Sample records for pterins

  1. Determination of pterins in urine by HPLC with UV and fluorescent detection using different types of chromatographic stationary phases (HILIC, RP C8, RP C18).

    PubMed

    Kośliński, Piotr; Jarzemski, Piotr; Markuszewski, Michał J; Kaliszan, Roman

    2014-03-01

    Pterins are a class of potential cancer biomarkers. New methods involving hydrophilic interaction liquid chromatography (HILIC) and reversed phase (RP) high-performance liquid chromatography have been developed for analysis of eight pterin compounds: 6,7-dimethylpterin, pterin, 6-OH-methylpterin, biopterin, isoxanthopterin, neopterin, xanthopterin, and pterin-6-carboxylic acid. The effect of mobile phase composition, buffer type, pH and concentration on retention using HILIC, C8 and C18 RP stationary phases were examined. Separation of pterins on RP and HILIC stationary phase was performed and optimized. Eight pterins were successfully separated on HILIC Luna diol-bonded phases, Aquasil C18 RP column and LiChrospher C8 RP column. Determination and separation of the pterins from urine samples were performed on HILIC Luna and LiChrospher C8 RP columns which were chosen as the most appropriate ones. Finally, LiChrospher C8 RP column with fluorescence detection was selected for further validation of the method. The optimum chromatographic condition was mobile phase methanol (A)/phosphoric buffer pH 7, 10mM (B), isocratic elution 0-15min 5% A flow=0.5ml/min 15-17min. 5% A, flow=0.5-1ml/min the linearity (R(2)>0.997) and retention time repeatability (RSD%<1) were at satisfactory level. The precision of peak areas expressed as RSD in % was between 0.55 and 14. Pterins detection limits varied from 0.041ng/ml to 2.9ng/ml. Finally, HPLC method was used for the analysis of pterins in urine samples with two different oxidation procedures. Concentration levels of pterin compounds in bladder cancer patients and healthy subjects were compared. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Evaluation of Pterin, a Promising Drug Candidate from Cyanide Degrading Bacteria.

    PubMed

    Mahendran, Ramasamy; Thandeeswaran, Murugesan; Kiran, Gopikrishnan; Arulkumar, Mani; Ayub Nawaz, K A; Jabastin, Jayamanoharan; Janani, Balraj; Anto Thomas, Thomas; Angayarkanni, Jayaraman

    2018-06-01

    Pterin is a member of the compounds known as pteridines. They have the same nucleus of 2-amino-4-hydroxypteridine (pterin); however, the side-chain is different at the position 6, and the state of oxidation of the ring may exist in different form viz. tetrahydro, dihydro, or a fully oxidized form. In the present study, the microorganisms able to utilize cyanide, and heavy metals have been tested for the efficient production of pterin compound. The soil samples contaminated with cyanide and heavy metals were collected from Salem steel industries, Tamil Nadu, India. Out of 77 isolated strains, 40 isolates were found to utilize sodium cyanate as nitrogen source at different concentrations. However, only 13 isolates were able to tolerate maximum concentration (60 mM) of sodium cyanate and were screened for pterin production. Among the 13 isolates, only 1 organism showed maximum production of pterin, and the same was identified as Bacillus pumilus SVD06. The compound was extracted and purified by preparative high-performance liquid chromatography and analyzed by UV/visible, FTIR, and fluorescent spectrum. The antioxidant property of the purified pterin compound was determined by cyclic voltammetry. In addition, antimicrobial activity of pterin was also studied which was substantiated by antagonistic activity against Escherichia coli, and Pseudomonas aeruginosa. Besides that the pterin compound was proved to inhibit the formation of biofilm. The extracted pterin compounds could be proposed further not only for antioxidant and antimicrobial but also for its potency to aid as anticancer and psychotic drugs in future.

  3. Biosynthesis of methanopterin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, R.H.

    1990-06-05

    The biosynthetic pathway for the generation of the methylated pterin in methanopterins was determined for the methanogenic bacteria Methanococcus volta and Methanobacterium formicicum. Extracts of M. volta were found to readily cleave L-7,8-dihydroneopterin to 7,8-dihydro-6-(hydroxymethyl)pterin, which was confirmed to be a precursor of the pterin portion of the methanopterin. (methylene{sup 2}H)-6-(hydroxymethyl)pterin was incorporated into methanopterin by growing cells of M. volta to an extent of 30%. Both the C-11 and C-12 methyl groups of methanopterin originate from (methyl-{sup 2}H{sub 3})methionine. Cells grown in the presence of (methylene-{sup 2}H)-6-(hydroxymethyl)pterin, (ethyl-{sup 2}H{sub 4})-6-(1 (RS)-hydroxyethyl)pterin, (methyl-{sup 2}H{sub 3})-6-(hydroxymethyl)-7-methylpterin, (ethyl-{sup 2}H{sub 4}, methyl-{sup 2}H{submore » 3})-6-(1 (RS)-hydroxyethyl)-7-methylpterin, and (1-ethyl-{sup 3}H)-6-(1 (RS)-hydroxyethyl)-7-methylpterin showed that only the non-7-methylated pterins were incorporated into methanopterin. Cells extracts of M. formicicum readily condensed synthetic (methylene-{sup 3}H)-7,8-H{sub 2}-6-(hydroxymethyl)pterin-PP with methaniline to generate demethylated methanopterin, which is then methylated to methanopterin by the cell extract in the presence of S-adenosylmethionine. These observations indicate that the pterin portion of methanopterin is biosynthetically derived from 7,8-H{sub 2}-6-(hydroxymethyl)pterin, which is coupled to methaniline by a pathway analogous to the biosynthesis of folic acid. This pathway for the biosynthesis of methanopterin represents the first example of the modification of the specificity of a coenzyme through a methylation reaction.« less

  4. Pterin pigment granules are responsible for both broadband light scattering and wavelength selective absorption in the wing scales of pierid butterflies

    PubMed Central

    Morehouse, Nathan I; Vukusic, Peter; Rutowski, Ron

    2006-01-01

    A small but growing literature indicates that many animal colours are produced by combinations of structural and pigmentary mechanisms. We investigated one such complex colour phenotype: the highly chromatic wing colours of pierid butterflies including oranges, yellows and patterns which appear white to the human eye, but strongly absorb the ultraviolet (UV) wavelengths visible to butterflies. Pierids produce these bright colours using wing scales that contain collections of minute granules. However, to date, no work has directly characterized the molecular composition or optical properties of these granules. We present results that indicate these granules contain pterin pigments. We also find that pterin granules increase light reflection from single wing scales, such that wing scales containing denser granule arrays reflect more light than those with less dense granule collections. As male wing scales contain more pterin granules than those of females, the sexual dichromatism found in many pierid species can be explained by differences in wing scale pterin deposition. Additionally, the colour pattern elements produced by these pterins are known to be important during mating interactions in a number of pierid species. Therefore, we discuss the potential relevance of our results within the framework of sexual selection and colour signal evolution. PMID:17164199

  5. Photophysical and Photochemical Properties of 3-methylpterin as a New and More Stable Pterin-type Photosensitizer.

    PubMed

    Estébanez, Sandra; Lorente, Carolina; Kaufman, Teodoro S; Larghi, Enrique L; Thomas, Andrés H; Serrano, Mariana P

    2018-05-04

    Pterin derivatives are heterocyclic compounds which are present in different biological systems. Neutral aqueous solutions of pterins presents acid-base and keto-enol equilibria. These compounds under UV-A radiation fluoresce, undergo photooxidation, generate reactive oxygen species, and photoinduce the oxidation of biological substrates. As photosensitizers, they may act through different mechanisms; mainly through an electron-transfer initiated process (type I mechanism), but they also produce singlet molecular oxygen ( 1 O 2 ) upon irradiation (type II mechanism). In general, upon UV-A excitation two triplet states, corresponding to the lactim and lactam tautomers, are formed, but only the last one is the responsible for the photosensitized reactions of biomolecules. We present a study of the photochemical properties of 3-methylpterin (3-Mep) which, in contrast to most pterin derivatives, exists only in the lactam form. Also an improvement in the synthesis of 3-Mep is reported. The spectroscopic properties 3-Mep in aqueous solution were similar to those of the unsubstituted pterin derivative (Ptr) in its acid form, such as absorption, fluorescent and phosphorescent emission spectra. Experiments using 2'-deoxyguanosine 5'-monophosphate (dGMP) as oxidizable target, demonstrated that methylation at C-3 position of the pterin moiety does not affect significantly the efficiency of photosensitization, but results in a more photostable sensitizer. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme

    PubMed Central

    Rutowski, R.L; Macedonia, J.M; Morehouse, N; Taylor-Taft, L

    2005-01-01

    Animal colouration is typically the product of nanostructures that reflect or scatter light and pigments that absorb it. The interplay between these colour-producing mechanisms may influence the efficacy and potential information content of colour signals, but this notion has received little empirical attention. Wing scales in the male orange sulphur butterfly (Colias eurytheme) possess ridges with lamellae that produce a brilliant iridescent ultraviolet (UV) reflectance via thin-film interference. Curiously, these same scales contain pterin pigments that strongly absorb wavelengths below 550 nm. Given that male UV reflectance functions as a sexual signal in C. eurytheme, it is paradoxical that pigments in the wing scales are highly UV absorbing. We present spectrophotometric analyses of the wings before and after pterin removal that show that pterins both depress the amplitude of UV iridescence and suppress a diffuse UV reflectance that emanates from the scales. This latter effect enhances the directionality and spectral purity of the iridescence, and increases the signal's chromaticity and potential signal content. Our findings also suggest that pterins amplify the contrast between iridescent UV reflectance and scale background colour as a male's wings move during flight. PMID:16191648

  7. Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme.

    PubMed

    Rutowski, R L; Macedonia, J M; Morehouse, N; Taylor-Taft, L

    2005-11-07

    Animal colouration is typically the product of nanostructures that reflect or scatter light and pigments that absorb it. The interplay between these colour-producing mechanisms may influence the efficacy and potential information content of colour signals, but this notion has received little empirical attention. Wing scales in the male orange sulphur butterfly (Colias eurytheme) possess ridges with lamellae that produce a brilliant iridescent ultraviolet (UV) reflectance via thin-film interference. Curiously, these same scales contain pterin pigments that strongly absorb wavelengths below 550 nm. Given that male UV reflectance functions as a sexual signal in C. eurytheme, it is paradoxical that pigments in the wing scales are highly UV absorbing. We present spectrophotometric analyses of the wings before and after pterin removal that show that pterins both depress the amplitude of UV iridescence and suppress a diffuse UV reflectance that emanates from the scales. This latter effect enhances the directionality and spectral purity of the iridescence, and increases the signal's chromaticity and potential signal content. Our findings also suggest that pterins amplify the contrast between iridescent UV reflectance and scale background colour as a male's wings move during flight.

  8. Characterization of pterin deaminase from Mucor indicus MTCC 3513

    NASA Astrophysics Data System (ADS)

    Thandeeswaran, M.; Karthika, P.; Mahendran, R.; Palaniswamy, M.; Angayarkanni, J.

    2018-03-01

    Pterin deaminase is an amidohydrolase enzyme which hydrolyses pteridines to produce lumazine derivatives and ammonia. Even though the enzyme was shown as early as 1959 for its anticancer efficacy there was a long gap in the communique after that which was in 2013. In our study we have chosen Mucor indicus MTCC 3513 which was a promising strain for production of different industrial products.The pterin deaminase enzyme was harvested and extracellular from M. indicus. The extracellular sample was partially purified by using ethanol precipitation and ion exchange column (Hi-Trap QFF) in Fast Protein Liquid Chromatography. The molecular weight of the purified pterin deaminase enzyme was apparently determined by SDS-PAGE. The purified enzyme was further biochemically characterized. Molecular docking studies with the predicted sequence showed higher binding affinity towards folic acid interaction. The structure of this protein may open the windows for new drug targets for cancer therapy.

  9. Spectral characterization of a pteridine derivative from cyanide-utilizing bacterium Bacillus subtilis - JN989651.

    PubMed

    Durairaju Nisshanthini, S; Teresa Infanta S, Antony K; Raja, Duraisamy Senthil; Natarajan, Karuppannan; Palaniswamy, M; Angayarkanni, Jayaraman

    2015-04-01

    Soil and water samples were collected from various regions of SIPCOT and nearby Vanappadi Lake, Ranipet, Tamilnadu, India. Based on their colony morphology and their stability during subculturing, 72 bacteria were isolated, of which 14 isolates were actinomycetes. Preliminary selection was carried out to exploit the ability of the microorganisms to utilize sodium cyanate as nitrogen source. Those organisms that were able to utilize cyanate were subjected to secondary screening viz., utilization of sodium cyanide as the nitrogen source. The oxygenolytic cleavage of cyanide is dependent on cyanide monooxygenase which obligately requires pterin cofactor for its activity. Based on this, the organisms capable of utilizing sodium cyanide were tested for the presence of pterin. Thin layer chromatography (TLC) of the cell extracts using n-butanol: 5 N glacial acetic acid (4:1) revealed that 10 out of 12 organisms that were able to utilize cyanide had the pterin-related blue fluorescent compound in the cell extract. The cell extracts of these 10 organisms were subjected to high performance thin layer chromatography (HPTLC) for further confirmation using a pterin standard. Based on the incubation period, cell biomass yield, peak height and area, strain VPW3 was selected and was identified as Bacillus subtilis. The Rf value of the cell extract was 0.73 which was consistent with the 0.74 Rf value of the pterin standard when scanned at 254 nm. The compound was extracted and purified by preparative High Performance Liquid Chromatography (HPLC). Characterization of the compound was performed by ultraviolet spectrum, fluorescence spectrum, Electrospray Ionization-Mass Spectrometry (ESI-MS), and Nuclear Magnetic Resonance spectroscopy (NMR). The compound is proposed to be 6-propionyl pterin (2-amino-6-propionyl-3H-pteridin-4-one).

  10. Association studies to transporting proteins of fac-ReI(CO)3(pterin)(H2O) complex.

    PubMed

    Ragone, Fabricio; Saavedra, Héctor H Martínez; García, Pablo F; Wolcan, Ezequiel; Argüello, Gerardo A; Ruiz, Gustavo T

    2017-01-01

    A new synthetic route to acquire the water soluble complex fac-Re I (CO) 3 (pterin)(H 2 O) was carried out in aqueous solution. The complex has been obtained with success via the fac-[Re I (CO) 3 (H 2 O) 3 ]Cl precursor complex. Re I (CO) 3 (pterin)(H 2 O) has been found to bind strongly with bovine and human serum albumins (BSA and HSA) with intrinsic-binding constants, K b , of 6.5 × 10 5 M -1 and 5.6 × 10 5 M -1 at 310 K, respectively. The interactions of serum albumins with Re I (CO) 3 (pterin)(H 2 O) were evaluated employing UV-vis fluorescence and absorption spectroscopy and circular dichroism. The results suggest that the serum albumins-Re I (CO) 3 (pterin)(H 2 O) interactions occurred in the domain IIA-binding pocket without loss of helical stability of the proteins. The comparison of the fluorescence quenching of BSA and HSA due to the binding to the Re(I) complex suggested that local interaction around the Trp 214 residue had taken place. The analysis of the thermodynamic parameters ΔG 0 , ΔH 0 , and ΔS 0 indicated that the hydrophobic interactions played a major role in both HSA-Re(I) and BSA-Re(I) association processes. All these experimental results suggest that these proteins can be considered as good carriers for transportation of Re I (CO) 3 (pterin)(H 2 O) complex. This is of significant importance in relation to the use of this Re(I) complex in several biomedical fields, such as photodynamic therapy and radiopharmacy.

  11. Nitric-oxide Synthase Forms N-NO-pterin and S-NO-Cys

    PubMed Central

    Rosenfeld, Robin J.; Bonaventura, Joseph; Szymczyna, Blair R.; MacCoss, Michael J.; Arvai, Andrew S.; Yates, John R.; Tainer, John A.; Getzoff, Elizabeth D.

