Constitutive Equation for Anisotropic Rock
NASA Astrophysics Data System (ADS)
Cazacu, O.
2006-12-01
In many rocks, due to the existence of well-defined fabric elements such as bedding, layering, foliation or lamination planes, or due to the existence of linear structures, anisotropy can be important. The symmetries most frequently encountered are: transverse isotropy and orthotropy. By adopting both theoretical and experimental approaches, many authors have investigated the effect of the presence within the rock of pronounced anisotropic feature on the mechanical behavior in the elastic regime and on strength properties. Fewer attempts however have been made to capture the anisotropy of rocks in the plastic range. In this paper an elastic/viscoplastic non-associated constitutive equation for an initially transversely isotropic material is presented. The model captures the observed dependency of the elastic moduli on the stress state. The limit of the elastic domain is given by an yield function whose expression is a priori unknown and is determined from data. The basic assumption adopted is that the type of anisotropy of the rock does not change during the deformation process. The anisotropy is thus described by a fourth order tensor invariant with respect to any transformation belonging to the symmetry group of the material. This tensor is assumed to be constant: it does not depend on time nor on deformation; A is involved in the expression of the flow rule, of the yield function, and of the failure criterion in the form of a transformed stress tensor. The components of the anisotropic tensor A are determined from the compressive strengths in conjunction with an anisotropic short- term failure The irreversibility is supposed to be due to transient creep, the irreversible stress work per unit volume being considered as hardening parameter. The adequacy of the model is demonstrated by applying it to a stratified sedimentary rock, Tournemire shale.
Thermoelastic constitutive equations for chemically hardening materials
NASA Technical Reports Server (NTRS)
Shaffer, B. W.; Levitsky, M.
1974-01-01
Thermoelastic constitutive equations are derived for a material undergoing solidification or hardening as the result of a chemical reaction. The derivation is based upon a two component model whose composition is determined by the degree of hardening, and makes use of strain-energy considerations. Constitutive equations take the form of stress rate-strain rate relations, in which the coefficients are time-dependent functions of the composition. Specific results are developed for the case of a material of constant bulk modulus which undergoes a transition from an initial liquidlike state into an isotropic elastic solid. Potential applications are discussed.
The Constitutive Equation for Membrane Tether Extraction
Chen, Yong; Yao, Da-Kang; Shao, Jin-Yu
2010-01-01
Membrane tethers or nanotubes play a critical role in a variety of cellular and subcellular processes such as leukocyte rolling and intercellular mass transport. The current constitutive equations that describe the relationship between the pulling force and the tether velocity during tether extraction have serious limitations. Here we propose a new phenomenological constitutive equation that captures all known characteristics of nanotube formation, including nonlinearity, nonzero threshold force, and possible negative tether velocity. We used tether extraction from endothelial cells as a prototype to illustrate how to obtain the material constants in the constitutive equation. With the micropipette aspiration technique, we measured tether pulling forces at both positive and negative tether velocities. We also determined the threshold force of 55 pN experimentally for the first time. This new constitutive equation unites two established ones and provides us a unified platform to better understand not only the physiological role of tether extraction during leukocyte rolling and intercellular or intracellular transport, but also the physics of membrane tether growth or retraction. PMID:20614242
Towards constitutive equations for the deep Earth
NASA Astrophysics Data System (ADS)
Kennett, B. L. N.
2017-09-01
A new formulation of constitutive equations for states of high compression is introduced for isotropic media, exploiting a separation between hydrostatic and deviatoric components in strain energy. The strain energy is represented as functions of strain invariants, with one purely volumetric component and the other which vanishes for purely hydrostatic deformation. This approach preserves the form of familiar equations of state through the volumetric component, but allows the addition of volume and pressure dependence of the shear modulus from the deviatoric term. A suitable shear modulus representation to accompany a Keane equation of state is demonstrated.
Symbolic derivation of potential based constitutive equations
NASA Astrophysics Data System (ADS)
Arnold, S. M.; Tan, H. Q.
1990-05-01
Structural alloys used in high temperature applications exhibit complex thermomechanical behavior that is inherently time dependent and hereditary, as the current behavior depends not only on current conditions but on the thermomechanical history. Derivation of mathematical expressions (constitutive equations) which describe this high temperature material behavior can be quite time consuming, involved, and error-prone, thus intelligent application of symbolic systems to facilitate this tedious processes can be of significant benefit. Here a computerized package, running under MACSYMA, capable of efficiently deriving potential based constitutive models, in analytical form (involving tensors, partial differentiation, invariants, and the like) is presented. Special purpose utility algorithms are designed and implemented to perform partial differentiation (chain rule), tensor manipulation, case distinction and simplification. Four constitutive theories reported in the literature are utilized to verify implementation accuracy. It is expected that this symbolic package can and will provide a significant incentive to the development of new constitutive theories.
Constitutive equations of ageing polymeric materials
NASA Technical Reports Server (NTRS)
Peng, S. T. J.
1985-01-01
The constitutive equation for the relaxation behavior of time-dependent, chemically unstable materials developed by Valanis and Peng (1983), which used the irreversible thermodynamics of internal variables in Eyring's absolute reaction theory and yielded a theoretical expression for the effect of chemical crosslink density on the relaxation rate, is presently applied to the creep behavior of a network polymer which is undergoing a scission process. In particular, two equations are derived which may for the first time show the relations between mechanical models and internal variables in the creep expressions, using a three-element model with a Maxwell element.
Constitutive equations of ageing polymeric materials
NASA Technical Reports Server (NTRS)
Peng, S. T. J.
1985-01-01
The constitutive equation for the relaxation behavior of time-dependent, chemically unstable materials developed by Valanis and Peng (1983), which used the irreversible thermodynamics of internal variables in Eyring's absolute reaction theory and yielded a theoretical expression for the effect of chemical crosslink density on the relaxation rate, is presently applied to the creep behavior of a network polymer which is undergoing a scission process. In particular, two equations are derived which may for the first time show the relations between mechanical models and internal variables in the creep expressions, using a three-element model with a Maxwell element.
Biaxial constitutive equation development for single crystals
NASA Technical Reports Server (NTRS)
Jordan, E. H.
1984-01-01
Current gas turbine engines utilize large single crystal superalloy components in the hot section. Structural analysis of these components requires a valid stress strain temperature constitutive equation. The goal of the program described is to create one or more models and verify these models. A constitutive equation based on an assumed slip behavior of a single slip system was formulated, programmed, and debugged. Specifically, the basic theory for a model based on aggravating slip behavior on individual slip systems was formulated and programmed and some simulations were run using assumed values of constants. In addition, a formulation allowing strain controlled simulations was completed. An approach to structural analysis of the specimen was developed. This approach uses long tube consistancy conditions and finite elements specially formulated to take advantage of the symmetry of 100 oriented specimens.
Constitutive equations for an electroactive polymer
NASA Astrophysics Data System (ADS)
Tixier, Mireille; Pouget, Joël
2016-07-01
Ionic electroactive polymers can be used as sensors or actuators. For this purpose, a thin film of polyelectrolyte is saturated with a solvent and sandwiched between two platinum electrodes. The solvent causes a complete dissociation of the polymer and the release of small cations. The application of an electric field across the thickness results in the bending of the strip and vice versa. The material is modeled by a two-phase continuous medium. The solid phase, constituted by the polymer backbone inlaid with anions, is depicted as a deformable porous media. The liquid phase is composed of the free cations and the solvent (usually water). We used a coarse grain model. The conservation laws of this system have been established in a previous work. The entropy balance law and the thermodynamic relations are first written for each phase and then for the complete material using a statistical average technique and the material derivative concept. One deduces the entropy production. Identifying generalized forces and fluxes provides the constitutive equations of the whole system: the stress-strain relations which satisfy a Kelvin-Voigt model, generalized Fourier's and Darcy's laws and the Nernst-Planck equation.
Application of the PTT model to axisymmetric free surface flows
NASA Astrophysics Data System (ADS)
Merejolli, R.; Paulo, G. S.; Tomé, M. F.
2013-10-01
This work is concerned with numerical simulation of axisymmetric viscoelastic free surface flows using the Phan-Thien-Tanner (PTT) constitutive equation. A finite difference technique for solving the governing equations for unsteady incompressible flows written in Cylindrical coordinates on a staggered grid is described. The fluid is modelled by a Marker-and-Cell type method and an accurate representation of the fluid surface is employed. The full free surface stress conditions are applied. The numerical method is verified by comparing numerical predictions of fully developed flow in a pipe with the corresponding analytic solutions. To demonstrate that the numerical method can simulate axisymmetric free surface flows governed by the PTT model, numerical results of the flow evolution of a drop impacting on a rigid dry plate are presented. In these simulations, the rheological effects of the parameters ɛ and ξ are investigated.
Granular materials: constitutive equations and strain localization
NASA Astrophysics Data System (ADS)
Anand, L.; Gu, C.
2000-08-01
Strain localization into shear bands is commonly observed in natural soil masses, as well as in human-built embankments, footings, retaining walls and other geotechnical structures. Numerical predictions for the process of shear band formation are critically dependent on the constitutive equations employed. In this paper, the plane strain "double-shearing" constitutive model (e.g., Spencer, A.J.M., 1964. A theory of the kinematics of ideal soils under plane strain conditions. Journal of the Mechanics and Physics of Solids 12, 337-351; Spencer, A.J.M., 1982, Deformation of ideal granular materials. In: Hopkins, H.G., Sewell, M.J. (Eds.), Mechanics of Solids. Pergamon Press, Oxford and New York, pp. 607-652; Mehrabadi, M.M., Cowin, S.C., 1978. Initial planar deformation of dilatant granular materials. Journal of the Mechanics and Physics of Solids 26, 269-284; Nemat-Nasser, S., Mehrabadi, M.M., Iwakuma, T. 1981. On certain macroscopic and microscopic aspects of plastic flow of ductile materials. In: Nemat-Nasser, S. (Ed.), Three-dimensional Constitutive Relations and Ductile Fracture. North-Holland, Amsterdam, pp. 157-172; Anand, L., 1983. Plane deformations of ideal granular materials. Journal of the Mechanics and Physics of Solids 31, 105-122) is generalized to three dimensions including the effects of elastic deformation and pre-peak behavior. The constitutive model is implemented in a finite element program and is used to predict the formation of shear bands in plane strain compression, and plane strain cylindrical cavity expansion. The predictions from the model are shown to be in good quantitative agreement with the recent experiments of Han, C., Drescher, A., (1993. Shear bands in biaxial tests on dry coarse sand. Soils and Foundations 33, 118-132) and Alsiny, H., Vardoulakis, I., Drescher, A., (1992. Deformation localization in cavity inflation experiments on dry sand. Geotechnique 42, 395-410) on a dry sand. The constitutive model is also used to predict the
Constitutive equations for discrete electromagnetic problems over polyhedral grids
Codecasa, Lorenzo . E-mail: codecasa@elet.polimi.it; Trevisan, Francesco . E-mail: trevisan@uniud.it
2007-08-10
In this paper a novel approach is proposed for constructing discrete counterparts of constitutive equations over polyhedral grids which ensure both consistency and stability of the algebraic equations discretizing an electromagnetic field problem. The idea is to construct discrete constitutive equations preserving the thermodynamic relations for constitutive equations. In this way, consistency and stability of the discrete equations are ensured. At the base, a purely geometric condition between the primal and the dual grids has to be satisfied for a given primal polyhedral grid, by properly choosing the dual grid. Numerical experiments demonstrate that the proposed discrete constitutive equations lead to accurate approximations of the electromagnetic field.
A Constitutive Equation for Stratospheric Balloon Materials
NASA Technical Reports Server (NTRS)
Rand, J. L.; Sterling, W. J.
2004-01-01
The selection of a suitable material for use as a reliable stratospheric balloon gas barrier and structural component is based on a variety of properties. Due to a more desirable combination of properties, the low density polyethylene that has been used for the last half century has been replaced during the last decade by linear low density polyethylene (LLDPE). This paper describes the effort to characterize the time dependent properties of a 38 micron coextrusion of LLDPE. The nonlinear viscoelastic constitutive equation presented may be used to accurately describe the creep and/or relaxation of this film when subjected to a biaxial state of stress, such as might be required for an extended balloon flight. Recent laboratory data have been used to mod@ an existing model of LLDPE to account for differences caused by the coextrusion process. The new model will facilitate structural design optimization and reliability assessment, and may be further utilized as a predictive tool to benefit in-flight operations. Current structural analysis tech&ques based on linear elastic properties have predicted stresses in excess of those which would actually exist.
Thermodynamic restrictions on the constitutive equations of electromagnetic theory
NASA Technical Reports Server (NTRS)
Coleman, B. D.; Dill, E. H.
1971-01-01
Thermodynamics second law restrictions on constitutive equations of electromagnetic theory for nonlinear materials with long-range gradually fading memory, considering dissipation principle consequences
A new constitutive equation for elastomers
NASA Technical Reports Server (NTRS)
Erickson, Larry
1993-01-01
A new mathematical approach for quantifying the mechanical properties of elastomeric materials under biaxial loads is presented. Specific equations relating principal strains and principal true stresses for a homogeneous, isotropic, and elastic material are proposed that resemble the conventional Hooke's law of linear elasticity. The predicted stresses are compared to those from three different sets of experimental data and to stresses from three different theories based on Rivlin's work-of-deformation approach. The proposed approach is considered to be of benefit to design engineers involved in a broad range of rubber products.
A new constitutive equation for elastomers
NASA Technical Reports Server (NTRS)
Erickson, Larry
1993-01-01
A new mathematical approach for quantifying the mechanical properties of elastomeric materials under biaxial loads is presented. Specific equations relating principal strains and principal true stresses for a homogeneous, isotropic, and elastic material are proposed that resemble the conventional Hooke's law of linear elasticity. The predicted stresses are compared to those from three different sets of experimental data and to stresses from three different theories based on Rivlin's work-of-deformation approach. The proposed approach is considered to be of benefit to design engineers involved in a broad range of rubber products.
Constitutive equations for meeting elevated-temperature-design needs
Pugh, C.E.; Robinson, D.N.
1981-01-01
Constitutive equations for representing the inelastic behavior of structural alloys at temperatures in the creep regime are discussed from the viewpoint of advances made over the past decade. An emphasis is placed on the progress that has been made in meeting the needs of the program whose design process is based in part on a design-by-inelastic-analysis approach. In particular, the constitutive equations that have been put into place for current use in design analyses are discussed along with some material behavior background information. Equations representing short-term plastic and long-term creep behaviors are considered. Trends towards establishing improved equations for use in the future are also described. Progress relating to fundamentals of continuum mechanics, physical modeling, phenomenological modeling, and implementation is addressed.
Constitutive equations of erythrocyte membrane incorporating evolving preferred configuration.
Tözeren, A; Skalak, R; Fedorciw, B; Sung, K L; Chien, S
1984-01-01
The erythrocyte membrane is modeled as a two-dimensional viscoelastic continuum that evolves under the application of stress. The present analysis of the erythrocyte membrane is motivated by the recent development of knowledge about its molecular structure. The constitutive equations proposed in the present analysis explain in a consistent manner the data on both the deformation and recovery phases of the micropipette experiment. The rheological equations of the present study are applied in a later section to the analysis of a plane membrane deformation that is quantitatively similar to the tank-treading motion of the erythrocytes in a shear field. The computations yield useful information on how the membrane viscosity becomes a more dominant feature in tank-treading motion. The material constants appearing in the proposed constitutive equations may be useful indications of the biochemical state of the membrane in health and disease. PMID:6713066
New constitutive equation for the volume viscosity in fluids
NASA Technical Reports Server (NTRS)
Zuckerwar, Allan J.; Ash, Robert L.
1994-01-01
The traditional volume viscosity, Stokes' hypothesis, and acoustical relaxation are reviewed. The lossy Navier-Stokes Equation is applied to periodic (acoustic) flow, and it is shown that the traditional volume viscosity leads to a result which contradicts that describing acoustical relaxation. It is demonstrated that the addition of a second volume viscosity term to the constitutive equation, to account for pressure relaxation, resolves the conflict, and leads to a direct correspondence between the volume viscosity parameters and the acoustical relaxation parameters. The representation of volume viscosity is formulated for the case of multiple relaxations, as occur in air. Finally, an application of the new constitutive equation to a simple convective compressible flow, namely a linearly accelerating flow, demonstrates the impact of volume viscosity upon the flow and the physical conditions for which it is important.
Generalized constitutive equations for piezo-actuated compliant mechanism
NASA Astrophysics Data System (ADS)
Cao, Junyi; Ling, Mingxiang; Inman, Daniel J.; Lin, Jin
2016-09-01
This paper formulates analytical models to describe the static displacement and force interactions between generic serial-parallel compliant mechanisms and their loads by employing the matrix method. In keeping with the familiar piezoelectric constitutive equations, the generalized constitutive equations of compliant mechanism represent the input-output displacement and force relations in the form of a generalized Hooke’s law and as analytical functions of physical parameters. Also significantly, a new model of output displacement for compliant mechanism interacting with piezo-stacks and elastic loads is deduced based on the generalized constitutive equations. Some original findings differing from the well-known constitutive performance of piezo-stacks are also given. The feasibility of the proposed models is confirmed by finite element analysis and by experiments under various elastic loads. The analytical models can be an insightful tool for predicting and optimizing the performance of a wide class of compliant mechanisms that simultaneously consider the influence of loads and piezo-stacks.
Constitutive equation for polymer networks with phonon fluctuations.
Hansen, Rasmus; Skov, Anne Ladegaard; Hassager, Ole
2008-01-01
Recent research by Xing [Phys. Rev. Lett. 98, 075502 (2007)] has provided an expression for the Helmholtz free energy related to phonon fluctuations in polymer networks. We extend this result by constructing the corresponding nonlinear constitutive equation, usable for entirely general, volume conserving deformation fields. Constitutive equations for the sliplink model and the tube model are derived and the three models are examined by comparison with each other and with data from Xu and Mark [Rubber Chem. Technol. 63, 276 (1990)] and Wang and Mark [J. Polym. Sci., Part B: Polym. Phys. 30, 801 (1992)]. Elastic moduli are derived for the three models and compared with the moduli determined from the chemical stoichiometry. We conclude that the sliplink model and the phonon fluctuation model are relatively consistent with each other and with the data. The tube model seems consistent neither with the other models nor with the data.
An inelastic constitutive equation of fiber reinforced plastic laminates
Kanagawa, Y.; Murakami, S.; Mizobe, T.
1998-01-01
A constitutive model for describing the time-dependent inelastic deformation of unidirectional and symmetric angle-ply CFRP (carbon Fiber Reinforced Plastics) laminates is developed. The kinematic hardening creep law of Malinin and Khadjinsky and the evolution equation of Armstrong and Frederick are extended to describe the creep deformation of initially anisotropic materials. In particular, the evolution equations of the back stresses of the anisotropic material were formulated by introducing a transformed strain tensor, by which the expression of the equivalent strain rate of the anisotropic material has the identical form as that of the isotropic materials. The resulting model is applied to analyze the time-dependent inelastic deformation of symmetric angle-ply laminates. Comparison between the predictions and the experimental observations shows that the present model can describe well the time-dependent inelastic behavior under different loadings.
2010-08-18
process of being submitted for journal publication, 2010). [2] Panton , R. L. Incompressible Flow, Third Edition. John Wiley and Sons, 2005. [3] White...Constitutive Theory for Ordered Thermoelastic Solids. (In the process of being submitted for journal publication, 2010). [3] Panton , R. L
Physical concepts in the development of constitutive equations
NASA Technical Reports Server (NTRS)
Cassenti, B. N.
1985-01-01
Proposed viscoplastic material models include in their formulation observed material response but do not generally incorporate principles from thermodynamics, statistical mechanics, and quantum mechanics. Numerous hypotheses were made for material response based on first principles. Many of these hypotheses were tested experimentally. The proposed viscoplastic theories and the experimental basis of these hypotheses must be checked against the hypotheses. The physics of thermodynamics, statistical mechanics and quantum mechanics, and the effects of defects, are reviewed for their application to the development of constitutive laws.
Modeling of rock friction 1. Experimental results and constitutive equations
Dieterich, J.H.
1979-01-01
Direct shear experiments on ground surfaces of a granodiorite from Raymond, California, at normal stresses of ??6 MPa demonstrate that competing time, displacement, and velocity effects control rock friction. It is proposed that the strength of the population of points of contacts between sliding surfaces determines frictional strength and that the population of contacts changes continuously with displacements. Previous experiments demonstrate that the strength of the contacts increases with the age of the contacts. The present experiments establish that a characteristic displacement, proportional to surface roughness, is required to change the population of contacts. Hence during slip the average age of the points of contact and therefore frictional strength decrease as slip velocity increases. Displacement weakening and consequently the potential for unstable slip occur whenever displacement reduces the average age of the contacts. In addition to this velocity dependency, which arises from displacement dependency and time dependency, the experiments also show a competing but transient increase in friction whenever slip velocity increases. Creep of the sliding surface at stresses below that for steady state slip is also observed. Constitutive relationships are developed that permit quantitative simulation of the friction versus displacement data as a function of surface roughness and for different time and velocity histories. Unstable slip in experiments is controlled by these constitutive effects and by the stiffness of the experimental system. It is argued that analogous properties control earthquake instability. Copyright ?? 1979 by the American Geophysical Union.
Examples of Rate-Theory Constitutive Equations Which Unify Elasticity and Plasticity
1979-01-01
Yield Condit.ion, Rate-Type Constitutive Equations, Differential Equations, Non-uniqueness, Lipschitz Condition, Prandtl-Reuss 20. A11STR ACT (Coniliwa...equations. We shall show how elastic behavior can correspond to uniqueness of solutions of such equations; how nonuniqueness of solutioncan...2. Indeed, the Piccard-Lindelof uniqueness theorem3 assures us of this, since a Lipschitz condition will hold when -l//r < s < l/1V. Indeed, as long
Determination of the Constitutive Equations for 1080 Steel and VascoMax 300
2005-06-01
GAE/ENY/05-J05 DETERMINATION OF THE CONSTITUTIVE EQUATIONS FOR 1080 STEEL AND VASCOMAX 300 THESIS Presented to the Faculty Department of...strain relations. The coefficients that lead to the Johnson-Cook equations have been determined by the Split Hopkinson Bar test for 1080 steel ...relations for both of the steels . These relations allowed a fit of the data to yield specific material coefficients defined in the Johnson-Cook constitutive
A comparative study of different ferrofluid constitutive equations.
NASA Astrophysics Data System (ADS)
Kaloni, Purna
2011-11-01
Ferrofluids are stable colloidal suspensions of fine ferromagnetic monodomain nanoparticles in a non-conducting carrier fluid. The particles are coated with a surfacant to avoid agglomeration and coagulation.Brownian motion keeps the nanoparticles from settling under gravity. In recent years these fluids have found several applications including in liquid seals in rotary shafts for vacuum system and in hard disk drives of personal computers, in cooling and damping of loud speakers, in shock absorbers and in biomedical applications. A continuum description of ferrofluids was initiated by Neuringer and Rosensweig but the theory had some limitations. In subsequent years,several authors have proposed generalization of the above theory.Some of these are based upon the internal particle rotation concept, some are phemonological, some are based upon a thermodynamic framework, some employ statistical approach and some have used the dynamic mean field approach. The results based upon these theories ane in early stages and inconclusive. Our purpose is, first, to critically examine the basic foundations of these equations and then study the pedictions obtained in all the theories related to an experimental as well as a theoretical study.
Finite element analysis of notch behavior using a state variable constitutive equation
NASA Technical Reports Server (NTRS)
Dame, L. T.; Stouffer, D. C.; Abuelfoutouh, N.
1985-01-01
The state variable constitutive equation of Bodner and Partom was used to calculate the load-strain response of Inconel 718 at 649 C in the root of a notch. The constitutive equation was used with the Bodner-Partom evolution equation and with a second evolution equation that was derived from a potential function of the stress and state variable. Data used in determining constants for the constitutive models was from one-dimensional smooth bar tests. The response was calculated for a plane stress condition at the root of the notch with a finite element code using constant strain triangular elements. Results from both evolution equations compared favorably with the observed experimental response. The accuracy and efficiency of the finite element calculations also compared favorably to existing methods.
The form of a constitutive equation of plastic deformation compatible with stress relaxation data
Fortes, M.A.; Rosa, M.E.
1984-05-01
Hart's approach to constitutive equations of plasticity and experimental results relevant to his formalism are reanalyzed, with special emphasis on the consequences of the scaling relation observed in the relaxation curves of a large number of materials. Complete constitutive equations containing a single structure variable are proposed which describe the experimentally determined relaxation and tensile test curves. An interpretation of the structure variable is given in terms of the density of obstacles to dislocations. The equations are generalized to include recovery and applied to dislocation creep.
Elastic-Plastic Constitutive Equation of WC-Co Cemented Carbides with Anisotropic Damage
NASA Astrophysics Data System (ADS)
Hayakawa, Kunio; Nakamura, Tamotsu; Tanaka, Shigekazu
2007-05-01
Elastic-plastic constitutive equation of WC-Co cemented carbides with anisotropic damage is proposed to predict a precise service life of cold forging tools. A 2nd rank symmetric tensor damage tensor is introduced in order to express the stress unilaterality; a salient difference in uniaxial behavior between tension and compression. The conventional framework of irreversible thermodynamics is used to derive the constitutive equation. The Gibbs potential is formulated as a function of stress, damage tensor, isotropic hardening variable and kinematic hardening variable. The elastic-damage constitutive equation, conjugate forces of damage, isotropic hardening and kinematic hardening variable is derived from the potential. For the kinematic hardening variable, the superposition of three kinematic hardening laws is employed in order to improve the cyclic behavior of the material. For the evolution equation of the damage tensor, the damage is assumed to progress by fracture of the Co matrix — WC particle interface and by the mechanism of fatigue, i.e. the accumulation of microscopic plastic strain in matrix and particles. By using the constitutive equations, calculation of uniaxial tensile and compressive test is performed and the results are compared with the experimental ones in the literature. Furthermore, finite element analysis on cold forward extrusion was carried out, in which the proposed constitutive equation was employed as die insert material.
An In-Depth Tutorial on Constitutive Equations for Elastic Anisotropic Materials
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.
2011-01-01
An in-depth tutorial on the constitutive equations for elastic, anisotropic materials is presented. Basic concepts are introduced that are used to characterize materials, and notions about how anisotropic material deform are presented. Hooke s law and the Duhamel-Neuman law for isotropic materials are presented and discussed. Then, the most general form of Hooke s law for elastic anisotropic materials is presented and symmetry requirements are given. A similar presentation is also given for the generalized Duhamel-Neuman law for elastic, anisotropic materials that includes thermal effects. Transformation equations for stress and strains are presented and the most general form of the transformation equations for the constitutive matrices are given. Then, specialized transformation equations are presented for dextral rotations about the coordinate axes. Next, concepts of material symmetry are introduced and criteria for material symmetries are presented. Additionally, engineering constants of fully anisotropic, elastic materials are derived from first principles and the specialized to several cases of practical importance.
On the structure of nonlinear constitutive equations for fiber reinforced composites
NASA Technical Reports Server (NTRS)
Jansson, Stefan
1992-01-01
The structure of constitutive equations for nonlinear multiaxial behavior of transversely isotropic fiber reinforced metal matrix composites subject to proportional loading was investigated. Results from an experimental program were combined with numerical simulations of the composite behavior for complex stress to reveal the full structure of the equations. It was found that the nonlinear response can be described by a quadratic flow-potential, based on the polynomial stress invariants, together with a hardening rule that is dominated by two different hardening mechanisms.
A constitutive equation for the Mullins effect in stress controlled uniaxial extension experiments
NASA Astrophysics Data System (ADS)
Johnson, M. A.; Beatty, M. F.
1993-12-01
A one-dimensional constitutive equation for the Mullins effect in rubberlike materials, which is motivated by the two phase microstructural material model proposed by Mullins and Tobin [I], is developed in [2]. The constitutive equation is used in [2] to predict the effect of stress softening on the small transverse vibration of a rubber string loaded in uniaxial extension. The two functions which comprise the constitutive equation were assumed to be monotone, but no further analysis of the actual nature of these functions was necessary. In this paper, we examine more closely how the results of a stress controlled uniaxial extension experiment can be used to gain insight into the specific nature of the microstructural strain and the strain amplification functions which comprise the constitutive equation. We examine experimental representations of the two functions which are independent of any special microstructural interpretations. Stress controlled uniaxial extension experiments with buna-n, neoprene, and silicone rubber cords are examined. We demonstrate how the experimental data can be applied to yield representations of the functions of interest to within a multiplicative constant; but no attempt is made to find specific analytical representations of these functions. For buna-n and neoprene samples, we observe behavior consistent with our monotone assumptions, while anomalous behavior is observed with silicone rubber.
NASA Technical Reports Server (NTRS)
1997-01-01
The bibliography contains citations concerning analytical techniques using constitutive equations, applied to materials under stress. The properties explored with these techniques include viscoelasticity, thermoelasticity, and plasticity. While many of the references are general as to material type, most refer to specific metals or composites, or to specific shapes, such as flat plate or spherical vessels.
NASA Technical Reports Server (NTRS)
1997-01-01
The bibliography contains citations concerning analytical techniques using constitutive equations, applied to materials under stress. The properties explored with these techniques include viscoelasticity, thermoelasticity, and plasticity. While many of the references are general as to material type, most refer to specific metals or composites, or to specific shapes, such as flat plate or spherical vessels.
NASA Technical Reports Server (NTRS)
Robinson, D. N.
1985-01-01
Three major categories of testing are identified that are necessary to provide support for the development of constitutive equations for high temperature alloys. These are exploratory, charactrization and verification tests. Each category is addressed and specific examples of each are given. An extensive, but not exhaustive, set of references is provided concerning pertinent experimental results and their relationships to theoretical development. This guide to formulating a meaningful testing effort in support of consitutive equation development can also aid in defining the necessary testing equipment and instrumentation for the establishment of a deformation and structures testing laboratory.
Constitutive Equation for 3104 Alloy at High Temperatures in Consideration of Strain
NASA Astrophysics Data System (ADS)
Zhen, Fuqiang; Sun, Jianlin; Li, Jian
2016-06-01
The flow behavior of 3104 aluminum alloy was investigated at temperatures ranging from 250°C to 500°C, and strain rates from 0.01 to 10 s-1 by isothermal compression tests. The true stress-strain curves were obtained from the measured load-stroke data and then modified by friction and temperature correction. The effects of temperature and strain rate on hot deformation behavior were represented by Zener-Hollomon parameter including Arrhenius term. Additionally, the influence of strain was incorporated considering the effect of strain on material constants. The derived constitution equation was applied to the finite element analysis of hot compression. The results show that the simulated force is consistent with the measured one. Consequently, the developed constitution equation is valid and feasible for numerical simulation in hot deformation process of 3104 alloy.
NASA Astrophysics Data System (ADS)
Saanouni, Kkemais; Labergère, Carl; Issa, Mazen; Rassineux, Alain
2010-06-01
This work proposes a complete adaptive numerical methodology which uses `advanced' elastoplastic constitutive equations coupling: thermal effects, large elasto-viscoplasticity with mixed non linear hardening, ductile damage and contact with friction, for 2D machining simulation. Fully coupled (strong coupling) thermo-elasto-visco-plastic-damage constitutive equations based on the state variables under large plastic deformation developed for metal forming simulation are presented. The relevant numerical aspects concerning the local integration scheme as well as the global resolution strategy and the adaptive remeshing facility are briefly discussed. Applications are made to the orthogonal metal cutting by chip formation and segmentation under high velocity. The interactions between hardening, plasticity, ductile damage and thermal effects and their effects on the adiabatic shear band formation including the formation of cracks are investigated.
Diaz, Manuel I.; Aquino, Wilkins; Bonnet, Marc
2015-01-01
This paper presents a methodology for the inverse identification of linearly viscoelastic material parameters in the context of steady-state dynamics using interior data. The inverse problem of viscoelasticity imaging is solved by minimizing a modified error in constitutive equation (MECE) functional, subject to the conservation of linear momentum. The treatment is applicable to configurations where boundary conditions may be partially or completely underspecified. The MECE functional measures the discrepancy in the constitutive equations that connect kinematically admissible strains and dynamically admissible stresses, and also incorporates the measurement data in a quadratic penalty term. Regularization of the problem is achieved through a penalty parameter in combination with the discrepancy principle due to Morozov. Numerical results demonstrate the robust performance of the method in situations where the available measurement data is incomplete and corrupted by noise of varying levels. PMID:26388656
An anisotropic constitutive equation for the stress tensor of blood based on mixture theory
Massoudi, M.; Antaki, J.
2008-01-01
Based on ideas proposed by Massoudi and Rajagopal M-R , we develop a model for blood using the theory of interacting continua, that is, the mixture theory. We first provide a brief review of mixture theory, and then discuss certain issues in constitutive modeling of a two-component mixture. In the present formulation, we ignore the biochemistry of blood and assume that blood is composed of red blood cells RBCs suspended in plasma, where the plasma behaves as a linearly viscous fluid and the RBCs are modeled as an anisotropic nonlinear density-gradient-type fluid. We obtain a constitutive relation for blood, based on the simplified constitutive relations derived for plasma and RBCs. A simple shear flow is discussed, and an exact solution is obtained for a very special case; for more general cases, it is necessary to solve the nonlinear coupled equations numerically.
An anisotropic constitutive equation for the stress tensor of blood based on mixture theory
Massoudi, Mehrdad; Antaki, J.F.
2008-09-12
Based on ideas proposed by Massoudi and Rajagopal (M-R), we develop a model for blood using the theory of interacting continua, that is, the mixture theory. We first provide a brief review of mixture theory, and then discuss certain issues in constitutive modeling of a two-component mixture. In the present formulation, we ignore the biochemistry of blood and assume that blood is composed of red blood cells (RBCs) suspended in plasma, where the plasma behaves as a linearly viscous fluid and the RBCs are modeled as an anisotropic nonlinear density-gradient-type fluid. We obtain a constitutive relation for blood, based on the simplified constitutive relations derived for plasma and RBCs. A simple shear flow is discussed, and an exact solution is obtained for a very special case; for more general cases, it is necessary to solve the nonlinear coupled equations numerically.
NASA Technical Reports Server (NTRS)
1996-01-01
The bibliography contains citations concerning analytical techniques using constitutive equations, applied to materials under stress. The properties explored with these techniques include viscoelasticity, thermoelasticity, and plasticity. While many of the references are general as to material type, most refer to specific metals or composites, or to specific shapes, such as flat plate or spherical vessels. (Contains 50-250 citations and includes a subject term index and title list.)
NASA Technical Reports Server (NTRS)
1996-01-01
The bibliography contains citations concerning analytical techniques using constitutive equations, applied to materials under stress. The properties explored with these techniques include viscoelasticity, thermoelasticity, and plasticity. While many of the references are general as to material type, most refer to specific metals or composites, or to specific shapes, such as flat plate or spherical vessels. (Contains 50-250 citations and includes a subject term index and title list.)
Skontorp, A.; Wang, S.S.; Shibuya, Y.
1994-12-31
In this paper, a homogenization theory is developed to determine high-temperature effective viscoelastic constitutive equations for fiber-reinforced polymer composites. The homogenization theory approximates the microstructure of a fiber composite, and determine simultaneously effective macroscopic constitutive properties of the composite and the associated microscopic strain and stress in the heterogeneous material. The time-temperature dependent homogenization theory requires that the viscoelastic constituent properties of the matrix phase at elevated temperatures, the governing equations for the composites, and the boundary conditions of the problem be Laplace transformed to a conjugate problem. The homogenized effective properties in the transformed domain are determined, using a two-scale asymptotic expansion of field variables and an averaging procedure. Field solutions in the unit cell are determined from basic and first-order governing equations with the aid of a boundary integral method (BIM). Effective viscoelastic constitutive properties of the composite at elevated temperatures are determined by an inverse transformation, as are the microscopic stress and deformation in the composite. Using this method, interactions among fibers and between the fibers and the matrix can be evaluated explicitly, resulting in accurate solutions for composites with high-volume fraction of reinforcing fibers. Examples are given for the case of a carbon-fiber reinforced thermoplastic polyamide composite in an elevated temperature environment. The homogenization predictions are in good agreement with experimental data available for the composite.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Stouffer, Donald C.
1998-01-01
Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this first paper of a two part report, background information is presented, along with the constitutive equations which will be used to model the rate dependent nonlinear deformation response of the polymer matrix. Strain rate dependent inelastic constitutive models which were originally developed to model the viscoplastic deformation of metals have been adapted to model the nonlinear viscoelastic deformation of polymers. The modified equations were correlated by analyzing the tensile/ compressive response of both 977-2 toughened epoxy matrix and PEEK thermoplastic matrix over a variety of strain rates. For the cases examined, the modified constitutive equations appear to do an adequate job of modeling the polymer deformation response. A second follow-up paper will describe the implementation of the polymer deformation model into a composite micromechanical model, to allow for the modeling of the nonlinear, rate dependent deformation response of polymer matrix composites.
NASA Astrophysics Data System (ADS)
Zhao, Wenwen; Jiang, Zhongzheng; Chen, Weifang
2016-11-01
The moment methods in rarefied gas dynamics could be divided into generalized hydrodynamic equations (GHE) and extended hydrodynamic equations (EHE), e.g., Burnett equations, Grad equations and R-13 equations, theoretically. Eu firstly developed the GHE based on a non-equilibrium canonical distribution function and demonstrated the thermodynamically consistent of this model. Subsequently, nonlinear coupled constitutive relations (NCCR) was proposed by Myong by omitting the product of heat flux and velocity gradient in GHE to reduce the computational complexity. According to the successful application in 1-D shock wave structure and 2-D flat plate flow, the capability of NCCR has already been demonstrated successfully. The motivation of this study was to investigate the different behavior of NCCR and GHE for monatomic and diatomic gases in one-dimensional shock structure problems. Therefore, argon and nitrogen shock structure was calculated using both GHE and NCCR model up to Ma=50. The 3rd order MUSCL scheme for inviscid term and the 2nd order central difference scheme for viscid scheme were employed to carry out the computations. Finally, the present results including shock wave profile and its qualitative properties by NCCR and GHE are compared with that of DSMC and NS equations. The results showed that the GHE yield 1-D shock wave in much closer agreement with DSMC results than do the NCCR model without considering the computational complexity and efficiency in present cases.
A Modified Johnson-Cook Constitutive Equation to Predict Hot Deformation Behavior of Ti-6Al-4V Alloy
NASA Astrophysics Data System (ADS)
Cai, Jun; Wang, Kuaishe; Zhai, Peng; Li, Fuguo; Yang, Jie
2014-09-01
A modified Johnson-Cook constitutive equation of Ti-6Al-4V alloy is proposed based on hot compression tests performed in the temperature range of 1073-1323 K and strain rate 0.001-1 s-1. The experimental stress-strain data were employed to develop the modified Johnson-Cook constitutive equation of different phase regimes (α + β and β phase). The predicted flow stresses using the developed equation were compared with experimental data. Correlation coefficient (R) and average absolute relative error (AARE) were introduced to verify the validity of the constitutive equation. The values of R and AARE for α + β phase were 0.990 and 7.81%, respectively. And in β phase region, the values of R and AARE were 0.985 and 10.36%, respectively. Meanwhile, the accuracy, the number of material constants involved, and the computational time required of the constitutive equation were evaluated by comparing with a strain-compensated Arrhenius-type constitutive equation. The results indicate that accuracy of modified Johnson-Cook constitutive equation is higher than that of compensated Arrhenius-type model at α + β phase, while lower at single β phase region. Meanwhile, the time required for evaluating the material constants of modified Johnson-Cook constitutive equation is much shorter than that of the strain-compensated Arrhenius type ones.
A Modified Johnson-Cook Constitutive Equation to Predict Hot Deformation Behavior of Ti-6Al-4V Alloy
NASA Astrophysics Data System (ADS)
Cai, Jun; Wang, Kuaishe; Zhai, Peng; Li, Fuguo; Yang, Jie
2015-01-01
A modified Johnson-Cook constitutive equation of Ti-6Al-4V alloy is proposed based on hot compression tests performed in the temperature range of 1073-1323 K and strain rate 0.001-1 s-1. The experimental stress-strain data were employed to develop the modified Johnson-Cook constitutive equation of different phase regimes (α + β and β phase). The predicted flow stresses using the developed equation were compared with experimental data. Correlation coefficient ( R) and average absolute relative error (AARE) were introduced to verify the validity of the constitutive equation. The values of R and AARE for α + β phase were 0.990 and 7.81%, respectively. And in β phase region, the values of R and AARE were 0.985 and 10.36%, respectively. Meanwhile, the accuracy, the number of material constants involved, and the computational time required of the constitutive equation were evaluated by comparing with a strain-compensated Arrhenius-type constitutive equation. The results indicate that accuracy of modified Johnson-Cook constitutive equation is higher than that of compensated Arrhenius-type model at α + β phase, while lower at single β phase region. Meanwhile, the time required for evaluating the material constants of modified Johnson-Cook constitutive equation is much shorter than that of the strain-compensated Arrhenius type ones.
Creep constitutive equation of dual phase 9Cr-ODS steel
NASA Astrophysics Data System (ADS)
Sakasegawa, Hideo; Ukai, Shigeharu; Tamura, Manabu; Ohtsuka, Satoshi; Tanigawa, Hiroyasu; Ogiwara, Hiroyuki; Kohyama, Akira; Fujiwara, Masayuki
2008-02-01
9Cr-ODS (oxide dispersion strengthened) steels developed by JAEA (Japan Atomic Energy Agency) have superior creep properties compared with conventional heat resistant steels. The ODS steels can enormously contribute to practical applications of fast breeder reactors and more attractive fusion reactors. Key issues are developments of material processing procedures for mass production and creep life prediction methods in present R&D. In this study, formulation of creep constitutive equation was performed against the backdrop. The 9Cr-ODS steel displaying an excellent creep property is a dual phase steel. The ODS steel is strengthened by the δ ferrite which has a finer dispersion of oxide particles and shows a higher hardness than the α' martensite. The δ ferrite functions as a reinforcement in the dual phase 9Cr-ODS steel. Its creep behavior is very unique and cannot be interpreted by conventional theories of heat resistant steels. Alternative qualitative model of creep mechanism was formulated at the start of this study using the results of microstructural observations. Based on the alternative creep mechanism model, a novel creep constitutive equation was formulated using the exponential type creep equation extended by a law of mixture.
A Unified Constitutive Equation of a Bainite Steel During Hot Deformation
NASA Astrophysics Data System (ADS)
Li, Lixin; Ye, Ben; Liu, Sheng; Hu, Shengde; Liao, Hanqing
2016-10-01
A constitutive model has been established based on dislocation theory, work hardening and dynamic recovery theory, and softening mechanisms of dynamic recrystallization. The stress-strain curves of a bainite steel have been measured with hot compression experiments at temperatures of 1173, 1273, 1373 and 1473 K with strain rates of 0.01, 0.1, 1 and 10 s-1 on a thermo-mechanical simulator (Gleeble-1500). The material constants involved in the constitutive model have been optimized by an inverse analysis of the stress-strain curves using the method of coordinate rotation, determining the strain-stress relationship or the constitutive equation, the kinetic models of dynamic recovery and dynamic recrystallization, and a few material constants of the investigated steel. Comparison of the calculated flow stress with the experimental data suggests that the relationship between the flow stress and the strain rate, temperature, strain of the steel during hot deformation can be described by the constitutive model, and that the underlying materials science can be captured from the material constants determined by the stress-strain curves.
Experimental determination of constitutive equations for human and bovine brain tissue
NASA Astrophysics Data System (ADS)
Takhounts, Erik Grigorievich
1998-09-01
The purpose of this study was to determine experimentally the constitutive equations for brain tissue. Three series of experiments were performed in which the brain tissue was treated as a linear, quasi-linear and nonlinear isotropic viscoelastic material. Finite element analysis was performed and verified that simplifying assumptions made for developing constitutive equations were reasonable. Human and bovine brain samples were used to characterize linear behavior of brain tissue in the first series of tests. Single step tests with shear strains of up to 40% were performed to obtain stress-relaxation material functions for human and bovine brain tissue. The second series of experiments determined shear properties of bovine brain material by performing a set of single step loading stress-relaxation tests at the strain levels of up to 100%. For these tests, the theory of quasi-linear viscoelasticity (QLV) was employed to determine material properties. The third series of experiments involved nonlinear testing using single, two and three step loading stress-relaxation tests. The integral polynomial form of the third order Green-Rivlin constitutive equation was applied to model nonlinear behavior of the brain tissue. This representation describes the material behavior of brain tissue for the shear strains of up to 100%. The range of applicability for each viscoelastic theory was determined for brain material. It was found that for the strains of up to 40% a linear viscoelastic model is sufficient to describe material behavior. For the strains of up to 60% a quasi-linear model may be employed to describe the nonlinear behavior of brain tissue. At the strains of 60% and greater a time nonlinearity of brain material becomes significant and a nonlinear theory of viscoelasticity must be employed.
NASA Astrophysics Data System (ADS)
Zhu, Minggang; Li, Wei
2017-05-01
The study investigates the mechanism and constitutive equations describing oriented texture formation in anisotropic thermorheological rare-earth permanent magnets. The thermorheological process cannot be considered as creep, since the related phenomena are not suitably explained by the diffusion creep model. A mathematical model describing the relationship between the rheological deformation rate and texture orientation was established, and a theoretical expression was obtained for the orientation factor of thermorheological magnets. In addition, nanocrystalline Nd-Fe-B magnets were fabricated, with intrinsic coercivity Hcj=760.1 kA/m, remanence Br=1.469 T, and maximum energy product (BH)max=427.1 kJ/m3.
On the use of internal state variables in thermoviscoplastic constitutive equations
NASA Technical Reports Server (NTRS)
Allen, D. H.; Beek, J. M.
1985-01-01
The general theory of internal state variables are reviewed to apply it to inelastic metals in use in high temperature environments. In this process, certain constraints and clarifications will be made regarding internal state variables. It is shown that the Helmholtz free energy can be utilized to construct constitutive equations which are appropriate for metallic superalloys. Internal state variables are shown to represent locally averaged measures of dislocation arrangement, dislocation density, and intergranular fracture. The internal state variable model is demonstrated to be a suitable framework for comparison of several currently proposed models for metals and can therefore be used to exhibit history dependence, nonlinearity, and rate as well as temperature sensitivity.
Parameter correlation of high-temperature creep constitutive equation for RPV metallic materials
NASA Astrophysics Data System (ADS)
Xie, Lin-Jun; Ren, Xin; Shen, Ming-Xue; Tu, Li-Qun
2015-10-01
Constant-temperature and constant-load creep tests of SA-508 stainless steel were performed at six temperatures, and the creep behavior and properties of this material were determined. Constitutive models were established based on an isothermal creep method to describe the high-temperature creep behavior of SA-508. Material parameter k, stress exponent nσ, and temperature exponent nt of the established constitutive models were determined through experimental data via numerical optimization techniques. The relationship of k, nσ, and nt was evaluated, and a new coefficient model of k-T, nσ-T, nt-T, and nt-nσ was formulated through the parameters of the isothermal creep equation. Moreover, the isothermal creep equation for this material at every temperature point from 450 °C to 1000 °C was obtained from the models. This method can serve as a reference for isothermal creep analysis and provide a way for the safety assessment of components of reactor pressure vessels.
NASA Astrophysics Data System (ADS)
Dong, Yuanyuan; Zhang, Cunsheng; Lu, Xing; Wang, Cuixue; Zhao, Guoqun
2016-06-01
A reasonable constitutive model is the key to achieving the accurate numerical simulation of magnesium alloy extrusion process. Based on the hot compression tests of the as-extruded AZ31 magnesium alloy, the strain-compensated Arrhenius equation, the constitutive equation taking into account dynamic recovery (DRV) and dynamic recrystallization (DRX), and the modified Fields-Backofen equation (FB) are established to describe the deformation behavior of this alloy under large strain condition (strain level greater than 1.0) and wide strain rate range (0.01 to 10 s-1), respectively. Then material parameters in each constitutive model are determined by linear fitting method. The comparison of these three kinds of equations shows that the strain-compensated Arrhenius model provides the best prediction of flow stress, and the calculated value of correlation coefficient ( R) is the highest as 0.9945 and the average absolute relative error (AARE) is the lowest as 3.11%. The constitutive equation with DRV + DRX can also predict flow stress accurately, and its values of R and AARE are 0.9920 and 4.41%, respectively. However, compared to the other two constitutive equations, the modified FB equation does not give good description of hot deformation behavior for this magnesium alloy. Finally, the advantages and drawbacks of these three kinds of constitutive models are discussed and compared. Therefore, this work could provide theoretical guidelines for investigating hot deformation behavior of wrought magnesium alloys and determining the appropriate extrusion process parameters under large strain condition.
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Tan, H. Q.; Dong, X.
1989-01-01
Development of new material models for describing the high temperature constitutive behavior of real materials represents an important area of research in engineering disciplines. Derivation of mathematical expressions (constitutive equations) which describe this high temperature material behavior can be quite time consuming, involved and error prone; thus intelligent application of symbolic systems to facilitate this tedious process can be of significant benefit. A computerized procedure (SDICE) capable of efficiently deriving potential based constitutive models, in analytical form is presented. This package, running under MACSYMA, has the following features: partial differentiation, tensor computations, automatic grouping and labeling of common factors, expression substitution and simplification, back substitution of invariant and tensorial relations and a relational data base. Also limited aspects of invariant theory were incorporated into SDICE due to the utilization of potentials as a starting point and the desire for these potentials to be frame invariant (objective). Finally not only calculation of flow and/or evolutionary laws were accomplished but also the determination of history independent nonphysical coefficients in terms of physically measurable parameters, e.g., Young's modulus, was achieved. The uniqueness of SDICE resides in its ability to manipulate expressions in a general yet predefined order and simplify expressions so as to limit expression growth. Results are displayed when applicable utilizing index notation.
Development and application of constitutive equation for the hot extrusion of 7A04 aluminum alloy
NASA Astrophysics Data System (ADS)
Xiao, Yanhong; Cui, Zhenshan; Guo, Cheng
2013-05-01
The high-temperature deformation behavior of 7A04 aluminum alloy was investigated by hot compression tests in the temperature range of 300 - 450° and the strain rate range of 0.01-10 s-1. The true stress - true strain curves show that the stress level decreases with increasing temperature and decreasing strain rate. A modified JC model was developed by means of fitting the experimental data and optimizing the material constants. Then, based on the established constitutive equation of 7A04, the hot extrusion process of fuze shell was analyzed using DEFORM-3D and the flow law of metal was obtained. Finally, the validity of this research results was proved by practice, which provides some references for engineering application.
