Sample records for pterosaur functional morphology

  1. Morphometric assessment of pterosaur jaw disparity

    NASA Astrophysics Data System (ADS)

    Navarro, Charlie A.; Martin-Silverstone, Elizabeth; Stubbs, Thomas L.

    2018-04-01

    Pterosaurs were a successful group of Mesozoic flying reptiles. They were the first vertebrate group to achieve powered flight and varied enormously in morphology and ecology, occupying a variety of niches and developing specialized feeding strategies. Ecomorphological principles suggest this variation should be reflected by great morphological diversity in the lower jaw, given that the mandible served as the primary apparatus for prey acquisition. Here we present the first study of mandibular shape disparity in pterosaurs and aim to characterize major aspects of variation. We use a combination of geometric morphometric approaches, incorporating both outline analysis using elliptical Fourier analysis and semi-landmark approaches. Our results show that morphological convergence is prevalent and many pterosaurs, belonging to diverse dietary groups and subclades, overlap in morphospace and possessed relatively simple `rod-shaped' jaws. There is no clear trend of size distributions in pterosaur mandibular morphospace, and larger forms are widely distributed. Additionally, there is limited functional signal within pterosaur lower jaw morphospace. Instead, the development of a large anterior ventral crest represents the major component of disparity. This suggests that a socio-sexual trait was a key driver for innovation in pterosaur lower jaw shape.

  2. Morphometric assessment of pterosaur jaw disparity.

    PubMed

    Navarro, Charlie A; Martin-Silverstone, Elizabeth; Stubbs, Thomas L

    2018-04-01

    Pterosaurs were a successful group of Mesozoic flying reptiles. They were the first vertebrate group to achieve powered flight and varied enormously in morphology and ecology, occupying a variety of niches and developing specialized feeding strategies. Ecomorphological principles suggest this variation should be reflected by great morphological diversity in the lower jaw, given that the mandible served as the primary apparatus for prey acquisition. Here we present the first study of mandibular shape disparity in pterosaurs and aim to characterize major aspects of variation. We use a combination of geometric morphometric approaches, incorporating both outline analysis using elliptical Fourier analysis and semi-landmark approaches. Our results show that morphological convergence is prevalent and many pterosaurs, belonging to diverse dietary groups and subclades, overlap in morphospace and possessed relatively simple 'rod-shaped' jaws. There is no clear trend of size distributions in pterosaur mandibular morphospace, and larger forms are widely distributed. Additionally, there is limited functional signal within pterosaur lower jaw morphospace. Instead, the development of a large anterior ventral crest represents the major component of disparity. This suggests that a socio-sexual trait was a key driver for innovation in pterosaur lower jaw shape.

  3. Morphometric assessment of pterosaur jaw disparity

    PubMed Central

    Navarro, Charlie A.; Martin-Silverstone, Elizabeth

    2018-01-01

    Pterosaurs were a successful group of Mesozoic flying reptiles. They were the first vertebrate group to achieve powered flight and varied enormously in morphology and ecology, occupying a variety of niches and developing specialized feeding strategies. Ecomorphological principles suggest this variation should be reflected by great morphological diversity in the lower jaw, given that the mandible served as the primary apparatus for prey acquisition. Here we present the first study of mandibular shape disparity in pterosaurs and aim to characterize major aspects of variation. We use a combination of geometric morphometric approaches, incorporating both outline analysis using elliptical Fourier analysis and semi-landmark approaches. Our results show that morphological convergence is prevalent and many pterosaurs, belonging to diverse dietary groups and subclades, overlap in morphospace and possessed relatively simple ‘rod-shaped’ jaws. There is no clear trend of size distributions in pterosaur mandibular morphospace, and larger forms are widely distributed. Additionally, there is limited functional signal within pterosaur lower jaw morphospace. Instead, the development of a large anterior ventral crest represents the major component of disparity. This suggests that a socio-sexual trait was a key driver for innovation in pterosaur lower jaw shape. PMID:29765665

  4. Respiratory evolution facilitated the origin of pterosaur flight and aerial gigantism.

    PubMed

    Claessens, Leon P A M; O'Connor, Patrick M; Unwin, David M

    2009-01-01

    Pterosaurs, enigmatic extinct Mesozoic reptiles, were the first vertebrates to achieve true flapping flight. Various lines of evidence provide strong support for highly efficient wing design, control, and flight capabilities. However, little is known of the pulmonary system that powered flight in pterosaurs. We investigated the structure and function of the pterosaurian breathing apparatus through a broad scale comparative study of respiratory structure and function in living and extinct archosaurs, using computer-assisted tomographic (CT) scanning of pterosaur and bird skeletal remains, cineradiographic (X-ray film) studies of the skeletal breathing pump in extant birds and alligators, and study of skeletal structure in historic fossil specimens. In this report we present various lines of skeletal evidence that indicate that pterosaurs had a highly effective flow-through respiratory system, capable of sustaining powered flight, predating the appearance of an analogous breathing system in birds by approximately seventy million years. Convergent evolution of gigantism in several Cretaceous pterosaur lineages was made possible through body density reduction by expansion of the pulmonary air sac system throughout the trunk and the distal limb girdle skeleton, highlighting the importance of respiratory adaptations in pterosaur evolution, and the dramatic effect of the release of physical constraints on morphological diversification and evolutionary radiation.

  5. Respiratory Evolution Facilitated the Origin of Pterosaur Flight and Aerial Gigantism

    PubMed Central

    Claessens, Leon P. A. M.; O'Connor, Patrick M.; Unwin, David M.

    2009-01-01

    Pterosaurs, enigmatic extinct Mesozoic reptiles, were the first vertebrates to achieve true flapping flight. Various lines of evidence provide strong support for highly efficient wing design, control, and flight capabilities. However, little is known of the pulmonary system that powered flight in pterosaurs. We investigated the structure and function of the pterosaurian breathing apparatus through a broad scale comparative study of respiratory structure and function in living and extinct archosaurs, using computer-assisted tomographic (CT) scanning of pterosaur and bird skeletal remains, cineradiographic (X-ray film) studies of the skeletal breathing pump in extant birds and alligators, and study of skeletal structure in historic fossil specimens. In this report we present various lines of skeletal evidence that indicate that pterosaurs had a highly effective flow-through respiratory system, capable of sustaining powered flight, predating the appearance of an analogous breathing system in birds by approximately seventy million years. Convergent evolution of gigantism in several Cretaceous pterosaur lineages was made possible through body density reduction by expansion of the pulmonary air sac system throughout the trunk and the distal limb girdle skeleton, highlighting the importance of respiratory adaptations in pterosaur evolution, and the dramatic effect of the release of physical constraints on morphological diversification and evolutionary radiation. PMID:19223979

  6. Morphospaces of functionally analogous traits show ecological separation between birds and pterosaurs.

    PubMed

    Chan, Nicholas R

    2017-10-25

    Birds originated and radiated in the presence of another group of flying vertebrates, the pterosaurs. Opinion is divided as to whether birds competitively displaced pterosaurs from small-body size niches or whether the two groups coexisted with little competition. Previous studies of Mesozoic birds and pterosaurs compared measurements of homologous limb bones to test these hypotheses. However, these characters probably reflect differing ancestries rather than ecologies. Here, competition and ecological separation were tested for using multivariate analyses of functionally equivalent morphological characters. As well as using characters from the fore- and hindlimbs, these analyses also included measurements of the lower jaw. The results of this study indicate that pterosaurs had relatively longer jaws, shorter metatarsals and shorter brachial regions compared with birds of similar size. Contrary to the results of previous studies, the distal wing was not important for separating the two clades in morphospace owing to the inclusion of the primary feathers in this unit. The differences found here indicate ecological separation based on differences in size, locomotory features and feeding adaptations. Thus, instead of one group displacing the other, birds and pterosaurs appear to have adopted distinctive ecological strategies throughout their period of coexistence. © 2017 The Author(s).

  7. A Reappraisal of Azhdarchid Pterosaur Functional Morphology and Paleoecology

    PubMed Central

    Witton, Mark P.; Naish, Darren

    2008-01-01

    Azhdarchid pterosaurs were among the most widespread and successful of pterosaur clades, but their paleoecology remains controversial. Morphological features common to all azhdarchids include a long, shallow rostrum; elongate, cylindrical cervical vertebrae that formed a long and unusually inflexible neck; and proportionally short wings with an abbreviated fourth phalanx. While azhdarchids have been imagined as vulture-like scavengers, sediment probers, swimmers, waders, aerial predators, or stork-like generalists, most recent authors have regarded them as skim-feeders, trawling their lower jaws through water during flight and seizing aquatic prey from the water's surface. Although apparently widely accepted, the skim-feeding model lacks critical support from anatomy and functional morphology. Azhdarchids lack the many cranial specialisations exhibited by extant skim-feeding birds, most notably the laterally compressed lower jaw and shock absorbing apparatus required for this feeding style. Well-preserved azhdarchid skulls are rare, but their rostra and lower jaws appear to have been sub-triangular in cross-section, and thus dissimilar to those of skim-feeders and sediment probers. Taphonomic data indicates that azhdarchids predominately inhabited inland settings, and azhdarchid morphology indicates that they were poorly suited for all proposed lifestyles bar wading and terrestrial foraging. However, azhdarchid footprints show that their feet were relatively small, padded and slender, and thus not well suited for wading. We argue that azhdarchids were stork- or ground hornbill-like generalists, foraging in diverse environments for small animals and carrion. Proficient terrestrial abilities and a relatively inflexible neck are in agreement with this interpretation. PMID:18509539

  8. A reappraisal of azhdarchid pterosaur functional morphology and paleoecology.

    PubMed

    Witton, Mark P; Naish, Darren

    2008-05-28

    Azhdarchid pterosaurs were among the most widespread and successful of pterosaur clades, but their paleoecology remains controversial. Morphological features common to all azhdarchids include a long, shallow rostrum; elongate, cylindrical cervical vertebrae that formed a long and unusually inflexible neck; and proportionally short wings with an abbreviated fourth phalanx. While azhdarchids have been imagined as vulture-like scavengers, sediment probers, swimmers, waders, aerial predators, or stork-like generalists, most recent authors have regarded them as skim-feeders, trawling their lower jaws through water during flight and seizing aquatic prey from the water's surface. Although apparently widely accepted, the skim-feeding model lacks critical support from anatomy and functional morphology. Azhdarchids lack the many cranial specialisations exhibited by extant skim-feeding birds, most notably the laterally compressed lower jaw and shock absorbing apparatus required for this feeding style. Well-preserved azhdarchid skulls are rare, but their rostra and lower jaws appear to have been sub-triangular in cross-section, and thus dissimilar to those of skim-feeders and sediment probers. Taphonomic data indicates that azhdarchids predominately inhabited inland settings, and azhdarchid morphology indicates that they were poorly suited for all proposed lifestyles bar wading and terrestrial foraging. However, azhdarchid footprints show that their feet were relatively small, padded and slender, and thus not well suited for wading. We argue that azhdarchids were stork- or ground hornbill-like generalists, foraging in diverse environments for small animals and carrion. Proficient terrestrial abilities and a relatively inflexible neck are in agreement with this interpretation.

  9. Earliest filter-feeding pterosaur from the Jurassic of China and ecological evolution of Pterodactyloidea

    NASA Astrophysics Data System (ADS)

    Zhou, Chang-Fu; Gao, Ke-Qin; Yi, Hongyu; Xue, Jinzhuang; Li, Quanguo; Fox, Richard C.

    2017-02-01

    Pterosaurs were a unique clade of flying reptiles that were contemporaries of dinosaurs in Mesozoic ecosystems. The Pterodactyloidea as the most species-diverse group of pterosaurs dominated the sky during Cretaceous time, but earlier phases of their evolution remain poorly known. Here, we describe a 160 Ma filter-feeding pterosaur from western Liaoning, China, representing the geologically oldest record of the Ctenochasmatidae, a group of exclusive filter feeders characterized by an elongated snout and numerous fine teeth. The new pterosaur took the lead of a major ecological transition in pterosaur evolution from fish-catching to filter-feeding adaptation, prior to the Tithonian (145-152 Ma) diversification of the Ctenochasmatidae. Our research shows that the rise of ctenochasmatid pterosaurs was followed by the burst of eco-morphological divergence of other pterodactyloid clades, which involved a wide range of feeding adaptations that considerably altered the terrestrial ecosystems of the Cretaceous world.

  10. Earliest filter-feeding pterosaur from the Jurassic of China and ecological evolution of Pterodactyloidea.

    PubMed

    Zhou, Chang-Fu; Gao, Ke-Qin; Yi, Hongyu; Xue, Jinzhuang; Li, Quanguo; Fox, Richard C

    2017-02-01

    Pterosaurs were a unique clade of flying reptiles that were contemporaries of dinosaurs in Mesozoic ecosystems. The Pterodactyloidea as the most species-diverse group of pterosaurs dominated the sky during Cretaceous time, but earlier phases of their evolution remain poorly known. Here, we describe a 160 Ma filter-feeding pterosaur from western Liaoning, China, representing the geologically oldest record of the Ctenochasmatidae, a group of exclusive filter feeders characterized by an elongated snout and numerous fine teeth. The new pterosaur took the lead of a major ecological transition in pterosaur evolution from fish-catching to filter-feeding adaptation, prior to the Tithonian (145-152 Ma) diversification of the Ctenochasmatidae. Our research shows that the rise of ctenochasmatid pterosaurs was followed by the burst of eco-morphological divergence of other pterodactyloid clades, which involved a wide range of feeding adaptations that considerably altered the terrestrial ecosystems of the Cretaceous world.

  11. On the Size and Flight Diversity of Giant Pterosaurs, the Use of Birds as Pterosaur Analogues and Comments on Pterosaur Flightlessness

    PubMed Central

    Witton, Mark P.; Habib, Michael B.

    2010-01-01

    The size and flight mechanics of giant pterosaurs have received considerable research interest for the last century but are confused by conflicting interpretations of pterosaur biology and flight capabilities. Avian biomechanical parameters have often been applied to pterosaurs in such research but, due to considerable differences in avian and pterosaur anatomy, have lead to systematic errors interpreting pterosaur flight mechanics. Such assumptions have lead to assertions that giant pterosaurs were extremely lightweight to facilitate flight or, if more realistic masses are assumed, were flightless. Reappraisal of the proportions, scaling and morphology of giant pterosaur fossils suggests that bird and pterosaur wing structure, gross anatomy and launch kinematics are too different to be considered mechanically interchangeable. Conclusions assuming such interchangeability—including those indicating that giant pterosaurs were flightless—are found to be based on inaccurate and poorly supported assumptions of structural scaling and launch kinematics. Pterosaur bone strength and flap-gliding performance demonstrate that giant pterosaur anatomy was capable of generating sufficient lift and thrust for powered flight as well as resisting flight loading stresses. The retention of flight characteristics across giant pterosaur skeletons and their considerable robustness compared to similarly-massed terrestrial animals suggest that giant pterosaurs were not flightless. Moreover, the term ‘giant pterosaur’ includes at least two radically different forms with very distinct palaeoecological signatures and, accordingly, all but the most basic sweeping conclusions about giant pterosaur flight should be treated with caution. Reappraisal of giant pterosaur material also reveals that the size of the largest pterosaurs, previously suggested to have wingspans up to 13 m and masses up to 544 kg, have been overestimated. Scaling of fragmentary giant pterosaur remains have been misled by distorted fossils or used inappropriate scaling techniques, indicating that 10–11 m wingspans and masses of 200–250 kg are the most reliable upper estimates of known pterosaur size. PMID:21085624

  12. Were early pterosaurs inept terrestrial locomotors?

    PubMed Central

    2015-01-01

    Pterodactyloid pterosaurs are widely interpreted as terrestrially competent, erect-limbed quadrupeds, but the terrestrial capabilities of non-pterodactyloids are largely thought to have been poor. This is commonly justified by the absence of a non-pterodactyloid footprint record, suggestions that the expansive uropatagia common to early pterosaurs would restrict hindlimb motion in walking or running, and the presence of sprawling forelimbs in some species. Here, these arguments are re-visited and mostly found problematic. Restriction of limb mobility is not a problem faced by extant animals with extensive fight membranes, including species which routinely utilise terrestrial locomotion. The absence of non-pterodactyloid footprints is not necessarily tied to functional or biomechanical constraints. As with other fully terrestrial clades with poor ichnological records, biases in behaviour, preservation, sampling and interpretation likely contribute to the deficit of early pterosaur ichnites. Suggestions that non-pterodactyloids have slender, mechanically weak limbs are demonstrably countered by the proportionally long and robust limbs of many Triassic and Jurassic species. Novel assessments of pterosaur forelimb anatomies conflict with notions that all non-pterodactyloids were obligated to sprawling forelimb postures. Sprawling forelimbs seem appropriate for species with ventrally-restricted glenoid articulations (seemingly occurring in rhamphorhynchines and campylognathoidids). However, some early pterosaurs, such as Dimorphodon macronyx and wukongopterids, have glenoid arthrologies which are not ventrally restricted, and their distal humeri resemble those of pterodactyloids. It seems fully erect forelimb stances were possible in these pterosaurs, and may be probable given proposed correlation between pterodactyloid-like distal humeral morphology and forces incurred through erect forelimb postures. Further indications of terrestrial habits include antungual sesamoids, which occur in the manus and pes anatomy of many early pterosaur species, and only occur elsewhere in terrestrial reptiles, possibly developing through frequent interactions of large claws with firm substrates. It is argued that characteristics possibly associated with terrestriality are deeply nested within Pterosauria and not restricted to Pterodactyloidea as previously thought, and that pterodactyloid-like levels of terrestrial competency may have been possible in at least some early pterosaurs. PMID:26157605

  13. Sexually dimorphic tridimensionally preserved pterosaurs and their eggs from China.

    PubMed

    Wang, Xiaolin; Kellner, Alexander W A; Jiang, Shunxing; Wang, Qiang; Ma, Yingxia; Paidoula, Yahefujiang; Cheng, Xin; Rodrigues, Taissa; Meng, Xi; Zhang, Jialiang; Li, Ning; Zhou, Zhonghe

    2014-06-16

    The pterosaur record is generally poor, with little information about their populations, and pterosaur eggs are even rarer, with only four isolated and flattened eggs found to date. We report here a population of a new sexually dimorphic pterosaur species (Hamipterus tianshanensis gen. et sp. nov.), with five exceptionally well-preserved three-dimensional eggs, from the Early Cretaceous deposit in northwestern China. About 40 male and female individuals in total were recovered, but the actual number associated might be in the hundreds. All of the discovered skulls have crests, which exhibit two different morphologies in size, shape, and robustness. The eggs show pliable depressions with cracking and crazing on the outer surface. The eggshell, observed by scanning electron microscopy and energy-dispersive spectroscopy, comprises a thin calcareous external hard shell followed by a soft membrane. These fossils shed new light on the reproductive strategy, ontogeny, and behavior of pterosaurs. The cranial crests show sexually dimorphic morphologies, with presumed males and females differing in crest size, shape, and robustness. Ontogenetic variation is reflected mainly in the expansion of the rostrum. The eggs have some external rigidity of the general pliable eggshell, and the microstructure of the eggshell is similar to that of some modern "soft" snake eggs. We suggest that this new pterosaur nested in colonies and thus exhibited gregarious behavior, a possible general trend for at least derived pterodactyloid pterosaurs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Did pterosaurs feed by skimming? Physical modelling and anatomical evaluation of an unusual feeding method.

    PubMed

    Humphries, Stuart; Bonser, Richard H C; Witton, Mark P; Martill, David M

    2007-08-01

    Similarities between the anatomies of living organisms are often used to draw conclusions regarding the ecology and behaviour of extinct animals. Several pterosaur taxa are postulated to have been skim-feeders based largely on supposed convergences of their jaw anatomy with that of the modern skimming bird, Rynchops spp. Using physical and mathematical models of Rynchops bills and pterosaur jaws, we show that skimming is considerably more energetically costly than previously thought for Rynchops and that pterosaurs weighing more than one kilogram would not have been able to skim at all. Furthermore, anatomical comparisons between the highly specialised skull of Rynchops and those of postulated skimming pterosaurs suggest that even smaller forms were poorly adapted for skim-feeding. Our results refute the hypothesis that some pterosaurs commonly used skimming as a foraging method and illustrate the pitfalls involved in extrapolating from limited morphological convergence.

  15. Did Pterosaurs Feed by Skimming? Physical Modelling and Anatomical Evaluation of an Unusual Feeding Method

    PubMed Central

    Humphries, Stuart; Bonser, Richard H. C; Witton, Mark P; Martill, David M

    2007-01-01

    Similarities between the anatomies of living organisms are often used to draw conclusions regarding the ecology and behaviour of extinct animals. Several pterosaur taxa are postulated to have been skim-feeders based largely on supposed convergences of their jaw anatomy with that of the modern skimming bird, Rynchops spp. Using physical and mathematical models of Rynchops bills and pterosaur jaws, we show that skimming is considerably more energetically costly than previously thought for Rynchops and that pterosaurs weighing more than one kilogram would not have been able to skim at all. Furthermore, anatomical comparisons between the highly specialised skull of Rynchops and those of postulated skimming pterosaurs suggest that even smaller forms were poorly adapted for skim-feeding. Our results refute the hypothesis that some pterosaurs commonly used skimming as a foraging method and illustrate the pitfalls involved in extrapolating from limited morphological convergence. PMID:17676976

  16. How the pterosaur got its wings.

    PubMed

    Tokita, Masayoshi

    2015-11-01

    Throughout the evolutionary history of life, only three vertebrate lineages took to the air by acquiring a body plan suitable for powered flight: birds, bats, and pterosaurs. Because pterosaurs were the earliest vertebrate lineage capable of powered flight and included the largest volant animal in the history of the earth, understanding how they evolved their flight apparatus, the wing, is an important issue in evolutionary biology. Herein, I speculate on the potential basis of pterosaur wing evolution using recent advances in the developmental biology of flying and non-flying vertebrates. The most significant morphological features of pterosaur wings are: (i) a disproportionately elongated fourth finger, and (ii) a wing membrane called the brachiopatagium, which stretches from the posterior surface of the arm and elongated fourth finger to the anterior surface of the leg. At limb-forming stages of pterosaur embryos, the zone of polarizing activity (ZPA) cells, from which the fourth finger eventually differentiates, could up-regulate, restrict, and prolong expression of 5'-located Homeobox D (Hoxd) genes (e.g. Hoxd11, Hoxd12, and Hoxd13) around the ZPA through pterosaur-specific exploitation of sonic hedgehog (SHH) signalling. 5'Hoxd genes could then influence downstream bone morphogenetic protein (BMP) signalling to facilitate chondrocyte proliferation in long bones. Potential expression of Fgf10 and Tbx3 in the primordium of the brachiopatagium formed posterior to the forelimb bud might also facilitate elongation of the phalanges of the fourth finger. To establish the flight-adapted musculoskeletal morphology shared by all volant vertebrates, pterosaurs probably underwent regulatory changes in the expression of genes controlling forelimb and pectoral girdle musculoskeletal development (e.g. Tbx5), as well as certain changes in the mode of cell-cell interactions between muscular and connective tissues in the early phase of their evolution. Developmental data now accumulating for extant vertebrate taxa could be helpful in understanding the cellular and molecular mechanisms of body-plan evolution in extinct vertebrates as well as extant vertebrates with unique morphology whose embryonic materials are hard to obtain. © 2014 The Author. Biological Reviews © 2014 Cambridge Philosophical Society.

  17. New toothed flying reptile from Asia: close similarities between early Cretaceous pterosaur faunas from China and Brazil.

    PubMed

    Wang, Xiaolin; Kellner, Alexander W A; Jiang, Shunxing; Cheng, Xin

    2012-04-01

    Despite the great increase in pterosaur diversity in the last decades, particularly due to discoveries made in western Liaoning (China), very little is known regarding pterosaur biogeography. Here, we present the description of a new pterosaur from the Jiufotang Formation that adds significantly to our knowledge of pterosaur distribution and enhances the diversity of cranial anatomy found in those volant creatures. Guidraco venator gen. et sp. nov. has an unusual upward-directed frontal crest and large rostral teeth, some of which surpass the margins of the skull and lower jaw when occluded. The new species is closely related to a rare taxon from the Brazilian Crato Formation, posing an interesting paleobiogeographic problem and supporting the hypothesis that at least some early Cretaceous pterosaur clades, such as the Tapejaridae and the Anhangueridae, might have originated in Asia. The association of the new specimen with coprolites and the cranial morphology suggest that G. venator preyed on fish.

  18. The shape of pterosaur evolution: evidence from the fossil record.

    PubMed

    Dyke, G J; McGowan, A J; Nudds, R L; Smith, D

    2009-04-01

    Although pterosaurs are a well-known lineage of Mesozoic flying reptiles, their fossil record and evolutionary dynamics have never been adequately quantified. On the basis of a comprehensive data set of fossil occurrences correlated with taxon-specific limb measurements, we show that the geological ages of pterosaur specimens closely approximate hypothesized patterns of phylogenetic divergence. Although the fossil record has expanded greatly in recent years, collectorship still approximates a sigmoid curve over time as many more specimens (and thus taxa) still remain undiscovered, yet our data suggest that the pterosaur fossil record is unbiased by sites of exceptional preservation (lagerstätte). This is because as new species are discovered the number of known formations and sites yielding pterosaur fossils has also increased - this would not be expected if the bulk of the record came from just a few exceptional faunas. Pterosaur morphological diversification is, however, strongly age biased: rarefaction analysis shows that peaks of diversity occur in the Late Jurassic and Early Cretaceous correlated with periods of increased limb disparity. In this respect, pterosaurs appear unique amongst flying vertebrates in that their disparity seems to have peaked relatively late in clade history. Comparative analyses also show that there is little evidence that the evolutionary diversification of pterosaurs was in any way constrained by the appearance and radiation of birds.

  19. Using taphonomy to infer differences in soft tissues between taxa: an example using basal and derived forms of Solnhofen pterosaurs.

    PubMed

    Beardmore, S R; Lawlor, E; Hone, D W E

    2017-08-01

    In fossilised vertebrates, the presence of soft tissues is the most obvious way to determine aspects of anatomy and functional morphology; however, occurrences are rare and other lines of evidence must be sought to indicate its extent and strength. For example, pterosaurs possessed a large wing membrane that enabled powered flight but other tissues are not widely preserved. A semi-quantitative analysis comparing skeletal articulation and completeness of the pterodactyloid Pterodactylus and non-pterodactyloid pterosaur Rhamphorhynchus from Solnhofen-type deposits implies there were anatomical differences between soft-tissue structure and attachments articulating skeletal joints of each. Typically, skeletons of Pterodactylus disarticulate to a greater extent than those of Rhamphorhynchus, which in turn suggests decay progressed to more advanced states in the former. However, this generalisation masks a mosaic of differences between different body parts, for example Rhamphorhynchus tends to lose the wings as complete units but retains a complete and still articulated tail in a greater number of specimens than Pterodactylus.

  20. Using taphonomy to infer differences in soft tissues between taxa: an example using basal and derived forms of Solnhofen pterosaurs

    NASA Astrophysics Data System (ADS)

    Beardmore, S. R.; Lawlor, E.; Hone, D. W. E.

    2017-08-01

    In fossilised vertebrates, the presence of soft tissues is the most obvious way to determine aspects of anatomy and functional morphology; however, occurrences are rare and other lines of evidence must be sought to indicate its extent and strength. For example, pterosaurs possessed a large wing membrane that enabled powered flight but other tissues are not widely preserved. A semi-quantitative analysis comparing skeletal articulation and completeness of the pterodactyloid Pterodactylus and non-pterodactyloid pterosaur Rhamphorhynchus from Solnhofen-type deposits implies there were anatomical differences between soft-tissue structure and attachments articulating skeletal joints of each. Typically, skeletons of Pterodactylus disarticulate to a greater extent than those of Rhamphorhynchus, which in turn suggests decay progressed to more advanced states in the former. However, this generalisation masks a mosaic of differences between different body parts, for example Rhamphorhynchus tends to lose the wings as complete units but retains a complete and still articulated tail in a greater number of specimens than Pterodactylus.

  1. Eggshell and Histology Provide Insight on the Life History of a Pterosaur with Two Functional Ovaries.

    PubMed

    Wang, Xiaolin; Kellner, Alexander W A; Cheng, Xin; Jiang, Shunxing; Wang, Qiang; Sayão, Juliana M; Rodrigues, Taissa; Costa, Fabiana R; Li, Ning; Meng, X I; Zhou, Zhonghe

    2015-09-01

    The counterpart of a previously described non-pterodactyloid pterosaur with an egg revealed the presence of a second egg inside the body cavity of this gravid female. It clearly shows that pterosaurs had two functional oviducts and demonstrates that the reduction of one oviduct was not a prerequisite for developing powered flight, at least in this group. Compositional analysis of one egg suggests the lack of a hard external layer of calcium carbonate. Histological sections of one femur lack medullary bone and further demonstrate that this pterosaur reached reproductive maturity before skeletal maturity. This study shows that pterosaurs laid eggs even smaller than previously thought and had a reproductive strategy more similar to basal reptiles than to birds. Whether pterosaurs were highly precocial or needed parental care is still open to debate.

  2. Isolated teeth of Anhangueria  (Pterosauria: Pterodactyloidea) from the Lower Cretaceous of Lightning Ridge, New South Wales, Australia

    PubMed Central

    Smith, Elizabeth T.; Bell, Phil R.

    2017-01-01

    The fossil record of Australian pterosaurs is sparse, consisting of only a small number of isolated and fragmentary remains from the Cretaceous of Queensland, Western Australia and Victoria. Here, we describe two isolated pterosaur teeth from the Lower Cretaceous (middle Albian) Griman Creek Formation at Lightning Ridge (New South Wales) and identify them as indeterminate members of the pterodactyloid clade Anhangueria. This represents the first formal description of pterosaur material from New South Wales. The presence of one or more anhanguerian pterosaurs at Lightning Ridge correlates with the presence of ‘ornithocheirid’ and Anhanguera-like pterosaurs from the contemporaneous Toolebuc Formation of central Queensland and the global distribution attained by ornithocheiroids during the Early Cretaceous. The morphology of the teeth and their presence in the estuarine- and lacustrine-influenced Griman Creek Formation is likely indicative of similar life habits of the tooth bearer to other members of Anhangueria. PMID:28480142

  3. On the pterosaur remains from the Río Belgrano Formation (Barremian), Patagonian Andes of Argentina.

    PubMed

    Kellner, Alexander W A; Aguirre-Urreta, María B; Ramos, Victor A

    2003-12-01

    Pterosaur remains from the Río Belgrano Formation, Santa Cruz Province, Argentina, were found close to the Estancia Río Roble, along with several ammonoids that indicate a Barremian age for those strata. The specimens (MACN-SC 3617) consist of one ulna and one element tentatively identified as a portion of a wing metacarpal. The ulna shows morphological affinities with the Pteranodontoidea (sensu Kellner 1996), particularly with the members of the Anhangueridae by having a well developed ventral crest close to the proximal articulation, and is tentatively referred to this pterosaur clade. The oldest record of the Anhangueridae, previously limited to the Aptian/Albian, is therefore extended to the Barremian. The Argentinean material is preserved in three dimensions, an unusual condition for pterosaur fossils from that country, indicating that the site situated near the Estancia Río Roble has a great potential for new and well preserved specimens.

  4. Constraints on the wing morphology of pterosaurs

    PubMed Central

    Palmer, Colin; Dyke, Gareth

    2012-01-01

    Animals that fly must be able to do so over a huge range of aerodynamic conditions, determined by weather, wind speed and the nature of their environment. No single parameter can be used to determine—let alone measure—optimum flight performance as it relates to wing shape. Reconstructing the wings of the extinct pterosaurs has therefore proved especially problematic: these Mesozoic flying reptiles had a soft-tissue membranous flight surface that is rarely preserved in the fossil record. Here, we review basic mechanical and aerodynamic constraints that influenced the wing shape of pterosaurs, and, building on this, present a series of theoretical modelling results. These results allow us to predict the most likely wing shapes that could have been employed by these ancient reptiles, and further show that a combination of anterior sweep and a reflexed proximal wing section provides an aerodynamically balanced and efficient theoretical pterosaur wing shape, with clear benefits for their flight stability. PMID:21957137

  5. New evidence from China for the nature of the pterosaur evolutionary transition

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoli; Jiang, Shunxing; Zhang, Junqiang; Cheng, Xin; Yu, Xuefeng; Li, Yameng; Wei, Guangjin; Wang, Xiaolin

    2017-02-01

    Pterosaurs are extinct flying reptiles, the first vertebrates to achieve powered flight. Our understanding of the evolutionary transition between basal, predominantly long-tailed forms to derived short-tailed pterodactyloids remained poor until the discovery of Wukongopterus and Darwinopterus in western Liaoning, China. In this paper we report on a new genus and species, Douzhanopterus zhengi, that has a reduced tail, 173% the length of the humerus, and a reduced fifth pedal digit, whose first phalange is ca. 20% the length of metatarsal III, both unique characters to Monofenestra. The morphological comparisons and phylogenetic analysis presented in this paper demonstrate that Douzhanopterus is the sister group to the ‘Painten pro-pterodactyloid’ and the Pterodactyloidea, reducing the evolutionary gap between long- and short-tailed pterosaurs.

  6. Biomechanics of the unique pterosaur pteroid

    PubMed Central

    Palmer, Colin; Dyke, Gareth J.

    2010-01-01

    Pterosaurs, flying reptiles from the Mesozoic, had wing membranes that were supported by their arm bones and a super-elongate fourth finger. Associated with the wing, pterosaurs also possessed a unique wrist bone—the pteroid—that functioned to support the forward part of the membrane in front of the leading edge, the propatagium. Pteroid shape varies across pterosaurs and reconstructions of its orientation vary (projecting anteriorly to the wing leading edge or medially, lying alongside it) and imply differences in the way that pterosaurs controlled their wings. Here we show, using biomechanical analysis and considerations of aerodynamic efficiency of a representative ornithocheirid pterosaur, that an anteriorly orientated pteroid is highly unlikely. Unless these pterosaurs only flew steadily and had very low body masses, their pteroids would have been likely to break if orientated anteriorly; the degree of movement required for a forward orientation would have introduced extreme membrane strains and required impractical tensioning in the propatagium membrane. This result can be generalized for other pterodactyloid pterosaurs because the resultant geometry of an anteriorly orientated pteroid would have reduced the aerodynamic performance of all wings and required the same impractical properties in the propatagium membrane. We demonstrate quantitatively that the more traditional reconstruction of a medially orientated pteroid was much more stable both structurally and aerodynamically, reflecting likely life position. PMID:20007183

  7. Anza palaeoichnological site. Late Cretaceous. Morocco. Part II. Problems of large dinosaur trackways and the first African Macropodosaurus trackway

    NASA Astrophysics Data System (ADS)

    Masrour, Moussa; Lkebir, Noura; Pérez-Lorente, Félix

    2017-10-01

    The Anza site shows large ichnological surfaces indicating the coexistence in the same area of different vertebrate footprints (dinosaur and pterosaur) and of different types (tridactyl and tetradactyl, semiplantigrade and rounded without digit marks) and the footprint variability of long trackways. This area may become a world reference in ichnology because it contains the second undebatable African site with Cretaceous pterosaur footprints - described in part I - and the first African site with Macropodosaurus footprints. In this work, problems related to long trackways are also analyzed, such as their sinuosity, the order-disorder of the variability (long-short) of the pace length and the difficulty of morphological classification of the theropod footprints due to their morphological variability.

  8. A Jurassic pterosaur from Patagonia and the origin of the pterodactyloid neurocranium.

    PubMed

    Codorniú, Laura; Paulina Carabajal, Ariana; Pol, Diego; Unwin, David; Rauhut, Oliver W M

    2016-01-01

    Pterosaurs are an extinct group of highly modified flying reptiles that thrived during the Mesozoic. This group has unique and remarkable skeletal adaptations to powered flight, including pneumatic bones and an elongate digit IV supporting a wing-membrane. Two major body plans have traditionally been recognized: the primitive, primarily long-tailed paraphyletic "rhamphorhynchoids" (preferably currently recognized as non-pterodactyloids) and the derived short-tailed pterodactyloids. These two groups differ considerably in their general anatomy and also exhibit a remarkably different neuroanatomy and inferred head posture, which has been linked to different lifestyles and behaviours and improved flying capabilities in these reptiles. Pterosaur neuroanatomy, is known from just a few three-dimensionally preserved braincases of non-pterodactyloids (as Rhamphorhynchidae) and pterodactyloids, between which there is a large morphological gap. Here we report on a new Jurassic pterosaur from Argentina, Allkaruen koi gen. et sp. nov., remains of which include a superbly preserved, uncrushed braincase that sheds light on the origins of the highly derived neuroanatomy of pterodactyloids and their close relatives. A µCT ray-generated virtual endocast shows that the new pterosaur exhibits a mosaic of plesiomorphic and derived traits of the inner ear and neuroanatomy that fills an important gap between those of non-monofenestratan breviquartossans (Rhamphorhynchidae) and derived pterodactyloids. These results suggest that, while modularity may play an important role at one anatomical level, at a finer level the evolution of structures within a module may follow a mosaic pattern.

  9. A Jurassic pterosaur from Patagonia and the origin of the pterodactyloid neurocranium

    PubMed Central

    Codorniú, Laura; Paulina Carabajal, Ariana; Unwin, David; Rauhut, Oliver W.M.

    2016-01-01

    Pterosaurs are an extinct group of highly modified flying reptiles that thrived during the Mesozoic. This group has unique and remarkable skeletal adaptations to powered flight, including pneumatic bones and an elongate digit IV supporting a wing-membrane. Two major body plans have traditionally been recognized: the primitive, primarily long-tailed paraphyletic “rhamphorhynchoids” (preferably currently recognized as non-pterodactyloids) and the derived short-tailed pterodactyloids. These two groups differ considerably in their general anatomy and also exhibit a remarkably different neuroanatomy and inferred head posture, which has been linked to different lifestyles and behaviours and improved flying capabilities in these reptiles. Pterosaur neuroanatomy, is known from just a few three-dimensionally preserved braincases of non-pterodactyloids (as Rhamphorhynchidae) and pterodactyloids, between which there is a large morphological gap. Here we report on a new Jurassic pterosaur from Argentina, Allkaruen koi gen. et sp. nov., remains of which include a superbly preserved, uncrushed braincase that sheds light on the origins of the highly derived neuroanatomy of pterodactyloids and their close relatives. A µCT ray-generated virtual endocast shows that the new pterosaur exhibits a mosaic of plesiomorphic and derived traits of the inner ear and neuroanatomy that fills an important gap between those of non-monofenestratan breviquartossans (Rhamphorhynchidae) and derived pterodactyloids. These results suggest that, while modularity may play an important role at one anatomical level, at a finer level the evolution of structures within a module may follow a mosaic pattern. PMID:27635315

  10. Evidence for Endothermy in Pterosaurs Based on Flight Capability Analyses

    NASA Astrophysics Data System (ADS)

    Jenkins, H. S.; Pratson, L. F.

    2005-12-01

    Previous attempts to constrain flight capability in pterosaurs have relied heavily on the fossil record, using bone articulation and apparent muscle allocation to evaluate flight potential (Frey et al., 1997; Padian, 1983; Bramwell, 1974). However, broad definitions of the physical parameters necessary for flight in pterosaurs remain loosely defined and few systematic approaches to constraining flight capability have been synthesized (Templin, 2000; Padian, 1983). Here we present a new method to assess flight capability in pterosaurs as a function of humerus length and flight velocity. By creating an energy-balance model to evaluate the power required for flight against the power available to the animal, we derive a `U'-shaped power curve and infer optimal flight speeds and maximal wingspan lengths for pterosaurs Quetzalcoatlus northropi and Pteranodon ingens. Our model corroborates empirically derived power curves for the modern black-billed magpie ( Pica Pica) and accurately reproduces the mechanical power curve for modern cockatiels ( Nymphicus hollandicus) (Tobalske et al., 2003). When we adjust our model to include an endothermic metabolic rate for pterosaurs, we find a maximal wingspan length of 18 meters for Q. northropi. Model runs using an exothermic metabolism derive maximal wingspans of 6-8 meters. As estimates based on fossil evidence show total wingspan lengths reaching up to 15 meters for Q. northropi, we conclude that large pterosaurs may have been endothermic and therefore more metabolically similar to birds than to reptiles.

  11. A New Pterosaur (Pterodactyloidea: Azhdarchidae) from the Upper Cretaceous of Morocco

    PubMed Central

    Ibrahim, Nizar; Unwin, David M.; Martill, David M.; Baidder, Lahssen; Zouhri, Samir

    2010-01-01

    The Kem Kem beds in South Eastern Morocco contain a rich early Upper (or possibly late Lower) Cretaceous vertebrate assemblage. Fragmentary remains, predominantly teeth and jaw tips, represent several kinds of pterosaur although only one species, the ornithocheirid Coloborhynchus moroccensis, has been named. Here, we describe a new azhdarchid pterosaur, Alanqa saharica nov. gen. nov. sp., based on an almost complete well preserved mandibular symphysis from Aferdou N'Chaft. We assign additional fragmentary jaw remains, some of which have been tentatively identified as azhdarchid and pteranodontid, to this new taxon which is distinguished from other azhdarchids by a remarkably straight, elongate, lance-shaped mandibular symphysis that bears a pronounced dorsal eminence near the posterior end of its dorsal (occlusal) surface. Most remains, including the holotype, represent individuals of approximately three to four meters in wingspan, but a fragment of a large cervical vertebra, that probably also belongs to A. saharica, suggests that wingspans of six meters were achieved in this species. The Kem Kem beds have yielded the most diverse pterosaur assemblage yet reported from Africa and provide the first clear evidence for the presence of azhdarchids in Gondwana at the start of the Late Cretaceous. This, the relatively large size achieved by Alanqa, and the additional evidence of variable jaw morphology in azhdarchids provided by this taxon, indicates a longer and more complex history for this clade than previously suspected. PMID:20520782

  12. Anhanguera taxonomy revisited: is our understanding of Santana Group pterosaur diversity biased by poor biological and stratigraphic control?

    PubMed

    Pinheiro, Felipe L; Rodrigues, Taissa

    2017-01-01

    Anhanguerids comprise an important clade of pterosaurs, mostly known from dozens of three-dimensionally preserved specimens recovered from the Lower Cretaceous Romualdo Formation (northeastern Brazil). They are remarkably diverse in this sedimentary unit, with eight named species, six of them belonging to the genus Anhanguera . However, such diversity is likely overestimated, as these species have been historically diagnosed based on subtle differences, mainly based on the shape and position of the cranial crest. In spite of that, recently discovered pterosaur taxa represented by large numbers of individuals, including juveniles and adults, as well as presumed males and females, have crests of sizes and shapes that are either ontogenetically variable or sexually dimorphic. We describe in detail the skull of one of the most complete specimens referred to Anhanguera , AMNH 22555, and use it as a case study to review the diversity of anhanguerids from the Romualdo Formation. In order to accomplish that, a geometric morphometric analysis was performed to assess size-dependent characters with respect to the premaxillary crest in the 12 most complete skulls bearing crests that are referred in, or related to, this clade, almost all of them analyzed first hand. Geometric morphometric regression of shape on centroid size was highly statistically significant ( p  = 0.0091) and showed that allometry accounts for 25.7% of total shape variation between skulls of different centroid sizes. Premaxillary crests are both taller and anteroposteriorly longer in larger skulls, a feature consistent with ontogenetic growth. A new diagnosis is proposed for Anhanguera , including traits that are nowadays known to be widespread within the genus, as well as ontogenetic changes. AMNH 22555 cannot be referred to " Anhanguera santanae " and, in fact, " Anhanguera santanae ", " Anhanguera araripensis ", and " Anhanguera robustus " are here considered nomina dubia . Historically, minor differences in crest morphology have been used in the definition of new anhanguerid species. Nowadays, this practice resulted in a considerable difficulty in referring well-preserved skulls into known taxa. When several specimens are analyzed, morphologies previously believed to be disparate are, in fact, separated by a continuum, and are thus better explained as individual or temporal variations. Stratigraphically controlled excavations on the Romualdo Formation have showed evidence for faunal turnover regarding fish communities. It is thus possible that some of the pterosaurs from this unit were not coeval, and might even represent anagenetic morphotypes. Unfortunately, amateur collecting of Romualdo Formation fossils, aimed especially at commerce, resulted in the lack of stratigraphic data of virtually all its pterosaurs and precludes testing of these further hypotheses.

  13. Late Maastrichtian pterosaurs from North Africa and mass extinction of Pterosauria at the Cretaceous-Paleogene boundary

    PubMed Central

    Martill, David M.; Andres, Brian

    2018-01-01

    Pterosaurs were the first vertebrates to evolve powered flight and the largest animals to ever take wing. The pterosaurs persisted for over 150 million years before disappearing at the end of the Cretaceous, but the patterns of and processes driving their extinction remain unclear. Only a single family, Azhdarchidae, is definitively known from the late Maastrichtian, suggesting a gradual decline in diversity in the Late Cretaceous, with the Cretaceous–Paleogene (K-Pg) extinction eliminating a few late-surviving species. However, this apparent pattern may simply reflect poor sampling of fossils. Here, we describe a diverse pterosaur assemblage from the late Maastrichtian of Morocco that includes not only Azhdarchidae but the youngest known Pteranodontidae and Nyctosauridae. With 3 families and at least 7 species present, the assemblage represents the most diverse known Late Cretaceous pterosaur assemblage and dramatically increases the diversity of Maastrichtian pterosaurs. At least 3 families—Pteranodontidae, Nyctosauridae, and Azhdarchidae—persisted into the late Maastrichtian. Late Maastrichtian pterosaurs show increased niche occupation relative to earlier, Santonian-Campanian faunas and successfully outcompeted birds at large sizes. These patterns suggest an abrupt mass extinction of pterosaurs at the K-Pg boundary. PMID:29534059

  14. A small azhdarchoid pterosaur from the latest Cretaceous, the age of flying giants.

    PubMed

    Martin-Silverstone, Elizabeth; Witton, Mark P; Arbour, Victoria M; Currie, Philip J

    2016-08-01

    Pterosaur fossils from the Campanian-Maastrichtian of North America have been reported from the continental interior, but few have been described from the west coast. The first pterosaur from the Campanian Northumberland Formation (Nanaimo Group) of Hornby Island, British Columbia, is represented here by a humerus, dorsal vertebrae (including three fused notarial vertebrae), and other fragments. The elements have features typical of Azhdarchoidea, an identification consistent with dominance of this group in the latest Cretaceous. The new material is significant for its size and ontogenetic stage: the humerus and vertebrae indicate a wingspan of ca 1.5 m, but histological sections and bone fusions indicate the individual was approaching maturity at time of death. Pterosaurs of this size are exceedingly rare in Upper Cretaceous strata, a phenomenon commonly attributed to smaller pterosaurs becoming extinct in the Late Cretaceous as part of a reduction in pterosaur diversity and disparity. The absence of small juveniles of large species-which must have existed-in the fossil record is evidence of a preservational bias against small pterosaurs in the Late Cretaceous, and caution should be applied to any interpretation of latest Cretaceous pterosaur diversity and success.

  15. Inferring pterosaur diets through quantitative 3D textural analysis of tooth microwear in extant analogues

    NASA Astrophysics Data System (ADS)

    Bestwick, Jordan; Unwin, David; Butler, Richard; Henderson, Don; Purnell, Mark

    2017-04-01

    Pterosaurs (Pterosauria) were a successful group of Mesozoic flying reptiles. For 150 million years they were integral components of terrestrial and coastal ecosystems, yet their feeding ecology remains poorly constrained. Postulated pterosaur diets include insectivory, piscivory and/or carnivory, but many dietary hypotheses are speculative and/or based on little evidence, highlighting the need for alternative approaches to provide robust data. One method involves quantitative analysis of the micron-scale 3D textures of worn pterosaur tooth surfaces - dental microwear texture analysis. Microwear is produced as scratches and chips generated by food items create characteristic tooth surface textures. Microwear analysis has never been applied to pterosaurs, but we might expect microwear textures to differ between pterosaurs with different diets. An important step in investigating pterosaur microwear is to examine microwear from extant organisms with known diets to provide a comparative data set. This has been achieved through analysis of non-occlusal microwear textures in extant bats, crocodilians and monitor lizards, clades within which species exhibit insectivorous, piscivorous and carnivorous diets. The results - the first test of the hypothesis that non-occlusal microwear textures in these extant clades vary with diet - provide the context for the first robust quantitative tests of pterosaur diets.

  16. Competition and constraint drove Cope's rule in the evolution of giant flying reptiles.

    PubMed

    Benson, Roger B J; Frigot, Rachel A; Goswami, Anjali; Andres, Brian; Butler, Richard J

    2014-04-02

    The pterosaurs, Mesozoic flying reptiles, attained wingspans of more than 10 m that greatly exceed the largest birds and challenge our understanding of size limits in flying animals. Pterosaurs have been used to illustrate Cope's rule, the influential generalization that evolutionary lineages trend to increasingly large body sizes. However, unambiguous examples of Cope's rule operating on extended timescales in large clades remain elusive, and the phylogenetic pattern and possible drivers of pterosaur gigantism are uncertain. Here we show 70 million years of highly constrained early evolution, followed by almost 80 million years of sustained, multi-lineage body size increases in pterosaurs. These results are supported by maximum-likelihood modelling of a comprehensive new pterosaur data set. The transition between these macroevolutionary regimes is coincident with the Early Cretaceous adaptive radiation of birds, supporting controversial hypotheses of bird-pterosaur competition, and suggesting that evolutionary competition can act as a macroevolutionary driver on extended geological timescales.

  17. Competition and constraint drove Cope's rule in the evolution of giant flying reptiles

    PubMed Central

    Benson, Roger B. J.; Frigot, Rachel A.; Goswami, Anjali; Andres, Brian; Butler, Richard J.

    2014-01-01

    The pterosaurs, Mesozoic flying reptiles, attained wingspans of more than 10 m that greatly exceed the largest birds and challenge our understanding of size limits in flying animals. Pterosaurs have been used to illustrate Cope’s rule, the influential generalization that evolutionary lineages trend to increasingly large body sizes. However, unambiguous examples of Cope’s rule operating on extended timescales in large clades remain elusive, and the phylogenetic pattern and possible drivers of pterosaur gigantism are uncertain. Here we show 70 million years of highly constrained early evolution, followed by almost 80 million years of sustained, multi-lineage body size increases in pterosaurs. These results are supported by maximum-likelihood modelling of a comprehensive new pterosaur data set. The transition between these macroevolutionary regimes is coincident with the Early Cretaceous adaptive radiation of birds, supporting controversial hypotheses of bird–pterosaur competition, and suggesting that evolutionary competition can act as a macroevolutionary driver on extended geological timescales. PMID:24694584

  18. Flight in slow motion: aerodynamics of the pterosaur wing.

    PubMed

    Palmer, Colin

    2011-06-22

    The flight of pterosaurs and the extreme sizes of some taxa have long perplexed evolutionary biologists. Past reconstructions of flight capability were handicapped by the available aerodynamic data, which was unrepresentative of possible pterosaur wing profiles. I report wind tunnel tests on a range of possible pterosaur wing sections and quantify the likely performance for the first time. These sections have substantially higher profile drag and maximum lift coefficients than those assumed before, suggesting that large pterosaurs were aerodynamically less efficient and could fly more slowly than previously estimated. In order to achieve higher efficiency, the wing bones must be faired, which implies extensive regions of pneumatized tissue. Whether faired or not, the pterosaur wings were adapted to low-speed flight, unsuited to marine style dynamic soaring but adapted for thermal/slope soaring and controlled, low-speed landing. Because their thin-walled bones were susceptible to impact damage, slow flight would have helped to avoid injury and may have contributed to their attaining much larger sizes than fossil or extant birds. The trade-off would have been an extreme vulnerability to strong or turbulent winds both in flight and on the ground, akin to modern-day paragliders.

  19. First record of a pterosaur landing trackway

    PubMed Central

    Mazin, Jean-Michel; Billon-Bruyat, Jean-Paul; Padian, Kevin

    2009-01-01

    The terrestrial progression of pterosaurs, the flying reptiles of the Mesozoic Era, has been debated for over two centuries. The recent discovery of quadrupedal pterodactyloid pterosaur tracks from Late Jurassic sediments near Crayssac, France, shows that the hindlimbs moved parasagittally, as in mammals, birds and other dinosaurs, and the hypertrophied forelimbs could make tracks both close to the body wall and far outside it. Their manus tracks are unique in form, position and kinematics, which would be expected because the forelimbs were used for flight. Here, we report the first record of a pterosaur landing track, which differs substantially from typical walking trackways. The individual landed on both hind feet in parallel fashion, dragged its toes slightly as it left the track, landed again almost immediately and placed the hindfeet parallel again, then placed its forelimbs on the ground, took another short step with both hindlimbs and adjusted its forelimbs, and then began to walk off normally. The trackway shows that pterosaurs stalled to land, a reflection of their highly developed capacity for flight control and manoeuverability. PMID:19692407

  20. Neuroanatomy of flying reptiles and implications for flight, posture and behaviour.

    PubMed

    Witmer, Lawrence M; Chatterjee, Sankar; Franzosa, Jonathan; Rowe, Timothy

    2003-10-30

    Comparison of birds and pterosaurs, the two archosaurian flyers, sheds light on adaptation to an aerial lifestyle. The neurological basis of control holds particular interest in that flight demands on sensory integration, equilibrium, and muscular coordination are acute. Here we compare the brain and vestibular apparatus in two pterosaurs based on high-resolution computed tomographic (CT) scans from which we constructed digital endocasts. Although general neural organization resembles birds, pterosaurs had smaller brains relative to body mass than do birds. This difference probably has more to do with phylogeny than flight, in that birds evolved from nonavian theropods that had already established trends for greater encephalization. Orientation of the osseous labyrinth relative to the long axis of the skull was different in these two pterosaur species, suggesting very different head postures and reflecting differing behaviours. Their enlarged semicircular canals reflect a highly refined organ of equilibrium, which is concordant with pterosaurs being visually based, aerial predators. Their enormous cerebellar floccular lobes may suggest neural integration of extensive sensory information from the wing, further enhancing eye- and neck-based reflex mechanisms for stabilizing gaze.

  1. Melanosome evolution indicates a key physiological shift within feathered dinosaurs.

    PubMed

    Li, Quanguo; Clarke, Julia A; Gao, Ke-Qin; Zhou, Chang-Fu; Meng, Qingjin; Li, Daliang; D'Alba, Liliana; Shawkey, Matthew D

    2014-03-20

    Inference of colour patterning in extinct dinosaurs has been based on the relationship between the morphology of melanin-containing organelles (melanosomes) and colour in extant bird feathers. When this relationship evolved relative to the origin of feathers and other novel integumentary structures, such as hair and filamentous body covering in extinct archosaurs, has not been evaluated. Here we sample melanosomes from the integument of 181 extant amniote taxa and 13 lizard, turtle, dinosaur and pterosaur fossils from the Upper-Jurassic and Lower-Cretaceous of China. We find that in the lineage leading to birds, the observed increase in the diversity of melanosome morphologies appears abruptly, near the origin of pinnate feathers in maniraptoran dinosaurs. Similarly, mammals show an increased diversity of melanosome form compared to all ectothermic amniotes. In these two clades, mammals and maniraptoran dinosaurs including birds, melanosome form and colour are linked and colour reconstruction may be possible. By contrast, melanosomes in lizard, turtle and crocodilian skin, as well as the archosaurian filamentous body coverings (dinosaur 'protofeathers' and pterosaur 'pycnofibres'), show a limited diversity of form that is uncorrelated with colour in extant taxa. These patterns may be explained by convergent changes in the key melanocortin system of mammals and birds, which is known to affect pleiotropically both melanin-based colouration and energetic processes such as metabolic rate in vertebrates, and may therefore support a significant physiological shift in maniraptoran dinosaurs.

  2. How do geological sampling biases affect studies of morphological evolution in deep time? A case study of pterosaur (Reptilia: Archosauria) disparity.

    PubMed

    Butler, Richard J; Brusatte, Stephen L; Andres, Brian; Benson, Roger B J

    2012-01-01

    A fundamental contribution of paleobiology to macroevolutionary theory has been the illumination of deep time patterns of diversification. However, recent work has suggested that taxonomic diversity counts taken from the fossil record may be strongly biased by uneven spatiotemporal sampling. Although morphological diversity (disparity) is also frequently used to examine evolutionary radiations, no empirical work has yet addressed how disparity might be affected by uneven fossil record sampling. Here, we use pterosaurs (Mesozoic flying reptiles) as an exemplar group to address this problem. We calculate multiple disparity metrics based upon a comprehensive anatomical dataset including a novel phylogenetic correction for missing data, statistically compare these metrics to four geological sampling proxies, and use multiple regression modeling to assess the importance of uneven sampling and exceptional fossil deposits (Lagerstätten). We find that range-based disparity metrics are strongly affected by uneven fossil record sampling, and should therefore be interpreted cautiously. The robustness of variance-based metrics to sample size and geological sampling suggests that they can be more confidently interpreted as reflecting true biological signals. In addition, our results highlight the problem of high levels of missing data for disparity analyses, indicating a pressing need for more theoretical and empirical work. © 2011 The Author(s). Evolution © 2011 The Society for the Study of Evolution.

  3. The toothless pterosaur Jidapterus edentus (Pterodactyloidea: Azhdarchoidea) from the Early Cretaceous Jehol Biota and its paleoecological implications

    PubMed Central

    Wu, Wen-Hao; Zhou, Chang-Fu; Andres, Brian

    2017-01-01

    Background In the Early Cretaceous Jehol Biota, the toothless pterosaurs flourished with the chaoyangopterids and tapejarids playing a key role in understanding the early diversity and evolution of the Azhdarchoidea. Unlike the more diverse tapejarids, the rarer chaoyangopterids are characterized by a long and low rostrum, supporting a close relationship with the huge azhdarchids. Unfortunately, our knowledge is still limited in the osteology, paleoecology, and taxonomy of the Chaoyangopteridae. As one of the best preserved skeletons, the type and only specimen of Jidapterus edentus provides an opportunity to understand the morphology and paleoecology of the chaoyangopterids. Results Our study of the osteology of Jidapterus edentus reveals valuable information about the morphology of the Chaoyangopteridae such as a rostrum with a curved dorsal profile, high Rostral Index (RI), larger angle between the dorsal and postorbital processes of the jugal, sequentially shorter fourth to seventh cervical vertebrae, sternum with a plate wider than long, contact of the metacarpal I with the distal syncarpal, pneumatic foramen on first wing phalanx, hatchet-like postacetabular process with unconstricted neck and small dorsal process, distinctly concave anterior margin of pubis, subrectangular pubic plate with nearly parallel anterior and posterior margins, longer proximal phalanges of pedal digits III and IV, as well as reduced and less curved pedal unguals. These features further support the validity of Jidapterus edentus as a distinct species and the close relationship of the chaoyangopterids with the azhdarchids. Paleoecologically, the chaoyangopterids are probably like the azhdarchids, more terrestrial than the contemporaneous and putatively arboreal tapejarids, which may have been limited to the forest-dominated ecosystem of the Jehol Biota. Discussion The osteology of Jidapterus edentus further supports the close relationship of the Chaoyangopteridae with the Azhdarchidae in sharing a high RI value and reduced and mildly-curved pedal unguals, and it also implies a possible paleoecological similarity in their terrestrial capability. Combined with the putatively arboreal and herbivorous tapejarids, this distinct lifestyle of the chaoyangopterids provides new insights into the diversity of pterosaurs in the ecosystem of the Jehol Biota. PMID:28950013

  4. A late Jurassic pterosaur (Reptilia, Pterodactyloidea) from northwestern Patagonia, Argentina

    NASA Astrophysics Data System (ADS)

    Codorniú, Laura; Gasparini, Zulma; Paulina-Carabajal, Ariana

    2006-03-01

    A small to medium-sized pterodactyloid pterosaur (wingspan approximately 1.10 m) from the Upper Jurassic (middle-late Tithonian) marine deposits of the Vaca Muerta Formation of Patagonia (Los Catutos area, central Neuquén Province, Argentina) is reported. The specimen lacks the skull but constitutes a nearly complete postcranial skeleton, which includes cervical and dorsal vertebrae; a few thoracic ribs; both pectoral girdles; the left pelvic girdle; a proximal right wing (humerus, ulna, and radius) and metacarpal IV; a left wing that lacks only wing phalanx four; and both hindlimbs, the right one without the foot. Ontogenetic features suggest that the new fossil corresponds to a relatively mature individual, probably a subadult. Observed characters support its assignment to the Archaeopteroactyloidea, a basal clade within the Pterodactyloidea. This specimen is the second pterosaur from Los Catutos and the most complete Jurassic pterosaur so far known from South America.

  5. Premaxillary crest variation within the Wukongopteridae (Reptilia, Pterosauria) and comments on cranial structures in pterosaurs.

    PubMed

    Cheng, Xin; Jiang, Shunxing; Wang, Xiaolin; Kellner, Alexander W A

    2017-01-01

    Cranial crests show considerable variation within the Pterosauria, a group of flying reptiles that developed powered flight. This includes the Wukongopteridae, a clade of non-pterodactyloids, where the presence or absence of such head structures, allied with variation in the pelvic canal, have been regarded as evidence for sexual dimorphism. Here we discuss the cranial crest variation within wukongopterids and briefly report on a new specimen (IVPP V 17957). We also show that there is no significant variation in the anatomy of the pelvis of crested and crestless specimens. We further revisit the discussion regarding the function of cranial structures in pterosaurs and argue that they cannot be dismissed a priori as a valuable tool for species recognition.

  6. Discovery of a rare arboreal forest-dwelling flying reptile (Pterosauria, Pterodactyloidea) from China.

    PubMed

    Wang, Xiaolin; Kellner, Alexander W A; Zhou, Zhonghe; Campos, Diogenes de Almeida

    2008-02-12

    A previously undescribed toothless flying reptile from northeastern China, Nemicolopterus crypticus gen. et sp. nov., was discovered in the lacustrine sediments of the Early Cretaceous Jiufotang Formation, western Liaoning, China. The specimen consists of an almost complete articulated skeleton (IVPP V14377) and, despite representing an immature individual, based on the ossification of the skeleton, it is not a hatchling or newborn, making it one of the smallest pterosaurs known so far (wing span approximately 250 mm). It can be distinguished from all other pterosaurs by the presence of a short medial nasal process, an inverted "knife-shaped" deltopectoral crest of the humerus, and the presence of a well developed posterior process on the femur above the articulation with the tibia. It further shows the penultimate phalanges of the foot curved in a degree not reported in any pterosaur before, strongly indicating that it had an arboreal lifestyle, more than any other pterodactyloid pterosaur known so far. It is the sister-group of the Ornithocheiroidea and indicates that derived pterosaurs, including some gigantic forms of the Late Cretaceous with wingspans of >6 m, are closely related to small arboreal toothless creatures that likely were living in the canopies of the ancient forests feeding on insects.

  7. A new pterosaur tracksite from the Jurassic Summerville formation, near Ferron, Utah

    USGS Publications Warehouse

    Mickelson, Debra L.; Lockley, Martin G.; Bishop, John; Kirkland, James I.

    2003-01-01

    Pterosaur tracks (cf. Pteraichnus) from the Summerville Formation of the Ferron area of central Utah add to the growing record of Pteraichnus tracksites in the Late Jurassic Summerville Formation and time-equivalent, or near time-equivalent, deposits. The site is typical in revealing high pterosaur track densities, but low ichnodiversity suggesting congregations or “flocks” of many individuals. Footprint length varies from 2.0 to 7.0 cms. The ratio of well-preserved pes:manus tracks is about 1:3.4. This reflects a bias in favor of preservation of manus tracks due to the greater weight-bearing role of the front limbs, as noted in other pterosaur track assemblages. The sample also reveals a number of well-preserved trackways including one suggestive of pes-only progression that might be associated with take off or landing, and another that shows pronounced lengthening of stride indicating acceleration.One well-preserved medium-sized theropod trackway (Therangospodus) and other larger theropod track casts (cf. Megalosauripus) are associated with what otherwise appears to be a nearly monospecific pterosaur track assemblage. However, traces of a fifth pes digit suggest some tracks are of rhamphorynchoid rather than pterodactyloid origin, as usually inferred for Pteraichnus. The tracks occur at several horizons in a thin stratigraphic interval of ripple marked sandstones and siltstones. Overall the assemblage is similar to others found in the same time interval in the Western Interior from central and eastern Utah through central and southern Wyoming, Colorado, northeastern Arizona, and western Oklahoma. This vast “Pteraichnusichnofacies,” with associated saurischian tracks, remains the only ichnological evidence of pre-Cretaceous pterosaurs in North America and sheds important light on the vertebrate ecology of the Summerville Formation and contiguous deposits.

  8. The Late Jurassic Pterosaur Rhamphorhynchus, a Frequent Victim of the Ganoid Fish Aspidorhynchus?

    PubMed Central

    Frey, Eberhard; Tischlinger, Helmut

    2012-01-01

    Associations of large vertebrates are exceedingly rare in the Late Jurassic Solnhofen Limestone of Bavaria, Southern Germany. However, there are five specimens of medium-sized pterosaur Rhamphorhynchus that lie adjacent to the rostrum of a large individual of the ganoid fish Aspidorhynchus. In one of these, a small leptolepidid fish is still sticking in the esophagus of the pterosaur and its stomach is full of fish debris. This suggests that the Rhamphorhynchus was seized during or immediately after a successful hunt. According to the fossil record, Rhamphorhynchus frequently were accidentally seized by large Aspidorhnychus. In some cases the fibrous tissue of the wing membrane got entangled with the rostral teeth such that the fish was unable to get rid of the pterosaur. Such encounters ended fatally for both. Intestinal contents of Aspidorhynchus-type fishes are known and mostly comprise fishes and in one single case a Homoeosaurus. Obviously Rhamphorhynchus did not belong to the prey spectrum of Aspidorhynchus. PMID:22412850

  9. The largest flying reptile from Gondwana: a new specimen of Tropeognathus cf. T. mesembrinus Wellnhofer, 1987 (Pterodactyloidea, Anhangueridae) and other large pterosaurs from the Romualdo Formation, Lower Cretaceous, Brazil.

    PubMed

    Kellner, Alexander W A; Campos, Diogenes A; Sayão, Juliana M; Saraiva, Antônio A F; Rodrigues, Taissa; Oliveira, Gustavo; Cruz, Lilian A; Costa, Fabiana R; Silva, Helder P; Ferreira, Jennyfer S

    2013-03-01

    A very large pterosaur (MN 6594-V) from the Romualdo Formation (Aptian/Albian), Santana Group, Araripe Basin, is described. The specimen is referred to Tropeognathus cf. T. mesembrinus mainly due to the presence of a low and blunt frontoparietal crest, the comparatively low number of teeth and the inclined dorsal part of the occipital region. Two distinct wingspan measurements for pterosaurs are introduced: the maximized wingspan (maxws), which essentially consists of doubling the addition of all wing elements and the length of the scapula or the coracoid (the smaller of the two), and the normal wingspan (nws), which applies a reducing factor (rfc) to the maximized wingspan to account for the natural flexures of the wing. The rfc suggested for pteranodontoids is 5%. In the case of MN 6594-V, the maxws and nws are 8.70 m and 8.26 m, respectively, making it the largest pterosaur recovered from Gondwana so far. The distal end of a larger humerus (MCT 1838-R) and a partial wing (MPSC R 1395) are also described showing that large to giant flying reptiles formed a significant part of the pterosaur fauna from the Romualdo Formation. Lastly, some comments on the nomenclatural stability of the Santana deposits are presented.

  10. Evidence for modular evolution in a long-tailed pterosaur with a pterodactyloid skull.

    PubMed

    Lü, Junchang; Unwin, David M; Jin, Xingsheng; Liu, Yongqing; Ji, Qiang

    2010-02-07

    The fossil record is a unique source of evidence for important evolutionary phenomena such as transitions between major clades. Frustratingly, relevant fossils are still comparatively rare, most transitions have yet to be documented in detail and the mechanisms that underpin such events, typified by rapid large scale changes and for which microevolutionary processes seem insufficient, are still unclear. A new pterosaur (Mesozoic flying reptile) from the Middle Jurassic of China, Darwinopterus modularis gen. et sp. nov., provides the first insights into a prominent, but poorly understood transition between basal, predominantly long-tailed pterosaurs and the more derived, exclusively short-tailed pterodactyloids. Darwinopterus exhibits a remarkable 'modular' combination of characters: the skull and neck are typically pterodactyloid, exhibiting numerous derived character states, while the remainder of the skeleton is almost completely plesiomorphic and identical to that of basal pterosaurs. This pattern supports the idea that modules, tightly integrated complexes of characters with discrete, semi-independent and temporally persistent histories, were the principal focus of natural selection and played a leading role in evolutionary transitions.

  11. Cretaceous Vertebrate Tracksites - Korean Cretaceous Dinosaur Coast World Heritage Nomination Site

    NASA Astrophysics Data System (ADS)

    Huh, M.; Woo, K. S.; Lim, J. D.; Paik, I. S.

    2009-04-01

    South Korea is one of the best known regions in the world for Cretaceous fossil footprints, which are also world-renowned. Korea has produced more scientifically named bird tracks (ichnotaxa) than any other region in the world. It has also produced the world's largest pterosaur tracks. Dinosaur tracksites also have the highest frequency of vertebrate track-bearing levels currently known in any stratigraphic sequence. Among the areas that have the best track records, and the greatest scientific significance with best documentation, Korea ranks very highly. Objective analysis of important individual tracksites and tracksite regions must be based on multiple criteria including: size of site, number of tracks, trackways and track bearing levels, number of valid named ichnotaxa including types, number of scientific publications, quality of preservation. The unique and distinctive dinosaur tracksites are known as one of the world's most important dinosaur track localities. In particular, the dinosaur track sites in southern coastal area of Korea are very unique. In the sites, we have excavated over 10,000 dinosaur tracks. The Hwasun sites show diverse gaits with unusual walking patterns and postures in some tracks. The pterosaur tracks are the most immense in the world. The longest pterosaur trackway yet known from any track sites suggests that pterosaurs were competent terrestrial locomotors. This ichnofauna contains the first pterosaur tracks reported from Asia. The Haenam Uhangri pterosaur assigns to a new genus Haenamichnus which accomodates the new ichnospecies, Haenamichnus uhangriensis. At least 12 track types have been reported from the Haman and Jindong Formations (probably late Lower Cretaceous). These include the types of bird tracks assigned to Koreanornis, Jindongornipes, Ignotornis and Goseongornipes. In addition the bird tracks Hwangsanipes, Uhangrichnus, the pterosaur track Haenamichnus and the dinosaur tracks, Brontopodus, Caririchnium, Minisauripus and at least three other unnamed morphotypes are known . A total of 52 clutches containing 390 dinosaur eggs occur in several stratigraphic formations including seven dinosaur egg localities. The other fossils including turtles, crocodiles, fishes, wood fossil, plants, trace fossils and microfossils have also been discovered. The occurrences of Korean dinosaurs in diverse stratigraphic formations and sedimentological setting and in diverse sizes and morphotypes provide an opportunity to study the palaeoecologic and palaeoenvironmental conditions of the sites of the Late Cretaceous dinosaurs. Korea could serve as a global vertebrate ichnological standard for Cretaceous terrestrial sequences, and allow correlation with Japanese marine sequences to the east and classic Chinese sites to the west. The region plays a pivotal role in helping us understand vertebrate evolution and paleoecology on the margins of the Asian continent during the Cretaceous.

  12. Discovery of a rare pterosaur bone bed in a cretaceous desert with insights on ontogeny and behavior of flying reptiles.

    PubMed

    Manzig, Paulo C; Kellner, Alexander W A; Weinschütz, Luiz C; Fragoso, Carlos E; Vega, Cristina S; Guimarães, Gilson B; Godoy, Luiz C; Liccardo, Antonio; Ricetti, João H Z; de Moura, Camila C

    2014-01-01

    A pterosaur bone bed with at least 47 individuals (wing spans: 0.65-2.35 m) of a new species is reported from southern Brazil from an interdunal lake deposit of a Cretaceous desert, shedding new light on several biological aspects of those flying reptiles. The material represents a new pterosaur, Caiuajara dobruskii gen. et sp. nov., that is the southermost occurrence of the edentulous clade Tapejaridae (Tapejarinae, Pterodactyloidea) recovered so far. Caiuajara dobruskii differs from all other members of this clade in several cranial features, including the presence of a ventral sagittal bony expansion projected inside the nasoantorbital fenestra, which is formed by the premaxillae; and features of the lower jaw, like a marked rounded depression in the occlusal concavity of the dentary. Ontogenetic variation of Caiuajara dobruskii is mainly reflected in the size and inclination of the premaxillary crest, changing from small and inclined (∼ 115°) in juveniles to large and steep (∼ 90°) in adults. No particular ontogenetic features are observed in postcranial elements. The available information suggests that this species was gregarious, living in colonies, and most likely precocial, being able to fly at a very young age, which might have been a general trend for at least derived pterosaurs.

  13. Morphofunctional Analysis of the Quadrate of Spinosauridae (Dinosauria: Theropoda) and the Presence of Spinosaurus and a Second Spinosaurine Taxon in the Cenomanian of North Africa.

    PubMed Central

    Hendrickx, Christophe; Mateus, Octávio; Buffetaut, Eric

    2016-01-01

    Six quadrate bones, of which two almost certainly come from the Kem Kem beds (Cenomanian, Upper Cretaceous) of south-eastern Morocco, are determined to be from juvenile and adult individuals of Spinosaurinae based on phylogenetic, geometric morphometric, and phylogenetic morphometric analyses. Their morphology indicates two morphotypes evidencing the presence of two spinosaurine taxa ascribed to Spinosaurus aegyptiacus and? Sigilmassasaurus brevicollis in the Cenomanian of North Africa, casting doubt on the accuracy of some recent skeletal reconstructions which may be based on elements from several distinct species. Morphofunctional analysis of the mandibular articulation of the quadrate has shown that the jaw mechanics was peculiar in Spinosauridae. In mature spinosaurids, the posterior parts of the two mandibular rami displaced laterally when the jaw was depressed due to a lateromedially oriented intercondylar sulcus of the quadrate. Such lateral movement of the mandibular ramus was possible due to a movable mandibular symphysis in spinosaurids, allowing the pharynx to be widened. Similar jaw mechanics also occur in some pterosaurs and living pelecanids which are both adapted to capture and swallow large prey items. Spinosauridae, which were engaged, at least partially, in a piscivorous lifestyle, were able to consume large fish and may have occasionally fed on other prey such as pterosaurs and juvenile dinosaurs. PMID:26734729

  14. Low ecological disparity in Early Cretaceous birds

    PubMed Central

    Mitchell, Jonathan S.; Makovicky, Peter J.

    2014-01-01

    Ecological divergence is thought to be coupled with evolutionary radiations, yet the strength of this coupling is unclear. When birds diversified ecologically has received much less attention than their hotly debated crown divergence time. Here, we quantify how accurately skeletal morphology can predict ecology in living and extinct birds, and show that the earliest known assemblage of birds (= pygostylians) from the Jehol Biota (≈ 125 Ma) was substantially impoverished ecologically. The Jehol avifauna has few representatives of highly preservable ecomorphs (e.g. aquatic forms) and a notable lack of ecomorphological overlap with the pterosaur assemblage (e.g. no large or aerially foraging pygostylians). Comparisons of the Jehol functional diversity with modern and subfossil avian assemblages show that taphonomic bias alone cannot explain the ecomorphological impoverishment. However, evolutionary simulations suggest that the constrained ecological diversity of the Early Cretaceous pygostylians is consistent with what is expected from a relatively young radiation. Regardless of the proximate biological explanation, the anomalously low functional diversity of the Jehol birds is evidence both for ecological vacancies in Cretaceous ecosystems, which were subsequently filled by the radiation of crown Aves, and for discordance between taxonomic richness and ecological diversity in the best-known Mesozoic ecosystem. PMID:24870044

  15. Neck biomechanics indicate that giant Transylvanian azhdarchid pterosaurs were short-necked arch predators

    PubMed Central

    2017-01-01

    Azhdarchid pterosaurs include the largest animals to ever take to the skies with some species exceeding 10 metres in wingspan and 220 kg in mass. Associated skeletons show that azhdarchids were long-necked, long-jawed predators that combined a wing planform suited for soaring with limb adaptations indicative of quadrupedal terrestrial foraging. The postcranial proportions of the group have been regarded as uniform overall, irrespective of their overall size, notwithstanding suggestions that minor variation may have been present. Here, we discuss a recently discovered giant azhdarchid neck vertebra referable to Hatzegopteryx from the Maastrichtian Sebeş Formation of the Transylvanian Basin, Romania, which shows how some azhdarchids departed markedly from conventional views on their proportions. This vertebra, which we consider a cervical VII, is 240 mm long as preserved and almost as wide. Among azhdarchid cervicals, it is remarkable for the thickness of its cortex (4–6 mm along its ventral wall) and robust proportions. By comparing its dimensions to other giant azhdarchid cervicals and to the more completely known necks of smaller taxa, we argue that Hatzegopteryx had a proportionally short, stocky neck highly resistant to torsion and compression. This specimen is one of several hinting at greater disparity within Azhdarchidae than previously considered, but is the first to demonstrate such proportional differences within giant taxa. On the assumption that other aspects of Hatzegopteryx functional anatomy were similar to those of other azhdarchids, and with reference to the absence of large terrestrial predators in the Maastrichtian of Transylvania, we suggest that this pterosaur played a dominant predatory role among the unusual palaeofauna of ancient Haţeg. PMID:28133577

  16. The earliest bird-line archosaurs and the assembly of the dinosaur body plan.

    PubMed

    Nesbitt, Sterling J; Butler, Richard J; Ezcurra, Martín D; Barrett, Paul M; Stocker, Michelle R; Angielczyk, Kenneth D; Smith, Roger M H; Sidor, Christian A; Niedźwiedzki, Grzegorz; Sennikov, Andrey G; Charig, Alan J

    2017-04-27

    The relationship between dinosaurs and other reptiles is well established, but the sequence of acquisition of dinosaurian features has been obscured by the scarcity of fossils with transitional morphologies. The closest extinct relatives of dinosaurs either have highly derived morphologies or are known from poorly preserved or incomplete material. Here we describe one of the stratigraphically lowest and phylogenetically earliest members of the avian stem lineage (Avemetatarsalia), Teleocrater rhadinus gen. et sp. nov., from the Middle Triassic epoch. The anatomy of T. rhadinus provides key information that unites several enigmatic taxa from across Pangaea into a previously unrecognized clade, Aphanosauria. This clade is the sister taxon of Ornithodira (pterosaurs and birds) and shortens the ghost lineage inferred at the base of Avemetatarsalia. We demonstrate that several anatomical features long thought to characterize Dinosauria and dinosauriforms evolved much earlier, soon after the bird-crocodylian split, and that the earliest avemetatarsalians retained the crocodylian-like ankle morphology and hindlimb proportions of stem archosaurs and early pseudosuchians. Early avemetatarsalians were substantially more species-rich, widely geographically distributed and morphologically diverse than previously recognized. Moreover, several early dinosauromorphs that were previously used as models to understand dinosaur origins may represent specialized forms rather than the ancestral avemetatarsalian morphology.

  17. A New Azhdarchid Pterosaur from the Late Cretaceous of the Transylvanian Basin, Romania: Implications for Azhdarchid Diversity and Distribution

    PubMed Central

    Vremir, Mátyás; Kellner, Alexander W. A.; Naish, Darren; Dyke, Gareth J.

    2013-01-01

    We describe a new taxon of medium-sized (wing span ca. 3 m) azhdarchid pterosaur from the Upper Cretaceous Transylvanian Basin (Sebeş Formation) of Romania. This specimen is the most complete European azhdarchid yet reported, comprising a partially articulated series of vertebrae and associated forelimb bones. The new taxon is most similar to the Central Asian Azhdarcho lancicollis Nessov but possesses a suite of autapomorphies in its vertebrae that include the relative proportions of cervicals three and four and the presence of elongated prezygapophyseal pedicles. The new taxon is interesting in that it lived contemporaneously with gigantic forms, comparable in size to the famous Romanian Hatzegopteryx thambema. The presence of two distinct azhdarchid size classes in a continental depositional environment further strengthens suggestions that these pterosaurs were strongly linked to terrestrial floodplain and wooded environments. To support this discussion, we outline the geological context and taphonomy of our new specimen and place it in context with other known records for this widespread and important Late Cretaceous pterosaurian lineage. PMID:23382886

  18. Efficient flapping flight of pterosaurs

    NASA Astrophysics Data System (ADS)

    Strang, Karl Axel

    In the late eighteenth century, humans discovered the first pterosaur fossil remains and have been fascinated by their existence ever since. Pterosaurs exploited their membrane wings in a sophisticated manner for flight control and propulsion, and were likely the most efficient and effective flyers ever to inhabit our planet. The flapping gait is a complex combination of motions that sustains and propels an animal in the air. Because pterosaurs were so large with wingspans up to eleven meters, if they could have sustained flapping flight, they would have had to achieve high propulsive efficiencies. Identifying the wing motions that contribute the most to propulsive efficiency is key to understanding pterosaur flight, and therefore to shedding light on flapping flight in general and the design of efficient ornithopters. This study is based on published results for a very well-preserved specimen of Coloborhynchus robustus, for which the joints are well-known and thoroughly described in the literature. Simplifying assumptions are made to estimate the characteristics that can not be inferred directly from the fossil remains. For a given animal, maximizing efficiency is equivalent to minimizing power at a given thrust and speed. We therefore aim at finding the flapping gait, that is the joint motions, that minimize the required flapping power. The power is computed from the aerodynamic forces created during a given wing motion. We develop an unsteady three-dimensional code based on the vortex-lattice method, which correlates well with published results for unsteady motions of rectangular wings. In the aerodynamic model, the rigid pterosaur wing is defined by the position of the bones. In the aeroelastic model, we add the flexibility of the bones and of the wing membrane. The nonlinear structural behavior of the membrane is reduced to a linear modal decomposition, assuming small deflections about the reference wing geometry. The reference wing geometry is computed for the membrane subject to glide loads and pretension from the wing joint positions. The flapping gait is optimized in a two-stage procedure. First the design space is explored using a binary genetic algorithm. The best design points are then used as starting points in a sequential quadratic programming optimization algorithm. This algorithm is used to refine the solutions by precisely satisfying the constraints. The refined solutions are found in generally less than twenty major iterations and constraints are violated generally by less than 0.1%. We find that the optimal motions are in agreement with previous results for simple wing motions. By adding joint motions, the required flapping power is reduced by 7% to 17%. Because of the large uncertainties for some estimates, we investigate the sensitivity of the optimized flapping gait. We find that the optimal motions are sensitive mainly to flight speed, body accelerations, and to the material properties of the wing membrane. The optimal flight speed found correlates well with other studies of pterosaur flapping flight, and is 31% to 37% faster than previous estimates based on glide performance. Accounting for the body accelerations yields an increase of 10% to 16% in required flapping power. When including the aeroelastic effects, the optimal flapping gait is only slightly modified to accommodate for the deflections of stiff membranes. For a flexible membrane, the motion is significantly modified and the power increased by up to 57%. Finally, the flapping gait and required power compare well with published results for similar wing motions. Some published estimates of required power assumed a propulsive efficiency of 100%, whereas the propulsive efficiency computed for Coloborhynchus robustus ranges between 54% and 87%.

