obtaining microcrystallites of definite composition. At Pt ⋍ 30 at% we obtain fcc films with a=0.369 nm, HC=80 kA m, and high squareness; increasing Co and decreasing Pt content in the bath it is possible to reduce the Pt content of the deposit, obtaining fcc structures containing two types of microcrystals with a = 0.3615 nm and a = 0.369 nm deposited simultaneously. NaH 2PO 2 additions to the bath have a stabilizing influence on the fcc structure of a = 0.3615 nm, Pt ⋍ 20 at% and HC as high as 200 kA/m, with hysteresis loops suitable for both longitudinal or perpendicular recording, depending on the thickness. We have prepared 2.5 in. hard disks for magnetic recording with ECD Co-Pt 20 at% with a polished and texturized ACD Ni-P underlayer. Pulse response, 1F & 2F frequency and frequency sweep response behaviour, as well as noise and overwrite characteristics have been measured for both our disks and high-standard sputtered Co-Cr-Ta production disks, showin improved D50 for Co-Pt ECD disks. The signal-to-noise ratio could be improved by pulse electrodeposition and etching post-treatments.
Stabilization of Pt monolayer catalysts under harsh conditions of fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaoming; Yu, Shansheng; Zheng, Weitao, E-mail: wtzheng@jlu.edu.cn, E-mail: pingliu3@bnl.gov
2015-05-21
We employed density functional theory to explore the stability of core (M = Cu, Ru, Rh, Pd, Ag, Os, Ir, Au)-shell (Pt) catalysts under harsh conditions, including solutions and reaction intermediates involved in the oxygen reduction reaction (ORR) in fuel cells. A pseudomorphic surface alloy (PSA) with a Pt monolayer (Pt{sub 1ML}) supported on an M surface, Pt{sub 1ML}/M(111) or (001), was considered as a model system. Different sets of candidate M cores were identified to achieve a stable Pt{sub 1ML} shell depending on the conditions. In vacuum conditions, the Pt{sub 1ML} shell can be stabilized on the most ofmore » M cores except Cu, Ag, and Au. The situation varies under various electrochemical conditions. Depending on the solutions and the operating reaction pathways of the ORR, different M should be considered. Pd and Ir are the only core metals studied, being able to keep the Pt{sub ML} shell intact in perchloric acid, sulfuric acid, phosphoric acid, and alkaline solutions as well as under the ORR conditions via different pathways. Ru and Os cores should also be paid attention, which only fall during the ORR via the *OOH intermediate. Rh core works well as long as the ORR does not undergo the pathway via *O intermediate. Our results show that PSAs can behave differently from the near surface alloy, Pt{sub 1ML}/M{sub 1ML}/Pt(111), highlighting the importance of considering both chemical environments and the atomic structures in rational design of highly stable core-shell nanocatalysts. Finally, the roles that d-band center of a core M played in determining the stability of supported Pt{sub 1ML} shell were also discussed.« less
Characterization of Ternary NiTiPt High-Temperature Shape Memory Alloys
NASA Technical Reports Server (NTRS)
Rios, Orlando; Noebe, Ronald; Biles, Tiffany; Garg, Anita; Palczer, Anna; Scheiman, Daniel; Seifert, Hans Jurgen; Kaufman, Michael
2005-01-01
Pt additions substituted for Ni in NiTi alloys are known to increase the transformation temperature of the alloy but only at fairly high Pt levels. However, until now only ternary compositions with a very specific stoichiometry, Ni50-xPtxTi50, have been investigated and then only to very limited extent. In order to learn about this potential high-temperature shape memory alloy system, a series of over twenty alloys along and on either side of a line of constant stoichiometry between NiTi and TiPt were arc melted, homogenized, and characterized in terms of their microstructure, transformation temperatures, and hardness. The resulting microstructures were examined by scanning electron microscopy and the phase compositions quantified by energy dispersive spectroscopy."Stoichiometric" compositions along a line of constant stoichiometry between NiTi to TiPt were essentially single phase but by any deviations from a stoichiometry of (Ni,Pt)50Ti50 resulted in the presence of at least two different intermetallic phases, depending on the overall composition of the alloy. Essentially all alloys, whether single or two-phase, still under went a martensitic transformation. It was found that the transformation temperatures were depressed with initial Pt additions but at levels greater than 10 at.% the transformation temperature increased linearly with Pt content. Also, the transformation temperatures were relatively insensitive to alloy stoichiometry within the range of alloys examined. Finally, the dependence of hardness on Pt content for a series of Ni50-xPtxTi50 alloys showed solution softening at low Pt levels, while hardening was observed in ternary alloys containing more than about 10 at.% Pt. On either side of these "stoichiometric" compositions, hardness was also found to increase significantly.