NASA Astrophysics Data System (ADS)
Vidal-Sallé, Emmanuelle; Chassagne, Pierre
2007-06-01
This paper presents a nonlinear viscoelastic orthotropic constitutive equation applied to wood material. The proposed model takes into account mechanical and mechanosorptive creep via a 3D stress ratio and moisture change rate for a cylindrical orthotropic material. Orthotropic frame is based on the grain direction (L), radial (R) and hoop (T) directions, which are natural wood directions. Particular attention is taken to ensure the model to fulfill the necessary dissipation conditions. It is based on a rheological generalized Maxwell model with two elements in parallel in addition with a single linear spring taking into account the long term response. The proposed model is implemented in the finite element code ABAQUS/Standard® via a user subroutine UMAT and simple example is shown to demonstrate the capability of the proposed model. Future works would deal with damage and fracture prediction for wooden structures submitted to climate variations and mechanical loading.
NASA Astrophysics Data System (ADS)
Labergere, C.; Saanouni, K.; Benafia, S.; Galmiche, J.; Sulaiman, H.
2013-05-01
This paper presents the modelling and adaptive numerical simulation of the fine blanking process. Thermodynamically-consistent constitutive equations, strongly coupled with ductile damage, together with specific boundary conditions (particular command of forces on blank holder and counterpunch) are presented. This model is implemented into ABAQUS/EXPLICIT using the Vumat user subroutine and connected with an adaptive 2D remeshing procedure. The different material parameters are identified for the steel S600MC using experimental tensile tests conducted until the final fracture. A parametric study aiming to examine the sensitivity of the process parameters (die radius, clearance die/punch) to the punch force and fracture surfaces topology (convex zone, sheared zone, fracture zone and the burr).
Constitutive and equation of state models using object-oriented programming methods
Wong, M.K.W.; Peery, J.S.; Budge, K.G.
1992-01-01
Large-scale simulations of solid dynamics problems require sophisticated computer hardware, employing specialized or unique features to enhance performance. The developer of computational mechanics codes is not only faced with the task of programming the necessary analysis algorithms, but also of ensuring that the available system capabilities are properly utilized to obtain the highest possible performance. Developing and maintaining the code for a number of computers, ranging from single processor serial workstations to massively parallel vectorized supercomputers, becomes a very difficult, potentially intractable problem. In this paper, we present an approach that seeks to minimize this problem by applying object-oriented programming (OOP) concepts to the development of the RHALE++ hydrodynamics/solid mechanics code that is written in the C++ language. In particular, we use the OOP paradigm to facilitate code development, maintenance, and portability of constitutive and equation of state models.
Constitutive and equation of state models using object-oriented programming methods
Wong, M.K.W.; Peery, J.S.; Budge, K.G.
1992-10-01
Large-scale simulations of solid dynamics problems require sophisticated computer hardware, employing specialized or unique features to enhance performance. The developer of computational mechanics codes is not only faced with the task of programming the necessary analysis algorithms, but also of ensuring that the available system capabilities are properly utilized to obtain the highest possible performance. Developing and maintaining the code for a number of computers, ranging from single processor serial workstations to massively parallel vectorized supercomputers, becomes a very difficult, potentially intractable problem. In this paper, we present an approach that seeks to minimize this problem by applying object-oriented programming (OOP) concepts to the development of the RHALE++ hydrodynamics/solid mechanics code that is written in the C++ language. In particular, we use the OOP paradigm to facilitate code development, maintenance, and portability of constitutive and equation of state models.
NASA Astrophysics Data System (ADS)
Nevitt, Johanna M.; Warren, Jessica M.; Pollard, David D.
2017-08-01
Uncertainty in constitutive equations for brittle-ductile deformation limits our understanding of earthquake nucleation and propagation at the base of the seismogenic lithosphere. To reduce this uncertainty, we investigate exhumed strike-slip faults and related deformation features in the Lake Edison granodiorite (central Sierra Nevada, CA) that developed at 250-500°C and 250 MPa. The Seven Gables outcrop contains a 10 cm wide contractional fault step separating 2 m-scale left-lateral faults. Within the step, an 4 cm thick leucocratic dike is stretched and rotated, thus constraining the kinematics of deformation, and the dike and surrounding granodiorite are strongly mylonitized. Petrographic and electron backscatter diffraction analyses reveal evidence for brittle and plastic deformation mechanisms, including dislocation creep, diffusion creep, microfracturing, and cataclasis. We present a 2-D finite element model of the Seven Gables outcrop that tests a series of candidate constitutive equations: Von Mises elastoplasticity, Drucker-Prager elastoplasticity, power law creep viscoelasticity, two-layer elastoviscoplasticity, and coupled elastoviscoplasticity. Models based on Von Mises yielding most accurately match the outcrop deformation. Frictional plastic yield criteria (i.e., Drucker-Prager) are incapable of reproducing the outcrop deformation due to the elevated mean compressive stress and reduced plastic yielding within the model fault step. Furthermore, the power law creep viscoelastic model requires a high strain rate ( 10-4 s-1) to resolve slip on faults and fails to localize strain within the step region. Comparing model results and elastic stress fields with field observations suggests that deformation localizes in regions of elevated mean compressive stress and Mises equivalent stress.
NASA Astrophysics Data System (ADS)
Martin Rengel, M. A.; Gomez, F. J.; Rico, A.; Ruiz-Hervias, J.; Rodriguez, J.
2017-04-01
It is well known that the presence of hydrides in nuclear fuel cladding may reduce its mechanical and fracture properties. This situation may be worsened as a consequence of the formation of hydride blisters. These blisters are zones with an extremely high hydrogen concentration and they are usually associated to the oxide spalling which may occur at the outer surface of the cladding. In this work, a method which allows us to reproduce, in a reliable way, hydride blisters in the laboratory has been devised. Depth-sensing indentation tests with a spherical indenter were conducted on a hydride blister produced in the laboratory with the aim of measuring its mechanical behaviour. The plastic stress-strain curve of the hydride blister was calculated for first time by combining depth-sensing indentation tests results with an iterative algorithm using finite element simulations. The algorithm employed reduces, in each iteration, the differences between the numerical and the experimental results by modifying the stress-strain curve. In this way, an almost perfect adjustment of the experimental data was achieved after several iterations. The calculation of the constitutive equation of the blister from nanoindentation tests, may involve a lack of uniqueness. To evaluate it, a method based on the optimization of parameters of analytical equations has been proposed in this paper. An estimation of the error which involves this method is also provided.
Klisch, Stephen M
2006-06-01
Cartilaginous tissues, such as articular cartilage and the annulus fibrosus, exhibit orthotropic behavior with highly asymmetric tensile-compressive responses. Due to this complex behavior, it is difficult to develop accurate stress constitutive equations that are valid for finite deformations. Therefore, we have developed a bimodular theory for finite deformations of elastic materials that allows the mechanical properties of the tissue to differ in tension and compression. In this paper, we derive an orthotropic stress constitutive equation that is second-order in terms of the Biot strain tensor as an alternative to traditional exponential type equations. Several reduced forms of the bimodular second-order equation, with six to nine parameters, and a bimodular exponential equation, with seven parameters, were fit to an experimental dataset that captures the highly asymmetric and orthotropic mechanical response of cartilage. The results suggest that the bimodular second-order models may be appealing for some applications with cartilaginous tissues.
NASA Astrophysics Data System (ADS)
Ahadi, A.; Karimi Taheri, A.; Karimi Taheri, K.; Sarraf, I. S.; Abbasi, S. M.
2012-04-01
In this study, a set of constitutive equation corrected for deformation heating is proposed for a near equi-atomic NiTi shape memory alloy using isothermal hot compression tests in temperature range of 700 to 1000 °C and strain rate of 0.001 to 1 s-1. In order to determine the temperature rise due to deformation heating, Abaqus simulation was employed and varied thermal properties were considered in the simulation. The results of hot compression tests showed that at low pre-set temperatures and high strain rates the flow curves exhibit a softening, while after correction of deformation heating the softening is vanished. Using the corrected flow curves, the power-law constitutive equation of the alloy was established and the variation of constitutive constants with strain was determined. Moreover, it was found that deformation heating introduces an average relative error of about 9.5% at temperature of 800 °C and strain rate of 0.1 s-1. The very good agreement between the fitted flow stress (by constitutive equation) and the measured ones indicates the accuracy of the constitutive equation in analyzing the hot deformation behavior of equi-atomic NiTi alloy.
NASA Astrophysics Data System (ADS)
Kishor, Brij; Chaudhari, G. P.; Nath, S. K.
2016-07-01
Hot compression tests were performed to study the hot deformation characteristics of 13Cr-4Ni stainless steel. The tests were performed in the strain rate range of 0.001-10 s-1 and temperature range of 900-1100 °C using Gleeble® 3800 simulator. A constitutive equation of Arrhenius type was established based on the experimental data to calculate the different material constants, and average value of apparent activation energy was found to be 444 kJ/mol. Zener-Hollomon parameter, Z, was estimated in order to characterize the flow stress behavior. Power dissipation and instability maps developed on the basis of dynamic materials model for true strain of 0.5 show optimum hot working conditions corresponding to peak efficiency range of about 28-32%. These lie in the temperature range of 950-1025 °C and corresponding strain rate range of 0.001-0.01 s-1 and in the temperature range of 1050-1100 °C and corresponding strain rate range of 0.01-0.1 s-1. The flow characteristics in these conditions show dynamic recrystallization behavior. The microstructures are correlated to the different stability domains indicated in the processing map.
Constitutive equations for commercial-purity aluminum deformed under hot-working conditions
Puchi, E.S. . School of Metallurgical Engineering and Materials Science)
1995-01-01
A rational analysis of a number of stress-strain curves for a commercial-purity aluminum has been carried out in order to derive a set of constitutive equations capable of describing the flow stress of the material in terms of the applied strain, rate of straining, and deformation temperature. Such an analysis combines the exponential saturation strain-hardening function earlier proposed by Voce (1948; 1955) with the exponential relationship developed from steady-state creep data at high stressed, and considers the existence of two different regimes of work-hardening. The proposed formalism requires only the use of seven material constants which include the temperature-dependent shear modulus, the activation energy for self-diffusion, one pre-exponential factor, and four stress sensitivity parameters of the strain rate. A satisfactory correlation has been obtained between the experimental values of the flow stress and those predicted for the model, which enables it to be used in conjunction with any algorithm based on finite differences methods or finite elements codes to simulate hot-working operations carried out in this material.
NASA Astrophysics Data System (ADS)
Yoshimoto, Akifumi; Kobayashi, Hidetoshi; Horikawa, Keitaro; Tanigaki, Kenichi
2015-09-01
These days, polymer foams, such as polyurethane foam and polystyrene foam, are used in various situations as a thermal insulator or shock absorber. In general, however, their strength is insufficient in high temperature environments because of their low glass transition temperature. Polyimide is a polymer which has a higher glass transition temperature and high strength. Its mechanical properties do not vary greatly, even in low temperature environments. Therefore, polyimide foam is expected to be used in the aerospace industry. Thus, the constitutive equation of polyimide foam that can be applied across a wide range of strain rates and ambient temperature is very useful. In this study, a series of compression tests at various strain rates, from 10-3 to 103 s-1 were carried out in order to examine the effect of strain rate on the compressive properties of polyimide foam. The flow stress of polyimide foam increased rapidly at dynamic strain rates. The effect of ambient temperature on the properties of polyimide foam was also investigated at temperature from - 190 °C to 270°∘C. The flow stress decreased with increasing temperature.
Rheological behavior and constitutive equations of heterogeneous titanium-bearing molten slag
NASA Astrophysics Data System (ADS)
Jiang, Tao; Liao, De-ming; Zhou, Mi; Zhang, Qiao-yi; Yue, Hong-rui; Yang, Song-tao; Duan, Pei-ning; Xue, Xiang-xin
2015-08-01
Experimental studies on the rheological properties of a CaO-SiO2-Al2O3-MgO-TiO2-(TiC) blast furnace (BF) slag system were conducted using a high-temperature rheometer to reveal the non-Newtonian behavior of heterogeneous titanium-bearing molten slag. By measuring the relationships among the viscosity, the shear stress and the shear rate of molten slags with different TiC contents at different temperatures, the rheological constitutive equations were established along with the rheological parameters; in addition, the non-Newtonian fluid types of the molten slags were determined. The results indicated that, with increasing TiC content, the viscosity of the molten slag tended to increase. If the TiC content was less than 2wt%, the molten slag exhibited the Newtonian fluid behavior when the temperature was higher than the critical viscosity temperature of the molten slag. In contrast, the molten slag exhibited the non-Newtonian pseudoplastic fluid characteristic and the shear thinning behavior when the temperature was less than the critical viscosity temperature. However, if the TiC content exceeded 4wt%, the molten slag produced the yield stress and exhibited the Bingham and plastic pseudoplastic fluid behaviors when the temperature was higher and lower than the critical viscosity temperature, respectively. When the TiC content increased further, the yield stress of the molten slag increased and the shear thinning phenomenon became more obvious.
Advancing towards constitutive equations for the metal industry via the LEDS theory
NASA Astrophysics Data System (ADS)
Kuhlmann-Wilsdorf, Doris
2004-02-01
A prime objective in the development of crystal dislocation theory has been, and at any rate should be, constitutive equations for practical use in the metal forming industry. Protracted controversies regarding workhardening theory have frustrated this goal for the past seven decades. The are fueled by the paradox that plastic deformation is a prime example for the second law of thermodynamics in converting mechanical work into heat with good efficiency, even while in seeming opposition to the second law it typically raises the internal energy of the deformed material. The low-energy dislocation structures (LEDS) theory resolves this difficulty by showing that, as always in inanimate nature, so also plastic deformation proceeds close to minimum free energy. Indeed recent evidence based on deformation band structures proves that plastic deformation typically proceeds very close to minimum energy among the accessible configurations. White plastic strain raises the flow stress, in ductile crystalline materials mostly through generating dislocation structures, but also through twins, kink bands, microcracks and others, Newton’s third law, i.e., force equilibrium, is always stringently obeyed. Therefore, deformation dislocation structures are in thermal equilibrium as long as the stress that generated them remains in place. Based on this concept of free energy minimization, the LEDS theory has long since explained, at least semiquantitatively, all significant aspects of metal strength and deformation, as well as the effects of heat treatments. The LEDS theory is the special case, namely, as pertaining to dislocation structures, of the more general low-energy structures (LEDS) theory that governs all types of deformation independent of the deformation mechanism, and that operates in all types of materials, including plastics.
Advancing towards constitutive equations for the metal industry via the LEDS theory
NASA Astrophysics Data System (ADS)
Kuhlmann-Wilsdorf, Doris
2004-02-01
A prime objective in the development of crystal dislocation theory has been, and at any rate should be, constitutive equations for practical use in the metal forming industry. Protracted controversies regarding workhardening theory have frustrated this goal for the past seven decades. They are fueled by the paradox that plastic deformation is a prime example for the second law of thermodynamics in converting mechanical work into heat with good efficiency, even while in seeming opposition to the second law it typically raises the internal energy of the deformed material. The low-energy dislocation structures (LEDS) theory resolves this difficulty by showing that, as always in inanimate nature, so also plastic deformation proceeds close to minimum free energy. Indeed recent evidence based on deformation band structures proves that plastic deformation typically proceeds very close to minimum energy among the accessible configurations. While plastic strain raises the flow stress, in ductile crystalline materials mostly through generating dislocation structures, but also through twins, kink bands, microcracks and others, Newton’s third law, i.e., force equilibrium, is always stringently obeyed. Therefore, deformation dislocation structures are in thermal equilibrium as long as the stress that generated them remains in place. Based on this concept of free energy minimization, the LEDS theory has long since explained, at least semiquantitatively, all significant aspects of metal strength and deformation, as well as the effects of heat treatments. The LEDS theory is the special case, namely, as pertaining to dislocation structures, of the more general low-energy structures (LEDS) theory that governs all types of deformation independent of the deformation mechanism, and that operates in all types of materials, including plastics.
Portier, Benjamin; Pardo, Fabrice; Bouchon, Patrick; Haïdar, Riad; Pelouard, Jean-Luc
2013-04-01
We present a modal method for the fast analysis of 2D-layered gratings. It combines exact discrete formulations of Maxwell equations in 2D space with polynomial approximations of the constitutive equations, and provides a sparse formulation of the eigenvalue equations. In specific cases, the use of sparse matrices allows us to calculate the electromagnetic response while solving only a small fraction of the eigenmodes. This significantly increases computational speed up to 100×, as shown on numerical examples of both dielectric and metallic subwavelength gratings.
NASA Astrophysics Data System (ADS)
Kari, Leif
2017-05-01
The constitutive equations of chemically and physically ageing rubber in the audible frequency range are modelled as a function of ageing temperature, ageing time, actual temperature, time and frequency. The constitutive equations are derived by assuming nearly incompressible material with elastic spherical response and viscoelastic deviatoric response, using Mittag-Leffler relaxation function of fractional derivative type, the main advantage being the minimum material parameters needed to successfully fit experimental data over a broad frequency range. The material is furthermore assumed essentially entropic and thermo-mechanically simple while using a modified William-Landel-Ferry shift function to take into account temperature dependence and physical ageing, with fractional free volume evolution modelled by a nonlinear, fractional differential equation with relaxation time identical to that of the stress response and related to the fractional free volume by Doolittle equation. Physical ageing is a reversible ageing process, including trapping and freeing of polymer chain ends, polymer chain reorganizations and free volume changes. In contrast, chemical ageing is an irreversible process, mainly attributed to oxygen reaction with polymer network either damaging the network by scission or reformation of new polymer links. The chemical ageing is modelled by inner variables that are determined by inner fractional evolution equations. Finally, the model parameters are fitted to measurements results of natural rubber over a broad audible frequency range, and various parameter studies are performed including comparison with results obtained by ordinary, non-fractional ageing evolution differential equations.
NASA Astrophysics Data System (ADS)
Kari, Leif
2017-09-01
The constitutive equations of chemically and physically ageing rubber in the audible frequency range are modelled as a function of ageing temperature, ageing time, actual temperature, time and frequency. The constitutive equations are derived by assuming nearly incompressible material with elastic spherical response and viscoelastic deviatoric response, using Mittag-Leffler relaxation function of fractional derivative type, the main advantage being the minimum material parameters needed to successfully fit experimental data over a broad frequency range. The material is furthermore assumed essentially entropic and thermo-mechanically simple while using a modified William-Landel-Ferry shift function to take into account temperature dependence and physical ageing, with fractional free volume evolution modelled by a nonlinear, fractional differential equation with relaxation time identical to that of the stress response and related to the fractional free volume by Doolittle equation. Physical ageing is a reversible ageing process, including trapping and freeing of polymer chain ends, polymer chain reorganizations and free volume changes. In contrast, chemical ageing is an irreversible process, mainly attributed to oxygen reaction with polymer network either damaging the network by scission or reformation of new polymer links. The chemical ageing is modelled by inner variables that are determined by inner fractional evolution equations. Finally, the model parameters are fitted to measurements results of natural rubber over a broad audible frequency range, and various parameter studies are performed including comparison with results obtained by ordinary, non-fractional ageing evolution differential equations.
NASA Astrophysics Data System (ADS)
Hussain, Mirza Zahid; Li, Fuguo; Wang, Jing; Yuan, Zhanwei; Li, Pan; Wu, Tao
2015-07-01
The present study comprises the determination of constitutive relationship for thermo-mechanical processing of INCONEL 718 through double multivariate nonlinear regression, a newly developed approach which not only considers the effect of strain, strain rate, and temperature on flow stress but also explains the interaction effect of these thermo-mechanical parameters on flow behavior of the alloy. Hot isothermal compression experiments were performed on Gleeble-3500 thermo-mechanical testing machine in the temperature range of 1153 to 1333 K within the strain rate range of 0.001 to 10 s-1. The deformation behavior of INCONEL 718 is analyzed and summarized by establishing the high temperature deformation constitutive equation. The calculated correlation coefficient ( R) and average absolute relative error ( AARE) underline the precision of proposed constitutive model.
NASA Astrophysics Data System (ADS)
Jomaa, Walid; Songmene, Victor; Bocher, Philippe
2016-03-01
In recent years, there has been growing interest for the identification of material constitutive equations using machining tests (inverse method). However, the inverse method has shown some drawbacks that could affect the accuracy of the identified material constants. On one hand, this approach requires the use of analytical model to estimate the cutting temperature. Nevertheless, the used temperature models lead to large discrepancies for the calculated temperatures even for the same work material and cutting conditions. On the other hand, some computation issues were observed when all material constants were determined, in the same time, using machining tests data. Therefore, this study attempts to provide a methodology for identifying the coefficients of the Marusich's constitutive equation (MCE) which demonstrated a good capability for the simulation of the material behavior in high speed machining. The proposed approach, which is based on an analytical inverse method together with dynamic tests, was applied to aluminum alloys AA6061-T6 and AA7075-T651, and induction hardened AISI 4340 steel (60 HRC). The response surface methodology was used in this approach. Two sets of material coefficients, for each tested work material, were determined using two different temperature models (Oxley and Loewen-Shaw). The obtained constitutive equations were validated using dynamic tests and finite element simulation of high speed machining. The predictions obtained are also compared to those performed with the corresponding Johnson and Cook constitutive equations (JCE) from the literature. The sensitivity analysis revealed that the selected temperature models used in the analytical inverse method can affect significantly the identified material constants and thereafter predicted dynamic response and machining data. Moreover, the MCE obtained using the hybrid method performed better than the JCE obtained by only dynamic tests.
NASA Astrophysics Data System (ADS)
Tang, D. W.; Wang, C. Y.; Hu, Y. N.; Song, Y. X.
2010-03-01
In this present work, dynamic tests have been performed on hardened SKD11 steel (62 Rockwell C hardness) specimens by means of a high temperature split Hopkinson pressure bar (SHPB) test system. Effects of temperature as well as those of strain and strain rate for the hardened steel are taken into account by using two ellipsoidal radiant heating reflectors with two halogen lamps and magnetic valve. The result obtained at high stain rates were compared with those at low strain rates under the different temperature. It was seen that the flow stress curves are found to include a work hardening region and a work softening region and the mechanical behavior of the hardened steel is highly sensitive to both the strain rate and the temperature. To determine the true flow stress- true strain, temperature relationship, specimens are tested from room temperature to 1073K at a strain rate form 0.01 s-1 to 104 s-1: The parameters for a Johnson-Cook constitutive equation and a modified Johnson-Cook constitutive equation are determined from the test results by fitting the data from both quasi-static compression and high temperature-dynamic compression tests. The modified Johnson-Cook constitutive equation is more suitable for expressing the dynamic behavior of the hardened SKD11 steel above the vicinity of the recrystallization temperature.
NASA Astrophysics Data System (ADS)
Tang, D. W.; Wang, C. Y.; Hu, Y. N.; Song, Y. X.
2009-12-01
In this present work, dynamic tests have been performed on hardened SKD11 steel (62 Rockwell C hardness) specimens by means of a high temperature split Hopkinson pressure bar (SHPB) test system. Effects of temperature as well as those of strain and strain rate for the hardened steel are taken into account by using two ellipsoidal radiant heating reflectors with two halogen lamps and magnetic valve. The result obtained at high stain rates were compared with those at low strain rates under the different temperature. It was seen that the flow stress curves are found to include a work hardening region and a work softening region and the mechanical behavior of the hardened steel is highly sensitive to both the strain rate and the temperature. To determine the true flow stress- true strain, temperature relationship, specimens are tested from room temperature to 1073K at a strain rate form 0.01 s-1 to 104 s-1: The parameters for a Johnson-Cook constitutive equation and a modified Johnson-Cook constitutive equation are determined from the test results by fitting the data from both quasi-static compression and high temperature-dynamic compression tests. The modified Johnson-Cook constitutive equation is more suitable for expressing the dynamic behavior of the hardened SKD11 steel above the vicinity of the recrystallization temperature.
Explicit Runge-Kutta methods for the integration of rate-type constitutive equations
NASA Astrophysics Data System (ADS)
Hiley, R. A.; Rouainia, M.
2008-04-01
Modern constitutive models have the potential to improve the quality of engineering calculations involving non-linear anisotropic materials. The adoption of complex models in practice, however, depends on the availability of reliable and accurate solution methods for the stress point integration problem. This paper presents a modular implementation of explicit Runge-Kutta methods with error control, that is suitable for use, without change, with any rate-type constitutive model. The paper also shows how the complications caused by the algebraic constraint of conventional plasticity are resolved through a simple subloading modification. With this modification any rate-independent model can be implemented without difficulty, using the integration module as an accurate and robust standard procedure. The effectiveness and efficiency of the method are demonstrated through a comparative evaluation of second and fifth-order formulas, applied to a complex constitutive model for natural clay, full details of which are given.
Bjerklie, D.M.; Dingman, S.L.; Bolster, C.H.
2005-01-01
[1] A set of conceptually derived in-bank river discharge-estimating equations (models), based on the Manning and Chezy equations, are calibrated and validated using a database of 1037 discharge measurements in 103 rivers in the United States and New Zealand. The models are compared to a multiple regression model derived from the same data. The comparison demonstrates that in natural rivers, using an exponent on the slope variable of 0.33 rather than the traditional value of 0.5 reduces the variance associated with estimating flow resistance. Mean model uncertainty, assuming a constant value for the conductance coefficient, is less than 5% for a large number of estimates, and 67% of the estimates would be accurate within 50%. The models have potential application where site-specific flow resistance information is not available and can be the basis for (1) a general approach to estimating discharge from remotely sensed hydraulic data, (2) comparison to slope-area discharge estimates, and (3) large-scale river modeling. Copyright 2005 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Revil, A.
2017-05-01
I developed a model of cross-coupled flow in partially saturated porous media based on electrokinetic coupling including the effect of ion filtration (normal and reverse osmosis) and the multi-component nature of the pore water (wetting) phase. The model also handles diffusion and membrane polarization but is valid only for saturations above the irreducible water saturation. I start with the local Nernst-Planck and Stokes equations and I use a volume-averaging procedure to obtain the generalized Ohm, Fick, and Darcy equations with cross-coupling terms at the scale of a representative elementary volume of the porous rock. These coupling terms obey Onsager's reciprocity, which is a required condition, at the macroscale, to keep the total dissipation function of the system positive. Rather than writing the electrokinetic terms in terms of zeta potential (the double layer electrical potential on the slipping plane located in the pore water), I developed the model in terms of an effective charge density dragged by the flow of the pore water. This effective charge density is found to be strongly controlled by the permeability and the water saturation. I also developed an electrical conductivity equation including the effect of saturation on both bulk and surface conductivities, the surface conductivity being associated with electromigration in the electrical diffuse layer coating the grains. This surface conductivity depends on the CEC of the porous material.
NASA Astrophysics Data System (ADS)
Lestriez, P.; Cherouat, A.; Saanouni, K.; Mariage, J. F.
2004-06-01
A fully coupled (strong coupling) thermo-elasto-visco-plastic-damage constitutive equations based on the state variables under large plastic deformation developed for metal forming simulation are presented. The relevant numerical aspects concerning either the local integration scheme as well as the global resolution strategy are discussed. This model is implemented into ABAQUS/EXPLICIT using the Vumat user subroutine. Applications are made to the orthogonal metal cutting by chip formation and segmentation. The interaction between hardening plasticity, ductile damage and thermal effects are carefully analyzed. The numerical results obtained with this procedure based on the damage coupling are compared with those obtained with the classical procedure neglecting the damage effect.
Potential constitutive models for salt: Survey of phenomenology, micromechanisms, and equations
Senseny, P.E.; Hansen, F.D.
1987-12-01
Results are given of a literature survey performed to document the thermomechanical phenomena and micromechanical processes observed for salt over the ranges of stress and temperature of interest for a high-level nuclear repository. The elastic and thermal expansion behavior of salt can be readily modeled by the generalized Duhamel Neumann form of Hooke's law with temperature-dependent elastic constants and coefficient of thermal expansion. Inelastic deformation is primarily viscoplastic, but also has a brittle component. The observed phenomenological behavior of salt occurs because of micromechanical processes. To the extent that these processes have been studied, a summary of deformation mechanisms in natural salt is included in this report. Eight constitutive models that appear to be capable of modeling the viscoplastic deformation have been selected from the literature. Two models have been selected to model brittle deformation. Insufficient data are available to develop a model for failure. 92 refs., 39 figs., 6 tabs.
Warner, James E.; Diaz, Manuel I.; Aquino, Wilkins; Bonnet, Marc
2014-01-01
This work focuses on the identification of heterogeneous linear elastic moduli in the context of frequency-domain, coupled acoustic-structure interaction (ASI), using either solid displacement or fluid pressure measurement data. The approach postulates the inverse problem as an optimization problem where the solution is obtained by minimizing a modified error in constitutive equation (MECE) functional. The latter measures the discrepancy in the constitutive equations that connect kinematically admissible strains and dynamically admissible stresses, while incorporating the measurement data as additional quadratic error terms. We demonstrate two strategies for selecting the MECE weighting coefficient to produce regularized solutions to the ill-posed identification problem: 1) the discrepancy principle of Morozov, and 2) an error-balance approach that selects the weight parameter as the minimizer of another functional involving the ECE and the data misfit. Numerical results demonstrate that the proposed methodology can successfully recover elastic parameters in 2D and 3D ASI systems from response measurements taken in either the solid or fluid subdomains. Furthermore, both regularization strategies are shown to produce accurate reconstructions when the measurement data is polluted with noise. The discrepancy principle is shown to produce nearly optimal solutions, while the error-balance approach, although not optimal, remains effective and does not need a priori information on the noise level. PMID:25339790
NASA Astrophysics Data System (ADS)
Warner, James E.; Diaz, Manuel I.; Aquino, Wilkins; Bonnet, Marc
2014-09-01
This work focuses on the identification of heterogeneous linear elastic moduli in the context of frequency-domain, coupled acoustic-structure interaction (ASI), using either solid displacement or fluid pressure measurement data. The approach postulates the inverse problem as an optimization problem where the solution is obtained by minimizing a modified error in constitutive equation (MECE) functional. The latter measures the discrepancy in the constitutive equations that connect kinematically admissible strains and dynamically admissible stresses, while incorporating the measurement data as additional quadratic error terms. We demonstrate two strategies for selecting the MECE weighting coefficient to produce regularized solutions to the ill-posed identification problem: 1) the discrepancy principle of Morozov, and 2) an error-balance approach that selects the weight parameter as the minimizer of another functional involving the ECE and the data misfit. Numerical results demonstrate that the proposed methodology can successfully recover elastic parameters in 2D and 3D ASI systems from response measurements taken in either the solid or fluid subdomains. Furthermore, both regularization strategies are shown to produce accurate reconstructions when the measurement data is polluted with noise. The discrepancy principle is shown to produce nearly optimal solutions, while the error-balance approach, although not optimal, remains effective and does not need a priori information on the noise level.
Brown, C P; Nguyen, T C; Moody, H R; Crawford, R W; Oloyede, A
2009-08-01
With the aim of providing information for modelling joint and limb systems, widely available constitutive hyperelastic laws are evaluated in this paper for their ability to predict the mechanical responses of normal and osteoarthritic articular cartilage. Load-displacement data from mechanical indentation were obtained for normal and osteoarthritic cartilage at 0.1 s(-1) and 0.025 s(-1) and converted to the stress-stretch ratio. The data were then fitted to the Arruda-Boyce, Mooney-Rivlin, neo-Hookean, Ogden, polynomial, and Yeoh hyperelastic laws in the MATLAB environment. Although each of the hyperelastic laws performed satisfactorily at the higher rate of loading, their ability to fit experimental data at the lower loading rate varied considerably. For the preferred models, coefficients were provided for stiff, soft, and average tissues to represent normal and degraded tissue at high and low loading rates. The present authors recommend the use of the Mooney-Rivlin or the Yeoh models for describing both normal and degraded articular cartilage, with the Mooney-Rivlin model providing the best compromise between accuracy and required computational power.
Effect of membrane constitutive equation on the recovery of capsules from large deformations
NASA Astrophysics Data System (ADS)
Gonzalez-Mancera, Andres
2005-11-01
The recovery of capsules after large deformations can be used to calculate its material properties. We focus our attention on the influence of varying the membrane constitutive model and the initial geometry of the capsule on the recovery process. An axisymmetric computational model based on the boundary element method (BEM) is used to simulate the recovery of capsules from small and large deformations. Comparison is made between capsules having: (1) constant cortical (surface) tension [CCT], (2) two-dimensional Hooke's law [H], (3) Mooney-Rivlin law [MR] and (4) Evans and Skalak [ES] membrane models. At small initial deformations similar behavior is observed for all models and appears independent of initial geometry. The recovery process is more sensitive to initial conditions for large deformations due to the non-linear behavior of the elastic membranes. The difference in the local strain distribution caused by variations in the initial geometry significantly affects the membrane stress field at large deformations, and thus the recovery process.
Constitutive equations of a ballistic steel alloy as a function of temperature
NASA Astrophysics Data System (ADS)
Berkovic, L.; Chabotier, A.; Coghe, F.; Rabet, L.
2012-08-01
In the present work, dynamic tests have been performed on a new ballistic steel alloy by means of split Hopkinson pressure bars (SHPB). The impact behavior was investigated for strain rates ranging from 1000 to 2500 s-1, and temperatures in the range from - 196 to 300∘C. A robotized sample device was developed for transferring the sample from the heating or cooling device to the position between the bars. Simulations of the temperature evolution and its distribution in the specimen were performed using the finite element method. Measurements with thermocouples added inside the sample were carried out in order to validate the FEM simulations. The results show that a thermal gradient is present inside the sample; the average temperature loss during the manipulation of the sample is evaluated. In a last stage, optimal material constants for different constitutive models (Johnson-Cook, Zerilli-Amstrong, Cowper-Symonds) has been computed by fitting, in a least square sense, the numerical and experimental stress-strain curves. They have been implemented in a hydrocode for validation using a simple impact problem: an adapted projectile geometry with a truncated nose (.50 calibre fragment simulating projectiles) was fired directly against an armor plate. The parameters of the selected strength and failure models were determined. There is a good correspondence between the experimental and computed results. Nevertheless, an improved failure model is necessary to get satisfactory computed residual projectile velocities.
Banerjee, Biswanath; Walsh, Timothy F.; Aquino, Wilkins; Bonnet, Marc
2012-01-01
This paper presents the formulation and implementation of an Error in Constitutive Equations (ECE) method suitable for large-scale inverse identification of linear elastic material properties in the context of steady-state elastodynamics. In ECE-based methods, the inverse problem is postulated as an optimization problem in which the cost functional measures the discrepancy in the constitutive equations that connect kinematically admissible strains and dynamically admissible stresses. Furthermore, in a more recent modality of this methodology introduced by Feissel and Allix (2007), referred to as the Modified ECE (MECE), the measured data is incorporated into the formulation as a quadratic penalty term. We show that a simple and efficient continuation scheme for the penalty term, suggested by the theory of quadratic penalty methods, can significantly accelerate the convergence of the MECE algorithm. Furthermore, a (block) successive over-relaxation (SOR) technique is introduced, enabling the use of existing parallel finite element codes with minimal modification to solve the coupled system of equations that arises from the optimality conditions in MECE methods. Our numerical results demonstrate that the proposed methodology can successfully reconstruct the spatial distribution of elastic material parameters from partial and noisy measurements in as few as ten iterations in a 2D example and fifty in a 3D example. We show (through numerical experiments) that the proposed continuation scheme can improve the rate of convergence of MECE methods by at least an order of magnitude versus the alternative of using a fixed penalty parameter. Furthermore, the proposed block SOR strategy coupled with existing parallel solvers produces a computationally efficient MECE method that can be used for large scale materials identification problems, as demonstrated on a 3D example involving about 400,000 unknown moduli. Finally, our numerical results suggest that the proposed MECE
NASA Astrophysics Data System (ADS)
Tutyshkin, Nikolai D.; Lofink, Paul; Müller, Wolfgang H.; Wille, Ralf; Stahn, Oliver
2017-01-01
On the basis of the physical concepts of void formation, nucleation, and growth, generalized constitutive equations are formulated for a tensorial model of plastic damage in metals based on three invariants. The multiplicative decomposition of the metric transformation tensor and a thermodynamically consistent formulation of constitutive relations leads to a symmetric second-order damage tensor with a clear physical meaning. Its first invariant determines the damage related to plastic dilatation of the material due to growth of the voids. The second invariant of the deviatoric damage tensor is related to the change in void shape. The third invariant of the deviatoric tensor describes the impact of the stress state on damage (Lode angle), including the effect of rotating the principal axes of the stress tensor (Lode angle change). The introduction of three measures with related physical meaning allows for the description of kinetic processes of strain-induced damage with an equivalent parameter in a three-dimensional vector space, including the critical condition of ductile failure. Calculations were performed by using experimentally determined material functions for plastic dilatation and deviatoric strain at the mesoscale, as well as three-dimensional graphs for plastic damage of steel DC01. The constitutive parameter was determined from tests in tension, compression, and shear by using scanning electron microscopy, which allowed to vary the Lode angle over the full range of its values [InlineEquation not available: see fulltext.]. In order to construct the three-dimensional plastic damage curve for a range of triaxiality parameters -1 ≤ ST ≤ 1 and of Lode angles [InlineEquation not available: see fulltext.], we used our own, as well as systematized published experimental data. A comparison of calculations shows a significant effect of the third invariant (Lode angle) on equivalent damage. The measure of plastic damage, based on three invariants, can be useful
NASA Astrophysics Data System (ADS)
Kariya, Yoshiharu; Otsuka, Masahisa; Plumbridge, William J.
2003-12-01
Creep data for a eutectic tin-silver alloy at temperatures between 298 K and 398 K have been analyzed using the modified theta-projection concept, instead of the steady-state creep constitutive equation in the following formula: ɛcr=A {1-exp(-αt)}+B {exp(αt)-1}, where A, B, and α are constants to be experimentally determined. The equation describes well the creep curves of the eutectic tin-silver alloy up to the tertiary stage. All constants exhibited power law relationships with the applied stress. The rate constant, α, has a high stress exponent, which is attributed to dispersion strengthening. The rate constant a and the strain factor B only showed temperature dependence, while the strain factor A was independent of temperature. The activation energy for α was 65 kJ/mol at high stresses and 90 kJ/mol at low stresses. The energies suggest that the dislocation pipe diffusion and the lattice diffusion are predominant at high stresses and low stresses, respectively.
NASA Astrophysics Data System (ADS)
Drugan, W. J.; Willis, J. R.
2016-06-01
A variational formulation employing the minimum potential and complementary energy principles is used to derive a micromechanics-based nonlocal constitutive equation for random linear elastic composite materials, relating ensemble averages of stress and strain in the most general situation when mean fields vary spatially. All information contained in the energy principles is retained; we employ stress polarization trial fields utilizing one-point statistics so that the resulting nonlocal constitutive equation incorporates up through three-point statistics. The variational structure is developed first for arbitrary heterogeneous linear elastic materials, then for randomly inhomogeneous materials, then for general n-phase composite materials, and finally for two-phase composite materials, in which case explicit variational upper and lower bounds on the nonlocal effective modulus tensor operator are derived. For statistically uniform infinite-body composites, these bounds are determined even more explicitly in Fourier transform space. We evaluate these in detail in an example case: longitudinal shear of an aligned fiber or void composite. We determine the full permissible ranges of the terms involving two- and three-point statistics in these bounds, and thereby exhibit explicit results that encompass arbitrary isotropic in-plane phase distributions; we also develop a nonlocal "Milton parameter", the variation of whose eigenvalues throughout the interval [0, 1] describes the full permissible range of the three-point term. Example plots of the new bounds show them to provide substantial improvement over the (two-point) Hashin-Shtrikman bounds on the nonlocal operator tensor, for all permissible values of the two- and three-point parameters. We next discuss further applications of the general nonlocal operator bounds: to any three-dimensional scalar transport problem e.g. conductivity, for which explicit results are given encompassing the full permissible ranges of the
Skontorp, A.; Wang, S.S.
1995-12-31
The high-temperature creep with physical and chemical aging of a polyimide-matrix composite has been studied with a combined experimental and analytical micromechanics approach. High-temperature aging and creep experiments are carried out to determine the effects of aging on both a neat polyimide (Avimid-N) resin and polyimide-matrix composite. The effect of aging on the polyimide resin is found to be in the form of a volume reduction and a small change in its glass- transition temperature. For both the neat polyimide resin and its composite, aging strains have been distinguished from total high-temperature strains and, thus, true mechanical creep strains can be properly determined. A micromechanics model based on the recently developed homogenization theory is used to study the viscoelastic effective constitutive equations of the composite. The effect of aging-induced property change is taken into account implicitly, through the input neat resin data in the formulation. Comparisons are made between the homogenization predictions and the experimentally obtained effective properties, and good agreement is observed. In the long-term high-temperature creep, it has been found that the complexities associated with the composite microstructural inhomogeneities and imperfection may lead to some discrepancies between the predictions and the experimental results.
NASA Astrophysics Data System (ADS)
Yang, Jian; Boude, Serge; Giraud, Eliane; Dal Santo, Philippe
2013-05-01
Superplasticity is a characteristic of certain materials, in particular aluminium alloys, whereby very large deformations (up to 1000 %) can be obtained before fracture under certain conditions. Superplastic forming is therefore the process of deforming a flange under these conditions by applying a variable pressure. The final geometry is obtained when the flange takes the form of a die. In order to deform a material superplastically, the temperature of the material should be approximately a half of the absolute melting point of the material and the strain rate (or flow stress) should remain within a certain range. The most important issues concerning the industrial process are the prediction of the final thickness distribution and the computation of the optimal pressure law to maintain superplastic conditions. Finite element simulations make these predictions possible for industrial components. To ensure the precision of the simulations, it is important to have good knowledge of the material behaviour in the superplastic domain: rheological parameters, grain size, damage law, etc. This paper presents an experimental analysis of the superplastic behaviour of a 7xxx aluminium alloy used for aeronautic applications. The parameters of the constitutive equations (including damage) are identified by using tensile tests, spherical bulging tests and numerical simulations [1, 2]. The performance of the proposed laws [1, 3, and 4] is tested using axisymmetrical geometries with complex shapes by the comparison of numerical simulations and bulge tests.
NASA Astrophysics Data System (ADS)
Pang, L.; Liu, G. C.; Lu, J. P.
2015-12-01
The 20Cr2Ni4 alloy steel has the properties of high strength, toughness and hardness. It is used in large cross-section carburized parts, such as gears, shafts and components which are required high strength and good toughness. In order to study the static mechanical properties and dynamic mechanical properties of 20Cr2Ni4 steel, the static compression experiment and the Hopkinson Pressure Bar test are conducted. The stress-strain relationship within the scope of 25∼400°C is obtained by experiments, and softening effect of strain rate and strengthening effect of temperature is comprehensively analyzed. The paper has a more comprehensive understanding on mechanical response of 20Cr2Ni4 steel within the scope of 25∼400°C. Based on the experiment data the parameters in Johnson-Cook constitutive equation of 20Cr2Ni4 have been gotten. The research results of this paper lay a foundation for the further applications of 20Cr2Ni4 steel.
Flow Behavior and Constitutive Equation of Ti-6.5Al-2Sn-4Zr-4Mo-1W-0.2Si Titanium Alloy
NASA Astrophysics Data System (ADS)
Yang, Xuemei; Guo, Hongzhen; Liang, Houquan; Yao, Zekun; Yuan, Shichong
2016-04-01
In order to get a reliable constitutive equation for the finite element simulation, flow behavior of Ti-6.5Al-2Sn-4Zr-4Mo-1W-0.2Si alloy under high temperature was investigated by carrying a series of isothermal compression tests at temperatures of 1153-1293 K and strain rates of 0.01-10.0 s-1 on the Gleeble-1500 simulator. Results showed that the true stress-strain curves exhibited peaks at small strains, after which the flow stress decreased monotonically. Ultimately, the flow curves reached steady state at the strain of 0.6, showing a dynamic flow softening phenomenon. The effects of strain rate, temperature, and strain on the flow behavior were researched by establishing a constitutive equation. The relations among stress exponent, deformation activation energy, and strain were preliminarily discussed by using strain rate sensitivity exponent and dynamic recrystallization kinetics curve. Stress values predicted by the modified constitutive equation showed a good agreement with the experimental ones. The correlation coefficient ( R) and average absolute relative error (AARE) were 98.2% and 4.88%, respectively, which confirmed that the modified constitutive equation could give an accurate estimation of the flow stress for BT25y titanium alloy.
Hoover, Wm G; Hoover, Carol G
2010-04-01
Guided by molecular dynamics simulations, we generalize the Navier-Stokes-Fourier constitutive equations and the continuum motion equations to include both transverse and longitudinal temperatures. To do so we partition the contributions of the heat transfer, the work done, and the heat flux vector between the longitudinal and transverse temperatures. With shockwave boundary conditions time-dependent solutions of these equations converge to give stationary shockwave profiles. The profiles include anisotropic temperature and can be fitted to molecular dynamics results, demonstrating the utility and simplicity of a two-temperature description of far-from-equilibrium states.
Ultracompact photonic coupling splitters twisted by PTT nanowires.
Xing, Xiaobo; Zhu, Heng; Wang, Yuqing; Li, Baojun
2008-09-01
We report a series of ultracompact photonic coupling splitters with multi-input/output ports assembled by twisting flexible polymer nanowires, which were fabricated by one-step drawing method from poly(trimethylene terephthalate) (PTT). Experimental demonstration shows that the properties of the splitters are dependent on the operation wavelength and the input branch of the optical signal launched. For a fixed operation wavelength and the input branch, desirable splitting ratio can be tuned by controlling the input/output branching angle. The excess loss of these splitters is less than 1 dB, and the intrinsic loss is less than 0.4 dB. They are desirable for high density photonic integrated circuits (PICs) and nanonetworks, while the twisting technology will be useful in constructing other wire-based photonic devices.
NASA Astrophysics Data System (ADS)
Motoyama, Yuichi; Shiga, Hidetoshi; Sato, Takeshi; Kambe, Hiroshi; Yoshida, Makoto
2016-11-01
Accurate simulation of residual stress and deformation is necessary to optimize the design and lifetime of casting components. Therefore, the recovery and strain-rate dependence of the stress-strain curve have been incorporated into empirical constitutive equations to improve the thermal stress analysis accuracy. Nevertheless, these equations present several difficulties related to the determination of material constants and their physical bases. This study suggested an empirical elasto-plastic-creep constitutive equation incorporating these phenomena. To determine the material parameters used in this constitutive equation, this study investigated tensile test methods to obtain stress-strain curves that most closely resemble those during or immediately after casting for the Al-Si-Cu high-pressure die-casting alloy JIS ADC 12 (A383.0), which exhibits natural aging. Results show that solution heat treatment with subsequent cooling to the test temperature should be applied to obtain stress-strain curves used for the thermal stress analysis of high-pressure die casting process of this alloy. The yield stresses obtained using the conventional heating method were 50-64 pct higher than those of the method described above. Therefore, the conventional method is expected to overestimate the overestimation of the predicted residual stress in die castings. Evaluation of the developed equation revealed that it can represent alloy recovery and strain-rate dependence.
Jokipii, Soile; Häggman, Hely; Brader, Günter; Kallio, Pauli T.; Niemi, Karoliina
2008-01-01
Present knowledge on plant non-symbiotic class-1 (Hb1) and truncated (TrHb) haemoglobin genes is almost entirely based on herbaceous species while the corresponding tree haemoglobin genes are not well known. The function of these genes has recently been linked with endosymbioses between plants and microbes. In this work, the coding sequences of hybrid aspen (Populus tremula×tremuloides) PttHb1 and PttTrHb were characterized, indicating that the key residues of haem and ligand binding of both genes were conserved in the deduced amino acid sequences. The expression of PttHb1 and PttTrHb was examined in parallel with that of the heterologous Vitreoscilla haemoglobin gene (vhb) during ectomycorrhiza/ectomycorrhizal (ECM) interaction. Both ECM fungi studied, Leccinum populinum and Xerocomus subtomentosus, enhanced root formation and subsequent growth of roots of all hybrid aspen lines, but only L. populinum was able to form mycorrhizas. Real-time PCR results show that the dual culture with the ECM fungus, with or without emergence of symbiotic structures, increased the expression of both PttHb1 and PttTrHb in the roots of non-transgenic hybrid aspens. PttHb1 and PttTrHb had expression peaks 5 h and 2 d after inoculation, respectively, pointing to different functions for these genes during interaction with root growth-improving fungi. In contrast, ECM fungi were not able to enhance the expression of hybrid aspen endogenous haemoglobin genes in the VHb lines, which may be a consequence of the compensating action of heterologous haemoglobin. PMID:18544611
NASA Astrophysics Data System (ADS)
Lister, Gordon S.; Baldwin, Suzanne L.
1996-03-01
Argon diffusion in mineral grains has been numerically modelled using P-T-t histories that may be relevant to multiply metamorphosed orogenic terranes and for rocks that have resided at high ambient temperatures in the Earth's crust for long durations. The MacArgon program generates argon concentration profiles in minerals assuming argon loss occurs via volume diffusion. It can be run on an Apple Macintosh computer, with arbitrary P-T-t histories used as input. Finite-difference equations are used in the calculation of 40Ar∗ concentration profiles across individual diffusion domains. The associated MacSpectrometer generates model spectra after a P-T-t history has been specified. The form of model {40Ar }/{39Ar } apparent age spectra suggests that considerable caution needs to be exercised in the use of the closure temperature concept and in the interpretation of the significance of plateaux observed in many {40Ar }/{39Ar } apparent age spectra, particularly in cases involving metamorphic rocks, where complex P-T-t histories might apply. Although modelled spectra cannot be directly compared to experimentally determined {40Ar }/{39Ar } age spectra, especially when hydrous phases are involved or in cases where loss of argon has not occurred via volume diffusion, they do provide insight into theoretically expected age spectra for samples that have experienced complex P-T-t histories. MacArgon can be obtained by e-mail from MacArgon artemis.earth.monash.edu.au with enquiries to gordonartemis.earth.monash.edu.au
Lincz, Lisa F; Scorgie, Fiona E; Johnston, Christopher I; O'Leary, Margaret; Prasad, Ritam; Seldon, Michael; Favaloro, Emmanuel; Isbister, Geoffrey K
2014-08-01
This study aimed to determine the relative sensitivity of activated partial thromboplastin time (aPTT) reagents to the anticoagulant effects of phospholipases in mulga snake (Pseudechis australis) venom.Twenty-one haematology laboratories participating in the Royal College of Pathologists of Australasia Quality Assurance Programs were sent human plasma samples spiked with mulga venom (n=25 total results). Results for 17 patients with mulga snake envenoming were available through the Australian Snakebite Project.Only 12 of 25 venom spiked samples returned an abnormally prolonged aPTT. Tests performed with Dade Actin FS (n=7) did not identify any of the spiked samples as abnormal. Although clotting times were significantly prolonged using the lupus anticoagulant sensitive Actin FSL (n=5, p=0.043), only one was reported as abnormal. Only laboratories using TriniCLOT aPTT S (n=6), HemosIL APTT SP (n=2) and Stago PTT-A (n=1) consistently recorded the spiked sample as being above the upper normal reference interval. Abnormally prolonged aPTTs were recorded for four of eight patients whose tests were performed with Actin FSL, five of eight patients with TriniCLOT aPTT HS, and three of three patients using TriniCLOT aPTT S.We conclude that some reagents used for routine aPTT testing are relatively insensitive to the anticoagulant effects of mulga snake venom. Tests performed with these reagents should be interpreted with caution.