  19. An exceptional fossil skull from South America and the origins of the archosauriform radiation

    NASA Astrophysics Data System (ADS)

    Pinheiro, Felipe L.; França, Marco A. G.; Lacerda, Marcel B.; Butler, Richard J.; Schultz, Cesar L.

    2016-03-01

    Birds, dinosaurs, crocodilians, pterosaurs and their close relatives form the highly diverse clade Archosauriformes. Archosauriforms have a deep evolutionary history, originating in the late Permian, prior to the end-Permian mass extinction, and radiating in the Triassic to dominate Mesozoic ecosystems. However, the origins of this clade and its extraordinarily successful body plan remain obscure. Here, we describe an exceptionally preserved fossil skull from the Lower Triassic of Brazil, representing a new species, Teyujagua paradoxa, transitional in morphology between archosauriforms and more primitive reptiles. This skull reveals for the first time the mosaic assembly of key features of the archosauriform skull, including the antorbital and mandibular fenestrae, serrated teeth, and closed lower temporal bar. Phylogenetic analysis recovers Teyujagua as the sister taxon to Archosauriformes, and is congruent with a two-phase model of early archosauriform evolution, in response to two mass extinctions occurring at the end of the Guadalupian and the Permian.

  20. Amphibious flies and paedomorphism in the Jurassic period.

    PubMed

    Huang, Diying; Nel, André; Cai, Chenyang; Lin, Qibin; Engel, Michael S

    2013-03-07

    The species of the Strashilidae (strashilids) have been the most perplexing of fossil insects from the Jurassic period of Russia and China. They have been widely considered to be ectoparasites of pterosaurs or feathered dinosaurs, based on the putative presence of piercing and sucking mouthparts and hind tibio-basitarsal pincers purportedly used to fix onto the host's hairs or feathers. Both the supposed host and parasite occur in the Daohugou beds from the Middle Jurassic epoch of China (approximately 165 million years ago). Here we analyse the morphology of strashilids from the Daohugou beds, and reach markedly different conclusions; namely that strashilids are highly specialized flies (Diptera) bearing large membranous wings, with substantial sexual dimorphism of the hind legs and abdominal extensions. The idea that they belong to an extinct order is unsupported, and the lineage can be placed within the true flies. In terms of major morphological and inferred behavioural features, strashilids resemble the recent (extant) and relict members of the aquatic fly family Nymphomyiidae. Their ontogeny are distinguished by the persistence in adult males of larval abdominal respiratory gills, representing a unique case of paedomorphism among endopterygote insects. Adult strashilids were probably aquatic or amphibious, shedding their wings after emergence and mating in the water.

  1. A new basal bird from China with implications for morphological diversity in early birds

    PubMed Central

    Wang, Min; Wang, Xiaoli; Wang, Yan; Zhou, Zhonghe

    2016-01-01

    The Chinese Lower Cretaceous Jehol Group is the second oldest fossil bird-bearing deposit, only surpassed by Archaeopteryx from the German Upper Jurassic Solnhofen Limestones. Here we report a new bird, Chongmingia zhengi gen. et sp. nov., from the Jehol Biota. Phylogenetic analyses indicate that Chongmingia zhengi is basal to the dominant Mesozoic avian clades Enantiornithes and Ornithuromorpha, and represents a new basal avialan lineage. This new discovery adds to our knowledge regarding the phylogenetic differentiation and morphological diversity in early avian evolution. The furcula of Chongmingia is rigid (reducing its efficiency), consequently requiring more power for flight. However, the elongated forelimb and the large deltopectoral crest on the humerus might indicate that the power was available. The unique combination of features present in this species demonstrates that numerous evolutionary experimentations took place in the early evolution of powered flight. The occurrence of gastroliths further confirms that herbivory was common among basal birds. The Jehol birds faced competition with pterosaurs, and occupied sympatric habitats with non-avian theropods, some of which consumed birds. Thus, avialan herbivory may have reduced ecological competition from carnivorous close relatives and other volant vertebrates early in their evolutionary history. PMID:26806355

  2. Flight dynamics of a pterosaur-inspired aircraft utilizing a variable-placement vertical tail.

    PubMed

    Roberts, Brian; Lind, Rick; Chatterjee, Sankar

    2011-06-01

    Mission performance for small aircraft is often dependent on the turn radius. Various biologically inspired concepts have demonstrated that performance can be improved by morphing the wings in a manner similar to birds and bats; however, the morphing of the vertical tail has received less attention since neither birds nor bats have an appreciable vertical tail. This paper investigates a design that incorporates the morphing of the vertical tail based on the cranial crest of a pterosaur. The aerodynamics demonstrate a reduction in the turn radius of 14% when placing the tail over the nose in comparison to a traditional aft-placed vertical tail. The flight dynamics associated with this configuration has unique characteristics such as a Dutch-roll mode with excessive roll motion and a skid divergence that replaces the roll convergence.

  3. Anza palaeoichnological site. Late Cretaceous. Morocco. Part I. The first African pterosaur trackway (manus only)

    NASA Astrophysics Data System (ADS)

    Masrour, Moussa; Pascual-Arribas, Carlos; de Ducla, Marc; Hernández-Medrano, Nieves; Pérez-Lorente, Félix

    2017-10-01

    Cretaceous pterosaurs tracksites are very rare worldwide. Until now,only one African Cretaceous site withtracks of (Agadirichnus elegans and Pteraichnus) was known. This makes the discovery of a new outcrop in the Upper Cretaceous of Anza (Morocco) the third manifestation of this type of footprint in Africa, extending the existence of such traces from the Coniacian-Santonian to the Maastrichtian. The site contains only manus tracks, which can be explained as a result of erosion of pes prints. The lack of pes prints and the morphometric characteristics of the manus prints only allow us to relate these prints to Agadirichnus, Pteraichnus or maybe to a new ichnogenus. It is possible that the trackmakers are related to Ornithocheiroidea or Azhdarchoidea superfamilies whose fossil bones have been found from the Late Cretaceous in Morocco.

  4. Egg accumulation with 3D embryos provides insight into the life history of a pterosaur.

    PubMed

    Wang, Xiaolin; Kellner, Alexander W A; Jiang, Shunxing; Cheng, Xin; Wang, Qiang; Ma, Yingxia; Paidoula, Yahefujiang; Rodrigues, Taissa; Chen, He; Sayão, Juliana M; Li, Ning; Zhang, Jialiang; Bantim, Renan A M; Meng, Xi; Zhang, Xinjun; Qiu, Rui; Zhou, Zhonghe

    2017-12-01

    Fossil eggs and embryos that provide unique information about the reproduction and early growth of vertebrates are exceedingly rare, particularly for pterosaurs. Here we report on hundreds of three-dimensional (3D) eggs of the species Hamipterus tianshanensis from a Lower Cretaceous site in China, 16 of which contain embryonic remains. Computed tomography scanning, osteohistology, and micropreparation reveal that some bones lack extensive ossification in potentially late-term embryos, suggesting that hatchlings might have been flightless and less precocious than previously assumed. The geological context, including at least four levels with embryos and eggs, indicates that this deposit was formed by a rare combination of events, with storms acting on a nesting ground. This discovery supports colonial nesting behavior and potential nesting site fidelity in the Pterosauria. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  5. New Insights into the Skull of Istiodactylus latidens (Ornithocheiroidea, Pterodactyloidea)

    PubMed Central

    Witton, Mark P.

    2012-01-01

    The skull of the Cretaceous pterosaur Istiodactylus latidens, a historically important species best known for its broad muzzle of interlocking, lancet-shaped teeth, is almost completely known from the broken remains of several individuals, but the length of its jaws remains elusive. Estimates of I. latidens jaw length have been exclusively based on the incomplete skull of NHMUK R3877 and, perhaps erroneously, reconstructed by assuming continuation of its broken skull pieces as preserved in situ. Here, an overlooked jaw fragment of NHMUK R3877 is redescribed and used to revise the skull reconstruction of I. latidens. The new reconstruction suggests a much shorter skull than previously supposed, along with a relatively tall orbital region and proportionally slender maxilla, a feature documented in the early 20th century but ignored by all skull reconstructions of this species. These features indicate that the skull of I. latidens is particularly distinctive amongst istiodactylids and suggests greater disparity between I. latidens and I. sinensis than previously appreciated. A cladistic analysis of istiodactylid pterosaurs incorporating new predicted I. latidens skull metrics suggests Istiodactylidae is constrained to five species (Liaoxipterus brachyognathus, Lonchengpterus zhoai, Nurhachius ignaciobritoi, Istiodactylus latidens and Istiodactylus sinensis) defined by their distinctive dentition, but excludes the putative istiodactylids Haopterus gracilis and Hongshanopterus lacustris. Istiodactylus latidens, I. sinensis and Li. brachyognathus form an unresolved clade of derived istiodactylids, and the similarity of comparable remains of I. sinensis and Li. brachyognathus suggest further work into their taxonomy and classification is required. The new skull model of I. latidens agrees with the scavenging habits proposed for these pterosaurs, with much of their cranial anatomy converging on that of habitually scavenging birds. PMID:22470442

  6. Positive allometry and the prehistory of sexual selection.

    PubMed

    Tomkins, Joseph L; LeBas, Natasha R; Witton, Mark P; Martill, David M; Humphries, Stuart

    2010-08-01

    The function of the exaggerated structures that adorn many fossil vertebrates remains largely unresolved. One recurrent hypothesis is that these elaborated traits had a role in thermoregulation. This orthodoxy persists despite the observation that traits exaggerated to the point of impracticality in extant organisms are almost invariably sexually selected. We use allometric scaling to investigate the role of sexual selection and thermoregulation in the evolution of exaggerated traits of the crested pterosaur Pteranodon longiceps and the sail-backed eupelycosaurs Dimetrodon and Edaphosaurus. The extraordinarily steep positive allometry of the head crest of Pteranodon rules out all of the current hypotheses for this trait's main function other than sexual signaling. We also find interspecific patterns of allometry and sexual dimorphism in the sails of Dimetrodon and patterns of elaboration in Edaphosaurus consistent with a sexually selected function. Furthermore, small ancestral, sail-backed pelycosaurs would have been too small to need adaptations to thermoregulation. Our results question the popular view that the elaborated structures of these fossil species evolved as thermoregulatory organs and provide evidence in support of the hypothesis that Pteranodon crests and eupelycosaur sails are among the earliest and most extreme examples of elaborate sexual signals in the evolution of terrestrial vertebrates.

  7. A Dome-Headed Stem Archosaur Exemplifies Convergence among Dinosaurs and Their Distant Relatives.

    PubMed

    Stocker, Michelle R; Nesbitt, Sterling J; Criswell, Katharine E; Parker, William G; Witmer, Lawrence M; Rowe, Timothy B; Ridgely, Ryan; Brown, Matthew A

    2016-10-10

    Similarities in body plan evolution, such as wings in pterosaurs, birds, and bats or limblessness in snakes and amphisbaenians, can be recognized as classical examples of convergence among animals [1-3]. We introduce a new Triassic stem archosaur that is unexpectedly and remarkably convergent with the "dome-headed" pachycephalosaur dinosaurs that lived over 100 million years later. Surprisingly, numerous additional taxa in the same assemblage (the Otis Chalk assemblage from the Dockum Group of Texas) demonstrate the early acquisition of morphological novelties that were later convergently evolved by post-Triassic dinosaurs. As one of the most successful clades of terrestrial vertebrates, dinosaurs came to occupy an extensive morphospace throughout their diversification in the Mesozoic Era [4, 5], but their distant relatives were first to evolve many of those "dinosaurian" body plans in the Triassic Period [6-8]. Our analysis of convergence between archosauromorphs from the Triassic Period and post-Triassic archosaurs demonstrates the early and extensive exploration of morphospace captured in a single Late Triassic assemblage, and we hypothesize that many of the "novel" morphotypes interpreted to occur among archosaurs later in the Mesozoic already were in place during the initial Triassic archosauromorph, largely non-dinosaurian, radiation and only later convergently evolved in diverse dinosaurian lineages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Life history of Rhamphorhynchus inferred from bone histology and the diversity of pterosaurian growth strategies.

    PubMed

    Prondvai, Edina; Stein, Koen; Osi, Attila; Sander, Martin P

    2012-01-01

    Rhamphorhynchus from the Solnhofen Limestones is the most prevalent long tailed pterosaur with a debated life history. Whereas morphological studies suggested a slow crocodile-like growth strategy and superprecocial volant hatchlings, the only histological study hitherto conducted on Rhamphorhynchus concluded a relatively high growth rate for the genus. These controversial conclusions can be tested by a bone histological survey of an ontogenetic series of Rhamphorhynchus. Our results suggest that Bennett's second size category does not reflect real ontogenetic stage. Significant body size differences of histologically as well as morphologically adult specimens suggest developmental plasticity. Contrasting the 'superprecocial hatchling' hypothesis, the dominance of fibrolamellar bone in early juveniles implies that hatchlings sustained high growth rate, however only up to the attainment of 30-50% and 7-20% of adult wingspan and body mass, respectively. The early fast growth phase was followed by a prolonged, slow-growth phase indicated by parallel-fibred bone deposition and lines of arrested growth in the cortex, a transition which has also been observed in Pterodaustro. An external fundamental system is absent in all investigated specimens, but due to the restricted sample size, neither determinate nor indeterminate growth could be confirmed in Rhamphorhynchus. The initial rapid growth phase early in Rhamphorhynchus ontogeny supports the non-volant nature of its hatchlings, and refutes the widely accepted 'superprecocial hatchling' hypothesis. We suggest the onset of powered flight, and not of reproduction as the cause of the transition from the fast growth phase to a prolonged slower growth phase. Rapidly growing early juveniles may have been attended by their parents, or could have been independent precocial, but non-volant arboreal creatures until attaining a certain somatic maturity to get airborne. This study adds to the understanding on the diversity of pterosaurian growth strategies.

  9. 40Ar/39Ar ages for the fossil-bearing Gyeongsang Supergroup in South Korea

    NASA Astrophysics Data System (ADS)

    Chang, S. C.; Hemming, S. R.

    2016-12-01

    Since the 1970s, abundant vertebrate fossils have been documented from the Cretaceous Gyeongsang Supergroup in the Gyeongsang Basin and some small nearby basins of the Korean Peninsula, including dinosaurs, pterosaurs, crocodilians, turtles and fish. In addition to body fossils, well-preserved dinosaur, bird and pterosaur tracks have been found from these formations. Well-preserved and extensive vertebrate ichnofaunas from the Gyeongsang Supergroup represent the largest known concentration of Cretaceous vertebrate track sites reported from the Asian continent. Determining the age of the Gyeongsang Supergroup is critical to understanding several fundamental questions related to evolution and paleo-biogeography. However, limited radioisotopic studies for the Gyeongsang Supergroup have been previously reported. Additionally, the large uncertainties of previous data and the incomplete stratigraphic description of the samples limit their value for high-resolution chronostratigraphy. In this study, we aim to establish high-precision 40Ar/39Ar ages for two well-known tuffs from the middle and the upper part of the Gyeongsang Supergroup, and one rhyolite from the uppermost Gyeongsang Supergroup. Our preliminary 40Ar/39Ar data for the Kusandong Tuff indicates that the middle part of the Gyeongsang Supergroup is 78-82 Ma. This is consistent with the hypothesized extension of the Jehol biota into Korea and the preliminary results suggest that refinement of the time scale for these strata is a practical goal. The Gyeongsang Supergroup sample has great potential for substantially increasing our knowledge of Mesozoic terrestrial ecosystems.

  10. Avian Cerebellar Floccular Fossa Size Is Not a Proxy for Flying Ability in Birds

    PubMed Central

    Walsh, Stig A.; Iwaniuk, Andrew N.; Knoll, Monja A.; Bourdon, Estelle; Barrett, Paul M.; Milner, Angela C.; Nudds, Robert L.; Abel, Richard L.; Sterpaio, Patricia Dello

    2013-01-01

    Extinct animal behavior has often been inferred from qualitative assessments of relative brain region size in fossil endocranial casts. For instance, flight capability in pterosaurs and early birds has been inferred from the relative size of the cerebellar flocculus, which in life protrudes from the lateral surface of the cerebellum. A primary role of the flocculus is to integrate sensory information about head rotation and translation to stabilize visual gaze via the vestibulo-occular reflex (VOR). Because gaze stabilization is a critical aspect of flight, some authors have suggested that the flocculus is enlarged in flying species. Whether this can be further extended to a floccular expansion in highly maneuverable flying species or floccular reduction in flightless species is unknown. Here, we used micro computed-tomography to reconstruct “virtual” endocranial casts of 60 extant bird species, to extract the same level of anatomical information offered by fossils. Volumes of the floccular fossa and entire brain cavity were measured and these values correlated with four indices of flying behavior. Although a weak positive relationship was found between floccular fossa size and brachial index, no significant relationship was found between floccular fossa size and any other flight mode classification. These findings could be the result of the bony endocranium inaccurately reflecting the size of the neural flocculus, but might also reflect the importance of the flocculus for all modes of locomotion in birds. We therefore conclude that the relative size of the flocculus of endocranial casts is an unreliable predictor of locomotor behavior in extinct birds, and probably also pterosaurs and non-avian dinosaurs. PMID:23825638

  11. Life History of Rhamphorhynchus Inferred from Bone Histology and the Diversity of Pterosaurian Growth Strategies

    PubMed Central

    Prondvai, Edina; Stein, Koen; Ősi, Attila; Sander, Martin P.

    2012-01-01

    Background Rhamphorhynchus from the Solnhofen Limestones is the most prevalent long tailed pterosaur with a debated life history. Whereas morphological studies suggested a slow crocodile-like growth strategy and superprecocial volant hatchlings, the only histological study hitherto conducted on Rhamphorhynchus concluded a relatively high growth rate for the genus. These controversial conclusions can be tested by a bone histological survey of an ontogenetic series of Rhamphorhynchus. Methodology/Principal Findings Our results suggest that Bennett's second size category does not reflect real ontogenetic stage. Significant body size differences of histologically as well as morphologically adult specimens suggest developmental plasticity. Contrasting the ‘superprecocial hatchling’ hypothesis, the dominance of fibrolamellar bone in early juveniles implies that hatchlings sustained high growth rate, however only up to the attainment of 30–50% and 7–20% of adult wingspan and body mass, respectively. The early fast growth phase was followed by a prolonged, slow-growth phase indicated by parallel-fibred bone deposition and lines of arrested growth in the cortex, a transition which has also been observed in Pterodaustro. An external fundamental system is absent in all investigated specimens, but due to the restricted sample size, neither determinate nor indeterminate growth could be confirmed in Rhamphorhynchus. Conclusions/Significance The initial rapid growth phase early in Rhamphorhynchus ontogeny supports the non-volant nature of its hatchlings, and refutes the widely accepted ‘superprecocial hatchling’ hypothesis. We suggest the onset of powered flight, and not of reproduction as the cause of the transition from the fast growth phase to a prolonged slower growth phase. Rapidly growing early juveniles may have been attended by their parents, or could have been independent precocial, but non-volant arboreal creatures until attaining a certain somatic maturity to get airborne. This study adds to the understanding on the diversity of pterosaurian growth strategies. PMID:22355361

  12. Assessing arboreal adaptations of bird antecedents: testing the ecological setting of the origin of the avian flight stroke.

    PubMed

    Dececchi, T Alexander; Larsson, Hans C E

    2011-01-01

    The origin of avian flight is a classic macroevolutionary transition with research spanning over a century. Two competing models explaining this locomotory transition have been discussed for decades: ground up versus trees down. Although it is impossible to directly test either of these theories, it is possible to test one of the requirements for the trees-down model, that of an arboreal paravian. We test for arboreality in non-avian theropods and early birds with comparisons to extant avian, mammalian, and reptilian scansors and climbers using a comprehensive set of morphological characters. Non-avian theropods, including the small, feathered deinonychosaurs, and Archaeopteryx, consistently and significantly cluster with fully terrestrial extant mammals and ground-based birds, such as ratites. Basal birds, more advanced than Archaeopteryx, cluster with extant perching ground-foraging birds. Evolutionary trends immediately prior to the origin of birds indicate skeletal adaptations opposite that expected for arboreal climbers. Results reject an arboreal capacity for the avian stem lineage, thus lending no support for the trees-down model. Support for a fully terrestrial ecology and origin of the avian flight stroke has broad implications for the origin of powered flight for this clade. A terrestrial origin for the avian flight stroke challenges the need for an intermediate gliding phase, presents the best resolved series of the evolution of vertebrate powered flight, and may differ fundamentally from the origin of bat and pterosaur flight, whose antecedents have been postulated to have been arboreal and gliding.

  13. High-precision U-Pb geochronology of the Jurassic Yanliao Biota from Jianchang (western Liaoning Province, China): Age constraints on the rise of feathered dinosaurs and eutherian mammals

    NASA Astrophysics Data System (ADS)

    Chu, Zhuyin; He, Huaiyu; Ramezani, Jahandar; Bowring, Samuel A.; Hu, Dongyu; Zhang, Lijun; Zheng, Shaolin; Wang, Xiaolin; Zhou, Zhonghe; Deng, Chenglong; Guo, Jinghui

    2016-10-01

    The Yanliao Biota of northeastern China comprises the oldest feathered dinosaurs, transitional pterosaurs, as well as the earliest eutherian mammals, multituberculate mammals, and new euharamiyidan species that are key elements of the Mesozoic biotic record. Recent discovery of the Yanliao Biota in the Daxishan section near the town of Linglongta, Jianchang County in western Liaoning Province have greatly enhanced our knowledge of the transition from dinosaurs to birds, primitive to derived pterosaurs, and the early evolution of mammals. Nevertheless, fundamental questions regarding the correlation of fossil-bearing strata, rates of dinosaur and mammalian evolution, and their relationship to environmental change in deep time remain unresolved due to the paucity of precise and accurate temporal constraints. These limitations underscore the importance of placing the rich fossil record of Jianchang within a high-resolution chronostratigraphic framework that has thus far been hampered by the relatively low precision of in situ radioisotopic dating techniques. Here we present high-precision U-Pb zircon geochronology by the chemical abrasion isotope dilution thermal ionization mass spectrometry (CA-ID-TIMS) from three interstratified ash beds previously dated by secondary-ion mass spectrometry (SIMS) technique. The results constrain the key fossil horizons of the Daxishan section to an interval spanning 160.89 to 160.25 Ma with 2σ analytical uncertainties that range from ±46 to ±69 kyr. These data place the Yanliao Biota from Jianchang in the Oxfordian Stage of the Late Jurassic, and mark the Daxishan section as the site of Earth's oldest precisely dated feathered dinosaurs and eutherian mammals.

  14. Exploring the Relationship between Skeletal Mass and Total Body Mass in Birds.

    PubMed

    Martin-Silverstone, Elizabeth; Vincze, Orsolya; McCann, Ria; Jonsson, Carl H W; Palmer, Colin; Kaiser, Gary; Dyke, Gareth

    2015-01-01

    Total body mass (TBM) is known to be related to a number of different osteological features in vertebrates, including limb element measurements and total skeletal mass. The relationship between skeletal mass and TBM in birds has been suggested as a way of estimating the latter in cases where only the skeleton is known (e.g., fossils). This relationship has thus also been applied to other extinct vertebrates, including the non-avian pterosaurs, while other studies have used additional skeletal correlates found in modern birds to estimate TBM. However, most previous studies have used TBM compiled from the literature rather than from direct measurements, producing values from population averages rather than from individuals. Here, we report a new dataset of 487 extant birds encompassing 79 species that have skeletal mass and TBM recorded at the time of collection or preparation. We combine both historical and new data for analyses with phylogenetic control and find a similar and well-correlated relationship between skeletal mass and TBM. Thus, we confirm that TBM and skeletal mass are accurate proxies for estimating one another. We also look at other factors that may have an effect on avian body mass, including sex, ontogenetic stage, and flight mode. While data are well-correlated in all cases, phylogeny is a major control on TBM in birds strongly suggesting that this relationship is not appropriate for estimating the total mass of taxa outside of crown birds, Neornithes (e.g., non-avian dinosaurs, pterosaurs). Data also reveal large variability in both bird skeletal and TBM within single species; caution should thus be applied when using published mass to test direct correlations with skeletal mass and bone lengths.

  15. Assessing Arboreal Adaptations of Bird Antecedents: Testing the Ecological Setting of the Origin of the Avian Flight Stroke

    PubMed Central

    Dececchi, T. Alexander; Larsson, Hans C. E.

    2011-01-01

    The origin of avian flight is a classic macroevolutionary transition with research spanning over a century. Two competing models explaining this locomotory transition have been discussed for decades: ground up versus trees down. Although it is impossible to directly test either of these theories, it is possible to test one of the requirements for the trees-down model, that of an arboreal paravian. We test for arboreality in non-avian theropods and early birds with comparisons to extant avian, mammalian, and reptilian scansors and climbers using a comprehensive set of morphological characters. Non-avian theropods, including the small, feathered deinonychosaurs, and Archaeopteryx, consistently and significantly cluster with fully terrestrial extant mammals and ground-based birds, such as ratites. Basal birds, more advanced than Archaeopteryx, cluster with extant perching ground-foraging birds. Evolutionary trends immediately prior to the origin of birds indicate skeletal adaptations opposite that expected for arboreal climbers. Results reject an arboreal capacity for the avian stem lineage, thus lending no support for the trees-down model. Support for a fully terrestrial ecology and origin of the avian flight stroke has broad implications for the origin of powered flight for this clade. A terrestrial origin for the avian flight stroke challenges the need for an intermediate gliding phase, presents the best resolved series of the evolution of vertebrate powered flight, and may differ fundamentally from the origin of bat and pterosaur flight, whose antecedents have been postulated to have been arboreal and gliding. PMID:21857918

  16. Seeing red to being red: conserved genetic mechanism for red cone oil droplets and co-option for red coloration in birds and turtles.

    PubMed

    Twyman, Hanlu; Valenzuela, Nicole; Literman, Robert; Andersson, Staffan; Mundy, Nicholas I

    2016-08-17

    Avian ketocarotenoid pigments occur in both the red retinal oil droplets that contribute to colour vision and bright red coloration used in signalling. Turtles are the only other tetrapods with red retinal oil droplets, and some also display red carotenoid-based coloration. Recently, the CYP2J19 gene was strongly implicated in ketocarotenoid synthesis in birds. Here, we investigate CYP2J19 evolution in relation to colour vision and red coloration in reptiles using genomic and expression data. We show that turtles, but not crocodiles or lepidosaurs, possess a CYP2J19 orthologue, which arose via gene duplication before turtles and archosaurs split, and which is strongly and specifically expressed in the ketocarotenoid-containing retina and red integument. We infer that CYP2J19 initially functioned in colour vision in archelosaurs and conclude that red ketocarotenoid-based coloration evolved independently in birds and turtles via gene regulatory changes of CYP2J19 Our results suggest that red oil droplets contributed to colour vision in dinosaurs and pterosaurs. © 2016 The Author(s).

  17. Taxonomic review of the Ornithocheirus complex (Pterosauria) from the Cretaceous of England

    PubMed Central

    Rodrigues, Taissa; Kellner, Alexander Wilhelm Armin

    2013-01-01

    Abstract Over a decade after the last major review of the Cambridge Greensand pterosaurs, their systematics remains one of the most disputed points in pterosaur taxonomy. Ornithocheiridae is still a wastebasket for fragmentary taxa, and some nomenclatural issues are still a problem. Here, the species from the Cretaceous of England that, at some point, were referred in Ornithocheirus, are reviewed. Investigation of the primary literature confirmed that Criorhynchus should be considered an objective junior synonym of Ornithocheirus. Taxonomic review of more than 30 species known from fragmentary remains showed that 16 of them are undiagnosable (nomina dubia): Palaeornis cliftii, Cimoliornis diomedeus, Pterodactylus compressirostris, Pterodactylus fittoni, Pterodactylus woodwardi, Ornithocheirus brachyrhinus, Ornithocheirus carteri, Ornithocheirus crassidens, Ornithocheirus dentatus, Ornithocheirus enchorhynchus, Ornithocheirus eurygnathus, Ornithocheirus oxyrhinus, Ornithocheirus scaphorhynchus, Ornithocheirus tenuirostris, Ornithocheirus xyphorhynchus, and Pterodactylus sagittirostris. Fourteen species are considered valid, and diagnoses are provided to all of them: Ornithocheirus simus, Lonchodraco giganteus comb. n., Lonchodraco machaerorhynchus comb. n., Lonchodraco(?) microdon comb. n., Coloborhynchus clavirostris, ‘Ornithocheirus’ capito, Camposipterus nasutus comb. n., Camposipterus(?) sedgwickii comb. n., Camposipterus(?) colorhinus comb. n., Cimoliopterus cuvieri comb. n., ‘Ornithocheirus’ polyodon, ‘Ornithocheirus’ platystomus, ‘Pterodactylus’ daviesii, and ‘Ornithocheirus’ denticulatus. These species are referred in the genera Ornithocheirus, Lonchodraco gen. n., Coloborhynchus, Cimoliopterus gen. n., and Camposipterus gen. n., but additional genera are probably present, as indicated by the use of single quotation marks throughout the text. A cladistic analysis demonstrates that Anhangueridae lies within a newly recognized clade, here named Anhangueria, which also includes the genera Cearadactylus, Brasileodactylus, Ludodactylus, and Camposipterus. The anhanguerian ‘Cearadactylus’ ligabuei belongs to a different genus than Cearadactylus atrox. Lonchodraconidae fam. n. (more or less equivalent to Lonchodectidae sensu Unwin 2001) is a monophyletic entity, but its exact phylogenetic position remains uncertain, as is the case of Ornithocheirus simus. Therefore, it is proposed that Ornithocheiridae should be constricted to its type species and thus is redundant. Other taxa previously referred as “ornithocheirids” are discussed in light of the revised taxonomy. PMID:23794925

  18. An Ornithopod-Dominated Tracksite from the Lower Cretaceous Jiaguan Formation (Barremian–Albian) of Qijiang, South-Central China: New Discoveries, Ichnotaxonomy, Preservation and Palaeoecology

    PubMed Central

    Xing, Lida; Lockley, Martin G.; Marty, Daniel; Zhang, Jianping; Wang, Yan; Klein, Hendrik; McCrea, Richard T.; Buckley, Lisa G.; Belvedere, Matteo; Mateus, Octávio; Gierliński, Gerard D.; Piñuela, Laura; Persons, W. Scott; Wang, Fengping; Ran, Hao; Dai, Hui; Xie, Xianming

    2015-01-01

    The historically-famous Lotus Fortress site, a deep 1.5–3.0-meter-high, 200-meter-long horizonal notch high up in near-vertical sandstone cliffs comprising the Cretaceous Jiaguan Formation, has been known since the 13th Century as an impregnable defensive position. The site is also extraordinary for having multiple tetrapod track-bearing levels, of which the lower two form the floor of part of the notch, and yield very well preserved asseamblages of ornithopod, bird (avian theropod) and pterosaur tracks. Trackway counts indicate that ornithopods dominate (69%) accounting for at least 165 trackmakers, followed by bird (18%), sauropod (10%), and pterosaur (3%). Previous studies designated Lotus Fortress as the type locality of Caririchnium lotus and Wupus agilis both of which are recognized here as valid ichnotaxa. On the basis of multiple parallel trackways both are interpreted as representing the trackways of gregarious species. C. lotus is redescribed here in detail and interpreted to indicate two age cohorts representing subadults that were sometimes bipedal and larger quadrupedal adults. Two other previously described dinosaurian ichnospecies, are here reinterpreted as underprints and considered nomina dubia. Like a growing number of significant tetrapod tracksites in China the Lotus Fortress site reveals new information about the composition of tetrapod faunas from formations in which the skeletal record is sparse. In particular, the site shows the relatively high abundance of Caririchium in a region where saurischian ichnofaunas are often dominant. It is also the only site known to have yielded Wupus agilis. In combination with information from other tracksites from the Jiaguan formation and other Cretaceous formations in the region, the track record is proving increasingly impotant as a major source of information on the vertebrate faunas of the region. The Lotus Fortress site has been developed as a spectacular, geologically-, paleontologically- and a culturally-significant destination within Qijiang National Geological Park. PMID:26492525

  19. An Ornithopod-Dominated Tracksite from the Lower Cretaceous Jiaguan Formation (Barremian-Albian) of Qijiang, South-Central China: New Discoveries, Ichnotaxonomy, Preservation and Palaeoecology.

    PubMed

    Xing, Lida; Lockley, Martin G; Marty, Daniel; Zhang, Jianping; Wang, Yan; Klein, Hendrik; McCrea, Richard T; Buckley, Lisa G; Belvedere, Matteo; Mateus, Octávio; Gierliński, Gerard D; Piñuela, Laura; Persons, W Scott; Wang, Fengping; Ran, Hao; Dai, Hui; Xie, Xianming

    2015-01-01

    The historically-famous Lotus Fortress site, a deep 1.5-3.0-meter-high, 200-meter-long horizonal notch high up in near-vertical sandstone cliffs comprising the Cretaceous Jiaguan Formation, has been known since the 13th Century as an impregnable defensive position. The site is also extraordinary for having multiple tetrapod track-bearing levels, of which the lower two form the floor of part of the notch, and yield very well preserved asseamblages of ornithopod, bird (avian theropod) and pterosaur tracks. Trackway counts indicate that ornithopods dominate (69%) accounting for at least 165 trackmakers, followed by bird (18%), sauropod (10%), and pterosaur (3%). Previous studies designated Lotus Fortress as the type locality of Caririchnium lotus and Wupus agilis both of which are recognized here as valid ichnotaxa. On the basis of multiple parallel trackways both are interpreted as representing the trackways of gregarious species. C. lotus is redescribed here in detail and interpreted to indicate two age cohorts representing subadults that were sometimes bipedal and larger quadrupedal adults. Two other previously described dinosaurian ichnospecies, are here reinterpreted as underprints and considered nomina dubia. Like a growing number of significant tetrapod tracksites in China the Lotus Fortress site reveals new information about the composition of tetrapod faunas from formations in which the skeletal record is sparse. In particular, the site shows the relatively high abundance of Caririchium in a region where saurischian ichnofaunas are often dominant. It is also the only site known to have yielded Wupus agilis. In combination with information from other tracksites from the Jiaguan formation and other Cretaceous formations in the region, the track record is proving increasingly impotant as a major source of information on the vertebrate faunas of the region. The Lotus Fortress site has been developed as a spectacular, geologically-, paleontologically- and a culturally-significant destination within Qijiang National Geological Park.

  20. Review of taxonomy, geographic distribution, and paleoenvironments of Azhdarchidae (Pterosauria)

    PubMed Central

    Averianov, Alexander

    2014-01-01

    Abstract The taxonomy, geographic distribution, and paleoenvironmental context of azhdarchid pterosaurs are reviewed. All purported pteranodontid, tapejarid, and azhdarchid specimens from the Cenomanian Kem Kem beds of Morocco are referred to a single azhdarchid taxon, Alanqa saharica. The four proposed autapomorphies of Eurazhdarcho langendorfensis from the lower Maastrichtian Sebeş Formation of Romania are based on misinterpretations of material and this taxon is likely a subjective junior synonym of Hatzegopteryx thambema. Among 54 currently reported azhdarchid occurrences (51 skeletal remains and 3 tracks) 13% are from lacustrine deposits, 17% from fluvial plain deposits, 17% from coastal plain deposits, 18% from estuarine and lagoonal deposits, and 35% from costal marine deposits. Azhdarchids likely inhabited a variety of environments, but were abundant near large lakes and rivers and most common in nearshore marine paleoenvironments. PMID:25152671

  1. Evolution of dinosaur epidermal structures.

    PubMed

    Barrett, Paul M; Evans, David C; Campione, Nicolás E

    2015-06-01

    Spectacularly preserved non-avian dinosaurs with integumentary filaments/feathers have revolutionized dinosaur studies and fostered the suggestion that the dinosaur common ancestor possessed complex integumentary structures homologous to feathers. This hypothesis has major implications for interpreting dinosaur biology, but has not been tested rigorously. Using a comprehensive database of dinosaur skin traces, we apply maximum-likelihood methods to reconstruct the phylogenetic distribution of epidermal structures and interpret their evolutionary history. Most of these analyses find no compelling evidence for the appearance of protofeathers in the dinosaur common ancestor and scales are usually recovered as the plesiomorphic state, but results are sensitive to the outgroup condition in pterosaurs. Rare occurrences of ornithischian filamentous integument might represent independent acquisitions of novel epidermal structures that are not homologous with theropod feathers. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  2. Evolution of birds: ichthyosaur integumental fibers conform to dromaeosaur protofeathers.

    PubMed

    Lingham-Soliar, Theagarten

    2003-09-01

    Filamentous integumentary structures have been reported as protofeathers in dromaeosaurs (non-avian dinosaurs). This hypothesis is considered against data on the complex architecture of dermal and subdermal collagenous fibers widely prevalent in living and extinct animals. Ichthyosaur integumental fibers, as dromaeosaur "protofeathers", are the most external structures preserved. Marked similarities are shown in branching patterns of these fibers compared with those of the dromaeosaur Sinornithosaurus; hence distinguishing between aberrant and primary features is difficult. Analysis of a pterosaur specimen shows that bent and straight fibers on the wings have functional implications. The fibers conform to the twofold shape of collagen and contradict the notion that bent integumental structures in the dinosaur Sinosauropteryx indicate softness and pliability. A suggestion also concerning Sinosauropteryx is that integumental structures with darker edges, compared with the middle, imply that they were hollow. Investigation of a similar condition in an ichthyosaur shows that it is more likely a consequence of mineralization. Dermal collagen fibers in, for example, sharks, dolphins, snakes, and turtles are shown to be grouped in bundles of varying sizes. Degradation of the dermis results in the breakdown of the fiber bundles and formation of myriad patterns of the disrupted fibers, as noted in decomposed dolphin skin. The overall findings of the study are that the thesis of dinosaur "protofeathers" requires more substantial support than exists at present.

  3. Fossil Liposcelididae and the lice ages (Insecta: Psocodea)

    PubMed Central

    Grimaldi, David; Engel, Michael S

    2005-01-01

    Fossilized, winged adults belonging to the psocopteran family Liposcelididae are reported in amber from the mid-Cretaceous (ca 100 Myr) of Myanmar (described as Cretoscelis burmitica, gen. et sp. n.) and the Miocene (ca 20 Myr) of the Dominican Republic (Belaphopsocus dominicus sp. n.). Cretoscelis is an extinct sister group to all other Liposcelididae and the family is the free-living sister group to the true lice (order Phthiraptera, all of which are ectoparasites of birds and mammals). A phylogenetic hypothesis of relationships among genera of Liposcelididae, including fossils, reveals perfect correspondence between the chronology of fossils and cladistic rank of taxa. Lice and Liposcelididae minimally diverged 100 Myr, perhaps even in the earliest Cretaceous 145 Myr or earlier, in which case the hosts of lice would have been early mammals, early birds and possibly other feathered theropod dinosaurs, as well as haired pterosaurs. PMID:16537135

  4. Morphology predicts species' functional roles and their degree of specialization in plant-frugivore interactions.

    PubMed

    Dehling, D Matthias; Jordano, Pedro; Schaefer, H Martin; Böhning-Gaese, Katrin; Schleuning, Matthias

    2016-01-27

    Species' functional roles in key ecosystem processes such as predation, pollination or seed dispersal are determined by the resource use of consumer species. An interaction between resource and consumer species usually requires trait matching (e.g. a congruence in the morphologies of interaction partners). Species' morphology should therefore determine species' functional roles in ecological processes mediated by mutualistic or antagonistic interactions. We tested this assumption for Neotropical plant-bird mutualisms. We used a new analytical framework that assesses a species's functional role based on the analysis of the traits of its interaction partners in a multidimensional trait space. We employed this framework to test (i) whether there is correspondence between the morphology of bird species and their functional roles and (ii) whether morphologically specialized birds fulfil specialized functional roles. We found that morphological differences between bird species reflected their functional differences: (i) bird species with different morphologies foraged on distinct sets of plant species and (ii) morphologically distinct bird species fulfilled specialized functional roles. These findings encourage further assessments of species' functional roles through the analysis of their interaction partners, and the proposed analytical framework facilitates a wide range of novel analyses for network and community ecology. © 2016 The Author(s).

  5. Global study of holistic morphological effectors in the budding yeast Saccharomyces cerevisiae.

    PubMed

    Suzuki, Godai; Wang, Yang; Kubo, Karen; Hirata, Eri; Ohnuki, Shinsuke; Ohya, Yoshikazu

    2018-02-20

    The size of the phenotypic effect of a gene has been thoroughly investigated in terms of fitness and specific morphological traits in the budding yeast Saccharomyces cerevisiae, but little is known about gross morphological abnormalities. We identified 1126 holistic morphological effectors that cause severe gross morphological abnormality when deleted, and 2241 specific morphological effectors with weak holistic effects but distinctive effects on yeast morphology. Holistic effectors fell into many gene function categories and acted as network hubs, affecting a large number of morphological traits, interacting with a large number of genes, and facilitating high protein expression. Holistic morphological abnormality was useful for estimating the importance of a gene to morphology. The contribution of gene importance to fitness and morphology could be used to efficiently classify genes into functional groups. Holistic morphological abnormality can be used as a reproducible and reliable gene feature for high-dimensional morphological phenotyping. It can be used in many functional genomic applications.

  6. Evolutionary flight and enabling smart actuator devices

    NASA Astrophysics Data System (ADS)

    Manzo, Justin; Garcia, Ephrahim

    2007-04-01

    Recent interest in morphing vehicles with multiple, optimized configurations has led to renewed research on biological flight. The flying vertebrates - birds, bats, and pterosaurs - all made or make use of various morphing devices to achieve lift to suit rapidly changing flight demands, including maneuvers as complex as perching and hovering. The first part of this paper will discuss these devices, with a focus on the morphing elements and structural strong suits of each creature. Modern flight correlations to these devices will be discussed and analyzed as valid adaptations of these evolutionary traits. The second part of the paper will focus on the use of active joint structures for use in morphing aircraft devices. Initial work on smart actuator devices focused on NASA Langley's Hyper-Elliptical Cambered Span (HECS) wing platform, which led to development of a discretized spanwise curvature effector. This mechanism uses shape memory alloy (SMA) as the sole morphing actuator, allowing fast rotation with lightweight components at the expense of energy inefficiency. Phase two of morphing actuator development will add an element of active rigidity to the morphing structure, in the form of shape memory polymer (SMP). Employing a composite structure of polymer and alloy, this joint will function as part of a biomimetic morphing actuator system in a more energetically efficient manner. The joint is thermally actuated to allow compliance on demand and rigidity in the nominal configuration. Analytical and experimental joint models are presented, and potential applications on a bat-wing aircraft structure are outlined.

  7. Malagasy cichlids differentially limit impacts of body shape evolution on oral jaw functional morphology.

    PubMed

    Martinez, Christopher M; Sparks, John S

    2017-09-01

    Patterns of trait covariation, such as integration and modularity, are vital factors that influence the evolution of vertebrate body plans. In functional systems, decoupling of morphological modules buffers functional change in one trait by reducing correlated variation with another. However, for complex morphologies with many-to-one mapping of form to function (MTOM), resistance to functional change may also be achieved by constraining morphological variation within a functionally stable region of morphospace. For this research, we used geometric morphometrics to evaluate the evolution of body shape and its relationship with jaw functional morphology in two independent radiations of endemic Malagasy cichlid (Teleostei: Cichlidae). Our results suggested that the two subfamilies used different strategies to mitigate impacts of body shape variation on a metric of jaw function, maxillary kinematic transmission (MKT): (1) modularity between cranial and postcranial morphologies, and (2) integration of body and jaw evolution, with jaw morphologies varying in a manner that limits change in MKT. This research shows that, unlike modularity, MTOM allows traits to retain strong evolutionary covariation while still reducing impacts on functionality. These results suggest that MTOM, and its influence on the evolution of correlated traits, is likely much more widespread than is currently understood. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  8. Functional restoration of cirrhotic liver after partial hepatectomy in the rat.

    PubMed

    Hashimoto, Masaji; Watanabe, Goro

    2005-01-01

    Although cirrhosis is the terminal stage of various liver diseases, thanks to recent advances one might eliminate some causes of liver damage. Liver has a potent regeneration capacity. It is important to evaluate the regenerating cirrhotic liver after partial hepatectomy, morphologically and functionally, in the long term. We evaluated the functional capacity of the rat liver rendered cirrhotic by orally administered thioacetamide, and examined the correlation between morphological and functional restoration after 2/3 hepatectomy in comparison with hepatectomized normal rats and sham-operated cirrhotic rats. Morphological restoration was evaluated by remnant liver weight, proliferating cell nuclear antigen labeling index, and fibrosis ratio. Functional restoration was evaluated by the indocyanine green disappearance rate and aminopyrine clearance. Cirrhotic rats were functionally deteriorated in comparison with the normal rats. Morphological restoration in cirrhotic rats was delayed in comparison with normal rats. Functional restoration after 2/3 hepatectomy was advanced in comparison with morphological restoration. In comparison with sham-operated cirrhotic rats, functional restoration of the cirrhotic liver was accelerated by partial hepatectomy. In cirrhotic rats, functional restoration of the liver after 2/3 hepatectomy was advanced in comparison with morphological restoration. Partial hepatectomy seemed to promote functional restoration of the cirrhotic liver.

  9. Combining Multiobjective Optimization and Cluster Analysis to Study Vocal Fold Functional Morphology

    PubMed Central

    Palaparthi, Anil; Riede, Tobias

    2017-01-01

    Morphological design and the relationship between form and function have great influence on the functionality of a biological organ. However, the simultaneous investigation of morphological diversity and function is difficult in complex natural systems. We have developed a multiobjective optimization (MOO) approach in association with cluster analysis to study the form-function relation in vocal folds. An evolutionary algorithm (NSGA-II) was used to integrate MOO with an existing finite element model of the laryngeal sound source. Vocal fold morphology parameters served as decision variables and acoustic requirements (fundamental frequency, sound pressure level) as objective functions. A two-layer and a three-layer vocal fold configuration were explored to produce the targeted acoustic requirements. The mutation and crossover parameters of the NSGA-II algorithm were chosen to maximize a hypervolume indicator. The results were expressed using cluster analysis and were validated against a brute force method. Results from the MOO and the brute force approaches were comparable. The MOO approach demonstrated greater resolution in the exploration of the morphological space. In association with cluster analysis, MOO can efficiently explore vocal fold functional morphology. PMID:24771563

  10. From damselflies to pterosaurs: how burst and sustainable flight performance scale with size.

    PubMed

    Marden, J H

    1994-04-01

    Recent empirical data for short-burst lift and power production of flying animals indicate that mass-specific lift and power output scale independently (lift) or slightly positively (power) with increasing size. These results contradict previous theory, as well as simple observation, which argues for degradation of flight performance with increasing size. Here, empirical measures of lift and power during short-burst exertion are combined with empirically based estimates of maximum muscle power output in order to predict how burst and sustainable performance scale with body size. The resulting model is used to estimate performance of the largest extant flying birds and insects, along with the largest flying animals known from fossils. These estimates indicate that burst flight performance capacities of even the largest extinct fliers (estimated mass 250 kg) would allow takeoff from the ground; however, limitations on sustainable power output should constrain capacity for continuous flight at body sizes exceeding 0.003-1.0 kg, depending on relative wing length and flight muscle mass.

  11. Biotic association and palaeoenvironmental reconstruction of the "Loma del Pterodaustro" fossil site (Early Cretaceous, Argentina)

    USGS Publications Warehouse

    Chiappe, L.; Rivarola, D.; Cione, A.; Fregenal-Martinez, M.; Sozzi, H.; Buatois, L.; Gallego, O.; Laza, J.; Romero, E.; Lopez-Arbarello, A.; Buscalioni, A.; Marsicano, C.; Adamonis, S.; Ortega, F.; McGehee, S.; Di, Iorio O.

    1998-01-01

    A sedimentological analysis of the basal section of the Early Cretaceous, lacustrine Lagarcito Formation at "Loma del Pterodaustro" (San Luis, Argentina) and a summary of its biological components are presented. Three sedimentological facies can be recognized in the basal sequence of the Lagarcito Formation. Fossil remains are particularly abundant in laminated claystones of a facies interpreted as deposits formed in offshore areas of the lake. The preservation of delicate structures allows recognition of these deposits as a Konservat Lagersta??tte. Up to now, rocks at "Loma del Pterodaustro" have yielded plants, conchostracans, semionotid and pleuropholid fishes, pterodactyloid pterosaurs, and a variety of invertebrate traces. The chronology of the Lagarcito Formation is discussed and it is concluded that this unit is of Albian age. The palaeoenvironment of deposition of the basal sequence of the Lagarcito Formation at "Loma del Pterodaustro" is interpreted as a perennial, shallow lake developed within an alluvial plain, under semiarid climatic conditions.

  12. Morphological and functional diversity in therizinosaur claws and the implications for theropod claw evolution.

    PubMed

    Lautenschlager, Stephan

    2014-06-22

    Therizinosaurs are a group of herbivorous theropod dinosaurs from the Cretaceous of North America and Asia, best known for their iconically large and elongate manual claws. However, among Therizinosauria, ungual morphology is highly variable, reflecting a general trend found in derived theropod dinosaurs (Maniraptoriformes). A combined approach of shape analysis to characterize changes in manual ungual morphology across theropods and finite-element analysis to assess the biomechanical properties of different ungual shapes in therizinosaurs reveals a functional diversity related to ungual morphology. While some therizinosaur taxa used their claws in a generalist fashion, other taxa were functionally adapted to use the claws as grasping hooks during foraging. Results further indicate that maniraptoriform dinosaurs deviated from the plesiomorphic theropod ungual morphology resulting in increased functional diversity. This trend parallels modifications of the cranial skeleton in derived theropods in response to dietary adaptation, suggesting that dietary diversification was a major driver for morphological and functional disparity in theropod evolution.

  13. The relevance of morphology for habitat use and locomotion in two species of wall lizards

    NASA Astrophysics Data System (ADS)

    Gomes, Verónica; Carretero, Miguel A.; Kaliontzopoulou, Antigoni

    2016-01-01

    Understanding if morphological differences between organisms that occupy different environments are associated to differences in functional performance can suggest a functional link between environmental and morphological variation. In this study we examined three components of the ecomorphological paradigm - morphology, locomotor performance and habitat use - using two syntopic wall lizards endemic to the Iberian Peninsula as a case study to establish whether morphological variation is associated with habitat use and determine the potential relevance of locomotor performance for such an association. Differences in habitat use between both lizards matched patterns of morphological variation. Indeed, individuals of Podarcis guadarramae lusitanicus, which are more flattened, used more rocky environments, whereas Podarcis bocagei, which have higher heads, used more vegetation than rocks. These patterns translated into a significant association between morphology and habitat use. Nevertheless, the two species were only differentiated in some of the functional traits quantified, and locomotor performance did not exhibit an association with morphological traits. Our results suggest that the link between morphology and habitat use is mediated by refuge use, rather than locomotor performance, in this system, and advise caution when extrapolating morphology-performance-environment associations across organisms.

  14. Osteological and Soft-Tissue Evidence for Pneumatization in the Cervical Column of the Ostrich (Struthio camelus) and Observations on the Vertebral Columns of Non-Volant, Semi-Volant and Semi-Aquatic Birds

    PubMed Central

    Apostolaki, Naomi E.; Rayfield, Emily J.; Barrett, Paul M.

    2015-01-01

    Postcranial skeletal pneumaticity (PSP) is a condition most notably found in birds, but that is also present in other saurischian dinosaurs and pterosaurs. In birds, skeletal pneumatization occurs where bones are penetrated by pneumatic diverticula, membranous extensions that originate from air sacs that serve in the ventilation of the lung. Key questions that remain to be addressed include further characterizing (1) the skeletal features that can be used to infer the presence/absence and extent of PSP in birds and non-avian dinosaurs, and (2) the association between vertebral laminae and specific components of the avian respiratory system. Previous work has used vertebral features such as pneumatic foramina, fossae, and laminae to identify/infer the presence of air sacs and diverticula, and to discuss the range of possible functions of such features. Here, we tabulate pneumatic features in the vertebral column of 11 avian taxa, including the flightless ratites and selected members of semi-volant and semi-aquatic Neornithes. We investigate the associations of these osteological features with each other and, in the case of Struthio camelus, with the specific presence of pneumatic diverticula. We find that the mere presence of vertebral laminae does not indicate the presence of skeletal pneumaticity, since laminae are not always associated with pneumatic foramina or fossae. Nevertheless, laminae are more strongly developed when adjacent to foramina or fossae. In addition, membranous air sac extensions and adjacent musculature share the same attachment points on the vertebrae, rendering the use of such features for reconstructing respiratory soft tissue features ambiguous. Finally, pneumatic diverticula attach to the margins of laminae, foramina, and/or fossae prior to their intraosseous course. Similarities in PSP distribution among the examined taxa are concordant with their phylogenetic interrelationships. The possible functions of PSP are discussed in brief, based upon variation in the extent of PSP between taxa with differing ecologies. PMID:26649745

  15. Sexing California Clapper Rails using morphological measurements

    USGS Publications Warehouse

    Overton, Cory T.; Casazza, Michael L.; Takekawa, John Y.; Rohmer, Tobias M.

    2009-01-01

    California Clapper Rails (Rallus longirostris obsoletus) have monomorphic plumage, a trait that makes identification of sex difficult without extensive behavioral observation or genetic testing. Using 31 Clapper Rails (22 females, 9 males), caught in south San Francisco Bay, CA, and using easily measurable morphological characteristics, we developed a discriminant function to distinguish sex. We then validated this function on 33 additional rails. Seven morphological measurements were considered, resulting in three which were selected in the discriminate function: culmen length, tarsometatarsus length, and flat wing length. We had no classification errors for the development or testing datasets either with resubstitution or cross-validation procedures. Male California Clapper Rails were 6-22% larger than females for individual morphological traits, and the largest difference was in body mass.  Variables in our discriminant function closely match variables developed for sexing Clapper Rails of Gulf Coast populations. However, a universal discriminant function to sex all Clapper Rail subspecies is not likely because of large and inconsistent differences in morphological traits among subspecies. 

  16. Does morphological convergence imply functional similarity? A test using the evolution of quadrupedalism in ornithischian dinosaurs.

    PubMed

    Maidment, Susannah C R; Barrett, Paul M

    2012-09-22

    Convergent morphologies are thought to indicate functional similarity, arising because of a limited number of evolutionary or developmental pathways. Extant taxa displaying convergent morphologies are used as analogues to assess function in extinct taxa with similar characteristics. However, functional studies of extant taxa have shown that functional similarity can arise from differing morphologies, calling into question the paradigm that form and function are closely related. We test the hypothesis that convergent skeletal morphology indicates functional similarity in the fossil record using ornithischian dinosaurs. The rare transition from bipedality to quadrupedality occurred at least three times independently in this clade, resulting in a suite of convergent osteological characteristics. We use homology rather than analogy to provide an independent line of evidence about function, reconstructing soft tissues using the extant phylogenetic bracket and applying biomechanical concepts to produce qualitative assessments of muscle leverage. We also optimize character changes to investigate the sequence of character acquisition. Different lineages of quadrupedal ornithischian dinosaur stood and walked differently from each other, falsifying the hypothesis that osteological convergence indicates functional similarity. The acquisition of features correlated with quadrupedalism generally occurs in the same order in each clade, suggesting underlying developmental mechanisms that act as evolutionary constraints.

  17. Quantification of texture match of the skin graft: function and morphology of the stratum corneum.

    PubMed

    Inoue, K; Matsumoto, K

    1986-01-01

    In an attempt to analyze the "texture match" of grafted skin, functional and morphological aspects of the stratum corneum were studied using the Skin Surface Hydrometer (IBS Inc.) and the scanning electron microscope. The results showed that hygroscopicity and water holding capacity of the stratum corneum played a crucial role in making the skin surface soft and smooth. Morphologically there were regional differences in the surface pattern and the mean area of corneocytes, suggesting that these differences affect skin texture. It is suggested that the present functional and morphological studies of the stratum corneum can provide a quantitative measure of the "texture match".

  18. Floral polymorphism in Chamaecrista flexuosa (Fabaceae-Caesalpinioideae): a possible case of atypical enantiostyly?

    PubMed Central

    Almeida, Natan Messias; Castro, Cibele Cardoso; Leite, Ana Virgínia; Novo, Reinaldo Rodrigo; Machado, Isabel Cristina

    2013-01-01

    Background and Aims Reciprocal herkogamy, including enantiostyly and heterostyly, involves reciprocity in the relative positions of the sexual elements within the flower. Such systems result in morphologically and, since pollen is deposited on and captured from different parts of the pollinator, functionally distinct floral forms. Deviations from the basic pattern may modify the functionality of these mechanisms. For heterostylous species, such deviations are generally related to environmental disturbances, pollination services and/or reduced numbers of one floral morph. Deviations for enantiostylous species have not yet been reported. This study aims to investigate enantiostyly in Chamaecrista flexuosa, in particular the presence of deviations from the standard form, in an area of coastal vegetation in north-east Brazil. Methods Observations and investigations of floral biology, the reproductive system, pollinator behaviour, floral morphology and morphometry were performed. Key Results In C. flexuosa flowers, anthers of different size but similar function are grouped. The flowers were self-compatible and set fruits after every treatment, except in the spontaneous self-pollination experiment, thereby indicating their dependence on pollen vectors. The flowers were pollinated by bees, especially Xylocopa cearensis and X. grisencens. Pollen is deposited and captured from the ventral portion of the pollinator's body. Variations in the spatial arrangement of floral elements allowed for the identification of floral morphs based on both morphological and functional criteria. Using morphological criteria, morphologically right (MR) and morphologically left (ML) floral morphs were identified. Three floral morphs were identified using functional criteria: functionally right (FR), functionally central (FC) and functionally left (FL). Combinations of morphologically and functionally defined morphs did not occur in equal proportions. There was a reduced frequency of the MR–FR combination. Conclusions The results indicate the occurrence of an atypical enantiostyly in C. flexuosa. This seems to improve reproductive success by increasing the efficiency of pollen deposition and capture. PMID:24026440

  19. Morphological and functional abnormalities of salience network in the early-stage of paranoid schizophrenia.

    PubMed

    Pu, Weidan; Li, Li; Zhang, Huiran; Ouyang, Xuan; Liu, Haihong; Zhao, Jingping; Li, Lingjiang; Xue, Zhimin; Xu, Ke; Tang, Haibo; Shan, Baoci; Liu, Zhening; Wang, Fei

    2012-10-01

    A salience network (SN), mainly composed of the anterior insula (AI) and anterior cingulate cortex (ACC), has been suggested to play an important role in salience attribution which has been proposed as central to the pathology of paranoid schizophrenia. The role of this SN in the pathophysiology of paranoid schizophrenia, however, still remains unclear. In the present study, voxel-based morphometry and resting-state functional connectivity analyses were combined to identify morphological and functional abnormalities in the proposed SN in the early-stage of paranoid schizophrenia (ESPS). Voxel-based morphometry and resting-state functional connectivity analyses were applied to 90 ESPS patients and 90 age- and sex-matched healthy controls (HC). Correlation analyses were performed to examine the relationships between various clinical variables and both gray matter morphology and functional connectivity within the SN in ESPS. Compared to the HC group, the ESPS group showed significantly reduced gray matter volume (GMV) in both bilateral AI and ACC. Moreover, significantly reduced functional connectivity within the SN sub-networks was identified in the ESPS group. These convergent morphological and functional deficits in SN were significantly associated with hallucinations. Additionally, illness duration correlated with reduced GMV in the left AI in ESPS. In conclusion, these findings provide convergent evidence for the morphological and functional abnormalities of the SN in ESPS. Moreover, the association of illness duration with the reduced GMV in the left AI suggests that the SN and the AI, in particular, may manifest progressive morphological changes that are especially important in the emergence of ESPS. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Mitochondrial morphology transitions and functions: implications for retrograde signaling?

    PubMed Central

    Picard, Martin; Shirihai, Orian S.; Gentil, Benoit J.

    2013-01-01

    In response to cellular and environmental stresses, mitochondria undergo morphology transitions regulated by dynamic processes of membrane fusion and fission. These events of mitochondrial dynamics are central regulators of cellular activity, but the mechanisms linking mitochondrial shape to cell function remain unclear. One possibility evaluated in this review is that mitochondrial morphological transitions (from elongated to fragmented, and vice-versa) directly modify canonical aspects of the organelle's function, including susceptibility to mitochondrial permeability transition, respiratory properties of the electron transport chain, and reactive oxygen species production. Because outputs derived from mitochondrial metabolism are linked to defined cellular signaling pathways, fusion/fission morphology transitions could regulate mitochondrial function and retrograde signaling. This is hypothesized to provide a dynamic interface between the cell, its genome, and the fluctuating metabolic environment. PMID:23364527

  1. Depth-related trends in morphological and functional diversity of demersal fish assemblages in the western Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Farré, Marc; Tuset, Víctor M.; Cartes, Joan E.; Massutí, Enric; Lombarte, Antoni

    2016-09-01

    The morphological and functional traits of fishes are key factors defining the ecological and biological habits of species within ecosystems. However, little is known about how the depth gradient affects these factors. In the present study, several demersal fish assemblages from the Balearic Islands (western Mediterranean Sea) along a wide depth range (40-2200 m) were morphologically, functionally and ecologically described. The morphological characterization of communities was performed using geometric morphometric methods, while the functional structures were obtained by the functional categorization of species and the application of principal coordinates analysis (PCoA). The results revealed that morphospaces presented less richness of body forms as depth increases, although they showed a progressive spreading of species toward the periphery, with a proliferation of more extreme body traits, demonstrating lower morphological redundancy. In addition, a trend toward the elongation of body shape was also observed with depth. Moreover, functional diversity increased with bathymetry up to 1400 m, where it sharply decreased downwards. This decrease was parallel to a progressive fall of H‧ (ecological diversity) up to 2200 m. Functional redundancy progressively decreased until the deepest assemblage (more constantly in the deeper levels), which was almost exclusively dominated by benthopelagic wandering species feeding on suprabenthos. Redundancy analysis (RDA) demonstrated that both morphological and functional spaces showed high variation along the bathymetric range. Mantel test indicated that the majority of species presented similar spatial distribution within the morphospace and functional space, although in the functional space the more abundant species were always located at the periphery. These results demonstrate that the assessment of the morpho-functional variation between marine communities helps to understand the processes that affect the structure and functioning of communities, such as resource partitioning, trophic interactions, or interspecific relationships within ecosystem such as coexistence and dominance.

  2. Multi-Parametric Analysis and Modeling of Relationships between Mitochondrial Morphology and Apoptosis

    PubMed Central

    Reis, Yara; Wolf, Thomas; Brors, Benedikt; Hamacher-Brady, Anne; Eils, Roland; Brady, Nathan R.

    2012-01-01

    Mitochondria exist as a network of interconnected organelles undergoing constant fission and fusion. Current approaches to study mitochondrial morphology are limited by low data sampling coupled with manual identification and classification of complex morphological phenotypes. Here we propose an integrated mechanistic and data-driven modeling approach to analyze heterogeneous, quantified datasets and infer relations between mitochondrial morphology and apoptotic events. We initially performed high-content, multi-parametric measurements of mitochondrial morphological, apoptotic, and energetic states by high-resolution imaging of human breast carcinoma MCF-7 cells. Subsequently, decision tree-based analysis was used to automatically classify networked, fragmented, and swollen mitochondrial subpopulations, at the single-cell level and within cell populations. Our results revealed subtle but significant differences in morphology class distributions in response to various apoptotic stimuli. Furthermore, key mitochondrial functional parameters including mitochondrial membrane potential and Bax activation, were measured under matched conditions. Data-driven fuzzy logic modeling was used to explore the non-linear relationships between mitochondrial morphology and apoptotic signaling, combining morphological and functional data as a single model. Modeling results are in accordance with previous studies, where Bax regulates mitochondrial fragmentation, and mitochondrial morphology influences mitochondrial membrane potential. In summary, we established and validated a platform for mitochondrial morphological and functional analysis that can be readily extended with additional datasets. We further discuss the benefits of a flexible systematic approach for elucidating specific and general relationships between mitochondrial morphology and apoptosis. PMID:22272225

  3. Linking fine root morphology, hydraulic functioning, and shade tolerance of trees

    USDA-ARS?s Scientific Manuscript database

    Understanding root traits and trade-offs in their functioning is important for understanding plant functioning in natural ecosystems as well as agricultural systems. The aim of the present study was to determine the relationship between root morphology and the hydraulic characteristics of fine roots...

  4. An integrative method for testing form–function linkages and reconstructed evolutionary pathways of masticatory specialization

    PubMed Central

    Tseng, Z. Jack; Flynn, John J.

    2015-01-01

    Morphology serves as a ubiquitous proxy in macroevolutionary studies to identify potential adaptive processes and patterns. Inferences of functional significance of phenotypes or their evolution are overwhelmingly based on data from living taxa. Yet, correspondence between form and function has been tested in only a few model species, and those linkages are highly complex. The lack of explicit methodologies to integrate form and function analyses within a deep-time and phylogenetic context weakens inferences of adaptive morphological evolution, by invoking but not testing form–function linkages. Here, we provide a novel approach to test mechanical properties at reconstructed ancestral nodes/taxa and the strength and direction of evolutionary pathways in feeding biomechanics, in a case study of carnivorous mammals. Using biomechanical profile comparisons that provide functional signals for the separation of feeding morphologies, we demonstrate, using experimental optimization criteria on estimation of strength and direction of functional changes on a phylogeny, that convergence in mechanical properties and degree of evolutionary optimization can be decoupled. This integrative approach is broadly applicable to other clades, by using quantitative data and model-based tests to evaluate interpretations of function from morphology and functional explanations for observed macroevolutionary pathways. PMID:25994295

  5. Paleoecology and Paleoenvironmental Interpretations of the Late Cretaceous Lower Cantwell Formation, Denali National Park, Alaska

    NASA Astrophysics Data System (ADS)

    Tomsich, C. S.; Salazar Jaramillo, S.; Jacobus, R. T.; McCarthy, P. J.; Fowell, S. J.; Fiorillo, A. R.

    2010-12-01

    The level of diversity of an ancient high-latitude fauna or flora is of interest not just for the study of species evolution and paleogeographic migration patterns, but also for the imminent response to an amplified climate change rate. Climate modelers thus focus increasingly on proxies of Polar Regions. A rich floral and faunal record indicative of a warm high-latitude paleoclimate is presently emerging from the late Campanian-Maastrichtian lower Cantwell Formation in Denali National Park, south-central Alaska. This thick (up to 4000m) alluvial fan succession was deposited during the latest accretionary phase of the Wrangellia terrane to the former southern margin of Alaska. Facies descriptions from outcrops near Sable Mountain and Polychrome Mountain record heterogeneous and laterally discontinuous lithologies characteristic of alluvial and marginal alluvial fan environments: braided channel, sandy channel, crevasse splay, sheetflood, floodplain, and lacustrine. Trace and plant fossils occur predominantly at lithological boundaries. The vertebrate fossil record encompasses tracks that can be attributed to fishes, pterosaurs, large and small non-avian theropods, birds, hadrosaurs, and ceratopsians. Hadrosaur footprints are abundant and record populations with multiple generations present. The pterosaur tracks constitute the northernmost fossil occurrence for these flying reptiles. Bird traces range from small, shore-wading bird tracks to those of a large crane-like bird. Diverse invertebrate tracks include freshwater bivalve, ostracode and gastropod trails, crayfish burrows, beetle and mole cricket tracks, wood borings and feeding traces on angiosperm leaves. Plant impression fossils represent dicotyledonous angiosperm leaves referable to nymphaealean, menispermoid, platanoid, trochodendroid and higher hamamelid groups; magnoliid seeds; diverse broad-leaved and blade-like monocot leaf fragments; the leafy shoots, leaves, cones, seeds and wood of cupressaceous and pinaceous conifers; fern fronds; and segments of Equisetites. A climate analysis (CLAMP) on 19 angiosperm morphotypes yields a mean annual temperature of 7.4°C, a warmest monthly mean of 17.1°C and a coldest monthly mean of -2.3°C. Growing season is estimated at 4.8 months. Results indicate a temperate, highly seasonal climate. Closely spaced tree rings in fossil conifer wood and minimal late wood growth suggest a short, rather abrupt ending growing season. The Cantwell flora bears a close resemblance to the late Maastrichtian Koryak flora in northeastern Russia and is characteristic of the Polar Broad-leaved Deciduous Forest that was widespread across the Arctic in the Late Cretaceous and early Tertiary. The late summer sunlight reduction likely limited growth. Rare root casts, a cast of an angiosperm tree stem, trunk impressions and lithified trunk wood provide a glimpse at the sub-boreal forest structure that has been considered one of the causes of amplified polar warming.

  6. The hippocampal formation: morphological changes induced by thyroid, gonadal and adrenal hormones.

    PubMed

    Gould, E; Woolley, C S; McEwen, B S

    1991-01-01

    The hippocampal formation is of considerable interest due to its proposed role in a number of important functions, including learning and memory processes. Manipulations of thyroid, gonadal and adrenal hormones have been shown to influence hippocampal physiology as well as learning and memory. The cellular events which underlie these hormone-induced functional changes are largely unexplored. However, studies suggest that hormonal manipulations during development and in adulthood result in dramatic morphological changes within the hippocampal formation. Because neuronal physiology has been suggested to depend upon neuronal morphology, we have been determining the morphologic sensitivity of hippocampal neurons to thyroid and steroid hormones in an effort to elucidate possible structural mechanisms to account for differences in hippocampal function. In this review, hormone-induced structural changes in the developing and adult hippocampal formation are discussed, with particular emphasis on their functional relevance. Sex differences, as well as the developmental effects of thyroid hormone and glucocorticoids, are described. Moreover, the effects of ovarian steroids, thyroid hormone and glucocorticoids on neuronal morphology in the hippocampal formation of the adult rat are reviewed. These hormone-induced structural changes may account, at least in part, for previously reported hormone-induced changes in hippocampal function.

  7. Secretin-stimulated MRI characterization of pancreatic morphology and function in patients with chronic pancreatitis.

    PubMed

    Madzak, Adnan; Olesen, Søren Schou; Haldorsen, Ingfrid Salvesen; Drewes, Asbjørn Mohr; Frøkjær, Jens Brøndum

    Chronic pancreatitis (CP) is characterized by abnormal pancreatic morphology and impaired endocrine and exocrine function. However, little is known about the relationship between pancreatic morphology and function, and also the association with the etiology and clinical manifestations of CP. The aim was to explore pancreatic morphology and function with advanced MRI in patients with CP and healthy controls (HC) METHODS: Eighty-two patients with CP and 22 HC were enrolled in the study. Morphological imaging parameters included pancreatic main duct diameter, gland volume, fat signal fraction and apparent diffusion coefficient (ADC) values. Functional secretin-stimulated MRI (s-MRI) parameters included pancreatic secretion (bowel fluid volume) and changes in pancreatic ADC value before and after secretin stimulation. Patients were classified according to the modified Cambridge and M-ANNHEIM classification system and fecal elastase was collected. All imaging parameters differentiated CP patients from HC; however, correlations between morphological and functional parameters in CP were weak. Patients with alcoholic and non-alcoholic etiology had comparable s-MRI findings. Fecal elastase was positively correlated to pancreatic gland volume (r = 0.68, P = 0.0016) and negatively correlated to Cambridge classification (r = -0.35, P < 0.001). Additionally, gland volume was negatively correlated to the duration of CP (r = -0.39, P < 0.001) and baseline ADC (r = -0.35, P = 0.027). When stratified by clinical stage (M-ANNHEIM), the pancreatic gland volume was significantly decreased in the severe stages of CP (P = 0.001). S-MRI provides detailed information about pancreatic morphology and function and represents a promising non-invasive imaging method to characterize pancreatic pathophysiology and may enable monitoring of disease progression in patients with CP. Copyright © 2017 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  8. [The child's brain: normal (unaltered) development and development altered by perinatal injury].

    PubMed

    Marín-Padilla, Miguel

    2013-09-06

    In this study we analyse some of the morphological and functional aspects of normal and altered development (the latter due to perinatal injury) in the child's brain. Both normal and altered development are developmental processes that progressively interconnect the different regions. The neuropathological development of subpial and periventricular haemorrhages, as well as that of white matter infarct, are analysed in detail. Any kind of brain damage causes a local lesion with possible remote repercussions. All the components (neurons, fibres, blood capillaries and neuroglias) of the affected region undergo alterations. Those that are destroyed are eliminated by the inflammatory process and those that survive are transformed. The pyramidal neurons with amputated apical dendrites are transformed and become stellate cells, the axonal terminals and those of the radial glial cells are regenerated and the region involved is reinnervated and revascularised with an altered morphology and function (altered local corticogenesis). The specific microvascular system of the grey matter protects its neurons from infarction of the white matter. Although it survives, the grey matter is left disconnected from the afferent and efferent fibres, amputated by the infarct with alterations affecting its morphology and possibly its functioning (altered local corticogenesis). Any local lesion can modify the morphological and functional development of remote regions that are functionally interconnected with it (altered remote corticogenesis). We suggest that any local brain injury can alter the morphology and functioning of the regions that are morphologically and functionally interconnected with it and thus end up affecting the child's neurological and psychological development. These changes can cross different regions of the brain (epileptic auras) and, if they eventually reach the motor region, will give rise to the motor storm that characterises epilepsy.

  9. Why are the seed cones of conifers so diverse at pollination?

    PubMed

    Losada, Juan M; Leslie, Andrew B

    2018-06-08

    Form and function relationships in plant reproductive structures have long fascinated biologists. Although the intricate associations between specific pollinators and reproductive morphology have been widely explored among animal-pollinated plants, the evolutionary processes underlying the diverse morphologies of wind-pollinated plants remain less well understood. Here we study how this diversity may have arisen by focusing on two conifer species in the pine family that have divergent reproductive cone morphologies at pollination. Standard histology methods, artificial wind pollination assays and phylogenetic analyses were used in this study. A detailed study of cone ontogeny in these species reveals that variation in the rate at which their cone scales mature means that pollination occurs at different stages in their development, and thus in association with different specific morphologies. Pollination experiments nevertheless indicate that both species effectively capture pollen. In wind-pollinated plants, morphological diversity may result from simple variation in development among lineages rather than selective pressures for any major differences in function or performance. This work also illustrates the broader importance of developmental context in understanding plant form and function relationships; because plant reproductive structures perform many different functions over their lifetime, subtle differences in development may dramatically alter the specific morphologies that they use to meet these demands.

  10. Brain Morphology Links Systemic Inflammation to Cognitive Function in Midlife Adults

    PubMed Central

    Marsland, Anna L.; Gianaros, Peter J.; Kuan, Dora C-H.; Sheu, Lei K.; Krajina, Katarina; Manuck, Stephen B.

    2015-01-01

    Background Inflammation is linked to cognitive decline in midlife, but the neural basis for this link is unclear. One possibility is that inflammation associates with adverse changes in brain morphology, which accelerates cognitive aging and later dementia risk. Clear evidence is lacking, however, regarding whether inflammation relates to cognition in midlife via changes in brain morphology. Accordingly, the current study examines whether associations of inflammation with cognitive function are mediated by variation in cortical gray matter volume among midlife adults. Methods Plasma levels of interleukin (IL)-6 and C-reactive protein (CRP), relatively stable markers of peripheral systemic inflammation, were assessed in 408 community volunteers aged 30–54 years. All participants underwent structural neuroimaging to assess global and regional brain morphology and completed neuropsychological tests sensitive to early changes in cognitive function. Measurements of brain morphology (regional tissue volumes and cortical thickness and surface area) were derived using Freesurfer. Results Higher peripheral inflammation was associated with poorer spatial reasoning, short term memory, verbal proficiency, learning and memory, and executive function, as well as lower cortical gray and white matter volumes, hippocampal volume and cortical surface area. Mediation models with age, sex and intracranial volume as covariates showed cortical gray matter volume to partially mediate the association of inflammation with cognitive performance. Exploratory analyses of body mass suggested that adiposity may be a source of the inflammation linking brain morphology to cognition. Conclusions Inflammation and adiposity might relate to cognitive decline via influences on brain morphology. PMID:25882911

  11. Polyploidy and the relationship between leaf structure and function: implications for correlated evolution of anatomy, morphology, and physiology in Brassica.

    PubMed

    Baker, Robert L; Yarkhunova, Yulia; Vidal, Katherine; Ewers, Brent E; Weinig, Cynthia

    2017-01-05

    Polyploidy is well studied from a genetic and genomic perspective, but the morphological, anatomical, and physiological consequences of polyploidy remain relatively uncharacterized. Whether these potential changes bear on functional integration or are idiosyncratic remains an open question. Repeated allotetraploid events and multiple genomic combinations as well as overlapping targets of artificial selection make the Brassica triangle an excellent system for exploring variation in the connection between plant structure (anatomy and morphology) and function (physiology). We examine phenotypic integration among structural aspects of leaves including external morphology and internal anatomy with leaf-level physiology among several species of Brassica. We compare diploid and allotetraploid species to ascertain patterns of phenotypic correlations among structural and functional traits and test the hypothesis that allotetraploidy results in trait disintegration allowing for transgressive phenotypes and additional evolutionary and crop improvement potential. Among six Brassica species, we found significant effects of species and ploidy level for morphological, anatomical and physiological traits. We identified three suites of intercorrelated traits in both diploid parents and allotetraploids: Morphological traits (such as leaf area and perimeter) anatomic traits (including ab- and ad- axial epidermis) and aspects of physiology. In general, there were more correlations between structural and functional traits for allotetraploid hybrids than diploid parents. Parents and hybrids did not have any significant structure-function correlations in common. Of particular note, there were no significant correlations between morphological structure and physiological function in the diploid parents. Increased phenotypic integration in the allotetraploid hybrids may be due, in part, to increased trait ranges or simply different structure-function relationships. Genomic and chromosomal instability in early generation allotetraploids may allow Brassica species to explore new trait space and potentially reach higher adaptive peaks than their progenitor species could, despite temporary fitness costs associated with unstable genomes. The trait correlations that disappear after hybridization as well as the novel trait correlations observed in allotetraploid hybrids may represent relatively evolutionarily labile associations and therefore could be ideal targets for artificial selection and crop improvement.

  12. The antagonistic modulation of Arp2/3 activity by N-WASP, WAVE2 and PICK1 defines dynamic changes in astrocyte morphology.

    PubMed

    Murk, Kai; Blanco Suarez, Elena M; Cockbill, Louisa M R; Banks, Paul; Hanley, Jonathan G

    2013-09-01

    Astrocytes exhibit a complex, branched morphology, allowing them to functionally interact with numerous blood vessels, neighboring glial processes and neuronal elements, including synapses. They also respond to central nervous system (CNS) injury by a process known as astrogliosis, which involves morphological changes, including cell body hypertrophy and thickening of major processes. Following severe injury, astrocytes exhibit drastically reduced morphological complexity and collectively form a glial scar. The mechanistic details behind these morphological changes are unknown. Here, we investigate the regulation of the actin-nucleating Arp2/3 complex in controlling dynamic changes in astrocyte morphology. In contrast to other cell types, Arp2/3 inhibition drives the rapid expansion of astrocyte cell bodies and major processes. This intervention results in a reduced morphological complexity of astrocytes in both dissociated culture and in brain slices. We show that this expansion requires functional myosin II downstream of ROCK and RhoA. Knockdown of the Arp2/3 subunit Arp3 or the Arp2/3 activator N-WASP by siRNA also results in cell body expansion and reduced morphological complexity, whereas depleting WAVE2 specifically reduces the branching complexity of astrocyte processes. By contrast, knockdown of the Arp2/3 inhibitor PICK1 increases astrocyte branching complexity. Furthermore, astrocyte expansion induced by ischemic conditions is delayed by PICK1 knockdown or N-WASP overexpression. Our findings identify a new morphological outcome for Arp2/3 activation in restricting rather than promoting outwards movement of the plasma membrane in astrocytes. The Arp2/3 regulators PICK1, and N-WASP and WAVE2 function antagonistically to control the complexity of astrocyte branched morphology, and this mechanism underlies the morphological changes seen in astrocytes during their response to pathological insult.

  13. Functional coupling constrains craniofacial diversification in Lake Tanganyika cichlids

    PubMed Central

    Tsuboi, Masahito; Gonzalez-Voyer, Alejandro; Kolm, Niclas

    2015-01-01

    Functional coupling, where a single morphological trait performs multiple functions, is a universal feature of organismal design. Theory suggests that functional coupling may constrain the rate of phenotypic evolution, yet empirical tests of this hypothesis are rare. In fish, the evolutionary transition from guarding the eggs on a sandy/rocky substrate (i.e. substrate guarding) to mouthbrooding introduces a novel function to the craniofacial system and offers an ideal opportunity to test the functional coupling hypothesis. Using a combination of geometric morphometrics and a recently developed phylogenetic comparative method, we found that head morphology evolution was 43% faster in substrate guarding species than in mouthbrooding species. Furthermore, for species in which females were solely responsible for mouthbrooding the males had a higher rate of head morphology evolution than in those with bi-parental mouthbrooding. Our results support the hypothesis that adaptations resulting in functional coupling constrain phenotypic evolution. PMID:25948565

  14. Functional coupling constrains craniofacial diversification in Lake Tanganyika cichlids.

    PubMed

    Tsuboi, Masahito; Gonzalez-Voyer, Alejandro; Kolm, Niclas

    2015-05-01

    Functional coupling, where a single morphological trait performs multiple functions, is a universal feature of organismal design. Theory suggests that functional coupling may constrain the rate of phenotypic evolution, yet empirical tests of this hypothesis are rare. In fish, the evolutionary transition from guarding the eggs on a sandy/rocky substrate (i.e. substrate guarding) to mouthbrooding introduces a novel function to the craniofacial system and offers an ideal opportunity to test the functional coupling hypothesis. Using a combination of geometric morphometrics and a recently developed phylogenetic comparative method, we found that head morphology evolution was 43% faster in substrate guarding species than in mouthbrooding species. Furthermore, for species in which females were solely responsible for mouthbrooding the males had a higher rate of head morphology evolution than in those with bi-parental mouthbrooding. Our results support the hypothesis that adaptations resulting in functional coupling constrain phenotypic evolution.

  15. Developmental change in the function of movement systems: transition of the pectoral fins between respiratory and locomotor roles in zebrafish.

