Sample records for pttcel9a1 decrease cellulose

  1. The jiaoyao1 Mutant Is an Allele of korrigan1 That Abolishes Endoglucanase Activity and Affects the Organization of Both Cellulose Microfibrils and Microtubules in Arabidopsis[C][W

    PubMed Central

    Lei, Lei; Zhang, Tian; Strasser, Richard; Lee, Christopher M.; Gonneau, Martine; Mach, Lukas; Vernhettes, Samantha; Kim, Seong H.; J. Cosgrove, Daniel; Li, Shundai; Gu, Ying

    2014-01-01

    In higher plants, cellulose is synthesized by plasma membrane–localized cellulose synthase complexes (CSCs). Arabidopsis thaliana GH9A1/KORRIGAN1 is a membrane-bound, family 9 glycosyl hydrolase that is important for cellulose synthesis in both primary and secondary cell walls. Most previously identified korrigan1 mutants show severe phenotypes such as embryo lethality; therefore, the role of GH9A1 in cellulose synthesis remains unclear. Here, we report a novel A577V missense mutation, designated jiaoyao1 (jia1), in the second of the glycosyl hydrolase family 9 active site signature motifs in GH9A1. jia1 is defective in cell expansion in dark-grown hypocotyls, roots, and adult plants. Consistent with its defect in cell expansion, this mutation in GH9A1 resulted in reduced cellulose content and reduced CSC velocity at the plasma membrane. Green fluorescent protein–GH9A1 is associated with CSCs at multiple locations, including the plasma membrane, Golgi, trans-Golgi network, and small CESA-containing compartments or microtubule-associated cellulose synthase compartments, indicating a tight association between GH9A1 and CSCs. GH9A1A577V abolishes the endoglucanase activity of GH9A1 in vitro but does not affect its interaction with CESAs in vitro, suggesting that endoglucanase activity is important for cellulose synthesis. Interestingly, jia1 results in both cellulose microfibril and microtubule disorganization. Our study establishes the important role of endoglucanase in cellulose synthesis and cellulose microfibril organization in plants. PMID:24963054

  2. The jiaoyao1 Mutant Is an Allele of korrigan1 That Abolishes Endoglucanase Activity and Affects the Organization of Both Cellulose Microfibrils and Microtubules in Arabidopsis.

    PubMed

    Lei, Lei; Zhang, Tian; Strasser, Richard; Lee, Christopher M; Gonneau, Martine; Mach, Lukas; Vernhettes, Samantha; Kim, Seong H; J Cosgrove, Daniel; Li, Shundai; Gu, Ying

    2014-06-01

    In higher plants, cellulose is synthesized by plasma membrane-localized cellulose synthase complexes (CSCs). Arabidopsis thaliana GH9A1/KORRIGAN1 is a membrane-bound, family 9 glycosyl hydrolase that is important for cellulose synthesis in both primary and secondary cell walls. Most previously identified korrigan1 mutants show severe phenotypes such as embryo lethality; therefore, the role of GH9A1 in cellulose synthesis remains unclear. Here, we report a novel A577V missense mutation, designated jiaoyao1 (jia1), in the second of the glycosyl hydrolase family 9 active site signature motifs in GH9A1. jia1 is defective in cell expansion in dark-grown hypocotyls, roots, and adult plants. Consistent with its defect in cell expansion, this mutation in GH9A1 resulted in reduced cellulose content and reduced CSC velocity at the plasma membrane. Green fluorescent protein-GH9A1 is associated with CSCs at multiple locations, including the plasma membrane, Golgi, trans-Golgi network, and small CESA-containing compartments or microtubule-associated cellulose synthase compartments, indicating a tight association between GH9A1 and CSCs. GH9A1 A577V abolishes the endoglucanase activity of GH9A1 in vitro but does not affect its interaction with CESAs in vitro, suggesting that endoglucanase activity is important for cellulose synthesis. Interestingly, jia1 results in both cellulose microfibril and microtubule disorganization. Our study establishes the important role of endoglucanase in cellulose synthesis and cellulose microfibril organization in plants. © 2014 American Society of Plant Biologists. All rights reserved.

  3. Microencapsulation of Thai rice grass (O. Sativa cv. Khao Dawk Mali 105) extract incorporated to form bioactive carboxymethyl cellulose edible film.