NASA Astrophysics Data System (ADS)
De Focatiis, Davide S. A.; Embery, John; Buckley, C. Paul
2008-07-01
This paper investigates the behaviour of a well-characterised monodisperse grade of entangled atactic polystyrene across a very wide temperature and strain rate range through linear and non-linear melt rheology and solid-state deformation. In an effort to construct a constitutive model for large deformations able to describe rheological response right across this wide timescale, two well-established rheological models are combined: the well known RoliePoly (RP) conformational melt model and the Oxford glass-rubber constitutive model for glassy polymers. Comparisons between experimental data and simulations from a numerical implementation of the model illustrate that the model can cope well with the range of deformations in which orientation is limited to length-scales longer than an entanglement length. One approach in which the model can be expanded to incorporate the effects of orientation on shorter length scales using anisotropic viscoplastic flow is briefly discussed.
De Focatiis, Davide S. A.; Buckley, C. Paul; Embery, John
2008-07-07
This paper investigates the behaviour of a well-characterised monodisperse grade of entangled atactic polystyrene across a very wide temperature and strain rate range through linear and non-linear melt rheology and solid-state deformation. In an effort to construct a constitutive model for large deformations able to describe rheological response right across this wide timescale, two well-established rheological models are combined: the well known RoliePoly (RP) conformational melt model and the Oxford glass-rubber constitutive model for glassy polymers. Comparisons between experimental data and simulations from a numerical implementation of the model illustrate that the model can cope well with the range of deformations in which orientation is limited to length-scales longer than an entanglement length. One approach in which the model can be expanded to incorporate the effects of orientation on shorter length scales using anisotropic viscoplastic flow is briefly discussed.
Wearable cuff-less PTT-based system for overnight blood pressure monitoring.
Zheng, Yali; Yan, Bryan P; Zhang, Yuanting; Yu, C M; Poon, Carmen C Y
2013-01-01
A wearable cuff-less pulse transit time (PTT) based monitoring device is developed for ambulatory blood pressure (BP) monitoring. Ten healthy subjects (aged 27 ± 4 years old) underwent 24-hour ambulatory BP monitoring using 1) a standard brachial cuff-based oscillometric device as reference and 2) the proposed cuff-less PTT measuring system. Raw PTT and BP measurements were linearly interpolated and then smoothed by a low-pass filter to remove aliasing effect caused by the low sampling rate and synchronized. Resampled PTT and BP were assessed for correlation using correlation coefficients and Bland-Altman plots. Our study showed that PTT estimated systolic BP most accurately within 4.8 ± 4.3 mmHg on healthy young subjects during sleep time. We conclude from this study that the proposed cuff-less PTT-based BP monitoring system has potential to be a less intrusive alternative to standard oscillometric method for long-term overnight BP monitoring.
NASA Astrophysics Data System (ADS)
Ciccarelli, D.; El Mehtedi, M.; Jäger, A.; Spigarelli, S.
2015-12-01
The present study investigates the variation of flow stress and microstructural evolution with strain for ZK60 magnesium alloy. A new constitutive equation was used to model the flow stress with excellent results. This constitutive analysis and the microstructural studies carried out on strained samples revealed the existence of two different regimes. At temperatures above 300 °C, moderate grain growth and intragranular dislocation activity. Yet, the calculated value of the activation energy and the marked increase in the equivalent strain to fracture indicated grain boundary sliding as a dominant mechanism in this regime of strain rate and temperature, with dislocation motion playing an ancillary role. At lower temperatures, deformation was exclusively governed by dislocation motion, with the extensive occurrence of dynamic recrystallization, which started at low strains, and absence of grain growth.
Continuous measurement of systolic blood pressure using the PTT and other parameters.
Park, E; Cho, B; Park, S; Lee, J; Lee, J; Kim, I; Kim, Sun
2005-01-01
In this paper, we proposed the regression model which could estimate unspecified people's systolic blood pressure (SBP) conveniently and continuously and checked its accuracy through clinical experiments. The method for estimating each individual SBP by using only pulse transit time (PTT) has been studied, but it is difficult to estimate unspecified people's SBP with the method using only PTT. Thus we researched several physical characteristic parameters which might affect blood pressure (BP) with the standard that we can measure them easily and conveniently, chose valid physical characteristic parameters through a clinical testing and correlation analysis, and made the regression model using PTT and valid physical characteristic parameters for estimating unspecified people's SBP. Comparing the result of the proposed method with American National Standards Institute of the Association of the Advancement of Medical Instrument (ANSI/AAMI), we know that the proposed regression model gives an acceptable result.
NASA Astrophysics Data System (ADS)
Salajegheh, Nima; Abedrabbo, Nader; Pourboghrat, Farhang
2005-08-01
An efficient integration algorithm for continuum damage based elastoplastic constitutive equations is implemented in LS-DYNA. The isotropic damage parameter is defined as the ratio of the damaged surface area over the total cross section area of the representative volume element. This parameter is incorporated into the integration algorithm as an internal variable. The developed damage model is then implemented in the FEM code LS-DYNA as user material subroutine (UMAT). Pure stretch experiments of a hemispherical punch are carried out for copper sheets and the results are compared against the predictions of the implemented damage model. Evaluation of damage parameters is carried out and the optimized values that correctly predicted the failure in the sheet are reported. Prediction of failure in the numerical analysis is performed through element deletion using the critical damage value. The set of failure parameters which accurately predict the failure behavior in copper sheets compared to experimental data is reported as well.
NASA Astrophysics Data System (ADS)
Bae, Jung-Eun; Cho, Kwang Soo
2017-09-01
Shear stress of Large Amplitude Oscillatory Shear (LAOS) is known to be decomposed to elastic and viscous stresses. According to the parity of normal stress with respect to shear strain and shear rate, it also can be mathematically decomposed into two parts: NEE (even symmetry part for both strain and strain rate) and NOO (odd symmetry part for both shear strain and shear rate). However, the physical meaning of the decomposed normal stress is questionable. This paper is to prove the conjecture that NEE is elastic and NOO is viscous under the condition of time-strain separability. For the purpose of the proof, we developed mathematical tools for the analytical solutions of LAOS. We applied the mathematical methods to some popularly used constitutive equations such as the convected Maxwell models, the separable Kaye-Bernstein-Kearsley-Zepas (K-BKZ) model, the Giesekus model, and the Phan-Thien and Tanner model.
NASA Astrophysics Data System (ADS)
Wang, Fuzeng; Zhao, Jun; Zhu, Ningbo
2016-11-01
The flow behavior of Ti-6Al-4V alloy was studied by automated ball indentation (ABI) tests in a wide range of temperatures (293, 493, 693, and 873 K) and strain rates (10-6, 10-5, and 10-4 s-1). Based on the experimental true stress-plastic strain data derived from the ABI tests, the Johnson-Cook (JC), Khan-Huang-Liang (KHL) and modified Zerilli-Armstrong (ZA) constitutive models, as well as artificial neural network (ANN) methods, were employed to predict the flow behavior of Ti-6Al-4V. A comparative study was made on the reliability of the four models, and their predictability was evaluated in terms of correlation coefficient ( R) and mean absolute percentage error. It is found that the flow stresses of Ti-6Al-4V alloy are more sensitive to temperature than strain rate under current experimental conditions. The predicted flow stresses obtained from JC model and KHL model show much better agreement with the experimental results than modified ZA model. Moreover, the ANN model is much more efficient and shows a higher accuracy in predicting the flow behavior of Ti-6Al-4V alloy than the constitutive equations.
Constitutive Equations for Hot Working
1988-12-01
spacing and depth appeared to be less sensitive controlling parameters than was initially anticipated. Approximate bounds for these dimensions are a...If we are confident that the structure has not changed in the time necessary to apply the change, then the changes in the external variables are...generally derived to be propor- tional to stress raised to a low power, either one or two [Argon, 1975]. If we assume two to be an upper bound and then
NASA Astrophysics Data System (ADS)
Sui, Dashan; Wang, Tao; Zhu, Lingling; Gao, Liang; Cui, Zhenshan
2016-11-01
The hot deformation behavior and hot workability characteristics of as-cast SA508-3 steel were studied by modeling the constitutive equations and developing hot processing maps. The isothermal compression experiments were carried out at temperatures of 950°C, 1050°C, 1150°C, and 1250°C and strain rates of 0.001 s-1, 0.01 s-1, 0.1 s-1, and 1 s-1 respectively. The two-stage flow stress models were established through the classical theories on work hardening and softening, and the solution of activation energy for hot deformation was 355.0 kJ mol-1 K-1. Based on the dynamic material model, the power dissipation and instability maps were developed separately at strains of 0.2, 0.4, 0.6 and 0.8. The power dissipation rate increases with both the increase of temperature and the decrease of strain rate, and the instable region mainly appears on the conditions of low temperature and high strain rate. The optimal hot working parameters for as-cast SA508-3 steel are 1050-1200°C/0.001-0.1 s-1, with about 25-40% peak efficiency of power dissipation.
NASA Technical Reports Server (NTRS)
Hakkinen, S.
1984-01-01
This study is aimed at the modelling of mesoscale processed such as up/downwelling and ice edge eddies in the marginal ice zones. A 2-dimensional coupled ice-ocean model is used for the study. The ice model is coupled to the reduced gravity ocean model (f-plane) through interfacial stresses. The constitutive equations of the sea ice are formulated on the basis of the Reiner-Rivlin theory. The internal ice stresses are important only at high ice concentrations (90-100%), otherwise the ice motion is essentially free drift, where the air-ice stress is balanced by the ice-water stress. The model was tested by studying the upwelling dynamics. Winds parallel to the ice edge with the ice on the right produce upwilling because the air-ice momentum flux is much greater that air-ocean momentum flux, and thus the Ekman transport is bigger under the ice than in the open water. The upwelling simulation was extended to include temporally varying forcing, which was chosen to vary sinusoidally with a 4 day period. This forcing resembles successive cyclone passings. In the model with a thin oceanic upper layer, ice bands were formed.
... PT and INR ; Fibrinogen ; D-dimer ; Thrombin Time ; Lupus Anticoagulant Testing ; ACT ; Coagulation Factors ; Platelet Count ; Heparin ... the blood. To detect nonspecific autoantibodies , such as lupus anticoagulant ; these are associated with clotting episodes and ...
Complete Genome Analysis of One of the Earliest SIVcpzPtt Strains from Gabon (SIVcpzGAB2)
BIBOLLET-RUCHE, FREDERIC; GAO, FENG; BAILES, ELIZABETH; SARAGOSTI, SENTOB; DELAPORTE, ERIC; PEETERS, MARTINE; SHAW, GEORGE M.; HAHN, BEATRICE H.; SHARP, PAUL M.
2009-01-01
Chimpanzees in west central Africa (Pan troglodytes troglodytes) are known to harbor simian immunodeficiency viruses (SIVcpzPtt) that represent the closest relatives of human immunodeficiency virus type 1 (HIV-1); however, the number of SIVcpzPtt strains that have been fully characterized is still limited. Here, we report the complete nucleotide sequence of SIVcpzGAB2, a virus originally identified in 1989 in a chimpanzee (P. t. troglodytes) from Gabon. Analysis of this sequence reveals that SIVcpzGAB2 is a member of the SIVcpzPtt group of viruses, but that it differs from other SIVcpzPtt strains by exhibiting a highly divergent Env V3 loop with an unusual crown (NLSPGTT) containing a canonical N-linked glycosylation site, an unpaired cysteine residue in Env V4, and two late (L) domain motifs (PTAP and YPSL) in Gag p6. Moreover, phylogenetic analyses indicate evidence of recombination during the early divergence of SIVcpzPtt strains; in particular, part of the pol gene sequence of SIVcpzGAB2 appears to be derived from a previously unidentified SIVcpz lineage ancestral to HIV-1 group O. These data indicate extensive diversity among naturally occurring SIVcpzPtt strains and provide new insight into the origin of HIV-1 group O. PMID:15650433
Visible spectrum-based non-contact HRV and dPTT for stress detection
NASA Astrophysics Data System (ADS)
Kaur, Balvinder; Hutchinson, J. Andrew; Ikonomidou, Vasiliki N.
2017-05-01
Stress is a major health concern that not only compromises our quality of life, but also affects our physical health and well-being. Despite its importance, our ability to objectively detect and quantify it in a real-time, non-invasive manner is very limited. This capability would have a wide variety of medical, military, and security applications. We have developed a pipeline of image and signal processing algorithms to make such a system practical, which includes remote cardiac pulse detection based on visible spectrum videos and physiological stress detection based on the variability in the remotely detected cardiac signals. First, to determine a reliable cardiac pulse, principal component analysis (PCA) was applied for noise reduction and independent component analysis (ICA) was applied for source selection. To determine accurate cardiac timing for heart rate variability (HRV) analysis, a blind source separation method based least squares (LS) estimate was used to determine signal peaks that were closely related to R-peaks of the electrocardiogram (ECG) signal. A new metric, differential pulse transit time (dPTT), defined as the difference in arrival time of the remotely acquired cardiac signal at two separate distal locations, was derived. It was demonstrated that the remotely acquired metrics, HRV and dPTT, have potential for remote stress detection. The developed algorithms were tested against human subject data collected under two physiological conditions using the modified Trier Social Stress Test (TSST) and the Affective Stress Response Test (ASRT). This research provides evidence that the variability in remotely-acquired blood wave (BW) signals can be used for stress (high and mild) detection, and as a guide for further development of a real-time remote stress detection system based on remote HRV and dPTT.
Byun, Jung-Hyun; Jang, In-Seok; Kim, Jong Woo
2016-01-01
Background Unfractionated heparin (UFH) has unstable pharmacokinetics and requires close monitoring. The activated partial thromboplastin time (aPTT) test has been used to monitor UFH therapy for decades in Korea, but its results can be affected by numerous variables. We established an aPTT heparin therapeutic range (HTR) corresponding to therapeutic anti-Xa levels for continuous intravenous UFH administration, and used appropriate monitoring to determine if an adequate dose of UFH was applied. Methods A total of 134 ex vivo samples were obtained from 71 patients with a variety of thromboembolisms. All patients received intravenous UFH therapy and were enrolled from June to September 2015 at Gyeongsang National University Hospital. All laboratory protocols were in accordance with the Clinical and Laboratory Standards Institute guidelines and the College of American Pathologist requirements for aPTT HTR. Results An aPTT range of 87.1 sec to 128.7 sec corresponded to anti-Xa levels of 0.3 IU/mL to 0.7 IU/mL for HTR under our laboratory conditions. Based on their anti-Xa levels, blood specimen distribution were as follows: less than 0.3 IU/mL, 65.7%; 0.3–0.7 IU/mL (therapeutic range), 33.6%; and more than 0.7 IU/mL, 0.7%. No evidence of recurring thromboembolism was observed. Conclusion Using the conventional aPTT target range may lead to inappropriate dosing of UFH. Transitioning from the aPTT test to the anti-Xa assay is required to avoid the laborious validation of the aPTT HTR test, even though the anti-Xa assay is more expensive. PMID:27722127
NASA Astrophysics Data System (ADS)
Asadinezhad, Ahmad; Kelich, Payam
2017-01-01
The effects of nanofiller chemistry and geometry on static and dynamic properties of an aromatic polyester, poly (trimethylene terephthalate), were addressed thanks to long-run classical molecular dynamics simulation. Two carbon nanofillers, graphene and carbon nanotube, were employed, where graphene was used in pristine and functionalized forms and carbon nanotube was used in two different diameters. The nanofiller geometry and chemistry were found to exert significant effects on conformation and dynamic behavior of PTT chain at the interface within the time scale the simulation was performed. It was found that PTT chain underwent interaction of van der Waals type with nanofiller via two subsequent phases, adsorption and orientation. The former stage, with definite characteristic time, involved translation of polymer chain toward interface while the latter was controlled by vibrational motions of chain atoms. The consequence of interaction was an increase in conformational order of polymer chain by transition to folded shape being favorable for any subsequent structural ordering (crystallization). The interaction of polymer with nanofiller gave rise to a reduction in overall mobility of polymer chain characterized by crossover from normal diffusive motion to subdiffusive mode.
Quintuple-modality (SERS-MRI-CT-TPL-PTT) plasmonic nanoprobe for theranostics
NASA Astrophysics Data System (ADS)
Liu, Yang; Chang, Zheng; Yuan, Hsiangkuo; Fales, Andrew M.; Vo-Dinh, Tuan
2013-11-01
A unique quintuple-modality theranostic nanoprobe (QMT) is developed with gold nanostars for surface-enhanced Raman scattering (SERS), magnetic resonance imaging (MRI), computed tomography (CT), two-photon luminescence (TPL) imaging and photothermal therapy (PTT). The synthesized gold nanostars were tagged with a SERS reporter and linked with an MRI contrast agent Gd3+. In vitro experiments demonstrated the developed QMT nanoprobe to be a potential theranostic agent for future biomedical applications.A unique quintuple-modality theranostic nanoprobe (QMT) is developed with gold nanostars for surface-enhanced Raman scattering (SERS), magnetic resonance imaging (MRI), computed tomography (CT), two-photon luminescence (TPL) imaging and photothermal therapy (PTT). The synthesized gold nanostars were tagged with a SERS reporter and linked with an MRI contrast agent Gd3+. In vitro experiments demonstrated the developed QMT nanoprobe to be a potential theranostic agent for future biomedical applications. Electronic supplementary information (ESI) available: Details of experimental section, characterization details and relaxivity curve of developed QMT nanoprobe in water at 1.5 T magnetic filed strength. See DOI: 10.1039/c3nr03762b
Kaptanoglu, Asli Feride; Uncu, Murat; Ozyurt, Selcuk; Hincal, Evren
2013-08-01
Patients with severe acne may need elective/urgent surgical interventions during treatment with isotretinoin and it is critical for the surgeon to consider the possible effects of this medication on coagulation systems. The aim of this study is to determine the changes in prothrombin time (PT), international normalized ratio (INR), and activated partial thromboplastin time (aPTT) during isotretinoin treatment. PT, aPTT, and INR values of 51 severe acne patients were evaluated during routine pre-treatment biochemical analysis. Only patients with normal values were included in the study. The results of before and after 1 month treatment were compared statistically. There were no statistically significant change in mean alanine aminotranferease (ALT), aspartate aminotransferase (AST), PT, and INR values after treatment. A significant increase in aPTT was detected. The INR values, which are more trusted and safe, showed no difference. Isotretinoin seems to have no effect on these coagulation parameters.
Cunningham, David; Besser, Martin W; Giraud, Kimberly; Gerrard, Caroline; Vuylsteke, Alain
2016-09-01
We explored the relationship between activated clotting time (ACT) and activated partial thromboplastin time (aPTT) when used to monitor anticoagulation in patients undergoing extracorporeal membrane oxygenation (ECMO) support. Data obtained in patients undergoing ECMO support between October 2012 and August 2013 in a single centre were reviewed. Clinical data were extracted from our Clinical Information System and ECMO database. ACT and aPTT values were paired when taken from the same patient, with the ACT preceding the aPTT and the heparin infusion rate was kept constant between samples. The aPTT and ACT were normalized by dividing by the mean of their respective reference ranges and are referred to as APR and N-ACT, respectively. Bivariate analysis and Bland-Altman plots were used to assess correlation and agreement. Mixed effects regression was used to model the effects of variables, including platelet count, creatinine and urea levels, plasma free haemoglobin, white cell count and ECMO flow rate on concordance between APR and N-ACT measurements. The Pearson product-moment correlation coefficient in 15 patients was calculated as r=0.55. The Bland-Altman plot shows a mean difference between the APR and the N-ACT of -0.08. The 95% limits of agreement were -0.67 to 0.51. Results from mixed effects regression analysis on data from the 15 patients identified platelet count (and thrombocytopenia) and urea as significant independent predictors of concordance between APR and N-ACT. We report a moderate degree of positive correlation between APR and N-ACT. We conclude that there is poor agreement between the ACT and aPTT for the heparin concentrations in patients supported with ECMO. Our results indicate that platelet count and urea are significant independent variables affecting concordance between ACT and aPTT measurements. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Ghamarian, Iman; Samimi, Peyman; Dixit, Vikas; Collins, Peter C.
2015-11-01
While it is useful to predict properties in metallic materials based upon the composition and microstructure, the complexity of real, multi-component, and multi-phase engineering alloys presents difficulties when attempting to determine constituent-based phenomenological equations. This paper applies an approach based upon the integration of three separate modeling approaches, specifically artificial neural networks, genetic algorithms, and Monte Carlo simulations to determine a mechanism-based equation for the yield strength of α+ β processed Ti-6Al-4V (all compositions in weight percent) which consists of a complex multi-phase microstructure with varying spatial and morphological distributions of the key microstructural features. Notably, this is an industrially important alloy yet an alloy for which such an equation does not exist in the published literature. The equation ultimately derived in this work not only can accurately describe the properties of the current dataset but also is consistent with the limited and dissociated information available in the literature regarding certain parameters such as intrinsic yield strength of pure hexagonal close-packed alpha titanium. In addition, this equation suggests new interesting opportunities for controlling yield strength by controlling the relative intrinsic strengths of the two phases through solid solution strengthening.
ERIC Educational Resources Information Center
Berkowitz, Peter
2009-01-01
After their dismal performance in election 2008, conservatives are taking stock. As they examine the causes that have driven them into the political wilderness and as they explore paths out, they should also take heart. After all, election 2008 shows that America's constitutional order is working as designed. Indeed, while sorting out their errors…
Wheeler, C.L.; Thurgood, M.J.; Guidotti, T.E.; DeBellis, D.E.
1986-05-01
COBRA-NC is a digital computer program written in FORTRAN IV that simulates the response of nuclear reactor components and systems to thermal-hydraulic transients. The code solves the multicomponent, compressible, three-dimensional, two-fluid, three-field equations for two-phase flow. The three velocity fields are the vapor/gas field, the continuous liquid field, and the liquid drop field. The code has been used to model flow and heat transfer within the reactor core, the reactor vessel, the steam generators, and in the nuclear containment. The conservation equations, equations of state, and physical models that are common to all applications are presented in this volume of the code documentation.
NASA Astrophysics Data System (ADS)
Yapici, Kerim
2012-03-01
In this computational study, the convergence, stability and order of accuracy of several different numerical schemes are assessed and compared. All of the schemes considered were developed using a normalized variable diagram. Two test cases are considered: (1) two-dimensional steady incompressible laminar flow of a Newtonian fluid in a square lid-driven cavity; and (2) creeping flow of a PTT-linear fluid in a lid-driven square cavity. The governing equations are discretized to varying degrees of refinement using uniform grids, and solved by using the finite volume technique. The momentum interpolation method (MIM) is employed to evaluate the face velocity. Coupled mass and momentum conservation equations are solved through an iterative SIMPLE (Semi-Implicit Method for Pressure-Linked Equation) algorithm. Among the higher-order and bounded schemes considered in the present study, only the CLAM, COPLA, CUBISTA, NOTABLE, SMART and WACEB schemes provide a steady converged solution to the prescribed tolerance of 1×10-5 at all studied Weissenberg ( We) numbers, using a very fine mesh structure. It is found that the CLAM, COPLA, CUBISTA, SMART and WACEB schemes provide about the same order of accuracy that is slightly higher than that of the NOTABLE scheme at low and high Weissenberg numbers. Moreover, flow structures formed in the cavity, i.e. primary vortex, are captured accurately up to We = 5 by all converged schemes.
Genetic analysis of virulence in the Pyrenophora teres f. teres population BB25 x FGOH04Ptt021
USDA-ARS?s Scientific Manuscript database
Pyrenophora teres f. teres is the causal agent of net form net blotch (NFNB) of barley. In order to map the genetics of avirulence/virulence in P. teres f. teres, a fungal population was developed using P. teres f. teres isolates BB25 (Denmark) and FGOH04Ptt-21 (North Dakota, USA) due to these two i...
NASA Astrophysics Data System (ADS)
Duron-Dufrenne, M.
The degree to which a turtle would accept the Transat-type ARGOS PTT, and the reliability of the harness securing it to the carapace were tested, using an adult kept in a swimming pool for 36 hr. Its pelagic behavior turns out to be comparable to that in the open sea, the animal appearing unperturbed by the equipment.
NASA Astrophysics Data System (ADS)
Alexandrov, Sergei; Goldstein, Robert
2016-11-01
The main objective of the present paper is to compare, by means of a problem permitting a closed-form solution, qualitative behavior of solutions based on three models of strain hardening plasticity and two models of viscoplasticity. The elastic portion of the strain tensor is neglected. The study focuses on the solution behavior near frictional interfaces. The solution behavior essentially depends on the model chosen. Such features of the solutions as nonexistence and singularity are emphasized. The key constitutive parameter that divides all the models considered into two groups is the saturation stress. In particular, under certain conditions no solution satisfying the regime of sticking exists for the models that involve the saturation stress. Qualitative comparison with numerous experimental observations is made. It is concluded that models with a saturation stress, including the models considered in the present paper, may be capable of describing the generation of a narrow layer of severe plastic deformation in the vicinity of frictional interfaces.
NASA Astrophysics Data System (ADS)
Hsieh, Min-Kang; Lin, Shiang-Tai
2009-12-01
Molecular dynamics simulations are performed to study the initial structural development in poly(trimethylene terephthalate) (PTT) when quenched below its melting point. The development of local ordering has been observed in our simulations. The thermal properties, such as the glass transition temperature (Tg) and the melting temperature (Tm), determined from our simulations are in reasonable agreement with experimental values. It is found that, between these two temperatures, the number of local structures quickly increases during the thermal relaxation period soon after the system is quenched and starts to fluctuate afterwards. The formation and development of local structures is found to be driven mainly by the torsional and van der Waals forces and follows the classical nucleation-growth mechanism. The variation of local structures' fraction with temperature exhibits a maximum between Tg and Tm, resembling the temperature dependence of the crystallization rate for most polymers. In addition, the backbone torsion distribution for segments within the local structures preferentially reorganizes to the trans-gauche-gauche-trans (t-g-g-t) conformation, the same as that in the crystalline state. As a consequence, we believe that such local structural ordering could be the baby nuclei that have been suggested to form in the early stage of polymer crystallization.
Random-matrix theory of amplifying and absorbing resonators with {PT} or {PTT}^{\\prime } symmetry
NASA Astrophysics Data System (ADS)
Birchall, Christopher; Schomerus, Henning
2012-11-01
We formulate Gaussian and circular random-matrix models representing a coupled system consisting of an absorbing and an amplifying resonator, which are mutually related by a generalized time-reversal symmetry. Motivated by optical realizations of such systems we consider a {PT} or a {PTT}^{\\prime } time-reversal symmetry, which impose different constraints on magneto-optical effects, and then focus on five common settings. For each of these, we determine the eigenvalue distribution in the complex plane in the short-wavelength limit, which reveals that the fraction of real eigenvalues among all eigenvalues in the spectrum vanishes if all classical scales are kept fixed. Numerically, we find that the transition from real to complex eigenvalues in the various ensembles display a different dependence on the coupling strength between the two resonators. These differences can be linked to the level spacing statistics in the Hermitian limit of the considered models. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’.
Reaction kinetics, P-T-t paths and rates of tectonic processes
Bohlen, S.R.; Hankins, W.B.; Eckert, J.O. Jr.; Kirby, S.H.; Liu, J. ); Hacker, B.R.; Mosenfelder, J.L. . Dept. of Geology)
1992-01-01
The interpretation of portions of P-T-time (t) paths in metamorphic rocks assumes that continuous and discontinuous reactions record local equilibrium as P-T conditions change, implying that the kinetics of many reactions are rapid relative to dT/dt and dP/dt. Occurrence of eclogite veins in granulites from Bergen, Norway as well as occurrences of coesite and diamond in crustal rocks imply that, under certain conditions, this assumption is wrong. Knowledge of the kinetics of important reactions under appropriate conditions would provide limits on the duration of relatively narrowly defined P-T conditions, allow inference of the rates of exhumation of rocks containing high-pressure phases, and allow the calculation of the time required for the conversion of gabbro to eclogite in the lower crust as a function of P-T-t. The authors are currently assessing the rates of key phase transformations: calcite to aragonite, albite to jadeite + quartz, coesite to quartz, opx[sub Fs[sup 80
Constitutive modeling of inelastic anisotropic material response
NASA Technical Reports Server (NTRS)
Stouffer, D. C.
1984-01-01
A constitutive equation was developed to predict the inelastic thermomechanical response of single crystal turbine blades. These equations are essential for developing accurate finite element models of hot section components and contribute significantly to the understanding and prediction of crack initiation and propagation. The method used was limited to unified state variable constitutive equations. Two approaches to developing an anisotropic constitutive equation were reviewed. One approach was to apply the Stouffer-Bodner representation for deformation induced anisotropy to materials with an initial anisotropy such as single crystals. The second approach was to determine the global inelastic strain rate from the contribution of the slip in each of the possible crystallographic slip systems. A three dimensional finite element is being developed with a variable constitutive equation link that can be used for constitutive equation development and to predict the response of an experiment using the actual specimen geometry and loading conditions.
P-T-t path for the Archean Pikwitonei Granulite Domain and Cross Lake Subprovince, Manitoba, Canada
NASA Technical Reports Server (NTRS)
Mezger, K.; Bohlen, S. R.; Hanson, G. N.
1988-01-01
The rationale was outlined for constructing pressure-temperature-time (P-T-t) paths by using U-Pb dating of garnet produced in thermobarometrically sensitive reactions. In an example from the Pikwitonei granulites of the Northwestern Superior Province of the Canadian Shield, garnets were formed at 2744-2742 Ma, 2700-2689 Ma, and 2605-2590 Ma, the latter events coinciding with times recorded by U-Pb zircon systems. Garnet grew during metamorphism at 6.5 kbar, 630 to 750 C and later at 7.2 to 7.5 kbar, 800 C; the later metamorphism apparently did not exceed the U-Pb closure temperature. The resultant P-T-t path is counterclockwise, with late isobaric cooling, interpreted to result from magmatic heating at an Andean margin.
Thomas, Owain; Lybeck, Emanuel; Strandberg, Karin; Tynngård, Nahreen; Schött, Ulf
2015-01-01
Background Low molecular weight heparins (LMWH’s) are used to prevent and treat thrombosis. Tests for monitoring LMWH’s include anti-factor Xa (anti-FXa), activated partial thromboplastin time (aPTT) and thrombin generation. Anti-FXa is the current gold standard despite LMWH’s varying affinities for FXa and thrombin. Aim To examine the effects of two different LMWH’s on the results of 4 different aPTT-tests, anti-FXa activity and thrombin generation and to assess the tests’ concordance. Method Enoxaparin and tinzaparin were added ex-vivo in concentrations of 0.0, 0.5, 1.0 and 1.5 anti-FXa international units (IU)/mL, to blood from 10 volunteers. aPTT was measured using two whole blood methods (Free oscillation rheometry (FOR) and Hemochron Jr (HCJ)) and an optical plasma method using two different reagents (ActinFSL and PTT-Automat). Anti-FXa activity was quantified using a chromogenic assay. Thrombin generation (Endogenous Thrombin Potential, ETP) was measured on a Ceveron Alpha instrument using the TGA RB and more tissue-factor rich TGA RC reagents. Results Methods’ mean aPTT at 1.0 IU/mL LMWH varied between 54s (SD 11) and 69s (SD 14) for enoxaparin and between 101s (SD 21) and 140s (SD 28) for tinzaparin. ActinFSL gave significantly shorter aPTT results. aPTT and anti-FXa generally correlated well. ETP as measured with the TGA RC reagent but not the TGA RB reagent showed an inverse exponential relationship to the concentration of LMWH. The HCJ-aPTT results had the weakest correlation to anti-FXa and thrombin generation (Rs0.62–0.87), whereas the other aPTT methods had similar correlation coefficients (Rs0.80–0.92). Conclusions aPTT displays a linear dose-respone to LMWH. There is variation between aPTT assays. Tinzaparin increases aPTT and decreases thrombin generation more than enoxaparin at any given level of anti-FXa activity, casting doubt on anti-FXa’s present gold standard status. Thrombin generation with tissue factor-rich activator is
Milos, M; Coen Herak, D; Zupancic-Salek, S; Zadro, R
2014-11-01
Diagnosis of haemophilia A is usually made by the measurement of factor VIII (FVIII) activity that allows categorization of the disease severity. However, tests that assess global haemostasis may better reflect clinical features and give additional clinically relevant information. The aim of this study was to develop a new quantitative activated partial thromboplastin time (aPTT) waveform analysis and compare it with FVIII activities to find out whether waveform parameters are superior determinants of clinical phenotype. A total of 81 haemophilia A patients divided into two groups (37 severe, 44 non-severe) were included in the study. The control group comprised 101 healthy male volunteers. Quantitative aPTT waveform analysis was performed with Actin FS on BCS (Siemens Healthcare Diagnostics, Marburg, Germany) using three parameters (DELTA, RATIO-1, RATIO-2) obtained from a single aPTT measurement with two evaluation modes. FVIII activities were measured by one-stage clotting and two-stage chromogenic assay. Statistically significant difference (P < 0.001) between control group and all haemophilia A patients, as well as between severe and non-severe haemophilia A patients was obtained for all quantitative waveform parameters. Our study revealed parameter DELTA as the best waveform parameter, showing significant correlation with FVIII activities and clinical parameters, and excellent performance for distinguishing between severe and non-severe haemophilia A patients (ROC analysis: sensitivity 97.3%, specificity 93.2%). The results obtained by new quantitative aPTT waveform analysis were superior to those obtained by standard laboratory methods. The simplicity and cost-benefit of the method make this approach a reasonable and promising tool for assessing coagulation in haemophilia A patients.
Wang, Kaikai; Zhang, Yifan; Wang, Juan; Yuan, Ahu; Sun, Minjie; Wu, Jinhui; Hu, Yiqiao
2016-01-01
Combination of photothermal and photodynamic therapy (PTT/PDT) offer unique advantages over PDT alone. However, to achieve synergetic PDT/PTT effect, one generally needs two lasers with different wavelengths. Near-infrared dye IR-780 could be used as photosensitizer both for PTT and PDT, but its lipophilicity limits its practical use and in vivo efficiency. Herein, a simple multifunctional IR780-loaded nanoplatform based on transferrin was developed for targeted imaging and phototherapy of cancer compatible with a single-NIR-laser irradiation. The self-assembled transferrin-IR780 nanoparticles (Tf-IR780 NPs) exhibited narrow size distribution, good photo-stability, and encouraging photothermal performance with enhanced generation of ROS under laser irradiation. Following intravenous injection, Tf-IR780 NPs had a high tumor-to-background ratio in CT26 tumor-bearing mice. Treatment with Tf-IR780 NPs resulted in significant tumor suppression. Overall, the Tf-IR780 NPs show notable targeting and theranostic potential in cancer therapy. PMID:27263444
The Potential of Diffusion Modelling to Unravel the P-T-t History of Geological Processe
NASA Astrophysics Data System (ADS)
Mueller, T.
2016-12-01
Geothermobarometry is a commonly used tool to constrain pressure and temperature conditions a rock has experienced, typically relying on thermodynamic calculations assuming phase equilibria. However, both metamorphic and igneous processes are driven by deviations from the equilibrium state resulting in transport of heat and mass in order to reach a new equilibrium state. It is well known that failure to reach equilibrium results in inaccurate PT estimates when applying traditional geothermobarometry methods. Over the past decade, advances in acquiring high resolution chemical zoning profiles and increasing availability of diffusion data has enabled us to use element and isotope zoning to assess the effect of kinetically controlled transport processes and use such information to obtain better temperature estimates and even timescales of geological processes. In this contribution it is shown how the temperature dependent Fe-Mg exchange between co-existing minerals can be used to constrain metamorphic temperatures or timescales of geological processes. Experimental strategies are presented to derive diffusivities and are discussed in the light of interpreting the so-called diffusive closure temperature in minerals, i.e. its effect on geothermometry. Subsequently, two examples are shown in which diffusion modelling is used to a) constrain a P-T-t path in high grade metamorphic rocks from the Granulite massif (GER) and b) identifying pulses and timescales of mineral residences in magma plumbing systems using pyroxenes from the Westeifel volcanic field (GER). In summary, diffusion modeling is a powerful tool that provide information on timescales necessary to equilibrate commonly used thermo(baro)meters and more importantly to identify the extent of partial reset leading to erroneous temperature estimates. Taken together, the quantitative knowledge of transport properties can be used to determine the mechanisms and rates of element and isotope transport through the Earth
PTT analysis of polyps from FAP patients reveals a great majority of APC truncating mutations
Luijt, R.B. van der; Khan, P.M.; Tops, C.M.J.
1994-09-01
The adenomatous polyposis coli (APC) gene plays an important role in colorectal carcinogenesis. Germline APC mutations are associated with familial adenomatous polyposis (FAP), an autosomal dominantly inherited predisposition to colorectal cancer, characterized by the development of numerous adenomatous polyps in the large intestine. In order to investigate whether somatic inactivation of the remaining APC allele is necessary for adenoma formation, we collected multiple adenomatous polyps from individual FAP patients and investigated the presence of somatic mutations in the APC gene. The analysis of somatic APC mutations in these tumor samples was performed using a rapid and sensitive assay, called the protein truncation test (PTT). Chain-terminating somatic APC mutations were detected in the great majority of the tumor samples investigated. As expected, these mutations were mainly located in the mutation cluster region (MCR) in exon 15. Our results confirm that somatic mutation of the second APC allele is required for adenoma formation in FAP. Interestingly, in the polyps investigated in our study, the second APC allele is somatically inactivated through point mutation leading to a stop codon rather than by loss of heterozygosity. The observation that somatic second hits in APC are required for tumor development in FAP is in apparent accordance with the Knudson hypothesis for classical tumor suppressor genes. However, it is yet unknown whether chain-terminating APC mutations lead to a truncated protein exerting a dominant-negative effect or whether these mutations result in a null allele. Further investigation of this important issue will hopefully provide a better understanding of the mechanism of action of the mutated APC alleles in colorectal carcinogenesis.
van Bakel, I; Sepp, T; Ward, S; Yates, J R; Green, A J
1997-09-01
Mutations in the TSC2 gene on chromosome 16p13.3 are responsible for approximately 50% of familial tuberous sclerosis (TSC). The gene has 41 small exons spanning 45 kb of genomic DNA and encoding a 5.5 kb mRNA. Large germline deletions of TSC2 occur in <5% of cases, and a number of small intragenic mutations have been described. We analysed mRNA from 18 unrelated cases of TSC for TSC2 mutations using the protein truncation test (PTT). Three cases were predicted to be TSC2 mutations on the basis of linkage analysis or because a hamartoma from the patient showed loss of heterozygosity for 16p13.3 markers. Three overlapping PCR products, covering the complete coding sequence of mRNA, were generated from lymphoblastoid cell lines, translated into 35S-methionine labelled protein, and analysed by SDS-PAGE. PCR products showing PTT shifts were directly sequenced, and mutations confirmed by restriction enzyme digestion where possible. Six PTT shifts were identified. Five of these were caused by mutations predicted to produce a truncated protein: (i) a sporadic case showed a 32 bp deletion in exon 11, and a mutant mRNA without exon 11 was produced; the normal exon 10 was also spliced out; (ii) a sporadic case had a 1 bp deletion in exon 12 (1634delT); (iii) a TSC2-linked mother and daughter pair had a G-->T transversion in exon 23 (G2715T) introducing a cryptic splice site causing a 29 bp truncation of mRNA from exon 23; (iv) a sporadic case showed a 2 bp deletion in exon 36; (v) a sporadic case showed a 1 bp insertion disrupting the donor splice site of exon 37 (5007+2insA), resulting in the use of an upstream exonic cryptic splice site to cause a 29 bp truncation of mRNA from exon 37. In one case, the PTT shift was explained by in-frame splicing out of exon 10, in the presence of a normal exon 10 genomic sequence. Alternative splicing of exon 10 of the TSC2 gene may be a normal variant. Three 3rd base substitution polymorphisms were also detected during direct sequencing
ERIC Educational Resources Information Center
OAH Magazine of History, 1988
1988-01-01
Provides a lesson plan designed to help students better understand the concept of a constitution, distinguish constitutional law from statutory law, and recognize examples of constitutional government. (BSR)
Constitutive Equations of Rock with Shear Dilatancy
1975-04-01
Bacurity CUaamcalCtT LINK * NOLI HOL> -V I m Non-linear (second order) continuum theory; Rock mechanics; Wave velocity; Earthquake ... prediction . THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION, UNLESS SO DESIGNATED BY OTHER AUTHORIZED
Constitutive Equations for Damaged Creeping Materials,
1986-08-01
Conversely, one should excercise care in interpret- S ing data for higher creep ductilities. If creep strains are above ten percent, necking may...although for high . .. stresses geometrical failure in the form of necking or rupture is possible. The frac- ture point is marked on the curve as t1
Constitutive modeling for isotropic materials
NASA Technical Reports Server (NTRS)
Lindholm, U. S.
1984-01-01
A state-of-the-art review of applicable constitutive models with selection of two for detailed comparison with a wide range of experimental tests was conducted. The experimental matrix contained uniaxial and biaxial tensile, creep, stress relaxation, and cyclic fatigue tests at temperatures to 1093 C and strain rates from .0000001 to .001/sec. Some nonisothermal cycles will also be run. The constitutive models will be incorporated into the MARC finite element structural analysis program with a demonstration computation made for advanced turbine blade configuration. In the code development work, particular emphasis is being placed on developing efficient integration algorithms for the highly nonlinear and stiff constitutive equations. Another area of emphasis is the appropriate and efficient methodology for determing constitutive constants from a minimum extent of experimental data.
Du, Baoji; Ma, Chongbo; Ding, Guanyu; Han, Xu; Li, Dan; Wang, Erkang; Wang, Jin
2017-01-23
Photothermal conversion ability (PCA) and cell internalization ability (CIA) are two key factors for determining the performance of photothermal agents. The previous studies mostly focus on improving the PCA by exploring new photothermal nanomaterials. Herein, the authors take the hybrids of graphene and gold nanostar (GGN) as an example to investigate the gradually enhanced phototherapy effect by changing the PCA and CIA of photothermal therapy (PTT) agent simultaneously. Based on the GGN, the GGN and the reduced GGN protected by bovine serum albumin (BSA) or BSA-FA (folic acid) are prepared, which are named as GGNB, rGGNB, and rGGNB-FA, respectively. The rGGNB showed an enhanced PCA compared to GGNB, leading to strong cell ablation. On the other hand, the 1,2-dioleoyl-3-trimethylammoniumpropan (DOTAP) can activate the endocytosis and promote the CIA of rGGNB, further help rGGNB to be more internalized into the cells. Finally, rGGNB-FA with the target ability can make itself further internalized into the cells with the aid of DOTAP, which can significantly destroy the cancer cells even at the low laser density of 0.3 W cm(-2) . Therefore, a new angle of view is brought out for researching the PTT agents of high performance.
Sonne, Christian; Andersen, Steen; Mosbech, Anders; Flagstad, Annette; Merkel, Flemming
2011-01-01
Information on cloacae temperature (CT), heart rate (HR), Isoflurane use, and oxygen flow was collected during field implantation of Platform Terminal Transmitters (PTT-) 100 satellite transmitters in Greenland sea birds. Information was obtained from 14 intracoelomic and 5 subcutaneous implantations in thick-billed murres (Uria lomvia) and 9 intracoelomic implantations in common eiders (Somateria mollissima). CT decreased in the order subcutaneous murres > intracoelomic eiders > intracoelomic murres due to the explorative exposure to the surroundings and increased heat loss (murres smaller than eiders) and were preheated to 35°C. During all implantations, heat loss was prevented using electric heat and rescue blankets. Regarding HR, the fluctuations were most pronounced during the intracoelomic murre implantations as a result of lower PTT temperature and lower body size leading to more pronounced digital manipulations and stimulation of the pelvic nerve plexus. Based on these results, we therefore suggest that HR and CT are carefully monitored in order to adjust anaesthesia and recommend the use of an electric heat blanket and preheating of PTTs to body temperature in order to prevent unnecessary heat loss causing physiological stress to the birds.
NASA Astrophysics Data System (ADS)
Guillou-Frottier, L.; Burov, E.; Cloetingh, S.; Le Goff, E.; Deschamps, Y.; Huet, B.; Bouchot, V.
2012-06-01
Plume head-lithosphere interactions around cratonic blocks result in thermo-mechanical disturbances that lead to heating and burial phases of crustal rocks. We present results from numerical models of plume head-cratonic blocks interactions where a free upper surface condition and realistic rheologies are accounted for. These models include distinct cratonic blocks embedded within a continental lithosphere and separated by several hundreds of kilometers. Surface topography, thermal field and effective viscosity values are tracked for 20 Myr of interactions. The modeled dynamic interaction of a plume head around cratonic blocks results in two main types of instabilities, each of them resulting in a distinct P-T-t path. The "slab-like" instability, focused on cratonic edges when plume head is away from the craton center, shows a near-isothermal burial phase, while the "drip-like" instability occurring above plume head material results in a near-isobaric heating phase. Consequently, both clockwise and counterclockwise P-T-t paths can be expected around cratons, as actually observed around the Tanzanian craton and other cratonic areas. Metallogenic data from gemstone-bearing rocks in south-east Africa and data from ultrahigh temperature and ultrahigh pressure metamorphism are compatible with our model. It appears that vertical mantle dynamics around cratons may also explain thermobarometric signatures that are often attributed to horizontal tectonics.
Mou, Juan; Lin, Tianquan; Huang, Fuqiang; Chen, Hangrong; Shi, Jianlin
2016-04-01
Substantially different from traditional combinatorial-treatment of photothermal therapy (PTT) and photodynamic therapy (PDT) by using multi-component nanocomposite under excitation of separate wavelength, a novel single near infrared (NIR) laser-induced multifunctional theranostic nanoplatform has been rationally and successfully constructed by a single component black titania (B-TiO2-x) for effective imaging-guided cancer therapy for the first time. This multifunctional PEGylated B-TiO2-x shows high dispersity/stability in aqueous solution, excellent hemo/histocompatibility and broad absorption ranging from NIR to ultraviolet (UV). Both in vitro and in vivo results well demonstrated that such a novel multifunctional theranostic nanoplaform could achieve high therapeutic efficacy of simultaneous and synergistic PTT/PDT under the guidance of infrared thermal/photoacoustic (PA) dual-modal imaging, which was triggered by a single NIR laser. This research circumvents the conventional obstacles of using multi-component nanocomposites, UV light and high laser power density. Furthermore, negligible side effects to blood and main tissues could be found in 3 months' investigation, facilitating its potential biomedical application.
Najafi, Atabak; Nikeish, Masoomeh; Etezadi, Farhad; Pourfakhr, Pejman; Imani, Farsad; Khajavi, Mohammad Reza; Shariat Moharari, Reza
2015-10-01
Heparin is frequently used in different clinical settings to reduce the coagulating ability of the blood. Because of probable adverse effects owing to heparin therapy and regarding variability of patients' responses to heparin, which make it very unreliable, it seems prudent to monitor meticulously its effects on the human body. There are a lot of laboratory tests to watch its effects on the body for example; aPTT and ROTEM are the most widely used tests that are performed today. We aimed to compare the aPTT test results against changes of CT parameter of the ROTEM test due to heparin administration. This study was conducted on 45 critically ill patients who needed to receive heparin according to their clinical status. All patients received 550 to 1500 unit heparin per hour (on average 17.5 unit heparin per kilogram weight). While the patients were under infusion of heparin, two blood samples (5 ml) were taken from a newly established cubital vein, just five hours after commencement of heparin therapy. One sample was used for aPTT and the other one for ROTEM. The correlation between aPTT and the changes of CT parameter of the ROTEM with heparin dosage and infusion was the primary outcome. The correlation between heparin therapy and the changes of other parameters like MCF, CFT, and a number of platelets were the secondary outcome of the study. The only significant correlation was between changes of CT and aPTT (P=0.000). The other variables were not correlated. Changes of CT parameter of ROTEM test can be used for monitoring of reduced coagulability during heparin infusion instead of aPTT test.
The Constitutional Amendment Process
ERIC Educational Resources Information Center
Chism, Kahlil
2005-01-01
This article discusses the constitutional amendment process. Although the process is not described in great detail, Article V of the United States Constitution allows for and provides instruction on amending the Constitution. While the amendment process currently consists of six steps, the Constitution is nevertheless quite difficult to change.…
The Constitutional Amendment Process
ERIC Educational Resources Information Center
Chism, Kahlil
2005-01-01
This article discusses the constitutional amendment process. Although the process is not described in great detail, Article V of the United States Constitution allows for and provides instruction on amending the Constitution. While the amendment process currently consists of six steps, the Constitution is nevertheless quite difficult to change.…
A survey of unified constitutive theories
NASA Technical Reports Server (NTRS)
Chan, K. S.; Lindholm, U. S.; Bodner, S. R.; Walker, K. P.