    PubMed

    Hale, Melina E

    2014-07-01

    An animal may experience strikingly different functional demands on its body's systems through development. One way of meeting those demands is with temporary, stage-specific adaptations. This strategy requires the animal to develop appropriate morphological states or physiological pathways that address transient functional demands as well as processes that transition morphology, physiology, and function to that of the mature form. Recent research on ray-finned (actinopterygian) fishes is a developmental transition in function of the pectoral fin, thereby providing an opportunity to examine how an organism copes with changes in the roles of its morphology between stages of its life history. As larvae, zebrafish alternate their pectoral fins in coordination with the body axis during slow swimming. The movements of their fins do not appear to contribute to the production of thrust or to stability but instead exchange fluid near the body for cutaneous respiration. The morphology of the larval fin includes a simple stage-specific endoskeletal disc overlaid by fan-shaped adductor and abductor muscles. In contrast, the musculoskeletal system of the mature fin consists of a suite of muscles and bones. Fins are extended laterally during slow swimming of the adult, without the distinct, high-amplitude left-right fin alternation of the larval fin. The morphological and functional transition of the pectoral fin occurs through juvenile development. Early in this period, at about 3 weeks post-fertilization, the gills take over respiratory function, presumably freeing the fins for other roles. Kinematic data suggest that the loss of respiratory function does not lead to a rapid switch in patterns of fin movement but rather that both morphology and movement transition gradually through the juvenile stage of development. Studies relating structure to function often focus on stable systems that are arguably well adapted for the roles they play. Examining how animals navigate transitional periods, when the link of structure to function may be less taut, provides insight both into how animals contend with such change and into the developmental pressures that shape mature form and function. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology.

  16. Functional morphology of the tetra fish Astyanax lacustris differs between divergent habitats in the Pantanal wetlands.

    PubMed

    Costa-Pereira, R; Araújo, M S; Paiva, F; Tavares, L E R

    2016-08-01

    This study investigated whether the body morphology of the tetra fish Astyanax lacustris (previously Astyanax asuncionensis) varied between populations inhabiting one lagoon (a lentic, shallow environment, with great habitat complexity created by aquatic macrophytes) and an adjacent river (a deeper, lotic environment where aquatic macrophytes are scarce) in a seasonally flooded wetland, despite population mixing during the wet season. Morphological differences matched a priori predictions of the theory relating functional body morphology and swimming performance in fishes between lagoon and river habitats. Observed morphological variation could have resulted from adaptive habitat choice by tetras, predation by piscivores and adaptive phenotypic plasticity during development. © 2016 The Fisheries Society of the British Isles.

  17. Morphological features of IFN-γ–stimulated mesenchymal stromal cells predict overall immunosuppressive capacity

    PubMed Central

    Klinker, Matthew W.; Marklein, Ross A.; Lo Surdo, Jessica L.; Wei, Cheng-Hong

    2017-01-01

    Human mesenchymal stromal cell (MSC) lines can vary significantly in their functional characteristics, and the effectiveness of MSC-based therapeutics may be realized by finding predictive features associated with MSC function. To identify features associated with immunosuppressive capacity in MSCs, we developed a robust in vitro assay that uses principal-component analysis to integrate multidimensional flow cytometry data into a single measurement of MSC-mediated inhibition of T-cell activation. We used this assay to correlate single-cell morphological data with overall immunosuppressive capacity in a cohort of MSC lines derived from different donors and manufacturing conditions. MSC morphology after IFN-γ stimulation significantly correlated with immunosuppressive capacity and accurately predicted the immunosuppressive capacity of MSC lines in a validation cohort. IFN-γ enhanced the immunosuppressive capacity of all MSC lines, and morphology predicted the magnitude of IFN-γ–enhanced immunosuppressive activity. Together, these data identify MSC morphology as a predictive feature of MSC immunosuppressive function. PMID:28283659

  18. Molecular basis of crystal morphology-dependent adhesion behavior of mefenamic acid during tableting.

    PubMed

    Waknis, Vrushali; Chu, Elza; Schlam, Roxana; Sidorenko, Alexander; Badawy, Sherif; Yin, Shawn; Narang, Ajit S

    2014-01-01

    The molecular basis of crystal surface adhesion leading to sticking was investigated by exploring the correlation of crystal adhesion to oxidized iron coated atomic force microscope (AFM) tips and bulk powder sticking behavior during tableting of two morphologically different crystals of a model drug, mefenamic acid (MA), to differences in their surface functional group orientation and energy. MA was recrystallized into two morphologies (plates and needles) of the same crystalline form. Crystal adhesion to oxidized iron coated AFM tips and bulk powder sticking to tablet punches was assessed using a direct compression formulation. Surface functional group orientation and energies on crystal faces were modeled using Accelrys Material Studio software. Needle-shaped morphology showed higher sticking tendency than plates despite similar particle size. This correlated with higher crystal surface adhesion of needle-shaped morphology to oxidized iron coated AFM probe tips, and greater surface energy and exposure of polar functional groups. Higher surface exposure of polar functional groups correlates with higher tendency to stick to metal surfaces and AFM tips, indicating involvement of specific polar interactions in the adhesion behavior. In addition, an AFM method is identified to prospectively assess the risk of sticking during the early stages of drug development.

  19. Ontogeny and function of the fifth limb in Cypridocopain ostracods.

    PubMed

    Kaji, Tomonari

    2010-08-01

    The exoskeleton of arthropods undergoes reformation at every molting. Accordingly, external morphology can metamorphose through molting. In some crustaceans, the function of appendages is modified through ontogeny. These morphological modifications require accordant modification of the correlation between different body parts because the morphological function depends on the combined correlation between different parts. In the case of crustacean morphology, exoskeleton and muscles are correlated to each other. The functional morphology of the fifth limb of cypridoid ostracods transforms from "walking leg + mouthparts (+ possibly respiratory parts)" to "mouthparts + respiratory parts + grasping hook (in males only)" through ontogeny. In this study, the three-dimensional structures of the exoskeleton and muscular systems were observed by confocal laser-scanning microscopy in some species of suborder Cypridocopina. The muscular system is reportedly not changed by the ontogeny of appendages in females, but it does change in males. Furthermore, regional cell proliferation, which was detected previously, represented the causal factor of exoskeletal modification. I therefore conclude that the enlarged endite in the female fifth limb is produced by exoskeletal modification based on regional cell proliferation, rather than by a change in the muscular system. In contrast, modification in the male requires a change in the muscular system in addition to exoskeletal modification.

  20. Solid state protein monolayers: Morphological, conformational, and functional properties

    NASA Astrophysics Data System (ADS)

    Pompa, P. P.; Biasco, A.; Frascerra, V.; Calabi, F.; Cingolani, R.; Rinaldi, R.; Verbeet, M. Ph.; de Waal, E.; Canters, G. W.

    2004-12-01

    We have studied the morphological, conformational, and electron-transfer (ET) function of the metalloprotein azurin in the solid state, by a combination of physical investigation methods, namely atomic force microscopy, intrinsic fluorescence spectroscopy, and scanning tunneling microscopy. We demonstrate that a "solid state protein film" maintains its nativelike conformation and ET function, even after removal of the aqueous solvent.

  1. Palaeobiology of Hyaenodon exiguus (Hyaenodonta, Mammalia) based on morphometric analysis of the bony labyrinth.

    PubMed

    Pfaff, Cathrin; Nagel, Doris; Gunnell, Gregg; Weber, Gerhard W; Kriwet, Jürgen; Morlo, Michael; Bastl, Katharina

    2017-02-01

    Species of the extinct genus Hyaenodon were among the largest carnivorous mammals from the Late Eocene through Early Miocene in North America, Europe and Asia. The origin, phylogeny and palaeobiology of Hyaenodonta are still ambiguous. Most previous studies focused on teeth and dental function in these highly adapted species, which might be influenced by convergent morphologies. The anatomy of the bony labyrinth in vertebrates is generally quite conservative and, additionally, was used in functional-morphological studies. This study provides the first anatomical description of the bony labyrinth of the extinct European species Hyaenodon exiguus in comparison to selected extant carnivoran taxa discussed from a functional-morphological perspective. Hyaenodon exiguus may have occupied a hyaena-like dietary niche with a semi-arboreal lifestyle, based on the relative height, width and length of the semicircular canals of the inner ear. However, this contradicts previous functional-morphological studies focusing on the diameter of the canals, which presumably represent the signal of locomotion mode. © 2016 Anatomical Society.

  2. Parallel functional category deficits in clauses and nominal phrases: The case of English agrammatism

    PubMed Central

    Wang, Honglei; Yoshida, Masaya; Thompson, Cynthia K.

    2015-01-01

    Individuals with agrammatic aphasia exhibit restricted patterns of impairment of functional morphemes, however, syntactic characterization of the impairment is controversial. Previous studies have focused on functional morphology in clauses only. This study extends the empirical domain by testing functional morphemes in English nominal phrases in aphasia and comparing patients’ impairment to their impairment of functional morphemes in English clauses. In the linguistics literature, it is assumed that clauses and nominal phrases are structurally parallel but exhibit inflectional differences. The results of the present study indicated that aphasic speakers evinced similar impairment patterns in clauses and nominal phrases. These findings are consistent with the Distributed Morphology Hypothesis (DMH), suggesting that the source of functional morphology deficits among agrammatics relates to difficulty implementing rules that convert inflectional features into morphemes. Our findings, however, are inconsistent with the Tree Pruning Hypothesis (TPH), which suggests that patients have difficulty building complex hierarchical structures. PMID:26379370

  3. Morphological and functional manifestations of rat adrenal-cortex response to sodium bromide administration under hypodynamic stress

    NASA Technical Reports Server (NTRS)

    Kirichek, L. T.; Zholudeva, V. I.

    1979-01-01

    Functional and morphological manifestations of adrenal cortex response to hypodynamia (2-hr immobilization on an operating table) under the influence of bromine preparations were studied. The sodium bromide was administered intraperitoneally in 100, 250, and 500 mg/kg doses once and repeatedly during ten days. The adrenal gland was evaluated functionally by ascorbic acid and cholesterol content and morphologically by coloring it with hematoxylin-eosin and Sudans for lipid revealing at freezing. Results are displayed in two tables and microphotographs. They are summarized as follows: the bromine weakens the functional state of the adrenal cortex in intact rats, causing changes similar to those under stress. During immobilization combined with preliminary bromine administration, a less pronounced stress reaction is noticeable.

  4. Double-bromo and extraterminal (BET) domain proteins regulate dendrite morphology and mechanosensory function

    PubMed Central

    Bagley, Joshua A.; Yan, Zhiqiang; Zhang, Wei; Wildonger, Jill

    2014-01-01

    A complex array of genetic factors regulates neuronal dendrite morphology. Epigenetic regulation of gene expression represents a plausible mechanism to control pathways responsible for specific dendritic arbor shapes. By studying the Drosophila dendritic arborization (da) neurons, we discovered a role of the double-bromodomain and extraterminal (BET) family proteins in regulating dendrite arbor complexity. A loss-of-function mutation in the single Drosophila BET protein encoded by female sterile 1 homeotic [fs(1)h] causes loss of fine, terminal dendritic branches. Moreover, fs(1)h is necessary for the induction of branching caused by a previously identified transcription factor, Cut (Ct), which regulates subtype-specific dendrite morphology. Finally, disrupting fs(1)h function impairs the mechanosensory response of class III da sensory neurons without compromising the expression of the ion channel NompC, which mediates the mechanosensitive response. Thus, our results identify a novel role for BET family proteins in regulating dendrite morphology and a possible separation of developmental pathways specifying neural cell morphology and ion channel expression. Since the BET proteins are known to bind acetylated histone tails, these results also suggest a role of epigenetic histone modifications and the “histone code,” in regulating dendrite morphology. PMID:25184680

  5. Mitochondrial Dynamics in Diabetic Cardiomyopathy

    PubMed Central

    Galloway, Chad A.

    2015-01-01

    Abstract Significance: Cardiac function is energetically demanding, reliant on efficient well-coupled mitochondria to generate adenosine triphosphate and fulfill the cardiac demand. Predictably then, mitochondrial dysfunction is associated with cardiac pathologies, often related to metabolic disease, most commonly diabetes. Diabetic cardiomyopathy (DCM), characterized by decreased left ventricular function, arises independently of coronary artery disease and atherosclerosis. Dysregulation of Ca2+ handling, metabolic changes, and oxidative stress are observed in DCM, abnormalities reflected in alterations in mitochondrial energetics. Cardiac tissue from DCM patients also presents with altered mitochondrial morphology, suggesting a possible role of mitochondrial dynamics in its pathological progression. Recent Advances: Abnormal mitochondrial morphology is associated with pathologies across diverse tissues, suggesting that this highly regulated process is essential for proper cell maintenance and physiological homeostasis. Highly structured cardiac myofibers were hypothesized to limit alterations in mitochondrial morphology; however, recent work has identified morphological changes in cardiac tissue, specifically in DCM. Critical Issues: Mitochondrial dysfunction has been reported independently from observations of altered mitochondrial morphology in DCM. The temporal relationship and causative nature between functional and morphological changes of mitochondria in the establishment/progression of DCM is unclear. Future Directions: Altered mitochondrial energetics and morphology are not only causal for but also consequential to reactive oxygen species production, hence exacerbating oxidative damage through reciprocal amplification, which is integral to the progression of DCM. Therefore, targeting mitochondria for DCM will require better mechanistic characterization of morphological distortion and bioenergetic dysfunction. Antioxid. Redox Signal. 22, 1545–1562. PMID:25738230

  6. Bio-inspired Cryo-ink Preserves Red Blood Cell Phenotype and Function during Nanoliter Vitrification

    PubMed Central

    Assal, Rami El; Guven, Sinan; Gurkan, Umut Atakan; Gozen, Irep; Shafiee, Hadi; Dalbeyber, Sedef; Abdalla, Noor; Thomas, Gawain; Fuld, Wendy; Illigens, Ben M.W.; Estanislau, Jessica; Khoory, Joseph; Kaufman, Richard; Zylberberg, Claudia; Lindeman, Neal; Wen, Qi; Ghiran, Ionita; Demirci, Utkan

    2014-01-01

    Current red blood cell cryopreservation methods utilize bulk volumes, causing cryo-injury of cells, which results in irreversible disruption of cell morphology, mechanics, and function. An innovative approach to preserve human red blood cell morphology, mechanics, and function following vitrification in nanoliter volumes is developed using a novel cryo-ink integrated with a bio-printing approach. PMID:25047246

  7. Hints of the Early Jehol Biota: Important Dinosaur Footprint Assemblages from the Jurassic-Cretaceous Boundary Tuchengzi Formation in Beijing, China

    PubMed Central

    Xing, Lida; Zhang, Jianping; Lockley, Martin G.; McCrea, Richard T.; Klein, Hendrik; Alcalá, Luis; Buckley, Lisa G.; Burns, Michael E.; Kümmell, Susanna B.; He, Qing

    2015-01-01

    New reports of dinosaur tracksites in the Tuchengzi Formation in the newly established Yanqing Global Geopark, Beijing, China, support previous inferences that the track assemblages from this formation are saurischian-dominated. More specifically, the assemblages appear theropod-dominated, with the majority of well-preserved tracks conforming to the Grallator type (sensus lato), thus representing relatively small trackmakers. Such ichnofaunas supplement the skeletal record from this unit that lacks theropods thus far, proving a larger diversity of dinosaur faunas in that region. Sauropods are represented by medium to large sized and narrow and wide-gauge groups, respectively. The latter correspond with earlier discoveries of titanosauriform skeletons in the same unit. Previous records of ornithischian tracks cannot be positively confirmed. Purported occurrences are re-evaluated here, the trackways and imprints, except of a single possible specimen, re-assigned to theropods. Palecologically the Tuchengzi ichnofauna is characteristic of semi-arid fluvio-lacustrine inland basins with Upper Jurassic-Lower Cretaceous deposits in northern China that all show assemblages with abundant theropod and sauropod tracks and minor components of ornithopod, pterosaur and bird tracks. PMID:25901363

  8. The First Freshwater Mosasauroid (Upper Cretaceous, Hungary) and a New Clade of Basal Mosasauroids

    PubMed Central

    Makádi, László; Caldwell, Michael W.; Ősi, Attila

    2012-01-01

    Mosasauroids are conventionally conceived of as gigantic, obligatorily aquatic marine lizards (1000s of specimens from marine deposited rocks) with a cosmopolitan distribution in the Late Cretaceous (90–65 million years ago [mya]) oceans and seas of the world. Here we report on the fossilized remains of numerous individuals (small juveniles to large adults) of a new taxon, Pannoniasaurus inexpectatus gen. et sp. nov. from the Csehbánya Formation, Hungary (Santonian, Upper Cretaceous, 85.3–83.5 mya) that represent the first known mosasauroid that lived in freshwater environments. Previous to this find, only one specimen of a marine mosasauroid, cf. Plioplatecarpus sp., is known from non-marine rocks in Western Canada. Pannoniasaurus inexpectatus gen. et sp. nov. uniquely possesses a plesiomorphic pelvic anatomy, a non-mosasauroid but pontosaur-like tail osteology, possibly limbs like a terrestrial lizard, and a flattened, crocodile-like skull. Cladistic analysis reconstructs P. inexpectatus in a new clade of mosasauroids: (Pannoniasaurus (Tethysaurus (Yaguarasaurus, Russellosaurus))). P. inexpectatus is part of a mixed terrestrial and freshwater faunal assemblage that includes fishes, amphibians turtles, terrestrial lizards, crocodiles, pterosaurs, dinosaurs and birds. PMID:23284766

  9. Morphometry, geometry, function, and the future.

    PubMed

    Mcnulty, Kieran P; Vinyard, Christopher J

    2015-01-01

    The proliferation of geometric morphometrics (GM) in biological anthropology and more broadly throughout the biological sciences has resulted in a multitude of studies that adopt landmark-based approaches for addressing a variety of questions in evolutionary morphology. In some cases, particularly in the realm of systematics, the fit between research question and analytical design is quite good. Functional-adaptive studies, however, do not readily conform to the methods available in the GM toolkit. The symposium organized by Terhune and Cooke entitled "Assessing function via shape: What is the place of GM in functional morphology?" held at the 2013 meetings of the American Association of Physical Anthropologists was designed specifically to explore this relationship between landmark-based methods and analyses of functional morphology, and the articles in this special issue, which stem in large part from this symposium, provide numerous examples of how the two approaches can complement and contrast each other. Here, we underscore some of the major difficulties in interpreting GM results within a functional regime. In combination with other contributions in this issue, we identify emerging areas of research that will help bridge the gap between multivariate morphometry and functional-adaptive analysis. Ultimately, neither geometric nor functional morphometric approaches is sufficient to elaborate the adaptive pathways that explain morphological evolution through natural selection. These perspectives must be further integrated with research from physiology, developmental biology, genomics, and ecology. © 2014 Wiley Periodicals, Inc.

  10. Functional morphology of parasitic isopods: understanding morphological adaptations of attachment and feeding structures in Nerocila as a pre-requisite for reconstructing the evolution of Cymothoidae.

    PubMed

    Nagler, Christina; Haug, Joachim T

    2016-01-01

    Parasites significantly influence food webs and ecosystems and occur all over the world in almost every animal group. Within crustaceans there are numerous examples of ectoparasites; for example, representatives of the isopod group Cymothoidae. These obligatory parasitic isopods are relatively poorly studied regarding their functional morphology. Here we present new details of the morphological adaptations to parasitism of the cymothoiid ingroup Nerocila with up-to-date imaging methods (macro photography, stereo imaging, fluorescence photography, micro CT, and histology). Central aspects of the study were (1) the morphology of the mouthparts and (2) the attachment on the host, hence the morphology of the thoracopods. The mouthparts (labrum, mandibles, paragnaths, maxillulae, maxillae, maxillipeds) form a distinct mouth cone and are most likely used for true sucking. The mouthparts are tightly "folded" around each other and provide functional rails for the only two moving mouthparts, mandible and maxillula. Both are not moving in an ancestral-type median-lateral movement, but are strongly tilted to move more in a proximal-distal axis. New details concerning the attachment demonstrate that the angular arrangement of the thoracopods is differentiated to impede removal by the host. The increased understanding of morphological adaptation to parasitism of modern forms will be useful in identifying disarticulated (not attached to the host) fossil parasites.

  11. Investigating Aerosol Morphology Using Scattering Phase Functions Measured with a Laser Imaging Nephelometer

    NASA Astrophysics Data System (ADS)

    Manfred, K.; Adler, G. A.; Erdesz, F.; Franchin, A.; Lamb, K. D.; Schwarz, J. P.; Wagner, N.; Washenfelder, R. A.; Womack, C.; Murphy, D. M.

    2017-12-01

    Particle morphology has important implications for light scattering and radiative transfer, but can be difficult to measure. Biomass burning and other important aerosol sources can generate a mixture of both spherical and non-spherical particle morphologies, and it is necessary to represent these populations correctly in models. We describe a laser imaging nephelometer that measures the unpolarized scattering phase function of bulk aerosol at 375 and 405 nm using a wide-angle lens and CCD. We deployed this instrument to the Missoula Fire Sciences Laboratory to measure biomass burning aerosol morphology from controlled fires during the recent FIREX intensive laboratory study. Total integrated scattering signal agreed with that determined by a cavity ring-down photoacoustic spectrometer system and a traditional integrating nephelometer within instrument uncertainties. We compared measured scattering phase functions at 405 nm to theoretical models for spherical (Mie) and fractal (Rayleigh-Debye-Gans) particle morphologies based on the size distribution reported by an optical particle counter. We show that particle morphology can vary dramatically for different fuel types, and present results for two representative fires (pine tree vs arid shrub). We find that Mie theory is inadequate to describe the actual behavior of realistic aerosols from biomass burning in some situations. This study demonstrates the capabilities of the laser imaging nephelometer instrument to provide real-time, in situ information about dominant particle morphology that is vital for accurate radiative transfer calculations.

  12. Functional morphology of parasitic isopods: understanding morphological adaptations of attachment and feeding structures in Nerocila as a pre-requisite for reconstructing the evolution of Cymothoidae

    PubMed Central

    Haug, Joachim T.

    2016-01-01

    Parasites significantly influence food webs and ecosystems and occur all over the world in almost every animal group. Within crustaceans there are numerous examples of ectoparasites; for example, representatives of the isopod group Cymothoidae. These obligatory parasitic isopods are relatively poorly studied regarding their functional morphology. Here we present new details of the morphological adaptations to parasitism of the cymothoiid ingroup Nerocila with up-to-date imaging methods (macro photography, stereo imaging, fluorescence photography, micro CT, and histology). Central aspects of the study were (1) the morphology of the mouthparts and (2) the attachment on the host, hence the morphology of the thoracopods. The mouthparts (labrum, mandibles, paragnaths, maxillulae, maxillae, maxillipeds) form a distinct mouth cone and are most likely used for true sucking. The mouthparts are tightly “folded” around each other and provide functional rails for the only two moving mouthparts, mandible and maxillula. Both are not moving in an ancestral-type median-lateral movement, but are strongly tilted to move more in a proximal-distal axis. New details concerning the attachment demonstrate that the angular arrangement of the thoracopods is differentiated to impede removal by the host. The increased understanding of morphological adaptation to parasitism of modern forms will be useful in identifying disarticulated (not attached to the host) fossil parasites. PMID:27441121

  13. Extensive morphological divergence and rapid evolution of the larval neuromuscular junction in Drosophila.

    PubMed

    Campbell, Megan; Ganetzky, Barry

    2012-03-13

    Although the complexity and circuitry of nervous systems undergo evolutionary change, we lack understanding of the general principles and specific mechanisms through which it occurs. The Drosophila larval neuromuscular junction (NMJ), which has been widely used for studies of synaptic development and function, is also an excellent system for studies of synaptic evolution because the genus spans >40 Myr of evolution and the same identified synapse can be examined across the entire phylogeny. We have now characterized morphology of the NMJ on muscle 4 (NMJ4) in >20 species of Drosophila. Although there is little variation within a species, NMJ morphology and complexity vary extensively between species. We find no significant correlation between NMJ phenotypes and phylogeny for the species examined, suggesting that drift alone cannot explain the phenotypic variation and that selection likely plays an important role. However, the nature of the selective pressure is still unclear because basic parameters of synaptic function remain uniform. Whatever the mechanism, NMJ morphology is evolving rapidly in comparison with other morphological features because NMJ phenotypes differ even between several sibling species pairs. The discovery of this unexpectedly extensive divergence in NMJ morphology among Drosophila species provides unique opportunities to investigate mechanisms that regulate synaptic growth; the interrelationships between synaptic morphology, neural function, and behavior; and the evolution of nervous systems and behavior in natural populations.

  14. Morphology characterization of organic solar cell materials and blends

    NASA Astrophysics Data System (ADS)

    Roehling, John Daniel

    The organization of polymers and fullerenes, both in their pure states and mixed together, have a large impact on their macroscopic properties. For mixtures used in organic solar cells, the morphology of the mixture has a very large impact upon the mixture's ability to efficiently convert sunlight into useful electrical energy. Understanding how the morphology can change under certain processing conditions and in turn, affect the characteristics of the solar cell is therefore important to improving the function of organic solar cells. Conventional poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) solar cells have served as a staple system to study organic solar cell function for nearly a decade. Much of the understanding of how to make these "poorly"conductive organic materials efficiently convert sunlight into electricity has come from the study of P3HT:PCBM. It has long been understood that in order for a polymer:fullerene (electron donor and acceptor, respectively) mixture to function well as a solar cell, two major criteria for the morphology must be met; first, the interface between the two materials must be large to efficiently create charges, and secondly, there must be continous pathways through the "pure" materials for charges to be efficiently collected at the electrodes. This makes it advantageous for OPV materials to phase-separate into interconnected domains with very small domain sizes, a structure that P3HT:PCBM seems to naturally self-assemble. Despite P3HT:PCBM's ability to reach an optimal morphology, a complete understanding of exactly how the morphology affects device performance has not been realized. Completely different morphological models can end up predicting the same device performance characteristics. Much of the problem comes from the assumed morphology within a particular model, which can often be incorrect. The problem lies in the fact that obtaining real, accurate morphological information is difficult. An often neglected morphological feature is the existence of a third mixed phase, which is often unaccounted for because much about its composition and location are poorly understood. Obtaining this information and measuring the full morphology of OPV layers would therefore enable further understanding of device function. It is the aim of this thesis to demonstrate a technique which can measure the morphology of OPV layers accurately, accounting for the third phase and its composition. By using a scanning transmission electron microscope (STEM) in conjunction with electron tomography (ET) and an easily resolved fullerene component, the morphology of P3HT:fullerene layers are herein investigated. The combination of materials and techniques are demonstrated to accurately measure the morphology, illustrated by results which corroborate previous studies in the literature. It will be shown that not only can the position of each of the three phases present be measured, but their compositions can also be determined. Through this technique, morphologies formed under different processing conditions are quantitatively compared. The technique reveals differences between conventional processing methods that are not obvious through other measurements. Differences in the materials distribution throughout the thickness of the layer are also demonstrated and shown to give implications toward device function. Additionally, the precise changes in morphology which occur from different processing conditions are determined and shown to have a significant impact upon the properties of an OPV layer as a solar energy harvester. Not only does the morphology of the mixed materials affect the solar cell properties, but the local structure of the component materials themselves can strongly influence the macroscopic properties. By removing the fullerene component and forming pure domains of P3HT, the effects of internal structure on the properties of P3HT and how the structure is formed is also herein investigated. Through these techniques, the morphology and structure of different organic solar cell mixtures can now be thoroughly investigated. Through this work and future studies, the exact effects of morphology can be more fully understood. With the availability of accurate morphological data, it may now be possible to decouple morphology from other factors which govern device function.

  15. Coral reefs promote the evolution of morphological diversity and ecological novelty in labrid fishes.

    PubMed

    Price, S A; Holzman, R; Near, T J; Wainwright, P C

    2011-05-01

    Although coral reefs are renowned biodiversity hotspots it is not known whether they also promote the evolution of exceptional ecomorphological diversity. We investigated this question by analysing a large functional morphological dataset of trophic characters within Labridae, a highly diverse group of fishes. Using an analysis that accounts for species relationships, the time available for diversification and model uncertainty we show that coral reef species have evolved functional morphological diversity twice as fast as non-reef species. In addition, coral reef species occupy 68.6% more trophic morphospace than non-reef species. Our results suggest that coral reef habitats promote the evolution of both trophic novelty and morphological diversity within fishes. Thus, the preservation of coral reefs is necessary, not only to safeguard current biological diversity but also to conserve the underlying mechanisms that can produce functional diversity in future. © 2011 Blackwell Publishing Ltd/CNRS.

  16. The Fate of the Method of 'Paradigms' in Paleobiology.

    PubMed

    Rudwick, Martin J S

    2017-11-02

    An earlier article described the mid-twentieth century origins of the method of "paradigms" in paleobiology, as a way of making testable hypotheses about the functional morphology of extinct organisms. The present article describes the use of "paradigms" through the 1970s and, briefly, to the end of the century. After I had proposed the paradigm method to help interpret the ecological history of brachiopods, my students developed it in relation to that and other invertebrate phyla, notably in Euan Clarkson's analysis of vision in trilobites. David Raup's computer-aided "theoretical morphology" was then combined with my functional or adaptive emphasis, in Adolf Seilacher's tripartite "constructional morphology." Stephen Jay Gould, who had strongly endorsed the method, later switched to criticizing the "adaptationist program" he claimed it embodied. Although the explicit use of paradigms in paleobiology had declined by the end of the century, the method was tacitly subsumed into functional morphology as "biomechanics."

  17. The antagonistic modulation of Arp2/3 activity by N-WASP, WAVE2 and PICK1 defines dynamic changes in astrocyte morphology

    PubMed Central

    Murk, Kai; Blanco Suarez, Elena M.; Cockbill, Louisa M. R.; Banks, Paul; Hanley, Jonathan G.

    2013-01-01

    Summary Astrocytes exhibit a complex, branched morphology, allowing them to functionally interact with numerous blood vessels, neighboring glial processes and neuronal elements, including synapses. They also respond to central nervous system (CNS) injury by a process known as astrogliosis, which involves morphological changes, including cell body hypertrophy and thickening of major processes. Following severe injury, astrocytes exhibit drastically reduced morphological complexity and collectively form a glial scar. The mechanistic details behind these morphological changes are unknown. Here, we investigate the regulation of the actin-nucleating Arp2/3 complex in controlling dynamic changes in astrocyte morphology. In contrast to other cell types, Arp2/3 inhibition drives the rapid expansion of astrocyte cell bodies and major processes. This intervention results in a reduced morphological complexity of astrocytes in both dissociated culture and in brain slices. We show that this expansion requires functional myosin II downstream of ROCK and RhoA. Knockdown of the Arp2/3 subunit Arp3 or the Arp2/3 activator N-WASP by siRNA also results in cell body expansion and reduced morphological complexity, whereas depleting WAVE2 specifically reduces the branching complexity of astrocyte processes. By contrast, knockdown of the Arp2/3 inhibitor PICK1 increases astrocyte branching complexity. Furthermore, astrocyte expansion induced by ischemic conditions is delayed by PICK1 knockdown or N-WASP overexpression. Our findings identify a new morphological outcome for Arp2/3 activation in restricting rather than promoting outwards movement of the plasma membrane in astrocytes. The Arp2/3 regulators PICK1, and N-WASP and WAVE2 function antagonistically to control the complexity of astrocyte branched morphology, and this mechanism underlies the morphological changes seen in astrocytes during their response to pathological insult. PMID:23843614

  18. Cascade morphology transition in bcc metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Wahyu; Selby, A.; Juslin, Niklas

    2015-06-10

    Energetic atom collisions in solids induce shockwaves with complex morphologies. In this paper, we establish the existence of a morphological transition in such cascades. The order parameter of the morphology is defined as the exponent,more » $b$, in the defect production curve as a function of cascade energy ($$N_F$$$ \\sim$$$E_{MD}^b$$). Response of different bcc metals can be compared in a consistent energy domain when the energy is normalized by the transition energy, $$\\mu$$, between the high- and the low-energy regime. Using Cr, Fe, Mo and W data, an empirical formula of $$\\mu$$ as a function of displacement threshold energy, $$E_d$$, is presented for bcc metals.« less

  19. Cascade morphology transition in bcc metals

    DOE PAGES

    Setyawan, Wahyu; Selby, Aaron P.; Juslin, Niklas; ...

    2015-05-18

    Energetic atom collisions in solids induce shockwaves with complex morphologies. In this paper, we establish the existence of a morphological transition in such cascades. The order parameter of the morphology is defined as the exponent, b, in the defect production curve as a function of cascade energy (N-F similar to E-MD(b)). Response of different bcc metals can be compared in a consistent energy domain when the energy is normalized by the transition energy, mu, between the high-and the low-energy regime. Using Cr, Fe, Mo and W data, an empirical formula of mu as a function of displacement threshold energy, E-d,more » is presented for bcc metals.« less

  20. Effect of Cu Alloying on S Poisoning of Ni Surfaces and Nanoparticle Morphologies Using Ab-Initio Thermodynamics Calculations.

    PubMed

    Kim, Ji-Su; Kim, Byung-Kook; Kim, Yeong-Cheol

    2015-10-01

    We investigated the effect of Cu alloying on S poisoning of Ni surfaces and nanoparticle morphologies using ab-initio thermodynamics calculations. Based on the Cu segregation energy and the S adsorption energy, the surface energy and nanoparticle morphology of pure Ni, pure Cu, and NiCu alloys were evaluated as functions of the chemical potential of S and the surface orientations of (100), (110), and (111). The constructed nanoparticle morphology was varied as a function of chemical potential of S. We find that the Cu added to Ni for NiCu alloys is strongly segregated into the top surface, and increases the S tolerance of the NiCu nanoparticles.

  1. Palladium nanoparticles functionalized graphene nanosheets for Li-O2 batteries: enhanced performance by tailoring the morphology of discharge product

    NASA Astrophysics Data System (ADS)

    Wang, Liangjun; Chen, Wei; SSL Team

    Lithium oxygen (Li-O2) batteries represent a promising candidate for the next generation electric vehicle.1-3 Despite the attractive prospect, some issues including large overpotentials, poor recyclability and unstable electrolyte4-6 limit the wide applications of Li-O2 batteries. Due to the insoluble and non-conductive nature of discharge product Li2O2, it has been widely accepted that the performance of oxygen evolution reaction (OER) process is not only determined by the catalyst itself but also close linked to morphology and electronic conductivity of Li2O2 formed during oxygen reduction reaction (ORR) process. Herein, we report a strategy to improve the battery performance by tailoring the morphology of discharge product. By using graphene nanosheets (GNSs) functionalized with Pd nanoparticles (NPs) as cathode catalyst, the growth and morphology of the discharge products of Li2O2 can be effectively tailored, thereby leading to the improved Li-O2 battery performance. Surprisingly, on bare GNSs cathode, the discharge product showed widely observed large-sized toroidal morphology. While for Pd NPs functionalized GNSs, the discharge product was homogenously distributed on the cathode in the form of small nanoparticles with an average diameter of 25 nm. As a result, Pd NPs functionalized GNSs exhibited a high discharge capacity of 7690 mAh g-1. Meanwhile, the battery with tailored morphology exhibits lower charge overpotential.

  2. Bivariate mass-size relation as a function of morphology as determined by Galaxy Zoo 2 crowdsourced visual classifications

    NASA Astrophysics Data System (ADS)

    Beck, Melanie; Scarlata, Claudia; Fortson, Lucy; Willett, Kyle; Galloway, Melanie

    2016-01-01

    It is well known that the mass-size distribution evolves as a function of cosmic time and that this evolution is different between passive and star-forming galaxy populations. However, the devil is in the details and the precise evolution is still a matter of debate since this requires careful comparison between similar galaxy populations over cosmic time while simultaneously taking into account changes in image resolution, rest-frame wavelength, and surface brightness dimming in addition to properly selecting representative morphological samples.Here we present the first step in an ambitious undertaking to calculate the bivariate mass-size distribution as a function of time and morphology. We begin with a large sample (~3 x 105) of SDSS galaxies at z ~ 0.1. Morphologies for this sample have been determined by Galaxy Zoo crowdsourced visual classifications and we split the sample not only by disk- and bulge-dominated galaxies but also in finer morphology bins such as bulge strength. Bivariate distribution functions are the only way to properly account for biases and selection effects. In particular, we quantify the mass-size distribution with a version of the parametric Maximum Likelihood estimator which has been modified to account for measurement errors as well as upper limits on galaxy sizes.

  3. Seafloor heterogeneity influences the biodiversity–ecosystem functioning relationships in the deep sea

    PubMed Central

    Zeppilli, Daniela; Pusceddu, Antonio; Trincardi, Fabio; Danovaro, Roberto

    2016-01-01

    Theoretical ecology predicts that heterogeneous habitats allow more species to co-exist in a given area. In the deep sea, biodiversity is positively linked with ecosystem functioning, suggesting that deep-seabed heterogeneity could influence ecosystem functions and the relationships between biodiversity and ecosystem functioning (BEF). To shed light on the BEF relationships in a heterogeneous deep seabed, we investigated variations in meiofaunal biodiversity, biomass and ecosystem efficiency within and among different seabed morphologies (e.g., furrows, erosional troughs, sediment waves and other depositional structures, landslide scars and deposits) in a narrow geo-morphologically articulated sector of the Adriatic Sea. We show that distinct seafloor morphologies are characterized by highly diverse nematode assemblages, whereas areas sharing similar seabed morphologies host similar nematode assemblages. BEF relationships are consistently positive across the entire region, but different seabed morphologies are characterised by different slope coefficients of the relationship. Our results suggest that seafloor heterogeneity, allowing diversified assemblages across different habitats, increases diversity and influence ecosystem processes at the regional scale, and BEF relationships at smaller spatial scales. We conclude that high-resolution seabed mapping and a detailed analysis of the species distribution at the habitat scale are crucial for improving management of goods and services delivered by deep-sea ecosystems. PMID:27211908

  4. The correlation of sperm morphology with unexplained recurrent spontaneous abortion: A systematic review and meta-analysis

    PubMed Central

    Cao, Xiaodan; Cui, Yun; Zhang, Xiaoxia; Lou, Jiangtao; Zhou, Jun; Wei, Renxiong

    2017-01-01

    Sperm morphology displays a potential impact on sperm function and may ultimately impact reproductive function. Current studies have investigated the correlation between sperm morphology with unexplained recurrent spontaneous abortion (RSA) but have shown inconsistent results. Hence, we systematically searched MEDLINE, EMBASE, CNKI databases, as well as the Cochrane Library for studies that examined the association between sperm morphology and unexplained RSA. Fifteen studies were identified, including 883 cases and 530 controls. Our meta-analysis results indicated that the percentage of normal sperm morphology from men with RSA partners was significantly lower than those from normal controls(SMD [95% CI]: − 0.60 [−0.81, −0.40]; P<0.00001) and the percentage of sperm morphologic alterations was significantly higher in patients with RSA compared with the control group (SMD [95% CI]: 0.92 [0.42, 1.43]; P=0.0004). The present study suggested that the percentage of normal sperm morphology may indeed decrease in men from RSA group compared with controls. However, there were some limitations in the study such as the differences in stain techniques and classification criteria. Further evidences are needed to better elucidate the relationship between sperm morphology and unexplained RSA. PMID:28903451

  5. Parallel RNAi screens across different cell lines identify generic and cell type-specific regulators of actin organization and cell morphology.

    PubMed

    Liu, Tao; Sims, David; Baum, Buzz

    2009-01-01

    In recent years RNAi screening has proven a powerful tool for dissecting gene functions in animal cells in culture. However, to date, most RNAi screens have been performed in a single cell line, and results then extrapolated across cell types and systems. Here, to dissect generic and cell type-specific mechanisms underlying cell morphology, we have performed identical kinome RNAi screens in six different Drosophila cell lines, derived from two distinct tissues of origin. This analysis identified a core set of kinases required for normal cell morphology in all lines tested, together with a number of kinases with cell type-specific functions. Most significantly, the screen identified a role for minibrain (mnb/DYRK1A), a kinase associated with Down's syndrome, in the regulation of actin-based protrusions in CNS-derived cell lines. This cell type-specific requirement was not due to the peculiarities in the morphology of CNS-derived cells and could not be attributed to differences in mnb expression. Instead, it likely reflects differences in gene expression that constitute the cell type-specific functional context in which mnb/DYRK1A acts. Using parallel RNAi screens and gene expression analyses across cell types we have identified generic and cell type-specific regulators of cell morphology, which include mnb/DYRK1A in the regulation of protrusion morphology in CNS-derived cell lines. This analysis reveals the importance of using different cell types to gain a thorough understanding of gene function across the genome and, in the case of kinases, the difficulties of using the differential gene expression to predict function.

  6. Functional morphology of comminuting feeding structures of Trichodactylus borellianus (Brachyura, Decapoda, Trichodactylidae), an omnivorous freshwater crab.

    PubMed

    Carvalho, Débora de Azevedo; Viozzi, Maria Florencia; Collins, Pablo Agustín; Williner, Verónica

    2017-07-01

    Crustaceans exhibit great diversity of feeding structures with morphological traits that are useful to infer the general trophic habits of species. In this study, we analyzed the functional morphology of comminuting feeding structures (mandibles, chelipeds, gastric mill) of the freshwater crab Trichodactylus borellianus directly related with the food fragmentation. The heterochely and mechanical advantage (MA) of the chelae were also studied. In both analyses, we considered the relationship between morphology and the natural diet. We expected to find a consistent relation between feeding habits and morphological traits. In general, we found simple structures armed with uniform setal systems and feeding appendages without pronounced teeth or spines. Mandibles have primarily cutting functions, helping with the food anchoring and fragmentation with mandibular palps armed with pappose setae. Chelipeds were covered with spines and simple setae. Adult males exhibited right-handedness with high MA of the major chelae. The ingested, relatively large pieces of food are finally chewed by a gastric mill equipped with sharp cusps characteristic of decapods with low ingestion of crude fiber material. The morphology of the feeding apparatus revealed that it is well adapted to an omnivorous diet, being able to cope with dietary changes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Double-bromo and extraterminal (BET) domain proteins regulate dendrite morphology and mechanosensory function.

    PubMed

    Bagley, Joshua A; Yan, Zhiqiang; Zhang, Wei; Wildonger, Jill; Jan, Lily Yeh; Jan, Yuh Nung

    2014-09-01

    A complex array of genetic factors regulates neuronal dendrite morphology. Epigenetic regulation of gene expression represents a plausible mechanism to control pathways responsible for specific dendritic arbor shapes. By studying the Drosophila dendritic arborization (da) neurons, we discovered a role of the double-bromodomain and extraterminal (BET) family proteins in regulating dendrite arbor complexity. A loss-of-function mutation in the single Drosophila BET protein encoded by female sterile 1 homeotic [fs(1)h] causes loss of fine, terminal dendritic branches. Moreover, fs(1)h is necessary for the induction of branching caused by a previously identified transcription factor, Cut (Ct), which regulates subtype-specific dendrite morphology. Finally, disrupting fs(1)h function impairs the mechanosensory response of class III da sensory neurons without compromising the expression of the ion channel NompC, which mediates the mechanosensitive response. Thus, our results identify a novel role for BET family proteins in regulating dendrite morphology and a possible separation of developmental pathways specifying neural cell morphology and ion channel expression. Since the BET proteins are known to bind acetylated histone tails, these results also suggest a role of epigenetic histone modifications and the "histone code," in regulating dendrite morphology. © 2014 Bagley et al.; Published by Cold Spring Harbor Laboratory Press.

  8. Elevated rates of morphological and functional diversification in reef-dwelling haemulid fishes.

    PubMed

    Price, Samantha A; Tavera, Jose J; Near, Thomas J; Wainwright, Peter C

    2013-02-01

    The relationship between habitat complexity and species richness is well established but comparatively little is known about the evolution of morphological diversity in complex habitats. Reefs are structurally complex, highly productive shallow-water marine ecosystems found in tropical (coral reefs) and temperate zones (rocky reefs) that harbor exceptional levels of biodiversity. We investigated whether reef habitats promote the evolution of morphological diversity in the feeding and locomotion systems of grunts (Haemulidae), a group of predominantly nocturnal fishes that live on both temperate and tropical reefs. Using phylogenetic comparative methods and statistical analyses that take into account uncertainty in phylogeny and the evolutionary history of reef living, we demonstrate that rates of morphological evolution are faster in reef-dwelling haemulids. The magnitude of this effect depends on the type of trait; on average, traits involved in the functional systems for prey capture and processing evolve twice as fast on reefs as locomotor traits. This result, along with the observation that haemulids do not exploit unique feeding niches on reefs, suggests that fine-scale trophic niche partitioning and character displacement may be driving higher rates of morphological evolution. Whatever the cause, there is growing evidence that reef habitats stimulate morphological and functional diversification in teleost fishes. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  9. Many-to-one form-to-function mapping weakens parallel morphological evolution.

    PubMed

    Thompson, Cole J; Ahmed, Newaz I; Veen, Thor; Peichel, Catherine L; Hendry, Andrew P; Bolnick, Daniel I; Stuart, Yoel E

    2017-11-01

    Evolutionary ecologists aim to explain and predict evolutionary change under different selective regimes. Theory suggests that such evolutionary prediction should be more difficult for biomechanical systems in which different trait combinations generate the same functional output: "many-to-one mapping." Many-to-one mapping of phenotype to function enables multiple morphological solutions to meet the same adaptive challenges. Therefore, many-to-one mapping should undermine parallel morphological evolution, and hence evolutionary predictability, even when selection pressures are shared among populations. Studying 16 replicate pairs of lake- and stream-adapted threespine stickleback (Gasterosteus aculeatus), we quantified three parts of the teleost feeding apparatus and used biomechanical models to calculate their expected functional outputs. The three feeding structures differed in their form-to-function relationship from one-to-one (lower jaw lever ratio) to increasingly many-to-one (buccal suction index, opercular 4-bar linkage). We tested for (1) weaker linear correlations between phenotype and calculated function, and (2) less parallel evolution across lake-stream pairs, in the many-to-one systems relative to the one-to-one system. We confirm both predictions, thus supporting the theoretical expectation that increasing many-to-one mapping undermines parallel evolution. Therefore, sole consideration of morphological variation within and among populations might not serve as a proxy for functional variation when multiple adaptive trait combinations exist. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  10. Uncoupled Leftward Asymmetries for Planum Morphology and Functional Language Processing

    ERIC Educational Resources Information Center

    Eckert, Mark A.; Leonard, Christiana M.; Possing, Edward T.; Binder, Jeffrey R.

    2006-01-01

    Explanations for left hemisphere language laterality have often focused on hemispheric structural asymmetry of the planum temporale. We examined the association between an index of language laterality and brain morphology in 99 normal adults whose degree of laterality was established using a functional MRI single-word comprehension task. The index…

  11. Correlates across the Structural, Functional, and Molecular Phenotypes of Fragile X Syndrome

    ERIC Educational Resources Information Center

    Beckel-Mitchener, Andrea; Greenough, William T.

    2004-01-01

    Fragile X syndrome (FXS) is characterized by a pattern of morphological, functional, and molecular characteristics with, in at least some cases, apparent relationships among phenotypic features at different levels. Gross morphology differences in the sizes of some human brain regions are accompanied by fine structural alterations in the shapes and…

  12. Gender identification of Caspian Terns using external morphology and discriminant function analysis

    USGS Publications Warehouse

    Ackerman, Joshua T.; Takekawa, John Y.; Bluso, J.D.; Yee, J.L.; Eagles-Smith, Collin A.

    2008-01-01

    Caspian Tern (Sterna caspia) plumage characteristics are sexually monochromatic and gender cannot easily be distinguished in the field without extensive behavioral observations. We assessed sexual size dimorphism and developed a discriminant function to assign gender in Caspian Terns based on external morphology. We collected and measured Caspian Terns in San Francisco Bay, California, and confirmed their gender based on necropsy and genetic analysis. Of the eight morphological measurements we examined, only bill depth at the gonys and head plus bill length differed between males and females with males being larger than females. A discriminant function using both bill depth at the gonys and head plus bill length accurately assigned gender of 83% of terns for which gender was known. We improved the accuracy of our discriminant function to 90% by excluding individuals that had less than a 75% posterior probability of correctly being assigned to gender. Caspian Terns showed little sexual size dimorphism in many morphometries, but our results indicate they can be reliably assigned to gender in the field using two morphological measurements.

  13. Bentho-pelagic divergence of cichlid feeding architecture was prodigious and consistent during multiple adaptive radiations within African rift-lakes.

    PubMed

    Cooper, W James; Parsons, Kevin; McIntyre, Alyssa; Kern, Brittany; McGee-Moore, Alana; Albertson, R Craig

    2010-03-08

    How particular changes in functional morphology can repeatedly promote ecological diversification is an active area of evolutionary investigation. The African rift-lake cichlids offer a calibrated time series of the most dramatic adaptive radiations of vertebrate trophic morphology yet described, and the replicate nature of these events provides a unique opportunity to test whether common changes in functional morphology have repeatedly facilitated their ecological success. Specimens from 87 genera of cichlid fishes endemic to Lakes Tanganyka, Malawi and Victoria were dissected in order to examine the functional morphology of cichlid feeding. We quantified shape using geometric morphometrics and compared patterns of morphological diversity using a series of analytical tests. The primary axes of divergence were conserved among all three radiations, and the most prevalent changes involved the size of the preorbital region of the skull. Even the fishes from the youngest of these lakes (Victoria), which exhibit the lowest amount of skull shape disparity, have undergone extensive preorbital evolution relative to other craniofacial traits. Such changes have large effects on feeding biomechanics, and can promote expansion into a wide array of niches along a bentho-pelagic ecomorphological axis. Here we show that specific changes in trophic anatomy have evolved repeatedly in the African rift lakes, and our results suggest that simple morphological alterations that have large ecological consequences are likely to constitute critical components of adaptive radiations in functional morphology. Such shifts may precede more complex shape changes as lineages diversify into unoccupied niches. The data presented here, combined with observations of other fish lineages, suggest that the preorbital region represents an evolutionary module that can respond quickly to natural selection when fishes colonize new lakes. Characterizing the changes in cichlid trophic morphology that have contributed to their extraordinary adaptive radiations has broad evolutionary implications, and such studies are necessary for directing future investigations into the proximate mechanisms that have shaped these spectacular phenomena.

  14. Decoupled form and function in disparate herbivorous dinosaur clades

    NASA Astrophysics Data System (ADS)

    Lautenschlager, Stephan; Brassey, Charlotte A.; Button, David J.; Barrett, Paul M.

    2016-05-01

    Convergent evolution, the acquisition of morphologically similar traits in unrelated taxa due to similar functional demands or environmental factors, is a common phenomenon in the animal kingdom. Consequently, the occurrence of similar form is used routinely to address fundamental questions in morphofunctional research and to infer function in fossils. However, such qualitative assessments can be misleading and it is essential to test form/function relationships quantitatively. The parallel occurrence of a suite of morphologically convergent craniodental characteristics in three herbivorous, phylogenetically disparate dinosaur clades (Sauropodomorpha, Ornithischia, Theropoda) provides an ideal test case. A combination of computational biomechanical models (Finite Element Analysis, Multibody Dynamics Analysis) demonstrate that despite a high degree of morphological similarity between representative taxa (Plateosaurus engelhardti, Stegosaurus stenops, Erlikosaurus andrewsi) from these clades, their biomechanical behaviours are notably different and difficult to predict on the basis of form alone. These functional differences likely reflect dietary specialisations, demonstrating the value of quantitative biomechanical approaches when evaluating form/function relationships in extinct taxa.

  15. Decoupled form and function in disparate herbivorous dinosaur clades.

    PubMed

    Lautenschlager, Stephan; Brassey, Charlotte A; Button, David J; Barrett, Paul M

    2016-05-20

    Convergent evolution, the acquisition of morphologically similar traits in unrelated taxa due to similar functional demands or environmental factors, is a common phenomenon in the animal kingdom. Consequently, the occurrence of similar form is used routinely to address fundamental questions in morphofunctional research and to infer function in fossils. However, such qualitative assessments can be misleading and it is essential to test form/function relationships quantitatively. The parallel occurrence of a suite of morphologically convergent craniodental characteristics in three herbivorous, phylogenetically disparate dinosaur clades (Sauropodomorpha, Ornithischia, Theropoda) provides an ideal test case. A combination of computational biomechanical models (Finite Element Analysis, Multibody Dynamics Analysis) demonstrate that despite a high degree of morphological similarity between representative taxa (Plateosaurus engelhardti, Stegosaurus stenops, Erlikosaurus andrewsi) from these clades, their biomechanical behaviours are notably different and difficult to predict on the basis of form alone. These functional differences likely reflect dietary specialisations, demonstrating the value of quantitative biomechanical approaches when evaluating form/function relationships in extinct taxa.

  16. The structure and function of serially homologous leg motor neurons in the locust. I. Anatomy.

    PubMed

    Wilson, J A

    1979-01-01

    Twenty-one prothoracic and 17 mesothoracic motor neurons innervating leg muscles have been identified physiologically and subsequently injected with dye from a microelectrode. A tract containing the primary neurites of motor neurons innervating the retractor unquis, levator and depressor tarsus, flexor tibiae, and reductor femora is described. All motor neurons studied have regions in which their dendritic branches overlap with those of other leg motor neurons. Identified, serially homologous motor neurons in the three thoracic ganglia were found to have: (1) cell bodies at similar locations and morphologically similar primary neurites (e.g., flexor tibiae motor neurons), (2) cell bodies at different locations in each ganglion and morphologically different primary neurites in each ganglion (e.g., fast retractor unguis motor neurons), or (3) cell bodies at similar locations and morphologically similar primary neurites but with a functional switch in one ganglion relative to the function of the neurons in the other two ganglia. As an example of the latter, the morphology of the metathoracic slow extensor tibiae (SETi) motor neurons was similar to that of pro- and mesothoracic fast extensor tibiae (FETi) motor neurons. Similarly the metathoracic FETi bears a striking resemblance to the pro- and the mesothoracic SETi. It is proposed that in the metathoracic ganglion the two extensor tibiae motor neurons have switched functions while retaining similar morphologies relative to the structure and function of their pro- and mesothoracic serial homologues.

  17. Bio-inspired cryo-ink preserves red blood cell phenotype and function during nanoliter vitrification.

    PubMed

    El Assal, Rami; Guven, Sinan; Gurkan, Umut Atakan; Gozen, Irep; Shafiee, Hadi; Dalbeyler, Sedef; Abdalla, Noor; Thomas, Gawain; Fuld, Wendy; Illigens, Ben M W; Estanislau, Jessica; Khoory, Joseph; Kaufman, Richard; Zylberberg, Claudia; Lindeman, Neal; Wen, Qi; Ghiran, Ionita; Demirci, Utkan

    2014-09-03

    Current red-blood-cell cryopreservation methods utilize bulk volumes, causing cryo-injury of cells, which results in irreversible disruption of cell morphology, mechanics, and function. An innovative approach to preserve human red-blood-cell morphology, mechanics, and function following vitrification in nanoliter volumes is developed using a novel cryo-ink integrated with a bioprinting approach. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Hip health at skeletal maturity: a population-based study of young adults with cerebral palsy.

    PubMed

    Wawrzuta, Joanna; Willoughby, Kate L; Molesworth, Charlotte; Ang, Soon Ghee; Shore, Benjamin J; Thomason, Pam; Graham, H Kerr

    2016-12-01

    We studied 'hip health' in a population-based cohort of adolescents and young adults with cerebral palsy to investigate associations between hip morphology, pain, and gross motor function. Ninety-eight young adults (65 males, 33 females) from the birth cohort were identified as having developed hip displacement (migration percentage >30) and were reviewed at a mean age of 18 years 10 months (range 15-24y). Hip morphology was classified using the Melbourne Cerebral Palsy Hip Classification Scale (MCPHCS). Severity and frequency of pain were recorded using Likert scales. Gross motor function was classified by the Gross Motor Function Classification System (GMFCS). Hip pain was reported in 72% of participants. Associations were found between pain scores and both hip morphology and GMFCS. Median pain severity score for MCPHCS grades 1 to 4 was 2 (interquartile range [IQR] 1.0-3.0) compared to 7 (IQR 6.0-8.0) for grades 5 and 6 (severe subluxation or dislocation). Hip surveillance and access to surgery were associated with improved hip morphology and less pain. Poor hip morphology at skeletal maturity was associated with high levels of pain. Limited hip surveillance and access to surgery, rather than GMFCS, was associated with poor hip morphology. The majority of young adults who had access to hip surveillance, and preventive and reconstructive surgery, had satisfactory hip morphology at skeletal maturity and less pain. © 2016 Mac Keith Press.

  19. 3D morphology-based clustering and simulation of human pyramidal cell dendritic spines.

    PubMed

    Luengo-Sanchez, Sergio; Fernaud-Espinosa, Isabel; Bielza, Concha; Benavides-Piccione, Ruth; Larrañaga, Pedro; DeFelipe, Javier

    2018-06-13

    The dendritic spines of pyramidal neurons are the targets of most excitatory synapses in the cerebral cortex. They have a wide variety of morphologies, and their morphology appears to be critical from the functional point of view. To further characterize dendritic spine geometry, we used in this paper over 7,000 individually 3D reconstructed dendritic spines from human cortical pyramidal neurons to group dendritic spines using model-based clustering. This approach uncovered six separate groups of human dendritic spines. To better understand the differences between these groups, the discriminative characteristics of each group were identified as a set of rules. Model-based clustering was also useful for simulating accurate 3D virtual representations of spines that matched the morphological definitions of each cluster. This mathematical approach could provide a useful tool for theoretical predictions on the functional features of human pyramidal neurons based on the morphology of dendritic spines.

  20. An Improved Representation of Regional Boundaries on Parcellated Morphological Surfaces

    PubMed Central

    Hao, Xuejun; Xu, Dongrong; Bansal, Ravi; Liu, Jun; Peterson, Bradley S.

    2010-01-01

    Establishing the correspondences of brain anatomy with function is important for understanding neuroimaging data. Regional delineations on morphological surfaces define anatomical landmarks and help to visualize and interpret both functional data and morphological measures mapped onto the cortical surface. We present an efficient algorithm that accurately delineates the morphological surface of the cerebral cortex in real time during generation of the surface using information from parcellated 3D data. With this accurate region delineation, we then develop methods for boundary-preserved simplification and smoothing, as well as procedures for the automated correction of small, misclassified regions to improve the quality of the delineated surface. We demonstrate that our delineation algorithm, together with a new method for double-snapshot visualization of cortical regions, can be used to establish a clear correspondence between brain anatomy and mapped quantities, such as morphological measures, across groups of subjects. PMID:21144708

  1. Adaptive landscape and functional diversity of Neotropical cichlids: implications for the ecology and evolution of Cichlinae (Cichlidae; Cichliformes).

    PubMed

    Arbour, J H; López-Fernández, H

    2014-11-01

    Morphological, lineage and ecological diversity can vary substantially even among closely related lineages. Factors that influence morphological diversification, especially in functionally relevant traits, can help to explain the modern distribution of disparity across phylogenies and communities. Multivariate axes of feeding functional morphology from 75 species of Neotropical cichlid and a stepwise-AIC algorithm were used to estimate the adaptive landscape of functional morphospace in Cichlinae. Adaptive landscape complexity and convergence, as well as the functional diversity of Cichlinae, were compared with expectations under null evolutionary models. Neotropical cichlid feeding function varied primarily between traits associated with ram feeding vs. suction feeding/biting and secondarily with oral jaw muscle size and pharyngeal crushing capacity. The number of changes in selective regimes and the amount of convergence between lineages was higher than expected under a null model of evolution, but convergence was not higher than expected under a similarly complex adaptive landscape. Functional disparity was compatible with an adaptive landscape model, whereas the distribution of evolutionary change through morphospace corresponded with a process of evolution towards a single adaptive peak. The continentally distributed Neotropical cichlids have evolved relatively rapidly towards a number of adaptive peaks in functional trait space. Selection in Cichlinae functional morphospace is more complex than expected under null evolutionary models. The complexity of selective constraints in feeding morphology has likely been a significant contributor to the diversity of feeding ecology in this clade. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  2. Time Course of Atrophic Remodeling: Effects of Exercise on Cardiac Morpology and Function

    NASA Technical Reports Server (NTRS)

    Scott, J. M.; Martin, D.; Caine, T.; Matz, T.; Ploutz-Snyder, L. L.

    2014-01-01

    Early and consistent evaluation of cardiac morphology and function throughout an atrophic stimulus is critically important for the design and optimization of interventions. Exercise training is one intervention that has been shown to confer favorable improvements in LV mass and function during unloading. However, the format and intensity of exercise required to induce optimal cardiac improvements has not been investigated. PURPOSE: This randomized, controlled trial was designed to 1) comprehensively characterize the time course of unloading-induced morpho-functional remodeling, and 2) examine the effects of high intensity exercise training on cardiac structural and functional parameters during unloading. METHODS: Twenty six subjects completed 70 days of head down tilt bed rest (HDBR): 17 were randomized to exercise training (ExBR) and 9 remained sedentary. Exercise consisted of integrated high intensity, continuous, and resistance exercise. We assessed cardiac morphology (left ventricular mass; LVM) and function (speckle-tracking assessment of longitudinal, radial, and circumferential strain and twist) before (BR-2), during (BR7,21,31,70), and following (BR+0, +3) HDBR. Cardiorespiratory fitness (VO2max) was evaluated before (BR- 3), during (BR4,25,46,68) and following (BR+0) HDBR. RESULTS: Sedentary HDBR resulted in a progressive decline in LVM, longitudinal, radial, and circumferential strain, and an increase in twist. ExBR mitigated decreases in LVM and function. Change in twist was significantly related to change in VO2max (R=0.68, p<0.01). CONCLUSIONS: Alterations in cardiac morphology and function begin early during unloading. High-intensity exercise attenuates atrophic morphological and functional remodeling.

  3. Comparison on the Effects and Safety of Tualang Honey and Tribestan in Sperm Parameters, Erectile Function, and Hormonal Profiles among Oligospermic Males

    PubMed Central

    Ismail, Shaiful Bahari; Bakar, Mohd. Bustamanizan; Nik Hussain, Nik Hazlina; Sulaiman, Siti Amrah; Jaafar, Hasnan; Draman, Samsul; Ramli, Roszaman; Wan Yusoff, Wan Zahanim

    2014-01-01

    Introduction. This study aims to evaluate the effectiveness of Tualang honey on sperm parameters, erectile function, and hormonal and safety profiles. Methodology. A randomized control trial was done using Tualang honey (20 grams) and Tribestan (750 mg) over a period of 12 weeks. Sperm parameters including sperm concentration, motility, and morphology were analyzed and erectile function was assessed using IIEF-5 questionnaire. Hormonal profiles of testosterone, FSH, and LH were studied. The volunteers were randomized into two groups and the outcomes were analyzed using SPSS version 18. Results. A total of 66 participants were involved. A significant increment of mean sperm concentration (P < 0.001), motility (P = 0.015) and morphology (P = 0.008) was seen in Tualang honey group. In Tribestan group, a significant increment of mean sperm concentration (P = 0.007), and morphology (P = 0.009) was seen. No significant differences of sperm concentration, motility, and morphology were seen between Tualang honey and Tribestan group and similar results were also seen in erectile function and hormonal profile. All safety profiles were normal and no adverse event was reported. Conclusion. Tualang honey effect among oligospermic males was comparable with Tribestan in improving sperm concentration, motility, and morphology. The usage of Tualang honey was also safe with no reported adverse event. PMID:25505918

  4. Functional innovations and morphological diversification in parrotfish.

    PubMed

    Price, Samantha A; Wainwright, Peter C; Bellwood, David R; Kazancioglu, Erem; Collar, David C; Near, Thomas J

    2010-10-01

    The association between diversification and evolutionary innovations has been well documented and tested in studies of taxonomic richness but the impact that such innovations have on the diversity of form and function is less well understood. Using phylogenetically rigorous techniques, we investigated the association between morphological diversity and two design breakthroughs within the jaws of parrotfish. Similar intramandibular joints and other modifications of the pharyngeal jaws have evolved repeatedly in teleost fish and are frequently hypothesized to promote diversity. We quantified morphological diversity within six functionally important oral jaw traits using the Brownian motion rate of evolution to correct for phylogenetic and time-related biases and compared these rates across clades that did and did not possess the intramandibular joint and the parrotfish pharyngeal jaw. No change in morphological diversity was associated with the pharyngeal jaw modification alone but rates of oral jaw diversification were up to 8× faster in parrotfish species that possessed both innovations. Interestingly, this morphological diversity may not have led to differential resource uses as available data suggest that members of this clade show remarkable homogeneity of diet. © 2010 The Author(s). Journal compilation © 2010 The Society for the Study of Evolution.

  5. Cranial and mandibular shape variation in the genus Carollia (Mammalia: Chiroptera) from Colombia: biogeographic patterns and morphological modularity.

    PubMed

    López-Aguirre, Camilo; Pérez-Torres, Jairo; Wilson, Laura A B

    2015-01-01

    Neotropical bats of the genus Carollia are widely studied due to their abundance, distribution and relevance for ecosystems. However, the ecomorphological boundaries of these species are poorly differentiated, and consequently correspondence between their geographic distribution, ecological plasticity and morphological variation remains unclear. In this study, patterns of cranial and mandibular morphological variation were assessed for Carollia brevicauda, C. castanea and C. perspicillata from Colombia. Using geometric morphometrics, morphological variation was examined with respect to: differences in intraspecific variation, morphological modularity and integration, and biogeographic patterns. Patterns of intraspecific variation were different for each species in both cranial and mandibular morphology, with functional differences apparent according to diet. Cranial modularity varied between species whereas mandibular modularity did not. High cranial and mandibular correlation reflects Cranium-Mandible integration as a functional unit. Similarity between the biogeographic patterns in C. brevicauda and C. perspicillata indicates that the Andes do not act as a barrier but rather as an independent region, isolating the morphology of Andean populations of larger-bodied species. The biogeographic pattern for C. castanea was not associated with the physiography of the Andes, suggesting that large body size does not benefit C. brevicauda and C. perspicillata in maintaining homogeneous morphologies among populations.

  6. Cranial and mandibular shape variation in the genus Carollia (Mammalia: Chiroptera) from Colombia: biogeographic patterns and morphological modularity

    PubMed Central

    Pérez-Torres, Jairo; Wilson, Laura A. B.

    2015-01-01

    Neotropical bats of the genus Carollia are widely studied due to their abundance, distribution and relevance for ecosystems. However, the ecomorphological boundaries of these species are poorly differentiated, and consequently correspondence between their geographic distribution, ecological plasticity and morphological variation remains unclear. In this study, patterns of cranial and mandibular morphological variation were assessed for Carollia brevicauda, C. castanea and C. perspicillata from Colombia. Using geometric morphometrics, morphological variation was examined with respect to: differences in intraspecific variation, morphological modularity and integration, and biogeographic patterns. Patterns of intraspecific variation were different for each species in both cranial and mandibular morphology, with functional differences apparent according to diet. Cranial modularity varied between species whereas mandibular modularity did not. High cranial and mandibular correlation reflects Cranium-Mandible integration as a functional unit. Similarity between the biogeographic patterns in C. brevicauda and C. perspicillata indicates that the Andes do not act as a barrier but rather as an independent region, isolating the morphology of Andean populations of larger-bodied species. The biogeographic pattern for C. castanea was not associated with the physiography of the Andes, suggesting that large body size does not benefit C. brevicauda and C. perspicillata in maintaining homogeneous morphologies among populations. PMID:26413433

  7. BlastNeuron for Automated Comparison, Retrieval and Clustering of 3D Neuron Morphologies.

    PubMed

    Wan, Yinan; Long, Fuhui; Qu, Lei; Xiao, Hang; Hawrylycz, Michael; Myers, Eugene W; Peng, Hanchuan

    2015-10-01

    Characterizing the identity and types of neurons in the brain, as well as their associated function, requires a means of quantifying and comparing 3D neuron morphology. Presently, neuron comparison methods are based on statistics from neuronal morphology such as size and number of branches, which are not fully suitable for detecting local similarities and differences in the detailed structure. We developed BlastNeuron to compare neurons in terms of their global appearance, detailed arborization patterns, and topological similarity. BlastNeuron first compares and clusters 3D neuron reconstructions based on global morphology features and moment invariants, independent of their orientations, sizes, level of reconstruction and other variations. Subsequently, BlastNeuron performs local alignment between any pair of retrieved neurons via a tree-topology driven dynamic programming method. A 3D correspondence map can thus be generated at the resolution of single reconstruction nodes. We applied BlastNeuron to three datasets: (1) 10,000+ neuron reconstructions from a public morphology database, (2) 681 newly and manually reconstructed neurons, and (3) neurons reconstructions produced using several independent reconstruction methods. Our approach was able to accurately and efficiently retrieve morphologically and functionally similar neuron structures from large morphology database, identify the local common structures, and find clusters of neurons that share similarities in both morphology and molecular profiles.

  8. Galactic satellite systems: radial distribution and environment dependence of galaxy morphology

    NASA Astrophysics Data System (ADS)

    Ann, H. B.; Park, Changbom; Choi, Yun-Young

    2008-09-01

    We have studied the radial distribution of the early (E/S0) and late (S/Irr) types of satellites around bright host galaxies. We made a volume-limited sample of 4986 satellites brighter than Mr = -18.0 associated with 2254 hosts brighter than Mr = -19.0 from the Sloan Digital Sky Survey Data Release 5 sample. The morphology of satellites is determined by an automated morphology classifier, but the host galaxies are visually classified. We found segregation of satellite morphology as a function of the projected distance from the host galaxy. The amplitude and shape of the early-type satellite fraction profile are found to depend on the host luminosity. This is the morphology-radius/density relation at the galactic scale. There is a strong tendency for morphology conformity between the host galaxy and its satellites. The early-type fraction of satellites hosted by early-type galaxies is systematically larger than that of late-type hosts, and is a strong function of the distance from the host galaxies. Fainter satellites are more vulnerable to the morphology transformation effects of hosts. Dependence of satellite morphology on the large-scale background density was detected. The fraction of early-type satellites increases in high-density regions for both early- and late-type hosts. It is argued that the conformity in morphology of galactic satellite system is mainly originated by the hydrodynamical and radiative effects of hosts on satellites.

  9. Reshaping Plant Biology: Qualitative and Quantitative Descriptors for Plant Morphology

    PubMed Central

    Balduzzi, Mathilde; Binder, Brad M.; Bucksch, Alexander; Chang, Cynthia; Hong, Lilan; Iyer-Pascuzzi, Anjali S.; Pradal, Christophe; Sparks, Erin E.

    2017-01-01

    An emerging challenge in plant biology is to develop qualitative and quantitative measures to describe the appearance of plants through the integration of mathematics and biology. A major hurdle in developing these metrics is finding common terminology across fields. In this review, we define approaches for analyzing plant geometry, topology, and shape, and provide examples for how these terms have been and can be applied to plants. In leaf morphological quantifications both geometry and shape have been used to gain insight into leaf function and evolution. For the analysis of cell growth and expansion, we highlight the utility of geometric descriptors for understanding sepal and hypocotyl development. For branched structures, we describe how topology has been applied to quantify root system architecture to lend insight into root function. Lastly, we discuss the importance of using morphological descriptors in ecology to assess how communities interact, function, and respond within different environments. This review aims to provide a basic description of the mathematical principles underlying morphological quantifications. PMID:28217137

  10. Jaw lever analysis of Hawaiian gobioid stream fishes: a simulation study of morphological diversity and functional performance.

    PubMed

    Maie, Takashi; Schoenfuss, Heiko L; Blob, Richard W

    2009-08-01

    Differences in feeding behavior and performance among the five native Hawaiian gobioid stream fishes (Sicyopterus stimpsoni, Lentipes concolor, Awaous guamensis, Stenogobius hawaiiensis, and Eleotris sandwicensis) have been proposed based on the skeletal anatomy of their jaws and dietary specialization. However, performance of the feeding apparatus likely depends on the proportions and configurations of the jaw muscles and the arrangement of the jaw skeleton. We used a published mathematical model of muscle function to evaluate potential differences in jaw closing performance and their correlations with morphology among these species. For example, high output force calculated for the adductor mandibulae muscles (A2 and A3) of both A. guamensis and E. sandwicensis matched expectations based on the morphology of these species because these muscles are larger than in the other species. In contrast, Stenogobius hawaiiensis exhibited an alternative morphological strategy for achieving high relative output forces of both A2 and A3, in which the placement and configuration of the muscles conveyed high mechanical advantage despite only moderate cross-sectional areas. These differing anatomical pathways to similar functional performance suggest a pattern of many-to-one mapping of morphology to performance. In addition, a functional differentiation between A2 and A3 was evident for all species, in which A2 was better suited for producing forceful jaw closing and A3 for rapid jaw closing. Thus, the diversity of feeding performance of Hawaiian stream gobies seems to reflect a maintenance of functional breadth through the retention of some primitive traits in combination with novel functional capacities in several species. (c) 2009 Wiley-Liss, Inc.

  11. Ecomorphology and phylogenetic risk: Implications for habitat reconstruction using fossil bovids.

    PubMed

    Scott, Robert S; Barr, W Andrew

    2014-08-01

    Reconstructions of paleohabitats are necessary aids in understanding hominin evolution. The morphology of species from relevant sites, understood in terms of functional relationships to habitat (termed ecomorphology), offers a direct link to habitat. Bovids are a speciose radiation that includes many habitat specialists and are abundant in the fossil record. Thus, bovids are extremely common in ecomorphological analyses. However, bovid phylogeny and habitat preference are related, which raises the possibility that analyses linking habitat with morphology are not 'taxon free' but 'taxon-dependent.' Here we analyze eight relative dimensions and one shape index of the metatarsal for a sample of 72 bovid species and one antilocaprid. The selected variables have been previously shown to have strong associations with habitat and to have functional explanations for these associations. Phylogenetic generalized least squares analyses of these variables, including habitat and size, resulted in estimates for the parameter lambda (used to model phylogenetic signal) varying from zero to one. Thus, while phylogeny, morphology, and habitat all march together among the bovids, the odds that phylogeny confounds ecomorphological analyses may vary depending on particular morphological characteristics. While large values of lambda do not necessarily indicate that habitat differences are unimportant drivers of morphology, we consider the low value of lambda for relative metatarsal width suggestive that conclusions about habitat built on observations of this particular morphology carry with them less 'phylogenetic risk.' We suggest that the way forward for ecomorphology is grounded in functionally relevant observations and careful consideration of phylogeny designed to bracket probable habitat preferences appropriately. Separate consideration of different morphological variables may help to determine the level of 'phylogenetic risk' attached to conclusions linking habitat and morphology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Lung function and pulmonary artery blood flow following prenatal maternal retinoic acid and imatinib in the nitrofen model of congenital diaphragmatic hernia.

    PubMed

    Burgos, Carmen Mesas; Davey, Marcus G; Riley, John S; Jia, Huimin; Flake, Alan W; Peranteau, William H

    2017-12-19

    Lung and pulmonary vascular maldevelopment in congenital diaphragmatic hernia (CDH) results in significant morbidity and mortality. Retinoic acid (RA) and imatinib have been shown to improve pulmonary morphology following prenatal administration in the rat nitrofen-induced CDH model. It remains unclear if these changes translate into improved function. We evaluated the effect of prenatal RA and imatinib on postnatal lung function, structure, and pulmonary artery (PA) blood flow in the rat CDH model. Olive oil or nitrofen was administered alone or in combination with RA or imatinib to pregnant rats. Pups were assessed for PA blood flow by ultrasound and pulmonary function/morphology following delivery, intubation, and short-term ventilation. Neither RA nor imatinib had a negative effect on lung and body growth. RA accelerated lung maturation indicated by increased alveoli number and thinner interalveolar septa and was associated with decreased PA resistance and improved oxygenation. With the exception of a decreased PA pulsatility index, no significant changes in morphology and pulmonary function were noted following imatinib. Prenatal treatment with RA but not imatinib was associated with improved pulmonary morphology and function, and decreased pulmonary vascular resistance. This study highlights the potential of prenatal pharmacologic therapies, such as RA, for management of CDH. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Run for your life, but bite for your rights? How interactions between natural and sexual selection shape functional morphology across habitats

    NASA Astrophysics Data System (ADS)

    Gomes, Verónica; Carretero, Miguel A.; Kaliontzopoulou, Antigoni

    2018-02-01

    A central issue in evolutionary biology is how morphology, performance, and habitat use coevolve. If morphological variation is tightly associated with habitat use, then differences in morphology should affect fitness through their effect on performance within specific habitats. In this study, we investigate how evolutionary forces mold morphological traits and performance differently given the surrounding environment, at the intraspecific level. For this purpose, we selected populations of the lizard Podarcis bocagei from two different habitat types, agricultural walls and dunes, which we expected to reflect saxicolous vs ground-dwelling habits. In the laboratory, we recorded morphological traits as well as performance traits by measuring sprint speed, climbing capacity, maneuverability, and bite force. Our results revealed fast-evolving ecomorphological variation among populations of P. bocagei, where a direct association existed between head morphology and bite performance. However, we could not establish links between limb morphology and locomotor performance at the individual level. Lizards from walls were better climbers than those from dunes, suggesting a very fast evolutionary response. Interestingly, a significant interaction between habitat and sex was detected in climbing performance. In addition, lizards from dunes bit harder than those from walls, although sexual differentiation was definitely the main factor driving variation in head functional morphology. Taking into account all the results, we found a complex interaction between natural and sexual selection on whole-organism performance, which are, in some cases, reflected in morphological variation.

  14. Run for your life, but bite for your rights? How interactions between natural and sexual selection shape functional morphology across habitats.

    PubMed

    Gomes, Verónica; Carretero, Miguel A; Kaliontzopoulou, Antigoni

    2018-01-02

    A central issue in evolutionary biology is how morphology, performance, and habitat use coevolve. If morphological variation is tightly associated with habitat use, then differences in morphology should affect fitness through their effect on performance within specific habitats. In this study, we investigate how evolutionary forces mold morphological traits and performance differently given the surrounding environment, at the intraspecific level. For this purpose, we selected populations of the lizard Podarcis bocagei from two different habitat types, agricultural walls and dunes, which we expected to reflect saxicolous vs ground-dwelling habits. In the laboratory, we recorded morphological traits as well as performance traits by measuring sprint speed, climbing capacity, maneuverability, and bite force. Our results revealed fast-evolving ecomorphological variation among populations of P. bocagei, where a direct association existed between head morphology and bite performance. However, we could not establish links between limb morphology and locomotor performance at the individual level. Lizards from walls were better climbers than those from dunes, suggesting a very fast evolutionary response. Interestingly, a significant interaction between habitat and sex was detected in climbing performance. In addition, lizards from dunes bit harder than those from walls, although sexual differentiation was definitely the main factor driving variation in head functional morphology. Taking into account all the results, we found a complex interaction between natural and sexual selection on whole-organism performance, which are, in some cases, reflected in morphological variation.

  15. Development from childhood to adulthood increases morphological and functional inter-individual variability in the right superior temporal cortex.

    PubMed

    Bonte, Milene; Frost, Martin A; Rutten, Sanne; Ley, Anke; Formisano, Elia; Goebel, Rainer

    2013-12-01

    We study the developmental trajectory of morphology and function of the superior temporal cortex (STC) in children (8-9 years), adolescents (14-15 years) and young adults. We analyze cortical surface landmarks and functional MRI (fMRI) responses to voices, other natural categories and tones and examine how hemispheric asymmetry and inter-subject variability change across age. Our results show stable morphological asymmetries across age groups, including a larger left planum temporale and a deeper right superior temporal sulcus. fMRI analyses show that a rightward lateralization for voice-selective responses is present in all groups but decreases with age. Furthermore, STC responses to voices change from being less selective and more spatially diffuse in children to highly selective and focal in adults. Interestingly, the analysis of morphological landmarks reveals that inter-subject variability increases during development in the right--but not in the left--STC. Similarly, inter-subject variability of cortically-realigned functional responses to voices, other categories and tones increases with age in the right STC. Our findings reveal asymmetric developmental changes in brain regions crucial for auditory and voice perception. The age-related increase of inter-subject variability in right STC suggests that anatomy and function of this region are shaped by unique individual developmental experiences. © 2013.

  16. Morphological and functional evaluation of chronic pancreatitis with magnetic resonance imaging

    PubMed Central

    Hansen, Tine Maria; Nilsson, Matias; Gram, Mikkel; Frøkjær, Jens Brøndum

    2013-01-01

    Magnetic resonance imaging (MRI) techniques for assessment of morphology and function of the pancreas have been improved dramatically the recent years and MRI is very often used in diagnosing and follow-up of chronic pancreatitis (CP) patients. Standard MRI including fat-suppressed T1-weighted and T2-weighted imaging techniques reveal decreased signal and glandular atrophy of the pancreas in CP. In contrast-enhanced MRI of the pancreas in CP the pancreatic signal is usually reduced and delayed due to decreased perfusion as a result of chronic inflammation and fibrosis. Thus, morphological changes of the ductal system can be assessed by magnetic resonance cholangiopancreatography (MRCP). Furthermore, secretin-stimulated MRCP is a valuable technique to evaluate side branch pathology and the exocrine function of the pancreas and diffusion weighted imaging can be used to quantify both parenchymal fibrotic changes and the exocrine function of the pancreas. These standard and advanced MRI techniques are supplementary techniques to reveal morphological and functional changes of the pancreas in CP. Recently, spectroscopy has been used for assessment of metabolite concentrations in-vivo in different tissues and may have the potential to offer better tissue characterization of the pancreas. Hence, the purpose of the present review is to provide an update on standard and advanced MRI techniques of the pancreas in CP. PMID:24259954

  17. Classification of threespine stickleback along the benthic-limnetic axis.

    PubMed

    Willacker, James J; von Hippel, Frank A; Wilton, Peter R; Walton, Kelly M

    2010-11-01

    Many species of fish display morphological divergence between individuals feeding on macroinvertebrates associated with littoral habitats (benthic morphotypes) and individuals feeding on zooplankton in the limnetic zone (limnetic morphotypes). Threespine stickleback (Gasterosteus aculeatus L.) have diverged along the benthic-limnetic axis into allopatric morphotypes in thousands of populations and into sympatric species pairs in several lakes. However, only a few well known populations have been studied because identifying additional populations as either benthic or limnetic requires detailed dietary or observational studies. Here we develop a Fisher's linear discriminant function based on the skull morphology of known benthic and limnetic stickleback populations from the Cook Inlet Basin of Alaska and test the feasibility of using this function to identify other morphologically divergent populations. Benthic and limnetic morphotypes were separable using this technique and of 45 populations classified, three were identified as morphologically extreme (two benthic and one limnetic), nine as moderately divergent (three benthic and six limnetic) and the remaining 33 populations as morphologically intermediate. Classification scores were found to correlate with eye size, the depth profile of lakes, and the presence of invasive northern pike (Esox lucius). This type of classification function provides a means of integrating the complex morphological differences between morphotypes into a single score that reflects the position of a population along the benthic-limnetic axis and can be used to relate that position to other aspects of stickleback biology.