    2010-01-01

    Inducible nitric-oxide synthase (iNOS) produces biologically stressful levels of nitric oxide (NO) as a potent mediator of cellular cytotoxicity or signaling. Yet, how this nitrosative stress affects iNOS function in vivo is poorly understood. Here we define two specific non-heme iNOS nitrosation sites discovered by combining UV-visible spectroscopy, chemiluminescence, mass spectrometry, and x-ray crystallography. We detected auto-S-nitrosylation during enzymatic turnover by using chemiluminescence. Selective S-nitrosylation of the ZnS4 site, which bridges the dimer interface, promoted a dimer-destabilizing order-to-disorder transition. The nitrosated iNOS crystal structure revealed an unexpected N-NO modification on the pterin cofactor. Furthermore, the structurally defined N-NO moiety is solvent-exposed and available to transfer NO to a partner. We investigated glutathione (GSH) as a potential transnitrosation partner because the intracellular GSH concentration is high and NOS can form S-nitrosoglutathione. Our computational results predicted a GSH binding site adjacent to the N-NO-pterin. Moreover, we detected GSH binding to iNOS with saturation transfer difference NMR spectroscopy. Collectively, these observations resolve previous paradoxes regarding this uncommon pterin cofactor in NOS and suggest means for regulating iNOS activity via N-NO-pterin and S-NO-Cys modifications. The iNOS self-nitrosation characterized here appears appropriate to help control NO production in response to cellular conditions. PMID:20659888

  12. Pterin detection using surface-enhanced Raman spectroscopy incorporating a straightforward silver colloid-based synthesis technique

    NASA Astrophysics Data System (ADS)

    Smyth, Ciarán A.; Mehigan, Sam; Rakovich, Yury P.; Bell, Steven E. J.; McCabe, Eithne M.

    2011-07-01

    Optical techniques toward the realization of sensitive and selective biosensing platforms have received considerable attention in recent times. Techniques based on interferometry, surface plasmon resonance, and waveguides have all proved popular, while spectroscopy in particular offers much potential. Raman spectroscopy is an information-rich technique in which the vibrational frequencies reveal much about the structure of a compound, but it is a weak process and offers poor sensitivity. In response to this problem, surface-enhanced Raman scattering (SERS) has received much attention, due to significant increases in sensitivity instigated by bringing the sample into contact with an enhancing substrate. Here we discuss a facile and rapid technique for the detection of pterins using SERS-active colloidal silver suspensions. Pterins are a family of biological compounds that are employed in nature in color pigmentation and as facilitators in metabolic pathways. In this work, small volumes of xanthopterin, isoxanthopterin, and 7,8-dihydrobiopterin have been examined while adsorbed to silver colloids. Limits of detection have been examined for both xanthopterin and isoxanthopterin using a 10-s exposure to a 12 mW 532 nm laser, which, while showing a trade-off between scan time and signal intensity, still provides the opportunity for the investigation of simultaneous detection of both pterins in solution.

  13. Efficacy of the Ketogenic Diet for the Treatment of Refractory Childhood Epilepsy: Cerebrospinal Fluid Neurotransmitters and Amino Acid Levels.

    PubMed

    Sariego-Jamardo, Andrea; García-Cazorla, Angels; Artuch, Rafael; Castejón, Esperanza; García-Arenas, Dolores; Molero-Luis, Marta; Ormazábal, Aida; Sanmartí, Francesc Xavier

    2015-11-01

    The mechanisms of the ketogenic diet remain unclear, but several predictors of response have been proposed. We aimed is to study the relationship between the etiology of epilepsy, cerebrospinal fluid neurotransmitters, pterins, and amino acids, and response to a ketogenic diet. We studied 60 patients who began classic ketogenic diet treatment for refractory epilepsy. In 24 of 60 individuals, we analyzed cerebrospinal fluid neurotransmitters, pterins, and amino acids in baseline conditions. Mean age at epilepsy onset was 24 months, 83.3% were focal epilepsies, and in 51.7% the etiology of the epilepsy was unknown. Six months after initiating the ketogenic diet, it was effective (greater than a 50% reduction in seizure frequency) in 31.6% of patients. We did not find a link between rate of efficacy for the ketogenic diet and etiologies of epilepsy, nor did we find a link between the rate of efficacy for the ketogenic diet and cerebrospinal fluid pterins and biogenic amines concentrations. However, we found statistically significant differences for lysine and arginine values in the cerebrospinal fluid between ketogenic diet responders and nonresponders, but not for the other amino acids analyzed. The values of some amino acids were significantly different in relationship with the ketogenic diet efficacy; however, the epilepsy etiology and the cerebrospinal fluid biogenic amine and pterin values were not. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Structure-based design of bacterial nitric oxide synthase inhibitors

    DOE PAGES

    Holden, Jeffrey K.; Kang, Soosung; Hollingsworth, Scott A.; ...

    2014-12-18

    Inhibition of bacterial nitric oxide synthase (bNOS) has the potential to improve the efficacy of antimicrobials used to treat infections by Gram-positive pathogens Staphylococcus aureus and Bacillus anthracis. However, inhibitor specificity toward bNOS over the mammalian NOS (mNOS) isoforms remains a challenge because of the near identical NOS active sites. One key structural difference between the NOS isoforms is the amino acid composition of the pterin cofactor binding site that is adjacent to the NOS active site. Previously, we demonstrated that a NOS inhibitor targeting both the active and pterin sites was potent and functioned as an antimicrobial. Here wemore » present additional crystal structures, binding analyses, and bacterial killing studies of inhibitors that target both the active and pterin sites of a bNOS and function as antimicrobials. Lastly, these data provide a framework for continued development of bNOS inhibitors, as each molecule represents an excellent chemical scaffold for the design of isoform selective bNOS inhibitors.« less

  15. Experimental and Metabolic Modeling Evidence for a Folate-Cleaving Side-Activity of Ketopantoate Hydroxymethyltransferase (PanB)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thiaville, Jennifer J.; Frelin, Océane; García-Salinas, Carolina

    Tetrahydrofolate (THF) and its one-carbon derivatives, collectively termed folates, are essential cofactors, but are inherently unstable. While it is clear that chemical oxidation can cleave folates or damage their pterin precursors, very little is known about enzymatic damage to these molecules or about whether the folate biosynthesis pathway responds adaptively to damage to its end-products. The presence of a duplication of the gene encoding the folate biosynthesis enzyme 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (FolK) in many sequenced bacterial genomes combined with a strong chromosomal clustering of the folK gene with panB, encoding the 5,10-methylene-THF-dependent enzyme ketopantoate hydroxymethyltransferase, led us to infer that PanBmore » has a side activity that cleaves 5,10-methylene-THF, yielding a pterin product that is recycled by FolK. Genetic and metabolic analyses of Escherichia coli strains showed that overexpression of PanB leads to accumulation of the likely folate cleavage product 6-hydroxymethylpterin and other pterins in cells and medium, and—unexpectedly—to a 46% increase in total folate content. In silico modeling of the folate biosynthesis pathway showed that these observations are consistent with the in vivo cleavage of 5,10-methylene-THF by a side-activity of PanB, with FolK-mediated recycling of the pterin cleavage product, and with regulation of folate biosynthesis by folates or their damage products.« less

  16. Stability of the heme environment of the nitric oxide synthase from Staphylococcus aureus in the absence of pterin cofactor.

    PubMed

    Chartier, François J M; Couture, Manon

    2004-09-01

    We have used resonance Raman spectroscopy to probe the heme environment of a recently discovered NOS from the pathogenic bacterium Staphylococcus aureus, named SANOS. We detect two forms of the CO complex in the absence of L-arginine, with nu(Fe-CO) at 482 and 497 cm(-1) and nu(C-O) at 1949 and 1930 cm(-1), respectively. Similarly to mammalian NOS, the binding of L-arginine to SANOS caused the formation of a single CO complex with nu(Fe-CO) and nu(C-O) frequencies at 504 and 1,917 cm(-1), respectively, indicating that L-arginine induced an electrostatic/steric effect on the CO molecule. The addition of pterins to CO-bound SANOS modified the resonance Raman spectra only when they were added in combination with L-arginine. We found that (6R) 5,6,7,8 tetra-hydro-L-biopterin and tetrahydrofolate were not required for the stability of the reduced protein, which is 5-coordinate, and of the CO complex, which does not change with time to a form with a Soret band at 420 nm that is indicative of a change of the heme proximal coordination. Since SANOS is stable in the absence of added pterin, it suggests that the role of the pterin cofactor in the bacterial NOS may be limited to electron/proton transfer required for catalysis and may not involve maintaining the structural integrity of the protein as is the case for mammalian NOS.

  17. Escherichia coli K1 induces pterin production for enhanced expression of Fcγ receptor I to invade RAW 264.7 macrophages

    PubMed Central

    Shanmuganathan, Muthusamy V.; Krishnan, Subramanian; Fu, Xiaowei; Prasadarao, Nemani V.

    2013-01-01

    Macrophages serve as permissive niches for Escherichia coli (E. coli) K1 to attain high grade bacteremia in the pathogenesis of meningitis in neonates. Although pterin levels are a diagnostic marker for immune activation, the role of macrophages in pterin production and in the establishment of meningitis is unknown. Here, we demonstrate that macrophages infected with E. coli K1 produce both neopterin and biopterin through increased expression of GTP-cyclohydrolase 1 (GCH1). Of note, increased production of biopterin enhances the expression of Fc-gamma receptor I (CD64), which in turn, aided the entry of E. coli K1 in macrophages while increased neopterin suppresses reactive oxygen species (ROS), thereby aiding bacterial survival. Inhibition of GCH1 by 2, 4-Diamino-6-hydroxypyrimidine (DAHP) prevented the E. coli K1 induced expression of CD64 in macrophages in vitro and the development of bacteremia in a newborn mouse model of meningitis. These studies suggest that targeting GCH1 could be therapeutic strategy for preventing neonatal meningitis by E. coli K1. PMID:24161960

  18. [Separation of purines, pyrimidines, pterins and flavonoids on magnolol-bonded silica gel stationary phase by high performance liquid chromatography].

    PubMed

    Chen, Hong; Li, Laishen; Zhang, Yang; Zhou, Rendan

    2012-10-01

    A new magnolol-bonded silica gel stationary phase (MSP) was used to separate the basic drugs including four purines, eight pyrimidines, four pterins and five flavonoids as polar representative samples by high performance liquid chromatography (HPLC). To clarify the separation mechanism, a commercial ODS column was also tested under the same chromatographic conditions. The high selectivities and fast baseline separations of the above drugs were achieved by using simple mobile phases on MSP. Although there is no end-caped treatment, the peak shapes of basic drugs containing nitrogen such as purines, pyrimidines and pterins were rather symmetrical on MSP, which indicated the the magnolol as ligand with multi-sites could shield the side effect of residual silanol groups on the surface of silica gel. Although somewhat different in the separation resolution, it was found that the elution orders of some drugs were generally similar on both MSP and ODS. The hydrophobic interaction should play a significant role in the separations of the above basic drugs, which was attributed to their reversed-phase property in the nature. However, MSP could provide the additional sites for many polar solutes, which was a rational explanation for the high selectivity of MSP. For example, in the separation of purines, pyrimidines and pterins on MSP, hydrogen-bonding and dipole-dipole interactions played leading roles besides hydrophobic interaction. Some solute molecules (such as mercaptopurine, vitexicarpin) and MSP can form the strong pi-pi stacking in the separation process. All enhanced the retention and improved the separation selectivity of MSP, which facilitated the separation of the basic drugs.

  19. Km and kcat. values for [6,6,7,7-2H]7,8(6H)-dihydropterin and 2,6-diamino-5-iminopyrimidin-4-one with dihydropteridine reductase.

    PubMed Central

    Armarego, W L; Randles, D; Taguchi, H

    1983-01-01

    The Km and kcat. values for [6,6,7,7-2H]7,8(6H)-dihydropterin and 2,6-diamino-5-iminopyrimidin-4-one were determined for dihydropteridine reductase (EC 1.6.99.10) from two sources. The parameters of the pterin are of the same order as those of the most effective substrates of dihydropteridine reductase. The Km values of the pterin are one order of magnitude smaller than those of the pyrimidinone, although the kcat. values are of the same order. PMID:6870836

  20. Escherichia coli K1 induces pterin production for enhanced expression of Fcγ receptor I to invade RAW 264.7 macrophages.

    PubMed

    Shanmuganathan, Muthusamy V; Krishnan, Subramanian; Fu, Xiaowei; Prasadarao, Nemani V

    2014-02-01

    Macrophages serve as permissive niches for Escherichia coli (E. coli) K1 to attain high grade bacteremia in the pathogenesis of meningitis in neonates. Although pterin levels are a diagnostic marker for immune activation, the role of macrophages in pterin production and in the establishment of meningitis is unknown. Here, we demonstrate that macrophages infected with E. coli K1 produce both neopterin and biopterin through increased expression of GTP-cyclohydrolase 1 (GCH1). Of note, increased production of biopterin enhances the expression of Fc-gamma receptor I (CD64), which in turn, aided the entry of E. coli K1 in macrophages while increased neopterin suppresses reactive oxygen species (ROS), thereby aiding bacterial survival. Inhibition of GCH1 by 2, 4-Diamino-6-hydroxypyrimidine (DAHP) prevented the E. coli K1 induced expression of CD64 in macrophages in vitro and the development of bacteremia in a newborn mouse model of meningitis. These studies suggest that targeting GCH1 could be therapeutic strategy for preventing neonatal meningitis by E. coli K1. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  1. Investigation of early molybdopterin biosynthetic intermediates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wuebbens, M.M.; Rajagopalan, K.V.

    1991-03-11

    Little information is available regarding the early steps in the biosynthetic pathway of molybdopterin (MPT). In order to explore these early reactions, and in particular to investigate the origin of the ring and side chain carbons of MPT, a metabolic approach employing the incorporation of {sup 14}C label was chosen. This method was facilitated by the recent purification and characterization of desulfomolybdopterin 2{prime},4{prime}-cyclic phosphate, the precursor which is converted directly to active molybdopterin in Escherichia coli by the addition of vicinal sulfurs to the side chain. This labile precursor readily oxidizes to Compound Z, a stable 6-alkyl pterin which retainsmore » all of the carbon atoms present in molybdopterin. Compound Z, rather than molybdopterin itself was chosen as the end product for labeling due to its overproduction in some MPT-deficient strains, as well as its stability and ease of purification. The authors report here the isolation of {sup 14}C-labelled Compound Z from E.coli chlN cells cultured in minimal media supplemented with U-{sup 14}C guanosine. Successive cleavage of the side chain carbons by permanganate treatment and UV light produced a decrease in the specific radioactivity of the resulting pterins. These data indicate that the early portion of the molybdopterin biosynthetic pathway may be similar to that of the bioactive pterins folate and biopterin, both of which are derived from guanosine triphosphate.« less

  2. Impact-induced muscle damage and urinary pterins in professional rugby: 7,8-dihydroneopterin oxidation by myoglobin.

    PubMed

    Lindsay, A; Healy, J; Mills, W; Lewis, J; Gill, N; Draper, N; Gieseg, S P

    2016-03-01

    Muscle damage caused through impacts in rugby union is known to increase oxidative stress and inflammation. Pterins have been used clinically as markers of oxidative stress, inflammation, and neurotransmitter synthesis. This study investigates the release of myoglobin from muscle tissue due to force-related impacts and how it is related to the subsequent oxidation of 7,8-dihydroneopterin to specific pterins. Effects of iron and myoglobin on 7,8-dihydroneopterin oxidation were examined in vitro via strong cation-exchange high-performance liquid chromatography (SCX-HPLC) analysis of neopterin, xanthopterin, and 7,8-dihydroxanthopterin. Urine samples were collected from 25 professional rugby players pre and post four games and analyzed for myoglobin by enzyme-linked immunosorbent assay, and 7,8-dihydroneopterin oxidation products by HPLC. Iron and myoglobin oxidized 7,8-dihydroneopterin to neopterin, xanthopterin, and 7,8-dihydroxanthopterin at concentrations at or above 10 μM and 50 μg/mL, respectively. All four games showed significant increases in myoglobin, neopterin, total neopterin, biopterin, and total biopterin, which correlated between each variable (P < 0.05). Myoglobin and iron facilitate 7,8-dihydroneopterin oxidation to neopterin and xanthopterin. In vivo delocalization of myoglobin due to muscle damage may contribute to oxidative stress and inflammation after rugby. Increased concentrations of biopterin and total biopterin may indicate production of nitric oxide and monoamine neurotransmitters in response to the physical stress. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Attenuation of biopterin synthesis prevents Escherichia coli K1 invasion of brain endothelial cells and the development of meningitis in newborn mice.