1985-01-01
The state of the art of time temperature dependent elastic viscoplastic constitutive theories which are based on the unified approach werre assessed. This class of constitutive theories is characterized by the use of kinetic equations and internal variables with appropriate evolutionary equations for treating all aspects of inelastic deformation including plasticity, creep, and stress relaxation. More than 10 such unified theories which are shown to satisfy the uniqueness and stability criteria imposed by Drucker's postulate and Ponter's inequalities are identified. The theories are compared for the types of flow law, kinetic equation, evolutionary equation of the internal variables, and treatment of temperature dependence. The similarities and differences of these theories are outlined in terms of mathematical formulations and illustrated by comparisons of theoretical calculations with experimental results which include monotonic stress-strain curves, cyclic hysteresis loops, creep and stress relaxation rates, and thermomechanical loops. Numerical methods used for integrating these stiff time temperature dependent constitutive equations are reviewed.
Savel, Thomas G.; Lee, Brian A.; Ledbetter, Greg; Brown, Sara; LaValley, Dale; Taylor, Julie; Thompson, Pam
2013-01-01
Objectives: This manuscript describes the development of PTT (Partial Thromboplastin Time) Advisor, one of the first of a handful of iOS-based mobile applications to be released by the US Centers for Disease Control and Prevention (CDC). PTT Advisor has been a collaboration between two groups at CDC (Informatics R&D and Laboratory Science), and one partner team (Clinical Laboratory Integration into Healthcare Collaborative - CLIHC). The application offers clinicians a resource to quickly select the appropriate follow-up tests to evaluate patients with a prolonged PTT and a normal Prothrombin Time (PT) laboratory result. Methods: The application was designed leveraging an agile methodology, and best practices in user experience (UX) design and mobile application development. Results: As it is an open-source project, the code to PTT Advisor was made available to the public under the Apache Software License. On July 6, 2012, the free app was approved by Apple, and was published to their App Store. Conclusions: Regardless of the complexity of the mobile application, the level of effort required in the development process should not be underestimated. There are several issues that make designing the UI for a mobile phone challenging (not just small screen size): the touchscreen, users' mobile mindset (tasks need to be quick and focused), and the fact that mobile UI conventions/expectations are still being defined and refined (due to the maturity level of the field of mobile application development). PMID:23923100
Savel, Thomas G; Lee, Brian A; Ledbetter, Greg; Brown, Sara; Lavalley, Dale; Taylor, Julie; Thompson, Pam
2013-01-01
This manuscript describes the development of PTT (Partial Thromboplastin Time) Advisor, one of the first of a handful of iOS-based mobile applications to be released by the US Centers for Disease Control and Prevention (CDC). PTT Advisor has been a collaboration between two groups at CDC (Informatics R&D and Laboratory Science), and one partner team (Clinical Laboratory Integration into Healthcare Collaborative - CLIHC). The application offers clinicians a resource to quickly select the appropriate follow-up tests to evaluate patients with a prolonged PTT and a normal Prothrombin Time (PT) laboratory result. The application was designed leveraging an agile methodology, and best practices in user experience (UX) design and mobile application development. As it is an open-source project, the code to PTT Advisor was made available to the public under the Apache Software License. On July 6, 2012, the free app was approved by Apple, and was published to their App Store. Regardless of the complexity of the mobile application, the level of effort required in the development process should not be underestimated. There are several issues that make designing the UI for a mobile phone challenging (not just small screen size): the touchscreen, users' mobile mindset (tasks need to be quick and focused), and the fact that mobile UI conventions/expectations are still being defined and refined (due to the maturity level of the field of mobile application development).
GEOTHERM: A finite difference code for testing metamorphic P-T-t paths and tectonic models
NASA Astrophysics Data System (ADS)
Casini, Leonardo; Puccini, Antonio; Cuccuru, Stefano; Maino, Matteo; Oggiano, Giacomo
2013-09-01
Here, time-dependent solutions for the heat conduction equation are numerically evaluated in 1D space using a fully implicit algorithm based on the finite difference method, assuming temperature-dependence of thermal conductivity. The method is implemented using the package 'GEOTHERM', comprising 13 MATLAB-derived scripts and 3 Excel spreadsheets. In the package, the initial state of the modeled crust, including its thickness, average density, and average heat production rate, can be configured by the user. The exhumation/burial history and metamorphic evolution of the crust are simulated by changing these initial values to fit the vertical displacement rates of the crust imposed by the user. Once the inputs have been made, the variations with depth of temperature, proportion of melt, and shear stress, as well as average values of heat flow at the surface and across the Moho, are calculated and displayed in five separate plots. The code is demonstrated with respect to the Carboniferous evolution of the South Variscan Belt. The best fit to independent petrologic constraints derived from thermobarometry is obtained with an early Carboniferous (342 Ma) slab break-off and a shear strain rate of 10-13 s-1 between 318 and 305 Ma.
NASA Astrophysics Data System (ADS)
Sassi, R.; Marcuzzi, F.; Mazzoli, C.
2008-12-01
One of the main goals of metamorphic petrology is to obtain information on the variations of metamorphic P-T conditions during orogenesis (P-T-t paths). For this purpose petrologists are aware of the potentiality of studying reaction microstructures, although results are not always satisfactory as in most cases qualitative approaches, failing on the real meaning of specific microstructral relationships, are often adopted. Thus, the present research aimed to study the petrogenetic meaning of reaction microstructure in metamorphic rocks through the formulation of a new true three-dimensional finite-element model. For this purpose, different petrologically well studied metamorphic microstructural situations have been selected, in order to identify information, variables and constraints fundamental for the development of the model. A generalised finite-elements model (FEM) has been developed, applicable to any microstructural situation, independently on grain-size and distribution of minerals in the matrix, and able to also consider growth anisotropies, intracrystalline diffusion, pressure solution, and possibly anisotropy of the strain field. This model is based on a combination of the usual diffusion linear equations used in current irreversible thermodynamic models, providing constraints on absolute values of diffusion coefficients of chemical components, chemical potential gradients and time of reactions during metamorphism, starting from information on textural anisotropies observed in metamorphic rocks. In the model, parameterization is given by diffusion, convection and reaction coefficients of each chemical species within each finite element, which dimension is equal to the spatial resolution of the experimentally measured input data (i.e. SEM elemental maps). Thus, parameterization is able to describe locally heterogeneous reaction phenomena although based on a basically linear partial derivative differential model. Such a discretization of the continuum model
Contesting the Constitution: The Constitutional Dialogues.
ERIC Educational Resources Information Center
Hilenski, Ferdinand Alexi
This historical dramatization, prepared for presentation at the 1985 Wyoming Chatauqua, contains three dialogues, set during the administration of President Thomas Jefferson and presenting the issues surrounding the drafting and ratification of the U.S. Constitution. The dialogues are designed to be presented in three segments to permit discussion…
Contesting the Constitution: The Constitutional Dialogues.
ERIC Educational Resources Information Center
Hilenski, Ferdinand Alexi
This historical dramatization, prepared for presentation at the 1985 Wyoming Chatauqua, contains three dialogues, set during the administration of President Thomas Jefferson and presenting the issues surrounding the drafting and ratification of the U.S. Constitution. The dialogues are designed to be presented in three segments to permit discussion…
NASA Astrophysics Data System (ADS)
Azizi, H.; Moinevaziri, H.; Mohajjel, M.; Yagobpoor, A.
2006-06-01
Metamorphic rocks in the Khoy region are exposed between obducted ophiolites to the southwest and sedimentary rocks of Precambrian-Paleozoic age to the northeast. The Qom formation (Oligocene-Miocene) with a basal conglomerate transgressively overlies all of these rocks. The metamorphic rocks consist of both metasediments and metabasites. The metasediments are micaschist, garnet-staurolite schist and garnet-staurolite sillimanite schist with some meta-arkose, marble and quartzite. The metabasites are metamorphosed to greenschist and amphibolite facies from a basaltic and gabbroic protolith of tholeiitic and calc-alkaline rocks. Geothermobarometry based on the equivalence of minerals stability and their paragenesis in these rocks and microprobe analyses by several different methods indicate that metamorphism occurred in a temperature range between 450 and 680 °C at 5.5 and 7.5 kb pressure. Rims of minerals reveal a considerable decrease of pressure (<2 kb) and insignificant decrease of temperature. The PTt path of this metamorphism is normal. The MFG line passes above the triple junction of Al 2SiO 5 polymorphs, and the average geothermal gradient during metamorphism was from 27 to 37 °C/km, which is more concordant with the temperature regime of collision zones. We infer that crustal thickening during post-Cretaceous (possibly Eocene) collision of the Arabian plate and the Azerbaijan-Albourz block was the main factor that caused the metamorphism in the studied area.
NASA Astrophysics Data System (ADS)
Glassley, W. E.; Korstgård, J.; Sorensen, K.
2015-12-01
Reconstructing tectonic histories relies on the ability to establish P-T-t paths from samples and data collected in the field. Efforts to establish detailed P-T-t pathways have benefitted recently from dramatically improved ability to resolve mineral chemical and isotopic properties at the micron scale. We present here a new interpretation of the HP and UHP metamorphic history of a 1.8 Gya terrain in West Greenland (Glassley et al., 2014) that is based on these new analytical capabilities, coupled with sampling at high spatial density. The terrain consists of a tectonic assemblage of metasomatically altered pillow basalts, ultramafic bodies, exhalative and chemical oceanic metasediments, pelites, and quartzo-feldspathic gneisses, that are the preserved remnants of a subduction channel. Using LA-SF-ICP-MS analyses on zircons, we time-correlated recrystallization events that could be well-documented using micro-analytical techniques (EBMA; Raman; LA-ICP-MS). More than 700 207Pb/206Pb dates and more than 1,000 electron microprobe mineral analyses were used in this correlation effort. The results demonstrate that: 1) Recrystallization is highly localized, often restricted to tectonic domains of less than a few 10s of km2. Few tectonic lenses preserve evidence of the most extreme P-T conditions (5 GPa at temperatures of approximately 1,000 C); 2) The extent of area involved in a recrystallization "event" is mainly a reflection of local rock chemistry/mineralogy and fluid activity; 3) Since individual crystals preserve multiple parts of a P-T-t path in compositional zoning, isotopic dates must be very carefully correlated with corresponding mineral compositions in order to establish t at P & T; 4) Preservation of the prograde P-T-t path during subduction is rare.
Poumpouridou, Nikoleta; Goutas, Nikolaos; Tsionou, Christina; Dimas, Kleanthi; Lianidou, Evi; Kroupis, Christos
2016-04-01
Beyond BRCA1 and BRCA2 genes, PALB2 (Partner and localizer of BRCA2) emerges as the third breast cancer susceptibility gene due to its role in the same DNA repair pathway: homologous recombination. In most populations studied so far, PALB2 mutations are detected in 1-2% of BRCA negative female patients. PALB2 gene contains 13 exons; exons 4 and 5 consist 65% of the coding area. We developed a protein truncation test (PTT) for quick screening of truncating pathogenic mutations of these two large exons. Specific primers were de novo, in silico designed and the PTT-PCR products were translated in the presence of biotinylated lysine and detected colorimetrically. The assay was initially tested in 30 patients with hereditary breast cancer, negative for BRCA mutations and then, in 17 patients with the rare medullary breast cancer subtype. Small PALB2 exons were screened with high-resolution melting curve analysis (HRMA) and the large DNA rearrangements with multiplex ligation-dependent probe amplification (MLPA). Any alterations detected were verified by Sanger DNA Sequencing. The developed PTT methodology is highly specific for clinical significant mutations; positive control samples that produce truncated PALB2 peptides were correctly identified and the method was accurate when compared to DNA sequencing. We did not detect any deleterious PALB2 mutation in both groups of patients. HRMA and MLPA were also negative for all tested samples. However, our novel, fast and cost-effective PTT method for pathogenic mutation detection of the two large PALB2 exons can be applied in screening of a large number of breast cancer patients.
Interpreting the Constitution.
ERIC Educational Resources Information Center
Brennan, William J., Jr.
1987-01-01
Discusses constitutional interpretations relating to capital punishment and protection of human dignity. Points out the document's effectiveness in creating a new society by adapting its principles to current problems and needs. Considers two views of the Constitution that lead to controversy over the legitimacy of judicial decisions. (PS)
Constitutional Issues and Iowa.
ERIC Educational Resources Information Center
Gore, Deborah, Ed.
1987-01-01
Important constitutional issues are presented in a manner appropriate for use in the classroom. Case studies and events from the history of Iowa are used to illuminate the Constitution and Bill of Rights. Freedom of expression and students' rights are discussed in "The Black Armband Case"; free exercise of religion as won by the Iowa's…
ERIC Educational Resources Information Center
Greenhut, Stephanie; Jones, Megan
2010-01-01
On their visit to the National Archives Experience in Washington, D.C., students in Jenni Ashley and Gay Brock's U.S. history classes at the Potomac School in McLean, Virginia, participated in a pilot program called "The Constitution by Cell." Armed with their cell phones, a basic understanding of the Constitution, and a willingness to…
Teaching About the Constitution.
ERIC Educational Resources Information Center
White, Charles S.
1988-01-01
Reviews "The U.S. Constitution Then and Now," a two-unit program using the integrated database and word processing capabilities of AppleWorks. For grades 7-12, the units simulate the constitutional convention and the principles of free speech and privacy. Concludes that with adequate time, the program can provide a potentially powerful…
Interpreting the Constitution.
ERIC Educational Resources Information Center
Brennan, William J., Jr.
1987-01-01
Discusses constitutional interpretations relating to capital punishment and protection of human dignity. Points out the document's effectiveness in creating a new society by adapting its principles to current problems and needs. Considers two views of the Constitution that lead to controversy over the legitimacy of judicial decisions. (PS)
ERIC Educational Resources Information Center
Greenhut, Stephanie; Jones, Megan
2010-01-01
On their visit to the National Archives Experience in Washington, D.C., students in Jenni Ashley and Gay Brock's U.S. history classes at the Potomac School in McLean, Virginia, participated in a pilot program called "The Constitution by Cell." Armed with their cell phones, a basic understanding of the Constitution, and a willingness to…
Constitutive modeling for isotropic materials
NASA Technical Reports Server (NTRS)
Lindholm, Ulric S.; Chan, Kwai S.
1986-01-01
The objective of the program is to evaluate and develop existing constitutive models for use in finite-element structural analysis of turbine engine hot section components. The class of constitutive equation studied is considered unified in that all inelastic deformation including plasticity, creep, and stress relaxation are treated in a single term rather than a classical separation of plasticity (time independent) and creep (time dependent) behavior. The unified theories employed also do not utilize the classical yield surface or plastic potential concept. The models are constructed from an appropriate flow law, a scalar kinetic relation between strain rate, temperature and stress, and evolutionary equations for internal variables describing strain or work hardening, both isotropic and directional (kinematic). This and other studies have shown that the unified approach is particularly suited for determining the cyclic behavior of superalloy type blade and vane materials and is entirely compatible with three-dimensional inelastic finite-element formulations. The behavior was examined of a second nickel-base alloy, MAR-M247, and compared it with the Bodner-Partom model, further examined procedures for determining the material-specific constants in the models, and exercised the MARC code for a turbine blade under simulated flight spectrum loading. Results are summarized.
Constitutive modeling for isotropic materials
NASA Technical Reports Server (NTRS)
Chan, K. S.; Lindholm, U. S.; Bodner, S. R.
1988-01-01
The third and fourth years of a 4-year research program, part of the NASA HOST Program, are described. The program goals were: (1) to develop and validate unified constitutive models for isotropic materials, and (2) to demonstrate their usefulness for structural analysis of hot section components of gas turbine engines. The unified models selected for development and evaluation were those of Bodner-Partom and of Walker. The unified approach for elastic-viscoplastic constitutive equations is a viable method for representing and predicting material response characteristics in the range where strain rate and temperature dependent inelastic deformations are experienced. This conclusion is reached by extensive comparison of model calculations against the experimental results of a test program of two high temperature Ni-base alloys, B1900+Hf and Mar-M247, over a wide temperature range for a variety of deformation and thermal histories including uniaxial, multiaxial, and thermomechanical loading paths. The applicability of the Bodner-Partom and the Walker models for structural applications has been demonstrated by implementing these models into the MARC finite element code and by performing a number of analyses including thermomechanical histories on components of hot sections of gas turbine engines and benchmark notch tensile specimens. The results of the 4-year program have been published in four annual reports. The results of the base program are summarized in this report. The tasks covered include: (1) development of material test procedures, (2) thermal history effects, and (3) verification of the constitutive model for an alternative material.
Partial thromboplastin time (PTT)
... which there is a problem with the body's blood clotting process Disorder in which the proteins that control blood clotting become over active ( disseminated intravascular coagulation ) Liver disease ...
On the Problem of Constitutive Parameter of Composite Materials
2000-09-29
Casimir forms of the Maxwell equations in condensed media is made. It is shown that the Casimir form comprises sufficient informa- tion of the system...that the main difference in these forms is that the Casimir form being free from seeming spatial dispersion gives more adequate description of effects...constitutive equations in the light of their predictions. 2. Constitutive Equations in Forms Suggested by Landau-Lifshitz and by Casimir In the case of
Constitution, 29 October 1987.
1987-01-01
This document contains provisions of chapter 2 (Rights and Duties of Citizens) of the 1987 Constitution of the Republic of Korea relating to equality of the sexes, freedom of movement, free and compulsory education, equal opportunity at work, social protection, housing, and health care. The Constitution states that all citizens are equal before the law with no discrimination in political, economic, social, or cultural life based on sex, religion, or social status. The Constitution also protects freedom of residence and mobility, the right to an equal education, free compulsory education, and working mothers (with specific protection against discrimination). The Constitution directs the state to promote the welfare and rights of women, enhance the welfare of the aged and the young, and protect those incapable of earning a living. Housing development policies will be used to ensure comfortable housing for all citizens. State protection is afforded to mothers and to the health of all citizens.
NASA Astrophysics Data System (ADS)
Airaghi, Laura; Lanari, Pierre; Warren, Clare J.; de Sigoyer, Julia; Guillot, Stéphane
2017-04-01
stages (2) and (3) yield younger ages, at 150±10 Ma. These results, in apparent contradiction with the microstructural observations, suggest a key role of grains size and deformation and re-equilibration in the Ar recording. The micro-chemical behavior unrevealed in this study is probably relatively common in metapelites and questions the reliability of the P-T-t predictions based on relict phase chemistry, apparently preserved in microstructures that might have been affected by later re-equilibration.
1987-01-01
This document reprints major provisions of the 1982 Constitution of Equatorial Guinea. The Constitution calls for protection of the family as the basic building block of society. Foreigners are afforded the same civil rights as citizens and may seek asylum but may not exercise political rights. The Constitution guarantees equality before the law and prohibits discrimination based on ethnic background, race, sex, language, religion, filiation, political or other views, social origin, economic position, or birth. Women are afforded the same rights as men regardless of their marital status. The Constitution also guarantees citizens freedom to travel nationally and internationally and to choose a place of residence. Equatoguineans are also entitled to a standard of living that insures health, nutrition, education, clothing, housing, medical care, and necessary social services. The family policy contained in the Constitution protects all types of legal marriages equally and recognizes nonattachable and inalienable family patrimony. Children are protected from the time of conception, and all inhabitants are guaranteed a basic state education which is compulsory and free. Efforts are also being made to eradicate illiteracy. Women are insured training and promotion for their integration into the active life and development of the country, and farmers are guaranteed traditional ownership of the lands they possess, although the state retains the right of eminent domain.
NASA Astrophysics Data System (ADS)
van Wees, J. D.; De Jong, K.; Cloetingh, S.
1992-03-01
The Internal Zone of the Betic Cordilleras offers a unique opportunity to study the dynamics of lithospheric processes at mid crustal levels, which controlled the formation and evolution of the southeastern margin of Iberia. In this paper we present the result of two-dimensional numerical modelling of P-T-t paths related to latest Oligocene and Early Miocene extension and inversion in the Betic Zone. The ages of P-T-t loops are constrained by an extensive data set of geothermo-barometric and geochronological data, including 40Ar/ 39Ar laser probe data. We investigate the thermo-mechanical evolution of the Betic Zone using numerical models for simple shear, pure shear and combined shear. The Wernicke simple shear model fails to explain the observed temperatures in excess of 500°C and is not consistent with the occurrence of intrusions of ultramafic rocks in the western Betics. However, the delaminated simple shear model with low-angle faults located only at lower crustal levels, is found to be consistent with the P-T-t data. After a heating phase, associated with a finite extension of 80 km, rapid cooling occurred reflecting inversion of the extensional structure by NW-SE to N-S directed compression. Palaeo-rheological models for the latest Oligocene-Early Miocene times demonstrate the important role of the detachments produced during crustal extension for the dynamics of the subsequent inversion phase. The modelling strongly suggest that inversion locked after 60 km of finite convergence. After locking of the inversion, overthrusting in a northward direction occurred, which is compensated by pure shear deformation in the lower crust in the southeastern part of the Betic Zone.
NASA Astrophysics Data System (ADS)
Briggs, S. I.; Smit, M. A.; Cottle, J. M.; Hagen-Peter, G.
2015-12-01
Separation of the microcontinent Zealandia from the Marie Byrd Land sector of Antarctica in the Late Cretaceous marked the final stage in the breakup of Gondwana. Two contrasting ideas for the Late Cretaceous rifting of Zealandia from Gondwana have been proposed. One is that subduction at the paleo-Pacific - Gondwana convergent margin ceased after the last pulse of batholith emplacement at ~100 Ma, followed by a rapid transition to extension and seafloor spreading at 82 Ma. The other hypothesis is that convergence continued along Zealandia simultaneously with back-arc extension until ~85 M. This hypothesis is based on recently reported Late Cretaceous ages from the Alpine Schist, a metamorphosed accretionary wedge assemblage. Without accompanying pressure-temperature (P-T) information, the significance of Late Cretaceous ages from the Alpine Schist in terms of the orogenic processes that occurred during cessation of subduction at the paleo-Pacific - Gondwana margin remains unclear. In this study, Lu-Hf geochronology of Alpine Schist garnet is paired with phase equilibria modelling to elucidate the P-T-t history of the orogen and clarify the mechanisms behind Zealandia-Gondwana rifting. Garnet Lu-Hf dates have been obtained from 9 samples ranging in bulk composition from quartzo-feldspathic schists to mafic amphibolites. Garnet yields Early Cretaceous ages from the southern Alpine Schist, whereas northern Alpine Schist garnet yields Late Cretaceous ages. Garnet textures and major and trace element compositional zoning suggest that an additional, later period of garnet growth or recrystallization may be recorded in the northern samples. P-T-t data from each dated sample is supplemented with thermobarometric analysis from an adjacent sample of different lithology, with the advantage of providing more complete local P-T-t paths. The P-T-t paths define whether garnet grew during increasing P-T (prograde early), decreasing P and increasing T (prograde late), and
ERIC Educational Resources Information Center
Gallagher, Joan; Wood, Robert J.
The elective unit on Constitutional Law is intended for 11th and 12th grade students. The unit is designed around major course goals which are to develop those concepts whereby students recognize and understand the following three topic areas: 1) Role of the Federal Judicial Branch of Government, 2) Supreme Court Cases Involving the Three Branches…
ERIC Educational Resources Information Center
Baxter, Maurice
Changing political, social, economic, and intellectual conditions over the past two hundred years have demanded innovation and adjustment of legal doctrine, thus giving the United States Constitution a character which the framers of the document could not have predicted. Historically, one must not only understand developments since 1787 but also…
ERIC Educational Resources Information Center
Baxter, Maurice
Changing political, social, economic, and intellectual conditions over the past two hundred years have demanded innovation and adjustment of legal doctrine, thus giving the United States Constitution a character which the framers of the document could not have predicted. Historically, one must not only understand developments since 1787 but also…
Crushed Salt Constitutive Model
Callahan, G.D.
1999-02-01
The constitutive model used to describe the deformation of crushed salt is presented in this report. Two mechanisms -- dislocation creep and grain boundary diffusional pressure solution -- are combined to form the basis for the constitutive model governing the deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. Upon complete consolidation, the crushed-salt model reproduces the Multimechanism Deformation (M-D) model typically used for the Waste Isolation Pilot Plant (WIPP) host geological formation salt. New shear consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on WIPP and southeastern New Mexico salt. Nonlinear least-squares model fitting to the database produced two sets of material parameter values for the model -- one for the shear consolidation tests and one for a combination of the shear and hydrostatic consolidation tests. Using the parameter values determined from the fitted database, the constitutive model is validated against constant strain-rate tests. Shaft seal problems are analyzed to demonstrate model-predicted consolidation of the shaft seal crushed-salt component. Based on the fitting statistics, the ability of the model to predict the test data, and the ability of the model to predict load paths and test data outside of the fitted database, the model appears to capture the creep consolidation behavior of crushed salt reasonably well.
Constituting children's bodily integrity.
Hill, B Jessie
2015-04-01
Children have a constitutional right to bodily integrity. Courts do not hesitate to vindicate that right when children are abused by state actors. Moreover, in at least some cases, a child's right to bodily integrity applies within the family, giving the child the right to avoid unwanted physical intrusions regardless of the parents' wishes. Nonetheless, the scope of this right vis-à-vis the parents is unclear; the extent to which it applies beyond the narrow context of abortion and contraception has been almost entirely unexplored and untheorized. This Article is the first in the legal literature to analyze the constitutional right of minors to bodily integrity within the family by spanning traditionally disparate doctrinal categories such as abortion rights; corporal punishment; medical decisionmaking; and nontherapeutic physical interventions such as tattooing, piercing, and circumcision. However, the constitutional right of minors to bodily integrity raises complex philosophical questions concerning the proper relationship between family and state, as well as difficult doctrinal and theoretical issues concerning the ever-murky idea of state action. This Article canvasses those issues with the ultimate goal of delineating a constitutional right of bodily security and autonomy for children.
Sexuality and the Constitution.
ERIC Educational Resources Information Center
Copelon, Rhonda
1987-01-01
Argues for abortion rights and protection of intimate decisions and relationships. Describes the role and position of women in eighteenth century American society as a means of exposing the fallacy of the anti-abortion movement's insistence on adherence to constitutional text. Discusses the recent attempts to overturn the Roe v. Wade ruling. (PS)
ERIC Educational Resources Information Center
Ginsburg, Ruth Bader
1975-01-01
In discussing the constitutional aspects of the sex-role debate in the U.S. the author traces the tradition, compares the present criterion of equal protection to the equal rights argument, and analyzes the equality principle with reference to affirmative action and to childbearing and childrearing, supporting the proposed equal rights amendment.…
ERIC Educational Resources Information Center
Potter, Lee Ann
2007-01-01
In this article, the author describes the experiences middle school students on a field trip to the new Constitution in Action Learning Lab in the Boeing Learning Center at the National Archives can expect. There, middle school students take on the roles of archivists and researchers collecting and analyzing primary sources from the holdings of…
Sexuality and the Constitution.
ERIC Educational Resources Information Center
Copelon, Rhonda
1987-01-01
Argues for abortion rights and protection of intimate decisions and relationships. Describes the role and position of women in eighteenth century American society as a means of exposing the fallacy of the anti-abortion movement's insistence on adherence to constitutional text. Discusses the recent attempts to overturn the Roe v. Wade ruling. (PS)
South Africa's Constitutional Change.
ERIC Educational Resources Information Center
Getman, Thomas
1987-01-01
Describes the striking dichotomy of South Africa's beauty and the squalor resulting from the apartheid policies of the government. Reviews reactions of black South Africans to recent constitutional changes and details efforts to secure more sweeping reform. Includes stories of several individuals who have taken actions which oppose the system of…
Constitutive laws, tensorial invariance and chocolate cake
NASA Astrophysics Data System (ADS)
Rundle, John B.; Passman, S. L.
1982-04-01
Although constitutive modeling is a well-established branch of mathematics which has found wide industrial application, geophysicists often do not take full advantage of its known results. We present a synopsis of the theory of constitutive modeling, couched in terms of the ‘simple material’, which has been extensively studied and is complex enough to include most of the correct models proposed to describe the behavior of geological materials. Critical in the development of the theory are various invariance requirements, the principal ones being coordinate invariance, peer group invariance (isotropy), and frame-indifference. Each places distinet restrictions on constitutive equations. A noncomprehensive list of properly invariant and commonly used constitutive equations is given. To exemplify use of the equations, we consider two problems in detail: steady extension, which models the commonly performed constant strain rate triaxial test, and simple shearing. We note that each test is so restricted kinematically that only the most trivial aspects of material behavior are manifested in these tests, no matter how complex the material. Furthermore, the results of one test do not generally determine the results of the other.
A constitutive theory of reacting electrolyte mixtures
NASA Astrophysics Data System (ADS)
Costa Reis, Martina; Wang, Yongqi; Bono Maurizio Sacchi Bassi, Adalberto
2013-11-01
A constitutive theory of reacting electrolyte mixtures is formulated. The intermolecular interactions among the constituents of the mixture are accounted for through additional freedom degrees to each constituent of the mixture. Balance equations for polar reacting continuum mixtures are accordingly formulated and a proper set of constitutive equations is derived with basis in the Müller-Liu formulation of the second law of thermodynamics. Moreover, the non-equilibrium and equilibrium responses of the reacting mixture are investigated in detail by emphasizing the inner and reactive structures of the medium. From the balance laws and constitutive relations, the effects of molecular structure of constituents upon the fluid flow are studied. It is also demonstrated that the local thermodynamic equilibrium state can be reached without imposing that the set of independent constitutive variables is time independent, neither spatially homogeneous nor null. The resulting constitutive relations presented throughout this work are of relevance to many practical applications, such as swelling of clays, developing of bio and polymeric membranes, and use of electrorheological fluids in industrial processes. The first author acknowledges financial support from National Counsel of Technological and Scientific Development (CNPq) and German Academic Exchange Service (DAAD).
Zhang, Da; Wu, Ming; Zeng, Yongyi; Wu, Lingjie; Wang, Qingtang; Han, Xiao; Liu, Xiaolong; Liu, Jingfeng
2015-04-22
Photodynamic therapy (PDT), using a combination of chemical photosensitizers (PS) and light, has been successfully applied as a noninvasive therapeutic procedure to treat tumors by inducing apoptosis or necrosis of cancer cells. However, most current clinically used PS have suffered from the instability in physiological conditions which lead to low photodynamic therapy efficacy. Herein, a highly biocompatible poly(dopamine) (PDA) nanoparticle conjugated with Chlorin e6 (referenced as the PDA-Ce6 nanosphere) was designed as a nanotherapeutic agent to achieve simultaneous photodynamic/photothermal therapy (PDT/PTT). Compared to the free Ce6, the PDA-Ce6 nanosphere exhibited significantly higher PDT efficacy against tumor cells, because of the enhanced cellular uptake and subsequently greater reactive oxygen species (ROS) production upon laser irradiation at 670 nm. Meanwhile, the PDA-Ce6 nanosphere could be also used as a photoabsorbing agent for PTT, because of the excellent photothermal conversion ability of PDA nanoparticle under laser irradiation at 808 nm. Moreover, our prepared nanosphere had extremely low dark toxicity, while excellent phototoxicity under the combination laser irradiation of 670 and 808 nm, both in vitro and in vivo, compared to any single laser irradiation alone. Therefore, our prepared PDA-Ce6 nanosphere could be applied as a very promising dual-modal phototherapeutic agent for enhanced cancer therapy in future clinical applications.
1987-01-01
This document contains provisions of Haiti's 1987 Constitution relating to the family; the protection of children, aliens, and refugees; and individual rights. The age of majority in Haiti is 18, and political and civil rights are attained at age 21 regardless of sex or marital status. Haitians are equal before the law but native-born Haitians who have never renounced their nationality have special advantages. Human rights are guaranteed in conformity with the Universal Declaration of the Rights of Man. Every citizen has the right to decent housing, education, food, and social security. The state is obligated to provide citizens with appropriate means to protect, maintain, and restore their health. Primary schooling is compulsory and free. Aliens in Haiti enjoy the protection offered citizens, including a limited right to own real property. Political refugees have a right to asylum. The family is considered the foundation of society and enjoys state protection regardless of whether the family is constituted within the bonds of marriage. Legal protection is afforded mothers, children, and the aged. The Constitution also calls for creation of a Family Code to ensure protection and respect for the rights of the family.
The Constitution in Other Lands.
ERIC Educational Resources Information Center
Bill of Rights in Action, 1987
1987-01-01
Designed for classroom teaching, this document contains articles on the new constitutions of Japan, South Korea, and the Philippine Islands which were modeled in part on the U.S. Constitution. These countries' experiences with constitutional government are examined, and whether or not the U.S. Constitution can be a suitable model for other…
Thomas Jefferson and the Constitution.
ERIC Educational Resources Information Center
Peterson, Merrill D.
1987-01-01
Examines Thomas Jefferson's role in the making and interpretation of the United States Constitution. Discusses the dominant features of Jefferson's constitutional theory; the character of Jefferson's presidency; and Jefferson's ongoing concern about constitutional preservation and change. Lists important dates in the history of the constitution.…
Constitution, 30 September 1987.
1987-01-01
This document reprints provisions of Suriname's 1987 Constitution relating to freedom of movement, equality of the sexes, the right to life, the right to physical integrity, equal opportunity in employment, the family, children, maternity benefits, the right to health care, parental responsibilities, free and compulsory education, illiteracy, and housing. All citizens enjoy freedom of movement within the bounds of the law. All people within the territory may claim protection of their person and property, and discrimination is forbidden on the basis of birth, sex, race, language, religion, education, political beliefs, economic position, or other status. Torture or inhuman treatment and punishment is banned, and the right to life is protected by the law. The state guarantees the right to work, and all employees have the right to equal remuneration for equal work, safe working conditions, and sufficient rest and recreation. The family is protected, and husbands and wives are equal before the law. Children have the right to protection, and working women are entitled to paid maternity leave. The state promotes the right to good health by systematic improvements in living and working conditions and dissemination of health education. The right to education is protected by the provision of free general primary education and efforts of the state to enable all citizens to achieve the highest educational levels possible. The Constitution also calls for the institution of a plan to allow the state to create public housing.
Ethics and constitutional government.
Albright, James A
2007-01-01
The term ethics refers to a set of principles that govern acceptable, proper conduct. Attacks on the Constitution of the United States pose the most serious breach of ethics today. Our country was founded as a republic, not as a democracy. Our Founding Fathers' main concern was to protect citizens from the power of the federal government, so constitutionally, the central government has little or no authority over individual citizens except on federal property. One of the major problems today is the fact that we now have professional politicians. This is due in large part to the lure of financial gain from countless special interest groups. This would change under constitutional law because the federal budget would decrease drastically. Article 1 states that all legislative power is vested in Congress. Congress has only 18 enumerated powers, and almost half of these pertain to defense of the country. Many of our current problems are due to regulatory agencies that have become independent fiefdoms with unconstitutional legislative, as well as executive and judicial, powers. The regulatory agency most relevant to medicine, both clinical care and research, is the FDA. It is now obvious that its basic structure needs to be changed or abolished because its actions are identical to those inherent in authoritarian systems. Constructive change could come from Congress, but it would be most desirable if the Supreme Court would take the lead and reestablish the authority of the Constitution as the Supreme Law of the Land. The FDA's function could be limited to the determination of safety, but preferably its mission would be altered to that of product certification. Defenders of the current system claim that such a drastic change would be too dangerous and their prime example is thalidomide. But it is now known that the market has already solved that problem prior to the government-imposed sanctions. Realistically, market forces and their ramifications, including our legal
1989-01-01
This document contains provisions of Cambodia's Constitution of May 5, 1989. Article 7 gives men and women equal rights in marriage and the family, calls for monogamous marriages, and affords social protection to mothers and children. Article 8 guides parent-child relationships. The 14th article defines state property, and the 15th gives citizens full rights to own, use, and inherit land. The use of agricultural and forested land can only be changed with permission. Article 22 assigns educational responsibilities to the state, including free elementary education and a gradual expansion of higher education. Adult literacy classes are also promoted. Article 26 guarantees free medical consultations, and article 27 gives women a 90-day paid maternity leave. Breast-feeding women are also given special privileges. Article 33 guarantees the right to pay equity and to social security benefits. Article 36 grants the freedom to travel, the inviolability of homes, and privacy in correspondence of all types.
1989-01-01
This document contains major provisions of the constitution adopted by Brazil on 5 October 1988. This constitution seeks to promote the welfare of all citizens without discrimination. The equality of all citizens is guaranteed, and the equal rights of women are specifically mentioned. Property rights are also guaranteed and defined. Female inmates are granted the right to remain with their children while breast feeding. Workers are guaranteed a minimum wage, a family allowance for dependents, maternity/paternity leave, specific incentives to protect the labor market for women, retirement benefits, free day care for preschool-age children, pay equity, and equal rights between tenured and sporadically employed workers. Agrarian reform provisions are given, including the authority to expropriate land. Social and economic policies to promote health are called for, and public health services are to be decentralized, to be integrated, and to foster community participation. Pension plan and social assistance provisions are outlined as are duties of the state in regard to education. The amount of money to be dedicated to education is set out, and a national educational plan is called for to achieve such goals as the eradication of illiteracy, the universalization of school attendance, the improvement of instruction, and the provision of vocational training. Specific measures are set out to protect and preserve the environment. Family policy deals with issues of marriage, the definition of a family, divorce, the right to family planning services, and the deterrence of domestic violence. Social protection provisions cover mothers and children, handicapped persons, and protection of minors. Finally, the customs and rights of Indians are protected, with special provisions given to protect land tenure and to protect the rights of Indians in water resource development and prospecting and mining activities.
NASA Astrophysics Data System (ADS)
Janssens, P.; Doria, L.; Achenbach, P.; Ayerbe Gayoso, C.; Baumann, D.; Bernauer, J. C.; Bensafa, I. K.; Böhm, R.; Bosnar, D.; Burtin, E.; D'Hose, N.; Defaÿ, X.; Ding, M.; Distler, M. O.; Fonvieille, H.; Friedrich, J.; Friedrich, J. M.; Laveissière, G.; Makek, M.; Marroncle, J.; Merkel, H.; Müller, U.; Nungesser, L.; Pasquini, B.; Pochodzalla, J.; Postavaru, O.; Potokar, M.; Ryckbosch, D.; Sanchez Majos, S.; Schlimme, B. S.; Seimetz, M.; Širca, S.; Tamas, G.; van de Vyver, R.; van Hoorebeke, L.; van Overloop, A.; Walcher, Th.; Weinriefer, M.
2008-07-01
The cross-section of the ep → e'p'γ reaction has been measured at Q 2 = 0.33 (GeV/ c)2. The experiment was performed using the electron beam of the MAMI accelerator and the standard detector setup of the A1 Collaboration. The cross-section is analyzed using the low-energy theorem for virtual Compton scattering, yielding a new determination of the two structure functions PLL - PTT/ ɛ and PLT which are linear combinations of the generalized polarizabilities of the proton. We find somewhat larger values than in the previous investigation at the same Q 2. This difference, however, is purely due to our more refined analysis of the data. The results tend to confirm the non-trivial Q 2-evolution of the generalized polarizabilities and call for more measurements in the low- Q 2 region (≤ 1 (GeV/ c)2).
Constitutive model for porous materials
Weston, A.M.; Lee, E.L.
1982-01-01
A simple pressure versus porosity compaction model is developed to calculate the response of granular porous bed materials to shock impact. The model provides a scheme for calculating compaction behavior when relatively limited material data are available. While the model was developed to study porous explosives and propellants, it has been applied to a much wider range of materials. The early development of porous material models, such as that of Hermann, required empirical dynamic compaction data. Erkman and Edwards successfully applied the early theory to unreacted porous high explosives using a Gruneisen equation of state without yield behavior and without trapped gas in the pores. Butcher included viscoelastic rate dependance in pore collapse. The theoretical treatment of Carroll and Holt is centered on the collapse of a circular pore and includes radial inertia terms and a complex set of stress, strain and strain rate constitutive parameters. Unfortunately data required for these parameters are generally not available. The model described here is also centered on the collapse of a circular pore, but utilizes a simpler elastic-plastic static equilibrium pore collapse mechanism without strain rate dependence, or radial inertia terms. It does include trapped gas inside the pore, a solid material flow stress that creates both a yield point and a variation in solid material pressure with radius. The solid is described by a Mie-Gruneisen type EOS. Comparisons show that this model will accurately estimate major mechanical features which have been observed in compaction experiments.
NASA Astrophysics Data System (ADS)
Yamato, P.; Agard, P.; Burov, E.; Le Pourhiet, L.; Jolivet, L.; Tiberi, C.
2007-07-01
The dynamic processes leading to synconvergent exhumation of high-pressure low-temperature (HP-LT) rocks at oceanic accretionary margins, as well as the mechanisms maintaining nearly steady state regime in most accretion prisms, remain poorly understood. The present study aims at getting better constraints on the rheology, thermal conductivity, and chemical properties of the sediments in subduction zones. To reach that goal, oceanic subduction is modeled using a forward visco-elasto-plastic thermomechanical code (PARA(O)VOZ-FLAC algorithm), and synthetic pressure-temperature-time (P-T-t) paths, predicted from numerical experiments, are compared with natural P-T-t paths. The study is focused on the well constrained Schistes Lustrés complex (SL: western Alps) which is thought to represent the fossil accretionary wedge of the Liguro-Piemontese Ocean. For convergence rates comparable to Alpine subduction rates (˜3 cm yr-1), the best-fitting results are obtained for high-viscosity, low-density wedge sediments and/or a strong lower continental crust. After a transition period of 3-5 Ma the modeled accretionary wedges reach a steady state which lasts over 20 Ma. Over that time span a significant proportion (˜35%) of sediments entering the wedge undergoes P-T conditions typical of the SL complex (˜15-20 kbar; 350-450°C) with similar P-T loops. Computed exhumation rates (<6 mm yr-1) are in agreement with observations (1-5 mm yr-1). In presence of a serpentinite layer below the oceanic crust, exhumation of oceanic material takes place at rates approaching 3 mm yr-1. In all experiments the total pressure in the accretionary wedge never deviated by more than ±10% from the lithostatic component.
Hammerand, Daniel Carl; Scherzinger, William Mark
2007-09-01
The Library of Advanced Materials for Engineering (LAME) provides a common repository for constitutive models that can be used in computational solid mechanics codes. A number of models including both hypoelastic (rate) and hyperelastic (total strain) constitutive forms have been implemented in LAME. The structure and testing of LAME is described in Scherzinger and Hammerand ([3] and [4]). The purpose of the present report is to describe the material models which have already been implemented into LAME. The descriptions are designed to give useful information to both analysts and code developers. Thus far, 33 non-ITAR/non-CRADA protected material models have been incorporated. These include everything from the simple isotropic linear elastic models to a number of elastic-plastic models for metals to models for honeycomb, foams, potting epoxies and rubber. A complete description of each model is outside the scope of the current report. Rather, the aim here is to delineate the properties, state variables, functions, and methods for each model. However, a brief description of some of the constitutive details is provided for a number of the material models. Where appropriate, the SAND reports available for each model have been cited. Many models have state variable aliases for some or all of their state variables. These alias names can be used for outputting desired quantities. The state variable aliases available for results output have been listed in this report. However, not all models use these aliases. For those models, no state variable names are listed. Nevertheless, the number of state variables employed by each model is always given. Currently, there are four possible functions for a material model. This report lists which of these four methods are employed in each material model. As far as analysts are concerned, this information is included only for the awareness purposes. The analyst can take confidence in the fact that model has been properly implemented
This Constitution: A Bicentennial Chronicle.
ERIC Educational Resources Information Center
This Constitution, 1986
1986-01-01
Providing a link between constitutional scholars and the planners of school and public programs observing the Bicentennial of the United States Constitution, this series of the Bicentennial Chronicles features articles that provide a link between scholars of the Constitution and the people who will be planning programs for the public and for the…
How Democratic Is the Constitution?
ERIC Educational Resources Information Center
Goldwin, Robert A., Ed.; Schambra, William A., Ed.
Designed to help prepare the nation for a thoughtful observance of the Constitutional bicentennial, this publication contains seven essays on the topic of democracy and the Constitution. "Democracy and the Constitution" (Gordon S. Wood) looks at the popular and democratic rhetoric used to justify the federalist system in the late 1700's.…
Constitution, 3 February 1987.
1987-01-01
This document contains provisions of the 1987 Constitution of the Philippines. The state policies reprinted from Article 2 note that the state recognizes the sanctity of family life and protects the life of the mother and of the unborn from conception. Women and men are afforded equality before the law. The state prioritizes education, science and technology, arts, culture, and sports and promotes comprehensive rural development and agrarian reform. Provisions reprinted from Article 13 (Social Justice and Human Rights) cover agrarian and natural resources reform, urban land reform and housing, health, and protection of women in the workforce. Sections from Article 14 (Education, Science and Technology, Arts, Culture, and Sports) set forth the state's duty to make quality education accessible to all citizens through a compulsory system of free public education, provision of incentives to deserving students, encouragement of informal education, and provision of adult education. Article 15, on the family, recognizes the family as the foundation of the nation and marriage as the foundation of the family. Spouses have the right to found a family, children have the right to appropriate care, the family has the right to a living wage and income, families or family associations have the right to participate in the planning and implementation of policies and programs that affect them, and the family has the duty to care for its elderly.
A comparative study on plaque vulnerability using constitutive equations.
Karimi, A; Navidbakhsh, M; Faghihi, S
2014-03-01
Atherosclerosis is the most serious and common form of cardiovascular disease in which plaque builds up inside the arteries. Peak plaque stress is considered as the main reason for plaque rupture, which results in heart attack and stroke. In the current research, the finite element method is used to anticipate plaque vulnerability, using human samples. A total of 23 healthy and atherosclerotic human coronary arteries (14 healthy and 9 atherosclerotic) were removed within 5 h postmortem. The samples were mounted on a uniaxial tensile test machine and the obtained mechanical properties were used in finite element models. The peak plaque stresses for the Ogden hyperelastic model were compared to the Mooney-Rivlin and Neo-Hookean outcomes. The results indicated that hypocellular plaque in all three models has the highest stress values compared to the cellular and calcified ones and, as a result, is quite prone to rupture. The calcified plaque type, in contrast, has the lowest stress values and remains stable. The results can be used in plaque vulnerability prediction and have clinical implications for interventions and surgeries such as balloon-angioplasty, cardiopulmonary bypass and stenting.
Rapid implementation of advanced constitutive models
NASA Astrophysics Data System (ADS)
Starman, Bojan; Halilovič, Miroslav; Vrh, Marko; Štok, Boris
2013-12-01
This paper presents a methodology based on the NICE integration scheme [1, 2] for simple and rapid numerical implementation of a class of plasticity constitutive models. In this regard, an algorithm is purposely developed for the implementation of newly developed advanced constitutive models into explicit finite element framework. The methodology follows the organization of the problem state variables into an extended form, which allows the constitutive models' equations to be organized in such a way, that the algorithm can be optionally extended with minimal effort to integrate also evolution equations related to a description of other specific phenomena, such as damage, distortional hardening, phase transitions, degradation etc. To confirm simplicity of the program implementation, computational robustness, effectiveness and improved accuracy of the implemented integration algorithm, a deep drawing simulation of the cylindrical cup is considered as the case study, performed in ABAQUS/Explicit. As a fairly complex considered model, the YLD2004-18p model [3, 4] is first implemented via external subroutine VUMAT. Further, to give additional proof of the simplicity of the proposed methodology, a combination of the YLD2004-18p model and Gurson-Tvergaard-Needleman model (GTN) is considered. As demonstrated, the implementation is really obtained in a very simple way.
Constitution, 1989. [Selected provisions].
1989-01-01
Chapter XII of the Hungarian Constitution, 1989, details the Fundamental Rights and Duties of Citizens. Everyone lawfully within the territory of Hungary has the right to liberty of movement and the freedom to choose his or her residence, except when restricted by law, including the right to leave his or her residence or county. The Republic of Hungary grants asylum to foreign citizens who were persecuted for racial, religious ethnic, linguistic, or political reasons. Men and women shall equally enjoy all civil, political, economic, social and political rights. Mothers are entitled to special care and protection before and after childbirth; women and juveniles are protected at work by special regulations. Every child has the right to special care an assistance from his or her family, the State, and society, for appropriate physical, spiritual, and moral development. Parents shall decide the kind of education their children receive. Hungary grants equal rights to all person within its territories, without regard to race, color, sex, language, religion, political, or other opinion, national, and social origin, property, birth and other status. Prejudicial discrimination shall be severely punished. Everyone has the right to work, to the free choice of employment and profession and to equal pay for equal work. Citizens have the right to social security, including social services necessary in old age, sickness, disability, widowhood, orphanhood an unemployment through no fault of their own. Hungary guarantees the right to culture for its citizens and realized this right by free and compulsory elementary education, by secondary and higher education which is accessible to all on the basis of capacity, and by the financial support of those receiving an education.
Essential Medicines in National Constitutions
Toebes, Brigit; Hogerzeil, Hans
2016-01-01
Abstract A constitutional guarantee of access to essential medicines has been identified as an important indicator of government commitment to the progressive realization of the right to the highest attainable standard of health. The objective of this study was to evaluate provisions on access to essential medicines in national constitutions, to identify comprehensive examples of constitutional text on medicines that can be used as a model for other countries, and to evaluate the evolution of constitutional medicines-related rights since 2008. Relevant articles were selected from an inventory of constitutional texts from WHO member states. References to states’ legal obligations under international human rights law were evaluated. Twenty-two constitutions worldwide now oblige governments to protect and/or to fulfill accessibility of, availability of, and/or quality of medicines. Since 2008, state responsibilities to fulfill access to essential medicines have expanded in five constitutions, been maintained in four constitutions, and have regressed in one constitution. Government commitments to essential medicines are an important foundation of health system equity and are included increasingly in state constitutions. PMID:27781006
Constitutional Issues--Watergate and the Constitution. Teaching with Documents.
ERIC Educational Resources Information Center
National Archives and Records Administration, Washington, DC.
When U.S. President Richard Nixon resigned in 1974 in the wake of the Watergate scandal, it was only the second time that impeachment of a president had been considered. Although the U.S. Constitution has provisions for a person removed from office to be indicted, there are no guidelines in the Constitution about a President who has resigned. The…
NASA Astrophysics Data System (ADS)
Jeanniot, L.; Kusznir, N. J.; Manatschal, G.; Mohn, G.; Beltrando, M.
