Souza Dutra, A. de; Santos, V. G. C. S. dos; Amaro de Faria, A. C. Jr.
2007-06-15
Some kinks for non-Hermitian quantum field theories in 1+1 dimensions are constructed. A class of models where the soliton energies are stable and real are found. Although these kinks are not Hermitian, they are symmetric under PT transformations.
Q kink of the nonlinear O(3) {sigma} model involving an explicitly broken symmetry
Loginov, A. Yu.
2011-05-15
The (1 + 1)-dimensional nonlinear O(3) {sigma} model involving an explicitly broken symmetry is considered. Sphalerons are known to exist in this model. These sphalerons are of a topological origin and are embedded kinks of the sine-Gordon model. In the case of a compact spatial manifold S{sup 1}, sine-Gordon multikinks exist in the model. It is shown that the model admits a nonstatic generalization of the sine-Gordon kink/multikink, Q kink/multikink. Explicit expressions are obtained for the dependence of the Q kink energy and charge on the phase frequency of rotation. The Q kink is studied for stability, and expressions are obtained for the eigenfunctions and eigenfrequencies of the operator of quadratic fluctuations. It is shown that the Q kink is unstable over the entire admissible frequency range {omega} Element-Of [-1, 1]. The one-loop quantum correction to the static-kink mass is calculated, and the Q-kink zero mode is quantized. It is shown that, in a general static case, the field equations of the model are integrable in quadratures.
Axisymmetric photonic structures with PT-symmetry
NASA Astrophysics Data System (ADS)
Ahmed, Waqas W.; Herrero, Ramon; Botey, Muriel; Staliunas, Kestutis
2016-09-01
PT-symmetric structures in photonic crystals, combining refractive index and gain-loss modulations is becoming a research field with increasing interest due to the light directionality induced by these particular potentials. Here, we consider PT-symmetric potentials with axial symmetry to direct light to the crystal central point obtaining a localization effect. The axial and PT-symmetric potential intrinsically generates an exceptional central point in the photonic crystal by the merge of both symmetries. This particular point in the crystal lattice causes field amplitude gradients with exponential slopes around the crystal center. The field localization strongly depends on the phase of the central point and on the complex amplitude of the PT-potential. The presented work analyzes in a first stage 1D linear PT-axisymmetric crystals and the role of the central point phase that determines the defect character, i.e. refractive index defect, gain-loss defect or a combination of both. The interplay of the directional light effect induced by the PT-symmetry and the light localization around the central point through the axial symmetry enhances localization and allows higher field concentration for certain phases. The linearity of the studied crystals introduces an exponential growth of the field that mainly depends on the complex amplitude of the potential. The work is completed by the analysis of 2D PT-axisymmetric potentials showing different spatial slopes and growth rates caused by symmetry reasons.
PT Symmetry and Spontaneous Symmetry Breaking in a Microwave Billiard
NASA Astrophysics Data System (ADS)
Bittner, S.; Dietz, B.; Günther, U.; Harney, H. L.; Miski-Oglu, M.; Richter, A.; Schäfer, F.
2012-01-01
We demonstrate the presence of parity-time (PT) symmetry for the non-Hermitian two-state Hamiltonian of a dissipative microwave billiard in the vicinity of an exceptional point (EP). The shape of the billiard depends on two parameters. The Hamiltonian is determined from the measured resonance spectrum on a fine grid in the parameter plane. After applying a purely imaginary diagonal shift to the Hamiltonian, its eigenvalues are either real or complex conjugate on a curve, which passes through the EP. An appropriate basis choice reveals its PT symmetry. Spontaneous symmetry breaking occurs at the EP.
Detecting broken \\mathbf{\\mathsf{PT}} -symmetry
NASA Astrophysics Data System (ADS)
Weigert, Stefan
2006-08-01
A fundamental problem in the theory of \\mathbf{\\mathsf{PT}} -invariant quantum systems is to determine whether a given system 'respects' this symmetry or not. If not, the system usually develops non-real eigenvalues. It is shown in this contribution how to algorithmically detect the existence of complex eigenvalues for a given PT-symmetric matrix. The procedure uses classical results from stability theory which qualitatively locate the zeros of real polynomials in the complex plane. The interest and value of the present approach lies in the fact that it avoids diagonalization of the Hamiltonian at hand.
Giant Goos-Hänchen shift using PT symmetry
NASA Astrophysics Data System (ADS)
Ziauddin; Chuang, You-Lin; Lee, Ray-Kuang
2015-07-01
Influence of PT symmetry on the Goos-Hänchen (GH) shift in the reflected light is presented for an ensemble of atomic medium in a cavity, in the configuration of four-level N -type (87Rb atoms) systems driving by two copropagating strong laser fields and a weak probe field. The atom-field interaction follows the realization of PT symmetry by adjusting the coupling field detunings [J. Shenget al., Phys. Rev. A 88, 041803(R) (2013), 10.1103/PhysRevA.88.041803]. A giant enhancement for the GH shift in the reflected light is revealed when the PT -symmetry condition is satisfied.
Exponentially Fragile PT Symmetry in Lattices with Localized Eigenmodes
Bendix, Oliver; Fleischmann, Ragnar; Kottos, Tsampikos; Shapiro, Boris
2009-07-17
We study the effect of localized modes in lattices of size N with parity-time (PT) symmetry. Such modes are arranged in pairs of quasidegenerate levels with splitting deltaapproxexp{sup -N/x}i where xi is their localization length. The level 'evolution' with respect to the PT breaking parameter gamma shows a cascade of bifurcations during which a pair of real levels becomes complex. The spontaneous PT symmetry breaking occurs at gamma{sub PT}approxmin(delta), thus resulting in an exponentially narrow exact PT phase. As N/xi decreases, it becomes more robust with gamma{sub PT}approx1/N{sup 2} and the distribution P(gamma{sub PT}) changes from log-normal to semi-Gaussian. Our theory can be tested in the frame of optical lattices.
Quantum graphs: PT -symmetry and reflection symmetry of the spectrum
NASA Astrophysics Data System (ADS)
Kurasov, P.; Majidzadeh Garjani, B.
2017-02-01
Not necessarily self-adjoint quantum graphs—differential operators on metric graphs—are considered. Assume in addition that the underlying metric graph possesses an automorphism (symmetry) P . If the differential operator is P T -symmetric, then its spectrum has reflection symmetry with respect to the real line. Our goal is to understand whether the opposite statement holds, namely, whether the reflection symmetry of the spectrum of a quantum graph implies that the underlying metric graph possesses a non-trivial automorphism and the differential operator is P T -symmetric. We give partial answer to this question by considering equilateral star-graphs. The corresponding Laplace operator with Robin vertex conditions possesses reflection-symmetric spectrum if and only if the operator is P T -symmetric with P being an automorphism of the metric graph.
Non-Hermitian quantum Hamiltonians with PT symmetry
Jones-Smith, Katherine; Mathur, Harsh
2010-10-15
We formulate quantum mechanics for non-Hermitian Hamiltonians that are invariant under PT, where P is the parity and T denotes time reversal, for the case that time-reversal symmetry is odd (T{sup 2}=-1), generalizing prior work for the even case (T{sup 2}=1). We discover an analog of Kramer's theorem for PT quantum mechanics, present a prototypical example of a PT quantum system with odd time reversal, and discuss potential applications of the formalism.
Bloch Oscillations in Complex Crystals with PT Symmetry
Longhi, S.
2009-09-18
Bloch oscillations in complex lattices with PT symmetry are theoretically investigated with specific reference to optical Bloch oscillations in photonic lattices with gain or loss regions. Novel dynamical phenomena with no counterpart in ordinary lattices, such as nonreciprocal Bloch oscillations related to violation of the Friedel's law of Bragg scattering in complex potentials, are highlighted.
PT symmetry in classical and quantum statistical mechanics.
Meisinger, Peter N; Ogilvie, Michael C
2013-04-28
PT-symmetric Hamiltonians and transfer matrices arise naturally in statistical mechanics. These classical and quantum models often require the use of complex or negative weights and thus fall outside the conventional equilibrium statistical mechanics of Hermitian systems. PT-symmetric models form a natural class where the partition function is necessarily real, but not necessarily positive. The correlation functions of these models display a much richer set of behaviours than Hermitian systems, displaying sinusoidally modulated exponential decay, as in a dense fluid, or even sinusoidal modulation without decay. Classical spin models with PT-symmetry include Z(N) models with a complex magnetic field, the chiral Potts model and the anisotropic next-nearest-neighbour Ising model. Quantum many-body problems with a non-zero chemical potential have a natural PT-symmetric representation related to the sign problem. Two-dimensional quantum chromodynamics with heavy quarks at non-zero chemical potential can be solved by diagonalizing an appropriate PT-symmetric Hamiltonian.
Explicit definition of PT symmetry for nonunitary quantum walks with gain and loss
NASA Astrophysics Data System (ADS)
Mochizuki, Ken; Kim, Dakyeong; Obuse, Hideaki
2016-06-01
PT symmetry, that is, a combined parity and time-reversal symmetry, is a key milestone for non-Hermitian systems exhibiting entirely real eigenenergy. In the present work, motivated by a recent experiment, we study PT symmetry of the time-evolution operator of nonunitary quantum walks. We present the explicit definition of PT symmetry by employing a concept of symmetry time frames. We provide a necessary and sufficient condition so that the time-evolution operator of the nonunitary quantum walk retains PT symmetry even when parameters of the model depend on position. It is also shown that there exist extra symmetries embedded in the time-evolution operator. Applying these results, we clarify that the nonunitary quantum walk in the experiment does have PT symmetry.
NASA Astrophysics Data System (ADS)
Karthiga, S.; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.
2016-01-01
We investigate the remarkable role of position-dependent damping in determining the parametric regions of symmetry breaking in nonlinear PT -symmetric systems. We illustrate the nature of PT -symmetry preservation and breaking with reference to a remarkable integrable scalar nonlinear system. In the two-dimensional cases of such position-dependent damped systems, we unveil the existence of a class of twofold-PT -symmetric systems which have twofold PT symmetries. We analyze the dynamics of these systems and show how symmetry breaking occurs, that is, whether the symmetry breaking of the two PT symmetries occurs in pair or occurs one by one. The addition of linear damping in these nonlinearly damped systems induces competition between the two types of damping. This competition results in a PT phase transition in which the PT symmetry is broken for lower loss or gain strength and is restored by increasing the loss or gain strength. We also show that by properly designing the form of the position-dependent damping, we can tailor the PT -symmetric regions of the system.
Pseudo-Hermitian Systems with PT-Symmetry: Degeneracy and Krein Space
NASA Astrophysics Data System (ADS)
Choutri, B.; Cherbal, O.; Ighezou, F. Z.; Drir, M.
2017-02-01
We show in the present paper that pseudo-Hermitian Hamiltonian systems with even PT-symmetry (P2=1,T2=1) admit a degeneracy structure. This kind of degeneracy is expected traditionally in the odd PT-symmetric systems (P2=1,T2=-1) which is appropriate to the fermions (Scolarici and Solombrino, Phys. Lett. A 303, 239 2002; Jones-Smith and Mathur, Phys. Rev. A 82, 042101 2010). We establish that the pseudo-Hermitian Hamiltonians with even PT-symmetry admit a degeneracy structure if the operator PT anticommutes with the metric operator η σ which is necessarily indefinite. We also show that the Krein space formulation of the Hilbert space is the convenient framework for the implementation of unbroken PT-symmetry. These general results are illustrated with great details for four-level pseudo-Hermitian Hamiltonian with even PT -symmetry.
Observation and elimination of broken symmetry in L1{sub 0} FePt nanostructures
Quarterman, P.; Wang, Hao; Qiu, Jiao-Ming; Ma, Bin; Liu, Xiaoqi; Wang, Jian-Ping; Guo, Honghua
2015-12-07
An unexplained surface anisotropy effect was observed and confirmed in the magnetization reversal process of both L1{sub 0} phase FePt nanoparticles with octahedral shape and (001) textured L1{sub 0} FePt thin films with island nanostructures. We suggest that the nature of the observed surface effect is caused by broken symmetry on the FePt surface, which results in weakened exchange coupling for surface atoms. Furthermore, we propose, and experimentally demonstrate, a method to repair the broken symmetry by capping the FePt islands with a Pt layer, which could prove invaluable in understanding fundamental limitations of magnetic nanostructures.
PT symmetry in quantum physics: From a mathematical curiosity to optical experiments
NASA Astrophysics Data System (ADS)
Bender, Carl M.
2016-04-01
Space-time reflection symmetry, or PT symmetry, first proposed in quantum mechanics by Bender and Boettcher in 1998 [1], has become an active research area in fundamental physics. More than two thousand papers have been published on the subject and papers have appeared in two dozen categories of the arXiv. Over two dozen international conferences and symposia specifically devoted to PT symmetry have been held and many PhD theses have been written.
Pseudo PT-symmetry in time periodic non-Hermitian Hamiltonians systems
NASA Astrophysics Data System (ADS)
Maamache, Mustapha; Lamri, Sarra; Cherbal, Omar
2017-03-01
We investigate the concept of the pseudo-parity-time (pseudo- PT) symmetry in periodic quantum systems. This pseudo parity-time symmetry manifests itself dynamically in the framework of the non-unitary evolution (Floquet) operator U(τ) =e-iLτ, over a period τ, which shows that the stability of the dynamics occurs when the PT-symmetry (or pseudo- PT) of the time-independent non-Hermitian Hamiltonian L is unbroken i.e. its quasienergies En are real. Nevertheless, when the PT-symmetry of the non-Hermitian Hamiltonian L is broken, which corresponds to the complex conjugate quasienergies En, an instable dynamics arises. We investigate in greater detail a harmonic oscillator with imaginary time-dependent periodic driving term linear in x. The Floquet operator for the modulated system is pseudo- PT symmetric if the relative phase ϕ of the applied mode is not 0 or π.
PT-symmetry breaking with divergent potentials: Lattice and continuum cases
NASA Astrophysics Data System (ADS)
Joglekar, Yogesh N.; Scott, Derek D.; Saxena, Avadh
2014-09-01
We investigate the parity- and time-reversal (PT-) symmetry breaking in lattice models in the presence of long-ranged, non-Hermitian, PT-symmetric potentials that remain finite or become divergent in the continuum limit. By scaling analysis of the fragile PT threshold for an open finite lattice, we show that continuum loss-gain potentials Vα(x)∝i|x|αsgn(x) have a positive PT-breaking threshold for α >-2, and a zero threshold for α ≤-2. When α <0 localized states with complex (conjugate) energies in the continuum energy band occur at higher loss-gain strengths. We investigate the signatures of PT-symmetry breaking in coupled waveguides, and show that the emergence of localized states dramatically shortens the relevant time scale in the PT-symmetry broken region.
Tunneling decay of false kinks
NASA Astrophysics Data System (ADS)
Dupuis, Éric; Gobeil, Yan; MacKenzie, Richard; Marleau, Luc; Paranjape, M. B.; Ung, Yvan
2015-07-01
We consider the decay of "false kinks," that is, kinks formed in a scalar field theory with a pair of degenerate symmetry-breaking false vacua in 1 +1 dimensions. The true vacuum is symmetric. A second scalar field and a peculiar potential are added in order for the kink to be classically stable. We find an expression for the decay rate of a false kink. As with any tunneling event, the rate is proportional to exp (-SE) where SE is the Euclidean action of the bounce describing the tunneling event. This factor varies wildly depending on the parameters of the model. Of interest is the fact that for certain parameters SE can get arbitrarily small, implying that the kink is only barely stable. Thus, while the false vacuum itself may be very long-lived, the presence of kinks can give rise to rapid vacuum decay.
Darboux-Crum transformations, Jordan states and PT-symmetry
NASA Astrophysics Data System (ADS)
Correa, Francisco
2017-03-01
We describe how Darboux-Crum transformations with Jordan states provide an useful method for the design of complex optical systems. We focus in the construction of PT-symmetric models with features like invisible periodic defects and vanishing reflection coefficient. Some illustrative examples are discussed.
PT symmetry breaking and nonlinear optical isolation in coupled microcavities.
Zhou, Xin; Chong, Y D
2016-04-04
We perform a theoretical study of the nonlinear dynamics of nonlinear optical isolator devices based on coupled microcavities with gain and loss. This reveals a correspondence between the boundary of asymptotic stability in the nonlinear regime, where gain saturation is present, and the PT -breaking transition in the underlying linear system. For zero detuning and weak input intensity, the onset of optical isolation can be rigorously derived, and corresponds precisely to the transition into the PT -broken phase of the linear system. When the couplings to the external ports are unequal, the isolation ratio exhibits an abrupt jump at the transition point, whose magnitude is given by the ratio of the couplings. This phenomenon could be exploited to realize an actively controlled nonlinear optical isolator, in which strong optical isolation can be turned on and off by tiny variations in the inter-resonator separation.
PT-symmetry and kagome lattices (Conference Presentation)
NASA Astrophysics Data System (ADS)
Saxena, Avadh; Chern, Gia-Wei
2016-09-01
We consider a complex photonic lattice by placing PT-symmetric dimers at the Kagome lattice points. This lattice is a two-dimensional network of corner-sharing triangles. Each dimer represents a pair of strongly coupled waveguides. The frustrated coupling between waveguide modes results in a dispersionless flat band comprising spatially localized modes. For a balanced arrangement of gain and loss on each dimer, up to a critical value of the gain/loss parameter the system exhibits a PT-symmetric phase. The beam evolution in the waveguide array leads to an oscillatory rotation of the optical power. We observe local chiral structures with a narrow beam excitation. We also study nonlinearity and disorder in this set up.
Interplay between Fano resonance and PT symmetry in non-Hermitian discrete systems
NASA Astrophysics Data System (ADS)
Zhu, Baogang; Lü, Rong; Chen, Shu
2015-04-01
We study the effect of PT -symmetric complex potentials on the transport properties of non-Hermitian systems, which consist of an infinite linear chain and two side-coupled defect points with PT -symmetric complex on-site potentials. By analytically solving the scattering problem of two typical models, which display standard Fano resonances in the absence of non-Hermitian terms, we find that the PT -symmetric imaginary potentials can lead to some pronounced effects on transport properties of our systems, including changes from the perfect reflection to perfect transmission, and rich behaviors for the absence or existence of the perfect reflection at one and two resonant frequencies. Our study can help us to understand the interplay between the Fano resonance and PT symmetry in non-Hermitian discrete systems, which may be realizable in optical waveguide experiments.
Supersymmetric analysis of the Dirac-Weyl operator within PT symmetry
Yeşiltaş, Özlem
2014-08-15
Two-dimensional effective Hamiltonian for a massless Dirac electron interacting with a hyperbolic magnetic field is discussed within PT symmetry. Factorization method and polynomial procedures are used to solve Dirac equation for the constant Fermi velocity and the effective potential which is complex Scarf II potential. The more general effective Scarf II potential models are also obtained within pseudo-supersymmetry. Finally, an extension of Panella and Roy's work [Phys. Lett. A 376, 2580–2583 (2012)] to the both PT symmetric and real Scarf II partner potentials is given using the position dependent Fermi velocity.
Parametric symmetries in exactly solvable real and PT symmetric complex potentials
NASA Astrophysics Data System (ADS)
Yadav, Rajesh Kumar; Khare, Avinash; Bagchi, Bijan; Kumari, Nisha; Mandal, Bhabani Prasad
2016-06-01
In this paper, we discuss the parametric symmetries in different exactly solvable systems characterized by real or complex PT symmetric potentials. We focus our attention on the conventional potentials such as the generalized Pöschl Teller (GPT), Scarf-I, and PT symmetric Scarf-II which are invariant under certain parametric transformations. The resulting set of potentials is shown to yield a completely different behavior of the bound state solutions. Further, the supersymmetric partner potentials acquire different forms under such parametric transformations leading to new sets of exactly solvable real and PT symmetric complex potentials. These potentials are also observed to be shape invariant (SI) in nature. We subsequently take up a study of the newly discovered rationally extended SI potentials, corresponding to the above mentioned conventional potentials, whose bound state solutions are associated with the exceptional orthogonal polynomials (EOPs). We discuss the transformations of the corresponding Casimir operator employing the properties of the so(2, 1) algebra.
Design of zero index metamaterials with PT symmetry using epsilon-near-zero media with defects
NASA Astrophysics Data System (ADS)
Fu, Yangyang; Zhang, Xiaojing; Xu, Yadong; Chen, Huanyang
2017-03-01
Inspired by the design of matched zero-index metamaterials (ZIMs) using defects in epsilon-near-zero (ENZ) media, we demonstrate in this letter that ZIMs with parity-time (PT) symmetry in a waveguide system can be achieved by introducing defects with loss/gain inside ENZ media. Such results are well verified from the phenomenon of unidirectional transparency, corresponding to the exceptional points in PT symmetric systems. Moreover, by changing the geometry configuration of ENZ, the effective loss/gain in the structure composed of ENZ and defects can be amplified immensely by virtue of the resonances of defects. Therefore, our work also provides a blueprint for obtaining amplified loss/gain in PT symmetric systems.
Spontaneous PT symmetry breaking and quantum phase transitions in dimerized spin chains
Giorgi, Gian Luca
2010-08-01
The occurrence of parity-time reversal (PT) symmetry breaking is discussed in a non-Hermitian spin chain. The Hermiticity of the model is broken by the presence of an alternating, imaginary, transverse magnetic field. A full real spectrum, which occurs if and only if all the eigenvectors are PT symmetric, can appear only in presence of dimerization, i.e., only if the hopping amplitudes between nearest-neighbor spins assume alternate values along the chain. In order to make a connection between such system and the Hermitian world, we study the critical magnetic properties of the model and look for the conditions that would allow to observe the same phase diagram in the absence of the imaginary field. Such procedure amounts to renormalizing the spin-spin coupling amplitudes.
Caps, H; Vandewalle, N
2001-10-01
We propose a relevant modification of the Nishimori-Ouchi model [Phys. Rev. Lett. 71, 197 (1993)] for granular landscape erosion. We explicitly introduce an additional parameter: the angle of repose straight theta(r), and an additional process: avalanches. We show that the straight theta(r) parameter leads to an asymmetry of the ripples, as observed in natural patterns. The temporal evolution of the maximum ripple height h(max) is limited and not linear according to recent observations. The ripple symmetry and the kink dynamics are studied and discussed.
Coalescence of resonances in dissipationless resonant tunneling structures and PT-symmetry breaking
NASA Astrophysics Data System (ADS)
Gorbatsevich, A. A.; Shubin, N. M.
2017-01-01
We study the phenomenon of spontaneous symmetry breaking in dissipationless resonant tunneling structures (RTS). To describe the quantum transport in this system we apply both the nonequilibrium Green function formalism based on a tight-binding model and a numerical solution of the Schrödinger equation within the envelope wavefunction formalism. An auxiliary non-Hermitian Hamiltonian is introduced. Its eigenvalues determine exactly the transparency peak positions. In spatially symmetric RTS the corresponding auxiliary non-Hermitian Hamiltonian becomes PT-symmetric and possesses real eigenvalues, which can coalesce at exceptional points of this Hamiltonian. A coalescence of the auxiliary non-Hermitian Hamiltonian eigenvalues means a coalescence of perfect resonances in RTS, which can be accompanied be symmetry breaking of the electron wavefunction probability distribution (at a given direction of the particle flow). Also we construct a classification of different types of the coalescence of resonances in terms of the catastrophe theory and investigate the impact of small imperfections (scattering and asymmetry) on these phenomena.
NASA Astrophysics Data System (ADS)
Harter, Andrew K.; Lee, Tony E.; Joglekar, Yogesh N.
2016-06-01
Aubry-André-Harper lattice models, characterized by a reflection-asymmetric sinusoidally varying nearest-neighbor tunneling profile, are well known for their topological properties. We consider the fate of such models in the presence of balanced gain and loss potentials ±i γ located at reflection-symmetric sites. We predict that these models have a finite PT -breaking threshold only for specific locations of the gain-loss potential and uncover a hidden symmetry that is instrumental to the finite threshold strength. We also show that the topological edge states remain robust in the PT -symmetry-broken phase. Our predictions substantially broaden the possible experimental realizations of a PT -symmetric system.
Strauss, H.; Park, W.; Monticello, D.; Izzo, R.; White, R.; McGuire, K.; Manickam, J.; Goldston, R.
1983-07-01
The internal-kink mode, combined with neutral-beam heating and beam losses, appears to be responsible for the fishbone soft x-ray oscillations in PDX. Nonlinear simulations of both ideal and resistive kinks are presented and shown to be consistent with experimental observations. The internal kink may also be important in low-beta internal disruptions.
Hexagonal pnictide SrPtAs; the role of spin-orbit interaction and locally broken inversion symmetry
NASA Astrophysics Data System (ADS)
Rhim, S. H.; Youn, S. J.; Fischer, M. H.; Agterberg, D. F.; Sigrist, M.; Weinert, M.; Freeman, A. J.
2012-02-01
The first hexagonal pnictide superconductor SrPtAs which consists of stacked PtAs layers has been studied using the FLAPW methodootnotetextWimmer, Krakauer, Weinert, and Freeman, Phys.Rev.B. 24, 864 (1981) and tight-binding methods. The single PtAs layer forms a honeycomb structure that exhibits: (1) locally broken inversion symmetry despite the presence of the global inversion center, and (2) strong spin-orbit interaction, for which physical consequences are nontrivial. Based on these findings, we predict significant enhancement of both the spin susceptibility and the paramagnetic limiting field with respect to the usual s wave superconductors. Further, we suggest an increase of TC by electron doping of a van Hove singularity.
Gravitational Smoothing of Kinks on Cosmic String Loops
NASA Astrophysics Data System (ADS)
Wachter, Jeremy M.; Olum, Ken D.
2017-02-01
We analyze the effect of gravitational backreaction on cosmic string loops with kinks, which is an important determinant of the shape, and thus the potential observability, of string loops which may exist in the Universe today. Kinks are not rounded off, but may be straightened out. This means that backreaction will only cause loops with kinks to develop cusps after some potentially large fraction of their lifetimes. In some loops, symmetries prevent even this process, so that the loop evaporates in a self-similar fashion and the kinks are unchanged. As an example, we discuss backreaction on the rectangular Garfinkle-Vachaspati loop.
Gravitational Smoothing of Kinks on Cosmic String Loops.
Wachter, Jeremy M; Olum, Ken D
2017-02-03
We analyze the effect of gravitational backreaction on cosmic string loops with kinks, which is an important determinant of the shape, and thus the potential observability, of string loops which may exist in the Universe today. Kinks are not rounded off, but may be straightened out. This means that backreaction will only cause loops with kinks to develop cusps after some potentially large fraction of their lifetimes. In some loops, symmetries prevent even this process, so that the loop evaporates in a self-similar fashion and the kinks are unchanged. As an example, we discuss backreaction on the rectangular Garfinkle-Vachaspati loop.
PT symmetry and necessary and sufficient conditions for the reality of energy eigenvalues
NASA Astrophysics Data System (ADS)
Bender, Carl M.; Mannheim, Philip D.
2010-04-01
The mathematical requirement that a Hamiltonian H be Hermitian is sufficient to guarantee the reality of its eigenvalues, but it is not necessary. By establishing three theorems, this Letter gives conditions that are both necessary and sufficient. First, it is shown that if the secular equation is real, the Hamiltonian is necessarily PT symmetric. Second, the set of all operators C that nontrivially obey the two equations [C,H]=0 and C=1 is introduced. For a diagonalizable PT-symmetric Hamiltonian it is shown that the set is nonempty and that the energy eigenvalues of H are all real only if every such C commutes with PT. There is at least one complex-conjugate pair of eigenvalues whenever at least one such C does not commute with PT. Third, the eigenvalues of any nondiagonalizable Jordan-block matrix that possesses just one eigenvector are all real if the block is PT symmetric, and are all complex if it is not. These theorems hold for matrix Hamiltonians of any finite dimensionality.
NASA Astrophysics Data System (ADS)
Cozma, M. D.
2017-01-01
The charged pion multiplicity ratio in intermediate-energy heavy-ion collisions, a probe of the density dependence of symmetry energy above the saturation point, has been proven in a previous study to be extremely sensitive to the strength of the isovector Δ (1232 ) potential in nuclear matter. As there is no knowledge, either from theory or experiment, about the magnitude of this quantity, the extraction of constraints on the slope of the symmetry energy at saturation by using exclusively the mentioned observable is hindered at present. It is shown that, by including the ratio of average pT of charged pions
Ingles, David
2004-05-01
The phenomenon of kinking in medical tubing remains a problem for some applications, particularly critical ones such as transporting gasses or fluids. Design features are described to prevent its occurrence.
Permanent Rabi oscillations in coupled exciton-photon systems with PT-symmetry.
Chestnov, Igor Yu; Demirchyan, Sevak S; Alodjants, Alexander P; Rubo, Yuri G; Kavokin, Alexey V
2016-01-21
We propose a physical mechanism which enables permanent Rabi oscillations in driven-dissipative condensates of exciton-polaritons in semiconductor microcavities subjected to external magnetic fields. The method is based on stimulated scattering of excitons from the incoherent reservoir. We demonstrate that permanent non-decaying oscillations may appear due to the parity-time symmetry of the coupled exciton-photon system realized in a specific regime of pumping to the exciton state and depletion of the reservoir. At non-zero exciton-photon detuning, robust permanent Rabi oscillations occur with unequal amplitudes of exciton and photon components. Our predictions pave way to realization of integrated circuits based on exciton-polariton Rabi oscillators.
Permanent Rabi oscillations in coupled exciton-photon systems with PT -symmetry
Chestnov, Igor Yu.; Demirchyan, Sevak S.; Alodjants, Alexander P.; Rubo, Yuri G.; Kavokin, Alexey V.
2016-01-01
We propose a physical mechanism which enables permanent Rabi oscillations in driven-dissipative condensates of exciton-polaritons in semiconductor microcavities subjected to external magnetic fields. The method is based on stimulated scattering of excitons from the incoherent reservoir. We demonstrate that permanent non-decaying oscillations may appear due to the parity-time symmetry of the coupled exciton-photon system realized in a specific regime of pumping to the exciton state and depletion of the reservoir. At non-zero exciton-photon detuning, robust permanent Rabi oscillations occur with unequal amplitudes of exciton and photon components. Our predictions pave way to realization of integrated circuits based on exciton-polariton Rabi oscillators. PMID:26790534
Semirelativity and Kink Solitons
ERIC Educational Resources Information Center
Nowak, Mariusz Karol
2014-01-01
It is hard to observe relativistic effects in everyday life. However, table experiments using a mechanical transmission line for solitons may be an efficient and simple way to show effects such as Lorentz contraction in a classroom. A kink soliton is a deformation of a lattice of several dozen or more pendulums placed on a wire and connected by a…
The role of symmetry-breaking-induced interface anisotropy in [Fe/Pt]{sub n} multilayer films
Li Zhenghua; Xie Hailong; Liu Xi; Bai Jianmin; Wei Fulin; Wei Dan; Yoshimura, S.; Saito, H.; Liu Xiaoxi
2011-04-01
The FePt films were deposited with [Fe/Pt]{sub n} multilayer structure on preheated Corning 1737F glass substrate using pure Fe and Pt target in a CMS-18 sputtering system. The dependence of FePt's texture and magnetic properties on the multilayer structure was investigated. The XRD patterns indicate that (111) texture is dominant for all [Fe/Pt]{sub n} (n = 8, 16, 20, 32) multilayer films. However, the measured M-H loops show that the perpendicular anisotropy is greatly enhanced in samples with n = 16, 20, and 32. The origin of the increased perpendicular anisotropy of [Fe/Pt]{sub n} multilayer films is related to the contributions of the interfaces, which will be analyzed using the micromagnetic models, with careful discussions of the crystalline and interface anisotropies. Finally, it is confirmed that the Fe/Pt interfaces favor the perpendicular orientation in the multilayer structure.
Kink-antikink asymmetry and impurity interactions in topological mechanical chains
NASA Astrophysics Data System (ADS)
Zhou, Yujie; Chen, Bryan Gin-ge; Upadhyaya, Nitin; Vitelli, Vincenzo
2017-02-01
We study the dynamical response of a diatomic periodic chain of rotors coupled by springs, whose unit cell breaks spatial inversion symmetry. In the continuum description, we derive a nonlinear field theory which admits topological kinks and antikinks as nonlinear excitations but where a topological boundary term breaks the symmetry between the two and energetically favors the kink configuration. Using a cobweb plot, we develop a fixed-point analysis for the kink motion and demonstrate that kinks propagate without the Peierls-Nabarro potential energy barrier typically associated with lattice models. Using continuum elasticity theory, we trace the absence of the Peierls-Nabarro barrier for the kink motion to the topological boundary term which ensures that only the kink configuration, and not the antikink, costs zero potential energy. Further, we study the eigenmodes around the kink and antikink configurations using a tangent stiffness matrix approach appropriate for prestressed structures to explicitly show how the usual energy degeneracy between the two no longer holds. We show how the kink-antikink asymmetry also manifests in the way these nonlinear excitations interact with impurities introduced in the chain as disorder in the spring stiffness. Finally, we discuss the effect of impurities in the (bond) spring length and build prototypes based on simple linkages that verify our predictions.
Defects on semiflexible filaments: Kinks and twist kinks
NASA Astrophysics Data System (ADS)
Lee, Nam-Kyung; Johner, Albert
2016-04-01
Due to local interactions with ligands or to global constraints, semiflexible filaments can exhibit localized defects. We focus on filaments laying flat on a surface. The two lowest order singularities are addressed: discontinuities of the orientation, which are called kink, and discontinuities of the curvature. The latter are called twist kinks in flattened helical filaments where they can form spontaneously. We calculate the partition functions for a given defect fugacity and discuss some often measured quantities like the correlation of the orientation along the filament.
Control of External Kink Instability
NASA Astrophysics Data System (ADS)
Navratil, Gerald
2004-11-01
A fundamental pressure and current limiting phenomenon in magnetically confined plasmas for fusion energy is the long wavelength ideal-MHD kink mode. These modes have been extensively studied in tokamak and reversed field pinch (RFP) devices. They are characterized by significant amplitude on the boundary of the confined plasma and can therefore be controlled by manipulation of the external boundary conditions. In the past ten years, the theoretically predicted stabilizing effect of a nearby conducting wall has been documented in experiments, which opens the possibility of a significant increase in maximum stable plasma pressure. While these modes are predicted to remain unstable when the stabilizing wall is resistive, their growth rates are greatly reduced from the hydrodynamic time scale to the time scale of magnetic diffusion through the resistive wall. These resistive wall slowed kink modes have been identified as limiting phenomena in tokamak (DIII-D, PBX-M, HBT-EP, JT-60U, JET, NSTX) and RFP (HBTX, Extrap, T2R) devices. The theoretical prediction of stabilization to nearly the ideal wall pressure limit by toroidal plasma rotation and/or active feedback control using coils has recently been realized experimentally. Sustained, stable operation at double the no-wall pressure limit has been achieved. Discovery of the phenomenon of resonant field amplification by marginally stable kink modes and its role in the momentum balance of rotationally stabilized plasmas has emerged as a key feature. A theoretical framework, based on an extension of the very successful treatment of the n=0 axisymmetric mode developed in the early 1990's, to understand the stabilization mechanisms and model the performance of active feedback control systems is now established. This allows design of kink control systems for burning plasma experiments like ITER.
Kinks, extra dimensions, and gravitational waves
O'Callaghan, Eimear; Gregory, Ruth
2011-03-01
We investigate in detail the gravitational wave signal from kinks on cosmic (super)strings, including the kinematical effects from the internal extra dimensions. We find that the signal is suppressed, however, the effect is less significant that that for cusps. Combined with the greater incidence of kinks on (super)strings, it is likely that the kink signal offers the better chance for detection of cosmic (super)strings.
The external kink mode in diverted tokamaks
NASA Astrophysics Data System (ADS)
Turnbull, A. D.; Hanson, J. M.; Turco, F.; Ferraro, N. M.; Lanctot, M. J.; Lao, L. L.; Strait, E. J.; Piovesan, P.; Martin, P.
2016-06-01
> . The resistive kink behaves much like the ideal kink with predominantly kink or interchange parity and no real sign of a tearing component. However, the growth rates scale with a fractional power of the resistivity near the surface. The results have a direct bearing on the conventional edge cutoff procedures used in most ideal MHD codes, as well as implications for ITER and for future reactor options.
Supersymmetric pairing of kinks for polynomial nonlinearities
Rosu, H.C.; Cornejo-Perez, O.
2005-04-01
We show how one can obtain kink solutions of ordinary differential equations with polynomial nonlinearities by an efficient factorization procedure directly related to the factorization of their nonlinear polynomial part. We focus on reaction-diffusion equations in the traveling frame and damped-anharmonic-oscillator equations. We also report an interesting pairing of the kink solutions, a result obtained by reversing the factorization brackets in the supersymmetric quantum-mechanical style. In this way, one gets ordinary differential equations with a different polynomial nonlinearity possessing kink solutions of different width but propagating at the same velocity as the kinks of the original equation. This pairing of kinks could have many applications. We illustrate the mathematical procedure with several important cases, among which are the generalized Fisher equation, the FitzHugh-Nagumo equation, and the polymerization fronts of microtubules.
Kink's dynamics for a deformable substrate potential
NASA Astrophysics Data System (ADS)
Tchofo Dinda, P.; Willis, C. R.
1994-01-01
We study the static and dynamic properties of a kink in a chain of harmonically coupled atoms subjected to a deformable double-well substrate potential. We treat intrinsically the lattice discreteness without approximation and show that in some deformation-parameter ranges each period of the PN (Peierls-Nabarro) potential consists of two wells whose minima are located respectively on a lattice site and midway between two adjacent sites of the chain. In some other parameter ranges each period of the PN potential posseses a single well whose minimum is located either on a lattice site or midway between two adjacent lattice sites. We examine the kink's dynamics by using a multiple-collective-variable treatment, that is, we derive the exact equations of motion for the collective variables X and Y - which describe respectively the center-of-mass mode and the internal mode of the kink. We numerically solve the collective variable equations of motion for the trapped and untrapped regimes of the discrete-kink motion, and show that the presence of a nonlinear internal mode makes a contribution of particular importance in the discrete-kink's dynamics. Indeed, we show that during its untrapped regime, the discrete kink can undergo one or more temporary trappings and even a reflection back over several PN wells, and relate such behaviours to the effects of the excitations of the internal mode of the kink.
Improved magnetic feedback system on the fast rotating kink mode
NASA Astrophysics Data System (ADS)
Peng, Qian
This thesis presents an improved feedback system on HBT-EP and suppression of the fast rotating kink mode using this system. HBT-EP is an experimental tokamak at Columbia University designed to study the magnetohydrodynamic (MHD) instabilities in confined fusion. The most damaging instabilities are global long wavelength kink modes, which break the toroidal symmetry of the magnetic structure and lead to plasma disruption and termination. When a tokamak is surrounded by a close fitting conducting wall, then the single helicity linear dispersion relation of the kink instability has two dominating branches: one is the "slow mode", rotating at the time scale of wall time, known as resistive wall mode (RWM), the other is the fast mode, that becomes unstable near the ideal wall stability limit. Both instabilities are required to be controlled by the feedback system in HBT-EP. In this thesis, improvements have been made upon the previous GPU-based system to enhance the feedback performance and obtain clear evidence of the feedback suppression effect. Specifically, a new algorithm is implemented that maintains an accurate phase shift between the applied perturbation and the unstable mode. This prevents the excitation of the slow kink mode observed in previous studies and results in high gain suppression for fast mode control at all frequency for the first time. When the system is turned off, suppression is lost and the fast mode is observed to grow back. The feedback performance is tested with several wall configurations including the presence of ferritic material. This provides the first comparison of feedback control between the ferritic and stainless wall. The effect of plasma rotation on feedback control is tested by applying a static voltage on a bias probe. As the mode rotation being slowed by the radial current flow, a higher gain on the kink mode is required to achieve feedback suppression. The change in plasma rotation also modifies the plasma response to the
Analysis of kink band formation under compression
NASA Technical Reports Server (NTRS)
Hahn, H. Thomas
1987-01-01
The kink band formation in unidirectional composites under compression is analyzed in the present paper. The kinematics of kink band formation is described in terms of a deformation tensor. Equilibrium conditions are then applied to relate the compression load to the deformation of fibers. Since the in situ shear behavior of the matrix resin is not known, an analysis-experiment correlation is used to find the shear failure strain in the kink band. The present analysis thus elucidates the mechanisms and identifies the controlling parameters, of compression failure.
Evolution of tachyon kink with electric field
NASA Astrophysics Data System (ADS)
Cho, Inyong; Kwon, O.-Kab; Lee, Chong Oh
2007-04-01
We investigate the decay of an inhomogeneous D1-brane wrapped on a S1 with an electric field. The model that we consider consists of an array of tachyon kink and anti-kink with a constant electric flux. Beginning with an initially static configuration, we numerically evolve the tachyon field with some perturbations under a fixed boundary condition at diametrically opposite points on the circle S1. When the electric flux is smaller than the critical value, the tachyon kink becomes unstable; the tachyon field rolls down the potential, and the lower dimensional D0- and bar D0-brane become thin, which resembles the caustic formation known for this type of the system in the literature. For the supercritical values of the electric flux, the tachyon kink remains stable.
On the theory of internal kink oscillations
Breizman, B.N.; Candy, J.; Berk, H.L.; Porcelli, F. |
1997-12-01
In this paper the authors derive a time evolution equation for internal kink oscillations which is valid for both stable and unstable plasma regimes, and incorporates the nonlinear response of an energetic particle population. A linear analysis reveals a parallel between (i) the time evolution of the spatial derivative of the internal kink radial displacement and (ii) the time evolution of the perturbed particle distribution function in the field of an electrostatic wave (Landau problem). They show that diamagnetic drift effects make the asymptotic decay of internal kink perturbations in a stable plasma algebraic rather than exponential. However, under certain conditions the stable root of the dispersion relation can dominate the response of the on-axis displacement for a significant period of time. The form of the evolution equation naturally allows one to include a nonlinear, fully toroidal treatment of energetic particles into the theory of internal kink oscillations.
Negative radiation pressure exerted on kinks
Forgacs, Peter; Lukacs, Arpad; Romanczukiewicz, Tomasz
2008-06-15
The interaction of a kink and a monochromatic plane wave in one dimensional scalar field theories is studied. It is shown that in a large class of models the radiation pressure exerted on the kink is negative, i.e. the kink is pulled towards the source of the radiation. This effect has been observed by numerical simulations in the {phi}{sup 4} model, and it is explained by a perturbative calculation assuming that the amplitude of the incoming wave is small. Quite importantly the effect is shown to be robust against small perturbations of the {phi}{sup 4} model. In the sine-Gordon (SG) model the time-averaged radiation pressure acting on the kink turns out to be zero. The results of the perturbative computations in the SG model are shown to be in full agreement with an analytical solution corresponding to the superposition of a SG kink with a cnoidal wave. It is also demonstrated that the acceleration of the kink satisfies Newton's law.
Fermions on one or fewer kinks
Chu Yizen; Vachaspati, Tanmay
2008-01-15
We find the full spectrum of fermion bound states on a Z{sub 2} kink. In addition to the zero mode, there are int[2m{sub f}/m{sub s}] bound states, where m{sub f} is the fermion and m{sub s} the scalar mass. We also study fermion modes on the background of a well-separated kink-antikink pair. Using a variational argument, we prove that there is at least one bound state in this background, and that the energy of this bound state goes to zero with increasing kink-antikink separation, 2L, and faster than e{sup -a2L} where a=min(m{sub s},2m{sub f}). By numerical evaluation, we find some of the low lying bound states explicitly.
Multiply Kink and Anti-Kink Solutions for a Coupled Camassa-Holm Type Equation
NASA Astrophysics Data System (ADS)
Li, Yuan-Li; Zha, Qi-Lao
2016-12-01
This article amis at revealing dynamical behavior of a coupled Camassa-Holm type equation, which was proposed by Geng and Wang based on a 4 × 4 matrix spectral problem with two potentials. Its kink and anti-kink solutions are presented explicitly. In particular, some exact multi-kink and anti-kink wave solutions are discussed and under some conditions, the kink and anti-kinks look like hat-shape solitons. The dynamic characters of the obtained solutions are investigated by figures. The method used in this paper can be widely applied to looking for the multi-kinks for Camassa-Holm type equations possessing cubic nonlinearity. Supported by the National Natural Science Foundation of China under Grant No. 11261037, the Natural Science Foundation of Inner Mongolia Autonomous Region under Grant No. 2014MS0111, the Caoyuan Yingcai Program of Inner Mongolia Autonomous Region under Grant No. CYYC2011050, the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region under Grant No. NJYT14A04
Dynamics of kink-kink collisions in the double-sine-Gordon system
NASA Astrophysics Data System (ADS)
Ravelo, R.; El-Batanouny, M.; Willis, C. R.; Sodano, P.
1988-09-01
We study the double-sine-Gordon kink-kink collisions in a formalism which employs collective variables to describe the internal oscillations of the kinks and their translational motion in their center-of-mass frame. The equations of motion are solved in the absence of the radiation field and dynamical dressing and the results are compared with numerical molecular-dynamics simulations. We investigate the energy exchange between the translational and internal modes, and a mechanism is proposed to explain the values of the translational velocity at which maximum energy is exchanged between the two modes.
Seol, J; Lee, S G; Park, B H; Lee, H H; Terzolo, L; Shaing, K C; You, K I; Yun, G S; Kim, C C; Lee, K D; Ko, W H; Kwak, J G; Kim, W C; Oh, Y K; Kim, J Y; Kim, S S; Ida, K
2012-11-09
It is observed that the magnitude of the toroidal rotation speed is reduced by the central electron cyclotron resonance heating (ECRH) regardless of the direction of the toroidal rotation. The magnetohydrodynamics activities generally appear with the rotation change due to ECRH. It is shown that the internal kink mode is induced by the central ECRH and breaks the toroidal symmetry. When the magnetohydrodynamics activities are present, the toroidal plasma viscosity is not negligible. The observed effects of ECRH on the toroidal plasma rotation are explained by the neoclassical toroidal viscosity in this Letter. It is found that the neoclassical toroidal viscosity torque caused by the internal kink mode damps the toroidal rotation.
Exotic supersymmetry of the kink-antikink crystal, and the infinite period limit
Plyushchay, Mikhail S.; Arancibia, Adrian; Nieto, Luis-Miguel
2011-03-15
Some time ago, Thies et al. showed that the Gross-Neveu model with a bare mass term possesses a kink-antikink crystalline phase. Corresponding self-consistent solutions, known earlier in polymer physics, are described by a self-isospectral pair of one-gap periodic Lame potentials with a Darboux displacement depending on the bare mass. We study an unusual supersymmetry of such a second-order Lame system, and show that the associated first-order Bogoliubov-de Gennes Hamiltonian possesses its own nonlinear supersymmetry. The Witten index is ascertained to be zero for both of the related exotic supersymmetric structures, each of which admits several alternatives for the choice of a grading operator. A restoration of the discrete chiral symmetry at zero value of the bare mass, when the kink-antikink crystalline condensate transforms into the kink crystal, is shown to be accompanied by structural changes in both of the supersymmetries. We find that the infinite period limit may or may not change the index. We also explain the origin of the Darboux-dressing phenomenon recently observed in a nonperiodic self-isospectral one-gap Poeschl-Teller system, which describes the Dashen, Hasslacher, and Neveu kink-antikink baryons.
Nonlinear External Kink Computing with NIMROD
NASA Astrophysics Data System (ADS)
Bunkers, K. J.; Sovinec, C. R.
2016-10-01
Vertical displacement events (VDEs) during disruptions often include non-axisymmetric activity, including external kink modes, which are driven unstable as contact with the wall eats into the q-profile. The NIMROD code is being applied to study external-kink-unstable tokamak profiles in toroidal and cylindrical geometries. Simulations with external kinks show the plasma swallowing a vacuum bubble, similar to. NIMROD reproduces external kinks in both geometries, using an outer vacuum region (modeled as a plasma with a large resistivity), but as the boundary between the vacuum and plasma regions becomes more 3D, the resistivity becomes a 3D function, and it becomes more difficult for algebraic solves to converge. To help allow non-axisymmetric, nonlinear VDE calculations to proceed without restrictively small time-steps, several computational algorithms have been tested. Flexible GMRES, using a Fourier and real space representation for the toroidal angle has shown improvements. Off-diagonal preconditioning and a multigrid approach were tested and showed little improvement. A least squares finite element method (LSQFEM) has also helped improve the algebraic solve. This effort is supported by the U.S. Dept. of Energy, Award Numbers DE-FG02-06ER54850 and DE-FC02-08ER54975.
Amore, Paolo; Fernández, Francisco M.; Garcia, Javier; Gutierrez, German
2014-04-15
We study both analytically and numerically the spectrum of inhomogeneous strings with PT-symmetric density. We discuss an exactly solvable model of PT-symmetric string which is isospectral to the uniform string; for more general strings, we calculate exactly the sum rules Z(p)≡∑{sub n=1}{sup ∞}1/E{sub n}{sup p}, with p=1,2,… and find explicit expressions which can be used to obtain bounds on the lowest eigenvalue. A detailed numerical calculation is carried out for two non-solvable models depending on a parameter, obtaining precise estimates of the critical values where pair of real eigenvalues become complex. -- Highlights: •PT-symmetric Hamiltonians exhibit real eigenvalues when PT symmetry is unbroken. •We study PT-symmetric strings with complex density. •They exhibit regions of unbroken PT symmetry. •We calculate the critical parameters at the boundaries of those regions. •There are exact real sum rules for some particular complex densities.
Examining the Conservation of Kinks in Alpha Helices
Wilman, Henry R.; Kelm, Sebastian; Shi, Jiye; Deane, Charlotte M.
2016-01-01
Kinks are a structural feature of alpha-helices and many are known to have functional roles. Kinks have previously tended to be defined in a binary fashion. In this paper we have deliberately moved towards defining them on a continuum, which given the unimodal distribution of kink angles is a better description. From this perspective, we examine the conservation of kinks in proteins. We find that kink angles are not generally a conserved property of homologs, pointing either to their not being functionally critical or to their function being related to conformational flexibility. In the latter case, the different structures of homologs are providing snapshots of different conformations. Sequence identity between homologous helices is informative in terms of kink conservation, but almost equally so is the sequence identity of residues in spatial proximity to the kink. In the specific case of proline, which is known to be prevalent in kinked helices, loss of a proline from a kinked helix often also results in the loss of a kink or reduction in its kink angle. We carried out a study of the seven transmembrane helices in the GPCR family and found that changes in kinks could be related both to subfamilies of GPCRs and also, in a particular subfamily, to the binding of agonists or antagonists. These results suggest conformational change upon receptor activation within the GPCR family. We also found correlation between kink angles in different helices, and the possibility of concerted motion could be investigated further by applying our method to molecular dynamics simulations. These observations reinforce the belief that helix kinks are key, functional, flexible points in structures. PMID:27314675
Exact kink solitons in Skyrme crystals
NASA Astrophysics Data System (ADS)
Chen, Shouxin; Li, Yijun; Yang, Yisong
2014-01-01
We present an explicit integration of the kink soliton equation obtained in a recent interesting study of the classical Skyrme model where the field configurations are of a generalized hedgehog form which is of a domain-wall type. We also show that in such a reduced one-dimensional setting the first-order and second-order equations are equivalent. Consequently, in such a context, all finite-energy solitons are Bogomolnyi-Prasad-Sommerfield type and precisely known.
Nudged Elastic Band Simulations of Kink Pairs in Tungsten
Cereceda, D.; Marian, J.
2015-01-16
Atomistic techniques have been used to calculate energy barriers for dislocation motion that control the strength (yield stress and flow stress) of the material. In particular, the calculations focus on the change in enthalpy as a straight dislocation moves through the crystal lattice (the Peierls barrier) and kink pair formation enthalpy that controls the thermally activated double-kink mechanism important at low to moderate stresses. A novel means of assessing kink widths within atomistic simulations is introduced.
Flaming 2 π kinks in parametrically driven systems
NASA Astrophysics Data System (ADS)
Berrios-Caro, E.; Clerc, M. G.; Leon, A. O.
2016-11-01
Macroscopic extended systems with dissipation and injection of energy can exhibit particlelike solutions. Dissipative kinks with an oscillatory cloak and a family of localized states that connect uniform symmetric states in a magnetic wire forced with a transversal oscillatory magnetic field and in a parametrically driven damped pendula chain are studied. The oscillatory cloak is composed of evanescent waves emitted at the kink position and generated by a resonant mechanism. These waves mediate the kink interaction and generate a family of localized states.
Flaming 2π kinks in parametrically driven systems.
Berrios-Caro, E; Clerc, M G; Leon, A O
2016-11-01
Macroscopic extended systems with dissipation and injection of energy can exhibit particlelike solutions. Dissipative kinks with an oscillatory cloak and a family of localized states that connect uniform symmetric states in a magnetic wire forced with a transversal oscillatory magnetic field and in a parametrically driven damped pendula chain are studied. The oscillatory cloak is composed of evanescent waves emitted at the kink position and generated by a resonant mechanism. These waves mediate the kink interaction and generate a family of localized states.
Non-Hermitian Hamiltonians with unitary and antiunitary symmetries
Fernández, Francisco M. Garcia, Javier
2014-03-15
We analyse several non-Hermitian Hamiltonians with antiunitary symmetry from the point of view of their point-group symmetry. It enables us to predict the degeneracy of the energy levels and to reduce the dimension of the matrices necessary for the diagonalization of the Hamiltonian in a given basis set. We can also classify the solutions according to the irreducible representations of the point group and thus analyse their properties separately. One of the main results of this paper is that some PT-symmetric Hamiltonians with point-group symmetry C{sub 2v} exhibit complex eigenvalues for all values of a potential parameter. In such cases the PT phase transition takes place at the trivial Hermitian limit which suggests that the phenomenon is not robust. Point-group symmetry enables us to explain such anomalous behaviour and to choose a suitable antiunitary operator for the PT symmetry. -- Highlights: •PT-symmetric Hamiltonians exhibit real eigenvalues when PT symmetry is unbroken. •PT-symmetric multidimensional oscillators appear to show PT phase transitions. •This transition was conjectured to be a high-energy phenomenon. •We show that point group symmetry is useful for predicting broken PT symmetry in multidimensional oscillators. •PT-symmetric oscillators with C{sub 2v} symmetry exhibit phase transitions at the trivial Hermitian limit.
Longhi, S
2016-10-01
Parity-time (PT) symmetry is one of the most important accomplishments in optics over the past decade. Here the concept of PT mode-locking (ML) of a laser is introduced, in which active phase-locking of cavity axial modes is realized by asymmetric mode coupling in a complex time crystal. PT ML shows a transition from single- to double-pulse emission as the PT symmetry breaking point is crossed. The transition can show a turbulent behavior, depending on a dimensionless modulation parameter that plays the same role as the Reynolds number in hydrodynamic flows.
Reassessing molecular sieving by kinked carbon nanotubes
NASA Astrophysics Data System (ADS)
Zhang, Zhongqiang; Zhang, Hongwu; Wang, Lei; Ding, Jianning; Wang, Jinbao; Zheng, Yonggang; Ye, Hongfei; Liu, Zhen; Cheng, Guanggui; Ling, Zhiyong
2011-12-01
Based on molecular dynamics simulations for the transport of pure nitrogen (N2), oxygen (O2) and their mixture in kinked single-walled carbon nanotubes (SWCNTs), molecular sieving by the kinked model of SWCNTs is presented. The influences of gas pressure, temperature and the component ratio of N2 in the mixture on gas separation are investigated. Considering the tradeoff between the permeability and the purity of O2, the results show that a large gas pressure, 300-500 K of gas temperature and a low component ratio of N2 in the N2-O2 mixture can be advantageous to the efficiency of gas separation. The purity of O2 can be kept higher than 80% when the component ratio of N2 is lower than 3/4, which will be advantageous to the design of multi-level gas separation mechanisms. The findings may provide theoretical references for the design and manufacture of molecular sieving devices in engineering applications.
Symmetry impedes symmetry discrimination.
Tjan, Bosco S; Liu, Zili
2005-12-16
Objects in the world, natural and artificial alike, are often bilaterally symmetric. The visual system is likely to take advantage of this regularity to encode shapes for efficient object recognition. The nature of encoding a symmetric shape, and of encoding any departure from it, is therefore an important matter in visual perception. We addressed this issue of shape encoding empirically, noting that a particular encoding scheme necessarily leads to a specific profile of sensitivity in perceptual discriminations. We studied symmetry discrimination using human faces and random dots. Each face stimulus was a frontal view of a three-dimensional (3-D) face model. The 3-D face model was a linearly weighted average (a morph) between the model of an original face and that of the corresponding mirror face. Using this morphing technique to vary the degree of asymmetry, we found that, for faces and analogously generated random-dot patterns alike, symmetry discrimination was worst when the stimuli were nearly symmetric, in apparent opposition to almost all studies in the literature. We analyzed the previous work and reconciled the old and new results using a generic model with a simple nonlinearity. By defining asymmetry as the minimal difference between the left and right halves of an object, we found that the visual system was disproportionately more sensitive to larger departures from symmetry than to smaller ones. We further demonstrated that our empirical and modeling results were consistent with Weber-Fechner's and Stevens's laws.
Nonlinear waves in PT -symmetric systems
NASA Astrophysics Data System (ADS)
Konotop, Vladimir V.; Yang, Jianke; Zezyulin, Dmitry A.
2016-07-01
Recent progress on nonlinear properties of parity-time (PT )-symmetric systems is comprehensively reviewed in this article. PT symmetry started out in non-Hermitian quantum mechanics, where complex potentials obeying PT symmetry could exhibit all-real spectra. This concept later spread out to optics, Bose-Einstein condensates, electronic circuits, and many other physical fields, where a judicious balancing of gain and loss constitutes a PT -symmetric system. The natural inclusion of nonlinearity into these PT systems then gave rise to a wide array of new phenomena which have no counterparts in traditional dissipative systems. Examples include the existence of continuous families of nonlinear modes and integrals of motion, stabilization of nonlinear modes above PT -symmetry phase transition, symmetry breaking of nonlinear modes, distinctive soliton dynamics, and many others. In this article, nonlinear PT -symmetric systems arising from various physical disciplines are presented, nonlinear properties of these systems are thoroughly elucidated, and relevant experimental results are described. In addition, emerging applications of PT symmetry are pointed out.
Integrable discrete PT symmetric model.
Ablowitz, Mark J; Musslimani, Ziad H
2014-09-01
An exactly solvable discrete PT invariant nonlinear Schrödinger-like model is introduced. It is an integrable Hamiltonian system that exhibits a nontrivial nonlinear PT symmetry. A discrete one-soliton solution is constructed using a left-right Riemann-Hilbert formulation. It is shown that this pure soliton exhibits unique features such as power oscillations and singularity formation. The proposed model can be viewed as a discretization of a recently obtained integrable nonlocal nonlinear Schrödinger equation.
Kink pair production and dislocation motion
Fitzgerald, S. P.
2016-01-01
The motion of extended defects called dislocations controls the mechanical properties of crystalline materials such as strength and ductility. Under moderate applied loads, this motion proceeds via the thermal nucleation of kink pairs. The nucleation rate is known to be a highly nonlinear function of the applied load, and its calculation has long been a theoretical challenge. In this article, a stochastic path integral approach is used to derive a simple, general, and exact formula for the rate. The predictions are in excellent agreement with experimental and computational investigations, and unambiguously explain the origin of the observed extreme nonlinearity. The results can also be applied to other systems modelled by an elastic string interacting with a periodic potential, such as Josephson junctions in superconductors. PMID:28004834
Kink pair production and dislocation motion
NASA Astrophysics Data System (ADS)
Fitzgerald, S. P.
2016-12-01
The motion of extended defects called dislocations controls the mechanical properties of crystalline materials such as strength and ductility. Under moderate applied loads, this motion proceeds via the thermal nucleation of kink pairs. The nucleation rate is known to be a highly nonlinear function of the applied load, and its calculation has long been a theoretical challenge. In this article, a stochastic path integral approach is used to derive a simple, general, and exact formula for the rate. The predictions are in excellent agreement with experimental and computational investigations, and unambiguously explain the origin of the observed extreme nonlinearity. The results can also be applied to other systems modelled by an elastic string interacting with a periodic potential, such as Josephson junctions in superconductors.
PT restoration via increased loss and gain in the PT-symmetric Aubry-André model
NASA Astrophysics Data System (ADS)
Liang, Charles H.; Scott, Derek D.; Joglekar, Yogesh N.