    PubMed

    Shanmuganathan, Muthusamy V; Krishnan, Subramanian; Fu, Xiaowei; Prasadarao, Nemani V

    2013-01-01

    Elevated levels of pterins and nitric oxide (NO) are observed in patients with septic shock and bacterial meningitis. We demonstrate that Escherichia coli K1 infection of human brain microvascular endothelial cells (HBMECs) induces the expression of guanosine triphosphate cyclohydrolase (GCH1), the rate-limiting enzyme in pterin synthesis, thereby elevating levels of biopterin. DAHP (2,4-diamino hydroxyl pyrimidine), a specific inhibitor of GCH1, prevented biopterin and NO production and invasion of E. coli K1 in HBMECs. GCH1 interaction with Ecgp96, the receptor for outer membrane protein A of E. coli K1, also increases on infection, and suppression of Ecgp96 expression prevents GCH1 activation and biopterin synthesis. Pretreatment of newborn mice with DAHP prevented the production of biopterin and the development of meningitis. These results suggest a novel role for biopterin synthesis in the pathogenesis of E. coli K1 meningitis.

  4. Attenuation of Biopterin Synthesis Prevents Escherichia coli K1 Invasion of Brain Endothelial Cells and the Development of Meningitis in Newborn Mice

    PubMed Central

    Shanmuganathan, Muthusamy V.; Krishnan, Subramanian; Fu, Xiaowei; Prasadarao, Nemani V.

    2013-01-01

    Elevated levels of pterins and nitric oxide (NO) are observed in patients with septic shock and bacterial meningitis. We demonstrate that Escherichia coli K1 infection of human brain microvascular endothelial cells (HBMECs) induces the expression of guanosine triphosphate cyclohydrolase (GCH1), the rate-limiting enzyme in pterin synthesis, thereby elevating levels of biopterin. DAHP (2,4-diamino hydroxyl pyrimidine), a specific inhibitor of GCH1, prevented biopterin and NO production and invasion of E. coli K1 in HBMECs. GCH1 interaction with Ecgp96, the receptor for outer membrane protein A of E. coli K1, also increases on infection, and suppression of Ecgp96 expression prevents GCH1 activation and biopterin synthesis. Pretreatment of newborn mice with DAHP prevented the production of biopterin and the development of meningitis. These results suggest a novel role for biopterin synthesis in the pathogenesis of E. coli K1 meningitis. PMID:23100563

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Shannon E.; Nguyen, Elaine; Ukachukwu, Chiamaka U.

    Dihydroneopterin triphosphate pyrophosphatase (DHNTPase), a member of the Mg2+ dependent Nudix hydrolase superfamily, is the recently-discovered enzyme that functions in the second step of the pterin branch of the folate biosynthetic pathway in E. coli. DHNTPase is of interest because inhibition of enzymes in bacterial folate biosynthetic pathways is a strategy for antibiotic development. We determined crystal structures of DHNTPase with and without activating, Mg2+-mimicking metals Co2+ and Ni2+. Four metal ions, identified by anomalous scattering, and stoichiometrically confirmed in solution by isothermal titration calorimetry, are held in place by Glu56 and Glu60 within the Nudix sequence motif, Glu117, waters,more » and a sulfate ion, of which the latter is further stabilized by a salt bridge with Lys7. In silico docking of the DHNTP substrate reveals a binding mode in which the pterin ring moiety is nestled in a largely hydrophobic pocket, the β-phosphate activated for nucleophilic attack overlays with the crystallographic sulfate and is in line with an activated water molecule, and remaining phosphate groups are stabilized by all four identified metal ions. The structures and binding data provide new details regarding DHNTPase metal requirements, mechanism, and suggest a strategy for efficient inhibition.« less

  6. Decrease in cytotoxicity of copper-based intrauterine devices (IUD) pretreated with 6-mercaptopurine and pterin as biocompatible corrosion inhibitors.

    PubMed

    Alvarez, Florencia; Grillo, Claudiaa; Schilardi, Patricial; Rubert, Aldo; Benítez, Guillermo; Lorente, Carolina; de Mele, Mónica Fernández Lorenzo

    2013-01-23

    The copper intrauterine device (IUD) based its contraceptive action on the release of cupric ions from a copper wire. Immediately after the insertion, a burst release of copper ions occurs, which may be associated to a variety of side effects. 6-Mercaptopurine (6-MP) and pterin (PT) have been proposed as corrosion inhibitors to reduce this harmful release. Pretreatments with 1 × 10(-4) M 6-MP and 1 × 10(-4) M PT solutions with 1h and 3h immersion times were tested. Conventional electrochemical techniques, EDX and XPS analysis, and cytotoxicity assays with HeLa cell line were employed to investigate the corrosion behavior and biocompatibility of copper with and without treatments. Results showed that copper samples treated with PT and 6-MP solutions for 3 and 1 h, respectively, are more biocompatible than those without treatment. Besides, the treatment reduces the burst release effect of copper in simulated uterine solutions during the first week after the insertion. It was concluded that PT and 6-MP treatments are promising strategies able to reduce the side effects related to the "burst release" of copper-based IUD without altering the contraceptive action.

  7. Metal ion coordination in the E. coli Nudix hydrolase dihydroneopterin triphosphate pyrophosphatase: New clues into catalytic mechanism

    PubMed Central

    Ukachukwu, Chiamaka U.; Freeman, Dana M.; Quirk, Stephen

    2017-01-01

    Dihydroneopterin triphosphate pyrophosphatase (DHNTPase), a member of the Mg2+ dependent Nudix hydrolase superfamily, is the recently-discovered enzyme that functions in the second step of the pterin branch of the folate biosynthetic pathway in E. coli. DHNTPase is of interest because inhibition of enzymes in bacterial folate biosynthetic pathways is a strategy for antibiotic development. We determined crystal structures of DHNTPase with and without activating, Mg2+-mimicking metals Co2+ and Ni2+. Four metal ions, identified by anomalous scattering, and stoichiometrically confirmed in solution by isothermal titration calorimetry, are held in place by Glu56 and Glu60 within the Nudix sequence motif, Glu117, waters, and a sulfate ion, of which the latter is further stabilized by a salt bridge with Lys7. In silico docking of the DHNTP substrate reveals a binding mode in which the pterin ring moiety is nestled in a largely hydrophobic pocket, the β-phosphate activated for nucleophilic attack overlays with the crystallographic sulfate and is in line with an activated water molecule, and remaining phosphate groups are stabilized by all four identified metal ions. The structures and binding data provide new details regarding DHNTPase metal requirements, mechanism, and suggest a strategy for efficient inhibition. PMID:28742822

  8. Electronic structure and reactivity of high-spin iron--alkyl- and--pterinperoxo complexes.

    PubMed

    Lehnert, Nicolai; Fujisawa, Kiyoshi; Solomon, Edward I

    2003-01-27

    The spectroscopic properties and electronic structure of the four-coordinate high-spin [FeIII(L3)(OOtBu)]+ complex (1; L3 = hydrotris(3-tert-butyl-5-isopropyl-1-pyrazolyl)borate; tBu = tert-butyl) are investigated and compared to the six-coordinated high-spin [Fe(6-Me3TPA)(OHx)(OOtBu)]x+ system (TPA = tris(2-pyridylmethyl)amine, x = 1 or 2) studied earlier [Lehnert, N.; Ho, R. Y. N.; Que, L., Jr.; Solomon, E. I. J. Am. Chem. Soc. 2001, 123, 12802-12816]. Complex 1 is characterized by Raman features at 889 and 830 cm-1 which are assigned to the O-O stretch (mixed with the symmetric C-C stretch) and a band at 625 cm-1 that corresponds to nu(Fe-O). The UV-vis spectrum shows a charge-transfer (CT) transition at 510 nm from the alkylperoxo pi v* (v = vertical to C-O-O plane) to a d orbital of Fe(III). A second CT is identified from MCD at 370 nm that is assigned to a transition from pi h* (h = horizontal to C-O-O plane) to an Fe(III) d orbital. For the TPA complex the pi v* CT is at 560 nm while the pi h* CT is to higher energy than 250 nm. These spectroscopic differences between four- and six-coordinate Fe(III)-OOR complexes are interpreted on the basis of their different ligand fields. In addition, the electronic structure of Fe-OOPtn complexes with the biologically relevant pterinperoxo ligand are investigated. Substitution of the tert-butyl group in 1 by pterin leads to the corresponding Fe(III)-OOPtn species (2), which shows a stronger electron donation from the peroxide to Fe(III) than 1. This is related to the lower ionization potential of pterin. Reduction of 2 by one electron leads to the Fe(II)-OOPtn complex (3), which is relevant as a model for potential intermediates in pterin-dependent hydroxylases. However, in the four-coordinate ligand field of 3, the additional electron is located in a nonbonding d orbital of iron. Hence, the pterinperoxo ligand is not activated for heterolytic cleavage of the O-O bond in this system. This is also evident from the calculated reaction energies that are endothermic by at least 20 kcal/mol.

  9. The Molybdenum Cofactor Biosynthetic Protein Cnx1 Complements Molybdate-Repairable Mutants, Transfers Molybdenum to the Metal Binding Pterin, and Is Associated with the Cytoskeleton

    PubMed Central

    Schwarz, Günter; Schulze, Jutta; Bittner, Florian; Eilers, Thomas; Kuper, Jochen; Bollmann, Gabriele; Nerlich, Andrea; Brinkmann, Henner; Mendel, Ralf R.

    2000-01-01

    Molybdenum (Mo) plays an essential role in the active site of all eukaryotic Mo-containing enzymes. In plants, Mo enzymes are important for nitrate assimilation, phytohormone synthesis, and purine catabolism. Mo is bound to a unique metal binding pterin (molybdopterin [MPT]), thereby forming the active Mo cofactor (Moco), which is highly conserved in eukaryotes, eubacteria, and archaebacteria. Here, we describe the function of the two-domain protein Cnx1 from Arabidopsis in the final step of Moco biosynthesis. Cnx1 is constitutively expressed in all organs and in plants grown on different nitrogen sources. Mo-repairable cnxA mutants from Nicotiana plumbaginifolia accumulate MPT and show altered Cnx1 expression. Transformation of cnxA mutants and the corresponding Arabidopsis chl-6 mutant with cnx1 cDNA resulted in functional reconstitution of their Moco deficiency. We also identified a point mutation in the Cnx1 E domain of Arabidopsis chl-6 that causes the molybdate-repairable phenotype. Recombinant Cnx1 protein is capable of synthesizing Moco. The G domain binds and activates MPT, whereas the E domain is essential for activating Mo. In addition, Cnx1 binds to the cytoskeleton in the same way that its mammalian homolog gephyrin does in neuronal cells, which suggests a hypothetical model for anchoring the Moco-synthetic machinery by Cnx1 in plant cells. PMID:11148290

  10. Degradation of folic acid wastewater by electro-Fenton with three-dimensional electrode and its kinetic study

    PubMed Central

    Xiaochao, Gu; Jin, Tian; Xiaoyun, Li; Bin, Zhou; Xujing, Zheng; Jin, Xu

    2018-01-01

    The three-dimensional electro-Fenton method was used in the folic acid wastewater pretreatment process. In this study, we researched the degradation of folic acid and the effects of different parameters such as the air sparging rate, current density, pH and reaction time on chemical oxygen demand (COD) removal in folic acid wastewater. A four-level and four-factor orthogonal test was designed and optimal reaction conditions to pretreat folic acid wastewater by three-dimensional electrode were determined: air sparge rate 0.75 l min−1, current density 10.26 mA cm−2, pH 5 and reaction time 90 min. Under these conditions, the removal of COD reached 94.87%. LC-MS results showed that the electro-Fenton method led to an initial folic acid decomposition into p-aminobenzoyl-glutamic acid (PGA) and xanthopterin (XA); then part of the XA was oxidized to pterine-6-carboxylic acid (PCA) and the remaining part of XA was converted to pterin and carbon dioxide. The kinetics analysis of the folic acid degradation process during pretreatment was carried out by using simulated folic acid wastewater, and it could be proved that the degradation of folic acid by using the three-dimensional electro-Fenton method was a second-order reaction process. This study provided a reference for industrial folic acid treatment. PMID:29410807

  11. A protein with an inactive pterin-4a-carbinolamine dehydratase domain is required for Rubisco biogenesis in plants.

    PubMed

    Feiz, Leila; Williams-Carrier, Rosalind; Belcher, Susan; Montano, Monica; Barkan, Alice; Stern, David B

    2014-12-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) plays a critical role in sustaining life by catalysis of carbon fixation in the Calvin-Benson pathway. Incomplete knowledge of the assembly pathway of chloroplast Rubisco has hampered efforts to fully delineate the enzyme's properties, or seek improved catalytic characteristics via directed evolution. Here we report that a Mu transposon insertion in the Zea mays (maize) gene encoding a chloroplast dimerization co-factor of hepatocyte nuclear factor 1 (DCoH)/pterin-4α-carbinolamine dehydratases (PCD)-like protein is the causative mutation in a seedling-lethal, Rubisco-deficient mutant named Rubisco accumulation factor 2 (raf2-1). In raf2 mutants newly synthesized Rubisco large subunit accumulates in a high-molecular weight complex, the formation of which requires a specific chaperonin 60-kDa isoform. Analogous observations had been made previously with maize mutants lacking the Rubisco biogenesis proteins RAF1 and BSD2. Chemical cross-linking of maize leaves followed by immunoprecipitation with antibodies to RAF2, RAF1 or BSD2 demonstrated co-immunoprecipitation of each with Rubisco small subunit, and to a lesser extent, co-immunoprecipitation with Rubisco large subunit. We propose that RAF2, RAF1 and BSD2 form transient complexes with the Rubisco small subunit, which in turn assembles with the large subunit as it is released from chaperonins. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  12. Clinical efficacy of melittin in the treatment of cats infected with the feline immunodeficiency virus.

    PubMed

    Hartmann, Anja D; Wilhelm, Natalie; Erfle, Volker; Hartmann, Katrin

    2016-12-05

    The bee venom melittin shows an antiviral efficacy against the human immunodeficiency virus in cell culture. It was shown to be non-toxic for cats. Aim of this pilot study was to investigate the clinical efficacy and side-effects of melittin in cats naturally infected with feline immunodeficiency virus (FIV). The study was performed as a prospective, placebo-controlled double-blinded trial. Twenty cats were included, of which 10 cats each were treated with either melittin (500 µg/kg body weight) or phosphate-buffered saline (placebo) subcutaneously twice per week. During the treatment period of 6 weeks, the cats' general health status, determined by the Karnofsky's score, and the severity of clinical signs (conjunctivitis and stomatitis) using a clinical scoring system were evaluated. Haematology, biochemistry profiles, lymphocyte subpopulations, CD4/CD8 ratio, and pterines (biopterine, 7-xanthopterine) as surrogate parameters were also compared. The general health status and the clinical scores for conjunctivitis and stomatitis improved in cats treated with melittin. A statistically significant improvement however could only be detected for conjunctivitis in cats treated with melittin compared to cats treated with placebo which was likely due to different scores between both groups at the beginning. No influence on the lymphocyte subpopulations, CD4/CD8 ratio, and pterine concentrations was observed. No side effects occurred in this study. In the protocol used in the present study, no significant efficacy of melittin could be detected. However, efficacy of melittin, especially if applied in a higher dosage as in the present study or for a longer period, could be evaluated in further studies. Synergistic effects if used in combination with classic antiretroviral drugs could be an interesting future approach.