2013-12-01
Observations at magma-poor rifted margins such as Iberia-Newfoundland show a complex lithosphere deformation history and OCT architecture, resulting in hyper-extended continental crust and lithosphere, exhumed mantle and scattered embryonic oceanic crust before continental breakup and seafloor spreading. Initiation of seafloor spreading requires both the rupture of the continental crust and lithospheric mantle, and the onset of decompressional melting. Their relative timing controls when mantle exhumation may occur; the presence or absence of exhumed mantle provides useful information on the timing of these events and constraints on lithosphere deformation modes. A single kinematic lithosphere deformation mode leading to continental breakup and sea-floor spreading cannot explain observations. We have determined the sequence of lithosphere deformation events, using forward modelling of crustal thickness, subsidence and P-T-t history calibrated against observations on the present-day Iberia-Newfoundland and the fossil analogue Alpine Tethys margins. Lithosphere deformation modes, represented by flow fields, are generated by a 2D finite element viscous flow model (FeMargin), and used to advect lithosphere and asthenosphere temperature and material. FeMargin is kinematically driven by divergent deformation in the topmost upper lithosphere inducing passive upwelling beneath that layer; the upper lithosphere is assumed to deform by extensional faulting and magmatic intrusions, consistent with observations of deformation processes occurring at slow spreading ocean ridges (Cannat, 1996). Buoyancy enhanced upwelling is also included in the kinematic model as predicted by Braun et al (2000). We predict melt generation by decompressional melting using the parameterization and methodology of Katz et al., 2003. We use a series of numerical experiments, tested and calibrated against crustal thicknesses and subsidence observations, to determine the distribution of lithosphere
A dislocation density based constitutive model for cyclic deformation
Estrin, Y.; Braasch, H.; Brechet, Y.
1996-10-01
A new constitutive model describing material response to cyclic loading is presented. The model includes dislocation densities as internal variables characterizing the microstructural state of the material. In the formulation of the constitutive equations, the dislocation density evolution resulting from interactions between dislocations in channel-like dislocation patterns is considered. The capabilities of the model are demonstrated for INCONEL 738 LC and Alloy 800H.
Bi-isotropic constitutive relations
NASA Astrophysics Data System (ADS)
Sihvola, A. H.; Lindell, I. V.
1991-03-01
The constitutive relations of general bi-isotropic media, requiring four material parameters, can be written in different ways to describe their electromagnetic behavior. This communication contains a two-way 'dictionary' between a proposed formulation of the constitutive relations with three other sets of relations, generalized from relations used for chiral materials.
The Constitution and Citizenship Education.
ERIC Educational Resources Information Center
Shoemaker, Rebecca S.
The paper takes the position that the study and understanding of the United States Constitution should be a critical part of citizenship education, especially as its Bicentennial approaches. Several factors suggest that the Constitution has become the most durable document of its kind in history, and that its teaching should be centered in both…
The Constitution and American Radicalism.
ERIC Educational Resources Information Center
Lobel, Jules
1987-01-01
Discusses the history of the following movements' attitudes towards the Constitution: (1) abolition; (2) feminism; (3) trade unions; (4) socialism and communism; and (5) civil rights and anti-war. Maintains that the tensions in these movements' towards the Constitution represent basic contradictions in the document itself. (PS)
Constitutional Law and Liberal Education.
ERIC Educational Resources Information Center
Clor, Harry
1985-01-01
By studying constitutional law, students learn about the relationship between democratic theory and practice, one of the main concerns of liberal education. The mind is enlarged when it must apply ethical standards and political ideas to real human problems. How a political science professor teaches constitutional law is discussed. (RM)
Reordering American Constitutional Law Teaching.
ERIC Educational Resources Information Center
Gerber, Scott D.
1994-01-01
Maintains that constitutional law is the cornerstone of an undergraduate public law curriculum. Asserts that there is a welcome trend toward teaching the subject over a two-semester sequence, instead of only one. Describes course content and teaching strategies used in a college constitutional law course. (CFR)
How Capitalistic Is the Constitution?
ERIC Educational Resources Information Center
Goldwin, Robert A., Ed.; Schambra, William A., Ed.
Second in a three-part series designed to help prepare the nation for a thoughtful observance of the Constitutional bicentennial, this publication contains seven essays on the topic of capitalism and the Constitution. "American Democracy and the Acquisitive Spirit" (Marc F. Plattner) supports the argument that the framers of the…
Constitution And Bylaws: 2004 Edition
ERIC Educational Resources Information Center
Distance Education and Training Council, 2004
2004-01-01
This document contains the constitution and bylaws of the Distance Education and Training Council. The constitution and bylaws include 13 articles. Sections include: Name; Mission and Goals; Administration of the Council; Membership; Meetings; The Commission; Terms of Office; Officers; Committees; Compensation; Dues and Assessments; Miscellaneous…
The Constitution and Its Critics
ERIC Educational Resources Information Center
Main, Thomas J.
2011-01-01
In planning a freshman undergraduate curriculum with colleagues recently, the question arose as to what type of understanding educators wanted to impart to their students about the Constitution. The alleged defects of the Constitution that these books point to are wide-ranging and can be classified into various categories. Some problems--such as…
Probabilistic constitutive relationships for material strength degradation models
NASA Technical Reports Server (NTRS)
Boyce, L.; Chamis, C. C.
1989-01-01
In the present probabilistic methodology for the strength of aerospace propulsion system structural components subjected to such environmentally-induced primitive variables as loading stresses, high temperature, chemical corrosion, and radiation, time is encompassed as an interacting element, allowing the projection of creep and fatigue effects. A probabilistic constitutive equation is postulated to account for the degradation of strength due to these primitive variables which may be calibrated by an appropriately curve-fitted least-squares multiple regression of experimental data. The resulting probabilistic constitutive equation is embodied in the PROMISS code for aerospace propulsion component random strength determination.
NASA Astrophysics Data System (ADS)
Gutscher, Marc-Andre
2017-04-01
Assessing the pressure and temperature conditions along megathrust plate boundaries is crucial to understanding the rheology and the mineralogical transformations that occur here and can be expected to have a major impact on seismogenic behavior. Numerical modeling of forearc thermal structure has been applied to most subduction zones around the world (Syracuse et al., 2010, PEPI). Though their work examined a vast range of subducting plate ages and subduction velocities, most P-T paths were in fact shown to rather similar, with strong increases in temperature occuring in the 80-100 km depth range, as the convecting corner of asthenosphere is reached. Two groups of end-member subduction zones (undersampled in existing work), however, show consistently different P-T paths: flat-slabs and ultra-slow subduction zones. Their P-T paths are flatter, with temperatures increasing at shallower depths. Even more interesting is to examine the P-T conditions in P-T-t space along a time axis. For a flat-slab, pressure conditions remain constant over a much longer period, and depending on the exact depth this can have a strong impact on the seismogenic zone. Ultra-slow subduction zones are unique in the first place due to the very slow transit time of sediments along the plate interface. Secondly, because most ultra-slow subduction zones are marked by very thick, broad accretionary wedges, this also strongly impacts the thermal structure along the upper portion of the seismogenic zone.
NASA Technical Reports Server (NTRS)
Allen Phillip A.; Wilson, Christopher D.
2003-01-01
The development of a pressure-dependent constitutive model with combined multilinear kinematic and isotropic hardening is presented. The constitutive model is developed using the ABAQUS user material subroutine (UMAT). First the pressure-dependent plasticity model is derived. Following this, the combined bilinear and combined multilinear hardening equations are developed for von Mises plasticity theory. The hardening rule equations are then modified to include pressure dependency. The method for implementing the new constitutive model into ABAQUS is given.
Constitutive relations in optics in terms of geometric algebra
NASA Astrophysics Data System (ADS)
Dargys, A.
2015-11-01
To analyze the electromagnetic wave propagation in a medium the Maxwell equations should be supplemented by constitutive relations. At present the classification of linear constitutive relations is well established in tensorial-matrix and exterior p-form calculus. Here the constitutive relations are found in the context of Clifford geometric algebra. For this purpose Cl1,3 algebra that conforms with relativistic 4D Minkowskian spacetime is used. It is shown that the classification of linear optical phenomena with the help of constitutive relations in this case comes from the structure of Cl1,3 algebra itself. Concrete expressions for constitutive relations which follow from this algebra are presented. They can be applied in calculating the propagation properties of electromagnetic waves in any anisotropic, linear and nondissipative medium.
High temperature densification forming of alumina powder -- Constitutive model and experiments
Kwon, Y.S.; Kim, K.T.
1996-10-01
Densification and grain growth of alumina powder compacts were investigated under pressureless sintering, sinter forging, and hot pressing. A set of constitutive equations by Kwon et al. was used to predict densification under diffusional creep. A novel grain growth equation is proposed by generalizing the grain growth model of Wilkinson and Caceres to predict grain growth during densification forming process of ceramic powders under general loading states. Material parameters in the constitutive equations were determined from experimental data under pressureless sintering and sinter forging. Theoretical predictions by using the constitutive equations for creep densification and grain growth were compared with experimental data of alumina powder compacts.
Constitutive modeling for isotropic materials (HOST)
NASA Technical Reports Server (NTRS)
Lindholm, Ulric S.; Chan, Kwai S.; Bodner, S. R.; Weber, R. M.; Walker, K. P.; Cassenti, B. N.
1984-01-01
The results of the first year of work on a program to validate unified constitutive models for isotropic materials utilized in high temperature regions of gas turbine engines and to demonstrate their usefulness in computing stress-strain-time-temperature histories in complex three-dimensional structural components. The unified theories combine all inelastic strain-rate components in a single term avoiding, for example, treating plasticity and creep as separate response phenomena. An extensive review of existing unified theories is given and numerical methods for integrating these stiff time-temperature-dependent constitutive equations are discussed. Two particular models, those developed by Bodner and Partom and by Walker, were selected for more detailed development and evaluation against experimental tensile, creep and cyclic strain tests on specimens of a cast nickel base alloy, B19000+Hf. Initial results comparing computed and test results for tensile and cyclic straining for temperature from ambient to 982 C and strain rates from 10(exp-7) 10(exp-3) s(exp-1) are given. Some preliminary date correlations are presented also for highly non-proportional biaxial loading which demonstrate an increase in biaxial cyclic hardening rate over uniaxial or proportional loading conditions. Initial work has begun on the implementation of both constitutive models in the MARC finite element computer code.
A constitutive law for dense granular flows.
Jop, Pierre; Forterre, Yoël; Pouliquen, Olivier
2006-06-08
A continuum description of granular flows would be of considerable help in predicting natural geophysical hazards or in designing industrial processes. However, the constitutive equations for dry granular flows, which govern how the material moves under shear, are still a matter of debate. One difficulty is that grains can behave like a solid (in a sand pile), a liquid (when poured from a silo) or a gas (when strongly agitated). For the two extreme regimes, constitutive equations have been proposed based on kinetic theory for collisional rapid flows, and soil mechanics for slow plastic flows. However, the intermediate dense regime, where the granular material flows like a liquid, still lacks a unified view and has motivated many studies over the past decade. The main characteristics of granular liquids are: a yield criterion (a critical shear stress below which flow is not possible) and a complex dependence on shear rate when flowing. In this sense, granular matter shares similarities with classical visco-plastic fluids such as Bingham fluids. Here we propose a new constitutive relation for dense granular flows, inspired by this analogy and recent numerical and experimental work. We then test our three-dimensional (3D) model through experiments on granular flows on a pile between rough sidewalls, in which a complex 3D flow pattern develops. We show that, without any fitting parameter, the model gives quantitative predictions for the flow shape and velocity profiles. Our results support the idea that a simple visco-plastic approach can quantitatively capture granular flow properties, and could serve as a basic tool for modelling more complex flows in geophysical or industrial applications.
Constitutional aneuploidy and cancer predisposition†
Ganmore, Ithamar; Smooha, Gil; Izraeli, Shai
2009-01-01
Constitutional aneuploidies are rare syndromes associated with multiple developmental abnormalities and the alterations in the risk for specific cancers. Acquired somatic chromosomal aneuploidies are the most common genetic aberrations in sporadic cancers. Thus studies of these rare constitutional aneuploidy syndromes are important not only for patient counseling and clinical management, but also for deciphering the mechanisms by which chromosomal aneuploidy affect cancer initiation and progression. Here we review the major constitutional aneuploidy syndromes and suggest some general mechanisms for the associated cancer predisposition. PMID:19297405
Remarks on turbulent constitutive relations
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Lumley, John L.
1993-01-01
The paper demonstrates that the concept of turbulent constitutive relations can be used to construct general models for various turbulent correlations. Some of the Generalized Cayley-Hamilton formulas for relating tensor products of higher extension to tensor products of lower extension are introduced. The combination of dimensional analysis and invariant theory can lead to 'turbulent constitutive relations' (or general turbulence models) for, in principle, any turbulent correlations. As examples, the constitutive relations for Reynolds stresses and scalar fluxes are derived. The results are consistent with ones from Renormalization Group (RNG) theory and two-scale Direct-Interaction Approximation (DIA) method, but with a more general form.
The President and the Constitution.
ERIC Educational Resources Information Center
Toler, Frank
1988-01-01
Intended for ninth grade students, this ten day unit focuses on the constitutional powers of the President of the United States. Included are worksheets, vocabulary, writing assignments, tests, and quizzes. (JDH)
Are Sanctions on Employers Constitutional?
ERIC Educational Resources Information Center
Gollobin, Ira
1988-01-01
Questions the constitutional validity of employer sanctions used to deter illegal immigration under the Immigration Reform and Control Act. Points out the anomaly of using criminal penalties to deter a civil, administrative violation. (FMW)
Abnormal human sex chromosome constitutions
1993-12-31
Chapter 22, discusses abnormal human sex chromosome constitution. Aneuploidy of X chromosomes with a female phenotype, sex chromosome aneuploidy with a male phenotype, and various abnormalities in X chromosome behavior are described. 31 refs., 2 figs.
Are Sanctions on Employers Constitutional?
ERIC Educational Resources Information Center
Gollobin, Ira
1988-01-01
Questions the constitutional validity of employer sanctions used to deter illegal immigration under the Immigration Reform and Control Act. Points out the anomaly of using criminal penalties to deter a civil, administrative violation. (FMW)
The Constitution's Prescription for Freedom.
ERIC Educational Resources Information Center
Peach, Lucinda
1986-01-01
Examines how the framers of the Constitution came to choose our system of government, how that system was designed to function, and how the separation of powers has served to maintain our democracy despite attempts to violate it. (JDH)
The Constitution's Prescription for Freedom.
ERIC Educational Resources Information Center
Peach, Lucinda
1986-01-01
Examines how the framers of the Constitution came to choose our system of government, how that system was designed to function, and how the separation of powers has served to maintain our democracy despite attempts to violate it. (JDH)
Constitutive modeling for isotropic materials
NASA Technical Reports Server (NTRS)
Ramaswamy, V. G.; Vanstone, R. H.; Dame, L. T.; Laflen, J. H.
1984-01-01
The unified constitutive theories for application to typical isotropic cast nickel base supperalloys used for air-cooled turbine blades were evaluated. The specific modeling aspects evaluated were: uniaxial, monotonic, cyclic, creep, relaxation, multiaxial, notch, and thermomechanical behavior. Further development of the constitutive theories to model thermal history effects, refinement of the material test procedures, evaluation of coating effects, and verification of the models in an alternate material will be accomplished in a follow-on for this base program.
Kenya Promulgates a New Constitution
2011-03-10
issues of governance , rights and individual freedoms. Subsequently a process to write a new constitution started in 2003. It was all inclusive and...all inclusive and participatory in decision-making. The process for reviewing the constitution was reactivated in earnest and delegates drawn from...changes in the separation of powers between the three arms of government , major matters of citizenship , the Bill of Rights, the devolution of government
NASA Astrophysics Data System (ADS)
Wildgoose, M.; Roeske, S.; Vervoort, J. D.; Cosca, M. A.
2012-12-01
Determining P-T-t paths in metamorphic rocks is inherently complicated due to the fact that peak pressure may not coincide with peak temperature, and most thermochronologic data provide an age for peak or cooling temperature. Using appropriate metamorphic minerals can be the key to unraveling the thermochronologic framework, though even on a mineral-scale, what events the mineral is recording can be complicated. The combination of in-situ 40Ar/39Ar UV laser ablation technique on white mica, infrared laser step-heating of white mica crystals, and Lu/Hf dating of co-occurring garnet are used to better understand whether single crystals of chemically heterogeneous white mica can provide reliable ages of metamorphic events. Three different thermochronologic techniques are combined to constrain the timing of burial and exhumation of blueschist rocks in the Ruby Terrane region of west-central Alaska. Use of these three techniques permits discrimination of P-T-t paths by comparing garnet (highest temperature) ages to the ages of the phengite cores and muscovite rims in white mica crystals. Blueschist facies rocks, particularly those generated in continental subduction zone systems, are common sources for assemblages that include both abundant white mica and garnets. The correlation of the garnet age to either the core or rim age from the mica can help determine whether the retrograde path of the crystal is the result of isothermal decompression or isobaric heating. These two possible paths are significant for understanding geodynamic processes of subduction zones that evolve to continental collision, such as recorded in the Ruby Terrane (RT), which lies just south of the Brooks Range in west-central Alaska. Continental crust in northern Alaska experienced extreme shortening and widespread blueschist facies metamorphism, during the Brookean orogeny, broadly from the Mid-Jurassic to the Mid-Cretaceous. The record of Cretaceous shortening accompanied by locally significant
NASA Astrophysics Data System (ADS)
Jeanniot, Ludovic; Kusznir, Nick; Manatschal, Gianreto; Mohn, Geoffroy; Beltrando, Marco
2014-05-01
Mantle exhumation and hyper-extended crust, as observed on the Iberia-Newfoundland conjugate margins, are key components of both present-day and fossil analogue magma-poor rifted margins. Conceptual models of the Alpine Tethys paleogeography evolution show a complex subsidence history, determined by the nature and composition of sedimentary, crustal and mantle rocks in the Alpine domains (Mohn et al., 2010). The relative timing of crustal rupture and decompressional melt initiation and inherited mantle composition control whether mantle exhumation may occur; the presence or absence of exhumed mantle therefore provides useful information on the timing of these events and constraints on lithosphere deformation modes and composition. A single mode of lithosphere deformation leading to continental breakup and sea-floor spreading cannot explain observations. We have determined the sequence of lithosphere deformation modes for the fossil Alpine Tethys margin using a numerical model of the temporal and spatial evolution of lithosphere deformation; the model has been calibrated against observations of subsidence and P-T-t history for the Alpine Tethys margin. A 2D finite element viscous flow model (FeMargin) is used to generate flow fields for a sequence of lithosphere deformation modes, which are used to advect lithosphere and asthenosphere temperature and material. FeMargin is kinematically driven by divergent deformation in the topmost 15-20 km of the lithosphere inducing passive upwelling beneath that layer; the upper lithosphere is assumed to deform by extensional faulting and magmatic intrusions, consistent with observations of deformation processes occurring at slow spreading ocean ridges (Cannat, 1996). We also include buoyancy enhanced upwelling in the kinematic model as proposed by Braun et al. (2000). We generate melt by decompressional melting using the parameterization and methodology of Katz et al. (2003). In the modelling of the Alpine Tethys margin
NASA Astrophysics Data System (ADS)
Tedeschi, Mahyra; Lanari, Pierre; Rubatto, Daniela; Hermann, Jörg; Pedrosa-Soares, Antônio Carlos; Dussin, Ivo; Aurélio Pinheiro, Marco; Bouvier, Anne-Sophie; Baumgartner, Lukas
2017-04-01
Reconstructing the metamorphic history of polycyclic tectono-metamorphic mafic rocks that preserve potential relicts of high-pressure metamorphism is challenging because such rocks are commonly retrogressed and rare in supercrustal sequences. However, pressure-temperature-time (P-T-t) information is required to obtain the paleo-geothermal gradients and thus to define those units as markers for suture zones. The mafic rocks from Pouso Alegre in the Meridional Brasília Orogen (SW-Brazil) outcrop as rare lenses within Sil-Grt gneisses, Amp-Grt orthogneisses and Bt granites. They are heavily weathered. They have previously been defined as "retro-eclogites", based on the characteristic symplectite texture and some mineralogical observations. They have been intepreted to mark the suture zone between the Paranapanema and São Francisco cratons, although no quantitative estimates of the pressure is available to support this conclusion. In this study we investigated in detail these samples to refine their P-T-t history. As commonly observed in retrogressed eclogites, the studied mafic rock shows symplectite and corona textures overprinting the former paragenesis of Garnet (Grt) - Clinopyroxene (Cpx) 1 - Amphibole (Amp) 1 - Rutile (Rt). Phase equilibrium modelling shows that this assemblage is stable at 690°C and 13.5 kbar, in line with Zr-in-rutile thermometry (720 ±30° C). Local compositions of the symplectite domains were used to retrieve the jadeite content of Cpx1. This low-Jd cpx is in line with the predictions of the model and confirms a maximum pressure of 14 kbar. The symplectite formed from the reaction Cpx1+Qz+H2O→Cpx2+Amp+Pl+Qz taking place at conditions of 600-750°C and <7 kbar. Zircon and monazite U-Th-Pb geochronology was performed for the mafic and surrounding rocks. Zircon core dates from the mafic rock spread along concordia from ca. 1.7 to 1.0 Ga with a cluster at 1520±17 Ma, which is interpreted as the protolith crystallization age. Zircon rim
Constitutive representation of damage development and healing in WIPP salt
Chan, K.S.; Bodner, S.R.; Fossum, A.F
1994-12-31
There has been considerable interest in characterizing and modeling the constitutive behavior of rock salt with particular reference to long-term creep and creep failure. The interest is motivated by the projected use of excavated rooms in salt rock formations as repositories for nuclear waste. It is presumed that closure of those rooms by creep ultimately would encapsulate the waste material, resulting in its effective isolation. A continuum mechanics approach for treating damage healing is formulated as part of a constitutive model for describing coupled creep, fracture, and healing in rock salt. Formulation of the healing term is, described and the constitutive model is evaluated against experimental data of rock salt from the Waste Isolation Pilot Plant (WIPP) site. The results indicate that healing anistropy in WIPP salt can be modeled with an appropriate power-conjugate equivalent stress, kinetic equation, and evolution equation for damage healing.
Activities report of PTT Research
NASA Astrophysics Data System (ADS)
In the field of postal infrastructure research, activities were performed on postcode readers, radiolabels, and techniques of operations research and artificial intelligence. In the field of telecommunication, transportation, and information, research was made on multipurpose coding schemes, speech recognition, hypertext, a multimedia information server, security of electronic data interchange, document retrieval, improvement of the quality of user interfaces, domotics living support (techniques), and standardization of telecommunication prototcols. In the field of telecommunication infrastructure and provisions research, activities were performed on universal personal telecommunications, advanced broadband network technologies, coherent techniques, measurement of audio quality, near field facilities, local beam communication, local area networks, network security, coupling of broadband and narrowband integrated services digital networks, digital mapping, and standardization of protocols.
Constitutive Modeling of Warm Deformation Flow Curves of an Eutectoid Steel
NASA Astrophysics Data System (ADS)
Rastegari, H.; Rakhshkhorshid, M.; Somani, M. C.; Porter, D. A.
2017-05-01
The capabilities of the commonly encountered Johnson-Cook and Arrhenius-type constitutive equations to describe the warm deformation flow curves of an eutectoid steel undergoing dynamic spheroidization have been compared based on the warm compression test data. Warm compression tests were conducted over the temperature range 620-770 °C and strain rates in the range of 0.01-10 s-1. The average absolute relative error values for the Johnson-Cook and Arrhenius-type constitutive equations were 44.03 and 6.50%, respectively, thereby showing that the Arrhenius-type constitutive equation is to be preferred. It is also shown that in contrast to the Arrhenius-type constitutive equation, the softening caused by dynamic spheroidization cannot be modeled using the Johnson-Cook equation.
Constitutive modeling of superalloy single crystals with verification testing
NASA Technical Reports Server (NTRS)
Jordan, Eric; Walker, Kevin P.
1985-01-01
The goal is the development of constitutive equations to describe the elevated temperature stress-strain behavior of single crystal turbine blade alloys. The program includes both the development of a suitable model and verification of the model through elevated temperature-torsion testing. A constitutive model is derived from postulated constitutive behavior on individual crystallographic slip systems. The behavior of the entire single crystal is then arrived at by summing up the slip on all the operative crystallographic slip systems. This type of formulation has a number of important advantages, including the prediction orientation dependence and the ability to directly represent the constitutive behavior in terms which metallurgists use in describing the micromechanisms. Here, the model is briefly described, followed by the experimental set-up and some experimental findings to date.
Constitutive modeling for isotropic materials
NASA Technical Reports Server (NTRS)
Lindholm, Ulric S.
1985-01-01
The objective is to develop a unified constitutive model for finite element structural analysis of turbine engine hot-section components. This effort constitutes a different approach for non-linear finite-element computer codes which have heretofore been based on classical inelastic methods. The unified constitutive theory to be developed will avoid the simplifying assumptions of classical theory and should more accurately represent the behavior of superalloy materials under cyclic loading conditions and high temperature environments. During the first two years of the program, extensive experimental correlations were made with two representative unified models. The experiments were both uniaxial and biaxial at temperatures up to 1093 C (2000 F). In addition, the unified models were adopted to the MARC finite element code and used for stress analysis of notched bar and turbine blade geometries.
High-temperature constitutive modeling
NASA Technical Reports Server (NTRS)
Robinson, D. N.; Ellis, J. R.
1984-01-01
Thermomechanical service conditions for high-temperature levels, thermal transients, and mechanical loads severe enough to cause measurable inelastic deformation are studied. Structural analysis in support of the design of high-temperature components depends strongly on accurate mathematical representations of the nonlinear, hereditary, inelastic behavior of structural alloys at high temperature, particularly in the relatively small strain range. Progress is discussed in the following areas: multiaxial experimentation to provide a basis for high-temperature multiaxial constitutive relationships; nonisothermal testing and theoretical development toward a complete thermomechanically path dependent formulation of viscoplasticity; and development of viscoplastic constitutive model accounting for initial anisotropy.
A Venture in Constitutional Law.
ERIC Educational Resources Information Center
Cole, W. Graham; Dillon, Dorothy H.
1980-01-01
Senior high girls and boys from two single-sex schools undertook a study of a Supreme Court case that provided insight not only into constitutional law and history but also into how men and women can work together and relate in other ways than dating. (DS)
Take Advantage of Constitution Day
ERIC Educational Resources Information Center
McCune, Bonnie F.
2008-01-01
The announcement of the mandate for Constitution and Citizenship Day shortly before September, 2005, probably led to groans of dismay. Not another "must-do" for teachers and schools already stressed by federal and state requirements for standardized tests, increasingly rigid curricula, and scrutiny from the public and officials. But the…
The Constitution and Academic Freedom.
ERIC Educational Resources Information Center
Gilbertson, Eric R.
During the past 150 years U.S. courts have demonstrated a special protectiveness toward academics and academic institutions. Academic freedom was not a concern when the U.S. Constitution and the First Amendment were drafted and is not mentioned in the "Federalist Papers." However, decisions by a series of Supreme Court justices led to…
The Geography behind the Constitution.
ERIC Educational Resources Information Center
Salter, Christopher L.; Hobbs, Gail L.
1988-01-01
Examines some of the geographical elements that influenced the creation of the U.S. Constitution, such as sectionalism, the Piedmont, and the Atlantic Coastal Plain. Focusing on aspects of geography that underlie the thinking, writing, and ratification of the document, the authors explore geography as environment, image-maker, and explicit…
Take Advantage of Constitution Day
ERIC Educational Resources Information Center
McCune, Bonnie F.
2008-01-01
The announcement of the mandate for Constitution and Citizenship Day shortly before September, 2005, probably led to groans of dismay. Not another "must-do" for teachers and schools already stressed by federal and state requirements for standardized tests, increasingly rigid curricula, and scrutiny from the public and officials. But the…
Matsumoto, Tomoko; Nogami, Keiji; Shima, Midori
2017-02-01
Patients with mild/moderate hemophilia (H)A, acquired HA (AHA) and lupus anticoagulants (LA), have prolonged aPTTs with low levels of factor (F)VIII activity, but the differentiation of these disorders is complex and time consuming. We established an approach to quickly differentiate these disorders using comprehensive coagulation tests. Patients' plasmas with mild/moderate HA, AHA, LA without anti-phospholipid syndrome [LA-APS(-)], and LA with APS [LA-APS(+)] were examined using clot waveform analysis (CWA) and thrombin generation test (TGT). Activated protein C (APC) sensitivity was assessed by TGT. CWA revealed similarly prolonged clot times in all groups [NP/mild/moderate HA/AHA/LA-APS(-)/LA-APS(+); 33 ± 1/82 ± 12/116 ± 44/90 ± 29/96 ± 15 s] but significantly different decreased maximal coagulation velocity (3.1 ± 0.1/1.3 ± 0.3/0.9 ± 0.5/1.6 ± 0.3/2.2 ± 0.5). In TGT, AHA group demonstrated severely reduced peak-thrombin levels (362 ± 23/170 ± 27/49 ± 21/158 ± 75/158 ± 99 nM), whilst both LA groups markedly prolonged lag times (4.5 ± 0.3/5.0 ± 0.4/4.7 ± 0.8/12.5 ± 7.7/28.8 ± 11.8 min), suggesting that AHA could be readily identified, but the different LA sub-types failed to be classified. An APC sensitivity demonstrated that 'normalized' APC-induced levels of peak thrombin in LA-APS(+) were significantly lower relative to LA-APS(-) (normalized %inhibition; 5 ± 7/42 ± 39 %). Our studies confirmed that %inhibition by APC was significantly decreased in NP preincubated with purified IgGs from LA-APS(+) compared to LA-APS(-), facilitating differentiation between LA groups. A combined approach using CWA and TGT could be a useful means of differentiating coagulation disorders with prolonged aPTT.
A Gradient-Based Constitutive Model for Shape Memory Alloys
NASA Astrophysics Data System (ADS)
Tabesh, Majid; Boyd, James; Lagoudas, Dimitris
2017-06-01
Constitutive models are necessary to design shape memory alloy (SMA) components at nano- and micro-scales in NEMS and MEMS. The behavior of small-scale SMA structures deviates from that of the bulk material. Unfortunately, this response cannot be modeled using conventional constitutive models which lack an intrinsic length scale. At small scales, size effects are often observed along with large gradients in the stress or strain. Therefore, a gradient-based thermodynamically consistent constitutive framework is established. Generalized surface and body forces are assumed to contribute to the free energy as work conjugates to the martensite volume fraction, transformation strain tensor, and their spatial gradients. The rates of evolution of these variables are obtained by invoking the principal of maximum dissipation after assuming a transformation surface, which is a differential equation in space. This approach is compared to the theories that use a configurational force (microforce) balance law. The developed constitutive model includes energetic and dissipative length scales that can be calibrated experimentally. Boundary value problems, including pure bending of SMA beams and simple torsion of SMA cylindrical bars, are solved to demonstrate the capabilities of this model. These problems contain the differential equation for the transformation surface as well as the equilibrium equation and are solved analytically and numerically. The simplest version of the model, containing only the additional gradient of martensite volume fraction, predicts a response with greater transformation hardening for smaller structures.
Young, C.W.
1997-10-01
In 1967, Sandia National Laboratories published empirical equations to predict penetration into natural earth materials and concrete. Since that time there have been several small changes to the basic equations, and several more additions to the overall technique for predicting penetration into soil, rock, concrete, ice, and frozen soil. The most recent update to the equations was published in 1988, and since that time there have been changes in the equations to better match the expanding data base, especially in concrete penetration. This is a standalone report documenting the latest version of the Young/Sandia penetration equations and related analytical techniques to predict penetration into natural earth materials and concrete. 11 refs., 6 tabs.
NASA Astrophysics Data System (ADS)
Britz, Dieter
In this chapter, we present most of the equations that apply to the systems and processes to be dealt with later. Most of these are expressed as equations of concentration dynamics, that is,concentration of one or more solution species as a function of time, as well as other variables, in the form of differential equations. Fundamentally, these are transport (diffusion-, convection- and migration-) equations but may be complicated by chemical processes occurring heterogeneously (i.e. at the electrode surface - electrochemical reaction) or homogeneously (in the solution bulk - chemical reaction). The transport components are all included in the general Nernst-Planck equation (see also Bard and Faulkner 2001) for the flux J j of species j
NASA Astrophysics Data System (ADS)
Prentis, Jeffrey J.
1996-05-01
One of the most challenging goals of a physics teacher is to help students see that the equations of physics are connected to each other, and that they logically unfold from a small number of basic ideas. Derivations contain the vital information on this connective structure. In a traditional physics course, there are many problem-solving exercises, but few, if any, derivation exercises. Creating an equation poem is an exercise to help students see the unity of the equations of physics, rather than their diversity. An equation poem is a highly refined and eloquent set of symbolic statements that captures the essence of the derivation of an equation. Such a poetic derivation is uncluttered by the extraneous details that tend to distract a student from understanding the essential physics of the long, formal derivation.
[Women, gender, and the Constitution].
1993-12-01
Although all the constitutions of Latin America directly or indirectly acknowledge the juridical equality of the sexes, these patriarchal societies continue to maintain institutional power in male hands and to neutralize legal actions favoring women. International instruments such as the Convention on Elimination of All Forms of Discrimination Against Women, approved by the UN in 1979, have given a firmer basis to policies and actions to improve the status of women. Obstacles to full equality of Latin American women are rooted in economic and sociopolitical factors, but lack of true political will also plays a significant role. A number of new laws in the past several years as well as the new Constitution have improved the legal position of Colombian women. The new Constitution recognizes fundamental rights that may be claimed directly before a judge, and social, economic, and collective rights requiring legislative development. Article 43 of the new Constitution states that women will not be subjected to any form of discrimination. Another norm states that women will enjoy special assistance and protection before and after childbirth, in recognition of the social functions of maternity. Article 43 also states that women who are heads of households will receive special assistance, but the corresponding regulations have not yet been promulgated. The mechanism of tutelage has become an important recourse that has been used in several cases in which fundamental rights of women have been violated or threatened because of their sex. The order of tutelage has been used in cases of adolescents expelled from school for pregnancy and of abused wives, as well as to force recognition of the social and economic contributions of housework.
The Constitution: Perspectives on Contemporary American Democracy.
ERIC Educational Resources Information Center
Close Up Foundation, Arlington, VA.
Four articles expressing the views of nine prominent United States citizens about the Constitution provide a context for reflecting on the meaning of the Constitution in present-day America. In "Why Has the Constitution Endured So Long?" Don Edwards, chairman of the House Civil and Constitutional Rights Subcommittee, discusses why the…
32 CFR 536.42 - Constitutional torts.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 3 2010-07-01 2010-07-01 true Constitutional torts. 536.42 Section 536.42... AGAINST THE UNITED STATES Investigation and Processing of Claims § 536.42 Constitutional torts. A claim for violation of the U.S. Constitution does not constitute a state tort and is not cognizable under...
Constitution-Writing in Central Europe.
ERIC Educational Resources Information Center
Troy, Daniel E.
1990-01-01
Remarks on experiences as a participant at a conference on constitution-writing that linked Czech and Slovak constitution writers with U.S. lawyers. Argues cultural traditions must be respected when advising how to write constitutions. Examines challenges facing Czech and Slovak constitution writers, including structuring the government; the…
Time-Delay Effects on Constitutive Gene Expression*
NASA Astrophysics Data System (ADS)
Feng, Yan-Ling; Dong, Jian-Min; Wang, Dan; Tang, Xu-Lei
2017-09-01
The dynamics of constitutive gene expression with delayed mRNA degradation is investigated, where the intrinsic noise caused by the small number of reactant molecules is introduced. It is found that the oscillatory behavior claimed in previous investigations does not appear in the approximation of small time delay, and the steady state distribution still follows the Poisson law. Furthermore, we introduce the extrinsic noise induced by surrounding environment to explore the effects of this noise and time delay on the Fano factor. Based on a delay Langevin equation and the corresponding Fokker–Planck equation, the distribution of mRNA copy-number is achieved analytically. The time delay and extrinsic noise play similar roles in the gene expression system, that is, they are able to result in the deviation of the Fano factor from 1 evidently. The measured Fano factor for constitutive gene expression is slightly larger than 1, which is perhaps attributed to the time-delay effect.
Constitutive relations associated with the Mott-Smith distribution function
Nathenson, M.; Baganoff, D.
1973-01-01
It is shown that the distribution function assumed by Mott-Smith determines a unique relation between heat flux, stress, and fluid velocity given by q = (3/2)??u, i.e., it provides a constitutive relation for heat flux, and it also determines a simple expression for this ratio of third-order central moments Q = . These expressions allow the equation of transfer for c x2 to be cast in a form that yields a nonlinear constitutive relation for stress. The results obtained from the Mott-Smith ansatz are compared with the theory of Baganoff and Nathenson and results from a numerical solution of the Boltzmann equation for shock-wave structure obtained by Hicks and Yen.
What constitutes a community placement?
Temple, Jenny
When developing pre-registration adult nursing programmes, education providers in both educational institutions and clinical areas must decide what is a community nursing placement and how much time students should spend there. This article considers definitions of what constitutes "community" in terms of clinical placements for student nurses. It suggests what might realistically be termed community nursing and home nursing and explains how these can enrich student nurses' experiences. The practice requirements for other pre-registration nursing fields, such as child, mental health and learning disabilities, have not been considered here, although some of the discussion would be relevant to these areas.
Unborn children as constitutional persons.
Roden, Gregory J
2010-01-01
In Roe v. Wade, the state of Texas argued that "the fetus is a 'person' within the language and meaning of the Fourteenth Amendment." To which Justice Harry Blackmun responded, "If this suggestion of personhood is established, the appellant's case, of course, collapses, for the fetus' right to life would then be guaranteed specifically by the Amendment." However, Justice Blackmun then came to the conclusion "that the word 'person,' as used in the Fourteenth Amendment, does not include the unborn." In this article, it is argued that unborn children are indeed "persons" within the language and meaning of the Fourteenth and Fifth Amendments. As there is no constitutional text explicitly holding unborn children to be, or not to be, "persons," this argument will be based on the "historical understanding and practice, the structure of the Constitution, and thejurisprudence of [the Supreme] Court." Specifically, it is argued that the Constitution does not confer upon the federal government a specifically enumerated power to grant or deny "personhood" under the Fourteenth Amendment. Rather, the power to recognize or deny unborn children as the holders of rights and duties has been historically exercised by the states. The Roe opinion and other Supreme Court cases implicitly recognize this function of state sovereignty. The states did exercise this power and held unborn children to be persons under the property, tort, and criminal law of the several states at the time Roe was decided. As an effect of the unanimity of the states in holding unborn children to be persons under criminal, tort, and property law, the text of the Equal Protection Clause of the Fourteenth Amendment compels federal protection of unborn persons. Furthermore, to the extent Justice Blackmun examined the substantive law in these disciplines, his findings are clearly erroneous and as a whole amount to judicial error. Moreover, as a matter of procedure, according to the due process standards recognized in
Nonlinear creep damage constitutive model for soft rocks
NASA Astrophysics Data System (ADS)
Liu, H. Z.; Xie, H. Q.; He, J. D.; Xiao, M. L.; Zhuo, L.
2017-02-01
In some existing nonlinear creep damage models, it may be less rigorous to directly introduce a damage variable into the creep equation when the damage variable of the viscous component is a function of time or strain. In this paper, we adopt the Kachanov creep damage rate and introduce a damage variable into a rheological differential constitutive equation to derive an analytical integral solution for the creep damage equation of the Bingham model. We also propose a new nonlinear viscous component which reflects nonlinear properties related to the axial stress of soft rock in the steady-state creep stage. Furthermore, we build an improved Nishihara model by using this new component in series with the correctional Nishihara damage model that describes the accelerating creep, and deduce the rheological constitutive relation of the improved model. Based on superposition principle, we obtain the damage creep equation for conditions of both uniaxial and triaxial compression stress, and study the method for determining the model parameters. Finally, this paper presents the laboratory test results performed on mica-quartz schist in parallel with, or vertical to the schistosity direction, and applies the improved Nishihara model to the parameter identification of mica-quartz schist. Using a comparative analysis with test data, results show that the improved model has a superior ability to reflect the creep properties of soft rock in the decelerating creep stage, the steady-state creep stage, and particularly within the accelerating creep stage, in comparison with the traditional Nishihara model.
Constitutive Modeling of Magnesium Alloy Sheets
Lee, M. G.; Piao, K.; Wagoner, R. H.; Lee, J. K.; Chung, K.; Kim, H. Y.
2007-05-17
Magnesium alloy sheets have unique mechanical properties: high in-plane anisotropy/asymmetry of yield stress and hardening response, which have not been thoroughly studied. The unusual mechanical behavior of magnesium alloys has been understood by the limited symmetry crystal structure of h.c.p metals and thus by deformation twinning. In this paper, the phenomenological continuum plasticity models considering the unusual plastic behavior of magnesium alloy sheet were developed for a finite element analysis. A new hardening law based on two-surface model was developed to consider the general stress-strain response of metal sheets such as Bauschinger effect, transient behavior and the unusual asymmetry. Three deformation modes observed during the continuous tension/compression tests were mathematically formulated with simplified relations between the state of deformation and their histories. In terms of the anisotropy and asymmetry of the initial yield stress, the Drucker-Prager's pressure dependent yield surface was modified to include the anisotropy of magnesium alloys. Also, characterization procedures of material parameters for the constitutive equations were presented and finally the correlation of simulation with measurements was performed to validate the proposed theory.
NASA Astrophysics Data System (ADS)
Viljamaa, Panu; Jacobs, J. Richard; Chris; JamesHyman; Halma, Matthew; EricNolan; Coxon, Paul
2014-07-01
In reply to a Physics World infographic (part of which is given above) about a study showing that Euler's equation was deemed most beautiful by a group of mathematicians who had been hooked up to a functional magnetic-resonance image (fMRI) machine while viewing mathematical expressions (14 May, http://ow.ly/xHUFi).
17 CFR 200.54 - Constitutional obligations.
Code of Federal Regulations, 2010 CFR
2010-04-01
... ORGANIZATION; CONDUCT AND ETHICS; AND INFORMATION AND REQUESTS Canons of Ethics § 200.54 Constitutional... Constitution. Insofar as the enactments of the Congress impose executive duties upon the members, they must...
Native Communities and the Peruvian Constitutional Assembly
ERIC Educational Resources Information Center
American Indian Journal, 1978
1978-01-01
A loosely knit coalition of over 25 native groups, the Peruvian Amazon Peoples has prepared a statement directed at the Peruvian Constitutional Assembly for purposes of Native input into the preparation of a revised national constitution. (JC)
Written Constitution or None: Which Works Better?
ERIC Educational Resources Information Center
Cowen, Zelman
1987-01-01
Explores the differences between the U.S. Constitution and British constitutional law. Specifically examines the concept of the U.S. Bill of Rights in relation to the United Kingdom common law doctrine of parliamentary sovereignty. (BSR)
A possible generalization of the field-theoretical Hamilton's equations
Savchin, V.M. )
1988-11-01
The development of classical dynamics as well as many branches of physics shows that the solution or analysis of variety of problems can be greatly simplified if the basic equations admit an analytic representation in terms of Hamilton's equations. The author proposes a generalization of Hamilton's equations in field theory which is applicable to partial differential equations of physical relevance. It is shown that the equations constitute a conceivable basis for the generalization of the theory of contact transformations and of Poisson's method.
How Does the Constitution Secure Rights?
ERIC Educational Resources Information Center
Goldwin, Robert A., Ed.; Schambra, William A., Ed.
Third in a series designed to help prepare the nation for a thoughtful observance of the Constitutional bicentennial, this publication presents six essays addressing the issue of human rights and the Constitution. "How the Constitution Protects Our Rights: A Look at the Seminal Years" (Robert A. Rutland) focuses on James Madison's role…
Theoretical Issues of the Constitutional Regulation Mechanism
ERIC Educational Resources Information Center
Zhussupova, Guldaray B.; Zhailyaubayev, Rassul T.; Ukin, Symbat K.; Shunayeva, Sylu M.; Nurmagambetov, Rachit G.
2016-01-01
The purpose of this research is to define the concept of "constitutional regulation mechanism." The definition of the concept of "constitutional regulation mechanism" will give jurists and legislators a theoretical framework for developing legal sciences, such as the constitutional law and the theory of state and law. The…
American Focus on World Constitutions. Teacher's Guide.
ERIC Educational Resources Information Center
Holmes, Stanley T., III
This curriculum project was designed to familiarize high school students with their own constitutional roots while gaining a better understanding of governmental systems developed by other nations. The project uses the U.S. Constitution as a baseline for analyzing the constitutions of other nations, and is intended to supplement courses in such…
32 CFR 536.42 - Constitutional torts.
Code of Federal Regulations, 2013 CFR
2013-07-01
... AGAINST THE UNITED STATES Investigation and Processing of Claims § 536.42 Constitutional torts. A claim for violation of the U.S. Constitution does not constitute a state tort and is not cognizable under... partially payable as a state tort. For example, a Fifth Amendment taking may be payable in an altered...
Antithetical Ethics: Kenneth Burke and the Constitution.
ERIC Educational Resources Information Center
Anderson, Virginia
1995-01-01
Shows how the textuality of the United States Constitution, the most venerable of classic democratic icons, might be exploited to nurture postmodern ethics. Shows how Kenneth Burke's reading of the Constitution accords with and augments the postmodern theories of J.-F. Lyotard and S. Jarratt. Discusses a postmodern Constitution and the…
State Constitutional Law: Teaching and Scholarship.
ERIC Educational Resources Information Center
Williams, Robert F.
1991-01-01
State constitutional law is an emerging area for legal education, partly because of state supreme court decisions relying on state rather than federal constitutional law. Studying state constitutional law highlights similarities and diversity of legal and governmental systems. Interest in establishment of curricula and materials in state law is…
32 CFR 536.42 - Constitutional torts.
Code of Federal Regulations, 2012 CFR
2012-07-01
... AGAINST THE UNITED STATES Investigation and Processing of Claims § 536.42 Constitutional torts. A claim for violation of the U.S. Constitution does not constitute a state tort and is not cognizable under... partially payable as a state tort. For example, a Fifth Amendment taking may be payable in an altered...
32 CFR 536.42 - Constitutional torts.
Code of Federal Regulations, 2011 CFR
2011-07-01
... AGAINST THE UNITED STATES Investigation and Processing of Claims § 536.42 Constitutional torts. A claim for violation of the U.S. Constitution does not constitute a state tort and is not cognizable under... partially payable as a state tort. For example, a Fifth Amendment taking may be payable in an altered...
32 CFR 536.42 - Constitutional torts.
Code of Federal Regulations, 2014 CFR
2014-07-01
... AGAINST THE UNITED STATES Investigation and Processing of Claims § 536.42 Constitutional torts. A claim for violation of the U.S. Constitution does not constitute a state tort and is not cognizable under... partially payable as a state tort. For example, a Fifth Amendment taking may be payable in an altered...
29 CFR 452.18 - Constitutional officers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... officer refers to a person holding a position identified as an officer by the constitution and bylaws of... constitution identifies the holder of such a position as an officer. On the other hand, legislative representatives who are required to be elected by the constitution and bylaws of a labor organization are not...
29 CFR 452.18 - Constitutional officers.
Code of Federal Regulations, 2014 CFR
2014-07-01
... officer refers to a person holding a position identified as an officer by the constitution and bylaws of... constitution identifies the holder of such a position as an officer. On the other hand, legislative representatives who are required to be elected by the constitution and bylaws of a labor organization are not...
29 CFR 452.18 - Constitutional officers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... officer refers to a person holding a position identified as an officer by the constitution and bylaws of... constitution identifies the holder of such a position as an officer. On the other hand, legislative representatives who are required to be elected by the constitution and bylaws of a labor organization are not...
DOE R&D Accomplishments Database
1998-09-21
In the late 1950s to early 1960s Rudolph A. Marcus developed a theory for treating the rates of outer-sphere electron-transfer reactions. Outer-sphere reactions are reactions in which an electron is transferred from a donor to an acceptor without any chemical bonds being made or broken. (Electron-transfer reactions in which bonds are made or broken are referred to as inner-sphere reactions.) Marcus derived several very useful expressions, one of which has come to be known as the Marcus cross-relation or, more simply, as the Marcus equation. It is widely used for correlating and predicting electron-transfer rates. For his contributions to the understanding of electron-transfer reactions, Marcus received the 1992 Nobel Prize in Chemistry. This paper discusses the development and use of the Marcus equation. Topics include self-exchange reactions; net electron-transfer reactions; Marcus cross-relation; and proton, hydride, atom and group transfers.
Unified constitutive model for single crystal deformation behavior with applications
NASA Technical Reports Server (NTRS)
Walker, K. P.; Meyer, T. G.; Jordan, E. H.
1988-01-01
Single crystal materials are being used in gas turbine airfoils and are candidates for other hot section components because of their increased temperature capabilities and resistance to thermal fatigue. Development of a constitutive model which assesses the inelastic behavior of these materials has been studied in 2 NASA programs: Life Prediction and Constitutive Models for Engine Hot Section Anisotropic Materials and Biaxial Constitutive Equation Development for Single Crystals. The model has been fit to a large body of constitutive data for single crystal PWA 1480 material. The model uses a unified approach for computing total inelastic strains (creep plus plasticity) on crystallographic slip systems reproducing observed directional and strain rate effects as a natural consequence of the summed slip system quantities. The model includes several of the effects that have been reported to influence deformation in single crystal materials, such as shear stress, latent hardening, and cross slip. The model is operational in a commercial Finite Element code and is being installed in a Boundary Element Method code.
78 FR 39721 - Constitution Pipeline Company, LLC; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-02
... Energy Regulatory Commission Constitution Pipeline Company, LLC; Notice of Application Take notice that on June 13, 2013, Constitution Pipeline Company, LLC (Constitution), having its principal place of...\\ Constitution further requests that the Commission grant Constitution a blanket certificate authorizing...
ERIC Educational Resources Information Center
Williams, Robert F.
1993-01-01
Argues that a complete and accurate understanding of constitutional history and constitutional law requires the study of state constitutions. Maintains that state constitutions contain a coherent political theory that is, in important respects, at variance with the concept of federalism. (CFR)
ERIC Educational Resources Information Center
Pallasch, Brian Thomas
This civic education resource packet is designed to provide teachers, community leaders, and other civic educators with an understanding of the differences between constitutional and non-constitutional governments. Six papers discussing the topic are included: "The Differences bewteen Constitutional and Non-Constitutional Governments" (John…
75 FR 57835 - Constitution Day and Citizenship Day, Constitution Week, 2010
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-22
... Proclamation 8562--Constitution Day and Citizenship Day, Constitution Week, 2010 Proclamation 8563--National POW/MIA Recognition Day, 2010 #0; #0; #0; Presidential Documents #0; #0; #0;#0;Federal Register / Vol... President ] Proclamation 8562 of September 16, 2010 Constitution Day and Citizenship Day, Constitution...