    PubMed

    Rodsamran, Pattrathip; Sothornvit, Rungsinee

    2018-03-01

    Microencapsulation was investigated to enhance the stability of Thai rice grass extract. Microencapsulated powder (MP) was formed using total solid of extract solution and maltodextrin ratios of 1:4 (MP 1:4) and 1:9 (MP 1:9). The absence of an endothermic peak for both MPs confirmed all extract solutions were coated with maltodextrin. MP 1:9 had a lower total phenolic content (TPC) but was higher in antioxidant capacity than MP 1:4. Moreover, the TPC of the MPs slightly decreased (70.02-93.04%) during storage at 10, 30 and 70°C for 30d. Comparatively, the TPC of the extract solution significantly decreased from 100% down to 20.8%, 11.2% and 8.6% at 10, 30 and 70°C, respectively. Therefore, MP 1:9 incorporated with blended carboxymethyl cellulose film increased the water barrier and the TPC. This film can serve as a bioactive biodegradable packaging material to reduce plastic packaging in the food industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Study on extrusion process of SiC ceramic matrix

    NASA Astrophysics Data System (ADS)

    Dai, Xiao-Yuan; Shen, Fan; Ji, Jia-You; Wang, Shu-Ling; Xu, Man

    2017-11-01

    In this thesis, the extrusion process of SiC ceramic matrix has been systematically studied.The effect of different cellulose content on the flexural strength and pore size distribution of SiC matrix was discussed.Reselts show that with the increase of cellulose content, the flexural strength decreased.The pore size distribution in the sample was 1um-4um, and the 1um-2um concentration was more concentrated. It is found that the cellulose content has little effect on the pore size distribution.When the cellulose content is 7%, the flexural strength of the sample is 40.9Mpa. At this time, the mechanical properties of the sample are the strongest.

  5. Composite polymer electrolytes based on MG49 and carboxymethyl cellulose from kenaf

    NASA Astrophysics Data System (ADS)

    Jafirin, Serawati; Ahmad, Ishak; Ahmad, Azizan

    2013-11-01

    The development of 49% poly(methyl methacrylate)-grafted natural rubber (MG49) and carboxymethyl cellulose as a composite polymer electrolyte film incorporating LiCF3SO3 were explored. Carboxymethyl cellulose was synthesized from kenaf bast fibres via carboxymethylation process by alkali catalyzed reaction of cellulose with sodium chloroacetate. Reflection fourier transform infrared (ATR-FTIR) spectroscopy showed the presence of carboxyl peak after modification of cellulose with sodium chloroacetate. X-ray diffraction (XRD) analysis revealed that the crystallinity of cellulose was decrease after synthesis. High performance composite polymer electrolytes were prepared with various composition of carboxymethyl cellulose (2-10 wt%) via solution-casting method. The conductivity was increased with carboxymethyl cellulose loading. The highest conductivity value achieved was 3.3 × 10-7 Scm-1 upon addition of 6% wt carboxymethyl cellulose. 6% wt carboxymethyl cellulose composition showed the highest tensile strength value of 7.9 MPa and 273 MPa of modulus value which demonstrated high mechanical performance with accepatable level of ionic conductivity.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafirin, Serawati; Ahmad, Ishak; Ahmad, Azizan

    The development of 49% poly(methyl methacrylate)-grafted natural rubber (MG49) and carboxymethyl cellulose as a composite polymer electrolyte film incorporating LiCF{sub 3}SO{sub 3} were explored. Carboxymethyl cellulose was synthesized from kenaf bast fibres via carboxymethylation process by alkali catalyzed reaction of cellulose with sodium chloroacetate. Reflection fourier transform infrared (ATR-FTIR) spectroscopy showed the presence of carboxyl peak after modification of cellulose with sodium chloroacetate. X-ray diffraction (XRD) analysis revealed that the crystallinity of cellulose was decrease after synthesis. High performance composite polymer electrolytes were prepared with various composition of carboxymethyl cellulose (2–10 wt%) via solution-casting method. The conductivity was increased withmore » carboxymethyl cellulose loading. The highest conductivity value achieved was 3.3 × 10{sup −7} Scm{sup −1} upon addition of 6% wt carboxymethyl cellulose. 6% wt carboxymethyl cellulose composition showed the highest tensile strength value of 7.9 MPa and 273 MPa of modulus value which demonstrated high mechanical performance with accepatable level of ionic conductivity.« less

  7. Characterization of a novel theme C glycoside hydrolase family 9 cellulase and its CBM-chimeric enzymes.

    PubMed

    Duan, Cheng-Jie; Huang, Ming-Yue; Pang, Hao; Zhao, Jing; Wu, Chao-Xing; Feng, Jia-Xun