  13. Structure and Identification of a Pterin Dehydratase-like Protein as a Ribulose-bisphosphate Carboxylase/Oxygenase (RuBisCO) Assembly Factor in the α-Carboxysome*

    PubMed Central

    Wheatley, Nicole M.; Sundberg, Christopher D.; Gidaniyan, Soheil D.; Cascio, Duilio; Yeates, Todd O.

    2014-01-01

    Carboxysomes are proteinaceous bacterial microcompartments that increase the efficiency of the rate-limiting step in carbon fixation by sequestering reaction substrates. Typically, α-carboxysomes are genetically encoded as a single operon expressing the structural proteins and the encapsulated enzymes of the microcompartment. In addition, depending on phylogeny, as many as 13 other genes are found to co-occur near or within α-carboxysome operons. One of these genes codes for a protein with distant homology to pterin-4α-carbinolamine dehydratase (PCD) enzymes. It is present in all α-carboxysome containing bacteria and has homologs in algae and higher plants. Canonical PCDs play an important role in amino acid hydroxylation, a reaction not associated with carbon fixation. We determined the crystal structure of an α-carboxysome PCD-like protein from the chemoautotrophic bacterium Thiomonas intermedia K12, at 1.3-Å resolution. The protein retains a three-dimensional fold similar to canonical PCDs, although the prominent active site cleft present in PCD enzymes is disrupted in the α-carboxysome PCD-like protein. Using a cell-based complementation assay, we tested the PCD-like proteins from T. intermedia and two additional bacteria, and found no evidence for PCD enzymatic activity. However, we discovered that heterologous co-expression of the PCD-like protein from Halothiobacillus neapolitanus with RuBisCO and GroELS in Escherichia coli increased the amount of soluble, assembled RuBisCO recovered from cell lysates compared with co-expression of RuBisCO with GroELS alone. We conclude that this conserved PCD-like protein, renamed here α-carboxysome RuBisCO assembly factor (or acRAF), is a novel RuBisCO chaperone integral to α-carboxysome function. PMID:24459150

  14. Structure and identification of a pterin dehydratase-like protein as a ribulose-bisphosphate carboxylase/oxygenase (RuBisCO) assembly factor in the α-carboxysome.

    PubMed

    Wheatley, Nicole M; Sundberg, Christopher D; Gidaniyan, Soheil D; Cascio, Duilio; Yeates, Todd O

    2014-03-14

    Carboxysomes are proteinaceous bacterial microcompartments that increase the efficiency of the rate-limiting step in carbon fixation by sequestering reaction substrates. Typically, α-carboxysomes are genetically encoded as a single operon expressing the structural proteins and the encapsulated enzymes of the microcompartment. In addition, depending on phylogeny, as many as 13 other genes are found to co-occur near or within α-carboxysome operons. One of these genes codes for a protein with distant homology to pterin-4α-carbinolamine dehydratase (PCD) enzymes. It is present in all α-carboxysome containing bacteria and has homologs in algae and higher plants. Canonical PCDs play an important role in amino acid hydroxylation, a reaction not associated with carbon fixation. We determined the crystal structure of an α-carboxysome PCD-like protein from the chemoautotrophic bacterium Thiomonas intermedia K12, at 1.3-Å resolution. The protein retains a three-dimensional fold similar to canonical PCDs, although the prominent active site cleft present in PCD enzymes is disrupted in the α-carboxysome PCD-like protein. Using a cell-based complementation assay, we tested the PCD-like proteins from T. intermedia and two additional bacteria, and found no evidence for PCD enzymatic activity. However, we discovered that heterologous co-expression of the PCD-like protein from Halothiobacillus neapolitanus with RuBisCO and GroELS in Escherichia coli increased the amount of soluble, assembled RuBisCO recovered from cell lysates compared with co-expression of RuBisCO with GroELS alone. We conclude that this conserved PCD-like protein, renamed here α-carboxysome RuBisCO assembly factor (or acRAF), is a novel RuBisCO chaperone integral to α-carboxysome function.

  15. Vibrational spectroscopic analyses of unique yellow feather pigments (spheniscins) in penguins.

    PubMed

    Thomas, Daniel B; McGoverin, Cushla M; McGraw, Kevin J; James, Helen F; Madden, Odile

    2013-06-06

    Many animals extract, synthesize and refine chemicals for colour display, where a range of compounds and structures can produce a diverse colour palette. Feather colours, for example, span the visible spectrum and mostly result from pigments in five chemical classes (carotenoids, melanins, porphyrins, psittacofulvins and metal oxides). However, the pigment that generates the yellow colour of penguin feathers appears to represent a sixth, poorly characterized class of feather pigments. This pigment class, here termed 'spheniscin', is displayed by half of the living penguin genera; the larger and richer colour displays of the pigment are highly attractive. Using Raman and mid-infrared spectroscopies, we analysed yellow feathers from two penguin species (king penguin, Aptenodytes patagonicus; macaroni penguin, Eudyptes chrysolophus) to further characterize spheniscin pigments. The Raman spectrum of spheniscin is distinct from spectra of other feather pigments and exhibits 17 distinctive spectral bands between 300 and 1700 cm(-1). Spectral bands from the yellow pigment are assigned to aromatically bound carbon atoms, and to skeletal modes in an aromatic, heterocyclic ring. It has been suggested that the penguin pigment is a pterin compound; Raman spectra from yellow penguin feathers are broadly consistent with previously reported pterin spectra, although we have not matched it to any known compound. Raman spectroscopy can provide a rapid and non-destructive method for surveying the distribution of different classes of feather pigments in the avian family tree, and for correlating the chemistry of spheniscin with compounds analysed elsewhere. We suggest that the sixth class of feather pigments may have evolved in a stem-lineage penguin and endowed modern penguins with a costly plumage trait that appears to be chemically unique among birds.

  16. Vibrational spectroscopic analyses of unique yellow feather pigments (spheniscins) in penguins

    PubMed Central

    Thomas, Daniel B.; McGoverin, Cushla M.; McGraw, Kevin J.; James, Helen F.; Madden, Odile

    2013-01-01

    Many animals extract, synthesize and refine chemicals for colour display, where a range of compounds and structures can produce a diverse colour palette. Feather colours, for example, span the visible spectrum and mostly result from pigments in five chemical classes (carotenoids, melanins, porphyrins, psittacofulvins and metal oxides). However, the pigment that generates the yellow colour of penguin feathers appears to represent a sixth, poorly characterized class of feather pigments. This pigment class, here termed ‘spheniscin’, is displayed by half of the living penguin genera; the larger and richer colour displays of the pigment are highly attractive. Using Raman and mid-infrared spectroscopies, we analysed yellow feathers from two penguin species (king penguin, Aptenodytes patagonicus; macaroni penguin, Eudyptes chrysolophus) to further characterize spheniscin pigments. The Raman spectrum of spheniscin is distinct from spectra of other feather pigments and exhibits 17 distinctive spectral bands between 300 and 1700 cm−1. Spectral bands from the yellow pigment are assigned to aromatically bound carbon atoms, and to skeletal modes in an aromatic, heterocyclic ring. It has been suggested that the penguin pigment is a pterin compound; Raman spectra from yellow penguin feathers are broadly consistent with previously reported pterin spectra, although we have not matched it to any known compound. Raman spectroscopy can provide a rapid and non-destructive method for surveying the distribution of different classes of feather pigments in the avian family tree, and for correlating the chemistry of spheniscin with compounds analysed elsewhere. We suggest that the sixth class of feather pigments may have evolved in a stem-lineage penguin and endowed modern penguins with a costly plumage trait that appears to be chemically unique among birds. PMID:23516063

  17. Reduction and Oxidation of the Active Site Iron in Tyrosine Hydroxylase: Kinetics and Specificity†

    PubMed Central

    Frantom, Patrick A.; Seravalli, Javier; Ragsdale, Stephen W.; Fitzpatrick, Paul F.

    2006-01-01

    Tyrosine hydroxylase (TyrH) is a pterin-dependent enzyme that catalyzes the hydroxylation of tyrosine to form dihydroxyphenylalanine. The oxidation state of the active site iron atom plays a central role in the regulation of the enzyme. The kinetics of reduction of ferric TyrH by several reductants were determined by anaerobic stopped-flow spectroscopy. Anaerobic rapid freeze–quench EPR confirmed that the change in the near-UV absorbance of TyrH upon adding reductant corresponded to iron reduction. Tetrahydrobiopterin reduces wild-type TyrH following a simple second-order mechanism with a rate constant of 2.8 ± 0.1 mM−1 s−1. 6-Methyltetrahydropterin reduces the ferric enzyme with a second-order rate constant of 6.1 ± 0.1 mM−1 s−1 and exhibits saturation kinetics. No EPR signal for a radical intermediate was detected. Ascorbate, glutathione, and 1,4-benzoquinone all reduce ferric TyrH, but much more slowly than tetrahydrobiopterin, suggesting that the pterin is a physiological reductant. E332A TyrH, which has an elevated Km for tetrahydropterin in the catalytic reaction, is reduced by tetrahydropterins with the same kinetic parameters as those of the wild-type enzyme, suggesting that BH4 does not bind in the catalytic conformation during the reduction. Oxidation of ferrous TyrH by molecular oxygen can be described as a single-step second-order reaction, with a rate constant of 210 mM−1 s−1. S40E TyrH, which mimics the phosphorylated state of the enzyme, has oxidation and reduction kinetics similar to those of the wild-type enzyme, suggesting that phosphorylation does not directly regulate the interconversion of the ferric and ferrous forms. PMID:16475826

  18. Identification of Transport-critical Residues in a Folate Transporter from the Folate-Biopterin Transporter (FBT) Family*

    PubMed Central

    Eudes, Aymerick; Kunji, Edmund R. S.; Noiriel, Alexandre; Klaus, Sebastian M. J.; Vickers, Tim J.; Beverley, Stephen M.; Gregory, Jesse F.; Hanson, Andrew D.

    2010-01-01

    The Synechocystis Slr0642 protein and its plastidial Arabidopsis (Arabidopsis thaliana) ortholog At2g32040 belong to the folate-biopterin transporter (FBT) family within the major facilitator superfamily. Both proteins transport folates when expressed in Escherichia coli. Because the structural requirements for transport activity are not known for any FBT protein, we applied mutational analysis to identify residues that are critical to transport and interpreted the results using a comparative structural model based on E. coli lactose permease. Folate transport was assessed via the growth of an E. coli pabA abgT strain, which cannot synthesize or take up folates or p-aminobenzoylglutamate. In total, 47 residues were replaced with Cys or Ala. Mutations at 22 positions abolished folate uptake without affecting Slr0642 expression in membranes, whereas other mutations had no effect. Residues important for function mostly line the predicted central cavity and are concentrated in the core α-helices H1, H4, H7, and H10. The essential residue locations are consistent with a folate-binding site lying roughly equidistant from both faces of the transporter. Arabidopsis has eight FBT proteins besides At2g32040, often lacking conserved critical residues. When six of these proteins were expressed in E. coli or in Leishmania folate or pterin transporter mutants, none showed evidence of folate or pterin transport activity, and only At2g32040 was isolated by functional screening of Arabidopsis cDNA libraries in E. coli. Such negative data could reflect roles in transport of other substrates. These studies provide the first insights into the native structure and catalytic mechanism of FBT family carriers. PMID:19923217

  19. Grafting fibroblasts genetically modified to produce L-dopa in a rat model of Parkinson disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolff, J.A.; Fisher, L.J.; Xu, L.

    1989-11-01

    Rat fibroblasts were infected with a retroviral vector containing the cDNA for rat tyrosine hydroxylase. A TH-positive clone was identified by biochemical assay and immunohistochemical staining. When supplemented in vitro with pterin cofactors required for TH activity, these cells produced L-dopa and released it into the cell cultured medium. Uninfected control cells and fibroblasts infected with the TH vector were grafted separately to the caudate of rats with unilateral 6-hydroxydopamine lesions of the nigrostriatal pathway. Only grafts containing TH-expressing fibroblasts were found to reduce rotational asymmetry. These results have general implications for the application of gene therapy to human neurologicalmore » disease and specific implications for Parkinson disease.« less

  20. Discovery and structure determination of the orphan enzyme isoxanthopterin deaminase .

    PubMed

    Hall, Richard S; Agarwal, Rakhi; Hitchcock, Daniel; Sauder, J Michael; Burley, Stephen K; Swaminathan, Subramanyam; Raushel, Frank M

    2010-05-25

    Two previously uncharacterized proteins have been identified that efficiently catalyze the deamination of isoxanthopterin and pterin 6-carboxylate. The genes encoding these two enzymes, NYSGXRC-9339a ( gi|44585104 ) and NYSGXRC-9236b ( gi|44611670 ), were first identified from DNA isolated from the Sargasso Sea as part of the Global Ocean Sampling Project. The genes were synthesized, and the proteins were subsequently expressed and purified. The X-ray structure of Sgx9339a was determined at 2.7 A resolution (Protein Data Bank entry 2PAJ ). This protein folds as a distorted (beta/alpha)(8) barrel and contains a single zinc ion in the active site. These enzymes are members of the amidohydrolase superfamily and belong to cog0402 within the clusters of orthologous groups (COG). Enzymes in cog0402 have previously been shown to catalyze the deamination of guanine, cytosine, S-adenosylhomocysteine, and 8-oxoguanine. A small compound library of pteridines, purines, and pyrimidines was used to probe catalytic activity. The only substrates identified in this search were isoxanthopterin and pterin 6-carboxylate. The kinetic constants for the deamination of isoxanthopterin with Sgx9339a were determined to be 1.0 s(-1), 8.0 muM, and 1.3 x 10(5) M(-1) s(-1) (k(cat), K(m), and k(cat)/K(m), respectively). The active site of Sgx9339a most closely resembles the active site for 8-oxoguanine deaminase (Protein Data Bank entry 2UZ9 ). A model for substrate recognition of isoxanthopterin by Sgx9339a was proposed on the basis of the binding of guanine and xanthine in the active site of guanine deaminase. Residues critical for substrate binding appear to be conserved glutamine and tyrosine residues that form hydrogen bonds with the carbonyl oxygen at C4, a conserved threonine residue that forms hydrogen bonds with N5, and another conserved threonine residue that forms hydrogen bonds with the carbonyl group at C7. These conserved active site residues were used to identify 24 other genes which are predicted to deaminate isoxanthopterin.

  1. Structures of NADH and CH[subscript 3]-H[subscript 4] Folate Complexes of Escherichia coli Methylenetetrahydrofolate Reductase Reveal a Spartan Strategy for a Ping-Pong Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pejchal, Robert; Sargeant, Ryan; Ludwig, Martha L.

    Methylenetetrahydrofolate reductases (MTHFRs; EC 1.7.99.5) catalyze the NAD(P)H-dependent reduction of 5,10-methylenetetrahydrofolate (CH{sub 2}-H{sub 4}folate) to 5-methyltetrahydrofolate (CH{sub 3}-H{sub 4}folate) using flavin adenine dinucleotide (FAD) as a cofactor. The initial X-ray structure of Escherichia coli MTHFR revealed that this 33-kDa polypeptide is a ({beta}{alpha}){sub 8} barrel that aggregates to form an unusual tetramer with only 2-fold symmetry. Structures of reduced enzyme complexed with NADH and of oxidized Glu28Gln enzyme complexed with CH{sub 3}-H{sub 4}folate have now been determined at resolutions of 1.95 and 1.85 {angstrom}, respectively. The NADH complex reveals a rare mode of dinucleotide binding; NADH adopts a hairpin conformationmore » and is sandwiched between a conserved phenylalanine, Phe223, and the isoalloxazine ring of FAD. The nicotinamide of the bound pyridine nucleotide is stacked against the si face of the flavin ring with C4 adjoining the N5 of FAD, implying that this structure models a complex that is competent for hydride transfer. In the complex with CH{sub 3}-H{sub 4}folate, the pterin ring is also stacked against FAD in an orientation that is favorable for hydride transfer. Thus, the binding sites for the two substrates overlap, as expected for many enzymes that catalyze ping-pong reactions, and several invariant residues interact with both folate and pyridine nucleotide substrates. Comparisons of liganded and substrate-free structures reveal multiple conformations for the loops {beta}2-{alpha}2 (L2), {beta}3-{alpha}3 (L3), and {beta}4-{alpha}4 (L4) and suggest that motions of these loops facilitate the ping-pong reaction. In particular, the L4 loop adopts a 'closed' conformation that allows Asp120 to hydrogen bond to the pterin ring in the folate complex but must move to an 'open' conformation to allow NADH to bind.« less

  2. Ultrastructural and biochemical analysis of epidermal xanthophores and dermal chromatophores of the teleost Sparus aurata.