78 FR 57777 - Constitution Day and Citizenship Day, Constitution Week, 2013
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-19
... September 19, 2013 Part IV The President Proclamation 9019--Constitution Day and Citizenship Day, Constitution Week, 2013 Proclamation 9020--Honoring the Victims of the Tragedy at the Washington Navy Yard #0... September 16, 2013 Constitution Day and Citizenship Day, Constitution Week, 2013 By the President of...
77 FR 57981 - Constitution Day and Citizenship Day, Constitution Week, 2012
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-18
... September 18, 2012 Part VI The President Proclamation 8862--Constitution Day and Citizenship Day, Constitution Week, 2012 #0; #0; #0; Presidential Documents #0; #0; #0;#0;Federal Register / Vol. 77 , No. 181... ] Proclamation 8862 of September 13, 2012 Constitution Day and Citizenship Day, Constitution Week, 2012 By the...
2007-01-01
A b. Given an arbitrary relation→, we write →• for the total relation that extends→ by adding a pair a→• a for each a such that there is no b with a→ b...kind of a sort s is denoted by [s]. We write TΣ,k and TΣ,k(~x) to denote respectively the set of ground Σ-terms with kind k and of Σ-terms with kind k...variables. In membership equational logic, subsort relations and operator overloading are just a convenient way of writing corresponding Horn clauses
Temperature Dependent Constitutive Modeling for Magnesium Alloy Sheet
Lee, Jong K.; Lee, June K.; Kim, Hyung S.; Kim, Heon Y.
2010-06-15
Magnesium alloys have been increasingly used in automotive and electronic industries because of their excellent strength to weight ratio and EMI shielding properties. However, magnesium alloys have low formability at room temperature due to their unique mechanical behavior (twinning and untwining), prompting for forming at an elevated temperature. In this study, a temperature dependent constitutive model for magnesium alloy (AZ31B) sheet is developed. A hardening law based on non linear kinematic hardening model is used to consider Bauschinger effect properly. Material parameters are determined from a series of uni-axial cyclic experiments (T-C-T or C-T-C) with the temperature ranging 150-250 deg. C. The influence of temperature on the constitutive equation is introduced by the material parameters assumed to be functions of temperature. Fitting process of the assumed model to measured data is presented and the results are compared.
Constitutive modeling of viscoplastic damage in solder material
WEI,YONG; CHOW,C.L.; NEILSEN,MICHAEL K.; FANG,HUEI ELIOT
2000-04-17
This paper presents a constitutive modeling of viscoplastic damage in 63Sn-37Pb solder material taking into account the effects of microstructural change in grain coarsening. Based on the theory of damage mechanics, a two-scalar damage model is developed by introducing the damage variables and the free energy equivalence principle. An inelastic potential function based on the concept of inelastic damage energy release rate is proposed and used to derive an inelastic damage evolution equation. The validation of the model is carried out for the viscoplastic material by predicting monotonic tensile behavior and tensile creep curves at different temperatures. The softening behavior of the material under monotonic tension loading can be characterized with the model. The results demonstrate adequately the validity of the proposed viscoplastic constitutive modeling for the solder material.
Constitutive modelling of single crystal and directionally solidified superalloys
NASA Technical Reports Server (NTRS)
Jordan, E. H.; Walker, K. P.
1986-01-01
The trend towards improved engine efficiency and durability places increasing demands on materials that operate in the hot section of the gas turbine engine. These demands are being met by new coatings and materials such as single crystal and directionally solidified nickel-base superalloys which have greater creep/fatigue resistance at elevated temperatures and reduced susceptibility to grain boundary creep, corrosion and oxidation than conventionally cast alloys. Work carried out as part of a research program aimed at the development of constitutive equations to describe the elevated temperature stress-strain-time behavior of single crystal and directionally solidified turbine blade superalloys is discussed. The program involves both development of suitable constitutive models and their verification through elevated temperature tension-torsion testing of single crystals of PWA 1480.
NASA Astrophysics Data System (ADS)
Mirzadeh, Hamed
2015-03-01
Hot flow stress of 7075 aluminum alloy during compressive hot deformation was correlated to the Zener-Hollomon parameter through constitutive analyses based on the apparent approach and the proposed physically-based approach which accounts for the dependence of the Young's modulus and the self-diffusion coefficient of aluminum on temperature. It was shown that the latter approach not only results in a more reliable constitutive equation, but also significantly simplifies the constitutive analysis, which in turn makes it possible to conduct comparative hot working studies. It was also demonstrated that the theoretical exponent of 5 and the lattice self-diffusion activation energy of aluminum (142 kJ/mol) can be set in the hyperbolic sine law to describe the peak flow stresses and the resulting constitutive equation was found to be consistent with that resulted from the proposed physically-based approach.
NASA Astrophysics Data System (ADS)
Mousavi, Mohammad Reza; Arghavani, Jamal
2017-01-01
This paper presents a three-dimensional phenomenological constitutive model for magnetic shape memory alloys (MSMAs), developed within the framework of irreversible continuum thermodynamics. To this end, a proper set of internal variables is introduced to reflect the microstructural consequences on the material macroscopic behavior. Moreover, a stress-dependent thermodynamic force threshold for variant reorientation is introduced which improves the model accuracy. Preassumed kinetic equations for magnetic domain volume fractions, decoupled equations for magnetization unit vectors and appropriate presentation of the limit function for martensite variant reorientation lead to a simple formulation of the proposed constitutive model. To show the model capability in reproducing the main features of MSMAs, several numerical examples are solved and compared with available experimental data as well as available three-dimensional constitutive models in the literature. Demonstrating good agreement with experimental data besides possessing computational advantages, the proposed constitutive model can be used for analysis of MSMA-based smart structures.
Constitutive receptor systems for drug discovery.
Chen, G; Jayawickreme, C; Way, J; Armour, S; Queen, K; Watson, C; Ignar, D; Chen, W J; Kenakin, T
1999-12-01
This paper discusses the use of constitutively active G-protein-coupled receptor systems for drug discovery. Specifically, the ternary complex model is used to define the two major theoretical advantages of constitutive receptor screening-namely, the ability to detect antagonists as well as agonists directly and the fact that constitutive systems are more sensitive to agonists. In experimental studies, transient transfection of Chinese hamster ovary cyclic AMP response element (CRE) luciferase reporter cells with cDNA for human parathyroid hormone receptor, glucagon receptor, and glucagon-like peptide (GLP-1) receptor showed cDNA concentration-dependent constitutive activity with parathyroid hormone (PTH-1) and glucagon. In contrast, no constitutive activity was observed for GLP-1 receptor, yet responses to GLP-1 indicated that receptor expression had taken place. In another functional system, Xenopus laevi melanophores transfected with cDNA for human calcitonin receptor showed constitutive activity. Nine ligands for the calcitonin receptor either increased or decreased constitutive activity in this assay. The sensitivity of the system to human calcitonin increased with increasing constitutive activity. These data indicate that, for those receptors which naturally produce constitutive activity, screening in this mode could be advantageous over other methods.
Testing of constitutive models in LAME.
Hammerand, Daniel Carl; Scherzinger, William Mark
2007-09-01
Constitutive models for computational solid mechanics codes are in LAME--the Library of Advanced Materials for Engineering. These models describe complex material behavior and are used in our finite deformation solid mechanics codes. To ensure the correct implementation of these models, regression tests have been created for constitutive models in LAME. A selection of these tests is documented here. Constitutive models are an important part of any solid mechanics code. If an analysis code is meant to provide accurate results, the constitutive models that describe the material behavior need to be implemented correctly. Ensuring the correct implementation of constitutive models is the goal of a testing procedure that is used with the Library of Advanced Materials for Engineering (LAME) (see [1] and [2]). A test suite for constitutive models can serve three purposes. First, the test problems provide the constitutive model developer a means to test the model implementation. This is an activity that is always done by any responsible constitutive model developer. Retaining the test problem in a repository where the problem can be run periodically is an excellent means of ensuring that the model continues to behave correctly. A second purpose of a test suite for constitutive models is that it gives application code developers confidence that the constitutive models work correctly. This is extremely important since any analyst that uses an application code for an engineering analysis will associate a constitutive model in LAME with the application code, not LAME. Therefore, ensuring the correct implementation of constitutive models is essential for application code teams. A third purpose of a constitutive model test suite is that it provides analysts with example problems that they can look at to understand the behavior of a specific model. Since the choice of a constitutive model, and the properties that are used in that model, have an enormous effect on the results of an
Constitutive laws for deformation and dynamic recrystallization in cubic metals
Kocks, U.F.; Chen, S.R.
1993-04-01
We describe two cases in which constitutive laws for deformation kinetics are available that are both physically well founded and experimentally well obeyed. New experiments on Al-Mg alloys, in the regime of viscous deformation, fit the solute drift equation very well, with n-3 and Q{sub D} unadjustable; they do not fit the solute drag model. The high-stress regime, as well as all data for pure copper, fit the model of hardening and dynamic recovery, at least up to temperatures of 0.6 T{sub m}. In both cases, dynamic recrystallization occurs at high temperatures. It seems to follow rather than determine the deformation kinetics.
Constitutive Model Parameter Study For Armor Steel And Tungsten Alloys
2012-01-01
considered in the study. The first consisted of 90% tungsten ( W ), 7% nickel (Ni), and 3% iron (Fe) by volume and is denoted by 90W-7Ni-3Fe. The second...Hardness. Unpublished, April 2010. 6. G.T. Gray, S.R. Chen, W . Wright, and M.F. Lopez. Constitutive Equations for Annealed Metals Under Compression at...the High Pressure, High Strain Rate Loading Environment of Ballistic Impact. PhD thesis, Johns Hopkins University, 1992. 11. W . Lanz and W . Odermatt
A New Constitutive Model for the Plastic Flow of Metals at Elevated Temperatures
NASA Astrophysics Data System (ADS)
Spigarelli, S.; El Mehtedi, M.
2013-11-01
A new constitutive model based on the combination of the Garofalo and Hensel-Spittel equations has been used to describe the plastic flow behavior of an AA6005 aluminum alloy tested in torsion. The analysis of the experimental data by the constitutive model resulted in an excellent description of the flow curves. The model equation was then rewritten to explicitly include the Arrhenius term describing the temperature dependence of plastic deformation. The calculation indicated that the activation energy for hot working slowly decreased with increasing strain, leading to thermally activated flow softening. The combined use of the new equation and torsion testing led to the development of a constitutive model which can be safely adopted in a computer code to simulate forging or extrusion.
Viscoplastic constitutive relationships with dependence on thermomechanical history
NASA Technical Reports Server (NTRS)
Robinson, D. N.; Bartolotta, P. A.
1985-01-01
Experimental evidence of thermomechanical history dependence in the cyclic hardening behavior of some common high-temperature structural alloys is presented with special emphasis on dynamic metallurgical changes. The inadequacy of formulating nonisothermal constitutive equations solely on the basis of isothermal testing is discussed. A representation of thermoviscoplasticity is proposed that qualitatively accounts for the observed hereditary behavior. This is achieved by formulating the scalar evolutionary equation in an established viscoplasticity theory to reflect thermomechanical path dependence. To assess the importance of accounting for thermomechanical history dependence in practical structural analyses, two qualitative models are specified: (1) formulated as if based entirely on isothermal information; (2) to reflect thermomechanical path dependence using the proposed thermoviscoplastic representation. Predictions of the two models are compared and the impact the calculated differences in deformation behavior may have on subsequent lifetime predictions is discussed.
From Confederation to Constitution: 1781-1789.
ERIC Educational Resources Information Center
Urofsky, Melvin I.; Cox, Nancy
Students should achieve a higher level of understanding and appreciation of the evolving nature of the U.S. Constitution and its relevance to contemporary societal issues by studying historical documents from the period of time between the Articles of Confederation and the Constitution. This document begins with a history of that period and of the…
The Constitution at 200: Celebration Amidst Controversy.
ERIC Educational Resources Information Center
Collins, Sheila D.
1987-01-01
Current debates about the Constitution fall into the three following categories: (1) reappraisals of consitutional origins; (2) disagreements on hermeneutical principles used in contemporary applications; and (3) discussions of contemporary events whose consequences for law and political stability could not have been foreseen by the Constitution's…
From Confederation to Constitution: 1781-1789.
ERIC Educational Resources Information Center
Urofsky, Melvin I.; Cox, Nancy
Students should achieve a higher level of understanding and appreciation of the evolving nature of the U.S. Constitution and its relevance to contemporary societal issues by studying historical documents from the period of time between the Articles of Confederation and the Constitution. This document begins with a history of that period and of the…
The Constitution at 200: Celebration Amidst Controversy.
ERIC Educational Resources Information Center
Collins, Sheila D.
1987-01-01
Current debates about the Constitution fall into the three following categories: (1) reappraisals of consitutional origins; (2) disagreements on hermeneutical principles used in contemporary applications; and (3) discussions of contemporary events whose consequences for law and political stability could not have been foreseen by the Constitution's…
Women and the Constitution. Curriculum Unit.
ERIC Educational Resources Information Center
MacGregor, Molly Murphy
The purpose of this curriculum unit is to give students a better understanding of the history of the relationship between women and constitutional issues. The study of women and the United States Constitution is an important reminder of the complexity of a democracy. In the United States, even today, the ideology of freedom and justice is often…
29 CFR 452.18 - Constitutional officers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... performs no executive functions and whose duties are confined to promoting the interests of members in... officer position by the union's constitution, or the holder of the position performs executive functions... constitution, are not members of any executive board or similar governing body, and do not perform...
29 CFR 452.18 - Constitutional officers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... performs no executive functions and whose duties are confined to promoting the interests of members in... officer position by the union's constitution, or the holder of the position performs executive functions... constitution, are not members of any executive board or similar governing body, and do not perform...
The United States and the Indian Constitution.
ERIC Educational Resources Information Center
Weil, Jonathan S.
India, a huge land with the second largest population in the world, socially and economically poor, and culturally and linguistically diverse, became the largest democracy in the world on November 26, 1949 with the adoption of the Indian Constitution. The goals of that constitution are: (1) the achievement of national unity and stability; (2) the…
The Educational Significance of Canada's Constitution.
ERIC Educational Resources Information Center
Wells, Allen R.
1985-01-01
Traces the historical relationship of Canada's educational system to its constitution. Concludes that the significance of the patriation of Canada's constitution for education includes strengthening a drive for bilingual education, promoting equality of opportunity, and continuing education as a provincial concern while unifying, nationally, the…
Resources for Teaching about the Constitution.
ERIC Educational Resources Information Center
Cohen, Cheryl B.
1987-01-01
Describes eight resources for teaching about the United States Constitution available from ERIC. Described are instructional materials for junior and senior high school students on such topics as (1) the role of the U.S. Supreme Court, (2) freedom of the press, (3) the history of the United States Constitution, and (4) problems of the…
Politics, Economics, and Religion in the Constitution.
ERIC Educational Resources Information Center
Stevens, Richard G.
1986-01-01
Explains the relationship between politics, economics, and religion through the philosophies of Smith, Hobbes, and Locke. Maintains that the unamended Constitution is a reconciliation of politics, religion, and economics. Defends this claim by examining property rights and the Constitution's regard to means in pursuance of freedom and justice.…
The Five Great Ideas of Our Constitution.
ERIC Educational Resources Information Center
Starr, Isidore
1987-01-01
Identifies five great ideas of the U.S. Constitution as power, liberty, justice, equality, and property. The first of two installments, article focuses on how ideas of power and liberty are presented in the Constitution. It also discusses how people may exercise power through voting and public protest and liberty through their First Amendment…
The Meaning of Religion: A Constitutional Perspective.
ERIC Educational Resources Information Center
Lilly, Edward R.
The problems of formulating a legal definition of religion as used in the U.S. Constitution may be traced through the Supreme Court's interpretation of the word. According to the U.S. Constitution, religious tests cannot be required for any office or public trust under the central government. The Bill of Rights states that the national government…
Public and Constitutional Support for Character Education.
ERIC Educational Resources Information Center
Vessels, Gordon G.; Boyd, Stephen M.
1996-01-01
Character education thrives on an informed understanding of constitutional principles and an inclusive commitment-building process. U.S. Supreme Court opinions that clarify public school students' free speech rights have established values education as a constitutionally acceptable practice. Challenges might lie in possible violations of the First…
World Studies through a Comparative Constitutional Prism.
ERIC Educational Resources Information Center
Robinson, Donald
1992-01-01
Emphasizes the importance of understanding the development of democracy around the world by comparative study of constitutions. Uses the development of the Japanese constitution after World War II as a case study. Describes the work of the team appointed by General Douglas MacArthur and the significance of the clause guaranteeing equal rights for…
The Constitution in the Twentieth Century.
ERIC Educational Resources Information Center
Murphy, Paul L.
1987-01-01
Investigates the development of the United States Constitution in the twentieth century up to and including the Burger Court. Contends that interpreting the Constitution is an important issue of our times. Consequently argues that we should teach students about the development of this document. (RKM)
Constitutive model for the dynamic response of a NiTi shape memory alloy
NASA Astrophysics Data System (ADS)
Shi, Xiaohong; Zeng, Xiangguo; Chen, Huayan
2016-07-01
In this paper, based on irreversible thermodynamic theory, the Helmholtz free energy function, was selected to deduce both the master equations and evolution equations of the constitutive model of a NiTi alloy under high strain. The Helmholtz free energy function contains the parameters of the reflecting phase transition and plastic property. The constitutive model for a NiTi alloy was implemented using a semi-implicit stress integration algorithm. Four successive stages can be differentiated and simulated: parent phase elasticity, martensitic phase transition, martensitic elasticity, and dislocation yield. The simulation results are in good agreement with the experimental results.
NASA Technical Reports Server (NTRS)
Koenig, Herbert A.; Chan, Kwai S.; Cassenti, Brice N.; Weber, Richard
1988-01-01
A unified numerical method for the integration of stiff time dependent constitutive equations is presented. The solution process is directly applied to a constitutive model proposed by Bodner. The theory confronts time dependent inelastic behavior coupled with both isotropic hardening and directional hardening behaviors. Predicted stress-strain responses from this model are compared to experimental data from cyclic tests on uniaxial specimens. An algorithm is developed for the efficient integration of the Bodner flow equation. A comparison is made with the Euler integration method. An analysis of computational time is presented for the three algorithms.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Constitution has guided our progress from 13 to 50 United States that stretch from sea to shining sea. It has... reach. As we mark this 225th anniversary of the signing of our Constitution, we also recognize the...
Division G Commission 35: Stellar Constitution
NASA Astrophysics Data System (ADS)
Limongi, Marco; Lattanzio, John C.; Charbonnel, Corinne; Dominguez, Inma; Isern, Jordi; Karakas, Amanda; Leitherer, Claus; Marconi, Marcella; Shaviv, Giora; van Loon, Jacco
2016-04-01
Commission 35 (C35), ``Stellar Constitution'', consists of members of the International Astronomical Union whose research spans many aspects of theoretical and observational stellar physics and it is mainly focused on the comprehension of the properties of stars, stellar populations and galaxies. The number of members of C35 increased progressively over the last ten years and currently C35 comprises about 400 members. C35 was part of Division IV (Stars) until 2014 and then became part of Division G (Stars and Stellar Physics), after the main IAU reorganisation in 2015. Four Working Groups have been created over the years under Division IV, initially, and Division G later: WG on Active B Stars, WG on Massive Stars, WG on Abundances in Red Giant and WG on Chemically Peculiar and Related Stars. In the last decade the Commission had 4 presidents, Wojciech Dziembowski (2003-2006), Francesca D'Antona (2006-2009), Corinne Charbonnel (2009-2012) and Marco Limongi (2012-2015), who were assisted by an Organizing Committee (OC), usually composed of about 10 members, all of them elected by the C35 members and holding their positions for three years. The C35 webpage (http://iau-c35.stsci.edu) has been designed and continuously maintained by Claus Leitherer from the Space Telescope Institute, who deserves our special thanks. In addition to the various general information on the Commission structure and activities, it contains links to various resources, of interest for the members, such as stellar models, evolutionary tracks and isochrones, synthetic stellar populations, stellar yields and input physics (equation of state, nuclear cross sections, opacity tables), provided by various groups. The main activity of the C35 OC is that of evaluating, ranking and eventually supporting the proposals for IAU sponsored meetings. In the last decade the Commission has supported several meetings focused on topics more or less relevant to C35. Since the primary aim of this document is to
Large Deformation Constitutive Laws for Isotropic Thermoelastic Materials
Plohr, Bradley J.; Plohr, Jeeyeon N.
2012-07-25
We examine the approximations made in using Hooke's law as a constitutive relation for an isotropic thermoelastic material subjected to large deformation by calculating the stress evolution equation from the free energy. For a general thermoelastic material, we employ the volume-preserving part of the deformation gradient to facilitate volumetric/shear strain decompositions of the free energy, its first derivatives (the Cauchy stress and entropy), and its second derivatives (the specific heat, Grueneisen tensor, and elasticity tensor). Specializing to isotropic materials, we calculate these constitutive quantities more explicitly. For deformations with limited shear strain, but possibly large changes in volume, we show that the differential equations for the stress components involve new terms in addition to the traditional Hooke's law terms. These new terms are of the same order in the shear strain as the objective derivative terms needed for frame indifference; unless the latter terms are negligible, the former cannot be neglected. We also demonstrate that accounting for the new terms requires that the deformation gradient be included as a field variable
Constitutive model for fiber-reinforced materials with deformable matrices.
Planas, J; Guinea, G V; Elices, M
2007-10-01
A great number of biological structures are composed of fibers (elastin, collagen, etc.) dispersed on an aqueous matrix in such a complex way that a detailed mechanical analysis based on microconstituents is, for practical purposes, out of reach. Consequently, the preferred approach to the mechanical behavior of these materials is based on setting up of constitutive equations that homogenize the behavior while capturing their main microstructural features. This work presents a simple macroscopic model for fiber-reinforced materials with deformable matrices, especially suited to many biological structural tissues. The constitutive equation is derived by imposing equivalence between the virtual works of both the fiber-reinforced and the equivalent continuum media, showing that it is independent of the control volume used for such equivalence. The model is particularized to incompressible materials, and an extension to orthotropic biological fibers is shown. Numerical simulations of uniaxial tests on silk fibers demonstrate the model's ability to capture the progressive alignment of the microconstituents under large deformations.
Constructing constitutive relationships for seismic and aseismic fault slip
Beeler, N.M.
2009-01-01
For the purpose of modeling natural fault slip, a useful result from an experimental fault mechanics study would be a physically-based constitutive relation that well characterizes all the relevant observations. This report describes an approach for constructing such equations. Where possible the construction intends to identify or, at least, attribute physical processes and contact scale physics to the observations such that the resulting relations can be extrapolated in conditions and scale between the laboratory and the Earth. The approach is developed as an alternative but is based on Ruina (1983) and is illustrated initially by constructing a couple of relations from that study. In addition, two example constitutive relationships are constructed; these describe laboratory observations not well-modeled by Ruina's equations: the unexpected shear-induced weakening of silica-rich rocks at high slip speed (Goldsby and Tullis, 2002) and fault strength in the brittle ductile transition zone (Shimamoto, 1986). The examples, provided as illustration, may also be useful for quantitative modeling.
NASA Astrophysics Data System (ADS)
Whitney, Donna L.; Roger, Françoise; Teyssier, Christian; Rey, Patrice F.; Respaut, J.-P.
2015-11-01
In many orogens, high-pressure (HP) metamorphic rocks such as eclogite occur as lenses in quartzofeldspathic gneiss that equilibrated at much lower pressures. The pressure-temperature-time (P-T-t) history of eclogite relative to host gneiss provides information about mechanisms and timescales of exhumation of orogenic crust. The Montagne Noire of the southern Massif Central, France, is an eclogite-bearing gneiss (migmatite) dome located at the orogen-foreland transition of the Variscan belt. Results of our study show that it contains the youngest eclogite in the orogen, similar in age to migmatite and granite that crystallized under low-pressure conditions. P-T conditions for an exceptionally unaltered eclogite from the central Montagne Noire were estimated using a pseudosection supplemented by garnet-clinopyroxene and Zr-in-rutile thermometry. Results indicate peak P ∼ 1.4 GPa and T ∼ 725°C for Mg-rich garnet rim (50 mol% pyrope) + omphacite (36 mol% jadeite) + rutile + quartz. U-Pb geochronology (LA-ICP-MS) of 16 zoned zircon grains yielded ∼360 Ma (4 cores) and ∼315 Ma (12 rims and cores). Rare earth element abundances determined by LA-ICP-MS for dated zircon are consistent with crystallization of ∼315 Ma zircon under garnet-stable, plagioclase-unstable conditions that we interpret to indicate high pressure; in contrast, the ∼360 Ma zircon core corresponds to crystallization under lower pressure plagioclase-stable conditions. Based on garnet zoning and inclusion suites, rutile textures and Zr zoning, P-T results, and zircon petrochronology, we interpret the ∼315 Ma date as the age of eclogite-facies metamorphism that only slightly preceded dome formation and crystallization at 315-300 Ma. This age relation indicates that eclogite formation at high pressure and migmatite dome emplacement at low pressure were closely spaced in time. We propose that collapse-driven material transfer from the hot orogen to the cool foreland resulted in thickening of
Dorais, Michael J.; Wintsch, Robert P.; Kunk, Michael J.; Aleinikoff, John; Burton, William; Underdown, Christine; Kerwin, Charles M.
2012-01-01
We present new evidence for the assignment of the Neoproterozoic Massabesic Gneiss Complex of New Hampshire to the Gander terrane rather than the Avalon terrane. The majority of Avalonian (sensu stricto) igneous and meta-igneous rocks as defined in Maritime Canada have positive whole-rock ɛNd compared to more negative values for Gander rocks, although there is a region of overlap in ɛNd between the two terranes. Our samples from areas in Connecticut previously thought to be Avalonian and samples from the Willimantic dome have the same isotopic signatures as Maritime Canada Avalon. In contrast, samples from the Clinton dome of southern Connecticut plots exclusively in the Gander field. The majority of the orthogneiss samples from Lyme dome (coastal Connecticut), Pelham dome (central Massachusetts) and Massabesic Gneiss Complex also plot in the Gander field, with a few samples plotting in the overlap zone between Gander and Avalon. U-Pb age distributions of detrital zircon populations from quartzites from the Massabesic Gneiss Complex more closely approximate the data from the Lyme Dome rather than Avalon. Additionally, the similarity of the P-T-t path for the rocks of the Massabesic Gneiss Complex (established by thermobarometry and 40Ar/39Ar dating of amphibole, muscovite, biotite and K-feldspar) with that established in the Ganderian Lyme dome of southern Connecticut strengthens the assignment of these rocks to a single Gander block that docked to Laurentia during the Salinic Orogeny. The identification of Ganderian isotopic signatures for these rocks all of which show evidence for Alleghanian metamorphism, supports the hypothesis that Neoproterozoic Gander lower crustal rocks underlie southern New Hampshire, Massachusetts, and Connecticut, and that all rocks of the overlying Central Maine trough that largely escaped high-grade Alleghanian metamorphism are allochthonous. We suggest that during the Alleghanian, the docking of Gondwana caused Avalon to wedge into
The Constitutive Modeling of Thin Films with Randon Material Wrinkles
NASA Technical Reports Server (NTRS)
Murphey, Thomas W.; Mikulas, Martin M.
2001-01-01
Material wrinkles drastically alter the structural constitutive properties of thin films. Normally linear elastic materials, when wrinkled, become highly nonlinear and initially inelastic. Stiffness' reduced by 99% and negative Poisson's ratios are typically observed. This paper presents an effective continuum constitutive model for the elastic effects of material wrinkles in thin films. The model considers general two-dimensional stress and strain states (simultaneous bi-axial and shear stress/strain) and neglects out of plane bending. The constitutive model is derived from a traditional mechanics analysis of an idealized physical model of random material wrinkles. Model parameters are the directly measurable wrinkle characteristics of amplitude and wavelength. For these reasons, the equations are mechanistic and deterministic. The model is compared with bi-axial tensile test data for wrinkled Kaptong(Registered Trademark) HN and is shown to deterministically predict strain as a function of stress with an average RMS error of 22%. On average, fitting the model to test data yields an RMS error of 1.2%
Closing in on the constitution of consciousness
Miller, Steven M.
2014-01-01
The science of consciousness is a nascent and thriving field of research that is founded on identifying the minimally sufficient neural correlates of consciousness. However, I have argued that it is the neural constitution of consciousness that science seeks to understand and that there are no evident strategies for distinguishing the correlates and constitution of (phenomenal) consciousness. Here I review this correlation/constitution distinction problem and challenge the existing foundations of consciousness science. I present the main analyses from a longer paper in press on this issue, focusing on recording, inhibition, stimulation, and combined inhibition/stimulation strategies, including proposal of the Jenga analogy to illustrate why identifying the minimally sufficient neural correlates of consciousness should not be considered the ultimate target of consciousness science. Thereafter I suggest that while combined inhibition and stimulation strategies might identify some constitutive neural activities—indeed minimally sufficient constitutive neural activities—such strategies fail to identify the whole neural constitution of consciousness and thus the correlation/constitution distinction problem is not fully solved. Various clarifications, potential objections and related scientific and philosophical issues are also discussed and I conclude by proposing new foundational claims for consciousness science. PMID:25452738
Constitutive relationships of prestressed steel fiber concrete membrane elements
NASA Astrophysics Data System (ADS)
Hoffman, Norman S.
Steel Fiber Concrete (SFC) displays certain tensile and shear characteristics which are beneficial for concrete that is loaded in a state of shear stress. For example, prestressed bridge beams carry shear load in their web by utilizing shear stirrups. If the properties of SFC can be better understood, then it may be possible to replace the shear stirrups with SFC. The first step in understanding this behavior is to develop a constitutive model for prestressed SFC. Two groups of full-scale prestressed steel fiber concrete (SFC) panels, with a nominal strength of 6 ksi, were tested in the Universal Element Testing machine at Thomas TC Hsu Structural Testing Laboratory to establish the effect of fiber and the level of prestress on the constitutive laws of fiber concrete and prestressing tendon. The specimens contained from 5 to 20 fully tensioned, low-relaxation grade 270 tendons. Fiber content ranged from 0.5% to 1.5% using high performance hooked end fibers. The first group of five panels, designated Group TEF, was used to determine the basic constitutive properties of prestressed SEC for use in the Softened Membrane Model (SMM). The constitutive model consists of smeared tensile and compressive stress strain relationships. An equation for softening with respect of both fiber content and tensile strain is presented. Also presented is a new equation for prestressed SFC in tension. It is notable that the behavior of prestressed SFC in tension displayed significant post-cracking tensile strength for fiber contents ranging from 0.5% to 1.5% by volume. Prior research on SFC using unreinforced dog-bone specimens, or prismatic specimens reinforced with only a single isolated tendon, are not capable of capturing SFC behavior afforded by the stress state, multiple load paths, and confinement situation available in full-scale panel assemblies. The second set of 5 test panels, designated Group TAF, was used to examine the properties of prestressed SFC under the conditions of
Nonlinear acoustic wave equations with fractional loss operators.
Prieur, Fabrice; Holm, Sverre
2011-09-01
Fractional derivatives are well suited to describe wave propagation in complex media. When introduced in classical wave equations, they allow a modeling of attenuation and dispersion that better describes sound propagation in biological tissues. Traditional constitutive equations from solid mechanics and heat conduction are modified using fractional derivatives. They are used to derive a nonlinear wave equation which describes attenuation and dispersion laws that match observations. This wave equation is a generalization of the Westervelt equation, and also leads to a fractional version of the Khokhlov-Zabolotskaya-Kuznetsov and Burgers' equations.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., Constitution Week, 2010By the President of the United States of America A Proclamation The summer of 1787 was a... Convention in Philadelphia established a Constitution for the United States of America, signing the finished... taking a solemn oath to “support and defend the Constitution and laws of the United States of...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., Constitution Week, 2011By the President of the United States of America A Proclamation In the summer of 1787... months of fierce debate and hard-fought compromise, the delegates signed the Constitution of the United States. For more than two centuries, the Constitution has presided as the supreme law of the...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., Constitution Week, 2013By the President of the United States of America A Proclamation In May of 1787... each year as “Constitution Week.” NOW, THEREFORE, I, BARACK OBAMA, President of the United States of... through September 23, 2013, as Constitution Week. I encourage Federal, State, and local officials, as...
Shore, B.W.
1981-01-30
The equations of motion are discussed which describe time dependent population flows in an N-level system, reviewing the relationship between incoherent (rate) equations, coherent (Schrodinger) equations, and more general partially coherent (Bloch) equations. Approximations are discussed which replace the elaborate Bloch equations by simpler rate equations whose coefficients incorporate long-time consequences of coherence.
[The right to health. Constitutional dimensions].
Pestalozza, C
2007-09-01
A fundamental "right to health" is expressly guaranteed by the constitutions of several Bundesländer, but unknown to the German Federal Constitution. Instead the Federal Constitutional Court has - especially on the basis of related human rights - developed the obligation of the State to protect everybody's life and physical integrity, which in some respects comes near to a "right to health". The State's autonomy in financial matters, the scarcity of its financial resources and the individual's natural responsibility for his own health though advise against exaggerated hopes set in a "right to health".
Fractal ladder models and power law wave equations
Kelly, James F.; McGough, Robert J.
2009-01-01
The ultrasonic attenuation coefficient in mammalian tissue is approximated by a frequency-dependent power law for frequencies less than 100 MHz. To describe this power law behavior in soft tissue, a hierarchical fractal network model is proposed. The viscoelastic and self-similar properties of tissue are captured by a constitutive equation based on a lumped parameter infinite-ladder topology involving alternating springs and dashpots. In the low-frequency limit, this ladder network yields a stress-strain constitutive equation with a time-fractional derivative. By combining this constitutive equation with linearized conservation principles and an adiabatic equation of state, a fractional partial differential equation that describes power law attenuation is derived. The resulting attenuation coefficient is a power law with exponent ranging between 1 and 2, while the phase velocity is in agreement with the Kramers–Kronig relations. The fractal ladder model is compared to published attenuation coefficient data, thus providing equivalent lumped parameters. PMID:19813816
Fractal ladder models and power law wave equations.
Kelly, James F; McGough, Robert J
2009-10-01
The ultrasonic attenuation coefficient in mammalian tissue is approximated by a frequency-dependent power law for frequencies less than 100 MHz. To describe this power law behavior in soft tissue, a hierarchical fractal network model is proposed. The viscoelastic and self-similar properties of tissue are captured by a constitutive equation based on a lumped parameter infinite-ladder topology involving alternating springs and dashpots. In the low-frequency limit, this ladder network yields a stress-strain constitutive equation with a time-fractional derivative. By combining this constitutive equation with linearized conservation principles and an adiabatic equation of state, a fractional partial differential equation that describes power law attenuation is derived. The resulting attenuation coefficient is a power law with exponent ranging between 1 and 2, while the phase velocity is in agreement with the Kramers-Kronig relations. The fractal ladder model is compared to published attenuation coefficient data, thus providing equivalent lumped parameters.
Derivation of stable Burnett equations for rarefied gas flows
NASA Astrophysics Data System (ADS)
Singh, Narendra; Jadhav, Ravi Sudam; Agrawal, Amit
2017-07-01
A set of constitutive relations for the stress tensor and heat flux vector for the hydrodynamic description of rarefied gas flows is derived in this work. A phase density function consistent with Onsager's reciprocity principle and H theorem is utilized to capture nonequilibrium thermodynamics effects. The phase density function satisfies the linearized Boltzmann equation and the collision invariance property. Our formulation provides the correct value of the Prandtl number as it involves two different relaxation times for momentum and energy transport by diffusion. Generalized three-dimensional constitutive equations for different kinds of molecules are derived using the phase density function. The derived constitutive equations involve cross single derivatives of field variables such as temperature and velocity, with no higher-order derivative in higher-order terms. This is remarkable feature of the equations as the number of boundary conditions required is the same as needed for conventional Navier-Stokes equations. Linear stability analysis of the equations is performed, which shows that the derived equations are unconditionally stable. A comparison of the derived equations with existing Burnett-type equations is presented and salient features of our equations are outlined. The classic internal flow problem, force-driven compressible plane Poiseuille flow, is chosen to verify the stable Burnett equations and the results for equilibrium variables are presented.
Constitutively Active Rhodopsin and Retinal Disease
Park, Paul Shin-Hyun
2014-01-01
Rhodopsin is the light receptor in rod photoreceptor cells of the retina that initiates scotopic vision. In the dark, rhodopsin is bound to the chromophore 11-cis retinal, which locks the receptor in an inactive state. The maintenance of an inactive rhodopsin in the dark is critical for rod photoreceptor cells to remain highly sensitive. Perturbations by mutation or absence of 11-cis retinal can cause rhodopsin to become constitutively active, which leads to the desensitization of photoreceptor cells and, in some instances, retinal degeneration. Constitutive activity can arise in rhodopsin by various mechanisms and can cause a variety of inherited retinal diseases including Leber congenital amaurosis, congenital night blindness, and retinitis pigmentosa. In this review, the molecular and structural properties of different constitutively active forms of rhodopsin are overviewed and the possibility that constitutive activity can arise from different active-state conformations is discussed. PMID:24931191
The Constitution and the Black Experiences
ERIC Educational Resources Information Center
Miles, E. W.
1973-01-01
A review of the constitutional promises to black people, early congressional efforts to fulfill these promises, early court cases construing the Fourteenth Amendment and the impact of these decisions along with their subsequent overruling. (Author/JB)
Capturing the Essence of the Constitution.
ERIC Educational Resources Information Center
McMorrow, Catherine
1987-01-01
Offers three sample lesson plans for elementary grades designed to demonstrate the religious values inherent in the United States Constitution. Each lesson plan focuses on one amendment and includes a discussion of class activities. (DMM)
7 CFR 718.201 - Farm constitution.
Code of Federal Regulations, 2012 CFR
2012-01-01
...; (ii) Counties do not touch because of a correction line adjustment; or (iii) The land is within 20... increase amount of program benefits received; (2) The farm was not properly constituted the previous time...
7 CFR 718.201 - Farm constitution.
Code of Federal Regulations, 2013 CFR
2013-01-01
...; (ii) Counties do not touch because of a correction line adjustment; or (iii) The land is within 20... increase amount of program benefits received; (2) The farm was not properly constituted the previous time...
7 CFR 718.201 - Farm constitution.
Code of Federal Regulations, 2014 CFR
2014-01-01
...; (ii) Counties do not touch because of a correction line adjustment; or (iii) The land is within 20... increase amount of program benefits received; (2) The farm was not properly constituted the previous time...
Dynamic constitutional frameworks for DNA biomimetic recognition.
Catana, Romina; Barboiu, Mihail; Moleavin, Ioana; Clima, Lilia; Rotaru, Alexandru; Ursu, Elena-Laura; Pinteala, Mariana
2015-02-07
Linear and cross-linked dynamic constitutional frameworks generated from reversibly interacting linear PEG/core constituents and cationic sites shed light on the dominant coiling versus linear DNA binding behaviours, closer to the histone DNA binding wrapping mechanism.
Toward a Turbulence Constitutive Relation for Rotating Flows
NASA Technical Reports Server (NTRS)
Ristorcelli, J. R.
1996-01-01
In rapidly rotating turbulent flows the largest scales of the motion are in approximate geostrophic balance. Single-point turbulence closures, in general, cannot attain a geostrophic balance. This article addresses and resolves the possibility of constitutive relation procedures for single-point second order closures for a specific class of rotating or stratified flows. Physical situations in which the geostrophic balance is attained are described. Closely related issues of frame-indifference, horizontal nondivergence, Taylor-Proudman theorem and two-dimensionality are, in the context of both the instantaneous and averaged equations, discussed. It is shown, in the absence of vortex stretching along the axis of rotation, that turbulence is frame-indifferent. A derivation and discussion of a geostrophic constraint which the prognostic equations for second-order statistics must satisfy for turbulence approaching a frame-indifferent limit is given. These flow situations, which include rotating and nonrotating stratified flows, are slowly evolving flows in which the constitutive relation procedures are useful. A nonlinear non-constant coefficient representation for the rapid-pressure strain covariance appearing in the Reynolds stress and heat flux equations consistent with the geostrophic balance is described. The rapid-pressure strain model coefficients are not constants determined by numerical optimization but are functions of the state of the turbulence as parameterized by the Reynolds stresses and the turbulent heat fluxes. The functions are valid for all states of the turbulence attaining their limiting values only when a limit state is achieved. These issues are relevant to strongly vortical flows as well as flows such as the planetary boundary layers, in which there is a transition from a three-dimensional shear driven turbulence to a geostrophic or horizontal turbulence.
Constitutive Parameter Measurement Using Double Ridge Waveguide
2013-03-01
CONSTITUTIVE PARAMETER MEASUREMENT USING DOUBLE RIDGE WAVEGUIDE THESIS Nathan J. Lehman, Captain, USAF AFIT-ENG-13-M-30 DEPARTMENT OF THE AIR FORCE...copyright protection in the United States. AFIT-ENG-13-M-30 CONSTITUTIVE PARAMETER MEASUREMENT USING DOUBLE RIDGE WAVEGUIDE THESIS Presented to the Faculty...PARAMETER MEASUREMENT USING DOUBLE RIDGE WAVEGUIDE Nathan J. Lehman, B.S.E.E. Captain, USAF Approved: Michael Havrilla, PhD (Chairman) Maj Milo Hyde, PhD
South African court rejects country's new constitution.
1996-09-20
Fundamental principles designed to ensure that South Africa's new constitution upholds a wide range of individual rights and freedoms and establishes a responsive government with a balanced separation of powers, including recognition of the role of traditional tribal leadership, were adopted into the current interim constitution shortly before the 1994 free elections which brought Nelson Mandela and the African National Congress to power. In a judgement issued on September 6, 1996, South Africa's Constitutional Court rejected the country's new draft constitution, arguing that it failed to meet the standards of nine of the 34 principles established at the Kempton Park negotiations. The Constitutional Assembly is comprised of a joint meeting of the National Assembly and Senate. One of the court's major objections to the constitution concerned the proposed structure of rule, which was seen to give inadequate power to South Africa's nine provinces as compared with the national government. However, the bill of rights was almost entirely upheld. The bill would create a favorable environment for legalized abortion and guarantee a universal right of access to health care, including reproductive health services
Lee, H.K.; Simunovic, S.
1999-09-01
A micromechanical damage constitutive model is presented to predict the overall elastoplastic behavior and damage evolution in random carbon fiber polymer matrix composites (RFPCs).To estimate the overall elastoplastic damage responses,an effective yield criterion is derived based on the ensemble-volume averaging process and first-order effects of eigenstrains due to the existence of spheroidal (prolate) fibers.The proposed effective yield criterion,to ether with the assumed overall associative plastic flow rule and hardening law, constitutes the analytical foundation for the estimation of effective elastoplastic behavior of ductile matrix composites.First,an effective elastoplastic constitutive dama e model for aligned fiber-reinforced composites is proposed.A micromechanical damage constitutive model for RFPCs is then developed.The average process over all orientations upon overning constitutive field equations and overall yield function for aligned fiber-reinforced composites i s performed to obtain the constitutive relations and effective yield function of RFPCs.The discrete numerical integration algorithms and the continuum tan ent operator are also presented to implement the proposed dama e constitutive model.The dama e constitutive model forms the basis for the pro ressive crushing in composite structures under impact loading.
Non-linear approach in visco-hyperelastic constitutive modelling of polyurethane nanocomposite
NASA Astrophysics Data System (ADS)
Pawlikowski, Marek
2014-02-01
The constitutive modelling of the polyurethane nanocomposite presented in the paper is done in the context of its possible application as one of the components of the intervertebral disc prosthesis. The constitutive study is a part of the researches aiming at creation of the new prosthetic device. The material is considered as incompressible, isotropic and visco-hyperelastic one. The focus of the work lies on the formulation of a constitutive equation for its further implementation in finite element analyses. The equation is formulated on the basis of uniaxial monotonic compression tests and relaxation tests performed at room temperature. The constants of the constitutive model are determined from the experimental data by means of the curve-fitting approach employing least-squares optimisation method. The constitutive modelling consisted of two steps. In the first one pure hyperelastic model was determined. The Mooney-Rivlin model proved to be the best one to describe hyperelastic behaviour of the material. In the second step non-linear visco-hyperelastic model was derived. Relaxation times, characteristic amplitudes and Mooney-Rivlin hyperelastic constants were calibrated on the basis of strain-stress curves (hysteresis loops) obtained experimentally at three strain rates, i.e. and . The constitutive law is validated on the basis of relaxation test. The paper concludes with summary and plans for further investigations in the area.
Iig, Patrick
2011-01-01
Complex fluids, such as polymers, colloids, liquid-crystals etc., show intriguing viscoelastic properties, due to the complicated interplay between flow-induced structure formation and dynamical behavior. Starting from microscopic models of complex fluids, a systematic coarse-graining method is presented that allows us to derive closed-form and thermodynamically consistent constitutive equations for such fluids. Essential ingredients of the proposed approach are thermodynamically guided simulations within a consistent coarse-graining scheme. In addition to this new type of multiscale simulations, we reconstruct the building blocks that constitute the thermodynamically consistent coarse-grained model. We illustrate the method for low-molecular polymer melts, which are subject to different imposed flow fields like planar shear and different elongational flows. The constitutive equation for general flow conditions we obtain shows rheological behavior including shear thinning, normal stress differences, and elongational viscosities in good agreement with reference results.
NASA Astrophysics Data System (ADS)
Chen, Li-Qun; Zhao, Wei-Jia; Zu, Jean W.
2004-12-01
This paper deals with the transverse vibration of an initially stressed moving viscoelastic string obeying a fractional differentiation constitutive law. The governing equation is derived from Newtonian second law of motion, and reduced to a set of non-linear differential-integral equations based on Galerkin's truncation. A numerical approach is proposed to solve numerically the differential-integral equation through developing an approximate expression of the fractional derivatives involved. Some numerical examples are presented to highlight the effects of viscoelastic parameters and frequencies of parametric excitations on the transient responses of the axially moving string.
Comparison of fractional wave equations for power law attenuation in ultrasound and elastography.
Holm, Sverre; Näsholm, Sven Peter
2014-04-01
A set of wave equations with fractional loss operators in time and space are analyzed. The fractional Szabo equation, the power law wave equation and the causal fractional Laplacian wave equation are all found to be low-frequency approximations of the fractional Kelvin-Voigt wave equation and the more general fractional Zener wave equation. The latter two equations are based on fractional constitutive equations, whereas the former wave equations have been derived from the desire to model power law attenuation in applications like medical ultrasound. This has consequences for use in modeling and simulation, especially for applications that do not satisfy the low-frequency approximation, such as shear wave elastography. In such applications, the wave equations based on constitutive equations are the viable ones. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
The Bernoulli Equation in a Moving Reference Frame
ERIC Educational Resources Information Center
Mungan, Carl E.
2011-01-01
Unlike other standard equations in introductory classical mechanics, the Bernoulli equation is not Galilean invariant. The explanation is that, in a reference frame moving with respect to constrictions or obstacles, those surfaces do work on the fluid, constituting an extra term that needs to be included in the work-energy calculation. A…
The Bernoulli Equation in a Moving Reference Frame
ERIC Educational Resources Information Center
Mungan, Carl E.
2011-01-01
Unlike other standard equations in introductory classical mechanics, the Bernoulli equation is not Galilean invariant. The explanation is that, in a reference frame moving with respect to constrictions or obstacles, those surfaces do work on the fluid, constituting an extra term that needs to be included in the work-energy calculation. A…
Equating Error in Observed-Score Equating
ERIC Educational Resources Information Center
van der Linden, Wim J.
2006-01-01
Traditionally, error in equating observed scores on two versions of a test is defined as the difference between the transformations that equate the quantiles of their distributions in the sample and population of test takers. But it is argued that if the goal of equating is to adjust the scores of test takers on one version of the test to make…
Constitutive apical membrane recycling in Aplysia enterocytes.
Keeton, Robert Aaron; Runge, Steven William; Moran, William Michael
2004-11-01
In Aplysia californica enterocytes, alanine-stimulated Na+ absorption increases both apical membrane exocytosis and fractional capacitance (fCa; a measure of relative apical membrane surface area). These increases are thought to reduce membrane tension during periods of nutrient absorption that cause the enterocytes to swell osmotically. In the absence of alanine, exocytosis and fCa are constant. These findings imply equal rates of constitutive endocytosis and exocytosis and constitutive recycling of the apical plasma membrane. Thus, the purpose of this study was to confirm and determine the relative extent of constitutive apical membrane recycling in Aplysia enterocytes. Biotinylated lectins are commonly used to label plasma membranes and to investigate plasma membrane recycling. Of fourteen biotinylated lectins tested, biotinylated wheat germ agglutinin (bWGA) bound preferentially to the enterocytes apical surface. Therefore, we used bWGA, avidin D (which binds tightly to biotin), and the UV fluorophore 7-amino-4-methylcoumarin-3-acetic acid (AMCA)-conjugated avidin D to assess the extent of constitutive apical membrane recycling. A temperature-dependent (20 vs. 4 degrees C) experimental protocol employed the use of two tissues from each of five snails and resulted in a approximately 60% difference in apical surface fluorescence intensity. Because the extent of membrane recycling is proportional to the difference in surface fluorescence intensity, this difference reveals a relatively high rate of constitutive apical membrane recycling in Aplysia enterocytes.
Health care law versus constitutional law.
Hall, Mark A
2013-04-01
National Federation of Independent Business v. Sebelius, the Supreme Court's ruling on the Patient Protection and Affordable Care Act, is a landmark decision - both for constitutional law and for health care law and policy. Others will study its implications for constitutional limits on a range of federal powers beyond health care. This article considers to what extent the decision is also about health care law, properly conceived. Under one view, health care law is the subdiscipline that inquires how courts and government actors take account of the special features of medicine that make legal or policy issues especially problematic - rather than regarding health care delivery and finance more generically, like most any other economic or social enterprise. Viewed this way, the opinions from the Court's conservative justices are mainly about general constitutional law principles. In contrast, Justice Ruth Bader Ginsburg's dissenting opinion for the four more liberal justices is just as much about health care law as it is about constitutional law. Her opinion gives detailed attention to the unique features of health care finance and delivery in order to inform her analysis of constitutional precedents and principles. Thus, the Court's multiple opinions give a vivid depiction of the compelling contrasts between communal versus individualistic conceptions of caring for those in need, and between health care and health insurance as ordinary commodities versus ones that merit special economic, social, and legal status.