    2017-07-01

    In bacterial cellulase systems, glycoside hydrolase family 9 (GH9) cellulases are generally regarded as the major cellulose-degrading factors besides GH48 exoglucanase. In this study, umcel9A, which was cloned from uncultured microorganisms from compost, with the encoded protein being theme C GH9 cellulase, was heterologously expressed in Escherichia coli, and the biochemical properties of the purified enzyme were characterized. Hydrolysis of carboxylmethylcellulose (CMC) by Umcel9A led to the decreased viscosity of CMC solution and production of reducing sugars. Interestingly, cellobiose was the major product when cellulosic materials were hydrolyzed by Umcel9A. Six representative carbohydrate-binding modules (CBMs) from different CBM families (CBM1, CBM2, CBM3, CBM4, CBM10, and CBM72) were fused with Umcel9A at the natural terminal position, resulting in significant enhancement of the binding capacity of the chimeric enzymes toward four different insoluble celluloses as compared with that of Umcel9A. Catalytic activity of the chimeric enzymes against insoluble celluloses, including phosphoric acid-swollen cellulose (PASC), alkali-pretreated sugarcane bagasse (ASB), filter paper powder (FPP), and Avicel, was higher than that of Umcel9A, except for Umcel9A-CBM3. In these chimeric enzymes, CBM4-Umcel9A exhibited the highest activity toward the four tested insoluble celluloses and displayed 4.2-, 3.0-, 2.4-, and 6.6-fold enhanced activity toward PASC, ASB, FPP, and Avicel, respectively, when compared with that of Umcel9A. CBM4-Umcel9A also showed highest V max and catalytic efficiency (k cat /K M ) against PASC. Construction of chimeric enzymes may have potential applications in biocatalytic processes and provides insight into the evolution of the molecular architecture of catalytic module and CBM in GH9 cellulases.

  8. Nanofibrillated cellulose (CNF) from eucalyptus sawdust as a dry strength agent of unrefined eucalyptus handsheets.

    PubMed

    Vallejos, María Evangelina; Felissia, Fernando Esteban; Area, María Cristina; Ehman, Nanci Vanesa; Tarrés, Quim; Mutjé, Pere

    2016-03-30

    Nanofibrillated cellulose has been obtained from the cellulosic fraction of eucalyptus sawdust. The fractionation process involved the partial removal of hemicelluloses and lignin. CNF was obtained using TEMPO oxidation with NaOCl in basic medium followed by mechanical homogenization. The obtained CNF was subsequently used as a dry strength agent on unbleached unrefined eucalyptus pulp. The addition of 3, 6 and 9 wt.% of CNF increased lineally the tensile index of handsheets to about 55 N mg(-1) at 35°SR, compatible with papermachine runnability. The other mechanical properties also increased substantially, and porosity decreased moderately. The estimated specific surface and average diameter of these CNF were 60 m(2)g(-1), and of 41.0 nm, respectively. The addition of 9 wt.% of CNF produced an increase in mechanical strength, equivalent to that produced by PFI refining at 1600 revolutions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Periplasmic Cytophaga hutchinsonii Endoglucanases Are Required for Use of Crystalline Cellulose as the Sole Source of Carbon and Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yongtao; Han, Lanlan; Hefferon, Kathleen L.

    2016-06-03

    The soil bacteriumCytophaga hutchinsoniiactively digests crystalline cellulose by a poorly understood mechanism. Genome analyses identified nine genes predicted to encode endoglucanases with roles in this process. No predicted cellobiohydrolases, which are usually involved in the utilization of crystalline cellulose, were identified. Chromosomal deletions were performed in eight of the endoglucanase-encoding genes:cel5A,cel5B,cel5C,cel9A,cel9B,cel9C,cel9E, andcel9F. Each mutant retained the ability to digest crystalline cellulose, although the deletion ofcel9Ccaused a modest decrease in cellulose utilization. Strains with multiple deletions were constructed to identify the critical cellulases. Cells of a mutant lacking bothcel5Bandcel9Cwere completely deficient in growth on cellulose. Cell fractionation and biochemical analyses indicatemore » that Cel5B and Cel9C are periplasmic nonprocessive endoglucanases. The requirement of periplasmic endoglucanases for cellulose utilization suggests that cellodextrins are transported across the outer membrane during this process. Bioinformatic analyses predict that Cel5A, Cel9A, Cel9B, Cel9D, and Cel9E are secreted across the outer membrane by the type IX secretion system, which has been linked to cellulose utilization. These secreted endoglucanases may perform the initial digestion within amorphous regions on the cellulose fibers, releasing oligomers that are transported into the periplasm for further digestion by Cel5B and Cel9C. The results suggest that both cell surface and periplasmic endoglucanases are required for the growth ofC. hutchinsoniion cellulose and that novel cell surface proteins may solubilize and transport cellodextrins across the outer membrane. IMPORTANCEThe bacteriumCytophaga hutchinsoniidigests crystalline cellulose by an unknown mechanism. It lacks processive cellobiohydrolases that are often involved in cellulose digestion. Critical cellulolytic enzymes were identified by genetic analyses. Intracellular (periplasmic) nonprocessive endoglucanases performed an important role in cellulose utilization. The results suggest a model involving partial digestion at the cell surface, solubilization and uptake of cellodextrins across the outer membrane by an unknown mechanism, and further digestion within the periplasm. The ability to sequester cellodextrins and digest them intracellularly may limit losses of soluble cellobiose to other organisms.C. hutchinsoniiuses an unusual approach to digest cellulose and is a potential source of novel proteins to increase the efficiency of conversion of cellulose into soluble sugars and biofuels.« less

  10. Improvement of the enzymatic hydrolysis of furfural residues by pretreatment with combined green liquor and ethanol organosolv.