2014-03-01
In systems with "balanced loss and gain," the PT symmetry is broken by increasing the non-Hermiticity or the loss-gain strength. We show that finite lattices with oscillatory, PT-symmetric potentials exhibit unexpected PT-symmetry breaking and restoration. We obtain the PT phase diagram as a function of potential periodicity, which also controls the location complex eigenvalues in the lattice spectrum. We show that the sum of PT potentials with nearby periodicities leads to PT-symmetry restoration, where the system goes from a PT-broken state to a PT-symmetric state as the average loss-gain strength is increased. We discuss the implications of this transition for the propagation of a light in an array of coupled waveguides.
Post-microbuckling of fibre bridging kink bands under compression
NASA Astrophysics Data System (ADS)
Yueguang, Wei; Wei, Yang
1993-02-01
Surface originated kink bands consist of an important failure mode for fibre-reinforced composites under compression. The mechanical behavior of the fibre bridging kink bands is explored herein in the context of the post-microbuckling theory. Expressions of bridging force are obtained for the entire postbuckling process of the fibres exhibiting weak or strong hardening. The postbuckling formulation of the fibres is applied to yield the toughness increment due to the advancing kink bands, and consequently leads to a quantitative prediction on the overall compressive stress strain curves of the fibre-reinforced composites.
Size-sensitive Young's modulus of kinked silicon nanowires.
Jiang, Jin-Wu; Zhao, Jun-Hua; Rabczuk, Timon
2013-05-10
We perform both classical molecular dynamics simulations and beam model calculations to investigate the Young's modulus of kinked silicon nanowires (KSiNWs). The Young's modulus is found to be highly sensitive to the arm length of the kink and is essentially inversely proportional to the arm length. The mechanism underlying the size dependence is found to be the interplay between the kink angle potential and the arm length potential, where we obtain an analytic relationship between the Young's modulus and the arm length of the KSiNW. Our results provide insight into the application of this novel building block in nanomechanical devices.
Geometry of kinked protein helices from NMR data.
Murray, Dylan T; Lu, Yuanting; Cross, T A; Quine, J R
2011-05-01
Mathematical questions related to determining the structure of a protein from NMR orientational restraints are discussed. The protein segment is a kinked alpha helix modeled as a regular alpha helix in which two adjacent torsion angles have been varied from their ideal values. Varying these torsion angles breaks the helix into two regular helical segments joined at a kink. The problem is to find the torsion angles at the kink from the relationship of the helical segments to the direction of the magnetic field.
NASA Astrophysics Data System (ADS)
Nucci, M. C.
2016-09-01
We review some of our recent work devoted to the problem of quantization with preservation of Noether symmetries, finding hidden linearity in superintegrable systems, and showing that nonlocal symmetries are in fact local. In particular, we derive the Schrödinger equation for the isochronous Calogero goldfish model using its relation to Darwin equation. We prove the linearity of a classical superintegrable system on a plane of nonconstant curvature. We find the Lie point symmetries that correspond to the nonlocal symmetries (also reinterpreted as λ-symmetries) of the Riccati chain.
Jarzynski equality in PT-symmetric quantum mechanics
Deffner, Sebastian; Saxena, Avadh
2015-04-13
We show that the quantum Jarzynski equality generalizes to PT -symmetric quantum mechanics with unbroken PT -symmetry. In the regime of broken PT -symmetry the Jarzynski equality does not hold as also the CPT -norm is not preserved during the dynamics. These findings are illustrated for an experimentally relevant system – two coupled optical waveguides. It turns out that for these systems the phase transition between the regimes of unbroken and broken PT -symmetry is thermodynamically inhibited as the irreversible work diverges at the critical point.
Jarzynski Equality in PT-Symmetric Quantum Mechanics.
Deffner, Sebastian; Saxena, Avadh
2015-04-17
We show that the quantum Jarzynski equality generalizes to PT-symmetric quantum mechanics with unbroken PT symmetry. In the regime of broken PT symmetry, the Jarzynski equality does not hold as also the CPT norm is not preserved during the dynamics. These findings are illustrated for an experimentally relevant system-two coupled optical waveguides. It turns out that for these systems the phase transition between the regimes of unbroken and broken PT symmetry is thermodynamically inhibited as the irreversible work diverges at the critical point.
Anti-parity-time symmetry with flying atoms
NASA Astrophysics Data System (ADS)
Peng, Peng; Cao, Wanxia; Shen, Ce; Qu, Weizhi; Wen, Jianming; Jiang, Liang; Xiao, Yanhong
2016-12-01
The recently developed notion of parity-time (PT) symmetry in optical systems has spawned intriguing prospects. So far, most experimental implementations have been reported in solid-state systems. Here, we report the first experimental demonstration of optical anti-PT symmetry--the counterpart of conventional PT symmetry--in a warm atomic-vapour cell. Rapid coherence transport via flying atoms leads to a dissipative coupling between two long-lived atomic spin waves, allowing for the observation of the essential features of anti-PT symmetry with unprecedented precision on the phase-transition threshold, as well as refractionless light propagation. Moreover, we show that a linear or nonlinear interaction between the two spatially separated beams can be achieved. Our results advance non-Hermitian physics by bridging to the field of atomic, molecular and optical physics, where new phenomena and applications in quantum and nonlinear optics aided by (anti-)PT symmetry could be anticipated.
Step and Kink Dynamics in Inorganic and Protein Crystallization
NASA Technical Reports Server (NTRS)
Chernov, A. A.; Rashkovich, L. N.; Vekilov, P. G.; DeYoreo, J. J.
2004-01-01
Behavior of low-kink-density steps in solution growth and consequences for general understanding of spiral crystal growth processes will be overviewed. Also, influence of turbulence on step bunching and possibility to diminish this bunching will be presented.
ABC of kink kinetics and density in a complex solution
Chernov, A. A.; DeYoreo, J. J.; Rashkovich, L. N.
2007-06-14
This tutorial lecture explains the ways supersaturation in complex solutions may be introduced to be most relevant to describe experimental data on kink and step kinetics. To do so, we express the kink rate via the frequencies of attachment and detachment of the building units and then link these frequencies to the measurable activities of these units in solution. Furthermore, possible reasons for violation of the Gibbs–Thomson law are also briefly discussed with reference to our earlier work.
Management and visualization of a kinked epidural catheter
Aslanidis, T; Fileli, A; Pyrgos, P
2010-01-01
A lumbar epidural catheter inserted in a 29-year-old woman for labor analgesia. The catheter failed to provide adequate analgesia. Moreover, after labor, it proved difficult to be removed. After computer tomography (CT) and magnetic resonance impedance (MRI) examination the course of the catheter was visible, the entrapped catheter was dislodged intact, revealing a kinking near its distal tip. Kinking of an epidural catheter leading to entrapment is an unusual complication of epidural catheterization. PMID:21311644
Alpha particle effects on the internal kink modes
Wu, Yanlin; Cheng, C.Z.
1994-08-01
The {alpha}-particle effects on the internal kink mode stability are studied. Finite Grad-Shafranov Shift, plasma {beta}, and plasma shape can significantly enhance the trapped particle drift reversal domain in pitch angle space and reduce average magnetic drift frequency. The drift reversal effect on the ideal kink mode is small, but the {beta}{sub {alpha}} threshold for the fishbone mode can be much lower than previously predicted. In addition, the ion diamagnetic drift has a stronger destabilizing effect.
Alpha particle effects on the internal kink and fishbone modes
Wu, Y.; Cheng, C.Z.; White, R.B. )
1994-10-01
The effects of alpha particles on the internal kink and fishbone modes are studied analytically. The nonadiabatic contribution from untrapped alpha particles is negligible. Finite inverse aspect ratio, plasma [beta], and plasma shaping effects can significantly enhance the trapped particle drift reversal domain in the pitch angle space and reduce the bounce-averaged magnetic drift frequency. The decrease of the drift magnitude and drift reversal effects on the ideal kink mode is small, but the [beta][sub [alpha
Coupled oscillators with parity-time symmetry
NASA Astrophysics Data System (ADS)
Tsoy, Eduard N.
2017-02-01
Different models of coupled oscillators with parity-time (PT) symmetry are studied. Hamiltonian functions for two and three linear oscillators coupled via coordinates and accelerations are derived. Regions of stable dynamics for two coupled oscillators are obtained. It is found that in some cases, an increase of the gain-loss parameter can stabilize the system. A family of Hamiltonians for two coupled nonlinear oscillators with PT-symmetry is obtained. An extension to high-dimensional PT-symmetric systems is discussed.
Gyrokinetic simulation of internal kink modes
Naitou, Hiroshi; Tsuda, Kenji; Lee, W.W.; Sydora, R.D.
1995-05-01
Internal disruption in a tokamak has been simulated using a three-dimensional magneto-inductive gyrokinetic particle code. The code operates in both the standard gyrokinetic mode (total-f code) and the fully nonlinear characteristic mode ({delta}f code). The latter, a recent addition, is a quiet low noise algorithm. The computational model represents a straight tokamak with periodic boundary conditions in the toroidal direction. The plasma is initially uniformly distributed in a square cross section with perfectly conducting walls. The linear mode structure of an unstable m = 1 (poloidal) and n = 1 (toroidal) kinetic internal kink mode is clearly observed, especially in the {delta}f code. The width of the current layer around the x-point, where magnetic reconnection occurs, is found to be close to the collisionless electron skin depth. This is consistent with the theory in which electron inertia has a dominant role. The nonlinear behavior of the mode is found to be quite similar for both codes. Full reconnection in the Alfven time scale is observed along with the electrostatic potential structures created during the full reconnection phase. The E x B drift due to this electrostatic potential dominates the nonlinear phase of the development after the full reconnection.
SPATIAL DAMPING OF PROPAGATING KINK WAVES IN PROMINENCE THREADS
Soler, R.; Oliver, R.; Ballester, J. L.
2011-01-10
Transverse oscillations and propagating waves are frequently observed in threads of solar prominences/filaments and have been interpreted as kink magnetohydrodynamic (MHD) modes. We investigate the spatial damping of propagating kink MHD waves in transversely nonuniform and partially ionized prominence threads. Resonant absorption and ion-neutral collisions (Cowling's diffusion) are the damping mechanisms taken into account. The dispersion relation of resonant kink waves in a partially ionized magnetic flux tube is numerically solved by considering prominence conditions. Analytical expressions of the wavelength and damping length as functions of the kink mode frequency are obtained in the thin tube and thin boundary approximations. For typically reported periods of thread oscillations, resonant absorption is an efficient mechanism for the kink mode spatial damping, while ion-neutral collisions have a minor role. Cowling's diffusion dominates both the propagation and damping for periods much shorter than those observed. Resonant absorption may explain the observed spatial damping of kink waves in prominence threads. The transverse inhomogeneity length scale of the threads can be estimated by comparing the observed wavelengths and damping lengths with the theoretically predicted values. However, the ignorance of the form of the density profile in the transversely nonuniform layer introduces inaccuracies in the determination of the inhomogeneity length scale.
Simulations of Edge Current Driven Kink Modes with BOUT + + code
NASA Astrophysics Data System (ADS)
Li, G. Q.; Xu, X. Q.; Snyder, P. B.; Turnbull, A. D.; Xia, T. Y.; Ma, C. H.; Xi, P. W.
2013-10-01
Edge kink modes (or peeling modes) play a key role in the ELMs. The edge kink modes are driven by peak edge current, which comes from the bootstrap current. We calculated sequences of equilibria with different edge current using CORSICA by keeping total current and pressure profile fixed. Based on these equilibria, with the 3-field BOUT + + code, we calculated the MHD instabilities driven by edge current. For linear low-n ideal MHD modes, BOUT + + results agree with GATO results. With the edge current increasing, the dominant modes are changed from high-n ballooning modes to low-n kink modes. The edge current provides also stabilizing effects on high-n ballooning modes. Furthermore, for edge current scan without keeping total current fixed, the increasing edge current can stabilize the high-n ballooning modes and cannot drive kink modes. The diamagnetic effect can stabilize the high-n ballooning modes, but has no effect on the low-n kink modes. Also, the nonlinear behavior of kink modes is analyzed. Work supported by China MOST grant 2013GB111000 and by China NSF grant 10975161. Also performed for USDOE by LLNL under DE-AC52-07NA27344.
Development of kinks in car-following models
NASA Astrophysics Data System (ADS)
Kurtze, Douglas A.
2017-03-01
Many car-following models of traffic flow admit the possibility of absolute stability, a situation in which uniform traffic flow at any spacing is linearly stable. Near the threshold of absolute stability, these models can often be reduced to a modified Korteweg-deVries (mKdV) equation plus small corrections. The hyperbolic-tangent "kink" solutions of the mKdV equation are usually of particular interest, as they represent transition zones between regions of different traffic spacings. Solvability analysis is believed to show that only a single member of the one-parameter family of kink solutions is preserved by the correction terms, and this is interpreted as a kind of selection. We show, however, that the usual solvability calculation rests on an unstated, unjustified assumption, and that without this assumption it merely gives a first-order correction to the relation between the traffic spacings far behind and far ahead of the kink, rather than any kind of "selection" criterion for the family of kink solutions. On the other hand, we display a two-parameter family of traveling wave solutions of the mKdV equation, which describe regions of one traffic spacing embedded in traffic of a different spacing; this family includes the kink solutions as a limiting case. We carry out a multiple-time-scales calculation and find conditions under which the inclusions decay, conditions that lead to a selected inclusion, and conditions for which the inclusion evolves into a pair of kinks.
Moubayidin, Laila; Østergaard, Lars
2015-09-01
985 I. 985 II. 986 III. 987 IV. 988 V. 989 989 References 989 SUMMARY: The development of multicellular organisms depends on correct establishment of symmetry both at the whole-body scale and within individual tissues and organs. Setting up planes of symmetry must rely on communication between cells that are located at a distance from each other within the organism, presumably via mobile morphogenic signals. Although symmetry in nature has fascinated scientists for centuries, it is only now that molecular data to unravel mechanisms of symmetry establishment are beginning to emerge. As an example we describe the genetic and hormonal interactions leading to an unusual bilateral-to-radial symmetry transition of an organ in order to promote reproduction.
Doppler displacements in kink MHD waves in solar flux tubes
NASA Astrophysics Data System (ADS)
Goossens, Marcel; Van Doorsselaere, Tom; Terradas, Jaume; Verth, Gary; Soler, Roberto
Doppler displacements in kink MHD waves in solar flux tubes Presenting author: M. Goossens Co-authors: R. Soler, J. Terradas, T. Van Doorsselaere, G. Verth The standard interpretation of the transverse MHD waves observed in the solar atmosphere is that they are non-axisymmetric kink m=1) waves on magnetic flux tubes. This interpretation is based on the fact that axisymmetric and non-axisymmetric fluting waves do not displace the axis of the loop and the loop as a whole while kink waves indeed do so. A uniform transverse motion produces a Doppler displacement that is constant across the magnetic flux tube. A recent development is the observation of Doppler displacements that vary across the loop. The aim of the present contribution is to show that spatial variations of the Doppler displacements across the loop can be caused by kink waves. The motion associated with a kink wave is purely transverse only when the flux tube is uniform and sufficiently thin. Only in that case do the radial and azimuthal components of displacement have the same amplitude and is the azimuthal component a quarter of a period ahead of the radial component. This results in a unidirectional or transverse displacement. When the flux tube is non-uniform and has a non-zero radius the conditions for the generation of a purely transverse motion are not any longer met. In that case the motion in a kink wave is the sum of a transverse motion and a non-axisymmetric rotational motion that depends on the azimuthal angle. It can produce complicated variations of the Doppler displacement across the loop. I shall discuss the various cases of possible Doppler displacenents that can occur depending on the relative sizes of the amplitudes of the radial and azimuthal components of the displacement in the kink wave and on the orientation of the line of sight.
Sustained spheromaks with ideal n = 1 kink stability and pressure confinement
Victor, B. S. Jarboe, T. R.; Hansen, C. J.; Akcay, C.; Morgan, K. D.; Hossack, A. C.; Nelson, B. A.
2014-08-15
Increasing the helicity injector drive frequency up to 68.5 kHz on the Helicity Injected Torus-Steady Inductive (HIT-SI) experiment has produced spheromaks with current amplifications of 3.8, ideal n = 1 kink stability, improved toroidal symmetry and pressure confinement. Current centroid calculations from surface magnetic probes show an outward shift in the magnetic field at frequencies above 50 kHz. Grad-Shafranov equilibria indicate pressure confinement at higher injector operating frequencies. The minimum characteristic frequency needed to achieve this confining effect on HIT-SI plasmas is found to be approximately 30 kHz by analysis of the density fluctuations.
RESONANTLY DAMPED PROPAGATING KINK WAVES IN LONGITUDINALLY STRATIFIED SOLAR WAVEGUIDES
Soler, R.; Verth, G.; Goossens, M.; Terradas, J.
2011-07-20
It has been shown that resonant absorption is a robust physical mechanism for explaining the observed damping of magnetohydrodynamic kink waves in the solar atmosphere due to naturally occurring plasma inhomogeneity in the direction transverse to the direction of the magnetic field. Theoretical studies of this damping mechanism were greatly inspired by the first observations of post-flare standing kink modes in coronal loops using the Transition Region and Coronal Explorer. More recently, these studies have been extended to explain the attenuation of propagating coronal kink waves observed by the Coronal Multi-Channel Polarimeter. In the present study, for the first time we investigate the properties of propagating kink waves in solar waveguides including the effects of both longitudinal and transverse plasma inhomogeneity. Importantly, it is found that the wavelength is only dependent on the longitudinal stratification and the amplitude is simply a product of the two effects. In light of these results the advancement of solar atmospheric magnetoseismology by exploiting high spatial/temporal resolution observations of propagating kink waves in magnetic waveguides to determine the length scales of the plasma inhomogeneity along and transverse to the direction of the magnetic field is discussed.
Characterization of individual straight and kinked boron carbide nanowires
NASA Astrophysics Data System (ADS)
Cui, Zhiguang
Boron carbides represent a class of ceramic materials with p-type semiconductor natures, complex structures and a wide homogeneous range of carbon compositions. Bulk boron carbides have long been projected as promising high temperature thermoelectric materials, but with limited performance. Bringing the bulk boron carbides to low dimensions (e.g., nanowires) is believed to be an option to enhance their thermoelectric performance because of the quantum size effects. However, the fundamental studies on the microstructure-thermal property relation of boron carbide nanowires are elusive. In this dissertation work, systematic structural characterization and thermal conductivity measurement of individual straight and kinked boron carbide nanowires were carried out to establish the true structure-thermal transport relation. In addition, a preliminary Raman spectroscopy study on identifying the defects in individual boron carbide nanowires was conducted. After the synthesis of single crystalline boron carbide nanowires, straight nanowires accompanied by the kinked ones were observed. Detailed structures of straight boron carbide nanowires have been reported, but not the kinked ones. After carefully examining tens of kinked nanowires utilizing Transmission Electron Microscopy (TEM), it was found that they could be categorized into five cases depending on the stacking faults orientations in the two arms of the kink: TF-TF, AF-TF, AF-AF, TF-IF and AF-IF kinks, in which TF, AF and IF denotes transverse faults (preferred growth direction perpendicular to the stacking fault planes), axial faults (preferred growth direction in parallel with the stacking fault planes) and inclined faults (preferred growth direction neither perpendicular to nor in parallel with the stacking fault planes). Simple structure models describing the characteristics of TF-TF, AF-TF, AF-AF kinked nanowires are constructed in SolidWorks, which help to differentiate the kinked nanowires viewed from the zone
Simulations of kink-like modes on NSTX
NASA Astrophysics Data System (ADS)
Podesta, Mario; Dong, Ge
2015-11-01
Kink-like instabilities which are commonly observed in NSTX plasmas can lead to deterioration of plasma confinement. Understanding their stability properties and dynamics is therefore important to improve the machine performance. In this study, we performed simulations of kink-like instabilities in NSTX equilibrium for a variety of scenarios using the gyrokinetic toroidal code (GTC). In fluid limit with experimental plasma density and temperature profiles, a scan of the q profile shows that the non- resonant kink mode (NRK) can be stabilized if qmin is above 1.5. In simulations with kinetic thermal ions, the growth rate of NRK are slightly reduced, and the mode structure can be affected. In simulations with kinetic fast ions, the fishbone mode with finite real frequency and rotating mode structure can be destabilized. Work supported by U.S. DOE Contract DE-AC02-09CH11466.
Experimental Study of Kink-like Modes in NSTX Plasmas
NASA Astrophysics Data System (ADS)
Dong, Ge; Podesta, Mario
2014-10-01
Internal kink modes destabilized by energetic trapped particles can cause particle losses and deteriorate plasma performance in toroidal fusion devices. In this study, we characterized the main properties of kink-link instabilities in National Spherical Torus Experiment (NSTX) plasmas, including the wave number spectrum, effective mode growth rate and real frequency, as a function of the thermal plasma, fast ion and magnetic field parameters, which is re-constructed using LRDfit and TRANSP, utilizing experimental data from motional Stark effect(MSE) diagnostic for direct measurements of the q profiles. Results indicate that the bursting fishbone modes are unstable at preferentially higher fast ion beta regime, while the long-lived non-resonant kink (NRK) modes are unstable at lower and higher fast ion beta values. Both the fishbones and the NRK tend to be stable with q-min above around 1.5. Partly supported by US-DoE Contract DE-AC02- 09CH11466.
Erickson, Jeremiah D; Mednikov, Evgueni G; Ivanov, Sergei A; Dahl, Lawrence F
2016-02-10
We present the first successful isolation and crystallographic characterization of a Mackay 55-metal-atom two-shell icosahedron, Pd55L12(μ3-CO)20 (L = PPr(i)3) (1). Its two-shell icosahedron of pseudo-Ih symmetry (without isopropyl substituents) enables a structural/bonding comparison with interior 55-metal-atom two-shell icosahedral geometries observed within the multi-shell capped 145-metal-atom three-shell Pd145(CO)72(PEt3)30 and 165-metal-atom four-shell Pt-centered (μ12-Pt)Pd164-xPtx(CO)72(PPh3)20 (x ≈ 7) nanoclusters, and within the recently reported four-shell Au133(SC6H4-p-Bu(t))52 nanocluster. DFT calculations carried out on a Pd55(CO)20(PH3)12 model analogue, with triisopropyl phosphine substituents replaced by H atoms, revealed a positive +0.84 e charge for the entire Pd55 core, with a highly positive second-shell Pd42 surface of +1.93 e.
Edge Plasma Boundary Layer Generated By Kink Modes in Tokamaks
L.E. Zakharov
2010-11-22
This paper describes the structure of the electric current generated by external kink modes at the plasma edge using the ideally conducting plasma model. It is found that the edge current layer is created by both wall touching and free boundary kink modes. Near marginal stability, the total edge current has a universal expression as a result of partial compensation of the δ-functional surface current by the bulk current at the edge. The resolution of an apparent paradox with the pressure balance across the plasma boundary in the presence of the surface currents is provided.
Destabilization of the internal kink by energetic-circulating ions
Betti, R. ); Freidberg, J.P. )
1993-05-31
A stability analysis is carried out for the [ital m]=1 internal kink mode, in the presence of energetic circulating particles. It is found that, including the effect of finite radial particle-orbit excursion, the [ital m]=1 internal kink mode is strongly destabilized by the resonance interaction with the energetic passing particles. Such an instability could explain the experimental observations of the fishbone'' oscillations during tangential neutral beam injection [W. W. Heidbrink [ital et] [ital al]., Phys. Rev. Lett. 57, 835 (1986)].
Integrated nanophotonics of parity-time symmetry (Conference Presentation)
NASA Astrophysics Data System (ADS)
Feng, Liang
2016-09-01
Parity-time (PT) symmetry is a fundamental notion in quantum field theories and opens a new paradigm of non-Hermitian photonics. Instead of counteracting optical losses in integrated photonics, we start from an opposite viewpoint to strategically manipulate optical losses by the concept of PT symmetry. In this talk, I will discuss harnessing PT symmetry using the state-of-the-art integrated nanophotonics technology for novel optoelectronic functionalities. I will present unidirectional reflectionless light transport and coherent light control on a passive silicon platform and effective control of cavity resonant modes for stable lasing actions on an active III-V semiconductor platform.
Stability of the kink state in a stack of intrinsic Josephson junctions
NASA Astrophysics Data System (ADS)
Lin, Shi-Zeng; Hu, Xiao
2010-12-01
A new dynamic state characterized by (2ml+1)π static phase kink with integers {ml} is proposed recently in a stack of inductively coupled Josephson junctions. In the present paper, the stability of the phase kink state is investigated against various perturbations and it is shown that the kink state is stable. It is also discussed that the suppression of the amplitude of superconducting order parameter caused by the kink is weak.
Standing Kink modes in three-dimensional coronal loops
Pascoe, D. J.; De Moortel, I.
2014-04-01
So far, the straight flux tube model proposed by Edwin and Roberts is the most commonly used tool in practical coronal seismology, in particular, to infer values of the (coronal) magnetic field from observed, standing kink mode oscillations. In this paper, we compare the period predicted by this basic model with three-dimensional (3D) numerical simulations of standing kink mode oscillations, as the period is a crucial parameter in the seismological inversion to determine the magnetic field. We perform numerical simulations of standing kink modes in both straight and curved 3D coronal loops and consider excitation by internal and external drivers. The period of oscillation for the displacement of dense coronal loops is determined by the loop length and the kink speed, in agreement with the estimate based on analytical theory for straight flux tubes. For curved coronal loops embedded in a magnetic arcade and excited by an external driver, a secondary mode with a period determined by the loop length and external Alfvén speed is also present. When a low number of oscillations is considered, these two periods can result in a single, non-resolved (broad) peak in the power spectrum, particularly for low values of the density contrast for which the two periods will be relatively similar. In that case (and for this particular geometry), the presence of this additional mode would lead to ambiguous seismological estimates of the magnetic field strength.
Global gyrokinetic particle-in-cell simulations of internal kink instabilities
Mishchenko, Alexey; Zocco, Alessandro
2012-12-15
Internal kink instabilities have been studied in straight tokamak geometry employing an electromagnetic gyrokinetic particle-in-cell (PIC) code. The ideal-MHD internal kink mode and the collisionless m=1 tearing mode have been successfully simulated with the PIC code. Diamagnetic effects on the internal kink modes have also been investigated.
ERIC Educational Resources Information Center
Attanucci, Frank J.; Losse, John
2008-01-01
In a first calculus course, it is not unusual for students to encounter the theorems which state: If f is an even (odd) differentiable function, then its derivative is odd (even). In our paper, we prove some theorems which show how the symmetry of a continuous function f with respect to (i) the vertical line: x = a or (ii) with respect to the…
Chiral selectivity of amino acid adsorption on chiral surfaces—The case of alanine on Pt
Franke, J.-H.; Kosov, D. S.
2015-02-07
We study the binding pattern of the amino acid alanine on the naturally chiral Pt surfaces Pt(531), Pt(321), and Pt(643). These surfaces are all vicinal to the (111) direction but have different local environments of their kink sites and are thus a model for realistic roughened Pt surfaces. Alanine has only a single methyl group attached to its chiral center, which makes the number of possible binding conformations computationally tractable. Additionally, only the amine and carboxyl group are expected to interact strongly with the Pt substrate. On Pt(531), we study the molecule in its pristine as well as its deprotonated form and find that the deprotonated one is more stable by 0.47 eV. Therefore, we study the molecule in its deprotonated form on Pt(321) and Pt(643). As expected, the oxygen and nitrogen atoms of the deprotonated molecule provide a local binding “tripod” and the most stable adsorption configurations optimize the interaction of this “tripod” with undercoordinated surface atoms. However, the interaction of the methyl group plays an important role: it induces significant chiral selectivity of about 60 meV on all surfaces. Hereby, the L-enantiomer adsorbs preferentially to the Pt(321){sup S} and Pt(643){sup S} surfaces, while the D-enantiomer is more stable on Pt(531){sup S}. The binding energies increase with increasing surface density of kink sites, i.e., they are largest for Pt(531){sup S} and smallest for Pt(643){sup S}.
PT -symmetric spectral singularity and negative-frequency resonance
NASA Astrophysics Data System (ADS)
Pendharker, Sarang; Guo, Yu; Khosravi, Farhad; Jacob, Zubin
2017-03-01
Vacuum consists of a bath of balanced and symmetric positive- and negative-frequency fluctuations. Media in relative motion or accelerated observers can break this symmetry and preferentially amplify negative-frequency modes as in quantum Cherenkov radiation and Unruh radiation. Here, we show the existence of a universal negative-frequency-momentum mirror symmetry in the relativistic Lorentzian transformation for electromagnetic waves. We show the connection of our discovered symmetry to parity-time (PT ) symmetry in moving media and the resulting spectral singularity in vacuum fluctuation-related effects. We prove that this spectral singularity can occur in the case of two metallic plates in relative motion interacting through positive- and negative-frequency plasmonic fluctuations (negative-frequency resonance). Our work paves the way for understanding the role of PT -symmetric spectral singularities in amplifying fluctuations and motivates the search for PT symmetry in novel photonic systems.
Electronic confinement in graphene quantum rings due to substrate-induced mass radial kink.
Xavier, L J P; da Costa, D R; Chaves, A; Pereira, J M; Farias, G A
2016-12-21
We investigate localized states of a quantum ring confinement in monolayer graphene defined by a circular mass-related potential, which can be induced e.g. by interaction with a substrate that breaks the sublattice symmetry, where a circular line defect provides a change in the sign of the induced mass term along the radial direction. Electronic properties are calculated analytically within the Dirac-Weyl approximation in the presence of an external magnetic field. Analytical results are also compared with those obtained by the tight-binding approach. Regardless of its sign, a mass term [Formula: see text] is expected to open a gap for low-energy electrons in Dirac cones in graphene. Both approaches confirm the existence of confined states with energies inside the gap, even when the width of the kink modelling the mass sign transition is infinitely thin. We observe that such energy levels are inversely proportional to the defect line ring radius and independent on the mass kink height. An external magnetic field is demonstrated to lift the valley degeneracy in this system and easily tune the valley index of the ground state in this system, which can be polarized on either K or [Formula: see text] valleys of the Brillouin zone, depending on the magnetic field intensity. Geometrical changes in the defect line shape are considered by assuming an elliptic line with different eccentricities. Our results suggest that any defect line that is closed in a loop, with any geometry, would produce the same qualitative results as the circular ones, as a manifestation of the topologically protected nature of the ring-like states investigated here.
Electronic confinement in graphene quantum rings due to substrate-induced mass radial kink
NASA Astrophysics Data System (ADS)
Xavier, L. J. P.; da Costa, D. R.; Chaves, A.; Pereira, J. M., Jr.; Farias, G. A.
2016-12-01
We investigate localized states of a quantum ring confinement in monolayer graphene defined by a circular mass-related potential, which can be induced e.g. by interaction with a substrate that breaks the sublattice symmetry, where a circular line defect provides a change in the sign of the induced mass term along the radial direction. Electronic properties are calculated analytically within the Dirac-Weyl approximation in the presence of an external magnetic field. Analytical results are also compared with those obtained by the tight-binding approach. Regardless of its sign, a mass term Δ is expected to open a gap for low-energy electrons in Dirac cones in graphene. Both approaches confirm the existence of confined states with energies inside the gap, even when the width of the kink modelling the mass sign transition is infinitely thin. We observe that such energy levels are inversely proportional to the defect line ring radius and independent on the mass kink height. An external magnetic field is demonstrated to lift the valley degeneracy in this system and easily tune the valley index of the ground state in this system, which can be polarized on either K or {{K}\\prime} valleys of the Brillouin zone, depending on the magnetic field intensity. Geometrical changes in the defect line shape are considered by assuming an elliptic line with different eccentricities. Our results suggest that any defect line that is closed in a loop, with any geometry, would produce the same qualitative results as the circular ones, as a manifestation of the topologically protected nature of the ring-like states investigated here.
Non-Hermitian Hamiltonians with unitary and antiunitary symmetries
NASA Astrophysics Data System (ADS)
Fernández, Francisco M.; Garcia, Javier
2014-03-01
We analyse several non-Hermitian Hamiltonians with antiunitary symmetry from the point of view of their point-group symmetry. It enables us to predict the degeneracy of the energy levels and to reduce the dimension of the matrices necessary for the diagonalization of the Hamiltonian in a given basis set. We can also classify the solutions according to the irreducible representations of the point group and thus analyse their properties separately. One of the main results of this paper is that some PT-symmetric Hamiltonians with point-group symmetry C2v exhibit complex eigenvalues for all values of a potential parameter. In such cases the PT phase transition takes place at the trivial Hermitian limit which suggests that the phenomenon is not robust. Point-group symmetry enables us to explain such anomalous behaviour and to choose a suitable antiunitary operator for the PT symmetry.
An Exploratory Study of a New Kink Activity: "Pup Play".
Wignall, Liam; McCormack, Mark
2017-04-01
This study presents the narratives and experiences of 30 gay and bisexual men who participate in a behavior known as "pup play." Never empirically studied before, we use in-depth interviews and a modified form of grounded theory to describe the dynamics of pup play and develop a conceptual framework with which to understand it. We discuss the dynamics of pup play, demonstrating that it primarily consists of mimicking the behaviors and adopting the role of a dog. We show that the majority of participants use pup play for sexual satisfaction. It is also a form of relaxation, demonstrated primarily through the existence of a "headspace." We classify pup play as a kink, and find no evidence for the framing of it as a form of zoophilia. We call for further research on pup play as a sexual kink and leisure activity from both qualitative and quantitative perspectives.
Alpha particle effects on the internal kink and fishbone modes
Wu, Y.; Cheng, C.Z.; White, R.B.
1994-06-01
The effects of alpha particles on the internal kink and fishbone modes are studied analytically. The nonadiabatic contribution from untrapped alpha particles is negligible. Finite inverse aspect ratio, plasma {beta} and plasma shaping effects can significantly enhance the trapped particle drift reversal domain in the pitch angle space and reduce the bounce-averaged magnetic drift frequency. The drift reversal effect on the ideal kink mode is small, but the {beta}{sub {alpha}} threshold for the fishbone mode can be much lower than previously predicted. Moreover, the fishbone mode could be excited by alpha particles even when the plasma is stable in the ideal MHD limit. In addition, the ion diamagnetic drift frequency (finite ion Larmor radius effect) has a strong destabilizing effect on the fishbone mode when it is comparable with the trapped alpha averaged precessional drift frequency, even though it stabilizes the plasma in the ideal MHD limit.
Algebraic nonlinear growth of the resistive kink instability
NASA Astrophysics Data System (ADS)
Biskamp, Dieter
1991-12-01
It is derived from a simple model that the resistive kink mode grows algebraically W∝t2 for island size W exceeding the resistive layer width. The model only uses the properties of the linear eigenfunction and of current-sheet reconnection. Because of the geometry of the inflow velocity, the usual quasisingular behavior in the current sheet edge region vanishes. The theory is in quantitative agreement with high-S number numerical simulations.
Kink modes and surface currents associated with vertical displacement events
Manickam, Janardhan; Boozer, Allen; Gerhardt, Stefan
2012-08-15
The fast termination phase of a vertical displacement event (VDE) in a tokamak is modeled as a sequence of shrinking equilibria, where the core current profile remains constant so that the safety-factor at the axis, q{sub axis}, remains fixed and the q{sub edge} systematically decreases. At some point, the n = 1 kink mode is destabilized. Kink modes distort the magnetic field lines outside the plasma, and surface currents are required to nullify the normal component of the B-field at the plasma boundary and maintain equilibrium at finite pressure. If the plasma touches a conductor, the current can be transferred to the conductor, and may be measurable by the halo current monitors. This report describes a practical method to model the plasma as it evolves during a VDE, and determine the surface currents, needed to maintain equilibrium. The main results are that the onset conditions for the disruption are that the growth-rate of the n = 1 kink exceeds half the Alfven time and the associated surface current needed to maintain equilibrium exceeds one half of the core plasma current. This occurs when q{sub edge} drops below a low integer, usually 2. Application to NSTX provides favorable comparison with non-axisymmetric halo-current measurements. The model is also applied to ITER and shows that the 2/1 mode is projected to be the most likely cause of the final disruption.
Spectral Element Simulations of Rupture Dynamics along kinked faults
NASA Astrophysics Data System (ADS)
Vilotte, J.; Festa, G.; Madariaga, R.
2005-12-01
Numerical simulation of earthquake source dynamics provides key elements for ground-motion prediction and insights into the physics of dynamic rupture propagation. Faulting is controlled by non-linear frictional interactions and damage within the fault zone. Important features of the earthquakes dynamics, such as rupture velocity, arrest phase and high-frequency radiation are believed to be strongly influenced by the geometry of the faults (kinks, jogs and forks). Data analysis as well as kinematic inversions have pointed out potential links between super-shear and geometry, as in the case of the Denali and Izmit earthquakes. Finally, recent laboratory experiments of sub- and super-shear rupture propagation along kink interfaces have shed new lights on these phenomena. We present here spectral element simulations of the dynamic rupture propagation along kinked and curved fault interfaces, a problem that has been experimentally investigated by Rousseau and Rosakis (2003). Depending on the state of the initial stress, we numerically analyze the mechanics of the dynamical fault branching for sub- and super-shear rupture propagation. Special interest is devoted to source directivity effects and high frequency generation related to the branching process. Implications for strong motion analysis will be discussed. This work was supported by the SPICE - Research and Training project
Decay-less kink oscillations in coronal loops
NASA Astrophysics Data System (ADS)
Anfinogentov, S.; Nisticò, G.; Nakariakov, V. M.
2013-12-01
Context. Kink oscillations of coronal loops in an off-limb active region are detected with the Imaging Assembly Array (AIA) instruments of the Solar Dynamics Observatory (SDO) at 171 Å. Aims: We aim to measure periods and amplitudes of kink oscillations of different loops and to determinate the evolution of the oscillation phase along the oscillating loop. Methods: Oscillating coronal loops were visually identified in the field of view of SDO/AIA and STEREO/EUVI-A: the loop length was derived by three-dimensional analysis. Several slits were taken along the loops to assemble time-distance maps. We identified oscillatory patterns and retrieved periods and amplitudes of the oscillations. We applied the cross-correlation technique to estimate the phase shift between oscillations at different segments of oscillating loops. Results: We found that all analysed loops show low-amplitude undamped transverse oscillations. Oscillation periods of loops in the same active region range from 2.5 to 11 min, and are different for different loops. The displacement amplitude is lower than 1 Mm. The oscillation phase is constant along each analysed loop. The spatial structure of the phase of the oscillations corresponds to the fundamental standing kink mode. We conclude that the observed behaviour is consistent with the empirical model in terms of a damped harmonic resonator affected by a non-resonant continuously operating external force. A movie is available in electronic form at http://www.aanda.org
Euler buckling and nonlinear kinking of double-stranded DNA
Fields, Alexander P.; Meyer, Elisabeth A.; Cohen, Adam E.
2013-01-01
The bending stiffness of double-stranded DNA (dsDNA) at high curvatures is fundamental to its biological activity, yet this regime has been difficult to probe experimentally, and literature results have not been consistent. We created a ‘molecular vise’ in which base-pairing interactions generated a compressive force on sub-persistence length segments of dsDNA. Short dsDNA strands (<41 base pairs) resisted this force and remained straight; longer strands became bent, a phenomenon called ‘Euler buckling’. We monitored the buckling transition via Förster Resonance Energy Transfer (FRET) between appended fluorophores. For low-to-moderate concentrations of monovalent salt (up to ∼150 mM), our results are in quantitative agreement with the worm-like chain (WLC) model of DNA elasticity, without the need to invoke any ‘kinked’ states. Greater concentrations of monovalent salts or 1 mM Mg2+ induced an apparent softening of the dsDNA, which was best accounted for by a kink in the region of highest curvature. We tested the effects of all single-nucleotide mismatches on the DNA bending. Remarkably, the propensity to kink correlated with the thermodynamic destabilization of the mismatched DNA relative the perfectly complementary strand, suggesting that the kinked state is locally melted. The molecular vise is exquisitely sensitive to the sequence-dependent linear and nonlinear elastic properties of dsDNA. PMID:23956222
Wang, Lijun; Zhao, Feng; Wang, Daming; Hu, Shen; Liu, Jiachun; Zhou, Zhilun; Lu, Jun; Qi, Peng; Song, Shiying
2016-01-01
Background. Whether carotid tortuosity/kinking of the internal carotid artery leads to cerebral ischemia remains unclear. There is very little research about the hemodynamic variation induced by carotid tortuosity/kinking in the literature. The objective of this study was to research the blood pressure changes induced by carotid tortuosity/kinking. Methods. We first created a geometric model of carotid tortuosity/kinking. Based on hemodynamic boundary conditions, the hemodynamics of carotid tortuosity and kinking were studied via a finite element simulation. Then, an in vitro system was built to validate the numerical simulation results. The mean arterial pressure changes before and after carotid kinking were measured using pressure sensors in 12 patients with carotid kinking. Results. Numerical simulation revealed that the pressure drops increased with increases in the kinking angles. Clinical tests and in vitro experiments confirmed the numerical simulation results. Conclusions. Carotid kinking leads to blood pressure reduction. In certain conditions, kinking may affect the cerebral blood supply and be associated with cerebral ischemia. PMID:27195283
None
2016-07-12
- Physics, as we know it, attempts to interpret the diverse natural phenomena as particular manifestations of general laws. This vision of a world ruled by general testable laws is relatively recent in the history of mankind. Basically it was initiated by the Galilean inertial principle. The subsequent rapid development of large-scale physics is certainly tributary to the fact that gravitational and electromagnetic forces are long-range and hence can be perceived directly without the mediation of highly sophisticated technical devices. - The discovery of subatomic structures and of the concomitant weak and strong short-range forces raised the question of how to cope with short-range forces in relativistic quantum field theory. The Fermi theory of weak interactions, formulated in terms of point-like current-current interaction, was well-defined in lowest order perturbation theory and accounted for existing experimental data.However, it was inconsistent in higher orders because of uncontrollable divergent quantum fluctuations. In technical terms, in contradistinction to quantum electrodynamics, the Fermi theorywas not ârenormalizableâ. This difficulty could not be solved by smoothing the point-like interaction by a massive, and therefore short-range, charged âvectorâ particle exchange: theories with massive charged vector bosons were not renormalizable either. In the early nineteen sixties, there seemed to be insuperable obstacles to formulating a consistent theory with short-range forces mediated by massive vectors. - The breakthrough came from the notion of spontaneous symmetry breaking which arose in the study of phase transitions and was introduced in field theory by Nambu in 1960. - Ferromagnets illustrate the notion in phase transitions. Although no direction is dynamically preferred, the magnetization selects a global orientation. This is a spontaneous broken symmetry(SBS)of rotational invariance. Such continuous SBS imply the existence of
2011-02-24
- Physics, as we know it, attempts to interpret the diverse natural phenomena as particular manifestations of general laws. This vision of a world ruled by general testable laws is relatively recent in the history of mankind. Basically it was initiated by the Galilean inertial principle. The subsequent rapid development of large-scale physics is certainly tributary to the fact that gravitational and electromagnetic forces are long-range and hence can be perceived directly without the mediation of highly sophisticated technical devices. - The discovery of subatomic structures and of the concomitant weak and strong short-range forces raised the question of how to cope with short-range forces in relativistic quantum field theory. The Fermi theory of weak interactions, formulated in terms of point-like current-current interaction, was well-defined in lowest order perturbation theory and accounted for existing experimental data.However, it was inconsistent in higher orders because of uncontrollable divergent quantum fluctuations. In technical terms, in contradistinction to quantum electrodynamics, the Fermi theorywas not “renormalizable”. This difficulty could not be solved by smoothing the point-like interaction by a massive, and therefore short-range, charged “vector” particle exchange: theories with massive charged vector bosons were not renormalizable either. In the early nineteen sixties, there seemed to be insuperable obstacles to formulating a consistent theory with short-range forces mediated by massive vectors. - The breakthrough came from the notion of spontaneous symmetry breaking which arose in the study of phase transitions and was introduced in field theory by Nambu in 1960. - Ferromagnets illustrate the notion in phase transitions. Although no direction is dynamically preferred, the magnetization selects a global orientation. This is a spontaneous broken symmetry(SBS)of rotational invariance. Such continuous SBS imply the existence of
Sublattice Interference as the Origin of σ Band Kinks in Graphene
NASA Astrophysics Data System (ADS)
Jung, Sung Won; Shin, Woo Jong; Kim, Jimin; Moreschini, Luca; Yeom, Han Woong; Rotenberg, Eli; Bostwick, Aaron; Kim, Keun Su
2016-05-01
Kinks near the Fermi level observed in angle-resolved photoemission spectroscopy (ARPES) have been widely accepted to represent electronic coupling to collective excitations, but kinks at higher energies have eluded a unified description. We identify the mechanism leading to such kink features by means of ARPES and tight-binding band calculations on σ bands of graphene, where anomalous kinks at energies as high as ˜4 eV were reported recently [Phys. Rev. Lett. 111, 216806 (2013)]. We found that two σ bands show a strong intensity modulation with abruptly vanishing intensity near the kink features, which is due to sublattice interference. The interference induced local singularity in the matrix element is a critical factor that gives rise to apparent kink features, as confirmed by our spectral simulations without involving any coupling to collective excitations.
Kim, Sunghoon
2015-12-01
A tunneled central line catheter placement using a subclavian vein approach can be complicated by an occurrence of peel-away sheath kink which prevents the advancement of the catheter through the sheath. The kink is created due to the angular junction of subclavian and brachiocephalic veins which meet at 90 degree angle. A technique is described which corrects the peel-away sheath kink by extending the subclavian/brachiocephalic vein angle to greater than 90 degrees by abducting the patient's arm.
Continuous symmetry measures for complex symmetry group.
Dryzun, Chaim
2014-04-05
Symmetry is a fundamental property of nature, used extensively in physics, chemistry, and biology. The Continuous symmetry measures (CSM) is a method for estimating the deviation of a given system from having a certain perfect symmetry, which enables us to formulate quantitative relation between symmetry and other physical properties. Analytical procedures for calculating the CSM of all simple cyclic point groups are available for several years. Here, we present a methodology for calculating the CSM of any complex point group, including the dihedral, tetrahedral, octahedral, and icosahedral symmetry groups. We present the method and analyze its performances and errors. We also introduce an analytical method for calculating the CSM of the linear symmetry groups. As an example, we apply these methods for examining the symmetry of water, the symmetry maps of AB4 complexes, and the symmetry of several Lennard-Jones clusters.
NASA Astrophysics Data System (ADS)
Zhang, Mi; Guan, Zhidong; Wang, Xiaodong; Du, Shanyi
2016-12-01
Kink band is a typical phenomenon for composites under longitudinal compression. In this paper, theoretical analysis and finite element simulation were conducted to analyze kink angle as well as compressive strength of composites. Kink angle was considered to be an important character throughout longitudinal compression process. Three factors including plastic matrix, initial fiber misalignment and rotation due to loading were considered for theoretical analysis. Besides, the relationship between kink angle and fiber volume fraction was improved and optimized by theoretical derivation. In addition, finite element models considering fiber stochastic strength and Drucker-Prager constitutive model for matrix were conducted in ABAQUS to analyze kink band formation process, which corresponded with the experimental results. Through simulation, the loading and failure procedure can be evidently divided into three stages: elastic stage, softening stage, and fiber break stage. It also shows that kink band is a result of fiber misalignment and plastic matrix. Different values of initial fiber misalignment angle, wavelength and fiber volume fraction were considered to explore the effects on compressive strength and kink angle. Results show that compressive strength increases with the decreasing of initial fiber misalignment angle, the decreasing of initial fiber misalignment wavelength and the increasing of fiber volume fraction, while kink angle decreases in these situations. Orthogonal array in statistics was also built to distinguish the effect degree of these factors. It indicates that initial fiber misalignment angle has the largest impact on compressive strength and kink angle.
Evaluation of Kink Generation Rate and Step Flow Velocity on Si(111) during Wet Etching
NASA Astrophysics Data System (ADS)
Hasunuma, Ryu; Yamabe, Kikuo
2013-11-01
The rate of kink generation in ultralow dissolved-oxygen water (LOW) at a <11bar 2> oriented atomic step on a Si(111) surface was experimentally determined. By controlling the step length by adding SiO2 line patterns that prevent kink propagation across the patterns, it was found that step flow velocity was proportional to step length when the step was short. From the proportionality coefficient, the rate of kink generation was evaluated to be 800 cm-1 s-1. Furthermore, the velocity of kink propagation along a step was also evaluated as 40 nm/s.
Hall, Spencer E; Roberts, Kyle; Vaidehi, Nagarajan
2009-01-01
The structural features of helical transmembrane (TM) proteins, such as helical kinks, tilts, and rotational orientations are important in modulation of their function and these structural features give rise to functional diversity in membrane proteins with similar topology. In particular, the helical kinks caused by breaking of the backbone hydrogen bonds lead to hinge bending flexibility in these helices. Therefore it is important to understand the nature of the helical kinks and to be able to reproduce these kinks in structural models of membrane proteins. We have analyzed the position and extent of helical kinks in the transmembrane helices of all the crystal structures of membrane proteins taken from the MPtopo database, which are about 405 individual helices of length between 19 and 35 residues. 44% of the crystal structures of TM helices showed a significant helical kink, and 35% of these kinks are caused by prolines. Many of the non-proline helical kinks are caused by other residues like Ser and Gly that are located at the center of helical kinks. The side chain of Ser makes a hydrogen bond with the main chain carbonyl of the i - 4th or i + 4th residue thus making a kink. We have also studied how well molecular dynamics (MD) simulations on isolated helices can reproduce the position of the helical kinks in TM helices. Such a method is useful for structure prediction of membrane proteins. We performed MD simulations, starting from a canonical helix for the 405 TM helices. 1 ns of MD simulation results show that we can reproduce about 79% of the proline kinks, only 59% of the vestigial proline kinks and 18% of the non-proline helical kinks. We found that similar results can be obtained from choosing the lowest potential energy structure from the MD simulation. 4-14% more of the vestigial prolines were reproduced by replacing them with prolines before performing MD simulations, and changing the amino acid back to proline after the MD simulations. From these
A quasi-cyclic RNA nano-scale molecular object constructed using kink turns.
Huang, Lin; Lilley, David M J
2016-08-18
k-Turns are widespread RNA architectural elements that mediate tertiary interactions. We describe a double-kink-turn motif comprising two inverted k-turns that forms a tight horse-shoe structure that can assemble into a variety of shapes by coaxial association of helical ends. Using X-ray crystallography we show that these assemble with two (dumbell), three (triangle) and four units (square), with or without bound protein, within the crystal lattice. In addition, exchange of a single basepair can almost double the pore radius or shape of a molecular assembly. On the basis of this analysis we synthesized a 114 nt self-complementary RNA containing six k-turns. The crystal structure of this species shows that it forms a quasi-cyclic triangular object. These are randomly disposed about the three-fold axis in the crystal lattice, generating a circular RNA of quasi D3 symmetry with a shape reminiscent of that of a cyclohexane molecule in its chair conformation. This work demonstrates that the k-turn is a powerful building block in the construction of nano-scale molecular objects, and illustrates why k-turns are widely used in natural RNA molecules to organize long-range architecture and mediate tertiary contacts.
Internal Kink Mode Dynamics in High-{beta} NSTX Plasmas
J.E. Menard; R.E. Bell; E.D. Fredrickson; D.A. Gates; S.M. Kaye; B.P. LeBlanc; S.S. Medley; W. Park; S.A. Sabbagh; A. Sontag; D. Stutman; K. Tritz; W. Zhu; the NSTX Research Team
2004-12-22
Saturated internal kink modes have been observed in many of the highest toroidal beta discharges of the National Spherical Torus Experiment (NSTX). These modes often cause rotation flattening in the plasma core, can degrade energy confinement, and in some cases contribute to the complete loss of plasma angular momentum and stored energy. Characteristics of the modes are measured using soft X-ray, kinetic profile, and magnetic diagnostics. Toroidal flows approaching Alfvenic speeds, island pressure peaking, and enhanced viscous and diamagnetic effects associated with high-beta may contribute to mode nonlinear stabilization. These saturation mechanisms are investigated for NSTX parameters and compared to experimental data.
Internal Kink Mode Dynamics in High-beta NSTX Plasmas
J.E. Menard; R.E. Bell; E.D. Fredrickson; D.A. Gates; S.M. Kaye; B.P. LeBlanc; S.S. Medley; W. Park; S.A. Sabbagh; A. Sontag; D. Stutman; K. Tritz; W. Zhu; the NSTX Research Team
2004-12-22
Saturated internal kink modes have been observed in many of the highest toroidal {beta} discharges of the National Spherical Torus Experiment (NSTX). These modes often cause rotation flattening in the plasma core, can degrade energy confinement, and in some cases contribute to the complete loss of plasma angular momentum and stored energy. Characteristics of the modes are measured using soft X-ray, kinetic profile, and magnetic diagnostics. Toroidal flows approaching Alfvenic speeds, island pressure peaking, and enhanced viscous and diamagnetic effects associated with high-{beta} may contribute to mode nonlinear stabilization. These saturation mechanisms are investigated for NSTX parameters and compared to experimental data.
Pd surface and Pt subsurface segregation in Pt1-c Pd c nanoalloys
NASA Astrophysics Data System (ADS)
De Clercq, A.; Giorgio, S.; Mottet, C.
2016-02-01
The structure and chemical arrangement of Pt1-c Pd c nanoalloys with the icosahedral and face centered cubic symmetry are studied using Monte Carlo simulations with a tight binding interatomic potential fitted to density-functional theory calculations. Pd surface segregation from the lowest to the highest coordinated sites is predicted by the theory together with a Pt enrichment at the subsurface, whatever the structure and the size of the nanoparticles, and which subsists when increasing the temperature. The onion-shell chemical configuration is found for both symmetries and is initiated from the Pd surface segregation. It is amplified in the icosahedral symmetry and small sizes but when considering larger sizes, the oscillating segregation profile occurs near the surface on about three to four shells whatever the structure. Pd segregation results from the significant lower cohesive energy of Pd as compared to Pt and the weak ordering tendency leads to the Pt subsurface segregation. The very weak size mismatch does not prevent the bigger atoms (Pt) from occupying subsurface sites which are in compression whereas the smaller ones (Pd) occupy the central site of the icosahedra where the compression is an order of magnitude higher.
Interaction of sine-Gordon kinks and breathers with a parity-time-symmetric defect
NASA Astrophysics Data System (ADS)
Saadatmand, Danial; Dmitriev, Sergey V.; Borisov, Denis I.; Kevrekidis, Panayotis G.
2014-11-01
The scattering of kinks and low-frequency breathers of the nonlinear sine-Gordon (SG) equation on a spatially localized parity-time-symmetric perturbation (defect) with a balanced gain and loss is investigated numerically. It is demonstrated that if a kink passes the defect, it always restores its initial momentum and energy, and the only effect of the interaction with the defect is a phase shift of the kink. A kink approaching the defect from the gain side always passes, while in the opposite case it must have sufficiently large initial momentum to pass through the defect instead of being trapped in the loss region. The kink phase shift and critical velocity are calculated by means of the collective variable method. Kink-kink (kink-antikink) collisions at the defect are also briefly considered, showing how their pairwise repulsive (respectively, attractive) interaction can modify the collisional outcome of a single kink within the pair with the defect. For the breather, the result of its interaction with the defect depends strongly on the breather parameters (velocity, frequency, and initial phase) and on the defect parameters. The breather can gain some energy from the defect and as a result potentially even split into a kink-antikink pair, or it can lose a part of its energy. Interestingly, the breather translational mode is very weakly affected by the dissipative perturbation, so that a breather penetrates more easily through the defect when it comes from the lossy side, than a kink. In all studied soliton-defect interactions, the energy loss to radiation of small-amplitude extended waves is negligible.
Plasticity of the RNA Kink Turn Structural Motif
Antonioli, A.; Cochrane, J; Lipchock, S; Strobel, S
2010-01-01
The kink turn (K-turn) is an RNA structural motif found in many biologically significant RNAs. While most examples of the K-turn have a similar fold, the crystal structure of the Azoarcus group I intron revealed a novel RNA conformation, a reverse kink turn bent in the direction opposite that of a consensus K-turn. The reverse K-turn is bent toward the major grooves rather than the minor grooves of the flanking helices, yet the sequence differs from the K-turn consensus by only a single nucleotide. Here we demonstrate that the reverse bend direction is not solely defined by internal sequence elements, but is instead affected by structural elements external to the K-turn. It bends toward the major groove under the direction of a tetraloop-tetraloop receptor. The ability of one sequence to form two distinct structures demonstrates the inherent plasticity of the K-turn sequence. Such plasticity suggests that the K-turn is not a primary element in RNA folding, but instead is shaped by other structural elements within the RNA or ribonucleoprotein assembly.
NASA Astrophysics Data System (ADS)
Deo, C. S.; Srolovitz, D. J.
2002-09-01
We describe a first passage time Markov chain analysis of rare events in kinetic Monte Carlo (kMC) simulations and demonstrate how this analysis may be used to enhance kMC simulations of dislocation glide. Dislocation glide is described by the kink mechanism, which involves double kink nucleation, kink migration and kink-kink annihilation. Double kinks that nucleate on straight dislocations are unstable at small kink separations and tend to recombine immediately following nucleation. A very small fraction (<0.001) of nucleating double kinks survive to grow to a stable kink separation. The present approach replaces all of the events that lead up to the formation of a stable kink with a simple numerical calculation of the time required for stable kink formation. In this paper, we treat the double kink nucleation process as a temporally homogeneous birth-death Markov process and present a first passage time analysis of the Markov process in order to calculate the nucleation rate of a double kink with a stable kink separation. We discuss two methods to calculate the first passage time; one computes the distribution and the average of the first passage time, while the other uses a recursive relation to calculate the average first passage time. The average first passage times calculated by both approaches are shown to be in excellent agreement with direct Monte Carlo simulations for four idealized cases of double kink nucleation. Finally, we apply this approach to double kink nucleation on a screw dislocation in molybdenum and obtain the rates for formation of stable double kinks as a function of applied stress and temperature. Equivalent kMC simulations are too inefficient to be performed using commonly available computational resources.
Kinked structures of isolated nicotinic receptor M2 helices: a molecular dynamics study.
Sankararamakrishnan, R; Samsom, M S
1994-12-01
The pore-lining M2 helix of the nicotinic acetylcholine receptor exhibits a pronounced kink when the corresponding ion channel is in a closed conformation [N. Unwin (1993) Journal of Molecular Biology, Vol. 229, pp. 1101-1124]. We have performed molecular dynamics simulations of isolated 22-residue M2 helices in order to identify a possible molecular origin of this kink. In order to sample a wide range of conformational space, a simulated annealing protocol was used to generate five initial M2 helix structures, each of which was subsequently used as the basis of 300 ps MD simulations. Two helix sequences (M2 alpha and M2 delta) were studied in this manner, resulting in a total of ten 300 ps trajectories. Kinked helices present in the trajectories were identified and energy minimized to yield a total of five different stable kinked structures. For comparison, a similar molecular dynamics simulation of a Leu23 helix yielded no stable kinked structures. In four of the five kinked helices, the kink was stabilized by H bonds between the helix backbone and polar side-chain atoms. Comparison with data from the literature on site-directed mutagenesis of M2 residues suggests that such polar side-chain to main-chain H bonds may also contribute to kinking of M2 helices in the intact channel protein.
Proliferation of sharp kinks on cosmic (super)string loops with junctions
Binetruy, P.; Bohe, A.; Hertog, T.; Steer, D. A.
2010-10-15
Motivated by their effect on the gravitational wave signal emitted by cosmic strings, we study the dynamics of kinks on strings of different tensions meeting at junctions. The propagation of a kink through a Y junction leads to the formation of three 'daughter' kinks. Assuming a uniform distribution of the incoming wave vectors at the junction, we find there is a significant region of configuration space in which the sharpness of at least one of the daughter kinks is enhanced relative to the sharpness of the initial kink. For closed loops with junctions we show this leads to an exponential growth in time of very sharp kinks. Using numerical simulations of realistic, evolving cosmic string loops with junctions to calculate the distribution of kink amplitudes as a function of time, we show that loops of this kind typically develop several orders of magnitude of very sharp kinks before the two junctions collide. This collision, or other effects such as gravitational backreaction, may end the proliferation.
Nonlinear hybrid simulation of internal kink with beam ion effects in DIII-D
NASA Astrophysics Data System (ADS)
Shen, Wei; Fu, G. Y.; Tobias, Benjamin; Van Zeeland, Michael; Wang, Feng; Sheng, Zheng-Mao
2015-04-01
In DIII-D sawteething plasmas, long-lived (1,1) kink modes are often observed between sawtooth crashes. The saturated kink modes have two distinct frequencies. The mode with higher frequency transits to a fishbone-like mode with sufficient on-axis neutral beam power. In this work, hybrid simulations with the global kinetic-magnetohydrodynamic (MHD) hybrid code M3D-K have been carried out to investigate the linear stability and nonlinear dynamics of the n = 1 mode with effects of energetic beam ions for a typical DIII-D discharge where both saturated kink mode and fishbone were observed. Linear simulation results show that the n = 1 internal kink mode is unstable in MHD limit. However, with kinetic effects of beam ions, a fishbone-like mode is excited with mode frequency about a few kHz depending on beam pressure profile. The mode frequency is higher at higher beam power and/or narrower radial profile consistent with the experimental observation. Nonlinear simulations have been performed to investigate mode saturation as well as energetic particle transport. The nonlinear MHD simulations show that the unstable kink mode becomes a saturated kink mode after a sawtooth crash. With beam ion effects, the fishbone-like mode can also transit to a saturated kink mode with a small but finite mode frequency. These results are consistent with the experimental observation of saturated kink mode between sawtooth crashes.