    PubMed

    Ferrer, C; Solano, F; Zuasti, A

    1999-04-01

    We have studied the pigmentary system of the teleost Sparus aurata skin by electron microscopy and chromatographic analysis. Under electron microscopy, we found the dermis to contain the three major types of recognized chromatophores: melanophores, xanthophores and iridophores. Melanophores were more abundant in the dorsal region, whereas the iridophores were more abundant in the ventral region. The most important discovery was that of epidermal xanthophores. Epidermal xanthophores were the only chromatophores in the epidermis, something only found in S aurata and in a teleost species living in the Antartic sea. In contrast, the biochemical analysis did not establish any special characteristics: we found pteridine and flavin pigments located mostly in the pigmented dorsal region. Riboflavin and pterin were two of the most abundant coloured pigment types, but other colourless pigments such as xanthopterin and isoxanthopterin were also detected.

  3. Identification and structural analysis of ricin inhibitors. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertus, J.D.

    1996-12-01

    Ricin is a potent cytotoxin which has been used by governments and terrorists as a poison. The three-dimensional structure of this toxic molecule was solved by X-ray crystallography, including an atomic description of its active site. The goal of this project was to use computer searches and other molecular modeling techniques to identify an inhibitor or ricin A chain (RTA). The program CHEM-X was used to predict that pteroic acid (PTA) would bind to RTA. This was shown to be the case by kinetic assays, where PTA protected ribosomes against the action of RTA, and by X-ray crystallography. The affinitymore » of PTA is weak, with a Ki estimated at 600 Micrometers. The pterin group of PTA was observed to make many polar interactions with RTA within the specificity site of the enzyme, and to bind more strongly than the natural substrate adenine. Further work will be required to increase the binding affinity of this class of inhibitors, and to improve their solubility if efficacious antidotes are to be designed from this lead.« less

  4. Fluorescence behaviour of 5,10-methenyltetrahydrofolate, 10-formyltetrahydrofolate, 10-formyldihydrofolate, and 10-formylfolate in aqueous solution at pH 8

    NASA Astrophysics Data System (ADS)

    Tyagi, A.; Penzkofer, A.; Batschauer, A.; Wolf, E.

    2009-06-01

    The fluorescence spectroscopic behaviour of (6R,S)-5,10-methenyltetrahydrofolate (MTHF), (6R,S)-10-formyltetrahydrofolate (10-HCO-H4folate), 10-formyldihydrofolate (10-HCO-H2folate), and 10-formylfolate (10-HCO-folate) in aqueous Tris-HCl buffer at pH 8 is studied. MTHF and 10-HCO-folate were commercially available. 10-HCO-H4folate was prepared from MTHF by hydrolysis at room temperature under anaerobic conditions. 10-HCO-H2folate was prepared by oxidation of 10-HCO-H4folate under aerobic conditions. Fluorescence quantum distributions at room temperature and fluorescence signal decays at room temperature and liquid nitrogen temperature were measured. The fluorescence lifetimes determined at room temperature (liquid nitrogen temperature) are 10 ps (2.9 ns) for MTHF, 38 ps (3.7 ns) for 10-HCO-H4folate, 80 ps (10.5 ns) for 10-HCO-H2folate, and 7.1 ns (20 ns) for 10-HCO-folate. The results are discussed in terms of dyadic (pterin-benzoyl-glutamate) photo-induced electron transfer and dyadic fluorescent dynamics.

  5. Hormonal control of GTP cyclohydrolase I gene expression and enzyme activity during color pattern development in wings of Precis coenia.

    PubMed

    Sawada, H; Nakagoshi, M; Reinhardt, R K; Ziegler, I; Koch, P B

    2002-06-01

    Color patterns of butterfly wings are composed of single color points represented by each scale. In the case of Precis coenia, at the end of pupal development, different types of pigments are synthesized sequentially in the differently colored scales beginning with white (pterins) followed by red (ommatins) and then black (melanin). In order to explain how formation of these different colors is regulated, we examined the expression of an mRNA-encoding guanosine triphosphate-cyclohydrolase I (GTP-CH I; EC 3.5.4.16), the first key enzyme in the biosynthesis of pteridines, during pigment formation in the wings of P. coenia. The strongest positive signal was recognized around pigment formation one day before butterfly emergence. This GTP-CH I gene expression is paralleled by GTP-CH I enzyme activity measured in wing extracts. We also investigated the effect of 20-hydroxyecdysone on the expression of GTP-CH I mRNA and the enzyme activity during color formation. The results strongly suggest that the onset and duration of the expression of a GTP-CH I mRNA is triggered by a declining ecdysteroid hormone titer during late pupal development.

  6. Normalization of urinary pteridines by urine specific gravity for early cancer detection.

    PubMed

    Burton, Casey; Shi, Honglan; Ma, Yinfa

    2014-08-05

    Urinary biomarkers, such as pteridines, require normalization with respect to an individual's hydration status and time since last urination. Conventional creatinine-based corrections are affected by a multitude of patient factors whereas urine specific gravity (USG) is a bulk specimen property that may better resist those same factors. We examined the performance of traditional creatinine adjustments relative to USG to six urinary pteridines in aggressive and benign breast cancers. 6-Biopterin, neopterin, pterin, 6-hydroxymethylpterin, isoxanthopterin, xanthopterin, and creatinine were analyzed in 50 urine specimens with a previously developed liquid chromatography-tandem mass spectrometry technique. Creatinine and USG performance were evaluated with non-parametric Mann-Whitney hypothesis testing. USG and creatinine were moderately correlated (r=0.857) with deviations occurring in dilute and concentrated specimens. In 48 aggressive and benign breast cancers, normalization by USG significantly outperformed creatinine adjustments which marginally outperformed uncorrected pteridines in predicting pathological status. In addition, isoxanthopterin and xanthopterin were significantly higher in pathological specimens when normalized by USG. USG, as a bulk property, can provide better performance over creatinine-based normalizations for urinary pteridines in cancer detection applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Neopterin formation and tryptophan degradation by a human myelomonocytic cell line (THP-1) upon cytokine treatment.

    PubMed

    Werner-Felmayer, G; Werner, E R; Fuchs, D; Hausen, A; Reibnegger, G; Wachter, H

    1990-05-15

    Determination of neopterin [D-erythro-6-(1',2',3'-trihydroxypropyl)pterin] in body fluids is a powerful diagnostic tool in a variety of diseases in which activation of cellular immune mechanisms is involved, such as certain malignancies, allograft rejection, and autoimmune and infectious diseases. In vitro, neopterin is released into the supernatant by peripheral blood-derived monocytes/macrophages upon stimulation with gamma-interferon. In parallel, cleavage of tryptophan by indoleamine 2,3-dioxygenase is induced. We report here that the human myelomonocytic cell line THP-1 forms neopterin and degrades tryptophan upon treatment with gamma-interferon. Like in macrophages alpha-interferon and beta-interferon induce these pathways only to a much smaller degree. The action of interferons is enhanced by cotreatment with tumor necrosis factor alpha, lipopolysaccharide, or dexamethasone. gamma-Interferon-induced neopterin formation and indoleamine 2,3-dioxygenase activity are increased by raising extracellular tryptophan concentrations. The pattern of intracellularly formed pteridines upon stimulation with gamma-interferon shows the unique characteristics of human monocytes/macrophages. Neopterin, monapterin, and biopterin are produced in a 50:2:1 ratio. Thus, the THP-1 cell line provides a permanent, easily accessible in vitro system for studying the induction and mechanism of neopterin formation.

  8. Sensing and Responding to UV-A in Cyanobacteria

    PubMed Central

    Moon, Yoon-Jung; Kim, Seung Il; Chung, Young-Ho

    2012-01-01

    Ultraviolet (UV) radiation can cause stresses or act as a photoregulatory signal depending on its wavelengths and fluence rates. Although the most harmful effects of UV on living cells are generally attributed to UV-B radiation, UV-A radiation can also affect many aspects of cellular processes. In cyanobacteria, most studies have concentrated on the damaging effect of UV and defense mechanisms to withstand UV stress. However, little is known about the activation mechanism of signaling components or their pathways which are implicated in the process following UV irradiation. Motile cyanobacteria use a very precise negative phototaxis signaling system to move away from high levels of solar radiation, which is an effective escape mechanism to avoid the detrimental effects of UV radiation. Recently, two different UV-A-induced signaling systems for regulating cyanobacterial phototaxis were characterized at the photophysiological and molecular levels. Here, we review the current understanding of the UV-A mediated signaling pathways in the context of the UV-A perception mechanism, early signaling components, and negative phototactic responses. In addition, increasing evidences supporting a role of pterins in response to UV radiation are discussed. We outline the effect of UV-induced cell damage, associated signaling molecules, and programmed cell death under UV-mediated oxidative stress. PMID:23208372

  9. The Kinetic Mechanism of Phenylalanine Hydroxylase: Intrinsic Binding and Rate Constants from Single Turnover Experiments†

    PubMed Central

    Roberts, Kenneth M.; Pavon, Jorge Alex; Fitzpatrick, Paul F.

    2013-01-01

    Phenylalanine hydroxylase (PheH) catalyzes the key step in the catabolism of dietary phenylalanine, its hydroxylation to tyrosine using tetrahydrobiopterin (BH4) and O2. A complete kinetic mechanism for PheH was determined by global analysis of single turnover data in the reaction of PheHΔ117, a truncated form of the enzyme lacking the N-terminal regulatory domain. Formation of the productive PheHΔ117-BH4-phenylalanine complex begins with the rapid binding of BH4 (Kd = 65 µM). Subsequent addition of phenylalanine to the binary complex to form the productive ternary complex (Kd = 130 µM) is approximately ten-fold slower. Both substrates can also bind to the free enzyme to form inhibitory binary complexes. O2 rapidly binds to the productive ternary complex; this is followed by formation of an unidentified intermediate, detectable as a decrease in absorbance at 340 nm, with a rate constant of 140 s−1. Formation of the 4a-hydroxypterin and Fe(IV)O intermediates is ten-fold slower and is followed by the rapid hydroxylation of the amino acid. Product release is the rate-determining step and largely determines kcat. Similar reactions using 6-methyltetrahydropterin indicate a preference for the physiological pterin during hydroxylation. PMID:23327364

  10. Identification of Ser-543 as the major regulatory phosphorylation site in spinach leaf nitrate reductase

    NASA Technical Reports Server (NTRS)

    Bachmann, M.; Shiraishi, N.; Campbell, W. H.; Yoo, B. C.; Harmon, A. C.; Huber, S. C.; Davies, E. (Principal Investigator)

    1996-01-01

    Spinach leaf NADH:nitrate reductase (NR) responds to light/dark signals and photosynthetic activity in part as a result of rapid regulation by reversible protein phosphorylation. We have identified the major regulatory phosphorylation site as Ser-543, which is located in the hinge 1 region connecting the cytochrome b domain with the molybdenum-pterin cofactor binding domain of NR, using recombinant NR fragments containing or lacking the phosphorylation site sequence. Studies with NR partial reactions indicated that the block in electron flow caused by phosphorylation also could be localized to the hinge 1 region. A synthetic peptide (NR6) based on the phosphorylation site sequence was phosphorylated readily by NR kinase (NRk) in vitro. NR6 kinase activity tracked the ATP-dependent inactivation of NR during several chromatographic steps and completely inhibited inactivation/phosphorylation of native NR in vitro. Two forms of NRk were resolved by using anion exchange chromatography. Studies with synthetic peptide analogs indicated that both forms of NRk had similar specificity determinants, requiring a basic residue at P-3 (i.e., three amino acids N-terminal to the phosphorylated serine) and a hydrophobic residue at P-5. Both forms are strictly calcium dependent but belong to distinct families of protein kinases because they are distinct immunochemically.

  11. Overexpression of folate biosynthesis genes in rice (Oryza sativa L.) and evaluation of their impact on seed folate content.

    PubMed

    Dong, Wei; Cheng, Zhi-jun; Lei, Cai-lin; Wang, Xiao-le; Wang, Jiu-lin; Wang, Jie; Wu, Fu-qing; Zhang, Xin; Guo, Xiu-ping; Zhai, Hu-qu; Wan, Jian-min

    2014-12-01

    Folate (vitamin B9) deficiency is a global health problem especially in developing countries where the major staple foods such as rice contain extremely low folates. Biofortification of rice could be an alternative complement way to fight folate deficiency. In this study, we evaluated the availability of the genes in each step of folate biosynthesis pathway for rice folate enhancement in the japonica variety kitaake genetic background. The first enzymes GTP cyclohydrolase I (GTPCHI) and aminodeoxychorismate synthase (ADCS) in the pterin and para-aminobenzoate branches resulted in significant increase in seed folate content, respectively (P < 0.01). Overexpression of two closely related enzymes dihydrofolate synthase (DHFS) and folypolyglutamate synthase (FPGS), which perform the first and further additions of glutamates, produced slightly increase in seed folate content separately. The GTPCHI transgene was combined with each of the other transgenes except ADCS to investigate the effects of gene stacking on seed folate accumulation. Seed folate contents in the gene-stacked plants were higher than the individual low-folate transgenic parents, but lower than the high-folate GTPCHI transgenic lines, pointing to an inadequate supply of para-aminobenzoic acid (PABA) precursor initiated by ADCS in constraining folate overproduction in gene-stacked plants.

  12. Development of a lateral flow dipstick immunoassay for evaluation of folate levels in maize.

    PubMed

    Liang, Qiuju; Yi, Chen; Jiang, Ling; Tan, Guiyu; Zhang, Chunyi; Wang, Baomin

    2017-09-01

    Folates (vitamin B9) are essential for all organisms as cofactors for one-carbon metabolism. However, measurement of folates is technically complicated and time-consuming. In this study, we developed a dipstick immunoassay using a folate-specific monoclonal antibody (mAb), allowing rapid and low-cost detection of folates. The indicator range of the dipstick for 5-formylterahydrofolate (5-CHO-THF), 5-methyltetrahydrofolate (5-CH 3 -THF) and their polyglutamyl forms was 100-200 ng mL -1 ; moreover, no cross-reactivity was observed with tetrahydrofolate (THF) or 5,10-methenyltetrahydrofolate (5,10-CH=THF) at 500 ng mL -1 , or with the folate precursors pterin-6-COOH, p-aminobenzoate (pABA), and L-glutamate, or with the folate analogues methotrexate and 10-formyltetrahydrofolate (10-CHO-THF) at up to 1000 ng mL -1 . The dipstick immunoassay was tested in maize seeds; the results classified the seeds into those with low, moderate, and high levels of folates, and were in agreement with those of liquid chromatography-mass spectrometry. Thus, we conclude that the dipstick assay will provide a versatile tool to facilitate large-scale screening of maize rich in folates. Graphical Abstract The dipstick based immunoassay for analyzing folate level in maize.

  13. Defining the Structural Basis for Allosteric Product Release from E. coli Dihydrofolate Reductase Using NMR Relaxation Dispersion.