    PubMed

    Yu, Hailong; Xing, Yang; Lei, Fuhou; Liu, Zhiping; Liu, Zuguang; Jiang, Jianxin

    2014-09-01

    Furfural residues (FRs) were pretreated with ethanol and a green liquor (GL) catalyst to produce fermentable sugar. Anthraquinone (AQ) was used as an auxiliary reagent to improve delignification and reduce cellulose decomposition. The results showed that 42.7% of lignin was removed and 96.5% of cellulose was recovered from substrates pretreated with 1.0 mL GL/g of dry substrate and 0.4% (w/w) AQ at 140°C for 1h. Compared with raw material, ethanol-GL pretreatment of FRs increased the glucose yield from 69.0% to 85.9% after 96 h hydrolysis with 18 FPU/g-cellulose for cellulase, 27 CBU/g-cellulose for β-glucosidase. The Brauner-Emmett-Teller surface area was reduced during pretreatment, which did not inhibit the enzymatic hydrolysis. Owing to the reduced surface area, the unproductive binding of cellulase to lignin was decreased, thus improving the enzymatic hydrolysis. The degree of polymerization of cellulose from FRs was too low to be a key factor for improving enzymatic hydrolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Improved enzymatic hydrolysis of microcrystalline cellulose (Avicel PH101) by polyethylene glycol addition.

    PubMed

    Ouyang, Jia; Dong, Zhenwei; Song, Xiangyang; Lee, Xin; Chen, Mu; Yong, Qiang

    2010-09-01

    The effects of additives on hydrolysis of microcrystalline cellulose (Avicel PH101) were examined using commercial cellulose-degrading enzymes (Celluclast 1.5L and Novozyme 188). Polyethylene glycol 4000 (PEG4000) was the most effective additive tested. When PEG4000 was added at 0.05 g/g glucan, the conversion of Avicel PH101 increased 91% (from 41.1% to 78.9%). The cellulase activity of Celluclast 1.5L increased 27.5% with PEG4000 addition. A positive effect on enzyme stabilities of Celluclast 1.5L and Novozyme 188 also occurred with PEG4000 addition. During hydrolysis process, significant changes in free protein concentration and cellulase activity were observed on Avicel PH101. More than 90% of the original enzyme activity remained in the solution after 48 h hydrolysis. Thus, PEG4000 addition is an efficient method to enhance digestibility of cellulosic materials and make enzyme recovery possible and valuable. This provides an opportunity of decreasing the operational cost of the hydrolysis process. (c) 2010 Elsevier Ltd. All rights reserved.

  12. Physical properties of sago starch biocomposite filled with Nanocrystalline Cellulose (NCC) from rattan biomass: the effect of filler loading and co-plasticizer addition

    NASA Astrophysics Data System (ADS)

    Nasution, H.; Harahap, H.; Fath, M. T. Al; Afandy, Y.

    2018-02-01

    Rattan biomass is an abundant bioresources from processing industry of rattan which contains 37.6% cellulose. The high cellulose contents of rattan biomass make it a source of nanocrystalline cellulose as a filler in biocomposites. Isolation of alpha cellulose from rattan biomass was being prepared by using three stages: delignification, alkalization, and bleaching. It was delignificated with 3.5% HNO3 and NaNO2, precipitated with 17.5% NaOH, bleaching process with 10% H2O2. Nanocrystal obtained through the hydrolysis of alpha cellulose using 45% H2SO4 and followed by mechanical steps of ultrasonication, centrifugation, and filtration with a dialysis membrane. Biocomposite was being prepared by using a solution casting method, which includes 1-4 wt% nanocrystalline cellulose from rattan biomass as fillers, 10-40 wt% acetic acid as co-plasticizer and 30 wt% glycerol as plasticizer. The biocomposite characteristic consists of density, water absorption, and water vapors transmission rate. The results showed the highest density values was 0.266 gram/cm3 obtained at an additional of 3 wt% nanocrystalline cellulose from rattan biomass and 30 wt% acetic acid. The lowest water absorption was 9.37% at an additional of 3 wt% nanocrystalline cellulose from rattan biomass and 10 wt% acetic acid. It was observed by the addition of nanocrystalline cellulose might also decrease the rate of water vapor transmission that compared to the non-filler biocomposite.