Nonlinear hybrid simulation of internal kink with beam ion effects in DIII-D
Shen, Wei; Sheng, Zheng-Mao; Fu, G. Y.; Tobias, Benjamin; Zeeland, Michael Van; Wang, Feng
2015-04-15
In DIII-D sawteething plasmas, long-lived (1,1) kink modes are often observed between sawtooth crashes. The saturated kink modes have two distinct frequencies. The mode with higher frequency transits to a fishbone-like mode with sufficient on-axis neutral beam power. In this work, hybrid simulations with the global kinetic-magnetohydrodynamic (MHD) hybrid code M3D-K have been carried out to investigate the linear stability and nonlinear dynamics of the n = 1 mode with effects of energetic beam ions for a typical DIII-D discharge where both saturated kink mode and fishbone were observed. Linear simulation results show that the n = 1 internal kink mode is unstable in MHD limit. However, with kinetic effects of beam ions, a fishbone-like mode is excited with mode frequency about a few kHz depending on beam pressure profile. The mode frequency is higher at higher beam power and/or narrower radial profile consistent with the experimental observation. Nonlinear simulations have been performed to investigate mode saturation as well as energetic particle transport. The nonlinear MHD simulations show that the unstable kink mode becomes a saturated kink mode after a sawtooth crash. With beam ion effects, the fishbone-like mode can also transit to a saturated kink mode with a small but finite mode frequency. These results are consistent with the experimental observation of saturated kink mode between sawtooth crashes.
Soliton and kink jams in traffic flow with open boundaries.
Muramatsu, M; Nagatani, T
1999-07-01
Soliton density wave is investigated numerically and analytically in the optimal velocity model (a car-following model) of a one-dimensional traffic flow with open boundaries. Soliton density wave is distinguished from the kink density wave. It is shown that the soliton density wave appears only at the threshold of occurrence of traffic jams. The Korteweg-de Vries (KdV) equation is derived from the optimal velocity model by the use of the nonlinear analysis. It is found that the traffic soliton appears only near the neutral stability line. The soliton solution is analytically obtained from the perturbed KdV equation. It is shown that the soliton solution obtained from the nonlinear analysis is consistent with that of the numerical simulation.
Oscillon Resonances and Creation of Kinks in Particle Collisions
Romanczukiewicz, T.; Shnir, Ya.
2010-08-20
We present a numerical study of the process of production of kink-antikink pairs in the collision of particlelike states in the one-dimensional {phi}{sup 4} model. It is shown that there are 3 steps in the process: The first step is to excite the oscillon intermediate state in the particle collision, the second step is a resonance excitation of the oscillon by the incoming perturbations, and, finally, the soliton-antisoliton pair can be created from the resonantly excited oscillon. It is shown that the process depends fractally on the amplitude of the perturbations and the number of perturbations. We also present the effective collective coordinate model for this process.
Double-kink Fishbone Instability Caused by Circulating Energetic Ions
Ya.I. Kolesnichenko; V.V. Lutsenko; V.S. Marchenko; R.B. White
2004-01-12
The destabilization of double kink modes by the circulating energetic ions in tokamaks with the plasma current having an off-axis maximum is studied. It is shown that the high-frequency fishbone instability [Energetic Particle Mode (EPM)] and the low-frequency (diamagnetic) fishbones are possible for such an equilibrium, their poloidal and toroidal mode numbers being not necessarily equal to unity. A new kind of the EPM instability, ''doublet fishbones,'' is predicted. This instability is characterized by two frequencies; it can occur in a plasma with a non-monotonic radial profile of the energetic ions when the particle orbit width is less than the width of the region where the mode is localized. It is found that the diamagnetic fishbone branch exists even when the orbit width exceeds the mode width; in this case, however, the instability growth rate is relatively small.
Destabilization of internal kink by LHCD suprathermal electron pressure
NASA Astrophysics Data System (ADS)
Delgado-Aparicio, L.; Shiraiwa, S.; Sugiyama, L.; Parker, R.; Granetz, R.; Baek, S.; Mumgaard, R.; Faust, I.; Scott, S.; Gorelenkov, N.; Bertelli, N.; Gao, C.; Greenwald, M.; Hubbard, A.; Hughes, J.; Irby, J.; Marmar, E.; Phillips, P.; Rice, J.; Wallace, G.; Wilson, R.; Wolfe, S.; Wukitch, S.
2013-10-01
New observations of the formation of short-lived modes have recently been carried out on Alcator C-Mod. A (1,1) internal kink appears to be destabilized by the fast-electron pressure carried by the suprathermal electrons driven by Lower Hybrid Current Drive (LHCD). Surprisingly, the (1,1) fishbone-like activity can coexist with sawteeth, suggesting that the two modes have independent driving mechanisms. The frequency of the mode is comparable to the core toroidal rotation and that of the precursors. The electron energies responsible for driving the mode have been measured for the first time using the downshift of electron gyrofrequency due to relativistic effects. This is a new explanation for the so-called electron-fishbones. This work was performed under US DoE contracts DE-FC02-99ER54512, DE-AC02-09CH11466 and DE-FG03-96ER-54373.
Relativistic Pseudospin Symmetry
Ginocchio, Joseph N.
2011-05-06
We show that the pseudospin symmetry that Akito Arima discovered many years ago (with collaborators) is a symmetry of the the Dirac Hamiltonian for which the sum of the scalar and vector potentials are a constant. In this paper we discuss some of the implications of this relativistic symmetry and the experimental data that support these predictions. In his original paper Akito also discussed pseudo-U(3) symmetry. We show that pseudo-U(3) symmetry is a symmetry of the Dirac Hamiltonian for which the sum of harmonic oscillator vector and scalar potentials are equal to a constant, and we give the generators of pseudo-U(3) symmetry. Going beyond the mean field we summarize new results on non relativistic shell model Hamiltonians that have pseudospin symmetry and pseudo-orbital angular momentum symmetry as a dynamical symmetries.
Polycyclic Benzenoids: Why Kinked is More Stable than Straight
NASA Astrophysics Data System (ADS)
Poater, Jordi; Visser, Ruud; Solà, Miquel; Bickelhaupt, F. Matthias
2007-02-01
The enhanced stability of bent or kinked polycyclic benzenoids over linear ones is well established, phenanthrene and anthracene being archetypal representatives. The question why kinked is more stable than linear is, however, still a matter of discussion. Recently, it has been proposed that H-H bonding interactions between the two hydrogen atoms in the bay region of phenanthrene are responsible for the larger stability of this molecule as compared to anthracene. This conclusion conflicts with the vast body of evidence for nonbonded steric repulsion between these hydrogen atoms. In this work, we provide new, complementary evidence for the repulsive character of the H-H interactions in phenanthrene's bay region. We have traced the origin of phenanthrene's enhanced stability to the more efficient bonding in the π-electron system using, among others, a quantitative energy decomposition analysis of the bonding between the two constituting 2-methtriyl-phenyl fragments in both phenanthrene and anthracene (i.e., C14H10 = C6H4*-CH** + C6H4*-CH**). The scope of our study is extended to polycyclic benzenoids by analyzing also hexacene and various bent isomers of the latter. Our results once more falsify one of the core concepts of the theory of atoms-in-molecules (AIM), namely, that the presence of bond paths and the presence of bond critical points (they exist indeed between the two bay H atoms in phenanthrene) are sufficient indicators for a stabilizing interaction. Instead, our results confirm that these AIM parameters merely diagnose the proximity or contact between charge distributions, be this contact stabilizing or destabilizing.
Super Bloch oscillation in a PT symmetric system
NASA Astrophysics Data System (ADS)
Turker, Z.; Yuce, C.
2016-07-01
Wannier-Stark ladder in a PT symmetric system is generally complex that leads to amplified/damped Bloch oscillation. We show that a non-amplified wave packet oscillation with very large amplitude can be realized in a non-Hermitian tight binding lattice if certain conditions are satisfied. We show that pseudo PT symmetry guarantees the reality of the quasi energy spectrum in our system.
Light propagation through a PT-symmetric photonic-crystal.
Konotop, Vladimir V; Mantsyzov, Boris I
2016-11-14
Light propagation through a finite-width periodically modulated layer obeying parity-time (PT) symmetry is considered. We consider the configuration when the resonant conditions of mode coupling by the grating are satisfied. It is shown that the dependence of the transmission and reflection coefficients on the slab width has resonant character featuring strong amplification of reflected and transmitted waves with negative angles. The dependence of the scattering data on the gain-and-loss intensity also feature strong resonances near the PT-symmetry breaking point, when the slab strongly amplifies waves reflected and transmitted with negative angles, provided the incident wave has a positive angle of incidence.
PT-symmetric quantum electrodynamics and unitarity.
Milton, Kimball A; Abalo, E K; Parashar, Prachi; Pourtolami, Nima; Wagner, J
2013-04-28
More than 15 years ago, a new approach to quantum mechanics was suggested, in which Hermiticity of the Hamiltonian was to be replaced by invariance under a discrete symmetry, the product of parity and time-reversal symmetry, PT. It was shown that, if PT is unbroken, energies were, in fact, positive, and unitarity was satisfied. Since quantum mechanics is quantum field theory in one dimension--time--it was natural to extend this idea to higher-dimensional field theory, and in fact an apparently viable version of PT-invariant quantum electrodynamics (QED) was proposed. However, it has proved difficult to establish that the unitarity of the scattering matrix, for example, the Källén spectral representation for the photon propagator, can be maintained in this theory. This has led to questions of whether, in fact, even quantum mechanical systems are consistent with probability conservation when Green's functions are examined, since the latter have to possess physical requirements of analyticity. The status of PT QED will be reviewed in this paper, as well as the general issue of unitarity.
Kinking in polymer composites and wood, and, Crack growth in mismatched welds
NASA Astrophysics Data System (ADS)
Moran, Peter Malcolm
This thesis is written in two parts; the first deals with compressive kinking in uniaxial carbon fiber PEEK composites and wood, and the second concerns ductile/brittle fracture in mismatched welds. The parts are dealt with separately below. Kinking. This is the first time that kink band formation and propagation has been video taped. The pictures reveal that kinking in ductile matrix fiber composites occurs in three distinct stages; incipient kinking, transient kinking and steady-state band broadening. Based on these observations a new kinematic model for kinking is proposed. Unlike previous models the present model is able to explain how angled kink bands are formed without violating compatibility or volume preserving constraints. Theoretical predictions for kink band orientation and compression strength under steady-state band broadening are made. Further experiments were conducted that verified the predictions. The steady-state band broadening stress is a very useful design parameter. It is a material parameter and forms a lower bound to the peak stress. Therefore it may be used in the same way as plastic limit loads are used for metals. It is also useful in determining the damage tolerance of a specimen. Mismatched welds. In the ductile/brittle transition regime, the fracture resistance of steel weldments is controlled by the competition between ductile tearing and cleavage fracture. Under typical conditions, a crack in a weld initiates and grows by ductile tearing but, ultimately, failure occurs by catastrophic cleavage fracture. In this study ductile tearing is modeled using Gurson cell elements embedded in an elastic-plastic body. Cleavage fracture is based on a weakest link mechanism in conjunction with brittle microcrack statistics. This model is applied to compute the behavior of undermatched and overmatched welds. The fracture resistance and onset of cleavage fracture are calculated for different crack lengths, specimen geometries and weld widths.
Kink topology control by high-frequency external forces in nonlinear Klein-Gordon models.
Alvarez-Nodarse, R; Quintero, N R; Mertens, F G
2014-10-01
A method of averaging is applied to study the dynamics of a kink in the damped double sine-Gordon equation driven by both external (nonparametric) and parametric periodic forces at high frequencies. This theoretical approach leads to the study of a double sine-Gordon equation with an effective potential and an effective additive force. Direct numerical simulations show how the appearance of two connected π kinks and of an individual π kink can be controlled via the frequency. An anomalous negative mobility phenomenon is also predicted by theory and confirmed by simulations of the original equation.
Head butting sheep: kink collisions in the presence of false vacua
NASA Astrophysics Data System (ADS)
Ashcroft, Jennifer; Eto, Minoru; Haberichter, Mareike; Nitta, Muneto; Paranjape, M. B.
2016-09-01
We investigate numerically kink collisions in a 1 + 1 dimensional scalar field theory with multiple vacua. The domain wall model we are interested in involves two scalar fields and a potential term built from an asymmetric double well and (double) sine-Gordon potential together with an interaction term. Depending on the initial kink setup and impact velocities, the model allows for a wide range of scattering behaviours. Kinks can repel each other, annihilate, form true or false domain walls and reflect off each other.
Stationary spherically symmetric one-kink model in Saez-Ballester theory of gravitation
NASA Astrophysics Data System (ADS)
Kiran, M.; Reddy, D. R. K.; Rao, V. U. M.; Bhaskara Rao, M. P. V. V.
2015-03-01
In this paper we consider stationary Spherically symmetric kink space-time in the scalar-tensor theory of gravitation proposed by Saez and Ballester (Phys. Lett. A 113:467, 1986) in the presence of perfect fluid distribution. It is shown that spherically symmetric kink space-time does not accommodate perfect fluid distribution in this theory. Hence a vacuum model is obtained which is asymptotically flat. This model corresponds to a one kink metric in this theory. This can be considered as an analogue of usual spherically symmetric Schwarzschild case in this theory.
NASA Astrophysics Data System (ADS)
Brading, Katherine; Castellani, Elena
2010-01-01
Preface; Copyright acknowledgements; List of contributors; 1. Introduction; Part I. Continuous Symmetries: 2. Classic texts: extracts from Weyl and Wigner; 3. Review paper: On the significance of continuous symmetry to the foundations of physics C. Martin; 4. The philosophical roots of the gauge principle: Weyl and transcendental phenomenological idealism T. Ryckman; 5. Symmetries and Noether's theorems K. A. Brading and H. R. Brown; 6. General covariance, gauge theories, and the Kretschmann objection J. Norton; 7. The interpretation of gauge symmetry M. Redhead; 8. Tracking down gauge: an ode to the constrained Hamiltonian formalism J. Earman; 9. Time-dependent symmetries: the link between gauge symmetries and indeterminism D. Wallace; 10. A fourth way to the Aharanov-Bohm effect A. Nounou; Part II. Discrete Symmetries: 11. Classic texts: extracts from Lebniz, Kant and Black; 12. Review paper: Understanding permutation symmetry S. French and D. Rickles; 13. Quarticles and the identity of discernibles N. Hugget; 14. Review paper: Handedness, parity violation, and the reality of space O. Pooley; 15. Mirror symmetry: what is it for a relational space to be orientable? N. Huggett; 16. Physics and Leibniz's principles S. Saunders; Part III. Symmetry Breaking: 17: Classic texts: extracts from Curie and Weyl; 18. Extract from G. Jona-Lasinio: Cross-fertilization in theoretical physics: the case of condensed matter and particle physics G. Jona-Lasinio; 19. Review paper: On the meaning of symmetry breaking E. Castellani; 20. Rough guide to spontaneous symmetry breaking J. Earman; 21. Spontaneous symmetry breaking: theoretical arguments and philosophical problems M. Morrison; Part IV. General Interpretative Issues: 22. Classic texts: extracts from Wigner; 23. Symmetry as a guide to superfluous theoretical structure J. Ismael and B. van Fraassen; 24. Notes on symmetries G. Belot; 25. Symmetry, objectivity, and design P. Kosso; 26. Symmetry and equivalence E. Castellani.
Bound states of PT-symmetric separable potentials
Bender, Carl M.; Jones, Hugh F.
2011-09-15
All of the PT-symmetric potentials that have been studied so far have been local. In this paper, nonlocal PT-symmetric separable potentials of the form V(x,y)=i{epsilon}[U(x)U(y)-U(-x)U(-y)], where U(x) is real, are examined. Two specific models are examined. In each case, it is shown that there is a parametric region of the coupling strength {epsilon} for which the PT symmetry of the Hamiltonian is unbroken and the bound-state energies are real. The critical values of {epsilon} that bound this region are calculated.
Rasin, A.
1994-04-01
We discuss the idea of approximate flavor symmetries. Relations between approximate flavor symmetries and natural flavor conservation and democracy models is explored. Implications for neutrino physics are also discussed.
A phenomenological model on the kink mode threshold varying with the inclination of sheath boundary
Sun, X.; Intrator, T. P.; Sears, J.; Weber, T.; Liu, M.
2013-11-15
In nature and many laboratory plasmas, a magnetic flux tube threaded by current or a flux rope has a footpoint at a boundary. The current driven kink mode is one of the fundamental ideal magnetohydrodynamic instabilities in plasmas. It has an instability threshold that has been found to strongly depend on boundary conditions (BCs). We provide a theoretical model to explain the transition of this threshold dependence between nonline tied and line tied boundary conditions. We evaluate model parameters using experimentally measured plasma data, explicitly verify several kink eigenfunctions, and validate the model predictions for boundary conditions BCs that span the range between NLT and LT BCs. Based on this model, one could estimate the kink threshold given knowledge of the displacement of a flux rope end, or conversely estimate flux rope end motion based on knowledge of it kink stability threshold.
Jiang, Jin-Wu; Yang, Nuo; Wang, Bing-Shen; Rabczuk, Timon
2013-04-10
We perform molecular dynamics simulations to investigate the reduction of the thermal conductivity by kinks in silicon nanowires. The reduction percentage can be as high as 70% at room temperature. The temperature dependence of the reduction is also calculated. By calculating phonon polarization vectors, two mechanisms are found to be responsible for the reduced thermal conductivity: (1) the interchanging effect between the longitudinal and transverse phonon modes and (2) the pinching effect, that is, a new type of localization, for the twisting and transverse phonon modes in the kinked silicon nanowires. Our work demonstrates that the phonon interchanging and pinching effects, induced by kinking, are brand-new and effective ways in modulating heat transfer in nanowires, which enables the kinked silicon nanowires to be a promising candidate for thermoelectric materials.
Feedback suppression of rotating external kink instabilities in the presence of noise
Hanson, Jeremy M.; De Bono, Bryan; James, Royce W.; Levesque, Jeffrey P.; Mauel, Michael E.; Maurer, David A.; Navratil, Gerald A.; Pedersen, Thomas Sunn; Shiraki, Daisuke
2008-08-15
The authors report on the first experimental demonstration of active feedback suppression of rotating external kink modes near the ideal wall limit in a tokamak using Kalman filtering to discriminate the n=1 kink mode from background noise. The Kalman filter contains an internal model that captures the dynamics of a rotating, growing n=1 mode. Suppression of the external kink mode is demonstrated over a broad range of phase angles between the sensed mode and applied control field, and performance is robust at noise levels that render proportional gain feedback ineffective. Suppression of the kink mode is accomplished without excitation of higher frequencies as was observed in previous experiments using lead-lag loop compensation [A. J. Klein et al., Phys Plasmas 12, 040703 (2005)].
NASA Astrophysics Data System (ADS)
Chheda, T. D.; Nevitt, J. M.; Pollard, D. D.
2014-12-01
The formation of monoclinal right-lateral kink bands in Lake Edison granodiorite (central Sierra Nevada, CA) is investigated through field observations and mechanics based numerical modeling. Vertical faults act as weak surfaces within the granodiorite, and vertical granodiorite slabs bounded by closely-spaced faults curve into a kink. Leucocratic dikes are observed in association with kinking. Measurements were made on maps of Hilgard, Waterfall, Trail Fork, Kip Camp (Pollard and Segall, 1983b) and Bear Creek kink bands (Martel, 1998). Outcrop scale geometric parameters such as fault length andspacing, kink angle, and dike width are used to construct a representative geometry to be used in a finite element model. Three orders of fault were classified, length = 1.8, 7.2 and 28.8 m, and spacing = 0.3, 1.2 and 3.6 m, respectively. The model faults are oriented at 25° to the direction of shortening (horizontal most compressive stress), consistent with measurements of wing crack orientations in the field area. The model also includes a vertical leucocratic dike, oriented perpendicular to the faults and with material properties consistent with aplite. Curvature of the deformed faults across the kink band was used to compare the effects of material properties, strain, and fault and dike geometry. Model results indicate that the presence of the dike, which provides a mechanical heterogeneity, is critical to kinking in these rocks. Keeping properties of the model granodiorite constant, curvature increased with decrease in yield strength and Young's modulus of the dike. Curvature increased significantly as yield strength decreased from 95 to 90 MPa, and below this threshold value, limb rotation for the kink band was restricted to the dike. Changing Poisson's ratio had no significant effect. The addition of small faults between bounding faults, decreasing fault spacing or increasing dike width increases the curvature. Increasing friction along the faults decreases slip, so
Neutrinos and flavor symmetries
Tanimoto, Morimitsu
2015-07-15
We discuss the recent progress of flavor models with the non-Abelian discrete symmetry in the lepton sector focusing on the θ{sub 13} and CP violating phase. In both direct approach and indirect approach of the flavor symmetry, the non-vanishing θ{sub 13} is predictable. The flavor symmetry with the generalised CP symmetry can also predicts the CP violating phase. We show the phenomenological analyses of neutrino mixing for the typical flavor models.
Current Driven Rotating Kink Mode in a Plasma Column with Non-Line-Tied Free End
Furno, I; Intrator, T P; Ryutov, D D; Abbate, S; Madziwa-Nussinov, T; Light, A; Dorf, L; Lapenta, G
2006-03-28
First experimental measurements are presented for the kink instability in a linear plasma column which is insulated from an axial boundary by finite sheath resistivity. Instability threshold below the classical Kruskal-Shafranov threshold, axially asymmetric mode structure and rotation are observed. These are accurately reproduced by a recent kink theory, which includes axial plasma flow and one end of the plasma column that is free to move due to a non-line-tied boundary condition.
External kink modes as a model for MHD activity associated with ELMs
Manickam, J.
1992-01-01
Tokamak plasmas in the high confinement mode of operation are known to exhibit edge localized activity referred to as ELMs. A model is proposed for the underlying cause in terms of the external kink mode. The build up of the current density near the plasma edge is shown to decrease the shear in the safety-factor, q, profile and lead to destabilization of the kink mode. The role of the plasma geometry and equilibrium profiles is discussed.
Numerically Modeling Pulsed-Current, Kinked Wire Experiments
NASA Astrophysics Data System (ADS)
Filbey, Gordon; Kingman, Pat
1999-06-01
The U.S. Army Research Laboratory (ARL) has embarked on a program to provide far-term land fighting vehicles with electromagnetic armor protection. Part of this work seeks to establish robust simulations of magneto-solid-mechanics phenomena. Whether describing violent rupture of a fuse link resulting from a large current pulse or the complete disruption of a copper shaped-charge jet subjected to high current densities, the simulations must include effects of intense Lorentz body forces and rapid Ohmic heating. Material models are required that describe plasticity, flow and fracture, conductivity, and equation of state (EOS) parameters for media in solid, liquid, and vapor phases. An extended version of the Eulerian wave code CTH has been used to predict the apex motion of a V-shaped (``kinked'') copper wire 3mm in diameter during a 400 kilo-amp pulse. These predictions, utilizing available material, EOS, and conductivity data for copper and the known characteristics of an existing capacitor-bank pulsed power supply, were then used to configure an experiment. The experiments were in excellent agreement with the prior simulations. Both computational and experimental results (including electrical data and flash X-rays) will be presented.
Helical Kink Instability in a Confined Solar Eruption
NASA Astrophysics Data System (ADS)
Hassanin, Alshaimaa; Kliem, Bernhard
2016-12-01
A model for strongly writhing confined solar eruptions suggests an origin in the helical kink instability of a coronal flux rope that remains stable against the torus instability. This model is tested against the well observed filament eruption on 2002 May 27 in a parametric MHD simulation study that comprises all phases of the event. Good agreement with the essential observed properties is obtained. These include the confinement, terminal height, writhing, distortion, and dissolution of the filament, and the flare loops. The agreement is robust against variations in a representative range of parameter space. Careful comparisons with the observation data constrain the ratio of the external toroidal and poloidal field components to {B}{et}/{B}{ep}≈ 1 and the initial flux rope twist to {{Φ }}≈ 4π . Different from ejective eruptions, two distinct phases of strong magnetic reconnection can occur. First, the erupting flux is cut by reconnection with overlying flux in the helical current sheet formed by the instability. If the resulting flux bundles are linked as a consequence of the erupting rope’s strong writhing, they subsequently reconnect in the vertical current sheet between them. This reforms the overlying flux and a far less twisted flux rope, offering a pathway to homologous eruptions.
Excitation of external kink mode by trapped energetic particles
NASA Astrophysics Data System (ADS)
Guo, S. C.; Xu, X. Y.; Liu, Y. Q.; Wang, Z. R.
2016-05-01
An unstable fishbone-like non-resonant external kink mode (FLEM) is numerically found to be driven by the precessional drift motion of trapped energetic particles (EPs) in both reversed-field pinch (RFP) and tokamak plasmas, even under the ideal wall boundary condition. In the presence of a sufficiently large fraction of trapped energetic ions in high beta plasmas, the FLEM instability may occur. The excitation condition is discussed in detail. The frequency of the FLEM is linked to the precessional drift frequency of EPs, and varies with the plasma flow speed. Therefore, it is usually much higher than that of the typical resistive wall mode (RWM). In general, the growth rate of FLEM does not depend on the wall resistivity. However, the wall position can significantly affect the mode’s property. The drift kinetic effects from thermal particles (mainly due to the transit resonance of passing particles) play a stabilizing role on FLEMs. In the presence of EPs, the FLEM and the RWM can co-exist or even couple to each other, depending on the plasma parameters. The FLEM instabilities in RFP and tokamaks have rather similar physics nature, although certain sub-dominant characters appear differently in the two configurations.
Kinetic stability of the internal kink mode in ITER
Hu Bo; Betti, R.; Manickam, J.
2006-11-15
The kinetic stability of the n=1, m=1 internal kink mode is analyzed for realistic equilibria typical of the standard operation scenario of ITER (the International Thermonuclear Experimental Reactor) [ITER Physics Basis Editors, Nucl. Fusion 39, 2137 (1999)]. The kinetic effects modify the inertia and the perturbed potential energy {delta}W of the mode, the two key elements determining the mode stability. Numerical results are obtained for ITER-like equilibria with different q profiles. For moderate magnetic shear within the q=1 surface, the low frequency magnetohydrodynamic (MHD) branch is fully suppressed by the kinetic effects for the expected profiles and parameters up to twice the expected plasma {beta} while the high frequency fishbone branch is found to be destabilized as the plasma {beta} and the radius of the q=1 surface increase. The MHD branch can be destabilized at higher plasma {beta} or larger radii of the q=1 surface only for q profiles with a low magnetic shear within the q=1 surface.
Polynomial Graphs and Symmetry
ERIC Educational Resources Information Center
Goehle, Geoff; Kobayashi, Mitsuo
2013-01-01
Most quadratic functions are not even, but every parabola has symmetry with respect to some vertical line. Similarly, every cubic has rotational symmetry with respect to some point, though most cubics are not odd. We show that every polynomial has at most one point of symmetry and give conditions under which the polynomial has rotational or…
Chiral symmetry and chiral-symmetry breaking
Peskin, M.E.
1982-12-01
These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)
Effects of Boundary Conditions and Flow on the Kink Instability in a Cylindrical Plasma Column
Furno, I; Intrator, T P; Lapenta, G; Dorf, L; Ryutov, D D
2007-02-06
An experimental investigation of the kink instability is presented in a linear plasma column where one end is line-tied to the plasma source, and the other end is not line-tied and therefore free to slide over the surface of the end-plate. This latter boundary condition is a result of plasma sheath resistance that insulates, at least partially, the plasma from the end-plate. The helical m = 1 kink mode is observed to grow when the plasma current exceeds a threshold and, close to the criticality, is characterized by an axial mode structure with maximum displacement at the free axial boundary. Azimuthal rotation of the mode is observed such that the helically kinked column always screws into the free axial boundary. The kink mode structure, rotation frequency and instability threshold are accurately reproduced by a recent kink theory [D. D. Ryutov, et al., Phys. Plasmas 13, 032105 (2006)], which includes axial plasma flow and one end of the plasma column that is free to move due to a perfect non-line-tying boundary condition which is experimentally verified. A brief review of the kink theory and its predictions for the boundary conditions relevant in the present experiments are presented.
Controlling Kink Geometry in Nanowires Fabricated by Alternating Metal-Assisted Chemical Etching.
Chen, Yun; Li, Liyi; Zhang, Cheng; Tuan, Chia-Chi; Chen, Xin; Gao, Jian; Wong, Ching-Ping
2017-02-08
Kinked silicon (Si) nanowires (NWs) have many special properties that make them attractive for a number of applications, such as microfluidics devices, microelectronic devices, and biosensors. However, fabricating NWs with controlled three-dimensional (3D) geometry has been challenging. In this work, a novel method called alternating metal-assisted chemical etching is reported for the fabrication of kinked Si NWs with controlled 3D geometry. By the use of multiple etchants with carefully selected composition, one can control the number of kinks, their locations, and their angles by controlling the number of etchant alternations and the time in each etchant. The resulting number of kinks equals the number times the etchant is alternated, the length of each segment separated by kinks has a linear relationship with the etching time, and the kinking angle is related to the surface tension and viscosity of the etchants. This facile method may provide a feasible and economical way to fabricate novel silicon nanowires, nanostructures, and devices for broad applications.
The generation and damping of propagating MHD kink waves in the solar atmosphere
Morton, R. J.; Verth, G.; Erdélyi, R.; Hillier, A. E-mail: g.verth@sheffield.ac.uk
2014-03-20
The source of the non-thermal energy required for the heating of the upper solar atmosphere to temperatures in excess of a million degrees and the acceleration of the solar wind to hundreds of kilometers per second is still unclear. One such mechanism for providing the required energy flux is incompressible torsional Alfvén and kink magnetohydrodynamic (MHD) waves, which are magnetically dominated waves supported by the Sun's pervasive and complex magnetic field. In particular, propagating MHD kink waves have recently been observed to be ubiquitous throughout the solar atmosphere, but, until now, critical details of the transport of the kink wave energy throughout the Sun's atmosphere were lacking. Here, the ubiquity of the waves is exploited for statistical studies in the highly dynamic solar chromosphere. This large-scale investigation allows for the determination of the chromospheric kink wave velocity power spectra, a missing link necessary for determining the energy transport between the photosphere and corona. Crucially, the power spectra contain evidence for horizontal photospheric motions being an important mechanism for kink wave generation in the quiescent Sun. In addition, a comparison with measured coronal power spectra is provided for the first time, revealing frequency-dependent transmission profiles, suggesting that there is enhanced damping of kink waves in the lower corona.
Moving nonradiating kinks in nonlocal φ4 and φ4-φ6 models.
Alfimov, G L; Medvedeva, E V
2011-11-01
We explore the existence of moving nonradiating kinks in nonlocal generalizations of φ(4) and φ(4)-φ(6) models. These models are described by nonlocal nonlinear Klein-Gordon equation, u(tt)-Lu+F(u)=0, where L is a Fourier multiplier operator of a specific form and F(u) includes either just a cubic term (φ(4) case) or cubic and quintic (φ(4)-φ(6) case) terms. The general mechanism responsible for the discretization of kink velocities in the nonlocal model is discussed. We report numerical results obtained for these models. It is shown that, contrary to the traditional φ(4) model, the nonlocal φ(4) model does not admit moving nonradiating kinks but admits solitary waves that do not exist in the local model. At the same time the nonlocal φ(4)-φ(6) model describes moving nonradiating kinks. The set of velocities allowed for these kinks is discrete with the highest possible velocity c(1). This set of velocities is unambiguously determined by the parameters of the model. Numerical simulations show that a kink launched at the velocity c higher than c(1) starts to decelerate, and its velocity settles down to the highest value of the discrete spectrum c(1).
NASA Astrophysics Data System (ADS)
Zhang, Haocheng; Li, Hui; Guo, Fan; Taylor, Greg
2017-02-01
Kink instabilities are likely to occur in the current-carrying magnetized plasma jets. Recent observations of the blazar radiation and polarization signatures suggest that the blazar emission region may be considerably magnetized. While the kink instability has been studied with first-principle magnetohydrodynamic (MHD) simulations, the corresponding time-dependent radiation and polarization signatures have not been investigated. In this paper, we perform comprehensive polarization-dependent radiation modeling of the kink instability in the blazar emission region based on relativistic MHD (RMHD) simulations. We find that the kink instability may give rise to strong flares with polarization angle (PA) swings or weak flares with polarization fluctuations, depending on the initial magnetic topology and magnetization. These findings are consistent with observations. Compared with the shock model, the kink model generates polarization signatures that are in better agreement with the general polarization observations. Therefore, we suggest that kink instabilities may widely exist in the jet environment and provide an efficient way to convert the magnetic energy and produce multiwavelength flares and polarization variations.
Noncommutative Tachyon Kinks as D(p-1)-branes from Unstable Dp-brane
NASA Astrophysics Data System (ADS)
Banerjee, Rabin; Kim, Yoonbai; Kwon, O.-Kab
2005-01-01
We study noncommutative (NC) field theory of a real NC tachyon and NC U(1) gauge field, describing the dynamics of an unstable Dp-brane. For every given set of diagonal component of open string metric G 0 , NC parameter θ0 , and interpolating electric field hat E, we find all possible static NC kinks as exact solutions, in spite of complicated NC terms, which are classified by an array of NC kink-antikink and topological NC kinks. By computing their tensions and charges, those configurations are identified as an array of D0bar D0 and single stable D0 from the unstable D1, respectively. When the interpolating electric field has critical value as G 0 2 = hat E2 , the obtained topological kink becomes a BPS object with nonzero thickness and is identified as BPS D0 in the fluid of fundamental strings. Particularly in the scaling limit of infinite θ0 and vanishing G 0 and hat E, while keeping G 0θ0 = hat Eθ0 = 1, finiteness of the tension of NC kink corresponds to tensionless kink in ordinary effective field theory. An extension to stable D(p-1) from unstable Dp is straightforward for pure electric cases with parallel NC parameter and interpolating two-form field.
Spontaneous symmetry breaking in bilayer graphene
NASA Astrophysics Data System (ADS)
Kharitonov, Maxim
2012-02-01
Recent experiments [1-4] provided compelling evidence for the correlated electron behavior in undoped bilayer graphene at both zero and finite magnetic field. The key question concerns the nature of the broken-symmetry phases realized experimentally. I will present the phase diagram for the zero-density state in the quantum Hall regime (ν=0 state) obtained within the framerwork of quantum Hall ferromagnetism. Comparing these results with the experimental data of Refs. [1,4], I will argue that the ν=0 insulating state realized in bilayer graphene is the canted antiferromagnetic phase. I will also show that the (canted) antiferromagnetic phase can persist at all magnetic fields down to zero and argue that this is the most likely scenario for the insulating state observed in Ref. [4]. [4pt] [1] R. T. Weitz et al., Science 330, 812 (2010). [0pt] [2] F. Freitag et al., arXiv:1104.3816 (2011). [0pt] [3] A. S. Mayorov, et al., Science 333, 860 (2011). [0pt] [4] J. Velasco Jr. et al., arXiv:1108.1609 (2011). [0pt] [5] M. Kharitonov, arXiv:1103.6285, arXiv:1105.5386, arxiv:1109.1553 (2011).
Particle in a box in PT-symmetric quantum mechanics and an electromagnetic analog
NASA Astrophysics Data System (ADS)
Dasarathy, Anirudh; Isaacson, Joshua P.; Jones-Smith, Katherine; Tabachnik, Jason; Mathur, Harsh
2013-06-01
In PT-symmetric quantum mechanics a fundamental principle of quantum mechanics, that the Hamiltonian must be Hermitian, is replaced by another set of requirements, including notably symmetry under PT, where P denotes parity and T denotes time reversal. Here we study the role of boundary conditions in PT-symmetric quantum mechanics by constructing a simple model that is the PT-symmetric analog of a particle in a box. The model has the usual particle-in-a-box Hamiltonian but boundary conditions that respect PT symmetry rather than Hermiticity. We find that for a broad class of PT-symmetric boundary conditions the model respects the condition of unbroken PT symmetry, namely, that the Hamiltonian and the symmetry operator PT have simultaneous eigenfunctions, implying that the energy eigenvalues are real. We also find that the Hamiltonian is self-adjoint under the PT-symmetric inner product. Thus we obtain a simple soluble model that fulfills all the requirements of PT-symmetric quantum mechanics. In the second part of this paper we formulate a variational principle for PT-symmetric quantum mechanics that is the analog of the textbook Rayleigh-Ritz principle. Finally we consider electromagnetic analogs of the PT-symmetric particle in a box. We show that the isolated particle in a box may be realized as a Fabry-Perot cavity between an absorbing medium and its conjugate gain medium. Coupling the cavity to an external continuum of incoming and outgoing states turns the energy levels of the box into sharp resonances. Remarkably we find that the resonances have a Breit-Wigner line shape in transmission and a Fano line shape in reflection; by contrast, in the corresponding Hermitian case the line shapes always have a Breit-Wigner form in both transmission and reflection.
Pinsky, Mark; Casanova, David; Alemany, Pere; Alvarez, Santiago; Avnir, David; Dryzun, Chaim; Kizner, Ziv; Sterkin, Alexander
2008-01-30
We introduce a new mathematical tool for quantifying the symmetry contents of molecular structures: the Symmetry Operation Measures. In this approach, we measure the minimal distance between a given structure and the structure which is obtained after applying a selected symmetry operation on it. If the given operation is a true symmetry operation for the structure, this distance is zero; otherwise it gives an indication of how different the transformed structure is from the original one. Specifically, we provide analytical solutions for measures of all the improper rotations, S n p, including mirror symmetry and inversion, as well as for all pure rotations, C n p. These measures provide information complementary to the Continuous Symmetry Measures (CSM) that evaluate the distance between a given structure and the nearest structure which belongs to a selected symmetry point-group.
Paramagnetic properties of noncentrosymmetric superconductors: application to CePt3Si.
Samokhin, K V
2005-01-21
In a noncentrosymmetric crystal, the Zeeman interaction of the band electrons with an external magnetic field is highly anisotropic in the momentum space, vanishing along some high-symmetry planes. One of the consequences is that the paramagnetic susceptibility in superconductors without inversion symmetry, such as CePt3Si, shows an unusual temperature dependence.
Kinks, loops, and protein folding, with protein A as an example
Krokhotin, Andrey; Liwo, Adam; Maisuradze, Gia G.; Niemi, Antti J.; Scheraga, Harold A.
2014-01-01
The dynamics and energetics of formation of loops in the 46-residue N-terminal fragment of the B-domain of staphylococcal protein A has been studied. Numerical simulations have been performed using coarse-grained molecular dynamics with the united-residue (UNRES) force field. The results have been analyzed in terms of a kink (heteroclinic standing wave solution) of a generalized discrete nonlinear Schrödinger (DNLS) equation. In the case of proteins, the DNLS equation arises from a Cα-trace-based energy function. Three individual kink profiles were identified in the experimental three-α-helix structure of protein A, in the range of the Glu16-Asn29, Leu20-Asn29, and Gln33-Asn44 residues, respectively; these correspond to two loops in the native structure. UNRES simulations were started from the full right-handed α-helix to obtain a clear picture of kink formation, which would otherwise be blurred by helix formation. All three kinks emerged during coarse-grained simulations. It was found that the formation of each is accompanied by a local free energy increase; this is expressed as the change of UNRES energy which has the physical sense of the potential of mean force of a polypeptide chain. The increase is about 7 kcal/mol. This value can thus be considered as the free energy barrier to kink formation in full α-helical segments of polypeptide chains. During the simulations, the kinks emerge, disappear, propagate, and annihilate each other many times. It was found that the formation of a kink is initiated by an abrupt change in the orientation of a pair of consecutive side chains in the loop region. This resembles the formation of a Bloch wall along a spin chain, where the Cα backbone corresponds to the chain, and the amino acid side chains are interpreted as the spin variables. This observation suggests that nearest-neighbor side chain–side chain interactions are responsible for initiation of loop formation. It was also found that the individual kinks are
Kinks, loops, and protein folding, with protein A as an example
Krokhotin, Andrey; Liwo, Adam; Maisuradze, Gia G. Scheraga, Harold A.; Niemi, Antti J.
2014-01-14
The dynamics and energetics of formation of loops in the 46-residue N-terminal fragment of the B-domain of staphylococcal protein A has been studied. Numerical simulations have been performed using coarse-grained molecular dynamics with the united-residue (UNRES) force field. The results have been analyzed in terms of a kink (heteroclinic standing wave solution) of a generalized discrete nonlinear Schrödinger (DNLS) equation. In the case of proteins, the DNLS equation arises from a C{sup α}-trace-based energy function. Three individual kink profiles were identified in the experimental three-α-helix structure of protein A, in the range of the Glu16-Asn29, Leu20-Asn29, and Gln33-Asn44 residues, respectively; these correspond to two loops in the native structure. UNRES simulations were started from the full right-handed α-helix to obtain a clear picture of kink formation, which would otherwise be blurred by helix formation. All three kinks emerged during coarse-grained simulations. It was found that the formation of each is accompanied by a local free energy increase; this is expressed as the change of UNRES energy which has the physical sense of the potential of mean force of a polypeptide chain. The increase is about 7 kcal/mol. This value can thus be considered as the free energy barrier to kink formation in full α-helical segments of polypeptide chains. During the simulations, the kinks emerge, disappear, propagate, and annihilate each other many times. It was found that the formation of a kink is initiated by an abrupt change in the orientation of a pair of consecutive side chains in the loop region. This resembles the formation of a Bloch wall along a spin chain, where the C{sup α} backbone corresponds to the chain, and the amino acid side chains are interpreted as the spin variables. This observation suggests that nearest-neighbor side chain–side chain interactions are responsible for initiation of loop formation. It was also found that the individual
Pseudospin Symmetry in Trigonometric PÖSCHL-TELLER Potential
NASA Astrophysics Data System (ADS)
Candemir, Nuray
2012-06-01
We investigated the analytical ˜ {s}-wave solutions of Dirac equation for trigonometric Pöschl-Teller (PT) potential under the pseudospin symmetry condition. The energy eigenvalues equation and corresponding wave functions are obtained by using the Nikiforov-Uvarov (NU) method. The energy bound states are also calculated numerically.
SEISMOLOGY OF STANDING KINK OSCILLATIONS OF SOLAR PROMINENCE FINE STRUCTURES
Soler, R.; Arregui, I.; Oliver, R.; Ballester, J. L.
2010-10-20
We investigate standing kink magnetohydrodynamic (MHD) oscillations in a prominence fine structure modeled as a straight and cylindrical magnetic tube only partially filled with the prominence material and with its ends fixed at two rigid walls representing the solar photosphere. The prominence plasma is partially ionized and a transverse inhomogeneous transitional layer is included between the prominence thread and the coronal medium. Thus, ion-neutral collisions and resonant absorption are the damping mechanisms considered. Approximate analytical expressions of the period, the damping time, and their ratio are derived for the fundamental mode in the thin tube and thin boundary approximations. We find that the dominant damping mechanism is resonant absorption, which provides damping ratios in agreement with the observations, whereas ion-neutral collisions are irrelevant for damping. The values of the damping ratio are independent of both the prominence thread length and its position within the magnetic tube, and coincide with the values for a tube fully filled with the prominence plasma. The implications of our results in the context of the MHD seismology technique are discussed, pointing out that the reported short-period (2-10 minutes) and short-wavelength (700-8000 km) thread oscillations may not be consistent with a standing mode interpretation and could be related to propagating waves. Finally, we show that the inversion of some prominence physical parameters, e.g., Alfven speed, magnetic field strength, transverse inhomogeneity length scale, etc., is possible using observationally determined values of the period and damping time of the oscillations along with the analytical approximations of these quantities.
EXCITATION OF KINK WAVES DUE TO SMALL-SCALE MAGNETIC RECONNECTION IN THE CHROMOSPHERE?
He Jiansen; Marsch, Eckart; Tian Hui; Tu Chuanyi
2009-11-10
The kink wave, which has often been observed in coronal loops, is considered as a possibly important energy source contributing to coronal heating. However, its generation has not yet been observed. Here, we report the first observation of kink-wave excitation caused by magnetic reconnection as inferred from Solar Optical Telescope measurements made in the Ca II line. We observed transverse-displacement oscillations on a spicule which propagated upwardly along the spicule trace and originated from the cusp of an inverted Y-shaped structure, where apparently magnetic reconnection occurred. Such transverse oscillation of an individual spicule is interpreted by us to be the signature of a kink wave that was excited by magnetic reconnection. We present the height variations of the velocity amplitude, deltav, and the phase speed, C {sub k}, of the kink wave, starting from its source region. The kink wave is found to steepen with height and to evolve into a nonlinear state with a large relative disturbance, yielding a (deltav/C {sub k}) of 0.21 at 5.5 Mm. This nonlinear kink wave seems to be damped in velocity amplitude beyond 5.5 Mm, which may result from the conversion of transverse-fluctuation energy to longitudinal-motion energy required to sustain the spicule. We also estimate the energy flux density carried by the kink wave, and in spite of its attenuation in the transition region conclude it to be sufficient for heating the quiet corona. Our findings shed new light on future modeling of coronal heating and solar wind acceleration involving magnetic reconnection in the chromosphere.
Shock-induced PT-symmetric potentials in gas-filled photonic-crystal fibers
NASA Astrophysics Data System (ADS)
Saleh, Mohammed F.; Marini, Andrea; Biancalana, Fabio
2014-02-01
We have investigated the interaction between a strong soliton and a weak probe with certain configurations that allow optical trapping in gas-filled hollow-core photonic-crystal fibers in the presence of the shock effect. We have shown theoretically and numerically that the shock term can lead to an unbroken parity-time- (PT-) symmetric potential in these kinds of fibers. Time irreversible behavior, a signature feature of the PT symmetry, is also demonstrated numerically. Our results will open different configurations and avenues for observing PT-symmetry breaking in optical fibers, without the need to resort to complex optical systems.
Parity-Time Symmetry Breaking in Coupled Nanobeam Cavities
Zhang, Senlin; Yong, Zhengdong; Zhang, Yuguang; He, Sailing
2016-01-01
The concept of parity-time symmetry (PT symmetry) originates from the canonical quantum mechanics and has become a hot topic recently. As a versatile platform to investigate the intriguing concept, both theoretical and experimental works in optics have been implemented. In this paper, the PT symmetry breaking phenomenon is investigated in a coupled nanobeam cavity system. An exceptional point is observed during the tuning of the gain/loss level and the coupling strength of the closely placed nanobeam pair. Unidirectional light propagation is investigated, as well as enhanced sensitivity of single particle detection in the vicinity of the exceptional point. The proposed system is easy to be integrated with photonic integrated circuits and can be strongly coupled to optical waveguides. PMID:27075817
Motoyama, Yasushi; Tanaka, Yoshitaka; Gurung, Pritam; Nakagawa, Ichiro; Park, Young-Soo; Nakase, Hiroyuki
2016-01-01
Background: During microscopic procedures for neurovascular disease, we sometimes encounter kinking of arterial branches resulting in ischemic sequelae. A simple and useful technique that involves inserting a small, ball-like prosthesis made of oxidized cellulose or shredded Teflon with fibrin glue that corrects the arterial branch kinking and avoids subsequent compromise is reported. Methods: Between January and December 2014, three patients developed arterial kinking during microscopic procedures, including two in the caudal loop of the posterior inferior cerebellar artery during microvascular decompression for glossopharyngeal neuralgia and one in a branch of the middle cerebral artery (MCA) during clipping for an unruptured MCA aneurysm. Blood flow insufficiency was confirmed by microvascular Doppler ultrasonography (MDU) and indocyanine green (ICG) videoangiography. The prosthesis, which was made of shredded Teflon in two cases and oxidized cellulose in one case, was inserted into the crotch of the kinked arteries to correct the kinking of the arteries and restore the proper vascular shape and normal blood flow. Results: The small, ball-shaped prosthesis corrected the kinked arteries and maintained the proper shape, which was confirmed by ICG videoangiography and MDU during the operation and three-dimensional computerized tomography angiography postoperatively. Postoperatively, the patients did not manifest any ischemic sequelae related to the kinked arteries. Conclusion: The insertion of prostheses with fibrin glue into the crotch of a kinked artery for repair is considered a simple and useful method for correcting a kinked artery that avoids ischemic sequelae. PMID:26862447
From physical symmetries to emergent gauge symmetries
NASA Astrophysics Data System (ADS)
Barceló, Carlos; Carballo-Rubio, Raúl; Di Filippo, Francesco; Garay, Luis J.
2016-10-01
Gauge symmetries indicate redundancies in the description of the relevant degrees of freedom of a given field theory and restrict the nature of observable quantities. One of the problems faced by emergent theories of relativistic fields is to understand how gauge symmetries can show up in systems that contain no trace of these symmetries at a more fundamental level. In this paper we start a systematic study aimed to establish a satisfactory mathematical and physical picture of this issue, dealing first with abelian field theories. We discuss how the trivialization, due to the decoupling and lack of excitation of some degrees of freedom, of the Noether currents associated with physical symmetries leads to emergent gauge symmetries in specific situations. An example of a relativistic field theory of a vector field is worked out in detail in order to make explicit how this mechanism works and to clarify the physics behind it. The interplay of these ideas with well-known results of importance to the emergent gravity program, such as the Weinberg-Witten theorem, are discussed.
Coupling of sausage, kink, and magneto-Rayleigh-Taylor instabilities in a cylindrical liner
NASA Astrophysics Data System (ADS)
Weis, M. R.; Zhang, P.; Lau, Y. Y.; Schmit, P. F.; Peterson, K. J.; Hess, M.; Gilgenbach, R. M.
2015-03-01
This paper analyzes the coupling of magneto-Rayleigh-Taylor (MRT), sausage, and kink modes in an imploding cylindrical liner, using ideal MHD. A uniform axial magnetic field of arbitrary value is included in each region: liner, its interior, and its exterior. The dispersion relation is solved exactly, for arbitrary radial acceleration (-g), axial wavenumber (k), azimuthal mode number (m), liner aspect ratio, and equilibrium quantities in each region. For small k, a positive g (inward radial acceleration in the lab frame) tends to stabilize the sausage mode, but destabilize the kink mode. For large k, a positive g destabilizes both the kink and sausage mode. Using the 1D-HYDRA simulation results for an equilibrium model that includes a pre-existing axial magnetic field and a preheated fuel, we identify several stages of MRT-sausage-kink mode evolution. We find that the m = 1 kink-MRT mode has a higher growth rate at the initial stage and stagnation stage of the implosion, and that the m = 0 sausage-MRT mode dominates at the main part of implosion. This analysis also sheds light on a puzzling feature in Harris' classic paper of MRT [E. G. Harris, Phys. Fluids 5, 1057 (1962)]. An attempt is made to interpret the persistence of the observed helical structures [Awe et al., Phys. Rev. Lett. 111, 235005 (2013)] in terms of non-axisymmetric eigenmode.
Coupling of sausage, kink, and magneto-Rayleigh-Taylor instabilities in a cylindrical liner
Weis, M. R.; Zhang, P.; Lau, Y. Y. Gilgenbach, R. M.; Schmit, P. F.; Peterson, K. J.; Hess, M.
2015-03-15
This paper analyzes the coupling of magneto-Rayleigh-Taylor (MRT), sausage, and kink modes in an imploding cylindrical liner, using ideal MHD. A uniform axial magnetic field of arbitrary value is included in each region: liner, its interior, and its exterior. The dispersion relation is solved exactly, for arbitrary radial acceleration (-g), axial wavenumber (k), azimuthal mode number (m), liner aspect ratio, and equilibrium quantities in each region. For small k, a positive g (inward radial acceleration in the lab frame) tends to stabilize the sausage mode, but destabilize the kink mode. For large k, a positive g destabilizes both the kink and sausage mode. Using the 1D-HYDRA simulation results for an equilibrium model that includes a pre-existing axial magnetic field and a preheated fuel, we identify several stages of MRT-sausage-kink mode evolution. We find that the m = 1 kink-MRT mode has a higher growth rate at the initial stage and stagnation stage of the implosion, and that the m = 0 sausage-MRT mode dominates at the main part of implosion. This analysis also sheds light on a puzzling feature in Harris' classic paper of MRT [E. G. Harris, Phys. Fluids 5, 1057 (1962)]. An attempt is made to interpret the persistence of the observed helical structures [Awe et al., Phys. Rev. Lett. 111, 235005 (2013)] in terms of non-axisymmetric eigenmode.
ARPES study on the kink structure in σ-bands of graphene
NASA Astrophysics Data System (ADS)
Jung, Sung Won; Kim, Keun Su
2015-03-01
Graphene has served as a prototypical model system for the study of electron-phonon interactions in low dimensions. Angle-resolved photoemission spectroscopy (ARPES) is a powerful technique, which can not only visualize electron chirality, but also identify a signature of electron-boson interaction as a kink in dispersion. While ARPES spectra of graphene π-bands are known to show such kinked dispersion near the Fermi level, recently the similar kink features were also observed in σ-bands with binding energy greater than 4 eV [F. Mazzola et al., Phys. Rev. Lett. 111, 216806 (2013)]. This kink feature was attributed to a signature of electron-phonon interaction, but its microscopic origin remains unclear. In this work, we performed systematic ARPES measurements for graphene σ-bands with various photon energies and polarization conditions. Our results demonstrate a strong matrix-element effect that can explain the kink-like features in σ-bands, regardless of manybody interactions. This work was supported by Institute for Basic Science (IBS, Grant No. IBS-R014-D1).
Kink and Sausage Modes in Nonuniform Magnetic Slabs with Continuous Transverse Density Distributions
NASA Astrophysics Data System (ADS)
Yu, Hui; Li, Bo; Chen, Shao-Xia; Guo, Ming-Zhe
2015-11-01
We examine the influence of a continuous density structuring transverse to coronal slabs on the dispersive properties of fundamental standing kink and sausage modes supported therein. We derive generic dispersion relations (DRs) governing linear fast waves in pressureless straight slabs with general transverse density distributions, and focus on cases where the density inhomogeneity takes place in a layer of arbitrary width and in arbitrary form. The physical relevance of the solutions to the DRs is demonstrated by the corresponding time-dependent computations. For all profiles examined, the lowest order kink modes are trapped regardless of longitudinal wavenumber k. A continuous density distribution introduces a difference to their periods of ≲13% when k is the observed range relative to the case where the density profile takes a step function form. Sausage modes and other branches of kink modes are leaky at small k, and their periods and damping times are heavily influenced by how the transverse density profile is prescribed, in particular the length scale. These modes have sufficiently high quality to be observable only for physical parameters representative of flare loops. We conclude that while the simpler DR pertinent to a step function profile can be used for the lowest order kink modes, the detailed information on the transverse density structuring needs to be incorporated into studies of sausage modes and higher order kink modes.
Successful percutaneous stent implantation for isolated dismal transverse aortic arch kinking
Zuo, Zhi-Liang; Tsauo, Jia-Yu; Chen, Mao; Feng, Yuan
2017-01-01
Abstract Rationale: Isolated dismal transverse aortic arch kinking in adults is rare, and there is no recommended therapy at present. Percutaneous stent implantation may be an effective method to correct it and could be considered. Patient concerns: We report a 46-year-old woman who suffered from recurrent migraine and refractory hypertension with a significant systolic blood pressure difference between upper limbs. Diagnoses: The woman was diagnosed with isolated dismal transverse aortic arch kinking with refractory hypertension. Interventions: Percutaneous stent implantation was performed. Due to the kinking nature of the diseased transverse aortic arch, the first covered stent moved forward to the proximal transverse aortic arch during deploying without the left common carotid artery occlusion. And then, a second stent was placed to cover the residual kinked part of the dismal transverse arch. Outcomes: Angiography and post-procedural computed tomography angiography revealed fully corrected of the diseased segment. At 6-month follow-up after procedure, the patient was free of any symptoms and had a normal blood pressure under antihypertensive treatment. Lessons: This case indicates that transverse aortic arch kinking in isolation can be well treated by percutaneous stent implantation in adult patients. Unlike pure aortic coarctation, elongation and bucking give the rise to the occurrence rate of stent sliding and migration and sometimes a second stent is needed. PMID:28272200
KINK AND SAUSAGE MODES IN NONUNIFORM MAGNETIC SLABS WITH CONTINUOUS TRANSVERSE DENSITY DISTRIBUTIONS
Yu, Hui; Li, Bo; Chen, Shao-Xia; Guo, Ming-Zhe
2015-11-20
We examine the influence of a continuous density structuring transverse to coronal slabs on the dispersive properties of fundamental standing kink and sausage modes supported therein. We derive generic dispersion relations (DRs) governing linear fast waves in pressureless straight slabs with general transverse density distributions, and focus on cases where the density inhomogeneity takes place in a layer of arbitrary width and in arbitrary form. The physical relevance of the solutions to the DRs is demonstrated by the corresponding time-dependent computations. For all profiles examined, the lowest order kink modes are trapped regardless of longitudinal wavenumber k. A continuous density distribution introduces a difference to their periods of ≲13% when k is the observed range relative to the case where the density profile takes a step function form. Sausage modes and other branches of kink modes are leaky at small k, and their periods and damping times are heavily influenced by how the transverse density profile is prescribed, in particular the length scale. These modes have sufficiently high quality to be observable only for physical parameters representative of flare loops. We conclude that while the simpler DR pertinent to a step function profile can be used for the lowest order kink modes, the detailed information on the transverse density structuring needs to be incorporated into studies of sausage modes and higher order kink modes.
FORWARD MODELING OF STANDING KINK MODES IN CORONAL LOOPS. I. SYNTHETIC VIEWS
Yuan, Ding; Doorsselaere, Tom Van
2016-04-15
Kink magnetohydrodynamic (MHD) waves are frequently observed in various magnetic structures of the solar atmosphere. They may contribute significantly to coronal heating and could be used as a tool to diagnose the solar plasma. In this study, we synthesize the Fe ix λ171.073 Å emission of a coronal loop supporting a standing kink MHD mode. The kink MHD wave solution of a plasma cylinder is mapped into a semi-torus structure to simulate a curved coronal loop. We decompose the solution into a quasi-rigid kink motion and a quadrupole term, which dominate the plasma inside and outside of the flux tube, respectively. At the loop edges, the line of sight integrates relatively more ambient plasma, and the background emission becomes significant. The plasma motion associated with the quadrupole term causes spectral line broadening and emission suppression. The periodic intensity suppression will modulate the integrated intensity and the effective loop width, which both exhibit oscillatory variations at half of the kink period. The quadrupole term can be directly observed as a pendular motion at the front view.
Solitons and kinks in a general car-following model
NASA Astrophysics Data System (ADS)
Kurtze, Douglas A.
2013-09-01
We study a general car-following model of traffic flow on an infinitely long single-lane road, which assumes that a car's acceleration depends on time-delayed values of its own speed, the headway between it and the car ahead, and the rate of change of headway, but makes minimal assumptions about the functional form of that dependence. We present a detailed characterization of the onset of linear instability; in particular we find a specific limit on the delay time below which the marginal wave number at the onset of instability is zero, and another specific limit on the delay time above which steady flow is always unstable. Crucially, the threshold of absolute stability generally does not coincide with an inflection point of the steady-state velocity function. When the marginal perturbation at onset has wave number 0, we show that Burgers and Korteweg-de Vries (KdV) equations can be derived under the usual assumptions, and that corrections to the KdV equation “select” a single member of the one-parameter set of its one-soliton solutions by driving a slow evolution of the soliton parameter. While in previous models this selected soliton has always marked the threshold of a finite-amplitude instability of linearly stable steady flow, we find that it can alternatively be a stable, small-amplitude jam that occurs when steady flow is linearly unstable. The model reduces to the usual modified Korteweg-de Vries (mKdV) equation only in the special situation that the threshold of absolute stability coincides with an inflection point of the steady-state velocity function; in general, near the threshold of absolute stability the model reduces instead to a KdV equation in the regime of small solitons, while near an inflection point it reduces to a Hayakawa-Nakanishi equation. Like the mKdV equation, the Hayakawa-Nakanishi equation admits a continuous family of kink solutions, and the selection criterion arising from the corrections to this equation can be written down
Role of electric fields in the MHD evolution of the kink instability
NASA Astrophysics Data System (ADS)
Lapenta, Giovanni; Skender, Marina
2017-02-01
The discovery (Bonfiglio et al 2005 Phys. Rev. Lett. 94 145001) of electrostatic fields playing a crucial role in establishing plasma motion in the flux conversion and dynamo processes in reversed field pinches is revisited. In order to further elucidate the role of the electrostatic fields, a flux rope configuration susceptible to the kink instability is numerically studied with an MHD code. Simulated nonlinear evolution of the kink instability is found to confirm the crucial role of the electrostatic fields. A new insight is gained on the special function of the electrostatic fields: they lead the plasma towards the reconnection site at the mode resonant surface. Without this step the plasma column could not relax to its nonlinear state, since no other agent is present to perform this role. While the inductive field generated directly by the kink instability is the dominant flow driver, the electrostatic field is found to allow the motion in the vicinity of the reconnection region.