    PubMed

    Oyen, David; Fenwick, R Bryn; Aoto, Phillip C; Stanfield, Robyn L; Wilson, Ian A; Dyson, H Jane; Wright, Peter E

    2017-08-16

    The rate-determining step in the catalytic cycle of E. coli dihydrofolate reductase is tetrahydrofolate (THF) product release, which can occur via an allosteric or an intrinsic pathway. The allosteric pathway, which becomes accessible when the reduced cofactor NADPH is bound, involves transient sampling of a higher energy conformational state, greatly increasing the product dissociation rate as compared to the intrinsic pathway that obtains when NADPH is absent. Although the kinetics of this process are known, the enzyme structure and the THF product conformation in the transiently formed excited state remain elusive. Here, we use side-chain proton NMR relaxation dispersion measurements, X-ray crystallography, and structure-based chemical shift predictions to explore the structural basis of allosteric product release. In the excited state of the E:THF:NADPH product release complex, the reduced nicotinamide ring of the cofactor transiently enters the active site where it displaces the pterin ring of the THF product. The p-aminobenzoyl-l-glutamate tail of THF remains weakly bound in a widened binding cleft. Thus, through transient entry of the nicotinamide ring into the active site, the NADPH cofactor remodels the enzyme structure and the conformation of the THF to form a weakly populated excited state that is poised for rapid product release.

  14. Gravireception of the sporangiophore of Phycomyces blakesleeanus

    NASA Astrophysics Data System (ADS)

    Galland, P.; Grolig, F.; Schmidt, W.

    The sporangiophore of the zygomycete Phycomyces blakesleeanus displays negative gravitropism that manisfests with a latency of some 5 to 15 min after stimulation Sporangiophores possess an apical organell that consists of some 200 lipid globules held together in a spherical complex of a dense mesh of F-actin The lipid globules possess an average diameter of 2 to 2 5 mu m and a density of 0 791 g cm -3 In the absence of lipid globules the gravitropic response of the sporangiophore is substantially reduced The complex of lipid globules meets basic physical criteria for a function as gravisusceptor that operates by buoyancy Fluorescence and absorption properties of the lipid globules indicate the presence of beta -carotene phytofluene as well as flavins and pterins None of these pigments appear however to be required for gravireception The negative gravitropism of Phycomyces can be modulated by blue and red light and also by the geomagnetic field The gravireception of sporangiophores is associated with gravity-induced absorbance changes GIACs that represent primary responses of gravitropism and that may involve the reduction of cytochromes We have characterized these GIACs in further detail by dual-wavelength spectrometry in earthbound experiments and during parabola flights that generated micro- and hypergravity GIACs of sporangiophores were measured in vivo with a micro-dual wavelength spectrometer MDWS at 460 and 655 nm Vertical sporangiophores that were stimulated gravitropically by placing them

  15. Nonflowering Plants Possess a Unique Folate-Dependent Phenylalanine Hydroxylase That Is Localized in Chloroplasts[W

    PubMed Central

    Pribat, Anne; Noiriel, Alexandre; Morse, Alison M.; Davis, John M.; Fouquet, Romain; Loizeau, Karen; Ravanel, Stéphane; Frank, Wolfgang; Haas, Richard; Reski, Ralf; Bedair, Mohamed; Sumner, Lloyd W.; Hanson, Andrew D.

    2010-01-01

    Tetrahydropterin-dependent aromatic amino acid hydroxylases (AAHs) are known from animals and microbes but not plants. A survey of genomes and ESTs revealed AAH-like sequences in gymnosperms, mosses, and algae. Analysis of full-length AAH cDNAs from Pinus taeda, Physcomitrella patens, and Chlamydomonas reinhardtii indicated that the encoded proteins form a distinct clade within the AAH family. These proteins were shown to have Phe hydroxylase activity by functional complementation of an Escherichia coli Tyr auxotroph and by enzyme assays. The P. taeda and P. patens AAHs were specific for Phe, required iron, showed Michaelian kinetics, and were active as monomers. Uniquely, they preferred 10-formyltetrahydrofolate to any physiological tetrahydropterin as cofactor and, consistent with preferring a folate cofactor, retained activity in complementation tests with tetrahydropterin-depleted E. coli host strains. Targeting assays in Arabidopsis thaliana mesophyll protoplasts using green fluorescent protein fusions, and import assays with purified Pisum sativum chloroplasts, indicated chloroplastic localization. Targeting assays further indicated that pterin-4a-carbinolamine dehydratase, which regenerates the AAH cofactor, is also chloroplastic. Ablating the single AAH gene in P. patens caused accumulation of Phe and caffeic acid esters. These data show that nonflowering plants have functional plastidial AAHs, establish an unprecedented electron donor role for a folate, and uncover a novel link between folate and aromatic metabolism. PMID:20959559

  16. Biological sensing with surface-enhanced Raman spectroscopy (SERS) using a facile and rapid silver colloid-based synthesis technique

    NASA Astrophysics Data System (ADS)

    Smyth, C.; Mehigan, S.; Rakovich, Y. P.; Bell, S. E. J.; McCabe, E. M.

    2011-03-01

    Optical techniques towards the realisation of sensitive and selective biosensing platforms have received a considerable amount of attention in recent times. Techniques based on interferometry, surface plasmon resonance, field-effect transistors and waveguides have all proved popular, and in particular, spectroscopy offers a large range of options. Raman spectroscopy has always been viewed as an information rich technique in which the vibrational frequencies reveal a lot about the structure of a compound. The issue with Raman spectroscopy has traditionally been that its rather low cross section leads to poor limits-of-detection. In response to this problem, Surface-enhanced Raman Scattering (SERS), which increases sensitivity by bringing the sample in contact with many types of enhanceing substrates, has been developed. Here we discuss a facile and rapid technique for the detection of pterins using colloidal silver suspensions. Pteridine compounds are a family of biochemicals, heterocyclic in structure, and employed in nature as components of colour pigmentation and also as facilitators for many metabolic pathways, particularly those relating to the amino acid hydroxylases. In this work, xanthopterin, isoxanthopterin and 7,8- dihydrobiopterin have been examined whilst absorbed to SERS-active silver colloids. SERS, while far more sensitive than regular Raman spectroscopy, has its own issues relating to the reproducibility of substrates. In order to obtain quantitative data for the pteridine compounds mentioned above, exploratory studies of methods for introducing an internal standard for normalisation of the signals have been carried out.e

  17. A Murine Model for Human Sepiapterin-Reductase Deficiency

    PubMed Central

    Yang, Seungkyoung; Lee, Young Jae; Kim, Jin-Man; Park, Sean; Peris, Joanna; Laipis, Philip; Park, Young Shik; Chung, Jae Hoon; Oh, S. Paul

    2006-01-01

    Tetrahydrobiopterin (BH4) is an essential cofactor for several enzymes, including all three forms of nitric oxide synthases, the three aromatic hydroxylases, and glyceryl-ether mono-oxygenase. A proper level of BH4 is, therefore, necessary for the metabolism of phenylalanine and the production of nitric oxide, catecholamines, and serotonin. BH4 deficiency has been shown to be closely associated with diverse neurological psychiatric disorders. Sepiapterin reductase (SPR) is an enzyme that catalyzes the final step of BH4 biosynthesis. Whereas the number of cases of neuropsychological disorders resulting from deficiencies of other catalytic enzymes involved in BH4 biosynthesis and metabolism has been increasing, only a handful of cases of SPR deficiency have been reported, and the role of SPR in BH4 biosynthesis in vivo has been poorly understood. Here, we report that mice deficient in the Spr gene (Spr−/−) display disturbed pterin profiles and greatly diminished levels of dopamine, norepinephrine, and serotonin, indicating that SPR is essential for homeostasis of BH4 and for the normal functions of BH4-dependent enzymes. The Spr−/− mice exhibit phenylketonuria, dwarfism, and impaired body movement. Oral supplementation of BH4 and neurotransmitter precursors completely rescued dwarfism and phenylalanine metabolism. The biochemical and behavioral characteristics of Spr−/− mice share striking similarities with the symptoms observed in SPR-deficient patients. This Spr mutant strain of mice will be an invaluable resource to elucidate many important issues regarding SPR and BH4 deficiencies. PMID:16532389

  18. Mechanism of N[superscript 10]-formyltetrahydrofolate synthetase derived from complexes with intermediates and inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celeste, Lesa R.; Chai, Geqing; Bielak, Magdalena

    N{sup 10}-formyltetrahydrofolate synthetase (FTHFS) is a folate enzyme that catalyzes the formylation of tetrahydrofolate (THF) in an ATP dependent manner. Structures of FTHFS from the thermophilic homoacetogen, Moorella thermoacetica, complexed with (1) a catalytic intermediate-formylphosphate (XPO) and product-ADP; (2) with an inhibitory substrate analog-folate; (3) with XPO and an inhibitory THF analog, ZD9331, were used to analyze the enzyme mechanism. Nucleophilic attack of the formate ion on the gamma phosphate of ATP leads to the formation of XPO and the first product ADP. A channel that leads to the putative formate binding pocket allows for the binding of ATP andmore » formate in random order. Formate binding is due to interactions with the gamma-phosphate moiety of ATP and additionally to two hydrogen bonds from the backbone nitrogen of Ala276 and the side chain of Arg97. Upon ADP dissociation, XPO reorients and moves to the position previously occupied by the beta-phosphate of ATP. Conformational changes that occur due to the XPO presence apparently allow for the recruitment of the third substrate, THF, with its pterin moiety positioned between Phe384 and Trp412. This position overlaps with that of the bound nucleoside, which is consistent with a catalytic mechanism hypothesis that FTHFS works via a sequential ping-pong mechanism. More specifically, a random bi uni uni bi ping-pong ter ter mechanism is proposed. Additionally, the native structure originally reported at a 2.5 {angstrom} resolution was redetermined at a 2.2 {angstrom} resolution.« less

  19. Multiple ligand-binding modes in bacterial R67 dihydrofolate reductase

    NASA Astrophysics Data System (ADS)

    Alonso, Hernán; Gillies, Malcolm B.; Cummins, Peter L.; Bliznyuk, Andrey A.; Gready, Jill E.

    2005-03-01

    R67 dihydrofolate reductase (DHFR), a bacterial plasmid-encoded enzyme associated with resistance to the drug trimethoprim, shows neither sequence nor structural homology with the chromosomal DHFR. It presents a highly symmetrical toroidal structure, where four identical monomers contribute to the unique central active-site pore. Two reactants (dihydrofolate, DHF), two cofactors (NADPH) or one of each (R67•DHF•NADPH) can be found simultaneously within the active site, the last one being the reactive ternary complex. As the positioning of the ligands has proven elusive to empirical determination, we addressed the problem from a theoretical perspective. Several potential structures of the ternary complex were generated using the docking programs AutoDock and FlexX. The variability among the final poses, many of which conformed to experimental data, prompted us to perform a comparative scoring analysis and molecular dynamics simulations to assess the stability of the complexes. Analysis of ligand-ligand and ligand-protein interactions along the 4 ns trajectories of eight different structures allowed us to identify important inter-ligand contacts and key protein residues. Our results, combined with published empirical data, clearly suggest that multipe binding modes of the ligands are possible within R67 DHFR. While the pterin ring of DHF and the nicotinamide ring of NADPH assume a stacked endo-conformation at the centre of the pore, probably assisted by V66, Q67 and I68, the tails of the molecules extend towards opposite ends of the cavity, adopting multiple configurations in a solvent rich-environment where hydrogen-bond interactions with K32 and Y69 may play important roles.

  20. Activity of xanthine oxidase in plasma correlates with indices of insulin resistance and liver dysfunction in Japanese patients with type 2 diabetes mellitus and metabolic syndrome: A pilot exploratory study.

    PubMed

    Sunagawa, Sumito; Shirakura, Takashi; Hokama, Noboru; Kozuka, Chisayo; Yonamine, Masato; Namba, Toyotaka; Morishima, Satoko; Nakachi, Sawako; Nishi, Yukiko; Ikema, Tomomi; Okamoto, Shiki; Matsui, Chieko; Hase, Naoki; Tamura, Mizuho; Shimabukuro, Michio; Masuzaki, Hiroaki

    2018-06-03

    There is a controversy whether hyperuricemia is an independent risk for cardiometabolic diseases. Serum level of uric acid is affected by a wide variety of factors involved in its production and excretion. On the other hand, evidence has accumulated that locally and systemically activated xanthine oxidase (XO), a rate limiting enzyme for production of uric acid, is linked to metabolic derangement in humans and rodents. We therefore explored the clinical implication of plasma XO activity in patients with type 2 diabetes mellitus (T2DM) and metabolic syndrome (MetS). We enrolled 60 patients with T2DM and MetS. MetS was defined according to the 2005 International Diabetes Federation guidelines. Plasma XO activity was measured by highly sensitive fluorometric assay measuring the conversion of pterin to isoxanthopterin, and explored associations between the value of plasma XO activity and metabolic parameters. Value of plasma XO activity was correlated with indices of insulin resistance and level of circulating liver transaminases. On the other hand, level of serum uric acid was not correlated with indices of insulin resistance. The value of plasma XO activity was not correlated with serum uric acid level. Plasma XO activity correlates with indices of insulin resistance and liver dysfunction in Japanese patients with T2DM and MetS. Through assessing the plasma XO activity, patients demonstrating normal level of serum uric acid with higher activity of XO can be screened, thereby possibly providing a clue to uncover metabolic risks in T2DM and MetS. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Structure of Chlorobium tepidum sepiapterin reductase complex reveals the novel substrate binding mode for stereospecific production of L-threo-tetrahydrobiopterin.

    PubMed

    Supangat, Supangat; Seo, Kyung Hye; Choi, Yong Kee; Park, Young Shik; Son, Daeyoung; Han, Chang-deok; Lee, Kon Ho

    2006-01-27

    Sepiapterin reductase (SR) is involved in the last step of tetrahydrobiopterin (BH(4)) biosynthesis by reducing the di-keto group of 6-pyruvoyl tetrahydropterin. Chlorobium tepidum SR (cSR) generates a distinct BH(4) product, L-threo-BH(4) (6R-(1'S,2'S)-5,6,7,8-BH(4)), whereas animal enzymes produce L-erythro-BH(4) (6R-(1'R,2'S)-5,6,7,8-BH(4)) although it has high amino acid sequence similarities to the other animal enzymes. To elucidate the structural basis for the different reaction stereospecificities, we have determined the three-dimensional structures of cSR alone and complexed with NADP and sepiapterin at 2.1 and 1.7 A resolution, respectively. The overall folding of the cSR, the binding site for the cofactor NADP(H), and the positions of active site residues were quite similar to the mouse and the human SR. However, significant differences were found in the substrate binding region of the cSR. In comparison to the mouse SR complex, the sepiapterin in the cSR is rotated about 180 degrees around the active site and bound between two aromatic side chains of Trp-196 and Phe-99 so that its pterin ring is shifted to the opposite side, but its side chain position is not changed. The swiveled sepiapterin binding results in the conversion of the side chain configuration, exposing the opposite face for hydride transfer from NADPH. The different sepiapterin binding mode within the conserved catalytic architecture presents a novel strategy of switching the reaction stereospecificities in the same protein fold.

  2. Physiological and biochemical characterization of the soluble formate dehydrogenase, a molybdoenzyme from Alcaligenes eutrophus.

    PubMed Central

    Friedebold, J; Bowien, B

    1993-01-01

    Organoautotrophic growth of Alcaligenes eutrophus on formate was dependent on the presence of molybdate in the medium. Supplementation of the medium with tungstate lead to growth cessation. Corresponding effects of these anions were observed for the activity of the soluble, NAD(+)-linked formate dehydrogenase (S-FDH; EC 1.2.1.2) of the organism. Lack of molybdate or presence of tungstate resulted in an almost complete loss of S-FDH activity. S-FDH was purified to near homogeneity in the presence of nitrate as a stabilizing agent. The native enzyme exhibited an M(r) of 197,000 and a heterotetrameric quaternary structure with nonidentical subunits of M(r) 110,000 (alpha), 57,000 (beta), 19,400 (gamma), and 11,600 (delta). It contained 0.64 g-atom of molybdenum, 25 g-atom of nonheme iron, 20 g-atom of acid-labile sulfur, and 0.9 mol of flavin mononucleotide per mol. The fluorescence spectrum of iodine-oxidized S-FDH was nearly identical to the form A spectrum of milk xanthine oxidase, proving the presence of a pterin cofactor. The molybdenum-complexing cofactor was identified as molybdopterin guanine dinucleotide in an amount of 0.71 mol/mol of S-FDH. Apparent Km values of 3.3 mM for formate and 0.09 mM for NAD+ were determined. The enzyme coupled the oxidation of formate to a number of artificial electron acceptors and was strongly inactivated by formate in the absence of NAD+. It was inhibited by cyanide, azide, nitrate, and Hg2+ ions. Thus, the enzyme belongs to a new group of complex molybdo-flavo Fe-S FDH that so far has been detected in only one other aerobic bacterium. Images PMID:8335630

  3. Interactions with the Bifunctional Interface of the Transcriptional Coactivator DCoH1 Are Kinetically Regulated

    DOE PAGES

    Wang, Dongli; Coco, Matthew W.; Rose, Robert B.