  13. Cytosolic invertase contributes to the supply of substrate for cellulose biosynthesis in developing wood.

    PubMed

    Rende, Umut; Wang, Wei; Gandla, Madhavi Latha; Jönsson, Leif J; Niittylä, Totte

    2017-04-01

    Carbon for cellulose biosynthesis is derived from sucrose. Cellulose is synthesized from uridine 5'-diphosphoglucose (UDP-glucose), but the enzyme(s) responsible for the initial sucrose cleavage and the source of UDP-glucose for cellulose biosynthesis in developing wood have not been defined. We investigated the role of CYTOSOLIC INVERTASEs (CINs) during wood formation in hybrid aspen (Populus tremula × tremuloides) and characterized transgenic lines with reduced CIN activity during secondary cell wall biosynthesis. Suppression of CIN activity by 38-55% led to a 9-13% reduction in crystalline cellulose. The changes in cellulose were reflected in reduced diameter of acid-insoluble cellulose microfibrils and increased glucose release from wood upon enzymatic digestion of cellulose. Reduced CIN activity decreased the amount of the cellulose biosynthesis precursor UDP-glucose in developing wood, pointing to the likely cause of the cellulose phenotype. The findings suggest that CIN activity has an important role in the cellulose biosynthesis of trees, and indicate that cellulose biosynthesis in wood relies on a quantifiable UDP-glucose pool. The results also introduce a concept of altering cellulose microfibril properties by modifying substrate supply to cellulose biosynthesis. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  14. The evaluation and validation of copper (II) force field parameters of the Auxiliary Activity family 9 enzymes

    NASA Astrophysics Data System (ADS)

    Moses, Vuyani; Tastan Bishop, Özlem; Lobb, Kevin A.

    2017-06-01

    The Auxiliary Activity family 9 (AA9) proteins are Cu2+ coordinating enzymes which are crucial for the early stages of cellulose degradation. In this study, the force field parameters for copper-containing bonds in the Type 1 AA9 protein active site were established and used in a molecular dynamics simulation on a solvated, neutralized system containing an AA9 protein, Cu2+ and a β-cellulose surface. The copper to cellulose interaction was evident during the dynamics, which could also be accelerated by the use of high Cusbnd O van der Waals parameters. The interaction of AA9, Cu2+ and cellulose is described in detail.

  15. Pretreating wheat straw by phosphoric acid plus hydrogen peroxide for enzymatic saccharification and ethanol production at high solid loading.

    PubMed

    Qiu, Jingwen; Ma, Lunjie; Shen, Fei; Yang, Gang; Zhang, Yanzong; Deng, Shihuai; Zhang, Jing; Zeng, Yongmei; Hu, Yaodong

    2017-08-01

    Wheat straw was pretreated by phosphoric acid plus hydrogen peroxide (PHP) for enzymatic hydrolysis and ethanol fermentation at high solid loadings. Results indicated solid loading could reach 20% with 77.4% cellulose-glucose conversion and glucose concentration of 164.9g/L in hydrolysate, it even was promoted to 25% with only 3.4% decrease on cellulose-glucose conversion as the pretreated-wheat straw was dewatered by air-drying. 72.9% cellulose-glucose conversion still was achieved as the minimized enzyme input of 20mg protein/g cellulose was employed for hydrolysis at 20% solid loading. In the corresponding conditions, 100g wheat straw can yield 11.2g ethanol with concentration of 71.2g/L by simultaneous saccharification and fermentation. Thus, PHP-pretreatment benefitted the glucose or ethanol yield at high solid loadings with lower enzyme input. Additionally, decreases on the maximal cellulase adsorption and the direct-orange/direct-blue indicated drying the PHP-pretreated substrates negatively affected the hydrolysis due to the shrinkage of cellulase-size-accommodable pores. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. [BIOINFORMATIC SEARCH AND PHYLOGENETIC ANALYSIS OF THE CELLULOSE SYNTHASE GENES OF FLAX (LINUM USITATISSIMUM)].

    PubMed

    Pydiura, N A; Bayer, G Ya; Galinousky, D V; Yemets, A I; Pirko, Ya V; Podvitski, T A; Anisimova, N V; Khotyleva, L V; Kilchevsky, A V; Blume, Ya B

    2015-01-01

    A bioinformatic search of sequences encoding cellulose synthase genes in the flax genome, and their comparison to dicots orthologs was carried out. The analysis revealed 32 cellulose synthase gene candidates, 16 of which are highly likely to encode cellulose synthases, and the remaining 16--cellulose synthase-like proteins (Csl). Phylogenetic analysis of gene products of cellulose synthase genes allowed distinguishing 6 groups of cellulose synthase genes of different classes: CesA1/10, CesA3, CesA4, CesA5/6/2/9, CesA7 and CesA8. Paralogous sequences within classes CesA1/10 and CesA5/6/2/9 which are associated with the primary cell wall formation are characterized by a greater similarity within these classes than orthologous sequences. Whereas the genes controlling the biosynthesis of secondary cell wall cellulose form distinct clades: CesA4, CesA7, and CesA8. The analysis of 16 identified flax cellulose synthase gene candidates shows the presence of at least 12 different cellulose synthase gene variants in flax genome which are represented in all six clades of cellulose synthase genes. Thus, at this point genes of all ten known cellulose synthase classes are identify in flax genome, but their correct classification requires additional research.