Motion of Domain Walls and the Dynamics of Kinks in the Magnetic Peierls Potential
NASA Astrophysics Data System (ADS)
Buijnsters, F. J.; Fasolino, A.; Katsnelson, M. I.
2014-11-01
We study the dynamics of magnetic domain walls in the Peierls potential due to the discreteness of the crystal lattice. The propagation of a narrow domain wall (comparable to the lattice parameter) under the effect of a magnetic field proceeds through the formation of kinks in its profile. We predict that, despite the discreteness of the system, such kinks can behave like sine-Gordon solitons in thin films of materials such as yttrium iron garnets, and we derive general conditions for other materials. In our simulations, we also observe long-lived breathers. We provide analytical expressions for the effective mass and limiting velocity of the kink in excellent agreement with our numerical results.
NASA Technical Reports Server (NTRS)
Bergan, Andrew C.; Leone, Frank A., Jr.
2016-01-01
A new model is proposed that represents the kinematics of kink-band formation and propagation within the framework of a mesoscale continuum damage mechanics (CDM) model. The model uses the recently proposed deformation gradient decomposition approach to represent a kink band as a displacement jump via a cohesive interface that is embedded in an elastic bulk material. The model is capable of representing the combination of matrix failure in the frame of a misaligned fiber and instability due to shear nonlinearity. In contrast to conventional linear or bilinear strain softening laws used in most mesoscale CDM models for longitudinal compression, the constitutive response of the proposed model includes features predicted by detailed micromechanical models. These features include: 1) the rotational kinematics of the kink band, 2) an instability when the peak load is reached, and 3) a nonzero plateau stress under large strains.
Stack, Andrew G
2009-09-01
Solvation and kink site formation on step edges are known to be controlling parameters in crystal growth and dissolution. However, links from classical crystal growth models to specific reactions at the mineral-water interface have remained elusive. Molecular dynamics is used here to examine the water structure on barium surface sites and kink site formation enthalpies for material adsorbed to and removed from the step parallel to the [120] direction on the {001} barite-water interface. The bariums at the interface are shown to be coordinatively unsaturated with respect to water, and it is suggested that this is due to a steric hindrance from the nature of the interface. Kink site detachment energies that include hydration energies are endothermic for barium and exothermic for sulfate. The implications and problems of using these parameters in a crystal growth model are discussed.
[A fluoride-sensor for kink structure in DNA condensation process].
Liu, Yan-Hui; Zhang, Jing; Chen, Ying-Bing; Li, Yu-Pu; Hu, Lin
2014-01-01
Bloomfield has pointed out that the kink structure occurs for sharp bending during DNA condensation process, until now, which has not been proved by experiments. Using UV Spectrophotometer, the effects of fluoride and chlorine on the polyamine-DNA condensation system can be detected. Fluoride and chlorine both belong to the halogen family, but their effects on spermine-DNA condensation system are totally different. Fluoride ions make blue-shift and hyperchromicity appear in the spermine-DNA condensation system, but chlorine ions only make insignificant hyperchromicity happen in this system. Both fluoride ions and chlorine ions only make insignificant hyperchromicity happen in spermidine-DNA condensation system. Based on the distinguished character of fluoride, a fluoride-sensor for "kink" structure in DNA condensation was developed and the second kind of "kink" structure only appear in the spermine-DNA condensation system.
Motion of domain walls and the dynamics of kinks in the magnetic Peierls potential.
Buijnsters, F J; Fasolino, A; Katsnelson, M I
2014-11-21
We study the dynamics of magnetic domain walls in the Peierls potential due to the discreteness of the crystal lattice. The propagation of a narrow domain wall (comparable to the lattice parameter) under the effect of a magnetic field proceeds through the formation of kinks in its profile. We predict that, despite the discreteness of the system, such kinks can behave like sine-Gordon solitons in thin films of materials such as yttrium iron garnets, and we derive general conditions for other materials. In our simulations, we also observe long-lived breathers. We provide analytical expressions for the effective mass and limiting velocity of the kink in excellent agreement with our numerical results.
Tunable topological states in electron-doped HTT-Pt
NASA Astrophysics Data System (ADS)
Zhang, Xiaoming; Wang, Zhenhai; Zhao, Mingwen; Liu, Feng
2016-04-01
Modulating topologically nontrivial states in trivial materials is of both scientific and technological interest. Using first-principles calculations, we propose a demonstration of electron-doping- (or gate-voltage-) induced multiple quantum states; namely, quantum spin Hall (QSH) and quantum anomalous Hall (QAH) states, in a single material of the organometallic framework (HTT-Pt) synthesized from triphenylene hexathiol molecules (HTT) and PtC l2 . At a low doping level, the trivial HTT-Pt converts to a QSH insulator protected by time-reversal symmetry (TRS). When the electronic doping concentration is further increased, TRS will be broken, making the HTT-Pt a QAH insulator. The band gaps of these topologically nontrivial states can be as large as 42.5 meV, suggesting robustness at high temperatures. The possibility of switching between the QSH and QAH states offers an intriguing platform for a different device paradigm by interfacing between QSH and QAH states.
Observation of optical solitons in PT-symmetric lattices
Wimmer, Martin; Regensburger, Alois; Miri, Mohammad-Ali; Bersch, Christoph; Christodoulides, Demetrios N.; Peschel, Ulf
2015-01-01
Controlling light transport in nonlinear active environments is a topic of considerable interest in the field of optics. In such complex arrangements, of particular importance is to devise strategies to subdue chaotic behaviour even in the presence of gain/loss and nonlinearity, which often assume adversarial roles. Quite recently, notions of parity-time (PT) symmetry have been suggested in photonic settings as a means to enforce stable energy flow in platforms that simultaneously employ both amplification and attenuation. Here we report the experimental observation of optical solitons in PT-symmetric lattices. Unlike other non-conservative nonlinear arrangements where self-trapped states appear as fixed points in the parameter space of the governing equations, discrete PT solitons form a continuous parametric family of solutions. The possibility of synthesizing PT-symmetric saturable absorbers, where a nonlinear wave finds a lossless path through an otherwise absorptive system is also demonstrated. PMID:26215165
Symmetries in Lagrangian Dynamics
ERIC Educational Resources Information Center
Ferrario, Carlo; Passerini, Arianna
2007-01-01
In the framework of Noether's theorem, a distinction between Lagrangian and dynamical symmetries is made, in order to clarify some aspects neglected by textbooks. An intuitive setting of the concept of invariance of differential equations is presented. The analysis is completed by deriving the symmetry properties in the motion of a charged…
ERIC Educational Resources Information Center
Marchis, Iuliana
2009-01-01
Symmetry is one of the fundamental concepts in Geometry. It is a Mathematical concept, which can be very well connected with Art and Ethnography. The aim of the article is to show how to link the geometrical concept symmetry with interculturality. For this mosaics from different countries are used.
NASA Astrophysics Data System (ADS)
Morton, R. J.; Erdélyi, R.
2010-09-01
Aims: We present here a first comparative study between the observed damping of numerous fast kink oscillations and the theoretical model of their damping due to the cooling of coronal loops. The theory of damping of kink oscillations due to radiation of the solar plasma with a temporally varying background is applied here to all known cases of coronal kink oscillations. Methods: A recent dynamic model of cooling coronal loops predicts that transverse oscillations of such loops could be significantly damped due to the radiative cooling process (Morton & Erdélyi 2009, ApJ, 707, 750). The cooling of the loop plasma also has the consequence that the kink oscillation has a time-dependent frequency. The theory is applied to a relatively large number of known and reported examples of TRACE observations of damped kink oscillations. Results: We find that, for cooling timescales that are typical of EUV loops (500-2000 s), the observed damping of the transversal (i.e. kink) oscillations can be accounted for almost entirely by the cooling process in half of the examples. No other dissipative mechanism(s) seems to be needed to model the damping. In the remaining other examples, the cooling process does not appear to be able to account fully for the observed damping, though could still have a significant influence on the damping. In these cases another mechanism(s), e.g. resonant absorption, may be additionally required to account for the complete decay of oscillations. Also, we show that because of the dynamic nature of the background plasma, allowing for a time-dependent frequency provides a better fit profile for the data points of observations than a fit profile with a constant frequency, opening novel avenues for solar magneto-seismology.
Scattering of Klein–Gordon particles by a Kink-like potential
Hassanabadi, H.; Lu, Liangliang; Maghsoodi, E.; Liu, Guanghui; Zarrinkamar, S.
2014-03-15
The Klein–Gordon equation for the non-minimal vector and a scalar Kink-like potential is solved in terms of the hypergeometric functions. The scattering problem, i.e. the transmission and reflection coefficients, is studied as well. -- Highlights: •The Klein–Gordon equation for the non-minimal vector and a scalar Kink-like potential is solved. •We have calculated the corresponding transmission and reflection coefficients. •We discussed the behavior of the reflection and transmission coefficients vs. energy.
Investigation of optically generated kink effect in GaAs-based heterojunction phototransistors
NASA Astrophysics Data System (ADS)
Khan, H. A.; Rezazadeh, A. A.
2011-09-01
An optically generated kink observed in the Gummel plot of AlGaAs/GaAs single heterojunction phototransistors (sHPTs) is reported when illuminated with relatively high optical powers. The observed sudden rise in collector current and decrease in the base current, referred to as `optical kink effect', is carefully studied and analyzed. The measurements are performed for incident optical power of up to 225 μW at an incident wavelength of 635 nm. This rise in the current gain of HPTs, in three terminal configuration, is associated with the base-collector space-charge modulation similar to the kirk effect.
NASA Astrophysics Data System (ADS)
Longhi, Stefano
2017-01-01
We consider wave transport phenomena in a PT -symmetric extension of the periodically kicked quantum rotator model and reveal that dynamical localization assists the unbroken PT phase. In the delocalized (quantum resonance) regime, PT symmetry is always in the broken phase and ratchet acceleration arises as a signature of unidirectional non-Hermitian transport. An optical implementation of the periodically kicked PT -symmetric Hamiltonian, based on transverse beam propagation in a passive optical resonator with combined phase and loss gratings, is suggested to visualize acceleration modes in fractional Talbot cavities.
... fibrillation ) The presence of artificial heart valves Deep vein thrombosis (DVT), pulmonary embolism (PE) Antiphospholipid syndrome Occasionally, in heart attacks with certain risk factors The PT test may be used along with ...
Rotation roots and neoclassical viscosity in quasi-symmetry
NASA Astrophysics Data System (ADS)
Cole, A. J.; Hegna, C. C.; Callen, J. D.
2009-11-01
In a quasi-symmetric device, there exists a symmetry angle αh= θ-Nζ/M, such that |B| = B0(1 - ɛhM αh ) along a field-line, with several much smaller helical `sidebands.' Provided the departure from symmetry is small, i.e. δBeff/B0ɛh where δBeff/B0 is the effective helical sideband strength, flow damping and thus flow evolution along and `cross' the direction of symmetry in a flux surface decouple [1,2], and can be determined successively. In the context of a fluid-moment approach [3], the momentum equation in the symmetry direction is equivalent to the ambipolarity condition. Steady state rotation solutions of this equation are equivalent to ambipolar radial electric field `roots' in conventional stellarator theory and will be presented for various banana-drift neoclassical flow damping regimes [2].[4pt] [1] J. D. Callen, A. J. Cole, and C. C. Hegna, Tech. Rep. UW-CPTC 08-7, Univ. of Wisconsin, http://www.cptc.wisc.edu (2009).[0pt] [2] A. J. Cole, C. C. Hegna, and J. D. Callen, Tech. Rep. UW-CPTC 08-8, Univ. of Wisconsin, http://www.cptc.wisc.edu (2009).[0pt] [3] K. C. Shaing and J. D. Callen, Phys. Fluids 26, 3315 (1983).
DFT Study of Optical Properties of Pt-based Complexes
NASA Astrophysics Data System (ADS)
Oprea, Corneliu I.; Dumbravǎ, Anca; Moscalu, Florin; Nicolaides, Atnanassios; Gîrţu, Mihai A.
2010-01-01
We report Density Functional Theory (DFT) calculations providing the geometrical and electronic structures, as well as the vibrational and optical properties of the homologous series of Pt-pyramidalized olefin complexes (CH2)n-(C8H10)Pt(PH3)2, where n = 0, 1, and 2, in their neutral and oxidized states. All complexes were geometry optimized for the singlet ground state in vacuum using DFT methods with B3LYP exchange-correlation functional and the Effective Core Potential LANL2DZ basis set, within the frame of Gaussian03 quantum chemistry package. We find the coordination geometry of Pt to be distorted square planar, with dihedral angles ranging from 0°, for n = 0 and 1, which have C2V symmetry to 3.4°, for n = 2 with C2 symmetry. The Mulliken charge analysis allows a discussion of the oxidation state of the Pt ion. Electronic transitions were calculated at the same level of theory by means of Time Dependant-DFT. For n = 2 the electronic absorption bands are located in the UV region of the spectrum, the transitions being assigned to metal to ligand charge transfers. The relevance of these Pt-based compounds as possible pigments for dye-sensitized solar cells is discussed.
A universal symmetry detection algorithm.
Maurer, Peter M
2015-01-01
Research on symmetry detection focuses on identifying and detecting new types of symmetry. The paper presents an algorithm that is capable of detecting any type of permutation-based symmetry, including many types for which there are no existing algorithms. General symmetry detection is library-based, but symmetries that can be parameterized, (i.e. total, partial, rotational, and dihedral symmetry), can be detected without using libraries. In many cases it is faster than existing techniques. Furthermore, it is simpler than most existing techniques, and can easily be incorporated into existing software. The algorithm can also be used with virtually any type of matrix-based symmetry, including conjugate symmetry.
Competing {PT} potentials and the re-entrant {PT}-symmetric phase: a particle in a box
NASA Astrophysics Data System (ADS)
Joglekar, Yogesh N.; Bagchi, Bijan
2012-10-01
We investigate the effects of competition between two complex, {PT}-symmetric potentials on the {PT}-symmetric phase of a ‘particle in a box’. These potentials, given by VZ(x) = iZsign(x) and Vξ(x) = iξ[δ(x - a) - δ(x + a)], represent long-range and localized gain/loss regions, respectively. We obtain the {PT}-symmetric phase in the (Z, ξ) plane, and find that for locations ±a near the edge of the box, surprisingly, the {PT}-symmetric phase is strengthened by additional losses to the loss region. Consequently, we predict that a broken {PT}-symmetry will be restored by increasing the strength ξ of the localized potential. By comparing the results for this problem and its lattice counterpart, we show that a robust {PT}-symmetric phase in the continuum is consistent with the fragile phase on the lattice. Our results demonstrate that systems with multiple, {PT}-symmetric potentials show unique, unexpected properties.
Soler, Roberto; Terradas, Jaume
2015-04-10
Magnetohydrodynamic (MHD) kink waves are ubiquitously observed in the solar atmosphere. The propagation and damping of these waves may play relevant roles in the transport and dissipation of energy in the solar atmospheric medium. However, in the atmospheric plasma dissipation of transverse MHD wave energy by viscosity or resistivity needs very small spatial scales to be efficient. Here, we theoretically investigate the generation of small scales in nonuniform solar magnetic flux tubes due to phase mixing of MHD kink waves. We go beyond the usual approach based on the existence of a global quasi-mode that is damped in time due to resonant absorption. Instead, we use a modal expansion to express the MHD kink wave as a superposition of Alfvén continuum modes that are phase mixed as time evolves. The comparison of the two techniques evidences that the modal analysis is more physically transparent and describes both the damping of global kink motions and the building up of small scales due to phase mixing. In addition, we discuss that the processes of resonant absorption and phase mixing are closely linked. They represent two aspects of the same underlying physical mechanism: the energy cascade from large scales to small scales due to naturally occurring plasma and/or magnetic field inhomogeneities. This process may provide the necessary scenario for efficient dissipation of transverse MHD wave energy in the solar atmospheric plasma.
Non-linear propagation of kink waves to the solar chromosphere
NASA Astrophysics Data System (ADS)
Stangalini, M.; Giannattasio, F.; Jafarzadeh, S.
2015-05-01
Small-scale magnetic field concentrations (magnetic elements) in the quiet Sun are believed to contribute to the energy budget of the upper layers of the Sun's atmosphere, as they are observed to support a large number of magneto-hydrodynamic modes. In recent years, kink waves in magnetic elements were observed at different heights in the solar atmosphere, from the photosphere to the corona. However, the propagation of these waves has not been fully evaluated. Our aim is to investigate the propagation of kink waves in small magnetic elements in the solar atmosphere. We analysed high-quality, long duration spectropolarimetric data of a photospheric quiet Sun region observed near the disk centre with the spectropolarimeter CRISP at the Swedish Solar Telescope (SST). We complemented these data with simultaneous and co-spatial broadband chromospheric observations of the same region. Our findings reveal a clear upward propagation of kink waves with frequency above 2.6 mHz. Moreover, the signature of a non-linear propagation process is also observed. By comparing photospheric to chromospheric power spectra, no signature of an energy dissipation is found at least at the atmospheric heights at which the data analysed originate. This implies that most of the energy carried by the kink waves (within the frequency range under study < 17 mHz) flows to upper layers in the Sun's atmosphere.
Linear calculations of edge current driven kink modes with BOUT++ code
NASA Astrophysics Data System (ADS)
Li, G. Q.; Xu, X. Q.; Snyder, P. B.; Turnbull, A. D.; Xia, T. Y.; Ma, C. H.; Xi, P. W.
2014-10-01
This work extends previous BOUT++ work to systematically study the impact of edge current density on edge localized modes, and to benchmark with the GATO and ELITE codes. Using the CORSICA code, a set of equilibria was generated with different edge current densities by keeping total current and pressure profile fixed. Based on these equilibria, the effects of the edge current density on the MHD instabilities were studied with the 3-field BOUT++ code. For the linear calculations, with increasing edge current density, the dominant modes are changed from intermediate-n and high-n ballooning modes to low-n kink modes, and the linear growth rate becomes smaller. The edge current provides stabilizing effects on ballooning modes due to the increase of local shear at the outer mid-plane with the edge current. For edge kink modes, however, the edge current does not always provide a destabilizing effect; with increasing edge current, the linear growth rate first increases, and then decreases. In benchmark calculations for BOUT++ against the linear results with the GATO and ELITE codes, the vacuum model has important effects on the edge kink mode calculations. By setting a realistic density profile and Spitzer resistivity profile in the vacuum region, the resistivity was found to have a destabilizing effect on both the kink mode and on the ballooning mode. With diamagnetic effects included, the intermediate-n and high-n ballooning modes can be totally stabilized for finite edge current density.
Linear calculations of edge current driven kink modes with BOUT++ code
Li, G. Q. Xia, T. Y.; Xu, X. Q.; Snyder, P. B.; Turnbull, A. D.; Ma, C. H.; Xi, P. W.
2014-10-15
This work extends previous BOUT++ work to systematically study the impact of edge current density on edge localized modes, and to benchmark with the GATO and ELITE codes. Using the CORSICA code, a set of equilibria was generated with different edge current densities by keeping total current and pressure profile fixed. Based on these equilibria, the effects of the edge current density on the MHD instabilities were studied with the 3-field BOUT++ code. For the linear calculations, with increasing edge current density, the dominant modes are changed from intermediate-n and high-n ballooning modes to low-n kink modes, and the linear growth rate becomes smaller. The edge current provides stabilizing effects on ballooning modes due to the increase of local shear at the outer mid-plane with the edge current. For edge kink modes, however, the edge current does not always provide a destabilizing effect; with increasing edge current, the linear growth rate first increases, and then decreases. In benchmark calculations for BOUT++ against the linear results with the GATO and ELITE codes, the vacuum model has important effects on the edge kink mode calculations. By setting a realistic density profile and Spitzer resistivity profile in the vacuum region, the resistivity was found to have a destabilizing effect on both the kink mode and on the ballooning mode. With diamagnetic effects included, the intermediate-n and high-n ballooning modes can be totally stabilized for finite edge current density.
Two high-mobility group box domains act together to underwind and kink DNA
Sánchez-Giraldo, R.; Acosta-Reyes, F. J.; Malarkey, C. S.; Saperas, N.; Churchill, M. E. A.; Campos, J. L.
2015-06-30
The crystal structure of HMGB1 box A bound to an unmodified AT-rich DNA fragment is reported at a resolution of 2 Å. A new mode of DNA recognition for HMG box proteins is found in which two box A domains bind in an unusual configuration generating a highly kinked DNA structure. High-mobility group protein 1 (HMGB1) is an essential and ubiquitous DNA architectural factor that influences a myriad of cellular processes. HMGB1 contains two DNA-binding domains, box A and box B, which have little sequence specificity but have remarkable abilities to underwind and bend DNA. Although HMGB1 box A is thought to be responsible for the majority of HMGB1–DNA interactions with pre-bent or kinked DNA, little is known about how it recognizes unmodified DNA. Here, the crystal structure of HMGB1 box A bound to an AT-rich DNA fragment is reported at a resolution of 2 Å. Two box A domains of HMGB1 collaborate in an unusual configuration in which the Phe37 residues of both domains stack together and intercalate the same CG base pair, generating highly kinked DNA. This represents a novel mode of DNA recognition for HMGB proteins and reveals a mechanism by which structure-specific HMG boxes kink linear DNA.
Fluid electron, gyrokinetic ion simulations of linear internal kink and energetic particle modes
NASA Astrophysics Data System (ADS)
Cole, Michael; Mishchenko, Alexey; Könies, Axel; Kleiber, Ralf; Borchardt, Matthias
2014-07-01
The internal kink mode is an important plasma instability responsible for a broad class of undesirable phenomena in tokamaks, including the sawtooth cycle and fishbones. To predict and discover ways to mitigate this behaviour in current and future devices, numerical simulations are necessary. The internal kink mode can be modelled by reduced magnetohydrodynamics (MHD). Fishbone modes are an inherently kinetic and non-linear phenomenon based on the n = 1 Energetic Particle Mode (EPM), and have been studied using hybrid codes that combine a reduced MHD bulk plasma model with a kinetic treatment of fast ions. In this work, linear simulations are presented using a hybrid model which couples a fluid treatment of electrons with a gyrokinetic treatment of both bulk and fast ions. Studies of the internal kink mode in geometry relevant to large tokamak experiments are presented and the effect of gyrokinetic ions is considered. Interaction of the kink with gyrokinetic fast ions is also considered, including the destabilisation of the linear n = 1 EPM underlying the fishbone.
Fluid electron, gyrokinetic ion simulations of linear internal kink and energetic particle modes
Cole, Michael Mishchenko, Alexey; Könies, Axel; Kleiber, Ralf; Borchardt, Matthias
2014-07-15
The internal kink mode is an important plasma instability responsible for a broad class of undesirable phenomena in tokamaks, including the sawtooth cycle and fishbones. To predict and discover ways to mitigate this behaviour in current and future devices, numerical simulations are necessary. The internal kink mode can be modelled by reduced magnetohydrodynamics (MHD). Fishbone modes are an inherently kinetic and non-linear phenomenon based on the n = 1 Energetic Particle Mode (EPM), and have been studied using hybrid codes that combine a reduced MHD bulk plasma model with a kinetic treatment of fast ions. In this work, linear simulations are presented using a hybrid model which couples a fluid treatment of electrons with a gyrokinetic treatment of both bulk and fast ions. Studies of the internal kink mode in geometry relevant to large tokamak experiments are presented and the effect of gyrokinetic ions is considered. Interaction of the kink with gyrokinetic fast ions is also considered, including the destabilisation of the linear n = 1 EPM underlying the fishbone.
NASA Astrophysics Data System (ADS)
Zeng, Shang-You; Tang, Yi; Ren, Xi-Mei; Zhao, De-Jiang
2009-04-01
We report the oscillating propagation of kink in a nondissipative Frenkel-Kontorova (FK) chain driven by external DC force, which is different from the usual propagation of localized modes with equal speed. When the kink moves in the opposite direction of the external DC force, the kink will be accelerated and the potential of the FK chain in the external force field is transformed to be the kinetic energy of the kink. If the kink reaches the boundary of the FK chain, the kink will be bounced back and moves in the opposite direction, then the kink will be decelerated gradually and the kinetic energy of the kink is transformed to be the potential of the FK chain in the external force field. If the speed of the kink reaches zero, the kink will move in the opposite direction again driven by the external DC force, and a new oscillating cycle begins. Simulation result demonstrates exactly the transformation between the kinetic energy of the kink and the potential of the FK chain in the external force field. The interesting energy exchange is induced by the special topology of kinks, and other localized modes, such as breathers and envelope solitons, have no the interesting phenomenon.
Bender, Carl M; DeKieviet, Maarten; Klevansky, S P
2013-04-28
PT-symmetric quantum mechanics (PTQM) has become a hot area of research and investigation. Since its beginnings in 1998, there have been over 1000 published papers and more than 15 international conferences entirely devoted to this research topic. Originally, PTQM was studied at a highly mathematical level and the techniques of complex variables, asymptotics, differential equations and perturbation theory were used to understand the subtleties associated with the analytic continuation of eigenvalue problems. However, as experiments on PT-symmetric physical systems have been performed, a simple and beautiful physical picture has emerged, and a PT-symmetric system can be understood as one that has a balanced loss and gain. Furthermore, the PT phase transition can now be understood intuitively without resorting to sophisticated mathematics. Research on PTQM is following two different paths: at a fundamental level, physicists are attempting to understand the underlying mathematical structure of these theories with the long-range objective of applying the techniques of PTQM to understanding some of the outstanding problems in physics today, such as the nature of the Higgs particle, the properties of dark matter, the matter-antimatter asymmetry in the universe, neutrino oscillations and the cosmological constant; at an applied level, new kinds of PT-synthetic materials are being developed, and the PT phase transition is being observed in many physical contexts, such as lasers, optical wave guides, microwave cavities, superconducting wires and electronic circuits. The purpose of this Theme Issue is to acquaint the reader with the latest developments in PTQM. The articles in this volume are written in the style of mini-reviews and address diverse areas of the emerging and exciting new area of PT-symmetric quantum mechanics.
Dynamical symmetries for fermions
Guidry, M.
1989-01-01
An introduction is given to the Fermion Dynamical Symmetry Model (FDSM). The analytical symmetry limits of the model are then applied to the calculation of physical quantities such as ground-state masses and B(E{sub 2}) values in heavy nuclei. These comparisons with data provide strong support for a new principle of collective motion, the Dynamical Pauli Effect, and suggest that dynamical symmetries which properly account for the pauli principle are much more persistent in nuclear structure than the corresponding boson symmetries. Finally, we present an assessment of criticisms which have been voiced concerning the FDSM, and a discussion of new phenomena and exotic spectroscopy'' which may be suggested by the model. 14 refs., 8 figs., 4 tabs.
NASA Astrophysics Data System (ADS)
Lovelady, Benjamin C.; Wheeler, James T.
2016-04-01
According to the Coleman-Mandula theorem, any gauge theory of gravity combined with an internal symmetry based on a Lie group must take the form of a direct product in order to be consistent with basic assumptions of quantum field theory. However, we show that an alternative gauging of a simple group can lead dynamically to a spacetime with compact internal symmetry. The biconformal gauging of the conformal symmetry of n-dimensional Euclidean space doubles the dimension to give a symplectic manifold. Examining one of the Lagrangian submanifolds in the flat case, we find that in addition to the expected S O (n ) connection and curvature, the solder form necessarily becomes Lorentzian. General coordinate invariance gives rise to an S O (n -1 ,1 ) connection on the spacetime. The principal fiber bundle character of the original S O (n ) guarantees that the two symmetries enter as a direct product, in agreement with the Coleman-Mandula theorem.
Gauge symmetry from decoupling
NASA Astrophysics Data System (ADS)
Wetterich, C.
2017-02-01
Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang-Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.
Sekhar Chivukula
2016-07-12
The symmetries of a quantum field theory can be realized in a variety of ways. Symmetries can be realized explicitly, approximately, through spontaneous symmetry breaking or, via an anomaly, quantum effects can dynamically eliminate a symmetry of the theory that was presentÂ at the classical level. Â Quantum Chromodynamics (QCD),Â the modern theoryÂ of the strong interactions, exemplify each ofÂ these possibilities.Â The interplayÂ of these effects determine theÂ spectrum of particles that we observeÂ and, ultimately, account forÂ 99% of the mass of ordinary matter.Â
NASA Astrophysics Data System (ADS)
Golubitsky, Martin
2012-04-01
Many gaits of four-legged animals are described by symmetry. For example, when a horse paces it moves both left legs in unison and then both right legs and so on. The motion is described by two symmetries: Interchange front and back legs, and swap left and right legs with a half-period phase shift. Biologists postulate the existence of a central pattern generator (CPG) in the neuronal system that sends periodic signals to the legs. CPGs can be thought of as electrical circuits that produce periodic signals and can be modeled by systems with symmetry. In this lecture we discuss animal gaits; use gait symmetries to construct a simplest CPG architecture that naturally produces quadrupedal gait rhythms; and make several testable predictions about gaits.
NASA Astrophysics Data System (ADS)
Vidal-Iglesias, F. J.; Solla-Gullón, J.; Montiel, V.; Feliu, J. M.; Aldaz, A.
Ammonia has attracted attention as a possible fuel for direct fuel cells since it is easy to handle and to transport as liquid or as concentrated aqueous solution. However, on noble metal electrodes ammonia oxidation is a sluggish reaction and the electrocatalyst needs to be improved for developing efficient ammonia fuel cells. In this work, ammonia electrooxidation reaction on 3-4-nm bimetallic PtMe (Ir, Rh, Pd, Ru) and on preferentially oriented Pt(1 0 0) nanoparticles is reported. PtMe nanoparticles have been prepared by using water-in-oil microemulsions to obtain a narrow size distribution whereas preferentially oriented Pt nanoparticles have been prepared through colloidal routes. Among all the bimetallic samples tested, only Pt 75Ir 25 and Pt 75Rh 25 nanoparticles show, at the low potential range, an enhancement of the oxidation density current with respect to the behaviour found for pure platinum nanoparticles prepared by the same method. In addition, two Pt(1 0 0) preferentially oriented nanoparticles of different particle size (4 and 9 nm) have been also studied. These oriented nanoparticles show higher current densities than polycrystalline Pt nanoparticles due to the sensitivity of ammonia oxidation toward the presence of surface sites with square symmetry. The reactivity of the different 4-nm nanoparticles parallels well with that expected from bulk PtMe alloys and Pt single crystal electrodes.
Pt redistribution during Ni(Pt) silicide formation
Demeulemeester, J.; Smeets, D.; Vantomme, A.; Van Bockstael, C.; Detavernier, C.; Comrie, C. M.; Barradas, N. P.; Vieira, A.
2008-12-29
We report on a real-time Rutherford backscattering spectrometry study of the erratic redistribution of Pt during Ni silicide formation in a solid phase reaction. The inhomogeneous Pt redistribution in Ni(Pt)Si films is a consequence of the low solubility of Pt in Ni{sub 2}Si compared to NiSi and the limited mobility of Pt in NiSi. Pt further acts as a diffusion barrier and resides in the Ni{sub 2}Si grain boundaries, significantly slowing down the Ni{sub 2}Si and NiSi growth kinetics. Moreover, the observed incorporation of a large amount of Pt in the NiSi seeds indicates that Pt plays a major role in selecting the crystallographic orientation of these seeds and thus in the texture of the resulting Ni{sub 1-x}Pt{sub x}Si film.
NASA Astrophysics Data System (ADS)
Hamhalter, Jan; Turilova, Ekaterina
2017-02-01
Quantum symmetries of spectral lattices are studied. Basic properties of spectral order on A W ∗-algebras are summarized. Connection between projection and spectral automorphisms is clarified by showing that, under mild conditions, any spectral automorphism is a composition of function calculus and Jordan ∗-automorphism. Complete description of quantum spectral symmetries on Type I and Type II A W ∗-factors are completely described.
NASA Astrophysics Data System (ADS)
Baldo, M.; Burgio, G. F.
2016-11-01
The nuclear symmetry energy characterizes the variation of the binding energy as the neutron to proton ratio of a nuclear system is varied. This is one of the most important features of nuclear physics in general, since it is just related to the two component nature of the nuclear systems. As such it is one of the most relevant physical parameters that affect the physics of many phenomena and nuclear processes. This review paper presents a survey of the role and relevance of the nuclear symmetry energy in different fields of research and of the accuracy of its determination from the phenomenology and from the microscopic many-body theory. In recent years, a great interest was devoted not only to the Nuclear Matter symmetry energy at saturation density but also to its whole density dependence, which is an essential ingredient for our understanding of many phenomena. We analyze the nuclear symmetry energy in different realms of nuclear physics and astrophysics. In particular we consider the nuclear symmetry energy in relation to nuclear structure, astrophysics of Neutron Stars and supernovae, and heavy ion collision experiments, trying to elucidate the connections of these different fields on the basis of the symmetry energy peculiarities. The interplay between experimental and observational data and theoretical developments is stressed. The expected future developments and improvements are schematically addressed, together with most demanded experimental and theoretical advances for the next few years.
A CORONAL MASS EJECTION AND HARD X-RAY EMISSIONS ASSOCIATED WITH THE KINK INSTABILITY
Cho, Kyung-Suk; Bong, Su-Chan; Kim, Yeon-Han; Park, Young-Deuk; Lee, Jeongwoo; Joshi, Bhuwan
2009-09-20
We present a morphological study of the 2004 August 18 solar eruption that occurred in the active region NOAA 10656 near the west limb using extreme-ultraviolet (EUV) data from the Transition Region and Coronal Explorer (TRACE), Halpha filtergram of Big Bear Solar Observatory, white light images of Mauna Loa Solar Observatory (MLSO), hard X-ray (HXR) data of the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), and microwave data of the Owens Valley Solar Array. In this event, we have an excellent set of observations for tracing the early evolution of the coronal mass ejection (CME) from a flux rope emergence to its propagation into space as a well-connected series of events thanks to the coronameter's field of view (FOV) down to 1.1 solar radius in an overlap with that of the TRACE. This data set reveals continuously evolving EUV, Halpha, and WL features that suggest the rise of a small, low-lying loop, its writhing motion, break of the kinked loop at its crossing point, and transformation of the ejecta to the CME. The HXR and microwave sources are found in varying locations with a complicated temporal dependence, which, we interpret, is due to two successive flares in the event. The first flare appears to be associated with the rise of the small loop, which then triggers the second flare. During the second flare a HXR coronal source is detected at the crossing point of the kinked loop, and more intriguingly, the kinked loop apparently breaks at the crossing point of the two legs, which indicates a magnetic reconnection at the X-point configuration. After the break of the kinked UV loop, a CME structure shows up in the MLSO FOV, and propagates away from the Sun. It is concluded that this CME occurred due to the kink instability.
The transverse and rotational motions of magnetohydrodynamic kink waves in the solar atmosphere
Goossens, M.; Van Doorsselaere, T.; Soler, R.; Terradas, J.; Verth, G.
2014-06-10
Magnetohydrodynamic (MHD) kink waves have now been observed to be ubiquitous throughout the solar atmosphere. With modern instruments, they have now been detected in the chromosphere, interface region, and corona. The key purpose of this paper is to show that kink waves do not only involve purely transverse motions of solar magnetic flux tubes, but the velocity field is a spatially and temporally varying sum of both transverse and rotational motion. Taking this fact into account is particularly important for the accurate interpretation of varying Doppler velocity profiles across oscillating structures such as spicules. It has now been shown that, as well as bulk transverse motions, spicules have omnipresent rotational motions. Here we emphasize that caution should be used before interpreting the particular MHD wave mode/s responsible for these rotational motions. The rotational motions are not necessarily signatures of the classic axisymmetric torsional Alfvén wave alone, because kink motion itself can also contribute substantially to varying Doppler velocity profiles observed across these structures. In this paper, the displacement field of the kink wave is demonstrated to be a sum of its transverse and rotational components, both for a flux tube with a discontinuous density profile at its boundary, and one with a more realistic density continuum between the internal and external plasma. Furthermore, the Doppler velocity profile of the kink wave is forward modeled to demonstrate that, depending on the line of sight, it can either be quite distinct or very similar to that expected from a torsional Alfvén wave.
Coronal loop seismology using damping of standing kink oscillations by mode coupling
NASA Astrophysics Data System (ADS)
Pascoe, D. J.; Goddard, C. R.; Nisticò, G.; Anfinogentov, S.; Nakariakov, V. M.
2016-05-01
Context. Kink oscillations of solar coronal loops are frequently observed to be strongly damped. The damping can be explained by mode coupling on the condition that loops have a finite inhomogeneous layer between the higher density core and lower density background. The damping rate depends on the loop density contrast ratio and inhomogeneous layer width. Aims: The theoretical description for mode coupling of kink waves has been extended to include the initial Gaussian damping regime in addition to the exponential asymptotic state. Observation of these damping regimes would provide information about the structuring of the coronal loop and so provide a seismological tool. Methods: We consider three examples of standing kink oscillations observed by the Atmospheric Imaging Assembly (AIA) of the Solar Dynamics Observatory (SDO) for which the general damping profile (Gaussian and exponential regimes) can be fitted. Determining the Gaussian and exponential damping times allows us to perform seismological inversions for the loop density contrast ratio and the inhomogeneous layer width normalised to the loop radius. The layer width and loop minor radius are found separately by comparing the observed loop intensity profile with forward modelling based on our seismological results. Results: The seismological method which allows the density contrast ratio and inhomogeneous layer width to be simultaneously determined from the kink mode damping profile has been applied to observational data for the first time. This allows the internal and external Alfvén speeds to be calculated, and estimates for the magnetic field strength can be dramatically improved using the given plasma density. Conclusions: The kink mode damping rate can be used as a powerful diagnostic tool to determine the coronal loop density profile. This information can be used for further calculations such as the magnetic field strength or phase mixing rate.
Possibility of charge density wave transition in a SrPt2Sb2 superconductor
NASA Astrophysics Data System (ADS)
Ibuka, Soshi; Imai, Motoharu
2016-04-01
The first-order transition at T 0 = 270 K for the platinum-based SrPt2Sb2 superconductor was investigated using x-ray diffraction and magnetic susceptibility measurements. When polycrystalline SrPt2Sb2 was cooled down through T 0, the structure was transformed from monoclinic to a modulated orthorhombic structure, and no magnetic order was formed, which illustrates the possibility of a charge density wave (CDW) transition at T 0. SrPt2Sb2 can thus be a new example to examine the interplay of CDW and superconductivity in addition to SrPt2As2, BaPt2As2, and LaPt2Si2. It is unique that the average structure of the low-temperature phase has higher symmetry than that of the high-temperature phase.
On a family of (1+1)-dimensional scalar field theory models: Kinks, stability, one-loop mass shifts
Alonso-Izquierdo, A.; Mateos Guilarte, J.
2012-09-15
In this paper we construct a one-parametric family of (1+1)-dimensional one-component scalar field theory models supporting kinks. Inspired by the sine-Gordon and {phi}{sup 4} models, we look at all possible extensions such that the kink second-order fluctuation operators are Schroedinger differential operators with Poeschl-Teller potential wells. In this situation, the associated spectral problem is solvable and therefore we shall succeed in analyzing the kink stability completely and in computing the one-loop quantum correction to the kink mass exactly. When the parameter is a natural number, the family becomes the hierarchy for which the potential wells are reflectionless, the two first levels of the hierarchy being the sine-Gordon and {phi}{sup 4} models. - Highlights: Black-Right-Pointing-Pointer We construct a family of scalar field theory models supporting kinks. Black-Right-Pointing-Pointer The second-order kink fluctuation operators involve Poeschl-Teller potential wells. Black-Right-Pointing-Pointer We compute the one-loop quantum correction to the kink mass with different methods.
Is space-time symmetry a suitable generalization of parity-time symmetry?
Amore, Paolo; Fernández, Francisco M.; Garcia, Javier
2014-11-15
We discuss space-time symmetric Hamiltonian operators of the form H=H{sub 0}+igH{sup ′}, where H{sub 0} is Hermitian and g real. H{sub 0} is invariant under the unitary operations of a point group G while H{sup ′} is invariant under transformation by elements of a subgroup G{sup ′} of G. If G exhibits irreducible representations of dimension greater than unity, then it is possible that H has complex eigenvalues for sufficiently small nonzero values of g. In the particular case that H is parity-time symmetric then it appears to exhibit real eigenvalues for all 0
NASA Astrophysics Data System (ADS)
Loebbert, Florian
2016-08-01
In these introductory lectures we discuss the topic of Yangian symmetry from various perspectives. Forming the classical counterpart of the Yangian and an extension of ordinary Noether symmetries, first the concept of nonlocal charges in classical, two-dimensional field theory is reviewed. We then define the Yangian algebra following Drinfel’d's original motivation to construct solutions to the quantum Yang-Baxter equation. Different realizations of the Yangian and its mathematical role as a Hopf algebra and quantum group are discussed. We demonstrate how the Yangian algebra is implemented in quantum, two-dimensional field theories and how its generators are renormalized. Implications of Yangian symmetry on the two-dimensional scattering matrix are investigated. We furthermore consider the important case of discrete Yangian symmetry realized on integrable spin chains. Finally we give a brief introduction to Yangian symmetry in planar, four-dimensional super Yang-Mills theory and indicate its impact on the dilatation operator and tree-level scattering amplitudes. These lectures are illustrated by several examples, in particular the two-dimensional chiral Gross-Neveu model, the Heisenberg spin chain and { N }=4 superconformal Yang-Mills theory in four dimensions.
Symmetry of priapulids (Priapulida). 2. Symmetry of larvae.
Adrianov, A V; Malakhov, V V
2001-02-01
Larvae of priapulids are characterized by radial symmetry evident from both external and internal characters of the introvert and lorica. The bilaterality appears as a result of a combination of several radial symmetries: pentaradial symmetry of the teeth, octaradial symmetry of the primary scalids, 25-radial symmetry of scalids, biradial symmetry of the neck, and biradial and decaradial symmetry of the trunk. Internal radiality is exhibited by musculature and the circumpharyngeal nerve ring. Internal bilaterality is evident from the position of the ventral nerve cord and excretory elements. Externally, the bilaterality is determined by the position of the anal tubulus and two shortened midventral rows of scalids bordering the ventral nerve cord. The lorical elements define the biradial symmetry that is missing in adult priapulids. The radial symmetry of larvae is a secondary appearance considered an evolutionary adaptation to a lifestyle within the three-dimensional environment of the benthic sediment.
Ordinary versus PT-symmetric Φ³ quantum field theory
Bender, Carl M.; Branchina, Vincenzo; Messina, Emanuele
2012-04-02
A quantum-mechanical theory is PT-symmetric if it is described by a Hamiltonian that commutes with PT, where the operator P performs space reflection and the operator T performs time reversal. A PT-symmetric Hamiltonian often has a parametric region of unbroken PT symmetry in which the energy eigenvalues are all real. There may also be a region of broken PT symmetry in which some of the eigenvalues are complex. These regions are separated by a phase transition that has been repeatedly observed in laboratory experiments. This paper focuses on the properties of a PT-symmetric igΦ³ quantum field theory. This quantum field theory is the analog of the PT-symmetric quantum-mechanical theory described by the Hamiltonian H=p²+ix³, whose eigenvalues have been rigorously shown to be all real. This paper compares the renormalization group properties of a conventional Hermitian gΦ³ quantum field theory with those of the PT-symmetric igΦ³ quantum field theory. It is shown that while the conventional gΦ³ theory in d=6 dimensions is asymptotically free, the igΦ³ theory is like a gΦ⁴ theory in d=4 dimensions; it is energetically stable, perturbatively renormalizable, and trivial.
Ordinary versus PT-symmetric Φ³ quantum field theory
Bender, Carl M.; Branchina, Vincenzo; Messina, Emanuele
2012-04-02
A quantum-mechanical theory is PT-symmetric if it is described by a Hamiltonian that commutes with PT, where the operator P performs space reflection and the operator T performs time reversal. A PT-symmetric Hamiltonian often has a parametric region of unbroken PT symmetry in which the energy eigenvalues are all real. There may also be a region of broken PT symmetry in which some of the eigenvalues are complex. These regions are separated by a phase transition that has been repeatedly observed in laboratory experiments. This paper focuses on the properties of a PT-symmetric igΦ³ quantum field theory. This quantum fieldmore » theory is the analog of the PT-symmetric quantum-mechanical theory described by the Hamiltonian H=p²+ix³, whose eigenvalues have been rigorously shown to be all real. This paper compares the renormalization group properties of a conventional Hermitian gΦ³ quantum field theory with those of the PT-symmetric igΦ³ quantum field theory. It is shown that while the conventional gΦ³ theory in d=6 dimensions is asymptotically free, the igΦ³ theory is like a gΦ⁴ theory in d=4 dimensions; it is energetically stable, perturbatively renormalizable, and trivial.« less
Symmetry in context: salience of mirror symmetry in natural patterns.
Cohen, Elias H; Zaidi, Qasim
2013-05-31
Symmetry is a biologically relevant, mathematically involving, and aesthetically compelling visual phenomenon. Mirror symmetry detection is considered particularly rapid and efficient, based on experiments with random noise. Symmetry detection in natural settings, however, is often accomplished against structured backgrounds. To measure salience of symmetry in diverse contexts, we assembled mirror symmetric patterns from 101 natural textures. Temporal thresholds for detecting the symmetry axis ranged from 28 to 568 ms indicating a wide range of salience (1/Threshold). We built a model for estimating symmetry-energy by connecting pairs of mirror-symmetric filters that simulated cortical receptive fields. The model easily identified the axis of symmetry for all patterns. However, symmetry-energy quantified at this axis correlated weakly with salience. To examine context effects on symmetry detection, we used the same model to estimate approximate symmetry resulting from the underlying texture throughout the image. Magnitudes of approximate symmetry at flanking and orthogonal axes showed strong negative correlations with salience, revealing context interference with symmetry detection. A regression model that included the context-based measures explained the salience results, and revealed why perceptual symmetry can differ from mathematical characterizations. Using natural patterns thus produces new insights into symmetry perception and its possible neural circuits.
Symmetry in context: Salience of mirror symmetry in natural patterns
Cohen, Elias H.; Zaidi, Qasim
2013-01-01
Symmetry is a biologically relevant, mathematically involving, and aesthetically compelling visual phenomenon. Mirror symmetry detection is considered particularly rapid and efficient, based on experiments with random noise. Symmetry detection in natural settings, however, is often accomplished against structured backgrounds. To measure salience of symmetry in diverse contexts, we assembled mirror symmetric patterns from 101 natural textures. Temporal thresholds for detecting the symmetry axis ranged from 28 to 568 ms indicating a wide range of salience (1/Threshold). We built a model for estimating symmetry-energy by connecting pairs of mirror-symmetric filters that simulated cortical receptive fields. The model easily identified the axis of symmetry for all patterns. However, symmetry-energy quantified at this axis correlated weakly with salience. To examine context effects on symmetry detection, we used the same model to estimate approximate symmetry resulting from the underlying texture throughout the image. Magnitudes of approximate symmetry at flanking and orthogonal axes showed strong negative correlations with salience, revealing context interference with symmetry detection. A regression model that included the context-based measures explained the salience results, and revealed why perceptual symmetry can differ from mathematical characterizations. Using natural patterns thus produces new insights into symmetry perception and its possible neural circuits. PMID:23729773
PT-Symmetric Real Dirac Fermions and Semimetals.
Zhao, Y X; Lu, Y
2017-02-03
Recently, Weyl fermions have attracted increasing interest in condensed matter physics due to their rich phenomenology originated from their nontrivial monopole charges. Here, we present a theory of real Dirac points that can be understood as real monopoles in momentum space, serving as a real generalization of Weyl fermions with the reality being endowed by the PT symmetry. The real counterparts of topological features of Weyl semimetals, such as Nielsen-Ninomiya no-go theorem, 2D subtopological insulators, and Fermi arcs, are studied in the PT symmetric Dirac semimetals and the underlying reality-dependent topological structures are discussed. In particular, we construct a minimal model of the real Dirac semimetals based on recently proposed cold atom experiments and quantum materials about PT symmetric Dirac nodal line semimetals.
Observation of spin rectification in Pt/yttrium iron garnet bilayer
Rao, Jinwei; Fan, Xiaolong Zhou, Hengan; Zhao, Xiaobing; Zhao, Jing; Zhang, Fengzhen; Xue, Desheng; Ma, Li; Zhou, Shiming
2015-05-07
We used the ferromagnetic resonance (FMR) to study the dc voltage generation in Pt 20 nm layer deposited on yttrium iron garnet. Although the main contribution to the FMR voltage comes from the inverse spin Hall effect associated with spin pumping, the spin rectification would also contribute the resonance signal via the “new” magnetoresistance effect in Pt layer. Based on a symmetry consideration, we can separate those two effects through angular dependent resonance amplitude.
Nonlinear modes in finite-dimensional PT-symmetric systems.
Zezyulin, D A; Konotop, V V
2012-05-25
By rearrangements of waveguide arrays with gain and losses one can simulate transformations among parity-time (PT-) symmetric systems not affecting their pure real linear spectra. Subject to such transformations, however, the nonlinear properties of the systems undergo significant changes. On an example of an array of four waveguides described by the discrete nonlinear Schrödinger equation with dissipation and gain, we show that the equivalence of the underlying linear spectra does not imply similarity of the structure or stability of the nonlinear modes in the arrays. Even the existence of one-parametric families of nonlinear modes is not guaranteed by the PT symmetry of a newly obtained system. In addition, the stability is not directly related to the PT symmetry: stable nonlinear modes exist even when the spectrum of the linear array is not purely real. We use a graph representation of PT-symmetric networks allowing for a simple illustration of linearly equivalent networks and indicating their possible experimental design.
Weakly broken galileon symmetry
Pirtskhalava, David; Santoni, Luca; Trincherini, Enrico; Vernizzi, Filippo
2015-09-01
Effective theories of a scalar ϕ invariant under the internal galileon symmetryϕ→ϕ+b{sub μ}x{sup μ} have been extensively studied due to their special theoretical and phenomenological properties. In this paper, we introduce the notion of weakly broken galileon invariance, which characterizes the unique class of couplings of such theories to gravity that maximally retain their defining symmetry. The curved-space remnant of the galileon’s quantum properties allows to construct (quasi) de Sitter backgrounds largely insensitive to loop corrections. We exploit this fact to build novel cosmological models with interesting phenomenology, relevant for both inflation and late-time acceleration of the universe.
NASA Astrophysics Data System (ADS)
Liu, Keh-Fei
The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of πNσ term and strangeness. The third one is the role of chiral U(1) anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.
BOOK REVIEW: Symmetry Breaking
NASA Astrophysics Data System (ADS)
Ryder, L. H.
2005-11-01
One of the most fruitful and enduring advances in theoretical physics during the last half century has been the development of the role played by symmetries. One needs only to consider SU(3) and the classification of elementary particles, the Yang Mills enlargement of Maxwell's electrodynamics to the symmetry group SU(2), and indeed the tremendous activity surrounding the discovery of parity violation in the weak interactions in the late 1950s. This last example is one of a broken symmetry, though the symmetry in question is a discrete one. It was clear to Gell-Mann, who first clarified the role of SU(3) in particle physics, that this symmetry was not exact. If it had been, it would have been much easier to discover; for example, the proton, neutron, Σ, Λ and Ξ particles would all have had the same mass. For many years the SU(3) symmetry breaking was assigned a mathematical form, but the importance of this formulation fell away when the quark model began to be taken seriously; the reason the SU(3) symmetry was not exact was simply that the (three, in those days) quarks had different masses. At the same time, and in a different context, symmetry breaking of a different type was being investigated. This went by the name of `spontaneous symmetry breaking' and its characteristic was that the ground state of a given system was not invariant under the symmetry transformation, though the interactions (the Hamiltonian, in effect) was. A classic example is ferromagnetism. In a ferromagnet the atomic spins are aligned in one direction only—this is the ground state of the system. It is clearly not invariant under a rotation, for that would change the ground state into a (similar but) different one, with the spins aligned in a different direction; this is the phenomenon of a degenerate vacuum. The contribution of the spin interaction, s1.s2, to the Hamiltonian, however, is actually invariant under rotations. As Coleman remarked, a little man living in a ferromagnet would
Symmetry constraint for foreground extraction.
Fu, Huazhu; Cao, Xiaochun; Tu, Zhuowen; Lin, Dongdai
2014-05-01
Symmetry as an intrinsic shape property is often observed in natural objects. In this paper, we discuss how explicitly taking into account the symmetry constraint can enhance the quality of foreground object extraction. In our method, a symmetry foreground map is used to represent the symmetry structure of the image, which includes the symmetry matching magnitude and the foreground location prior. Then, the symmetry constraint model is built by introducing this symmetry structure into the graph-based segmentation function. Finally, the segmentation result is obtained via graph cuts. Our method encourages objects with symmetric parts to be consistently extracted. Moreover, our symmetry constraint model is applicable to weak symmetric objects under the part-based framework. Quantitative and qualitative experimental results on benchmark datasets demonstrate the advantages of our approach in extracting the foreground. Our method also shows improved results in segmenting objects with weak, complex symmetry properties.
Disorder-free localization around the conduction band edge of crossing and kinked silicon nanowires
Keleş, Ümit; Çakan, Aslı; Bulutay, Ceyhun
2015-02-14
We explore ballistic regime quantum transport characteristics of oxide-embedded crossing and kinked silicon nanowires (NWs) within a large-scale empirical pseudopotential electronic structure framework, coupled to the Kubo-Greenwood transport analysis. A real-space wave function study is undertaken and the outcomes are interpreted together with the findings of ballistic transport calculations. This reveals that ballistic transport edge lies tens to hundreds of millielectron volts above the lowest unoccupied molecular orbital, with a substantial number of localized states appearing in between, as well as above the former. We show that these localized states are not due to the oxide interface, but rather core silicon-derived. They manifest the wave nature of electrons brought to foreground by the reflections originating from NW junctions and bends. Hence, we show that the crossings and kinks of even ultraclean Si NWs possess a conduction band tail without a recourse to atomistic disorder.
Effective distribution coefficients of a binary ideal solid solution controlled by kink kinetics
NASA Astrophysics Data System (ADS)
Matsumoto, Naoko; Kitamura, Masao
2001-01-01
Effective distribution coefficients of a binary ideal solid solution growing from dilute surroundings are derived for the steady state using a model in which atoms attach and detach only at kink sites on a (0 0 1) surface of a simple cubic crystal. A system of equations is presented to give the step-edge, terrace, and bulk compositions in terms of attachment and detachment frequencies. The total net flux of atoms from the mother phase to kink sites is also formulated as a function of these compositions and the frequencies. Numerical solutions to the system of equations show that the step-edge, terrace, and bulk compositions are different from one another and that the step-edge, terrace, and bulk distribution coefficients will all approach unity from their respective equilibrium values as the total net flux increases.
Disorder-free localization around the conduction band edge of crossing and kinked silicon nanowires
NASA Astrophysics Data System (ADS)
Keleş, Ümit; ćakan, Aslı; Bulutay, Ceyhun
2015-02-01
We explore ballistic regime quantum transport characteristics of oxide-embedded crossing and kinked silicon nanowires (NWs) within a large-scale empirical pseudopotential electronic structure framework, coupled to the Kubo-Greenwood transport analysis. A real-space wave function study is undertaken and the outcomes are interpreted together with the findings of ballistic transport calculations. This reveals that ballistic transport edge lies tens to hundreds of millielectron volts above the lowest unoccupied molecular orbital, with a substantial number of localized states appearing in between, as well as above the former. We show that these localized states are not due to the oxide interface, but rather core silicon-derived. They manifest the wave nature of electrons brought to foreground by the reflections originating from NW junctions and bends. Hence, we show that the crossings and kinks of even ultraclean Si NWs possess a conduction band tail without a recourse to atomistic disorder.
Stability of the n{=}1 Internal Kink Mode in Plasmas with Centrally Peaked Pressure
NASA Astrophysics Data System (ADS)
Ozeki, Takahisa; Azumi, Masafumi
1990-12-01
The stability of the n{=}1 internal kink mode in a tokamak is numerically analyzed for plasmas with a centrally peaked pressure profile. The effect of pressure profile is studied by the comparison of a strongly peaked pressure inside the q{=}1 surface with a parabolic pressure profile. The effects of shaping, i.e., elongation and triangularity, are also studied for the both pressure profiles. The plasma with the strongly peaked pressure profile has higher limiting value of poloidal beta defined within the q{=}1 surface than that of the parabolic pressure profile. Though the beta limit reduces with the increase of the elongation, the plasma with the peaked pressure profile has larger improvement due to the triangularity than that with the parabolic pressure profile. However, to enter the second stability region of the n{=}1 internal kink mode, the plasma with a flat pressure profile and the large minor radius of the q{=}1 surface is effective.
A New Series of Kinked Liquid Crystals: 2-(6-Alkoxynaphthalen-2-yl)-6-methoxyquinolines
Chia, Win-Long; Liu, Chih-Wei
2015-01-01
A new series of 2-(6-alkoxynaphthalen-2-yl)-6-methoxyquinolines (nO-NpQOMe, n = 3–8) liquid crystal compounds, a linear molecular structure with two kinks, were synthesized using a short two-step reaction with overall yields between 43% and 58%. Spectral analyses were in accord with the expected structures. Thermotropic behavior of these liquid crystal compounds were investigated using polarized optical microscopy and differential scanning calorimetry. All compounds exhibited purely enantiotropic nematic phase at the medium–high temperature range of 162.4–234.2 °C. However, short ranges of nematic phase, 20.5–16.6 °C at heating and 46.7–37.0 °C at cooling, were observed in these linear liquid-crystalline compounds with two kinks. PMID:25849658
Peeling-off of the external kink modes at tokamak plasma edge
Zheng, L. J.; Furukawa, M.
2014-08-15
It is pointed out that there is a current jump between the edge plasma inside the last closed flux surface and the scrape-off layer and that the current jump can lead the external kink modes to convert to the tearing modes, due to the current interchange effects [L. J. Zheng and M. Furukawa, Phys. Plasmas 17, 052508 (2010)]. The magnetic reconnection in the presence of tearing modes subsequently causes the tokamak edge plasma to be peeled off to link to the divertors. In particular, the peeling or peeling-ballooning modes can become the “peeling-off” modes in this sense. This phenomenon indicates that the tokamak edge confinement can be worse than the expectation based on the conventional kink mode picture.
Effects of Defects on the Mechanical Properties of Kinked Silicon Nanowires
NASA Astrophysics Data System (ADS)
Chen, Yun; Zhang, Cheng; Li, Liyi; Tuan, Chia-Chi; Chen, Xin; Gao, Jian; He, Yunbo; Wong, Ching-Ping
2017-03-01
Kinked silicon nanowires (KSiNWs) have many special properties that make them attractive for a number of applications. The mechanical properties of KSiNWs play important roles in the performance of sensors. In this work, the effects of defects on the mechanical properties of KSiNWs are studied using molecular dynamics simulations and indirectly validated by experiments. It is found that kinks are weak points in the nanowire (NW) because of inharmonious deformation, resulting in a smaller elastic modulus than that of straight NWs. In addition, surface defects have more significant effects on the mechanical properties of KSiNWs than internal defects. The effects of the width or the diameter of the defects are larger than those of the length of the defects. Overall, the elastic modulus of KSiNWs is not sensitive to defects; therefore, KSiNWs have a great potential as strain or stress sensors in special applications.
Effects of Defects on the Mechanical Properties of Kinked Silicon Nanowires.
Chen, Yun; Zhang, Cheng; Li, Liyi; Tuan, Chia-Chi; Chen, Xin; Gao, Jian; He, Yunbo; Wong, Ching-Ping
2017-12-01
Kinked silicon nanowires (KSiNWs) have many special properties that make them attractive for a number of applications. The mechanical properties of KSiNWs play important roles in the performance of sensors. In this work, the effects of defects on the mechanical properties of KSiNWs are studied using molecular dynamics simulations and indirectly validated by experiments. It is found that kinks are weak points in the nanowire (NW) because of inharmonious deformation, resulting in a smaller elastic modulus than that of straight NWs. In addition, surface defects have more significant effects on the mechanical properties of KSiNWs than internal defects. The effects of the width or the diameter of the defects are larger than those of the length of the defects. Overall, the elastic modulus of KSiNWs is not sensitive to defects; therefore, KSiNWs have a great potential as strain or stress sensors in special applications.