    2014-12-23

    Pterin-4a-carbinolamine dehydratase (PCD) is a highly conserved enzyme that evolved a second, unrelated function in mammals, as a transcriptional coactivator. As a coactivator, PCD is known as DCoH or dimerization cofactor of the transcription factor HNF-1. These two activities are associated with a change in oligomeric state: from two dimers interacting as an enzyme in the cytoplasm to a dimer interacting with a dimer of HNF-1 in the nucleus. The same interface of DCoH forms both complexes. To determine how DCoH partitions between its two functions, we studied in this paper the folding and stability of the DCoH homotetramer. Wemore » show that the DCoH1 homotetramer is kinetically trapped, meaning once it forms it will not dissociate to interact with HNF-1. In contrast, DCoH2, a paralog of DCoH1, unfolds within hours. A simple mutation in the interface of DCoH2 from Ser-51 to Thr, as found in DCoH1, increases the kinetic stability by 9 orders of magnitude, to τ½ ~2 million years. This suggests that the DCoH1·HNF-1 complex must co-fold to interact. We conclude that simple mutations can dramatically affect the dissociation kinetics of a complex. Residue 51 represents a “kinetic hot spot” instead of a “thermodynamic hot spot.” Kinetic regulation allows PCD to adopt two distinct functions. Finally, mutations in DCoH1 associated with diabetes affect both functions of DCoH1, perhaps by disrupting the balance between the two DCoH complexes.« less

  4. Differential coulometric oxidation following post column-switching high pressure liquid chromatography for fluorescence measurement of unmetabolized folic acid in human plasma.

    PubMed

    Bailey, Steven W; Ayling, June E

    2013-11-08

    Although many countries have fortified their grain supplies with folic acid (FA) to decrease the incidence of neural tube defects, others have not due to concerns that this synthetic folate might have some adverse effects. Persistent unmetabolized FA has been found even in plasma from fasted subjects. To facilitate measurement of low levels of folic acid in human plasma, post-column coulometric oxidative cleavage was used to convert poorly fluorescent FA into a highly fluorescent compound determined to be 6-formyl-pterin. To minimize sample work-up and maximize recovery, column-switching HPLC transferred a window of eluate containing the FA from the first column (C8) onto a second column (phenyl-hexyl). The pH of two mobile phases were adjusted to be above and then below a pK of the FA α-carboxyl group, thus promoting separation from compounds coeluting from the C8-column. This permitted sample preparation using only a simple high recovery protein precipitation. Definitive identification of FA in human plasma was accomplished by duplicate injections of sample with the electrochemical voltage set above and below its half-potential. The LOD (S/N=3) was 0.10 nM. The intra- and inter-assay CV's were 2.3% and 5%, respectively. Comparison of these results with those obtained by HPLC/MS/MS with stable isotope internal standard showed a slope of 1.00 ± 0.019. This simple, sensitive, and repeatable assay facilitates a more thorough investigation of the response of various human populations to folic acid intake. Post-column differential coulometric electrochemistry can expand the variety of compounds amenable to fluorescence detection. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Simultaneous detection of six urinary pteridines and creatinine by high-performance liquid chromatography-tandem mass spectrometry for clinical breast cancer detection.

    PubMed

    Burton, Casey; Shi, Honglan; Ma, Yinfa

    2013-11-19

    Recent preliminary studies have implicated urinary pteridines as candidate biomarkers in a growing number of malignancies including breast cancer. While the developments of capillary electrophoresis-laser induced fluorescence (CE-LIF), high performance liquid chromatography (HPLC), and liquid chromatography-mass spectroscopy (LC-MS) pteridine urinalyses among others have helped to enable these findings, limitations including poor pteridine specificity, asynchronous or nonexistent renal dilution normalization, and a lack of information regarding adduct formation in mass spectrometry techniques utilizing electrospray ionization (ESI) have prevented application of these techniques to a larger clinical setting. In this study, a simple, rapid, specific, and sensitive high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method has been developed and optimized for simultaneous detection of six pteridines previously implicated in breast cancer and creatinine as a renal dilution factor in urine. In addition, this study reports cationic adduct formation of urinary pteridines under ESI-positive ionization for the first time. This newly developed technique separates and detects the following six urinary pteridines: 6-biopterin, 6-hydroxymethylpterin, d-neopterin, pterin, isoxanthopterin, and xanthopterin, as well as creatinine. The method detection limit for the pteridines is between 0.025 and 0.5 μg/L, and for creatinine, it is 0.15 μg/L. The method was also validated by spiked recoveries (81-105%), reproducibility (RSD: 1-6%), and application to 25 real urine samples from breast cancer positive and negative samples through a double-blind study. The proposed technique was finally compared directly with a previously reported CE-LIF technique, concluding that additional or alternative renal dilution factors are needed for proper investigation of urinary pteridines as breast cancer biomarkers.

  6. The Molybdenum Cofactor Biosynthesis Network: In vivo Protein-Protein Interactions of an Actin Associated Multi-Protein Complex.

    PubMed

    Kaufholdt, David; Baillie, Christin-Kirsty; Meinen, Rieke; Mendel, Ralf R; Hänsch, Robert

    2017-01-01

    Survival of plants and nearly all organisms depends on the pterin based molybdenum cofactor (Moco) as well as its effective biosynthesis and insertion into apo-enzymes. To this end, both the central Moco biosynthesis enzymes are characterized and the conserved four-step reaction pathway for Moco biosynthesis is well-understood. However, protection mechanisms to prevent degradation during biosynthesis as well as transfer of the highly oxygen sensitive Moco and its intermediates are not fully enlightened. The formation of protein complexes involving transient protein-protein interactions is an efficient strategy for protected metabolic channelling of sensitive molecules. In this review, Moco biosynthesis and allocation network is presented and discussed. This network was intensively studied based on two in vivo interaction methods: bimolecular fluorescence complementation (BiFC) and split-luciferase. Whereas BiFC allows localisation of interacting partners, split-luciferase assay determines interaction strengths in vivo . Results demonstrate (i) interaction of Cnx2 and Cnx3 within the mitochondria and (ii) assembly of a biosynthesis complex including the cytosolic enzymes Cnx5, Cnx6, Cnx7, and Cnx1, which enables a protected transfer of intermediates. The whole complex is associated with actin filaments via Cnx1 as anchor protein. After biosynthesis, Moco needs to be handed over to the specific apo-enzymes. A potential pathway was discovered. Molybdenum-containing enzymes of the sulphite oxidase family interact directly with Cnx1. In contrast, the xanthine oxidoreductase family acquires Moco indirectly via a Moco binding protein (MoBP2) and Moco sulphurase ABA3. In summary, the uncovered interaction matrix enables an efficient transfer for intermediate and product protection via micro-compartmentation.

  7. Molecular and enzymatic characterization of two enzymes BmPCD and BmDHPR involving in the regeneration pathway of tetrahydrobiopterin from the silkworm Bombyx mori.

    PubMed

    Li, Wentian; Gong, Meixia; Shu, Rui; Li, Xin; Gao, Junshan; Meng, Yan

    2015-08-01

    Tetrahydrobiopterin (BH4) is an essential cofactor of aromatic amino acid hydroxylases and nitric oxide synthase so that BH4 plays a key role in many biological processes. BH4 deficiency is associated with numerous metabolic syndromes and neuropsychological disorders. BH4 concentration in mammals is maintained through a de novo synthesis pathway and a regeneration pathway. Previous studies showed that the de novo pathway of BH4 is similar between insects and mammals. However, knowledge about the regeneration pathway of BH4 (RPB) is very limited in insects. Several mutants in the silkworm Bombyx mori have been approved to be associated with BH4 deficiency, which are good models to research on the RPB in insects. In this study, homologous genes encoding two enzymes, pterin-4a-carbinolamine dehydratase (PCD) and dihydropteridine reductase (DHPR) involving in RPB have been cloned and identified from B. mori. Enzymatic activity of DHPR was found in the fat body of wild type silkworm larvae. Together with the transcription profiles, it was indicated that BmPcd and BmDhpr might normally act in the RPB of B. mori and the expression of BmDhpr was activated in the brain and sexual glands while BmPcd was expressed in a wider special pattern when the de novo pathway of BH4 was lacked in lemon. Biochemical analyses showed that the recombinant BmDHPR exhibited high enzymatic activity and more suitable parameters to the coenzyme of NADH in vitro. The results in this report give new information about the RPB in B. mori and help in better understanding insect BH4 biosynthetic networks. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Light-induced fluorescence changes in Phycomyces: evidence for blue light-receptor associated flavo-semiquinones.

    PubMed

    Galland, Paul; Tölle, Nadja

    2003-10-01

    Light-induced fluorescence changes (LIFCs) were detected in sporangiophores of the blue-light-sensitive fungus Phycomyces blakesleeanus (Burgeff). The LIFCs can be utilized as a spectrophotometric assay for blue-light photoreceptors and for the in vivo characterization of their photochemical primary reactions. Blue-light irradiation of sporangiophores elicited a transient decrease and subsequent regeneration of flavin-like fluorescence emission at 525 nm. The signals recovered in darkness in about 120 min. In contrast to blue light, near-UV (370 nm) caused an increase in the fluorescence emission at 525 nm. Because the LIFCs were altered in a light-insensitive madC mutant with a defective photoreceptor, the fluorescence changes must be associated with early photochemical events of the transduction chain. Action spectra for the fluorescence changes at 525 nm showed major peaks near 470 and 600 nm. Double-pulse experiments involving two consecutive pulses of either blue and near-UV, blue and red, or near-UV and red showed that the responses depended on the sequence in which the different wavelengths were applied. The results indicate a blue-light receptor with intermediates in the near-UV, blue and red spectral regions. We explain the results in the framework of a general model, in which the three redox states of the flavin photoreceptor, the oxidized flavin (Fl), the flavo-semiquinone (FlH*), and the flavo-hydroquinone (FlH2) are each acting as chromophores with their own characteristic photochemical primary reactions. These consist of the photoreduction of the oxidized flavin generating semiquinone, the photoreduction of the semiquinone generating hydroquinone, and the photooxidation of the flavo-hydroquinone regenerating the pool of oxidized flavins. The proposed mechanism represents a photocycle in which two antagonistic photoreceptor forms, Fl and FlH2, determine the pool size of the biological effector molecule, the flavo-semiquinone. The redox changes that are associated with the photocycle are maintained by redox partners, pterins, that function in the near-UV as secondary chromophores.

  9. Neopterin/7,8-dihydroneopterin is elevated in Duchenne muscular dystrophy patients and protects mdx skeletal muscle function.

    PubMed

    Lindsay, Angus; Schmiechen, Alexandra; Chamberlain, Christopher M; Ervasti, James M; Lowe, Dawn A

    2018-05-23

    Macrophage infiltration is a hallmark of dystrophin-deficient muscle. We tested the hypothesis that Duchenne muscular dystrophy (DMD) patients would have elevated levels of the macrophage synthesized pterins, neopterin and 7,8-dihydroneopterin compared to unaffected age-matched controls. Urinary neopterin/creatinine and 7,8-dihydroneopterin/creatinine were elevated in DMD patients and 7,8-dihydroneopterin/creatinine was associated with patient age and ambulation. 7,8-dihydroneopterin correction with specific gravity was also elevated in DMD patients. Because 7,8-dihydroneopterin is an antioxidant, we then identified a potential role for 7,8-dihydroneopterin in disease pathology. We assessed whether 7,8-dihydroneopterin could 1) protect against isometric force loss in wildtype skeletal muscle exposed to various pro-oxidants, and 2) protect wildtype and mdx muscle from eccentric contraction-induced force drop which has an oxidative component. Force drop was elicited in isolated Extensor Digitorum Longus (EDL) muscles by 10 eccentric contractions and recovery of force following the contractions was measured in the presence of exogenous 7,8-dihydroneopterin. 7,8-dihydroneopterin attenuated isometric force loss by wildtype EDL muscles when challenged by H 2 O 2 and HOCl, but exacerbated force loss when challenged by SIN-1 (NO · , O 2 · , ONOO - ). 7,8-dihydroneopterin attenuated eccentric contraction-induced force drop in mdx muscle. Isometric force by EDL muscles of mdx mice also recovered to a greater degree following eccentric contractions in the presence of 7,8-dihydroneopterin. The results corroborate macrophage activation in DMD patients, provide a potential protective role for 7,8-dihydroneopterin in the susceptibility of dystrophic muscle to eccentric contractions and indicate oxidative stress contributes to eccentric contraction-induced force drop in mdx skeletal muscle. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Purification and Molecular Characterization of the Tungsten-Containing Formaldehyde Ferredoxin Oxidoreductase from the Hyperthermophilic Archaeon Pyrococcus furiosus: the Third of a Putative Five-Member Tungstoenzyme Family

    PubMed Central

    Roy, Roopali; Mukund, Swarnalatha; Schut, Gerrit J.; Dunn, Dianne M.; Weiss, Robert; Adams, Michael W. W.