  17. Effect of Late Planting and Shading on Cellulose Synthesis during Cotton Fiber Secondary Wall Development

    PubMed Central

    Chen, Ji; Lv, Fengjuan; Liu, Jingran; Ma, Yina; Wang, Youhua; Chen, Binglin; Meng, Yali; Zhou, Zhiguo; Oosterhuis, Derrick M.

    2014-01-01

    Cotton-rapeseed or cotton-wheat double cropping systems are popular in the Yangtze River Valley and Yellow River Valley of China. Due to the competition of temperature and light resources during the growing season of double cropping system, cotton is generally late-germinating and late-maturing and has to suffer from the coupling of declining temperature and low light especially in the late growth stage. In this study, late planting (LP) and shading were used to fit the coupling stress, and the coupling effect on fiber cellulose synthesis was investigated. Two cotton (Gossypium hirsutum L.) cultivars were grown in the field in 2010 and 2011 at three planting dates (25 April, 25 May and 10 June) each with three shading levels (normal light, declined 20% and 40% PAR). Mean daily minimum temperature was the primary environmental factor affected by LP. The coupling of LP and shading (decreased cellulose content by 7.8%–25.5%) produced more severe impacts on cellulose synthesis than either stress alone, and the effect of LP (decreased cellulose content by 6.7%–20.9%) was greater than shading (decreased cellulose content by 0.7%–5.6%). The coupling of LP and shading hindered the flux from sucrose to cellulose by affecting the activities of related cellulose synthesis enzymes. Fiber cellulose synthase genes expression were delayed under not only LP but shading, and the coupling of LP and shading markedly postponed and even restrained its expression. The decline of sucrose-phosphate synthase activity and its peak delay may cause cellulose synthesis being more sensitive to the coupling stress during the later stage of fiber secondary wall development (38–45 days post-anthesis). The sensitive difference of cellulose synthesis between two cultivars in response to the coupling of LP and shading may be mainly determined by the sensitiveness of invertase, sucrose-phosphate synthase and cellulose synthase. PMID:25133819

  18. Mixed cellulose ester filter as a separator for air-diffusion cathode microbial fuel cells.

    PubMed

    Wang, Zejie; Lim, Bongsu

    2017-04-01

    Separator is important to prevent bio-contamination of the catalyst layer of air-diffusion cathode microbial fuel cells (MFCs). Mixed cellulose ester filter (MCEF) was examined as a separator for an air-cathode MFC in the present study. The MCEF-MFC produced a maximum power density of 780.7 ± 18.7 mW/m 2 , which was comparable to 770.9 ± 35.9 mW/m 2 of MFC with Nafion membrane (NFM) as a separator. Long-term examination demonstrated a more stable performance of the MCEF-MFC than NFM-MFC. After 25 cycles, the maximum voltage of the MCEF-MFC decreased by only 1.3% from 425.1 ± 4.3 mV (initial 5 cycles) to 419.5 ± 2.3 mV (last 5 cycles). However, it was decreased by 9.1% from 424.8 ± 5.7 to 386 ± 2.5 mV for the NFM-MFC. The coulombic efficiency (CE) of the MCEF-MFC did not change (from 3.11 ± 0.09% to 3.13 ± 0.02%), while it decreased by 9.12% from 3.18 ± 0.04% to 2.89 ± 0.02% for the NFM-MFC. The MCEF separator was with less biofouling than the NFM separator over 60 days' operation, which might be the reason for the more table long-term performance of the MCEF-MFC. The results demonstrated that MCEF was feasible as a separator to set up good-performing and cost-effective air-diffusion cathode MFC.

  19. Cellulose, hemicelluloses, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements.

    PubMed

    Ververis, C; Georghiou, K; Danielidis, D; Hatzinikolaou, D G; Santas, P; Santas, R; Corleti, V

    2007-01-01

    Freshwater algal biomass and orange and lemon peels were assessed as tissue paper pulp supplements. Cellulose and hemicellulose contents of algal biomass were 7.1% and 16.3%, respectively, whereas for citrus peels cellulose content ranged from 12.7% to 13.6% and hemicellulose from 5.3% to 6.1%. For all materials, lignin and ash content was 2% or lower, rendering them suitable for use as paper pulp supplements. The addition of algal biomass to paper pulp increased its mechanical strength significantly. However, brightness was adversely affected by chlorophyll. The addition of citrus peels in paper pulp had no effect on breaking length, increased bursting strength and decreased tearing resistance. Brightness was negatively affected at proportions of 10%, because citrus peel particles behave as coloured pigments. The cost of both materials is about 45% lower than that of conventional pulp, resulting in a 0.9-4.5% reduction in final paper price upon their addition to the pulp.