NASA Astrophysics Data System (ADS)
Yan, Kai; Qiao, Zhijun; Yin, Zhaoyang
2015-06-01
This paper is devoted to a new integrable two-component Camassa-Holm system with peaked solitons (peakons) and weak-kink solutions. It is the first integrable system that admits weak kink and kink-peakon interactional solutions. In addition, the new system includes both standard (quadratic) and cubic Camassa-Holm equations as two special cases. In the paper, we first establish the local well-posedness for the Cauchy problem of the system, and then derive a precise blow-up scenario and a new blow-up result for strong solutions to the system with both quadratic and cubic nonlinearity. Furthermore, its peakon and weak kink solutions are discussed as well.
Petukhov, B. V.
2010-01-15
A model has been proposed for describing the influence of impurities adsorbed by dislocation cores on the mobility of dislocation kinks in materials with a high crystalline relief (Peierls barriers). The delay time spectrum of kinks at statistical fluctuations of the impurity density has been calculated for a sufficiently high energy of interaction between impurities and dislocations when the migration potential is not reduced to a random Gaussian potential. It has been shown that fluctuations in the impurity distribution substantially change the character of the migration of dislocation kinks due to the slow decrease in the probability of long delay times. The dependences of the position of the boundary of the dynamic phase transition to a sublinear drift of kinks x {proportional_to} t{sup {delta}} ({delta} {sigma} 1) and the characteristics of the anomalous mobility on the physical parameters (stress, impurity concentration, experimental temperature, etc.) have been calculated.
Hsu, S C; Bellan, P M
2003-05-30
The magnetohydrodynamic kink instability is observed and identified experimentally as a poloidal flux amplification mechanism for coaxial gun spheromak formation. Plasmas in this experiment fall into three distinct regimes which depend on the peak gun current to magnetic flux ratio, with (I) low values resulting in a straight plasma column with helical magnetic field, (II) intermediate values leading to kinking of the column axis, and (III) high values leading immediately to a detached plasma. Onset of column kinking agrees quantitatively with the Kruskal-Shafranov limit, and the kink acts as a dynamo which converts toroidal to poloidal flux. Regime II clearly leads to both poloidal flux amplification and the development of a spheromak configuration.
Takasao, Shinsuke; Shibata, Kazunari; Fan, Yuhong; Cheung, Mark C. M.
2015-11-10
We carried out an magnetohydrodynamic simulation where a subsurface twisted kink-unstable flux tube emerges from the solar interior to the corona. Unlike the previous expectations based on the bodily emergence of a knotted tube, we found that the kinked tube can spontaneously form a complex quadrupole structure at the photosphere. Due to the development of the kink instability before the emergence, the magnetic twist at the kinked apex of the tube is greatly reduced, although the other parts of the tube are still strongly twisted. This leads to the formation of a complex quadrupole structure: a pair of the coherent, strongly twisted spots and a narrow complex bipolar pair between it. The quadrupole is formed by the submergence of a portion of emerged magnetic fields. This result is relevant for understanding the origin of the complex multipolar δ-spot regions that have a strong magnetic shear and emerge with polarity orientations not following Hale-Nicholson and Joy Laws.
Purgel, Mihály; Maliarik, Mikhail; Glaser, Julius; Platas-Iglesias, Carlos; Persson, Ingmar; Tóth, Imre
2011-07-04
the (CN)(4)Pt-Tl(dmso)(5)(+) system by using DFT calculations (B3LYP model) provide bond distances in excellent agreement with the EXAFS data. The four cyanide ligands are located in a square around the Pt atom, while the Tl atom is coordinated in a distorted octahedral fashion with the metal being located 0.40 Å above the equatorial plane described by four oxygen atoms of dmso ligands. The four equatorial Tl-O bonds and the four cyano ligands around the Pt atom are arranged in an alternate geometry. The coordination environment around Pt may be considered as being square pyramidal, where the apical position is occupied by the Tl atom. The optimized geometry of (CN)(4)Pt-Tl(dmso)(5)(+) is asymmetrical (C(1) point group). This low symmetry might be responsible for the unusually large NMR linewidths observed due to intramolecular chemical exchange processes. The nature of the Pt-Tl bond has been studied by MO analysis. The metal-metal bond formation in (CN)(4)Pt-Tl(dmso)(5)(+) can be simply interpreted as the result of a Pt(5d(z(2)))(2) → Tl(6s)(0) donation. This bonding scheme may rationalize the smaller thermodynamic stability of this adduct compared to the related complexes with (CN)(5)Pt-Tl entity, where the linear C-Pt-Tl unit constitutes a very stable bonding system.
An investigation of parity and time-reversal symmetry breaking in tight-binding lattices
NASA Astrophysics Data System (ADS)
Scott, Derek Douglas
More than a decade ago, it was shown that non-Hermitian Hamiltonians with combined parity (P) and time-reversal (T) symmetry exhibit real eigenvalues over a range of parameters. Since then, the field of PT symmetry has seen rapid progress on both the theoretical and experimental fronts. These effective Hamiltonians are excellent candidates for describing open quantum systems with balanced gain and loss. Nature seems to be replete with examples of PT-symmetric systems; in fact, recent experimental investigations have observed the effects of PT symmetry breaking in systems as diverse as coupled mechanical pendula, coupled optical waveguides, and coupled electrical circuits. Recently, PT-symmetric Hamiltonians for tight-binding lattice models have been extensively investigated. Lattice models, in general, have been widely used in physics due to their analytical and numerical tractability. Perhaps one of the best systems for experimentally observing the effects of PT symmetry breaking in a one-dimensional lattice with tunable hopping is an array of evanescently-coupled optical waveguides. The tunneling between adjacent waveguides is tuned by adjusting the width of the barrier between them, and the imaginary part of the local refractive index provides the loss or gain in the respective waveguide. Calculating the time evolution of a wave packet on a lattice is relatively straightforward in the tight-binding model, allowing us to make predictions about the behavior of light propagating down an array of PT-symmetric waveguides. In this thesis, I investigate the the strength of the PT-symmetric phase (the region over which the eigenvalues are purely real) in lattices with a variety of PT-symmetric potentials. In Chapter 1, I begin with a brief review of the postulates of quantum mechanics, followed by an outline of the fundamental principles of PT-symmetric systems. Chapter 2 focuses on one-dimensional uniform lattices with a pair of PT-symmetric impurities in the case of
A draping technique for prevention of coronary bypass graft kinking and suture-line oozing.
Canver, C C
1996-01-01
Acute kinking of coronary bypass grafts and postoperative hemorrhage due to oozing from the anastomotic suture lines are uncommon but devastating complications of myocardial revascularization. Routine draping of arterial and venous coronary bypass grafts just prior to sternal closure by use of thrombin-soaked oxidized regenerated cellulose may help to avoid these potentially lethal complications. This practice appears to be devoid of any immediate or long-term sequela to the patient.
Whisker Hair (Acquired Progressive Kinking of the Hair): An Indication for Finasteride 1 mg?
Bagazgoitia, Lorea; Aboín, Sonsoles
2016-01-01
Acquired progressive kinking of the hair (APKH) and whisker hair are relatively rare conditions. To our knowledge, fewer than 25 cases have been reported in the English literature. We present the case of a 23-year-old man whose hair on the parietal and occipital areas changed and turned curlier and shorter. Patients suffering from APKH have higher risk of developing androgenetic alopecia and therefore finasteride 1 mg daily is proposed as an adequate treatment for these patients. PMID:27127372
Influence of resistivity on energetic trapped particle-induced internal kink modes
Biglari, H.; Chen, L.
1986-06-01
The influence of resistivity on energetic trapped particle-induced internal kink modes, dubbed ''fishbones'' in the literature, is explored. A general dispersion relation, which recovers the ideal theory in its appropriate limit, is derived and analyzed. An important implication of the theory for present generation fusion devices such as the Joint European Torus (Plasma Physics and Controlled Nuclear Fusion Research (IAEA, London, 1984), Vol I, p.11) is that they will be stable to fishbone activity.
ERIC Educational Resources Information Center
Seidel, Judith Day
1998-01-01
Presents activities that demonstrate how technology can help students discover the mathematics in nature. Claims that these experiences can clarify students' vision of the symmetry of beauty that fills the world beyond the computer. Concludes that the use of flexible software tools helps students explore how a shape is affected when they change…
ERIC Educational Resources Information Center
Crumpecker, Cheryl
2003-01-01
Describes an art lesson used with children in the third grade to help them learn about symmetry, as well as encouraging them to draw larger than usual. Explains that students learn about the belief called "Horror Vacui" of the Northwest American Indian tribes and create their interpretation of this belief. (CMK)
Extreme ultraviolet diagnostic upgrades for kink mode control on the HBT-EP tokamak
NASA Astrophysics Data System (ADS)
Levesque, J. P.; Brooks, J. W.; Desanto, S.; Mauel, M. E.; Navratil, G. A.; Page, J. W.; Hansen, C. J.; Delgado-Aparicio, L.
2016-10-01
Optical diagnostics can provide non-invasive measurements of tokamak equilibria and the internal characteristics of MHD mode activity. We present research plans and ongoing progress on upgrading extreme ultraviolet (EUV) diagnostics in the HBT-EP tokamak. Four sets of 16 poloidal views will allow tomographic reconstruction of plasma emissivity and internal kink mode structure. Emission characteristics of naturally-occurring m/n = 2/1, 3/2, and 3/1 tearing and kink modes will be compared with expectations from a synthetic diagnostic. Coupling between internal and external modes leading up to disruptions is studied. The internal plasma response to external magnetic perturbations is investigated, and compared with magnetic response measurements. Correlation between internal emissivity and external magnetic measurements provides a global picture of long-wavelength MHD instabilities. Measurements are input to HBT-EP's GPU-based feedback system, allowing active feedback for kink modes using only optical sensors and both magnetic and edge current actuators. A separate two-color, 16-chord tangential system will be installed next year to allow reconstruction of temperature profiles and their fluctuations versus time. Supported by U.S. DOE Grant DE-FG02-86ER53222.
SPATIAL DAMPING OF PROPAGATING KINK WAVES DUE TO RESONANT ABSORPTION: EFFECT OF BACKGROUND FLOW
Soler, R.; Goossens, M.; Terradas, J.
2011-06-20
Observations show the ubiquitous presence of propagating magnetohydrodynamic (MHD) kink waves in the solar atmosphere. Waves and flows are often observed simultaneously. Due to plasma inhomogeneity in the direction perpendicular to the magnetic field, kink waves are spatially damped by resonant absorption. The presence of flow may affect the wave spatial damping. Here, we investigate the effect of longitudinal background flow on the propagation and spatial damping of resonant kink waves in transversely nonuniform magnetic flux tubes. We combine approximate analytical theory with numerical investigation. The analytical theory uses the thin tube (TT) and thin boundary (TB) approximations to obtain expressions for the wavelength and the damping length. Numerically, we verify the previously obtained analytical expressions by means of the full solution of the resistive MHD eigenvalue problem beyond the TT and TB approximations. We find that the backward and forward propagating waves have different wavelengths and are damped on length scales that are inversely proportional to the frequency as in the static case. However, the factor of proportionality depends on the characteristics of the flow, so that the damping length differs from its static analog. For slow, sub-Alfvenic flows the backward propagating wave gets damped on a shorter length scale than in the absence of flow, while for the forward propagating wave the damping length is longer. The different properties of the waves depending on their direction of propagation with respect to the background flow may be detected by the observations and may be relevant for seismological applications.
RESONANTLY DAMPED KINK MAGNETOHYDRODYNAMIC WAVES IN A PARTIALLY IONIZED FILAMENT THREAD
Soler, R.; Oliver, R.; Ballester, J. L. E-mail: ramon.oliver@uib.e
2009-12-10
Transverse oscillations of solar filament and prominence threads have been frequently reported. These oscillations have the common features of being of short period (2-10 minutes) and being damped after a few periods. The observations are interpreted as kink magnetohydrodynamic (MHD) wave modes, whereas resonant absorption in the Alfven continuum and ion-neutral collisions are candidates to be the damping mechanisms. Here, we study both analytically and numerically the time damping of kink MHD waves in a cylindrical, partially ionized filament thread embedded in a coronal environment. The thread model is composed of a straight and thin, homogeneous filament plasma, with a transverse inhomogeneous transitional layer where the plasma physical properties vary continuously from filament to coronal conditions. The magnetic field is homogeneous and parallel to the thread axis. We find that the kink mode is efficiently damped by resonant absorption for typical wavelengths of filament oscillations, the damping times being compatible with the observations. Partial ionization does not affect the process of resonant absorption, and the filament plasma ionization degree is only important for the damping for wavelengths much shorter than those observed. To our knowledge, this is the first time that the phenomenon of resonant absorption is studied in a partially ionized plasma.
Quasi-particles ultrafastly releasing kink bosons to form Fermi arcs in a cuprate superconductor.
Ishida, Y; Saitoh, T; Mochiku, T; Nakane, T; Hirata, K; Shin, S
2016-01-05
In a conventional framework, superconductivity is lost at a critical temperature (Tc) because, at higher temperatures, gluing bosons can no longer bind two electrons into a Cooper pair. In high-Tc cuprates, it is still unknown how superconductivity vanishes at Tc. We provide evidence that the so-called ≲ 70-meV kink bosons that dress the quasi-particle excitations are playing a key role in the loss of superconductivity in a cuprate. We irradiated a 170-fs laser pulse on Bi2Sr2CaCu2O(8+δ) and monitored the responses of the superconducting gap and dressed quasi-particles by time- and angle-resolved photoemission spectroscopy. We observe an ultrafast loss of superconducting gap near the d-wave node, or light-induced Fermi arcs, which is accompanied by spectral broadenings and weight redistributions occurring within the kink binding energy. We discuss that the underlying mechanism of the spectral broadening that induce the Fermi arc is the undressing of quasi-particles from the kink bosons. The loss mechanism is beyond the conventional framework, and can accept the unconventional phenomena such as the signatures of Cooper pairs remaining at temperatures above Tc.
NASA Technical Reports Server (NTRS)
Lee, L. C.; Wang, S.; Wei, C. Q.; Tsurutani, B. T.
1988-01-01
This paper investigates the growth rates and eigenmode structures of the streaming sausage, kink, and tearing instabilities in a current sheet with a super-Alfvenic flow. The growth rates and eigenmode structures are first considered in the ideal incompressible limit by using a four-layer model, as well as a more realistic case in which all plasma parameters and the magnetic field vary continuously along the direction perpendicular to the magnetic field and plasma flow. An initial-value method is applied to obtain the growth rate and eigenmode profiles of the fastest growing mode, which is either the sausage mode or kink mode. It is shown that, in the earth's magnetotail, where super-Alfvenic plasma flows are observed in the plasma sheet and the ratio between the plasma and magnetic pressures far away from the current layer is about 0.1-0.3 in the lobes, the streaming sausage and streaming tearing instabilities, but not kink modes, are likely to occur.
Nonlinear interactions of kink-unstable flux ropes and shear Alfvén waves
NASA Astrophysics Data System (ADS)
Vincena, S.; Gekelman, W.; Dehaas, T.; Tripathi, S. K. P.
2016-10-01
Magnetic flux ropes and shear Alfvén waves occur simultaneously in plasmas ranging from solar prominences, the solar wind, and the earth's magnetotail. If the flux ropes evolve to become unstable to the kink mode, interactions between the kink oscillations and the shear waves can arise, and may even lead to nonlinear phenomena. Experiments aimed at elucidating such interactions are performed in the upgraded Large Plasma Device at UCLA. Flux ropes are generated using a 20 cm × 20 cm LaB6 cathode discharge (with L=18 m and β 0.1 .) The ropes are embedded in a otherwise current-free, cylindrical (r = 30 cm) ambient plasma produced by a second, BaO cathode. Shear Alfvén waves are launched using either internal antennas, or by modulating the BaO cathode-anode discharge current. In the latter case, kink unstable oscillations and driven shear waves nonlinearly generate sidebands about the higher shear wave frequency (evident in power spectra) via three-wave coupling; this is demonstrated though bi-coherence calculations and k-matching. Informational complexity and entropy of the time series are also investigated. Future work will focus on antenna-launched waves to control amplitude and frequency, as well as a possible evolution to a turbulent state. Work performed at the Basic Plasma Science Facility which is funded by the DoE OFES and the NSF.
Hanson, Jeremy M.; De Bono, Bryan; Levesque, Jeffrey P.; Mauel, Michael E.; Maurer, David A.; Navratil, Gerald A.; Pedersen, Thomas Sunn; Shiraki, Daisuke; James, Royce W.
2009-05-15
The simulation and experimental optimization of a Kalman filter feedback control algorithm for n=1 tokamak external kink modes are reported. In order to achieve the highest plasma pressure limits in ITER, resistive wall mode stabilization is required [T. C. Hender et al., Nucl. Fusion 47, S128 (2007)] and feedback algorithms will need to distinguish the mode from noise due to other magnetohydrodynamic activity. The Kalman filter contains an internal model that captures the dynamics of a rotating, growing n=1 mode. This model is actively compared with real-time measurements to produce an optimal estimate for the mode's amplitude and phase. On the High Beta Tokamak-Extended Pulse experiment [T. H. Ivers et al., Phys. Plasmas 3, 1926 (1996)], the Kalman filter algorithm is implemented using a set of digital, field-programmable gate array controllers with 10 {mu}s latencies. Signals from an array of 20 poloidal sensor coils are used to measure the n=1 mode, and the feedback control is applied using 40 poloidally and toroidally localized control coils. The feedback system with the Kalman filter is able to suppress the external kink mode over a broad range of phase angles between the sensed mode and applied control field. Scans of filter parameters show good agreement between simulation and experiment, and feedback suppression and excitation of the kink mode are enhanced in experiments when a filter made using optimal parameters from the scans is used.
Suppression of two-bounce windows in kink-antikink collisions
NASA Astrophysics Data System (ADS)
Simas, F. C.; Gomes, Adalto R.; Nobrega, K. Z.; Oliveira, J. C. R. E.
2016-09-01
We consider a class of topological defects in (1, 1)-dimensions with a deformed ϕ 4 kink structure whose stability analysis leads to a Schrödinger-like equation with a zero-mode and at least one vibrational (shape) mode. We are interested in the dynamics of kink-antikink collisions, focusing on the structure of two-bounce windows. For small deformation and for one or two vibrational modes, the observed two-bounce windows are explained by the standard mechanism of a resonant effect between the first vibrational and the translational modes. With the increasing of the deformation, the effect of the appearance of more than one vibrational mode is the gradual disappearance of the initial two-bounce windows. The total suppression of two-bounce windows even with the presence of a vibrational mode offers a counterexample from what expected from the standard mechanism. For extremely large deformation the defect has a 2-kink structure with one translational and one vibrational mode, and the standard structure of two-bounce windows is recovered.
Resonant absorption of kink magnetohydrodynamic waves by a magnetic twist in coronal loops
NASA Astrophysics Data System (ADS)
Ebrahimi, Zanyar; Karami, Kayoomars
2016-10-01
There is ample evidence of twisted magnetic structures in the solar corona. This motivates us to consider the magnetic twist as the cause of Alfvén frequency continuum in coronal loops, which can support the resonant absorption as a rapid damping mechanism for the observed coronal kink magnetohydrodynamic (MHD) oscillations. We model a coronal loop with a straight cylindrical magnetic flux tube, which has constant but different densities in the interior and exterior regions. The magnetic field is assumed to be constant and aligned with the cylinder axis everywhere except for a thin layer near the boundary of the flux tube, which has an additional small magnetic field twist. Then, we investigate a number of possible instabilities that may arise in our model. In the thin tube thin boundary approximation, we derive the dispersion relation and solve it analytically to obtain the frequencies and damping rates of the fundamental (l = 1) and first/second overtone (l = 2, 3) kink (m = 1) MHD modes. We conclude that the resonant absorption by the magnetic twist can justify the rapid damping of kink MHD waves observed in coronal loops. Furthermore, the magnetic twist in the inhomogeneous layer can cause deviations from P1/P2 = 2 and P1/P3 = 3, which are comparable with the observations.
Active and passive kink mode studies in a tokamak with a movable ferromagnetic wall
Levesque, J. P.; Hughes, P. E.; Bialek, J.; Byrne, P. J.; Mauel, M. E.; Navratil, G. A.; Peng, Q.; Rhodes, D. J.; Stoafer, C. C.
2015-05-15
High-resolution active and passive kink mode studies are conducted in a tokamak with an adjustable ferromagnetic wall near the plasma surface. Ferritic tiles made from 5.6 mm thick Hiperco{sup ®} 50 alloy have been mounted on the plasma-facing side of half of the in-vessel movable wall segments in the High Beta Tokamak-Extended Pulse device [D. A. Maurer et al., Plasma Phys. Controlled Fusion 53, 074016 (2011)] in order to explore ferritic resistive wall mode stability. Low-activation ferritic steels are a candidate for structural components of a fusion reactor, and these experiments examine MHD stability of plasmas with nearby ferromagnetic material. Plasma-wall separation for alternating ferritic and non-ferritic wall segments is adjusted between discharges without opening the vacuum vessel. Amplification of applied resonant magnetic perturbations and plasma disruptivity are observed to increase when the ferromagnetic wall is close to plasma surface instead of the standard stainless steel wall. Rapidly rotating m/n=3/1 external kink modes have higher growth rates with the nearby ferritic wall. Feedback suppression of kinks is still as effective as before the installation of ferritic material in vessel, in spite of increased mode growth rates.
Kelvin-Helmholtz instability of kink waves in photospheric, chromospheric, and X-ray solar jets
NASA Astrophysics Data System (ADS)
Zhelyazkov, I.
2013-09-01
One of the most enduring mysteries in solar physics is why the Sun's outer atmosphere, or corona, is millions of kelvins hotter than its surface. Among suggested theories for coronal heating are those that consider the role of various jets of plasma shooting up from just above the Sun's surface through the photosphere and chromosphere to corona. The energy carrying by the waves propagating along the jets can be dissipated and thus transferred to the medium via different mechanisms. Among the various magnetohydrodynamic (MHD) waves which can propagate in the solar atmosphere the most promising for the heating process turns out to be the so cold kink waves. These waves actually are normal modes of the MHD waves running in spatially (or magnetically) bounded flux tubes. When plasma in a flux tube floats the kink mode can become unstable if the jet's speed exceeds some threshold/critical value. The instability which appears is of the Kelvin-Helmholtz type and it can trigger MHD turbulence, more specifically Alvfén waves' turbulence. Notably this kind of turbulence is considered to be one of the main mechanisms of coronal heating. Here, we consider the conditions under which kink waves traveling on three types of solar flowing plasmas, namely photospheric jets, spicules, and X-ray jets, can become unstable against the Kelvin-Helmholtz instability.
NASA Astrophysics Data System (ADS)
Vekilov, Peter
2010-03-01
Crystals, likely rhombohedral, of Zn-insulin hexamers form in the islets of Langerhans in the pancreases of many mammals. The suggested function of crystal formation is to protect the insulin from proteases and increase the degree of conversion of soluble proinsulin. To accomplish this, crystal growth should be fast and adaptable to rate fluctuations in the conversion reaction. Zn-insulin crystals grow layer-by-layer. Each layer spreads by the attachment of molecules to kinks located at the layers' edges, also called steps. The kinks are thought to be generated either by thermal fluctuations, as postulated by Gibbs, or by one-dimensional nucleation of new crystalline rows. The kink density determines the rate at which steps advance, and these two kink-generation mechanisms lead to weak near-linear responses of the growth rate to concentration variations. We demonstrate for the crystallization of Zn-insulin a novel mechanism of kink generation, whereby 2D clusters of several insulin molecules pre-formed on the terraces between steps associate to the steps. This mechanism results in several-fold higher kink density, faster rate of crystallization, and a high sensitivity of the kinetics to small increases of the solute concentration. If the found mechanism operates during insulin crystallization in vivo, it could be a part of the biological regulation of insulin production and function. For other crystallizing materials in biological and non-biological systems, this mechanism provides an understanding of the often seen non-linear acceleration of the kinetics.
NASA Astrophysics Data System (ADS)
Huang, Chunfu; Zeng, Jiale
2017-02-01
Stability and dynamics of PT symmetric fundamental bright solitons supported by localized potentials in a focusing Kerr medium are investigated numerically. How the shape and magnitude of the imaginary component affect soliton stability is addressed when fixed real part of the potentials. The unbroken PT symmetry in linear case and stable region in nonlinear case are discussed. Numerical simulations proved that solitons can propagate stably when the loss or gain distribution become narrower. So we can stabilize the solitons through modulation the shape of imaginary component, and can use the method for solitons formation and control in other nonlinear media with PT potentials.
Dynamical Symmetries in Classical Mechanics
ERIC Educational Resources Information Center
Boozer, A. D.
2012-01-01
We show how symmetries of a classical dynamical system can be described in terms of operators that act on the state space for the system. We illustrate our results by considering a number of possible symmetries that a classical dynamical system might have, and for each symmetry we give examples of dynamical systems that do and do not possess that…
Reflections on Symmetry and Proof
ERIC Educational Resources Information Center
Merrotsy, Peter
2008-01-01
The concept of symmetry is fundamental to mathematics. Arguments and proofs based on symmetry are often aesthetically pleasing because they are subtle and succinct and non-standard. This article uses notions of symmetry to approach the solutions to a broad range of mathematical problems. It responds to Krutetskii's criteria for mathematical…
PSEUDOSPIN SYMMETRY IN NUCLEI, SPIN SYMMETRY IN HADRONS
P. PAGE; T. GOLDMAN; J. GINOCCHIO
2000-08-01
Ginocchio argued that chiral symmetry breaking in QCD is responsible for the relativistic pseudospin symmetry in the Dirac equation, explaining the observed approximate pseudospin symmetry in sizable nuclei. On a much smaller scale, it is known that spin-orbit splittings in hadrons are small. Specifically, new experimental data from CLEO indicate small splittings in D-mesons. For heavy-light mesons we identify a cousin of pseudospin symmetry that suppresses these splittings in the Dirac equation, known as spin symmetry. We suggest an experimental test of the implications of spin symmetry for wave functions in electron-positron annihilation. We investigate how QCD can give rise to two different dynamical symmetries on nuclear and hadronic scales.
1985-08-01
spanner wrench and the teaspoon, the pointed jaws of the wrench, and the main axes of the gourd , the pear, the squash, and the bowl of the teaspoon...regions such as the handle of the spanner wrench and the main axes of the gourd , squash, and teaspoon, and also pointed regions such as the end of the...Local Symmetry representation does not provide in- tuitively acceptable analyses for round regions, such as the lemon and the round ends of the gourd
NASA Technical Reports Server (NTRS)
Lopez, Hiram
1987-01-01
Transmission errors for zeros and ones tabulated separately. Binary-symmetry detector employs psuedo-random data pattern used as test message coming through channel. Message then modulo-2 added to locally generated and synchronized version of test data pattern in same manner found in manufactured test sets of today. Binary symmetrical channel shows nearly 50-percent ones to 50-percent zeroes correspondence. Degree of asymmetry represents imbalances due to either modulation, transmission, or demodulation processes of system when perturbed by noise.
Chiral symmetry and pentaquarks
Dmitri Diakonov
2004-07-01
Spontaneous chiral symmetry breaking, mesons and baryons are illustrated in the language of the Dirac theory. Various forces acting between quarks inside baryons are discussed. I explain why the naive quark models typically overestimate pentaquark masses by some 500 MeV and why in the fully relativistic approach to baryons pentaquarks turn out to be light. I discuss briefly why it can be easier to produce pentaquarks at low than at high energies.
Symmetry and Condensed Matter Physics
NASA Astrophysics Data System (ADS)
El-Batanouny, M.; Wooten, F.
2008-03-01
Preface; 1. Symmetry and physics; 2. Symmetry and group theory; 3. Group representations: concepts; 4. Group representations: formalism and methodology; 5. Dixon's method for computing group characters; 6. Group action and symmetry projection operators; 7. Construction of the irreducible representations; 8. Product groups and product representations; 9. Induced representations; 10. Crystallographic symmetry and space-groups; 11. Space groups: Irreps; 12. Time-reversal symmetry: color groups and the Onsager relations; 13. Tensors and tensor fields; 14. Electronic properties of solids; 15. Dynamical properties of molecules, solids and surfaces; 16. Experimental measurements and selection rules; 17. Landau's theory of phase transitions; 18. Incommensurate systems and quasi-crystals; References; Bibliography; Index.
Symmetries in laminated composite plates
NASA Technical Reports Server (NTRS)
Noor, A. K.
1976-01-01
The different types of symmetry exhibited by laminated anisotropic fibrous composite plates are identified and contrasted with the symmetries of isotropic and homogeneous orthotropic plates. The effects of variations in the fiber orientation and the stacking sequence of the layers on the symmetries exhibited by composite plates are discussed. Both the linear and geometrically nonlinear responses of the plates are considered. A simple procedure is presented for exploiting the symmetries in the finite element analysis. Examples are given of square, skew and polygonal plates where use of symmetry concepts can significantly reduce the scope and cost of analysis.
Invariants of broken discrete symmetries.
Kalozoumis, P A; Morfonios, C; Diakonos, F K; Schmelcher, P
2014-08-01
The parity and Bloch theorems are generalized to the case of broken global symmetry. Local inversion or translation symmetries in one dimension are shown to yield invariant currents that characterize wave propagation. These currents map the wave function from an arbitrary spatial domain to any symmetry-related domain. Our approach addresses any combination of local symmetries, thus applying, in particular, to acoustic, optical, and matter waves. Nonvanishing values of the invariant currents provide a systematic pathway to the breaking of discrete global symmetries.
Invariants of Broken Discrete Symmetries
NASA Astrophysics Data System (ADS)
Kalozoumis, P. A.; Morfonios, C.; Diakonos, F. K.; Schmelcher, P.
2014-08-01
The parity and Bloch theorems are generalized to the case of broken global symmetry. Local inversion or translation symmetries in one dimension are shown to yield invariant currents that characterize wave propagation. These currents map the wave function from an arbitrary spatial domain to any symmetry-related domain. Our approach addresses any combination of local symmetries, thus applying, in particular, to acoustic, optical, and matter waves. Nonvanishing values of the invariant currents provide a systematic pathway to the breaking of discrete global symmetries.
NASA Astrophysics Data System (ADS)
Ruderman, M. S.; Petrukhin, N. S.; Pelinovsky, E.
2016-04-01
We study kink oscillations of thin magnetic tubes. We assume that the density inside and outside the tube (and possibly also the cross-section radius) can vary along the tube. This variation is assumed to be of such a form that the kink speed is symmetric with respect to the tube centre and varies monotonically from the tube ends to the tube centre. Then we prove a theorem stating that the ratio of periods of the fundamental mode and first overtone is a monotonically increasing function of the ratio of the kink speed at the tube centre and the tube ends. In particular, it follows from this theorem that the period ratio is lower than two when the kink speed increases from the tube ends to its centre, while it is higher than two when the kink speed decreases from the tube ends to its centre. The first case is typical for non-expanding coronal magnetic loops, and the second for prominence threads. We apply the general results to particular problems. First we consider kink oscillations of coronal magnetic loops. We prove that, under reasonable assumptions, the ratio of the fundamental period to the first overtone is lower than two and decreases when the loop size increases. The second problem concerns kink oscillations of prominence threads. We consider three internal density profiles: generalised parabolic, Gaussian, and Lorentzian. Each of these profiles contain the parameter α that is responsible for its sharpness. We calculate the dependence of the period ratio on the ratio of the mean to the maximum density. For all considered values of α we find that a formula relating the period ratio and the ratio of the mean and maximum density suggested by Soler, Goossens, and Ballester ( Astron. Astrophys. 575, A123, 2015) gives a sufficiently good approximation to the exact dependence.
Characterization of azo dyes on Pt and Pt/polyaniline/dispersed Pt electrodes
NASA Astrophysics Data System (ADS)
Molina, J.; Fernández, J.; del Río, A. I.; Bonastre, J.; Cases, F.
2012-06-01
The electrochemical characterization of two organic dyes (amaranth and procion orange MX-2R) has been performed on Pt electrodes and Pt electrodes coated with polyaniline and dispersed Pt. Electrodes with different Pt loads have been synthesized and characterized obtaining that a load of 300 μg cm-2 was the optimum one. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was employed to observe the distribution and morphology of the Pt nanoparticles. The electroactivity of the electrodes has also been characterized by means of scanning electrochemical microscopy (SECM). The chemical characterization of Pt dispersed Pani coated Pt electrodes (Pt-Pani-Pt) was performed by means of X-ray photoelectron spectroscopy (XPS). The electrochemical characterization of the dyes has been performed by means of cyclic voltammetry. Voltammograms have shown that the presence of the dyes diminishes characteristic Pt oxidation and reduction peaks. However, redox processes due to the dyes, appeared in the voltammograms. The different species responsible of these redox processes were generated in the vicinity of the electrode and were not adsorbed on the electrode surface since after stirring, the different redox processes disappeared. Characterization with different scan rates showed that redox processes of both dyes were controlled by diffusion.
The compressibility of nanocrystalline Pt
NASA Astrophysics Data System (ADS)
Mikheykin, A. S.; Dmitriev, V. P.; Chagovets, S. V.; Kuriganova, A. B.; Smirnova, N. V.; Leontyev, I. N.
2012-10-01
High-pressure behavior of carbon supported Pt nanoparticles (Pt/C) with an average particle size of 10.6 nm was investigated by in situ high-pressure synchrotron radiation x-ray diffraction up to 14 GPa at ambient temperature. Our results show that the compressibility of Pt/C nanoparticles decreases substantially as the particle size decreases. An interpretation based upon the available mechanisms of structural compliance in nanoscale vs bulk materials was proposed.
High-Speed Imaging of the First Kink Mode Instability in a Magnetoplasmadynamic Thruster
NASA Technical Reports Server (NTRS)
Walker, Jonathan A.; Langendof, Samuel; Walker, Mitchell L. R.; Polzin, Kurt; Kimberlin, Adam
2013-01-01
One of the biggest challenges to efficient magnetoplasmadynamic thruster (MPDT) operation is the onset of high-frequency voltage oscillations as the discharge current is increased above a threshold value. The onset regime is closely related to magnetohydrodynamic instabilities known as kink modes. This work documents direct observation of the formation and quasi-steady state behavior of an argon discharge plasma in a MPDT operating at discharge currents of 8 to 10 kA for a pulse length of approximately 4 ms. A high-speed camera images the quasi-steady-state operation of the thruster at 26,143 fps with a frame exposure time of 10 micro s. A 0.9 neutral density filter and 488-nm argon line filter with a 10-nm bandwidth are used on separate trials to capture the time evolution of the discharge plasma. Frame-by-frame analysis of the power flux incident on the CCD sensor shows both the initial discharge plasma formation process and the steady-state behavior of the discharge plasma. Light intensity levels on the order of 4-6 W/m2 indicate radial and azimuthal asymmetries in the concentration of argon plasma in the discharge channel. The plasma concentration exhibits characteristics that suggest the presence of a helical plasma column. This helical behavior has been observed in previous experiments that characterize plasma kink mode instabilities indirectly. Therefore, the direct imaging of these plasma kink modes further supports the link between MPDT onset behavior and the excitation of the magnetohydrodynamic instabilities.
Switch-on Shock and Nonlinear Kink Alfvén Waves in Solar Polar Jets
NASA Astrophysics Data System (ADS)
DeVore, C. Richard; Karpen, Judith T.; Antiochos, Spiro K.; Uritsky, Vadim
2016-05-01
It is widely accepted that solar polar jets are produced by fast magnetic reconnection in the low corona, whether driven directly by flux emergence from below or indirectly by instability onset above the photosphere. In either scenario, twisted flux on closed magnetic field lines reconnects with untwisted flux on nearby open field lines. Part of the twist is inherited by the newly reconnected open flux, which rapidly relaxes due to magnetic tension forces that transmit the twist impulsively into the outer corona and heliosphere. We propose that this transfer of twist launches switch-on MHD shock waves, which propagate parallel to the ambient coronal magnetic field ahead of the shock and convect a perpendicular component of magnetic field behind the shock. In the frame moving with the shock front, the post-shock flow is precisely Alfvénic in all three directions, whereas the pre-shock flow is super-Alfvénic along the ambient magnetic field, yielding a density enhancement at the shock front. Nonlinear kink Alfvén waves are exact solutions of the time-dependent MHD equations in the post-shock region when the ambient corona is uniform and the magnetic field is straight. We have performed and analyzed 3D Cartesian and spherical simulations of polar jets driven by instability onset in the corona. The results of both simulations are consistent with the generation of MHD switch-on shocks trailed predominantly by incompressible kink Alfvén waves. It is noteworthy that the kink waves are irrotational, in sharp contrast to the vorticity-bearing torsional waves reported from previous numerical studies. We will discuss the implications of the results for understanding solar polar jets and predicting their heliospheric signatures. Our research was supported by NASA’s LWS TR&T and H-SR programs.
Scaled laboratory experiments explain the kink behaviour of the Crab Nebula jet
Li, C. K.; Tzeferacos, P.; Lamb, D.; ...
2016-10-07
X-ray images from the Chandra X-ray Observatory show that the South-East jet in the Crab nebula changes direction every few years. This remarkable phenomenon is also observed in jets associated with pulsar wind nebulae and other astrophysical objects, and therefore is a fundamental feature of astrophysical jet evolution that needs to be understood. Theoretical modeling and numerical simulations have suggested that this phenomenon may be a consequence of magnetic fields (B) and current-driven magnetohydrodynamic (MHD) instabilities taking place in the jet, but until now there has been no verification of this process in a controlled laboratory environment. Here we reportmore » the first such experiments, using scaled laboratory plasma jets generated by high-power lasers to model the Crab jet and monoenergetic-proton radiography to provide direct visualization and measurement of magnetic fields and their behavior. The toroidal magnetic field embedded in the supersonic jet triggered plasma instabilities and resulted in considerable deflections throughout the jet propagation, mimicking the kinks in the Crab jet. We also demonstrated that these kinks are stabilized by high jet velocity, consistent with the observation that instabilities alter the jet orientation but do not disrupt the overall jet structure. We successfully modeled these laboratory experiments with a validated three-dimensional (3D) numerical simulation, which in conjunction with the experiments provide compelling evidence that we have an accurate model of the most important physics of magnetic fields and MHD instabilities in the observed, kinked jet in the Crab nebula. The experiments initiate a novel approach in the laboratory for visualizing fields and instabilities associated with jets observed in various astrophysical objects, ranging from stellar to extragalactic systems. We expect that future work along this line will have important impact on the study and understanding of such fundamental
Scaled laboratory experiments explain the kink behaviour of the Crab Nebula jet
Li, C. K.; Tzeferacos, P.; Lamb, D.; Gregori, G.; Norreys, P. A.; Rosenberg, M. J.; Follett, R. K.; Froula, D. H.; Koenig, M.; Seguin, F. H.; Frenje, J. A.; Rinderknecht, H. G.; Sio, H.; Zylstra, A. B.; Petrasso, R. D.; Amendt, P. A.; Park, H. S.; Remington, B. A.; Ryutov, D. D.; Wilks, S. C.; Betti, R.; Frank, A.; Hu, S. X.; Sangster, T. C.; Hartigan, P.; Drake, R. P.; Kuranz, C. C.; Lebedev, S. V.; Woolsey, N. C.
2016-10-07
X-ray images from the Chandra X-ray Observatory show that the South-East jet in the Crab nebula changes direction every few years. This remarkable phenomenon is also observed in jets associated with pulsar wind nebulae and other astrophysical objects, and therefore is a fundamental feature of astrophysical jet evolution that needs to be understood. Theoretical modeling and numerical simulations have suggested that this phenomenon may be a consequence of magnetic fields (B) and current-driven magnetohydrodynamic (MHD) instabilities taking place in the jet, but until now there has been no verification of this process in a controlled laboratory environment. Here we report the first such experiments, using scaled laboratory plasma jets generated by high-power lasers to model the Crab jet and monoenergetic-proton radiography to provide direct visualization and measurement of magnetic fields and their behavior. The toroidal magnetic field embedded in the supersonic jet triggered plasma instabilities and resulted in considerable deflections throughout the jet propagation, mimicking the kinks in the Crab jet. We also demonstrated that these kinks are stabilized by high jet velocity, consistent with the observation that instabilities alter the jet orientation but do not disrupt the overall jet structure. We successfully modeled these laboratory experiments with a validated three-dimensional (3D) numerical simulation, which in conjunction with the experiments provide compelling evidence that we have an accurate model of the most important physics of magnetic fields and MHD instabilities in the observed, kinked jet in the Crab nebula. The experiments initiate a novel approach in the laboratory for visualizing fields and instabilities associated with jets observed in various astrophysical objects, ranging from stellar to extragalactic systems. We expect that future work along this line will have important impact on the study and understanding of such fundamental astrophysical
Borioni, R; Garofalo, M; Actis Dato, G M; Pierri, M D; Caprara, E; Albano, P; Chiariello, L
1994-08-01
The incidence of carotid artery kinking is reported from 4% to 25% in different studies. During cardiopulmonary by-pass (CPB) in cardiac surgery the hemodynamic effects related to the kinking could produce hypoperfusion especially if associated with atherosclerotic lesions of the carotid arteries. We report our experience of 653 patients (538 males, 115 females, mean age 58.3 years) studied by coronaroangiography and internal carotid artery duplex scanning during the period January 1991-December 1992. Thirty-seven patients (22 males, 15 females, mean age 64.9 years), revealed anomalies of the internal carotid artery classificated as tortuosity (9 patients; 24.4%), and kinking (28 patients; 75.6%). All but 4 patients underwent cardiac surgery isolated or associated with carotid thrombo-endarterectomy (TEA) with Dacron patch arterioplasty. Three patients died (8.1%), one of them from cerebrovascular accident. He was a patient who had thromboembolism from the ascending aorta but without associated atherosclerotic lesions of carotid arteries. Asymptomatic isolated internal carotid artery kinking does not seem to be a risk factor for neurological complications during CPB. If carotid kinking is symptomatic and associated with atherosclerotic plaque producing internal carotid artery stenosis greater than 75%, we strongly suggest surgical treatment before cardiac operation.
Monte Carlo study of kink effect in isolated-gate InAs/AlSb high electron mobility transistors
NASA Astrophysics Data System (ADS)
Vasallo, B. G.; Rodilla, H.; González, T.; Moschetti, G.; Grahn, J.; Mateos, J.
2010-11-01
A semiclassical two-dimensional ensemble Monte Carlo simulator is used to perform a physical analysis of the kink effect in InAs/AlSb high electron mobility transistors (HEMTs). Kink effect, this is, an anomalous increase in the drain current ID when increasing the drain-to-source voltage VDS, leads to a reduction in the gain and a rise in the level of noise, thus limiting the utility of these devices for microwave applications. Due to the small band gap of InAs, InAs/AlSb HEMTs are very susceptible to suffer from impact ionization processes, with the subsequent hole transport through the structure, both implicated in the kink effect. The results indicate that, when VDS is high enough for the onset of impact ionization, holes thus generated tend to pile up in the buffer (at the gate-drain side) due to the valence-band energy barrier between the buffer and the channel. Due to this accumulation of positive charge the channel is further opened and ID increases, leading to the kink effect in the I-V characteristics and eventually to the device electrical breakdown. The understanding of this phenomenon provides useful information for the development of kink-effect-free InAs/AlSb HEMTs.
NASA Astrophysics Data System (ADS)
Ren, Jing; Liu, Yueqiang; Liu, Yue; Medvedev, S. Yu; Wang, Zhirui; Xia, Guoliang
2016-11-01
The effects of an ideal/resistive conducting wall, the drift kinetic resonances, as well as the toroidal plasma flow, on the stability of the ideal external kink mode are numerically investigated for a reactor-relevant tokamak plasma with strongly negative triangularity (NTR) shaping. Comparison is made for a similar plasma equilibrium, but with positive triangularity (PTR). It is found that the ideal wall stabilization is less efficient for the kink stabilization in the NTR plasma due to a less ‘external’ eigenmode structure compared to the PTR plasma. The associated plasma displacement in the NTR plasma does not ‘balloon’ near the outboard mid-plane, as is normally the case for the pressure-driven kink-ballooning instability in PTR plasmas, but being more pronounced near the X-points. The toroidal flow plays a similar role for the kink stability for both NTR and PTR plasmas. The drift kinetic damping is less efficient for the ideal external kink mode in the NTR plasma, despite a somewhat larger fraction of the particle trapping near the plasma edge compared to the PTR equilibrium. However, the drift kinetic damping of the resistive wall mode (RWM) in the NTR plasma is generally as efficient as that of the PTR plasma, although the RWM window, in terms of the normalized pressure, is narrower for the NTR plasma.
Fermi surface, charge-density-wave gap, and kinks in 2H- TaSe2
NASA Astrophysics Data System (ADS)
Rossnagel, K.; Rotenberg, Eli; Koh, H.; Smith, N. V.; Kipp, L.
2005-09-01
The Fermi surface of the layered charge-density-wave compound 2H-TaSe2 is measured by angle-resolved photoemission as a function of temperature. A surprising Fermi-surface topology and a Fermi-surface branch-dependent charge-density-wave gap are found. In the charge-density-wave state band hybridization effects are strong and responsible for kinks in the band dispersions at relatively high binding energy. The implications of the results on the charge-density-wave mechanism are discussed.
Dislocation kink-pair energetics and pencil glide in body-centered-cubic crystals.
Ngan, A H; Wen, M
2001-08-13
When body-centered-cubic crystals undergo plastic deformation, the slip planes are often noncrystallographic. By performing atomistic simulation on the activation pathway of dislocation jumps in bcc iron, we show that the main reason for bcc crystals to exhibit this phenomenon is that one type of kink pair has significantly lower energy than all the other types on the same slip plane. Dislocation motion therefore cannot continue on the same slip plane, and the dislocation has to cross slip onto an intersecting slip plane after each atomic jump. Thus in the long run, the average slip plane would be zigzag and noncrystallographic.
Soft X-ray emission in kink-unstable coronal loops
NASA Astrophysics Data System (ADS)
Pinto, R. F.; Vilmer, N.; Brun, A. S.
2015-04-01
Context. Solar flares are associated with intense soft X-ray emission generated by the hot flaring plasma in coronal magnetic loops. Kink-unstable twisted flux-ropes provide a source of magnetic energy that can be released impulsively and may account for the heating of the plasma in flares. Aims: We investigate the temporal, spectral, and spatial evolution of the properties of the thermal continuum X-ray emission produced in such kink-unstable magnetic flux-ropes and discuss the results of the simulations with respect to solar flare observations. Methods: We computed the temporal evolution of the thermal X-ray emission in kink-unstable coronal loops based on a series of magnetohydrodynamical numerical simulations. The numerical setup consisted of a highly twisted loop embedded in a region of uniform and untwisted background coronal magnetic field. We let the kink instability develop, computed the evolution of the plasma properties in the loop (density, temperature) without accounting for mass exchange with the chromosphere. We then deduced the X-ray emission properties of the plasma during the whole flaring episode. Results: During the initial (linear) phase of the instability, plasma heating is mostly adiabatic (as a result of compression). Ohmic diffusion takes over as the instability saturates, leading to strong and impulsive heating (up to more than 20 MK), to a quick enhancement of X-ray emission, and to the hardening of the thermal X-ray spectrum. The temperature distribution of the plasma becomes broad, with the emission measure depending strongly on temperature. Significant emission measures arise for plasma at temperatures higher than 9 MK. The magnetic flux-rope then relaxes progressively towards a lower energy state as it reconnects with the background flux. The loop plasma suffers smaller sporadic heating events, but cools down globally by thermal conduction. The total thermal X-ray emission slowly fades away during this phase, and the high
The effect of energetic trapped particles on the ''ideal'' internal kink mode
Zhang, Y.Z.; Berk, H.L.; Mahajan, S.M.
1988-12-01
The internal kink stability of a tokamak in the presence of energetic particles is studied. It is found that there exists a stable window when a finite population of energetic particles are present, and the relation between the predictions of the fishbone theory of Chen-White-Rosenbluth and the fishbone theory of Coppi-Porcelli is explained. The theory indicates why some experiments, like PDX and TFTR, are likely to see fishbone oscillations in conjunction with sawtooth modes, while other experiments can observe sawtooth suppression in presence of hot particles. 14 refs., 3 figs., 2 tabs.
Destabilization of Internal Kink Modes at High Frequency by Energetic Circulating Ions
Wang, Shaojie
2001-06-04
A theoretical model is proposed to interpret the high-frequency fishbone instability observed in tangential neutral-beam-injection discharges in a tokamak. It is shown that, when the beam ion beta exceeds a critical value, energetic circulating ions can indeed destabilize the internal kink mode through circulation resonance at a high frequency comparable to the circulation frequency of the energetic ions. The critical beta value of the energetic ions, the real frequency, and the growth rate of the mode are in general agreement with the high-frequency fishbone instability observed in experiments.
Growth of Pt Clusters from Mixture Film of Pt-C and Dynamics of Pt Clusters
NASA Astrophysics Data System (ADS)
Shintaku, Masayuki; Kumamoto, Akihito; Suzuki, Hitoshi; Kaito, Chihiro
2007-06-01
A complete mixture film of carbon and platinum produced by coevaporation in a vacuum was directly heated in a transmission electron microscope. It was found that the diffusion and crystal growth of Pt clusters in the mixture film take place at approximately 500 °C. Pt clusters with a size of 2-5 nm were connected with each other in a parallel orientation or twin-crystal configuration in the mixture film. The growth of onion-like carbon with a hole at the center also occurred. The grown Pt clusters with twin-crystal structures appeared on and in the carbon film. The diffusion of Pt atoms in carbon was discussed as the problem of elusion in fuel cells. Direct observation of the movement of Pt clusters on and in the carbon film was carried out. The movement difference of Pt clusters in and on carbon film has been directly presented.
NASA Astrophysics Data System (ADS)
Lee, Allen; Lee, Ha Youn; Kardar, Mehran
2005-09-01
Locomotion of bacteria by actin polymerization and in vitro motion of spherical beads coated with a protein catalyzing polymerization are examples of active motility. Starting from a simple model of forces locally normal to the surface of a bead, we construct a phenomenological equation for its motion. The singularities at a continuous transition between moving and stationary beads are shown to be related to the symmetries of its shape. Universal features of the phase behavior are calculated analytically and confirmed by simulations. Fluctuations in velocity are shown to be generically non-Maxwellian and correlated to the shape of the bead.
NASA Technical Reports Server (NTRS)
Rosensteel, George
1995-01-01
Riemann ellipsoids model rotating galaxies when the galactic velocity field is a linear function of the Cartesian coordinates of the galactic masses. In nuclear physics, the kinetic energy in the linear velocity field approximation is known as the collective kinetic energy. But, the linear approximation neglects intrinsic degrees of freedom associated with nonlinear velocity fields. To remove this limitation, the theory of symplectic dynamical symmetry is developed for classical systems. A classical phase space for a self-gravitating symplectic system is a co-adjoint orbit of the noncompact group SP(3,R). The degenerate co-adjoint orbit is the 12 dimensional homogeneous space Sp(3,R)/U(3), where the maximal compact subgroup U(3) is the symmetry group of the harmonic oscillator. The Hamiltonian equations of motion on each orbit form a Lax system X = (X,F), where X and F are elements of the symplectic Lie algebra. The elements of the matrix X are the generators of the symplectic Lie algebra, viz., the one-body collective quadratic functions of the positions and momenta of the galactic masses. The matrix F is composed from the self-gravitating potential energy, the angular velocity, and the hydostatic pressure. Solutions to the hamiltonian dynamical system on Sp(3,R)/U(3) are given by symplectic isospectral deformations. The Casimirs of Sp(3,R), equal to the traces of powers of X, are conserved quantities.
Applications of chiral symmetry
Pisarski, R.D.
1995-03-01
The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T{sub {chi}} implies that the {rho} and a{sub 1} vector mesons are degenerate in mass. In a gauged linear sigma model the {rho} mass increases with temperature, m{sub {rho}}(T{sub {chi}}) > m{sub {rho}}(0). The author conjectures that at T{sub {chi}} the thermal {rho} - a{sub 1}, peak is relatively high, at about {approximately}1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The {omega} meson also increases in mass, nearly degenerate with the {rho}, but its width grows dramatically with temperature, increasing to at least {approximately}100 MeV by T{sub {chi}}. The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from {open_quotes}quenched{close_quotes} heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates.
NASA Astrophysics Data System (ADS)
Mezhov-Deglin, L. P.; Mukhin, S. I.
2011-10-01
The possible interpretation of experimental data on low-temperature anomalies in weakly deformed metallic crystals prepared form ultra-pure lead, copper, and silver, as well as in crystals of 4He is discussed within the previously proposed theoretical picture of dislocations with dynamical kinks. In the case of pure metals the theoretical predictions give a general picture of interaction of conduction electrons in a sample with newly-introduced dislocations, containing dynamic kinks in the Peierls potential relief. In the field of random stresses appearing due to plastic deformation of a sample, kinks on the dislocation line form a set of one-dimensional oscillators in potential wells of different shapes. In the low temperature region at low enough density of defects pinning kinks the inelastic scattering of electrons on kinks should lead to deviations from the Wiedemann-Franz law. In particular, the inelastic scattering on kinks should result in a quadratic temperature dependence of the thermal conductivity in a metallic sample along preferential directions of dislocation axes. In the plane normal to the dislocation axis the elastic large-angle scattering of electrons is prevalent. The kink pinning by a point defect or by additional dislocations as well as the sample annealing leading to the disappearance of kinks should induce suppression of transport anomalies. Thus, the energy interval for the spectrum of kink oscillations restricted by characteristic amplitude of the Peierls relief is a "passport of deformation history" for each specific sample. For instance, in copper the temperature/energy region of the order of 1 K corresponds to it. It is also planned to discuss in the other publication applicability of mechanism of phonon scattering on mobile dislocation kinks and pinning of kinks by impurities in order to explain anomalies of phonon thermal conductivity of 4He crystals and deformed crystals of pure lead in a superconducting state.
Structural and magnetic phase transitions in triclinic Ca10(FeAs)10(Pt3As8).
Stürzer, T; Friederichs, G M; Luetkens, H; Amato, A; Klauss, H-H; Johrendt, Dirk
2013-03-27
We report the structural and magnetic phase transitions of triclinic Ca10(FeAs)10(Pt3As8), which is the parent compound of the 1038-type iron-arsenide superconductors. High-resolution x-ray diffraction reveals splitting of the in-plane (a,b) lattice parameters at T(s) ≈ 120 K. Platinum-doping weakens the distortion and shifts the transition temperature to 80 K in Ca10(Fe(1-x)Pt(x)As)10(Pt3As8) with x = 0.03. μSR experiments show the onset of magnetic order near T and a broad magnetic phase transition. The structural transition involves no reduction of the space group symmetry in contrast to the other parent compounds of iron-arsenide superconductors; nevertheless the local fourfold symmetry of the FeAs-layers in Ca10(FeAs)10(Pt3As8) is broken.
{PT}-symmetric optical superlattices
NASA Astrophysics Data System (ADS)
Longhi, Stefano
2014-04-01
The spectral and localization properties of {PT}-symmetric optical superlattices, either infinitely extended or truncated at one side, are theoretically investigated, and the criteria that ensure a real energy spectrum are derived. The analysis is applied to the case of superlattices describing a complex ( {PT}-symmetric) extension of the Harper Hamiltonian in the rational case.
Mohamadou, Alidou; Wamba, Etienne; Lissouck, Daniel; Kofane, Timoleon C
2012-04-01
The matter-wave solutions of Bose-Einstein condensates with three-body interaction are examined through the one-dimensional Gross-Pitaevskii equation. By using a modified lens-type transformation and a further extension of the tanh-function method we obtain the exact analytical solutions which describe the propagation of kink-shaped solitons, anti-kink-shaped solitons, and other families of solitary waves. We realize that the shape of a kink solitary wave depends on both the scattering length and the parameter of atomic exchange with the substrate. The stability of the solitary waves is examined using analytical and numerical methods. Our results can also be applied to nonlinear optics in the presence of cubic-quintic media.
Homogeneous Pt-bimetallic Electrocatalysts
Wang, Chao; Chi, Miaofang; More, Karren Leslie; Markovic, Nenad; Stamenkovic, Vojislav
2011-01-01
Alloying has shown enormous potential for tailoring the atomic and electronic structures, and improving the performance of catalytic materials. Systematic studies of alloy catalysts are, however, often compromised by inhomogeneous distribution of alloying components. Here we introduce a general approach for the synthesis of monodispersed and highly homogeneous Pt-bimetallic alloy nanocatalysts. Pt{sub 3}M (where M = Fe, Ni, or Co) nanoparticles were prepared by an organic solvothermal method and then supported on high surface area carbon. These catalysts attained a homogeneous distribution of elements, as demonstrated by atomic-scale elemental analysis using scanning transmission electron microscopy. They also exhibited high catalytic activities for the oxygen reduction reaction (ORR), with improvement factors of 2-3 versus conventional Pt/carbon catalysts. The measured ORR catalytic activities for Pt{sub 3}M nanocatalysts validated the volcano curve established on extended surfaces, with Pt{sub 3}Co being the most active alloy.
NASA Astrophysics Data System (ADS)
Pascoe, D. J.; Goddard, C. R.; Nakariakov, V. M.
2016-09-01
Aims: We consider a coronal loop kink oscillation observed by the Atmospheric Imaging Assembly (AIA) of the Solar Dynamics Observatory (SDO) which demonstrates two strong spectral components. The period of the lower frequency component being approximately twice that of the shorter frequency component suggests the presence of harmonics. Methods: We examine the presence of two longitudinal harmonics by investigating the spatial dependence of the loop oscillation. The time-dependent displacement of the loop is measured at 15 locations along the loop axis. For each position the displacement is fitted as the sum of two damped sinusoids, having periods P1 and P2, and a damping time τ. The shorter period component exhibits anti-phase oscillations in the loop legs. Results: We interpret the observation in terms of the first (global or fundamental) and second longitudinal harmonics of the standing kink mode. The strong excitation of the second harmonic appears connected to the preceding coronal mass ejection (CME) which displaced one of the loop legs. The oscillation parameters found are P1 = 5.00±0.62 min, P2 = 2.20±0.23 min, P1/ 2P2 = 1.15±0.22, and τ/P = 3.35 ± 1.45. A movie associated to Fig. 5 is available in electronic form at http://www.aanda.org
Atomistic migration mechanisms of atomically flat, stepped, and kinked grain boundaries
NASA Astrophysics Data System (ADS)
Hadian, R.; Grabowski, B.; Race, C. P.; Neugebauer, J.
2016-10-01
We studied the migration behavior of mixed tilt and twist grain boundaries in the vicinity of a symmetric tilt <111 > Σ 7 grain boundary in aluminum. We show that these grain boundaries fall into two main categories of stepped and kinked grain boundaries around the atomically flat symmetric tilt boundary. Using these structures together with size converged molecular dynamics simulations and investigating snapshots of the boundaries during migration, we obtain an intuitive and quantitative description of the kinetic and atomistic mechanisms of the migration of general mixed grain boundaries. This description is closely related to well-known concepts in surface growth such as step and kink-flow mechanisms and allows us to derive analytical kinetic models that explain the dependence of the migration barrier on the driving force. Using this insight we are able to extract energy barrier data for the experimentally relevant case of vanishing driving forces that are not accessible from direct molecular dynamics simulations and to classify arbitrary boundaries based on their mesoscopic structures.
Fracture problems of a superconducting slab with a central kinked crack
NASA Astrophysics Data System (ADS)
Gao, S. W.; Feng, W. J.; Liu, J. X.
2013-12-01
In this work, the central kinked crack problem is investigated for a long rectangular superconducting slab under electromagnetic forces. The distributions of both the current density and the magnetic flux density in the slab are obtained analytically in the Kim critical state model for both the zero-field cooling and the field cooling magnetization processes. And based on the finite element method, the stress intensity factors at the crack tips for decreasing magnetic fields are numerically calculated. Numerical results obtained show that the zero-field cooling activation process generally has more significant influence on the stress intensity factors than the field cooling activation process, and that for every activation process, as the applied field decreases, the superconducting slab is most dangerous when the currents in the crack region are just be influenced. In general, both the maximal mode-I stress intensity factors (SIFs) and mode-II SIFs decrease with the increasing of either the introduced dimensionless parameter p in the Kim model or the crack length. However, the effects of kinked angles on the SIFs are complex. The present study should be helpful to the design and application of high-temperature superconductors.