  18. Classification of threespine stickleback along the benthic-limnetic axis

    PubMed Central

    Willacker, James J.; von Hippel, Frank A.; Wilton, Peter R.; Walton, Kelly M.

    2010-01-01

    Many species of fish display morphological divergence between individuals feeding on macroinvertebrates associated with littoral habitats (benthic morphotypes) and individuals feeding on zooplankton in the limnetic zone (limnetic morphotypes). Threespine stickleback (Gasterosteus aculeatus L.) have diverged along the benthic-limnetic axis into allopatric morphotypes in thousands of populations and into sympatric species pairs in several lakes. However, only a few well known populations have been studied because identifying additional populations as either benthic or limnetic requires detailed dietary or observational studies. Here we develop a Fisher’s linear discriminant function based on the skull morphology of known benthic and limnetic stickleback populations from the Cook Inlet Basin of Alaska and test the feasibility of using this function to identify other morphologically divergent populations. Benthic and limnetic morphotypes were separable using this technique and of 45 populations classified, three were identified as morphologically extreme (two benthic and one limnetic), nine as moderately divergent (three benthic and six limnetic) and the remaining 33 populations as morphologically intermediate. Classification scores were found to correlate with eye size, the depth profile of lakes, and the presence of invasive northern pike (Esox lucius). This type of classification function provides a means of integrating the complex morphological differences between morphotypes into a single score that reflects the position of a population along the benthic-limnetic axis and can be used to relate that position to other aspects of stickleback biology. PMID:21221422

  19. Effects of Obesity on Cardiovascular Hemodynamics, Cardiac Morphology, and Ventricular Function.

    PubMed

    Alpert, Martin A; Omran, Jad; Bostick, Brian P

    2016-12-01

    Obesity produces a variety of hemodynamic alterations that may cause changes in cardiac morphology which predispose to left and right ventricular dysfunction. Various neurohormonal and metabolic alterations commonly associated with obesity may contribute to these abnormalities of cardiac structure and function. These changes in cardiovascular hemodynamics, cardiac morphology, and ventricular function may, in severely obese patients, predispose to heart failure, even in the absence of other forms of heart disease (obesity cardiomyopathy). In normotensive obese patients, cardiac involvement is commonly characterized by elevated cardiac output, low peripheral vascular resistance, and increased left ventricular (LV) end-diastolic pressure. Sleep-disordered breathing may lead to pulmonary arterial hypertension and, in association with left heart failure, may contribute to elevation of right heart pressures. These alterations, in association with various neurohormonal and metabolic abnormalities, may produce LV hypertrophy; impaired LV diastolic function; and less commonly, LV systolic dysfunction. Many of these alterations are reversible with substantial voluntary weight loss.

  20. Growth of Nanoparticles with Desired Catalytic Functions by Controlled Doping-Segregation of Metal in Oxide

    DOE PAGES

    Wu, Qiyuan; Yan, Binhang; Cen, Jiajie; ...

    2018-02-05

    Here, the size and morphology of metal nanoparticles (NPs) often play a critical role in defining the catalytic performance of supported metal nanocatalysts. However, common synthetic methods struggle to produce metal NPs of appropriate size and morphological control. Thus, facile synthetic methods that offer controlled catalytic functions are highly desired. Here we have identified a new pathway to synthesize supported Rh nanocatalysts with finely tuned spatial dimensions and controlled morphology using a doping-segregation method. We have analyzed their structure evolutions during both the segregation process and catalytic reaction using a variety of in situ spectroscopic and microscopic techniques. A correlationmore » between the catalytic functional sites and activity in CO 2 hydrogenation over supported Rh nanocatalysts is then established. This study demonstrates a facile strategy to design and synthesize nanocatalysts with desired catalytic functions.« less

  1. Growth of Nanoparticles with Desired Catalytic Functions by Controlled Doping-Segregation of Metal in Oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Qiyuan; Yan, Binhang; Cen, Jiajie

    Here, the size and morphology of metal nanoparticles (NPs) often play a critical role in defining the catalytic performance of supported metal nanocatalysts. However, common synthetic methods struggle to produce metal NPs of appropriate size and morphological control. Thus, facile synthetic methods that offer controlled catalytic functions are highly desired. Here we have identified a new pathway to synthesize supported Rh nanocatalysts with finely tuned spatial dimensions and controlled morphology using a doping-segregation method. We have analyzed their structure evolutions during both the segregation process and catalytic reaction using a variety of in situ spectroscopic and microscopic techniques. A correlationmore » between the catalytic functional sites and activity in CO 2 hydrogenation over supported Rh nanocatalysts is then established. This study demonstrates a facile strategy to design and synthesize nanocatalysts with desired catalytic functions.« less

  2. Morphological integration in the appendicular skeleton of two domestic taxa: the horse and donkey.

    PubMed

    Hanot, Pauline; Herrel, Anthony; Guintard, Claude; Cornette, Raphaël

    2017-10-11

    Organisms are organized into suites of anatomical structures that typically covary when developmentally or functionally related, and this morphological integration plays a determinant role in evolutionary processes. Artificial selection on domestic species causes strong morphological changes over short time spans, frequently resulting in a wide and exaggerated phenotypic diversity. This raises the question of whether integration constrains the morphological diversification of domestic species and how natural and artificial selection may impact integration patterns. Here, we study the morphological integration in the appendicular skeleton of domestic horses and donkeys, using three-dimensional geometric morphometrics on 75 skeletons. Our results indicate that a strong integration is inherited from developmental mechanisms which interact with functional factors. This strong integration reveals a specialization in the locomotion of domestic equids, partly for running abilities. We show that the integration is stronger in horses than in donkeys, probably because of a greater degree of specialization and predictability of their locomotion. Thus, the constraints imposed by integration are weak enough to allow important morphological changes and the phenotypic diversification of domestic species. © 2017 The Author(s).

  3. Functional morphology and comparative anatomy of appendicular musculature in Cuban Anolis lizards with different locomotor habits.

    PubMed

    Anzai, Wataru; Omura, Ayano; Diaz, Antonio Cadiz; Kawata, Masakado; Endo, Hideki

    2014-07-01

    We examined the diversity of the musculoskeletal morphology in the limbs of Anolis lizards with different habitats and identified variations in functional and morphological adaptations to different ecologies or behaviors. Dissection and isolation of 40 muscles from the fore- and hindlimbs of five species of Anolis were performed, and the muscle mass and length of the moment arm were compared after body size effects were removed. Ecologically and behaviorally characteristic morphological differences were observed in several muscles. Well-developed hindlimb extensors were observed in ground-dwelling species, A. sagrei and A. bremeri, and were considered advantageous for running, whereas adept climber species possessed expanded femoral retractors for weight-bearing during climbing. Moreover, morphological variations were observed among arboreal species. Wider excursions of the forelimb joint characterized A. porcatus, presumably enabling branch-to-branch locomotion, while A. equestris and A. angusticeps possessed highly developed adductor muscles for grasping thick branches or twigs. These findings suggest divergent evolution of musculoskeletal characteristic in the limbs within the genus Anolis, with correlations observed among morphological traits, locomotor performance, and habitat uses.

  4. Parallel computational and experimental studies of the morphological modification of calcium carbonate by cobalt

    NASA Astrophysics Data System (ADS)

    Braybrook, A. L.; Heywood, B. R.; Jackson, R. A.; Pitt, K.

    2002-08-01

    Crystal growth can be controlled by the incorporation of dopant ions into the lattice and yet the question of how such substituents affect the morphology has not been addressed. This paper describes the forms of calcite (CaCO 3) which arise when the growth assay is doped with cobalt. Distinct and specific morphological changes are observed; the calcite crystals adopt a morphology which is dominated by the {01.1} family of faces. These experimental studies paralleled the development of computational methods for the analysis of crystal habit as a function of dopant concentration. In this case, the predicted defect morphology also argued for the dominance of the (01.1) face in the growth form. The appearance of this face was related to the preferential segregation of the dopant ions to the crystal surface. This study confirms the evolution of a robust computational model for the analysis of calcite growth forms under a range of environmental conditions and presages the use of such tools for the predictive development of crystal morphologies in those applications where chemico-physical functionality is linked closely to a specific crystallographic form.

  5. To feed or to breed: morphological constraints of mouthbrooding in coral reef cardinalfishes

    PubMed Central

    Hoey, Andrew S.; Bellwood, David R.; Barnett, Adam

    2012-01-01

    Functionally coupled biomechanical systems are widespread in nature and are viewed as major constraints on evolutionary diversification, yet there have been few attempts to explore the implications of performing multiple functions within a single anatomical structure. Paternally mouthbrooding cardinalfishes present an ideal system to investigate the constraints of functional coupling as the oral jaws of male fishes are directly responsible for both feeding and reproductive functions. To test the effects of (i) mouthbrooding on feeding and (ii) feeding on reproductive potential we compared the feeding apparatus between sexes of nine species of cardinalfish and compared brood characteristics among species from different trophic groups, respectively. Mouthbrooding was strongly associated with the morphology of the feeding apparatus in males. Male cardinalfishes possessed longer heads, snouts and jaws than female conspecifics irrespective of body size, trophic group or evolutionary history. Conversely, reproductive potential also appeared to be related to trophic morphology. Piscivorous cardinalfishes produced larger, but fewer eggs, and had smaller brood volumes than species from the two invertebrate feeding groups. These interrelationships suggest that feeding and reproduction in the mouth of cardinalfishes may be tightly coupled. If so this may, in part, have contributed to the limited morphological diversification exhibited by cardinalfishes. PMID:22319124

  6. To feed or to breed: morphological constraints of mouthbrooding in coral reef cardinalfishes.

    PubMed

    Hoey, Andrew S; Bellwood, David R; Barnett, Adam

    2012-06-22

    Functionally coupled biomechanical systems are widespread in nature and are viewed as major constraints on evolutionary diversification, yet there have been few attempts to explore the implications of performing multiple functions within a single anatomical structure. Paternally mouthbrooding cardinalfishes present an ideal system to investigate the constraints of functional coupling as the oral jaws of male fishes are directly responsible for both feeding and reproductive functions. To test the effects of (i) mouthbrooding on feeding and (ii) feeding on reproductive potential we compared the feeding apparatus between sexes of nine species of cardinalfish and compared brood characteristics among species from different trophic groups, respectively. Mouthbrooding was strongly associated with the morphology of the feeding apparatus in males. Male cardinalfishes possessed longer heads, snouts and jaws than female conspecifics irrespective of body size, trophic group or evolutionary history. Conversely, reproductive potential also appeared to be related to trophic morphology. Piscivorous cardinalfishes produced larger, but fewer eggs, and had smaller brood volumes than species from the two invertebrate feeding groups. These interrelationships suggest that feeding and reproduction in the mouth of cardinalfishes may be tightly coupled. If so this may, in part, have contributed to the limited morphological diversification exhibited by cardinalfishes.

  7. The influence of an innovative locomotor strategy on the phenotypic diversification of triggerfish (family: Balistidae).

    PubMed

    Dornburg, Alex; Sidlauskas, Brian; Santini, Francesco; Sorenson, Laurie; Near, Thomas J; Alfaro, Michael E

    2011-07-01

    Innovations in locomotor morphology have been invoked as important drivers of vertebrate diversification, although the influence of novel locomotion strategies on marine fish diversification remains largely unexplored. Using triggerfish as a case study, we determine whether the evolution of the distinctive synchronization of enlarged dorsal and anal fins that triggerfish use to swim may have catalyzed the ecological diversification of the group. By adopting a comparative phylogenetic approach to quantify median fin and body shape integration and to assess the tempo of functional and morphological evolution in locomotor traits, we find that: (1) functional and morphological components of the locomotive system exhibit a strong signal of correlated evolution; (2) triggerfish partitioned locomotor morphological and functional spaces early in their history; and (3) there is no strong evidence that a pulse of lineage diversification accompanied the major episode of phenotypic diversification. Together these findings suggest that the acquisition of a distinctive mode of locomotion drove an early radiation of shape and function in triggerfish, but not an early radiation of species. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  8. Proteins associated with critical sperm functions and sperm head shape are differentially expressed in morphologically abnormal bovine sperm induced by scrotal insulation.

    PubMed

    Shojaei Saadi, Habib A; van Riemsdijk, Evine; Dance, Alysha L; Rajamanickam, Gayathri D; Kastelic, John P; Thundathil, Jacob C

    2013-04-26

    The objective was to investigate expression patterns of proteins in pyriform sperm, a common morphological abnormality in bull sperm. Ejaculates were collected from sexually mature Holstein bulls (n=3) twice weekly for 10 weeks (pre-thermal insult samples). Testicular temperature was elevated in all bulls by scrotal insulation for 72 consecutive hours during week 2. Total sperm proteins were extracted from pre- and post-thermal insult sperm samples and subjected to two-dimensional gel electrophoresis. Among the protein spots detected, 131 spots were significantly expressed (False Detection Rate <0.01) with ≥ 2 fold changes between normal and pyriform sperm. Among them, 25 spots with ≥ 4 fold difference in expression patterns were identified using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Expression of several proteins involved in sperm capacitation, sperm-egg interaction and sperm cytoskeletal structure was decreased in pyriform sperm, whereas proteins regulating antioxidant activity, apoptosis and metabolic activity were increased. Contents of reactive oxygen species and ubiquitinated proteins were higher in pyriform sperm. In addition to understanding the molecular basis of functional deficiencies in sperm with specific morphological abnormalities, comparing normal versus morphologically abnormal sperm appeared to be a suitable experimental model for identifying important sperm functional proteins. To our knowledge, this study is the first report on differential expression of proteins in pyriform bovine sperm versus morphologically normal sperm. We report that expression of several proteins involved in sperm capacitation, sperm-egg interaction and sperm cytoskeletal structure was decreased in pyriform sperm, whereas proteins which regulate antioxidant activity, apoptosis and metabolic activity were increased. Contents of reactive oxygen species and ubiquitinated proteins were higher in pyriform sperm. In addition to understanding the molecular basis of functional deficiencies in sperm with specific morphological abnormalities, our results suggest that comparing normal versus morphologically abnormal sperm appeared to be a suitable experimental model for identifying important sperm functional proteins. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. THE EVOLUTION OF EARLY- AND LATE-TYPE GALAXIES IN THE COSMIC EVOLUTION SURVEY UP TO z {approx} 1.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pannella, Maurilio; Gabasch, Armin; Drory, Niv

    2009-08-10

    The Cosmic Evolution Survey (COSMOS) allows for the first time a highly significant census of environments and structures up to redshift 1, as well as a full morphological description of the galaxy population. In this paper we present a study aimed to constrain the evolution, in the redshift range 0.2 < z < 1.2, of the mass content of different morphological types and its dependence on the environmental density. We use a deep multicolor catalog, covering an area of {approx}0.7 deg{sup 2} inside the COSMOS field, with accurate photometric redshifts (i {approx}< 26.5 and {delta}z/(z {sub spec} + 1) {approx}more » 0.035). We estimate galaxy stellar masses by fitting the multicolor photometry to a grid of composite stellar population models. We quantitatively describe the galaxy morphology by fitting point-spread function convolved Sersic profiles to the galaxy surface brightness distributions down to F814 = 24 mag for a sample of 41,300 objects. We confirm an evolution of the morphological mix with redshift: the higher the redshift the more disk-dominated galaxies become important. We find that the morphological mix is a function of the local comoving density: the morphology density relation extends up to the highest redshift explored. The stellar mass function of disk-dominated galaxies is consistent with being constant with redshift. Conversely, the stellar mass function of bulge-dominated systems shows a decline in normalization with redshift. Such different behaviors of late-types and early-types stellar mass functions naturally set the redshift evolution of the transition mass. We find a population of relatively massive, early-type galaxies, having high specific star formation rate (SSFR) and blue colors which live preferentially in low-density environments. The bulk of massive (>7 x 10{sup 10} M {sub sun}) early-type galaxies have similar characteristic ages, colors, and SSFRs independently of the environment they belong to, with those hosting the oldest stars in the universe preferentially belonging to the highest density regions. The whole catalog including morphological information and stellar mass estimates analyzed in this work is made publicly available.« less

  10. Morphological and Secretory Characterization of Extrafloral Nectaries in Plants of Coastal Veracruz, Mexico

    PubMed Central

    DÍAZ-CASTELAZO, CECILIA; RICO-GRAY, VICTOR; ORTEGA, FERNANDO; ÁNGELES, GUILLERMO

    2005-01-01

    • Background and Aims Morphological descriptions of the extrafloral nectaries (EFNs) of certain plant species are common in the literature, but they rarely relate morphology with histology, gland distribution and secretory attributes. In this study a morphological/secretory characterization of EFNs occurring on several plant species in a tropical coastal community is made and the implications of gland attributes discussed from a functional perspective. • Methods The morphology and nectar secretion of the EFNs of 20 plant species are characterized through scanning electron microscopy, histochemical detection of reducing sugars (Fehling's reagent) and nectar volume/concentration estimates. • Key Results Sixty-five per cent of plant species in coastal communities had EFNs on vegetative structures and 35 % of species had glands on reproductive and vegetative organs. The Fabaceae is the plant family with the most species with EFNs and most diversity of gland morphologies. Four types of vascularized nectaries and four of glandular trichomes are described; sugar-secreting trichomes are characterized using Fehling's technique, and the first descriptions of unicellular and peltate trichomes functioning as EFNs are provided. Glands of ten plant species and six genera are described for the first time. Four plant species possess more than one morphological type of EFN. Eleven species have EFNs in more than one location or organ. More complex glands secrete more nectar, but are functionally homologous to the aggregations of numerous secretory trichomes on specific and valuable plant organs. • Conclusion Important diversity of EFN morphology was foundin the coastal plant community studied. Both vascularized and non-vascularized EFNs are observed in plants and, for the latter, previously non-existent morpho-secretory characterizations are provided with a methodological approach to study them. It is recommended that studies relating EFN attributes (i.e. morphology, distribution) with their differential visitation by insects (i.e. ants) and the cost of maintenance to the plants are carried out to understand the evolution of these glands. PMID:16227307

  11. Morphological and secretory characterization of extrafloral nectaries in plants of coastal Veracruz, Mexico.

    PubMed

    Díaz-Castelazo, Cecilia; Rico-Gray, Victor; Ortega, Fernando; Angeles, Guillermo

    2005-12-01

    Morphological descriptions of the extrafloral nectaries (EFNs) of certain plant species are common in the literature, but they rarely relate morphology with histology, gland distribution and secretory attributes. In this study a morphological/secretory characterization of EFNs occurring on several plant species in a tropical coastal community is made and the implications of gland attributes discussed from a functional perspective. The morphology and nectar secretion of the EFNs of 20 plant species are characterized through scanning electron microscopy, histochemical detection of reducing sugars (Fehling's reagent) and nectar volume/concentration estimates. Sixty-five per cent of plant species in coastal communities had EFNs on vegetative structures and 35 % of species had glands on reproductive and vegetative organs. The Fabaceae is the plant family with the most species with EFNs and most diversity of gland morphologies. Four types of vascularized nectaries and four of glandular trichomes are described; sugar-secreting trichomes are characterized using Fehling's technique, and the first descriptions of unicellular and peltate trichomes functioning as EFNs are provided. Glands of ten plant species and six genera are described for the first time. Four plant species possess more than one morphological type of EFN. Eleven species have EFNs in more than one location or organ. More complex glands secrete more nectar, but are functionally homologous to the aggregations of numerous secretory trichomes on specific and valuable plant organs. Important diversity of EFN morphology was foundin the coastal plant community studied. Both vascularized and non-vascularized EFNs are observed in plants and, for the latter, previously non-existent morpho-secretory characterizations are provided with a methodological approach to study them. It is recommended that studies relating EFN attributes (i.e. morphology, distribution) with their differential visitation by insects (i.e. ants) and the cost of maintenance to the plants are carried out to understand the evolution of these glands.

  12. Evolving virtual creatures and catapults.

    PubMed

    Chaumont, Nicolas; Egli, Richard; Adami, Christoph

    2007-01-01

    We present a system that can evolve the morphology and the controller of virtual walking and block-throwing creatures (catapults) using a genetic algorithm. The system is based on Sims' work, implemented as a flexible platform with an off-the-shelf dynamics engine. Experiments aimed at evolving Sims-type walkers resulted in the emergence of various realistic gaits while using fairly simple objective functions. Due to the flexibility of the system, drastically different morphologies and functions evolved with only minor modifications to the system and objective function. For example, various throwing techniques evolved when selecting for catapults that propel a block as far as possible. Among the strategies and morphologies evolved, we find the drop-kick strategy, as well as the systematic invention of the principle behind the wheel, when allowing mutations to the projectile.

  13. [Indications and surgical approach for lamellar macular holes and pseudoholes].

    PubMed

    Haritoglou, C; Schumann, R G

    2017-12-01

    This article presents a discussion on the indications for surgical interventions of lamellar macular holes and pseudoholes. What are the criteria for deciding on the surgical intervention for lamellar macular holes and pseudoholes? The article is based on a literature search in PubMed RESULTS: Lamellar macular holes and pseudoholes are subdivided into degenerative and tractive alterations. Both entities are associated with relatively specific morphological and functional criteria, which correlate with the expected functional and morphological results of the surgical intervention. Patients with pseudoholes therefore profit more from a surgical intervention because alterations to the outer retina are less pronounced in these cases. The indications for surgery of lamellar macular holes and pseudoholes are established by the type of lamellar defect and the morphological and functional alterations associated with this condition.

  14. Use of morphological characteristics to define functional groups of predatory fishes in the Celtic Sea.

    PubMed

    Reecht, Y; Rochet, M-J; Trenkel, V M; Jennings, S; Pinnegar, J K

    2013-08-01

    An ecomorphological method was developed, with a focus on predation functions, to define functional groups in the Celtic Sea fish community. Eleven functional traits, measured for 930 individuals from 33 species, led to 11 functional groups. Membership of functional groups was linked to body size and taxonomy. For seven species, there were ontogenetic changes in group membership. When diet composition, expressed as the proportions of different prey types recorded in stomachs, was compared among functional groups, morphology-based predictions accounted for 28-56% of the interindividual variance in prey type. This was larger than the 12-24% of variance that could be explained solely on the basis of body size. © 2013 The Fisheries Society of the British Isles.

  15. Impact of enzyme replacement therapy on cardiac morphology and function and late enhancement in Fabry's cardiomyopathy.

    PubMed

    Beer, Meinrad; Weidemann, Frank; Breunig, Frank; Knoll, Anita; Koeppe, Sabrina; Machann, Wolfram; Hahn, Dietbert; Wanner, Christoph; Strotmann, Jörg; Sandstede, Jörn

    2006-05-15

    The present study evaluated the evolution of cardiac morphology, function, and late enhancement as a noninvasive marker of myocardial fibrosis, and their inter-relation during enzyme replacement therapy in patients with Fabry's disease using magnetic resonance imaging and color Doppler myocardial imaging. Late enhancement, which was present in up to 50% of patients, was associated with increased left ventricular mass, the failure of a significant regression of hypertrophy during enzyme replacement therapy, and worse segmental myocardial function. Late enhancement may predict the effect of enzyme replacement therapy on left ventricular mass and cardiac function.

  16. Biogenic twinned crystals exhibiting unique morphological symmetry

    NASA Astrophysics Data System (ADS)

    Hirsch, Anna; Gur, Dvir; Palmer, Ben; Addadi, Lia; Leiserowitz, Leslie; Kronik, Leeor

    Guanine crystals are widely used in nature as components of multilayer reflectors. Organisms control the size, morphology, and arrangement of these crystals, to obtain a variety of optical ''devices''. The reflection systems found in the lens of the scallop eye and in the copepod cuticle are unique in that the multilayered reflectors are tiled together to form a contiguous packed array. In the former, square crystals are tiled to form a reflecting mirror. In the latter, hexagonal crystals are closely packed to produce brilliant colors. Based on electron diffraction, morphology considerations, and density functional theory, these crystals were shown to possess similar monoclinic crystal symmetry, which we have previously identified as different from that of synthetic anhydrous guanine. However, the crystals are different in that multiple twinning about the {012} and the {011} crystallographic planes results in square and hexagonal morphology, respectively. This is a unique example where controlled twinning is used as a strategy to form a morphology with higher symmetry than that of the underlying crystal, allowing for tilling that facilitates optical functionality.

  17. Organization and dynamics of yeast mitochondrial nucleoids

    PubMed Central

    MIYAKAWA, Isamu

    2017-01-01

    Mitochondrial DNA (mtDNA) is packaged by association with specific proteins in compact DNA-protein complexes named mitochondrial nucleoids (mt-nucleoids). The budding yeast Saccharomyces cerevisiae is able to grow either aerobically or anaerobically. Due to this characteristic, S. cerevisiae has been extensively used as a model organism to study genetics, morphology and biochemistry of mitochondria for a long time. Mitochondria of S. cerevisiae frequently fuse and divide, and perform dynamic morphological changes depending on the culture conditions and the stage of life cycle of the yeast cells. The mt-nucleoids also dynamically change their morphology, accompanying morphological changes of mitochondria. The mt-nucleoids have been isolated morphologically intact and functional analyses of mt-nucleoid proteins have been extensively performed. These studies have revealed that the functions of mt-nucleoid proteins are essential for maintenance of mtDNA. The aims of this review are to summarize the history on the research of yeast mt-nucleoids as well as recent findings on the organization of the mt-nucleoids and mitochondrial dynamics. PMID:28496055

  18. Decomposing Slavic Aspect: The Role of Aspectual Morphology in Polish and Other Slavic Languages

    ERIC Educational Resources Information Center

    Lazorczyk, Agnieszka Agata

    2010-01-01

    This dissertation considers the problem of the semantic function of verbal aspectual morphology in Polish and other Slavic languages in the framework of generative syntax and semantics. Three kinds of such morphology are examined: (i) prefixes attaching directly to the root, (ii) "secondary imperfective" suffixes, and (iii) three prefixes that…

  19. Neural Correlates of Morphological Decomposition in a Morphologically Rich Language: An fMRI Study

    ERIC Educational Resources Information Center

    Lehtonen, Minna; Vorobyev, Victor A.; Hugdahl, Kenneth; Tuokkola, Terhi; Laine, Matti

    2006-01-01

    By employing visual lexical decision and functional MRI, we studied the neural correlates of morphological decomposition in a highly inflected language (Finnish) where most inflected noun forms elicit a consistent processing cost during word recognition. This behavioral effect could reflect suffix stripping at the visual word form level and/or…

  20. Nocturnality constrains morphological and functional diversity in the eyes of reef fishes.

    PubMed

    Schmitz, Lars; Wainwright, Peter C

    2011-11-19

    Ambient light levels are often considered to drive the evolution of eye form and function. Diel activity pattern is the main mechanism controlling the visual environment of teleost reef fish, with day-active (diurnal) fish active in well-illuminated conditions, whereas night-active (nocturnal) fish cope with dim light. Physiological optics predicts several specific evolutionary responses to dim-light vision that should be reflected in visual performance features of the eye. We analyzed a large comparative dataset on morphological traits of the eyes in 265 species of teleost reef fish in 43 different families. The eye morphology of nocturnal reef teleosts is characterized by a syndrome that indicates better light sensitivity, including large relative eye size, high optical ratio and large, rounded pupils. Improved dim-light image formation comes at the cost of reduced depth of focus and reduction of potential accommodative lens movement. Diurnal teleost reef fish, released from the stringent functional requirements of dim-light vision have much higher morphological and optical diversity than nocturnal species, with large ranges of optical ratio, depth of focus, and lens accommodation. Physical characteristics of the environment are an important factor in the evolution and diversification of the vertebrate eye. Both teleost reef fish and terrestrial amniotes meet the functional requirements of dim-light vision with a similar evolutionary response of morphological and optical modifications. The trade-off between improved dim-light vision and reduced optical diversity may be a key factor in explaining the lower trophic diversity of nocturnal reef teleosts.

  1. Quantitative phase imaging of platelet: assessment of cell morphology and function

    NASA Astrophysics Data System (ADS)

    Vasilenko, Irina; Vlasova, Elizaveta; Metelin, Vladislav; Agadzhanjan, B.; Lyfenko, R.

    2017-02-01

    It is well known that platelets play a central role in hemostasis and thrombosis, they also mediate tumor cell growth, dissemination and angiogenesis. The purpose of the present experiment was to evaluate living platelet size, function and morphology simultaneously in unactivated and activated states using Phase-Interference Microscope "Cytoscan" (Moscow, Russia). We enrolled 30 healthy volunteers, who had no past history of aeteriosclerosis-related disorders, such as coronary heart disease, cerebrovascular disease, hypertention, diabetes or hyperlipidemia and 30 patients with oropharynx cancer. We observed the optic-geometrical parameters of each isolated living cell and the distribution of platelets by sizes have been analysed to detect the dynamics of cell population heterogeneity. Simultaneously we identified 4 platelet forms that have different morphological features and different parameters of size distribution. We noticed that morphological platelet types correlate with morphometric platelet parameters. The data of polymorphisms of platelet reactivity in tumor progression can be used to improve patient outcomes in the cancer prevention and treatment. Moreover morphometric and functional platelet parameters can serve criteria of the efficiency of the radio- and chemotherapy carried out. In conclusion the computer phase-interference microscope provides rapid and effective analysis of living platelet morphology and function at the same time. The use of the computer phase-interference microscope could be an easy and fast method to check the state of platelets in patients with changed platelet activation and to follow a possible pharmacological therapy to reduce this phenomenon.

  2. Quantitative Analysis of the Morphology of {101} and {001} Faceted Anatase TiO 2 Nanocrystals and Its Implication on Photocatalytic Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jue; Olds, Daniel; Peng, Rui

    The atomistic structure and morphology (shape and size) of nanomaterials have strong influences on their physical and chemical properties. However, many characterization techniques focus exclusively on one length-scale regime or another when developing quantitative morphology/structural models. In this article, we demonstrate that powder X-ray diffraction and neutron pair distribution function (PDF) can be used to obtain accurate average morphology and atomistic structure of {001} and {101} faceted anatase TiO 2 nanocrystals based on differential evolution refinements using Debye scattering equation calculations. It is also demonstrated that the morphology polydispersity of TiO 2 nanocrystals can be effectively obtained from the diffractionmore » data via a numerical refinement routine. The morphology refinement results are in good agreement with those from transmission electron microscopy and the modeling of small angle neutron scattering data. This method is successfully used to quantify the facet-specified photocatalytic hydrogen evolution activity of anatase TiO 2 nanocrystals with different {001} to {101} ratios. It is found that the sample with an intermediate amount of both {001} and {101} facets shows the best photocatalytic hydrogen evolution reaction (HER) activity. It is expected that the simultaneous structure and morphology refinement technique can be generally used to study the relationship between morphology and functionality of nanomaterials.« less

  3. Quantitative Analysis of the Morphology of {101} and {001} Faceted Anatase TiO 2 Nanocrystals and Its Implication on Photocatalytic Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jue; Olds, Daniel; Peng, Rui

    The atomistic structure and morphology (shape and size) of nanomaterials have strong influences on their physical and chemical properties. However, many characterization techniques focus exclusively on one length-scale regime or another when developing quantitative morphology/structural models. In this article, we demonstrate that powder X-ray diffraction and neutron pair distribution function (PDF) can be used to obtain accurate average morphology and atomistic structure of {001} and {101} faceted anatase TiO 2 nanocrystals based on differential evolution refinements using Debye scattering equation calculations. It is also demonstrated that the morphology polydispersity of TiO 2 nanocrystals can be effectively obtained from the diffractionmore » data via a numerical refinement routine. The morphology refinement results are in good agreement with those from transmission electron microscopy and the modeling of small angle neutron scattering data. This method is successfully used to quantify the facet-specified photocatalytic hydrogen evolution activity of anatase TiO 2 nanocrystals with different {001} to {101} ratios. It is found that the sample with an intermediate amount of both {001} and {101} facets shows the best photocatalytic hydrogen evolution reaction (HER) activity. As a result, it is expected that the simultaneous structure and morphology refinement technique can be generally used to study the relationship between morphology and functionality of nanomaterials.« less

  4. Quantitative Analysis of the Morphology of {101} and {001} Faceted Anatase TiO 2 Nanocrystals and Its Implication on Photocatalytic Activity

    DOE PAGES

    Liu, Jue; Olds, Daniel; Peng, Rui; ...

    2017-06-14

    The atomistic structure and morphology (shape and size) of nanomaterials have strong influences on their physical and chemical properties. However, many characterization techniques focus exclusively on one length-scale regime or another when developing quantitative morphology/structural models. In this article, we demonstrate that powder X-ray diffraction and neutron pair distribution function (PDF) can be used to obtain accurate average morphology and atomistic structure of {001} and {101} faceted anatase TiO 2 nanocrystals based on differential evolution refinements using Debye scattering equation calculations. It is also demonstrated that the morphology polydispersity of TiO 2 nanocrystals can be effectively obtained from the diffractionmore » data via a numerical refinement routine. The morphology refinement results are in good agreement with those from transmission electron microscopy and the modeling of small angle neutron scattering data. This method is successfully used to quantify the facet-specified photocatalytic hydrogen evolution activity of anatase TiO 2 nanocrystals with different {001} to {101} ratios. It is found that the sample with an intermediate amount of both {001} and {101} facets shows the best photocatalytic hydrogen evolution reaction (HER) activity. As a result, it is expected that the simultaneous structure and morphology refinement technique can be generally used to study the relationship between morphology and functionality of nanomaterials.« less

  5. Regional Morphology Analysis Package (RMAP): Empirical Orthogonal Function Analysis, Background and Examples

    DTIC Science & Technology

    2007-10-01

    1984. Complex principal component analysis : Theory and examples. Journal of Climate and Applied Meteorology 23: 1660-1673. Hotelling, H. 1933...Sediments 99. ASCE: 2,566-2,581. Von Storch, H., and A. Navarra. 1995. Analysis of climate variability. Applications of statistical techniques. Berlin...ERDC TN-SWWRP-07-9 October 2007 Regional Morphology Empirical Analysis Package (RMAP): Orthogonal Function Analysis , Background and Examples by

  6. Functional morphology of the primate head and neck.

    PubMed

    Nalley, Thierra K; Grider-Potter, Neysa

    2015-04-01

    The vertebral column plays a key role in maintaining posture, locomotion, and transmitting loads between body components. Cervical vertebrae act as a bridge between the torso and head and play a crucial role in the maintenance of head position and the visual field. Despite its importance in positional behaviors, the functional morphology of the cervical region remains poorly understood, particularly in comparison to the thoracic and lumbar sections of the spinal column. This study tests whether morphological variation in the primate cervical vertebrae correlates with differences in postural behavior. Phylogenetic generalized least-squares analyses were performed on a taxonomically broad sample of 26 extant primate taxa to test the link between vertebral morphology and posture. Kinematic data on primate head and neck postures were used instead of behavioral categories in an effort to provide a more direct analysis of our functional hypothesis. Results provide evidence for a function-form link between cervical vertebral shape and postural behaviors. Specifically, taxa with more pronograde heads and necks and less kyphotic orbits exhibit cervical vertebrae with longer spinous processes, indicating increased mechanical advantage for deep nuchal musculature, and craniocaudally longer vertebral bodies and more coronally oriented zygapophyseal articular facets, suggesting an emphasis on curve formation and maintenance within the cervical lordosis, coupled with a greater resistance to translation and ventral displacement. These results not only document support for functional relationships in cervical vertebrae features across a wide range of primate taxa, but highlight the utility of quantitative behavioral data in functional investigations. © 2015 Wiley Periodicals, Inc.

  7. Distinct alterations in colonic morphology and physiology in two rat models of enhanced stress-induced anxiety and depression-like behaviour.

    PubMed

    O'Malley, Dervla; Julio-Pieper, Marcela; Gibney, Sinead M; Dinan, Timothy G; Cryan, John F

    2010-03-01

    Stress and anxiety are important causal and exacerbating factors in functional gastro-intestinal (GI) disorders such as irritable bowel syndrome. Stress affects GI motility, faecal transit and visceral pain sensitivity. Additionally, permeability and function of the gut epithelium, which acts as a barrier between the external environment and the body's internal milieu is altered by stress. However, the effects of an enhanced stress response on colonic morphology require further investigation. We have used two animal models of stress and anxiety, the maternally separated (MS) and Wistar Kyoto (WKY) rats to examine colonic morphology. These rats exhibit increased anxiety behaviours, visceral hypersensitivity and increased stress-induced defecation in the open field arena. At a morphological level, increased mucus secretion and an associated elevation in the number of mucosal goblet cells was observed in the high anxiety rats. Additionally, the mucosal layer was flattened in MS and WKY rats, a finding indicative of mild mucosal damage. Furthermore, the muscular layer of the distal colon in these animals was thickened, an observation that may have implications for faecal transit and visceral pain perception. This study provides evidence of altered colonic function and morphology in two animal models with a heightened response to stress.

  8. Morphological and biochemical variations in the gills of 12 aquatic air-breathing anabantoid fish.

    PubMed

    Huang, Chun-Yen; Lin, Chung-Ping; Lin, Hui-Chen

    2011-01-01

    All fish species in the Anabantoidei suborder are aquatic air-breathing fish. These species have an accessory air-breathing organ, called the labyrinth organ, in the branchial cavity and can engulf air at the surface of the water to assist in gas exchange. It is therefore necessary to examine the extent of gill modification among anabantoid fish species and the potential trade-offs in their function. The experimental hypothesis that we aimed to test is whether anabantoid fishes have both morphological and functional variations in the gills among different species. We examined the gills of 12 species from three families and nine genera of Anabantoidei. Though the sizes of the fourth gill arch in three species of Trichogaster were reduced significantly, not all anabantoid species had morphological and functional variations in the gills. In these three species, the specific enzyme activity and relative protein abundance of Na(+)/K(+)-ATPase were significantly higher in the anterior gills as compared with the posterior gills and the labyrinth organ. The relative abundance of cytosolic carbonic anhydrase, an indicator of gas exchange, was found to be highest in the labyrinth organ. The phylogenetic distribution of the fourth gill's morphological differentiation suggests that these variations are lineage specific, which may imply a phylogenetic influence on gill morphology in anabantoid species.

  9. Arabic morphology in the neural language system.

    PubMed

    Boudelaa, Sami; Pulvermüller, Friedemann; Hauk, Olaf; Shtyrov, Yury; Marslen-Wilson, William

    2010-05-01

    There are two views about morphology, the aspect of language concerned with the internal structure of words. One view holds that morphology is a domain of knowledge with a specific type of neurocognitive representation supported by specific brain mechanisms lateralized to left fronto-temporal cortex. The alternate view characterizes morphological effects as being a by-product of the correlation between form and meaning and where no brain area is predicted to subserve morphological processing per se. Here we provided evidence from Arabic that morphemes do have specific memory traces, which differ as a function of their functional properties. In an MMN study, we showed that the abstract consonantal root, which conveys semantic meaning (similarly to monomorphemic content words in English), elicits an MMN starting from 160 msec after the deviation point, whereas the abstract vocalic word pattern, which plays a range of grammatical roles, elicits an MMN response starting from 250 msec after the deviation point. Topographically, the root MMN has a symmetric fronto-central distribution, whereas the word pattern MMN lateralizes significantly to the left, indicating stronger involvement of left peri-sylvian areas. In languages with rich morphologies, morphemic processing seems to be supported by distinct neural networks, thereby providing evidence for a specific neuronal basis for morphology as part of the cerebral language machinery.

  10. Morphology captures diet and locomotor types in rodents.

    PubMed

    Verde Arregoitia, Luis D; Fisher, Diana O; Schweizer, Manuel

    2017-01-01

    To understand the functional meaning of morphological features, we need to relate what we know about morphology and ecology in a meaningful, quantitative framework. Closely related species usually share more phenotypic features than distant ones, but close relatives do not necessarily have the same ecologies. Rodents are the most diverse group of living mammals, with impressive ecomorphological diversification. We used museum collections and ecological literature to gather data on morphology, diet and locomotion for 208 species of rodents from different bioregions to investigate how morphological similarity and phylogenetic relatedness are associated with ecology. After considering differences in body size and shared evolutionary history, we find that unrelated species with similar ecologies can be characterized by a well-defined suite of morphological features. Our results validate the hypothesized ecological relevance of the chosen traits. These cranial, dental and external (e.g. ears) characters predicted diet and locomotion and showed consistent differences among species with different feeding and substrate use strategies. We conclude that when ecological characters do not show strong phylogenetic patterns, we cannot simply assume that close relatives are ecologically similar. Museum specimens are valuable records of species' phenotypes and with the characters proposed here, morphology can reflect functional similarity, an important component of community ecology and macroevolution.

  11. Dynamics of morphological evolution in experimental Escherichia coli populations.

    PubMed

    Cui, F; Yuan, B

    2016-08-30

    Here, we applied a two-stage clonal expansion model of morphological (cell-size) evolution to a long-term evolution experiment with Escherichia coli. Using this model, we derived the incidence function of the appearance of cell-size stability, the waiting time until this morphological stability, and the conditional and unconditional probabilities of morphological stability. After assessing the parameter values, we verified that the calculated waiting time was consistent with the experimental results, demonstrating the effectiveness of the two-stage model. According to the relative contributions of parameters to the incidence function and the waiting time, cell-size evolution is largely determined by the promotion rate, i.e., the clonal expansion rate of selectively advantageous organisms. This rate plays a prominent role in the evolution of cell size in experimental populations, whereas all other evolutionary forces were found to be less influential.

  12. Various fates of neuronal progenitor cells observed on several different chemical functional groups

    NASA Astrophysics Data System (ADS)

    Liu, Xi; Wang, Ying; He, Jin; Wang, Xiu-Mei; Cui, Fu-Zhai; Xu, Quan-Yuan

    2011-12-01

    Neuronal progenitor cells cultured on gold-coated glass surfaces modified by different chemical functional groups, including hydroxyl (-OH), carboxyl (-COOH), amino (-NH2), bromo (-Br), mercapto (-SH), - Phenyl and methyl (-CH3), were studied here to investigate the influence of surface chemistry on the cells' adhesion, morphology, proliferation and functional gene expression. Focal adhesion staining indicated in the initial culture stage cells exhibited morphological changes in response to different chemical functional groups. Cells cultured on -NH2 grafted surface displayed focal adhesion plaque and flattened morphology and had the largest contact area. However, their counter parts on -CH3 grafted surface displayed no focal adhesion and rounded morphology and had the smallest contact area. After 6 days culture, the proliferation trend was as follows: -NH2 > -SH> -COOH> - Phenyl > - Br > -OH> -CH3. To determine the neural functional properties of the cells affected by surface chemistry, the expression of glutamate decarboxylase (GAD67), nerve growth factor (NGF) and brainderived neurotrophic factor (BDNF) were characterized. An increase of GAD67 expression was observed on -NH2, -COOH and -SH grafted surfaces, while no increase in NGF and BDNF expression was observed on any chemical surfaces. These results highlight the importance of surface chemistry in the fate determination of neuronal progenitor cells, and suggest that surface chemistry must be considered in the design of biomaterials for neural tissue engineering.

  13. Unsuspected functional disparity in Devonian fishes revealed by tooth morphometrics?

    NASA Astrophysics Data System (ADS)

    Gauchey, Samuel; Girard, Catherine; Adnet, Sylvain; Renaud, Sabrina

    2014-09-01

    The shape of features involved in key biological functions, such as teeth in nutrition, can provide insights into ecological processes even in ancient time, by linking the occupation of the morphological space (disparity) to the occupation of the ecological space. Investigating disparity in radiating groups may provide insights into the ecological diversification underlying evolution of morphological diversity. Actinopterygian fishes initiated their radiation in the Devonian, a period characterized by the diversification of marine ecosystem. Although a former morpho-functional analysis of jaw shape concluded to conservative and poorly diversified morphologies in this early part of their history, fish tooth disparity evidenced here an unsuspected diversity of possible functional significance in the pivotal period of the Late Devonian (Famennian). All teeth being caniniforms, some were stocky and robust, in agreement with expectations for active generalist predators. More surprisingly, elongated teeth also occurred at the beginning of Famennian. Their needle-like shape challenges morpho-functional interpretations by making them fragile in response to bending or torsion. The occurrence of both types of fish teeth during the beginning of the Famennian points to a discrete but real increase in disparity, thus testifying a first burst of feeding specialization despite overall conservative jaw morphology. The disappearance of these needle-like teeth in the Late Famennian might have been related to a relay in dental diversity with abundant co-occurring groups, namely conodonts and chondrichthyans (sharks).

  14. Glutamine: commercially essential or conditionally essential? A critical appraisal of the human data.

    PubMed

    Buchman, A L

    2001-07-01

    Glutamine is a nonessential amino acid that can be synthesized from glutamate and glutamic acid by glutamate-ammonia ligase. Glutamine is an important fuel source for the small intestine. It was proposed that glutamine is necessary for the maintenance of normal intestinal morphology and function in the absence of luminal nutrients. However, intestinal morphologic and functional changes related to enteral fasting and parenteral nutrition are less significant in humans than in animal models and may not be clinically significant. Therefore, it is unclear whether glutamine is necessary for the preservation of normal intestinal morphology and function in humans during parenteral nutrition. It was suggested that both glutamine-supplemented parenteral nutrition and enteral diets may pre-vent bacterial translocation via the preservation and augmentation of small bowel villus morphology, intestinal permeability, and intestinal immune function. However, it is unclear whether clinically relevant bacterial translocation even occurs in humans, much less whether there is any value in the prevention of such occurrences. Results of the therapeutic use of glutamine in humans at nonphysiologic doses indicate limited efficacy. Although glutamine is generally recognized to be safe on the basis of relatively small studies, side effects in patients receiving home parenteral nutrition and in those with liver-function abnormalities have been described. Therefore, on the basis of currently available clinical data, it is inappropriate to recommend glutamine for therapeutic use in any condition.

  15. Morphology and behaviour: functional links in development and evolution

    PubMed Central

    Bertossa, Rinaldo C.

    2011-01-01

    Development and evolution of animal behaviour and morphology are frequently addressed independently, as reflected in the dichotomy of disciplines dedicated to their study distinguishing object of study (morphology versus behaviour) and perspective (ultimate versus proximate). Although traits are known to develop and evolve semi-independently, they are matched together in development and evolution to produce a unique functional phenotype. Here I highlight similarities shared by both traits, such as the decisive role played by the environment for their ontogeny. Considering the widespread developmental and functional entanglement between both traits, many cases of adaptive evolution are better understood when proximate and ultimate explanations are integrated. A field integrating these perspectives is evolutionary developmental biology (evo-devo), which studies the developmental basis of phenotypic diversity. Ultimate aspects in evo-devo studies—which have mostly focused on morphological traits—could become more apparent when behaviour, ‘the integrator of form and function’, is integrated into the same framework of analysis. Integrating a trait such as behaviour at a different level in the biological hierarchy will help to better understand not only how behavioural diversity is produced, but also how levels are connected to produce functional phenotypes and how these evolve. A possible framework to accommodate and compare form and function at different levels of the biological hierarchy is outlined. At the end, some methodological issues are discussed. PMID:21690124

  16. Continental fossil vertebrates from the mid-Cretaceous (Albian-Cenomanian) Alcântara Formation, Brazil, and their relationship with contemporaneous faunas from North Africa

    NASA Astrophysics Data System (ADS)

    Candeiro, Carlos Roberto A.; Fanti, Federico; Therrien, François; Lamanna, Matthew C.

    2011-05-01

    The Albian-Cenomanian Alcântara Formation of northeastern Brazil preserves the most diverse continental vertebrate fauna of this age yet known from northern South America. The Alcântara vertebrate assemblage, consisting of elasmobranchs, actinopterygians, sarcopterygians, turtles, crocodyliforms, pterosaurs, and non-avian dinosaurs, displays close similarities to contemporaneous faunas from North Africa. The co-occurrence of as many as eight freshwater or estuarine fish taxa ( Onchopristis, Bartschichthys, Lepidotes, Stephanodus, Mawsonia, Arganodus, Ceratodus africanus, and possibly Ceratodus humei) and up to seven terrestrial archosaur taxa ( Sigilmassasaurus, Rebbachisauridae, Baryonychinae, Spinosaurinae, Carcharodontosauridae, possibly Pholidosauridae, and doubtfully Bahariasaurus) suggests that a land route connecting northeastern Brazil and North Africa existed at least until the Albian. Interestingly, most components of this mid-Cretaceous northern South American/North African assemblage are not shared with coeval southern South American faunas, which are themselves characterized by a number of distinct freshwater and terrestrial vertebrate taxa (e.g., chelid turtles, megaraptoran and unenlagiine theropods). These results suggest that, although mid-Cretaceous faunal interchange was probably possible between northern South America and North Africa, paleogeographic, paleoclimatic, and/or paleoenvironmental barriers may have hindered continental vertebrate dispersal between northern and southern South America during this time.

  17. Palaeobiological implications of the bone histology of Pterodaustro guinazui.

    PubMed

    Chinsamy, Anusuya; Codorniú, Laura; Chiappe, Luis

    2009-09-01

    This study provides a comprehensive investigation of the bone microstructure of multiple bones of the Early Cretaceous filter-feeder, Pterodaustro guinazui, from the Largacito Formation of Central Argentina. We provide information regarding the bone histology of multiple elements from single skeletons, as well as a variety of bones from different individuals. In addition, we analysed changes in bone microstructure through ontogeny in growth series of several long bones of the taxon. Our investigation of skeletal and ontogenetic variation in Pterodaustro gives insights into the developmental growth dynamics of this unusual ctenochasmatid pterodactyloid from early ontogeny through to adulthood and also provides information pertaining to histological variability within and between bones of individuals. This study also documents the presence of what appears to be medullary bone tissue within the medullary cavity of a large femur of Pterodaustro. This suggests that, like birds, reproductively active female pterosaurs may have deposited a special bone tissue (medullary bone) to cope with the demand of calcium during eggshelling. Our study supports the hypothesis that small Jurassic pterodactyloids took several years to reach adult body size. More specifically, we provide data that suggests that Pterodaustro attained sexual maturity at about 2 years of age, and continued to grow for a further 3-4 years doubling in size before attaining skeletal maturity. (c) 2009 Wiley-Liss, Inc.

  18. A diverse mammal-dominated, footprint assemblage from wetland deposits in the Lower Cretaceous of Maryland.

    PubMed

    Stanford, Ray; Lockley, Martin G; Tucker, Compton; Godfrey, Stephen; Stanford, Sheila M

    2018-01-31

    A newly discovered assemblage of predominantly small tracks from the Cretaceous Patuxent Formation at NASA's Goddard Space Flight Center, Maryland, reveals one of the highest track densities and diversities ever reported (~70 tracks, representing at least eight morphotypes from an area of only ~2 m 2 ). The assemblage is dominated by small mammal tracks including the new ichnotxon Sederipes goddardensis, indicating sitting postures. Small crow-sized theropod trackways, the first from this unit, indicate social trackmakers and suggest slow-paced foraging behavior. Tracks of pterosaurs, and other small vertebrates suggest activity on an organic-rich substrate. Large well-preserved sauropod and nodosaurs tracks indicate the presence of large dinosaurs. The Patuxent Formation together with the recently reported Angolan assemblage comprise the world's two largest Mesozoic mammal footprint assemblages. The high density of footprint registration at the NASA site indicates special preservational and taphonomic conditions. These include early, penecontemporaneous deposition of siderite in organic rich, reducing wetland settings where even the flesh of body fossils can be mummified. Thus, the track-rich ironstone substrates of the Patuxent Formation, appear to preserve a unique vertebrate ichnofacies, with associated, exceptionally-preserved body fossil remains for which there are currently no other similar examples preserved in the fossil record.

  19. A review of trabecular bone functional adaptation: what have we learned from trabecular analyses in extant hominoids and what can we apply to fossils?

    PubMed

    Kivell, Tracy L

    2016-04-01

    Many of the unresolved debates in palaeoanthropology regarding evolution of particular locomotor or manipulative behaviours are founded in differing opinions about the functional significance of the preserved external fossil morphology. However, the plasticity of internal bone morphology, and particularly trabecular bone, allowing it to respond to mechanical loading during life means that it can reveal greater insight into how a bone or joint was used during an individual's lifetime. Analyses of trabecular bone have been commonplace for several decades in a human clinical context. In contrast, the study of trabecular bone as a method for reconstructing joint position, joint loading and ultimately behaviour in extant and fossil non-human primates is comparatively new. Since the initial 2D studies in the late 1970s and 3D analyses in the 1990 s, the utility of trabecular bone to reconstruct behaviour in primates has grown to incorporate experimental studies, expanded taxonomic samples and skeletal elements, and improved methodologies. However, this work, in conjunction with research on humans and non-primate mammals, has also revealed the substantial complexity inherent in making functional inferences from variation in trabecular architecture. This review addresses the current understanding of trabecular bone functional adaptation, how it has been applied to hominoids, as well as other primates and, ultimately, how this can be used to better interpret fossil hominoid and hominin morphology. Because the fossil record constrains us to interpreting function largely from bony morphology alone, and typically from isolated bones, analyses of trabecular structure, ideally in conjunction with that of cortical structure and external morphology, can offer the best resource for reconstructing behaviour in the past. © 2016 Anatomical Society.

  20. Assessment of Diastolic Function in Single Ventricle Patients Following the Fontan Procedure

    PubMed Central

    Margossian, Renee; Sleeper, Lynn A.; Pearson, Gail D.; Barker, Piers C.; Mertens, Luc; Quartermain, Michael D.; Su, Jason T.; Shirali, Girish; Chen, Shan; Colan, Steven D.

    2016-01-01

    Objectives Patients with functional single ventricles (FSV) following the Fontan procedure have abnormal cardiac mechanics. We sought to determine factors that influence diastolic function and to describe associations of diastolic function with current clinical status. Methods Echocardiograms were obtained as part of the Pediatric Heart Network Fontan Cross-Sectional Study. Diastolic function grade (DFG) was assessed as normal (grade 0), impaired relaxation (grade 1), pseudonormalization (grade 2), restrictive (grade 3). Studies were also classified dichotomously (restrictive pattern present or absent). Relationships between DFG and pre-Fontan variables (e.g., ventricular morphology, age at Fontan, history of volume-unloading surgery), and current status (e.g., systolic function, valvar regurgitation, exercise performance) were explored. Results DFG was calculable in 326/546 subjects (60%); mean age = 11.7±3.3 years. Overall, 32% of patients had grade 0, 9% grade 1, 37% grade 2, and 22% grade 3. Although there was no association between ventricular morphology and DFG, there was an association between ventricular morphology and E’, which was lowest in those with right ventricular morphology (p<.001); this association remained significant when using z-scores adjusted for age (p=<.001). DFG was associated with achieving maximal effort on exercise testing (p=.004); the majority (64%) of those not achieving maximal effort had DFG 2 or 3.No additional significant associations of DFG with laboratory or clinical measures were identified. Conclusion Assessment of diastolic function by current algorithms results in a high percentage of patients with abnormal DFG, but we found few clinically or statistically significant associations. This may imply a lack of impact of abnormal diastolic function upon clinical outcome in this cohort, or may indicate that the methodology may not be applicable to pediatric FSV patients. PMID:27624592

  1. Characterization of dynamic physiology of the bladder by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yuan, Zhijia; Keng, Kerri; Pan, Rubin; Ren, Hugang; Du, Congwu; Kim, Jason; Pan, Yingtian

    2012-03-01

    Because of its high spatial resolution and noninvasive imaging capabilities, optical coherence tomography has been used to characterize the morphological details of various biological tissues including urinary bladder and to diagnose their alternations (e.g., cancers). In addition to static morphology, the dynamic features of tissue morphology can provide important information that can be used to diagnose the physiological and functional characteristics of biological tissues. Here, we present the imaging studies based on optical coherence tomography to characterize motion related physiology and functions of rat bladder detrusor muscles and compared the results with traditional biomechanical measurements. Our results suggest that optical coherence tomography is capable of providing quantitative evaluation of contractile functions of intact bladder (without removing bladder epithelium and connective tissue), which is potentially of more clinical relevance for future clinical diagnosis - if incorporated with cystoscopic optical coherence tomography.

  2. Morphology Instruction in the Science Classroom for Students Who Are Deaf: A Multiple Probe Across Content Analysis.

    PubMed

    Trussell, Jessica W; Nordhaus, Jason; Brusehaber, Alison; Amari, Brittany

    2018-04-17

    Deaf and hard-of-hearing (DHH) students have exhibited a morphological knowledge delay that begins in preschool and persists through college. Morphological knowledge is critical to vocabulary understanding and text comprehension in the science classroom. We investigated the effects of morphological instruction, commonly referred to as Word Detectives, on the morphological knowledge of college-age DHH students in a science course. We implemented a multiple probe across behaviors single-case experimental design study with nine student participants. The student participants attended the National Technical Institute for the Deaf. A functional relation was found between the morphological instruction and the student participants' improvement of morphological knowledge regarding the morphemes taught during instruction. These findings indicate that DHH students benefit from morphological instruction to build their vocabulary knowledge in content-area classrooms, such as science courses.

  3. Wave energy and swimming performance shape coral reef fish assemblages

    PubMed Central

    Fulton, C.J; Bellwood, D.R; Wainwright, P.C

    2005-01-01

    Physical factors often have an overriding influence on the distribution patterns of organisms, and can ultimately shape the long-term structure of communities. Although distribution patterns in sessile marine organisms have frequently been attributed to functional characteristics interacting with wave-induced water motion, similar evidence for mobile organisms is lacking. Links between fin morphology and swimming performance were examined in three diverse coral reef fish families from two major evolutionary lineages. Among-habitat variation in morphology and performance was directly compared with quantitative values of wave-induced water motion from seven coral reef habitats of different depth and wave exposure on the Great Barrier Reef. Fin morphology was strongly correlated with both field and experimental swimming speeds in all three families. The range of observed swimming speeds coincided closely with the magnitude of water velocities commonly found on coral reefs. Distribution patterns in all three families displayed highly congruent relationships between fin morphology and wave-induced water motion. Our findings indicate a general functional relationship between fin morphology and swimming performance in labriform-swimming fishes, and provide quantitative evidence that wave energy may directly influence the assemblage structure of coral reef fishes through interactions with morphology and swimming performance. PMID:15888415

  4. Comparing morphologies of drainage basins on Mars and Earth using integral-geometry and neural maps

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Coradetti, S.

    2004-01-01

    We compare morphologies of drainage basins on Mars and Earth in order to confine the formation process of Martian valley networks. Basins on both planets are computationally extracted from digital topography. Integral-geometry methods are used to represent each basin by a circularity function that encapsulates its internal structure. The shape of such a function is an indicator of the style of fluvial erosion. We use the self-organizing map technique to construct a similarity graph for all basins. The graph reveals systematic differences between morphologies of basins on the two planets. This dichotomy indicates that terrestrial and Martian surfaces were eroded differently. We argue that morphologies of Martian basins are incompatible with runoff from sustained, homogeneous rainfall. Fluvial environments compatible with observed morphologies are discussed. We also construct a similarity graph based on the comparison of basins hypsometric curves to demonstrate that hypsometry is incapable of discriminating between terrestrial and Martian basins. INDEX TERMS: 1824 Hydrology: Geomorphology (1625); 1886 Hydrology: Weathering (1625); 5415 Planetology: Solid Surface Planets: Erosion and weathering; 6225 Planetology: Solar System Objects Mars. Citation: Stepinski, T. F., and S. Coradetti (2004), Comparing morphologies of drainage basins on Mars and Earth using integral-ge

  5. Location, morphology and function of nephrocytes in termites.

    PubMed

    Costa-Leonardo, Ana Maria; Janei, Vanelize; Laranjo, Lara Teixeira; Haifig, Ives

    2015-07-01

    Insect nephrocytes are cells bathed in hemolymph and considered to have an excretory function. These cells have ambiguous nomenclature and are understudied in termites. This study is the first report on the occurrence, morphology and function of nephrocytes in different termite castes. Cytological characteristics in specific developmental stages and castes enable physiological functions to be inferred. Perforate diaphragms indicate a role in filtration, while the extensive peripheral invaginations of the cell membrane suggest active endocytosis. A sequence of morphologies in putative digestive vacuoles infers a lysosomal system and the occurrence of phosphatases suggests a function involving detoxification of substances sequestered from hemolymph. Pericardical nephrocytes took up the dye trypan blue injected in live termites, suggesting their activity connected to the filtration of the hemolymph. Additionally, histochemical tests showed the existence of stored proteins in their cytoplasm. These cells present a well-developed Golgi apparatus and abundant rough endoplasmic reticulum, consistent with protein synthesis. This study highlights the importance of nephrocytes in Isoptera and opens perspectives for further research of these cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Long-term follow-up of nutritional status, pancreatic function, and morphological changes of the pancreatic remnant after pancreatic tumor resection in children.

    PubMed

    Sugito, Kiminobu; Furuya, Takeshi; Kaneda, Hide; Masuko, Takayuki; Ohashi, Kensuke; Inoue, Mikiya; Ikeda, Taro; Koshinaga, Tsugumichi; Tomita, Ryouichi; Maebayashi, Toshiya

    2012-05-01

    The objectives of the present study were to determine nutritional status, pancreatic function, and morphological changes of the pancreatic remnant after pancreatic tumor resection in children. The nutritional status was evaluated by the patterns of growth. Pancreatic function was evaluated by using a questionnaire, the Bristol stool form chart, the serum levels of fasting blood glucose, and hemoglobin A1c (HbA1c). Morphological changes of the pancreatic remnant were evaluated by computed tomography, magnetic resonance image, or magnetic resonance cholangiopancreatography. The present study consisted of 6 patients with pancreatic tumor (5 solid pseudopapillary tumors of the pancreas and 1 pancreatoblastoma) who underwent the following operations: tumor enucleation (3), distal pancreatectomy with splenectomy (1), and pylorus-preserving pancreatoduodenectomy (PPPD [2]). The serum levels of HbA1c have been gradually elevated in 2 patients with PPPD. A significant decrease in pancreatic parenchymal thickness and dilatation of the main pancreatic duct were observed in 2 patients with PPPD. Endocrine pancreatic insufficiency after PPPD may be explainable by obstructive pancreatitis after operation. Taking together the results of pancreatic endocrine function and morphological changes of pancreatic remnant after PPPD, tumor enucleation should be considered as surgical approach in children with pancreas head tumor whenever possible.

  7. Alterations in blood-brain barrier function following acute hypertension: comparison of the blood-to-brain transfer of horseradish peroxidase with that of alpha-aminisobutyric acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellison, M.D.B.

    The blood-brain barrier (BBB) selectively restricts the blood-to-brain passage of many solutes owing to unique properties of cerebrovascular endothelial cell membranes. To date, experimental study of the BBB has been accomplished primarily through the use of two different methodological approaches. Morphological studies have mostly employed large molecular weight (MW) tracers to detect morphological alterations underlying increased permeability. Physiological studies, employing smaller, more physiologic tracers have successfully described, quantitatively, certain functional aspects of blood-to-brain transfer. The current work attempts to merge these two approaches and to consider barrier function/dysfunction from both a morphological and a functional perspective. Specifically, the study comparesmore » in rats, following acute hypertension, the cerebrovascular passage of /sup 14/C-alpha-aminoisobutyric acid (AIB) and that of horseradish peroxidase (HRP). The blood-to-brain passage of AIB and HRP were compared following acute hypertension, with regard to both the distributions of the tracer extravasation patterns and the magnitude of tracer extravasation. The results of this study suggest that traditional morphological barrier studies alone do not reveal all aspects of altered barrier status and that multiple mechanisms underlying increased BBB permeability may operate simultaneously during BBB dysfunction.« less

  8. The granulocytes are the main immunocompetent hemocytes in Crassostrea gigas.

    PubMed

    Wang, Weilin; Li, Meijia; Wang, Lingling; Chen, Hao; Liu, Zhaoqun; Jia, Zhihao; Qiu, Limei; Song, Linsheng

    2017-02-01

    Hemocytes comprise diverse cell types with morphological and functional heterogeneity and play indispensable roles in immunological homeostasis of invertebrates. The morphological classification of different hemocytes in mollusk has been studied since the 1970's, yet the involvement of the different sub-populations in immune functions is far from clear. In the present study, three types of hemocytes were morphologically identified and separated as agranulocytes, semi-granulocytes and granulocytes by flow cytometry and Percoll ® density gradient centrifugation. The granulocytes were characterized functionally as the main phagocytic and encapsulating population, while semi-granulocytes and agranulocytes exhibited low or no such capacities, respectively. Meanwhile, the lysosome activity and the productions of ROS and NO were all mainly concentrated in granulocytes under both normal and immune-activated situations. Further, the mRNA transcripts of some immune related genes, including CgTLR, CgClathrin, CgATPeV, CgLysozyme, CgDefensin and CgIL-17, were mainly expressed in granulocytes, lower in semi-granulocytes and agranulocytes. These results collectively suggested that the granulocytes were the main immunocompetent hemocytes in oyster C. gigas, and a differentiation relationship among these three sub-population hemocytes was inferred based on the gradual changes in morphological, functional and molecular features. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Continental cichlid radiations: functional diversity reveals the role of changing ecological opportunity in the Neotropics.

    PubMed

    Arbour, Jessica Hilary; López-Fernández, Hernán

    2016-08-17

    Adaptive radiations have been hypothesized to contribute broadly to the diversity of organisms. Models of adaptive radiation predict that ecological opportunity and ecological release, the availability of empty ecological niches and the response by adapting lineages to occupy them, respectively, drive patterns of phenotypic and lineage diversification. Adaptive radiations driven by 'ecological opportunity' are well established in island systems; it is less clear if ecological opportunity influences continent-wide diversification. We use Neotropical cichlid fishes to test if variation in rates of functional evolution is consistent with changing ecological opportunity. Across a functional morphological axis associated with ram-suction feeding traits, evolutionary rates declined through time as lineages diversified in South America. Evolutionary rates of ram-suction functional morphology also appear to have accelerated as cichlids colonized Central America and encountered renewed opportunity. Our results suggest that ecological opportunity may play an important role in shaping patterns of morphological diversity of even broadly distributed lineages like Neotropical cichlids. © 2016 The Author(s).

  10. Continental cichlid radiations: functional diversity reveals the role of changing ecological opportunity in the Neotropics

    PubMed Central

    López-Fernández, Hernán

    2016-01-01

    Adaptive radiations have been hypothesized to contribute broadly to the diversity of organisms. Models of adaptive radiation predict that ecological opportunity and ecological release, the availability of empty ecological niches and the response by adapting lineages to occupy them, respectively, drive patterns of phenotypic and lineage diversification. Adaptive radiations driven by ‘ecological opportunity’ are well established in island systems; it is less clear if ecological opportunity influences continent-wide diversification. We use Neotropical cichlid fishes to test if variation in rates of functional evolution is consistent with changing ecological opportunity. Across a functional morphological axis associated with ram–suction feeding traits, evolutionary rates declined through time as lineages diversified in South America. Evolutionary rates of ram–suction functional morphology also appear to have accelerated as cichlids colonized Central America and encountered renewed opportunity. Our results suggest that ecological opportunity may play an important role in shaping patterns of morphological diversity of even broadly distributed lineages like Neotropical cichlids. PMID:27512144

  11. Effect of Pentacene-dielectric Affinity on Pentacene Thin Film Growth Morphology in Organic Field-effect Transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S Kim; M Jang; H Yang

    2011-12-31

    Organic field-effect transistors (OFETs) are fabricated by depositing a thin film of semiconductor on the functionalized surface of a SiO{sub 2} dielectric. The chemical and morphological structures of the interface between the semiconductor and the functionalized dielectric are critical for OFET performance. We have characterized the effect of the affinity between semiconductor and functionalized dielectric on the properties of the semiconductor-dielectric interface. The crystalline microstructure/nanostructure of the pentacene semiconductor layers, grown on a dielectric substrate that had been functionalized with either poly(4-vinyl pyridine) or polystyrene (to control hydrophobicity), and grown under a series of substrate temperatures and deposition rates, weremore » characterized by X-ray diffraction, photoemission spectroscopy, and atomic force microscopy. By comparing the morphological features of the semiconductor thin films with the device characteristics (field-effect mobility, threshold voltage, and hysteresis) of the OFET devices, the effect of affinity-driven properties on charge modulation, charge trapping, and charge carrier transport could be described.« less

  12. Application of the morpho-functional analysis of hydrobionts ( Anadara sp. cf. Anadara inaequivalvis Bivalvia) to environmental monitoring

    NASA Astrophysics Data System (ADS)

    Kolyuchkina, G. A.; Miljutin, D. M.

    2013-03-01

    The population dynamics and morphological and functional characteristics (the concentration of hemocytes in the hemolymph and the level of histopathology) of the bivalve Anadara sp. cf. Anadara inaequivalvis were studied in 2005-2007 on the North Caucasian coast of the Black Sea. A drastic decline in the abundance of the bivalves simultaneously with cadmium's exceedence in their soft tissues and bottom sediments were recorded in May of 2007. Six months before the manifestation of the population effects, morphological and functional changes (a decrease in the content of hemocytes in the hemolymph and an increase in the content of brown cells in the connective tissue and lipofuscin-like pigment granules in the digestive gland epithelium) in the bivalves were detected that were the consequences of an external effect (presumably, cadmium intoxication). Thus, the morphological and functional changes of the individual Anadaras may be a promising tool for the early detection of the impact of pollutants on benthic ecosystems.

  13. Characterization of neutrophils and macrophages from ex vivo cultured murine bone marrow for morphologic maturation and functional responses by imaging flow cytometry

    PubMed Central

    Pelletier, Margery G. H.; Szymczak, Klaudia; Barbeau, Anna M.; Prata, Gianna N.; O’Fallon, Kevin S.; Gaines, Peter

    2016-01-01

    Neutrophils and macrophages differentiate from common myeloid progenitors in the bone marrow, where they undergo nuclear morphologic changes during maturation. During this process, both cell types acquire critical innate immune functions that include phagocytosis of pathogens, and for neutrophils the release of nuclear material called nuclear extracellular traps (NETs). Primary cells used to study these functions are typically purified from mature mouse tissues, but bone marrow-derived ex vivo cultures provide more abundant numbers of progenitors and functionally mature cells. Routine analyses of these cells use conventional microscopy and flow cytometry, which present limitations; microscopy is laborious and subjective, whereas flow cytometry lacks spatial resolution. Here we describe methods to generate enriched populations of neutrophils or macrophages from cryopreserved mouse bone marrow cultured ex vivo, and to use imaging flow cytometry that combines the resolution of microscopy with flow cytometry to analyze cells for morphologic features, phagocytosis, and NETosis. PMID:27663441

  14. Decomposition of Atmospheric Aerosol Phase Function by Particle Size and Morphology via Single Particle Scattering Measurements

    NASA Astrophysics Data System (ADS)

    Aptowicz, K. B.; Pan, Y.; Martin, S.; Fernandez, E.; Chang, R.; Pinnick, R. G.

    2013-12-01

    We report upon an experimental approach that provides insight into how particle size and shape affect the scattering phase function of atmospheric aerosol particles. Central to our approach is the design of an apparatus that measures the forward and backward scattering hemispheres (scattering patterns) of individual atmospheric aerosol particles in the coarse mode range. The size and shape of each particle is discerned from the corresponding scattering pattern. In particular, autocorrelation analysis is used to differentiate between spherical and non-spherical particles, the calculated asphericity factor is used to characterize the morphology of non-spherical particles, and the integrated irradiance is used for particle sizing. We found the fraction of spherical particles decays exponentially with particle size, decreasing from 11% for particles on the order of 1 micrometer to less than 1% for particles over 5 micrometer. The average phase functions of subpopulations of particles, grouped by size and morphology, are determined by averaging their corresponding scattering patterns. The phase functions of spherical and non-spherical atmospheric particles are shown to diverge with increasing size. In addition, the phase function of non-spherical particles is found to vary little as a function of the asphericity factor.

  15. Different evolutionary pathways underlie the morphology of wrist bones in hominoids

    PubMed Central

    2013-01-01

    Background The hominoid wrist has been a focus of numerous morphological analyses that aim to better understand long-standing questions about the evolution of human and hominoid hand use. However, these same analyses also suggest various scenarios of complex and mosaic patterns of morphological evolution within the wrist and potentially multiple instances of homoplasy that would benefit from require formal analysis within a phylogenetic context. We identify morphological features that principally characterize primate – and, in particular, hominoid (apes, including humans) - wrist evolution and reveal the rate, process and evolutionary timing of patterns of morphological change on individual branches of the primate tree of life. Linear morphological variables of five wrist bones – the scaphoid, lunate, triquetrum, capitate and hamate – are analyzed in a diverse sample of extant hominoids (12 species, 332 specimens), Old World (8 species, 43 specimens) and New World (4 species, 26 specimens) monkeys, fossil Miocene apes (8 species, 20 specimens) and Plio-Pleistocene hominins (8 species, 18 specimens). Result Results reveal a combination of parallel and synapomorphic morphology within haplorrhines, and especially within hominoids, across individual wrist bones. Similar morphology of some wrist bones reflects locomotor behaviour shared between clades (scaphoid, triquetrum and capitate) while others (lunate and hamate) indicate clade-specific synapomorphic morphology. Overall, hominoids show increased variation in wrist bone morphology compared with other primate clades, supporting previous analyses, and demonstrate several occurrences of parallel evolution, particularly between orangutans and hylobatids, and among hominines (extant African apes, humans and fossil hominins). Conclusions Our analyses indicate that different evolutionary processes can underlie the evolution of a single anatomical unit (the wrist) to produce diversity in functional and morphological adaptations across individual wrist bones. These results exemplify a degree of evolutionary and functional independence across different wrist bones, the potential evolvability of skeletal morphology, and help to contextualize the postcranial mosaicism observed in the hominin fossil record. PMID:24148262

  16. Joint Pairing and Structured Mapping of Convolutional Brain Morphological Multiplexes for Early Dementia Diagnosis.

    PubMed

    Lisowska, Anna; Rekik, Islem

    2018-06-21

    Diagnosis of brain dementia, particularly early mild cognitive impairment (eMCI), is critical for early intervention to prevent the onset of Alzheimer's Disease (AD), where cognitive decline is severe and irreversible. There is a large body of machine-learning based research investigating how dementia alters brain connectivity, mainly using structural (derived from diffusion MRI) and functional (derived from resting-state functional MRI) brain connectomic data. However, how early dementia affects cortical brain connections in morphology remains largely unexplored. To fill this gap, we propose a joint morphological brain multiplexes pairing and mapping strategy for early MCI detection, where a brain multiplex not only encodes the similarity in morphology between pairs of brain regions, but also a pair of brain morphological networks. Experimental results confirm that the proposed framework outperforms in classification accuracy several state-of-the-art methods. More importantly, we unprecedentedly identified most discriminative brain morphological networks between eMCI and NC, which included the paired views derived from maximum principal curvature and the sulcal depth for the left hemisphere and sulcal depth and the average curvature for the right hemisphere. We also identified the most highly correlated morphological brain connections in our cohort, which included the (pericalcarine cortex, insula cortex) on the maximum principal curvature view, (entorhinal cortex, insula cortex) on the mean sulcal depth view, and (entorhinal cortex, pericalcarine cortex) on the mean average curvature view, for both hemispheres. These highly correlated morphological connections might serve as biomarkers for early MCI diagnosis.

  17. Nocturnality constrains morphological and functional diversity in the eyes of reef fishes

    PubMed Central

    2011-01-01

    Background Ambient light levels are often considered to drive the evolution of eye form and function. Diel activity pattern is the main mechanism controlling the visual environment of teleost reef fish, with day-active (diurnal) fish active in well-illuminated conditions, whereas night-active (nocturnal) fish cope with dim light. Physiological optics predicts several specific evolutionary responses to dim-light vision that should be reflected in visual performance features of the eye. Results We analyzed a large comparative dataset on morphological traits of the eyes in 265 species of teleost reef fish in 43 different families. The eye morphology of nocturnal reef teleosts is characterized by a syndrome that indicates better light sensitivity, including large relative eye size, high optical ratio and large, rounded pupils. Improved dim-light image formation comes at the cost of reduced depth of focus and reduction of potential accommodative lens movement. Diurnal teleost reef fish, released from the stringent functional requirements of dim-light vision have much higher morphological and optical diversity than nocturnal species, with large ranges of optical ratio, depth of focus, and lens accommodation. Conclusions Physical characteristics of the environment are an important factor in the evolution and diversification of the vertebrate eye. Both teleost reef fish and terrestrial amniotes meet the functional requirements of dim-light vision with a similar evolutionary response of morphological and optical modifications. The trade-off between improved dim-light vision and reduced optical diversity may be a key factor in explaining the lower trophic diversity of nocturnal reef teleosts. PMID:22098687

  18. The evolution of jaw protrusion mechanics is tightly coupled to bentho-pelagic divergence in damselfishes (Pomacentridae).

    PubMed

    Cooper, W James; Carter, Casey B; Conith, Andrew J; Rice, Aaron N; Westneat, Mark W

    2017-02-15

    Most species-rich lineages of aquatic organisms have undergone divergence between forms that feed from the substrate (benthic feeding) and forms that feed from the water column (pelagic feeding). Changes in trophic niche are frequently accompanied by changes in skull mechanics, and multiple fish lineages have evolved highly specialized biomechanical configurations that allow them to protrude their upper jaws toward the prey during feeding. Damselfishes (family Pomacentridae) are an example of a species-rich lineage with multiple trophic morphologies and feeding ecologies. We sought to determine whether bentho-pelagic divergence in the damselfishes is tightly coupled to changes in jaw protrusion ability. Using high-speed video recordings and kinematic analysis, we examined feeding performance in 10 species that include three examples of convergence on herbivory, three examples of convergence on omnivory and two examples of convergence on planktivory. We also utilized morphometrics to characterize the feeding morphology of an additional 40 species that represent all 29 damselfish genera. Comparative phylogenetic analyses were then used to examine the evolution of trophic morphology and biomechanical performance. We find that pelagic-feeding damselfishes (planktivores) are strongly differentiated from extensively benthic-feeding species (omnivores and herbivores) by their jaw protrusion ability, upper jaw morphology and the functional integration of upper jaw protrusion with lower jaw abduction. Most aspects of cranial form and function that separate these two ecological groups have evolved in correlation with each other and the evolution of the functional morphology of feeding in damselfishes has involved repeated convergence in form, function and ecology. © 2017. Published by The Company of Biologists Ltd.

  19. [Morphological and functional cartilage imaging].

    PubMed

    Rehnitz, C; Weber, M-A

    2014-06-01

    Excellent morphological imaging of cartilage is now possible and allows the detection of subtle cartilage pathologies. Besides the standard 2D sequences, a multitude of 3D sequences are available for high-resolution cartilage imaging. The first part therefore deals with modern possibilities of morphological imaging. The second part deals with functional cartilage imaging with which it is possible to detect changes in cartilage composition and thus early osteoarthritis as well as to monitor biochemical changes after therapeutic interventions. Validated techniques such as delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) and T2 mapping as well the latest techniques, such as the glycosaminoglycan chemical exchange-dependent saturation transfer (gagCEST) technique will be discussed.

  20. [Morphological and functional cartilage imaging].

    PubMed

    Rehnitz, C; Weber, M-A

    2015-04-01

    Excellent morphological imaging of cartilage is now possible and allows the detection of subtle cartilage pathologies. Besides the standard 2D sequences, a multitude of 3D sequences are available for high-resolution cartilage imaging. The first part therefore deals with modern possibilities of morphological imaging. The second part deals with functional cartilage imaging with which it is possible to detect changes in cartilage composition and thus early osteoarthritis as well as to monitor biochemical changes after therapeutic interventions. Validated techniques such as delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) and T2 mapping as well the latest techniques, such as the glycosaminoglycan chemical exchange-dependent saturation transfer (gagCEST) technique will be discussed.

  1. Functional morphology of the hallucal metatarsal with implications for inferring grasping ability in extinct primates.

    PubMed

    Goodenberger, Katherine E; Boyer, Doug M; Orr, Caley M; Jacobs, Rachel L; Femiani, John C; Patel, Biren A

    2015-03-01

    Primate evolutionary morphologists have argued that selection for life in a fine branch niche resulted in grasping specializations that are reflected in the hallucal metatarsal (Mt1) morphology of extant "prosimians", while a transition to use of relatively larger, horizontal substrates explains the apparent loss of such characters in anthropoids. Accordingly, these morphological characters-Mt1 torsion, peroneal process length and thickness, and physiological abduction angle-have been used to reconstruct grasping ability and locomotor mode in the earliest fossil primates. Although these characters are prominently featured in debates on the origin and subsequent radiation of Primates, questions remain about their functional significance. This study examines the relationship between these morphological characters of the Mt1 and a novel metric of pedal grasping ability for a large number of extant taxa in a phylogenetic framework. Results indicate greater Mt1 torsion in taxa that engage in hallucal grasping and in those that utilize relatively small substrates more frequently. This study provides evidence that Carpolestes simpsoni has a torsion value more similar to grasping primates than to any scandentian. The results also show that taxa that habitually grasp vertical substrates are distinguished from other taxa in having relatively longer peroneal processes. Furthermore, a longer peroneal process is also correlated with calcaneal elongation, a metric previously found to reflect leaping proclivity. A more refined understanding of the functional associations between Mt1 morphology and behavior in extant primates enhances the potential for using these morphological characters to comprehend primate (locomotor) evolution. © 2014 Wiley Periodicals, Inc.

  2. Correlation of lattice defects and thermal processing in the crystallization of titania nanotube arrays

    NASA Astrophysics Data System (ADS)

    Hosseinpour, Pegah M.; Yung, Daniel; Panaitescu, Eugen; Heiman, Don; Menon, Latika; Budil, David; Lewis, Laura H.

    2014-12-01

    Titania nanotubes have the potential to be employed in a wide range of energy-related applications such as solar energy-harvesting devices and hydrogen production. As the functionality of titania nanostructures is critically affected by their morphology and crystallinity, it is necessary to understand and control these factors in order to engineer useful materials for green applications. In this study, electrochemically-synthesized titania nanotube arrays were thermally processed in inert and reducing environments to isolate the role of post-synthesis processing conditions on the crystallization behavior, electronic structure and morphology development in titania nanotubes, correlated with the nanotube functionality. Structural and calorimetric studies revealed that as-synthesized amorphous nanotubes crystallize to form the anatase structure in a three-stage process that is facilitated by the creation of structural defects. It is concluded that processing in a reducing gas atmosphere versus in an inert environment provides a larger unit cell volume and a higher concentration of Ti3+ associated with oxygen vacancies, thereby reducing the activation energy of crystallization. Further, post-synthesis annealing in either reducing or inert atmospheres produces pronounced morphological changes, confirming that the nanotube arrays thermally transform into a porous morphology consisting of a fragmented tubular architecture surrounded by a network of connected nanoparticles. This study links explicit data concerning morphology, crystallization and defects, and shows that the annealing gas environment determines the details of the crystal structure, the electronic structure and the morphology of titania nanotubes. These factors, in turn, impact the charge transport and consequently the functionality of these nanotubes as photocatalysts.