    1999-01-01

    Pyrococcus furiosus is a hyperthermophilic archaeon which grows optimally near 100°C by fermenting peptides and sugars to produce organic acids, CO2, and H2. Its growth requires tungsten, and two different tungsten-containing enzymes, aldehyde ferredoxin oxidoreductase (AOR) and glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR), have been previously purified from P. furiosus. These two enzymes are thought to function in the metabolism of peptides and carbohydrates, respectively. A third type of tungsten-containing enzyme, formaldehyde ferredoxin oxidoreductase (FOR), has now been characterized. FOR is a homotetramer with a mass of 280 kDa and contains approximately 1 W atom, 4 Fe atoms, and 1 Ca atom per subunit, together with a pterin cofactor. The low recovery of FOR activity during purification was attributed to loss of sulfide, since the purified enzyme was activated up to fivefold by treatment with sulfide (HS−) under reducing conditions. FOR uses P. furiosus ferredoxin as an electron acceptor (Km = 100 μM) and oxidizes a range of aldehydes. Formaldehyde (Km = 15 mM for the sulfide-activated enzyme) was used in routine assays, but the physiological substrate is thought to be an aliphatic C5 semi- or dialdehyde, e.g., glutaric dialdehyde (Km = 1 mM). Based on its amino-terminal sequence, the gene encoding FOR (for) was identified in the genomic database, together with those encoding AOR and GAPOR. The amino acid sequence of FOR corresponded to a mass of 68.7 kDa and is highly similar to those of the subunits of AOR (61% similarity and 40% identity) and GAPOR (50% similarity and 23% identity). The three genes are not linked on the P. furiosus chromosome. Two additional (and nonlinked) genes (termed wor4 and wor5) that encode putative tungstoenzymes with 57% (WOR4) and 56% (WOR5) sequence similarity to FOR were also identified. Based on sequence motif similarities with FOR, both WOR4 and WOR5 are also proposed to contain a tungstobispterin site and one [4Fe-4S] cluster per subunit. PMID:9973343

  11. Folinic acid treatment for schizophrenia associated with folate receptor autoantibodies.

    PubMed

    Ramaekers, V T; Thöny, B; Sequeira, J M; Ansseau, M; Philippe, P; Boemer, F; Bours, V; Quadros, E V

    2014-12-01

    Auto-antibodies against folate receptor alpha (FRα) at the choroid plexus that block N(5)-methyltetrahydrofolate (MTHF) transfer to the brain were identified in catatonic schizophrenia. Acoustic hallucinations disappeared following folinic acid treatment. Folate transport to the CNS prevents homocysteine accumulation and delivers one-carbon units for methyl-transfer reactions and synthesis of purines. The guanosine derivative tetrahydrobiopterin acts as common co-factor for the enzymes producing dopamine, serotonin and nitric oxide. Our study selected patients with schizophrenia unresponsive to conventional treatment. Serum from these patients with normal plasma homocysteine, folate and vitamin B12 was tested for FR autoantibodies of the blocking type on serial samples each week. Spinal fluid was analyzed for MTHF and the metabolites of pterins, dopamine and serotonin. The clinical response to folinic acid treatment was evaluated. Fifteen of 18 patients (83.3%) had positive serum FR auto-antibodies compared to only 1 in 30 controls (3.3%) (χ(2)=21.6; p<0.0001). FRα antibody titers in patients fluctuated over time varying between negative and high titers, modulating folate flux to the CNS, which explained low CSF folate values in 6 and normal values in 7 patients. The mean±SD for CSF MTHF was diminished compared to previously established controls (t-test: 3.90; p=0.0002). A positive linear correlation existed between CSF MTHF and biopterin levels. CSF dopamine and serotonin metabolites were low or in the lower normal range. Administration of folinic acid (0.3-1mg/kg/day) to 7 participating patients during at least six months resulted in clinical improvement. Assessment of FR auto-antibodies in serum is recommended for schizophrenic patients. Clinical negative or positive symptoms are speculated to be influenced by the level and evolution of FRα antibody titers which determine folate flux to the brain with up- or down-regulation of brain folate intermediates linked to metabolic processes affecting homocysteine levels, synthesis of tetrahydrobiopterin and neurotransmitters. Folinic acid intervention appears to stabilize the disease process. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Structural and Kinetic Evidence for an Extended Hydrogen-Bonding Network in Catalysis of Methyl Group Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doukov,T.; Hemmi, H.; Drennan, C.

    The methyltetrahydrofolate (CH{sub 3}-H{sub 4}folate) corrinoid-ironsulfur protein (CFeSP) methyltransferase (MeTr) catalyzes transfer of the methyl group of CH3-H4folate to cob(I)amide. This key step in anaerobic CO and CO{sub 2} fixation is similar to the first half-reaction in the mechanisms of other cobalamin-dependent methyltransferases. Methyl transfer requires electrophilic activation of the methyl group of CH{sub 3}-H{sub 4}folate, which includes proton transfer to the N5 group of the pterin ring and poises the methyl group for reaction with the Co(I) nucleophile. The structure of the binary CH{sub 3}-H{sub 4}folate/MeTr complex (revealed here) lacks any obvious proton donor near the N5 group. Instead,more » an Asn residue and water molecules are found within H-bonding distance of N5. Structural and kinetic experiments described here are consistent with the involvement of an extended H-bonding network in proton transfer to N5 of the folate that includes an Asn (Asn-199 in MeTr), a conserved Asp (Asp-160), and a water molecule. This situation is reminiscent of purine nucleoside phosphorylase, which involves protonation of the purine N7 in the transition state and is accomplished by an extended H-bond network that includes water molecules, a Glu residue, and an Asn residue (Kicska, G. A., Tyler, P. C., Evans, G. B., Furneaux, R. H., Shi, W., Fedorov, A., Lewandowicz, A., Cahill, S. M., Almo, S. C., and Schramm, V. L. (2002) Biochemistry 41, 14489-14498). In MeTr, the Asn residue swings from a distant position to within H-bonding distance of the N5 atom upon CH{sub 3}-H{sub 4}folate binding. An N199A variant exhibits only {approx}20-fold weakened affinity for CH{sub 3}-H{sub 4}folate but a much more marked 20,000-40,000-fold effect on catalysis, suggesting that Asn-199 plays an important role in stabilizing a transition state or high energy intermediate for methyl transfer.« less

  13. Structural Perturbations in the Ala → Val Polymorphism of Methylenetetrahydrofolate Reductase: How Binding of Folates May Protect against Inactivation†‡

    PubMed Central

    Pejchal, Robert; Campbell, Elizabeth; Guenther, Brian D.; Lennon, Brett W.; Matthews, Rowena G.; Ludwig, Martha L.

    2006-01-01

    In human methylenetetrahydrofolate reductase (MTHFR) the Ala222Val (677C → T) polymorphism encodes a heat-labile gene product that is associated with elevated levels of homocysteine and possibly with risk for cardiovascular disease. Generation of the equivalent Ala to Val mutation in Escherichia coli MTHFR, which is 30% identical to the catalytic domain of the human enzyme, creates a protein with enhanced thermolability. In both human and E. coli MTHFR, the A → V mutation increases the rate of dissociation of FAD, and in both enzymes, loss of FAD is linked to changes in quaternary structure [Yamada, K., Chen, Z., Rozen, R., and Matthews, R. G. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 14853–14858; Guenther, B. D., Sheppard, C. A., Tran, P., Rozen, R., Matthews, R. G., and Ludwig, M. L. (1999) Nat. Struct. Biol. 6, 359–365]. Folates have been shown to protect both human and bacterial enzymes from loss of FAD. Despite its effect on affinity for FAD, the A → V mutation is located at the bottom of the (βα)8 barrel of the catalytic domain in a position that does not contact the bound FAD prosthetic group. Here we report the structures of the Ala177Val mutant of E. coli MTHFR and of its complex with the 5,10-dideazafolate analogue, LY309887, and suggest mechanisms by which the mutation may perturb FAD binding. Helix α5, which immediately precedes the loop bearing the mutation, carries several residues that interact with FAD, including Asn168, Arg171, and Lys172. In the structures of the mutant enzyme this helix is displaced, perturbing protein–FAD interactions. In the complex with LY309887, the pterin-like ring of the analogue stacks against the si face of the flavin and is secured by hydrogen bonds to residues Gln183 and Asp120 that adjoin this face. The direct interactions of bound folate with the cofactor provide one mechanism for linkage between binding of FAD and folate binding that could account in part for the protective action of folates. Conformation changes induced by folate binding may also suppress dissociation of FAD. PMID:16605249

  14. Molecular and biochemical characterization of two tungsten- and selenium-containing formate dehydrogenases from Eubacterium acidaminophilum that are associated with components of an iron-only hydrogenase.

    PubMed

    Graentzdoerffer, Andrea; Rauh, David; Pich, Andreas; Andreesen, Jan R

    2003-01-01

    Two gene clusters encoding similar formate dehydrogenases (FDH) were identified in Eubacterium acidaminophilum. Each cluster is composed of one gene coding for a catalytic subunit ( fdhA-I, fdhA-II) and one for an electron-transferring subunit ( fdhB-I, fdhB-II). Both fdhA genes contain a TGA codon for selenocysteine incorporation and the encoded proteins harbor five putative iron-sulfur clusters in their N-terminal region. Both FdhB subunits resemble the N-terminal region of FdhA on the amino acid level and contain five putative iron-sulfur clusters. Four genes thought to encode the subunits of an iron-only hydrogenase are located upstream of the FDH gene cluster I. By sequence comparison, HymA and HymB are predicted to contain one and four iron-sulfur clusters, respectively, the latter protein also binding sites for FMN and NAD(P). Thus, HymA and HymB seem to represent electron-transferring subunits, and HymC the putative catalytic subunit containing motifs for four iron-sulfur clusters and one H-cluster specific for Fe-only hydrogenases. HymD has six predicted transmembrane helices and might be an integral membrane protein. Viologen-dependent FDH activity was purified from serine-grown cells of E. acidaminophilum and the purified protein complex contained four subunits, FdhA and FdhB, encoded by FDH gene cluster II, and HymA and HymB, identified after determination of their N-terminal sequences. Thus, this complex might represent the most simple type of a formate hydrogen lyase. The purified formate dehydrogenase fraction contained iron, tungsten, a pterin cofactor, and zinc, but no molybdenum. FDH-II had a two-fold higher K(m) for formate (0.37 mM) than FDH-I and also catalyzed CO(2) reduction to formate. Reverse transcription (RT)-PCR pointed to increased expression of FDH-II in serine-grown cells, supporting the isolation of this FDH isoform. The fdhA-I gene was expressed as inactive protein in Escherichia coli. The in-frame UGA codon for selenocysteine incorporation was read in the heterologous system only as stop codon, although its potential SECIS element exhibited a quite high similarity to that of E. coli FDH.

  15. Metabolic features of the cell danger response.

    PubMed

    Naviaux, Robert K

    2014-05-01

    The cell danger response (CDR) is the evolutionarily conserved metabolic response that protects cells and hosts from harm. It is triggered by encounters with chemical, physical, or biological threats that exceed the cellular capacity for homeostasis. The resulting metabolic mismatch between available resources and functional capacity produces a cascade of changes in cellular electron flow, oxygen consumption, redox, membrane fluidity, lipid dynamics, bioenergetics, carbon and sulfur resource allocation, protein folding and aggregation, vitamin availability, metal homeostasis, indole, pterin, 1-carbon and polyamine metabolism, and polymer formation. The first wave of danger signals consists of the release of metabolic intermediates like ATP and ADP, Krebs cycle intermediates, oxygen, and reactive oxygen species (ROS), and is sustained by purinergic signaling. After the danger has been eliminated or neutralized, a choreographed sequence of anti-inflammatory and regenerative pathways is activated to reverse the CDR and to heal. When the CDR persists abnormally, whole body metabolism and the gut microbiome are disturbed, the collective performance of multiple organ systems is impaired, behavior is changed, and chronic disease results. Metabolic memory of past stress encounters is stored in the form of altered mitochondrial and cellular macromolecule content, resulting in an increase in functional reserve capacity through a process known as mitocellular hormesis. The systemic form of the CDR, and its magnified form, the purinergic life-threat response (PLTR), are under direct control by ancient pathways in the brain that are ultimately coordinated by centers in the brainstem. Chemosensory integration of whole body metabolism occurs in the brainstem and is a prerequisite for normal brain, motor, vestibular, sensory, social, and speech development. An understanding of the CDR permits us to reframe old concepts of pathogenesis for a broad array of chronic, developmental, autoimmune, and degenerative disorders. These disorders include autism spectrum disorders (ASD), attention deficit hyperactivity disorder (ADHD), asthma, atopy, gluten and many other food and chemical sensitivity syndromes, emphysema, Tourette's syndrome, bipolar disorder, schizophrenia, post-traumatic stress disorder (PTSD), chronic traumatic encephalopathy (CTE), traumatic brain injury (TBI), epilepsy, suicidal ideation, organ transplant biology, diabetes, kidney, liver, and heart disease, cancer, Alzheimer and Parkinson disease, and autoimmune disorders like lupus, rheumatoid arthritis, multiple sclerosis, and primary sclerosing cholangitis. © 2013. Published by Elsevier B.V. All rights reserved.

  16. ET-1 Stimulates Superoxide Production by eNOS Following Exposure of Vascular Endothelial Cells to Endotoxin.

    PubMed

    Gopalakrishna, Deepak; Pennington, Samantha; Karaa, Amel; Clemens, Mark G

    2016-07-01

    It has been shown that microcirculation is hypersensitized to endothelin1 (ET-1) following endotoxin (lipopolysaccharide [LPS]) treatment leading to an increased vasopressor response. This may be related in part to decreased activation of endothelial nitric oxide synthase (eNOS) by ET-1. eNOS can also be uncoupled to produce superoxide (O2). This aberrant eNOS activity could further contribute to the hyperconstriction and injury caused by ET-1 following LPS. We therefore tested whether LPS affects ROS production by vascular endothelial cells and whether and how this effect is altered by ET-1. Human umbilical vein endothelial cells (HUVEC) or human microvascular endothelial cells (HMEC) were subjected to a 6-h treatment with LPS (250 ng/mL) or LPS and sepiapterin (100 μM) followed by a 30-min treatment with 100 μM L-Iminoethyl Ornithine (L-NIO) an irreversible eNOS inhibitor and 30-min treatment with ET-1 (10 nM). Conversion of [H]L-arginine to [H]L-citrulline was used to measure eNOS activity. Superoxide dismutase (SOD) inhibitable reduction of Cytochrome-C, dihydro carboxy fluorescein (DCF), and Mitosox was used to estimate ROS. LT-SDS PAGE was used to assess the degree of monomerization of the eNOS homodimer. Stimulation of HUVECs with ET-1 significantly increased NO synthesis by 1.4-fold (P < 0.05). ET-1 stimulation of LPS-treated HUVECs failed to increase NO production. Western blot for eNOS protein showed no change in eNOS protein levels. LPS alone resulted in an insignificant increase in ROS production as measured by cytochrome C that was increased 4.6-fold by ET-1 stimulation (P < 0.05). L-NIO significantly decreased ET-1-induced ROS production (P < 0.05). Sepiapterin significantly decreased ROS production in both; unstimulated and ET-1-stimulated LPS-treated groups, but did not restore NO production. DCF experiments confirmed intracellular ROS while Mitosox suggested a non-mitochondrial source. ET-1 treatment following a chronic LPS stress significantly monomerized the eNOS homodimer that was inhibited by sepiapterin loading. The two concomitant phenomena of decreased NO production and increased ROS formation seem to be multifactorial in nature with ROS production dependent upon pterin availability.

  17. Quantitative proteomics analysis by iTRAQ in human nuclear cataracts of different ages and normal lens nuclei.

    PubMed

    Zhou, Hai Yan; Yan, Hong; Wang, Li Li; Yan, Wei Jia; Shui, Ying Bo; Beebe, David C

    2015-08-01

    The goal of this study was to quantitatively identify the differentially expressed proteins in nuclear cataracts of different ages and normal lens nuclei in humans. Forty-eight human lens nucleus samples with hardness grades III, IV were obtained during cataract surgery by extracapsular cataract extraction. Seven normal transparent human lens nuclei were obtained from fresh normal cadaver eyes during corneal transplantation surgery. Lens nuclei were divided into seven groups according to age and optic axis: Group A (average age 80.8 ± 1.2 years), Group B (average age 57.0 ± 4.0 years), Group C average age 80.3 ± 4.5 years), Group D (average age 56.9 ± 4.2 years), Group E (average age 78.1 ± 2.5 years), Group F (average age 57.6 ± 3.3 years) and Group G (seven normal transparent human lenses from normal cadaver eyes, average age 34.7 ± 4.2 years). Water-soluble, water-insoluble, and water-insoluble-urea-soluble protein fractions were extracted from samples. The three-part protein fractions from the individual lenses were combined to form the total proteins of each sample. The proteomic profiles of each group were further analyzed using 8-plex iTRAQ labeling combined with 2D-LC-MS/MS. The data were analyzed with the ProteinPilot software for peptide matching, protein identification, and quantification. Differentially expressed proteins were validated by Western blotting. We employed biological and technical replicates and selected the intersection of the two results, which included 80 proteins. Nine proteins were differentially expressed among the 80 proteins identified using proteomic techniques. In age-related nuclear cataracts (ARNC), the expression levels of fatty acid-binding protein and pterin-4-alpha-carbinolamine dehydratase were upregulated, whereas the levels of alpha-crystallin B chain (CRYAB), GSH synthetase, phakinin, gamma-crystallin C, phosphoglycerate kinase 1, betaine-homocysteine S-methyltransferase 1 (BHMT1), and spectrin beta chain were downregulated. These proteins may be associated with abnormal protein aggregation and oxidative stress. GSH synthetase and CRYAB expression levels in the nuclear cataract decreased with age. The mass spectrometric analysis results were consistent with the Western blot validation. The results indicate that CRYAB and GSH synthetase may be involved in ARNC pathogenesis. iTRAQ combined with 2D-LC-MS/MS provides new methods for future studies of pathological mechanisms and protective drug development for ARNC. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Top