Sausage Instabilities on top of Kinking Lengthening Current-Carrying Magnetic Flux Tubes
NASA Astrophysics Data System (ADS)
von der Linden, Jens; You, Setthivoine
2015-11-01
Observations indicate that the dynamics of magnetic flux tubes in our cosmos and terrestrial experiments involve fast topological change beyond MHD reconnection. Recent experiments suggest that hierarchies of instabilities coupling disparate plasma scales could be responsible for this fast topological change by accessing two-fluid and kinetic scales. This study will explore the possibility of sausage instabilities developing on top of a kink instability in lengthening current-carrying magnetic flux tubes. Current driven flux tubes evolve over a wide range of aspect ratios k and current to magnetic flux ratios λ . An analytical stability criterion and numerical investigations, based on applying Newcomb's variational approach to idealized magnetic flux tubes with core and skin currents, indicate a dependence of the stability boundaries on current profiles and overlapping kink and sausage unstable regions in the k - λ trajectory of the flux tubes. A triple electrode planar plasma gun (Mochi.LabJet) is designed to generate flux tubes with discrete core and skin currents. Measurements from a fast-framing camera and a high resolution magnetic probe are being assembled into stability maps of the k - λ space of flux tubes. This work was sponsored in part by the US DOE Grant DE-SC0010340.
A Study on the Excitation and Resonant Absorption of Coronal Loop Kink Oscillations
NASA Astrophysics Data System (ADS)
Yu, Dae Jung; Van Doorsselaere, Tom
2016-11-01
We study theoretically the issue of externally driven excitations of standing kink waves and their resonant absorption into torsionally polarized m = 1 waves in the coronal loops in pressureless plasmas. We use the ideal MHD equations, for which we develop an invariant imbedding method available in cylindrical geometry. We assume a sinusoidal density profile at the loop boundary where the density inside the loop is lower than the outside and vice versa. We present field distributions for these two cases and find that they have similar behaviors. We compare the results for the overdense loops, which describe the usual coronal loops, with the analytical solutions of Soler et al. obtained using the Frobenius method. Our results show some similarity for thin nonuniform layers but deviate a lot for thick nonuniform layers. For the first case, which describes the wave train propagation in funnels, we find that resonant absorption depends crucially on the thickness of the nonuniform boundary, loop length, and density contrast. The resonant absorption of the kink mode is dominant when the loop length is sufficiently larger compared with its radius (thin loop). The behavior of the far-field pattern of the scattered wave by the coronal loop is closely related to that of the resonant absorption. For the mode conversion phenomena in inhomogeneous plasmas, a certain universal behavior of the resonant absorption is found for the first time. We expect that the main feature may also apply to the overdense loops and discuss its relation to the damping rate.
3D Magnetic Measurements of Kink and Locked Modes in DIII-D
NASA Astrophysics Data System (ADS)
King, J. D.; Strait, E. J.; Hanson, J. M.; Paz-Soldan, C.; Logan, N. C.; Lanctot, M. J.; Shiraki, D.
2013-10-01
The DIII-D magnetics diagnostic has been greatly expanded to fully characterize non-axisymmetric ``3D'' fields. Five poloidal locations now recover n <= 3 , while new HFS arrays provide poloidal spectral resolution of 7.4 cm. Initial measurements suggest externally driven kink structures deviate from MARS-F and IPEC models. These variations extend to the ideal regime, where toroidal agreement is observed. The plasma response to an n = 3 RMP increases monotonically as beta increases and q95 decreases, contrary to predictions of a screening to kink valley. Finally, the temporal evolution of the 3D eigenstructure of a slowly rotating (5 Hz) quasi-static, born locked, tearing mode provides the first evidence of an appreciable n = 2 error field, and an estimate of the phase for future correction. This new 3D capability will be used to understand and optimize control of RWMs, NTV torque, ELMs, and error field correction to extend stable tokamak operation. Work supported in part by the US Department of Energy under DE-AC05-00OR22725, DE-FC02-04ER54698, DE-FG02-95ER54309, DE-AC02-09CH11466, DE-FG02-04ER54761 and DE-AC52-07NA27344.
How to distinguish between kink and sausage modes in flapping oscillations?
NASA Astrophysics Data System (ADS)
Kubyshkina, D. I.; Sormakov, D. A.; Sergeev, V. A.; Semenov, V. S.; Erkaev, N. V.; Kubyshkin, I. V.; Ganushkina, N. Yu.; Dubyagin, S. V.
2014-04-01
Flapping waves are most noticeable large-scale perturbations of the magnetotail current sheet, whose nature is still under discussion. They represent rather slow (an order of magnitude less than typical Alfven speed) waves propagating from the center of the sheet to its flanks with a typical speed of 20-60 km/s, amplitude of 1-2 Re and quasiperiod of 2-10 min. The double-gradient MHD model, which was elaborated in Erkaev et al. (2007) predicts two (kink and sausage) modes of the flapping waves with differences in their geometry and propagation velocity, but the mode structure is hard to resolve observationally. We investigate the possibility of mode identification by observing the rotation of magnetic field and plasma velocity vectors from a single spacecraft. We test theoretical results by analyzing the flapping oscillations observed by Time History of Events and Macroscale Interactions during Substorms spacecraft and confirm that character of observed rotation is consistent with kink mode determination made by using multispacecraft methods. Also, we checked how the existence of some obstructive conditions, such as noise, combined modes, and multiple sources of the flapping oscillations, can affect on the possibility of the modes separation with suggested method.
Soft X-ray emission in kink-unstable coronal loops
NASA Astrophysics Data System (ADS)
Pinto, Rui; Vilmer, Nicole; Brun, Allan Sacha
Solar flares are associated with intense soft X-ray emission generated by the hot flaring plasma in coronal magnetic loops. We investigate the temporal, spectral and spatial evolution of the properties of the thermal X-ray emission produced in simulated kink-unstable magnetic flux-ropes. The numerical setup used consists of a highly twisted loop embedded in a region of uniform and untwisted background coronal magnetic field. The magnetic flux-rope reconnects with the background flux after the triggering of the kink instability and is then allowed to relax to a lower energy state. Strong ohmic heating leads to strong and quick heating (up to more than 15 MK), to a strong peak of X-ray emission and to the hardening of the thermal X-ray spectrum. The emission pattern is often filamentary and the amount of twist deduced from the X-ray emission alone is considerably lower than the maximum twist in the simulated flux-ropes. The flux-rope plasma becomes strongly multi-thermal during the flaring episode. The emission measure evolves into a bi-modal distribution as a function of temperature during the saturation phase, and later converges to the power-law distribution mathrm{EM}~ T(-4.2) (during the relaxation/cooling) phase. These soft X-ray emission properties are maintained for a large range of coronal magnetic field strength, plasma density and flux-rope twist values.
Analytical model of wall forces produced by kink perturbations in tokamaks
Mironov, D. V.; Pustovitov, V. D.
2015-05-15
Analytical model of the electromagnetic forces produced by kink modes on the tokamak wall [H. R. Strauss et al., Phys. Plasmas 17, 082505 (2010)] is revisited. One of the main conclusions of the mentioned paper is that the largest force occurs at γτ{sub w}≈1, where γ is the kink growth rate and τ{sub w} is the wall penetration time. In the present study, a similar approach is developed under less restrictive assumptions on the plasma and dynamics of perturbation, and a different result is obtained: the force increases with γ and must be maximal at γτ{sub w}→∞. Additionally, the dependence of its amplitude on the plasma parameters is clarified. All distinctions and their reasons are explained in detail. The analysis is performed in the cylindrical model incorporating a resistive wall treated without traditional thin-wall constraints and covering therefore a full range in γτ{sub w}. It is applicable to either locked or rotating modes. Estimates of the sideways force are presented and compared with earlier forecasts.
Kink-mode Waves and Bifurcated Current Sheets: CLUSTER Observations and Analysis Techniques
NASA Astrophysics Data System (ADS)
Cully, C.; Donovan, E.; Buchert, S.; Lucek, E.
2003-12-01
Although the magnetic configuration of the tail current sheet in the moments before reconnection is of considerable interest, many fundamental observational questions remain. What does the large-scale structure typically look like? How thick is the sheet? Is it bifurcated? What bulk wavemodes are active, and at what amplitude? Cluster observations, when combined with multipoint analysis techniques, offer the opportunity to observationally resolve some of these questions. We present an analysis technique that we use to first solve for the local normal vector to the current sheet at each data point, and then to identify the presence and wavemode of large-scale bulk wave modes (e.g. kink modes). We then take this motion into account when reconstructing the large-scale structure of the sheet from the measurements. We apply these techniques to Cluster observations of the tail current sheet before a substorm on the 11th of October, 2001. At the Cluster location 19 Re downtail, we find large-amplitude kink-mode waves that are propagating duskward in the minutes before reconnection onset.
Shock heating in numerical simulations of kink-unstable coronal loops
Bareford, M. R.; Hood, A. W.
2015-01-01
An analysis of the importance of shock heating within coronal magnetic fields has hitherto been a neglected area of study. We present new results obtained from nonlinear magnetohydrodynamic simulations of straight coronal loops. This work shows how the energy released from the magnetic field, following an ideal instability, can be converted into thermal energy, thereby heating the solar corona. Fast dissipation of magnetic energy is necessary for coronal heating and this requirement is compatible with the time scales associated with ideal instabilities. Therefore, we choose an initial loop configuration that is susceptible to the fast-growing kink, an instability that is likely to be created by convectively driven vortices, occurring where the loop field intersects the photosphere (i.e. the loop footpoints). The large-scale deformation of the field caused by the kinking creates the conditions for the formation of strong current sheets and magnetic reconnection, which have previously been considered as sites of heating, under the assumption of an enhanced resistivity. However, our simulations indicate that slow mode shocks are the primary heating mechanism, since, as well as creating current sheets, magnetic reconnection also generates plasma flows that are faster than the slow magnetoacoustic wave speed. PMID:25897092
Kink deformation of Weibel-mediated current filaments and onset of shock formation
NASA Astrophysics Data System (ADS)
Ruyer, Charles; Alves, E. Paulo; Fiuza, Frederico
2016-10-01
The Weibel instability is believed to mediate the interaction of high Mach number collisionless shocks in weakly magnetized astrophysical environments. Although the generation of current filaments and strong magnetic fields by this instability has now been demonstrated experimentally, it is still not clear what is the long-term evolution of these filaments and how they lead to shock formation. We have studied the stability of Weibel-mediated current filaments using 2D/3D Particle-In-Cell simulations and analytical theory. We show that these are prone to kink-like instabilities that we characterize in both the linear and non-linear stage for a single filament, leading to an efficient ion slowing down and isotropization. We then demonstrate that our results are relevant to the self-consistent counter-streaming plasma interaction. Our 3D simulations show that the kink deformation dominates the late-stage of the interaction, when the current filaments break and most of the flow dissipation occurs, leading to the onset of magnetic turbulence and shock formation. We will discuss the important implications of these results for the shock structure and its ability to accelerate particles. This work was supported by the DOE Office of Science, Fusion Energy Science (FWP 100182).
Study of Kink Modes and Error Fields using Rotation Control with a Biased Probe
NASA Astrophysics Data System (ADS)
Stoafer, Chris C.; Levesque, J. P.; Peng, Q.; Mauel, M. E.; Navratil, G. A.
2015-11-01
A bias probe has been installed in the High Beta Tokamak - Extended Pulse (HBT-EP) for studying MHD mode rotation and stability. When the probe is inserted into the edge of the plasma and a voltage applied, the rotation of long-wavelength kink instabilities is strongly modified. A large poloidal plasma flow results, measured with a bi-directional Mach probe, and changes in plasma flow correlate to changes in edge kink mode rotation. An active controller is used to adjust the probe voltage in real time for controlling both the plasma flow and mode rotation. Bias probe voltages are generated through an active GPU-based digital feedback system. Mode rotation control is desirable and allows for MHD stability studies under conditions of varying mode rotation rates. At large positive biases, the probe current induces a torque that opposes the natural direction of mode rotation. We are able to apply sufficiently large torque to induce a transition to a fast rotation state (both mode and plasma rotation). The bias required to induce the transition is shown to depend on an applied error field, establishing a technique to determine the natural error field on HBT-EP. Supported by U.S. DOE Grant DE-FG02-86ER53222.
VERTICAL KINK OSCILLATION OF A MAGNETIC FLUX ROPE STRUCTURE IN THE SOLAR CORONA
Kim, S.; Cho, K.-S.; Nakariakov, V. M.
2014-12-20
Vertical transverse oscillations of a coronal magnetic rope, observed simultaneously in the 171 Å and 304 Å bandpasses of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory (SDO), are detected. The oscillation period is about 700 s and the displacement amplitude is about 1 Mm. The oscillation amplitude remains constant during the observation. Simultaneous observation of the rope in the bandpasses corresponding to the coronal and chromospheric temperatures suggests that it has a multi-thermal structure. Oscillatory patterns in 171 Å and 304 Å are coherent, which indicates that the observed kink oscillation is collective, in which the rope moves as a single entity. We interpret the oscillation as a fundamental standing vertically polarized kink mode of the rope, while the interpretation in terms of a perpendicular fast wave could not be entirely ruled out. In addition, the arcade situated above the rope and seen in the 171 Å bandpass shows an oscillatory motion with the period of about 1000 s.
2D-4D correspondence: Towers of kinks versus towers of monopoles in N=2 theories
NASA Astrophysics Data System (ADS)
Bolokhov, Pavel A.; Shifman, Mikhail; Yung, Alexei
2012-04-01
We continue to study the BPS spectrum of the N=(2,2) CPN-1 model with the ZN-symmetric twisted mass terms. We focus on analysis of the “extra” towers found previously in [P. A. Bolokhov, M. Shifman, and A. Yung, arXiv:1104.5241], and compare them to the states that can be identified in the quasiclassical domain. Exact analysis of the strong-coupling states shows that not all of them survive when passing to the weak-coupling domain. Some of the states decay on the curves of the marginal stability. Thus, not all strong-coupling states can be analytically continued to weak coupling to match the observable bound states. At weak coupling, we confirm the existence of bound states of topologically charged kinks and elementary quanta. Quantization of the U(1) kink modulus leads to formation of towers of such states. For the ZN-symmetric twisted masses their number is by far less than N-1 as was conjectured previously. We investigate the quasiclassical limit and show that out of N possible towers only two survive in the spectrum for odd N, and a single tower for even N. In the case of CP2 theory the related curves of the marginal stability are discussed in detail. In these points we overlap and completely agree with the results of Dorey and Petunin. We also comment on 2D-4D correspondence.
[Symmetries and homologies of Geomerida].
Zarenkov, N A
2005-01-01
The symmetry of Earths life cover (Geomerida) was described generally by L.A. Zenkevich (1948). It coincides with the symmetry of geographic cover. Its symmetry elements are equatorial plane and three meridonal planes corresponded to oceans and continents. The hypsographic curve with point of inflection (symmetry element) on 3 km depth line should be added to these elements. The plankton and benthos communities as well as fauna of taxons are distributed symmetrically according these symmetry elements. Zenkevich model was successfully extrapolated to plankton by K.V. Beklemishev (1967, 1969) and to abyssal benthos by Sokolova M.N. (1986). The plankton communities inhabiting symmetrically located macrocirculations are considered as homologous. The character of circulation determines the trophic structure of plankton and benthos. In the case of high productivity of plankton, benthic grazing animals feed on sedimented particles have bilateral symmetric mouthpart. Otherwise they have to acquire food from water column and use cyclomeric mouthpart. Thus, the symmetry of macrocirculations determines the symmetry distribution of benthic animals with two major symmetries of mouthparts. The peculiarities of organisms' symmetry are discussed in the context of Pierre Curie principle and the ideas of K.V. Beklemishev concerning evolution of morphological axes.
Aschwanden, Markus J.; Schrijver, Carolus J.
2011-08-01
A detailed analysis of a coronal loop oscillation event is presented, using data from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory (SDO) for the first time. The loop oscillation event occurred on 2010 October 16, 19:05-19:35 UT and was triggered by an M2.9 GOES-class flare, located inside a highly inclined cone of a narrow-angle coronal mass ejection. This oscillation event had a number of unusual features: (1) excitation of kink-mode oscillations in vertical polarization (in the loop plane), (2) coupled cross-sectional and density oscillations with identical periods, (3) no detectable kink amplitude damping over the observed duration of four kink-mode periods (P=6.3 minutes), (4) multi-loop oscillations with slightly ({approx}10%) different periods, and (5) a relatively cool loop temperature of T {approx} 0.5 MK. We employ a novel method of deriving the electron density ratio external and internal to the oscillating loop from the ratio of Alfvenic speeds deduced from the flare trigger delay and the kink-mode period, i.e., n{sub e} /n{sub i} = (v{sub A} /v{sub Ae}){sup 2} = 0.08 {+-} 0.01. The coupling of the kink mode and cross-sectional oscillations can be explained as a consequence of the loop length variation in the vertical polarization mode. We determine the exact footpoint locations and loop length with stereoscopic triangulation using STEREO/EUVI/A data. We model the magnetic field in the oscillating loop using Helioseismic and Magnetic Imager/SDO magnetogram data and a potential-field model and find agreement with the seismological value of the magnetic field, B{sub kink} = 4.0 {+-} 0.7 G, within a factor of two.
Growth from Solutions: Kink dynamics, Stoichiometry, Face Kinetics and stability in turbulent flow
NASA Technical Reports Server (NTRS)
Chernov, A. A.; DeYoreo, J. J.; Rashkovich, L. N.; Vekilov, P. G.
2005-01-01
1. Kink dynamics. The first segment of a polygomized dislocation spiral step measured by AFM demonstrates up to 60% scattering in the critical length l*- the length when the segment starts to propagate. On orthorhombic lysozyme, this length is shorter than that the observed interkink distance. Step energy from the critical segment length based on the Gibbs-Thomson law (GTL), l* = 20(omega)alpha/(Delta)mu is several times larger than the energy from 2D nucleation rate. Here o is tine building block specific voiume, a is the step riser specific free energy, Delta(mu) is the crystallization driving force. These new data support our earlier assumption that the classical Frenkel, Burton -Cabrera-Frank concept of the abundant kink supply by fluctuations is not applicable for strongly polygonized steps. Step rate measurements on brushite confirms that statement. This is the1D nucleation of kinks that control step propagation. The GTL is valid only if l*
NASA Astrophysics Data System (ADS)
Franke, J.-H.; Kosov, D. S.
2015-01-01
We study the adsorption and ring-opening of lactide on the naturally chiral metal surface Pt(321)S. Lactide is a precursor for polylactic acid ring-opening polymerization, and Pt is a well known catalyst surface. We study, here, the energetics of the ring-opening of lactide on a surface that has a high density of kink atoms. These sites are expected to be present on a realistic Pt surface and show enhanced catalytic activity. The use of a naturally chiral surface also enables us to study potential chiral selectivity effects of the reaction at the same time. Using density functional theory with a functional that includes the van der Waals forces in a first-principles manner, we find modest adsorption energies of around 1.4 eV for the pristine molecule and different ring-opened states. The energy barrier to be overcome in the ring-opening reaction is found to be very small at 0.32 eV and 0.30 eV for LL- and its chiral partner DD-lactide, respectively. These energies are much smaller than the activation energy for a dehydrogenation reaction of 0.78 eV. Our results thus indicate that (a) ring-opening reactions of lactide on Pt(321) can be expected already at very low temperatures, and Pt might be a very effective catalyst for this reaction; (b) the ring-opening reaction rate shows noticeable enantioselectivity.
On the topological derivative due to kink of a crack with non-penetration. Anti-plane model
Khludnev, A.M.; Kovtunenko, V.A.; Tani, A.
2010-01-01
A topological derivative is defined, which is caused by kinking of a crack, thus, representing the topological change. Using variational methods, the anti-plane model of a solid subject to a non-penetration condition imposed at the kinked crack is considered. The objective function of the potential energy is expanded with respect to the diminishing branch of the incipient crack. The respective sensitivity analysis is provided by a Saint-Venant principle and a local decomposition of the solution of the variational problem in the Fourier series. PMID:22163369
Fu, G.Y.; Park, W.; Strauss, H.R.; Breslau, J.; Chen, J.; Jardin, S.; Sugiyama, L.E.
2006-05-15
Global hybrid simulations of energetic particle effects on the n=1 internal kink mode have been carried out for tokamaks. For the International Thermonuclear Experimental Reactor (ITER) [ITER Physics Basis Editors et al., Nucl. Fusion 39, 2137 (1999)], it is shown that alpha particle effects are stabilizing for the internal kink mode. However, the elongation of ITER reduces the stabilization effects significantly. Nonlinear simulations of the precessional drift fishbone instability for circular tokamak plasmas show that the mode saturates due to flattening of the particle distribution function near the resonance region. The mode frequency chirps down rapidly as the flattening region expands radially outward. Fluid nonlinearity reduces the saturation level.
G.Y. Fu; W. Park; H.R. Strauss; J. Breslau; J. Chen; S. Jardin; L.E. Sugiyama
2005-08-09
Global hybrid simulations of energetic particle effects on the n=1 internal kink mode have been carried out for tokamaks. For the International Thermonuclear Experimental Reactor (ITER) [ITER Physics Basis Editors et al., Nucl. Fusion 39:2137 (1999)], it is shown that alpha particle effects are stabilizing for the internal kink mode. However, the elongation of ITER reduces the stabilization effects significantly. Nonlinear simulations of the precessional drift fishbone instability for circular tokamak plasmas show that the mode saturates due to flattening of the particle distribution function near the resonance region. The mode frequency chirps down rapidly as the flattening region expands radially outward. Fluid nonlinearity reduces the saturation level.
From Molecular Point Group Symmetry to Space Group Symmetry.
ERIC Educational Resources Information Center
Hathaway, Brian
1979-01-01
Describes undergraduate chemistry curricula in which the student is asked to either build a model of one asymmetric unit in the unit cell and to indicate the positions of the symmetry-related units by putting in key atoms, or to identify on a prebuild model the asymetric and symmetry-related units. (BB)
Symmetry reduction related with nonlocal symmetry for Gardner equation
NASA Astrophysics Data System (ADS)
Ren, Bo
2017-01-01
Based on the truncated Painlevé method or the Möbious (conformal) invariant form, the nonlocal symmetry for the (1+1)-dimensional Gardner equation is derived. The nonlocal symmetry can be localized to the Lie point symmetry by introducing one new dependent variable. Thanks to the localization procedure, the finite symmetry transformations are obtained by solving the initial value problem of the prolonged systems. Furthermore, by using the symmetry reduction method to the enlarged systems, many explicit interaction solutions among different types of solutions such as solitary waves, rational solutions, Painlevé II solutions are given. Especially, some special concrete soliton-cnoidal interaction solutions are analyzed both in analytical and graphical ways.
Symmetry and surface symmetry energies in finite nuclei
Lee, S. J.; Mekjian, A. Z.
2010-12-15
A study of the properties of the symmetry energy of nuclei is presented based on density-functional theory. Calculations for finite nuclei are given so that the study includes isospin-dependent surface symmetry considerations as well as isospin-independent surface effects. Calculations are done at both zero and nonzero temperature. It is shown that the surface symmetry energy term is the most sensitive to the temperature while the bulk energy term is the least sensitive. It is also shown that the temperature-dependence terms are insensitive to the force used and even more insensitive to the existence of neutron skin. Results for a symmetry energy with both volume and surface terms are compared with a symmetry energy with only volume terms along the line of {beta} stability. Differences of several MeV are shown over a good fraction of the total mass range in A. Also given are calculations for the bulk, surface and Coulomb terms.
NASA Astrophysics Data System (ADS)
Weber, S. V.; Casey, D. T.; Pino, J. E.; Rowley, D. P.; Smalyuk, V. A.; Spears, B. K.; Tipton, R. E.
2013-10-01
NIF CH ablator symmetry capsules are filled with hydrogen or helium gas. SymCaps have more moderate convergence ratios ~ 15 as opposed to ~ 35 for ignition capsules with DT ice layers, and better agreement has been achieved between simulations and experimental data. We will present modeling of capsules with CD layers and tritium fill, for which we are able to match the dependence of DT yield on recession distance of the CD layer from the gas. We can also match the performance of CH capsules with D3 He fill. The simulations include surface roughness, drive asymmetry, a mock-up of modulation introduced by the tent holding the capsule, and an empirical prescription for ablator-gas atomic mix. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Floquet control of the gain and loss in a PT-symmetric optical coupler
NASA Astrophysics Data System (ADS)
Wu, Yi; Zhu, Bo; Hu, Shu-Fang; Zhou, Zheng; Zhong, Hong-Hua
2017-02-01
Controlling the balanced gain and loss in a PT-symmetric system is a rather challenging task. Utilizing Floquet theory, we explore the constructive role of periodic modulation in controlling the gain and loss of a PT-symmetric optical coupler. It is found that the gain and loss of the system can be manipulated by applying a periodic modulation. Further, such an original non-Hermitian system can even be modulated into an effective Hermitian system derived by the high-frequency Floquet method. Therefore, compared with other PT symmetry control schemes, our protocol can modulate the unbroken PT-symmetric range to a wider parameter region. Our results provide a promising approach for controlling the gain and loss of a realistic system.
Symmetry in Sign Language Poetry
ERIC Educational Resources Information Center
Sutton-Spence, Rachel; Kaneko, Michiko
2007-01-01
This paper considers the range of ways that sign languages use geometric symmetry temporally and spatially to create poetic effect. Poets use this symmetry in sign language art to highlight duality and thematic contrast, and to create symbolic representations of beauty, order and harmony. (Contains 8 tables, 14 figures and 6 notes.)
ERIC Educational Resources Information Center
Hancock, Karen
2007-01-01
In this article, the author presents a lesson on rotational symmetry which she developed for her students. The aim of the lesson was "to identify objects with rotational symmetry in the staff car park" and the success criteria were "pictures or sketches of at least six objects with different orders of rotation". After finding examples of…
Asymptotic symmetries on Killing horizons
NASA Astrophysics Data System (ADS)
Koga, Jun-Ichirou
2001-12-01
We investigate asymptotic symmetries regularly defined on spherically symmetric Killing horizons in Einstein theory with or without the cosmological constant. These asymptotic symmetries are described by asymptotic Killing vectors, along which the Lie derivatives of perturbed metrics vanish on a Killing horizon. We derive the general form of the asymptotic Killing vectors and find that the group of asymptotic symmetries consists of rigid O(3) rotations of a horizon two-sphere and supertranslations along the null direction on the horizon, which depend arbitrarily on the null coordinate as well as the angular coordinates. By introducing the notion of asymptotic Killing horizons, we also show that local properties of Killing horizons are preserved not only under diffeomorphisms but also under nontrivial transformations generated by the asymptotic symmetry group. Although the asymptotic symmetry group contains the Diff(S1) subgroup, which results from supertranslations dependent only on the null coordinate, it is shown that the Poisson brackets algebra of the conserved charges conjugate to asymptotic Killing vectors does not acquire nontrivial central charges. Finally, by considering extended symmetries, we discuss the fact that unnatural reduction of the symmetry group is necessary in order to obtain the Virasoro algebra with nontrivial central charges, which is not justified when we respect the spherical symmetry of Killing horizons.
Hyperbolic-symmetry vector fields.
Gao, Xu-Zhen; Pan, Yue; Cai, Meng-Qiang; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian
2015-12-14
We present and construct a new kind of orthogonal coordinate system, hyperbolic coordinate system. We present and design a new kind of local linearly polarized vector fields, which is defined as the hyperbolic-symmetry vector fields because the points with the same polarization form a series of hyperbolae. We experimentally demonstrate the generation of such a kind of hyperbolic-symmetry vector optical fields. In particular, we also study the modified hyperbolic-symmetry vector optical fields with the twofold and fourfold symmetric states of polarization when introducing the mirror symmetry. The tight focusing behaviors of these vector fields are also investigated. In addition, we also fabricate micro-structures on the K9 glass surfaces by several tightly focused (modified) hyperbolic-symmetry vector fields patterns, which demonstrate that the simulated tightly focused fields are in good agreement with the fabricated micro-structures.
Mechanisms of pattern formation in grazing-incidence ion bombardment of Pt(111)
Hansen, Henri; Redinger, Alex; Messlinger, Sebastian; Stoian, Georgiana; Michely, Thomas; Rosandi, Yudi; Urbassek, Herbert M.; Linke, Udo
2006-06-15
Ripple patterns forming on Pt(111) due to 5 keV Ar{sup +} grazing-incidence ion bombardment were investigated by scanning tunneling microscopy in a broad temperature range from 100 to 720 K and for ion fluences up to 3x10{sup 20} ions/m{sup 2}. A detailed morphological analysis together with molecular dynamics simulations of single ion impacts allow us to develop atomic scale models for the formation of these patterns. The large difference in step edge versus terrace damage is shown to be crucial for ripple formation under grazing incidence. The importance of distinct diffusion processes--step adatom generation at kinks and adatom lattice gas formation--for temperature dependent transitions in the surface morphology is highlighted. Surprisingly, ion bombardment effects like thermal spike induced adatom production and planar subsurface channeling are important for pattern ordering.
Lifetime measurements in 180Pt
NASA Astrophysics Data System (ADS)
Chen, Q. M.; Wu, X. G.; Chen, Y. S.; Li, C. B.; Gao, Z. C.; Li, G. S.; Chen, F. Q.; He, C. Y.; Zheng, Y.; Hu, S. P.; Zhong, J.; Wu, Y. H.; Li, H. W.; Luo, P. W.
2016-04-01
Lifetimes of the yrast states in 180Pt have been measured from 4+ to 8+ using the recoil distance Doppler-shift technique in the coincidence mode. These states were populated by the reaction 156Gd(28Si,4 n )180Pt at a beam energy of 144 MeV. The differential decay curve method was applied to determine the lifetimes from experimental coincidence data. The B (E 2 ) values extracted from lifetimes increase with increasing spin, implying rotor behavior, but do not show the typical shape coexistence where the B (E 2 ) values present a rapid increase at very low spins. Calculations based on the triaxial projected shell model were performed for the yrast states in 180Pt and the results of both energies and E 2 transition probabilities reproduce the experimental data very well. The result also shows that a better description of the yrast band in 180Pt requires consideration of the γ degree of freedom.
Chua, Gim Chuah; Snowden, Sue; Patel, Uday
2004-11-15
Significant transplant renal artery stenosis (TRAS) results in an intraarterial pressure gradient and increasing graft dysfunction correctable by endovascular therapy. Kinks of the transplant artery cause velocity gradients on Doppler ultrasound, but some will have no intraarterial pressure gradient across the kink. It is not known whether these nonflow limiting kinks progress further to threaten graft function and should undergo endovascular correction. This is a longitudinal study of conservatively managed arterial kinks to define their natural history. Fourteen patients who had undergone angiography over a 5-year period for suspected TRAS had kinks of the renal artery. True intraarterial pressures were measured in all cases by slow withdrawal of an end-hole catheter after intraarterial injection of a vasodilator. Those with a significant pressure change ({>=}10% change in peak systolic pressure across the area of suspicion) underwent endovascular treatment. The rest were managed conservatively, with maximal antihypertensive therapy. Outcome of all 14 cases was determined by follow-up of creatinine levels, blood pressure (BP) control and graft outcome over a 3-5-year period (median 4 years). Of the 14 patients with kinks, 10 were male and 4 female; age range 23-67 years (mean 47 years). Eleven had received cadaveric transplants and 3 were allografts; 12 had end-to-side and 2 end-to-end anastomosis, 11/14 cases had an intraarterial pressure ratio of <10% and at median 4 years follow-up on conservative treatment, the serum creatinine of these 11 patients did not differ significantly from those who underwent successful endovascular treatment (mean 118 {mu}mol/l versus 149 {mu}mol/l; p = 0.30, Mann Whitney test). Mean blood pressure was 137/82 mmHg, with a range of 124-155/56-95 mmHg. Only one patient has required an unexplainable increase in antihypertensive medication. Grafts (2/11) were lost and both had chronic rejection on histology. There were no unexplained
Chua, Gim Chuah; Snowden, Sue; Patel, Uday
2004-01-01
Significant transplant renal artery stenosis (TRAS) results in an intraarterial pressure gradient and increasing graft dysfunction correctable by endovascular therapy. Kinks of the transplant artery cause velocity gradients on Doppler ultrasound, but some will have no intraarterial pressure gradient across the kink. It is not known whether these nonflow limiting kinks progress further to threaten graft function and should undergo endovascular correction. This is a longitudinal study of conservatively managed arterial kinks to define their natural history. Fourteen patients who had undergone angiography over a 5-year period for suspected TRAS had kinks of the renal artery. True intraarterial pressures were measured in all cases by slow withdrawal of an end-hole catheter after intraarterial injection of a vasodilator. Those with a significant pressure change (> or =10% change in peak systolic pressure across the area of suspicion) underwent endovascular treatment. The rest were managed conservatively, with maximal antihypertensive therapy. Outcome of all 14 cases was determined by follow-up of creatinine levels, blood pressure (BP) control and graft outcome over a 3-5-year period (median 4 years). Of the 14 patients with kinks, 10 were male and 4 female; age range 23-67 years (mean 47 years). Eleven had received cadaveric transplants and 3 were allografts; 12 had end-to-side and 2 end-to-end anastomosis, 11/14 cases had an intraarterial pressure ratio of <10% and at median 4 years follow-up on conservative treatment, the serum creatinine of these 11 patients did not differ significantly from those who underwent successful endovascular treatment (mean 118 micromol/l versus 149 micromol/l; p = 0.30, Mann Whitney test). Mean blood pressure was 137/82 mmHg, with a range of 124-155/56-95 mmHg. Only one patient has required an unexplainable increase in antihypertensive medication. Grafts (2/11) were lost and both had chronic rejection on histology. There were no
Sign Learning Kink-based (SiLK) Quantum Monte Carlo for molecular systems
Ma, Xiaoyao; Hall, Randall W.; Löffler, Frank; Kowalski, Karol; Bhaskaran-Nair, Kiran; Jarrell, Mark; Moreno, Juana
2016-01-07
The Sign Learning Kink (SiLK) based Quantum Monte Carlo (QMC) method is used to calculate the ab initio ground state energies for multiple geometries of the H{sub 2}O, N{sub 2}, and F{sub 2} molecules. The method is based on Feynman’s path integral formulation of quantum mechanics and has two stages. The first stage is called the learning stage and reduces the well-known QMC minus sign problem by optimizing the linear combinations of Slater determinants which are used in the second stage, a conventional QMC simulation. The method is tested using different vector spaces and compared to the results of other quantum chemical methods and to exact diagonalization. Our findings demonstrate that the SiLK method is accurate and reduces or eliminates the minus sign problem.
Sign Learning Kink-based (SiLK) Quantum Monte Carlo for molecular systems
Ma, Xiaoyao; Hall, Randall W.; Löffler, Frank; Kowalski, Karol; Bhaskaran-Nair, Kiran; Jarrell, Mark; Moreno, Juana
2016-01-07
The Sign Learning Kink (SiLK) based Quantum Monte Carlo (QMC) method is used to calculate the ab initio ground state energies for multiple geometries of the H2O, N2, and F2 molecules. The method is based on Feynman’s path integral formulation of quantum mechanics and has two stages. The first stage is called the learning stage and reduces the well-known QMC minus sign problem by optimizing the linear combinations of Slater determinants which are used in the second stage, a conventional QMC simulation. The method is tested using different vector spaces and compared to the results of other quantum chemical methods and to exact diagonalization. Our findings demonstrate that the SiLK method is accurate and reduces or eliminates the minus sign problem.
Analysis of Beam-Beam Kink Instability in a Linac-Ring Electron-Ion Collider
V. Lebedev; J. Bisognano; R. Li; B. Yunn
2001-06-01
A linac-ring collision scheme was considered in recent proposals of electron-gold colliders (eRHIC) and polarized-electron light-ion colliders (EPIC). The advantages of using an energy-recovered linac for the electron beam is that it avoids the limitation of beam-beam tune shift inherent in a storage ring, pertains good beam quality and easy manipulation of polarization. However, the interaction of the ion beam in the storage ring with the electron beam from the linac acts analogously to a transverse impedance, and can induce unstable behavior of the ion beam similar to the strong head-tail instability. In this paper, this beam-beam kink instability with head-tail effect is analyzed using the linearized Vlasov equation, and the threshold of transverse mode coupling instability is obtained.
The role of resistivity on line-tied kink modes in cylindrical geometry
Delzanno, G. L.; Evstatiev, E. G.; Finn, J. M.
2007-07-15
An investigation of the effect of resistivity on linear line-tied kink modes is presented in cylindrical geometry. A region near marginal stability, where the line-tied system is stable in ideal magnetohydrodynamics but unstable with resistivity, is shown. In this region, the growth rate is found to be proportional to resistivity. There is no signature of the tearing-like scaling, which occurs in the corresponding system with periodic boundary conditions, or of the formation of boundary layers near the end plates. Instead, the resistive scaling is due to global resistivity, leading to imperfect line-tying. This feature is common to equilibrium pitch profiles that increase or decrease monotonically with radius and is not influenced by viscosity.
Scaled laboratory experiments explain the kink behaviour of the Crab Nebula jet.
Li, C K; Tzeferacos, P; Lamb, D; Gregori, G; Norreys, P A; Rosenberg, M J; Follett, R K; Froula, D H; Koenig, M; Seguin, F H; Frenje, J A; Rinderknecht, H G; Sio, H; Zylstra, A B; Petrasso, R D; Amendt, P A; Park, H S; Remington, B A; Ryutov, D D; Wilks, S C; Betti, R; Frank, A; Hu, S X; Sangster, T C; Hartigan, P; Drake, R P; Kuranz, C C; Lebedev, S V; Woolsey, N C
2016-10-07
The remarkable discovery by the Chandra X-ray observatory that the Crab nebula's jet periodically changes direction provides a challenge to our understanding of astrophysical jet dynamics. It has been suggested that this phenomenon may be the consequence of magnetic fields and magnetohydrodynamic instabilities, but experimental demonstration in a controlled laboratory environment has remained elusive. Here we report experiments that use high-power lasers to create a plasma jet that can be directly compared with the Crab jet through well-defined physical scaling laws. The jet generates its own embedded toroidal magnetic fields; as it moves, plasma instabilities result in multiple deflections of the propagation direction, mimicking the kink behaviour of the Crab jet. The experiment is modelled with three-dimensional numerical simulations that show exactly how the instability develops and results in changes of direction of the jet.
Fast Particle Effects on the Internal Kink, Fishbone and Alfven Modes
N.N. Gorelenkov; S. Bernabei; C.Z. Cheng; G.Y. Fu; K. Hill; S. Kaye; G.J. Kramer; Y. Kusama; K. Shinohara; R. Nazikian; T. Ozeki; W. Park
2000-11-15
The issues of linear stability of low frequency perturbative and nonperturbative modes in advanced tokamak regimes are addressed based on recent developments in theory, computational methods, and progress in experiments. Perturbative codes NOVA and ORBIT are used to calculate the effects of TAEs on fast particle population in spherical tokamak NSTX. Nonperturbative analysis of chirping frequency modes in experiments on TFTR and JT-60U is presented using the kinetic code HINST, which identified such modes as a separate branch of Alfven modes - resonance TAE (R-TAE). Internal kink mode stability in the presence of fast particles is studied using the NOVA code and hybrid kinetic-MHD nonlinear code M3D.
Scaled laboratory experiments explain the kink behaviour of the Crab Nebula jet
Li, C. K.; Tzeferacos, P.; Lamb, D.; Gregori, G.; Norreys, P. A.; Rosenberg, M. J.; Follett, R. K.; Froula, D. H.; Koenig, M.; Seguin, F. H.; Frenje, J. A.; Rinderknecht, H. G.; Sio, H.; Zylstra, A. B.; Petrasso, R. D.; Amendt, P. A.; Park, H. S.; Remington, B. A.; Ryutov, D. D.; Wilks, S. C.; Betti, R.; Frank, A.; Hu, S. X.; Sangster, T. C.; Hartigan, P.; Drake, R. P.; Kuranz, C. C.; Lebedev, S. V.; Woolsey, N. C.
2016-01-01
The remarkable discovery by the Chandra X-ray observatory that the Crab nebula's jet periodically changes direction provides a challenge to our understanding of astrophysical jet dynamics. It has been suggested that this phenomenon may be the consequence of magnetic fields and magnetohydrodynamic instabilities, but experimental demonstration in a controlled laboratory environment has remained elusive. Here we report experiments that use high-power lasers to create a plasma jet that can be directly compared with the Crab jet through well-defined physical scaling laws. The jet generates its own embedded toroidal magnetic fields; as it moves, plasma instabilities result in multiple deflections of the propagation direction, mimicking the kink behaviour of the Crab jet. The experiment is modelled with three-dimensional numerical simulations that show exactly how the instability develops and results in changes of direction of the jet. PMID:27713403
Scaled laboratory experiments explain the kink behaviour of the Crab Nebula jet
NASA Astrophysics Data System (ADS)
Li, C. K.; Tzeferacos, P.; Lamb, D.; Gregori, G.; Norreys, P. A.; Rosenberg, M. J.; Follett, R. K.; Froula, D. H.; Koenig, M.; Seguin, F. H.; Frenje, J. A.; Rinderknecht, H. G.; Sio, H.; Zylstra, A. B.; Petrasso, R. D.; Amendt, P. A.; Park, H. S.; Remington, B. A.; Ryutov, D. D.; Wilks, S. C.; Betti, R.; Frank, A.; Hu, S. X.; Sangster, T. C.; Hartigan, P.; Drake, R. P.; Kuranz, C. C.; Lebedev, S. V.; Woolsey, N. C.
2016-10-01
The remarkable discovery by the Chandra X-ray observatory that the Crab nebula's jet periodically changes direction provides a challenge to our understanding of astrophysical jet dynamics. It has been suggested that this phenomenon may be the consequence of magnetic fields and magnetohydrodynamic instabilities, but experimental demonstration in a controlled laboratory environment has remained elusive. Here we report experiments that use high-power lasers to create a plasma jet that can be directly compared with the Crab jet through well-defined physical scaling laws. The jet generates its own embedded toroidal magnetic fields; as it moves, plasma instabilities result in multiple deflections of the propagation direction, mimicking the kink behaviour of the Crab jet. The experiment is modelled with three-dimensional numerical simulations that show exactly how the instability develops and results in changes of direction of the jet.
Helical kink instability in the confined solar eruption on 2002 May 27
NASA Astrophysics Data System (ADS)
Hassanin, A.; Kliem, B.; Seehafer, N.
2016-11-01
This paper presents an improved MHD modeling of the confined filament eruption in solar active region NOAA 9957 on 2002 May 27 by extending the parametric studies of the event in \\citet{Torok&Kliem2005} and \\citet{Hassanin&Kliem2016}. Here the initial flux rope equilibrium is chosen to possess a small apex height identical to the observed initial filament height, which implies a more realistic inclusion of the photospheric line tying. The model matches the observations as closely as in the preceding studies, with the closest agreement again being obtained for an initial average flux rope twist of about 4π. Thus, the model for strongly writhing confined solar eruptions, which assumes that a kink-unstable flux rope in the stability domain of the torus instability exists at the onset of the eruption's main acceleration phase, is further substantiated.
Spinal Cord Kinking in Thoracic Myelopathy Caused by Ossification of the Ligamentum Flavum
Wang, Ting; Pan, Min; Yin, Chu-Qiang; Zheng, Xiu-Jun; Cong, Ya-Nan; Wang, De-Chun; Li, Shu-Zhong
2015-01-01
Background: Ossification of the ligamentum flavum (OLF) is being increasingly recognized as a cause of thoracic myelopathy. This study was to describe a rare clinical entity of spinal cord kinking (SK) in thoracic myelopathy secondary to OLF. Methods: The data of 95 patients with thoracic myelopathy secondary to OLF were analyzed retrospectively. The incidence and location of SK were determined using preoperative magnetic resonance imaging (MRI). The clinical presentation and radiological characteristics in patients with SK were analyzed. Posterior en bloc laminectomy with OLF was performed, and the surgical results were evaluated. Results: SK was found in seven patients (7.4%) based on preoperative MRI. The patients included one male and six females with an average age of 55.6 years (range, 48–64 years). Five patients presented with radiculomyelopathy and two presented with typical thoracic myelopathy of spastic paraparesis. In all cases, the kinking was located just above the end of the spinal cord where the conus medullaris (CM) was compressed by the OLF. The degree of SK varied from mild to severe. The tip of the CM was located between the upper third of T11 to the lower third of L1, above the lower edge of L1. With an average follow-up of 30.4 months, the modified Japanese Orthopedic Association score significantly improved from 5.7 ± 1.8 preoperatively to 8.9 ± 1.4 postoperatively (t = 12.05; P < 0.0001) with an improvement rate of 63.1 ± 12.3%. Conclusions: SK is a rare radiological phenomenon. It is typically located at the thoracolumbar junction, where the CM is compressed by the OLF. Our findings indicate that these patients may benefit from a posterior decompressive procedure. PMID:26415796
Qing, Quan; Jiang, Zhe; Xu, Lin; Gao, Ruixuan; Mai, Liqiang; Lieber, Charles M.
2013-01-01
Recording intracellular bioelectrical signals is central to understanding the fundamental behaviour of cells and cell-networks in, for example, neural and cardiac systems1–4. The standard tool for intracellular recording, the patch-clamp micropipette5 is widely applied, yet remains limited in terms of reducing the tip size, the ability to reuse the pipette5, and ion exchange with the cytoplasm6. Recent efforts have been directed towards developing new chip-based tools1–4,7–13, including micro-to-nanoscale metal pillars7–9, transistor-based kinked nanowire10,11 and nanotube devices12,13. These nanoscale tools are interesting with respect to chip-based multiplexing, but, to date, preclude targeted recording from specific cell regions and/or subcellular structures. Here we overcome this limitation in a general manner by fabricating free-standing probes where a kinked silicon nanowire with encoded field-effect transistor detector serves as the tip end. These probes can be manipulated in three dimensions (3D) within a standard microscope to target specific cells/cell regions, and record stable full-amplitude intracellular action potentials from different targeted cells without the need to clean or change the tip. Simultaneous measurements from the same cell made with free-standing nanowire and patch-clamp probes show that the same action potential amplitude and temporal properties are recorded without corrections to the raw nanowire signal. In addition, we demonstrate real-time monitoring of changes in the action potential as different ion-channel blockers are applied to cells, and multiplexed recording from cells by independent manipulation of two free-standing nanowire probes. PMID:24336402
Model fitting of kink waves in the solar atmosphere: Gaussian damping and time-dependence
NASA Astrophysics Data System (ADS)
Morton, R. J.; Mooroogen, K.
2016-09-01
Aims: Observations of the solar atmosphere have shown that magnetohydrodynamic waves are ubiquitous throughout. Improvements in instrumentation and the techniques used for measurement of the waves now enables subtleties of competing theoretical models to be compared with the observed waves behaviour. Some studies have already begun to undertake this process. However, the techniques employed for model comparison have generally been unsuitable and can lead to erroneous conclusions about the best model. The aim here is to introduce some robust statistical techniques for model comparison to the solar waves community, drawing on the experiences from other areas of astrophysics. In the process, we also aim to investigate the physics of coronal loop oscillations. Methods: The methodology exploits least-squares fitting to compare models to observational data. We demonstrate that the residuals between the model and observations contain significant information about the ability for the model to describe the observations, and show how they can be assessed using various statistical tests. In particular we discuss the Kolmogorov-Smirnoff one and two sample tests, as well as the runs test. We also highlight the importance of including any observational trend line in the model-fitting process. Results: To demonstrate the methodology, an observation of an oscillating coronal loop undergoing standing kink motion is used. The model comparison techniques provide evidence that a Gaussian damping profile provides a better description of the observed wave attenuation than the often used exponential profile. This supports previous analysis from Pascoe et al. (2016, A&A, 585, L6). Further, we use the model comparison to provide evidence of time-dependent wave properties of a kink oscillation, attributing the behaviour to the thermodynamic evolution of the local plasma.
Guo, Y.; Hao, Q.; Cheng, X.; Chen, P. F.; Ding, M. D.; Erdélyi, R.; Srivastava, A. K.; Dwivedi, B. N.
2015-02-01
We report the observation of the first two harmonics of the horizontally polarized kink waves excited in a coronal loop system lying southeast of AR 11719 on 2013 April 11. The detected periods of the fundamental mode (P {sub 1}), its first overtone (P {sub 2}) in the northern half, and that in the southern one are 530.2 ± 13.3, 300.4 ± 27.7, and 334.7 ± 22.1 s, respectively. The periods of the first overtone in the two halves are the same considering uncertainties in the measurement. We estimate the average electron density, temperature, and length of the loop system as (5.1 ± 0.8) × 10{sup 8} cm{sup –3}, 0.65 ± 0.06 MK, and 203.8 ± 13.8 Mm, respectively. As a zeroth-order estimation, the magnetic field strength, B = 8.2 ± 1.0 G, derived by the coronal seismology using the fundamental kink mode matches with that derived by a potential field model. The extrapolation model also shows the asymmetric and nonuniform distribution of the magnetic field along the coronal loop. Using the amplitude profile distributions of both the fundamental mode and its first overtone, we observe that the antinode positions of both the fundamental mode and its first overtone shift toward the weak field region along the coronal loop. The results indicate that the density stratification and the temperature difference effects are larger than the magnetic field variation effect on the period ratio. On the other hand, the magnetic field variation has a greater effect on the eigenfunction of the first overtone than the density stratification does for this case.
Stabilization of the external kink and other MHD issues. Summary report
Freidberg, J.P.; Goldston, R.J.; Jardin, S.C.; Neilson, G.H.; Rosenbluth, M.N.; Taylor, T.S.; Thomassen, K.I.
1993-08-13
An MHD workshop entitled ``Stabilization of the External Kink and Other MHD Issues`` was held June 1993. This is a summary report of activities at that workshop, structured to respond to the three questions in the charge (letter from J. Willis). The experimental and theoretical status of these issues, and the R&D needs in each area, are addressed. We discuss the potential impact on the TPX and ITER programs of these issues. The workshop participants came from a broad and diverse range of institutions in the fusion program, including international participants. As a result, we believe the summary here reflects some consensus of the community on these very important program issues, and that the TPX and ITER programs will benefit from these discussions. The title of the workshop was chosen to indicate both our knowledge and our uncertainty of MHD phenomena limiting {beta} and causing disruptions in tokamaks. The purpose was to bring together theorists and experimentalist in order to assess our current understanding of the external kink instability at high {beta}, and to assess the potential for passive or active stabilization of the dominant modes. We also outlined the R&D needed for TPX and other future devices. Not only was the preworkshop theory clearly presented, but significant new theoretical results were described for the first time, emphasizing the roles of the resistivity of the cold edge plasma and of the plasma toroidicity in the stability criteria. Excellent reviews of the effects of the vessel walls on plasma stability were given as related to the DIII-D, TFTR, JET, PBX-M, and HBT-EP experiments. These results are generally consistent with the more complete theory.
Functional Symmetry of Endomembranes
2007-01-01
In higher eukaryotic cells pleiomorphic compartments composed of vacuoles, tubules and vesicles move from the endoplasmic reticulum (ER) and the plasma membrane to the cell center, operating in early biosynthetic trafficking and endocytosis, respectively. Besides transporting cargo to the Golgi apparatus and lysosomes, a major task of these compartments is to promote extensive membrane recycling. The endocytic membrane system is traditionally divided into early (sorting) endosomes, late endosomes and the endocytic recycling compartment (ERC). Recent studies on the intermediate compartment (IC) between the ER and the Golgi apparatus suggest that it also consists of peripheral (“early”) and centralized (“late”) structures, as well as a third component, designated here as the biosynthetic recycling compartment (BRC). We propose that the ERC and the BRC exist as long-lived “mirror compartments” at the cell center that also share the ability to expand and become mobilized during cell activation. These considerations emphasize the functional symmetry of endomembrane compartments, which provides a basis for the membrane rearrangements taking place during cell division, polarization, and differentiation. PMID:17267686
Paz-Borbón, Lauro Oliver; Mortimer-Jones, Thomas V; Johnston, Roy L; Posada-Amarillas, Alvaro; Barcaro, Giovanni; Fortunelli, Alessandro
2007-10-14
The energetics of 98 atom bimetallic Pd-Pt clusters are studied using a combination of: a genetic algorithm technique (to explore vast areas of the configurational space); a basin-hopping atom-exchange routine (to search for lowest-energy homotops at fixed composition); and a shell optimisation approach (to search for high symmetry isomers). The interatomic interactions between Pd and Pt are modelled by the Gupta many-body empirical potential. For most compositions, the putative global minima are found to have structures based on defective Marks decahedra, but in the composition range from Pd46Pt52 to Pd63Pt35, the Leary tetrahedron (LT)--a structure previously identified for 98 atom Lennard-Jones clusters--is consistently found as the most stable structure. Based on the excess energy stability criterion, Pd56Pt42 represents the most stable cluster across the entire composition range. This structure, a Td-symmetry LT, exhibits multi-layer segregation with an innermost core of Pd atoms, an intermediate layer of Pt atoms and an outermost Pd surface shell (Pd-Pt-Pd). The stability of the Leary tetrahedron is compared against other low-energy competing structural motifs: the Marks decahedron (Dh-M), a "quasi" tetrahedron (a closed-packed structure) and two other closed-packed structures. The stability of LT structures is rationalized in terms of their spherical shape and the large number of nearest neighbours.
Symmetry algebras of linear differential equations
NASA Astrophysics Data System (ADS)
Shapovalov, A. V.; Shirokov, I. V.
1992-07-01
The local symmetries of linear differential equations are investigated by means of proven theorems on the structure of the algebra of local symmetries of translationally and dilatationally invariant differential equations. For a nonparabolic second-order equation, the absence of nontrivial nonlinear local symmetries is proved. This means that the local symmetries reduce to the Lie algebra of linear differential symmetry operators. For the Laplace—Beltrami equation, all local symmetries reduce to the enveloping algebra of the algebra of the conformal group.
NASA Astrophysics Data System (ADS)
Srivastava, A. K.; Singh, Talwinder; Ofman, Leon; Dwivedi, Bhola N.
2016-12-01
We analyse the observations from Solar TErrestrial RElations Observatory (STEREO) of an oscillating coronal streamer. STEREO-B Extreme Ultraviolet Imaging (EUVI) temporal data on 2012 March 7 show an evolution of two consecutive EUV waves that interact with footpoint of a coronal streamer clearly evident in the co-spatial and co-temporal STEREO-B/COR-1 observations. The waves are observed in the STEREO-B/EUVI too, and its apparent energy exchange with coronal streamer generates kink oscillations. We apply the methodology of magnetohydrodynamic (MHD) seismology of the observed waves and determine the magnetic field profile of the coronal streamer. In particular, we estimate the phase velocities of the kink wave perturbations by tracking them at different heights. We also estimate electron densities inside and outside the streamer using spherically symmetric inversion of polarized brightness images in STEREO-B/COR-1. We detect two large-scale kink wave oscillations that diagnose exponentially decaying radial profiles of magnetic field in streamer up to 3 solar radii. Within the limit of observational and systematic uncertainties, we find that magnetic field of streamer varies slowly at various heights, although its nature always remains exponentially decaying with height. It is seen that during evolution of second kink motion in streamer, it increases in brightness (thus mass density), and also in areal extent slightly, which may be associated with decreased photospheric magnetic flux at footpoint of streamer. As a result, magnetic field profile produced by second kink wave is reduced within streamer compared to the one diagnosed by the first one.
Study on the preparation of Pt nanocapsules
NASA Astrophysics Data System (ADS)
Zhang, Yi-fan; Ji, Zhen; Chen, Ke; Liu, Bo-wen; Jia, Cheng-chang; Yang, Shan-wu
2017-01-01
Ag@Pt core-shell nanoparticles (Ag@Pt NPs) were prepared by a co-reduction method. Pt nanocapsules with diameters of less than 10 nm were obtained by an electrochemical method. Cyclic voltammetry (CV) scanning was used to cavitate the Ag@Pt NPs, and the morphology, structure, and cavitation conditions were studied. The results indicate that the effective cavitation conditions to obtain Pt nanoparticles from Ag@Pt NPs are a scanning voltage of 0 to 0.8 V and continuous CV scanning over 2 h. This cavitation method is also applicable for the syntheses of Ir, Ru, and Ru-Pt nanocapsules.
NASA Astrophysics Data System (ADS)
Weber, Norbert; Galindo, Vladimir; Stefani, Frank; Weier, Tom
2015-11-01
The Tayler instability is a kink-type, current driven instability that plays an important role in plasma physics but might also be relevant in liquid metal applications with high electrical currents. In the framework of the Tayler-Spruit dynamo model of stellar magnetic field generation (Spruit 2002 Astron. Astrophys. 381 923-32), the question of spontaneous helical (chiral) symmetry breaking during the saturation of the Tayler instability has received considerable interest (Zahn et al 2007 Astron. Astrophys. 474 145-54 Gellert et al 2011 Mon. Not. R. Astron. Soc. 414 2696-701 Bonanno et al 2012 Phys. Rev. E 86 016313). Focusing on fluids with low magnetic Prandtl numbers, for which the quasistatic approximation can be applied, we utilize an integro-differential equation approach (Weber et al 2013 New J. Phys.15 043034) in order to investigate the saturation mechanism of the Tayler instability. Both the exponential growth phase and the saturated phase are analysed in terms of the action of the α and β effects of mean-field magnetohydrodynamics. In the exponential growth phase we always find a spontaneous chiral symmetry breaking which, however, disappears in the saturated phase. For higher degrees of supercriticality, we observe helicity oscillations in the saturated regime. For Lundquist numbers in the order of one we also obtain chiral symmetry breaking of the saturated magnetic field.
Quantum criticality in an Ising chain: experimental evidence for emergent E8 symmetry.
Coldea, R; Tennant, D A; Wheeler, E M; Wawrzynska, E; Prabhakaran, D; Telling, M; Habicht, K; Smeibidl, P; Kiefer, K
2010-01-08
Quantum phase transitions take place between distinct phases of matter at zero temperature. Near the transition point, exotic quantum symmetries can emerge that govern the excitation spectrum of the system. A symmetry described by the E8 Lie group with a spectrum of eight particles was long predicted to appear near the critical point of an Ising chain. We realize this system experimentally by using strong transverse magnetic fields to tune the quasi-one-dimensional Ising ferromagnet CoNb2O6 (cobalt niobate) through its critical point. Spin excitations are observed to change character from pairs of kinks in the ordered phase to spin-flips in the paramagnetic phase. Just below the critical field, the spin dynamics shows a fine structure with two sharp modes at low energies, in a ratio that approaches the golden mean predicted for the first two meson particles of the E8 spectrum. Our results demonstrate the power of symmetry to describe complex quantum behaviors.
Electroweak Symmetry Breaking: With Dynamics
Chivukula, R. Sekhar
2005-03-22
In this note I provide a brief description of models of dynamical electroweak symmetry breaking, including walking technicolor, top-color assisted technicolor, the top-quark seesaw model, and little higgs theories.
Classification of spacetimes with symmetry
NASA Astrophysics Data System (ADS)
Hicks, Jesse W.
Spacetimes with symmetry play a critical role in Einstein's Theory of General Relativity. Missing from the literature is a correct, usable, and computer accessible classification of such spacetimes. This dissertation fills this gap; specifically, we. i) give a new and different approach to the classification of spacetimes with symmetry using modern methods and tools such as the Schmidt method and computer algebra systems, resulting in ninety-two spacetimes; ii) create digital databases of the classification for easy access and use for researchers; iii) create software to classify any spacetime metric with symmetry against the new database; iv) compare results of our classification with those of Petrov and find that Petrov missed six cases and incorrectly normalized a significant number of metrics; v) classify spacetimes with symmetry in the book Exact Solutions to Einstein's Field Equations Second Edition by Stephani, Kramer, Macallum, Hoenselaers, and Herlt and in Komrakov's paper Einstein-Maxwell equation on four-dimensional homogeneous spaces using the new software.
Symmetries from the solution manifold
NASA Astrophysics Data System (ADS)
Aldaya, Víctor; Guerrero, Julio; Lopez-Ruiz, Francisco F.; Cossío, Francisco
2015-07-01
We face a revision of the role of symmetries of a physical system aiming at characterizing the corresponding Solution Manifold (SM) by means of Noether invariants as a preliminary step towards a proper, non-canonical, quantization. To this end, "point symmetries" of the Lagrangian are generally not enough, and we must resort to the more general concept of contact symmetries. They are defined in terms of the Poincaré-Cartan form, which allows us, in turn, to find the symplectic structure on the SM, through some sort of Hamilton-Jacobi (HJ) transformation. These basic symmetries are realized as Hamiltonian vector fields, associated with (coordinate) functions on the SM, lifted back to the Evolution Manifold through the inverse of this HJ mapping, that constitutes an inverse of the Noether Theorem. The specific examples of a particle moving on S3, at the mechanical level, and nonlinear SU(2)-sigma model in field theory are sketched.