The regularity theory of mechanistic constitution and a methodology for constitutive inference.
Harbecke, Jens
2015-12-01
This paper discusses a Boolean method for establishing constitutive regularity statements which, according to the regularity theory of mechanistic constitution, form the core of any mechanistic explanation in neuroscience. After presenting the regularity definition for the constitution relation, the paper develops a set of inference rules allowing one to establish constitutive hypotheses in light of certain kinds of empirical evidence. The general methodology consisting of these rules is characterized as having formed the basis of many successful explanatory projects in neuroscience. Copyright © 2015 Elsevier Ltd. All rights reserved.
Constitutive model development for isotropic materials
NASA Technical Reports Server (NTRS)
Kaufman, A.
1982-01-01
The objective is to develop a unified constitutive model for finite-element structural analysis of turbine engine hot section components. This effort constitutes a different approach for nonlinear finite-element computer codes which were heretofore based on classical inelastic methods. A unified constitutive theory will avoid the simplifying assumptions of classical theory and should more accurately represent the behavior of superalloy materials under cyclic loading conditions and high temperature environments. Model development will be directed toward isotropic, cast nickel-base alloys used for aircooled turbine blades and vanes. The contractor will select a base material for model development and an alternate material for verification purposes from a list of three alloys specified by NASA. The candidate alloys represent a cross-section of turbine blade and vane materials of interest to both large and small size engine manufacturers. Material stock for the base and alternate materials will be supplied to the Contractor by the government.
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Dowson, D.
1981-01-01
Lubricants, usually Newtonian fluids, are assumed to experience laminar flow. The basic equations used to describe the flow are the Navier-Stokes equation of motion. The study of hydrodynamic lubrication is, from a mathematical standpoint, the application of a reduced form of these Navier-Stokes equations in association with the continuity equation. The Reynolds equation can also be derived from first principles, provided of course that the same basic assumptions are adopted in each case. Both methods are used in deriving the Reynolds equation, and the assumptions inherent in reducing the Navier-Stokes equations are specified. Because the Reynolds equation contains viscosity and density terms and these properties depend on temperature and pressure, it is often necessary to couple the Reynolds with energy equation. The lubricant properties and the energy equation are presented. Film thickness, a parameter of the Reynolds equation, is a function of the elastic behavior of the bearing surface. The governing elasticity equation is therefore presented.
Molecular karyotyping in human constitutional cytogenetics.
Sanlaville, Damien; Lapierre, Jean-Michel; Turleau, Catherine; Coquin, Aurélie; Borck, Guntram; Colleaux, Laurence; Vekemans, Michel; Romana, Serge Pierrick
2005-01-01
Using array CGH it is possible to detect very small genetic imbalances anywhere in the genome. Its usefulness has been well documented in cancer and more recently in constitutional disorders. In particular it has been used to detect interstitial and subtelomeric submicroscopic imbalances, to characterize their size at the molecular level and to define the breakpoints of chromosomal translocation. Here, we review the various applications of array CGH in constitutional cytogenetics. This technology remains expensive and the existence of numerous sequence polymorphisms makes its interpretation difficult. The challenge today is to transfer this technology in the clinical setting.
Constitutional aspects of economic law enforcement
Tundermann, D.W.
1980-01-01
Economic remedies for violations of environmental standards provide a better administrative approach than civil penalties based on more traditional discretionary criteria. Economic penalties are not subject to the constitutional requirements that limit the procedures for criminal penalties. Economic penalties also provide a constitutionally permissible way of accruing liability during litigation. These penalties are large enough to eliminate the benefits of delayed compliance and unnecessary litigation; however, they do not alter the rights of judicial review. Agencies can determine economic penalties with more objectivity and accuracy than under traditional penalty schemes.
Variational Derivation of Dissipative Equations
NASA Astrophysics Data System (ADS)
Sogo, Kiyoshi
2017-03-01
A new variational principle is formulated to derive various dissipative equations. Model equations considered are the damping equation, Bloch equation, diffusion equation, Fokker-Planck equation, Kramers equation and Smoluchowski equation. Each equation and its time reversal equation are simultaneously obtained in our variational principle.
Turbulence modeling based on non-Newtonian constitutive laws
NASA Astrophysics Data System (ADS)
Mompean, G.; Qiu, X.; Schmitt, F. G.; Thompson, R.
2011-12-01
This work revisits the analogy between Newtonian turbulence and non-Newtonian laminar flows. Several direct numerical simulations (DNS) data of a plane channel flow, for a large range of Reynolds numbers (180 <= Reτ <= 2000) were explored. The profiles of mean velocity and second moment quantities were used to extract viscometric functions in the non-Newtonian modeling framework. The Reynolds stress tensor is expressed in terms of a set of basis kinematic tensors based on a projection of a nonlinear framework. The coefficients of the model are given as functions of the intensity of the mean strain tensor. The apparent eddy turbulent viscosity, the first and second normal stress differences are presented as function of the shear rate. One of the advantages of the new algebraic nonlinear power law constitutive equation derived in the paper, is that is only dependent on the mean velocity gradient and can be integrated up to the wall.
Influence of nonlinear constitutive relations in unimorphs piezoelectric harvesters
NASA Astrophysics Data System (ADS)
Gatti, C. D.; Ramirez, J. M.; Machado, S. P.; Febbo, M.
2016-11-01
This paper presents the influence of nonlinear terms of a previously proposed constitutive piezoelectric equation on the dynamics of a cantilever aluminium beam with a piezoelectric unimorph PZT (MIDE QP16N) attached to it. The system is subjected to different levels of base acceleration with the intention to evidence the limits of the linear model. To carry out the analysis, a one-dimensional model is applied and solved employing a single-term solution of the harmonic balance method to compare with the experiments. A model identification of linear and nonlinear parameters such as dissipation, stiffness, and electromechanical coupling were then performed. From the results, it is possible to observe the departure of the linear model even for very low acceleration levels (0.1G). It can be concluded that the nonlinearity plays an unavoidable roll in predicting electric generation for the considered systems.
Constitutive modeling and computational implementation for finite strain plasticity
NASA Technical Reports Server (NTRS)
Reed, K. W.; Atluri, S. N.
1985-01-01
This paper describes a simple alternate approach to the difficult problem of modeling material behavior. Starting from a general representation for a rate-tpe constitutive equation, it is shown by example how sets of test data may be used to derive restrictions on the scalar functions appearing in the representation. It is not possible to determine these functions from experimental data, but the aforementioned restrictions serve as a guide in their eventual definition. The implications are examined for hypo-elastic, isotropically hardening plastic, and kinematically hardening plastic materials. A simple model for the evolution of the 'back-stress,' in a kinematic-hardening plasticity theory, that is entirely analogous to a hypoelastic stress-strain relation is postulated and examined in detail in modeling finitely plastic tension-torsion test. The implementation of rate-type material models in finite element algorithms is also discussed.
NASA Astrophysics Data System (ADS)
Dimakis, Aristophanes; Müller-Hoissen, Folkert
2015-06-01
It is shown that higher Bruhat orders admit a decomposition into a higher Tamari order, the corresponding dual Tamari order, and a ''mixed order''. We describe simplex equations (including the Yang-Baxter equation) as realizations of higher Bruhat orders. Correspondingly, a family of ''polygon equations'' realizes higher Tamari orders. They generalize the well-known pentagon equation. The structure of simplex and polygon equations is visualized in terms of deformations of maximal chains in posets forming 1-skeletons of polyhedra. The decomposition of higher Bruhat orders induces a reduction of the N-simplex equation to the (N+1)-gon equation, its dual, and a compatibility equation.
Structural three-dimensional constitutive law for the passive myocardium.
Horowitz, A; Lanir, Y; Yin, F C; Perl, M; Sheinman, I; Strumpf, R K
1988-08-01
A three-dimensional constitutive law is proposed for the myocardium. Its formulation is based on a structural approach in which the total strain energy of the tissue is the sum of the strain energies of its constituents: the muscle fibers, the collagen fibers and the fluid matrix which embeds them. The ensuing material law expresses the specific structural and mechanical properties of the tissue, namely, the spatial orientation of the comprising fibers, their waviness in the unstressed state and their stress-strain behavior when stretched. Having assumed specific functional forms for the distribution of the fibers spatial orientation and waviness, the results of biaxial mechanical tests serve for the estimation of the material constants appearing in the constitutive equations. A very good fit is obtained between the measured and the calculated stresses, indicating the suitability of the proposed model for describing the mechanical behavior of the passive myocardium. Moreover, the results provide general conclusions concerning the structural basis for the tissue overall mechanical properties, the main of which is that the collagen matrix, though comprising a relatively small fraction of the whole tissue volume, is the dominant component accounting for its stiffness.
A new constitutive model for nitrogen austenitic stainless steel
NASA Astrophysics Data System (ADS)
Fréchard, S.; Lichtenberger, A.; Rondot, F.; Faderl, N.; Redjaïmia, A.; Adoum, M.
2003-09-01
Quasi-static, quasi-dynamic and dynamic compression tests have been performed on a nitrogen alloyed austenitic stainless steel. For all strain rates, a high strain hardening rate and a good ductility have been achieved. In addition, this steel owns a great strain rate sensitivity. The temperature sensitivity bas been determined between 20°C and 400°C. Microstructural analysis has been performed after different loading conditions in relation to the behaviour of the material. Johnson-Cook and Zerilli-Armstrong models have been selected to fit the experimental data into constitutive equations. These models do not reproduce properly the behaviour of this type of steel over the complete range. A new constitutive model that fits very well all the experimental data at different strain, strain rate and temperature has been determined. The model is based on empirical considerations on the separated influence of the main parameters. Single Taylor tests have been realized to validate the models. Live observations of the specimen during impact have been achieved using a special CCD camera set-up. The overall profile at different times are compared to numerical predictions using LS-DYNA code.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., that we are each endowed with certain unalienable rights. As the beneficiaries of these rights, all... Constitution and teach younger generations about its contents and history. By fulfilling civic duties, engaging... can better our country and breathe life into the freedoms established in the Constitution. The right...
The Constitution: Burkeian, Brandeisian and Borkian Perspectives.
ERIC Educational Resources Information Center
Ewbank, Henry L.
1996-01-01
Argues that Kenneth Burke's rhetorical theory is exemplified in the statements of Justice Louis Brandeis, whose concept of "the living law" explores the contemporary scene as ground for judicial review. Contends that Robert Bork's search for "neutral principles" in Constitutional words ignores the symbolic and dialectical…
School Choice and State Constitutions' Religion Clauses
ERIC Educational Resources Information Center
Komer, Richard D.
2009-01-01
After the U.S. Supreme Court's decision in "Zelman v. Simmons-Harris," only state religion clauses represent a potential constitutional bar to the inclusion of religious options in properly designed school choice programs. The two most significant are compelled support clauses and Blaine Amendments. Both are frequently misinterpreted by state…
Rapping the 27 Amendments to the Constitution
ERIC Educational Resources Information Center
Knaresborough, Adam
2009-01-01
Early in the year, the students of history and government at Mountain View High School in Stafford, Virginia, began to devise hand motions to help memorize the 27 amendments to the Constitution for government class. Three students in the school who are interested in hip hop music then suggested composing a rap song about the topic. Working with…
Rapping the 27 Amendments to the Constitution
ERIC Educational Resources Information Center
Knaresborough, Adam
2009-01-01
Early in the year, the students of history and government at Mountain View High School in Stafford, Virginia, began to devise hand motions to help memorize the 27 amendments to the Constitution for government class. Three students in the school who are interested in hip hop music then suggested composing a rap song about the topic. Working with…
Contragate, Covert Action, and the Constitution.
ERIC Educational Resources Information Center
Ratner, Michael
1987-01-01
The "Iran-Contragate" hearings were indicative of serious constitutional crisis. Analyzes and disputes following three defenses used by President Reagan to justify his actions in affair: he did not know or approve; it was not a violation of law; and his authority over foreign affairs is given in war powers clause of the…
Globalization of Constitutional Law and Civil Rights.
ERIC Educational Resources Information Center
Weissbrodt, David
1993-01-01
Two issues are discussed: (1) reasons for raising global and international human rights issues in constitutional law, civil rights, and administrative law courses in United States law schools; and (2) barriers to globalization of courses and ways to overcome them. (MSE)
Crushed-salt constitutive model update
Callahan, G.D.; Loken, M.C.; Mellegard, K.D.
1998-01-01
Modifications to the constitutive model used to describe the deformation of crushed salt are presented in this report. Two mechanisms--dislocation creep and grain boundary diffusional pressure solutioning--defined previously but used separately are combined to form the basis for the constitutive model governing the deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. New creep consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on Waste Isolation Pilot Plant and southeastern New Mexico salt to determine material parameters for the constitutive model. Nonlinear least-squares model fitting to data from the shear consolidation tests and a combination of the shear and hydrostatic consolidation tests produced two sets of material parameter values for the model. The change in material parameter values from test group to test group indicates the empirical nature of the model but demonstrates improvement over earlier work with the previous models. Key improvements are the ability to capture lateral strain reversal and better resolve parameter values. To demonstrate the predictive capability of the model, each parameter value set was used to predict each of the tests in the database. Based on the fitting statistics and the ability of the model to predict the test data, the model appears to capture the creep consolidation behavior of crushed salt quite well.
North Carolina Outdoor Education Association Constitution.
ERIC Educational Resources Information Center
North Carolina Journal of Outdoor Education, 1980
1980-01-01
Gives the Association's constitution which covers membership, executive board, elections, terms of office, duties of officers, committees, parliamentary authority, amendments, and quorum. Available from: Center for Environmental, Camping and Outdoor Education; University of North Carolina at Greensboro; Pine Lake Field Campus; 4016 Blumenthal…
Does the Constitution Protect the Despised?
ERIC Educational Resources Information Center
Roe, Richard L; And Others
1984-01-01
Presented is the history of the Scottsboro case, in which eight Black men were found guilty and sentenced to death for raping two White women in Alabama. At the heart of the Scottsboro trials was the issue of whether the U.S. Constitution established standards of justice in state criminal trials. (RM)
Presidential Signing Statements: Constitutional and Institutional Implications
2006-09-20
constitutional judgment of the legislative branch,” the memorandum nonetheless declared that some encroachments would not be justiciable , and that in...the provision is justiciable ) and monitoring by Congress. A closely-related argument, also raised in the ABA Report, is that signing statements that
Constitutive Modeling for Sheet Metal Forming
Barlat, Frederic
2005-08-05
This paper reviews aspects of the plastic behaviour common in sheet metals. Macroscopic and microscopic phenomena occurring during plastic deformation are described succinctly. Constitutive models of plasticity suitable for applications to forming, are discussed in a very broad manner. Approaches to plastic anisotropy are described in a somewhat more detailed manner.
Constitutive Descriptions For Metal Forming Simulations
Barlat, Frederic
2007-05-17
This paper reviews aspects of the plastic behavior common in metals and alloys. Macroscopic and microscopic phenomena occurring during plastic deformation are described succinctly. Constitutive descriptions of plasticity at the microscopic and macroscopic scales, suitable for applications to forming, are discussed in a very broad fashion. Approaches to plastic anisotropy are reviewed in a more detailed manner.
A New Perspective on Teaching Constitutional Law
ERIC Educational Resources Information Center
Rosenblum, Robert
1977-01-01
The author suggests that a major failure of most law schools and traditional undergraduate constitutional law courses is that they omit an adequate analysis of the political nature of the judicial process. Political influences on a variety of court cases are discussed. (LBH)
Globalization of Constitutional Law and Civil Rights.
ERIC Educational Resources Information Center
Weissbrodt, David
1993-01-01
Two issues are discussed: (1) reasons for raising global and international human rights issues in constitutional law, civil rights, and administrative law courses in United States law schools; and (2) barriers to globalization of courses and ways to overcome them. (MSE)
Ohio's School Finance System: Constitutional or Unconstitutional?
ERIC Educational Resources Information Center
Bulach, Clete
Since June 1979, when the Ohio Supreme Court declared Ohio's finance system constitutional, that system has continued to deteriorate, as evidenced by the number of districts borrowing from the school loan fund. Moreover, the supreme courts of four other states have recently declared their state financing systems unconstitutional. This paper…
Children's Constitutional Rights: Interpretations and Implications.
ERIC Educational Resources Information Center
Sametz, Lynn; And Others
1983-01-01
Discusses a brief historical overview of constitutional law as it applies to children, delineated in the First, Fourth, Fifth, Sixth, Eighth, and Fourteenth Amendments. Emphasizes the need for school psychologists and educators to have an understanding of children's developing legal rights. Specific court cases are cited. (Author/JAC)
Western Canadians and the Mulroney Constitutional Proposal.
ERIC Educational Resources Information Center
Kilgour, David
1991-01-01
Reports findings of a survey suggesting that Edmonton, Alberta residents favor a referendum before any changes are made in Canada's constitution. Explains changes proposed by Prime Minister Brian Mulroney. Examines plans for House of Commons reform, aboriginal self-government, economic union for Canada, worker training, immigration, and other…
North Carolina Outdoor Education Association Constitution.
ERIC Educational Resources Information Center
North Carolina Journal of Outdoor Education, 1980
1980-01-01
Gives the Association's constitution which covers membership, executive board, elections, terms of office, duties of officers, committees, parliamentary authority, amendments, and quorum. Available from: Center for Environmental, Camping and Outdoor Education; University of North Carolina at Greensboro; Pine Lake Field Campus; 4016 Blumenthal…
Constitution 200: A Bicentennial Collection of Essays.
ERIC Educational Resources Information Center
Hepburn, Mary A., Ed.; And Others
Constitutional essays which formed the basis of public assemblies throughout three states are compiled in this book. The first three essays consider the U.S. government principles of federalism, judicial review, and the separation of powers. Michael L. Benedict proposes that the question of ultimate sovereignty has been answered differently by…
Microplane constitutive model for porous isotropic rocks
NASA Astrophysics Data System (ADS)
Baant, Zdenk P.; Zi, Goangseup
2003-01-01
The paper deals with constitutive modelling of contiguous rock located between rock joints. A fully explicit kinematically constrained microplane-type constitutive model for hardening and softening non-linear triaxial behaviour of isotropic porous rock is developed. The microplane framework, in which the constitutive relation is expressed in terms of stress and strain vectors rather than tensors, makes it possible to model various microstructural physical mechanisms associated with oriented internal surfaces, such as cracking, slip, friction and splitting of a particular orientation. Formulation of the constitutive relation is facilitated by the fact that it is decoupled from the tensorial invariance restrictions, which are satisfied automatically. In its basic features, the present model is similar to the recently developed microplane model M4 for concrete, but there are significant improvements and modifications. They include a realistic simulation of (1) the effects of pore collapse on the volume changes during triaxial loading and on the reduction of frictional strength, (2) recovery of frictional strength during shearing, and (3) the shear-enhanced compaction in triaxial tests, manifested by a deviation from the hydrostatic stress-strain curve. The model is calibrated by optimal fitting of extensive triaxial test data for Salem limestone, and good fits are demonstrated. Although these data do not cover the entire range of behaviour, credence in broad capabilities of the model is lend by its similarity to model M4 for concrete - an artificial rock. The model is intended for large explicit finite-element programs.
Western Canadians and the Mulroney Constitutional Proposal.
ERIC Educational Resources Information Center
Kilgour, David
1991-01-01
Reports findings of a survey suggesting that Edmonton, Alberta residents favor a referendum before any changes are made in Canada's constitution. Explains changes proposed by Prime Minister Brian Mulroney. Examines plans for House of Commons reform, aboriginal self-government, economic union for Canada, worker training, immigration, and other…
Counterpoint: A Constitutional Right to Party?
ERIC Educational Resources Information Center
Hunsicker, J. Freedley, Jr.
1992-01-01
Takes issues with Gregory Hauser's previous article positing a constitutional right of social fraternities to formal recognition at public institutions of higher education. Reanalyzes each of the associational cases cited by Hauser, cites additional cases, adds a waiver argument, and wraps up with a public policy comparison of higher education…
Censorship of Obscenity: The Developing Constitutional Standards.
ERIC Educational Resources Information Center
Lockhart, William B.; McClure, Robert C.
1960-01-01
To demonstrate that substantial protection has been given to published material dealing with sex, an analysis of the constitutional criteria governing recent Supreme Court decisions in the area of obscenity censorship is presented. It is found that the Supreme Court uses "hard core pornography" as the foundation of a "constant" concept of…
Great Constitutional Ideas: Justice, Equality, and Property.
ERIC Educational Resources Information Center
Starr, Isidore
1987-01-01
Examines the ideas of justice, equality, and property as they are represented in the Declaration of Independence, the U.S. Constitution and the Bill of Rights. Discusses how these ideas affect the way public schools operate and the lessons educators teach or don't teach about our society. Includes ideas for classroom activities. (JDH)
17 CFR 200.54 - Constitutional obligations.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 17 Commodity and Securities Exchanges 2 2013-04-01 2013-04-01 false Constitutional obligations... obligations. The members of this Commission have undertaken in their oaths of office to support the Federal... faithfully execute the laws which they are charged with administering. Members shall also carefully...
The U.S. Constitution and Education.
ERIC Educational Resources Information Center
Levin, Betsy
Although education is primarily a state function, its importance to our society makes it fertile ground for litigation. The Constitution--by authorizing the Congress to enact legislation--constrains and prescribes what happens in schools. Legislative histories, especially since the early 1960s, are outlined here. The major topics include:…
Fetal pain, abortion, viability, and the Constitution.
Cohen, I Glenn; Sayeed, Sadath
2011-01-01
In early 2010, the Nebraska state legislature passed a new abortion restricting law asserting a new, compelling state interest in preventing fetal pain. In this article, we review existing constitutional abortion doctrine and note difficulties presented by persistent legal attention to a socially derived viability construct. We then offer a substantive biological, ethical, and legal critique of the new fetal pain rationale.
Preliminary Validation of Composite Material Constitutive Characterization
John G. Michopoulos; Athanasios lliopoulos; John C. Hermanson; Adrian C. Orifici; Rodney S. Thomson
2012-01-01
This paper is describing the preliminary results of an effort to validate a methodology developed for composite material constitutive characterization. This methodology involves using massive amounts of data produced from multiaxially tested coupons via a 6-DoF robotic system called NRL66.3 developed at the Naval Research Laboratory. The testing is followed by...
ERIC Educational Resources Information Center
Blakley, G. R.
1982-01-01
Reviews mathematical techniques for solving systems of homogeneous linear equations and demonstrates that the algebraic method of balancing chemical equations is a matter of solving a system of homogeneous linear equations. FORTRAN programs using this matrix method to chemical equation balancing are available from the author. (JN)
Investigation of a Coupled Arrhenius-Type/Rossard Equation of AH36 Material.
Qin, Qin; Tian, Ming-Liang; Zhang, Peng
2017-04-13
High-temperature tensile testing of AH36 material in a wide range of temperatures (1173-1573 K) and strain rates (10(-4)-10(-2) s(-1)) has been obtained by using a Gleeble system. These experimental stress-strain data have been adopted to develop the constitutive equation. The constitutive equation of AH36 material was suggested based on the modified Arrhenius-type equation and the modified Rossard equation respectively. The results indicate that the constitutive equation is strongly influenced by temperature and strain, especially strain. Moreover, there is a good agreement between the predicted data of the modified Arrhenius-type equation and the experimental results when the strain is greater than 0.02. There is also good agreement between the predicted data of the Rossard equation and the experimental results when the strain is less than 0.02. Therefore, a coupled equation where the modified Arrhenius-type equation and Rossard equation are combined has been proposed to describe the constitutive equation of AH36 material according to the different strain values in order to improve the accuracy. The correlation coefficient between the computed and experimental flow stress data was 0.998. The minimum value of the average absolute relative error shows the high accuracy of the coupled equation compared with the two modified equations.
Investigation of a Coupled Arrhenius-Type/Rossard Equation of AH36 Material
Qin, Qin; Tian, Ming-Liang; Zhang, Peng
2017-01-01
High-temperature tensile testing of AH36 material in a wide range of temperatures (1173–1573 K) and strain rates (10−4–10−2 s−1) has been obtained by using a Gleeble system. These experimental stress-strain data have been adopted to develop the constitutive equation. The constitutive equation of AH36 material was suggested based on the modified Arrhenius-type equation and the modified Rossard equation respectively. The results indicate that the constitutive equation is strongly influenced by temperature and strain, especially strain. Moreover, there is a good agreement between the predicted data of the modified Arrhenius-type equation and the experimental results when the strain is greater than 0.02. There is also good agreement between the predicted data of the Rossard equation and the experimental results when the strain is less than 0.02. Therefore, a coupled equation where the modified Arrhenius-type equation and Rossard equation are combined has been proposed to describe the constitutive equation of AH36 material according to the different strain values in order to improve the accuracy. The correlation coefficient between the computed and experimental flow stress data was 0.998. The minimum value of the average absolute relative error shows the high accuracy of the coupled equation compared with the two modified equations. PMID:28772767
Anisotropic constitutive modeling for nickel base single crystal superalloy Rene N4 at 982 C
NASA Technical Reports Server (NTRS)
Stouffer, D. C.; Jayaraman, N.; Sheh, M. Y.; Alden, D.
1987-01-01
A back stress/drag stress constitutive model based on a crystallographic approach to model single crystal anisotropy is presented. Experimental results demonstrated the need for the back stress variable in the inelastic flow equations. Experimental findings suggested that back stress is orientation dependent and controls both strain hardening and recovery characteristics. Due to the observed stable fatigue loops at 1800 F, drag stress is considered constant for this temperature. The constitutive model operated with constraints determined only from tensile data was extensively tested from simple tensile and fatigue to complicated strain hold tests. The model predicted very well under those conditions.
Turbulence constitutive modeling of the square root of the Reynolds stress
NASA Astrophysics Data System (ADS)
Ariki, Taketo
2015-11-01
A methodology for turbulence constitutive modeling is discussed on the basis of the square-root tensor of the Reynolds stress. The present methodology can satisfy the realizability condition for the Reynolds stress proposed by Schumann [Phys. Fluids 20, 721 (1977)], 10.1063/1.861942 in a more general manner than the conventional methodologies. The definition and uniqueness of the square-root tensor have been discussed, and its boundary condition has been properly obtained consistently with that of the Reynolds stress. Examples of possible constitutive models of both tensor-expansion and transport-equation types have been proposed.
Kinetic energy equations for the average-passage equation system
NASA Technical Reports Server (NTRS)
Johnson, Richard W.; Adamczyk, John J.
1989-01-01
Important kinetic energy equations derived from the average-passage equation sets are documented, with a view to their interrelationships. These kinetic equations may be used for closing the average-passage equations. The turbulent kinetic energy transport equation used is formed by subtracting the mean kinetic energy equation from the averaged total instantaneous kinetic energy equation. The aperiodic kinetic energy equation, averaged steady kinetic energy equation, averaged unsteady kinetic energy equation, and periodic kinetic energy equation, are also treated.
An elastoplastic damage constitutive model for concrete
NASA Astrophysics Data System (ADS)
Liu, Jun; Lin, Gao; Zhong, Hong
2013-04-01
An elastoplastic damage constitutive model to simulate nonlinear behavior of concrete is presented. Similar to traditional plastic theory, the irreversible deformation is modeled in effective stress space. In order to better describe different stiffness degradation mechanisms of concrete under tensile and compressive loading conditions, two damage variables, i.e., tension and compression are introduced, to quantitatively evaluate the degree of deterioration of concrete structure. The rate dependent behavior is taken into account, and this model is derived firmly in the framework of irreversible thermodynamics. Fully implicit backward-Euler algorithm is suggested to perform constitutive integration. Numerical results of the model accord well with the test results for specimens under uniaxial tension and compression, biaxial loading and triaxial loading. Failure processes of double-edge-notched (DEN) specimen are also simulated to further validate the proposed model.
Constitutive Models Based on Compressible Plastic Flows
NASA Technical Reports Server (NTRS)
Rajendran, A. M.
1983-01-01
The need for describing materials under time or cycle dependent loading conditions has been emphasized in recent years by several investigators. In response to the need, various constitutive models describing the nonlinear behavior of materials under creep, fatigue, or other complex loading conditions were developed. The developed models for describing the fully dense (non-porous) materials were mostly based on uncoupled plasticity theory. The improved characterization of materials provides a better understanding of the structual response under complex loading conditions. The pesent studies demonstrate that the rate or time dependency of the response of a porous aggregate can be incorporated into the nonlinear constitutive behavior of a porous solid by appropriately modeling the incompressible matrix behavior. It is also sown that the yield function which wads determined by a continuum mechanics approach must be verified by appropriate experiments on void containing sintered materials in order to obtain meaningful numbers for the constants that appear in the yield function.
Constitutive Modeling of Crosslinked Nanotube Materials
NASA Technical Reports Server (NTRS)
Odegard, G. M.; Frankland, S. J. V.; Herzog, M. N.; Gates, T. S.; Fay, C. C.
2004-01-01
A non-linear, continuum-based constitutive model is developed for carbon nanotube materials in which bundles of aligned carbon nanotubes have varying amounts of crosslinks between the nanotubes. The model accounts for the non-linear elastic constitutive behavior of the material in terms of strain, and is developed using a thermodynamic energy approach. The model is used to examine the effect of the crosslinking on the overall mechanical properties of variations of the crosslinked carbon nanotube material with varying degrees of crosslinking. It is shown that the presence of the crosslinks has significant effects on the mechanical properties of the carbon nanotube materials. An increase in the transverse shear properties is observed when the nanotubes are crosslinked. However, this increase is accompanied by a decrease in axial mechanical properties of the nanotube material upon crosslinking.
Mechanism of constitution liquid film migration
Zuo, Hongjun
1999-06-01
Liquid film migration (LFM) in liquid phase sintering classically involves a large metastable liquid volume adjacent to solid, and migration occurs at an isolated solid-liquid (S-L) interface. Constitutional liquid film migration (CLFM), discovered in alloy 718, has major characteristics similar to those of LFM, except that the metastable liquid is from the constitutional liquation of precipitates on the grain boundary. The similarity between LFM and CLFM has led to the theory that coherency lattice strain responsible for LFM is also responsible for CLFM. The coherency strain hypothesis was tested in this study by evaluating whether the Hillert model of LFM would also apply for CLFM. Experimental results of CLFM in alloy 718 showed that migration velocity followed the trend predicted by the Hillert model. This indicates that the coherency strain hypothesis of LFM also applies for CLFM and that the coherency lattice strain responsible for LFM is also the driving force for CLFM.
Constitutive modeling for single crystal superalloys
NASA Technical Reports Server (NTRS)
Stouffer, Donald C.; Dame, L. Thomas; Jayaraman, N.
1985-01-01
A crystallographic approach to constitutive modeling of single crystal superalloys is discussed. The approach is based on identifying the active slip planes and slip directions. The shear stresses are computed on each of the slip planes from applied stress components. The slip rate is then computed on each slip system and the microscopic inelastic strain rates are the sum of the slip in the individual slip systems. The constitutive model was implemented in a finite element code using twenty noted isoparametric solid elements. Constants were determined for octahedral and cube slip systems. These constants were then used to predict tension-compression asymmetry and fatigue loops. Other data was used to model the tensile and creep response.
A constitutive model for an overlay coating
NASA Technical Reports Server (NTRS)
Nissley, D. M.; Swanson, G. A.
1988-01-01
Coatings are frequently applied to gas turbine blades and vanes to provide protection against oxidation and corrosion. The results of an experimental and analytical study to develop a constitutive model for an overlay coating is presented. Specimens were machined from a hot isostatically pressed billet of PWA 286. The tests consisted of isothermal stress relaxation cycles with monotonically increasing maximum strain and were conducted at various temperatures. The results were used to calculate the constants for various constitutive models, including the classical, the Walker isotropic, a simplified Walker, and Stowell models. A computerized regression analysis was used to calculate model constants from the data. The best fit was obtained for the Walker model, with the simplified Walker and classical models close behind.
Washington upholds HIV exposure law as constitutional.
1999-12-24
A Washington State appeals court has rejected a constitutional challenge to a law that makes the intentional spreading of HIV to sex partners a crime. The court rejected the notion that the criminal exposure law violated the equal protection clause of the U.S. and State constitutions because it singled out those infected with HIV for unequal treatment. The court saw the law applied specific conduct to all, infected and non-infected alike, not specific groups of people. A second argument that the defendants were denied right of procreation was rejected because those rights are not protected if the defendant intended to inflict bodily injury. In this case, the defendant, [name removed], knowing his HIV status, willingly had sex with several women without warning them of his status or using a condom. The court viewed this behavior as acting with intent to inflict harm. An earlier case involving an HIV-specific criminal exposure law is described.
In quest of constitutional principles of "neurolaw".
Pizzetti, Federico Gustavo
2011-01-01
The growing use of brain imaging technology and the developing of cognitive neuroscience pose unaccustomed challenges to legal systems. Until now, the fields of Law much affected are the civil and criminal law and procedure, but the constitutional dimension of "neurolaw" cannot be easily underestimated. As the capacity to investigate and to trace brain mechanisms and functional neural activities increases, it becomes urgent the recognition and definition of the unalienable rights and fundamental values in respect of this new techno-scientific power, that must be protected and safeguard at "constitutional level" of norms such as: human dignity, personal identity, authenticity and the pursuit of individual "happiness". As the same as for the law regulating research and experimentation on human genome adopted in the past years, one may also argue if the above mentioned fundamental principles of "neurolaw" must be fixed and disciplined also at European and International level.
Constitutive equation of friction based on the subloading-surface concept
Ueno, Masami; Kuwayama, Takuya; Suzuki, Noriyuki; Yonemura, Shigeru; Yoshikawa, Nobuo
2016-01-01
The subloading-friction model is capable of describing static friction, the smooth transition from static to kinetic friction and the recovery to static friction after sliding stops or sliding velocity decreases. This causes a negative rate sensitivity (i.e. a decrease in friction resistance with increasing sliding velocity). A generalized subloading-friction model is formulated in this article by incorporating the concept of overstress for viscoplastic sliding velocity into the subloading-friction model to describe not only negative rate sensitivity but also positive rate sensitivity (i.e. an increase in friction resistance with increasing sliding velocity) at a general sliding velocity ranging from quasi-static to impact sliding. The validity of the model is verified by numerical experiments and comparisons with test data obtained from friction tests using a lubricated steel specimen. PMID:27493570
Flow effects of blood constitutive equations in 3D models of vascular anomalies
NASA Astrophysics Data System (ADS)
Neofytou, Panagiotis; Tsangaris, Sokrates
2006-06-01
The effects of different blood rheological models are investigated numerically utilizing two three- dimensional (3D) models of vascular anomalies, namely a stenosis and an abdominal aortic aneurysm model. The employed CFD code incorporates the SIMPLE scheme in conjunction with the finite-volume method with collocated arrangement of variables. The approximation of the convection terms is carried out using the QUICK differencing scheme, whereas the code enables also multi-block computations, which are useful in order to cope with the two-block grid structure of the current computational domain. Three non-Newtonian models are employed, namely the Casson, Power-Law and Quemada models, which have been introduced in the past for modelling the rheological behaviour of blood and cover both the viscous as well as the two-phase character of blood. In view of the haemodynamical mechanisms related to abnormalities in the vascular network and the role of the wall shear stress in initiating and further developing of arterial diseases, the present study focuses on the 3D flow field and in particular on the distribution as well as on both low and high values of the wall shear stress in the vicinity of the anomaly. Finally, a comparison is made between the effects of each rheological model on the aforementioned parameters. Results show marked differences between simulating blood as Newtonian and non-Newtonian fluid and furthermore the Power-Law model exhibits different behaviour in all cases compared to the other models whereas Quemada and Casson models exhibit similar behaviour in the case of the stenosis but different behaviour in the case of the aneurysm.
NASA Technical Reports Server (NTRS)
Moteff, J.; Pugh, C. E.; Swindeman, R. W.
1983-01-01
Austenitic stainless steels, such as types 316 and 304, are widely used as pressure vessel materials in the temperature range of 425 to 650 C. Stainless steel specimens were tested to rupture at two different stress levels sigma and sigma 2 sigma 1 sigma 2) to establish the normal stain-time behavior. A subsequent test was performed in which the specimen was crept at the higher stress (sigma 1) to the beginning of the secondary stage of creep, presumed to be the strain/time conditions at which a steady state microstructure is developed, and then the stress was reduced to the lower level (sigma 2). The associated microstructure, and significance of this microstructure on the creep strain-hardening model for variable uniaxial loads were assesed and found to be consistent with the use of creep-recovery models at high stresses and temperatures and strain-hardening models at low stresses and tempertures.
Constitutive equations for multiphase TRIP steels at high rates of strain
NASA Astrophysics Data System (ADS)
van Slycken, J.; Verleysen, P.; Degrieck, J.; Bouquerel, J.
2006-08-01
Multiphase TRansformation Induced Plasticity (TRIP) steels show an excellent combination of high strength and high strain values, making them ideally suited for use in vehicle body structures. A complex synergy of three different phases (ferrite, bainite and austenite) on the one hand, and the meta-stable character of the austenite on the other hand, give the material indeed a high energy absorption potential. The knowledge and understanding of the dynamic behaviour of these sheet steels is essential to investigate the impact-dynamic characteristics of the structures. Therefore split Hopkinson tensile tests are performed in a strain rate range of 500 to 2000 s-1. Three TRIP steel grades with a different Al and Si content were studied. The experimental results show that these steels preserve their excellent shock-absorbing properties in dynamic conditions. The typical high strain rate loading conditions and the complex behaviour of TRIP steels offer a unique investigation opportunity. This behaviour can be described with phenomenological material models that can be used for numerical simulations of car crashes. The Johnson-Cook model, a frequently used model in finite element codes, is well-suited to describe the dynamic behaviour of the investigated TRIP steels. This model is compared to the Rusinek-Klepaczko model.
3-D wave simulation in anelastic media using the Kelvin-Voigt constitutive equation
NASA Astrophysics Data System (ADS)
Carcione, José M.; Poletto, Flavio; Gei, Davide
2004-05-01
We design a numerical algorithm for wave simulation in anelastic media in the presence of free surface, which can be used to model seismic waves at the Earth's surface and ultrasonic waves in heterogeneous materials. The stress-strain relation is based on the Kelvin-Voigt mechanical model, which has the advantage of not requiring additional field variables. The model requires two anelastic parameters and twice the spatial derivatives of the lossless case. The high-frequency components of the wave field are more attenuated than the low-frequency components, with the attenuation factors being approximately proportional to the square of the frequency. The modeling simulates 3-D waves by using the Fourier and Chebyshev methods to compute the spatial derivatives along the horizontal and vertical directions, respectively. We stretch the mesh in the vertical direction to increase the minimum grid spacing and reduce the computational cost. Instabilities of the Chebyshev differential operator due to the implementation of the free-surface boundary conditions are solved with a characteristic approach, where the characteristic variables are evaluated at the source central frequency. The results of the modeling are verified by comparisons to the analytical solutions for Lamb's problem and propagation in unbounded homogeneous media. Examples illustrating the propagation of Rayleigh and Love waves are presented.
NASA Astrophysics Data System (ADS)
Ramachandran, Arun; Loewenberg, Michael; Leighton, David T.
2010-08-01
The concentration distribution of droplets in the unidirectional flow of an emulsion for small capillary numbers (Ca) can be written as a balance between the drift flux arising from droplet deformation and the flux due to shear induced migration. The droplet drift flux is modeled using the O(Ca) theoretical results of Chan and Leal [J. Fluid Mech. 92, 131 (1979)], while the flux due to shear-induced migration is modeled using the suspension balance approach of Nott and Brady [J. Fluid Mech. 275, 157 (1994)], whereby particle migration is ascribed to normal stress gradients in the flowing dilute emulsion. In the limit of vanishingly small capillary numbers, the leading order contribution of the normal stresses in dilute emulsions arises from droplet-droplet interaction and thus scales as ϕ2τ, where ϕ is the droplet volume fraction and τ is the local shear stress. In our model, the normal stress calculations of Zinchenko [Prikl. Mat. Mekh. 47, 56 (1984)] are connected to our gradient diffusivity data computed from droplet trajectories [M. Loewenberg and E. J. Hinch, J. Fluid Mech. 338, 299 (1997)] via a reduced droplet mobility to derive the droplet flux due to shear-induced migration. As an example, the model is applied to the tube Poiseuille flow of a dilute emulsion at small Ca. It is demonstrated that the unsteady concentration distribution of droplets resulting from arbitrary time-dependent average velocity obeys a self-similar solution, provided the thickness of the droplet-depleted region near the walls is always nonzero.
Static and Dynamic Constitutive Equations to Finite Plastic Strain for Rolled Homogeneous Armor
1983-01-01
Z ) o CO X CD O CL - z . LU _! CD h- < O o DC LU Q cr LJ Q _l o LU...increasing 26 O CO 1 O ■ >> - , 1 1 1 CVJ lo 0 O o "" 1 1 © en Q • 1 e © » LL Z — 1 / 1 UJ 1 1...E ~ lio- o’"’ 1 z - 1 1 1 e G e o © 1 1 in 1 o 2 ^ - ’ f I in ^ ^S i 1 1 1 1 1 1 1 f
1987-12-01
dependence <r_ ’I ABS’PACT iCcnr,nue or, ,e,erje if necessa’y dnd ’aentfy by biock nujmber) HSLA-100 is a lOOksi nominal yield strength steel being...developed by thie N)avy for Naval shipbuilding applications. To assist in ductile’and brittle failure modelling of this low carbon steel , tensile tests...Engineering .GuidutI E. S;haUhiel, Dean of Science and Engineering 5,. 3 I F.. S ABSTRACT HSLA-100 is a 1OOksi nominal yield strength steel being developed
A proposed generalized constitutive equation for nonlinear para-isotropic materials
NASA Technical Reports Server (NTRS)
Hu, K. K.; Swartz, S. E.; Huang, C. J.
1980-01-01
Finite element models of varying complexities were used to solve problems in solid mechanics. Particular emphasis was given to concrete which is nonisotropic at any level of deformation and is also nonlinear in terms of stress-strain relationships.
President, Prime Minister, or Constitutional Monarch?
1989-10-01
however, without test cases, and the President has always been an important initiator of test cases. 6 EUGENE V. RosTOw This paper is divided into...Judge Gerhard A. Gesell in the trial of Oliver North confirms, those two issues do not raise either constitutional or significant statutory questions...expired after sixty or ninety days if congress did nothing. Section 6 of the 1973 act was never tested , but it was generally thought to be unworkable. The
A constitutional 5q23 deletion.
Rivera, H; Simi, P; Rossi, S; Pardelli, L; Di Paolo, M C
1990-01-01
A 14 month old girl was found to have a deletion of the whole of band 5q23. By comparing 19 other cases monosomic for a part of the 5q13-q31 segment, the constitutional 5q interstitial deletions fall into two groups: adult patients with Gardner-like symptoms and mental retardation associated with deletion 5q21-q22, and patients (mostly children) with unspecific signs and symptoms and different deletions. Images PMID:2325108
Constitutional developments in Latin American abortion law.
Bergallo, Paola; Ramón Michel, Agustina
2016-11-01
For most of the 20th Century, restrictive abortion laws were in place in continental Latin America. In recent years, reforms have caused a liberalizing shift, supported by constitutional decisions of the countries' high courts. The present article offers an overview of the turn toward more liberal rules and the resolution of abortion disputes by reference to national constitutions. For such purpose, the main legal changes of abortion laws in the last decade are first surveyed. Landmark decisions of the high courts of Argentina, Bolivia, Colombia, and Mexico are then analyzed. It is shown that courts have accepted the need to balance interests and competing rights to ground less restrictive laws. In doing so, they have articulated limits to protection of fetal interests, and basic ideas of women's dignity, autonomy, and equality. The process of constitutionalization has only just begun. Constitutional judgments are not the last word, but they are important contributions in reinforcing the legality of abortion. Copyright © 2016 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.
Implicit constitutive relations for nonlinear magnetoelastic bodies.
Bustamante, R; Rajagopal, K R
2015-03-08
Implicit constitutive relations that characterize the response of elastic bodies have greatly enhanced the arsenal available at the disposal of the analyst working in the field of elasticity. This class of models were recently extended to describe electroelastic bodies by the present authors. In this paper, we extend the development of implicit constitutive relations to describe the behaviour of elastic bodies that respond to magnetic stimuli. The models that are developed provide a rational way to describe phenomena that have hitherto not been adequately described by the classical models that are in place. After developing implicit constitutive relations for magnetoelastic bodies undergoing large deformations, we consider the linearization of the models within the context of small displacement gradients. We then use the linearized model to describe experimentally observed phenomena which the classical linearized magnetoelastic models are incapable of doing. We also solve several boundary value problems within the context of the models that are developed: extension and shear of a slab, and radial inflation and extension of a cylinder.
Organelle size equalization by a constitutive process.
Ludington, William B; Shi, Linda Z; Zhu, Qingyuan; Berns, Michael W; Marshall, Wallace F
2012-11-20
How cells control organelle size is an elusive problem. Two predominant models for size control can be distinguished: (1) induced control, where organelle genesis, maintenance, and disassembly are three separate programs that are activated in response to size change, and (2) constitutive control, where stable size results from the balance between continuous organelle assembly and disassembly. The problem has been studied in Chlamydomonas reinhardtii because the flagella are easy to measure, their size changes only in the length dimension, and the genetics are comparable to yeast. Length dynamics in Chlamydomonas flagella are quite robust: they maintain a length of about 12 μm and recover from amputation in about 90 min with a growth rate that decreases smoothly to zero as the length approaches 12 μm. Despite a wealth of experimental studies, existing data are consistent with both induced and constitutive control models for flagella. Here we developed novel microfluidic trapping and laser microsurgery techniques in Chlamydomonas to distinguish between length control models by measuring the two flagella on a single cell as they equilibrate after amputation of a single flagellum. The results suggest that cells equalize flagellar length by constitutive control.
Implicit constitutive relations for nonlinear magnetoelastic bodies
Bustamante, R.; Rajagopal, K. R.
2015-01-01
Implicit constitutive relations that characterize the response of elastic bodies have greatly enhanced the arsenal available at the disposal of the analyst working in the field of elasticity. This class of models were recently extended to describe electroelastic bodies by the present authors. In this paper, we extend the development of implicit constitutive relations to describe the behaviour of elastic bodies that respond to magnetic stimuli. The models that are developed provide a rational way to describe phenomena that have hitherto not been adequately described by the classical models that are in place. After developing implicit constitutive relations for magnetoelastic bodies undergoing large deformations, we consider the linearization of the models within the context of small displacement gradients. We then use the linearized model to describe experimentally observed phenomena which the classical linearized magnetoelastic models are incapable of doing. We also solve several boundary value problems within the context of the models that are developed: extension and shear of a slab, and radial inflation and extension of a cylinder. PMID:25792968
Solid Propellant Nonlinear Constitutive Theory Extension
1984-01-01
softening approach met with only marginally greater success. The model evolution was capable of describing some trends of solid propellant behavior... evolution of the bonding state through the following ordinary differential equation: subject to the initial condition: (29) "T (0) 1 in which...R(t-t0 ); to < t tf (36) the damage- evolution equation provides the solution: e"( - c _ e"(t-to) [- 1 ce-l (to)] e- or:" (- 0) J(37)v(t ~- or: e
Mechanical Constitutive Models for Engineering Materials
1977-09-01
peruendicular to the yield surface at point C. Drucker - Prager material 138. The Von Mises yield condition was modified by Drucker and Prager12 to include the...Substituting Equation 500 mu2 il @ / I // I oli IC’ Figure 19. Drucker - Prager yield surface in principal stress space ! ! into Equation 469 we obtain the...following stress-strain relationship associated with the Drucker - Prager yield function dS- WdE / iG G d~ de +21 ij 2G 9K ij + + G x ( f e1ij) (501) From
General solution of the scattering equations
NASA Astrophysics Data System (ADS)
Dolan, Louise; Goddard, Peter
2016-10-01
The scattering equations, originally introduced by Fairlie and Roberts in 1972 and more recently shown by Cachazo, He and Yuan to provide a kinematic basis for describing tree amplitudes for massless particles in arbitrary space-time dimension, have been reformulated in polynomial form. The scattering equations for N particles are equivalent to N - 3 polynomial equations h m = 0, 1 ≤ m ≤ N - 3, in N - 3 variables, where h m has degree m and is linear in the individual variables. Facilitated by this linearity, elimination theory is used to construct a single variable polynomial equation, Δ N = 0, of degree ( N - 3)! determining the solutions. Δ N is the sparse resultant of the system of polynomial scattering equations and it can be identified as the hyperdeterminant of a multidimensional matrix of border format within the terminology of Gel'fand, Kapranov and Zelevinsky. Macaulay's Unmixedness Theorem is used to show that the polynomials of the scattering equations constitute a regular sequence, enabling the Hilbert series of the variety determined by the scattering equations to be calculated, independently showing that they have ( N - 3)! solutions.
Search, Seizure, and Privacy. Exploring the Constitution Series.
ERIC Educational Resources Information Center
McWhirter, Darien A., Ed.
This book, part of the "Exploring the Constitution Series," provides a basic introduction to important areas of constitutional law. Each volume contains a general introduction to a particular constitutional issue combined with excerpts from significant Supreme Court decisions in that area. The text of the Constitution, a chronological…
The Law of the Constitution: A Bicentennial Lecture.
ERIC Educational Resources Information Center
Meese, Edwin, III
This paper discusses the distinction between the Constitution and constitutional law. The Constitution is the fundamental law of the United States. It creates the institutions of government, enumerates the powers of these institutions, and delineates areas government may not enter. The Constitution is the instrument by which the consent of the…
Power: Constitutional Update. Bar/School Partnership Programs Series.
ERIC Educational Resources Information Center
American Bar Association, Chicago, IL. Special Committee on Youth Education for Citizenship.
The fourth in a special series of handbooks dealing with constitutional themes, this document looks at power in the context of the U.S. Constitution. "The Constitution's Prescription for Freedom" (L. Peach) examines the separation of powers provided for in the Constitution. "The Concept of Power" (C. Roach) is a series of…
29 CFR 402.1 - Labor organization constitution and bylaws.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 2 2012-07-01 2012-07-01 false Labor organization constitution and bylaws. 402.1 Section... constitution and bylaws. Every labor organization shall adopt a constitution and bylaws consistent with the... a constitution and bylaws which it has previously adopted and under which it is operating when the...