  20. Cellulose binding domain assisted immobilization of lipase (GSlip-CBD) onto cellulosic nanogel: characterization and application in organic medium.

    PubMed

    Kumar, Ashok; Zhang, Shaowei; Wu, Gaobing; Wu, Cheng Chao; Chen, JunPeng; Baskaran, R; Liu, Ziduo

    2015-12-01

    A cbd gene was cloned into the C-terminal region of a lip gene from Geobacillus stearothermophilus. The native lipase (43.5 kDa) and CBD-Lip fusion protein (60.2 kDa) were purified to homogeneity by SDS-PAGE. A highly stable cellulosic nanogel was prepared by controlled hydrolysis of microcrystalline cellulose onto which the CBD-lip fusion protein was immobilized through bio-affinity based binding. The nanogel-bound lipase showed optimum activity at 55 °C, and it remains stable and active at pH 10-10.5. Furthermore, the immobilized lipase showed an over two-fold increase of relative activity in the presence of DMSO, isopropanol, isoamyl alcohol and n-butanol, but a mild activity decrease at a low concentration of methanol and ethanol. The immobilized biocatalyst retained ~50% activity after eight repetitive hydrolytic cycles. Enzyme kinetic studies of the immobilized lipase showed a 1.24 fold increase in Vmax and 5.25 fold increase in kcat towards p-NPP hydrolysis. Additionally, the nanogel bound lipase was tested to synthesize a biodiesel ester, ethyl oleate in DMSO. Kinetic analysis showed the km 100.5 ± 4.3 mmol and Vmax 0.19 ± 0.015 mmolmin(-1) at varied oleic acid concentration. Also, the values of km and Vmax at varying concentration of ethanol were observed to be 95.9 ± 13.9 mmol and 0.22 ± 0.013 mmolmin(-1) respectively. The maximum yield of ethyl oleate 111.2 ± 1.24 mM was obtained under optimized reaction conditions in organic medium. These results suggest that this immobilized biocatalyst can be used as an efficient tool for the biotransformation reactions on an industrial scale. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Improvement of antifouling performances for modified PVDF ultrafiltration membrane with hydrophilic cellulose nanocrystal

    NASA Astrophysics Data System (ADS)

    Lv, Jinling; Zhang, Guoquan; Zhang, Hanmin; Zhao, Chuanqi; Yang, Fenglin

    2018-05-01

    Hydrophilic cellulose nanocrystal (CNC) was incorporated into hydrophobic poly(vinylidene fluoride) (PVDF) membrane via phase inversion process to improve membrane antifouling property. The effects of CNC on membrane morphology, hydrophilicity, permeability and antifouling property were investigated in-detail. Results indicated that the introduction of CNC into PVDF membrane enhanced the permeability by optimizing membrane microstructure and improving membrane hydrophilicity. A higher pure water flux of 206.9 L m-2 h-1 was achieved for CNC/PVDF membrane at 100 kPa, which was 20 times that of PVDF membrane (9.8 L m-2 h-1). In bovine serum albumin filtration measurements, the permeation flux and flux recovery ratio of CNC/PVDF membrane were increased remarkably, while the irreversible fouling-resistance of CNC/PVDF membrane decreased by 48.8%. These results indicated that the CNC/PVDF membrane possessed superior antifouling property due to the hydrophilicity of CNC that formed a hydration layer on the membrane surface to effectively reduce contaminants adsorption/deposition.

  2. Quantitative analysis of cellulose degradation and growth of cellulolytic bacteria in the rumen.

    PubMed

    Russell, James B; Muck, Richard E; Weimer, Paul J

    2009-02-01

    Ruminant animals digest cellulose via a symbiotic relationship with ruminal microorganisms. Because feedstuffs only remain in the rumen for a short time, the rate of cellulose digestion must be very rapid. This speed is facilitated by rumination, a process that returns food to the mouth to be rechewed. By decreasing particle size, the cellulose surface area can be increased by up to 10(6)-fold. The amount of cellulose digested is then a function of two competing rates, namely the digestion rate (K(d)) and the rate of passage of solids from the rumen (K(p)). Estimation of bacterial growth on cellulose is complicated by several factors: (1) energy must be expended for maintenance and growth of the cells, (2) only adherent cells are capable of degrading cellulose and (3) adherent cells can provide nonadherent cells with cellodextrins. Additionally, when ruminants are fed large amounts of cereal grain along with fiber, ruminal pH can decrease to a point where cellulolytic bacteria no longer grow. A dynamic model based on STELLA software is presented. This model evaluates all of the major aspects of ruminal cellulose degradation: (1) ingestion, digestion and passage of feed particles, (2) maintenance and growth of cellulolytic bacteria and (3) pH effects.