  3. Are there age induced morphologic variations of the superior glenoid labrum? About 100 shoulder arthroscopies.

    PubMed

    Clavert, Philippe; Kempf, Jean-François; Wolfram-Gabel, Renée; Kahn, Jean-Luc

    2005-12-01

    Different anterosuperior aspects of the glenoid labrum have already been described and are thought to be normal anatomical variations. The goals of this study were first to characterize these anterosuperior labral morphologies and then to analyze their variations in function of the patients' age. One hundred shoulder arthroscopies were recorded to study the macroscopic characteristics of the anterosuperior labrum of the glenohumeral joint and its relationships with the proximal insertion of the tendon of the long head of the biceps. Then, patients were divided into two groups in function of their age (below and over 30 years old). Morphological modifications of the labrum were found in function of the age of the patient with an increase of the nonpathologic "mobile labrum" type after 30 years (P=0.0423). Therefore a mobile and loosely attached superior labrum should not always be considered as abnormal, especially in case of patient older than 30 years.

  4. Cerebral morphology and functional sparing after prenatal frontal cortex lesions in rats.

    PubMed

    Kolb, B; Cioe, J; Muirhead, D

    1998-03-01

    Rats were given suction lesions of the presumptive frontal cortex on embryonic day 18 (E18) and subsequently tested, as adults, on tests of spatial navigation (Morris water task, radial arm maze), motor tasks (Whishaw reaching task, beam walking), and locomotor activity. Frontal cortical lesions at E18 affected cerebral morphogenesis, producing unusual morphological structures including abnormal patches of neurons in the cortex and white matter as well as neuronal bridges between the hemispheres. A small sample of E18 operates also had hydrocephaly. The animals with E18 lesions without hydrocephalus were behaviorally indistinguishable from littermate controls. The results demonstrate that animals with focal lesions of the presumptive frontal cortex have gross abnormalities in cerebral morphology but the lesions leave the functions normally subserved by the frontal cortex in adult rats unaffected. The results are discussed in the context of a hypothesis regarding the optimal times for functional recovery from cortical injury.

  5. Effect of cellulose nanowhiskers functionalization with polyaniline for epoxy coatings

    NASA Astrophysics Data System (ADS)

    Borsoi, C.; Zattera, A. J.; Ferreira, C. A.

    2016-02-01

    Functionalization of cellulose nanowhiskers (CNW) was performed by means of chemical synthesis involving polymerization of polyaniline in emeraldine salt form (PAni SE) in the presence of CNW. Thermal, chemical and morphological samples properties were evaluated. Polymeric coatings were obtained with epoxy, aminopropyltriethoxysilane (APS), CNW and CNW/PAni SE applied on carbon steel with a conversion coating of zirconia (Zr) and the mechanical properties were evaluated. With regard to CNW functionalization the sample was encapsulated with PAni SE as observed by FTIR and morphologic analysis, with decreased thermal stability. Regarding the mechanical properties of CNW and CNW/PAni SE polymeric coatings, improvements in flexibility and hardness properties using the APS and Zr layer were observed. The adherence of polymer coatings improved by the incorporation of CNW and CNW/PAni SE. Through morphological analysis it was observed that CNW shows good dispersion in the polymer matrix without agglomerates formation.

  6. Three-dimensional morphology of GaP-GaAs nanowires revealed by transmission electron microscopy tomography.

    PubMed

    Verheijen, Marcel A; Algra, Rienk E; Borgström, Magnus T; Immink, George; Sourty, Erwan; Enckevort, Willem J P van; Vlieg, Elias; Bakkers, Erik P A M

    2007-10-01

    We have investigated the morphology of heterostructured GaP-GaAs nanowires grown by metal-organic vapor-phase epitaxy as a function of growth temperature and V/III precursor ratio. The study of heterostructured nanowires with transmission electron microscopy tomography allowed the three-dimensional morphology to be resolved, and discrimination between the effect of axial (core) and radial (shell) growth on the morphology. A temperature- and precursor-dependent structure diagram for the GaP nanowire core morphology and the evolution of the different types of side facets during GaAs and GaP shell growth were constituted.

  7. Novel multiform morphologies of hydroxyapatite: Synthesis and growth mechanism

    NASA Astrophysics Data System (ADS)

    Mary, I. Reeta; Sonia, S.; Viji, S.; Mangalaraj, D.; Viswanathan, C.; Ponpandian, N.

    2016-01-01

    Morphological evolution of materials becomes a prodigious challenge due to their key role in defining their functional properties and desired applications. Herein, we report the synthesis of hydroxyapatite (HAp) microstructures with multiform morphologies, such as spheres, cubes, hexagonal rods and nested bundles constructed from their respective nanoscale building blocks via a simple cost effective hydro/solvothermal method. A possible formation mechanism of diverse morphologies of HAp has been presented. Structural analysis based on X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy confirms the purity of the HAp microstructures. The multiform morphologies of HAp were corroborated by using Field emission scanning electron microscope (FESEM).

  8. Theoretical foundations of spatially-variant mathematical morphology part ii: gray-level images.

    PubMed

    Bouaynaya, Nidhal; Schonfeld, Dan

    2008-05-01

    In this paper, we develop a spatially-variant (SV) mathematical morphology theory for gray-level signals and images in the Euclidean space. The proposed theory preserves the geometrical concept of the structuring function, which provides the foundation of classical morphology and is essential in signal and image processing applications. We define the basic SV gray-level morphological operators (i.e., SV gray-level erosion, dilation, opening, and closing) and investigate their properties. We demonstrate the ubiquity of SV gray-level morphological systems by deriving a kernel representation for a large class of systems, called V-systems, in terms of the basic SV graylevel morphological operators. A V-system is defined to be a gray-level operator, which is invariant under gray-level (vertical) translations. Particular attention is focused on the class of SV flat gray-level operators. The kernel representation for increasing V-systems is a generalization of Maragos' kernel representation for increasing and translation-invariant function-processing systems. A representation of V-systems in terms of their kernel elements is established for increasing and upper-semi-continuous V-systems. This representation unifies a large class of spatially-variant linear and non-linear systems under the same mathematical framework. Finally, simulation results show the potential power of the general theory of gray-level spatially-variant mathematical morphology in several image analysis and computer vision applications.

  9. Interconnected network motifs control podocyte morphology and kidney function.

    PubMed

    Azeloglu, Evren U; Hardy, Simon V; Eungdamrong, Narat John; Chen, Yibang; Jayaraman, Gomathi; Chuang, Peter Y; Fang, Wei; Xiong, Huabao; Neves, Susana R; Jain, Mohit R; Li, Hong; Ma'ayan, Avi; Gordon, Ronald E; He, John Cijiang; Iyengar, Ravi

    2014-02-04

    Podocytes are kidney cells with specialized morphology that is required for glomerular filtration. Diseases, such as diabetes, or drug exposure that causes disruption of the podocyte foot process morphology results in kidney pathophysiology. Proteomic analysis of glomeruli isolated from rats with puromycin-induced kidney disease and control rats indicated that protein kinase A (PKA), which is activated by adenosine 3',5'-monophosphate (cAMP), is a key regulator of podocyte morphology and function. In podocytes, cAMP signaling activates cAMP response element-binding protein (CREB) to enhance expression of the gene encoding a differentiation marker, synaptopodin, a protein that associates with actin and promotes its bundling. We constructed and experimentally verified a β-adrenergic receptor-driven network with multiple feedback and feedforward motifs that controls CREB activity. To determine how the motifs interacted to regulate gene expression, we mapped multicompartment dynamical models, including information about protein subcellular localization, onto the network topology using Petri net formalisms. These computational analyses indicated that the juxtaposition of multiple feedback and feedforward motifs enabled the prolonged CREB activation necessary for synaptopodin expression and actin bundling. Drug-induced modulation of these motifs in diseased rats led to recovery of normal morphology and physiological function in vivo. Thus, analysis of regulatory motifs using network dynamics can provide insights into pathophysiology that enable predictions for drug intervention strategies to treat kidney disease.

  10. Interconnected Network Motifs Control Podocyte Morphology and Kidney Function

    PubMed Central

    Azeloglu, Evren U.; Hardy, Simon V.; Eungdamrong, Narat John; Chen, Yibang; Jayaraman, Gomathi; Chuang, Peter Y.; Fang, Wei; Xiong, Huabao; Neves, Susana R.; Jain, Mohit R.; Li, Hong; Ma’ayan, Avi; Gordon, Ronald E.; He, John Cijiang; Iyengar, Ravi

    2014-01-01

    Podocytes are kidney cells with specialized morphology that is required for glomerular filtration. Diseases, such as diabetes, or drug exposure that causes disruption of the podocyte foot process morphology results in kidney pathophysiology. Proteomic analysis of glomeruli isolated from rats with puromycin-induced kidney disease and control rats indicated that protein kinase A (PKA), which is activated by adenosine 3′,5′-monophosphate (cAMP), is a key regulator of podocyte morphology and function. In podocytes, cAMP signaling activates cAMP response element–binding protein (CREB) to enhance expression of the gene encoding a differentiation marker, synaptopodin, a protein that associates with actin and promotes its bundling. We constructed and experimentally verified a β-adrenergic receptor–driven network with multiple feedback and feedforward motifs that controls CREB activity. To determine how the motifs interacted to regulate gene expression, we mapped multicompartment dynamical models, including information about protein subcellular localization, onto the network topology using Petri net formalisms. These computational analyses indicated that the juxtaposition of multiple feedback and feedforward motifs enabled the prolonged CREB activation necessary for synaptopodin expression and actin bundling. Drug-induced modulation of these motifs in diseased rats led to recovery of normal morphology and physiological function in vivo. Thus, analysis of regulatory motifs using network dynamics can provide insights into pathophysiology that enable predictions for drug intervention strategies to treat kidney disease. PMID:24497609

  11. Roll Compaction/Dry Granulation of Dibasic Calcium Phosphate Anhydrous-Does the Morphology of the Raw Material Influence the Tabletability of Dry Granules?

    PubMed

    Grote, Simon; Kleinebudde, Peter

    2018-04-01

    The influence of raw material particle morphology on the tabletabilty of dry granules was investigated. Therefore, dibasic calcium phosphate anhydrous was used as a model material. One milled grade, 2 agglomerated grades with different porosities, and a functionalized structure, that is, an agglomerate formed by very small primary particles, were included. Particle size, density, and specific surface area of raw materials were measured. The starting materials and 2 fractions of dry granules were compressed to tablets. The tabletability of granules was compared to that of the powders and the influence of specific compaction force, granule size, and lubrication on tablet tensile strength was evaluated. All materials showed a loss in tabletability induced by a previous compaction step but to a varying extent. Only in case of the functionalized calcium phosphate morphology, this effect depended on the specific compaction force. In contrast to the other materials, the tabletability of functionalized calcium phosphate was influenced by the granule size. This effect was not related to an overlubrication as internal and external lubrication resulted in similar tensile strengths. A clear influence of the particle morphology on tablet strength was demonstrated by the study. The functionalized structure showed aspects of a more plastic deformation behavior. The functionalized dibasic calcium phosphate and the more porous agglomerate performed as potential filler/binder in the field of roll compaction/dry granulation. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. Functional constraints on tooth morphology in carnivorous mammals

    PubMed Central

    2012-01-01

    Background The range of potential morphologies resulting from evolution is limited by complex interacting processes, ranging from development to function. Quantifying these interactions is important for understanding adaptation and convergent evolution. Using three-dimensional reconstructions of carnivoran and dasyuromorph tooth rows, we compared statistical models of the relationship between tooth row shape and the opposing tooth row, a static feature, as well as measures of mandibular motion during chewing (occlusion), which are kinetic features. This is a new approach to quantifying functional integration because we use measures of movement and displacement, such as the amount the mandible translates laterally during occlusion, as opposed to conventional morphological measures, such as mandible length and geometric landmarks. By sampling two distantly related groups of ecologically similar mammals, we study carnivorous mammals in general rather than a specific group of mammals. Results Statistical model comparisons demonstrate that the best performing models always include some measure of mandibular motion, indicating that functional and statistical models of tooth shape as purely a function of the opposing tooth row are too simple and that increased model complexity provides a better understanding of tooth form. The predictors of the best performing models always included the opposing tooth row shape and a relative linear measure of mandibular motion. Conclusions Our results provide quantitative support of long-standing hypotheses of tooth row shape as being influenced by mandibular motion in addition to the opposing tooth row. Additionally, this study illustrates the utility and necessity of including kinetic features in analyses of morphological integration. PMID:22899809

  13. Phenotypic plasticity in haptoral structures of Ligophorus cephali (Monogenea: Dactylogyridae) on the flathead mullet (Mugil cephalus): a geometric morphometric approach.

    PubMed

    Rodríguez-González, Abril; Míguez-Lozano, Raúl; Llopis-Belenguer, Cristina; Balbuena, Juan Antonio

    2015-04-01

    Evaluating phenotypic plasticity in attachment organs of parasites can provide information on the capacity to colonise new hosts and illuminate evolutionary processes driving host specificity. We analysed the variability in shape and size of the dorsal and ventral anchors of Ligophorus cephali from Mugil cephalus by means of geometric morphometrics and multivariate statistics. We also assessed the morphological integration between anchors and between the roots and points in order to gain insight into their functional morphology. Dorsal and ventral anchors showed a similar gradient of overall shape variation, but the amount of localised changes was much higher in the former. Statistical models describing variations in shape and size revealed clear differences between anchors. The dorsal anchor/bar complex seems more mobile than the ventral one in Ligophorus, and these differences may reflect different functional roles in attachment to the gills. The lower residual variation associated with the ventral anchor models suggests a tighter control of their shape and size, perhaps because these anchors seem to be responsible for firmer attachment and their size and shape would allow more effective responses to characteristics of the microenvironment within the individual host. Despite these putative functional differences, the high level of morphological integration indicates a concerted action between anchors. In addition, we found a slight, although significant, morphological integration between roots and points in both anchors, which suggests that a large fraction of the observed phenotypic variation does not compromise the functional role of anchors as levers. Given the low level of genetic variation in our sample, it is likely that much of the morphological variation reflects host-driven plastic responses. This supports the hypothesis of monogenean specificity through host-switching and rapid speciation. The present study demonstrates the potential of geometric morphometrics to provide new and previously unexplored insights into the functional morphology of attachment and evolutionary processes of host-parasite coevolution. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  14. Morphological observation and characterization of the Pseudoregma bambucicola with the scanning electron microscope.

    PubMed

    Nong, Xiang; Zeng, Xuemei; Yang, Yaojun; Liang, Zi; Tang, Mei; Liao, Lejuan; Luo, Chaobing

    2017-11-01

    Both leica microscopic camera system and scanning electron microscopy was used to observe and characterize the feet, back, abdomen, antennae and mouthparts of the Pseudoregma bambucicola from the bamboo, Bambusa multiplex . The possible functions of all the external morphological characteristics of the P. bambucicola were described and discussed in detail, which offers a basis for further enriching the biology, phylogeny and ecological niche of the P. bambucicola . Moreover, the morphological results should contribute to morphological identification and differentiation of the P. bambucicola from other aphids in the same family.

  15. The First Organ-Based Ontology for Arthropods (Ontology of Arthropod Circulatory Systems - OArCS) and its Integration into a Novel Formalization Scheme for Morphological Descriptions.

    PubMed

    Wirkner, Christian S; Göpel, Torben; Runge, Jens; Keiler, Jonas; Klussmann-Fricke, Bastian-Jesper; Huckstorf, Katarina; Scholz, Stephan; Mikó, István; J Yoder, Matthew; Richter, Stefan

    2017-09-01

    Morphology, the oldest discipline in the biosciences, is currently experiencing a renaissance in the field of comparative phenomics. However, morphological/phenotypic research still suffers on various levels from a lack of standards. This shortcoming, first highlighted as the "linguistic problem of morphology", concerns the usage of terminology and also the need for formalization of morphological descriptions themselves, something of paramount importance not only to the field of morphology but also when it comes to the use of phenotypic data in systematics and evolutionary biology. We therefore argue, that for morphological descriptions, the basis of all systematic and evolutionary interpretations, ontologies need to be utilized which are based exclusively on structural qualities/properties and which in no case include statements about homology and/or function. Statements about homology and function constitute interpretations on a different or higher level. Based on these "anatomy ontologies", further ontological dimensions (e.g., referring to functional properties or homology) may be exerted for a broad use in evolutionary phenomics. To this end we present the first organ-based ontology for the most species-rich animal group, the Arthropoda. Our Ontology of Arthropod Circulatory Systems (OArCS) contains a comprehensive collection of 383 terms (i.e., labels) tied to 296 concepts (i.e., definitions) collected from the literature on phenotypic aspects of circulatory organ features in arthropods. All of the concepts used in OArCS are based exclusively on structural features, and in the context of the ontology are independent of homology and functional assumptions. We cannot rule out that in some cases, terms are used which in traditional usage and previous accounts might have implied homology and/or function (e.g. heart, sternal artery). Concepts are composed of descriptive elements that are used to classify observed instances into the organizational framework of the ontology. That is, descriptions in ontologies are only descriptions of individuals if they are necessary/and or sufficient representations of attributes (independently) observed and recorded for an individual. In addition, we here present for the first time an entirely new approach to formalizing phenotypic research, a semantic model for the description of a complex organ system in a highly disparate taxon, the arthropods. We demonstrate this with a formalized morphological description of the hemolymph vascular system in one specimen of the European garden spider Araneus diadematus. Our description targets five categories of descriptive statement: "position", "spatial relationships", "shape", "constituents", and "connections", as the corresponding formalizations constitute exemplary patterns useful not only when talking about the circulatory system, but also in descriptions in general. The downstream applications of computer-parsable morphological descriptions are widespread, with their core utility being the fact that they make it possible to compare collective description sets in computational time, that is, very quickly. Among other things, this facilitates the identification of phenotypic plasticity and variation when single individuals are compared, the identification of those traits which correlate between and within taxa, and the identification of links between morphological traits and genetic (using GO, Gene Ontology) or environmental (using ENVO, Environmental Ontology) factors. [Arthropoda; concept; function; hemolymph vascular system; homology; terminology.]. © The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Mechanistic models of biofilm growth in porous media

    NASA Astrophysics Data System (ADS)

    Jaiswal, Priyank; Al-Hadrami, Fathiya; Atekwana, Estella A.; Atekwana, Eliot A.

    2014-07-01

    Nondestructive acoustics methods can be used to monitor in situ biofilm growth in porous media. In practice, however, acoustic methods remain underutilized due to the lack of models that can translate acoustic data into rock properties in the context of biofilm. In this paper we present mechanistic models of biofilm growth in porous media. The models are used to quantitatively interpret arrival times and amplitudes recorded in the 29 day long Davis et al. (2010) physical scale biostimulation experiment in terms of biofilm morphologies and saturation. The model pivots on addressing the sediment elastic behavior using the lower Hashin-Shtrikman bounds for grain mixing and Gassmann substitution for fluid saturation. The time-lapse P wave velocity (VP; a function of arrival times) is explained by a combination of two rock models (morphologies); "load bearing" which assumes the biofilm as an additional mineral in the rock matrix and "pore filling" which assumes the biofilm as an additional fluid phase in the pores. The time-lapse attenuation (QP-1; a function of amplitudes), on the other hand, can be explained adequately in two ways; first, through squirt flow where energy is lost from relative motion between rock matrix and pore fluid, and second, through an empirical function of porosity (φ), permeability (κ), and grain size. The squirt flow model-fitting results in higher internal φ (7% versus 5%) and more oblate pores (0.33 versus 0.67 aspect ratio) for the load-bearing morphology versus the pore-filling morphology. The empirical model-fitting results in up to 10% increase in κ at the initial stages of the load-bearing morphology. The two morphologies which exhibit distinct mechanical and hydraulic behavior could be a function of pore throat size. The biofilm mechanistic models developed in this study can be used for the interpretation of seismic data critical for the evaluation of biobarriers in bioremediation, microbial enhanced oil recovery, and CO2 sequestration.

  17. A quantitative spatiotemporal analysis of microglia morphology during ischemic stroke and reperfusion

    PubMed Central

    2013-01-01

    Background Microglia cells continuously survey the healthy brain in a ramified morphology and, in response to injury, undergo progressive morphological and functional changes that encompass microglia activation. Although ideally positioned for immediate response to ischemic stroke (IS) and reperfusion, their progressive morphological transformation into activated cells has not been quantified. In addition, it is not well understood if diverse microglia morphologies correlate to diverse microglia functions. As such, the dichotomous nature of these cells continues to confound our understanding of microglia-mediated injury after IS and reperfusion. The purpose of this study was to quantitatively characterize the spatiotemporal pattern of microglia morphology during the evolution of cerebral injury after IS and reperfusion. Methods Male C57Bl/6 mice were subjected to focal cerebral ischemia and periods of reperfusion (0, 8 and 24 h). The microglia process length/cell and number of endpoints/cell was quantified from immunofluorescent confocal images of brain regions using a skeleton analysis method developed for this study. Live cell morphology and process activity were measured from movies acquired in acute brain slices from GFP-CX3CR1 transgenic mice after IS and 24-h reperfusion. Regional CD11b and iNOS expressions were measured from confocal images and Western blot, respectively, to assess microglia proinflammatory function. Results Quantitative analysis reveals a significant spatiotemporal relationship between microglia morphology and evolving cerebral injury in the ipsilateral hemisphere after IS and reperfusion. Microglia were both hyper- and de-ramified in striatal and cortical brain regions (respectively) after 60 min of focal cerebral ischemia. However, a de-ramified morphology was prominent when ischemia was coupled to reperfusion. Live microglia were de-ramified, and, in addition, process activity was severely blunted proximal to the necrotic core after IS and 24 h of reperfusion. CD11b expression, but not iNOS expression, was increased in regions of hyper- and de-ramified microglia during the course of ischemic stroke and 24 h of reperfusion. Conclusions Our findings illustrate that microglia activation after stroke includes both increased and decreased cell ramification. Importantly, quantitative analyses of microglial morphology and activity are feasible and, in future studies, would assist in the comprehensive identification and stratification of their dichotomous contribution toward cerebral injury and recovery during IS and reperfusion. PMID:23311642

  18. Communication Breakdown: The Impact of Ageing on Synapse Structure

    PubMed Central

    Petralia, Ronald S.; Mattson, Mark P.; Yao, Pamela J.

    2014-01-01

    Impaired synaptic plasticity is implicated in the functional decline of the nervous system associated with ageing. Understanding the structure of ageing synapses is essential to understanding the functions of these synapses and their role in the ageing nervous system. In this review, we summarize studies on ageing synapses in vertebrates and invertebrates, focusing on changes in morphology and ultrastructure. We cover different parts of the nervous system, including the brain, the retina, the cochlea, and the neuromuscular junction. The morphological characteristics of aged synapses could shed light on the underlying molecular changes and their functional consequences. PMID:24495392

  19. Structural basis for pulmonary functional imaging.

    PubMed

    Itoh, H; Nakatsu, M; Yoxtheimer, L M; Uematsu, H; Ohno, Y; Hatabu, H

    2001-03-01

    An understanding of fine normal lung morphology is important for effective pulmonary functional imaging. The lung specimens must be inflated. These include (a) unfixed, inflated lung specimen, (b) formaldehyde fixed lung specimen, (c) fixed, inflated dry lung specimen, and (d) histology specimen. Photography, magnified view, radiograph, computed tomography, and histology of these specimens are demonstrated. From a standpoint of diagnostic imaging, the main normal lung structures consist of airways (bronchi and bronchioles), alveoli, pulmonary vessels, secondary pulmonary lobules, and subpleural pulmonary lymphatic channels. This review summarizes fine radiologic normal lung morphology as an aid to effective pulmonary functional imaging.

  20. Modulating effects of epithalamin and epithalon on the functional morphology of the spleen in old pinealectomized rats.

    PubMed

    Khavinson, V K; Konovalov, S S; Yuzhakov, V V; Popuchiev, V V; Kvetnoi, I M

    2001-11-01

    Immunohistochemical and morphometric analysis showed that epithalamin and epithalon produced similar effects on the functional morphology of the spleen in pinealectomized rats. Both peptides prevented hyperplasia of lymphoid cells in follicular germinative centers induced by pinealectomy and potentiated the decrease in extramedullary hemopoiesis. These findings confirm the data on functional relationships between the pineal gland and immune system. The effects of epithalamin and epithalon on cell and tissue homeostasis in the spleen of old pinealectomized rats can be regarded as a manifestation of the general regulatory effect of these peptides.

  1. Tensorial Minkowski functionals of triply periodic minimal surfaces

    PubMed Central

    Mickel, Walter; Schröder-Turk, Gerd E.; Mecke, Klaus

    2012-01-01

    A fundamental understanding of the formation and properties of a complex spatial structure relies on robust quantitative tools to characterize morphology. A systematic approach to the characterization of average properties of anisotropic complex interfacial geometries is provided by integral geometry which furnishes a family of morphological descriptors known as tensorial Minkowski functionals. These functionals are curvature-weighted integrals of tensor products of position vectors and surface normal vectors over the interfacial surface. We here demonstrate their use by application to non-cubic triply periodic minimal surface model geometries, whose Weierstrass parametrizations allow for accurate numerical computation of the Minkowski tensors. PMID:24098847

  2. Effects of photobiomodulation therapy and topical non-steroidal anti-inflammatory drug on skeletal muscle injury induced by contusion in rats-part 1: morphological and functional aspects.

    PubMed

    Tomazoni, Shaiane Silva; Frigo, Lúcio; Dos Reis Ferreira, Tereza Cristina; Casalechi, Heliodora Leão; Teixeira, Simone; de Almeida, Patrícia; Muscara, Marcelo Nicolas; Marcos, Rodrigo Labat; Serra, Andrey Jorge; de Carvalho, Paulo de Tarso Camillo; Leal-Junior, Ernesto Cesar Pinto

    2017-12-01

    Musculoskeletal injuries are very frequent and are responsible for causing pain and impairment of muscle function, as well as significant functional limitations. In the acute phase, the most prescribed treatment is with non-steroidal anti-inflammatory drugs (NSAIDs), despite their questionable effectiveness. However, the use of photobiomodulation therapy (PBMT) in musculoskeletal disorders has been increasing in the last few years, and this therapy appears to be an interesting alternative to the traditional drugs. The objective of the present study was to evaluate and compare the effects of PBMT, with different application doses, and topical NSAIDs, under morphological and functional parameters, during an acute inflammatory process triggered by a controlled model of musculoskeletal injury induced via contusion in rats. Muscle injury was induced by means of a single trauma to the animals' anterior tibialis muscle. After 1 h, the rats were treated with PBMT (830 nm; continuous mode, with a power output of 100 mW; 3.57 W/cm 2 ; 1 J-35.7 J/cm 2 , 3 J-107.1 J/cm 2 , and 9 J-321.4 J/cm 2 ; 10, 30, and 90 s) or diclofenac sodium for topical use (1 g). Morphological analysis (histology) and functional analysis (muscle work) were performed, 6, 12, and 24 h after induction of the injury. PBMT, with all doses tested, improved morphological changes caused by trauma; however, the 9 J (321.4 J/cm 2 ) dose was the most effective in organizing muscle fibers and cell nuclei. On the other hand, the use of diclofenac sodium produced only a slight improvement in morphological changes. Moreover, we observed a statistically significant increase of muscle work in the PBMT 3 J (107.1 J/cm 2 ) group in relation to the injury group and the diclofenac group (p < 0.05). The results of the present study indicate that PBMT, with a dose of 3 J (107.1 J/cm 2 ), is more effective than the other doses of PBMT tested and NSAIDs for topical use as a means to improve morphological and functional alterations due to muscle injury from contusion.

  3. Phylogenetic versus functional signals in the evolution of form-function relationships in terrestrial vision.

    PubMed

    Motani, Ryosuke; Schmitz, Lars

    2011-08-01

    Phylogeny is deeply pertinent to evolutionary studies. Traits that perform a body function are expected to be strongly influenced by physical "requirements" of the function. We investigated if such traits exhibit phylogenetic signals, and, if so, how phylogenetic noises bias quantification of form-function relationships. A form-function system that is strongly influenced by physics, namely the relationship between eye morphology and visual optics in amniotes, was used. We quantified the correlation between form (i.e., eye morphology) and function (i.e., ocular optics) while varying the level of phylogenetic bias removal through adjusting Pagel's λ. Ocular soft-tissue dimensions exhibited the highest correlation with ocular optics when 1% of phylogenetic bias expected from Brownian motion was removed (i.e., λ= 0.01); the value for hard-tissue data were 8%. A small degree of phylogenetic bias therefore exists in morphology despite of the stringent functional constraints. We also devised a phylogenetically informed discriminant analysis and recorded the effects of phylogenetic bias on this method using the same data. Use of proper λ values during phylogenetic bias removal improved misidentification rates in resulting classifications when prior probabilities were assumed to be equal. Even a small degree of phylogenetic bias affected the classification resulting from phylogenetically informed discriminant analysis. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  4. Biomechanical trade-offs bias rates of evolution in the feeding apparatus of fishes

    PubMed Central

    Holzman, Roi; Collar, David C.; Price, Samantha A.; Hulsey, C. Darrin; Thomson, Robert C.; Wainwright, Peter C.

    2012-01-01

    Morphological diversification does not proceed evenly across the organism. Some body parts tend to evolve at higher rates than others, and these rate biases are often attributed to sexual and natural selection or to genetic constraints. We hypothesized that variation in the rates of morphological evolution among body parts could also be related to the performance consequences of the functional systems that make up the body. Specifically, we tested the widely held expectation that the rate of evolution for a trait is negatively correlated with the strength of biomechanical trade-offs to which it is exposed. We quantified the magnitude of trade-offs acting on the morphological components of three feeding-related functional systems in four radiations of teleost fishes. After accounting for differences in the rates of morphological evolution between radiations, we found that traits that contribute more to performance trade-offs tend to evolve more rapidly, contrary to the prediction. While ecological and genetic factors are known to have strong effects on rates of phenotypic evolution, this study highlights the role of the biomechanical architecture of functional systems in biasing the rates and direction of trait evolution. PMID:21993506

  5. Biomechanical trade-offs bias rates of evolution in the feeding apparatus of fishes.

    PubMed

    Holzman, Roi; Collar, David C; Price, Samantha A; Hulsey, C Darrin; Thomson, Robert C; Wainwright, Peter C

    2012-04-07

    Morphological diversification does not proceed evenly across the organism. Some body parts tend to evolve at higher rates than others, and these rate biases are often attributed to sexual and natural selection or to genetic constraints. We hypothesized that variation in the rates of morphological evolution among body parts could also be related to the performance consequences of the functional systems that make up the body. Specifically, we tested the widely held expectation that the rate of evolution for a trait is negatively correlated with the strength of biomechanical trade-offs to which it is exposed. We quantified the magnitude of trade-offs acting on the morphological components of three feeding-related functional systems in four radiations of teleost fishes. After accounting for differences in the rates of morphological evolution between radiations, we found that traits that contribute more to performance trade-offs tend to evolve more rapidly, contrary to the prediction. While ecological and genetic factors are known to have strong effects on rates of phenotypic evolution, this study highlights the role of the biomechanical architecture of functional systems in biasing the rates and direction of trait evolution.

  6. Contrasting Ecosystem-Effects of Morphologically Similar Copepods

    PubMed Central

    Matthews, Blake; Hausch, Stephen; Winter, Christian; Suttle, Curtis A.; Shurin, Jonathan B.

    2011-01-01

    Organisms alter the biotic and abiotic conditions of ecosystems. They can modulate the availability of resources to other species (ecosystem engineering) and shape selection pressures on other organisms (niche construction). Very little is known about how the engineering effects of organisms vary among and within species, and, as a result, the ecosystem consequences of species diversification and phenotypic evolution are poorly understood. Here, using a common gardening experiment, we test whether morphologically similar species and populations of Diaptomidae copepods (Leptodiaptomus ashlandi, Hesperodiaptomus franciscanus, Skistodiaptomus oregonensis) have similar or different effects on the structure and function of freshwater ecosystems. We found that copepod species had contrasting effects on algal biomass, ammonium concentrations, and sedimentation rates, and that copepod populations had contrasting effects on prokaryote abundance, sedimentation rates, and gross primary productivity. The average size of ecosystem-effect contrasts between species was similar to those between populations, and was comparable to those between fish species and populations measured in previous common gardening experiments. Our results suggest that subtle morphological variation among and within species can cause multifarious and divergent ecosystem-effects. We conclude that using morphological trait variation to assess the functional similarity of organisms may underestimate the importance of species and population diversity for ecosystem functioning. PMID:22140432

  7. Structural-functional lung imaging using a combined CT-EIT and a Discrete Cosine Transformation reconstruction method.

    PubMed

    Schullcke, Benjamin; Gong, Bo; Krueger-Ziolek, Sabine; Soleimani, Manuchehr; Mueller-Lisse, Ullrich; Moeller, Knut

    2016-05-16

    Lung EIT is a functional imaging method that utilizes electrical currents to reconstruct images of conductivity changes inside the thorax. This technique is radiation free and applicable at the bedside, but lacks of spatial resolution compared to morphological imaging methods such as X-ray computed tomography (CT). In this article we describe an approach for EIT image reconstruction using morphologic information obtained from other structural imaging modalities. This leads to recon- structed images of lung ventilation that can easily be superimposed with structural CT or MRI images, which facilitates image interpretation. The approach is based on a Discrete Cosine Transformation (DCT) of an image of the considered transversal thorax slice. The use of DCT enables reduction of the dimensionality of the reconstruction and ensures that only conductivity changes of the lungs are reconstructed and displayed. The DCT based approach is well suited to fuse morphological image information with functional lung imaging at low computational costs. Results on simulated data indicate that this approach preserves the morphological structures of the lungs and avoids blurring of the solution. Images from patient measurements reveal the capabilities of the method and demonstrate benefits in possible applications.

  8. Structural-functional lung imaging using a combined CT-EIT and a Discrete Cosine Transformation reconstruction method

    PubMed Central

    Schullcke, Benjamin; Gong, Bo; Krueger-Ziolek, Sabine; Soleimani, Manuchehr; Mueller-Lisse, Ullrich; Moeller, Knut

    2016-01-01

    Lung EIT is a functional imaging method that utilizes electrical currents to reconstruct images of conductivity changes inside the thorax. This technique is radiation free and applicable at the bedside, but lacks of spatial resolution compared to morphological imaging methods such as X-ray computed tomography (CT). In this article we describe an approach for EIT image reconstruction using morphologic information obtained from other structural imaging modalities. This leads to recon- structed images of lung ventilation that can easily be superimposed with structural CT or MRI images, which facilitates image interpretation. The approach is based on a Discrete Cosine Transformation (DCT) of an image of the considered transversal thorax slice. The use of DCT enables reduction of the dimensionality of the reconstruction and ensures that only conductivity changes of the lungs are reconstructed and displayed. The DCT based approach is well suited to fuse morphological image information with functional lung imaging at low computational costs. Results on simulated data indicate that this approach preserves the morphological structures of the lungs and avoids blurring of the solution. Images from patient measurements reveal the capabilities of the method and demonstrate benefits in possible applications. PMID:27181695

  9. Morphology, physiology, genetics, enigmas, and status of an extremely rare tree: Mutant tanoak

    Treesearch

    Philip M. McDonald; Jianwei Zhang; Randy S. Senock; Jessica W. Wright

    2013-01-01

    Important physical characteristics, morphological attributes, physiological functions, and genetic properties of mutant tanoak, Notholithocarpus densiflorus f. attenuato-dentatus (Fagaceae), and normal tanoak, Notholithocarpus densiflorus (Hook. & Arn.) Manos, Cannon & S. H. Oh, were studied on the Challenge...

  10. Morphologies, Preparations and Applications of Layered Double Hydroxide Micro-/Nanostructures

    PubMed Central

    Kuang, Ye; Zhao, Lina; Zhang, Shuai; Zhang, Fazhi; Dong, Mingdong; Xu, Sailong

    2010-01-01

    Layered double hydroxides (LDHs), also well-known as hydrotalcite-like layered clays, have been widely investigated in the fields of catalysts and catalyst support, anion exchanger, electrical and optical functional materials, flame retardants and nanoadditives. This feature article focuses on the progress in micro-/nanostructured LDHs in terms of morphology, and also on the preparations, applications, and perspectives of the LDHs with different morphologies. PMID:28883378

  11. Experimental reduction of intromittent organ length reduces male reproductive success in a bug

    PubMed Central

    Dougherty, Liam R.; Rahman, Imran A.; Burdfield-Steel, Emily R.; Greenway, E. V. (Ginny); Shuker, David M.

    2015-01-01

    It is now clear in many species that male and female genital evolution has been shaped by sexual selection. However, it has historically been difficult to confirm correlations between morphology and fitness, as genital traits are complex and manipulation tends to impair function significantly. In this study, we investigate the functional morphology of the elongate male intromittent organ (or processus) of the seed bug Lygaeus simulans, in two ways. We first use micro-computed tomography (micro-CT) and flash-freezing to reconstruct in high resolution the interaction between the male intromittent organ and the female internal reproductive anatomy during mating. We successfully trace the path of the male processus inside the female reproductive tract. We then confirm that male processus length influences sperm transfer by experimental ablation and show that males with shortened processi have significantly reduced post-copulatory reproductive success. Importantly, male insemination function is not affected by this manipulation per se. We thus present rare, direct experimental evidence that an internal genital trait functions to increase reproductive success and show that, with appropriate staining, micro-CT is an excellent tool for investigating the functional morphology of insect genitalia during copulation. PMID:25972470

  12. Skeletal muscle and fetal alcohol spectrum disorder.

    PubMed

    Myrie, Semone B; Pinder, Mark A

    2018-04-01

    Skeletal muscle is critical for mobility and many metabolic functions integral to survival and long-term health. Alcohol can affect skeletal muscle physiology and metabolism, which will have immediate and long-term consequences on health. While skeletal muscle abnormalities, including morphological, biochemical, and functional impairments, are well-documented in adults that excessively consume alcohol, there is a scarcity of information about the skeletal muscle in the offspring prenatally exposed to alcohol ("prenatal alcohol exposure"; PAE). This minireview examines the available studies addressing skeletal muscle abnormalities due to PAE. Growth restriction, fetal alcohol myopathy, and abnormalities in the neuromuscular system, which contribute to deficits in locomotion, are some direct, immediate consequences of PAE on skeletal muscle morphology and function. Long-term health consequences of PAE-related skeletal abnormalities include impaired glucose metabolism in the skeletal muscle, resulting in glucose intolerance and insulin resistance, leading to an increased risk of type 2 diabetes. In general, there is limited information on the morphological, biochemical, and functional features of skeletal abnormalities in PAE offspring. There is a need to understand how PAE affects muscle growth and function at the cellular level during early development to improve the immediate and long-term health of offspring suffering from PAE.

  13. Nanoscale structure, dynamics and power conversion efficiency correlations in small molecule and oligomer-based photovoltaic devices

    PubMed Central

    Szarko, Jodi M.; Guo, Jianchang; Rolczynski, Brian S.; Chen, Lin X.

    2011-01-01

    Photovoltaic functions in organic materials are intimately connected to interfacial morphologies of molecular packing in films on the nanometer scale and molecular levels. This review will focus on current studies on correlations of nanoscale morphologies in organic photovoltaic (OPV) materials with fundamental processes relevant to photovoltaic functions, such as light harvesting, exciton splitting, exciton diffusion, and charge separation (CS) and diffusion. Small molecule photovoltaic materials will be discussed here. The donor and acceptor materials in small molecule OPV devices can be fabricated in vacuum-deposited, multilayer, crystalline thin films, or spin-coated together to form blended bulk heterojunction (BHJ) films. These two methods result in very different morphologies of the solar cell active layers. There is still a formidable debate regarding which morphology is favored for OPV optimization. The morphology of the conducting films has been systematically altered; using variations of the techniques above, the whole spectrum of film qualities can be fabricated. It is possible to form a highly crystalline material, one which is completely amorphous, or an intermediate morphology. In this review, we will summarize the past key findings that have driven organic solar cell research and the current state-of-the-art of small molecule and conducting oligomer materials. We will also discuss the merits and drawbacks of these devices. Finally, we will highlight some works that directly compare the spectra and morphology of systematically elongated oligothiophene derivatives and compare these oligomers to their polymer counterparts. We hope this review will shed some new light on the morphology differences of these two systems. PMID:22110870

  14. Tibolone Preserves Mitochondrial Functionality and Cell Morphology in Astrocytic Cells Treated with Palmitic Acid.

    PubMed

    González-Giraldo, Yeimy; Garcia-Segura, Luis Miguel; Echeverria, Valentina; Barreto, George E

    2018-05-01

    Obesity has been associated with increased chronic neuroinflammation and augmented risk of neurodegeneration. This is worsened during the normal aging process when the levels of endogenous gonadal hormones are reduced. In this study, we have assessed the protective actions of tibolone, a synthetic steroid with estrogenic actions, on T98G human astrocytic cells exposed to palmitic acid, a saturated fatty acid used to mimic obesity in vitro. Tibolone improved cell survival, and preserved mitochondrial membrane potential in palmitic acid-treated astrocytic cells. Although we did not find significant actions of tibolone on free radical production, it modulated astrocytic morphology after treatment with palmitic acid. These data suggest that tibolone protects astrocytic cells by preserving both mitochondrial functionality and morphological complexity.

  15. [Phosphatidylserine externalization and functional-morphological impairment of sperm in men with long barren marriage].

    PubMed

    Ploskonos, M V

    2016-08-01

    To identify the relationship between phosphatidylserine externalization, as an early marker of apoptosis, and functional and morphological sperm impairment in infertile men to subsequently evaluate the effect of apoptosis on sperm fertility. Ejaculates of 18 fertile and 78 subfertile men were examined. Phosphatidylserine externalization was detected by staining the sperm with fluorochrome conjugated Annexin V (AnV-FITC) and propidium iodide using fluorescence microscopy. and conclusions: Ejaculates of fertile and subfertile men differed in the percentage of annexin-V-positive sperm. The correlation of (AnV+/PI+) - sperm of subfertile men with sperm concentration, motility and defects of sperm morphology shows the adverse effects of apoptosis on sperm quality and suggests that phosphatidylserine externalization is a factor for reducing sperm fertility.

  16. Neuronal Correlates of Individual Differences in the Big Five Personality Traits: Evidences from Cortical Morphology and Functional Homogeneity.

    PubMed

    Li, Ting; Yan, Xu; Li, Yuan; Wang, Junjie; Li, Qiang; Li, Hong; Li, Junfeng

    2017-01-01

    There have been many neuroimaging studies of human personality traits, and it have already provided glimpse into the neurobiology of complex traits. And most of previous studies adopt voxel-based morphology (VBM) analysis to explore the brain-personality mechanism from two levels (vertex and regional based), the findings are mixed with great inconsistencies and the brain-personality relations are far from a full understanding. Here, we used a new method of surface-based morphology (SBM) analysis, which provides better alignment of cortical landmarks to generate about the associations between cortical morphology and the personality traits across 120 healthy individuals at both vertex and regional levels. While to further reveal local functional correlates of the morphology-personality relationships, we related surface-based functional homogeneity measures to the regions identified in the regional-based SBM correlation. Vertex-wise analysis revealed that people with high agreeableness exhibited larger areas in the left superior temporal gyrus. Based on regional parcellation we found that extroversion was negatively related with the volume of the left lateral occipito-temporal gyrus and agreeableness was negatively associated with the sulcus depth of the left superior parietal lobule. Moreover, increased regional homogeneity in the left lateral occipito-temporal gyrus is related to the scores of extroversion, and increased regional homogeneity in the left superior parietal lobule is related to the scores of agreeableness. These findings provide supporting evidence of a link between personality and brain structural mysteries with a method of SBM, and further suggest that local functional homogeneity of personality traits has neurobiological relevance that is likely based on anatomical substrates.

  17. Leaf morphology of 40 evergreen and deciduous broadleaved subtropical tree species and relationships to functional ecophysiological traits.

    PubMed

    Kröber, W; Heklau, H; Bruelheide, H

    2015-03-01

    We explored potential of morphological and anatomical leaf traits for predicting ecophysiological key functions in subtropical trees. We asked whether the ecophysiological parameters stomatal conductance and xylem cavitation vulnerability could be predicted from microscopy leaf traits. We investigated 21 deciduous and 19 evergreen subtropical tree species, using individuals of the same age and from the same environment in the Biodiversity-Ecosystem Functioning experiment at Jiangxi (BEF-China). Information-theoretic linear model selection was used to identify the best combination of morphological and anatomical predictors for ecophysiological functions. Leaf anatomy and morphology strongly depended on leaf habit. Evergreen species tended to have thicker leaves, thicker spongy and palisade mesophyll, more palisade mesophyll layers and a thicker subepidermis. Over 50% of all evergreen species had leaves with multi-layered palisade parenchyma, while only one deciduous species (Koelreuteria bipinnata) had this. Interactions with leaf habit were also included in best multi-predictor models for stomatal conductance (gs ) and xylem cavitation vulnerability. In addition, maximum gs was positively related to log ratio of palisade to spongy mesophyll thickness. Vapour pressure deficit (vpd) for maximum gs increased with the log ratio of palisade to spongy mesophyll thickness in species having leaves with papillae. In contrast, maximum specific hydraulic conductivity and xylem pressure at which 50% loss of maximum specific xylem hydraulic conductivity occurred (Ψ50 ) were best predicted by leaf habit and density of spongy parenchyma. Evergreen species had lower Ψ50 values and lower maximum xylem hydraulic conductivities. As hydraulic leaf and wood characteristics were reflected in structural leaf traits, there is high potential for identifying further linkages between morphological and anatomical leaf traits and ecophysiological responses. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. Early morphological and functional changes in pancreas following necrosectomy for acute severe necrotizing pancreatitis.

    PubMed

    Bavare, Charudatta; Prabhu, Ramkrishna; Supe, Avinash

    2004-01-01

    Morphological and functional changes in the pancreas after surgical pancreatic necrosectomy have not been studied extensively. To study morphological changes in the pancreas, and exocrine and endocrine pancreatic function following pancreatic necrosectomy. Eighteen adult patients surviving at least one month after pancreatic necrosectomy for acute necrotizing pancreatitis were followed up. Contrast-enhanced computed tomography was done every six months. Stool fat was estimated at 3-month intervals, and need for and response to enzyme supplements were recorded. Blood sugar was measured every fortnight; in patients with hyperglycemia, need for oral hypoglycemic agents or insulin was recorded. Additional pancreatic imaging was done in some cases. Six weeks after surgery, nine of 18 patients had exocrine insufficiency. Thirteen patients developed endocrine insufficiency, including 5 who also had exocrine insufficiency. At the end of the study, 13 patients had endocrine insufficiency and 2 had exocrine insufficiency. Pancreatic size was subnormal in all patients at the end of six months. Pancreatography in three cases did not reveal any ductal abnormality. Necrotizing pancreatitis affects pancreatic exocrine or endocrine function in more than half the patients.

  19. Long-term sequelae of perinatal asphyxia in the aging rat.

    PubMed

    Weitzdoerfer, R; Gerstl, N; Hoeger, H; Mosgoeller, W; Dreher, W; Engidawork, E; Overgaard-Larsen, J; Lubec, B

    2002-03-01

    Information on the consequences of perinatal asphyxia (PA) on brain morphology and function in the aging rat is missing although several groups have hypothesized that PA may be responsible for neurological and psychiatric deficits in the adult. We therefore decided to study the effects of PA on the central nervous system (CNS) in terms of morphology, immunohistochemistry, neurology and behavior in the aging animal. Hippocampus and cerebellum were evaluated morphologically by histological, immunohistochemical and magnetic resonance imaging and cerebellum also by stereological tests. Neurological function was tested by an observational test battery and rota rod test. Cognitive functions were examined by multiple-T-maze and the Morris water maze (MWM). Increased serotonin transporter (SERT) immunoreactivity in the CA2 region of the hippocampus and a significant difference in the escape latency, when the platform of the MWM was moved to a new location, were observed in asphyxiated rats. We showed that deteriorated cognitive functions accompanied by aberrant expression of hippocampal SERT and impaired relearning are long-term sequelae of perinatal asphyxia, a finding that may form the basis for understanding CNS pathology in the aging subject, animal or human.

  20. Morphology-flow interactions lead to stage-selective vertical transport of larval sand dollars in shear flow.

    PubMed

    Clay, T W; Grünbaum, D

    2010-04-01

    Many larvae and other plankton have complex and variable morphologies of unknown functional significance. We experimentally and theoretically investigated the functional consequences of the complex morphologies of larval sand dollars, Dendraster excentricus (Eschscholtz), for hydrodynamic interactions between swimming and turbulent water motion. Vertical shearing flows (horizontal gradients of vertical flow) tilt organisms with simple geometries (e.g. spheres, ellipsoids), causing these organisms to move horizontally towards downwelling water and compromising their abilities to swim upwards. A biomechanical model of corresponding hydrodynamic interactions between turbulence-induced shear and the morphologically complex four-, six- and eight-armed stages of sand dollar larvae suggests that the movements of larval morphologies differ quantitatively and qualitatively across stages and shear intensities: at shear levels typical of calm conditions in estuarine and coastal environments, all modeled larval stages moved upward. However, at higher shears, modeled four- and eight-armed larvae moved towards downwelling, whereas six-armed larvae moved towards upwelling. We also experimentally quantified larval movement by tracking larvae swimming in low-intensity shear while simultaneously mapping the surrounding flow fields. Four- and eight-armed larvae moved into downwelling water, but six-armed larvae did not. Both the model and experiments suggest that stage-dependent changes to larval morphology lead to differences in larval movement: four- and eight-armed stages are more prone than the six-armed stage to moving into downwelling water. Our results suggest a mechanism by which differences can arise in the vertical distribution among larval stages. The ability to mitigate or exploit hydrodynamic interactions with shear is a functional consequence that potentially shapes larval evolution and development.

  1. Classical cardiovascular disease risk factors associate with vascular function and morphology in rheumatoid arthritis: a six-year prospective study

    PubMed Central

    2013-01-01

    Introduction Patients with rheumatoid arthritis (RA) are at an increased risk for cardiovascular disease (CVD). An early manifestation of CVD is endothelial dysfunction which can lead to functional and morphological vascular abnormalities. Classical CVD risk factors and inflammation are both implicated in causing endothelial dysfunction in RA. The objective of the present study was to examine the effect of baseline inflammation, cumulative inflammation, and classical CVD risk factors on the vasculature following a six-year follow-up period. Methods A total of 201 RA patients (155 females, median age (25th to 75th percentile): 61 years (53 to 67)) were examined at baseline (2006) for presence of classical CVD risk factors and determination of inflammation using C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR). At follow-up (2012) patients underwent assessments of microvascular and macrovascular endothelium-dependent and endothelium-independent function, along with assessment of carotid atherosclerosis. The CRP and ESR were recorded from the baseline study visit to the follow-up visit for each patient to calculate cumulative inflammatory burden. Results Classical CVD risk factors, but not RA disease-related inflammation, predicted microvascular endothelium-dependent and endothelium-independent function, macrovascular endothelium-independent function and carotid atherosclerosis. These findings were similar in a sub-group of patients free from CVD, and not receiving non-steroidal anti-inflammatory drugs, cyclooxygenase 2 inhibitors or biologics. Cumulative inflammation was not associated with microvascular and macrovascular endothelial function, but a weak association was apparent between area under the curve for CRP and carotid atherosclerosis. Conclusions Classical CVD risk factors may be better long-term predictors of vascular function and morphology than systemic disease-related inflammation in patients with RA. Further studies are needed to confirm if assessments of vascular function and morphology are predictive of long-term CV outcomes in RA. PMID:24289091

  2. Harnessing Structure-Property Relationships for Poly(alkyl thiophene)-Fullerene Derivative Thin Filmsto Optimize Performance in Photovoltaic Devices

    DOE PAGES

    Deb, Nabankur; Li, Bohao; Skoda, Maximilian; ...

    2016-02-08

    Nanoscale bulk heterojunction (BHJ) systems, consisting of fullerenes dispersed in conjugated polymers as the active component, have been actively studied over the last decades in order to produce high performance organic photovoltaics (OPVs). A significant role in device efficiency is played by the active layer morphology, but despite considerable study, a full understanding of the exact role that morphology plays and therefore a definitive method to produce and control an ideal morphology is lacking. In order to understand the BHJ phase behavior and associated morphology in these devices, we have used neutron reflection, together with grazing incidence X-ray and neutronmore » scattering and X-ray photoelectron spectroscopy (XPS) to determine the morphology of the BHJ active layer in functional devices. We have studied nine model BHJ systems based on mixtures of three poly(3-alkyl thiophenes, P3AT) (A=butyl, hexyl, octyl) blended with three different fullerene derivatives, which provides variations in crystallinity and miscibility within the BHJ composite. In studying properties of functional devices, we show a direct correlation between the observed morphology within the BHJ layer and the device performance metrics, i.e., the short-circuit current (J SC), fill factor (FF), open-circuit voltage (VOC) and overall power conversion efficiency (PCE). Using these model systems, the effect of typical thermal annealing processes on the BHJ morphology through the film thickness as a function of the polythiophene-fullerene mixtures and different electron transport layer interfaces has been determined. It is shown that fullerene enrichment occurs at both the electrode interfaces after annealing. The degree of fullerene enrichment is found to strongly correlate with J SC and to a lesser degree with FF. Finally, based on these findings we demonstrate that by deliberately adding a fullerene layer at the electron transport layer interface, J SC can be increased by up to 20%, resulting in an overall increase in PCE of 5%.« less

  3. Effect of captivity on morphology: negligible changes in external morphology mask significant changes in internal morphology

    PubMed Central

    Munn, Adam J.; Byrne, Phillip G.

    2018-01-01

    Captive breeding programmes are increasingly relied upon for threatened species management. Changes in morphology can occur in captivity, often with unknown consequences for reintroductions. Few studies have examined the morphological changes that occur in captive animals compared with wild animals. Further, the effect of multiple generations being maintained in captivity, and the potential effects of captivity on sexual dimorphism remain poorly understood. We compared external and internal morphology of captive and wild animals using house mouse (Mus musculus) as a model species. In addition, we looked at morphology across two captive generations, and compared morphology between sexes. We found no statistically significant differences in external morphology, but after one generation in captivity there was evidence for a shift in the internal morphology of captive-reared mice; captive-reared mice (two generations bred) had lighter combined kidney and spleen masses compared with wild-caught mice. Sexual dimorphism was maintained in captivity. Our findings demonstrate that captive breeding can alter internal morphology. Given that these morphological changes may impact organismal functioning and viability following release, further investigation is warranted. If the morphological change is shown to be maladaptive, these changes would have significant implications for captive-source populations that are used for reintroduction, including reduced survivorship.

  4. Sponge budding is a spatiotemporal morphological patterning process: Insights from synchrotron radiation-based x-ray microtomography into the asexual reproduction of Tethya wilhelma.

    PubMed

    Hammel, Jörg U; Herzen, Julia; Beckmann, Felix; Nickel, Michael

    2009-09-08

    Primary agametic-asexual reproduction mechanisms such as budding and fission are present in all non-bilaterian and many bilaterian animal taxa and are likely to be metazoan ground pattern characters. Cnidarians display highly organized and regulated budding processes. In contrast, budding in poriferans was thought to be less specific and related to the general ability of this group to reorganize their tissues. Here we test the hypothesis of morphological pattern formation during sponge budding. We investigated the budding process in Tethya wilhelma (Demospongiae) by applying 3D morphometrics to high resolution synchrotron radiation-based x-ray microtomography (SR-muCT) image data. We followed the morphogenesis of characteristic body structures and identified distinct morphological states which indeed reveal characteristic spatiotemporal morphological patterns in sponge bud development. We discovered the distribution of skeletal elements, canal system and sponge tissue to be based on a sequential series of distinct morphological states. Based on morphometric data we defined four typical bud stages. Once they have reached the final stage buds are released as fully functional juvenile sponges which are morphologically and functionally equivalent to adult specimens. Our results demonstrate that budding in demosponges is considerably more highly organized and regulated than previously assumed. Morphological pattern formation in asexual reproduction with underlying genetic regulation seems to have evolved early in metazoans and was likely part of the developmental program of the last common ancestor of all Metazoa (LCAM).

  5. Sponge budding is a spatiotemporal morphological patterning process: Insights from synchrotron radiation-based x-ray microtomography into the asexual reproduction of Tethya wilhelma

    PubMed Central

    Hammel, Jörg U; Herzen, Julia; Beckmann, Felix; Nickel, Michael

    2009-01-01

    Background Primary agametic-asexual reproduction mechanisms such as budding and fission are present in all non-bilaterian and many bilaterian animal taxa and are likely to be metazoan ground pattern characters. Cnidarians display highly organized and regulated budding processes. In contrast, budding in poriferans was thought to be less specific and related to the general ability of this group to reorganize their tissues. Here we test the hypothesis of morphological pattern formation during sponge budding. Results We investigated the budding process in Tethya wilhelma (Demospongiae) by applying 3D morphometrics to high resolution synchrotron radiation-based x-ray microtomography (SR-μCT) image data. We followed the morphogenesis of characteristic body structures and identified distinct morphological states which indeed reveal characteristic spatiotemporal morphological patterns in sponge bud development. We discovered the distribution of skeletal elements, canal system and sponge tissue to be based on a sequential series of distinct morphological states. Based on morphometric data we defined four typical bud stages. Once they have reached the final stage buds are released as fully functional juvenile sponges which are morphologically and functionally equivalent to adult specimens. Conclusion Our results demonstrate that budding in demosponges is considerably more highly organized and regulated than previously assumed. Morphological pattern formation in asexual reproduction with underlying genetic regulation seems to have evolved early in metazoans and was likely part of the developmental program of the last common ancestor of all Metazoa (LCAM). PMID:19737392

  6. Induction of ultra-morphological features of apoptosis in mature and immature sperm.

    PubMed

    Grunewald, Sonja; Fitzl, Guenther; Springsguth, Christopher

    2017-01-01

    There is a fundamental body of evidence suggesting that activated apoptosis signaling in ejaculated human sperm negatively influences their fertilization potential. However, it is still controversial whether this apoptotic signaling is a relic of an abortive apoptosis related to spermatogenesis or if it should be regarded as a functional preformed pathway in mature sperm leading to stereotypical morphological changes reflecting nuclear disassembly. To address this question, apoptosis was induced using betulinic acid in mature and immature ejaculated human sperm enriched by density gradient centrifugation. Execution of apoptosis was monitored by observing ultra-morphological changes via transmission electron microscopy. Typical morphological signs of apoptosis in somatic cells include plasma membrane blebbing with the formation of apoptotic bodies, impaired mitochondrial integrity, defects of the nuclear envelope, and nuclear fragmentation; these morphologies have also been observed in human sperm. In addition, these apoptotic characteristics were more frequent in immature sperm compared to mature sperm. Following betulinic acid treatment, apoptosis-related morphological changes were induced in mature sperm from healthy donors. This effect was much less pronounced in immature sperm. Moreover, in both fractions, the betulinic acid treatment increased the percentage of acrosome-reacted sperm. The results of our ultra-morphological study prove the functional competence of apoptosis in mature ejaculated human sperm. The theory of a sole abortive process may be valid only for immature sperm. The induction of the acrosome reaction by stimulating apoptosis might shed light on the biological relevance of sperm apoptosis.

  7. Improvement of mitochondrial function and dynamics by the metabolic enhancer piracetam.

    PubMed

    Stockburger, Carola; Kurz, Christopher; Koch, Konrad A; Eckert, Schamim H; Leuner, Kristina; Müller, Walter E

    2013-10-01

    The metabolic enhancer piracetam is used in many countries to treat cognitive impairment in aging, brain injuries, as well as dementia such as AD (Alzheimer's disease). As a specific feature of piracetam, beneficial effects are usually associated with mitochondrial dysfunction. In previous studies we were able to show that piracetam enhanced ATP production, mitochondrial membrane potential as well as neurite outgrowth in cell and animal models for aging and AD. To investigate further the effects of piracetam on mitochondrial function, especially mitochondrial fission and fusion events, we decided to assess mitochondrial morphology. Human neuroblastoma cells were treated with the drug under normal conditions and under conditions imitating aging and the occurrence of ROS (reactive oxygen species) as well as in stably transfected cells with the human wild-type APP (amyloid precursor protein) gene. This AD model is characterized by expressing only 2-fold more human Aβ (amyloid β-peptide) compared with control cells and therefore representing very early stages of AD when Aβ levels gradually increase over decades. Interestingly, these cells exhibit an impaired mitochondrial function and morphology under baseline conditions. Piracetam is able to restore this impairment and shifts mitochondrial morphology back to elongated forms, whereas there is no effect in control cells. After addition of a complex I inhibitor, mitochondrial morphology is distinctly shifted to punctate forms in both cell lines. Under these conditions piracetam is able to ameliorate morphology in cells suffering from the mild Aβ load, as well as mitochondrial dynamics in control cells.

  8. Physiological and morphological acclimation to height in cupressoid leaves of 100-year-old Chamaecyparis obtusa.

    PubMed

    Shiraki, Ayumi; Azuma, Wakana; Kuroda, Keiko; Ishii, H Roaki

    2017-10-01

    Cupressoid (scale-like) leaves are morphologically and functionally intermediate between stems and leaves. While past studies on height acclimation of cupressoid leaves have focused on acclimation to the vertical light gradient, the relationship between morphology and hydraulic function remains unexplored. Here, we compared physiological and morphological characteristics between treetop and lower-crown leaves of 100-year-old Chamaecyparis obtusa Endl. trees (~27 m tall) to investigate whether height-acclimation compensates for hydraulic constraints. We found that physiological acclimation of leaves was determined by light, which drove the vertical gradient of evaporative demand, while leaf morphology and anatomy were determined by height. Compared with lower-crown leaves, treetop leaves were physiologically acclimated to water stress. Leaf hydraulic conductance was not affected by height, and this contributed to higher photosynthetic rates of treetop leaves. Treetop leaves had higher leaf area density and greater leaf mass per area, which increase light interception but could also decrease hydraulic efficiency. We inferred that transfusion tissue flanking the leaf vein, which was more developed in the treetop leaves, contributes to water-stress acclimation and maintenance of leaf hydraulic conductance by facilitating osmotic adjustment of leaf water potential and efficient water transport from xylem to mesophyll. Our findings may represent anatomical adaptation that compensates for hydraulic constraints on physiological function with increasing height. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Allometry of root branching and its relationship to root morphological and functional traits in three range grasses.

    PubMed

    Arredondo, J Tulio; Johnson, Douglas A

    2011-11-01

    The study of proportional relationships between size, shape, and function of part of or the whole organism is traditionally known as allometry. Examination of correlative changes in the size of interbranch distances (IBDs) at different root orders may help to identify root branching rules. Root morphological and functional characteristics in three range grasses {bluebunch wheatgrass [Pseudoroegneria spicata (Pursh) Löve], crested wheatgrass [Agropyron desertorum (Fisch. ex Link) Schult.×A. cristatum (L.) Gaert.], and cheatgrass (Bromus tectorum L.)} were examined in response to a soil nutrient gradient. Interbranch distances along the main root axis and the first-order laterals as well as other morphological and allocation root traits were determined. A model of nutrient diffusivity parameterized with root length and root diameter for the three grasses was used to estimate root functional properties (exploitation efficiency and exploitation potential). The results showed a significant negative allometric relationship between the main root axis and first-order lateral IBD (P ≤ 0.05), but only for bluebunch wheatgrass. The main root axis IBD was positively related to the number and length of roots, estimated exploitation efficiency of second-order roots, and specific root length, and was negatively related to estimated exploitation potential of first-order roots. Conversely, crested wheatgrass and cheatgrass, which rely mainly on root proliferation responses, exhibited fewer allometric relationships. Thus, the results suggested that species such as bluebunch wheatgrass, which display slow root growth and architectural root plasticity rather than opportunistic root proliferation and rapid growth, exhibit correlative allometry between the main axis IBD and morphological, allocation, and functional traits of roots.

  10. Ontogeny of the morphology-performance axis in an amphibious fish (Kryptolebias marmoratus).

    PubMed

    Styga, Joseph M; Houslay, Thomas M; Wilson, Alastair J; Earley, Ryan L

    2017-12-01

    Establishing links between morphology and performance is important for understanding the functional, ecological, and evolutionary implications of morphological diversity. Relationships between morphology and performance are expected to be age dependent if, at different points during ontogeny, animals must perform in different capacities to achieve high fitness returns. Few studies have examined how the relationship between form and function changes across ontogeny. Here, we assess this relationship in the amphibious mangrove rivulus (Kryptolebias marmoratus) fish, a species that is both capable of and reliant on "tail-flip jumping" for terrestrial locomotion. Tail-flip jumping entails an individual transferring its weight to the caudal region of the body, launching itself from the substrate to navigate to new aquatic or semi-aquatic habitats. By combining repeated trials of jumping performance in 237 individuals from distinct age classes with a clearing and staining procedure to visualize bones in the caudal region, we test the hypotheses that as age increases (i) average jumping performance (body lengths jumped) will increase, (ii) the amount of variation for each trait will change, and (iii) the patterns of covariation/correlation among traits, which tell us about the integration of form with function, will also change. We find a significant increase in size-adjusted jumping performance with age, and modification to the correlation structure among traits across ontogeny. However, we also find that significant links between form and function evident in young animals disappear at later ontogenetic stages. Our study suggests that different functional mechanisms may be associated with high performance at different stages of development. © 2018 Wiley Periodicals, Inc.

  11. Immunohistochemical and morphometric analysis of effects of vilon and epithalon on functional morphology of radiosensitive organs.

    PubMed

    Khavinson, V K; Yuzhakov, V V; Kvetnoi, I M; Malinin, V V; Popuchiev, V V; Fomina, N K

    2001-03-01

    Studies of the effects of vilon and epithalon on functional morphology of the thymus, spleen, and duodenum in intact rats and rats exposed to single whole-body gamma-irradiation in a dose of 6 Gy showed that vilon stimulated proliferative activity of thymocytes and enhanced proliferative potential of stem cells in the intestine, thus stimulating the postradiation recovery of critical organs. Epithalon decelerated metabolic processes in the duodenal mucosa and suppressed hemopoiesis and lymphopoiesis in the spleen.

  12. THE SKIN | Functional morphology of the integumentary system in fishes

    USGS Publications Warehouse

    Elliott, D.G.; Farrell, Anthony P.

    2011-01-01

    The integument that covers the outer surface of a fish’s body and fins is a multifunctional organ, with morphological features highly adapted to carry out these functions. The integument consists of two layers. The outer layer, the epidermis, is essentially cellular in structure, comprised of a multilayered epithelium that usually includes specialized cells. The inner layer, the dermis, is primarily a fibrous structure with relatively few cells, although it may contain scales, nerves, blood vessels, adipose tissue, and pigment cells.

  13. Therapeutic Hypothermia Following Traumatic Spinal Injury Morphological and Functional Correlates

    DTIC Science & Technology

    2000-01-01

    evaluation of the effects of the NMDA antagonist and inhibitor of nitric oxide synthase inhibitor agmatine on morphological and behavioral outcome measures...differences were observed following systemic administration of agmatine for 14 days post-injury. Overall, the results support the original hypothesis of

  14. Effect of sub-pore scale morphology of biological deposits on porous media flow properties

    NASA Astrophysics Data System (ADS)

    Ghezzehei, T. A.

    2012-12-01

    Biological deposits often influence fluid flow by altering the pore space morphology and related hydrologic properties such as porosity, water retention characteristics, and permeability. In most coupled-processes models changes in porosity are inferred from biological process models using mass-balance. The corresponding evolution of permeability is estimated using (semi-) empirical porosity-permeability functions such as the Kozeny-Carman equation or power-law functions. These equations typically do not account for the heterogeneous spatial distribution and morphological irregularities of the deposits. As a result, predictions of permeability evolution are generally unsatisfactory. In this presentation, we demonstrate the significance of pore-scale deposit distribution on porosity-permeability relations using high resolution simulations of fluid flow through a single pore interspersed with deposits of varying morphologies. Based on these simulations, we present a modification to the Kozeny-Carman model that accounts for the shape of the deposits. Limited comparison with published experimental data suggests the plausibility of the proposed conceptual model.

  15. Crossing safety barriers: influence of children's morphological and functional variables.

    PubMed

    Cordovil, Rita; Vieira, Filomena; Barreiros, João

    2012-05-01

    Thirty-three children between 3 and 6 years of age were asked to climb four different types of safety barriers. Morphological and functional variables of the children, which were expected to influence climbing or passing through skills, were collected. The influence of those variables on children's success rate and time to cross was tested. No barrier offered a total restraining efficacy. The horizontal bars barrier was crossed by 97% of the children. In the group of children that succeeded in crossing the four barriers, mean time to cross the most difficult barrier was 15 s. Age was the best predictor for success in crossing most barriers but morphology and strength were important predictors of time to cross. The influence of anthropometric variables in time to cross was dependent upon the characteristics of the barrier. A good design of safety barriers should consider children's age, morphology and strength. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  16. Form and function of the human and chimpanzee forefoot: implications for early hominin bipedalism.

    PubMed

    Fernández, Peter J; Holowka, Nicholas B; Demes, Brigitte; Jungers, William L

    2016-07-28

    During bipedal walking, modern humans dorsiflex their forefoot at the metatarsophalangeal joints (MTPJs) prior to push off, which tightens the plantar soft tissues to convert the foot into a stiff propulsive lever. Particular features of metatarsal head morphology such as "dorsal doming" are thought to facilitate this stiffening mechanism. In contrast, chimpanzees are believed to possess MTPJ morphology that precludes high dorsiflexion excursions during terrestrial locomotion. The morphological affinity of the metatarsal heads has been used to reconstruct locomotor behavior in fossil hominins, but few studies have provided detailed empirical data to validate the assumed link between morphology and function at the MTPJs. Using three-dimensional kinematic and morphometric analyses, we show that humans push off with greater peak dorsiflexion angles at all MTPJs than do chimpanzees during bipedal and quadrupedal walking, with the greatest disparity occurring at MTPJ 1. Among MTPJs 2-5, both species exhibit decreasing peak angles from medial to lateral. This kinematic pattern is mirrored in the morphometric analyses of metatarsal head shape. Analyses of Australopithecus afarensis metatarsals reveal morphology intermediate between humans and chimpanzees, suggesting that this species used different bipedal push-off kinematics than modern humans, perhaps resulting in a less efficient form of bipedalism.

  17. Sequential evolution of bacterial morphology by co-option of a developmental regulator.

    PubMed

    Jiang, Chao; Brown, Pamela J B; Ducret, Adrien; Brun, Yves V

    2014-02-27

    What mechanisms underlie the transitions responsible for the diverse shapes observed in the living world? Although bacteria exhibit a myriad of morphologies, the mechanisms responsible for the evolution of bacterial cell shape are not understood. We investigated morphological diversity in a group of bacteria that synthesize an appendage-like extension of the cell envelope called the stalk. The location and number of stalks varies among species, as exemplified by three distinct subcellular positions of stalks within a rod-shaped cell body: polar in the genus Caulobacter and subpolar or bilateral in the genus Asticcacaulis. Here we show that a developmental regulator of Caulobacter crescentus, SpmX, is co-opted in the genus Asticcacaulis to specify stalk synthesis either at the subpolar or bilateral positions. We also show that stepwise evolution of a specific region of SpmX led to the gain of a new function and localization of this protein, which drove the sequential transition in stalk positioning. Our results indicate that changes in protein function, co-option and modularity are key elements in the evolution of bacterial morphology. Therefore, similar evolutionary principles of morphological transitions apply to both single-celled prokaryotes and multicellular eukaryotes.

  18. Reconstructing the past: methods and techniques for the digital restoration of fossils

    PubMed Central

    2016-01-01

    During fossilization, the remains of extinct organisms are subjected to taphonomic and diagenetic processes. As a result, fossils show a variety of preservational artefacts, which can range from small breaks and cracks, disarticulation and fragmentation, to the loss and deformation of skeletal structures and other hard parts. Such artefacts can present a considerable problem, as the preserved morphology of fossils often forms the basis for palaeontological research. Phylogenetic and taxonomic studies, inferences on appearance, ecology and behaviour and functional analyses of fossil organisms strongly rely on morphological information. As a consequence, the restoration of fossil morphology is often a necessary prerequisite for further analyses. Facilitated by recent computational advances, virtual reconstruction and restoration techniques offer versatile tools to restore the original morphology of fossils. Different methodological steps and approaches, as well as software are outlined and reviewed here, and advantages and disadvantages are discussed. Although the complexity of the restorative processes can introduce a degree of interpretation, digitally restored fossils can provide useful morphological information and can be used to obtain functional estimates. Additionally, the digital nature of the restored models can open up possibilities for education and outreach and further research. PMID:27853548

  19. Functional, size and taxonomic diversity of fish along a depth gradient in the deep sea.

    PubMed

    Mindel, Beth L; Neat, Francis C; Trueman, Clive N; Webb, Thomas J; Blanchard, Julia L

    2016-01-01

    Biodiversity is well studied in ecology and the concept has been developed to include traits of species, rather than solely taxonomy, to better reflect the functional diversity of a system. The deep sea provides a natural environmental gradient within which to study changes in different diversity metrics, but traits of deep-sea fish are not widely known, hampering the application of functional diversity to this globally important system. We used morphological traits to determine the functional richness and functional divergence of demersal fish assemblages along the continental slope in the Northeast Atlantic, at depths of 300-2,000 m. We compared these metrics to size diversity based on individual body size and species richness. Functional richness and size diversity showed similar patterns, with the highest diversity at intermediate depths; functional divergence showed the opposite pattern, with the highest values at the shallowest and deepest parts of the study site. Species richness increased with depth. The functional implications of these patterns were deduced by examining depth-related changes in morphological traits and the dominance of feeding guilds as illustrated by stable isotope analyses. The patterns in diversity and the variation in certain morphological traits can potentially be explained by changes in the relative dominance of pelagic and benthic feeding guilds. All measures of diversity examined here suggest that the deep areas of the continental slope may be equally or more diverse than assemblages just beyond the continental shelf.

  20. Chitin biological absorbable catheters bridging sural nerve grafts transplanted into sciatic nerve defects promote nerve regeneration.

    PubMed

    Wang, Zhi-Yong; Wang, Jian-Wei; Qin, Li-Hua; Zhang, Wei-Guang; Zhang, Pei-Xun; Jiang, Bao-Guo

    2018-06-01

    To investigate the efficacy of chitin biological absorbable catheters in a rat model of autologous nerve transplantation. A segment of sciatic nerve was removed to produce a sciatic nerve defect, and the sural nerve was cut from the ipsilateral leg and used as a graft to bridge the defect, with or without use of a chitin biological absorbable catheter surrounding the graft. The number and morphology of regenerating myelinated fibers, nerve conduction velocity, nerve function index, triceps surae muscle morphology, and sensory function were evaluated at 9 and 12 months after surgery. All of the above parameters were improved in rats in which the nerve graft was bridged with chitin biological absorbable catheters compared with rats without catheters. The results of this study indicate that use of chitin biological absorbable catheters to surround sural nerve grafts bridging sciatic nerve defects promotes recovery of structural, motor, and sensory function and improves muscle fiber morphology. © 2018 John Wiley & Sons Ltd.

  1. [Comparative studies on the toxicity of various dielectrics--petroleum derivatives used in the electroerosion technic. V. Functional, morphological and cytoenzymatic changes in the kidneys of rats chronically exposed to petroleum hydrocarbons].

    PubMed

    Starek, A; Kamiński, M

    1982-01-01

    The rats exposed for 14 weeks to odourless kerosene mists (concentration of 75 and 300 mg/m3) had their urinary chemical and morphotic composition determined. In addition, morphological and cytoenzymatic examinations of kidneys were carried out. The findings were: increased pH and protein concentration and single erythrocytes in urine and also: passive congestion of renal cortex and medulla, infiltrates composed of granulocytes and eosinophils and albuminous casts in renal tubules. Decreased activity of succinate dehydrogenase, glucoso-6-phosphatase, Mg++ stimulated adenosinotriphosphatase and increased activity of acid phosphatase were found. Those changes were localized in cortical part of the kidney especially in the main tubules epithelial cells. The observed functional, morphological and cytoenzymatic changes depended on the magnitude of exposure. The obtained results confirm that kerosene hydrocarbons may exhibit toxic effects on the kidney function and structure.

  2. Sodium Iodate Selectively Injuries the Posterior Pole of the Retina in a Dose-Dependent Manner: Morphological and Electrophysiological Study

    PubMed Central

    Machalińska, Anna; Lubiński, Wojciech; Kłos, Patrycja; Kawa, Miłosz; Baumert, Bartłomiej; Penkala, Krzysztof; Grzegrzółka, Ryszard; Karczewicz, Danuta; Wiszniewska, Barbara

    2010-01-01

    Sequential morphological and functional features of retinal damage in mice exposed to different doses (40 vs. 20 mg/kg) of sodium iodate (NaIO3) were analyzed. Retinal morphology, apoptosis (TUNEL assay), and function (electroretinography; ERG) were examined at several time points after NaIO3 administration. The higher dose of NaIO3 caused progressive degeneration of the whole retinal area and total suppression of scotopic and photopic ERG. In contrast, the lower dose induced much less severe degeneration in peripheral part of retina along with a moderate decline of b- and a-wave amplitudes in ERG, corroborating the presence of regions within retina that retain their function. The peak of photoreceptor apoptosis was found on the 3rd day, but the lower dose induced more intense reaction within the central retina than in its peripheral region. In conclusion, these results indicate that peripheral area of the retina reveals better resistance to NaIO3 injury than its central part. PMID:20725778

  3. Flight biomechanics of developmentally-induced size variation in the solitary bee Osmia lignaria

    USDA-ARS?s Scientific Manuscript database

    Body size covaries with morphology, functional performance, and fitness. For insects, variation in adult phenotypies are derived from developmental variation in larval growth and metamorphosis. In this study, we asked how larval growth impacted adult morphology in Osmia lignaria—especially traits th...

  4. OTOTOXICITY OF 3,3'-IMINODIPROPIONITRILE: FUNCTIONAL AND MORPHOLOGICAL EVIDENCE OF COCHLEAR DAMAGE

    EPA Science Inventory

    Previous reports suggested that IDPN may be ototoxic (Wolff et al. 1977; Crofton and Knight, 1991). The purpose of this research was to investigate the ototoxicity of IDPN using behavioral, physiological and morphological approaches. Three groups of adult rats were exposed to IDP...

  5. Characterization of soil nematode communities in three cropping systems through morphological and DNA metabarcoding approaches

    USDA-ARS?s Scientific Manuscript database

    Communities of soil nematodes impact ecosystem functions, including plant growth, decomposition, and nutrient cycling, all of which are vital processes in agriculture. We used complementary morphological and DNA metabarcoding analyses to characterize soil nematode communities in three cropping syste...

  6. Application of a Design Morphology to the MX/OCC Definition of a Fault Detection and Dispatch System.

    DTIC Science & Technology

    1980-09-01

    morphology appears to be effective on an unstructured problem and provides a useful vehicle for clearly defining the functions and tasks that meet the needs...approach used is a structured decision process which was successfully demonstrated in FY 78 on relatively simple mechanical equipment and has now been...including achievement of practical conclusions from the large scale optimization procedures. This design morphology provided a useful vehicle for

  7. Silver iodide microstructures of a uniform towerlike shape: morphology purification via a chemical dissolution, simultaneously boosted catalytic durability, and enhanced catalytic performances.

    PubMed

    Lei, Bin; Zhu, Mingshan; Chen, Penglei; Chen, Chuncheng; Ma, Wanhong; Li, Tiesheng; Liu, Minghua

    2014-03-26

    The fabrication of microstructures/nanostructures of a uniform yet well-defined morphology has attracted broad interest from a variety of fields of advanced functional materials, especially catalysts. Most of the conventional methods generally suffer from harsh synthesis conditions, requirement of bulky apparatus, or incapability of scalable production, etc. To meet these formidable challenges, it is strongly desired to develop a facile, cost-effective, scalable method to fulfill a morphology purification. By a precipitation reaction between AgNO3 and KI, we report that irregular AgI structures, or their mixture with towerlike AgI architectures could be fabricated. Compared to the former, the mixed structures exhibit enhanced catalytic reactivity toward the photodegradation of Methyl Orange pollutant. However, its catalytic durability, which is one of the most crucial criteria that are required by superior catalysts, is poor. We further show that the irregular structures could be facilely removed from the mixture via a KI-assisted chemical dissolution, producing AgI of a uniform towerlike morphology. Excitingly, after such simple morphology purification, our towerlike AgI displays not only a boosted catalytic durability but also an enhanced catalytic reactivity. Our chemical dissolution-based morphology purification protocol might be extended to other systems, wherein high-quality advanced functional materials of desired properties might be developed.

  8. Distinct roles of cell wall biogenesis in yeast morphogenesis as revealed by multivariate analysis of high-dimensional morphometric data

    PubMed Central

    Okada, Hiroki; Ohnuki, Shinsuke; Roncero, Cesar; Konopka, James B.; Ohya, Yoshikazu

    2014-01-01

    The cell wall of budding yeast is a rigid structure composed of multiple components. To thoroughly understand its involvement in morphogenesis, we used the image analysis software CalMorph to quantitatively analyze cell morphology after treatment with drugs that inhibit different processes during cell wall synthesis. Cells treated with cell wall–affecting drugs exhibited broader necks and increased morphological variation. Tunicamycin, which inhibits the initial step of N-glycosylation of cell wall mannoproteins, induced morphologies similar to those of strains defective in α-mannosylation. The chitin synthase inhibitor nikkomycin Z induced morphological changes similar to those of mutants defective in chitin transglycosylase, possibly due to the critical role of chitin in anchoring the β-glucan network. To define the mode of action of echinocandin B, a 1,3-β-glucan synthase inhibitor, we compared the morphology it induced with mutants of Fks1 that contains the catalytic domain for 1,3-β-glucan synthesis. Echinocandin B exerted morphological effects similar to those observed in some fks1 mutants, with defects in cell polarity and reduced glucan synthesis activity, suggesting that echinocandin B affects not only 1,3-β-glucan synthesis, but also another functional domain. Thus our multivariate analyses reveal discrete functions of cell wall components and increase our understanding of the pharmacology of antifungal drugs. PMID:24258022

  9. Diagnostic value of plasma morphology in patients with coronary heart disease

    NASA Astrophysics Data System (ADS)

    Malinova, Lidia I.; Sergeeva, Yuliya V.; Simonenko, Georgy V.; Tuchin, Valery V.; Denisova, Tatiana P.

    2006-08-01

    Blood plasma can be considered as a special water system with self-organization possibilities. Plasma slides as the results of wedge dehydration reflect its stereochemical interaction and their study can be used in diagnostic processes. 46 patients with coronary heart disease were studied. The main group was formed of men in age ranged from 54 to 72 years old with stable angina pectoris of II and III functional class (by Canadian classification) (n=25). The group of compare was of those who was hospitalized with diagnosis of acute coronary syndrome, men in age range 40-82. Clinical examination, basic biochemical tests and functional plasma morphology characteristics were studied. A number of qualitative and quantitative differences of blood plasma morphology of patients with chronic and acute coronary disease forms was revealed.