Partial Dynamical Symmetry in Molecules
NASA Astrophysics Data System (ADS)
Ping, Jia-Lun; Chen, Jin-Quan
1997-03-01
It is shown that any Hamiltonian involving only one- and two-bond interactions for a molecule withnbonds and having a point groupPas its symmetry group may have theSn⊃Ppartial dynamical symmetry, i.e., the Hamiltonian can be solved analytically for a part of the states, called the unique states. For example, theXY6molecule has theS6⊃Ohpartial dynamical symmetry. The model of Iachello and Oss forncoupled anharmonic oscillators is revisited in terms of the partial dynamical symmetry. The energies are obtained analytically for the nine unique levels of theXY6molecule and the structures of the eigenstates are disclosed for the first time, while for non-unique states they are obtained by diagonalizing the Hamiltonian in theS6⊃Ohsymmetry adapted basis with greatly reduced dimension.
Broken Symmetries and Magnetic Dynamos
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2007-01-01
Phase space symmetries inherent in the statistical theory of ideal magnetohydrodynamic (MHD) turbulence are known to be broken dynamically to produce large-scale coherent magnetic structure. Here, results of a numerical study of decaying MHD turbulence are presented that show large-scale coherent structure also arises and persists in the presence of dissipation. Dynamically broken symmetries in MHD turbulence may thus play a fundamental role in the dynamo process.
Possible violations of spacetime symmetries
NASA Astrophysics Data System (ADS)
Urrutia, Luis
2016-10-01
The identification of symmetries has played a fundamental role in our understanding of physical phenomena. Nevertheless, in most cases such symmetries constitute only a zeroth-order approximation and they need to be broken so that the predictions of the theory are consistent with experimental observation. In particular, the almost sacred CPT and Lorentz symmetries, which are certainly part of the fundamental ideas of modern physics, need to be probed experimentally. Recently, such efforts have been intensified because different theoretical approaches aiming to understand the microstructure of space-time suggest the possibility that such symmetries could present minute violations. Up to now, and with increasing experimental sensitivities, no signs of violation have been found. Nevertheless, we observe that even the persistence of such negative results will have a profound impact. On one hand, they will provide those symmetries with a firm experimental basis. On the other, they will set stringent experimental bounds to be compared with the possible emergence of such violations in quantum gravity models based upon a discrete structure of space. We present a very general perspective of the research on Lorentz symmetry breaking, together with a review of a few specific topics.
Non-local magnetoresistance in YIG/Pt nanostructures
Goennenwein, Sebastian T. B. Pernpeintner, Matthias; Gross, Rudolf; Huebl, Hans; Schlitz, Richard; Ganzhorn, Kathrin; Althammer, Matthias
2015-10-26
We study the local and non-local magnetoresistance of thin Pt strips deposited onto yttrium iron garnet. The local magnetoresistive response, inferred from the voltage drop measured along one given Pt strip upon current-biasing it, shows the characteristic magnetization orientation dependence of the spin Hall magnetoresistance. We simultaneously also record the non-local voltage appearing along a second, electrically isolated, Pt strip, separated from the current carrying one by a gap of a few 100 nm. The corresponding non-local magnetoresistance exhibits the symmetry expected for a magnon spin accumulation-driven process, confirming the results recently put forward by Cornelissen et al. [“Long-distance transport of magnon spin information in a magnetic insulator at room temperature,” Nat. Phys. (published online 14 September 2015)]. Our magnetotransport data, taken at a series of different temperatures as a function of magnetic field orientation, rotating the externally applied field in three mutually orthogonal planes, show that the mechanisms behind the spin Hall and the non-local magnetoresistance are qualitatively different. In particular, the non-local magnetoresistance vanishes at liquid Helium temperatures, while the spin Hall magnetoresistance prevails.
Symmetry in polarimetric remote sensing
NASA Technical Reports Server (NTRS)
Nghiem, S. V.; Yueh, S. H.; Kwok, R.
1993-01-01
Relationships among polarimetric backscattering coefficients are derived from the viewpoint of symmetry groups. For both reciprocal and non-reciprocal media, symmetry encountered in remote sensing due to reflection, rotation, azimuthal, and centrical symmetry groups is considered. The derived properties are general and valid to all scattering mechanisms, including volume and surface scatterings and their interactions, in a given symmetrical configuration. The scattering coefficients calculated from theoretical models for layer random media and rough surfaces are shown to obey the symmetry relations. Use of symmetry properties in remote sensing of structural and environmental responses of scattering media is also discussed. Orientations of spheroidal scatterers described by spherical, uniform, planophile, plagiothile, erectophile, and extremophile distributions are considered to derive their polarimetric backscattering characteristics. These distributions can be identified from the observed scattering coefficients by comparison with theoretical symmetry calculations. A new parameter is then defined to study scattering structures in geophysical media. Observations from polarimetric data acquired by the Jet Propulsion Laboratory airborne synthetic aperture radar over forests, sea ice, and sea surface are presented. Experimental evidences of the symmetry relationships are shown and their use in polarimetric remote sensing is illustrated. For forests, the coniferous forest in Mt. Shasta area (California) and mixed forest near Presque Isle (Maine) exhibit characteristics of the centrical symmetry at C-band. For sea ice in the Beaufort Sea, multi-year sea ice has a cross-polarized ratio e close to e(sub 0), calculated from symmetry, due to the randomness in the scattering structure. First-year sea ice has e much smaller than e(sub 0) due to the preferential alignment of the columnar structure of the ice. From polarimetric data of a sea surface in the Bering Sea, it is
Kevrekidis, Panayotis G.; Cuevas–Maraver, Jesús; Saxena, Avadh; Cooper, Fred; Khare, Avinash
2015-10-01
In the present work, we combine the notion of parity-time (PT) symmetry with that of supersymmetry (SUSY) for a prototypical case example with a complex potential that is related by SUSY to the so-called Pöschl-Teller potential which is real. Not only are we able to identify and numerically confirm the eigenvalues of the relevant problem, but we also show that the corresponding nonlinear problem, in the presence of an arbitrary power-law nonlinearity, has an exact bright soliton solution that can be analytically identified and has intriguing stability properties, such as an oscillatory instability, which is absent for the corresponding solution of the regular nonlinear Schrödinger equation with arbitrary power-law nonlinearity. The spectral properties and dynamical implications of this instability are examined. Furthermore, we believe that these findings may pave the way toward initiating a fruitful interplay between the notions of PT symmetry, supersymmetric partner potentials, and nonlinear interactions.
Kevrekidis, Panayotis G; Cuevas-Maraver, Jesús; Saxena, Avadh; Cooper, Fred; Khare, Avinash
2015-10-01
In the present work, we combine the notion of parity-time (PT) symmetry with that of supersymmetry (SUSY) for a prototypical case example with a complex potential that is related by SUSY to the so-called Pöschl-Teller potential which is real. Not only are we able to identify and numerically confirm the eigenvalues of the relevant problem, but we also show that the corresponding nonlinear problem, in the presence of an arbitrary power-law nonlinearity, has an exact bright soliton solution that can be analytically identified and has intriguing stability properties, such as an oscillatory instability, which is absent for the corresponding solution of the regular nonlinear Schrödinger equation with arbitrary power-law nonlinearity. The spectral properties and dynamical implications of this instability are examined. We believe that these findings may pave the way toward initiating a fruitful interplay between the notions of PT symmetry, supersymmetric partner potentials, and nonlinear interactions.
Atomic structure, alloying behavior, and magnetism in small Fe-Pt clusters
NASA Astrophysics Data System (ADS)
Chittari, Bheema Lingam; Kumar, Vijay
2015-09-01
We report results of the atomic structure, alloying behavior, and magnetism in F emP tn(m +n =2 -10 ) clusters using projector augmented wave (PAW) pseudopotential method and spin-polarized generalized gradient approximation (GGA) for the exchange-correlation energy. These results are compared with those obtained by using HCTH exchange-correlation functional and LANL2DZ basis set in the Gaussian program and the overall trends are found to be similar. As in bulk Fe-Pt alloys, clusters with equal composition of Fe and Pt have the largest binding energy and the largest heat of nanoalloy formation for a given number of atoms in the cluster. There are some deviations due to the different symmetries in clusters and in cases where the total number of atoms is odd. The lowest energy isomers tend to maximize bonds between unlike atoms with Fe (Pt) atoms occupying high (low) coordination sites in the core (surface) of the cluster. The binding energy, heat of formation, and the second order difference of the total energy show F e2P t2 , F e4P t4 , and F e4P t6 clusters to be the most stable ones among the different clusters we have studied. The magnetic moments on Fe atoms are high in Pt-rich clusters as well as in small Fe-rich clusters and decrease as the aggregation of Fe atoms and the cluster size increases. The maximum value of the magnetic moments on Fe atoms is ˜3.8 μB , whereas for Pt atoms it is 1 μB. These are quite high compared with the values for bulk Fe as well as bulk FePt and F e3Pt phases while bulk Pt is nonmagnetic. There is significant charge transfer from those Fe atoms that interact directly with Pt atoms. We discuss the hybridization between the electronic states of Pt and Fe atoms as well as the variation in the magnetic moments on Fe and Pt atoms. Our results provide insight into the understanding of the nanoalloy behavior of Fe-Pt and we hope that this would help to design Fe based nanoalloys and their assemblies with high magnetic moments for
Ring-whizzing in polyene-PtL2 complexes revisited
Oloba-Whenu, Oluwakemi A; Soubra-Ghaoui, Chirine
2016-01-01
Summary Ring-whizzing was investigated by hybrid DFT methods in a number of polyene–Pt(diphosphinylethane) complexes. The polyenes included cyclopropenium+, cyclobutadiene, cyclopentadienyl+, hexafluorobenzene, cycloheptatrienyl+, cyclooctatetraene, octafluorooctatetraene, 6-radialene, pentalene, phenalenium+, naphthalene and octafluoronaphthalene. The HOMO of a d10 ML2 group (with b2 symmetry) interacting with the LUMO of the polyene was used as a model to explain the occurrence of minima and maxima on the potential energy surface. PMID:27559391
Tuning band alignment using interface dipoles at the Pt/anatase TiO2 interface
Tachikawa, Takashi; Minohara, Makoto; Hikita, Yasuyuki; ...
2015-10-27
The Schottky barrier heights at the Pt/TiO2 (001) junctions are modulated over 0.8 eV by inserting <1 nm of LaAlO3. The large electric field in the LaAlO3 is stabilized by preserving the continuity of in-plane lattice symmetry at the oxide interface. Lastly, these results greatly expand the application of dipole engineering to versatile polycrystalline metal/binary oxide functional interfaces.
Structure and Properties of High Symmetry Composites
1990-07-27
utilizing a 4-directional reinforcement. Reducing the close-to-cubic symmetry concept into practice in our laboratory by a three-dimensional braiding...modelled by utilizing the different elastic strain energy expressions produced by different combinations of symmetry elements. Symmetry in Materials The...rings is insignmicant. Utilizing the above assumptions, numerous textile structures possess holosymmetric cubic symmetry. This symmetry state is found in
Structural Symmetry in Membrane Proteins.
Forrest, Lucy R
2015-01-01
Symmetry is a common feature among natural systems, including protein structures. A strong propensity toward symmetric architectures has long been recognized for water-soluble proteins, and this propensity has been rationalized from an evolutionary standpoint. Proteins residing in cellular membranes, however, have traditionally been less amenable to structural studies, and thus the prevalence and significance of symmetry in this important class of molecules is not as well understood. In the past two decades, researchers have made great strides in this area, and these advances have provided exciting insights into the range of architectures adopted by membrane proteins. These structural studies have revealed a similarly strong bias toward symmetric arrangements, which were often unexpected and which occurred despite the restrictions imposed by the membrane environment on the possible symmetry groups. Moreover, membrane proteins disproportionately contain internal structural repeats resulting from duplication and fusion of smaller segments. This article discusses the types and origins of symmetry in membrane proteins and the implications of symmetry for protein function.
Symmetry Guide to Ferroaxial Transitions
NASA Astrophysics Data System (ADS)
Hlinka, J.; Privratska, J.; Ondrejkovic, P.; Janovec, V.
2016-04-01
The 212 species of the structural phase transitions with a macroscopic symmetry breaking are inspected with respect to the occurrence of the ferroaxial order parameter, the electric toroidal moment. In total, 124 ferroaxial species are found, some of them being also fully ferroelectric (62) or fully ferroelastic ones (61). This ensures a possibility of electrical or mechanical switching of ferroaxial domains. Moreover, there are 12 ferroaxial species that are neither ferroelectric nor ferroelastic. For each species, we have also explicitly worked out a canonical form for a set of representative equilibrium property tensors of polar and axial nature in both high-symmetry and low-symmetry phases. This information was gathered into the set of 212 mutually different symbolic matrices, expressing graphically the presence of nonzero independent tensorial components and the symmetry-imposed links between them, for both phases simultaneously. Symmetry analysis reveals the ferroaxiality in several currently debated materials, such as VO2 , LuFe2 O4 , and URu2 Si2 .
Partial dynamical symmetry in quantum Hamiltonians with higher-order terms.
García-Ramos, J E; Leviatan, A; Van Isacker, P
2009-03-20
A generic procedure is proposed to construct many-body quantum Hamiltonians with partial dynamical symmetry. It is based on a tensor decomposition of the Hamiltonian and allows the construction of a hierarchy of interactions that have selected classes of solvable states. The method is illustrated in the SO(6) limit of the interacting boson model of atomic nuclei and applied to the nucleus 196Pt.
Kumar, Pankaj; Cho, K.-S.; Bong, S.-C.; Park, Sung-Hong; Kim, Y. H.
2012-02-10
In this paper, we present multiwavelength observations of helical kink instability as a trigger of a coronal mass ejection (CME) which occurred in active region NOAA 11163 on 2011 February 24. The CME was associated with an M3.5 limb flare. High-resolution observations from the Solar Dynamics Observatory/Atmospheric Imaging Assembly suggest the development of helical kink instability in the erupting prominence, which implies a flux rope structure of the magnetic field. A brightening starts below the apex of the prominence with its slow rising motion ({approx}100 km s{sup -1}) during the activation phase. A bright structure, indicative of a helix with {approx}3-4 turns, was transiently formed at this position. The corresponding twist of {approx}6{pi}-8{pi} is sufficient to generate the helical kink instability in a flux rope according to recently developed models. A slowly rising blob structure was subsequently formed at the apex of the prominence, and a flaring loop was observed near the footpoints. Within 2 minutes, a second blob was formed in the northern prominence leg. The second blob erupts (like a plasmoid ejection) with the detachment of the northern prominence leg, and flare intensity maximizes. The first blob at the prominence apex shows rotational motion in the counterclockwise direction in the plane of sky, interpreted as the unwinding motion of a helix, and it also erupts to give the CME. RHESSI hard X-ray (HXR) sources show the two footpoint sources and a loop-top source during the flare. We found RHESSI HXR flux, soft X-ray flux derivative, and CME acceleration in the low corona correlate well, which is in agreement with the standard flare model (CSHKP). We also discuss the possible role of ballooning as well as torus instabilities in driving the CME. We conclude that the CME and flare were triggered by the helical kink instability in a flux rope and accelerated mainly by the torus instability.
NASA Astrophysics Data System (ADS)
Prior, D. J.; Seidemann, M.; Golding, N.; Durham, W. B.; Vaughan, M. J.
2015-12-01
Constraining water ice rheology is crucial for geodynamic modelling of terrestrial ice masses and to understand the mechanics of icy planets in the outer solar system. Creep experiments on homogenous laboratory-grown ice have been conducted for decades with the goal to link specific stress and temperature conditions to creep (strain) rates, which are governed by the operating microstructural deformation mechanism. As most of these experiments have been conducted under constant strain rate conditions and in the absence of a time-effective method to image fine-grained ice, the response of an ice microstructure to a constant stress experiment is fairly unknown. In this study, 25 mm diameter cylinders of polycrystalline ice with a starting average grain diameter of 400 μm were subjected to a confining pressure of 50 MPa and axial loads between 3 and 13 MPa at a temperature of 240 K. The samples were subsequently imaged with cryogenic electron backscatter diffraction (cryo-EBSD). Over the entire range of these tests, constantly accelerating strain rates were observed, which represent a significant rheological weakening. Microstructural maps of the deformed ice samples show stress localizations that are characterized by excessive kinking, leading to a "crushed" appearance of pre-existing grains. The localized kinking can produce grain diameters as small as 30 µm and yields a local grain size reduction that could provide an explanation for the rheological weakening, as observed in the accelerating strain rates. A detailed microstructural analysis aims to investigate the mechanism of kinking in these stress localizations with a microstructural misorientation analysis comprising both pre-existing and kinked grains. Grain size data collected from within the high-stress regions will be compared to pre-existing rheological data to assess if the localized grain size reduction could in fact result in the observed accelerations in strain rate.
NASA Astrophysics Data System (ADS)
Pascoe, D. J.; Anfinogentov, S.; Nisticò, G.; Goddard, C. R.; Nakariakov, V. M.
2017-04-01
Context. The strong damping of kink oscillations of coronal loops can be explained by mode coupling. The damping envelope depends on the transverse density profile of the loop. Observational measurements of the damping envelope have been used to determine the transverse loop structure which is important for understanding other physical processes such as heating. Aims: The general damping envelope describing the mode coupling of kink waves consists of a Gaussian damping regime followed by an exponential damping regime. Recent observational detection of these damping regimes has been employed as a seismological tool. We extend the description of the damping behaviour to account for additional physical effects, namely a time-dependent period of oscillation, the presence of additional longitudinal harmonics, and the decayless regime of standing kink oscillations. Methods: We examine four examples of standing kink oscillations observed by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). We use forward modelling of the loop position and investigate the dependence on the model parameters using Bayesian inference and Markov chain Monte Carlo (MCMC) sampling. Results: Our improvements to the physical model combined with the use of Bayesian inference and MCMC produce improved estimates of model parameters and their uncertainties. Calculation of the Bayes factor also allows us to compare the suitability of different physical models. We also use a new method based on spline interpolation of the zeroes of the oscillation to accurately describe the background trend of the oscillating loop. Conclusions: This powerful and robust method allows for accurate seismology of coronal loops, in particular the transverse density profile, and potentially reveals additional physical effects.
2013-01-01
reinforcements in resin -starved flexible armor-grade com- posites [1–4]. Given the complex behavior/functionality of the afore- mentioned protection...unit cell Laminate Laminae Interface Stacked lamina Figure 3: Microstructural hierarchy consisting of eight distinct length scales encountered...Presently, it is not clear if kink bands are merely the result of highly localized crystallographic slip within the Advances in Materials Science and
Mechanical properties of non-centrosymmetric CePt_{3}Si and CePt_{3}B.
Rogl, Gerda; Legut, Dominik; Sykora, Rudolf; Müller, Peter; Müller, Herbert; Bauer, Ernst; Puchegger, Stephan; Zehetbauer, M; Rogl, Peter
2017-03-08
Elastic moduli, hardness (both at room temperature) and thermal expansion (4.2 to 670 K) have been experimentally determined for polycrystalline CePt_{3}Si and its prototype compound CePt_{3}B as well as for single-crystalline CePt_{3}Si. Resonant ultrasound spectroscopy was used to determine elastic properties (Young's modulus E and Poissons ratio ν) via the eigenfrequencies of the sample and the knowledge of sample mass and dimensions. Bulk and shear moduli were calculated from E and ν, and the respective Debye temperatures were derived. In addition, ab-initio DFT calculations were carried out for both compounds. A comparison of parameters evaluated from DFT with those of experiments revealed, in general, satisfactory agreement. Positive and negative thermal expansion values obtained from CePt_{3}Si single crystal data are fairly well explained in terms of the crystalline electric field model, using CEF parameters derived recently from inelastic neutron scattering. DFT calculations, in addition, demonstrate that the atomic vibrations keep almost unaffected by the antisymmetric spin-orbit coupling present in systems with crystal structures having no inversion symmetry. This is opposite to electronic properties, where the antisymmetric spin-orbit interaction has shown to distinctly influence features like the superconducting condensate of CePt_{3}Si.
Urogenital Vascular Anomalies with Bilateral Kinking of Ureter: A Case Report
Tadipi, Suresh; Sadashiv, Roshni; Muralidharan, Sangeeta; Pimid, Maegyvear
2015-01-01
Variations in the urogenital vascular anomalies in the abdomen are very common. However, they warrant attention due to their importance in operative, diagnostic, and endovascular procedures. During routine dissection of abdomen in a male cadaver, unique urogenital vascular anomalies were observed. On the right side, the right renal artery was found to be originated from the abdominal aorta at the level of L2 and divided into five branches; the right testicular artery and inferior suprarenal artery originated from the lower branch. We also observed, accessory renal artery arising from abdominal aorta at the level of L3 and double renal veins on right side. On the left side, we found left renal artery originating from the abdominal aorta at the level of L2 and divided into two branches. Double testicular (medial and lateral) arteries were also observed. In addition to these vascular variations, bilateral kinking of ureter at the pelviureteric junction was also observed. Although the variations in the origin of urogenital vessels in the abdomen are common, deeper understanding of the urogenital vascular variations and their relations to adjacent structures is significant during surgical and radiological procedures. PMID:28223889
Energy and frequency dependence of the alpha particle redistribution produced by internal kink modes
Farengo, R.; Ferrari, H. E.; Garcia-Martinez, P. L.; Firpo, M.-C.; Ettoumi, W.; Lifschitz, A. F.
2014-08-15
The redistribution of alpha particles due to internal kink modes is studied. The exact particle trajectories in the total fields, equilibrium plus perturbation, are calculated. The equilibrium has circular cross section and the plasma parameters are similar to those expected in ITER. The alpha particles are initially distributed according to a slowing down distribution function and have energies between 18 keV and 3.5 MeV. The (1, 1), (2, 2), and (2, 1) modes are included and the effect of changing their amplitude and frequency is studied. When only the (1, 1) mode is included, the spreading of high energy (E≳1 MeV) alpha particles increases slowly with the energy and mode frequency. At lower energies, the redistribution is more sensitive to the mode frequency and particle energy. When a (2, 1) mode is added, the spreading increases significantly and particles can reach the edge of the plasma. Trapped particles are the most affected and the redistribution parameter can have maxima above 1 MeV, depending on the mode frequency. These results can have important implications for ash removal.
Impacts of Shear Flow on the Low-n Kink Instabilities
NASA Astrophysics Data System (ADS)
Chen, Jianguo; Xu, Xueqiao
2016-10-01
We report the progress on studies of the effects of shear flow on the edge instabilities using the reduced 3-field two fluid MHD model under the BOUT + + framework. Using the equilibrium profiles in JET-like Tokamak geometry with a circular cross section, the results of simulations demonstrate that: (1) the low-n peeling modes are mainly driven by the gradient of parallel current and the large pressure gradient leads to high-n ballooning modes; (2) in low density cases, the low-n kink modes are sensitive to the Er shear; (3) using the shear flow's profiles measured from DIII-D experiment, the intermediate-n modes (n 20) are triggered firstly and the peak of it shifts to low-n mode with narrower mode spectrum when increasing the shear flow in the linear simulation; (4) the nonlinear results show the enhanced nonlinear mode-mode interaction in saturate phase and are quantitatively consistent with the transition from coherent harmonic oscillation(EHO) to the broad band turbulence state discovered in DIII-D discharge with net-zero NBI torque and the QH-mode can be achieved by NBI in both co- and counter direction. It's significant for understanding the mechanism of EHO and QH-mode.
The Role of the Kink Instability of a Long-Lived Active Region AR 9604
NASA Astrophysics Data System (ADS)
Tian, Lirong; Liu, Yang; Yang, Jing; Alexander, David
2005-07-01
We have traced the long-term evolution of a non-Hale active region composed of NOAA 9604 9632 9672 9704 9738, which displayed strong transient activity with associated geomagnetic effects from September to December, 2001. By studying the development of spot-group and line-of-sight magnetic field together with the evolution of Hα filaments, the EUV and X-ray corona (TRACE 171 Å, Yohkoh/SXT), we have found that the magnetic structure of the active region exhibited a continuous clockwise rotation throughout its entire life. Vector magnetic data obtained from Huairou Solar Observing Station (HSOS) and full-disk line-of-sight magnetograms from SOHO/MDI allowed the determination of the best-fit force-free parameter (proxy of twist), αbest, and the systematic tilt angle (proxy of writhe) which were both found to take positive values. Soft X-ray coronal loops from Yohkoh/SXT displayed a pronounced forward-sigmoid structure in period of NOAA 9704. These observations imply that the magnetic flux tube (loops) with the same handedness (right) of the writhe and the twist rotated clockwise in the solar atmosphere for a long time. We argue that the continuous clockwise rotation of the long-lived active region may be a manifestation that a highly right-hand twisted and kinked flux tube was emerging through the photosphere and chromosphere into the corona.
Internal kink stabilization by high-energy ions with nonstandard orbits
NASA Astrophysics Data System (ADS)
Porcelli, F.; Stankiewicz, R.; Berk, H. L.; Zhang, Y. Z.
1992-10-01
A generalized energy principle that takes into account the nonstandard, potato-shaped particle orbits of high-energy ions in the central region of a tokamak is derived. It is shown that, in the limit of zero orbit width, this energy principle reduces to the one formulated by Van Dam et al. [Phys. Fluids 25, 1349 (1982)]. The modification of hot particle stabilization theory when such orbit effects are important is investigated. In particular, a model distribution function is chosen to describe high-energy trapped ions produced by ion cyclotron resonant frequency (ICRF) heating applied near the axis of a tokamak. Standard banana orbit theory predicts that, for fixed total stored energy of energetic particles peaked about the magnetic axis, the stabilizing influence on internal kink modes is inversely proportional to the spatial spread of the hot particles. However, this scaling saturates when the spatial spread of the distribution function approaches the width of a typical nonstandard orbit. Hence, ICRF heating is most efficient in producing stabilization when the heating zone is comparable to the orbit width, while the tendency to stabilize does not improve if the heating zone is narrower than the orbit width. Further, it is shown that, if particle orbits can extend close to the q=1 surface, the tendency for stabilization is inhibited.
Design of barrier coatings on kink-resistant peripheral nerve conduits
Clements, Basak Acan; Bushman, Jared; Murthy, N Sanjeeva; Ezra, Mindy; Pastore, Christopher M; Kohn, Joachim
2016-01-01
Here, we report on the design of braided peripheral nerve conduits with barrier coatings. Braiding of extruded polymer fibers generates nerve conduits with excellent mechanical properties, high flexibility, and significant kink-resistance. However, braiding also results in variable levels of porosity in the conduit wall, which can lead to the infiltration of fibrous tissue into the interior of the conduit. This problem can be controlled by the application of secondary barrier coatings. Using a critical size defect in a rat sciatic nerve model, the importance of controlling the porosity of the nerve conduit walls was explored. Braided conduits without barrier coatings allowed cellular infiltration that limited nerve recovery. Several types of secondary barrier coatings were tested in animal studies, including (1) electrospinning a layer of polymer fibers onto the surface of the conduit and (2) coating the conduit with a cross-linked hyaluronic acid-based hydrogel. Sixteen weeks after implantation, hyaluronic acid-coated conduits had higher axonal density, displayed higher muscle weight, and better electrophysiological signal recovery than uncoated conduits or conduits having an electrospun layer of polymer fibers. This study indicates that braiding is a promising method of fabrication to improve the mechanical properties of peripheral nerve conduits and demonstrates the need to control the porosity of the conduit wall to optimize functional nerve recovery. PMID:26977288
Electromagnetic thin-wall model for simulations of plasma wall-touching kink and vertical modes
NASA Astrophysics Data System (ADS)
Zakharov, Leonid E.; Atanasiu, Calin V.; Lackner, Karl; Hoelzl, Matthias; Strumberger, Erika
2015-12-01
> The understanding of plasma disruptions in tokamaks and predictions of their effects require realistic simulations of electric current excitation in three-dimensional vessel structures by the plasma touching the walls. As discovered at JET in 1996 (Litunovski JET Internal Report contract no. JQ5/11961, 1995; Noll et al., Proceedings of the 19th Symposium on Fusion Technology, Lisbon (ed. C. Varandas & F. Serra), vol. 1, 1996, p. 751. Elsevier) the wall-touching kink modes are frequently excited during vertical displacement events and cause large sideways forces on the vacuum vessel which are difficult to withstand in large tokamaks. In disruptions, the sharing of electric current between the plasma and the wall plays an important role in plasma dynamics and determines the amplitude and localization of the sideways force (Riccardo et al., Nucl. Fusion, vol. 40, 2000, p. 1805; Riccardo & Walker, Plasma Phys. Control. Fusion, vol. 42, 2000, p. 29; Zakharov, Phys. Plasmas, vol. 15, 2008, 062507; Riccardo et al., Nucl. Fusion, vol. 49, 2009, 055012; Bachmann et al., Fusion Engng Des., vol. 86, 2011, pp. 1915-1919). This paper describes a flat triangle representation of the electric circuits of a thin conducting wall of arbitrary three-dimensional geometry. Implemented into the shell simulation code (SHL) and the source sink current code (SSC), this model is suitable for modelling the electric currents excited in the wall inductively and through current sharing with the plasma.
Tornado-like Evolution of a Kink-unstable Solar Prominence
NASA Astrophysics Data System (ADS)
Wang, Wensi; Liu, Rui; Wang, Yuming
2017-01-01
We report on the tornado-like evolution of a quiescent prominence on 2014 November 1. The eastern section of the prominence first rose slowly, transforming into an arch-shaped structure as high as ∼150 Mm above the limb; the arch then writhed moderately in a left-handed sense, while the original dark prominence material emitted in the Fe ix 171 Å passband, and a braided structure appeared at the eastern edge of the warped arch. The unraveling of the braided structure was associated with a transient brightening in the EUV and apparently contributed to the formation of a curtain-like structure (CLS). The CLS consisted of myriad thread-like loops rotating counterclockwise about the vertical if viewed from above. Heated prominence material was observed to slide along these loops and land outside the filament channel. The tornado eventually disintegrated and the remaining material flew along a left-handed helical path constituting approximately a full turn, as corroborated through stereoscopic reconstruction, into the cavity of the stable, western section of the prominence. We suggest that the tornado-like evolution of the prominence was governed by the helical kink instability, and that the CLS formed through magnetic reconnections between the prominence field and the overlying coronal field.
To Kink or Not: the Search for Long Chain Cumulenones Using Microwave Spectral Taxonomy
NASA Astrophysics Data System (ADS)
McCarthy, Michael C.; Martin-Drumel, Marie-Aline
2016-06-01
Although cumulene carbenes terminated with sulfur up to H_2C_7S are known to possess C2v geometries, the analogous oxygen species have only been characterized in the gas-phase up to H_2C_4O, and propadienone (H_2C_3O) and butatrienone (H_2C_4O) exhibit kinked heavy atom backbones. Using microwave spectral taxonomy, searches have been undertaken for pentatetrenone (H_2C_5O) and its isomers. Surprisingly, no evidence has been found for the cumulenone, but rotational lines of a bent-chain isomer, HC(O)C_4H, analogous in structure to propynal, HC(O)CCH, have been detected instead. In closely-related work, the sulfur analog HC(S)C_4H has also been identified for the first time. This talk will provide a summary of our search procedure and experimental findings, quantum chemical calculations of isomeric stability and dipole moments, and prospects for detecting these longer chains in astronomical sources where c-C_3H_2O and HC(O)CCH are known.
Advection-Dominant MHD Computation for External Kinks and Edge-Localized Modes
NASA Astrophysics Data System (ADS)
Sovinec, C. R.
2016-10-01
Separation of temporal and spatial scales is the primary consideration for computation of macroscopic dynamics in magnetically confined plasma. Dynamic shock capturing is not needed, but nonlinear external kinks and ELMs advect large gradients near the plasma surface. Using an implicit time-advance with Galerkin projection can be problematic in these applications when advection is stronger than dissipation on the spatial scale of the mesh. The applied math community has investigated many approaches to stabilizing numerical advection. One approach is the least-squares finite element method, which has previously been applied to MHD and plasma-fluid models. Here, we adapt this technique for MHD computation with the NIMROD code, starting with the scalar dependent fields that need to have definite sign: density and temperature. Time-splitting physical diffusion maintains the original size of the algebraic systems that are solved at each time-step. Upwinding explicit terms where derivatives are discontinuous avoids overshoot error while minimizing numerical dissipation. Work supported by U.S. DOE Grant DE-FC02-08ER54975.
Kink-like mode of a double gradient instability in a compressible plasma current sheet.
Korovinskiy, D B; Ivanova, V V; Erkaev, N V; Semenov, V S; Ivanov, I B; Biernat, H K; Zellinger, M
2011-11-01
A linear MHD instability of the electric current sheet, characterized by a small normal magnetic field component, varying along the sheet, is investigated. The tangential magnetic field component is modeled by a hyperbolic function, describing Harris-like variations of the field across the sheet. For this problem, which is formulated in a 3D domain, the conventional compressible ideal MHD equations are applied. By assuming Fourier harmonics along the electric current, the linearized 3D equations are reduced to 2D ones. A finite difference numerical scheme is applied to examine the time evolution of small initial perturbations of the plasma parameters. This work is an extended numerical study of the so called "double gradient instability", - a possible candidate for the explanation of flapping oscillations in the magnetotail current sheet, which has been analyzed previously in the framework of a simplified analytical approach for an incompressible plasma. The dispersion curve is obtained for the kink-like mode of the instability. It is shown that this curve demonstrates a quantitative agreement with the previous analytical result. The development of the instability is investigated also for various enhanced values of the normal magnetic field component. It is found that the characteristic values of the growth rate of the instability shows a linear dependence on the square root of the parameter, which scales uniformly the normal component of the magnetic field in the current sheet.
FORWARD MODELING OF STANDING KINK MODES IN CORONAL LOOPS. II. APPLICATIONS
Yuan, Ding; Doorsselaere, Tom Van
2016-04-15
Magnetohydrodynamic waves are believed to play a significant role in coronal heating, and could be used for remote diagnostics of solar plasma. Both the heating and diagnostic applications rely on a correct inversion (or backward modeling) of the observables into the thermal and magnetic structures of the plasma. However, due to the limited availability of observables, this is an ill-posed issue. Forward modeling is designed to establish a plausible mapping of plasma structuring into observables. In this study, we set up forward models of standing kink modes in coronal loops and simulate optically thin emissions in the extreme ultraviolet bandpasses, and then adjust plasma parameters and viewing angles to match three events of transverse loop oscillations observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly. We demonstrate that forward models could be effectively used to identify the oscillation overtone and polarization, to reproduce the general profile of oscillation amplitude and phase, and to predict multiple harmonic periodicities in the associated emission intensity and loop width variation.
He, H. D.; Zheng, G. Y.; Long, Y. X.; He, Z. X.; Jiang, H. B.; Shen, Y.; Wang, L. F.; Dong, J. Q.; Fu, G. Y.; Sheng, Z. M.
2010-08-15
The internal kink (fishbone) modes, driven by barely passing energetic ions (EIs), are numerically studied with the spatial distribution of the EIs taking into account. It is found that the modes with frequencies comparable to the toroidal precession frequencies are excited by resonant interaction with the EIs. Positive and negative density gradient dominating cases, corresponding to off- and near-axis depositions of neutral beam injection (NBI), respectively, are analyzed in detail. The most interesting and important feature of the modes is that there exists a second stable regime in higher {beta}{sub h} (=pressure of EIs/toroidal magnetic pressure) range, and the modes may only be excited by the barely passing EIs in a region of {beta}{sub th1}<{beta}{sub h}<{beta}{sub th2} ({beta}{sub th} is threshold or critical beta of EIs). Besides, the unstable modes require minimum density gradients and minimum radial positions of NBI deposition. The physics mechanism for the existence of the second stable regime is discussed. The results may provide a means of reducing or even preventing the loss of NBI energetic ions and increasing the heating efficiency by adjusting the pitch angle and driving the system into the second stable regime fast enough.
NASA Astrophysics Data System (ADS)
Ren, Manrui; Liu, Ze; Zheng, Quan-shui; Liu, Jefferson Zhe
2015-08-01
Mechanical exfoliation is a widely used method to isolate high quality graphene layers from bulk graphite. In our recent experiments, some ordered microstructures, consisting of a periodic alternation of kinks and stripes, were observed in thin graphite flakes that were mechanically peeled from highly oriented pyrolytic graphite. In this paper, a theoretical model is presented to attribute the formation of such ordered structures to the alternation of two mechanical processes during the exfoliation: (1) peeling of a graphite flake and (2) mechanical buckling of the flake being subjected to bending. In this model, the width of the stripes L is determined by thickness h of the flakes, surface energy , and critical buckling strain . Using some appropriate values of and that are within the ranges determined by other independent experiments and simulations, the predicted relations between the stripe width and the flake thickness agree reasonably well with our experimental measurements. Conversely, measuring the L- h relations of the periodic microstructures in thin graphite flakes could help determine the critical mechanical buckling strain and the interface energy.
NASA Astrophysics Data System (ADS)
Peng, Q.; Levesque, J. P.; Stoafer, C. C.; Bialek, J.; Byrne, P.; Hughes, P. E.; Mauel, M. E.; Navratil, G. A.; Rhodes, D. J.
2016-04-01
A new algorithm for feedback control of rotating, wall-stabilized kink modes in the High Beta Tokamak-Extended Pulse (HBT-EP) device maintains an accurate phase shift between the perturbation and the measured rotating mode through current control, with control power emphasizing fast rotation and phase jumps over fast amplitude changes. In HBT-EP, wall-stabilized kink modes become unstable above the ideal wall stability limit, and feedback suppression is aimed at delaying the onset of discharge disruption through reduction of the kink mode amplitude. Performance of the new feedback algorithm is tested under different experimental conditions, including variation of the plasma-wall coupling, insertion of a ferritic wall, changing mode rotation frequency over the range of 4-8 kHz using an internal biased electrode, and adjusting the feedback phase-angle to accelerate, amplify, or suppress the mode. We find the previously reported excitation of the slowly rotating mode at high feedback gain in HBT-EP is mitigated by the current control scheme. We also find good agreement between the observed and predicted changes to the mode rotation frequency and amplitude. When ferritic material is introduced, or the plasma-wall coupling becomes weaker as the walls are retracted from plasma, the feedback gain needs to be increased to achieve the same level of suppression. When mode rotation is slowed by a biased electrode, the feedback system still achieves mode suppression, and demonstrates wide bandwidth effectiveness.
Hanson, David E
2011-08-07
Based on recent molecular dynamics and ab initio simulations of small isoprene molecules, we propose a new ansatz for rubber elasticity. We envision a network chain as a series of independent molecular kinks, each comprised of a small number of backbone units, and the strain as being imposed along the contour of the chain. We treat chain extension in three distinct force regimes: (Ia) near zero strain, where we assume that the chain is extended within a well defined tube, with all of the kinks participating simultaneously as entropic elastic springs, (II) when the chain becomes sensibly straight, giving rise to a purely enthalpic stretching force (until bond rupture occurs) and, (Ib) a linear entropic regime, between regimes Ia and II, in which a force limit is imposed by tube deformation. In this intermediate regime, the molecular kinks are assumed to be gradually straightened until the chain becomes a series of straight segments between entanglements. We assume that there exists a tube deformation tension limit that is inversely proportional to the chain path tortuosity. Here we report the results of numerical simulations of explicit three-dimensional, periodic, polyisoprene networks, using these extension-only force models. At low strain, crosslink nodes are moved affinely, up to an arbitrary node force limit. Above this limit, non-affine motion of the nodes is allowed to relax unbalanced chain forces. Our simulation results are in good agreement with tensile stress vs. strain experiments.
ERIC Educational Resources Information Center
Thompson, Mary, Ed.; Price, Jerry, Ed.
This document contains 142 papers on PT3 (Preparing Tomorrow's Teachers to use Technology) from the SITE (Society for Information Technology & Teacher Education) 2002 conference. Topics covered include: a technology in urban education summit; student professional development; meeting NCATE (National Council of Teachers of English) standards;…
Resonantly amplified vibronic symmetry breaking
NASA Astrophysics Data System (ADS)
Poliakoff, E. D.; Rathbone, G. J.; Bozek, J. D.; Lucchese, R. R.
2002-05-01
In photoelectron spectroscopy, it is normally assumed that excitation of a single quantum of a non-totally symmetric vibrational mode is forbidden owing to symmetry constraints. Using vibrationally resolved photoelectron spectroscopy over a broad spectral range, we have shown that a previously overlooked mechanism can lead to these nominally forbidden transitions. Specifically, the photoelectron can mediate the oscillator strength for such a transition via resonantly amplified vibronic symmetry breaking, and this effect results from intrachannel rather than interchannel coupling. In our first experiments, we focused on bending excitation accompanying CO2 photoionization. Photoelectron spectroscopy on the CO_2^+(C^2Σ_g^+) state showed that the excitation of the (010) vibrational mode is mediated by a shape resonant continuum electron. The degree of vibrational excitation can be substantial, and extensions to other types of symmetry breaking are currently being investigated.
Facile activation of dihydrogen by a phosphinito-bridged Pt(I)-Pt(I) complex.
Mastrorilli, Piero; Latronico, Mario; Gallo, Vito; Polini, Flavia; Re, Nazzareno; Marrone, Alessandro; Gobetto, Roberto; Ellena, Silvano
2010-04-07
The phosphinito-bridged Pt(I) complex [(PHCy(2))Pt(mu-PCy(2)){kappa(2)P,O-mu-P(O)Cy(2)}Pt(PHCy(2))](Pt-Pt) (1) reversibly adds H(2) under ambient conditions, giving cis-[(H)(PHCy(2))Pt(1)(mu-PCy(2))(mu-H)Pt(2)(PHCy(2)){kappaP-P(O)Cy(2)}](Pt-Pt) (2). Complex 2 slowly isomerizes spontaneously into the corresponding more stable isomer trans-[(PHCy(2))(H)Pt(mu-PCy(2))(mu-H)Pt(PHCy(2)){kappaP-P(O)Cy(2)}](Pt-Pt) (3). DFT calculations indicate that the reaction of 1 with H(2) occurs through an initial heterolytic splitting of the H(2) molecule assisted by the phosphinito oxygen with breaking of the Pt-O bond and hydrogenation of the Pt and O atoms, leading to the formation of the intermediate [(PHCy(2))(H)Pt(mu-PCy(2))Pt(PHCy(2)){kappaP-P(OH)Cy(2)}](Pt-Pt) (D), where the two split hydrogen atoms interact within a six-membered Pt-H...H-O-P-Pt ring. Compound D is a labile intermediate which easily evolves into the final dihydride complex 2 through a facile (9-15 kcal mol(-1), depending on the solvent) hydrogen shift from the phosphinito oxygen to the Pt-Pt bond. Information obtained by addition of para-H(2) on 1 are in agreement with the presence of a heterolytic pathway in the 1 --> 2 transformation. NMR experiments and DFT calculations also gave evidence for the nonclassical dihydrogen complex [(PHCy(2))(eta(2)-H(2))Pt(mu-PCy(2))Pt(PHCy(2)){kappaP-P(O)Cy(2)}](Pt-Pt) (4), which is an intermediate in the dehydrogenation of 2 to 1 and is also involved in intramolecular and intermolecular exchange processes. Experimental and DFT studies showed that the isomerization 2 --> 3 occurs via an intramolecular mechanism essentially consisting of the opening of the Pt-Pt bond and of the hydrogen bridge followed by the rotation of the coordination plane of the Pt center with the terminal hydride ligand.
A Comprehensive Search for Stable Pt-Pd Nanoalloy Configurations and Their Use as Tunable Catalysts
Tan, Teck L.; Wang, Lin-Lin; Johnson, Duane D.; Bai, Kewu
2012-08-15
Using density-functional theory, we predict stable alloy configurations (ground states) for a 1 nm Pt–Pd cuboctahedral nanoparticle across the entire composition range and demonstrate their use as tunable alloy catalysts via hydrogen-adsorption studies. Unlike previous works, we use simulated annealing with a cluster expansion Hamiltonian to perform a rapid and comprehensive search that encompasses both high and low-symmetry configurations. The ground states show Pt(core)–Pd(shell) type configurations across all compositions but with specific Pd patterns. For catalysis studies at room temperatures, the ground states are more realistic structural models than the commonly assumed random alloy configurations. Using the ground states, we reveal that the hydrogen adsorption energy increases (decreases) monotonically with at. % Pt for the {111} hollow ({100} bridge) adsorption site. Such trends are useful for designing tunable Pd–Pt nanocatalysts for the hydrogen evolution reaction.
Franke, J.-H.; Kosov, D. S.
2015-01-28
We study the adsorption and ring-opening of lactide on the naturally chiral metal surface Pt(321){sup S}. Lactide is a precursor for polylactic acid ring-opening polymerization, and Pt is a well known catalyst surface. We study, here, the energetics of the ring-opening of lactide on a surface that has a high density of kink atoms. These sites are expected to be present on a realistic Pt surface and show enhanced catalytic activity. The use of a naturally chiral surface also enables us to study potential chiral selectivity effects of the reaction at the same time. Using density functional theory with a functional that includes the van der Waals forces in a first-principles manner, we find modest adsorption energies of around 1.4 eV for the pristine molecule and different ring-opened states. The energy barrier to be overcome in the ring-opening reaction is found to be very small at 0.32 eV and 0.30 eV for LL- and its chiral partner DD-lactide, respectively. These energies are much smaller than the activation energy for a dehydrogenation reaction of 0.78 eV. Our results thus indicate that (a) ring-opening reactions of lactide on Pt(321) can be expected already at very low temperatures, and Pt might be a very effective catalyst for this reaction; (b) the ring-opening reaction rate shows noticeable enantioselectivity.
Symmetries of coupled harmonic oscillators
NASA Technical Reports Server (NTRS)
Han, D.; Kim, Y. S.
1993-01-01
It is shown that the system of two coupled harmonic oscillators possesses many interesting symmetries. It is noted that the symmetry of a single oscillator is that of the three-parameter group Sp(2). Thus two uncoupled oscillator exhibits a direct product of two Sp(2) groups, with six parameters. The coupling can be achieved through a rotation in the two-dimensional space of two oscillator coordinates. The closure of the commutation relations for the generators leads to the ten-parameter group Sp(4) which is locally isomorphic to the deSitter group O(3,2).
Iterates of maps with symmetry
NASA Technical Reports Server (NTRS)
Chossat, Pascal; Golubitsky, Martin
1988-01-01
Fixed-point bifurcation, period doubling, and Hopf bifurcation (HB) for iterates of equivariant mappings are investigated analytically, with a focus on HB in the presence of symmetry. An algebraic formulation for the hypotheses of the theorem of Ruelle (1973) is derived, and the case of standing waves in a system of ordinary differential equations with O(2) symmetry is considered in detail. In this case, it is shown that HB can lead directly to motion on an invariant 3-torus, with an unexpected third frequency due to drift of standing waves along the torus.
Kastner, Ruth E.
2011-11-29
This paper seeks to clarify features of time asymmetry in terms of symmetry breaking. It is observed that, in general, a contingent situation or event requires the breaking of an underlying symmetry. The distinction between the universal anisotropy of temporal processes and the irreversibility of certain physical processes is clarified. It is also proposed that the Transactional Interpretation of quantum mechanics offers an effective way to explain general thermodynamic asymmetry in terms of the time asymmetry of radiation, where prior such efforts have fallen short.
Quantum Symmetries and Exceptional Collections
NASA Astrophysics Data System (ADS)
Karp, Robert L.
2011-01-01
We study the interplay between discrete quantum symmetries at certain points in the moduli space of Calabi-Yau compactifications, and the associated identities that the geometric realization of D-brane monodromies must satisfy. We show that in a wide class of examples, both local and compact, the monodromy identities in question always follow from a single mathematical statement. One of the simplest examples is the {{mathbb Z}_5} symmetry at the Gepner point of the quintic, and the associated D-brane monodromy identity.
Symmetry analysis of cellular automata
NASA Astrophysics Data System (ADS)
García-Morales, V.
2013-01-01
By means of B-calculus [V. García-Morales, Phys. Lett. A 376 (2012) 2645] a universal map for deterministic cellular automata (CAs) has been derived. The latter is shown here to be invariant upon certain transformations (global complementation, reflection and shift). When constructing CA rules in terms of rules of lower range a new symmetry, “invariance under construction” is uncovered. Modular arithmetic is also reformulated within B-calculus and a new symmetry of certain totalistic CA rules, which calculate the Pascal simplices modulo an integer number p, is then also uncovered.
Chiral symmetry in quarkyonic matter
Kojo, T.
2012-05-15
The 1/N{sub c} expansion classifies nuclear matter, deconfined quark matter, and Quarkyonic matter in low temperature region. We investigate the realization of chiral symmetry in Quarkyonic matter by taking into account condensations of chiral particle-hole pairs. It is argued that chiral symmetry and parity are locally violated by the formation of chiral spirals, <{psi}-bar exp (2i{mu}{sub q} z{gamma}{sup 0} {gamma}{sup z}){psi}> . An extension to multiple chiral spirals is also briefly discussed.
Bell Inequalities and Group Symmetry
NASA Astrophysics Data System (ADS)
Bolonek-Lasoń, Katarzyna
2017-03-01
Recently the method based on irreducible representations of finite groups has been proposed as a tool for investigating the more sophisticated versions of Bell inequalities (V. Ugǔr Gűney, M. Hillery, Phys. Rev. A90, 062121 ([2014]) and Phys. Rev. A91, 052110 ([2015])). In the present paper an example based on the symmetry group S 4 is considered. The Bell inequality violation due to the symmetry properties of regular tetrahedron is described. A nonlocal game based on the inequalities derived is described and it is shown that the violation of Bell inequality implies that the quantum strategies outperform their classical counterparts.
Nonsupersymmetric Dualities from Mirror Symmetry
NASA Astrophysics Data System (ADS)
Kachru, Shamit; Mulligan, Michael; Torroba, Gonzalo; Wang, Huajia
2017-01-01
We study supersymmetry breaking perturbations of the simplest dual pair of (2 +1 )-dimensional N =2 supersymmetric field theories—the free chiral multiplet and N =2 super QED with a single flavor. We find dual descriptions of a phase diagram containing four distinct massive phases. The equivalence of the intervening critical theories gives rise to several nonsupersymmetric avatars of mirror symmetry: we find dualities relating scalar QED to a free fermion and Wilson-Fisher theories to both scalar and fermionic QED. Thus, mirror symmetry can be viewed as the multicritical parent duality from which these nonsupersymmetric dualities directly descend.
Chiral symmetry on the lattice
Creutz, M.
1994-11-01
The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model.
New information on the occurrence of the O(6) symmetry in nuclei
Pietralla, N.; Möller, T.; Lister, C. J.; ...
2015-05-28
New γγ-coincidence relations and E2 decay transition rates in the isotopes 194,196Pt have been deduced from γ-ray spectroscopy experiments using the Gammasphere spectrometer in projectile-Coulomb excitation reactions of beams of 194,196Pt ions provided by the ATLAS accelerator facility. The results give access to observables that are crucial for a classification of excited quadrupole-collective states in terms of quantum numbers associated with the analytically solvable O(6) dynamical symmetry of the interacting boson model. The data on 196Pt corroborate the qualitative pattern of excitation energies and E2 transition rates expected from the O(6) solution but the excitation energies significantly deviate from itmore » on a quantitative level.« less
New information on the occurrence of the O(6) symmetry in nuclei
Pietralla, N.; Möller, T.; Lister, C. J.; McCutchan, E. A.; Rainovski, G.; Bauer, C.; Carpenter, M. P.; Janssens, R. V.F.; Seweryniak, D.; Zhu, S.
2015-05-28
New γγ-coincidence relations and E2 decay transition rates in the isotopes ^{194,196}Pt have been deduced from γ-ray spectroscopy experiments using the Gammasphere spectrometer in projectile-Coulomb excitation reactions of beams of ^{194,196}Pt ions provided by the ATLAS accelerator facility. The results give access to observables that are crucial for a classification of excited quadrupole-collective states in terms of quantum numbers associated with the analytically solvable O(6) dynamical symmetry of the interacting boson model. The data on ^{196}Pt corroborate the qualitative pattern of excitation energies and E2 transition rates expected from the O(6) solution but the excitation energies significantly deviate from it on a quantitative level.
Crossing rule for a PT-symmetric two-level time-periodic system
Moiseyev, Nimrod
2011-05-15
For a two-level system in a time-periodic field we show that in the non-Hermitian PT case the level crossing is of two quasistationary states that have the same dynamical symmetry property. At the field's parameters where the two levels which have the same dynamical symmetry cross, the corresponding quasienergy states coalesce and a self-orthogonal state is obtained. This situation is very different from the Hermitian case where a crossing of two quasienergy levels happens only when the corresponding two quasistationary states have different dynamical symmetry properties and, unlike the situation in the non-Hermitian case, the spectrum remains complete also when the two levels cross.
Spin symmetry in the antinucleon spectrum.
Zhou, Shan-Gui; Meng, Jie; Ring, P
2003-12-31
We discuss spin and pseudospin symmetry in the spectrum of single nucleons and single antinucleons in a nucleus. As an example we use relativistic mean field theory to investigate single antinucleon spectra. We find a very well developed spin symmetry in single antineutron and single antiproton spectra. The dominant components of the wave functions of the spin doublet are almost identical. This spin symmetry in antiparticle spectra and the pseudospin symmetry in particle spectra have the same origin. However, it turns out that the spin symmetry in antinucleon spectra is much better developed than the pseudospin symmetry in normal nuclear single particle spectra.
Charge symmetry at the partonic level
Londergan, J. T.; Peng, J. C.; Thomas, A. W.
2010-07-01
This review article discusses the experimental and theoretical status of partonic charge symmetry. It is shown how the partonic content of various structure functions gets redefined when the assumption of charge symmetry is relaxed. We review various theoretical and phenomenological models for charge symmetry violation in parton distribution functions. We summarize the current experimental upper limits on charge symmetry violation in parton distributions. A series of experiments are presented, which might reveal partonic charge symmetry violation, or alternatively might lower the current upper limits on parton charge symmetry violation.
Surface termination of CePt5/Pt (111 ): The key to chemical inertness
NASA Astrophysics Data System (ADS)
Praetorius, C.; Zinner, M.; Held, G.; Fauth, K.
2015-11-01
The surface termination of CePt5/Pt (111 ) is determined experimentally by LEED-IV. In accordance with recent theoretical predictions, a dense Pt terminated surface is being found. Whereas the CePt5 volume lattice comprises Pt kagome layers, additional Pt atoms occupy the associated hole positions at the surface. This finding provides a natural explanation for the remarkable inertness of the CePt5 intermetallic. Implications of the structural relaxations determined by LEED-IV analysis are discussed with regard to observations by scanning tunneling microscopy and electron spectroscopies.
Turning Students into Symmetry Detectives
ERIC Educational Resources Information Center
Wilders, Richard; VanOyen, Lawrence
2011-01-01
Exploring mathematical symmetry is one way of increasing students' understanding of art. By asking students to search designs and become pattern detectives, teachers can potentially increase their appreciation of art while reinforcing their perception of the use of math in their day-to-day lives. This article shows teachers how they can interest…
Platonic Symmetry and Geometric Thinking
ERIC Educational Resources Information Center
Zsombor-Murray, Paul
2007-01-01
Cubic symmetry is used to build the other four Platonic solids and some formalism from classical geometry is introduced. Initially, the approach is via geometric construction, e.g., the "golden ratio" is necessary to construct an icosahedron with pentagonal faces. Then conventional elementary vector algebra is used to extract quantitative…
Concomitant Ordering and Symmetry Lowering
ERIC Educational Resources Information Center
Boo, William O. J.; Mattern, Daniell L.
2008-01-01
Examples of concomitant ordering include magnetic ordering, Jahn-Teller cooperative ordering, electronic ordering, ionic ordering, and ordering of partially-filled sites. Concomitant ordering sets in when a crystal is cooled and always lowers the degree of symmetry of the crystal. Concomitant ordering concepts can also be productively applied to…
Symmetry-protected topological entanglement
NASA Astrophysics Data System (ADS)
Marvian, Iman
2017-01-01
We propose an order parameter for the symmetry-protected topological (SPT) phases which are protected by Abelian on-site symmetries. This order parameter, called the SPT entanglement, is defined as the entanglement between A and B , two distant regions of the system, given that the total charge (associated with the symmetry) in a third region C is measured and known, where C is a connected region surrounded by A , B , and the boundaries of the system. In the case of one-dimensional systems we prove that in the limit where A and B are large and far from each other compared to the correlation length, the SPT entanglement remains constant throughout a SPT phase, and furthermore, it is zero for the trivial phase while it is nonzero for all the nontrivial phases. Moreover, we show that the SPT entanglement is invariant under the low-depth quantum circuits which respect the symmetry, and hence it remains constant throughout a SPT phase in the higher dimensions as well. Also, we show that there is an intriguing connection between SPT entanglement and the Fourier transform of the string order parameters, which are the traditional tool for detecting SPT phases. This leads to an algorithm for extracting the relevant information about the SPT phase of the system from the string order parameters. Finally, we discuss implications of our results in the context of measurement-based quantum computation.
Circular codes, symmetries and transformations.
Fimmel, Elena; Giannerini, Simone; Gonzalez, Diego Luis; Strüngmann, Lutz
2015-06-01
Circular codes, putative remnants of primeval comma-free codes, have gained considerable attention in the last years. In fact they represent a second kind of genetic code potentially involved in detecting and maintaining the normal reading frame in protein coding sequences. The discovering of an universal code across species suggested many theoretical and experimental questions. However, there is a key aspect that relates circular codes to symmetries and transformations that remains to a large extent unexplored. In this article we aim at addressing the issue by studying the symmetries and transformations that connect different circular codes. The main result is that the class of 216 C3 maximal self-complementary codes can be partitioned into 27 equivalence classes defined by a particular set of transformations. We show that such transformations can be put in a group theoretic framework with an intuitive geometric interpretation. More general mathematical results about symmetry transformations which are valid for any kind of circular codes are also presented. Our results pave the way to the study of the biological consequences of the mathematical structure behind circular codes and contribute to shed light on the evolutionary steps that led to the observed symmetries of present codes.
Baryon and chiral symmetry breaking
Gorsky, A.; Krikun, A.
2014-07-23
We briefly review the generalized Skyrmion model for the baryon recently suggested by us. It takes into account the tower of vector and axial mesons as well as the chiral symmetry breaking. The generalized Skyrmion model provides the qualitative explanation of the Ioffe’s formula for the baryon mass.
From symmetries to number theory
Tempesta, P.
2009-05-15
It is shown that the finite-operator calculus provides a simple formalism useful for constructing symmetry-preserving discretizations of quantum-mechanical integrable models. A related algebraic approach can also be used to define a class of Appell polynomials and of L series.
ERIC Educational Resources Information Center
Brown, Laurie M.
This document is a monograph intended for advanced undergraduate students, or beginning graduate students, who have some knowledge of modern physics as well as classical physics, including the elementary quantum mechanical treatment of the hydrogen atom and angular momentum. The first chapter introduces symmetry and relates it to the mathematical…
Resonantly amplified vibronic symmetry breaking
NASA Astrophysics Data System (ADS)
Rathbone, G. J.; Poliakoff, E. D.; Bozek, John D.; Lucchese, R. R.
2001-05-01
The energy dependence of the vibrational branching ratio for exciting one quantum of bending is determined for CO2 4σg-1 photoionization. This nominally forbidden transition becomes allowed for a photoionization transition as a result of instantaneous symmetry breaking due to zero point motion, and is strongly enhanced by a continuum shape resonance.
Hidden local symmetry and beyond
NASA Astrophysics Data System (ADS)
Yamawaki, Koichi
Gerry Brown was a godfather of our hidden local symmetry (HLS) for the vector meson from the birth of the theory throughout his life. The HLS is originated from very nature of the nonlinear realization of the symmetry G based on the manifold G/H, and thus is universal to any physics based on the nonlinear realization. Here, I focus on the Higgs Lagrangian of the Standard Model (SM), which is shown to be equivalent to the nonlinear sigma model based on G/H = SU(2)L ×SU(2)R/SU(2)V with additional symmetry, the nonlinearly-realized scale symmetry. Then, the SM does have a dynamical gauge boson of the SU(2)V HLS, “SM ρ meson”, in addition to the Higgs as a pseudo-dilaton as well as the NG bosons to be absorbed in to the W and Z. Based on the recent work done with Matsuzaki and Ohki, I discuss a novel possibility that the SM ρ meson acquires kinetic term by the SM dynamics itself, which then stabilizes the skyrmion dormant in the SM as a viable candidate for the dark matter, what we call “dark SM skyrmion (DSMS)”.
Monster symmetry and extremal CFTs
NASA Astrophysics Data System (ADS)
Gaiotto, Davide
2012-11-01
We test some recent conjectures about extremal selfdual CFTs, which are the candidate holographic duals of pure gravity in AdS 3. We prove that no c = 48 extremal selfdual CFT or SCFT may possess Monster symmetry. Furthermore, we disprove a recent argument against the existence of extremal selfdual CFTs of large central charge.