29 CFR 402.1 - Labor organization constitution and bylaws.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 2 2013-07-01 2013-07-01 false Labor organization constitution and bylaws. 402.1 Section... constitution and bylaws. Every labor organization shall adopt a constitution and bylaws consistent with the... a constitution and bylaws which it has previously adopted and under which it is operating when the...
29 CFR 402.1 - Labor organization constitution and bylaws.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 2 2011-07-01 2011-07-01 false Labor organization constitution and bylaws. 402.1 Section... constitution and bylaws. Every labor organization shall adopt a constitution and bylaws consistent with the... a constitution and bylaws which it has previously adopted and under which it is operating when the...
29 CFR 402.1 - Labor organization constitution and bylaws.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 2 2010-07-01 2010-07-01 false Labor organization constitution and bylaws. 402.1 Section... constitution and bylaws. Every labor organization shall adopt a constitution and bylaws consistent with the... a constitution and bylaws which it has previously adopted and under which it is operating when the...
29 CFR 402.1 - Labor organization constitution and bylaws.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 2 2014-07-01 2014-07-01 false Labor organization constitution and bylaws. 402.1 Section... constitution and bylaws. Every labor organization shall adopt a constitution and bylaws consistent with the... a constitution and bylaws which it has previously adopted and under which it is operating when the...
Single wall penetration equations
NASA Technical Reports Server (NTRS)
Hayashida, K. B.; Robinson, J. H.
1991-01-01
Five single plate penetration equations are compared for accuracy and effectiveness. These five equations are two well-known equations (Fish-Summers and Schmidt-Holsapple), two equations developed by the Apollo project (Rockwell and Johnson Space Center (JSC), and one recently revised from JSC (Cour-Palais). They were derived from test results, with velocities ranging up to 8 km/s. Microsoft Excel software was used to construct a spreadsheet to calculate the diameters and masses of projectiles for various velocities, varying the material properties of both projectile and target for the five single plate penetration equations. The results were plotted on diameter versus velocity graphs for ballistic and spallation limits using Cricket Graph software, for velocities ranging from 2 to 15 km/s defined for the orbital debris. First, these equations were compared to each other, then each equation was compared with various aluminum projectile densities. Finally, these equations were compared with test results performed at JSC for the Marshall Space Flight Center. These equations predict a wide variety of projectile diameters at a given velocity. Thus, it is very difficult to choose the 'right' prediction equation. The thickness of a single plate could have a large variation by choosing a different penetration equation. Even though all five equations are empirically developed with various materials, especially for aluminum alloys, one cannot be confident in the shield design with the predictions obtained by the penetration equations without verifying by tests.
An internal variable constitutive model for the large deformation of metals at high temperatures
NASA Technical Reports Server (NTRS)
Brown, Stuart; Anand, Lallit
1988-01-01
The advent of large deformation finite element methodologies is beginning to permit the numerical simulation of hot working processes whose design until recently has been based on prior industrial experience. Proper application of such finite element techniques requires realistic constitutive equations which more accurately model material behavior during hot working. A simple constitutive model for hot working is the single scalar internal variable model for isotropic thermal elastoplasticity proposed by Anand. The model is recalled and the specific scalar functions, for the equivalent plastic strain rate and the evolution equation for the internal variable, presented are slight modifications of those proposed by Anand. The modified functions are better able to represent high temperature material behavior. The monotonic constant true strain rate and strain rate jump compression experiments on a 2 percent silicon iron is briefly described. The model is implemented in the general purpose finite element program ABAQUS.
Modeling flow stress constitutive behavior of SA508-3 steel for nuclear reactor pressure vessels
NASA Astrophysics Data System (ADS)
Sun, Mingyue; Hao, Luhan; Li, Shijian; Li, Dianzhong; Li, Yiyi
2011-11-01
Based on the measured stress-strain curves under different temperatures and strain rates, a series of flow stress constitutive equations for SA508-3 steel were firstly established through the classical theories on work hardening and softening. The comparison between the experimental and modeling results has confirmed that the established constitutive equations can correctly describe the mechanical responses and microstructural evolutions of the steel under various hot deformation conditions. We further represented a successful industrial application of this model to simulate a forging process for a large conical shell used in a nuclear steam generator, which evidences its practical and promising perspective of our model with an aim of widely promoting the hot plasticity processing for heavy nuclear components of fission reactors.
NASA Technical Reports Server (NTRS)
Valanis, K. C.; Lee, C. F.
1983-01-01
A single phenomenological constitutive equation is derived theoretically from first principles and applied to aluminum, tin and lead. The theory is based on deformation kinetics of steady creep in which the fundamental mechanism is atomic transport over potential barriers whose conformation is distorted by the application of a stress field. The form of the functional dependence of barrier distortion and stress over the entire temperature range is found to be a sigmoidal curve which tends to straight lines of a unit slope in the small and high stress regions. With this form of barrier distortion, the constitutive equation prediction the steady creep behavior of aluminum, tin and lead over a wide range of temperature and stress.
NASA Technical Reports Server (NTRS)
Saleeb, A. F.; Chang, T. Y. P.; Wilt, T.; Iskovitz, I.
1989-01-01
The research work performed during the past year on finite element implementation and computational techniques pertaining to high temperature composites is outlined. In the present research, two main issues are addressed: efficient geometric modeling of composite structures and expedient numerical integration techniques dealing with constitutive rate equations. In the first issue, mixed finite elements for modeling laminated plates and shells were examined in terms of numerical accuracy, locking property and computational efficiency. Element applications include (currently available) linearly elastic analysis and future extension to material nonlinearity for damage predictions and large deformations. On the material level, various integration methods to integrate nonlinear constitutive rate equations for finite element implementation were studied. These include explicit, implicit and automatic subincrementing schemes. In all cases, examples are included to illustrate the numerical characteristics of various methods that were considered.
ERIC Educational Resources Information Center
American Bar Association, Chicago, IL.
This report sets forth certain conclusions reached by the Special Constitutional Convention Study Committee of the American Bar Association after conducting a two-year study. The committee was formed to evaluate the ramifications of the constitutional convention method of initiating amendments to the U. S. Constitution as set down in Article 5. It…
Interpretation of Bernoulli's Equation.
ERIC Educational Resources Information Center
Bauman, Robert P.; Schwaneberg, Rolf
1994-01-01
Discusses Bernoulli's equation with regards to: horizontal flow of incompressible fluids, change of height of incompressible fluids, gases, liquids and gases, and viscous fluids. Provides an interpretation, properties, terminology, and applications of Bernoulli's equation. (MVL)
Reflections on Chemical Equations.
ERIC Educational Resources Information Center
Gorman, Mel
1981-01-01
The issue of how much emphasis balancing chemical equations should have in an introductory chemistry course is discussed. The current heavy emphasis on finishing such equations is viewed as misplaced. (MP)
Development of a unified constitutive model for an isotropic nickel base superalloy Rene 80
NASA Technical Reports Server (NTRS)
Ramaswamy, V. G.; Vanstone, R. H.; Laflen, J. H.; Stouffer, D. C.
1988-01-01
Accurate analysis of stress-strain behavior is of critical importance in the evaluation of life capabilities of hot section turbine engine components such as turbine blades and vanes. The constitutive equations used in the finite element analysis of such components must be capable of modeling a variety of complex behavior exhibited at high temperatures by cast superalloys. The classical separation of plasticity and creep employed in most of the finite element codes in use today is known to be deficient in modeling elevated temperature time dependent phenomena. Rate dependent, unified constitutive theories can overcome many of these difficulties. A new unified constitutive theory was developed to model the high temperature, time dependent behavior of Rene' 80 which is a cast turbine blade and vane nickel base superalloy. Considerations in model development included the cyclic softening behavior of Rene' 80, rate independence at lower temperatures and the development of a new model for static recovery.
On implicit constitutive relations in elastic ferroelectrics
NASA Astrophysics Data System (ADS)
Arvanitakis, Antonios
2017-10-01
A considerable effort is being made to foster the use of implicit constitutive relations in mechanics of the continuous medium. From this point of view, the class of elastic bodies extends to a much larger category than the classical Cauchy and Green elastic bodies. In this work, a subclass of the recently proposed classes of electro-elastic bodies is taken into consideration to propose models for elastic ferroelectrics. These models, even though they are not based on thermodynamical arguments, seem capable enough to provide the hysteretic behavior of ferroelectric materials.
Constitutive modeling for isotropic materials (HOST)
NASA Technical Reports Server (NTRS)
Chan, Kwai S.; Lindholm, Ulric S.; Bodner, S. R.; Hill, Jeff T.; Weber, R. M.; Meyer, T. G.
1986-01-01
The results of the third year of work on a program which is part of the NASA Hot Section Technology program (HOST) are presented. The goals of this program are: (1) the development of unified constitutive models for rate dependent isotropic materials; and (2) the demonstration of the use of unified models in structural analyses of hot section components of gas turbine engines. The unified models selected for development and evaluation are those of Bodner-Partom and of Walker. A test procedure was developed for assisting the generation of a data base for the Bodner-Partom model using a relatively small number of specimens. This test procedure involved performing a tensile test at a temperature of interest that involves a succession of strain-rate changes. The results for B1900+Hf indicate that material constants related to hardening and thermal recovery can be obtained on the basis of such a procedure. Strain aging, thermal recovery, and unexpected material variations, however, preluded an accurate determination of the strain-rate sensitivity parameter is this exercise. The effects of casting grain size on the constitutive behavior of B1900+Hf were studied and no particular grain size effect was observed. A systematic procedure was also developed for determining the material constants in the Bodner-Partom model. Both the new test procedure and the method for determining material constants were applied to the alternate material, Mar-M247 . Test data including tensile, creep, cyclic and nonproportional biaxial (tension/torsion) loading were collected. Good correlations were obtained between the Bodner-Partom model and experiments. A literature survey was conducted to assess the effects of thermal history on the constitutive behavior of metals. Thermal history effects are expected to be present at temperature regimes where strain aging and change of microstructure are important. Possible modifications to the Bodner-Partom model to account for these effects are outlined
Constitutive parameter measurements of lossy materials
NASA Technical Reports Server (NTRS)
Dominek, A.; Park, A.
1989-01-01
The electrical constitutive parameters of lossy materials are considered. A discussion of the NRL arch for lossy coatings is presented involving analytical analyses of the reflected field using the geometrical theory of diffraction (GTD) and physical optics (PO). The actual values for these parameters can be obtained through a traditional transmission technique which is examined from an error analysis standpoint. Alternate sample geometries are suggested for this technique to reduce sample tolerance requirements for accurate parameter determination. The performance for one alternate geometry is given.
Numerically abnormal chromosome constitutions in humans
1993-12-31
Chapter 24, discusses numerically abnormal chromosome constitutions in humans. This involves abnormalities of human chromosome number, including polyploidy (when the number of sets of chromosomes increases) and aneuploidy (when the number of individual normal chromosomes changes). Chapter sections discuss the following chromosomal abnormalities: human triploids, imprinting and uniparental disomy, human tetraploids, hydatidiform moles, anomalies caused by chromosomal imbalance, 13 trisomy (D{sub 1} trisomy, Patau syndrome), 21 trisomy (Down syndrome), 18 trisomy syndrome (Edwards syndrome), other autosomal aneuploidy syndromes, and spontaneous abortions. The chapter concludes with remarks on the nonrandom participation of chromosomes in trisomy. 69 refs., 3 figs., 4 tabs.
Constitutive Laws for Dynamic Modelling of Soils,
1980-01-01
AD-AO 733 DAMES AND MDORE LONDON (ENGLAND) F/ S/I3 CONSTITUTIVE LAWS FOR DYNAMIC MODELLING OF SOILS.(U) JAN 80 J MART1 P A CUNOALL F61708-79--087...shear history progresses. This is the type of approach followed in the endochronic models used by Bazant and co-workers ( Bazant and Krizeck, 1976...this improved model to soils (1978). Mean- while, Bazant and his co-workers have continued using the older model for 1describing concrete ( Bazant and
Civil and Constitutional Rights of Adjudicated Youth.
Landess, Jacqueline
2016-01-01
Mental health clinicians serving child and adolescent patients are frequently asked to evaluate youth who have been arrested for various offenses or who are otherwise involved with the juvenile justice system. To help orient clinicians and other stakeholders involved with such cases, this article describes the evolution of the juvenile justice system and summarizes the history and current status of the civil and constitutional rights of youth involved in the adjudicatory process. This article also points out key areas in which due process rights are still evolving, particularly in the case of status offenders.
At law. Crack, symbolism, and the constitution.
Annas, G J
1989-01-01
Annas comments on two 1989 Supreme Court decisions and dissenting opinions in cases involving the testing of employees for substance abuse. Regulations promulgated under the 1970 Federal Railroad Safety Act led to a court case, Skinner v. Railway Labor Executives' Association, challenging the collection of blood and urine samples from employees involved in serious rail accidents. Another case, National Treasury Employees Union v. Von Raab, questioned the constitutionality of requiring urine samples for drug testing from candidates for certain positions with the Customs Service. Annas speculates whether the Court's reasoning in these cases will lead it to support broader mandatory testing in the future at the cost of Fourth Amendment rights.
[Constitutive synthesis of cellulase by Trichoderma lignorum].
Lobanok, A G; Pavlovskaia, Zh I
1977-01-01
The induction of cellulase synthesis by lactose was studied in the resting cells of Trichoderma lignorum OM 534. The effect depended on the concentration of lactose, pH, and the age of the mycelium. The induction of the enzyme synthesis by lactose is supressed by glucose and its metabolites. The repression by glucose is partly eliminated by Cyk 3'-5'-AMP, theophylline, and coffeine. The induction of cellulase by lactose is regarded as a derepression of the synthesis of this enzyme as a result of slow assimilation of the disaccharide. The synthesis of cellulase in T. lignorum is presumed to be constitutive.
Constitutive parameter extraction for heated materials
NASA Technical Reports Server (NTRS)
Munk, J.; Dominek, A.
1991-01-01
The focus is the determination of the electrical constitutive paramaters of materials with general complex epsilon and mu values at elevated temperatures. Measurement fixtures and techniques are evaluated for frequencies between 8 and 12 GHz using a rectangular waveguide with the sample completely filling the fixture. Three different measurement techniques are evaluated to obtain the necessary measured quantities for parameter extraction. The most desirable technique used two reflection measurements from material samples of different thickness backed with a short. Temperatures up to 600 F were investigated.
Random equations in aerodynamics
NASA Technical Reports Server (NTRS)
Bharucha-Reid, A. T.
1984-01-01
Literature was reviewed to identify aerodynamic models which might be treated by probablistic methods. The numerical solution of some integral equations that arise in aerodynamical problems were investigated. On the basis of the numerical studies a qualitative theory of random integral equations was developed to provide information on the behavior of the solutions of these equations (in particular, boundary and asymptotic behavior, and stability) and their statistical properties without actually obtaining explicit solutions of the equations.
Parametrically defined differential equations
NASA Astrophysics Data System (ADS)
Polyanin, A. D.; Zhurov, A. I.
2017-01-01
The paper deals with nonlinear ordinary differential equations defined parametrically by two relations. It proposes techniques to reduce such equations, of the first or second order, to standard systems of ordinary differential equations. It obtains the general solution to some classes of nonlinear parametrically defined ODEs dependent on arbitrary functions. It outlines procedures for the numerical solution of the Cauchy problem for parametrically defined differential equations.
Integrable nonlinear relativistic equations
NASA Astrophysics Data System (ADS)
Hadad, Yaron
This work focuses on three nonlinear relativistic equations: the symmetric Chiral field equation, Einstein's field equation for metrics with two commuting Killing vectors and Einstein's field equation for diagonal metrics that depend on three variables. The symmetric Chiral field equation is studied using the Zakharov-Mikhailov transform, with which its infinitely many local conservation laws are derived and its solitons on diagonal backgrounds are studied. It is also proven that it is equivalent to a novel equation that poses a fascinating similarity to the Sinh-Gordon equation. For the 1+1 Einstein equation the Belinski-Zakharov transformation is explored. It is used to derive explicit formula for N gravitational solitons on arbitrary diagonal background. In particular, the method is used to derive gravitational solitons on the Einstein-Rosen background. The similarities and differences between the attributes of the solitons of the symmetric Chiral field equation and those of the 1+1 Einstein equation are emphasized, and their origin is pointed out. For the 1+2 Einstein equation, new equations describing diagonal metrics are derived and their compatibility is proven. Different gravitational waves are studied that naturally extend the class of Bondi-Pirani-Robinson waves. It is further shown that the Bondi-Pirani-Robinson waves are stable with respect to perturbations of the spacetime. Their stability is closely related to the stability of the Schwarzschild black hole and the relation between the two allows to conjecture about the stability of a wide range of gravitational phenomena. Lastly, a new set of equations that describe weak gravitational waves is derived. This new system of equations is closely and fundamentally connected with the nonlinear Schrodinger equation and can be properly called the nonlinear Schrodinger-Einstein equations. A few preliminary solutions are constructed.
Key, S.W.; Krieg, R.D.
1980-01-01
A number of complex issues are addressed which will allow the incorporation of finite strain, inelastic material behavior into the piecewise numerical construction of solutions in solid mechanics. Without recourse to extensive continuum mechanics preliminaries, an elementary time independent plasticity model, an elementary time dependent creep model, and a viscoelastic model are introduced as examples of constitutive equations which are routinely used in engineering calculations. The constitutive equations are all suitable for problems involving large deformations and finite strains. The plasticity and creep models are in rate form and use the symmetric part of the velocity gradient or the stretching to compute the co-rotational time derivative of the Cauchy stress. The viscoelastic model computes the current value of the Cauchy stress from a hereditary integral of a materially invariant form of the stretching history. The current configuration is selected for evaluation of equilibrium as opposed to either the reference configuration or the last established equilibrium configuration. The process of strain incrementation is examined in some depth and the stretching evaluated at the midinterval multiplied by the time step is identified as the appropriate finite strain increment to use with the selected form of the constitutive equations. Discussed is the conversion of rotation rates based on the spin into incremental orthogonal rotations which are then used to update stresses and state variables due to rigid body rotation during the load increment. Comments and references to the literature are directed at numerical integration of the constitutive equations with an emphasis on doing this accurately, if not exactly, for any time step and stretching. This material taken collectively provides an approach to numerical implementation which is marked by its simplicity.
Constitutive modelling of magnetic shape memory alloys with discrete and continuous symmetries
Haldar, K.; Lagoudas, D. C.
2014-01-01
A free energy-based constitutive formulation is considered for magnetic shape memory alloys. Internal state variables are introduced whose evolution describes the transition from reference state to the deformed and transformed one. We impose material symmetry restrictions on the Gibbs free energy and on the evolution equations of the internal state variables. Discrete symmetry is considered for single crystals, whereas continuous symmetry is considered for polycrystalline materials. PMID:25197247
Spherocylindrical microplane constitutive model for shale and other anisotropic rocks
NASA Astrophysics Data System (ADS)
Li, Cunbao; Caner, Ferhun C.; Chau, Viet T.; Bažant, Zdeněk P.
2017-06-01
Constitutive equations for inelastic behavior of anisotropic materials have been a challenge for decades. Presented is a new spherocylindrical microplane constitutive model that meets this challenge for the inelastic fracturing behavior of orthotropic materials, and particularly the shale, which is transversely isotropic and is important for hydraulic fracturing (aka fracking) as well as many geotechnical structures. The basic idea is to couple a cylindrical microplane system to the classical spherical microplane system. Each system is subjected to the same strain tensor while their stress tensors are superposed. The spherical phase is similar to the previous microplane models for concrete and isotropic rock. The integration of stresses over spherical microplanes of all spatial orientations relies on the previously developed optimal Gaussian integration over a spherical surface. The cylindrical phase, which is what creates the transverse isotropy, involves only microplanes that are normal to plane of isotropy, or the bedding layers, and enhance the stiffness and strength in that plane. Unlike all the microplane models except the spectral one, the present one can reproduce all the five independent elastic constants of transversely isotropic shales. Vice versa, from these constants, one can easily calculate all the microplane elastic moduli, which are all positive if the elastic in-to-out-of plane moduli ratio is not too big (usually less than 3.75, which applies to all shales). Oriented micro-crack openings, frictional micro-slips and bedding plane behavior can be modeled more intuitively than with the spectral approach. Data fitting shows that the microplane resistance depends on the angle with the bedding layers non-monotonically, and compressive resistance reaches a minimum at 60°. A robust algorithm for explicit step-by-step structural analysis is formulated. Like all microplane models, there are many material parameters, but they can be identified sequentially
ERIC Educational Resources Information Center
Fay, Temple H.
2002-01-01
We investigate the pendulum equation [theta] + [lambda][squared] sin [theta] = 0 and two approximations for it. On the one hand, we suggest that the third and fifth-order Taylor series approximations for sin [theta] do not yield very good differential equations to approximate the solution of the pendulum equation unless the initial conditions are…
Application of symbolic computations to the constitutive modeling of structural materials
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Tan, H. Q.; Dong, X.
1990-01-01
In applications involving elevated temperatures, the derivation of mathematical expressions (constitutive equations) describing the material behavior can be quite time consuming, involved and error-prone. Therefore intelligent application of symbolic systems to faciliate this tedious process can be of significant benefit. Presented here is a problem oriented, self contained symbolic expert system, named SDICE, which is capable of efficiently deriving potential based constitutive models in analytical form. This package, running under DOE MACSYMA, has the following features: (1) potential differentiation (chain rule), (2) tensor computations (utilizing index notation) including both algebraic and calculus; (3) efficient solution of sparse systems of equations; (4) automatic expression substitution and simplification; (5) back substitution of invariant and tensorial relations; (6) the ability to form the Jacobian and Hessian matrix; and (7) a relational data base. Limited aspects of invariant theory were also incorporated into SDICE due to the utilization of potentials as a starting point and the desire for these potentials to be frame invariant (objective). The uniqueness of SDICE resides in its ability to manipulate expressions in a general yet pre-defined order and simplify expressions so as to limit expression growth. Results are displayed, when applicable, utilizing index notation. SDICE was designed to aid and complement the human constitutive model developer. A number of examples are utilized to illustrate the various features contained within SDICE. It is expected that this symbolic package can and will provide a significant incentive to the development of new constitutive theories.
NASA Technical Reports Server (NTRS)
Dame, L. T.; Stouffer, D. C.
1986-01-01
A tool for the mechanical analysis of nickel base single crystal superalloys, specifically Rene N4, used in gas turbine engine components is developed. This is achieved by a rate dependent anisotropic constitutive model implemented in a nonlinear three dimensional finite element code. The constitutive model is developed from metallurigical concepts utilizing a crystallographic approach. A non Schmid's law formulation is used to model the tension/compression asymmetry and orientation dependence in octahedral slip. Schmid's law is a good approximation to the inelastic response of the material in cube slip. The constitutive equations model the tensile behavior, creep response, and strain rate sensitivity of these alloys. Methods for deriving the material constants from standard tests are presented. The finite element implementation utilizes an initial strain method and twenty noded isoparametric solid elements. The ability to model piecewise linear load histories is included in the finite element code. The constitutive equations are accurately and economically integrated using a second order Adams-Moulton predictor-corrector method with a dynamic time incrementing procedure. Computed results from the finite element code are compared with experimental data for tensile, creep and cyclic tests at 760 deg C. The strain rate sensitivity and stress relaxation capabilities of the model are evaluated.
Space shuttle propellant constitutive law verification tests
NASA Technical Reports Server (NTRS)
Thompson, James R.
1995-01-01
As part of the Propellants Task (Task 2.0) on the Solid Propulsion Integrity Program (SPIP), a database of material properties was generated for the Space Shuttle Redesigned Solid Rocket Motor (RSRM) PBAN-based propellant. A parallel effort on the Propellants Task was the generation of an improved constitutive theory for the PBAN propellant suitable for use in a finite element analysis (FEA) of the RSRM. The outcome of an analysis with the improved constitutive theory would be more reliable prediction of structural margins of safety. The work described in this report was performed by Materials Laboratory personnel at Thiokol Corporation/Huntsville Division under NASA contract NAS8-39619, Mod. 3. The report documents the test procedures for the refinement and verification tests for the improved Space Shuttle RSRM propellant material model, and summarizes the resulting test data. TP-H1148 propellant obtained from mix E660411 (manufactured February 1989) which had experienced ambient igloo storage in Huntsville, Alabama since January 1990, was used for these tests.
Constitutive modelling of composite biopolymer networks.
Fallqvist, B; Kroon, M
2016-04-21
The mechanical behaviour of biopolymer networks is to a large extent determined at a microstructural level where the characteristics of individual filaments and the interactions between them determine the response at a macroscopic level. Phenomena such as viscoelasticity and strain-hardening followed by strain-softening are observed experimentally in these networks, often due to microstructural changes (such as filament sliding, rupture and cross-link debonding). Further, composite structures can also be formed with vastly different mechanical properties as compared to the individual networks. In this present paper, we present a constitutive model presented in a continuum framework aimed at capturing these effects. Special care is taken to formulate thermodynamically consistent evolution laws for dissipative effects. This model, incorporating possible anisotropic network properties, is based on a strain energy function, split into an isochoric and a volumetric part. Generalisation to three dimensions is performed by numerical integration over the unit sphere. Model predictions indicate that the constitutive model is well able to predict the elastic and viscoelastic response of biological networks, and to an extent also composite structures.
Constitutive modeling of contact angle hysteresis.
Vedantam, Srikanth; Panchagnula, Mahesh V
2008-05-15
We introduce a phase field model of wetting of surfaces by sessile drops. The theory uses a two-dimensional non-conserved phase field variable to parametrize the Gibbs free energy of the three-dimensional system. Contact line tension and contact angle hysteresis arise from the gradient term in the free energy and the kinetic coefficient respectively. A significant advantage of this approach is in the constitutive specification of hysteresis. The advancing and receding angles of a surface, the liquid-vapor interfacial energy and three-phase line tension are the only required constitutive inputs to the model. We first simulate hysteresis on a smooth chemically homogeneous surface using this theory. Next we show that it is possible to study heterogeneous surfaces whose component surfaces are themselves hysteretic. We use this theory to examine the wetting of a surface containing a circular heterogeneous island. The contact angle for this case is found to be determined solely by the material properties at the contact line in accord with recent experimental data.
Constitutive modeling for isotropic materials (HOST)
NASA Technical Reports Server (NTRS)
Lindholm, U. S.; Chan, K. S.; Bodner, S. R.; Weber, R. M.; Walker, K. P.; Cassenti, B. N.
1985-01-01
This report presents the results of the second year of work on a problem which is part of the NASA HOST Program. Its goals are: (1) to develop and validate unified constitutive models for isotropic materials, and (2) to demonstrate their usefulness for structural analyses of hot section components of gas turbine engines. The unified models selected for development and evaluation are that of Bodner-Partom and Walker. For model evaluation purposes, a large constitutive data base is generated for a B1900 + Hf alloy by performing uniaxial tensile, creep, cyclic, stress relation, and thermomechanical fatigue (TMF) tests as well as biaxial (tension/torsion) tests under proportional and nonproportional loading over a wide range of strain rates and temperatures. Systematic approaches for evaluating material constants from a small subset of the data base are developed. Correlations of the uniaxial and biaxial tests data with the theories of Bodner-Partom and Walker are performed to establish the accuracy, range of applicability, and integability of the models. Both models are implemented in the MARC finite element computer code and used for TMF analyses. Benchmark notch round experiments are conducted and the results compared with finite-element analyses using the MARC code and the Walker model.
Constitutional ring chromosomes and tumour suppressor genes.
Tommerup, N; Lothe, R
1992-01-01
The types of malignancy reported in carriers of constitutional ring chromosomes r(11), r(13), and r(22) are concordant with the chromosomal assignment of tumour suppressor loci associated with Wilms' tumour, retinoblastoma, and meningioma. It is suggested that the somatic instability of ring chromosomes may play a role in this association and that constitutional ring chromosomes may be a source for mapping of tumour suppressor loci with the potential for covering most or all of the human genome. The hypothesis predicts the presence of a locus on chromosome 10 associated with follicular carcinoma of the thyroid, in line with previous cytogenetic findings of rearrangements involving chromosome 10 in thyroid tumours, and a locus on chromosome 22 associated with testicular cancer. Development of neurofibromatoses (NF) that do not fulfil the clinical criteria of neurofibromatosis type 2 (NF2) in carriers with r(22) suggests either the presence of an additional NF locus on chromosome 22 or that ring chromosome mediated predisposition to somatic mutation of a specific tumour suppressor may be associated with atypical development of features usually associated with germline mutations. PMID:1336057
Structures of human constitutive nitric oxide synthases
Li, Huiying; Jamal, Joumana; Plaza, Carla; Pineda, Stephanie Hai; Chreifi, Georges; Jing, Qing; Cinelli, Maris A.; Silverman, Richard B.; Poulos, Thomas L.
2014-01-01
Mammals produce three isoforms of nitric oxide synthase (NOS): neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS). The overproduction of NO by nNOS is associated with a number of neurodegenerative disorders; therefore, a desirable therapeutic goal is the design of drugs that target nNOS but not the other isoforms. Crystallography, coupled with computational approaches and medicinal chemistry, has played a critical role in developing highly selective nNOS inhibitors that exhibit exceptional neuroprotective properties. For historic reasons, crystallography has focused on rat nNOS and bovine eNOS because these were available in high quality; thus, their structures have been used in structure–activity–relationship studies. Although these constitutive NOSs share more than 90% sequence identity across mammalian species for each NOS isoform, inhibitor-binding studies revealed that subtle differences near the heme active site in the same NOS isoform across species still impact enzyme–inhibitor interactions. Therefore, structures of the human constitutive NOSs are indispensible. Here, the first structure of human neuronal NOS at 2.03 Å resolution is reported and a different crystal form of human endothelial NOS is reported at 1.73 Å resolution. PMID:25286850
Relationships among certain joint constitutive models.
Segalman, Daniel Joseph; Starr, Michael James
2004-09-01
In a recent paper, Starr and Segalman demonstrated that any Masing model can be represented as a parallel-series Iwan model. A preponderance of the constitutive models that have been suggested for simulating mechanical joints are Masing models, and the purpose of this discussion is to demonstrate how the Iwan representation of those models can yield insight into their character. In particular, this approach can facilitate a critical comparison among numerous plausible constitutive models. It is explicitly shown that three-parameter models such as Smallwood's (Ramberg-Osgood) calculate parameters in such a manner that macro-slip is not an independent parameter, yet the model admits macro-slip. The introduction of a fourth parameter is therefore required. It is shown that when a macro-slip force is specified for the Smallwood model the result is a special case of the Segalman four-parameter model. Both of these models admit a slope discontinuity at the inception of macro-slip. A five-parameter model that has the beneficial features of Segalman's four-parameter model is proposed. This model manifests a force-displacement curve having a continuous first derivative.
Constitutional moments in governing science and technology.
Jasanoff, Sheila
2011-12-01
Scholars in science and technology studies (STS) have recently been called upon to advise governments on the design of procedures for public engagement. Any such instrumental function should be carried out consistently with STS's interpretive and normative obligations as a social science discipline. This article illustrates how such threefold integration can be achieved by reviewing current US participatory politics against a 70-year backdrop of tacit constitutional developments in governing science and technology. Two broad cycles of constitutional adjustment are discerned: the first enlarging the scope of state action as well as public participation, with liberalized rules of access and sympathetic judicial review; the second cutting back on the role of the state, fostering the rise of an academic-industrial complex for technology transfer, and privatizing value debates through increasing delegation to professional ethicists. New rules for public engagement in the United Sates should take account of these historical developments and seek to counteract some of the anti-democratic tendencies observable in recent decades.
Constitutive Activation of the Shaker Kv Channel
Sukhareva, Manana; Hackos, David H.; Swartz, Kenton J.
2003-01-01
In different types of K+ channels the primary activation gate is thought to reside near the intracellular entrance to the ion conduction pore. In the Shaker Kv channel the gate is closed at negative membrane voltages, but can be opened with membrane depolarization. In a previous study of the S6 activation gate in Shaker (Hackos, D.H., T.H. Chang, and K.J. Swartz. 2002. J. Gen. Physiol. 119:521–532.), we found that mutation of Pro 475 to Asp results in a channel that displays a large macroscopic conductance at negative membrane voltages, with only small increases in conductance with membrane depolarization. In the present study we explore the mechanism underlying this constitutively conducting phenotype using both macroscopic and single-channel recordings, and probes that interact with the voltage sensors or the intracellular entrance to the ion conduction pore. Our results suggest that constitutive conduction results from a dramatic perturbation of the closed-open equilibrium, enabling opening of the activation gate without voltage-sensor activation. This mechanism is discussed in the context of allosteric models for activation of Kv channels and what is known about the structure of this critical region in K+ channels. PMID:14557403
Caspar, J
1998-03-01
The inclusion of animal protection in the constitution poses a lengthy legal-political demand, which is again being vehemently discussed at the present time. Under consideration of juristic aspects, the following treatise attempts to clarify the legal requirements which presently exist for anchoring animal protection in constitutional law. It is therefore necessary in the first instance to explain the present situation regarding animal protection law. The legal situation in this respect is marked by a fundamental collision between special democratic rights guaranteed by the constitution on the one hand, and the norms of animal protection law on the other hand, which tend to restrict these rights. Based on concrete examples taken from court decisions, it is shown that constitutional vacuum surrounding a major part of animal protection law greatly complicates or even renders impossible the application and enforcement of the latter in practice. A prerequisite for a proper legal framework for animal protection is that the different special basic democratic rights governing animal use must be counterpoised by animal protection laws backed up by the constitution. Only by this means it is possible to prevent the ineffectiveness of animal protection legislative norms in the long term.
NASA Astrophysics Data System (ADS)
Cai, Jun; Zhang, Xiaolu; Wang, Kuaishe; Miao, Chengpeng
2016-11-01
The hot deformation behavior of BFe10-1-2 cupronickel alloy was investigated over wide ranges of deformation temperature and strain rate. The physics-based constitutive model was developed to predict the dynamic recovery (DRV) behavior of BFe10-1-2 cupronickel alloy at elevated temperatures. In order to verify the validity of the developed constitutive equation, the correlation coefficient (R) and average absolute relative error (AARE) were introduced to make statistics. The results indicated that the developed constitutive equation lead a good agreement between the calculated and experimental data and can accurately characterize the hot DRV behaviors for the BFe10-1-2 cupronickel alloy.
[Body composition and constitution: a constitutional syndrome (1st of 2 parts)].
Terán Díaz, E
1999-04-01
Constitutional syndrome alters body constitution modifying (usually decreasing) two of its dimensions--weight and perimeters--by changing the composition of one, several or every body levels. Apart of the cause, the basic physiopathological process that characterizes this new syndrome is the amino acid mobilization from the muscle (proteolysis). As soon as fat loss has no consequence to the organism, proteolysis reduces the muscle mass and life is in danger. Actually, there is no effective treatment to improve the nitrogen balance by medication or hormones in speed catabolic states but it can also approach us to more proper therapeutics for these so frequent processes in clinic.
Determination of constitutive relations of fault slip based on seismic wave analysis
NASA Astrophysics Data System (ADS)
Ide, Satoshi; Takeo, Minoru
1997-12-01
Constitutive laws define the boundary conditions on fault plane and govern many aspects of earthquake failure. Although several constitutive laws have been formulated based on laboratory rock experiments and applied to theoretical studies in various fields, no actual relation during a natural earthquake has been determined. The 1995 Kobe earthquake is suitable for detailed kinematic analysis, and this enables the first evaluation of constitutive relations for a natural earthquake. In this study, we determine spatiotemporal slip distribution on an assumed fault plane of the 1995 Kobe earthquake by waveform inversion and then solve elastodynamic equations using a finite difference method to determine the stress distribution and constitutive relations on the fault plane. An inversion method based on Bayes theorem is employed to obtain a spatiotemporal slip distribution, and enables us to ensure the objective uniqueness of the solution with numerous parameters and smoothing constraints. This slip distribution is then used as part of the boundary condition in the finite difference calculation. The time histories of slip and shear stress obtained then provide a constitutive relation at each point on the fault plane. They show slip weakening relations almost everywhere on the fault plane, while slip rate dependency is not clear. The slip weakening behavior has a clear depth dependency indicating that the slip weakening rate (dτ/du) is smaller in the shallow crust than that in the deep crust. This may be associated with the paucity of shallow seismicity observed in the source region of this earthquake as reported for many mature fault systems.
Constitutive activity of a UV cone opsin.
Kono, Masahiro
2006-01-09
Vertebrate visual pigment proteins contain a conserved carboxylic acid residue in the third transmembrane helix. In rhodopsin, Glu113 serves as a counterion to the positively charged protonated Schiff base formed by 11-cis retinal attached to Lys296. Activation involves breaking of this ion pair. In UV cone pigments, the retinyl Schiff base is unprotonated, and hence such a salt bridge is not present; yet the pigment is inactive in the dark. Mutation of Glu108, which corresponds to rhodopsin's Glu113, to Gln yields a pigment that remains inactive in the dark. The apoproteins of both the wild-type and mutant, however, are constitutively active with the mutant being of significantly higher activity. Thus, one important role for preserving the negatively charged glutamate in the third helix of UV pigments is to maintain a less active opsin in a manner similar to rhodopsin. Ligand binding itself in the absence of a salt bridge is sufficient for deactivation.
Pharmacy inspections: constitutional without a warrant?
Simonsmeier, L M
1979-01-01
The implications of the 1978 U.S. Supreme Court decision in Marshall vs. Barlow's, Inc., regarding warrantless inspections of pharmacies are discussed. Reviewed are the Fourth Amendment to the U.S. Constitution, related U.S. Supreme Court decisions (Camera vs. Municipal Court and See vs. City of Seattle), new "probable cause" standards, and exceptions to the requirement of warrants for inspections. The effect of the Barlow's case with specific reference to FDA, DEA and state board of pharmacy inspections is discussed. Although the Barlow's case has provided further case law in the area of administrative inspections, each case still requires individual resolution. DEA inspections are well delineated by statute and regulation. Under the "licensing exceptions," warrantless pharmacy inspections by the FDA and by boards of pharmacy are probably permissible.
[Compliance with constitutional amendment 29 in Brazil].
Campelli, Magali Geovana Ramlow; Calvo, Maria Cristina M
2007-07-01
Constitutional Amendment 29, passed in 2000, set the minimum percentages of budget resources that the Federal, State, and Municipal governments are required to spend on public health. Taking a descriptive approach, this article aims to verify the compliance with Amendment 29 at various levels of government, from 2000 to 2003. Data were obtained from the Public Health System Budget Database (SIOPS). From 2000 to 2003, there was a cumulative deficit with the Unified National Health System (SUS) of R$1.8 billion on the part of the Federal government and R$5.29 billion by the States. In 2000, 59% of the States complied with Amendment 29. In 2001, only 33% complied. Some 41% reached the target in 2002 and 52% in 2003. The SIOPS database showed that the average spending on health by Municipalities reached 13.67%, 14.82%, 16.54%, and 17.4% in 2000, 2001, 2002 and 2003, respectively.
Constituting objectivity: Transcendental perspectives on modern physics
NASA Astrophysics Data System (ADS)
Everett, Jonathan
2012-05-01
There is increasing interest in exploring Kantian approaches in the study of the history and philosophy of physics. The most well-known examples of this trend-Friedman's (2001), Ryckman's (2005) and DiSalle's (2006)-focus on Kantianism in the context of the development of the general theory of relativity. The edited collection Constituting Objectivity seeks to develop key Kantian insights-in the most part-in the context of later developments in physics: as well as discussing relativity the volume also provides Kantian interpretations of Bohr's development of quantum theory and continues to provide Kantian insight from later interpretations of quantum mechanics all the way through to considering noncommutative geometry and loop quantum gravity. The volume contains papers on a wide variety of subjects and offers an essential introduction to the breadth of Kantian trends in modern physics.
Laboratory constitutive characterization of cellular concrete.
Hardy, Robert Douglas; Lee, Moo Yul; Bronowski, David R.
2004-03-01
To establish mechanical material properties of cellular concrete mixes, a series of quasi-static, compression and tension tests have been completed. This report summarizes the test methods, set-up, relevant observations, and results from the constitutive experimental efforts. Results from the uniaxial and triaxial compression tests established failure criteria for the cellular concrete in terms of stress invariants I{sub 1} and J{sub 2}. {radical}J{sub 2} (MPa) = 297.2 - 278.7 exp{sup -0.000455 I}{sub 1}{sup (MPa)} for the 90-pcf concrete {radical}J{sub 2} (MPa) = 211.4 - 204.2 exp {sup -0.000628 I}{sub 1}{sup (MPa)} for the 60-pcf concrete
Rotational and constitutional dynamics of caged supramolecules
Kühne, Dirk; Klappenberger, Florian; Krenner, Wolfgang; Klyatskaya, Svetlana; Ruben, Mario; Barth, Johannes V.
2010-01-01
The confinement of molecular species in nanoscale environments leads to intriguing dynamic phenomena. Notably, the organization and rotational motions of individual molecules were controlled by carefully designed, fully supramolecular host architectures. Here we use an open 2D coordination network on a smooth metal surface to steer the self-assembly of discrete trimeric guest units, identified as noncovalently bound dynamers. Each caged chiral supramolecule performs concerted, chirality-preserving rotary motions within the template honeycomb pore, which are visualized and quantitatively analyzed using temperature-controlled scanning tunneling microscopy. Furthermore, with higher thermal energies, a constitutional system dynamics appears, which is revealed by monitoring repetitive switching events of the confined supramolecules’ chirality signature, reflecting decay and reassembly of the caged units. PMID:21098303
Constitutive Models for Shape Memory Alloy Polycrystals
NASA Technical Reports Server (NTRS)
Comstock, R. J., Jr.; Somerday, M.; Wert, J. A.
1996-01-01
Shape memory alloys (SMA) exhibiting the superelastic or one-way effects can produce large recoverable strains upon application of a stress. In single crystals this stress and resulting strain are very orientation dependent. We show experimental stress/strain curves for a Ni-Al single crystal for various loading orientations. Also shown are model predictions; the open and closed circles indicate recoverable strains obtained at various stages in the transformation process. Because of the strong orientation dependence of shape memory properties, crystallographic texture can be expected to play an important role in the mechanical behavior of polycrystalline SMA. It is desirable to formulate a constitutive model to better understand and exploit the unique properties of SMA.
Constitutive Models for Shape Memory Alloy Polycrystals
NASA Technical Reports Server (NTRS)
Comstock, R. J., Jr.; Somerday, M.; Wert, J. A.
1996-01-01
Shape memory alloys (SMA) exhibiting the superelastic or one-way effects can produce large recoverable strains upon application of a stress. In single crystals this stress and resulting strain are very orientation dependent. We show experimental stress/strain curves for a Ni-Al single crystal for various loading orientations. Also shown are model predictions; the open and closed circles indicate recoverable strains obtained at various stages in the transformation process. Because of the strong orientation dependence of shape memory properties, crystallographic texture can be expected to play an important role in the mechanical behavior of polycrystalline SMA. It is desirable to formulate a constitutive model to better understand and exploit the unique properties of SMA.
Compressible Navier-Stokes Equations with Revised Maxwell's Law
NASA Astrophysics Data System (ADS)
Hu, Yuxi; Racke, Reinhard
2017-03-01
We investigate the compressible Navier-Stokes equations where the constitutive law for the stress tensor given by Maxwell's law is revised to a system of relaxation equations for two parts of the tensor. The global well-posedness is proved as well as the compatibility with the classical compressible Navier-Stokes system in the sense that, for vanishing relaxation parameters, the solutions to the Maxwell system are shown to converge to solutions of the classical system.
Reconstruction of the modified discrete Langevin equation from persistent time series
Czechowski, Zbigniew
2016-05-15
The discrete Langevin-type equation, which can describe persistent processes, was introduced. The procedure of reconstruction of the equation from time series was proposed and tested on synthetic data, with short and long-tail distributions, generated by different Langevin equations. Corrections due to the finite sampling rates were derived. For an exemplary meteorological time series, an appropriate Langevin equation, which constitutes a stochastic macroscopic model of the phenomenon, was reconstructed.
Constitutive modelling of a tungsten heavy metal alloy
NASA Astrophysics Data System (ADS)
Skoglund, P.
2003-09-01
The dynamic mechanical behaviour of a tungsten heavy metal alloy (WHA) with potential use as a kinetic energy penetrator is investigated. Mechanical properties related to tensile loading are measured at strain rates up to 400 s^{-1} and at temperatures from 20 ^{circ}C to about 500 ^{circ}C. From the experimental data parameters for the constitutive equations developed by Johnson and Cook (J&C) as well as Zerilli and Armstrong (Z&A) are determined. From the extracted models isothermal and adiabatic flow stress curves are calculated and compared to experiments. At high strain rates or high temperatures the J&C model deviates about 5-10% from experimental results, while the Z&A model shows a better agreement with the collected data. It should be emphasised that the Z&A model used in this work is developed for materials with body centred crystals whereas the WHA is a composite with both face centredand body centred crystals.
The SQG Equation as a Geodesic Equation
NASA Astrophysics Data System (ADS)
Washabaugh, Pearce
2016-12-01
We demonstrate that the surface quasi-geostrophic (SQG) equation given by θ_t + < u, nabla θrangle = 0,quad θ = nabla × (-Δ)^{-1/2} u, is the geodesic equation on the group of volume-preserving diffeomorphisms of a Riemannian manifold M in the right-invariant {dot{H}^{-1/2}} metric. We show by example, that the Riemannian exponential map is smooth and non-Fredholm, and that the sectional curvature at the identity is unbounded of both signs.
Nelson, John
2003-04-01
On 9 October 2002, a majority of South Africa's Constitutional Court dismissed appeals from convictions for prostitution and keeping a brothel, rejecting arguments that the law was unconstitutional. However, the minority decision, endorsed by five of eleven judges, found that the provision that made the sex worker but not the client guilty of a criminal offence was discriminatory and should be struck down.
ERIC Educational Resources Information Center
Emenaker, Ryan
2014-01-01
"Pin-the-Tail-on-the-Constitution" is an engaged-learning activity that has been conducted in 26 classes over the past four years. The activity teaches multiple themes commonly included in a variety of courses on American politics such as federalism, congressional powers, the role of the federal courts, and the relevance of the commerce…
76 FR 58705 - Constitution Day and Citizenship Day, Constitution Week, 2011
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-21
... America's promise to citizens of every race, gender, and creed. Americans are defined not by bloodlines or allegiance to any one leader or faith, but by our shared ideals of liberty, equality, and justice under the... importance of active citizenship, recognize the enduring strength of our Constitution, and reaffirm our...
ERIC Educational Resources Information Center
Emenaker, Ryan
2014-01-01
"Pin-the-Tail-on-the-Constitution" is an engaged-learning activity that has been conducted in 26 classes over the past four years. The activity teaches multiple themes commonly included in a variety of courses on American politics such as federalism, congressional powers, the role of the federal courts, and the relevance of the commerce…
ERIC Educational Resources Information Center
Deacon, H. J.
2014-01-01
While the South African Constitution enshrines both children's right to a basic education and teachers' right to strike, conflict between these two often occurs when the way in which teachers' unions conduct strike actions detracts from learners' education. This article identifies the parties affected by industrial action in the school context,…
Phase-integral solution of the radial Dirac equation
Linnaeus, Staffan
2010-03-15
A phase-integral (WKB) solution of the radial Dirac equation is constructed, retaining perfect symmetry between the two components of the wave function and introducing no singularities except at the classical transition points. The potential is allowed to be the time component of a four-vector, a Lorentz scalar, a pseudoscalar, or any combination of these. The key point in the construction is the transformation from two coupled first-order equations constituting the radial Dirac equation to a single second-order Schroedinger-type equation. This transformation can be carried out in infinitely many ways, giving rise to different second-order equations but with the same spectrum. A unique transformation is found that produces a particularly simple second-order equation and correspondingly simple and well-behaved phase-integral solutions. The resulting phase-integral formulas are applied to unbound and bound states of the Coulomb potential. For bound states, the exact energy levels are reproduced.
Generalized Langevin theory for inhomogeneous fluids: The equations of motion
NASA Astrophysics Data System (ADS)
Grant, Martin; Desai, Rashmi C.
1982-05-01
We use the generalized Langevin approach to study the dynamical correlations in an inhomogeneous system. The equations of motion (formally exact) are obtained for the number density, momentum density, energy density, stress tensor, and heat flux. We evaluate all the relevant sum rules appearing in the frequency matrix exactly in terms of microscopic pair potentials and an external field. We show using functional derivatives how these microscopic sum rules relate to more familiar, though now nonlocal, hydrodynamiclike quantities. The set of equations is closed by a Markov approximation in the equations for stress tensor and heat flux. As a result, these equations become analogous to Grad's 13-moment equations for low-density fluids and constitute a generalization to inhomogeneous fluids of the work of Schofield and Akcasu-Daniels. We also indicate how the resulting general set of equations would simplify for systems in which the inhomogeneity is unidirectional, e.g., a liquid-vapor interface.
NASA Astrophysics Data System (ADS)
Tsai, C.; Yeh, G.
2011-12-01
In this investigation, newly proposed constitutive retentions are implemented to a fractional-flow based compressible multiphase-phase flow model. With the new model, a compressible three-phase (water, non-aqueous phase liquid (NAPL) and air) flow problem is simulated. In fractional-flow approaches, the three mass balance equations written in terms of three phase pressures are transformed to those in terms of the total pressure, saturation of water, and saturation of total liquid. These three governing equations are discretized with the Galerkin finite element method (FEM). The resulted matrix equation is solved with Bi-CGSTAB. Several numerical experiments are presented to examine the accuracy and robustness of the proposed model. The results show the presented fractional-flow based multiphase flow model is feasible and yields physically realistic solutions for compressible three-phase flow problems in porous media.
Fractional chemotaxis diffusion equations.
Langlands, T A M; Henry, B I
2010-05-01
We introduce mesoscopic and macroscopic model equations of chemotaxis with anomalous subdiffusion for modeling chemically directed transport of biological organisms in changing chemical environments with diffusion hindered by traps or macromolecular crowding. The mesoscopic models are formulated using continuous time random walk equations and the macroscopic models are formulated with fractional order differential equations. Different models are proposed depending on the timing of the chemotactic forcing. Generalizations of the models to include linear reaction dynamics are also derived. Finally a Monte Carlo method for simulating anomalous subdiffusion with chemotaxis is introduced and simulation results are compared with numerical solutions of the model equations. The model equations developed here could be used to replace Keller-Segel type equations in biological systems with transport hindered by traps, macromolecular crowding or other obstacles.