  10. Integrated Paleoenvironmental Reconstruction and Taphonomy of a Unique Upper Cretaceous Vertebrate-Bearing Locality (Velaux, Southeastern France).

    PubMed

    Cincotta, Aude; Yans, Johan; Godefroit, Pascal; Garcia, Géraldine; Dejax, Jean; Benammi, Mouloud; Amico, Sauveur; Valentin, Xavier

    2015-01-01

    The Velaux-La Bastide Neuve fossil-bearing site (Bouches-du-Rhône, France) has yielded a diverse vertebrate assemblage dominated by dinosaurs, including the titanosaur Atsinganosaurus velauciensis. We here provide a complete inventory of vertebrate fossils collected during two large-scale field campaigns. Numerous crocodilian teeth occur together with complete skulls. Pterosaur, hybodont shark and fish elements are also represented but uncommon. Magnetostratigraphic analyses associated with biostratigraphic data from dinosaur eggshell and charophytes suggest a Late Campanian age for the locality. Lithologic and taphonomic studies, associated with microfacies and palynofacies analyses, indicate a fluvial setting of moderate energy with broad floodplain. Palynomorphs are quite rare; only three taxa of pollen grains occur: a bisaccate taxon, a second form probably belonging to the Normapolles complex, and another tricolporate taxon. Despite the good state of preservation, these taxa are generally difficult to identify, since they are scarce and have a very minute size. Most of the vertebrate remains are well preserved and suggest transport of the carcasses over short distances before accumulation in channel and overbank facies, together with reworked Aptian grains of glauconite, followed by a rapid burial. The bones accumulated in three thin layers that differ by their depositional modes and their taphonomic histories. Numerous calcareous and iron oxides-rich paleosols developed on the floodplain, suggesting an alternating dry and humid climate in the region during the Late Campanian.

  11. Organic-inorganic hybrid mesoporous silicas: functionalization, pore size, and morphology control.

    PubMed

    Park, Sung Soo; Ha, Chang-Sik

    2006-01-01

    Topological design of mesoporous silica materials, pore architecture, pore size, and morphology are currently major issues in areas such as catalytic conversion of bulky molecules, adsorption, host-guest chemistry, etc. In this sense, we discuss the pore size-controlled mesostructure, framework functionalization, and morphology control of organic-inorganic hybrid mesoporous silicas by which we can improve the applicability of mesoporous materials. First, we explain that the sizes of hexagonal- and cubic-type pores in organic-inorganic hybrid mesoporous silicas are well controlled from 24.3 to 98.0 A by the direct micelle-control method using an organosilica precursor and surfactants with different alkyl chain lengths or triblock copolymers as templates and swelling agents incorporated in the formed micelles. Second, we describe that organic-inorganic hybrid mesoporous materials with various functional groups form various external morphologies such as rod, cauliflower, film, rope, spheroid, monolith, and fiber shapes. Third, we discuss that transition metals (Ti and Ru) and rare-earth ions (Eu(3+) and Tb(3+)) are used to modify organic-inorganic hybrid mesoporous silica materials. Such hybrid mesoporous silica materials are expected to be applied as excellent catalysts for organic reactions, photocatalysis, optical devices, etc. c) 2006 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  12. Seipin performs dissectible functions in promoting lipid droplet biogenesis and regulating droplet morphology

    PubMed Central

    Cartwright, Bethany R.; Binns, Derk D.; Hilton, Christopher L.; Han, Sungwon; Gao, Qiang; Goodman, Joel M.

    2015-01-01

    Seipin is necessary for both adipogenesis and lipid droplet (LD) organization in nonadipose tissues; however, its molecular function is incompletely understood. Phenotypes in the seipin-null mutant of Saccharomyces cerevisiae include aberrant droplet morphology (endoplasmic reticulum–droplet clusters and size heterogeneity) and sensitivity of droplet size to changes in phospholipid synthesis. It has not been clear, however, whether seipin acts in initiation of droplet synthesis or at a later step. Here we utilize a system of de novo droplet formation to show that the absence of seipin results in a delay in droplet appearance with concomitant accumulation of neutral lipid in membranes. We also demonstrate that seipin is required for vectorial budding of droplets toward the cytoplasm. Furthermore, we find that the normal rate of droplet initiation depends on 14 amino acids at the amino terminus of seipin, deletion of which results in fewer, larger droplets that are consistent with a delay in initiation but are otherwise normal in morphology. Importantly, other functions of seipin, namely vectorial budding and resistance to inositol, are retained in this mutant. We conclude that seipin has dissectible roles in both promoting early LD initiation and in regulating LD morphology, supporting its importance in LD biogenesis. PMID:25540432

  13. Reconsideration of Plant Morphological Traits: From a Structure-Based Perspective to a Function-Based Evolutionary Perspective

    PubMed Central

    Bai, Shu-Nong

    2017-01-01

    This opinion article proposes a novel alignment of traits in plant morphogenesis from a function-based evolutionary perspective. As a member species of the ecosystem on Earth, we human beings view our neighbor organisms from our own sensing system. We tend to distinguish forms and structures (i.e., “morphological traits”) mainly through vision. Traditionally, a plant was considered to be consisted of three parts, i.e., the shoot, the leaves, and the root. Based on such a “structure-based perspective,” evolutionary analyses or comparisons across species were made on particular parts or their derived structures. So far no conceptual framework has been established to incorporate the morphological traits of all three land plant phyta, i.e., bryophyta, pteridophyta and spermatophyta, for evolutionary developmental analysis. Using the tenets of the recently proposed concept of sexual reproduction cycle, the major morphological traits of land plants can be aligned into five categories from a function-based evolutionary perspective. From this perspective, and the resulting alignment, a new conceptual framework emerges, called “Plant Morphogenesis 123.” This framework views a plant as a colony of integrated plant developmental units that are each produced via one life cycle. This view provided an alternative perspective for evolutionary developmental investigation in plants. PMID:28360919

  14. The Adaptive Brain: Glenn Hatton and the Supraoptic Nucleus

    PubMed Central

    Leng, G.; Moos, F. C.; Armstrong, W. E.

    2017-01-01

    In December 2009, Glenn Hatton died, and neuroendocrinology lost a pioneer who had done much to forge our present understanding of the hypothalamus and whose productivity had not faded with the passing years. Glenn, an expert in both functional morphology and electrophysiology, was driven by a will to understand the significance of his observations in the context of the living, behaving organism. He also had the wit to generate bold and challenging hypotheses, the wherewithal to expose them to critical and elegant experimental testing, and a way with words that gave his papers and lectures clarity and eloquence. The hypothalamo-neurohypophysial system offered a host of opportunities for understanding how physiological functions are fulfilled by the electrical activity of neurones, how neuronal behaviour changes with changing physiological states, and how morphological changes contribute to the physiological response. In the vision that Glenn developed over 35 years, the neuroendocrine brain is as dynamic in structure as it is adaptable in function. Its adaptability is reflected not only by mere synaptic plasticity, but also by changes in neuronal morphology and in the morphology of the glial cells. Astrocytes, in Glenn’s view, were intimate partners of the neurones, partners with an essential role in adaptation to changing physiological demands. PMID:20298459

  15. PyramidalExplorer: A New Interactive Tool to Explore Morpho-Functional Relations of Human Pyramidal Neurons.

    PubMed

    Toharia, Pablo; Robles, Oscar D; Fernaud-Espinosa, Isabel; Makarova, Julia; Galindo, Sergio E; Rodriguez, Angel; Pastor, Luis; Herreras, Oscar; DeFelipe, Javier; Benavides-Piccione, Ruth

    2015-01-01

    This work presents PyramidalExplorer, a new tool to interactively explore and reveal the detailed organization of the microanatomy of pyramidal neurons with functionally related models. It consists of a set of functionalities that allow possible regional differences in the pyramidal cell architecture to be interactively discovered by combining quantitative morphological information about the structure of the cell with implemented functional models. The key contribution of this tool is the morpho-functional oriented design that allows the user to navigate within the 3D dataset, filter and perform Content-Based Retrieval operations. As a case study, we present a human pyramidal neuron with over 9000 dendritic spines in its apical and basal dendritic trees. Using PyramidalExplorer, we were able to find unexpected differential morphological attributes of dendritic spines in particular compartments of the neuron, revealing new aspects of the morpho-functional organization of the pyramidal neuron.

  16. PyramidalExplorer: A New Interactive Tool to Explore Morpho-Functional Relations of Human Pyramidal Neurons

    PubMed Central

    Toharia, Pablo; Robles, Oscar D.; Fernaud-Espinosa, Isabel; Makarova, Julia; Galindo, Sergio E.; Rodriguez, Angel; Pastor, Luis; Herreras, Oscar; DeFelipe, Javier; Benavides-Piccione, Ruth

    2016-01-01

    This work presents PyramidalExplorer, a new tool to interactively explore and reveal the detailed organization of the microanatomy of pyramidal neurons with functionally related models. It consists of a set of functionalities that allow possible regional differences in the pyramidal cell architecture to be interactively discovered by combining quantitative morphological information about the structure of the cell with implemented functional models. The key contribution of this tool is the morpho-functional oriented design that allows the user to navigate within the 3D dataset, filter and perform Content-Based Retrieval operations. As a case study, we present a human pyramidal neuron with over 9000 dendritic spines in its apical and basal dendritic trees. Using PyramidalExplorer, we were able to find unexpected differential morphological attributes of dendritic spines in particular compartments of the neuron, revealing new aspects of the morpho-functional organization of the pyramidal neuron. PMID:26778972

  17. MRI assessed pancreatic morphology and exocrine function are associated with disease burden in chronic pancreatitis.

    PubMed

    Madzak, Adnan; Olesen, Søren Schou; Lykke Poulsen, Jakob; Bolvig Mark, Esben; Mohr Drewes, Asbjørn; Frøkjær, Jens Brøndum

    2017-11-01

    The aim of this study was to explore the association between morphological and functional secretin-stimulated MRI parameters with hospitalization, quality of life (QOL), and pain in patients with chronic pancreatitis (CP). This prospective cohort study included 82 patients with CP. Data were obtained from clinical information, QOL, and pain as assessed by questionnaires (The European Organization for Research and Treatment of Cancer Quality of Life Questionnaire and modified Brief Pain Inventory short form). Secretin-stimulated MRI morphological parameters included pancreatic gland volume, main pancreatic duct diameter, the modified Cambridge Classification of Duct Abnormality, apparent diffusion coefficient, fat signal fraction, and the pancreatic secretion volume as a functional parameter. The primary outcomes were time to first hospitalization related to the CP, as well as annual hospitalization frequency and duration. The secondary outcomes were pain severity, QOL, and pain interference scores. A main pancreatic duct diameter below 5 mm was associated with reduced time to first hospitalization (hazard ratio=2.06; 95% confidence interval: 1.02-4.17; P=0.043). Pancreatic secretion volume was correlated with QOL (r=0.31; P=0.0072) and pain interference score (r=-0.27; P=0.032), and fecal elastase was also correlated with QOL (r=0.28; P=0.017). However, functional and morphological findings were not related to pain intensity. Advanced pancreatic imaging techniques may be a highly sensitive tool for prognostication and monitoring of disease activity and its consequences.

  18. Muscle fiber types composition and type identified endplate morphology of forepaw intrinsic muscles in the rat.

    PubMed

    Pan, Feng; Mi, Jing-Yi; Zhang, Yan; Pan, Xiao-Yun; Rui, Yong-Jun

    2016-06-01

    The failure to accept reinnervation is considered to be one of the reasons for the poor motor functional recovery of intrinsic hand muscles (IHMs) after nerve injury. Rat could be a suitable model to be used in simulating motor function recovery of the IHMs after nerve injury as to the similarities in function and anatomy of the muscles between human and rat. However, few studies have reported the muscle fiber types composition and endplate morphologic characteristics of intrinsic forepaw muscles (IFMs) in the rat. In this study, the myosin heavy chain isoforms and acetylcholine receptors were stained by immunofluorescence to show the muscle fiber types composition and endplates on type-identified fibers of the lumbrical muscles (LMs), interosseus muscles (IMs), abductor digiti minimi (AM) and flexor pollicis brevis (FM) in rat forepaw. The majority of IFMs fibers were labeled positively for fast-switch fiber. However, the IMs were composed of only slow-switch fiber. With the exception of the IMs, the other IFMs had a part of hybrid fibers. Two-dimensional morphological characteristics of endplates on I and IIa muscle fiber had no significant differences among the IFMs. The LMs is the most suitable IFMs of rat to stimulate reinnervation of the IHMs after nerve injury. Gaining greater insight into the muscle fiber types composition and endplate morphology in the IFMs of rat may help understand the pathological and functional changes of IFMs in rat model stimulating reinnervation of IHMs after peripheral nerve injury.

  19. A comparative analysis of temporomandibular joint morphology in the African apes.

    PubMed

    Taylor, Andrea B

    2005-06-01

    A number of researchers have suggested a functional relationship between dietary variation and temporomandibular joint (TMJ) morphology, yet few studies have evaluated TMJ form in the African apes. In this study, I compare TMJ morphology in adults and during ontogeny in Gorilla (G.g. beringei, G.g. graueri, and G.g. gorilla) and Pan (P. paniscus, P. troglodytes troglodytes, P.t. schweinfurthii, and P.t. verus). I test two hypotheses: first, compared to all other African apes, G.g. beringei exhibits TMJ morphologies that would be predicted for a primate that consumes a diet comprised primarily of moderately to very tough, leafy vegetation; and second, all gorillas exhibit the same predicted morphologies compared to Pan. Compared to all adult African apes, G.g. beringei has higher rami and condyles positioned further above the occlusal plane of the mandible, relative to jaw length. Thus, mountain gorillas have the potential to generate relatively more muscle force, more evenly distribute occlusal forces along the postcanine teeth, and generate relatively greater jaw adductor moment. G.g. beringei also exhibits relatively wider mandibular condyles, suggesting these folivorous apes are able to resist relatively greater compressive loads along the lateral and/or medial aspect of the condyle. All gorillas likewise exhibit these same shape differences compared to Pan. These morphological responses are the predicted consequences of intensification of folivory and, as such, provide support for functional hypotheses linking these TMJ morphologies to degree of folivory. The African apes to not, however, demonstrate a systematic pattern of divergence in relative condylar area as a function of intensification of folivory. The ontogenetic trajectories for gorillas are significantly elevated above those of Pan, and to a lesser but still significant degree, mountain gorillas similarly deviate from lowland gorillas (G.g. gorilla and G.g. graueri). Thus, adult shape differences in ramal and condylar heights do not result from the simple extrapolation of common growth allometries relative to jaw length. As such, they are suggestive of an adaptive shift towards a tougher, more folivorous diet. However, the allometric patterning for condylar area and condylar width does not systematically conform to predictions based on dietary specialization. Thus, while differences in condylar shapes may confer functional advantages both during growth and as adults, there is no evidence to suggest selection for altered condylar proportions, independent of the effects of changes in jaw size.

  20. Atrioventricular valve repair in patients with functional single-ventricle physiology: impact of ventricular and valve function and morphology on survival and reintervention.

    PubMed

    Honjo, Osami; Atlin, Cori R; Mertens, Luc; Al-Radi, Osman O; Redington, Andrew N; Caldarone, Christopher A; Van Arsdell, Glen S

    2011-08-01

    This study was to determine whether atrioventricular valve repair modifies natural history of single-ventricle patients with atrioventricular valve insufficiency and to identify factors predicting survival and reintervention. Fifty-seven (13.5%) of 422 single-ventricle patients underwent atrioventricular valve repair. Valve morphology, regurgitation mechanism, and ventricular morphology and function were analyzed for effect on survival, transplant, and reintervention with multivariate logistic and Cox regression models. Comparative analysis used case-matched controls. Atrioventricular valve was tricuspid in 67% and common in 28%. Ventricular morphology was right in 83%. Regurgitation mechanisms were prolapse (n = 24, 46%), dysplasia (n = 18, 35%), annular dilatation (n = 8, 15%), and restriction or cleft (n = 2, 4%). Postrepair insufficiency was none or trivial in 14 (26%), mild in 33 (61%), and moderate in 7 (13%). Survival in repair group was lower than in matched controls (78.9% vs 92.7% at 1 year, 68.7% vs 90.6% at 3 years, P = .015). Patients with successful repair and normal ventricular function had equivalent survival to matched controls (P = .36). Independent predictors for death or transplant included increased indexed annular size (P = .05), increased cardiopulmonary bypass time (P = .04), and decreased postrepair ventricular function (P = .01). Ventricular dilation was a time-related factor for all events, including failed repair. Survival was lower in single-ventricle patients operated on for atrioventricular valve insufficiency than in case-matched controls. Patients with little postoperative residual regurgitation and preserved ventricular function had equivalent survival to controls. Lower grade ventricular function and ventricular dilation correlated with death and repair failure, suggesting that timing of intervention may affect outcome. Copyright © 2011 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  1. [Functional morphology of the submandibular salivary glands of white rats during aging involution].

    PubMed

    Rybakova, M G

    1979-12-01

    Functional morphology of different zones of submandibular glands of albino rats was studied quantitatively with due regard for the stages of neuroendocrine system involution. It is shown that function of salivary glands during ageing is not altered; cyclic fluctuations with estral cycle phases are maintained similarly to those in young animals. But the basal level of proteins and mucopolysaccharides is reduced, their mean levels being equal to the minimal level in young animals. On the other hand, activation of enzymes responsible for energy and transport processes takes place and their relationships change. The data obtained prove the relationship between salivary and endocrine glands and confirm the viewpoint that in early age involution disintegration occurs between different parameters of the functional activity of salivary glands rather than there take place changes in their function.

  2. Body shape, burst speed and escape behavior of larval anurans

    Treesearch

    Gage H. Dayton; Daniel Saenz; Kristen A. Baum; R. Brian Langerhans; Thomas J. DeWitt

    2005-01-01

    Variation in behavior, morphology and life history traits of larval anurans across predator gradients, and consequences of that variation, have been abundantly studied. Yet the functional link between morphology and burst-swimming speed is largely unknown. We conducted experiments with two divergent species of anurans, Scaphiopus holbrookii and

  3. Aspects of the Internal Structure of Nominalization: Roots, Morphology and Derivation

    ERIC Educational Resources Information Center

    Punske, Jeffrey

    2012-01-01

    This dissertation uses syntactic, semantic and morphological evidence from English nominalization to probe the interaction of event-structure and syntax, develop a typology of structural complexity within nominalization, and test hypotheses about the strict ordering of functional items. I focus on the widely assumed typology of nominalization…

  4. Age-Dependent Glutamate Induction of Synaptic Plasticity in Cultured Hippocampal Neurons

    ERIC Educational Resources Information Center

    Ivenshitz, Miriam; Segal, Menahem; Sapoznik, Stav

    2006-01-01

    A common denominator for the induction of morphological and functional plasticity in cultured hippocampal neurons involves the activation of excitatory synapses. We now demonstrate massive morphological plasticity in mature cultured hippocampal neurons caused by a brief exposure to glutamate. This plasticity involves a slow, 70%-80% increase in…

  5. Effects of shell morphology on mechanics of zebra and quagga mussel locomotion

    Treesearch

    S. M. Peyer; J. C. Hermanson; C. E. Lee

    2011-01-01

    Although zebra mussels (Dreissena polymorpha) initially colonized shallow habitats within the North American Great Lakes, quagga mussels (Dreissena bugensis) are becoming dominant in both shallow- and deep-water habitats. Shell morphology differs among zebra, shallow quagga and deep quagga mussels but functional consequences of...

  6. Functional sensorial complementation during host orientation in an Asilidae parasitoid larva.

    PubMed

    Pueyrredon, J M; Crespo, J E; Castelo, M K

    2017-10-01

    Changes in environmental conditions influence the performance of organisms in every aspect of their life. Being capable of accurately sensing these changes allow organisms to better adapt. The detection of environmental conditions involves different sensory modalities. There are many studies on the morphology of different sensory structures but not so many studies showing their function. Here we studied the morphology of different sensory structures in the larva of a dipteran parasitoid. We occluded the putative sensory structures coupling the morphology with their function. First, we could develop a non-invasive method in which we occluded the putative sensorial structures annulling their function temporarily. Regarding their functionality, we found that larvae of Mallophora ruficauda require simultaneously of the sensilla found both in the antennae and those of the maxillary palps in order to orient to its host. When either both antennae or both maxillary palps were occluded, no orientation to the host was observed. We also found that these structures are not involved in the acceptance of the host because high and similar proportion of parasitized hosts was found in host acceptance experiments. We propose that other sensilla could be involved in host acceptance and discuss how the different sensilla in the antennae and maxillary palps complement each other to provide larvae with the information for locating its host.

  7. Spatial and functional modeling of carnivore and insectivore molariform teeth.

    PubMed

    Evans, Alistair R; Sanson, Gordon D

    2006-06-01

    The interaction between the two main competing geometric determinants of teeth (the geometry of function and the geometry of occlusion) were investigated through the construction of three-dimensional spatial models of several mammalian tooth forms (carnassial, insectivore premolar, zalambdodont, dilambdodont, and tribosphenic). These models aim to emulate the shape and function of mammalian teeth. The geometric principles of occlusion relating to single- and double-crested teeth are reviewed. Function was considered using engineering principles that relate tooth shape to function. Substantial similarity between the models and mammalian teeth were achieved. Differences between the two indicate the influence of tooth strength, geometric relations between upper and lower teeth (including the presence of the protocone), and wear on tooth morphology. The concept of "autocclusion" is expanded to include any morphological features that ensure proper alignment of cusps on the same tooth and other teeth in the tooth row. It is concluded that the tooth forms examined are auto-aligning, and do not require additional morphological guides for correct alignment. The model of therian molars constructed by Crompton and Sita-Lumsden ([1970] Nature 227:197-199) is reconstructed in 3D space to show that their hypothesis of crest geometry is erroneous, and that their model is a special case of a more general class of models. (c) 2004 Wiley-Liss, Inc.

  8. NON-INVASIVE 3D FACIAL ANALYSIS AND SURFACE ELECTROMYOGRAPHY DURING FUNCTIONAL PRE-ORTHODONTIC THERAPY: A PRELIMINARY REPORT

    PubMed Central

    Tartaglia, Gianluca M.; Grandi, Gaia; Mian, Fabrizio; Sforza, Chiarella; Ferrario, Virgilio F.

    2009-01-01

    Objectives: Functional orthodontic devices can modify oral function thus permitting more adequate growth processes. The assessment of their effects should include both facial morphology and muscle function. This preliminary study investigated whether a preformed functional orthodontic device could induce variations in facial morphology and function along with correction of oral dysfunction in a group of orthodontic patients in the mixed and early permanent dentitions. Material and Methods: The three-dimensional coordinates of 50 facial landmarks (forehead, eyes, nose, cheeks, mouth, jaw and ears) were collected in 10 orthodontic male patients aged 8-13 years, and in 89 healthy reference boys of the same age. Soft tissue facial angles, distances, and ratios were computed. Surface electromyography of the masseter and temporalis muscles was performed, and standardized symmetry, muscular torque and activity were calculated. Soft-tissue facial modifications were analyzed non-invasively before and after a 6-month treatment with a functional device. Comparisons were made with z-scores and paired Student's t-tests. Results: The 6-month treatment stimulated mandibular growth in the anterior and inferior directions, with significant variations in three-dimensional facial divergence and facial convexity. The modifications were larger in the patients than in reference children. In several occasions, the discrepancies relative to the norm became not significant after treatment. No significant variations in standardized muscular activity were found. Conclusions: Preliminary results showed that the continuous and correct use of the functional device induced measurable intraoral (dental arches) and extraoral (face) morphological modifications. The device did not modify the functional equilibrium of the masticatory muscles. PMID:19936531

  9. Non-invasive 3D facial analysis and surface electromyography during functional pre-orthodontic therapy: a preliminary report.

    PubMed

    Tartaglia, Gianluca M; Grandi, Gaia; Mian, Fabrizio; Sforza, Chiarella; Ferrario, Virgilio F

    2009-01-01

    Functional orthodontic devices can modify oral function thus permitting more adequate growth processes. The assessment of their effects should include both facial morphology and muscle function. This preliminary study investigated whether a preformed functional orthodontic device could induce variations in facial morphology and function along with correction of oral dysfunction in a group of orthodontic patients in the mixed and early permanent dentitions. The three-dimensional coordinates of 50 facial landmarks (forehead, eyes, nose, cheeks, mouth, jaw and ears) were collected in 10 orthodontic male patients aged 8-13 years, and in 89 healthy reference boys of the same age. Soft tissue facial angles, distances, and ratios were computed. Surface electromyography of the masseter and temporalis muscles was performed, and standardized symmetry, muscular torque and activity were calculated. Soft-tissue facial modifications were analyzed non-invasively before and after a 6-month treatment with a functional device. Comparisons were made with z-scores and paired Student's t-tests. The 6-month treatment stimulated mandibular growth in the anterior and inferior directions, with significant variations in three-dimensional facial divergence and facial convexity. The modifications were larger in the patients than in reference children. In several occasions, the discrepancies relative to the norm became not significant after treatment. No significant variations in standardized muscular activity were found. Preliminary results showed that the continuous and correct use of the functional device induced measurable intraoral (dental arches) and extraoral (face) morphological modifications. The device did not modify the functional equilibrium of the masticatory muscles.

  10. Comparative functional analyses of ultrabithorax reveal multiple steps and paths to diversification of legs in the adaptive radiation of semi-aquatic insects.

    PubMed

    Khila, Abderrahman; Abouheif, Ehab; Rowe, Locke

    2014-08-01

    Invasion of new ecological habitats is often associated with lineage diversification, yet the genetic changes underlying invasions and radiations are poorly understood. Over 200 million years ago, the semi-aquatic insects invaded water surface from a common terrestrial ancestor and diversified to exploit a wide array of niches. Here, we uncover the changes in regulation and function of the gene Ultrabithorax associated with both the invasion of water surface and the subsequent diversification of the group. In the common ancestor of the semi-aquatic insects, a novel deployment of Ubx protein in the mid-legs increased their length, thereby enhancing their role in water surface walking. In derived lineages that specialize in rowing on the open water, additional changes in the timing of Ubx expression further elongated the mid-legs thereby facilitating their function as oars. In addition, Ubx protein function was selectively reversed to shorten specific rear-leg segments, thereby enabling their function as rudders. These changes in Ubx have generated distinct niche-specialized morphologies that account for the remarkable diversification of the semi-aquatic insects. Therefore, changes in the regulation and function of a key developmental gene may facilitate both the morphological change necessary to transition to novel habitats and fuel subsequent morphological diversification. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  11. A thermodynamics model for morphology prediction of aluminum nano crystals fabricated by the inert gas condensation method

    NASA Astrophysics Data System (ADS)

    Wen, Yu; Xia, Dehong

    2018-03-01

    The purpose of this study is to provide scientific guidance for the morphological control of nanoparticle synthesis using the gas phase method. A universal thermodynamics model is developed to predict the morphology of nanoparticles fabricated using the inert gas condensation method. By using this model, the morphologies of aluminum nanocrystals are predicted under various preparation conditions. There are two types of energy that jointly determine the formation of nanoparticle morphology—Gibbs free energy for nanoparticles and energy variation during the process. The results show that energy variation dominates morphology formation when the cooling rate is less than 2 × 1011 K s-1 in the aluminum nanocrystal production process. At the beginning of the nanoparticle growth, the most stable morphology is predicted to be spherical, but the energetically preferred morphology becomes cubic as the particle grows. The turning point in the particle size at which spherical morphology is no longer the most stable morphology is exhibited as a function of pressure in a condensation chamber for different cooling rates. In this paper, we focus on the need for morphology prediction based on preparation conditions. It is concluded that nanoparticles with various morphologies could be obtained by adjusting the cooling rate and pressure in the condensation chamber.

  12. Mosaic Convergence of Rodent Dentitions

    PubMed Central

    Lazzari, Vincent; Charles, Cyril; Tafforeau, Paul; Vianey-Liaud, Monique; Aguilar, Jean-Pierre; Jaeger, Jean-Jacques; Michaux, Jacques; Viriot, Laurent

    2008-01-01

    Background Understanding mechanisms responsible for changes in tooth morphology in the course of evolution is an area of investigation common to both paleontology and developmental biology. Detailed analyses of molar tooth crown shape have shown frequent homoplasia in mammalian evolution, which requires accurate investigation of the evolutionary pathways provided by the fossil record. The necessity of preservation of an effective occlusion has been hypothesized to functionally constrain crown morphological changes and to also facilitate convergent evolution. The Muroidea superfamily constitutes a relevant model for the study of molar crown diversification because it encompasses one third of the extant mammalian biodiversity. Methodology/Principal Findings Combined microwear and 3D-topographic analyses performed on fossil and extant muroid molars allow for a first quantification of the relationships between changes in crown morphology and functionality of occlusion. Based on an abundant fossil record and on a well resolved phylogeny, our results show that the most derived functional condition associates longitudinal chewing and non interlocking of cusps. This condition has been reached at least 7 times within muroids via two main types of evolutionary pathways each respecting functional continuity. In the first type, the flattening of tooth crown which induces the removal of cusp interlocking occurs before the rotation of the chewing movement. In the second type however, flattening is subsequent to rotation of the chewing movement which can be associated with certain changes in cusp morphology. Conclusion/Significance The reverse orders of the changes involved in these different pathways reveal a mosaic evolution of mammalian dentition in which direction of chewing and crown shape seem to be partly decoupled. Either can change in respect to strong functional constraints affecting occlusion which thereby limit the number of the possible pathways. Because convergent pathways imply distinct ontogenetic trajectories, new Evo/Devo comparative studies on cusp morphogenesis are necessary. PMID:18974837

  13. Establishing Biomechanical Mechanisms in Mouse Models: Practical Guidelines for Systematically Evaluating Phenotypic Changes in the Diaphyses of Long Bones

    PubMed Central

    Jepsen, Karl J; Silva, Matthew J; Vashishth, Deepak; Guo, X Edward; van der Meulen, Marjolein CH

    2016-01-01

    Mice are widely used in studies of skeletal biology, and assessment of their bones by mechanical testing is a critical step when evaluating the functional effects of an experimental perturbation. For example, a gene knockout may target a pathway important in bone formation and result in a “low bone mass” phenotype. But how well does the skeleton bear functional loads; eg, how much do bones deform during loading and how resistant are bones to fracture? By systematic evaluation of bone morphological, densitometric, and mechanical properties, investigators can establish the “biomechanical mechanisms” whereby an experimental perturbation alters whole-bone mechanical function. The goal of this review is to clarify these biomechanical mechanisms and to make recommendations for systematically evaluating phenotypic changes in mouse bones, with a focus on long-bone diaphyses and cortical bone. Further, minimum reportable standards for testing conditions and outcome variables are suggested that will improve the comparison of data across studies. Basic biomechanical principles are reviewed, followed by a description of the cross-sectional morphological properties that best inform the net cellular effects of a given experimental perturbation and are most relevant to biomechanical function. Although morphology is critical, whole-bone mechanical properties can only be determined accurately by a mechanical test. The functional importance of stiffness, maximum load, postyield displacement, and work-to-fracture are reviewed. Because bone and body size are often strongly related, strategies to adjust whole-bone properties for body mass are detailed. Finally, a comprehensive framework is presented using real data, and several examples from the literature are reviewed to illustrate how to synthesize morphological, tissue-level, and whole-bone mechanical properties of mouse long bones. PMID:25917136

  14. Aberrant ocular architecture and function in patients with Klinefelter syndrome.

    PubMed

    Brand, Cristin; Zitzmann, Michael; Eter, Nicole; Kliesch, Sabine; Wistuba, Joachim; Alnawaiseh, Maged; Heiduschka, Peter

    2017-10-13

    Klinefelter Syndrome (KS), the most common chromosomal disorder in men (47,XXY), is associated with numerous comorbidities. Based on a number of isolated case reports, we performed the first systematic and comprehensive evaluation of eye health in KS patients with a focus on ocular structure and vascularization. Twenty-one KS patients and 26 male and 38 female controls underwent a variety of non-invasive examinations investigating ocular morphology (examination of retinal thickness, optic nerve head, and cornea) and function (visual field testing and quantification of ocular vessel density by optical coherence tomography angiography). In comparison to healthy controls, KS patients exhibited a smaller foveal avascular zone and a decreased retinal thickness due to a drastically thinner outer nuclear layer. The cornea of KS patients showed a decreased peripheral thickness and volume. In perimetry evaluation, KS patients required brighter stimuli and gave more irregular values. KS patients show an ocular phenotype including morphological and functional features, which is very likely caused by the supernumerary X chromosome. Thus, KS should not be limited to infertility, endocrine dysfunction, neurocognitive and psychosocial comorbidities. Defining an aberrant ocular morphology and function, awareness for possible eye problems should be raised.

  15. Influences of rich in saturated and unsaturated fatty acids diets in rat myocardium.

    PubMed

    Pinotti, Matheus Fécchio; Silva, Maeli Dal-Pai; Sugizaki, Mário Mateus; Novelli, Yeda Santana Diniz; Sant'ana, Lea Sílvia; Aragon, Flávio Ferrari; Padovani, Carlos Roberto; Novelli, Ethel Lourenzi Barbosa; Cicogna, Antonio Carlos

    2007-03-01

    To study the influence of saturated (SFA) and unsaturated fatty acid (UFA) rich diets on mechanical function, morphology and oxidative stress in rat myocardium. Male, 60-day-old Wistar rats were fed a control (n=8), a SFA (n=8), or a UFA-rich diet (n=8) for sixty days. Mechanical function was studied in isolated left ventricle papillary muscle under isometric and isotonic contractions, in basal conditions (1.25 mM calcium chloride) and after 5.2 mM calcium chloride and beta-adrenergic stimuli with 1.0 microM isoproterenol. Left ventricle fragments were used to study oxidative stress and morphology under light and electron microscopy. SFA and UFA-rich diets did not change myocardium mechanical function. Both diets caused oxidative stress, with high lipid hydroperoxide and low superoxide-dismutase concentrations. UFA rich diet decreased catalase expression and SFA rich diet decreased the amount of myocardial glutathione-peroxidase. Both diets promoted light ultrastructural injuries such as lipid deposits and cell membrane injuries. Results suggest that SFA and UFA rich diets do not alter isolated muscle mechanical function, but promote light myocardial morphological injuries and oxidative stress.

  16. Anorectal function and morphology in patients with sporadic proctalgia fugax.

    PubMed

    Eckardt, V F; Dodt, O; Kanzler, G; Bernhard, G

    1996-07-01

    The pathophysiology of sporadic proctalgia fugax remains unknown. This study investigates whether patients with this syndrome exhibit alterations in anal function and morphology. Eighteen patients with sporadic proctalgia fugax and 18 sex-matched and age-matched healthy controls were studied. Manometric studies investigated anal resting and squeeze pressures, the rectoanal inhibitory reflex, rectal compliance, and smooth muscle response to edrophonium chloride administration. External and internal sphincter thickness was measured endosonographically. Patients had slightly higher (P = 0.0291) anal resting pressures (65.5 +/- 11.4 mmHg) than controls (56 +/- 9.9 mmHg). However, anal squeeze pressure, sphincter relaxation during rectal distention, and rectal compliance were similar in both groups, and no alterations were detected in external and internal anal sphincter thickness. Edrophonium chloride administration was followed by sharp postrelaxation contractions in two patients, whereas anal function remained unaltered in controls. Acute episodes of proctalgia, which occurred in two patients while under study, were associated with a rise in anal resting tone and an increase in slow wave amplitude. In the resting state, patients with proctalgia fugax have normal anorectal function and morphology. However, they may exhibit a motor abnormality of the anal smooth muscle during an acute attack.

  17. Human Lymphatic Mesenteric Vessels: Morphology and Possible Function of Aminergic and NPY-ergic Nerve Fibers.

    PubMed

    D'Andrea, Vito; Panarese, Alessandra; Taurone, Samanta; Coppola, Luigi; Cavallotti, Carlo; Artico, Marco

    2015-09-01

    The lymphatic vessels have been studied in different organs from a morphological to a clinical point of view. Nevertheless, the knowledge of the catecholaminergic control of the lymphatic circulation is still incomplete. The aim of this work is to study the presence and distribution of the catecholaminergic and NPY-ergic nerve fibers in the whole wall of the human mesenteric lymphatic vessels in order to obtain knowledge about their morphology and functional significance. The following experimental procedures were performed: 1) drawing of tissue containing lymphatic vessels; 2) cutting of tissue; 3) staining of tissue; 4) staining of nerve fibers; 5) histofluorescence microscopy for the staining of catecholaminergic nerve fibers; 6) staining of neuropeptide Y like-immune reactivity; 7) biochemical assay of proteins; 8) measurement of noradrenaline; 9) quantitative analysis of images; 10) statistical analysis of data. Numerous nerve fibers run in the wall of lymphatic vessels. Many of them are catecholaminergic in nature. Some nerve fibers are NPY-positive. The biochemical results on noradrenaline amounts are in agreement with morphological results on catecholaminergic nerve fibers. Moreover, the morphometric results, obtained by the quantitative analysis of images and the subsequent statistical analysis of data, confirm all our morphological and biochemical data. The knowledge of the physiological or pathological mechanism regulating the functions of the lymphatic system is incomplete. Nevertheless the catecholaminergic nerve fibers of the human mesenteric lymphatic vessels come from the adrenergic periarterial plexuses of the mesenterial arterial bed. NPY-ergic nerve fibers may modulate the microcirculatory mesenterial bed in different pathological conditions.

  18. Morphometric analysis of Martian valley network basins using a circularity function

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Howard, Alan D.

    2005-12-01

    This paper employs a circularity function to quantify the internal morphology of Martian watershed basins in Margaritifer Sinus region and to infer the primary erosional processes that led to their current geomorphologic characteristics and possible climatic conditions under which these processes operated. The circularity function describes the elongation of a watershed basin at different elevations. We have used the circularity functions of terrestrial basins that were interpreted as having been modified by (1) erosion related to primarily groundwater sapping and (2) erosion related to primarily rainfall and surface run-off, as well as the circularity functions of cratering basins on the Moon, in order to formulate discriminant functions that are able to separate the three types of landforms. The spatial pattern of the classification of Martian basins based on discriminant functions shows that basins that look morphologically similar to terrestrial fluvial basins are mostly clustered near the mainstream at low elevation, while those that look morphologically similar to terrestrial basins interpreted as groundwater sapping origin are located near the tributaries and at higher elevation. There are more of the latter than the former. This spatial distribution is inconsistent with a continuous Earth-like warm and wet climate for early Mars. Instead, it is more aligned with an overall early dry climate punctuated with episodic wet periods. Alternatively, the concentrated erosion in the mainstream could also be caused by a change of water source from rainfall to snowfall or erosion cut through a duricrust layer.

  19. Dynamics of β-adrenergic/cAMP signaling and morphological changes in cultured astrocytes.

    PubMed

    Vardjan, Nina; Kreft, Marko; Zorec, Robert

    2014-04-01

    The morphology of astrocytes, likely regulated by cAMP, determines the structural association between astrocytes and the synapse, consequently modulating synaptic function. β-Adrenergic receptors (β-AR), which increase cytosolic cAMP concentration ([cAMP]i ), may affect cell morphology. However, the real-time dynamics of β-AR-mediated cAMP signaling in single live astrocytes and its effect on cell morphology have not been studied. We used the fluorescence resonance energy transfer (FRET)-based cAMP biosensor Epac1-camps to study time-dependent changes in [cAMP]i ; morphological changes in primary rat astrocytes were monitored by real-time confocal microscopy. Stimulation of β-AR by adrenaline, noradrenaline, and isoprenaline, a specific agonist of β-AR, rapidly increased [cAMP]i (∼15 s). The FRET signal response, mediated via β-AR, was faster than in the presence of forskolin (twofold) and dibutyryl-cAMP (>35-fold), which directly activate adenylyl cyclase and Epac1-camps, respectively, likely due to slow entry of these agents into the cytosol. Oscillations in [cAMP]i have not been recorded, indicating that cAMP-dependent processes operate in a slow time domain. Most Epac1-camps expressing astrocytes revealed a morphological change upon β-AR activation and attained a stellate morphology within 1 h. The morphological changes exhibited a bell-shaped dependency on [cAMP]i . The 5-10% decrease in cell cross-sectional area and the 30-50% increase in cell perimeter are likely due to withdrawal of the cytoplasm to the perinuclear region and the appearance of protrusions on the surface of astrocytes. Because astrocyte processes ensheath neurons, β-AR/cAMP-mediated morphological changes can modify the geometry of the extracellular space, affecting synaptic, neuronal, and astrocyte functions in health and disease. Copyright © 2014 Wiley Periodicals, Inc.

  20. Functional Manipulation of Root Endophyte Populations for Feedstock Improvement- Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dangl, Jeffery L.

    This study provides a systemic analysis of the influence of the abiotic environment on the assembly of plant microbiomes. We show that under controlled conditions, community assembly cues are robust and predictable across multiple abiotic gradients. Plant colonization patterns are largely driven by phylogeny, and colonization phenotypes are ubiquitous across different specimens of the same phylogenetic class. Subsets of the full synthetic community were shown to induce different root morphologies, and the morphology observed with the full community is an outcome of epistasis between two functional guilds.

  1. Foot anthropometry and morphology phenomena.

    PubMed

    Agić, Ante; Nikolić, Vasilije; Mijović, Budimir

    2006-12-01

    Foot structure description is important for many reasons. The foot anthropometric morphology phenomena are analyzed together with hidden biomechanical functionality in order to fully characterize foot structure and function. For younger Croatian population the scatter data of the individual foot variables were interpolated by multivariate statistics. Foot structure descriptors are influenced by many factors, as a style of life, race, climate, and things of the great importance in human society. Dominant descriptors are determined by principal component analysis. Some practical recommendation and conclusion for medical, sportswear and footwear practice are highlighted.

  2. [Effect of pineal gland peptides on morphofunctional structure of the pancreas in ageing].

    PubMed

    Ryzhak, A P; Kostiuchek, I N; Kvetnoĭ, I M

    2007-01-01

    A study of pineal gland peptides effect on morphology and functions of the pancreas in the model of premature ageing in rats was performed with respect to the need in methods for premature ageing prevention. Structural, morphological and functional alterations in pancreas tissue, suggesting premature ageing of the gland, were identified by methods of immunohistochemistry and electronic microscopy. There was registered a geroprotective effect of the pineal gland peptides on pancreas tissue, manifested in the resistance of the latter to the impact of stress factors entailing premature ageing.

  3. Evolutionary developmental genetics of fruit morphological variation within the Solanaceae

    PubMed Central

    Wang, Li; Li, Jing; Zhao, Jing; He, Chaoying

    2015-01-01

    Morphological variations of fruits such as shape and size, and color are a result of adaptive evolution. The evolution of morphological novelties is particularly intriguing. An understanding of these evolutionary processes calls for the elucidation of the developmental and genetic mechanisms that result in particular fruit morphological characteristics, which determine seed dispersal. The genetic and developmental basis for fruit morphological variation was established at a microevolutionary time scale. Here, we summarize the progress on the evolutionary developmental genetics of fruit size, shape and color in the Solanaceae. Studies suggest that the recruitment of a pre-existing gene and subsequent modification of its interaction and regulatory networks are frequently involved in the evolution of morphological diversity. The basic mechanisms underlying changes in plant morphology are alterations in gene expression and/or gene function. We also deliberate on the future direction in evolutionary developmental genetics of fruit morphological variation such as fruit type. These studies will provide insights into plant developmental processes and will help to improve the productivity and fruit quality of crops. PMID:25918515

  4. Morphological plasticity of bacteria—Open questions

    PubMed Central

    Shen, Jie-Pan

    2016-01-01

    Morphological plasticity of bacteria is a cryptic phenomenon, by which bacteria acquire adaptive benefits for coping with changing environments. Some environmental cues were identified to induce morphological plasticity, but the underlying molecular mechanisms remain largely unknown. Physical and chemical factors causing morphological changes in bacteria have been investigated and mostly associated with potential pathways linked to the cell wall synthetic machinery. These include starvation, oxidative stresses, predation effectors, antimicrobial agents, temperature stresses, osmotic shock, and mechanical constraints. In an extreme scenario of morphological plasticity, bacteria can be induced to be shapeshifters when the cell walls are defective or deficient. They follow distinct developmental pathways and transform into assorted morphological variants, and most of them would eventually revert to typical cell morphology. It is suggested that phenotypic heterogeneity might play a functional role in the development of morphological diversity and/or plasticity within an isogenic population. Accordingly, phenotypic heterogeneity and inherited morphological plasticity are found to be survival strategies adopted by bacteria in response to environmental stresses. Here, microfluidic and nanofabrication technology is considered to provide versatile solutions to induce morphological plasticity, sort and isolate morphological variants, and perform single-cell analysis including transcriptional and epigenetic profiling. Questions such as how morphogenesis network is modulated or rewired (if epigenetic controls of cell morphogenesis apply) to induce bacterial morphological plasticity could be resolved with the aid of micro-nanofluidic platforms and optimization algorithms, such as feedback system control. PMID:27375812

  5. Electrochemical and morphological studies of ionic polymer metal composites as stress sensors

    DOE PAGES

    Hong, Wangyujue; Almomani, Abdallah; Montazami, Reza

    2016-10-04

    Ionic polymer metal composites (IPMCs) are the backbone of a wide range of ionic devices. IPMC mechanoelectric sensors are advanced nanostructured transducers capable of converting mechanical strain into easily detectable electric signal. Such attribute is realized by ion mobilization in and through IPMC nanostructure. In this study we have investigated electrochemical and morphological characteristics of IPMCs by varying the morphology of their metal composite component (conductive network composite (CNC)). We have demonstrated the dependence of electrochemical properties on CNC nanostructure as well as mechanoelectrical performance of IPMC sensors as a function of CNC morphology. Lastly, it is shown that themore » morphology of CNC can be used as a means to improve sensitivity of IPMC sensors by 3–4 folds.« less

  6. Morphologies of precise polyethylene-based acid copolymers and ionomers

    NASA Astrophysics Data System (ADS)

    Buitrago, C. Francisco

    Acid copolymers and ionomers are polymers that contain a small fraction of covalently bound acidic or ionic groups, respectively. For the specific case of polyethylene (PE), acid and ionic pendants enhance many of the physical properties such as toughness, adhesion and rheological properties. These improved properties result from microphase separated aggregates of the polar pendants in the non-polar PE matrix. Despite the widespread industrial use of these materials, rigorous chemical structure---morphology---property relationships remain elusive due to the inevitable structural heterogeneities in the historically-available acid copolymers and ionomers. Recently, precise acid copolymers and ionomers were successfully synthesized by acyclic diene metathesis (ADMET) polymerization. These precise materials are linear, high molecular weight PEs with pendant acid or ionic functional groups separated by a precisely controlled number of carbon atoms. The morphologies of nine precise acid copolymers and eleven precise ionomers were investigated by X-ray scattering, solid-state 13C nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC). For comparison, the morphologies of linear PEs with pseudo-random placement of the pendant groups were also studied. Previous studies of precise copolymers with acrylic acid (AA) found that the microstructural precision produces a new morphology in which PE crystals drive the acid aggregates into layers perpendicular to the chain axes and presumably at the interface between crystalline and amorphous phases. In this dissertation, a second new morphology for acid copolymers is identified in which the aggregates arrange on cubic lattices. The fist report of a cubic morphology was observed at room and elevated temperatures for a copolymer functionalized with two phosphonic acid (PA) groups on every 21st carbon atom. The cubic lattice has been identified as face-centered cubic (FCC). Overall, three morphology types have been identified for precise acid copolymers and ionomers at room temperature: (1) liquid-like order of aggregates dispersed throughout an amorphous PE matrix, (2) one-dimensional long-range order of aggregates in layers coexisting with PE crystals, and (3) three-dimensional periodicity of aggregates in cubic lattices in a PE matrix featuring defective packing. The liquid-like morphology is a result of high content of acid or ionic substituents deterring PE crystallinity due to steric hindrance. The layered morphology occurs when the content of pendants is low and the PE segments are long enough to crystallize. The cubic morphologies occur in precise copolymers with geminal substitution of phosphonic acid (PA) groups and long, flexible PE segments. At temperatures above the thermal transitions of the PE matrix, all but one material present a liquid-like morphology. Those conditions are ideal to study the evolution of the interaggregate spacing (d*) in X-ray scattering as a function of PE segment length between pendants, pendant type and pendant architecture (specifically, mono or geminal substitution). Also at elevated temperatures, the morphologies of precise acrylic acid (AA) copolymers and ionomers were investigated further via atomistic molecular dynamics (MD) simulations. The simulations complement X-ray scattering by providing real space visualization of the aggregates, demonstrating the occurrence of isolated, string-like and even percolated aggregate structures. This is the first dissertation completely devoted to the morphology of precise acid copolymers and precise ionomers. The complete analysis of the morphologies in these novel materials provides new insights into the shapes of aggregates in acid copolymers and ionomers in general. A key aspect of this thesis is the complementary use of experimental and simulation methods to unlock a wealth of new understanding.

  7. State-of-the-Art Review of Echocardiographic Imaging in the Evaluation and Treatment of Functional Tricuspid Regurgitation.

    PubMed

    Hahn, Rebecca T

    2016-12-01

    Functional or secondary tricuspid regurgitation (TR) is the most common cause of severe TR in the Western world. The presence of functional TR, either isolated or in combination with left heart disease, is associated with unfavorable natural history. Surgical mortality for isolated tricuspid valve interventions remains higher than for any other single valve surgery, and surgical options for repair do not have consistent long-term durability. In addition, as more patients undergo transcatheter left valve interventions, developing transcatheter solutions for functional TR has gained greater momentum. Numerous transcatheter devices are currently in early clinical trials. All patients require an assessment of valve morphology and function, and transcatheter devices typically require intraprocedural guidance by echocardiography. The following review will describe tricuspid anatomy, define echocardiographic views for evaluating tricuspid valve morphology and function, and discuss imaging requirements for the current transcatheter devices under development for the treatment of functional TR. © 2016 American Heart Association, Inc.

  8. Phase transition of LB films of mixed diblock copolymer at the air/water interface

    NASA Astrophysics Data System (ADS)

    Seo, Y. S.; Kim, K. S.; Samuilov, V.; Rafailovich, M. H.; Sokolov, J.; Lammertink, Rob G. H.; Vancso, G. J.

    2000-03-01

    We have studied the morphology of Langmuir blodgett films at the air/water interface of mixed diblock copolymer films. Solutions of poly(styrene-b-ferrocenyldimethylsilane) and PS-b-P2VP mixed in a ratio of 20/80 in chloroform were spread at the air/water interface. The morphology of the films was studied with AFM as a function of the surface pressure and the diblock copolymer molecular weight. The results show that the two diblock copolymers can be induced to mix at the air/water interface with increasing surface pressure. A reversible transition from spherical to cylindrical morphologies is induced in the mixture which can not be observed in films formed of the two components separately. The effective surface phase diagram as a function of block copolymer composition and pressure will be presented.

  9. The Morphology of Silver Layers on SU8 polymers prepared by Electroless Deposition

    NASA Astrophysics Data System (ADS)

    Dutta, Aniruddha; Yuan, Biao; Heinrich, Helge; Grabill, Chris; Williams, Henry; Kuebler, Stephen; Bhattacharya, Aniket

    2010-03-01

    Silver was deposited onto the functionalized surface of polymeric SU-8 where gold nanoparticles (Au-NPs) act as nucleation sites using electroless metallization chemistry. Here we report on the evolution of the nanoscale morphology of deposited Ag studied by Transmission Electron Microscopy (TEM). In TEM of sample cross sections correlations between the original gold and the silver nanoparticles were obtained while plan-view TEM results showed the distribution of nanoparticles on the surface. Scanning TEM with a high-angle annular dark field detector was used to obtain atomic number contrast. The morphology of the deposited Ag was controlled through the presence and absence of gum Arabic. The thickness and height fluctuations of the Ag layer were determined as a function of time and a statistical analysis of the growth process was conducted for the initial deposition periods.

  10. Sustainability of Recycled ABS and PA6 by Banana Fiber Reinforcement: Thermal, Mechanical and Morphological Properties

    NASA Astrophysics Data System (ADS)

    Singh, Rupinder; Kumar, Ranvijay; Ranjan, Nishant

    2018-01-01

    In the present study efforts have been made to prepare functional prototypes with improved thermal, mechanical and morphological properties from polymeric waste for sustainability. The primary recycled acrylonitrile butadiene styrene (ABS) and polyamide 6 (PA6) has been selected as matrix material with bio-degradable and bio-compatible banana fibers (BF) as reinforcement. The blend (in form of feed stock filament wire) of ABS/PA6 and BF was prepared in house by conventional twin screw extrusion (TSE) process. Finally feed stock filament of ABS/PA6 reinforced with BF was put to run on open source fused deposition modelling based three dimensional printer (without any change in hardware/software of the system) for printing of functional prototypes with improved thermal/mechanical/morphological properties. The results are supported by photomicrographs, thermographs and mechanical testing.

  11. Whole organ, venation and epidermal cell morphological variations are correlated in the leaves of Arabidopsis mutants.

    PubMed

    Pérez-Pérez, José Manuel; Rubio-Díaz, Silvia; Dhondt, Stijn; Hernández-Romero, Diana; Sánchez-Soriano, Joaquín; Beemster, Gerrit T S; Ponce, María Rosa; Micol, José Luis

    2011-12-01

    Despite the large number of genes known to affect leaf shape or size, we still have a relatively poor understanding of how leaf morphology is established. For example, little is known about how cell division and cell expansion are controlled and coordinated within a growing leaf to eventually develop into a laminar organ of a definite size. To obtain a global perspective of the cellular basis of variations in leaf morphology at the organ, tissue and cell levels, we studied a collection of 111 non-allelic mutants with abnormally shaped and/or sized leaves, which broadly represent the mutational variations in Arabidopsis thaliana leaf morphology not associated with lethality. We used image-processing techniques on these mutants to quantify morphological parameters running the gamut from the palisade mesophyll and epidermal cells to the venation, whole leaf and rosette levels. We found positive correlations between epidermal cell size and leaf area, which is consistent with long-standing Avery's hypothesis that the epidermis drives leaf growth. In addition, venation parameters were positively correlated with leaf area, suggesting that leaf growth and vein patterning share some genetic controls. Positional cloning of the genes affected by the studied mutations will eventually establish functional links between genotypes, molecular functions, cellular parameters and leaf phenotypes. © 2011 Blackwell Publishing Ltd.

  12. Form and function of the human and chimpanzee forefoot: implications for early hominin bipedalism

    PubMed Central

    Fernández, Peter J.; Holowka, Nicholas B.; Demes, Brigitte; Jungers, William L.

    2016-01-01

    During bipedal walking, modern humans dorsiflex their forefoot at the metatarsophalangeal joints (MTPJs) prior to push off, which tightens the plantar soft tissues to convert the foot into a stiff propulsive lever. Particular features of metatarsal head morphology such as “dorsal doming” are thought to facilitate this stiffening mechanism. In contrast, chimpanzees are believed to possess MTPJ morphology that precludes high dorsiflexion excursions during terrestrial locomotion. The morphological affinity of the metatarsal heads has been used to reconstruct locomotor behavior in fossil hominins, but few studies have provided detailed empirical data to validate the assumed link between morphology and function at the MTPJs. Using three-dimensional kinematic and morphometric analyses, we show that humans push off with greater peak dorsiflexion angles at all MTPJs than do chimpanzees during bipedal and quadrupedal walking, with the greatest disparity occurring at MTPJ 1. Among MTPJs 2–5, both species exhibit decreasing peak angles from medial to lateral. This kinematic pattern is mirrored in the morphometric analyses of metatarsal head shape. Analyses of Australopithecus afarensis metatarsals reveal morphology intermediate between humans and chimpanzees, suggesting that this species used different bipedal push-off kinematics than modern humans, perhaps resulting in a less efficient form of bipedalism. PMID:27464580

  13. Effect of amylose, particle size & morphology on the functionality of starches of traditional rice cultivars.

    PubMed

    Bhat, Farhan Mohiuddin; Riar, Charanjit Singh

    2016-11-01

    The research was carried out to investigate the effect of starch powder particle size, morphology, amylose content and varietal effect on physicochemical, X-ray diffraction pattern, thermal and pasting characteristics. The results indicated that starches isolated from seven traditional rice cultivars of temperate region of India have possessed higher yield (82.47-86.83%) with lower degree of granule damage and higher level of starch crystallinity (36.55-39.15%). The water and oil binding capacities were observed to correlate positively with amylose content. The bulk density and color parameters of starches were found to have linked with starch powder particle size coupled with arrangement and morphology of the starch granules. The rice cultivars having smaller starch powder particle size indicated lowest degree of crystallinity. Morphological studies revealed that the starches with tightly packed granules had greater mean granular width, while granules with openly spaced granular morphology depicted the higher values for mean granular length. The peak height index (PHI) among different starches ranged from 1.01 to 2.57 whereas the gelatinization range varied from 10.66 to 10.88. Concluding, the differences in distributional pattern of starch granule size and shape and powder particle size indicated a significant effect on the functional properties of starch. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Community Socioeconomic Disadvantage in Midlife Relates to Cortical Morphology via Neuroendocrine and Cardiometabolic Pathways

    PubMed Central

    Gianaros, Peter J.; Kuan, Dora C.-H.; Marsland, Anna L.; Sheu, Lei K.; Hackman, Daniel A.; Miller, Karissa G.; Manuck, Stephen B.

    2017-01-01

    Abstract Residing in communities of socioeconomic disadvantage confers risk for chronic diseases and cognitive aging, as well as risk for biological factors that negatively affect brain morphology. The present study tested whether community disadvantage negatively associates with brain morphology via 2 biological factors encompassing cardiometabolic disease risk and neuroendocrine function. Participants were 448 midlife adults aged 30–54 years (236 women) who underwent structural neuroimaging to assess cortical and subcortical brain tissue morphology. Community disadvantage was indexed by US Census data geocoded to participants' residential addresses. Cardiometabolic risk was indexed by measurements of adiposity, blood pressure, glucose, insulin, and lipids. Neuroendocrine function was indexed from salivary cortisol measurements taken over 3 days, from which we computed the cortisol awakening response, area-under-the-curve, and diurnal cortisol decline. Community disadvantage was associated with reduced cortical tissue volume, cortical surface area, and cortical thickness, but not subcortical morphology. Moreover, increased cardiometabolic risk and a flatter (dysregulated) diurnal cortisol decline mediated the associations of community disadvantage and cortical gray matter volume. These effects were independent of age, sex, and individual-level socioeconomic position. The adverse risks of residing in a disadvantaged community may extend to the cerebral cortex via cardiometabolic and neuroendocrine pathways. PMID:26498832

  15. Statistical analysis and data mining of digital reconstructions of dendritic morphologies.

    PubMed

    Polavaram, Sridevi; Gillette, Todd A; Parekh, Ruchi; Ascoli, Giorgio A

    2014-01-01

    Neuronal morphology is diverse among animal species, developmental stages, brain regions, and cell types. The geometry of individual neurons also varies substantially even within the same cell class. Moreover, specific histological, imaging, and reconstruction methodologies can differentially affect morphometric measures. The quantitative characterization of neuronal arbors is necessary for in-depth understanding of the structure-function relationship in nervous systems. The large collection of community-contributed digitally reconstructed neurons available at NeuroMorpho.Org constitutes a "big data" research opportunity for neuroscience discovery beyond the approaches typically pursued in single laboratories. To illustrate these potential and related challenges, we present a database-wide statistical analysis of dendritic arbors enabling the quantification of major morphological similarities and differences across broadly adopted metadata categories. Furthermore, we adopt a complementary unsupervised approach based on clustering and dimensionality reduction to identify the main morphological parameters leading to the most statistically informative structural classification. We find that specific combinations of measures related to branching density, overall size, tortuosity, bifurcation angles, arbor flatness, and topological asymmetry can capture anatomically and functionally relevant features of dendritic trees. The reported results only represent a small fraction of the relationships available for data exploration and hypothesis testing enabled by sharing of digital morphological reconstructions.

  16. Trade-off between reservoir yield and evaporation losses as a function of lake morphology in semi-arid Brazil.

    PubMed

    Campos, José N B; Lima, Iran E; Studart, Ticiana M C; Nascimento, Luiz S V

    2016-05-31

    This study investigates the relationships between yield and evaporation as a function of lake morphology in semi-arid Brazil. First, a new methodology was proposed to classify the morphology of 40 reservoirs in the Ceará State, with storage capacities ranging from approximately 5 to 4500 hm3. Then, Monte Carlo simulations were conducted to study the effect of reservoir morphology (including real and simplified conical forms) on the water storage process at different reliability levels. The reservoirs were categorized as convex (60.0%), slightly convex (27.5%) or linear (12.5%). When the conical approximation was used instead of the real lake form, a trade-off occurred between reservoir yield and evaporation losses, with different trends for the convex, slightly convex and linear reservoirs. Using the conical approximation, the water yield prediction errors reached approximately 5% of the mean annual inflow, which is negligible for large reservoirs. However, for smaller reservoirs, this error became important. Therefore, this paper presents a new procedure for correcting the yield-evaporation relationships that were obtained by assuming a conical approximation rather than the real reservoir morphology. The combination of this correction with the Regulation Triangle Diagram is useful for rapidly and objectively predicting reservoir yield and evaporation losses in semi-arid environments.

  17. Morphology and ventilatory function of gills in the carpet shark family Parascylliidae (Elasmobranchii, Orectolobiformes).

    PubMed

    Goto, Tomoaki; Shiba, Yojiro; Shibagaki, Kazuhiro; Nakaya, Kazuhiro

    2013-06-01

    We examined gill morphology and ventilatory function in the carpet shark family Parascylliidae using 14 preserved specimens of Parascyllium ferrugineum, P. variolatum, P. collare and Cirrhoscyllium japonicum, and two live specimens of P. ferrugineum and P. variolatum. Morphological examinations revealed eight morphological characteristics related to the fifth gill, based on comparisons with other elasmobranchs, viz. large fifth gill slit without gill filaments, anatomical modifications in the fourth ceratobranchial cartilage and coraco-branchialis muscle, and the hypaxialis muscle associated with the fifth gill arch. Ventilation examinations using dyed seawater and prey items showed different water flows through the gill slits for respiration and prey-capture actions. For respiration, water sucked into the mouth was expelled equally through the first to fourth gill slits via a "double-pump" action, there being no involvement of the fifth gill slit. In prey-capture, however, water sucked into the mouth was discharged only via the widely opened fifth gill slit. This form of water flow is similar to that in other benthic suction-feeding sharks (e.g., Chiloscyllium plagiosum), except for the active water discharge by wide expansion and contraction of the fifth parabranchial cavity. The latter is dependent upon the morphological modifications of the fourth and fifth gill arches, derived phylogenetically as a mechanistic suction specialization in Parascylliidae.

  18. Synthesis and characterization of carbon nanospheres obtained by hydrothermal carbonization of wood-derived and other saccharides

    Treesearch

    Qiangu Yan; Rui Li; Hossein Toghiani; Zhiyong Cai; Jilei Zhang

    2015-01-01

    Carbon nanospheres were synthesized by hydrothermal carbonization (HTC) of four different carbon sources: xylose, glucose, sucrose, and pine wood derived saccharides. The obtained carbon nanospheres were characterized for particle morphology and size, and surface functional groups. Morphological and structural differences among these saccharides derived HTC carbons...

  19. [Capillaroscopy in patients with chronic alcoholic pancreatitis].

    PubMed

    Teixeira, G P; de Alencar, R; Fonseca, M de O; Bernardini, E M

    1996-01-01

    The aim of this study was verify frequency and morphological presentations of microangiopathy in patients with alcoholic chronic pancreatitis, using nailfold capillaroscopy. All patients showed morphological and functional capillary abnormalities. None of them had a normal capillaroscopy. Our findings may suggest an important role of microcirculation in Alcoholic Chronic Pancreatitis pathogenesis and/or its course.

  20. Channel morphology investigations using Geographic Information Systems and field research

    Treesearch

    Scott N. Miller; Ann Youberg; D. Phillip Guertin; David C. Goodrich

    2000-01-01

    Stream channels are integral to watershed function and are affected by watershed management decisions. Given an understanding of the relationships among channel and watershed variables, they may serve as indicators of upland condition or used in distributed rainfall-runoff models. This paper presents a quantitative analysis of fluvial morphology as related to watershed...

  1. A New LC-MS-based Strategy to integrate chemistry, morphology, and evolution of eggplant (Solanum) species

    USDA-ARS?s Scientific Manuscript database

    The economically valuable giant genus Solanum, containing dozens of functional food species such as eggplant and tomato, affords an excellent system to compare and correlate metabolic chemistry with species morphology and evolution. Here, we devised a strategy based on repeatable reversed-phase LC-T...

  2. Morphological Structures in Visual Word Recognition: The Case of Arabic

    ERIC Educational Resources Information Center

    Abu-Rabia, Salim; Awwad, Jasmin (Shalhoub)

    2004-01-01

    This research examined the function within lexical access of the main morphemic units from which most Arabic words are assembled, namely roots and word patterns. The present study focused on the derivation of nouns, in particular, whether the lexical representation of Arabic words reflects their morphological structure and whether recognition of a…

  3. Reading in a Root-Based-Morphology Language: The Case of Arabic.

    ERIC Educational Resources Information Center

    Abu-Rabia, S.

    2002-01-01

    Reviews the reading process in Arabic as a function of vowels and sentence context. Reviews reading accuracy and reading comprehension results in light of cross-cultural reading to develop a more comprehensive reading theory. Presents the phonology, morphology and sentence context of Arabic in two suggested reading models for poor/beginner Arabic…

  4. Intriguing Morphology Evolution from Noncrosslinked Poly(tert-butyl acrylate) Seeds with Polar Functional Groups in Soap-Free Emulsion Polymerization of Styrene.

    PubMed

    Wang, Lu; Pan, Mingwang; Song, Shaofeng; Zhu, Lei; Yuan, Jinfeng; Liu, Gang

    2016-08-09

    Herein, we demonstrate a facile approach to prepare anisotropic poly(tert-butyl acrylate)/polystyrene (PtBA/PS) composite particles with controllable morphologies by soap-free seeded emulsion polymerization (SSEP). In the first step, noncrosslinked PtBA seeds with self-stabilizing polar functional groups (e.g., ester groups and radicals) are synthesized by soap-free emulsion polymerization. During the subsequent SSEP of styrene (St), PS bulges are nucleated on the PtBA seeds due to the microphase separation confined in the latex particles. The morphology evolution of PtBA/PS composite particles is tailored by varying the monomer/seed feed ratio, polymerization time, and polymerization temperature. Many intriguing morphologies, including hamburger-like, litchi-like, mushroom-like, strawberry-like, bowl-like, and snowman-like, have been acquired for PtBA/PS composite particles. The polar groups on the PtBA seed surface greatly influence the formation and further merging of PS/St bulges during the polymerization. A possible formation mechanism is proposed on the basis of experimental results. These complex composite particles are promising for applications in superhydrophobic coatings.

  5. How hollow melanosomes affect iridescent colour production in birds

    PubMed Central

    Eliason, Chad M.; Bitton, Pierre-Paul; Shawkey, Matthew D.

    2013-01-01

    Developmental constraints and trade-offs can limit diversity, but organisms have repeatedly evolved morphological innovations that overcome these limits by expanding the range and functionality of traits. Iridescent colours in birds are commonly produced by melanin-containing organelles (melanosomes) organized into nanostructured arrays within feather barbules. Variation in array type (e.g. multilayers and photonic crystals, PCs) is known to have remarkable effects on plumage colour, but the optical consequences of variation in melanosome shape remain poorly understood. Here, we used a combination of spectrophotometric, experimental and theoretical methods to test how melanosome hollowness—a morphological innovation largely restricted to birds—affects feather colour. Optical analyses of hexagonal close-packed arrays of hollow melanosomes in two species, wild turkeys (Meleagris gallopavo) and violet-backed starlings (Cinnyricinclus leucogaster), indicated that they function as two-dimensional PCs. Incorporation of a larger dataset and optical modelling showed that, compared with solid melanosomes, hollow melanosomes allow birds to produce distinct colours with the same energetically favourable, close-packed configurations. These data suggest that a morphological novelty has, at least in part, allowed birds to achieve their vast morphological and colour diversity. PMID:23902909

  6. Repolarization of hepatocytes in culture.

    PubMed

    Talamini, M A; Kappus, B; Hubbard, A

    1997-01-01

    We have evaluated the biochemical, morphological, and functional redevelopment of polarity in freshly isolated hepatocytes cultured using a double layer collagen gel sandwich technique. Western blot analysis showed increased cellular levels of the cell adhesion protein uvomorulin as cultured hepatocytes repolarized. Immunofluorescence studies using antibodies against domain-specific membrane proteins showed polarity as early as 48 hours, although the pattern of the polymeric Immunoglobulin-A receptor (pIgA-R) differed from in vivo liver. Electron microscopy showed developing bile canaliculi at 1 day. However, the functional presence of tight junctions was absent at 1 day, but present at 5 days. We further showed functional polarity to be present at 4 days by documenting the ability of cultured hepatocytes to metabolize and excrete fluorescein diacetate into visible bile canaliculi. We conclude that hepatocytes cultured appropriately develop morphological and functional polarity. Hepatocyte culture is therefore a useful tool for the study of mechanisms responsible for the development of polarized function.

  7. Form and function of damselfish skulls: rapid and repeated evolution into a limited number of trophic niches.

    PubMed

    Cooper, W James; Westneat, Mark W

    2009-01-30

    Damselfishes (Perciformes, Pomacentridae) are a major component of coral reef communities, and the functional diversity of their trophic anatomy is an important constituent of the ecological morphology of these systems. Using shape analyses, biomechanical modelling, and phylogenetically based comparative methods, we examined the anatomy of damselfish feeding among all genera and trophic groups. Coordinate based shape analyses of anatomical landmarks were used to describe patterns of morphological diversity and determine positions of functional groups in a skull morphospace. These landmarks define the lever and linkage structures of the damselfish feeding system, and biomechanical analyses of this data were performed using the software program JawsModel4 in order to calculate the simple mechanical advantage (MA) employed by different skull elements during feeding, and to compute kinematic transmission coefficients (KT) that describe the efficiency with which angular motion is transferred through the complex linkages of damselfish skulls. Our results indicate that pomacentrid planktivores are significantly different from other damselfishes, that biting MA values and protrusion KT ratios are correlated with pomacentrid trophic groups more tightly than KT scores associated with maxillary rotation and gape angle, and that the MAs employed by their three biting muscles have evolved independently. Most of the biomechanical parameters examined have experienced low levels of phylogenetic constraint, which suggests that they have evolved quickly. Joint morphological and biomechanical analyses of the same anatomical data provided two reciprocally illuminating arrays of information. Both analyses showed that the evolution of planktivory has involved important changes in pomacentrid functional morphology, and that the mechanics of upper jaw kinesis have been of great importance to the evolution of damselfish feeding. Our data support a tight and biomechanically defined link between structure and the functional ecology of fish skulls, and indicate that certain mechanisms for transmitting motion through their jaw linkages may require particular anatomical configurations, a conclusion that contravenes the concept of "many-to-one mapping" for fish jaw mechanics. Damselfish trophic evolution is characterized by rapid and repeated shifts between a small number of eco-morphological states, an evolutionary pattern that we describe as reticulate adaptive radiation.

  8. The role of foot morphology on foot function in diabetic subjects with or without neuropathy.

    PubMed

    Guiotto, Annamaria; Sawacha, Zimi; Guarneri, Gabriella; Cristoferi, Giuseppe; Avogaro, Angelo; Cobelli, Claudio

    2013-04-01

    The aim of this study was to investigate the role of foot morphology, related with respect to diabetes and peripheral neuropathy in altering foot kinematics and plantar pressure during gait. Healthy and diabetic subjects with or without neuropathy with different foot types were analyzed. Three dimensional multisegment foot kinematics and plantar pressures were assessed on 120 feet: 40 feet (24 cavus, 20 with valgus heel and 11 with hallux valgus) in the control group, 80 feet in the diabetic (25 cavus 13 with valgus heel and 13 with hallux valgus) and the neuropathic groups (28 cavus, 24 with valgus heel and 18 with hallux valgus). Subjects were classified according to their foot morphology allowing further comparisons among the subgroups with the same foot morphology. When comparing neuropathic subjects with cavus foot, valgus heel with controls with the same foot morphology, important differences were noticed: increased dorsiflexion and peak plantar pressure on the forefoot (P<0.05), decreased contact surface on the hindfoot (P<0.03). While results indicated the important role of foot morphology in altering both kinematics and plantar pressure in diabetic subjects, diabetes appeared to further contribute in altering foot biomechanics. Surprisingly, all the diabetic subjects with normal foot arch or with valgus hallux were no more likely to display significant differences in biomechanics parameters than controls. This data could be considered a valuable support for future research on diabetic foot function, and in planning preventive interventions. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Nanoscale Morphology Evolution Under Ion Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aziz, Michael J.

    We showed that the half-century-old paradigm of morphological instability under irradiation due to the curvature-dependence of the sputter yield, can account neither for the phase diagram nor the amplification or decay rates that we measure in the simplest possible experimental system -- an elemental semiconductor with an amorphous surface under noble-gas ion irradiation; We showed that a model of pattern formation based on the impact-induced redistribution of atoms that do not get sputtered away explains our experimental observations; We developed a first-principles, parameter-free approach for predicting morphology evolution, starting with molecular dynamics simulations of single ion impacts, lasting picoseconds, andmore » upscaling through a rigorous crater-function formalism to develop a partial differential equation that predicts morphology evolution on time scales more than twelve orders of magnitude longer than can be covered by the molecular dynamics; We performed the first quantitative comparison of the contributions to morphological instability from sputter removal and from impact-induced redistribution of atoms that are removed, and showed that the former is negligible compared to the latter; We established a new paradigm for impact-induced morphology evolution based on crater functions that incorporate both redistribution and sputter effects; and We developed a model of nanopore closure by irradiation-induced stress and irradiationenhanced fluidity, for the near-surface irradiation regime in which nuclear stopping predominates, and showed that it explains many aspects of pore closure kinetics that we measure experimentally.« less

  10. Cryptic diversity in a fig wasp community-morphologically differentiated species are sympatric but cryptic species are parapatric.

    PubMed

    Darwell, C T; Cook, J M

    2017-02-01

    A key debate in ecology centres on the relative importance of niche and neutral processes in determining patterns of community assembly with particular focus on whether ecologically similar species with similar functional traits are able to coexist. Meanwhile, molecular studies are increasingly revealing morphologically indistinguishable cryptic species with presumably similar ecological roles. Determining the geographic distribution of such cryptic species provides opportunities to contrast predictions of niche vs. neutral models. Discovery of sympatric cryptic species increases alpha diversity and supports neutral models, while documentation of allopatric/parapatric cryptic species increases beta diversity and supports niche models. We tested these predictions using morphological and molecular data, coupled with environmental niche modelling analyses, of a fig wasp community along its 2700-km latitudinal range. Molecular methods increased previous species diversity estimates from eight to eleven species, revealing morphologically cryptic species in each of the four wasp genera studied. Congeneric species pairs that were differentiated by a key morphological functional trait (ovipositor length) coexisted sympatrically over large areas. In contrast, morphologically similar species, with similar ovipositor lengths, typically showed parapatric ranges with very little overlap. Despite parapatric ranges, environmental niche models of cryptic congeneric pairs indicate large regions of potential sympatry, suggesting that competitive processes are important in determining the distributions of ecologically similar species. Niche processes appear to structure this insect community, and cryptic diversity may typically contribute mostly to beta rather than alpha diversity. © 2016 John Wiley & Sons Ltd.

  11. Virtual anthropology.

    PubMed

    Weber, Gerhard W

    2015-02-01

    Comparative morphology, dealing with the diversity of form and shape, and functional morphology, the study of the relationship between the structure and the function of an organism's parts, are both important subdisciplines in biological research. Virtual anthropology (VA) contributes to comparative morphology by taking advantage of technological innovations, and it also offers new opportunities for functional analyses. It exploits digital technologies and pools experts from different domains such as anthropology, primatology, medicine, paleontology, mathematics, statistics, computer science, and engineering. VA as a technical term was coined in the late 1990s from the perspective of anthropologists with the intent of being mostly applied to biological questions concerning recent and fossil hominoids. More generally, however, there are advanced methods to study shape and size or to manipulate data digitally suitable for application to all kinds of primates, mammals, other vertebrates, and invertebrates or to issues regarding plants, tools, or other objects. In this sense, we could also call the field "virtual morphology." The approach yields permanently available virtual copies of specimens and data that comprehensively quantify geometry, including previously neglected anatomical regions. It applies advanced statistical methods, supports the reconstruction of specimens based on reproducible manipulations, and promotes the acquisition of larger samples by data sharing via electronic archives. Finally, it can help identify new, hidden traits, which is particularly important in paleoanthropology, where the scarcity of material demands extracting information from fragmentary remains. This contribution presents a current view of the six main work steps of VA: digitize, expose, compare, reconstruct, materialize, and share. The VA machinery has also been successfully used in biomechanical studies which simulate the stress and strains appearing in structures. Although methodological issues remain to be solved before results from the two domains can be fully integrated, the various overlaps and cross-fertilizations suggest the widespread appearance of a "virtual functional morphology" in the near future. © 2014 American Association of Physical Anthropologists.

  12. Expression pattern and function of tyrosine receptor kinase B isoforms in rat mesenteric arterial smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otani, Kosuke; Okada, Muneyoshi; Yamawaki, Hideyuki, E-mail: yamawaki@vmas.kitasato-u.ac.jp

    Tyrosine receptor kinaseB (TrkB) is a high affinity receptor for brain-derived neurotrophic factor (BDNF). TrkB isoforms involve full length TrkB (TrkB FL) and truncated TrkB type1 (TrkB T1) and type 2 (TrkB T2) in rats. The aim of present study was to explore their expression pattern and function in mesenteric arterial smooth muscle cells (MASMCs). The expression of TrkB isoform protein and mRNA was examined by Western blotting, immunofluorescence and quantitative RT-PCR analyses. Cell proliferation was measured by a bromodeoxyuridine (BrdU) incorporation assay. Cell migration was measured by a Boyden chamber assay. Cell morphology was observed with a phase-contrast microscope.more » Protein and mRNA expression of BDNF and TrkB isoforms was confirmed in MASMCs. Expression level of TrkB FL was less, while that of TrkB T1 was the highest in MASMCs. Although BDNF increased phosphorylation of ERK, it had no influence on migration and proliferation of MASMCs. TrkB T1 gene knockdown by a RNA interference induced morphological changes and reduced expression level of α-smooth muscle actin (α-SMA) in MASMCs. Similar morphological changes and reduced α-SMA expression were induced in MASMCs by a Rho kinase inhibitor, Y-27632. In conclusion, we for the first time demonstrate that TrkB T1 expressed highly in MASMCs contributes to maintain normal cell morphology possibly via regulation of Rho activity. This study firstly defined expression level of TrkB isoforms and partly revealed their functions in peripheral vascular cells. - Highlights: • BDNF-TrkB axis mediates neurogenesis, growth, differentiation and survival. • Expression pattern and function of TrkB in vascular smooth muscle remain unclear. • Expression of TrkB FL is low, while that of TrkB T1 is the highest. • TrkB T1 contributes to maintain normal morphology possibly via activating Rho.« less

  13. To 3D or Not to 3D, That Is the Question: Do 3D Surface Analyses Improve the Ecomorphological Power of the Distal Femur in Placental Mammals?

    PubMed Central

    Gould, Francois D. H.

    2014-01-01

    Improvements in three-dimensional imaging technologies have renewed interest in the study of functional and ecological morphology. Quantitative approaches to shape analysis are used increasingly to study form-function relationships. These methods are computationally intensive, technically demanding, and time-consuming, which may limit sampling potential. There have been few side-by-side comparisons of the effectiveness of such approaches relative to more traditional analyses using linear measurements and ratios. Morphological variation in the distal femur of mammals has been shown to reflect differences in locomotor modes across clades. Thus I tested whether a geometric morphometric analysis of surface shape was superior to a multivariate analysis of ratios for describing ecomorphological patterns in distal femoral variation. A sample of 164 mammalian specimens from 44 genera was assembled. Each genus was assigned to one of six locomotor categories. The same hypotheses were tested using two methods. Six linear measurements of the distal femur were taken with calipers, from which four ratios were calculated. A 3D model was generated with a laser scanner, and analyzed using three dimensional geometric morphometrics. Locomotor category significantly predicted variation in distal femoral morphology in both analyses. Effect size was larger in the geometric morphometric analysis than in the analysis of ratios. Ordination reveals a similar pattern with arboreal and cursorial taxa as extremes on a continuum of morphologies in both analyses. Discriminant functions calculated from the geometric morphometric analysis were more accurate than those calculated from ratios. Both analysis of ratios and geometric morphometric surface analysis reveal similar, biologically meaningful relationships between distal femoral shape and locomotor mode. The functional signal from the morphology is slightly higher in the geometric morphometric analysis. The practical costs of conducting these sorts of analyses should be weighed against potentially slight increases in power when designing protocols for ecomorphological studies. PMID:24633081

  14. [Regenerative morphological traits in a woody species community in Tumbesian tropical dry forest].

    PubMed

    Romero-Saritama, José Miguel; Pérez-Rúuz, César

    2016-06-01

    The study of functional morphological traits enables us to know fundamental aspects of the dynamics of plant communities in local and global habitats. Regenerative morphological traits play an important role in defining plant history and ecological behavior. Seed and fruit characteristics determine to a large extent the patterns for dispersal, germination, establishment and seedling recruitment a given species exhibits on its natural habitat. Despite their prominent role, seed and fruit traits have been poorly studied at the community level of woody plant species in neo-tropical dry forests. In the present study we aimed at i) evaluate the functional role of morphological traits of seeds, fruits and embryo in woody plant species; ii) determine which are the morphological patterns present in seeds collected from the community of woody species that occur in neo-tropical dry forests; and iii) compare woody plant species seed mass values comparatively between neo-tropical dry and tropical forests. To do so, mature seeds were collected from 79 plant species that occur in the Tumbesian forest of Southwest Ecuador. The studied species included the 42 and 37 most representative tree and shrubbery species of the Tumbesian forest respectively. A total of 18 morphological traits (seven quantitative and 11 qualitative) were measured and evaluated in the seeds, fruits and embryos of the selected species, and we compared the seeds mass with other forest types. Our results showed a huge heterogeneity among traits values in the studied species. Seed mass, volume and number were the traits that vary the most at the community level, i.e. seed length ranged from 1.3 to 39 mm, and seed width from 0.6 to 25 mm. Only six embryo types were found among the 79 plant species. In 40 % of the cases, fully developed inverted embryos with large and thick cotyledons to store considerable amount of nutrients were recorded. We concluded that highly variable and functionally complementary morphological traits occur among the studied woody plants of the Tumbesian dry forest. The latter favors a plethora of behavioral mechanisms to coexist among woody species of the dry forest in response to the environmental stress that is typical of arid areas.