Superdeformations and fermion dynamical symmetries
Wu, Cheng-Li . Dept. of Physics and Atmospheric Science Tennessee Univ., Knoxville, TN . Dept. of Physics and Astronomy Joint Inst. for Heavy Ion Research, Oak Ridge, TN )
1990-01-01
In this talk, I will present a link between nuclear collective motions and their underlying fermion dynamical symmetries. In particular, I will focus on the microscopic understanding of deformations. It is shown that the SU{sub 3} of the one major shell fermion dynamical symmetry model (FDSM) is responsible for the physics of low and high spins in normal deformation. For the recently observed phenomena of superdeformation, the physics of the problem dictates a generalization to a supershell structure (SFDSM), which also has an SU{sub 3} fermion dynamical symmetry. Many recently discovered feature of superdeformation are found to be inherent in such an SU{sub 3} symmetry. In both cases the dynamical Pauli effect plays a vital role. A particularly noteworthy discovery from this model is that the superdeformed ground band is not the usual unaligned band but the D-pair aligned (DPA) band, which sharply crosses the excited bands. The existence of such DPA band is a key point to understand many properties of superdeformation. Our studies also poses new experimental challenge. This is particularly interesting since there are now plans to build new and exciting {gamma}-ray detecting systems, like the GAMMASPHERE, which could provide answers to some of these challenges. 34 refs., 11 figs., 5 tabs.
Pt-Mg, Pt-Ca, and Pt-Zn Lantern Complexes and Metal-Only Donor-Acceptor Interactions.
Baddour, Frederick G; Hyre, Ariel S; Guillet, Jesse L; Pascual, David; Lopez-de-Luzuriaga, José Maria; Alam, Todd M; Bacon, Jeffrey W; Doerrer, Linda H
2017-01-03
Pt-based heterobimetallic lantern complexes of the form [PtM(SOCR)4(L)] have been shown previously to form intermolecular metallophilic interactions and engage in antiferromagnetic coupling between lanterns having M atoms with open shell configurations. In order to understand better the influence of the carboxylate bridge and terminal ligand on the electronic structure, as well as the metal-metal interactions within each lantern unit, a series of diamagnetic lantern complexes, [PtMg(SAc)4(OH2)] (1), [PtMg(tba)4(OH2)] (2), [PtCa(tba)4(OH2)] (3), [PtZn(tba)4(OH2)] (4), and a mononuclear control (Ph4P)2[Pt(SAc)4] (5) have been synthesized. Crystallographic data show close Pt-M contacts enforced by the lantern structure in each dinuclear case. (195)Pt-NMR spectroscopy of 1-4, (Ph4P)2[Pt(SAc)4] (5), and several previously reported lanterns revealed a strong chemical shift dependence on the identity of the second metal (M), mild influence by the thiocarboxylate ligand (SOCR; R = CH3 (thioacetate, SAc), C6H5 (thiobenzoate, tba)), and modest influence from the terminal ligand (L). Fluorescence spectroscopy has provided evidence for a Pt···Zn metallophilic interaction in [PtZn(SAc)4(OH2)], and computational studies demonstrate significant dative character. In all of 1-4, the short Pt-M distances suggest that metal-only Lewis donor (Pt)-Lewis acceptor (M) interactions could be present. DFT and NBO calculations, however, show that only the Zn examples have appreciable covalent character, whereas the Mg and Ca complexes are much more ionic.
Symmetry Breaking During Drosophila Oogenesis
Roth, Siegfried; Lynch, Jeremy A.
2009-01-01
The orthogonal axes of Drosophila are established during oogenesis through a hierarchical series of symmetry-breaking steps, most of which can be traced back to asymmetries inherent in the architecture of the ovary. Oogenesis begins with the formation of a germline cyst of 16 cells connected by ring canals. Two of these 16 cells have four ring canals, whereas the others have fewer. The first symmetry-breaking step is the selection of one of these two cells to become the oocyte. Subsequently, the germline cyst becomes surrounded by somatic follicle cells to generate individual egg chambers. The second symmetry-breaking step is the posterior positioning of the oocyte within the egg chamber, a process mediated by adhesive interactions with a special group of somatic cells. Posterior oocyte positioning is accompanied by a par gene-dependent repolarization of the microtubule network, which establishes the posterior cortex of the oocyte. The next two steps of symmetry breaking occur during midoogenesis after the volume of the oocyte has increased about 10-fold. First, a signal from the oocyte specifies posterior follicle cells, polarizing a symmetric prepattern present within the follicular epithelium. Second, the posterior follicle cells send a signal back to the oocyte, which leads to a second repolarization of the oocyte microtubule network and the asymmetric migration of the oocyte nucleus. This process again requires the par genes. The repolarization of the microtubule network results in the transport of bicoid and oskar mRNAs, the anterior and posterior determinants, respectively, of the embryonic axis, to opposite poles of the oocyte. The asymmetric positioning of the oocyte nucleus defines a cortical region of the oocyte where gurken mRNA is localized, thus breaking the dorsal–ventral symmetry of the egg and embryo. PMID:20066085
Group II Xenoliths from Lunar Crater Volcanic Field, Central Nevada: Evidence for a Kinked Geotherm
NASA Astrophysics Data System (ADS)
Roden, M.; Mosely, J.; Norris, J.
2015-12-01
Group II xenoliths associated with the 140 Ka Easy Chair Crater, Lunar Crater volcanic field, NV, consist of amphibole rich-inclusions including amphibolites, pyroxenites, and gabbros. Abundant minerals in these inclusions are kaersutite, aluminous (7.3-9.7 wt% Al2O3), calcic clinopyroxene, primarily diopside, and olivine (Mg# 69-73) with accessory spinel, sulfide and apatite. Although most apatites are fluor-hydroxyapatite solid solutions, one xenolith contains Cl- and OH-rich apatite suggesting that Cl may have been an important constituent in the parent magma(s) . The xenoliths show abundant evidence for equilibration at relatively low temperatures including amphibole and orthopyroxene exsolution in clinopyroxene, and granules of magnetite in hercynite hosts. If latter texture is due to exsolution, then this particular Group II xenolith equilibrated at temperatures near or below 500oC or at a depth of about 15 km along a conductive geotherm. It may be that all the Group II xenoliths equilibrated at low temperatures given the abundant exsolution textures although Fe-Mg exchange relations suggest equilibration at temperatures in excess of 800oC. Low equilibration temperatures are in conflict with the unusually high equilibration temperatures, >1200oC (Smith, 2000) displayed by Group I xenoliths from this same volcanic field. Taken at face value, the geothermometric results indicate unusually high temperatures in the upper mantle, normal temperatures in the crust and the possibility of a kinked geotherm in the region. Curiously the LCVF lies in an area of "normal" heat flow, south of the Battle Mountain area of high heat flow but the number of heat flow measurements in the Lunar Crater area is very low (Humphreys et al., 2003; Sass, 2005). References: Humphreys et al., 2003, Int. Geol. Rev. 45: 575; Sass et al., 2005, http://pubs.usgs.gov/of/2005/1207/; Smith, 2000, JGR 105: 16769.
Exploration of the Kinked Jet in the Crab Nebula with Scaled Laboratory Experiments
NASA Astrophysics Data System (ADS)
Li, Chikang
2015-11-01
X-ray images from the Chandra X-ray Observatory show that the South-East jet in the Crab nebula changes direction every few years. This remarkable phenomenon is also frequently observed for jets in other pulsar-wind nebulae and in other astrophysical objects. Numerical simulations suggest that it may be a consequence of current-driven, magnetohydrodynamic (MHD) instabilities taking place in the jet, yet that is just a hypothesis without verification in controlled experiments. To that end, we recently conducted scaled laboratory experiments that reproduced this phenomenon. In these experiments, a supersonic plasma jet was generated in the collision of two laser-produced plasma plumes, and this jet was radiographed from the side using 15-MeV and 3-MeV protons. It was observed that if self-generated toroidal magnetic fields around the jet were strong enough, they triggered plasma instabilities that caused substantial deflections throughout the jet propagation, mimicking the kinked jet structure seen in the Crab Nebula. We have modeled these laboratory experiments with comprehensive two- and three-dimensional numerical simulations, which in conjunction with the experiments provide compelling evidence that we have an accurate model of the most important physics of magnetic fields and MHD instabilities in the observed jet in the Crab Nebula. The work described here was performed in part at the LLE National Laser User's Facility (NLUF), and was supported in part by US DOE (Grant No. DE-FG03- 03SF22691), LLNL (subcontract Grant No. B504974) and LLE (subcontract Grant No. 412160-001G).
Universal Formulation For Symmetries In Computed Flows
NASA Technical Reports Server (NTRS)
Pao, S. Paul; Abdol-Hamid, Khaled S.
1995-01-01
Universal formulation for high-order symmetries in boundary conditions on flows devised. Eliminates need for special procedures to incorporate symmetries and corresponding boundary conditions into computer codes solving Navier-Stokes and Euler equations of flow.
An Elementary Course in Mathematical Symmetry.
ERIC Educational Resources Information Center
Rose, Bruce I.; Stafford, Robert D.
1981-01-01
A college course designed to teach students about the mathematics of symmetry using pieces of wallpaper and cloth designs is presented. Mathematical structures and the symmetry of graphic designs provide the starting point for instruction. (MP)
Implementation of PT symmetric devices using plasmonics: principle and applications.
Benisty, Henri; Degiron, Aloyse; Lupu, Anatole; De Lustrac, André; Chénais, Sébastien; Forget, Sébastien; Besbes, Mondher; Barbillon, Grégory; Bruyant, Aurélien; Blaize, Sylvain; Lérondel, Gilles
2011-09-12
The so-called PT symmetric devices, which feature ε((-x)) = ε((x))* associated with parity-time symmetry, incorporate both gain and loss and can present a singular eigenvalue behaviour around a critical transition point. The scheme, typically based on co-directional coupled waveguides, is here transposed to the case of variable gain on one arm with fixed losses on the other arm. In this configuration, the scheme exploits the full potential of plasmonics by making a beneficial use of their losses to attain a critical regime that makes switching possible with much lowered gain excursions. Practical implementations are discussed based on existing attempts to elaborate coupled waveguide in plasmonics, and based also on the recently proposed hybrid plasmonics waveguide structure with a small low-index gap, the PIROW (Plasmonic Inverse-Rib Optical Waveguide).
Talbot self-imaging in PT-symmetric complex crystals
NASA Astrophysics Data System (ADS)
Longhi, Stefano
2014-10-01
The Talbot effect, i.e., the self-imaging property of a periodic wave in near-field diffraction, is a remarkable interference phenomenon in paraxial systems with continuous translational invariance. In crystals, i.e., systems with discrete translational invariance, self-imaging has been regarded so far as a rare effect, restricted to special sets of initial field distributions. Here it is shown that in a class of gapless PT-symmetric complex crystals at the symmetry-breaking threshold Talbot revivals can arise for almost any initial periodic wave distribution which is commensurate with the lattice period. A possible experimental realization of commensurate Talbot self-imaging for light pulses in complex "temporal" crystals, realized in an optical dispersive fiber loop with amplitude and phase modulators, is briefly discussed.
Symmetry perception in humans and macaques.
Beck, Diane M; Pinsk, Mark A; Kastner, Sabine
2005-09-01
The human ability to detect symmetry has been a topic of interest to psychologists and philosophers since the 19th century, yet surprisingly little is known about the neural basis of symmetry perception. In a recent fMRI study, Sasaki and colleagues begin to remedy this situation. By identifying the neural structures that respond to symmetry in both humans and macaques, the authors lay the groundwork for understanding the neural mechanisms underlying symmetry perception.
Flavored Peccei-Quinn symmetry
NASA Astrophysics Data System (ADS)
Ahn, Y. H.
2015-03-01
In an attempt to uncover any underlying physics in the standard model (SM), we suggest a μ - τ power law in the lepton sector, such that relatively large 13 mixing angle with bilarge ones can be derived. On the basis of this, we propose a neat and economical model for both the fermion mass hierarchy problem of the SM and a solution to the strong charge parity (C P ) problem, in a way that no domain wall problem occurs, based on A4×U (1 )X symmetry in a supersymmetric framework. Here we refer to the global U (1 )X symmetry that can explain the above problems as "flavored Peccei-Quinn symmetry." In the model, a direct coupling of the SM gauge singlet flavon fields responsible for spontaneous symmetry breaking to ordinary quarks and leptons, both of which are charged under U (1 )X, comes to pass through Yukawa interactions, and all vacuum expectation values breaking the symmetries are connected to each other. So the scale of Peccei-Quinn symmetry breaking is shown to be roughly located around the 1 012 GeV section through its connection to the fermion masses. The model predictions are shown to lie on the testable regions in the very near future through on-going experiments for neutrino oscillation, neutrinoless double beta decay, and the axion. We examine the model predictions, arisen from the μ - τ power law, on leptonic C P violation, neutrinoless double beta decay, and atmospheric mixing angle, and show that the fermion mass and mixing hierarchies are in good agreement with the present data. Interestingly, we show the model predictions on the axion mass ma≃2.53 ×1 0-5 eV and the axion coupling to photon ga γ γ≃1.33 ×1 0-15 GeV-1 . And subsequently the square of the ratio between them is shown to be one or two orders of magnitude lower than that of the conventional axion model.
Crystal structure of the coordination polymer [Fe(III) 2{Pt(II)(CN)4}3].
Seredyuk, Maksym; Muñoz, M Carmen; Real, José A; Iskenderov, Turganbay S
2015-01-01
The title complex, poly[dodeca-μ-cyanido-diiron(III)triplat-inum(II)], [Fe(III) 2{Pt(II)(CN)4}3], has a three-dimensional polymeric structure. It is built-up from square-planar [Pt(II)(CN)4](2-) anions (point group symmetry 2/m) bridging cationic [Fe(III)Pt(II)(CN)4](+) ∞ layers extending in the bc plane. The Fe(II) atoms of the layers are located on inversion centres and exhibit an octa-hedral coordination sphere defined by six N atoms of cyanide ligands, while the Pt(II) atoms are located on twofold rotation axes and are surrounded by four C atoms of the cyanide ligands in a square-planar coordination. The geometrical preferences of the two cations for octa-hedral and square-planar coordination, respectively, lead to a corrugated organisation of the layers. The distance between neighbouring [Fe(III)Pt(II)(CN)4](+) ∞ layers corresponds to the length a/2 = 8.0070 (3) Å, and the separation between two neighbouring Pt(II) atoms of the bridging [Pt(II)(CN)4](2-) groups corresponds to the length of the c axis [7.5720 (2) Å]. The structure is porous with accessible voids of 390 Å(3) per unit cell.
Generalized partial dynamical symmetry in nuclei.
Leviatan, A; Isacker, P Van
2002-11-25
We introduce the notion of a generalized partial dynamical-symmetry for which part of the eigenstates have part of the dynamical symmetry. This general concept is illustrated with the example of Hamiltonians with a partial dynamical O(6) symmetry in the framework of the interacting boson model. The resulting spectrum and electromagnetic transitions are compared with empirical data in 162Dy.
Noether symmetries and duality transformations in cosmology
NASA Astrophysics Data System (ADS)
Paliathanasis, Andronikos; Capozziello, Salvatore
2016-09-01
We discuss the relation between Noether (point) symmetries and discrete symmetries for a class of minisuperspace cosmological models. We show that when a Noether symmetry exists for the gravitational Lagrangian, then there exists a coordinate system in which a reversal symmetry exists. Moreover, as far as concerns, the scale-factor duality symmetry of the dilaton field, we show that it is related to the existence of a Noether symmetry for the field equations, and the reversal symmetry in the normal coordinates of the symmetry vector becomes scale-factor duality symmetry in the original coordinates. In particular, the same point symmetry as also the same reversal symmetry exists for the Brans-Dicke scalar field with linear potential while now the discrete symmetry in the original coordinates of the system depends on the Brans-Dicke parameter and it is a scale-factor duality when ωBD = 1. Furthermore, in the context of the O’Hanlon theory for f(R)-gravity, it is possible to show how a duality transformation in the minisuperspace can be used to relate different gravitational models.
Superalgebra and fermion-boson symmetry
Miyazawa, Hironari
2010-01-01
Fermions and bosons are quite different kinds of particles, but it is possible to unify them in a supermultiplet, by introducing a new mathematical scheme called superalgebra. In this article we discuss the development of the concept of symmetry, starting from the rotational symmetry and finally arriving at this fermion-boson (FB) symmetry. PMID:20228617
Symmetry Breaking for Black-Scholes Equations
NASA Astrophysics Data System (ADS)
Yang, Xuan-Liu; Zhang, Shun-Li; Qu, Chang-Zheng
2007-06-01
Black-Scholes equation is used to model stock option pricing. In this paper, optimal systems with one to four parameters of Lie point symmetries for Black-Scholes equation and its extension are obtained. Their symmetry breaking interaction associated with the optimal systems is also studied. As a result, symmetry reductions and corresponding solutions for the resulting equations are obtained.
NASA Astrophysics Data System (ADS)
Tripathi, S.; Gekelman, W. N.
2015-12-01
Arched magnetoplasma structures ubiquitously exist in the solar atmosphere and affect energetic phenomena such as flares and coronal mass ejections. In a laboratory setup, excitation of fast-waves (with characteristics of EUV/EIT waves on the Sun) and global kink-mode oscillations from an erupting arched magnetoplasma was recorded with an unprecedented detail by capturing spatio-temporal evolution of the three-dimensional magnetic-field and plasma density. Images of the arched magnetoplasma evolution were recorded using a fast-CCD camera. The global kink-mode oscillations were observed as transverse oscillations across the symmetry plane of the magnetoplasma. The arched magnetoplasma (plasma β ≈ 10-3, Lundquist number ≈ 102-105, radius/ion-gyroradius ≈ 20, B ≈ 1000 Gauss at footpoints) was created using a lanthanum hexaboride (LaB6) plasma source and it evolved in an ambient magnetoplasma produced by another LaB6 source (See Ref. [2] for details). The experiment runs continuously with a 0.5 Hz repetition rate. Hence, plasma parameters were recorded with a good resolution (spatial-resolution/magnetoplasma-length ≈ 10-2 - 10-3, temporal-resolution/eruption-time ≈ 10-3) using movable probes in three-dimensions. Mimicking the behavior of solar eruptions, a long pre-eruption phase (lasting up to 150 Alfvén transit times) was created in the laboratory by gradually increasing the electrical current. This leads to an impulsive eruption of the arched magnetoplasma within 4 Alfvén transit times. The relative magnitudes of the parameters of the arched and ambient magnetoplasma were varied to simulate a variety of conditions relevant to solar eruptions, examine the relevance of the existing models of the kink-mode oscillations, and investigate the dispersion characteristics of the fast wave. References: (1) Tripathi and Gekelman, Phys. Rev. Lett. 105, 075005 (2010); (2) Tripathi and Gekelman, Solar Phys. 286, 479 (2013)Figure Caption: Time-evolution of the
PT AND PT/NI "NEEDLE" ELETROCATALYSTS ON CARBON NANOTUBES WITH HIGH ACTIVITY FOR THE ORR
Colon-Mercado, H.
2011-11-10
Platinum and platinum/nickel alloy electrocatalysts supported on graphitized (gCNT) or nitrogen doped carbon nanotubes (nCNT) are prepared and characterized. Pt deposition onto carbon nanotubes results in Pt 'needle' formations that are 3.5 nm in diameter and {approx}100 nm in length. Subsequent Ni deposition and heat treatment results in PtNi 'needles' with an increased diameter. All Pt and Pt/Ni materials were tested as electrocatalysts for the oxygen reduction reaction (ORR). The Pt and Pt/Ni catalysts showed excellent performance for the ORR, with the heat treated PtNi/gCNT (1.06 mA/cm{sup 2}) and PtNi/nCNT (0.664 mA/cm{sup 2}) showing the highest activity.
The Role of Pt Complex on the Synthesis of FePt by Polyol Process
Aizawa, S.; Tohji, K.; Jeyadevan, B.
2008-02-25
Target materials in this experiment were FePt alloy nanoparticles with face-centered tetragonal structure, narrow size distribution, and the size of 6-8 nm. This type of materials was expected to have high recording-density of 1 Tbit/inch{sup 2} with high magnetic anisotropy. In this study, a detailed investigation was carried out to understand the reduction characteristics of Pt complexes, and FePt alloy nanoparticles with diameters larger than 6 nm was try to synthesize. For the synthesis of Pt nanoparticles by using polyol process, three kinds of Pt complexes, namely, H{sub 2}PtCl{sub 6}, Pt(EDTA), and Pt(acac){sub 2} was used. The size of Pt metal nanoparticles was only few nm in the case of single Pt complex, while it was increased to 7-10 nm in the case of mixed Pt complex and adjusting the reaction temperature increasing ratio. FePt alloy nanoparticles with the diameter of 7-8 nm, distorted shape, and narrow size distribution were successfully synthesized. However, composition ratio of the particle was Fe{sub 12-21}Pt{sub 79-88}, nevertheless the ratio of a Fe:Pt in the original solution was 2:1.
CP symmetry in optical systems
NASA Astrophysics Data System (ADS)
Dana, Brenda; Bahabad, Alon; Malomed, Boris A.
2015-04-01
We introduce a model of a dual-core optical waveguide with opposite signs of the group-velocity dispersion in the two cores, and a phase-velocity mismatch between them. The coupler is embedded into an active host medium, which provides for the linear coupling of a gain-loss type between the two cores. The same system can be derived, without phenomenological assumptions, by considering the three-wave propagation in a medium with the quadratic nonlinearity, provided that the depletion of the second-harmonic pump is negligible. This linear system offers an optical realization of the charge-parity symmetry, while the addition of the intracore cubic nonlinearity breaks the symmetry. By means of direct simulations and analytical approximations, it is demonstrated that the linear system generates expanding Gaussian states, while the nonlinear one gives rise to broad oscillating solitons, as well as a general family of stable stationary gap solitons.
Facial symmetry in robust anthropometrics.
Kalina, Jan
2012-05-01
Image analysis methods commonly used in forensic anthropology do not have desirable robustness properties, which can be ensured by robust statistical methods. In this paper, the face localization in images is carried out by detecting symmetric areas in the images. Symmetry is measured between two neighboring rectangular areas in the images using a new robust correlation coefficient, which down-weights regions in the face violating the symmetry. Raw images of faces without usual preliminary transformations are considered. The robust correlation coefficient based on the least weighted squares regression yields very promising results also in the localization of such faces, which are not entirely symmetric. Standard methods of statistical machine learning are applied for comparison. The robust correlation analysis can be applicable to other problems of forensic anthropology.
Symmetry breaking around a wormhole
NASA Astrophysics Data System (ADS)
Choudhury, A. L.
1996-11-01
We have modified the extended version Coule and Maeda's version (D. H. Coule and Kei-ichi Maeda, Class.Quant.Grav.7,995(1990)) of the Gidding-Strominger model (S. B. Giddings and A. Strominger, Nucl.Phys. B307, 854(l988)) of the euclidean gravitational field interacting with axion. The new model has R-symmetry in contrast to the previous model. At the lowest perturbation case the model retains a wormhole solution. We assume that the scalar expands adiabatically and satisfies ideal gas law in a crude first approximation. Under the Higg's mechanism the symmetry can be broken at the tree approximation. This mechanism, we hope, can be used to introduce the degeneracy of quark masses.
Broken symmetries in multilayered perceptrons
NASA Astrophysics Data System (ADS)
Barkai, E.; Hansel, D.; Sompolinsky, H.
1992-03-01
The statistical mechanics of two-layered perceptrons with N input units, K hidden units, and a single output unit that makes a decision based on a majority rule (Committee Machine) are studied. Two architectures are considered. In the nonoverlapping case the hidden units do not share common inputs. In the fully connected case each hidden unit is connected to the entire input layer. In both cases the network realizes a random dichotomy of P inputs. The statistical properties of the space of solutions as a function of P is studied, using the replica method, and by numerical simulations, in the regime where N>>K. In the nonoverlapping architecture with continuously varying weights the capacity, defined as the maximal number of P per weight, (αc) is calculated under a replica-symmetric (RS) ansatz. At large K, αc diverges as K1/2 in contradiction with the rigorous upper bound, αc
Symmetry of cardiac function assessment
Bai, Xu-Fang; Ma, Amy X
2016-01-01
Both right and left ventricles are developed from two adjacent segments of the primary heart tube. Though they are different with regard to shape and power, they mirror each other in terms of behavior. This is the first level of symmetry in cardiac function assessment. Both cardiac muscle contraction and relaxation are active. This constructs the second level of symmetry in cardiac function assessment. Combination of the two levels will help to find some hidden indexes or approaches to evaluate cardiac function. In this article, four major indexes from echocardiography were analyzed under this principal, another seventeen indexes or measurement approaches came out of the shadow, which is very helpful in the assessment of cardiac function, especially for the right cardiac function and diastolic cardiac function. PMID:27582768
Symmetries in Lagrangian Field Theory
NASA Astrophysics Data System (ADS)
Búa, Lucia; Bucataru, Ioan; León, Manuel de; Salgado, Modesto; Vilariño, Silvia
2015-06-01
By generalising the cosymplectic setting for time-dependent Lagrangian mechanics, we propose a geometric framework for the Lagrangian formulation of classical field theories with a Lagrangian depending on the independent variables. For that purpose we consider the first-order jet bundles J1π of a fiber bundle π : E → ℝk where ℝk is the space of independent variables. Generalized symmetries of the Lagrangian are introduced and the corresponding Noether theorem is proved.
Fermion mass without symmetry breaking
NASA Astrophysics Data System (ADS)
Catterall, Simon
2016-01-01
We examine a model of reduced staggered fermions in three dimensions interacting through an SO (4) invariant four fermion interaction. The model is similar to that considered in a recent paper by Ayyer and Chandrasekharan [1]. We present theoretical arguments and numerical evidence which support the idea that the system develops a mass gap for sufficiently strong four fermi coupling without producing a symmetry breaking fermion bilinear condensate. Massless and massive phases appear to be separated by a continuous phase transition.
Explaining quantum spontaneous symmetry breaking
NASA Astrophysics Data System (ADS)
Liu, Chuang; Emch, Gérard G.
Two accounts of quantum symmetry breaking (SSB) in the algebraic approach are compared: the representational and the decompositional account. The latter account is argued to be superior for understanding quantum SSB. Two exactly solvable models are given as applications of our account: the Weiss-Heisenberg model for ferromagnetism and the BCS model for superconductivity. Finally, the decompositional account is shown to be more conducive to the causal explanation of quantum SSB.
NASA Astrophysics Data System (ADS)
Templeton, Elizabeth L.; Baudet, AuréLie; Bhat, Harsha S.; Dmowska, Renata; Rice, James R.; Rosakis, Ares J.; Rousseau, Carl-Ernst
2009-08-01
We analyze the nucleation and propagation of shear cracks along nonplanar, kinked, and branched fault paths corresponding to the configurations used in recent laboratory fracture studies by Rousseau and Rosakis (2003, 2009). The aim is to reproduce numerically those shear rupture experiments and from that provide an insight into processes which are active when a crack, initially propagating in mode II along a straight path, interacts with a bend in the fault or a branching junction. The experiments involved impact loading of thin Homalite-100 (a photoelastic polymer) plates, which had been cut along bent or branched paths and weakly glued back together everywhere except along a starter notch near the impact site. Strain gage recordings and high-speed photography of isochromatic lines provided characterization of the transient deformation fields associated with the impact and fracture propagation. We found that dynamic explicit 2-D plane-stress finite element analyses with a simple linear slip-weakening description of cohesive and frictional strength of the bonded interfaces can reproduce the qualitative rupture behavior past the bend and branch junctions in most cases and reproduce the principal features revealed by the photographs of dynamic isochromatic line patterns. The presence of a kink or branch can cause an abrupt change in rupture propagation velocity. Additionally, the finite element results allow comparison between total slip accumulated along the main and inclined fault segments. We found that slip along inclined faults can be substantially less than slip along the main fault, and the amount depends on the branch angle and kink or branch configuration.
Li Bo; Habbal, Shadia Rifai; Chen Yanjun
2013-04-20
In the applications of solar magneto-seismology, the ratio of the period of the fundamental mode to twice the period of its first overtone, P{sub 1}/2P{sub 2}, plays an important role. We examine how field-aligned flows affect the dispersion properties, and hence the period ratios, of standing modes supported by magnetic slabs in the solar atmosphere. We numerically solve the dispersion relations and devise a graphic means to construct standing modes. For coronal slabs, we find that the flow effects are significant for the fast kink and sausage modes alike. For the kink ones, they may reduce P{sub 1}/2P{sub 2} by up to 23% compared with the static case, and the minimum allowed P{sub 1}/2P{sub 2} can fall below the lower limit analytically derived for static slabs. For the sausage modes, while introducing the flow reduces P{sub 1}/2P{sub 2} by typically {approx}< 5% relative to the static case, it significantly increases the threshold aspect ratio only above which standing sausage modes can be supported, meaning that their detectability is restricted to even wider slabs. In the case of photospheric slabs, the flow effect is not as strong. However, standing modes are distinct from the coronal case in that standing kink modes show a P{sub 1}/2P{sub 2} that deviates from unity even for a zero-width slab, while standing sausage modes no longer suffer from a threshold aspect ratio. We conclude that transverse structuring in plasma density and flow speed should be considered in seismological applications of multiple periodicities to solar atmospheric structures.
Dark matter and global symmetries
NASA Astrophysics Data System (ADS)
Mambrini, Yann; Profumo, Stefano; Queiroz, Farinaldo S.
2016-09-01
General considerations in general relativity and quantum mechanics are known to potentially rule out continuous global symmetries in the context of any consistent theory of quantum gravity. Assuming the validity of such considerations, we derive stringent bounds from gamma-ray, X-ray, cosmic-ray, neutrino, and CMB data on models that invoke global symmetries to stabilize the dark matter particle. We compute up-to-date, robust model-independent limits on the dark matter lifetime for a variety of Planck-scale suppressed dimension-five effective operators. We then specialize our analysis and apply our bounds to specific models including the Two-Higgs-Doublet, Left-Right, Singlet Fermionic, Zee-Babu, 3-3-1 and Radiative See-Saw models. Assuming that (i) global symmetries are broken at the Planck scale, that (ii) the non-renormalizable operators mediating dark matter decay have O (1) couplings, that (iii) the dark matter is a singlet field, and that (iv) the dark matter density distribution is well described by a NFW profile, we are able to rule out fermionic, vector, and scalar dark matter candidates across a broad mass range (keV-TeV), including the WIMP regime.
Symmetry analysis of talus bone
Islam, K.; Dobbe, A.; Komeili, A.; Duke, K.; El-Rich, M.; Dhillon, S.; Adeeb, S.; Jomha, N. M.
2014-01-01
Objective The main object of this study was to use a geometric morphometric approach to quantify the left-right symmetry of talus bones. Methods Analysis was carried out using CT scan images of 11 pairs of intact tali. Two important geometric parameters, volume and surface area, were quantified for left and right talus bones. The geometric shape variations between the right and left talus bones were also measured using deviation analysis. Furthermore, location of asymmetry in the geometric shapes were identified. Results Numerical results showed that talus bones are bilaterally symmetrical in nature, and the difference between the surface area of the left and right talus bones was less than 7.5%. Similarly, the difference in the volume of both bones was less than 7.5%. Results of the three-dimensional (3D) deviation analyses demonstrated the mean deviation between left and right talus bones were in the range of -0.74 mm to 0.62 mm. It was observed that in eight of 11 subjects, the deviation in symmetry occurred in regions that are clinically less important during talus surgery. Conclusions We conclude that left and right talus bones of intact human ankle joints show a strong degree of symmetry. The results of this study may have significance with respect to talus surgery, and in investigating traumatic talus injury where the geometric shape of the contralateral talus can be used as control. Cite this article: Bone Joint Res 2014;3:139–45. PMID:24802391
Dynamical diffraction simulations in FePt--I.
Torres, Karen L; Vanfleet, Richard R; Thompson, Gregory B
2011-06-01
A series of multislice simulations to quantify the effect of various degrees of order, composition, and thickness on the electron diffracted intensities were performed using the L1₀ FePt system as the case study. The dynamical diffraction studies were done in both a convergent electron beam diffraction and selected area electron diffraction condition. The L1₀ symmetry demonstrated some peculiar challenges in the simulation, in particular between the {111} plane normal and the <111> direction, which are not equivalent because of tetragonality. A hybrid weighting function atom of Fe-Pt was constructed to account for S < 1 or nonequiatomic compositions. This statistical approach reduced the complexity of constructing a crystal with the probability that a particular atom was at a particular lattice site for a given order parameter and composition. Considerations of accelerating voltage, convergent angle, and thermal effects are discussed. The simulations revealed significant differences in intensity ratios between films of various compositions but equivalent unit cell numbers and degree of order.
Kink-effect-related noise in InAlAs/InGaAs short-channel HEMTs
NASA Astrophysics Data System (ADS)
Vasallo, Beatriz G.; Mateos, Javier; Pardo, Daniel; Gonzalez, Tomas
2003-05-01
InAlAs/InGaAs HEMTs have demonstrated exceptional performance for low-noise high-frequency applications. However they have still some drawbacks to be removed, like the kink effect, which limits their applications by leading to a decrease in the gain and an enhancement in the noise level for high-enough values of the drain-to-source voltage. This effect is typically associated with the pile up of holes (generated by impact ionization) in the source-gate portion of the channel. In this work we investigate the noise properties of a 100 nm T-gate recessed In0.52Al0.48As/In0.53Ga0.47As HEMT in the presence of kink effect. For the calculations we make use of a 2D ensemble Monte Carlo (MC) simulator that incorporates all the microscopic processes at the basis of this effect. Impact ionization, which leads to the appearance of holes responsible for the kink, is included using the Keldysh approach with parameters adjusted to reproduce the impact ionization coefficients in bulk materials. Hole recombination is also considered, with a characteristic time τ ranging between 0.01 and 1 ns. The accumulation of holes in the source-gate region leads to a decrease of the potential barrier controlling the current through the channel, which is further opened and, as a consequence, the drain current increases. This phenomenon appears accompanied by a significant raise of the noise in the device that spoils its performance. The aim of this work is to analyze this excess noise and explain its physical origin by means of MC simulations. Impact ionization and hole trapping mechanisms lead to fluctuations of the hole concentration in the channel. Since these fluctuations are strongly coupled to the drain-current fluctuations by the high transconductance of the transistor, with the onset of the kink effect an important increase of the noise takes place, with a characteristic cutoff frequency related to the impact ionization rate and the hole recombination time. This is clearly observed in
Low Pt content direct methanol fuel cell anode catalyst: nanophase PtRuNiZr
NASA Technical Reports Server (NTRS)
Narayanan, Sekharipuram R. (Inventor); Whitacre, Jay F. (Inventor)
2010-01-01
A method for the preparation of a metallic material having catalytic activity that includes synthesizing a material composition comprising a metal content with a lower Pt content than a binary alloy containing Pt but that displays at least a comparable catalytic activity on a per mole Pt basis as the binary alloy containing Pt; and evaluating a representative sample of the material composition to ensure that the material composition displays a property of at least a comparable catalytic activity on a per mole Pt basis as a representative binary alloy containing Pt. Furthermore, metallic compositions are disclosed that possess substantial resistance to corrosive acids.
Direct Determination of the Ionization Energies of PtC, PtO, and PtO2 with VUVRadiation
Citir, Murat; Metz, Ricardo B.; Belau, Leonid; Ahmed, Musahid
2008-07-21
Photoionization efficiency curves were measured for gas-phase PtC, PtO, and PtO2 using tunable vacuum ultraviolet (VUV) radiation at the Advanced Light Source. The molecules were prepared by laser ablation of a platinum tube, followed by reaction with CH4 or N2O and supersonic expansion. These measurements providethe first directly measured ionization energy for PtC, IE(PtC) = 9.45 +- 0.05 eV. The direct measurement also gives greatly improved ionization energies for the platinum oxides, IE(PtO) = 10.0 +- 0.1 eV and IE(PtO2) = 11.35 +- 0.05 eV. The ionization energy connects the dissociation energies of the neutral and cation, leading to greatly improved 0 K bond dissociation energies for the neutrals: D0(Pt-C) = 5.95 +- 0.07 eV, D0(Pt-O)= 4.30 +- 0.12 eV, and D0(OPt-O) = 4.41 +- 0.13 eV, as well as enthalpies of formation for the gas-phase molecules Delta H0 f,0(PtC(g)) = 701 +- 7 kJ/mol, Delta H0f,0(PtO(g)) = 396 +- 12 kJ/mol, and Delta H0f,0(PtO2(g)) = 218 +- 11 kJ/mol. Much of the error in previous Knudsen cell measurements of platinum oxide bond dissociation energies is due to the use of thermodynamic second law extrapolations. Third law values calculated using statistical mechanical thermodynamic functions are in much better agreement with values obtained from ionization energies and ion energetics. These experiments demonstrate that laser ablation production with direct VUV ionization measurements is a versatile tool to measure ionization energies and bond dissociation energies for catalytically interesting species such as metal oxides and carbides.
Exceptional-point Dynamics in Photonic Honeycomb Lattices with PT Symmetry
2012-01-17
consider a two-dimensional honeycomb photonic lattice of coupled optical waveguides . Each waveguide supports only one mode, while light is...transferred from waveguide to waveguide through optical tunneling. A schematic of the setup is shown in Fig. 1. The lattice consist of two types of waveguides ...Honeycomb photonic lattice structure with intradimer coupling t and interdimer coupling ta = 1. Sublattice (lossy waveguide ) an,m is shown by green
Generalization of Friedberg-Lee symmetry
NASA Astrophysics Data System (ADS)
Huang, Chao-Shang; Li, Tianjun; Liao, Wei; Zhu, Shou-Hua
2008-07-01
We study the possible origin of Friedberg-Lee symmetry. First, we propose the generalized Friedberg-Lee symmetry in the potential by including the scalar fields in the field transformations, which can be broken down to the Friedberg-Lee symmetry spontaneously. We show that the generalized Friedberg-Lee symmetry allows a typical form of Yukawa couplings, and the realistic neutrino masses and mixings can be generated via the seesaw mechanism. If the right-handed neutrinos transform nontrivially under the generalized Friedberg-Lee symmetry, we can have the testable TeV scale seesaw mechanism. Second, we present two models with the SO(3)×U(1) global flavor symmetry in the lepton sector. After the flavor symmetry breaking, we can obtain the charged lepton masses, and explain the neutrino masses and mixings via the seesaw mechanism. Interestingly, the complete neutrino mass matrices are similar to those of the above models with generalized Friedberg-Lee symmetry. So the Friedberg-Lee symmetry is the residual symmetry in the neutrino mass matrix after the SO(3)×U(1) flavor symmetry breaking.
Enhanced Facial Symmetry Assessment in Orthodontists.
Jackson, Tate H; Clark, Kait; Mitroff, Stephen R
2013-01-01
Assessing facial symmetry is an evolutionarily important process, which suggests that individual differences in this ability should exist. As existing data are inconclusive, the current study explored whether a group trained in facial symmetry assessment, orthodontists, possessed enhanced abilities. Symmetry assessment was measured using face and non-face stimuli among orthodontic residents and two control groups: university participants with no symmetry training and airport security luggage screeners, a group previously shown to possess expert visual search skills unrelated to facial symmetry. Orthodontic residents were more accurate at assessing symmetry in both upright and inverted faces compared to both control groups, but not for non-face stimuli. These differences are not likely due to motivational biases or a speed-accuracy tradeoff-orthodontic residents were slower than the university participants but not the security screeners. Understanding such individual differences in facial symmetry assessment may inform the perception of facial attractiveness.
Symmetry constraints on many-body localization
NASA Astrophysics Data System (ADS)
Potter, Andrew C.; Vasseur, Romain
2016-12-01
We derive general constraints on the existence of many-body localized (MBL) phases in the presence of global symmetries, and show that MBL is not possible with symmetry groups that protect multiplets (e.g., all non-Abelian symmetry groups). Based on simple representation theoretic considerations, we derive general Mermin-Wagner-type principles governing the possible alternative fates of nonequilibrium dynamics in isolated, strongly disordered quantum systems. Our results rule out the existence of MBL symmetry-protected topological phases with non-Abelian symmetry groups, as well as time-reversal symmetry-protected electronic topological insulators, and in fact all fermion topological insulators and superconductors in the 10-fold way classification. Moreover, extending our arguments to systems with intrinsic topological order, we rule out MBL phases with non-Abelian anyons as well as certain classes of symmetry-enriched topological orders.
Symmetries in nuclei: New methods and applications
NASA Astrophysics Data System (ADS)
Caprio, Mark A.
2011-04-01
When a symmetry is a ``good'' symmetry of the nuclear system, as in the dynamical symmetries of the shell model and interacting boson model, this symmetry can directly give the spectroscopic properties of the nucleus, without the need for involved calculations. However, even if a symmetry is strongly broken, it nonetheless provides a calculational tool, classifying the basis states used in a full computational treatment of the many-body problem and greatly simplifying the underlying computational machinery. The symmetry then serves as the foundation for a physically meaningful truncation scheme for the calculation. This talk will provide an introduction to new applications of symmetry approaches to the nuclear problem, including the required mathematical developments. Supported by the US DOE under grant DE-FG02-95ER-40934 and by the Research Corporation for Science Advancement under a Cottrell Scholar Award.
Enhanced Facial Symmetry Assessment in Orthodontists
Jackson, Tate H.; Clark, Kait; Mitroff, Stephen R.
2013-01-01
Assessing facial symmetry is an evolutionarily important process, which suggests that individual differences in this ability should exist. As existing data are inconclusive, the current study explored whether a group trained in facial symmetry assessment, orthodontists, possessed enhanced abilities. Symmetry assessment was measured using face and non-face stimuli among orthodontic residents and two control groups: university participants with no symmetry training and airport security luggage screeners, a group previously shown to possess expert visual search skills unrelated to facial symmetry. Orthodontic residents were more accurate at assessing symmetry in both upright and inverted faces compared to both control groups, but not for non-face stimuli. These differences are not likely due to motivational biases or a speed-accuracy tradeoff—orthodontic residents were slower than the university participants but not the security screeners. Understanding such individual differences in facial symmetry assessment may inform the perception of facial attractiveness. PMID:24319342
Intrinsic transverse momentum and dynamical chiral symmetry breaking
Christian Weiss, Peter Schweitzer, Mark Strikman
2013-01-01
We study the effect of QCD vacuum structure on the intrinsic transverse momentum distribution of partons in the nucleon at a low scale. The dynamical breaking of chiral symmetry is caused by non-perturbative interactions at distances of the order rho ~ 0.2 - 0.3 fm, much smaller than the typical nucleon size R ~ 1 fm, resulting in a two-scale picture of nucleon structure. Using an effective dynamical model based on chiral constituent quark degrees of freedom and the 1/N_c expansion (chiral quark-soliton model), we calculate the transverse momentum distribution of quarks and antiquarks at a low scale. The distribution of valence quarks is localized at p_T ~ 1/R. The distribution of flavor-singlet unpolarized sea quarks exhibits a power-like tail extending up to the chiral-symmetry-breaking scale 1/{rho}. A similar tail is present in the flavor-nonsinglet polarized sea. These features are model-independent and represent the imprint of the QCD vacuum on the nucleon's partonic structure. At the level of the nucleon's light-cone wave function, we show that sea quarks partly exist in correlated pairs of transverse size {rho} << R, analogous to short-range NN correlations in nuclei. We discuss the implications of our findings for the transverse momentum distributions in hard scattering processes (semi-inclusive DIS, Drell-Yan pair production) and possible experimental tests of the non-perturbative parton correlations induced by QCD vacuum structure.
Breaking inversion symmetry induces excitonic peak in optical absorption of topological semimetal
NASA Astrophysics Data System (ADS)
Dadsetani, Mehrdad; Ebrahimian, Ali
2017-01-01
In this work we present ab initio study on linear optical properties of Dirac and Weyl semimetals and tried to find the consequences of inversion symmetry breaking in the optical properties of topological semimetal. The real and imaginary part of dielectric function in addition to energy loss spectra of topological semimetal with and without inversion symmetry have been calculated within Random phase approximation (RPA) then the electron-hole interaction is included by solving the Bethe-Salpeter Equation (BSE) for the electron-hole Green's function. We find that the lack of inversion symmetry and spin-orbit interaction increases the density of states at Fermi level, giving rise to excitonic peak in optical absorption of topological semimetal. It is remarkable that the excitonic effects in high energy range of the spectrum are stronger than in the lower one. To explore the breaking of inversion symmetry related optical properties, we have investigated the optical properties of Dirac semimetals Na3Bi and BaPt and compared them to corresponding ones in Weyl semimetals NbP and Na3Bi0.75Sb0.25. Our calculations show that NbP, which lacks inversion symmetry, has high energy exciton at 10 and 10.8 eV. In contrast with Na3Bi, electron-hole interactions give rise to several weak peaks at different energy in the optical absorption of Na3Bi0.75Sb0.25 while its red shift is less pronounced.
NASA Astrophysics Data System (ADS)
Vasallo, B. G.; Mateos, J.; Pardo, D.; González, T.
2005-09-01
A semiclassical two-dimensional ensemble Monte Carlo simulator is used to perform a microscopic study of the influence of the kink effect on the dynamic behaviour of short-channel InAlAs/InGaAs lattice-matched high electron mobility transistors (HEMTs). To this end, the transient behaviour of the kink onset and the degradation introduced in some elements of the small signal equivalent circuit are analysed. According to our results, the pile-up of holes (generated by impact ionization) which is at the origin of the kink effect, jointly with the higher electron density in the channel, causes an increase of the gate-source capacitance. The drain conductance also increases because the accumulated hole density depends significantly on the drain-source voltage. In addition, the frequency dependence of the drain conductance reflects the influence of the hole recombination processes taking place in the accumulation zone.
High-performance core-shell PdPt@Pt/C catalysts via decorating PdPt alloy cores with Pt
NASA Astrophysics Data System (ADS)
Wu, Yan-Ni; Liao, Shi-Jun; Liang, Zhen-Xing; Yang, Li-Jun; Wang, Rong-Fang
A core-shell structured low-Pt catalyst, PdPt@Pt/C, with high performance towards both methanol anodic oxidation and oxygen cathodic reduction, as well as in a single hydrogen/air fuel cell, is prepared by a novel two-step colloidal approach. For the anodic oxidation of methanol, the catalyst shows three times higher activity than commercial Tanaka 50 wt% Pt/C catalyst; furthermore, the ratio of forward current I f to backward current I b is high up to 1.04, whereas for general platinum catalysts the ratio is only ca. 0.70, indicating that this PdPt@Pt/C catalyst has high activity towards methanol anodic oxidation and good tolerance to the intermediates of methanol oxidation. The catalyst is characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The core-shell structure of the catalyst is revealed by XRD and TEM, and is also supported by underpotential deposition of hydrogen (UPDH). The high performance of the PdPt@Pt/C catalyst may make it a promising and competitive low-Pt catalyst for hydrogen fueled polymer electrolyte membrane fuel cell (PEMFC) or direct methanol fuel cell (DMFC) applications.
PT-symmetric slowing down of decoherence
Gardas, Bartlomiej; Deffner, Sebastian; Saxena, Avadh Behari
2016-10-27
Here, we invesmore » tigate PT-symmetric quantum systems ultraweakly coupled to an environment. We find that such open systems evolve under PT-symmetric, purely dephasing and unital dynamics. The dynamical map describing the evolution is then determined explicitly using a quantum canonical transformation. Furthermore, we provide an explanation of why PT-symmetric dephasing-type interactions lead to a critical slowing down of decoherence. This effect is further exemplified with an experimentally relevant system, a PT-symmetric qubit easily realizable, e.g., in optical or microcavity experiments.« less
The effect of Pt content on NiPtAl coatings
Haynes, James A; Pint, Bruce A; Zhang, Ying; Wright, Ian G
2008-01-01
This study investigated the impact of Pt content on the coating composition and subsequent oxidation behavior of gamma/gamma-prime NiPtAl coatings. Gamma/gamma-prime diffusion coatings were fabricated by vacuum annealing electroplated Pt on single-crystal and directionally-solidified superalloy substrates. Specimens with 7 and 12 m thickness Pt were annealed at 1100 or 1175oC. Coating compositions were characterized to evaluate distribution of Pt and Al as a function of annealing temperature and Pt thickness. Selected coatings fabricated from 7 and 12 m Pt were evaluated in cyclic oxidation at 1100 and 1150oC. Coatings with higher Pt contents showed improvements in spallation resistance at both 1100 and 1150oC, particularly on superalloys with higher Hf and S contents.
Effect of Self-generated Radial Electric Field on Internal Collapse induced by m=1 Kinetic Kink Mode
NASA Astrophysics Data System (ADS)
Matsumoto, Taro; Tokuda, Shinji; Kishimoto, Yasuaki; Takizuka, Tomonori; Naitou, Hiroshi
1998-11-01
Effect of Self-generated Radial Electric Field on Internal Collapse induced by m=1 Kinetic Kink Mode Matsumoto Taro, Tokuda Shinji, Kishimoto Yasuaki, Takizuka Tomonori Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Japan and Naitou Hiroshi Department of Electrical and Electronic Engineering, Yamaguchi University, Japan The density gradient effect is taken into account in the gyro-kinetic nonlinear simulation of the kinetic m=1 internal kink mode in a cylindrical plasma. Even when the density gradient is not so large enough to change the process of the full reconnection, the process of the post-reconnection phase is changed considerably due to the self-generated radial electric field, i.e. m/n = 0/0 mode induced by the nonlinear interaction. The radial electric field grows to the same level as the 1/1 mode, and drives a ExB plasma rotation in the ion diamagnetic direction. The density and current distribution, and therefore q-min value after the full reconnection, are found to be significantly affected by the rotation.
NASA Astrophysics Data System (ADS)
Yu, Hui; Chen, Shao-Xia; Li, Bo; Xia, Li-Dong
2016-06-01
Standing oscillations with multiple periods have been found in a number of atmospheric structures on the Sun. The ratio of the period of the fundamental to twice the one of its first overtone, P 1/2P 2, is important in applications of solar magneto-seismology. We examine how field-aligned flows impact P 1/2P 2 of standing modes in solar magnetic cylinders. For coronal loops, the flow effects are significant for both fast kink and sausage modes. For kink modes, they reduce P 1/2P 2 by up to 17% relative to the static case even when the density contrast between the loop and its surroundings approaches infinity. For sausage modes, the reduction in P 1/2P 2 due to flow is typically ≲ 5.5% compared with the static case. However, the threshold aspect ratio, only above which can trapped sausage modes be supported, may increase dramatically with the flow magnitude. For photospheric tubes, the flow effect on P 1/2P 2 is not as strong. However, when applied to sausage modes, introducing field-aligned flows offers more possibilities in interpreting the multiple periods that have recently been measured. We conclude that field-aligned flows should be taken into account to help better understand what causes the departure of P 1/2P 2 from unity.
NASA Astrophysics Data System (ADS)
Volpe, F. A.; Frassinetti, L.; Brunsell, P. R.; Drake, J. R.; Olofsson, K. E. J.
2013-04-01
A new non-disruptive error field (EF) assessment technique not restricted to low density and thus low beta was demonstrated at the EXTRAP-T2R reversed field pinch. Stable and marginally stable external kink modes of toroidal mode number n = 10 and n = 8, respectively, were generated, and their rotation sustained, by means of rotating magnetic perturbations of the same n. Due to finite EFs, and in spite of the applied perturbations rotating uniformly and having constant amplitude, the kink modes were observed to rotate non-uniformly and be modulated in amplitude. This behaviour was used to precisely infer the amplitude and approximately estimate the toroidal phase of the EF. A subsequent scan permitted to optimize the toroidal phase. The technique was tested against deliberately applied as well as intrinsic EFs of n = 8 and 10. Corrections equal and opposite to the estimated error fields were applied. The efficacy of the error compensation was indicated by the increased discharge duration and more uniform mode rotation in response to a uniformly rotating perturbation. The results are in good agreement with theory, and the extension to lower n, to tearing modes and to tokamaks, including ITER, is discussed.
NASA Astrophysics Data System (ADS)
Brady, C. S.; Arber, T. D.
2016-10-01
Two of the central problems in our understanding of the solar chromosphere are how the upper chromosphere is heated and what drives spicules. Estimates of the required chromospheric heating, based on radiative and conductive losses, suggest a rate of ˜0.1 erg cm-3 s-1 in the lower chromosphere and drops to ˜10-3 erg cm-3 s-1 in the upper chromosphere. The chromosphere is also permeated by spicules, higher density plasma from the lower atmosphere propelled upwards at speeds of ˜10-20 km s-1, for so-called Type I spicules, which reach heights of ˜3000-5000 km above the photosphere. A clearer understanding of chromospheric dynamics, its heating, and the formation of spicules is thus of central importance to solar atmospheric science. For over 30 years it has been proposed that photospheric driving of MHD waves may be responsible for both heating and spicule formation. This paper presents results from a high-resolution MHD treatment of photospheric driven Alfvén and kink waves propagating upwards into an expanding flux tube embedded in a model chromospheric atmosphere. We show that the ponderomotive coupling from Alfvén and kink waves into slow modes generates shocks, which both heat the upper chromosphere and drive spicules. These simulations show that wave driving of the solar chromosphere can give a local heating rate that matches observations and drive spicules consistent with Type I observations all within a single coherent model.
NASA Astrophysics Data System (ADS)
Dias, Jerry Ray
2015-11-01
Kinked polyzethrenes are more stable than linear polyzethrenes making them better candidates as materials for organic electronic devices (e.g., organic field effect transistors, nonlinear optics, and semiconductors) because of their greater singlet biradical properties. For series of molecules constructed by successive attachment of a given aufbau unit, we are able to derive analytical or recursion expressions relating certain properties. For example, starting with a few known number of Dewar resonance structures (DSs) for such a series, one is often able to derive analytical or recursion expressions for these DS values by our method of successive differences which then lead to either constant or Fibonacci numbers, respectively. The increasing order of π-electronic stability of isomers with the same number of Kekulé structures (K) is determined by their increasing number of DSs. Kinked polycyclic conjugated polyenes with a single classical structure (i.e., K = 1) are more conjugated and stable than their straight polycyclic isomers with a single classical structure.
Wang, Xiaomu; Xu, Haitao; Min, Jie; Peng, Lian-Mao; Xu, Jian-Bin
2013-04-07
There has recently been a great deal of interest and excitement in applying graphene field effect transistors (GFETs) in digital and radio frequency (RF) circuits and systems. Peculiar output characteristics such as kinks and negative differential resistance (NDR) in a strong field are the unique transport properties of GFETs. Here we demonstrate that these unusual features are attributed to a carrier sheet density constrained transport framework. Simulation results based on a simple analytic model which includes the linear DOS structure are in very good agreement with experimental data. The kernel mechanism of NDR is ascribed to the fact that the total current increase of a channel with a high average carrier density is constrained by its minimum sheet density. Utilizing in situ Kelvin probe force microscopy (KPFM), the principle which naturally distinguishes NDR from kinks is further verified by studying the spatially resolved surface potential distribution along the channel. The influence and potential application of GFETs' unique output characteristics in the digital and RF fields are also proposed.
Symmetry breaking and wake instabilities
NASA Astrophysics Data System (ADS)
Sengupta, Raja
A numerical technique has been developed in the context of spatio-temporal stability analysis. The convective/absolute nature of instability determines the time-asymptotic response of a linearly unstable flow, either in the form an oscillator or in the form of a noise amplifier. This depends on the location of pinch point singularities of the dispersion relations obtained via linear stability analyses. A new and efficient approach to locate such singularities is presented. Local analyticity of the dispersion relations was exploited via the Cauchy-Riemann equations in a quasi-Newton's root- finding procedure employing numerical Jacobians. Initial guesses provided by temporal stability analyses have been shown to converge to the pinch points even in the presence of multiple saddle points for various Falkner- Skan wedge profiles. This effort was motivated by the phenomenon of spontaneous symmetry breaking in flow over a cone. At large enough incidence, a pair of vortices develop on the leeward side of the cone which eventually become asymmetric as the angle of attack is increased further. A conical, thin-layer Navier-Stokes solver was employed to investigate the effect of flowfield saddles in this process. The approximate factorization scheme incorporated in the solver was shown analytically to be symmetric to eliminate possible sources of asymmetry. Local grid resolution studies were performed to demonstrate the importance of correctly computing the leeside saddle point and the secondary separation and reattchment points. Topological studies of the flow field as it loses symmetry agreed well with previous qualitative experimental observations. However, the original goal of this study, to settle an ongoing controversy regarding the nature of the instability responsible for symmetry breaking, could not be realized due to computational inadequacy. It is conjectured that the process is governed by an absolute instability similar to that observed in a flow over a circular
Duality symmetries and G+++ theories
NASA Astrophysics Data System (ADS)
Riccioni, Fabio; Steele, Duncan; West, Peter
2008-02-01
We show that the nonlinear realizations of all the very extended algebras G+++, except the B and C series which we do not consider, contain fields corresponding to all possible duality symmetries of the on-shell degrees of freedom of these theories. This result also holds for G+++2 and we argue that the nonlinear realization of this algebra accounts precisely for the form fields present in the corresponding supersymmetric theory. We also find a simple necessary condition for the roots to belong to a G+++ algebra.
History of electroweak symmetry breaking
NASA Astrophysics Data System (ADS)
Kibble, T. W. B.
2015-07-01
In this talk, I recall the history of the development of the unified electroweak theory, incorporating the symmetry-breaking Higgs mechanism, as I saw it from my standpoint as a member of Abdus Salam's group at Imperial College. I start by describing the state of physics in the years after the Second World War, explain how the goal of a unified gauge theory of weak and electromagnetic interactions emerged, the obstacles encountered, in particular the Goldstone theorem, and how they were overcome, followed by a brief account of more recent history, culminating in the historic discovery of the Higgs boson in 2012.
Kim, Kyou-Hyun; Payne, David A.; Zuo, Jian-Min
2012-11-29
We use probes of three different length scales to examine symmetry of (1–x)Pb(Mg1/3Nb2/3)O₃-xPbTiO₃ (PMN-xPT) single crystals in the morphotropic phase boundary (MPB) region at composition x = 0.31 (PMN-31% PT). On the macroscopic scale, x-ray diffraction (XRD) shows a mixture of strong and weak diffraction peaks of different widths. The closest match to XRD peak data is made with monoclinic Pm (MC) symmetry. On the local scale of a few nanometers, convergent beam electron diffraction (CBED) studies, with a 1.6-nm electron probe, reveal no obvious symmetry. These CBED experimental patterns can be approximately matched with simulations based on monoclinic symmetry,more » which suggests locally distorted monoclinic structure. A monoclinic Cm (MA or MB)-like symmetry could also be obtained from certain regions of the crystal by using a larger electron probe size of several tens of nanometers in diameter. Thus the monoclinic symmetry of single crystal PMN-31%PT is developed only in parts of the crystal by averaging over locally distorted structure on the scale of few tens of nanometers. The macroscopic symmetry observed by XRD is a result of averaging from the local structure in PMN-31%PT single crystal. The lack of local symmetry at a few nanometers scale suggests that the polarization switching results from a change in local displacements, which are not restricted to specific symmetry planes or directions.« less
Clarification of symmetry breaking mechanism in intrinsic rotation of tokamak plasmas
NASA Astrophysics Data System (ADS)
Yi, S.; Kwon, J. M.; Rhee, T.; Diamond, P. H.; Kim, J. Y.
2010-11-01
Intrinsic rotation of tokamak plasmas is considered to be generated by non-diffusive stress (i.e. residual stress) induced by asymmetric k|| turbulence spectrum. To study the symmetry breaking mechanisms in intrinsic rotation, we have performed numerical simulations of intrinsic rotation by ITG turbulence using the gKPSP code, a delta-f global PIC code for tokamak. It is found that not only distortion of turbulence spectrum by ExB shear but also spatial diffusion of wave momentum driven by turbulence intensity gradient play an important role in the symmetry breaking mechanism, as expected from a theory [1]. It is hard to recognize individual contribution of ExB shear and turbulence intensity gradient to the residual stress because their evolution is strongly coupled with the prey-predator feature [2]. To clarify their role, a comprehensive analysis including their nonlinear coupling is performed. The key symmetry breaking mechanism is identified for various physics situations. [4pt] [1] P.H. Diamond, et al., Phys. of Plasmas 15, 012303 (2008). [0pt] [2] P.H. Diamond, et al., PRL 72, 2565 (1994).
Contact symmetries and Hamiltonian thermodynamics
Bravetti, A.; Lopez-Monsalvo, C.S.; Nettel, F.
2015-10-15
It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher’s Information Matrix. In this work we analyse several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendre symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production.