  15. The pivotal role of aristaless in development and evolution of diverse antennal morphologies in moths and butterflies.

    PubMed

    Ando, Toshiya; Fujiwara, Haruhiko; Kojima, Tetsuya

    2018-01-25

    Antennae are multi-segmented appendages and main odor-sensing organs in insects. In Lepidoptera (moths and butterflies), antennal morphologies have diversified according to their ecological requirements. While diurnal butterflies have simple, rod-shaped antennae, nocturnal moths have antennae with protrusions or lateral branches on each antennal segment for high-sensitive pheromone detection. A previous study on the Bombyx mori (silk moth) antenna, forming two lateral branches per segment, during metamorphosis has revealed the dramatic change in expression of antennal patterning genes to segmentally reiterated, branch-associated pattern and abundant proliferation of cells contributing almost all the dorsal half of the lateral branch. Thus, localized cell proliferation possibly controlled by the branch-associated expression of antennal patterning genes is implicated in lateral branch formation. Yet, actual gene function in lateral branch formation in Bombyx mori and evolutionary mechanism of various antennal morphologies in Lepidoptera remain elusive. We investigated the function of several genes and signaling specifically in lateral branch formation in Bombyx mori by the electroporation-mediated incorporation of siRNAs or morpholino oligomers. Knock down of aristaless, a homeobox gene expressed specifically in the region of abundant cell proliferation within each antennal segment, during metamorphosis resulted in missing or substantial shortening of lateral branches, indicating its importance for lateral branch formation. aristaless expression during metamorphosis was lost by knock down of Distal-less and WNT signaling but derepressed by knock down of Notch signaling, suggesting the strict determination of the aristaless expression domain within each antennal segment by the combinatorial action of them. In addition, analyses of pupal aristaless expression in antennae with various morphologies of several lepidopteran species revealed that the aristaless expression pattern has a striking correlation with antennal shapes, whereas the segmentally reiterated expression pattern was observed irrespective of antennal morphologies. Our results presented here indicate the significance of aristaless function in lateral branch formation in B. mori and imply that the diversification in the aristaless expression pattern within each antennal segment during metamorphosis is one of the significant determinants of antennal morphologies. According to these findings, we propose a mechanism underlying development and evolution of lepidopteran antennae with various morphologies.

  16. Genetic and evolutionary analysis of the Drosophila larval neuromuscular junction

    NASA Astrophysics Data System (ADS)

    Campbell, Megan

    Although evolution of brains and behaviors is of fundamental biological importance, we lack comprehensive understanding of the general principles governing these processes or the specific mechanisms and molecules through which the evolutionary changes are effected. Because synapses are the basic structural and functional units of nervous systems, one way to address these problems is to dissect the genetic and molecular pathways responsible for morphological evolution of a defined synapse. I have undertaken such an analysis by examining morphology of the larval neuromuscular junction (NMJ) in wild caught D. melanogaster as well as in over 20 other species of Drosophila. Whereas variation in NMJ morphology within a species is limited, I discovered a surprisingly extensive variation among different species. Compared with evolution of other morphological traits, NMJ morphology appears to be evolving very rapidly. Moreover, my data indicate that natural selection rather than genetic drift is primarily responsible for evolution of NMJ morphology. To dissect underlying molecular mechanisms that may govern NMJ growth and evolutionary divergence, I focused on a naturally occurring variant in D. melanogaster that causes NMJ overgrowth. I discovered that the variant mapped to Mob2, a gene encoding a kinase adapter protein originally described in yeast as a member of the Mitotic Exit Network (MEN). I have subsequently examined mutations in the Drosophila orthologs of all the core components of the yeast MEN and found that all of them function as part of a common pathway that acts presynaptically to negatively regulate NMJ growth. As in the regulation of yeast cytokinesis, these components of the MEN appear to act ultimately by regulating actin dynamics during the process of bouton growth and division. These studies have thus led to the discovery of an entirely new role for the MEN---regulation of synaptic growth---that is separate from its function in cell division. This work has identified a rich source of material for discovery of novel genes and mechanisms that regulate synaptic growth and development, and has also provided new insights into the mechanisms that underlie morphological evolution of nervous systems.

  17. Character analysis and the integration of molecular and morphological data in an understanding of sand dollar phylogeny.

    PubMed

    Marshall, C R

    1992-03-01

    Reconciling discordant morphological and molecular phylogenies remains a problem in modern systematics. By examining conflicting DNA-hybridization and morphological phylogenies of sand dollars, I show that morphological criteria may be used to help evaluate the reliability of molecular phylogenies where they differ from morphological trees. All available criteria for assessing the reliability of DNA-hybridization phylogenies suggest that the sand dollar DNA-hybridization phylogeny is robust. Standard homology-recognition criteria are used to assess the a priori reliabilities of the morphological attributes associated with the node drawn into question by the DNA data, and it is shown that these attributes are among the least phylogenetically informative of all the morphological characters. Moreover, the questioned node has the smallest number of supporting characters, and most of these characters are associated with the food grooves, which suggests that they may be functionally correlated. Thus, on the basis of the analysis of the morphological data and given the robustness of the DNA tree, the DNA phylogeny is preferred. Further, paleobiogeographic data support the DNA tree rather than the morphological tree, and a plausible heterochronic mechanism has been proposed that may account for the homoplasious morphological evolution that must have occurred if the DNA tree is correct.

  18. Air-filled postcranial bones in theropod dinosaurs: physiological implications and the 'reptile'-bird transition.

    PubMed

    Benson, Roger B J; Butler, Richard J; Carrano, Matthew T; O'Connor, Patrick M

    2012-02-01

    Pneumatic (air-filled) postcranial bones are unique to birds among extant tetrapods. Unambiguous skeletal correlates of postcranial pneumaticity first appeared in the Late Triassic (approximately 210 million years ago), when they evolved independently in several groups of bird-line archosaurs (ornithodirans). These include the theropod dinosaurs (of which birds are extant representatives), the pterosaurs, and sauropodomorph dinosaurs. Postulated functions of skeletal pneumatisation include weight reduction in large-bodied or flying taxa, and density reduction resulting in energetic savings during foraging and locomotion. However, the influence of these hypotheses on the early evolution of pneumaticity has not been studied in detail previously. We review recent work on the significance of pneumaticity for understanding the biology of extinct ornithodirans, and present detailed new data on the proportion of the skeleton that was pneumatised in 131 non-avian theropods and Archaeopteryx. This includes all taxa known from significant postcranial remains. Pneumaticity of the cervical and anterior dorsal vertebrae occurred early in theropod evolution. This 'common pattern' was conserved on the line leading to birds, and is likely present in Archaeopteryx. Increases in skeletal pneumaticity occurred independently in as many as 12 lineages, highlighting a remarkably high number of parallel acquisitions of a bird-like feature among non-avian theropods. Using a quantitative comparative framework, we show that evolutionary increases in skeletal pneumaticity are significantly concentrated in lineages with large body size, suggesting that mass reduction in response to gravitational constraints at large body sizes influenced the early evolution of pneumaticity. However, the body size threshold for extensive pneumatisation is lower in theropod lineages more closely related to birds (maniraptorans). Thus, relaxation of the relationship between body size and pneumatisation preceded the origin of birds and cannot be explained as an adaptation for flight. We hypothesise that skeletal density modulation in small, non-volant, maniraptorans resulted in energetic savings as part of a multi-system response to increased metabolic demands. Acquisition of extensive postcranial pneumaticity in small-bodied maniraptorans may indicate avian-like high-performance endothermy. © 2011 The Authors. Biological Reviews © 2011 Cambridge Philosophical Society.

  19. An assessment of relationships between the five-factor personality model and the morphology and function of the stomathognatic system.

    PubMed

    Woźniak, Krzysztof; Teichert, Hubert; Piatkowska, Dagmara; Lipski, Mariusz

    2012-01-01

    The personality as a system of genetically predetermined features is responsible for modifying relations between an individual's genotype and phenotype. The key element linking personality with facial morphology is the muscular system. The aim of this study was to investigate the association between facets of the five-factor personality model (FFM) domains and both the morphology and function of the stomathognatic system. Two hundred volunteers (100 female and 100 male) aged 20 to 25 (mean age: 23.4) underwent anthropometric measurements to calculate the anterior face height ratio N-Sn/Sn-Gn. For cephalometric analysis, standard right-profile images of the face were used. Calibration was performed with a 100-mm metal ruler placed next to each photographed individual. The Revised NEO Personality Inventory (NEO-PI-R), which includes 240 statements, was used for personality assessment in order to investigate the five main personality domains: neuroticism, extraversion, openness to experience, agreeableness, conscientiousness and six facets within each domain. The results show significant correlations between factors of the personality such as neuroticism (r = 0.3488; p = 0.0000) and extraversion (r = -0.3405; p = 0.0000) and the inclination angle (FH/HOR) as the predictor of the function of the stomathognatic system. Additionally, the correlation analysis revealed a significant positive association between the anterior face height ratio and anxiety (r = 0.3952; p = 0.0000). The results of this study indicate a selective association between personality and both the morphology and function of the stomathognatic system

  20. Common variants in the G protein beta3 subunit gene and thyroid disorders in a formerly iodine-deficient population.

    PubMed

    Völzke, Henry; Bornhorst, Alexa; Rimmbach, Christian; Petersenn, Holger; Geissler, Ingrid; Nauck, Matthias; Wallaschofski, Henri; Kroemer, Heyo K; Rosskopf, Dieter

    2009-10-01

    Heterotrimeric G proteins are key mediators of signals from membrane receptors-including the thyroid-stimulating hormone (TSH) receptor-to cellular effectors. Gain-of-function mutations in the TSH receptor and the Galpha(S) subunit occur frequently in hyperfunctioning thyroid nodules and differentiated thyroid carcinomas, whereby the T allele of a common polymorphism (825C>T, rs5443) in the G protein beta3 subunit gene (GNB3) is associated with increased G protein-mediated signal transduction and a complex phenotype. The aim of this study was to investigate whether this common polymorphism affects key parameters of thyroid function and morphology and influences the pathogenesis of thyroid diseases in the general population. The population-based cross-sectional Study of Health in Pomerania is a general health survey with focus on thyroid diseases in northeast Germany, a formerly iodine-deficient area. Data from 3428 subjects (1800 men and 1628 women) were analyzed for an association of the GNB3 genotype with TSH, free triiodothyronine and thyroxine levels, urine iodine and thiocyanate excretion, and thyroid ultrasound morphology including thyroid volume, presence of goiter, and thyroid nodules. There was no association between GNB3 genotype status and the functional or morphological thyroid parameters investigated, neither in crude analyses nor upon multivariable analyses including known confounders of thyroid disorders. Based on the data from this large population-based survey, we conclude that the GNB3 825C>T polymorphism does not affect key parameters of thyroid function and morphology in the general population of a formerly iodine-deficient area.

  1. Fossil Plotopterid Seabirds from the Eo-Oligocene of the Olympic Peninsula (Washington State, USA): Descriptions and Functional Morphology

    PubMed Central

    Dyke, Gareth J.; Wang, Xia; Habib, Michael B.

    2011-01-01

    The plotopterids (Aves, Plotopteridae) were a group of extinct wing-propelled marine birds that are known from Paleogene-aged sediments (Eocene to Miocene), mostly around the Pacific Rim (especially Japan and the northwest coast of North America). While these birds exhibit a strikingly similar wing morphology to penguins (Spheniscidae), they also share derived characters with pelecaniform birds that are absent in penguins and exhibit apparently superficial similarities with auks (Alcidae: Charadriiformes). Despite quite an abundant fossil record, these birds have been little studied, and in particular their functional morphology remains little understood. Here we present osteological overviews of specimens from the northwest coast of Washington state (USA). We give an amended diagnosis for the well-represented North American genus, Tonsala Olson, 1980, describe a new large species, and examine the functional morphology of plotopterids showing that the ratio of humeral strength to femoral strength is quite low in one well-represented species Tonsala buchanani sp.nov., relative to both extant penguins and alcids. While the femoral strength of Tonsala buchanani is ‘penguin-grade’, its humeral strength is more ‘alcid-grade’. These results have implications for understanding the mode-of-locomotion of these extinct marine birds. Although not related to Spheniscidae, our descriptions and functional results suggest that Tonsala buchanani sustained similar loads in walking, but slightly lower humeral loads during swimming, than a modern penguin. This suggests a swimming mode that is more similar to living alcids, than to the highly-specialised locomotor strategy of living and fossil penguins. PMID:22065992

  2. Evolution of the hominin knee and ankle.

    PubMed

    Frelat, Mélanie A; Shaw, Colin N; Sukhdeo, Simone; Hublin, Jean-Jacques; Benazzi, Stefano; Ryan, Timothy M

    2017-07-01

    The dispersal of the genus Homo out of Africa approximately 1.8 million years ago (Ma) has been understood within the context of changes in diet, behavior, and bipedal locomotor efficiency. While various morphological characteristics of the knee and ankle joints are considered part of a suite of traits indicative of, and functionally related to, habitual bipedal walking, the timing and phylogenetic details of these morphological changes remain unclear. To evaluate the timing of knee and ankle joint evolution, we apply geometric morphometric methods to three-dimensional digital models of the proximal and distal tibiae of fossil hominins, Holocene Homo sapiens, and extant great apes. Two sets of landmarks and curve semilandmarks were defined on each specimen. Because some fossils were incomplete, digital reconstructions were carried out independently to estimate missing landmarks and semilandmarks. Group shape variation was evaluated through shape-and form-space principal component analysis and fossil specimens were projected to assess variation in the morphological space computed from the extant comparative sample. We show that a derived proximal tibia (knee) similar to that seen in living H. sapiens evolved with early Homo at ∼2 Ma. In contrast, derived characteristics in the distal tibia appear later, probably with the arrival of Homo erectus. These results suggest a dissociation of the morphologies of the proximal and distal tibia, perhaps indicative of divergent functional demands and, consequently, selective pressures at these joints. It appears that longer distance dispersals that delivered the Dmanisi hominins to Georgia by 1.8 Ma and H. erectus to east-southeast Asia by 1.6 Ma were facilitated by the evolution of a morphologically derived knee complex comparable to that of recent humans and an ankle that was morphologically primitive. This research sets the foundation for additional paleontological, developmental, and functional research to better understand the mechanisms underlying the evolution of bipedalism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Investigating biomass burning aerosol morphology using a laser imaging nephelometer

    NASA Astrophysics Data System (ADS)

    Manfred, Katherine M.; Washenfelder, Rebecca A.; Wagner, Nicholas L.; Adler, Gabriela; Erdesz, Frank; Womack, Caroline C.; Lamb, Kara D.; Schwarz, Joshua P.; Franchin, Alessandro; Selimovic, Vanessa; Yokelson, Robert J.; Murphy, Daniel M.

    2018-02-01

    Particle morphology is an important parameter affecting aerosol optical properties that are relevant to climate and air quality, yet it is poorly constrained due to sparse in situ measurements. Biomass burning is a large source of aerosol that generates particles with different morphologies. Quantifying the optical contributions of non-spherical aerosol populations is critical for accurate radiative transfer models, and for correctly interpreting remote sensing data. We deployed a laser imaging nephelometer at the Missoula Fire Sciences Laboratory to sample biomass burning aerosol from controlled fires during the FIREX intensive laboratory study. The laser imaging nephelometer measures the unpolarized scattering phase function of an aerosol ensemble using diode lasers at 375 and 405 nm. Scattered light from the bulk aerosol in the instrument is imaged onto a charge-coupled device (CCD) using a wide-angle field-of-view lens, which allows for measurements at 4-175° scattering angle with ˜ 0.5° angular resolution. Along with a suite of other instruments, the laser imaging nephelometer sampled fresh smoke emissions both directly and after removal of volatile components with a thermodenuder at 250 °C. The total integrated aerosol scattering signal agreed with both a cavity ring-down photoacoustic spectrometer system and a traditional integrating nephelometer within instrumental uncertainties. We compare the measured scattering phase functions at 405 nm to theoretical models for spherical (Mie) and fractal (Rayleigh-Debye-Gans) particle morphologies based on the size distribution reported by an optical particle counter. Results from representative fires demonstrate that particle morphology can vary dramatically for different fuel types. In some cases, the measured phase function cannot be described using Mie theory. This study demonstrates the capabilities of the laser imaging nephelometer instrument to provide realtime, in situ information about dominant particle morphology, which is vital for understanding remote sensing data and accurately describing the aerosol population in radiative transfer calculations.

  4. BEMOVI, software for extracting behavior and morphology from videos, illustrated with analyses of microbes.

    PubMed

    Pennekamp, Frank; Schtickzelle, Nicolas; Petchey, Owen L

    2015-07-01

    Microbes are critical components of ecosystems and provide vital services (e.g., photosynthesis, decomposition, nutrient recycling). From the diverse roles microbes play in natural ecosystems, high levels of functional diversity result. Quantifying this diversity is challenging, because it is weakly associated with morphological differentiation. In addition, the small size of microbes hinders morphological and behavioral measurements at the individual level, as well as interactions between individuals. Advances in microbial community genetics and genomics, flow cytometry and digital analysis of still images are promising approaches. They miss out, however, on a very important aspect of populations and communities: the behavior of individuals. Video analysis complements these methods by providing in addition to abundance and trait measurements, detailed behavioral information, capturing dynamic processes such as movement, and hence has the potential to describe the interactions between individuals. We introduce BEMOVI, a package using the R and ImageJ software, to extract abundance, morphology, and movement data for tens to thousands of individuals in a video. Through a set of functions BEMOVI identifies individuals present in a video, reconstructs their movement trajectories through space and time, and merges this information into a single database. BEMOVI is a modular set of functions, which can be customized to allow for peculiarities of the videos to be analyzed, in terms of organisms features (e.g., morphology or movement) and how they can be distinguished from the background. We illustrate the validity and accuracy of the method with an example on experimental multispecies communities of aquatic protists. We show high correspondence between manual and automatic counts and illustrate how simultaneous time series of abundance, morphology, and behavior are obtained from BEMOVI. We further demonstrate how the trait data can be used with machine learning to automatically classify individuals into species and that information on movement behavior improves the predictive ability.

  5. Changes in functional connectivity within the fronto-temporal brain network induced by regular and irregular Russian verb production

    PubMed Central

    Kireev, Maxim; Slioussar, Natalia; Korotkov, Alexander D.; Chernigovskaya, Tatiana V.; Medvedev, Svyatoslav V.

    2015-01-01

    Functional connectivity between brain areas involved in the processing of complex language forms remains largely unexplored. Contributing to the debate about neural mechanisms underlying regular and irregular inflectional morphology processing in the mental lexicon, we conducted an fMRI experiment in which participants generated forms from different types of Russian verbs and nouns as well as from nonce stimuli. The data were subjected to a whole brain voxel-wise analysis of context dependent changes in functional connectivity [the so-called psychophysiological interaction (PPI) analysis]. Unlike previously reported subtractive results that reveal functional segregation between brain areas, PPI provides complementary information showing how these areas are functionally integrated in a particular task. To date, PPI evidence on inflectional morphology has been scarce and only available for inflectionally impoverished English verbs in a same-different judgment task. Using PPI here in conjunction with a production task in an inflectionally rich language, we found that functional connectivity between the left inferior frontal gyrus (LIFG) and bilateral superior temporal gyri (STG) was significantly greater for regular real verbs than for irregular ones. Furthermore, we observed a significant positive covariance between the number of mistakes in irregular real verb trials and the increase in functional connectivity between the LIFG and the right anterior cingulate cortex in these trails, as compared to regular ones. Our results therefore allow for dissociation between regularity and processing difficulty effects. These results, on the one hand, shed new light on the functional interplay within the LIFG-bilateral STG language-related network and, on the other hand, call for partial reconsideration of some of the previous findings while stressing the role of functional temporo-frontal connectivity in complex morphological processes. PMID:25741262

  6. Honey Attenuates the Detrimental Effects of Nicotine on Testicular Functions in Nicotine Treated Wistar Rats.

    PubMed

    Kolawole, T A; Oyeyemi, W A; Adigwe, C; Leko, B; Udeh, C; Dapper, D V

    2015-12-20

    Effect of honey on reproductive functions of male rats exposed to nicotine was examined in this study. Thirty-two adult male wistar rats (n=8/Group) were grouped as Control (distilled water), Nicotine (1.0mg/kg bwt), Honey (100mg/kg bwt) and Nicotine with Honey. The animals were orally treated for 35 days consecutively. Epididymis sperm motility, viability, morphology and counts were estimated, serum Follicle Stimulating Hormone (FSH), Leutinizing Hormone (LH) and Testosterone were assayed using ELISA method and testicular histology were also assessed. Significant reduction in percentage sperm motility, viability, morphology and counts were observed in nicotine group compared to control. Serum FSH, LH and testosterone levels were significantly reduced in nicotine group when compared with the control. There was significant improvement in sperm motility, viability, morphology, counts, FSH, LH and Testosterone in group co-treated with nicotine and honey  relative to nicotine group. Also, the degenerative seminiferous tubule architecture due to nicotine was improved by honey. In conclusion, honey may suppress nicotine toxic effect on reproductive functions in male Wistar rats.

  7. [Morphological changes in the thyroid gland of rats during various phases of the estral cycle].

    PubMed

    Pliner, L I; Ledovskaia, S M

    1975-08-01

    The functional state of the thyroid gland and the concentration of thyroid hormones in the peripheral blood were studied in 20 mature female albino rats during their estral cycle. Evaluation of the thyroid functional state was made according to data of histological, morphological (the diameter of folliculi, the height of the thyroid epithelium) and histochemical analysis (determination of NAD and NADP-dehydrogenase, succinatedehydrogenase, lactate dehydrogenase, peroxydase, acid and alkaline phosphatase) as well as biochemical determination of iodine bound with protein (IBP) in the blood plasma and investigation of the ratio of the parameters in question under conditions of the sex cycle. The cyclic changes of the morphological state of the thyroid gland attended by the phases of the estral cycle were revealed. The activation of the organ was observed in proestrus and estrus which was evidenced by high levels of activity of the enzymes under study, high concentration of IBP in the blood and increased height of thyreocytes. A decreased function of the thyroid parenchyma was observed at the period of metaestrus-diestrus.

  8. Sperm characteristics and teratology in rats following vas deferens occlusion with RISUG and its reversal.

    PubMed

    Lohiya, N K; Suthar, R; Khandelwal, A; Goyal, S; Ansari, A S; Manivannan, B

    2010-02-01

    The functional success of the reversal of vas occlusion by styrene maleic anhydride (RISUG), using the solvent vehicle, Dimethyl Sulphoxide (DMSO), has been investigated. Reversal with DMSO was carried out in Wistar albino rats 90 days after bilateral vas occlusion. The body weight, organ weight, sperm characteristics, fertility test and teratology, including skeletal morphology were evaluated in vas occlusion and reversal animals and in F(1) progenies to assess the functional success of the occlusion and reversal. Body weight, organ weight and the cauda epididymal sperm characteristics of vas occlusion and reversal animals and of F(1) progenies were comparable to control. Ejaculated spermatozoa in the vaginal smear showed detached head/tail, acrosomal damage, bent midpiece, bent tail and morphological aberrations in sperm head after vas occlusion, which returned to normal, 90 days after reversal. Monthly fertility test, post-injection showed 0% fertility, which improved gradually and 100% fertility was achieved 90 days after reversal. The fertility/pregnancy/implantation record and skeletal morphology of the offspring were comparable to control. The results suggest functional success and safety of vas occlusion reversal by DMSO.

  9. The histology of Nanomia bijuga (Hydrozoa: Siphonophora)

    PubMed Central

    Siebert, Stefan; Bhattacharyya, Pathikrit; Dunn, Casey W.

    2015-01-01

    ABSTRACT The siphonophore Nanomia bijuga is a pelagic hydrozoan (Cnidaria) with complex morphological organization. Each siphonophore is made up of many asexually produced, genetically identical zooids that are functionally specialized and morphologically distinct. These zooids predominantly arise by budding in two growth zones, and are arranged in precise patterns. This study describes the cellular anatomy of several zooid types, the stem, and the gas‐filled float, called the pneumatophore. The distribution of cellular morphologies across zooid types enhances our understanding of zooid function. The unique absorptive cells in the palpon, for example, indicate specialized intracellular digestive processing in this zooid type. Though cnidarians are usually thought of as mono‐epithelial, we characterize at least two cellular populations in this species which are not connected to a basement membrane. This work provides a greater understanding of epithelial diversity within the cnidarians, and will be a foundation for future studies on N. bijuga, including functional assays and gene expression analyses. J. Exp. Zool. (Mol. Dev. Evol.) 324B:435–449, 2015. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution Published by Wiley Periodicals, Inc. PMID:26036693

  10. Microcoaxial torsional cataract surgery 1.8 mm versus 2.2 mm: functional and morphological assessment.

    PubMed

    Mastropasqua, Leonardo; Toto, Lisa; Vecchiarino, Luca; Di Nicola, Marta; Mastropasqua, Rodolfo

    2011-01-01

    To compare functional and morphological outcomes of 1.8-mm versus 2.2-mm microincision coaxial cataract surgery (MCCS). Thirty eyes of 30 patients that underwent MCCS were randomized to two groups: 1.8-mm MCCS (group 1: 15 eyes) and 2.2-mm MCCS (group 2: 15 eyes). There were no significant between-group differences in uncorrected visual acuity, best-corrected visual acuity, keratometric astigmatism, and endothelial cell count. One day postoperatively, a greater increase of corneal thickness at the incision site was observed in group 1 compared to group 2 using anterior segment optical coherence tomography with no significant differences in tunnel morphometric features and confocal microscopy showed more tunnel edema in group 1 versus group 2 that resolved in both groups. Both 1.8- and 2.2-mm torsional MCCS were safe and efficient with easy surgical maneuvers and excellent functional and morphological results; 1.8-mm MCCS induced slightly greater tunnel edema shortly after surgery that resolved in the medium term. Copyright 2011, SLACK Incorporated.

  11. The phallus in Tettigoniidae (Insecta: Orthoptera: Ensifera): revision of morphology and terminology, and discussion on its taxonomic importance and evolution.

    PubMed

    Chamorro-Rengifo, Juliana; Lopes-Andrade, Cristiano

    2014-06-13

    The phallus in Tettigoniidae (katydids) is a structure informative relative to the systematics of the group. Despite this, it is often not considered in descriptions of taxa. The lack of adequate descriptions of phalli is not only a gap for sytematic and morphological studies, but postpones works on the evolution of copula. Here we study the exoskeletal morphology of the phallus in katydids, its components, and revised the terminology for them. We carried out dissections for morphological comparisons, and complement the observational information with published data. We stained phalli of katydids with chlorazol black, to better contrast membranous versus sclerotized components. We demonstrate that phallic components vary at specific, generic and suprageneric levels, and that internal and external components vary in number, shape, size and position. Currently there is little comparative data to support hypotheses on the evolution of this structure, but possibly the possession of a titillator is an ancestral condition. We identify additional sclerotized components, the sclerites of the ventral fold of the dorsal lobe, which can modify the shape and function of the titillator, being also important for understanding the evolution of the phallus. Potential functional relationships based on hypothetical morphological correlations between the shape of titillator and cerci are proposed, categorized in three main groups: (i) phallus devoid of titillator and cerci simple, (ii) titillator with bifurcated or paired sclerites, and cerci adapted for grasping, and (iii) titillator with single process and/or sclerite and cerci simple, sometimes with a pointed tip. Two explanations for these hypothetical morphological correlations and morphological variation are proposed: first, species with similar structures at the postabdomen would share similar copulatory behaviour, and second, more than one selective pressure would have acted over the structures of the postabdomen.

  12. Morphology and digitally aided morphometry of the human paracentral lobule.

    PubMed

    Spasojević, Goran; Malobabic, Slobodan; Pilipović-Spasojević, Olivera; Djukić-Macut, Nataša; Maliković, Aleksandar

    2013-02-01

    The human paracentral lobule, the junction of the precentral and postcentral gyri at the medial hemispheric surface, contains several important functional regions, and its variable morphology requires exact morphological and quantitativedata. In order to obtain precise data we investigated the morphology of the paracentral lobule and quantified its visible (extrasulcal) surface. This surface corresponds to commonly used magnetic resonance imaging scout images. We studied 84 hemispheres of adult persons (42 brains; 26 males and 16 females; 20-65 years) fixed in neutral formalin for at least 4 weeks. The medial hemispheric surface was photographed at standard distance and each digital photo was calibrated. Using the intercommissural line system (commissura anterior-commissura posterior or CA-CP line), we performed standardised measurements of the paracentral lobule. Exact determination of its boundaries and morphological types was followed by digital morphometry of its extrasulcal surface using AutoCAD software. We found two distinct morphological types of the human paracentral lobule: continuous type, which was predominant (95.2%), and rare segmented type (4.8%). In hemispheres with segmented cingulate sulcus we also found the short transitional lobulo-limbic gyrus (13.1%). The mean extrasulcal surface of the left paracentral lobule was significantly larger, both in males (left 6.79 cm2 vs. right 5.76 cm2) and in females (left 6.05 cm2 vs. right 5.16 cm2). However, even larger average surfaces in males were not significantly different than the same in females. Reported morphological and quantitative data will be useful during diagnostics and treatment of pathologies affecting the human paracentral lobule, and in further studies of its cytoarchitectonic and functional parcellations.

  13. ALS/FTLD-linked TDP-43 regulates neurite morphology and cell survival in differentiated neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Jeong-Ho; Yu, Tae-Hoon; Ryu, Hyun-Hee

    2013-08-01

    Tar-DNA binding protein of 43 kDa (TDP-43) has been characterized as a major component of protein aggregates in brains with neurodegenerative diseases such as frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). However, physiological roles of TDP-43 and early cellular pathogenic effects caused by disease associated mutations in differentiated neurons are still largely unknown. Here, we investigated the physiological roles of TDP-43 and the effects of missense mutations associated with diseases in differentiated cortical neurons. The reduction of TDP-43 by siRNA increased abnormal neurites and decreased cell viability. ALS/FTLD-associated missense mutant proteins (A315T, Q331K, and M337V) were partially mislocalizedmore » to the cytosol and neurites when compared to wild-type and showed abnormal neurites similar to those observed in cases of loss of TDP-43. Interestingly, cytosolic expression of wild-type TDP-43 with mutated nuclear localization signals also induced abnormal neurtie morphology and reduction of cell viability. However, there was no significant difference in the effects of cytosolic expression in neuronal morphology and cell toxicity between wild-type and missense mutant proteins. Thus, our results suggest that mislocalization of missense mutant TDP-43 may contribute to loss of TDP-43 function and affect neuronal morphology, probably via dominant negative action before severe neurodegeneration in differentiated cortical neurons. Highlights: • The function of nuclear TDP-43 in neurite morphology in mature neurons. • Partial mislocalization of TDP-43 missense mutants into cytosol from nucleus. • Abnormal neurite morphology caused by missense mutants of TDP-43. • The effect of cytosolic expression of TDP-43 in neurite morphology and in cell survival.« less

  14. [Functional properties of taste bud cells. Mechanisms of afferent neurotransmission in Type II taste receptor cells].

    PubMed

    Romanov, R A

    2013-01-01

    Taste Bud cells are heterogeneous in their morphology and functionality. These cells are responsible for sensing a wide variety of substances and for associating detected compounds with a different taste: bitter, sweet, salty, sour and umami. Today we know that each of the five basic tastes corresponds to distinct cell populations organized into three basic morpho-functional cell types. In addition, some receptor cells of the taste bud demonstrate glia-related functions. In this article we expand on some properties of these three morphological receptor cell types. Main focus is devoted to the Type II cells and unusual mechanism for afferent neurotransmission in these cells. Taste cells of the Type II consist of three populations detecting bitter, sweet and umami tastes, and, thus, evoke a serious scientific interest.

  15. Quantitative investigation of red blood cell three-dimensional geometric and chemical changes in the storage lesion using digital holographic microscopy.

    PubMed

    Jaferzadeh, Keyvan; Moon, Inkyu

    2015-11-01

    Quantitative phase information obtained by digital holographic microscopy (DHM) can provide new insight into the functions and morphology of single red blood cells (RBCs). Since the functionality of a RBC is related to its three-dimensional (3-D) shape, quantitative 3-D geometric changes induced by storage time can help hematologists realize its optimal functionality period. We quantitatively investigate RBC 3-D geometric changes in the storage lesion using DHM. Our experimental results show that the substantial geometric transformation of the biconcave-shaped RBCs to the spherocyte occurs due to RBC storage lesion. This transformation leads to progressive loss of cell surface area, surface-to-volume ratio, and functionality of RBCs. Furthermore, our quantitative analysis shows that there are significant correlations between chemical and morphological properties of RBCs.

  16. Importance of circulating IGF-1 for normal cardiac morphology, function and post infarction remodeling.

    PubMed

    Scharin Täng, M; Redfors, B; Lindbom, M; Svensson, J; Ramunddal, T; Ohlsson, C; Shao, Y; Omerovic, E

    2012-12-01

    IGF-1 plays an important role in cardiovascular homeostasis, and plasma levels of IGF-1 correlate inversely with systolic function in heart failure. It is not known to what extent circulating IGF-1 secreted by the liver and local autocrine/paracrine IGF-1 expressed in the myocardium contribute to these beneficial effects on cardiac function and morphology. In the present study, we used a mouse model of liver-specific inducible deletion of the IGF-1 gene (LI-IGF-1 -/- mouse) in an attempt to evaluate the importance of circulating IGF-I on cardiac morphology and function under normal and pathological conditions, with an emphasis on its regulatory role in myocardial phosphocreatine metabolism. Echocardiography was performed in LI-IGF-1 -/- and control mice at rest and during dobutamine stress, both at baseline and post myocardial infarction (MI). High-energy phosphate metabolites were compared between LI-IGF-1 -/- and control mice at 4 weeks post MI. We found that LI-IGF-1 -/- mice had significantly greater left ventricular dimensions at baseline and showed a greater relative increase in cardiac dimensions, as well as deterioration of cardiac function, post MI. Myocardial creatine content was 17.9% lower in LI-IGF-1 -/- mice, whereas there was no detectable difference in high-energy nucleotides. These findings indicate an important role of circulating IGF-1 in preserving cardiac structure and function both in physiological settings and post MI. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Strong morphological defects in conditional Arabidopsis abp1 knock-down mutants generated in absence of functional ABP1 protein.

    PubMed

    Michalko, Jaroslav; Glanc, Matouš; Perrot-Rechenmann, Catherine; Friml, Jiří

    2016-01-01

    The Auxin Binding Protein 1 (ABP1) is one of the most studied proteins in plants. Since decades ago, it has been the prime receptor candidate for the plant hormone auxin with a plethora of described functions in auxin signaling and development. The developmental importance of ABP1 has recently been questioned by identification of Arabidopsis thaliana abp1 knock-out alleles that show no obvious phenotypes under normal growth conditions. In this study, we examined the contradiction between the normal growth and development of the abp1 knock-outs and the strong morphological defects observed in three different ethanol-inducible abp1 knock-down mutants ( abp1-AS, SS12K, SS12S). By analyzing segregating populations of abp1 knock-out vs. abp1 knock-down crosses we show that the strong morphological defects that were believed to be the result of conditional down-regulation of ABP1 can be reproduced also in the absence of the functional ABP1 protein. This data suggests that the phenotypes in  abp1 knock-down lines are due to the off-target effects and asks for further reflections on the biological function of ABP1 or alternative explanations for the missing phenotypic defects in the abp1 loss-of-function alleles.

  18. Genetic mouse embryo assay: improving performance and quality testing for assisted reproductive technology (ART) with a functional bioassay.

    PubMed

    Gilbert, Rebecca S; Nunez, Brandy; Sakurai, Kumi; Fielder, Thomas; Ni, Hsiao-Tzu

    2016-03-24

    Growing concerns about safety of ART on human gametes, embryos, clinical outcomes and long-term health of offspring require improved methods of risk assessment to provide functionally relevant assays for quality control testing and pre-clinical studies prior to clinical implementation. The one-cell mouse embryo assay (MEA) is the most widely used for development and quality testing of human ART products; however, concerns exist due to the insensitivity/variability of this bioassay which lacks standardization and involves subjective analysis by morphology alone rather than functional analysis of the developing embryos. We hypothesized that improvements to MEA by the use of functional molecular biomarkers could enhance sensitivity and improve detection of suboptimal materials/conditions. Fresh one-cell transgenic mouse embryos with green fluorescent protein (GFP) expression driven by Pou6f1 or Cdx2 control elements were harvested and cultured to blastocysts in varied test and control conditions to compare assessment by standard morphology alone versus the added dynamic expression of GFP for screening and selection of critical raw materials and detection of suboptimal culture conditions. Transgenic mouse embryos expressing functionally relevant biomarkers of normal early embryo development can be used to monitor the developmental impact of culture conditions. This novel approach provides a superior MEA that is more meaningful and sensitive for detection of embryotoxicity than morphological assessment alone.

  19. Fractal branching organizations of Ediacaran rangeomorph fronds reveal a lost Proterozoic body plan.

    PubMed

    Hoyal Cuthill, Jennifer F; Conway Morris, Simon

    2014-09-09

    The branching morphology of Ediacaran rangeomorph fronds has no exact counterpart in other complex macroorganisms. As such, these fossils pose major questions as to growth patterns, functional morphology, modes of feeding, and adaptive optimality. Here, using parametric Lindenmayer systems, a formal model of rangeomorph morphologies reveals a fractal body plan characterized by self-similar, axial, apical, alternate branching. Consequent morphological reconstruction for 11 taxa demonstrates an adaptive radiation based on 3D space-filling strategies. The fractal body plan of rangeomorphs is shown to maximize surface area, consistent with diffusive nutrient uptake from the water column (osmotrophy). The enigmas of rangeomorph morphology, evolution, and extinction are resolved by the realization that they were adaptively optimized for unique ecological and geochemical conditions in the late Proterozoic. Changes in ocean conditions associated with the Cambrian explosion sealed their fate.

  20. Intersections between immune responses and morphological regulation in plants.

    PubMed

    Uchida, Naoyuki; Tasaka, Masao

    2010-06-01

    Successful plant pathogens have developed strategies to interfere with the defence mechanisms of their host plants through evolution. Conversely, host plants have evolved systems to counteract pathogen attack. Some pathogens induce pathogenic symptoms on plants that include morphological changes in addition to interference with plant growth. Recent studies, based on molecular biology and genetics using Arabidopsis thaliana, have revealed that factors derived from pathogens can modulate host systems and/or host factors that play important roles in the morphological regulation of host plants. Other reports, meanwhile, have shown that factors known to have roles in plant morphology also function in plant immune responses. Evolutionary conservation of these factors and systems implies that host-pathogen interactions and the evolution they drive have yielded tight links between morphological processes and immune responses. In this review, recent findings about these topics are introduced and discussed.

  1. Structure and functions of fungal cell surfaces

    NASA Technical Reports Server (NTRS)

    Nozawa, Y.

    1984-01-01

    A review with 24 references on the biochemistry, molecular structure, and function of cell surfaces of fungi, especially dermatophytes: the chemistry and structure of the cell wall, the effect of polyene antibiotics on the morphology and function of cytoplasmic membranes, and the chemical structure and function of pigments produced by various fungi are discussed.

  2. Systematic study of inorganic functionalization of ZnO nanorods by Sol-Gel method

    NASA Astrophysics Data System (ADS)

    Gamarra, J. K.; Solano, C.; Piñeres, I.; Gómez, H.; Mass, J.; Montenegro, D. N.

    2017-01-01

    A systematic study of the inorganic surface functionalization of ZnO nanostructures by sol-gel method is shown. We have emphasized on the evolution of morphology properties of samples as a function of functionalization parameters. In addition, the effects on thermal stability and some optical properties of samples are discussed.

  3. Morphological and textural characterization of functionalized particulate silica xerogels

    NASA Astrophysics Data System (ADS)

    de Miranda, Lazaro A.; Mohallem, Nelcy D. S.; de Magalhães, Welington F.

    2006-03-01

    The functionalization of xerogels for use in chromatography and catalysis was carried out by solubilization of amorphous silica using a soxhlet extractor. Xerogels were prepared by sol-gel method using tetraethoxysilane, TEOS, ethanol, and water in a 1/3/10 molar ratio with HCl and HF as catalysts. The samples were prepared in monolithic form and dried at 70 °C and 550 °C for 1 h each. After functionalization, changes in textural and morphological characteristics of xerogels were investigated by means of nitrogen gas adsorption, positron annihilation lifetime spectroscopy (PALS), and scanning electron microscopy (SEM). As the analysis methods are based on different physical principles, the results are complementary, leading to a good knowledge of the texture of the samples studied.

  4. Symbrachydactyly - Diagnosis, Function, and Treatment.

    PubMed

    Woodside, Julie C; Light, Terry R

    2016-01-01

    Symbrachydactyly is a congenital hand difference that presents with diverse morphologic forms and can be confused with many other congenital hand differences. Congenital hand difference classification schemes categorize symbrachydactyly as an undergrowth or failure of axis formation. It is further categorized by the number of affected fingers, by morphologic characteristics, and by the functional status of the hand. Symbrachydactyly represents a disruption of embryonic formation and differentiation that results in a hand shorter and smaller than the contralateral with underdeveloped often short or webbed digits, digital nubbins, or absent digits. Treatment is patient specific and should be guided to improve the function and appearance of the hand. Copyright © 2016 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  5. Infants' Attribution of a Goal to a Morphologically Unfamiliar Agent

    ERIC Educational Resources Information Center

    Shimizu, Y. Alpha; Johnson, Susan C.

    2004-01-01

    How do infants identify the psychological actors in their environments? Three groups of 12-month-old infants were tested for their willingness to encode a simple approach behavior as goal-directed as a function of whether it was performed by (1) a human hand, (2) a morphologically unfamiliar green object that interacted with a confederate and…

  6. International review of cytology. Volume 106. A survey of cell biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourne, G.H.; Jeon, K.W.; Friedlander, M.

    1987-01-01

    Contents: Morphology and Cytochemistry of the Endocrine Epthelial System in the Lung; Intrinsic Nerve Plexus of Mammalian Heart; Morphological Basis of Cardiac Rhythmical Activity. Structural and Functional Evolution of Gonadotropin-Releasing Hormone; Excitons and Solitons in Molecular Systems; The Centrosome and Its Role in the Organization of Microtubules. Each chapter includes references. Index.

  7. Multiphase materials with lignin: 5. Effect of lignin atructure on hydroxypropyl cellulose blend morphology

    Treesearch

    Timothy G. Rials; Wolfgang G. Glasser

    1990-01-01

    The incremental elimination of hydroxy functionality in an organosolv lignin by ethylation or acetylation dramatically influenced the state of miscibility and resulting morphology of blends prepared with hydroxypropyl cellulose (HPC). A maximum level of interation between the blend components, as determined from melting point depression, occurred where 23-40% of the...

  8. Structural complexities in the active layers of organic electronics.

    PubMed

    Lee, Stephanie S; Loo, Yueh-Lin

    2010-01-01

    The field of organic electronics has progressed rapidly in recent years. However, understanding the direct structure-function relationships between the morphology in electrically active layers and the performance of devices composed of these materials has proven difficult. The morphology of active layers in organic electronics is inherently complex, with heterogeneities existing across multiple length scales, from subnanometer to micron and millimeter range. A major challenge still facing the organic electronics community is understanding how the morphology across all of the length scales in active layers collectively determines the device performance of organic electronics. In this review we highlight experiments that have contributed to the elucidation of structure-function relationships in organic electronics and also point to areas in which knowledge of such relationships is still lacking. Such knowledge will lead to the ability to select active materials on the basis of their inherent properties for the fabrication of devices with prespecified characteristics.

  9. The effect of dentinal stimulation on pulp nerve function and pulp morphology in the dog.

    PubMed

    Hirvonen, T J; Närhi, M V

    1986-11-01

    The effect of dentinal stimulation on pulpal nerve responses and pulp morphology has been studied in the dog. Canine tooth (n = 25) dentin was stimulated by drilling, probing, and air-blasting for from two to five hours. Acid-etching was used to open dentinal tubules. All test teeth showed disruption of the odontoblast layer and its separation from the predentin; also, dislocation of odontoblast nuclei into dentinal tubules was found in most cases. Single-fiber (n = 14, conduction velocity = 24.3 +/- 7.4 (SD) m/s) recordings of the responses of canine tooth pulpal nerves to dentinal stimulation were made in ten of the stimulated teeth. No changes in the sensitivity of the nerves to dentinal stimulation could be detected. It is concluded that pulpal nerve function and morphological changes of the pulp are not clearly correlated. The condition of the dentin surface seems to be the important factor.

  10. The Gem GTP-binding protein promotes morphological differentiation in neuroblastoma.

    PubMed

    Leone, A; Mitsiades, N; Ward, Y; Spinelli, B; Poulaki, V; Tsokos, M; Kelly, K

    2001-05-31

    Gem is a small GTP-binding protein within the Ras superfamily whose function has not been determined. We report here that ectopic Gem expression is sufficient to stimulate cell flattening and neurite extension in N1E-115 and SH-SY5Y neuroblastoma cells, suggesting a role for Gem in cytoskeletal rearrangement and/or morphological differentiation of neurons. Consistent with this potential function, in clinical samples of neuroblastoma, Gem protein was most highly expressed within cells which had differentiated to express ganglionic morphology. Gem was also observed in developing trigeminal nerve ganglia in 12.5 day mouse embryos, demonstrating that Gem expression is a property of normal ganglionic development. Although Gem expression is rare in epithelial and hematopoietic cancer cell lines, constitutive Gem levels were detected in several neuroblastoma cell lines and could be further induced as much as 10-fold following treatment with PMA or the acetylcholine muscarinic agonist, carbachol.

  11. Astrocyte atrophy and immune dysfunction in self-harming macaques.

    PubMed

    Lee, Kim M; Chiu, Kevin B; Sansing, Hope A; Inglis, Fiona M; Baker, Kate C; MacLean, Andrew G

    2013-01-01

    Self-injurious behavior (SIB) is a complex condition that exhibits a spectrum of abnormal neuropsychological and locomotor behaviors. Mechanisms for neuropathogenesis could include irregular immune activation, host soluble factors, and astrocyte dysfunction. We examined the role of astrocytes as modulators of immune function in macaques with SIB. We measured changes in astrocyte morphology and function. Paraffin sections of frontal cortices from rhesus macaques identified with SIB were stained for glial fibrillary acidic protein (GFAP) and Toll-like receptor 2 (TLR2). Morphologic features of astrocytes were determined using computer-assisted camera lucida. There was atrophy of white matter astrocyte cell bodies, decreased arbor length in both white and gray matter astrocytes, and decreased bifurcations and tips on astrocytes in animals with SIB. This was combined with a five-fold increase in the proportion of astrocytes immunopositive for TLR2. These results provide direct evidence that SIB induces immune activation of astrocytes concomitant with quantifiably different morphology.

  12. Morphology of seahorse head hydrodynamically aids in capture of evasive prey.

    PubMed

    Gemmell, Brad J; Sheng, Jian; Buskey, Edward J

    2013-01-01

    Syngnathid fish (seahorses, pipefish and sea dragons) are slow swimmers yet capture evasive prey (copepods) using a technique known as the 'pivot' feeding, which involves rapid movement to overcome prey escape capabilities. However, this feeding mode functions only at short range and requires approaching very closely to hydrodynamically sensitive prey without triggering an escape. Here we investigate the role of head morphology on prey capture using holographic and particle image velocimetry (PIV). We show that head morphology functions to create a reduced fluid deformation zone, minimizing hydrodynamic disturbance where feeding strikes occur (above the end of the snout), and permits syngnathid fish to approach highly sensitive copepod prey (Acartia tonsa) undetected. The results explain how these animals can successfully employ short range 'pivot' feeding effectively on evasive prey. The need to approach prey with stealth may have selected for a head shape that produces lower deformation rates than other fish.

  13. Appraisal of Bleb Using Trio of Intraocular Pressure, Morphology on Slit Lamp, and Gonioscopy.

    PubMed

    Thatte, Shreya; Rana, Rimpi; Gaur, Neeraj

    2016-01-01

    The aim of this study was to assess bleb function using Wuerzburg bleb classification score (WBCS) for bleb morphology on slit lamp, intraocular pressure (IOP), and gonioscopy. A total of randomly selected 30 eyes posttrabeculectomy were assessed for bleb function with the trio of bleb morphology, IOP, and gonioscopy. Bleb was assessed using the WBCS of 0-12 on slit lamp, IOP was assessed using applanation tonometry, and visualization of inner ostium and iridectomy were assessed using gonioscopy. Postoperative patients of less than six weeks were excluded from the study. The correlation between WBCS and the duration of trabeculectomy was found to be highly significant ( P value = 0.029). The correlation of IOP with WBCS was also found to be strongly positive ( P = 0.000). IOP was found to be highly associated with peripheral iridectomy ( P = 0.000), internal window ( P = 0.001), and bleb characteristics.

  14. [Morphofunctional and molecular bases of pineal gland aging].

    PubMed

    Khavinson, V Kh; Lin'kova, N S

    2012-01-01

    The review analyzed morphology, molecular and functional aspects of pineal gland aging and methods of it correction. The pineal gland is central organ, which regulates activity of neuroimmunoendocrine, antioxidant and other organisms systems. Functional activity of pineal gland is discreased at aging, which is the reason of melatonin level changing. The molecular and morphology research demonstrated, that pineal gland hadn't strongly pronounced atrophy at aging. Long-term experience showed, that peptides extract of pineal gland epithalamin and synthetic tetrapeptide on it base epithalon restored melatonin secretion in pineal gland and had strong regulatory activity at neuroimmunoendocrine and antioxidant organism systems.

  15. The effect of nanofiber based filter morphology on bacteria deactivation during water filtration

    NASA Astrophysics Data System (ADS)

    Kimmer, Dusan; Vincent, Ivo; Lev, Jaroslav; Kalhotka, Libor; Mikula, Premysl; Korinkova, Radka; Sambaer, Wannes; Zatloukal, Martin

    2013-04-01

    Procedures permitting to prepare homogeneous functionalized nanofibre structures based on polyurethanes modified by phthalocyanines (PCs) by employing a suitable combination of variables during the electrospinning process are presented. Compared are filtration and bacteria deactivation properties of open and planar nanostructures with PCs embedded into polyurethane chain by a covalent bond protecting the release of active organic compound during the filtration process. Finding that the morphology of functionalized nanofibre structures have an effect on bacterial growth was confirmed by microbiological and physico-chemical analyses, such as the inoculation in a nutrient agar culture medium and flow cytometry.

  16. Human cerebral cortex Cajal-Retzius neuron: development, structure and function. A Golgi study.

    PubMed

    Marín-Padilla, Miguel

    2015-01-01

    The development, morphology and possible functional activity of the Cajal-Retzius cell of the developing human cerebral cortex are explored herein. The C-RC, of extracortical origin, is the essential neuron of the neocortex first lamina. It receives inputs from afferent fibers that reach the first lamina early in development. Although the origin and function of these original afferent fibers remain unknown, their target is the first lamina sole neuron: the C-RC. This neuron orchestrates the arrival, size and stratification of all pyramidal neurons (of ependymal origin) of the neocortex gray matter. Its axonic terminals spread radially and horizontally throughout the entirety of the first lamina establishing contacts with the dendritic terminals of all gray matter pyramidal cells regardless of size, location and/or eventual functional roles. While the neuron axonic terminals spread radially and horizontally throughout the first lamina, the neuronal' body undergoes progressive developmental dilution and locating any of them in the adult brain become quite difficult. The neuron bodies are probably retained in the older regions of the neocortex while their axonic collaterals will spread throughout its more recent ones and eventually will extend to great majority of the cortical surface. The neocortex first lamina evolution and composition and that of the C-RC are intertwined and mutually interdependent. It is not possible to understand the C-RC evolving morphology without understanding that of the first lamina. The first lamina composition and its structural and functional organizations obtained with different staining methods may be utterly different. These differences have added unnecessary confusion about its nature. The essential emptiness observed in hematoxylin and eosin preparations (most commonly used) contrast sharply with the concentration of dendrites (the cortex' largest) obtained using special (MAP-2) stain for dendrites. Only Golgi preparations demonstrate the numerous dendritic and axonic terminals that compose the first lamina basic structure. High power microscopic views of Golgi preparations demonstrate the intimate anatomical and functional interrelationships among dendritic and axonic terminals as well as synaptic contacts between them. The C-RC' essential morphology does not changes but it is progressively modified by the first lamina increase in thickness and in number of terminal dendrites and their subsequent maturation. This neuron variable morphologic appearance has been the source of controversy. Its morphology depends on the first lamina thickness that may be quite variable among different mammals. In rodents (most commonly used experimental mammal), the first lamina thickness, number and horizontal expansion of dendrites is but a fraction of those in humans. This differences are reflected in the C-RC' morphology among mammals (including humans) and should not be thought as representing new types of neurons.

  17. Functional 3-D cardiac co-culture model using bioactive chitosan nanofiber scaffolds.

    PubMed

    Hussain, Ali; Collins, George; Yip, Derek; Cho, Cheul H

    2013-02-01

    The in vitro generation of a three-dimensional (3-D) myocardial tissue-like construct employing cells, biomaterials, and biomolecules is a promising strategy in cardiac tissue regeneration, drug testing, and tissue engineering applications. Despite significant progress in this field, current cardiac tissue models are not yet able to stably maintain functional characteristics of cardiomyocytes for long-term culture and therapeutic purposes. The objective of this study was to fabricate bioactive 3-D chitosan nanofiber scaffolds using an electrospinning technique and exploring its potential for long-term cardiac function in the 3-D co-culture model. Chitosan is a natural polysaccharide biomaterial that is biocompatible, biodegradable, non-toxic, and cost effective. Electrospun chitosan was utilized to provide structural scaffolding characterized by scale and architectural resemblance to the extracellular matrix (ECM) in vivo. The chitosan fibers were coated with fibronectin via adsorption in order to enhance cellular adhesion to the fibers and migration into the interfibrous milieu. Ventricular cardiomyocytes were harvested from neonatal rats and studied in various culture conditions (i.e., mono- and co-cultures) for their viability and function. Cellular morphology and functionality were examined using immunofluorescent staining for alpha-sarcomeric actin (SM-actin) and gap junction protein, Connexin-43 (Cx43). Scanning electron microscopy (SEM) and light microscopy were used to investigate cellular morphology, spatial organization, and contractions. Calcium indicator was used to monitor calcium ion flux of beating cardiomyocytes. The results demonstrate that the chitosan nanofibers retained their cylindrical morphology in long-term cell cultures and exhibited good cellular attachment and spreading in the presence of adhesion molecule, fibronectin. Cardiomyocyte mono-cultures resulted in loss of cardiomyocyte polarity and islands of non-coherent contractions. However, the cardiomyocyte-fibroblast co-cultures resulted in polarized cardiomyocyte morphology and retained their morphology and function for long-term culture. The Cx43 expression in the fibroblast co-culture was higher than the cardiomyocytes mono-culture and endothelial cells co-culture. In addition, fibroblast co-cultures demonstrated synchronized contractions involving large tissue-like cellular networks. To our knowledge, this is the first attempt to test chitosan nanofiber scaffolds as a 3-D cardiac co-culture model. Our results demonstrate that chitosan nanofibers can serve as a potential scaffold that can retain cardiac structure and function. These studies will provide useful information to develop a strategy that allows us to generate engineered 3-D cardiac tissue constructs using biocompatible and biodegradable chitosan nanofiber scaffolds for many tissue engineering applications. Copyright © 2012 Wiley Periodicals, Inc.

  18. A geometric morphometric analysis of hominin upper premolars. Shape variation and morphological integration.

    PubMed

    Gómez-Robles, Aida; Martinón-Torres, María; Bermúdez de Castro, José María; Prado-Simón, Leyre; Arsuaga, Juan Luis

    2011-12-01

    This paper continues the series of articles initiated in 2006 that analyse hominin dental crown morphology by means of geometric morphometric techniques. The detailed study of both upper premolar occlusal morphologies in a comprehensive sample of hominin fossils, including those coming from the Gran Dolina-TD6 and Sima de los Huesos sites from Atapuerca, Spain, complement previous works on lower first and second premolars and upper first molars. A morphological gradient consisting of the change from asymmetric to symmetric upper premolars and a marked reduction of the lingual cusp in recent Homo species has been observed in both premolars. Although percentages of correct classification based on upper premolar morphologies are not very high, significant morphological differences between Neanderthals (and European middle Pleistocene fossils) and modern humans have been identified, especially in upper second premolars. The study of morphological integration between premolar morphologies reveals significant correlations that are weaker between upper premolars than between lower ones and significant correlations between antagonists. These results have important implications for understanding the genetic and functional factors underlying dental phenotypic variation and covariation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Morphology and spelling in French students with dyslexia: the case of silent final letters.

    PubMed

    Quémart, Pauline; Casalis, Séverine

    2017-04-01

    Spelling is a challenge for individuals with dyslexia. Phoneme-to-grapheme correspondence rules are highly inconsistent in French, which make them very difficult to master, in particular for dyslexics. One recurrent manifestation of this inconsistency is the presence of silent letters at the end of words. Many of these silent letters perform a morphological function. The current study examined whether students with dyslexia (aged between 10 and 15 years) benefit from the morphological status of silent final letters when spelling. We compared, their ability to spell words with silent final letters that are either morphologically justified (e.g., tricot, "knit," where the final "t" is pronounced in morphologically related words such as tricoter, "to knit" and tricoteur "knitter") or not morphologically justified (e.g., effort, "effort") to that of a group of younger children matched for reading and spelling level. Results indicated that the dyslexic students' spelling of silent final letters was impaired in comparison to the control group. Interestingly, morphological status helped the dyslexics improve the accuracy of their choice of final letters, contrary to the control group. This finding provides new evidence of morphological processing in dyslexia during spelling.

  20. Spelling and Morphology in Dyslexia: A Developmental Study Across the School Years.

    PubMed

    Schiff, Rachel; Levie, Ronit

    2017-11-01

    The current study examined the effect of morphological knowledge on spelling development in Hebrew-speaking schoolchildren, adolescents and adults with dyslexia, compared with typically developing (TD) peers. Participants were 238 Hebrew-speaking readers of five grade levels of whom 139 were TD and 99 had developmental dyslexia (DD). Participants were tested on a function letter spelling task, a phonological awareness task and a morphological awareness task. The overall picture that emerged from the results is that performance on all measures increased with grade level, with TD participants always scoring higher than peers with DD. Moreover, the higher the morphological complexity in spelling and irregularity in noun inflection, the higher the differences between the DD and TD participants. Finally, performance on the morphological awareness task contributed to spelling morphologically more complex spelling items in the TD, but not in the DD group. From clinical and educational perspectives, these results strongly suggest that rigorous morphological instruction is necessary in teaching children and adolescents with dyslexia to identify and use morphological cues in spoken and written Hebrew. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Explosive eversion and functional morphology of the duck penis supports sexual conflict in waterfowl genitalia

    PubMed Central

    Brennan, Patricia L. R.; Clark, Christopher J.; Prum, Richard O.

    2010-01-01

    Coevolution of male and female genitalia in waterfowl has been hypothesized to occur through sexual conflict. This hypothesis raises questions about the functional morphology of the waterfowl penis and the mechanics of copulation in waterfowl, which are poorly understood. We used high-speed video of phallus eversion and histology to describe for the first time the functional morphology of the avian penis. Eversion of the 20 cm muscovy duck penis is explosive, taking an average of 0.36 s, and achieving a maximum velocity of 1.6 m s−1. The collagen matrix of the penis is very thin and not arranged in an axial-orthogonal array, resulting in a penis that is flexible when erect. To test the hypothesis that female genital novelties make intromission difficult during forced copulations, we investigated penile eversion into glass tubes that presented different mechanical challenges to eversion. Eversion occurred successfully in a straight tube and a counterclockwise spiral tube that matched the chirality of the waterfowl penis, but eversion was significantly less successful into glass tubes with a clockwise spiral or a 135° bend, which mimicked female vaginal geometry. Our results support the hypothesis that duck vaginal complexity functions to exclude the penis during forced copulations, and coevolved with the waterfowl penis via antagonistic sexual conflict. PMID:20031991

  2. Traits, properties, and performance: how woody plants combine hydraulic and mechanical functions in a cell, tissue, or whole plant.

    PubMed

    Lachenbruch, Barbara; McCulloh, Katherine A

    2014-12-01

    This review presents a framework for evaluating how cells, tissues, organs, and whole plants perform both hydraulic and mechanical functions. The morphological alterations that affect dual functionality are varied: individual cells can have altered morphology; tissues can have altered partitioning to functions or altered cell alignment; and organs and whole plants can differ in their allocation to different tissues, or in the geometric distribution of the tissues they have. A hierarchical model emphasizes that morphological traits influence the hydraulic or mechanical properties; the properties, combined with the plant unit's environment, then influence the performance of that plant unit. As a special case, we discuss the mechanisms by which the proxy property wood density has strong correlations to performance but without direct causality. Traits and properties influence multiple aspects of performance, and there can be mutual compensations such that similar performance occurs. This compensation emphasizes that natural selection acts on, and a plant's viability is determined by, its performance, rather than its contributing traits and properties. Continued research on the relationships among traits, and on their effects on multiple aspects of performance, will help us better predict, manage, and select plant material for success under multiple stresses in the future. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  3. Structural, functional and blood perfusion changes in the rat retina associated with elevated intraocular pressure, measured simultaneously with a combined OCT+ERG system

    PubMed Central

    Tan, Bingyao; MacLellan, Benjamin; Mason, Erik

    2018-01-01

    Acute elevation of intraocular pressure (IOP) to ischemic and non-ischemic levels can cause temporary or permanent changes in the retinal morphology, function and blood flow/blood perfusion. Previously, such changes in the retina were assessed separately with different methods in clinical studies and animal models. In this study, we used a combined OCT+ ERG system in combination with Doppler OCT and OCT angiography (OCTA) imaging protocols, in order to evaluate simultaneously and correlate changes in the retinal morphology, the retinal functional response to visual stimulation, and the retinal blood flow/blood perfusion, associated with IOP elevation to ischemic and non-ischemic levels in rats. Results from this study suggest that the inner retina responds faster to IOP elevation to levels greater than 30 mmHg with significant reduction of the total retinal blood flow (TRBF), decrease of the capillaries’ perfusion and reduction of the ON bipolar cells contribution to the ERG traces. Furthermore, this study showed that ischemic levels of IOP elevation cause an additional significant decrease in the ERG photoreceptor response in the posterior retina. Thirty minutes after IOP normalization, retinal morphology, blood flow and blood perfusion recovered to baseline values, while retinal function did not recover completely. PMID:29509807

  4. A Functional Relationship between NuMA and Kid Is Involved in Both Spindle Organization and Chromosome Alignment in Vertebrate CellsV⃞

    PubMed Central

    Levesque, Aime A.; Howard, Louisa; Gordon, Michael B.; Compton, Duane A.

    2003-01-01

    We examined spindle morphology and chromosome alignment in vertebrate cells after simultaneous perturbation of the chromokinesin Kid and either NuMA, CENP-E, or HSET. Spindle morphology and chromosome alignment after simultaneous perturbation of Kid and either HSET or CENP-E were no different from when either HSET or CENP-E was perturbed alone. However, short bipolar spindles with organized poles formed after perturbation of both Kid and NuMA in stark contrast to splayed spindle poles observed after perturbation of NuMA alone. Spindles were disorganized if Kid, NuMA, and HSET were perturbed, indicating that HSET is sufficient for spindle organization in the absence of Kid and NuMA function. In addition, chromosomes failed to align efficiently at the spindle equator after simultaneous perturbation of Kid and NuMA despite appropriate kinetochore-microtubule interactions that generated chromosome movement at normal velocities. These data indicate that a functional relationship between the chromokinesin Kid and the spindle pole organizing protein NuMA influences spindle morphology, and we propose that this occurs because NuMA forms functional linkages between kinetochore and nonkinetochore microtubules at spindle poles. In addition, these data show that both Kid and NuMA contribute to chromosome alignment in mammalian cells. PMID:12972545

  5. Fragility of foot process morphology in kidney podocytes arises from chaotic spatial propagation of cytoskeletal instability

    PubMed Central

    Deerinck, Thomas J.; Chen, Yibang; He, John C.; Ellisman, Mark H.; Iyengar, Ravi

    2017-01-01

    Kidney podocytes’ function depends on fingerlike projections (foot processes) that interdigitate with those from neighboring cells to form the glomerular filtration barrier. The integrity of the barrier depends on spatial control of dynamics of actin cytoskeleton in the foot processes. We determined how imbalances in regulation of actin cytoskeletal dynamics could result in pathological morphology. We obtained 3-D electron microscopy images of podocytes and used quantitative features to build dynamical models to investigate how regulation of actin dynamics within foot processes controls local morphology. We find that imbalances in regulation of actin bundling lead to chaotic spatial patterns that could impair the foot process morphology. Simulation results are consistent with experimental observations for cytoskeletal reconfiguration through dysregulated RhoA or Rac1, and they predict compensatory mechanisms for biochemical stability. We conclude that podocyte morphology, optimized for filtration, is intrinsically fragile, whereby local transient biochemical imbalances may lead to permanent morphological changes associated with pathophysiology. PMID:28301477

  6. Channel morphology effect on water transport through graphene bilayers.

    PubMed

    Liu, Bo; Wu, Renbing; Law, Adrian Wing-Keung; Feng, Xi-Qiao; Bai, Lichun; Zhou, Kun

    2016-12-08

    The application of few-layered graphene-derived functional thin films for molecular filtration and separation has recently attracted intensive interests. In practice, the morphology of the nanochannel formed by the graphene (GE) layers is not ideally flat and can be affected by various factors. This work investigates the effect of channel morphology on the water transport behaviors through the GE bilayers via molecular dynamics simulations. The simulation results show that the water flow velocity and transport resistance highly depend on the curvature of the graphene layers, particularly when they are curved in non-synergic patterns. To understand the channel morphology effect, the distributions of water density, dipole moment orientation and hydrogen bonds inside the channel are investigated, and the potential energy surface with different distances to the basal GE layer is analyzed. It shows that the channel morphology significantly changes the distribution of the water molecules and their orientation and interaction inside the channel. The energy barrier for water molecules transport through the channel also significantly depends on the channel morphology.

  7. Morphological identification of Lucilia sericata, Lucilia cuprina and their hybrids (Diptera, Calliphoridae)

    PubMed Central

    Williams, Kirstin A.; Villet, Martin H.

    2014-01-01

    Abstract Hybrids of Lucilia sericata and Lucilia cuprina have been shown to exist in previous studies using molecular methods, but no study has shown explicitly that these hybrids can be identified morphologically. Published morphological characters used to identify L. sericata and L. cuprina were reviewed, and then scored and tested using specimens of both species and known hybrids. Ordination by multi-dimensional scaling indicated that the species were separable, and that hybrids resembled L. cuprina, whatever their origin. Discriminant function analysis of the characters successfully separated the specimens into three unambiguous groups – L. sericata, L. cuprina and hybrids. The hybrids were morphologically similar irrespective of whether they were from an ancient introgressed lineage or more modern. This is the first evidence that hybrids of these two species can be identified from their morphology. The usefulness of the morphological characters is also discussed and photographs of several characters are included to facilitate their assessment. PMID:25061373

  8. Channel morphology effect on water transport through graphene bilayers

    PubMed Central

    Liu, Bo; Wu, Renbing; Law, Adrian Wing-Keung; Feng, Xi-Qiao; Bai, Lichun; Zhou, Kun

    2016-01-01

    The application of few-layered graphene-derived functional thin films for molecular filtration and separation has recently attracted intensive interests. In practice, the morphology of the nanochannel formed by the graphene (GE) layers is not ideally flat and can be affected by various factors. This work investigates the effect of channel morphology on the water transport behaviors through the GE bilayers via molecular dynamics simulations. The simulation results show that the water flow velocity and transport resistance highly depend on the curvature of the graphene layers, particularly when they are curved in non-synergic patterns. To understand the channel morphology effect, the distributions of water density, dipole moment orientation and hydrogen bonds inside the channel are investigated, and the potential energy surface with different distances to the basal GE layer is analyzed. It shows that the channel morphology significantly changes the distribution of the water molecules and their orientation and interaction inside the channel. The energy barrier for water molecules transport through the channel also significantly depends on the channel morphology. PMID:27929106

  9. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles.

    PubMed

    Shang, J K; Combes, S A; Finio, B M; Wood, R J

    2009-09-01

    The development of flapping-wing micro air vehicles (MAVs) demands a systematic exploration of the available design space to identify ways in which the unsteady mechanisms governing flapping-wing flight can best be utilized for producing optimal thrust or maneuverability. Mimicking the wing kinematics of biological flight requires examining the potential effects of wing morphology on flight performance, as wings may be specially adapted for flapping flight. For example, insect wings passively deform during flight, leading to instantaneous and potentially unpredictable changes in aerodynamic behavior. Previous studies have postulated various explanations for insect wing complexity, but there lacks a systematic approach for experimentally examining the functional significance of components of wing morphology, and for determining whether or not natural design principles can or should be used for MAVs. In this work, a novel fabrication process to create centimeter-scale wings of great complexity is introduced; via this process, a wing can be fabricated with a large range of desired mechanical and geometric characteristics. We demonstrate the versatility of the process through the creation of planar, insect-like wings with biomimetic venation patterns that approximate the mechanical properties of their natural counterparts under static loads. This process will provide a platform for studies investigating the effects of wing morphology on flight dynamics, which may lead to the design of highly maneuverable and efficient MAVs and insight into the functional morphology of natural wings.

  10. Linking macroscopic with microscopic neuroanatomy using synthetic neuronal populations.

    PubMed

    Schneider, Calvin J; Cuntz, Hermann; Soltesz, Ivan

    2014-10-01

    Dendritic morphology has been shown to have a dramatic impact on neuronal function. However, population features such as the inherent variability in dendritic morphology between cells belonging to the same neuronal type are often overlooked when studying computation in neural networks. While detailed models for morphology and electrophysiology exist for many types of single neurons, the role of detailed single cell morphology in the population has not been studied quantitatively or computationally. Here we use the structural context of the neural tissue in which dendritic trees exist to drive their generation in silico. We synthesize the entire population of dentate gyrus granule cells, the most numerous cell type in the hippocampus, by growing their dendritic trees within their characteristic dendritic fields bounded by the realistic structural context of (1) the granule cell layer that contains all somata and (2) the molecular layer that contains the dendritic forest. This process enables branching statistics to be linked to larger scale neuroanatomical features. We find large differences in dendritic total length and individual path length measures as a function of location in the dentate gyrus and of somatic depth in the granule cell layer. We also predict the number of unique granule cell dendrites invading a given volume in the molecular layer. This work enables the complete population-level study of morphological properties and provides a framework to develop complex and realistic neural network models.

  11. Linking Macroscopic with Microscopic Neuroanatomy Using Synthetic Neuronal Populations

    PubMed Central

    Schneider, Calvin J.; Cuntz, Hermann; Soltesz, Ivan

    2014-01-01

    Dendritic morphology has been shown to have a dramatic impact on neuronal function. However, population features such as the inherent variability in dendritic morphology between cells belonging to the same neuronal type are often overlooked when studying computation in neural networks. While detailed models for morphology and electrophysiology exist for many types of single neurons, the role of detailed single cell morphology in the population has not been studied quantitatively or computationally. Here we use the structural context of the neural tissue in which dendritic trees exist to drive their generation in silico. We synthesize the entire population of dentate gyrus granule cells, the most numerous cell type in the hippocampus, by growing their dendritic trees within their characteristic dendritic fields bounded by the realistic structural context of (1) the granule cell layer that contains all somata and (2) the molecular layer that contains the dendritic forest. This process enables branching statistics to be linked to larger scale neuroanatomical features. We find large differences in dendritic total length and individual path length measures as a function of location in the dentate gyrus and of somatic depth in the granule cell layer. We also predict the number of unique granule cell dendrites invading a given volume in the molecular layer. This work enables the complete population-level study of morphological properties and provides a framework to develop complex and realistic neural network models. PMID:25340814

  12. Morphological analysis of Trichomycterus areolatus Valenciennes, 1846 from southern Chilean rivers using a truss-based system (Siluriformes, Trichomycteridae).

    PubMed

    Colihueque, Nelson; Corrales, Olga; Yáñez, Miguel

    2017-01-01

    Trichomycterus areolatus Valenciennes, 1846 is a small endemic catfish inhabiting the Andean river basins of Chile. In this study, the morphological variability of three T. areolatus populations, collected in two river basins from southern Chile, was assessed with multivariate analyses, including principal component analysis (PCA) and discriminant function analysis (DFA). It is hypothesized that populations must segregate morphologically from each other based on the river basin that they were sampled from, since each basin presents relatively particular hydrological characteristics. Significant morphological differences among the three populations were found with PCA (ANOSIM test, r = 0.552, p < 0.0001) and DFA (Wilks's λ = 0.036, p < 0.01). PCA accounted for a total variation of 56.16% by the first two principal components. The first Principal Component (PC1) and PC2 explained 34.72 and 21.44% of the total variation, respectively. The scatter-plot of the first two discriminant functions (DF1 on DF2) also validated the existence of three different populations. In group classification using DFA, 93.3% of the specimens were correctly-classified into their original populations. Of the total of 22 transformed truss measurements, 17 exhibited highly significant ( p < 0.01) differences among populations. The data support the existence of T. areolatus morphological variation across different rivers in southern Chile, likely reflecting the geographic isolation underlying population structure of the species.

  13. Changes in Intraocular Straylight and Visual Acuity with Age in Cataracts of Different Morphologies

    PubMed Central

    Reus, Nicolaas J.; van den Berg, Thomas J. T. P.

    2017-01-01

    Purpose To investigate the significance of difference in straylight of cataract eyes with different morphologies, as a function of age and visual acuity. Methods A literature review to collect relevant papers on straylight, age, and visual acuity of three common cataract morphologies leads to including five eligible papers for the analysis. The effect of morphology was incorporated to categorize straylight dependency on the two variables. We also determined the amount of progression in a cataract group using a control group. Results The mean straylight was 1.22 log units ± 0.20 (SD) in nuclear (592 eyes), 1.26 log units ± 0.23 in cortical (776 eyes), and 1.48 log units ± 0.34 in posterior subcapsular (75 eyes) groups. The slope of straylight-age relationship was 0.009 (R 2 = 0.20) in nuclear, 0.012 (R 2 = 0.22) in cortical, and 0.014 (R 2 = 0.11) in posterior subcapsular groups. The slope of straylight-visual acuity relationship was 0.62 (R 2 = 0.25) in nuclear, 0.33 (R 2 = 0.13) in cortical, and 1.03 (R 2 = 0.34) in posterior subcapsular groups. Conclusion Considering morphology of cataract provides a better insight in assessing visual functions of cataract eyes, in posterior subcapsular cataract, particularly, in spite of notable elevated straylight, visual acuity might not manifest severe loss. PMID:28831307

  14. Evolution of the structure and function of the vertebrate tongue

    PubMed Central

    Iwasaki, Shin-ichi

    2002-01-01

    Abstract Studies of the comparative morphology of the tongues of living vertebrates have revealed how variations in the morphology and function of the organ might be related to evolutional events. The tongue, which plays a very important role in food intake by vertebrates, exhibits significant morphological variations that appear to represent adaptation to the current environmental conditions of each respective habitat. This review examines the fundamental importance of morphology in the evolution of the vertebrate tongue, focusing on the origin of the tongue and on the relationship between morphology and environmental conditions. Tongues of various extant vertebrates, including those of amphibians, reptiles, birds and mammals, were analysed in terms of gross anatomy and microanatomy by light microscopy and by scanning and transmission electron microscopy. Comparisons of tongue morphology revealed a relationship between changes in the appearance of the tongue and changes in habitat, from a freshwater environment to a terrestrial environment, as well as a relationship between the extent of keratinization of the lingual epithelium and the transition from a moist or wet environment to a dry environment. The lingual epithelium of amphibians is devoid of keratinization while that of reptilians is keratinized to different extents. Reptiles live in a variety of habitats, from seawater to regions of high temperature and very high or very low humidity. Keratinization of the lingual epithelium is considered to have been acquired concomitantly with the evolution of amniotes. The variations in the extent of keratinization of the lingual epithelium, which is observed between various amniotes, appear to be secondary, reflecting the environmental conditions of different species. PMID:12171472

  15. Morphology and Efficiency of a Specialized Foraging Behavior, Sediment Sifting, in Neotropical Cichlid Fishes

    PubMed Central

    Willis, Stuart; Watkins, Crystal; Honeycutt, Rodney L.; Winemiller, Kirk O.

    2014-01-01

    Understanding of relationships between morphology and ecological performance can help to reveal how natural selection drives biological diversification. We investigate relationships between feeding behavior, foraging performance and morphology within a diverse group of teleost fishes, and examine the extent to which associations can be explained by evolutionary relatedness. Morphological adaptation associated with sediment sifting was examined using a phylogenetic linear discriminant analysis on a set of ecomorphological traits from 27 species of Neotropical cichlids. For most sifting taxa, feeding behavior could be effectively predicted by a linear discriminant function of ecomorphology across multiple clades of sediment sifters, and this pattern could not be explained by shared evolutionary history alone. Additionally, we tested foraging efficiency in seven Neotropical cichlid species, five of which are specialized benthic feeders with differing head morphology. Efficiency was evaluated based on the degree to which invertebrate prey could be retrieved at different depths of sediment. Feeding performance was compared both with respect to feeding mode and species using a phylogenetic ANCOVA, with substrate depth as a covariate. Benthic foraging performance was constant across sediment depths in non-sifters but declined with depth in sifters. The non-sifting Hypsophrys used sweeping motions of the body and fins to excavate large pits to uncover prey; this tactic was more efficient for consuming deeply buried invertebrates than observed among sediment sifters. Findings indicate that similar feeding performance among sediment-sifting cichlids extracting invertebrate prey from shallow sediment layers reflects constraints associated with functional morphology and, to a lesser extent, phylogeny. PMID:24603485

  16. Evolution of the structure and function of the vertebrate tongue.

    PubMed

    Iwasaki, Shin-ichi

    2002-07-01

    Studies of the comparative morphology of the tongues of living vertebrates have revealed how variations in the morphology and function of the organ might be related to evolutional events. The tongue, which plays a very important role in food intake by vertebrates, exhibits significant morphological variations that appear to represent adaptation to the current environmental conditions of each respective habitat. This review examines the fundamental importance of morphology in the evolution of the vertebrate tongue, focusing on the origin of the tongue and on the relationship between morphology and environmental conditions. Tongues of various extant vertebrates, including those of amphibians, reptiles, birds and mammals, were analysed in terms of gross anatomy and microanatomy by light microscopy and by scanning and transmission electron microscopy. Comparisons of tongue morphology revealed a relationship between changes in the appearance of the tongue and changes in habitat, from a freshwater environment to a terrestrial environment, as well as a relationship between the extent of keratinization of the lingual epithelium and the transition from a moist or wet environment to a dry environment. The lingual epithelium of amphibians is devoid of keratinization while that of reptilians is keratinized to different extents. Reptiles live in a variety of habitats, from seawater to regions of high temperature and very high or very low humidity. Keratinization of the lingual epithelium is considered to have been acquired concomitantly with the evolution of amniotes. The variations in the extent of keratinization of the lingual epithelium, which is observed between various amniotes, appear to be secondary, reflecting the environmental conditions of different species.

  17. The role of apical contractility in determining cell morphology in multilayered epithelial sheets and tubes

    NASA Astrophysics Data System (ADS)

    Zhen Tan, Rui; Lai, Tanny; Chiam, K.-H.

    2017-08-01

    A multilayered epithelium is made up of individual cells that are stratified in an orderly fashion, layer by layer. In such tissues, individual cells can adopt a wide range of shapes ranging from columnar to squamous. From histological images, we observe that, in flat epithelia such as the skin, the cells in the top layer are squamous while those in the middle and bottom layers are columnar, whereas in tubular epithelia, the cells in all layers are columnar. We develop a computational model to understand how individual cell shape is governed by the mechanical forces within multilayered flat and curved epithelia. We derive the energy function for an epithelial sheet of cells considering intercellular adhesive and intracellular contractile forces. We determine computationally the cell morphologies that minimize the energy function for a wide range of cellular parameters. Depending on the dominant adhesive and contractile forces, we find four dominant cell morphologies for the multilayered-layered flat sheet and three dominant cell morphologies for the two-layered curved sheet. We study the transitions between the dominant cell morphologies for the two-layered flat sheet and find both continuous and discontinuous transitions and also the presence of multistable states. Matching our computational results with histological images, we conclude that apical contractile forces from the actomyosin belt in the epithelial cells is the dominant force determining cell shape in multilayered epithelia. Our computational model can guide tissue engineers in designing artificial multilayered epithelia, in terms of figuring out the cellular parameters needed to achieve realistic epithelial morphologies.

  18. Morphology and efficiency of a specialized foraging behavior, sediment sifting, in neotropical cichlid fishes.

    PubMed

    López-Fernández, Hernán; Arbour, Jessica; Willis, Stuart; Watkins, Crystal; Honeycutt, Rodney L; Winemiller, Kirk O

    2014-01-01

    Understanding of relationships between morphology and ecological performance can help to reveal how natural selection drives biological diversification. We investigate relationships between feeding behavior, foraging performance and morphology within a diverse group of teleost fishes, and examine the extent to which associations can be explained by evolutionary relatedness. Morphological adaptation associated with sediment sifting was examined using a phylogenetic linear discriminant analysis on a set of ecomorphological traits from 27 species of Neotropical cichlids. For most sifting taxa, feeding behavior could be effectively predicted by a linear discriminant function of ecomorphology across multiple clades of sediment sifters, and this pattern could not be explained by shared evolutionary history alone. Additionally, we tested foraging efficiency in seven Neotropical cichlid species, five of which are specialized benthic feeders with differing head morphology. Efficiency was evaluated based on the degree to which invertebrate prey could be retrieved at different depths of sediment. Feeding performance was compared both with respect to feeding mode and species using a phylogenetic ANCOVA, with substrate depth as a covariate. Benthic foraging performance was constant across sediment depths in non-sifters but declined with depth in sifters. The non-sifting Hypsophrys used sweeping motions of the body and fins to excavate large pits to uncover prey; this tactic was more efficient for consuming deeply buried invertebrates than observed among sediment sifters. Findings indicate that similar feeding performance among sediment-sifting cichlids extracting invertebrate prey from shallow sediment layers reflects constraints associated with functional morphology and, to a lesser extent, phylogeny.

  19. Carpal kinematics in quadrupedal monkeys: towards a better understanding of wrist morphology and function

    PubMed Central

    Daver, Guillaume; Berillon, Gilles; Grimaud-Hervé, Dominique

    2012-01-01

    The purpose of this study is to provide new data on carpal kinematics in primates in order to deepen our understanding of the relationships between wrist morphology and function. To that end, we provide preliminary data on carpal kinematics in seven species of quadrupedal monkeys that have not been previously investigated in this regard (cercopithecoids, n = 4; ceboids, n = 3). We radiographed wrists from cadavers at their maximum radial and ulnar deviations, as well as at maximum flexion and extension. We took angular measurements to quantify the contribution of the mobility of the two main wrist joints (antebrachiocarpal and midcarpal) with respect to total wrist mobility. We also recorded qualitative observations. Our quantitative results show few clear differences among quadrupedal monkeys for radioulnar deviation and flexion–extension: all the primates studied exhibit a greater midcarpal mobility (approximately 54–83% of the total range of motion) than antebrachiocarpal mobility; however, we identified two patterns of carpal kinematics that show the functional impact of previously recognised morphological variations in quadrupedal monkeys. Firstly, qualitative results show that the partition that divides the proximal joint of the wrist in ceboids results in less mobility and more stability of the ulnar part of the wrist than is seen in cercopithecoids. Secondly, we show that the olive baboon specimen (Papio anubis) is characterised by limited antebrachiocarpal mobility for extension; this effect is likely the result of a radial process that projects on the scaphoid notch, as well as an intraarticular meniscus. Because of these close relationships between carpal kinematics and morphology in quadrupedal monkeys, we hypothesise that, to some extent, these functional tendencies are related to their locomotor hand postures. PMID:22050662

  20. Cryopreservation and Recovery of Human Endometrial Epithelial Cells with High Viability, Purity, and Functional Fidelity

    PubMed Central

    Chen, Joseph C.; Hoffman, Jacquelyn R.; Arora, Ripla; Perrone, Lila A.; Gonzalez-Gomez, Christian J; Vo, Kim Chi; Laird, Diana J.; Irwin, Juan C.; Giudice, Linda C.

    2015-01-01

    Objective To develop a protocol for cryopreservation and recovery of human endometrial epithelial cells (eEC) retaining molecular and functional characteristics of endometrial epithelium in vivo. Design This is an in vitro study using human endometrial cells. Setting University research laboratory. Patients Endometrial biopsies were obtained from premenopausal women undergoing benign gynecological procedures. Interventions Primary eEC were cryopreserved in 1% fetal bovine serum (FBS)/10% dimethyl sulfoxide (DMSO) in Defined Keratinocyte Serum Free Medium (KSFM). Recovered cells were observed for endometrial stromal fibroblast (eSF) contamination and subsequently evaluated for morphology, gene expression, and functional characteristics of freshly cultured eECs and in vivo endometrial epithelium. Main Outcome Measures Analysis of eEC morphology and the absence of eSF contamination; evaluation of epithelial-specific gene and protein expression; assessment of epithelial polarity. Results eEC recovered after cryopreservation (n=5) displayed epithelial morphology and expressed E-cadherin (CDH1), occludin (OCLN), claudin1 (CLDN1), and keratin18 (KRT18). Compared to eSF, recovered eEC displayed increased (P<0.05) expression of epithelial-specific genes AREG, CDH1, DEFB4A, MMP7, and WNT7A, while exhibiting low-to-undetectable (P<0.05) stromal-specific genes COL6A3, HOXA11, MMP2, PDGFRB, and WNT5A. Recovered eEC secrete levels of cytokines and growth factors comparable to freshly cultured eEC. Recovered eEC can formed a polarized monolayer with high transepithelial electrical resistance (TER) and impermeability to small molecules, and expressed apical/basolateral localization of CDH1 and apical localization of OCLN. Conclusion We have developed a protocol for cryopreservation of eEC in which recovered cells after thawing demonstrate morphological, transcriptomic, and functional characteristics of human endometrial epithelium in vivo. PMID:26515378

  1. Functional morphology of amplexus (clasping) in spinicaudatan clam shrimps (Crustacea, Branchiopoda) and its evolution in bivalved branchiopods: A video-based analysis.

    PubMed

    Sigvardt, Zandra M S; Rogers, D Christopher; Olesen, Jørgen

    2017-04-01

    Male clam shrimps (Crustacea: Branchiopoda: Laevicaudata, Spinicaudata, and Cyclestherida) have their first one or two trunk limb pairs modified as "claspers," which are used to hold the female during mating and mate guarding. Clasper morphology has traditionally been important for clam shrimp taxonomy and classification, but little is known about how the males actually use the claspers during amplexus (clasping). Homologies of the various clasper parts ("movable finger," "large palp," "palm," "gripping area," and "small palp") have long been discussed between the three clam shrimp taxa, and studies have shown that only some structures are homologous while others are convergent ("partial homology"). We studied the clasper functionality in four spinicaudatan species using video recordings and scanning electron microscopy, and compared our results with other clam shrimp groups. General mating behavior and carapace morphology was also studied. Generally, spinicaudatan and laevicaudatan claspers function similarly despite some parts being nonhomologous. We mapped clasper morphology and functionality aspects on a branchiopod phylogeny. We suggest that the claspers of the three groups were adapted from an original, simpler clasper, each for a "stronger" grip on the female's carapace margin: 1) Spinicaudata have two clasper pairs bearing an elongated apical club/gripping area with one setal type; 2); Cyclestherida have one clasper pair with clusters of molariform setae on the gripping area and at the movable finger apex; and 3) Laevicaudata have one clasper pair, but have incorporated an additional limb portion into the clasper palm and bear a diverse set of setae. J. Morphol. 278:523-546, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Morphological and functional differentiation in BE(2)-M17 human neuroblastoma cells by treatment with Trans-retinoic acid

    PubMed Central

    2013-01-01

    Background Immortalized neuronal cell lines can be induced to differentiate into more mature neurons by adding specific compounds or growth factors to the culture medium. This property makes neuronal cell lines attractive as in vitro cell models to study neuronal functions and neurotoxicity. The clonal human neuroblastoma BE(2)-M17 cell line is known to differentiate into a more prominent neuronal cell type by treatment with trans-retinoic acid. However, there is a lack of information on the morphological and functional aspects of these differentiated cells. Results We studied the effects of trans-retinoic acid treatment on (a) some differentiation marker proteins, (b) types of voltage-gated calcium (Ca2+) channels and (c) Ca2+-dependent neurotransmitter ([3H] glycine) release in cultured BE(2)-M17 cells. Cells treated with 10 μM trans-retinoic acid (RA) for 72 hrs exhibited marked changes in morphology to include neurite extensions; presence of P/Q, N and T-type voltage-gated Ca2+ channels; and expression of neuron specific enolase (NSE), synaptosomal-associated protein 25 (SNAP-25), nicotinic acetylcholine receptor α7 (nAChR-α7) and other neuronal markers. Moreover, retinoic acid treated cells had a significant increase in evoked Ca2+-dependent neurotransmitter release capacity. In toxicity studies of the toxic gas, phosgene (CG), that differentiation of M17 cells with RA was required to see the changes in intracellular free Ca2+ concentrations following exposure to CG. Conclusion Taken together, retinoic acid treated cells had improved morphological features as well as neuronal characteristics and functions; thus, these retinoic acid differentiated BE(2)-M17 cells may serve as a better neuronal model to study neurobiology and/or neurotoxicity. PMID:23597229

  3. Morphological and functional differentiation in BE(2)-M17 human neuroblastoma cells by treatment with Trans-retinoic acid.

    PubMed

    Andres, Devon; Keyser, Brian M; Petrali, John; Benton, Betty; Hubbard, Kyle S; McNutt, Patrick M; Ray, Radharaman

    2013-04-18

    Immortalized neuronal cell lines can be induced to differentiate into more mature neurons by adding specific compounds or growth factors to the culture medium. This property makes neuronal cell lines attractive as in vitro cell models to study neuronal functions and neurotoxicity. The clonal human neuroblastoma BE(2)-M17 cell line is known to differentiate into a more prominent neuronal cell type by treatment with trans-retinoic acid. However, there is a lack of information on the morphological and functional aspects of these differentiated cells. We studied the effects of trans-retinoic acid treatment on (a) some differentiation marker proteins, (b) types of voltage-gated calcium (Ca2+) channels and (c) Ca2+-dependent neurotransmitter ([3H] glycine) release in cultured BE(2)-M17 cells. Cells treated with 10 μM trans-retinoic acid (RA) for 72 hrs exhibited marked changes in morphology to include neurite extensions; presence of P/Q, N and T-type voltage-gated Ca2+ channels; and expression of neuron specific enolase (NSE), synaptosomal-associated protein 25 (SNAP-25), nicotinic acetylcholine receptor α7 (nAChR-α7) and other neuronal markers. Moreover, retinoic acid treated cells had a significant increase in evoked Ca2+-dependent neurotransmitter release capacity. In toxicity studies of the toxic gas, phosgene (CG), that differentiation of M17 cells with RA was required to see the changes in intracellular free Ca2+ concentrations following exposure to CG. Taken together, retinoic acid treated cells had improved morphological features as well as neuronal characteristics and functions; thus, these retinoic acid differentiated BE(2)-M17 cells may serve as a better neuronal model to study neurobiology and/or neurotoxicity.

  4. Prognostic value of echocardiographic indices of left atrial morphology and function in dogs with myxomatous mitral valve disease

    PubMed Central

    Romito, Giovanni; Guglielmini, Carlo; Diana, Alessia; Pelle, Nazzareno G.; Contiero, Barbara; Cipone, Mario

    2018-01-01

    Background The prognostic relevance of left atrial (LA) morphological and functional variables, including those derived from speckle tracking echocardiography (STE), has been little investigated in veterinary medicine. Objectives To assess the prognostic value of several echocardiographic variables, with a focus on LA morphological and functional variables in dogs with myxomatous mitral valve disease (MMVD). Animals One‐hundred and fifteen dogs of different breeds with MMVD. Methods Prospective cohort study. Conventional morphologic and echo‐Doppler variables, LA areas and volumes, and STE‐based LA strain analysis were performed in all dogs. A survival analysis was performed to test for the best echocardiographic predictors of cardiac‐related death. Results Most of the tested variables, including all LA STE‐derived variables were univariate predictors of cardiac death in Cox proportional hazard analysis. Because of strong correlation between many variables, only left atrium to aorta ratio (LA/Ao > 1.7), mitral valve E wave velocity (MV E vel > 1.3 m/s), LA maximal volume (LAVmax > 3.53 mL/kg), peak atrial longitudinal strain (PALS < 30%), and contraction strain index (CSI per 1% increase) were entered in the univariate analysis, and all were predictors of cardiac death. However, only the MV E vel (hazard ratio [HR], 4.45; confidence interval [CI], 1.76‐11.24; P < .001) and LAVmax (HR, 2.32; CI, 1.10‐4.89; P = .024) remained statistically significant in the multivariable analysis. Conclusions and Clinical Importance The assessment of LA dimension and function provides useful prognostic information in dogs with MMVD. Considering all the LA variables, LAVmax appears the strongest predictor of cardiac death, being superior to LA/Ao and STE‐derived variables. PMID:29572938

  5. Changes in Left Ventricular Morphology and Function After Mitral Valve Surgery

    PubMed Central

    Shafii, Alexis E.; Gillinov, A. Marc; Mihaljevic, Tomislav; Stewart, William; Batizy, Lillian H.; Blackstone, Eugene H.

    2015-01-01

    Degenerative mitral valve disease is the leading cause of mitral regurgitation in North America. Surgical intervention has hinged on symptoms and ventricular changes that develop as compensatory ventricular remodeling takes place. In this study, we sought to characterize the temporal response of left ventricular (LV) morphology and function to mitral valve surgery for degenerative disease, and identify preoperative factors that influence reverse remodeling. From 1986–2007, 2,778 patients with isolated degenerative mitral valve disease underwent valve repair (n=2,607/94%) or replacement (n=171/6%) and had at least 1 postoperative transthoracic echocardiogram (TTE); 5,336 TTEs were available for analysis. Multivariable longitudinal repeated-measures analysis was performed to identify factors associated with reverse remodeling. LV dimensions decreased in the first year after surgery (end-diastolic from 5.7±0.80 to 4.9±1.4 cm; end-systolic from 3.4±0.71 to 3.1±1.4 cm). LV mass index decreased from 139±44 to 112±73 g·m−2. Reduction of LV hypertrophy was less pronounced in patients with greater preoperative left heart enlargement (P<.0001) and greater preoperative LV mass (P<.0001). Postoperative LV ejection fraction initially decreased from 58±7.0 to 53±20, increased slightly over the first postoperative year, and was negatively influenced by preoperative heart failure symptoms (P<.0001) and lower preoperative LV ejection fraction (P<.0001). Risk-adjusted response of LV morphology and function to valve repair and replacement was similar (P>.2). In conclusion, a positive response toward normalization of LV morphology and function after mitral valve surgery is greatest in the first year. The best response occurs when surgery is performed before left heart dilatation, LV hypertrophy, or LV dysfunction develop. PMID:22534055

  6. Morphology effect of nano-hydroxyapatite as a drug carrier of methotrexate.

    PubMed

    Sun, Haina; Liu, Shanshan; Zeng, Xiongfeng; Meng, Xianguang; Zhao, Lina; Wan, Yizao; Zuo, Guifu

    2017-09-13

    In this study, morphology effect of nano-hydroxyapatite as a drug carrier was investigated for the first time. Hydroxyapatite/methotrexate (HAp/MTX) hybrids with different morphologies were successfully prepared in situ using polyethylene glycol (PEG) as a template. SEM, TEM, XRD and FTIR results confirmed that the hybrids of different morphologies (laminated, rod-like and spherical) with similar phase composition and functional groups were obtained by changing the preparation parameters. UV-Vis spectroscopy was used to identify the drug loading capacity and drug release mechanism of the three hybrids with different morphologies. It is concluded that the laminated hybrid exhibits a higher drug loading capacity compared to the other two hybrids, and all the three hybrids showed a sustained slow release which were fitted well by Bhaskar equation. Additionally, the result of in vitro bioassay test confirms that the inhibition efficacy of the three hybrids showed a positive correlation to the drug loading capacity.

  7. Modeling the brain morphology distribution in the general aging population

    NASA Astrophysics Data System (ADS)

    Huizinga, W.; Poot, D. H. J.; Roshchupkin, G.; Bron, E. E.; Ikram, M. A.; Vernooij, M. W.; Rueckert, D.; Niessen, W. J.; Klein, S.

    2016-03-01

    Both normal aging and neurodegenerative diseases such as Alzheimer's disease cause morphological changes of the brain. To better distinguish between normal and abnormal cases, it is necessary to model changes in brain morphology owing to normal aging. To this end, we developed a method for analyzing and visualizing these changes for the entire brain morphology distribution in the general aging population. The method is applied to 1000 subjects from a large population imaging study in the elderly, from which 900 were used to train the model and 100 were used for testing. The results of the 100 test subjects show that the model generalizes to subjects outside the model population. Smooth percentile curves showing the brain morphology changes as a function of age and spatiotemporal atlases derived from the model population are publicly available via an interactive web application at agingbrain.bigr.nl.

  8. The surface stability and morphology of tobermorite 11 Å from first principles

    NASA Astrophysics Data System (ADS)

    Mutisya, Sylvia M.; Miranda, Caetano R.

    2018-06-01

    Tobermorite minerals are important in many industrial processes typically occurring in hydrous environment. Their functionality is therefore governed in various aspects by their morphology and surface stability/reactivity. Here, we present the results of the surface energies and morphology of normal tobermorite 11 Å in a water vapor environment investigated by employing first principles atomistic thermodynamic calculations. For the low index tobermorite surfaces studied, the calculated surface energies fall within a narrow range (0.41-0.97 J/m2) with the (0 0 4) surface being the most stable. The equilibrium morphology is a thin pseudohexagonal plate elongated along the b axis. The hydrated surfaces are more stable at high water vapor chemical potentials with the stability enhanced as the water partial pressures are varied from ambient to supercritical hydrothermal conditions. Increasing the water vapor chemical potential gives rise to a smaller size of the tobermorite crystal, with the equilibrium morphology remaining unaltered.

  9. Towards an Ecological Understanding of Dinoflagellate Cyst Functions

    PubMed Central

    Bravo, Isabel; Figueroa, Rosa Isabel

    2014-01-01

    The life cycle of many dinoflagellates includes at least one nonflagellated benthic stage (cyst). In the literature, the different types of dinoflagellate cysts are mainly defined based on morphological (number and type of layers in the cell wall) and functional (long- or short-term endurance) differences. These characteristics were initially thought to clearly distinguish pellicle (thin-walled) cysts from resting (double-walled) dinoflagellate cysts. The former were considered short-term (temporal) and the latter long-term (resting) cysts. However, during the last two decades further knowledge has highlighted the great intricacy of dinoflagellate life histories, the ecological significance of cyst stages, and the need to clarify the functional and morphological complexities of the different cyst types. Here we review and, when necessary, redefine the concepts of resting and pellicle cysts, examining both their structural and their functional characteristics in the context of the life cycle strategies of several dinoflagellate species. PMID:27694774

  10. Morphology Development in Solution-Processed Functional Organic Blend Films: An In Situ Viewpoint.

    PubMed

    Richter, Lee J; DeLongchamp, Dean M; Amassian, Aram

    2017-05-10

    Solution-processed organic films are a facile route to high-speed, low cost, large-area deposition of electrically functional components (transistors, solar cells, emitters, etc.) that can enable a diversity of emerging technologies, from Industry 4.0, to the Internet of things, to point-of-use heath care and elder care. The extreme sensitivity of the functional performance of organic films to structure and the general nonequilibrium nature of solution drying result in extreme processing-performance correlations. In this Review, we highlight insights into the fundamentals of solution-based film deposition afforded by recent state-of-the-art in situ measurements of functional film drying. Emphasis is placed on multimodal studies that combine surface-sensitive X-ray scattering (GIWAXS or GISAXS) with optical characterization to clearly define the evolution of solute structure (aggregation, crystallinity, and morphology) with film thickness.

  11. Probing the statistical properties of CMB B-mode polarization through Minkowski functionals

    NASA Astrophysics Data System (ADS)

    Santos, Larissa; Wang, Kai; Zhao, Wen

    2016-07-01

    The detection of the magnetic type B-mode polarization is the main goal of future cosmic microwave background (CMB) experiments. In the standard model, the B-mode map is a strong non-gaussian field due to the CMB lensing component. Besides the two-point correlation function, the other statistics are also very important to dig the information of the polarization map. In this paper, we employ the Minkowski functionals to study the morphological properties of the lensed B-mode maps. We find that the deviations from Gaussianity are very significant for both full and partial-sky surveys. As an application of the analysis, we investigate the morphological imprints of the foreground residuals in the B-mode map. We find that even for very tiny foreground residuals, the effects on the map can be detected by the Minkowski functional analysis. Therefore, it provides a complementary way to investigate the foreground contaminations in the CMB studies.

  12. Morphological Awareness as a Function of Semantics, Phonology, and Orthography and as a Predictor of Reading Comprehension in Chinese

    ERIC Educational Resources Information Center

    Li, Hong; Dronjic, Vedran; Chen, Xi; Li, Yixun; Cheng, Yahua; Wu, Xinchun

    2017-01-01

    This study investigates the contributions of semantic, phonological, and orthographic factors to morphological awareness of 413 Chinese-speaking students in Grades 2, 4, and 6, and its relationship with reading comprehension. Participants were orally presented with pairs of bimorphemic compounds and asked to judge whether the first morphemes of…

  13. Early Morphological Productivity in Hungarian: Evidence from Sentence Repetition and Elicited Production

    ERIC Educational Resources Information Center

    Gabor, Balint; Lukacs, Agnes

    2012-01-01

    This paper investigates early productivity of morpheme use in Hungarian children aged between 2 ; 1 and 5 ; 3. Hungarian has a rich morphology which is the core marker of grammatical functions. A new method is introduced using the novel word paradigm in a sentence repetition task with masked inflections (i.e. a disguised elicited production task).…

  14. Defining how aging Pseudotsuga and Abies compensate for multiple stresses through multi-criteria assessment of a functional-structural model

    Treesearch

    Maureen C. Kennedy; E. David Ford; Thomas M. Hinckley

    2009-01-01

    Many hypotheses have been advanced about factors that control tree longevity. We use a simulation model with multi-criteria optimization and Pareto optimality to determine branch morphologies in the Pinaceae that minimize the effect of growth limitations due to water stress while simultaneously maximizing carbohydrate gain. Two distinct branch morphologies in the...

  15. [Disperse endocrine system and APUD concept].

    PubMed

    Mil'to, I V; Sukhodolo, I V; Gereng, E A; Shamardina, L A

    2011-01-01

    This review describes the problems of disperse endocrine system and APUD-system morphology, summarizes some debatable issues of single endocrine cell biology. The data presented refer to the history of both systems discovery, morphological methods of their study, developmental sources, their structural organization and physiological roles of their cells. The significance of single endocrine cells in the regulation of the organism functions is discussed.

  16. Morphology of the internal organs in the adaptation of animals to high-altitude conditions

    NASA Technical Reports Server (NTRS)

    Rakhimov, Y. A.; Belkin, V. S.; Usmanov, M. U.

    1975-01-01

    Disruption of metabolic processes in the walls of the blood vessels as well as changes in the functional activity of the endocrine glands play an important role in the process of an animal's accommodation to a combination of stress factors. Preliminary training of animals for stays at high-altitude markedly reduces the severity of the morphological picture.

  17. Unsupervised automated high throughput phenotyping of RNAi time-lapse movies.

    PubMed

    Failmezger, Henrik; Fröhlich, Holger; Tresch, Achim

    2013-10-04

    Gene perturbation experiments in combination with fluorescence time-lapse cell imaging are a powerful tool in reverse genetics. High content applications require tools for the automated processing of the large amounts of data. These tools include in general several image processing steps, the extraction of morphological descriptors, and the grouping of cells into phenotype classes according to their descriptors. This phenotyping can be applied in a supervised or an unsupervised manner. Unsupervised methods are suitable for the discovery of formerly unknown phenotypes, which are expected to occur in high-throughput RNAi time-lapse screens. We developed an unsupervised phenotyping approach based on Hidden Markov Models (HMMs) with multivariate Gaussian emissions for the detection of knockdown-specific phenotypes in RNAi time-lapse movies. The automated detection of abnormal cell morphologies allows us to assign a phenotypic fingerprint to each gene knockdown. By applying our method to the Mitocheck database, we show that a phenotypic fingerprint is indicative of a gene's function. Our fully unsupervised HMM-based phenotyping is able to automatically identify cell morphologies that are specific for a certain knockdown. Beyond the identification of genes whose knockdown affects cell morphology, phenotypic fingerprints can be used to find modules of functionally related genes.

  18. Piscivory limits diversification of feeding morphology in centrarchid fishes.

    PubMed

    Collar, David C; O'Meara, Brian C; Wainwright, Peter C; Near, Thomas J

    2009-06-01

    Proximity to an adaptive peak influences a lineage's potential to diversify. We tested whether piscivory, a high quality but functionally demanding trophic strategy, represents an adaptive peak that limits morphological diversification in the teleost fish clade, Centrarchidae. We synthesized published diet data and applied a well-resolved, multilocus and time-calibrated phylogeny to reconstruct ancestral piscivory. We measured functional features of the skull and performed principal components analysis on species' values for these variables. To assess the role of piscivory on morphological diversification, we compared the fit of several models of evolution for each principal component (PC), where model parameters were allowed to vary between lineages that differed in degree of piscivory. According to the best-fitting model, two adaptive peaks influenced PC 1 evolution, one peak shared between highly and moderately piscivorous lineages and another for nonpiscivores. Brownian motion better fit PCs 2, 3, and 4, but the best Brownian models infer a slow rate of PC 2 evolution shared among all piscivores and a uniquely slow rate of PC 4 evolution in highly piscivorous lineages. These results suggest that piscivory limits feeding morphology diversification, but this effect is most severe in lineages that exhibit an extreme form of this diet.

  19. Functional Morphology of Eunicidan (Polychaeta) Jaws

    NASA Astrophysics Data System (ADS)

    Clemo, W. C.; Dorgan, K. M.

    2016-02-01

    Polychaetes exhibit diverse feeding strategies and diets, with some species possessing hardened teeth or jaws of varying complexity. Species in the order Eunicida have complex, rigidly articulated jaws consisting of multiple pairs of maxillae and a pair of mandibles. While all Eunicida possess this general jaw structure, a number of characteristics of the jaw parts vary considerably among families. These differences, described for fossilized and extant species' jaws, were used to infer evolutionary relationships, but current phylogeny shows that jaw structures that are similar among several families are convergent. Little has been done, however, to relate jaw functional morphology and feeding behavior to diet. To explore these relationships, we compared the jaw kinematics of two taxa with similar but evolutionarily convergent jaw structures: Diopatra (Onuphidae) and Lumbrineris (Lumbrineridae). Diopatra species are tube-dwelling and predominantly herbivorous, whereas Lumbrineris species are burrowing carnivores. Jaw kinematics were observed and analyzed by filming individuals biting or feeding and tracking tooth movements in videos. Differences in jaw structure and kinematics between Diopatra and Lumbrineris can be interpreted to be consistent with their differences in diet. Relating jaw morphology to diet would provide insight into early annelid communities by linking fossil teeth (scolecodonts) to the ecological roles of extant species with similar morphologies.

  20. Altered Calcium Dynamics in Cardiac Cells Grown on Silane-Modified Surfaces

    PubMed Central

    Ravenscroft-Chang, Melissa S.; Stohlman, Jayna; Molnar, Peter; Natarajan, Anupama; Canavan, Heather E.; Teliska, Maggie; Stancescu, Maria; Krauthamer, Victor; Hickman, J.J.

    2013-01-01

    Chemically defined surfaces were created using self-assembled monolayers (SAMs) of hydrophobic and hydrophilic silanes as models for implant coatings, and the morphology and physiology of cardiac myocytes plated on these surfaces were studied in vitro. We focused on changes in intracellular Ca2+ because of its essential role in regulating heart cell function. The SAM-modified coverslips were analyzed using X-ray Photoelectron Spectroscopy to verify composition. The morphology and physiology of the cardiac cells were examined using fluorescence microscopy and intracellular Ca2+ imaging. The imaging experiments used the fluorescent ratiometric dye fura-2, AM to establish both the resting Ca2+ concentration and the dynamic responses to electrical stimulation. A significant difference in excitation-induced Ca2+ changes on the different silanated surfaces was observed. However, no significant change was noted based on the morphological analysis. This result implies a difference in internal Ca2+ dynamics, and thus cardiac function, occurs when the composition of the surface is different, and this effect is independent of cellular morphology. This finding has implications for histological examination of tissues surrounding implants, the choice of materials that could be beneficial as implant coatings and understanding of cell-surface interactions in cardiac systems. PMID:19828193

  1. An insight into morphometric descriptors of cell shape that pertain to regenerative medicine.

    PubMed

    Lobo, Joana; See, Eugene Yong-Shun; Biggs, Manus; Pandit, Abhay

    2016-07-01

    Cellular morphology has recently been indicated as a powerful indicator of cellular function. The analysis of cell shape has evolved from rudimentary forms of microscopic visual inspection to more advanced methodologies that utilize high-resolution microscopy coupled with sophisticated computer hardware and software for data analysis. Despite this progress, there is still a lack of standardization in quantification of morphometric parameters. In addition, uncertainty remains as to which methodologies and parameters of cell morphology will yield meaningful data, which methods should be utilized to categorize cell shape, and the extent of reliability of measurements and the interpretation of the resulting analysis. A large range of descriptors has been employed to objectively assess the cellular morphology in two-dimensional and three-dimensional domains. Intuitively, simple and applicable morphometric descriptors are preferable and standardized protocols for cell shape analysis can be achieved with the help of computerized tools. In this review, cellular morphology is discussed as a descriptor of cellular function and the current morphometric parameters that are used quantitatively in two- and three-dimensional environments are described. Furthermore, the current problems associated with these morphometric measurements are addressed. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  2. On the Evolutionary Biology of Elpidium Ostracods (Limnocytheridae, Timiriaseviinae): A Proposal for Pluridisciplinary Studies

    PubMed Central

    Danielopol, Dan L.; Pinto, Ricardo L.; Gross, Martin; Da Silva Pereira, Julia; Riedl, Nicoletta

    2017-01-01

    The present essay reviews the history of the research on Elpidium ostracods (Timiriaseviinae), a group exclusively known to live in micro-aquaria of phytotelmata from Neotropical bromeliaceans. A new species, E. martensi n. sp., is described and aspects dealing with functional morphology and taxonomy of the genus are presented. Related to these topics an evolutionary hypothesis and a programme of pluridisciplinary research are proposed. This should allow further improvement of our knowledge on the origin and evolution of the subfamily Timiriaseviinae, one of the most diverse cytheroid ostracod groups in inland waters since the beginning of the Mesozoic. Specifically, the following aspects are treated in-depth in the essay: (1) morphologic traits of the valves, useful for characterisation of Timiriaseviinae taxa; (2) the reversal of the valve overlap and hinge elements; (3) the diverse development of the posterior half of the female carapace, a quasi-independent morphological trait; (4) the morphological shapes of the male copulatory process; (5) the functional significance of the antero-ventral segment of the valve selvage for the life of Elpidium ostracods in the micro-aquaria of the bromeliaceans; (6) the necessary improvement of comparative descriptions of the limbs-chaetotaxy for Timiriaseviinae. PMID:28090173

  3. Blending Gelators to Tune Gel Structure and Probe Anion-Induced Disassembly

    PubMed Central

    Foster, Jonathan A; Edkins, Robert M; Cameron, Gary J; Colgin, Neil; Fucke, Katharina; Ridgeway, Sam; Crawford, Andrew G; Marder, Todd B; Beeby, Andrew; Cobb, Steven L; Steed, Jonathan W

    2014-01-01

    Blending different low molecular weight gelators (LMWGs) provides a convenient route to tune the properties of a gel and incorporate functionalities such as fluorescence. Blending a series of gelators having a common bis-urea motif, and functionalised with different amino acid-derived end-groups and differing length alkylene spacers is reported. Fluorescent gelators incorporating 1-and 2-pyrenyl moieties provide a probe of the mixed systems alongside structural and morphological data from powder diffraction and electron microscopy. Characterisation of the individual gelators reveals that although the expected α-urea tape motif is preserved, there is considerable variation in the gelation properties, molecular packing, fibre morphology and rheological behaviour. Mixing of the gelators revealed examples in which: 1) the gels formed separate, orthogonal networks maintaining their own packing and morphology, 2) the gels blended together into a single network, either adopting the packing and morphology of one gelator, or 3) a new structure not seen for either of the gelators individually was created. The strong binding of the urea functionalities to anions was exploited as a means of breaking down the gel structure, and the use of fluorescent gel blends provides new insights into anion-mediated gel dissolution. PMID:24302604

  4. Computed Tomographic Airway Morphology in Chronic Obstructive Pulmonary Disease. Remodeling or Innate Anatomy?

    PubMed

    Diaz, Alejandro A; Estépar, Raul San José; Washko, George R

    2016-01-01

    Computed tomographic measures of central airway morphology have been used in clinical, epidemiologic, and genetic investigation as an inference of the presence and severity of small-airway disease in smokers. Although several association studies have brought us to believe that these computed tomographic measures reflect airway remodeling, a careful review of such data and more recent evidence may reveal underappreciated complexity to these measures and limitations that prompt us to question that belief. This Perspective offers a review of seminal papers and alternative explanations of their data in the light of more recent evidence. The relationships between airway morphology and lung function are observed in subjects who never smoked, implying that native airway structure indeed contributes to lung function; computed tomographic measures of central airways such as wall area, lumen area, and total bronchial area are smaller in smokers with chronic obstructive pulmonary disease versus those without chronic obstructive pulmonary disease; and the airways are smaller as disease severity increases. The observations suggest that (1) native airway morphology likely contributes to the relationships between computed tomographic measures of airways and lung function; and (2) the presence of smaller airways in those with chronic obstructive pulmonary disease versus those without chronic obstructive pulmonary disease as well as their decrease with disease severity suggests that smokers with chronic obstructive pulmonary disease may simply have smaller airways to begin with, which put them at greater risk for the development of smoking-related disease.

  5. Genetic Complexity and Quantitative Trait Loci Mapping of Yeast Morphological Traits

    PubMed Central

    Nogami, Satoru; Ohya, Yoshikazu; Yvert, Gaël

    2007-01-01

    Functional genomics relies on two essential parameters: the sensitivity of phenotypic measures and the power to detect genomic perturbations that cause phenotypic variations. In model organisms, two types of perturbations are widely used. Artificial mutations can be introduced in virtually any gene and allow the systematic analysis of gene function via mutants fitness. Alternatively, natural genetic variations can be associated to particular phenotypes via genetic mapping. However, the access to genome manipulation and breeding provided by model organisms is sometimes counterbalanced by phenotyping limitations. Here we investigated the natural genetic diversity of Saccharomyces cerevisiae cellular morphology using a very sensitive high-throughput imaging platform. We quantified 501 morphological parameters in over 50,000 yeast cells from a cross between two wild-type divergent backgrounds. Extensive morphological differences were found between these backgrounds. The genetic architecture of the traits was complex, with evidence of both epistasis and transgressive segregation. We mapped quantitative trait loci (QTL) for 67 traits and discovered 364 correlations between traits segregation and inheritance of gene expression levels. We validated one QTL by the replacement of a single base in the genome. This study illustrates the natural diversity and complexity of cellular traits among natural yeast strains and provides an ideal framework for a genetical genomics dissection of multiple traits. Our results did not overlap with results previously obtained from systematic deletion strains, showing that both approaches are necessary for the functional exploration of genomes. PMID:17319748

  6. Comparison of cryopreserved human sperm in vapor and liquid phases of liquid nitrogen: effect on motility parameters, morphology, and sperm function.

    PubMed

    Punyatanasakchai, Piyaphan; Sophonsritsuk, Areephan; Weerakiet, Sawaek; Wansumrit, Surapee; Chompurat, Deonthip

    2008-11-01

    To compare the effects of cryopreserved sperm in vapor and liquid phases of liquid nitrogen on sperm motility, morphology, and sperm function. Experimental study. Andrology laboratory at Ramathibodi Hospital, Thailand. Thirty-eight semen samples with normal motility and sperm count were collected from 38 men who were either patients of an infertility clinic or had donated sperm for research. Each semen sample was divided into two aliquots. Samples were frozen with static-phase vapor cooling. One aliquot was plunged into liquid nitrogen (-196 degrees C), and the other was stored in vapor-phase nitrogen (-179 degrees C) for 3 days. Thawing was performed at room temperature. Motility was determined by using computer-assisted semen analysis, sperm morphology was determined by using eosin-methylene blue staining, and sperm function was determined by using a hemizona binding test. Most of the motility parameters of sperm stored in the vapor phase were not significantly different from those stored in the liquid phase of liquid nitrogen, except in amplitude of lateral head displacement. The percentages of normal sperm morphology in both vapor and liquid phases also were not significantly different. There was no significant difference in the number of bound sperm in hemizona between sperm cryopreserved in both vapor and liquid phases of liquid nitrogen. Cryopreservation of human sperm in a vapor phase of liquid nitrogen was comparable to cryopreservation in a liquid phase of liquid nitrogen.

  7. Herbivorous dinosaur jaw disparity and its relationship to extrinsic evolutionary drivers.

    PubMed

    MacLaren, Jamie A; Anderson, Philip S L; Barrett, Paul M; Rayfield, Emily J

    2017-02-01

    Morphological responses of nonmammalian herbivores to external ecological drivers have not been quantified over extended timescales. Herbivorous nonavian dinosaurs are an ideal group to test for such responses, because they dominated terrestrial ecosystems for more than 155 Myr and included the largest herbivores that ever existed. The radiation of dinosaurs was punctuated by several ecologically important events, including extinctions at the Triassic/Jurassic (Tr/J) and Jurassic/Cretaceous (J/K) boundaries, the decline of cycadophytes, and the origin of angiosperms, all of which may have had profound consequences for herbivore communities. Here we present the first analysis of morphological and biomechanical disparity for sauropodomorph and ornithischian dinosaurs in order to investigate patterns of jaw shape and function through time. We find that morphological and biomechanical mandibular disparity are decoupled: mandibular shape disparity follows taxonomic diversity, with a steady increase through the Mesozoic. By contrast, biomechanical disparity builds to a peak in the Late Jurassic that corresponds to increased functional variation among sauropods. The reduction in biomechanical disparity following this peak coincides with the J/K extinction, the associated loss of sauropod and stegosaur diversity, and the decline of cycadophytes. We find no specific correspondence between biomechanical disparity and the proliferation of angiosperms. Continual ecological and functional replacement of pre-existing taxa accounts for disparity patterns through much of the Cretaceous, with the exception of several unique groups, such as psittacosaurids that are never replaced in their biomechanical or morphological profiles.

  8. Biomechanics of running indicates endothermy in bipedal dinosaurs.

    PubMed

    Pontzer, Herman; Allen, Vivian; Hutchinson, John R

    2009-11-11

    One of the great unresolved controversies in paleobiology is whether extinct dinosaurs were endothermic, ectothermic, or some combination thereof, and when endothermy first evolved in the lineage leading to birds. Although it is well established that high, sustained growth rates and, presumably, high activity levels are ancestral for dinosaurs and pterosaurs (clade Ornithodira), other independent lines of evidence for high metabolic rates, locomotor costs, or endothermy are needed. For example, some studies have suggested that, because large dinosaurs may have been homeothermic due to their size alone and could have had heat loss problems, ectothermy would be a more plausible metabolic strategy for such animals. Here we describe two new biomechanical approaches for reconstructing the metabolic rate of 14 extinct bipedal dinosauriforms during walking and running. These methods, well validated for extant animals, indicate that during walking and slow running the metabolic rate of at least the larger extinct dinosaurs exceeded the maximum aerobic capabilities of modern ectotherms, falling instead within the range of modern birds and mammals. Estimated metabolic rates for smaller dinosaurs are more ambiguous, but generally approach or exceed the ectotherm boundary. Our results support the hypothesis that endothermy was widespread in at least larger non-avian dinosaurs. It was plausibly ancestral for all dinosauriforms (perhaps Ornithodira), but this is perhaps more strongly indicated by high growth rates than by locomotor costs. The polarity of the evolution of endothermy indicates that rapid growth, insulation, erect postures, and perhaps aerobic power predated advanced "avian" lung structure and high locomotor costs.

  9. Integrated Paleoenvironmental Reconstruction and Taphonomy of a Unique Upper Cretaceous Vertebrate-Bearing Locality (Velaux, Southeastern France)

    PubMed Central

    Cincotta, Aude; Yans, Johan; Godefroit, Pascal; Garcia, Géraldine; Dejax, Jean; Benammi, Mouloud; Amico, Sauveur; Valentin, Xavier

    2015-01-01

    The Velaux-La Bastide Neuve fossil-bearing site (Bouches-du-Rhône, France) has yielded a diverse vertebrate assemblage dominated by dinosaurs, including the titanosaur Atsinganosaurus velauciensis. We here provide a complete inventory of vertebrate fossils collected during two large-scale field campaigns. Numerous crocodilian teeth occur together with complete skulls. Pterosaur, hybodont shark and fish elements are also represented but uncommon. Magnetostratigraphic analyses associated with biostratigraphic data from dinosaur eggshell and charophytes suggest a Late Campanian age for the locality. Lithologic and taphonomic studies, associated with microfacies and palynofacies analyses, indicate a fluvial setting of moderate energy with broad floodplain. Palynomorphs are quite rare; only three taxa of pollen grains occur: a bisaccate taxon, a second form probably belonging to the Normapolles complex, and another tricolporate taxon. Despite the good state of preservation, these taxa are generally difficult to identify, since they are scarce and have a very minute size. Most of the vertebrate remains are well preserved and suggest transport of the carcasses over short distances before accumulation in channel and overbank facies, together with reworked Aptian grains of glauconite, followed by a rapid burial. The bones accumulated in three thin layers that differ by their depositional modes and their taphonomic histories. Numerous calcareous and iron oxides-rich paleosols developed on the floodplain, suggesting an alternating dry and humid climate in the region during the Late Campanian. PMID:26287486

  10. Temperature, metabolic power and the evolution of endothermy.

    PubMed

    Clarke, Andrew; Pörtner, Hans-Otto

    2010-11-01

    Endothermy has evolved at least twice, in the precursors to modern mammals and birds. The most widely accepted explanation for the evolution of endothermy has been selection for enhanced aerobic capacity. We review this hypothesis in the light of advances in our understanding of ATP generation by mitochondria and muscle performance. Together with the development of isotope-based techniques for the measurement of metabolic rate in free-ranging vertebrates these have confirmed the importance of aerobic scope in the evolution of endothermy: absolute aerobic scope, ATP generation by mitochondria and muscle power output are all strongly temperature-dependent, indicating that there would have been significant improvement in whole-organism locomotor ability with a warmer body. New data on mitochondrial ATP generation and proton leak suggest that the thermal physiology of mitochondria may differ between organisms of contrasting ecology and thermal flexibility. Together with recent biophysical modelling, this strengthens the long-held view that endothermy originated in smaller, active eurythermal ectotherms living in a cool but variable thermal environment. We propose that rather than being a secondary consequence of the evolution of an enhanced aerobic scope, a warmer body was the means by which that enhanced aerobic scope was achieved. This modified hypothesis requires that the rise in metabolic rate and the insulation necessary to retain metabolic heat arose early in the lineages leading to birds and mammals. Large dinosaurs were warm, but were not endotherms, and the metabolic status of pterosaurs remains unresolved. © 2010 The Authors. Biological Reviews © 2010 Cambridge Philosophical Society.

  11. Retinal function and morphology are altered in cattle infected with the prion disease transmissible mink encephalopathy.

    PubMed

    Smith, J D; Greenlee, J J; Hamir, A N; Richt, J A; Greenlee, M H West

    2009-09-01

    Transmissible spongiform encephalopathies (TSEs) are a group of diseases that result in progressive and invariably fatal neurologic disease in both animals and humans. TSEs are characterized by the accumulation of an abnormal protease-resistant form of the prion protein in the central nervous system. Transmission of infectious TSEs is believed to occur via ingestion of prion protein-contaminated material. This material is also involved in the transmission of bovine spongiform encephalopathy ("mad cow disease") to humans, which resulted in the variant form of Creutzfeldt-Jakob disease. Abnormal prion protein has been reported in the retina of TSE-affected cattle, but despite these observations, the specific effect of abnormal prion protein on retinal morphology and function has not been assessed. The objective of this study was to identify and characterize potential functional and morphologic abnormalities in the retinas of cattle infected with a bovine-adapted isolate of transmissible mink encephalopathy. We used electroretinography and immunohistochemistry to examine retinas from 10 noninoculated and 5 transmissible mink encephalopathy-inoculated adult Holstein steers. Here we show altered retinal function, as evidenced by prolonged implicit time of the electroretinogram b-wave, in transmissible mink encephalopathy-infected cattle before the onset of clinical illness. We also demonstrate disruption of rod bipolar cell synaptic terminals, indicated by decreased immunoreactivity for the alpha isoform of protein kinase C and vesicular glutamate transporter 1, and activation of Müller glia, as evidenced by increased glial fibrillary acidic protein and glutamine synthetase expression, in the retinas of these cattle at the time of euthanasia due to clinical deterioration. This is the first study to identify both functional and morphologic alterations in the retinas of TSE-infected cattle. Our results support future efforts to focus on the retina for the development of new strategies for the diagnosis of TSEs.

  12. Correlation between morphological characteristics in spectral-domain-optical coherence tomography, different functional tests and a patient's subjective handicap in acute central serous chorioretinopathy.

    PubMed

    Gerendas, Bianca S; Kroisamer, Julia-Sophie; Buehl, Wolf; Rezar-Dreindl, Sandra M; Eibenberger, Katharina M; Pablik, Eleonore; Schmidt-Erfurth, Ursula; Sacu, Stefan

    2018-01-16

    The purpose of this study was to identify quantitatively measurable morphologic optical coherence tomography (OCT) characteristics in patients with an acute episode of central serous chorioretinopathy (CSC) and evaluate their correlation to functional and psychological variables for their use in daily clinical practice. Retinal thickness (RT), the height, area and volume of subretinal fluid (SRF)/pigment epithelium detachments were evaluated using the standardized procedures of the Vienna Reading Center. These morphologic characteristics were compared with functional variables [best-corrected visual acuity (BCVA), contrast sensitivity (CS), retinal sensitivity/microperimetry, fixation stability], and patients' subjective handicap from CSC using the National Eye Institute 25-item Visual Function Questionnaire (NEI VFQ-25). Data from 39 CSC patients were included in this analysis. Three different SRF height measures showed a high negative correlation (r = -0.7) to retinal sensitivity within the central 9°, which was also negatively correlated with SRF area and volume (r = -0.6). The CS score and fixation stability (fixation points within 2°) showed a moderate negative correlation (r = -0.4) with SRF height variables. Comparison of the subjective handicap with morphological characteristics in spectral-domain (SD)-OCT showed SRF height had the highest correlation (r = -0.4) with the subjective problems reported and overall NEI VFQ-25 score. In conclusion, SRF height measured in SD-OCT showed the best correlation with functional variables and patients' subjective handicap caused by the disease and therefore seems to be the best variable to look at in daily clinical routine. Even though area and volume also show a correlation, these cannot be so easily measured as height and are therefore not suggested for daily clinical routine. © 2018 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  13. Vitamin D Receptor Gene Ablation in the Conceptus Has Limited Effects on Placental Morphology, Function and Pregnancy Outcome

    PubMed Central

    Laurence, Jessica A.; Leemaqz, Shalem; O’Leary, Sean; Bianco-Miotto, Tina; Du, Jing; Anderson, Paul H.; Roberts, Claire T.

    2015-01-01

    Vitamin D deficiency has been implicated in the pathogenesis of several pregnancy complications attributed to impaired or abnormal placental function, but there are few clues indicating the mechanistic role of vitamin D in their pathogenesis. To further understand the role of vitamin D receptor (VDR)-mediated activity in placental function, we used heterozygous Vdr ablated C57Bl6 mice to assess fetal growth, morphological parameters and global gene expression in Vdr null placentae. Twelve Vdr +/- dams were mated at 10–12 weeks of age with Vdr +/- males. At day 18.5 of the 19.5 day gestation in our colony, females were euthanised and placental and fetal samples were collected, weighed and subsequently genotyped as either Vdr +/+, Vdr +/- or Vdr -/-. Morphological assessment of placentae using immunohistochemistry was performed and RNA was extracted and subject to microarray analysis. This revealed 25 genes that were significantly differentially expressed between Vdr +/+ and Vdr -/- placentae. The greatest difference was a 6.47-fold change in expression of Cyp24a1 which was significantly lower in the Vdr -/- placentae (P<0.01). Other differentially expressed genes in Vdr -/- placentae included those involved in RNA modification (Snord123), autophagy (Atg4b), cytoskeletal modification (Shroom4), cell signalling (Plscr1, Pex5) and mammalian target of rapamycin (mTOR) signalling (Deptor and Prr5). Interrogation of the upstream sequence of differentially expressed genes identified that many contain putative vitamin D receptor elements (VDREs). Despite the gene expression differences, this did not contribute to any differences in overall placental morphology, nor was function affected as there was no difference in fetal growth as determined by fetal weight near term. Given our dams still expressed a functional VDR gene, our results suggest that cross-talk between the maternal decidua and the placenta, as well as maternal vitamin D status, may be more important in determining pregnancy outcome than conceptus expression of VDR. PMID:26121239

  14. Functional magnetic resonance imaging in oncology: state of the art.

    PubMed

    Guimaraes, Marcos Duarte; Schuch, Alice; Hochhegger, Bruno; Gross, Jefferson Luiz; Chojniak, Rubens; Marchiori, Edson

    2014-01-01

    In the investigation of tumors with conventional magnetic resonance imaging, both quantitative characteristics, such as size, edema, necrosis, and presence of metastases, and qualitative characteristics, such as contrast enhancement degree, are taken into consideration. However, changes in cell metabolism and tissue physiology which precede morphological changes cannot be detected by the conventional technique. The development of new magnetic resonance imaging techniques has enabled the functional assessment of the structures in order to obtain information on the different physiological processes of the tumor microenvironment, such as oxygenation levels, cellularity and vascularity. The detailed morphological study in association with the new functional imaging techniques allows for an appropriate approach to cancer patients, including the phases of diagnosis, staging, response evaluation and follow-up, with a positive impact on their quality of life and survival rate.

  15. Rapid changes in gene expression direct rapid shifts in intestinal form and function in the Burmese python after feeding.

    PubMed

    Andrew, Audra L; Card, Daren C; Ruggiero, Robert P; Schield, Drew R; Adams, Richard H; Pollock, David D; Secor, Stephen M; Castoe, Todd A

    2015-05-01

    Snakes provide a unique and valuable model system for studying the extremes of physiological remodeling because of the ability of some species to rapidly upregulate organ form and function upon feeding. The predominant model species used to study such extreme responses has been the Burmese python because of the extreme nature of postfeeding response in this species. We analyzed the Burmese python intestine across a time series, before, during, and after feeding to understand the patterns and timing of changes in gene expression and their relationship to changes in intestinal form and function upon feeding. Our results indicate that >2,000 genes show significant changes in expression in the small intestine following feeding, including genes involved in intestinal morphology and function (e.g., hydrolases, microvillus proteins, trafficking and transport proteins), as well as genes involved in cell division and apoptosis. Extensive changes in gene expression occur surprisingly rapidly, within the first 6 h of feeding, coincide with changes in intestinal morphology, and effectively return to prefeeding levels within 10 days. Collectively, our results provide an unprecedented portrait of parallel changes in gene expression and intestinal morphology and physiology on a scale that is extreme both in the magnitude of changes, as well as in the incredibly short time frame of these changes, with up- and downregulation of expression and function occurring in the span of 10 days. Our results also identify conserved vertebrate signaling pathways that modulate these responses, which may suggest pathways for therapeutic modulation of intestinal function in humans. Copyright © 2015 the American Physiological Society.

  16. The gray area between synapse structure and function-Gray's synapse types I and II revisited.

    PubMed

    Klemann, Cornelius J H M; Roubos, Eric W

    2011-11-01

    On the basis of ultrastructural parameters, the concept was formulated that asymmetric Type I and symmetric Type II synapses are excitatory and inhibitory, respectively. This "functional Gray synapses concept" received strong support from the demonstration of the excitatory neurotransmitter glutamate in Type I synapses and of the inhibitory neurotransmitter γ-aminobutyric acid in Type II synapses, and is still frequently used in modern literature. However, morphological and functional evidence has accumulated that the concept is less tenable. Typical features of synapses like shape and size of presynaptic vesicles and synaptic cleft and presence of a postsynaptic density (PsD) do not always fit the postulated (excitatory/inhibitory) function of Gray's synapses. Furthermore, synapse function depends on postsynaptic receptors and associated signal transduction mechanisms rather than on presynaptic morphology and neurotransmitter type. Moreover, the notion that many synapses are difficult to classify as either asymmetric or symmetric has cast doubt on the assumption that the presence of a PsD is a sign of excitatory synaptic transmission. In view of the morphological similarities of the PsD in asymmetric synapses with membrane junctional structures such as the zonula adherens and the desmosome, asymmetric synapses may play a role as links between the postsynaptic and presynaptic membrane, thus ensuring long-term maintenance of interneuronal communication. Symmetric synapses, on the other hand, might be sites of transient communication as takes place during development, learning, memory formation, and pathogenesis of brain disorders. Confirmation of this idea might help to return the functional Gray synapse concept its central place in neuroscience. Copyright © 2011 Wiley-Liss, Inc.

  17. Chronic DON exposure and acute LPS challenge: effects on porcine liver morphology and function.

    PubMed

    Renner, Lydia; Kahlert, Stefan; Tesch, Tanja; Bannert, Erik; Frahm, Jana; Barta-Böszörményi, Anikó; Kluess, Jeannette; Kersten, Susanne; Schönfeld, Peter; Rothkötter, Hermann-Josef; Dänicke, Sven

    2017-08-01

    The aim of the present study was to examine the role of chronic deoxynivalenol (DON) exposition on the liver morphology and function in combination with pre- and post-hepatic lipopolysaccharide (LPS) stress in young pigs fed for 4 weeks with a DON-contaminated diet (4.59 mg/kg feed). At the end of the experiment, LPS (7.5 μg/kg BW) was administered for 1 h pre-hepatically (Vena portae hepatis) or post-hepatically (Vena jugularis). Liver morphology was macroscopically checked and showed haemorrhage in all LPS groups, significantly higher relative liver weights, accompanied by marked oedema in the gallbladder wall. Histological changes were judged by a modified histology activity index (HAI). Liver HAI score was significantly increased in all LPS groups compared to placebo, primarily due to neutrophil infiltration and haemorrhage. DON feed alone was without effect on the liver HAI. Liver function was characterized by (i) hepatic biochemical markers, (ii) mitochondrial respiration and (iii) Ca 2+ accumulation capacity of isolated mitochondria. Clinical chemical parameters characterizing liver function were initially (<3 h) slightly influenced by LPS. After 3 h, bilirubin and alkaline phosphatase were increased significantly, in DON-fed, jugular-infused LPS group. Respiration and Ca 2+ accumulation capacity of isolated liver mitochondria was not impaired by chronic DON exposure, acute LPS challenge or combined treatments. DON-contaminated feed did not change macroscopy and histology of the liver, but modified the function under LPS stress. The different function was not linked to modifications of liver mitochondria.

  18. Segmental expression of Pax3/7 and engrailed homologs in tardigrade development.

    PubMed

    Gabriel, Willow N; Goldstein, Bob

    2007-06-01

    How morphological diversity arises through evolution of gene sequence is a major question in biology. In Drosophila, the genetic basis for body patterning and morphological segmentation has been studied intensively. It is clear that some of the genes in the Drosophila segmentation program are functioning similarly in certain other taxa, although many questions remain about when these gene functions arose and which taxa use these genes similarly to establish diverse body plans. Tardigrades are an outgroup to arthropods in the Ecdysozoa and, as such, can provide insight into how gene functions have evolved among the arthropods and their close relatives. We developed immunostaining methods for tardigrade embryos, and we used cross-reactive antibodies to investigate the expression of homologs of the pair-rule gene paired (Pax3/7) and the segment polarity gene engrailed in the tardigrade Hypsibius dujardini. We find that in H. dujardini embryos, Pax3/7 protein localizes not in a pair-rule pattern but in a segmentally iterated pattern, after the segments are established, in regions of the embryo where neurons later arise. Engrailed protein localizes in the posterior ectoderm of each segment before ectodermal segmentation is apparent. Together with previous results from others, our data support the conclusions that the pair-rule function of Pax3/7 is specific to the arthropods, that some of the ancient functions of Pax3/7 and Engrailed in ancestral bilaterians may have been in neurogenesis, and that Engrailed may have a function in establishing morphological boundaries between segments that is conserved at least among the Panarthropoda.

  19. Solid Rocket Fuel Constitutive Theory and Polymer Cure

    NASA Technical Reports Server (NTRS)

    Ream, Robert

    2006-01-01

    Solid Rocket Fuel is a complex composite material for which no general constitutive theory, based on first principles, has been developed. One of the principles such a relation would depend on is the morphology of the binder. A theory of polymer curing is required to determine this morphology. During work on such a theory an algorithm was developed for counting the number of ways a polymer chain could assemble. The methods used to develop and check this algorithm led to an analytic solution to the problem. This solution is used in a probability distribution function which characterizes the morphology of the polymer.

  20. Neuronal Morphology goes Digital: A Research Hub for Cellular and System Neuroscience

    PubMed Central

    Parekh, Ruchi; Ascoli, Giorgio A.

    2013-01-01

    Summary The importance of neuronal morphology in brain function has been recognized for over a century. The broad applicability of “digital reconstructions” of neuron morphology across neuroscience sub-disciplines has stimulated the rapid development of numerous synergistic tools for data acquisition, anatomical analysis, three-dimensional rendering, electrophysiological simulation, growth models, and data sharing. Here we discuss the processes of histological labeling, microscopic imaging, and semi-automated tracing. Moreover, we provide an annotated compilation of currently available resources in this rich research “ecosystem” as a central reference for experimental and computational neuroscience. PMID:23522039

  1. Confocal Raman microscopy of morphological changes in poly(ethylene terephthalate) film induced by supercritical CO(2).

    PubMed

    Fleming, Oliver S; Kazarian, Sergei G

    2004-04-01

    Poly(ethylene terephthalate) (PET) film was exposed to supercritical (sc) CO(2) and confocal Raman microscopy was used to investigate the morphological changes induced. The study evaluates the use of oil and dry objectives in confocal mode to obtain depth profiles of PET film. These results were compared with the data obtained by mapping of the film cross-section. A significant gradient of degree of crystallinity normal to the surface of PET film down to 60 microm has been observed. The gradient of the degree of morphological changes are functions of exposure time and pressure.

  2. Epistemic uncertainty: Turkish children with specific language impairment and their comprehension of tense and aspect.

    PubMed

    Yarbay Duman, Tuba; Topbaş, Seyhun

    2016-11-01

    Impairments in tense morphology are characteristic of English-speaking children with specific language impairment (SLI). Recent studies have investigated the role that aspect plays in the difficulties found in tense morphology. It has been suggested that children with SLI are less sensitive to aspect and its interaction with tense than typically developing (TD) children. Profound impairment in past tense morphology compared with the present in this population was explained by a breakdown in the association between event completion information and past tense. To date, research on tense morphology in this population has not examined all three tense conditions in a single study. To examine whether monolingual Turkish-speaking children with SLI exhibit deficits in comprehending tense and aspect morphology, and, if so, whether these deficits are restricted to completed events (past tense) or also occur for incomplete non-past events (future and present tense). A sentence-picture matching task was administered to 36 monolingual Turkish-speaking children: 13 with SLI (mean age = 6;9 years) and 23 age-matched TD children (mean age = 6;5 years). Upon hearing a sentence, each child had to select between a target (past, present or future) and a distracter picture. Tense and aspect information could only be established from verb morphology. The SLI group had lower accuracy than the TD group on all test conditions. For both groups, present tense had the highest accuracy scores. Performance scores within the SLI group showed the following hierarchy from easy to difficult: present > future > past. Turkish children with SLI have deficits in comprehending tense and aspect morphology. Although comprehending past was more difficult than non-past (present and future), future was more difficult to comprehend than the present. This disassociation between two non-past incomplete events indicates that the underlying difficulties comprehending (past) tense-aspect is not restricted to event completion in past tense contexts. This finding raises the possibility that in children with SLI, non-temporal epistemic functions of verb morphology (i.e., certainty, probability or possibility of an event occurring) might play a role in efficient understanding of tense and aspect morphology. If so, children with SLI may benefit from language therapy focused on the epistemic functions of verb morphology to improve comprehension of tense and aspect. © 2016 Royal College of Speech and Language Therapists.

  3. A Functional Monomer Is Not Enough: Principal Component Analysis of the Influence of Template Complexation in Pre-Polymerization Mixtures on Imprinted Polymer Recognition and Morphology

    PubMed Central

    Golker, Kerstin; Karlsson, Björn C. G.; Rosengren, Annika M.; Nicholls, Ian A.

    2014-01-01

    In this report, principal component analysis (PCA) has been used to explore the influence of template complexation in the pre-polymerization phase on template molecularly imprinted polymer (MIP) recognition and polymer morphology. A series of 16 bupivacaine MIPs were studied. The ethylene glycol dimethacrylate (EGDMA)-crosslinked polymers had either methacrylic acid (MAA) or methyl methacrylate (MMA) as the functional monomer, and the stoichiometry between template, functional monomer and crosslinker was varied. The polymers were characterized using radioligand equilibrium binding experiments, gas sorption measurements, swelling studies and data extracted from molecular dynamics (MD) simulations of all-component pre-polymerization mixtures. The molar fraction of the functional monomer in the MAA-polymers contributed to describing both the binding, surface area and pore volume. Interestingly, weak positive correlations between the swelling behavior and the rebinding characteristics of the MAA-MIPs were exposed. Polymers prepared with MMA as a functional monomer and a polymer prepared with only EGDMA were found to share the same characteristics, such as poor rebinding capacities, as well as similar surface area and pore volume, independent of the molar fraction MMA used in synthesis. The use of PCA for interpreting relationships between MD-derived descriptions of events in the pre-polymerization mixture, recognition properties and morphologies of the corresponding polymers illustrates the potential of PCA as a tool for better understanding these complex materials and for their rational design. PMID:25391043

  4. Beyond the sniffer: frontal sinuses in Carnivora.

    PubMed

    Curtis, Abigail A; Van Valkenburgh, Blaire

    2014-11-01

    Paranasal sinuses are some of the most poorly understood features of mammalian cranial anatomy. They are highly variable in presence and form among species, but their function is not well understood. The best-supported explanations for the function of sinuses is that they opportunistically fill mechanically unnecessary space, but that in some cases, sinuses in combination with the configuration of the frontal bone may improve skull performance by increasing skull strength and dissipating stresses more evenly. We used CT technology to investigate patterns in frontal sinus size and shape disparity among three families of carnivores: Canidae, Felidae, and Hyaenidae. We provide some of the first quantitative data on sinus morphology for these three families, and employ a novel method to quantify the relationship between three-dimensional sinus shape and skull shape. As expected, frontal sinus size and shape were more strongly correlated with frontal bone size and shape than with the morphology of the skull as a whole. However, sinus morphology was also related to allometric differences among families that are linked to biomechanical function. Our results support the hypothesis that frontal sinuses most often opportunistically fill space that is mechanically unnecessary, and they can facilitate cranial shape changes that reduce stress during feeding. Moreover, we suggest that the ability to form frontal sinuses allows species to modify skull function without compromising the performance of more functionally constrained regions such as the nasal chamber (heat/water conservation, olfaction), and braincase (housing the brain and sensory structures). © 2014 Wiley Periodicals, Inc.

  5. THE INFLUENCE OF RED SPIRAL GALAXIES ON THE SHAPE OF THE LOCAL K-BAND LUMINOSITY FUNCTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonne, Nicolas J.; Brown, Michael J. I.; Jones, Heath

    2015-02-01

    We have determined K-band luminosity functions for 13,325 local universe galaxies as a function of morphology and color (for K {sub tot} ≤ 10.75). Our sample is drawn from the Two Micron All Sky Survey Extended Source Catalog, with all sample galaxies having measured morphologies and distances (including 4219 archival redshift-independent distances). The luminosity function for our total sample is in good agreement with previous works, but is relatively smooth at faint magnitudes (due to bulk flow distance corrections). We investigated the differences due to morphological and color selection using 5417 sample galaxies with NASA Sloan Atlas optical colors and find thatmore » red spirals comprise 20%-50% of all spirals with –25 ≤ M{sub K}  < –20. Fainter than M{sub K} = –24, red spirals are as common as early types, explaining the different faint end slopes (α = –0.87 and –1.00 for red and early-types, respectively). While we find red spirals comprise more than 50% of all M{sub K}  < –25 spiral galaxies, they do not dominate the bright end of the overall red galaxy luminosity function, which is dominated by early-type galaxies. The brightest red spirals have ongoing star formation and those without are frequently misclassified as early-types. The faintest ones have an appearance and Sérsic indices consistent with faded disks, rather than true bulge-dominated galaxies.« less

  6. A functional monomer is not enough: principal component analysis of the influence of template complexation in pre-polymerization mixtures on imprinted polymer recognition and morphology.

    PubMed

    Golker, Kerstin; Karlsson, Björn C G; Rosengren, Annika M; Nicholls, Ian A

    2014-11-10

    In this report, principal component analysis (PCA) has been used to explore the influence of template complexation in the pre-polymerization phase on template molecularly imprinted polymer (MIP) recognition and polymer morphology. A series of 16 bupivacaine MIPs were studied. The ethylene glycol dimethacrylate (EGDMA)-crosslinked polymers had either methacrylic acid (MAA) or methyl methacrylate (MMA) as the functional monomer, and the stoichiometry between template, functional monomer and crosslinker was varied. The polymers were characterized using radioligand equilibrium binding experiments, gas sorption measurements, swelling studies and data extracted from molecular dynamics (MD) simulations of all-component pre-polymerization mixtures. The molar fraction of the functional monomer in the MAA-polymers contributed to describing both the binding, surface area and pore volume. Interestingly, weak positive correlations between the swelling behavior and the rebinding characteristics of the MAA-MIPs were exposed. Polymers prepared with MMA as a functional monomer and a polymer prepared with only EGDMA were found to share the same characteristics, such as poor rebinding capacities, as well as similar surface area and pore volume, independent of the molar fraction MMA used in synthesis. The use of PCA for interpreting relationships between MD-derived descriptions of events in the pre-polymerization mixture, recognition properties and morphologies of the corresponding polymers illustrates the potential of PCA as a tool for better understanding these complex materials and for their rational design.

  7. [The functional-morphological characteristics of alcohol-induced pathology as dependent on the nature of the intoxication and its nootropil correction in an experiment].

    PubMed

    Sidorov, P I; Gromova, L E; Solov'ev, A G; Degteva, G N; Leont'ev, V Ia; Savastenko, A E

    2000-01-01

    The response of hematological system, carbohydrate metabolism and pathomorphologic alterations in the viscera were studied for four weeks on the model of chronic alcoholization in conditions of hydrolytic alcohol production. It is shown that maximal deviations of all the parameters in white conventional rats occur after receiving a combined ethanol dose in inhalation of a mixture of methanol and furfurol vapour. Less manifest pathology was revealed in simultaneous introduction of nootropil solution. Thus, functional-morphologic changes in alcoholic intoxication in unfavourable environment are reversible in purposeful application of drugs with neurometabolic effect.

  8. [Banff score changes in kidneys from marginal donors].

    PubMed

    Borda, Bernadett; Szederkényi, Edit; Ottlakán, Aurél; Kemény, Éva; Szabó, Viktor; Hódi, Zoltán; Lázár, György

    2016-02-21

    Despite an increase in the number of cadaver donors and the number of overall organ transplantations, the dramatic increase in the waiting list makes it necessary to reconsider donor criteria. The authors examined whether differences could exist in the function and/or morphology of transplanted kidneys originated from marginal and ideal donors one and five years after transplantation. Kidney function and histopathologic findings were analysed and compared one and 5 years after transplantation in 97 patients having marginal donor kidneys and 178 patients who received ideal donor kidneys. Serum creatinine level was significantly higher (p = 0.0001) and estimated glomerular filtration rate was significantly lower (p = 0.003) in patients having marginal donor kidneys as compared to those with ideal donor kidneys 5 years after transplantation. Morphological changes in the transplanted kidneys such as tubulitis (p = 0.014) and interstitial inflammation (p = 0.025) were significantly more frequently present in patients with marginal donor kidneys than in those with ideal donor kidneys one year after transplantation. Despite an absence of differences in kidney function one year after kidney transplantation between patients having marginal and ideal donor kidneys, morphologic differences in the transplanted kidneys can be detected between the two groups of patients.

  9. Time course of apoptotic cell death in guinea pig cochlea following intratympanic gentamicin application.

    PubMed

    Suzuki, Mitsuya; Ushio, Munetaka; Yamasoba, Tatsuya

    2008-07-01

    The present study showed that the molecular signal that promotes the death of cochlear hair cells (HCs) induced by intratympanic gentamicin application is significant before the manifestation of morphological and functional changes. The effect of agents that protect the HCs from aminoglycoside ototoxicity is influenced by the timing of their administration. However, morphological, functional and molecular changes in the cochlea in the early stage following aminoglycoside application have rarely been studied. Therefore, we examined the chronological changes in the cochlea following intratympanic gentamicin application. Small pieces of gelatin sponge soaked with gentamicin (40 mg/ml) were placed on the round window membrane of mature guinea pigs, and the tympanic bulla was filled with gentamicin solution. They were euthanized at 6, 12, 18, 24, and 48 h following gentamicin application. Auditory brainstem responses (ABRs) were measured before gentamicin application and immediately before euthanasia, and the extent of missing and TUNEL-positive HCs was evaluated. ABR thresholds significantly increased 18 h or later following gentamicin application, and the loss of HCs was seen at 24 and 48 h. While functional and morphological changes were not evident until 18 h after gentamicin application, substantial amounts of TUNEL-positive HCs appeared at 12 h.

  10. Cardiac Magnetic Resonance-Verified Myocardial Fibrosis in Chagas Disease: Clinical Correlates and Risk Stratification

    PubMed Central

    Uellendahl, Marly; de Siqueira, Maria Eduarda Menezes; Calado, Eveline Barros; Kalil-Filho, Roberto; Sobral, Dário; Ribeiro, Clébia; Oliveira, Wilson; Martins, Silvia; Narula, Jagat; Rochitte, Carlos Eduardo

    2016-01-01

    Background Chagas disease (CD) is an important cause of heart failure and mortality, mainly in Latin America. This study evaluated the morphological and functional characteristics of the heart as well the extent of myocardial fibrosis (MF) in patients with CD by cardiac magnetic resonance (CMR). The prognostic value of MF evaluated by myocardial-delayed enhancement (MDE) was compared with that via Rassi score. Methods This study assessed 39 patients divided into 2 groups: 28 asymptomatic patients as indeterminate form group (IND); and symptomatic patients as Chagas Heart Disease (CHD) group. All patients underwent CMR using the techniques of cine-MRI and MDE, and the amount of MF was compared with the Rassi score. Results Regarding the morphological and functional analysis, significant differences were observed between both groups (p < 0.001). Furthermore, there was a strong correlation between the extent of MF and the Rassi score (r = 0.76). Conclusions CMR is an important technique for evaluating patients with CD, stressing morphological and functional differences in all clinical presentations. The strong correlation with the Rassi score and the extent of MF detected by CMR emphasizes its role in the prognostic stratification of patients with CD. PMID:27982271

  11. Convergent evolution in mechanical design of lamnid sharks and tunas.

    PubMed

    Donley, Jeanine M; Sepulveda, Chugey A; Konstantinidis, Peter; Gemballa, Sven; Shadwick, Robert E

    2004-05-06

    The evolution of 'thunniform' body shapes in several different groups of vertebrates, including whales, ichthyosaurs and several species of large pelagic fishes supports the view that physical and hydromechanical demands provided important selection pressures to optimize body design for locomotion during vertebrate evolution. Recognition of morphological similarities between lamnid sharks (the most well known being the great white and the mako) and tunas has led to a general expectation that they also have converged in their functional design; however, no quantitative data exist on the mechanical performance of the locomotor system in lamnid sharks. Here we examine the swimming kinematics, in vivo muscle dynamics and functional morphology of the force-transmission system in a lamnid shark, and show that the evolutionary convergence in body shape and mechanical design between the distantly related lamnids and tunas is much more than skin deep; it extends to the depths of the myotendinous architecture and the mechanical basis for propulsive movements. We demonstrate that not only have lamnids and tunas converged to a much greater extent than previously known, but they have also developed morphological and functional adaptations in their locomotor systems that are unlike virtually all other fishes.

  12. The tarsal-metatarsal complex of caviomorph rodents: Anatomy and functional-adaptive analysis.

    PubMed

    Candela, Adriana M; Muñoz, Nahuel A; García-Esponda, César M

    2017-06-01

    Caviomorph rodents represent a major adaptive radiation of Neotropical mammals. They occupy a variety of ecological niches, which is also reflected in their wide array of locomotor behaviors. It is expected that this radiation would be mirrored by an equivalent disparity of tarsal-metatarsal morphology. Here, the tarsal-metatarsal complex of Erethizontidae, Cuniculidae, Dasyproctidae, Caviidae, Chinchillidae, Octodontidae, Ctenomyidae, and Echimyidae was examined, in order to evaluate its anatomical variation and functional-adaptive relevance in relation to locomotor behaviors. A qualitative study in functional morphology and a geometric morphometric analysis were performed. We recognized two distinct tarsal-metatarsal patterns that represent the extremes of anatomical variation in the foot. The first, typically present in arboreal species, is characterized by features that facilitate movements at different levels of the tarsal-metatarsal complex. The second pattern, typically present in cursorial caviomorphs, has a set of features that act to stabilize the joints, improve the interlocking of the tarsal bones, and restrict movements to the parasagittal plane. The morphological disparity recognized in this study seems to result from specific locomotor adaptations to climb, dig, run, jump and swim, as well as phylogenetic effects within and among the groups studies. © 2017 Wiley Periodicals, Inc.

  13. Plant species modifies the functional response of Phytoseiulus persimilis (Acari: Phytoseiidae) to Tetranychus urticae (Acari: Tetranychidae): implications for biological control.

    PubMed

    Skirvin, D J; Fenlon, J S

    2001-02-01

    The functional response of the predatory mite Phytoseiulus persimilis Athias-Henriot to eggs of its prey, the spider mite Tetranychus urticae Koch was examined on three plant species. Experiments were done to determine whether differences in the functional response on the three plant species were due to the morphological features of the crop directly on the predator or through an effect of the plant species on the prey. The results show that crop morphology is the only factor influencing the predatory ability of P. persimilis on the three plant species. Fewer eggs were eaten on Ceanothus thyrsiflorus var. 'Autumnal Blue', the plant species with hairy leaves, and greater numbers of prey consumed on Choisya ternata, a species with smooth leaves. However, similarly few eggs were eaten on the smooth, but waxy leaved Euonymus japonicus as on Ceanothus thyrsiflorus, demonstrating that morphological characters of leaves other than the possession of hairs and trichomes may affect the rates of predation. The implications of these results for the tritrophic interactions between plant, predator and prey, and the development of suitable biological control strategies are discussed.

  14. Morphological and functional development of the interbranchial lymphoid tissue (ILT) in Atlantic salmon (Salmo salar L).

    PubMed

    Dalum, Alf Seljenes; Griffiths, David James; Valen, Elin Christine; Amthor, Karoline Skaar; Austbø, Lars; Koppang, Erling Olaf; Press, Charles McLean; Kvellestad, Agnar

    2016-11-01

    The interbranchial lymphoid tissue (ILT) of Atlantic salmon originates from an embryological location that in higher vertebrates gives rise to both primary and secondary lymphoid tissues. Still much is unknown about the morphological and functional development of the ILT. In the present work a standardized method of organ volume determination was established to study its development in relation to its containing gill and the thymus. Based on morphological findings and gene transcription data, the ILT shows no signs of primary lymphoid function. In contrast to the thymus, an ILT-complex first became discernible after the yolk-sac period. After its appearance, the ILT-complex constitutes 3-7% of the total volume of the gill (excluding the gill arch) with the newly described distal ILT constituting a major part, and in adult fish it is approximately 13 times larger than the thymus. Confined regions of T-cell proliferation are present within the ILT. Communication with systemic circulation through the distal ILT is also highly plausible thus offering both internal and external recruitment of immune cells in the growing ILT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Simulated hypogravity impairs the angiogenic response of endothelium by up-regulating apoptotic signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morbidelli, Lucia; Monici, Monica; Marziliano, Nicola

    Health hazards in astronauts are represented by cardiovascular problems and impaired bone healing. These disturbances are characterized by a common event, the loss of function by vascular endothelium, leading to impaired angiogenesis. We investigated whether the exposure of cultured endothelial cells to hypogravity condition could affect their behaviour in terms of functional activity, biochemical responses, morphology, and gene expression. Simulated hypogravity conditions for 72 h produced a reduction of cell number. Genomic analysis of endothelial cells exposed to hypogravity revealed that proapoptotic signals increased, while antiapoptotic and proliferation/survival genes were down-regulated by modelled low gravity. Activation of apoptosis was accompaniedmore » by morphological changes with mitochondrial disassembly and organelles/cytoplasmic NAD(P)H redistribution, as evidenced by autofluorescence analysis. In this condition cells were not able to respond to angiogenic stimuli in terms of migration and proliferation. Our study documents functional, morphological, and transcription alterations in vascular endothelium exposed to simulated low gravity conditions, thus providing insights on the occurrence of vascular tissue dysregulation in crewmen during prolonged space flights. Moreover, the alteration of vascular endothelium can intervene as a concause in other systemic effects, like bone remodelling, observed in weightlessness.« less

  16. Ultrastructure of Dendritic Spines: Correlation Between Synaptic and Spine Morphologies

    PubMed Central

    Arellano, Jon I.; Benavides-Piccione, Ruth; DeFelipe, Javier; Yuste, Rafael

    2007-01-01

    Dendritic spines are critical elements of cortical circuits, since they establish most excitatory synapses. Recent studies have reported correlations between morphological and functional parameters of spines. Specifically, the spine head volume is correlated with the area of the postsynaptic density (PSD), the number of postsynaptic receptors and the ready-releasable pool of transmitter, whereas the length of the spine neck is proportional to the degree of biochemical and electrical isolation of the spine from its parent dendrite. Therefore, the morphology of a spine could determine its synaptic strength and learning rules. To better understand the natural variability of neocortical spine morphologies, we used a combination of gold-toned Golgi impregnations and serial thin-section electron microscopy and performed three-dimensional reconstructions of spines from layer 2/3 pyramidal cells from mouse visual cortex. We characterized the structure and synaptic features of 144 completed reconstructed spines, and analyzed their morphologies according to their positions. For all morphological parameters analyzed, spines exhibited a continuum of variability, without clearly distinguishable subtypes of spines or clear dependence of their morphologies on their distance to the soma. On average, the spine head volume was correlated strongly with PSD area and weakly with neck diameter, but not with neck length. The large morphological diversity suggests an equally large variability of synaptic strength and learning rules. PMID:18982124

  17. Cranial Morphology of the Carboniferous-Permian Tetrapod Brachydectes newberryi (Lepospondyli, Lysorophia): New Data from µCT

    PubMed Central

    Pardo, Jason D.; Anderson, Jason S.

    2016-01-01

    Lysorophians are a group of early tetrapods with extremely elongate trunks, reduced limbs, and highly reduced skulls. Since the first discovery of this group, general similarities in outward appearance between lysorophians and some modern lissamphibian orders (specifically Urodela and Gymnophiona) have been recognized, and sometimes been the basis for hypotheses of lissamphibian origins. We studied the morphology of the skull, with particular emphasis on the neurocranium, of a partial growth series of the lysorophian Brachydectes newberryi using x-ray micro-computed tomography (μCT). Our study reveals similarities between the braincase of Brachydectes and brachystelechid recumbirostrans, corroborating prior work suggesting a close relationship between these taxa. We also describe the morphology of the epipterygoid, stapes, and quadrate in this taxon for the first time. Contra the proposals of some workers, we find no evidence of expected lissamphibian synapomorphies in the skull morphology in Brachydectes newberryi, and instead recognize a number of derived amniote characteristics within the braincase and suspensorium. Morphology previously considered indicative of taxonomic diversity within Lysorophia may reflect ontogenetic rather than taxonomic variation. The highly divergent morphology of lysorophians represents a refinement of morphological and functional trends within recumbirostrans, and is analogous to morphology observed in many modern fossorial reptiles. PMID:27563722

  18. FoxP2 protein levels regulate cell morphology changes and migration patterns in the vertebrate developing telencephalon.

    PubMed

    Garcia-Calero, Elena; Botella-Lopez, Arancha; Bahamonde, Olga; Perez-Balaguer, Ariadna; Martinez, Salvador

    2016-07-01

    In the mammalian telencephalon, part of the progenitor cells transition from multipolar to bipolar morphology as they invade the mantle zone. This associates with changing patterns of radial migration. However, the molecules implicated in these morphology transitions are not well known. In the present work, we analyzed the function of FoxP2 protein in this process during telencephalic development in vertebrates. We analyzed the expression of FoxP2 protein and its relation with cell morphology and migratory patterns in mouse and chicken developing striatum. We observed FoxP2 protein expressed in a gradient from the subventricular zone to the mantle layer in mice embryos. In the FoxP2 low domain cells showed multipolar migration. In the striatal mantle layer where FoxP2 protein expression is higher, cells showed locomoting migration and bipolar morphology. In contrast, FoxP2 showed a high and homogenous expression pattern in chicken striatum, thus bipolar morphology predominated. Elevation of FoxP2 in the striatal subventricular zone by in utero electroporation promoted bipolar morphology and impaired multipolar radial migration. In mouse cerebral cortex we obtained similar results. FoxP2 promotes transition from multipolar to bipolar morphology by means of gradiental expression in mouse striatum and cortex. Together these results indicate a role of FoxP2 differential expression in cell morphology control of the vertebrate telencephalon.

  19. Tuning the Morphologies of MnO/C Hybrids by Space Constraint Assembly of Mn-MOFs for High Performance Li Ion Batteries.

    PubMed

    Sun, Dan; Tang, Yougen; Ye, Delai; Yan, Jun; Zhou, Haoshen; Wang, Haiyan

    2017-02-15

    Morphology controllable fabrication of electrode materials is of great significance but is still a major challenge for constructing advanced Li ion batteries. Herein, we propose a novel space constraint assembly approach to tune the morphology of Mn(terephthalic acid) (PTA)-MOF, in which benzonic acid was employed as a modulator to adjust the available MOF assembly directions. As a result, Mn(PTA)-MOFs with microquadrangulars, microflakes, and spindle-like microrods morphologies have been achieved. MnO/C hybrids with preserved morphologies were further obtained by self-sacrificial and thermal transformation of Mn(PTA)-MOFs. As anodes for Li ion batteries, these morphologies showed great influence on the electrochemical properties. Owing to the abundant porous structure and unique architecture, the MnO/C spindle-like microrods demonstrated superior electrochemical properties with a high reversible capacity of 1165 mAh g -1 at 0.3 A g -1 , excellent rate capability of 580 mAh g -1 at 3 A g -1 , and no considerable capacity loss after 200 cycles at 1 A g -1 . This strategy could be extended to engineering the morphology of other MOF-derived functional materials in various structure-dependent applications.

  20. Correlation between Hox code and vertebral morphology in archosaurs.

    PubMed

    Böhmer, Christine; Rauhut, Oliver W M; Wörheide, Gert

    2015-07-07

    The relationship between developmental genes and phenotypic variation is of central interest in evolutionary biology. An excellent example is the role of Hox genes in the anteroposterior regionalization of the vertebral column in vertebrates. Archosaurs (crocodiles, dinosaurs including birds) are highly variable both in vertebral morphology and number. Nevertheless, functionally equivalent Hox genes are active in the axial skeleton during embryonic development, indicating that the morphological variation across taxa is likely owing to modifications in the pattern of Hox gene expression. By using geometric morphometrics, we demonstrate a correlation between vertebral Hox code and quantifiable vertebral morphology in modern archosaurs, in which the boundaries between morphological subgroups of vertebrae can be linked to anterior Hox gene expression boundaries. Our findings reveal homologous units of cervical vertebrae in modern archosaurs, each with their specific Hox gene pattern, enabling us to trace these homologies in the extinct sauropodomorph dinosaurs, a group with highly variable vertebral counts. Based on the quantifiable vertebral morphology, this allows us to infer the underlying genetic mechanisms in vertebral evolution in fossils, which represents not only an important case study, but will lead to a better understanding of the origin of morphological disparity in recent archosaur vertebral columns.

Top