  3. Shading Contributes to the Reduction of Stem Mechanical Strength by Decreasing Cell Wall Synthesis in Japonica Rice (Oryza sativa L.).

    PubMed

    Wu, Longmei; Zhang, Wujun; Ding, Yanfeng; Zhang, Jianwei; Cambula, Elidio D; Weng, Fei; Liu, Zhenghui; Ding, Chengqiang; Tang, She; Chen, Lin; Wang, Shaohua; Li, Ganghua

    2017-01-01

    Low solar radiation caused by industrial development and solar dimming has become a limitation in crop production in China. It is widely accepted that low solar radiation influences many aspects of plant development, including slender, weak stems and susceptibility to lodging. However, the underlying mechanisms are not well understood. To clarify how low solar radiation affects stem mechanical strength formation and lodging resistance, the japonica rice cultivars Wuyunjing23 (lodging-resistant) and W3668 (lodging-susceptible) were grown under field conditions with normal light (Control) and shading (the incident light was reduced by 60%) with a black nylon net. The yield and yield components, plant morphological characteristics, the stem mechanical strength, cell wall components, culm microstructure, gene expression correlated with cellulose and lignin biosynthesis were measured. The results showed that shading significantly reduced grain yield attributed to reduction of spikelets per panicles and grain weight. The stem-breaking strength decreased significantly under shading treatment; consequently, resulting in higher lodging index in rice plant in both varieties, as revealed by decreased by culm diameter, culm wall thickness and increased plant height, gravity center height. Compared with control, cell wall components including non-structural carbohydrate, sucrose, cellulose, and lignin reduced quite higher. With histochemical straining, shading largely reduced lignin deposition in the sclerenchyma cells and vascular bundle cells compared with control, and decreased cellulose deposition in the parenchyma cells of culm tissue in both Wuyunjing23 and W3668. And under shading condition, gene expression involved in secondary cell wall synthesis, OsPAL, OsCOMT, OsCCoAOMT, OsCCR , and OsCAD2 , and primary cell wall synthesis, OsCesA1, OsCesA3 , and OsCesA8 were decreased significantly. These results suggest that gene expression involved in the reduction of lignin and cellulose in both sclerenchyma and parenchyma cells, which attribute to lignin and cellulose in culm tissue and weak mechanical tissue, consequently, result in poor stem strength and higher lodging risks. Highlights : (1) Shading decreases the stem mechanical strength of japonica rice by decreasing non-structural carbohydrate, sucrose, lignin, and cellulose accumulation in culms. (2) The decrease of carbon source under shading condition is the cause for the lower lignin and cellulose accumulation in culm. (3) The expression of genes involved in lignin and primarily cell wall cellulose biosynthesis ( OsCesA1, OsCesA3 , and OsCesA8 ) at the stem formation stage are down-regulated under shading condition, inducing defective cell wall development and poor lodging resistance.

  4. Brittle Culm1, a COBRA-Like Protein, Functions in Cellulose Assembly through Binding Cellulose Microfibrils

    PubMed Central

    Zhang, Baocai; Liu, Xiangling; Yan, Meixian; Zhang, Lanjun; Shi, Yanyun; Zhang, Mu; Qian, Qian; Li, Jiayang; Zhou, Yihua

    2013-01-01

    Cellulose represents the most abundant biopolymer in nature and has great economic importance. Cellulose chains pack laterally into crystalline forms, stacking into a complicated crystallographic structure. However, the mechanism of cellulose crystallization is poorly understood. Here, via functional characterization, we report that Brittle Culm1 (BC1), a COBRA-like protein in rice, modifies cellulose crystallinity. BC1 was demonstrated to be a glycosylphosphatidylinositol (GPI) anchored protein and can be released into cell walls by removal of the GPI anchor. BC1 possesses a carbohydrate-binding module (CBM) at its N-terminus. In vitro binding assays showed that this CBM interacts specifically with crystalline cellulose, and several aromatic residues in this domain are essential for binding. It was further demonstrated that cell wall-localized BC1 via the CBM and GPI anchor is one functional form of BC1. X-ray diffraction (XRD) assays revealed that mutations in BC1 and knockdown of BC1 expression decrease the crystallite width of cellulose; overexpression of BC1 and the CBM-mutated BC1s caused varied crystallinity with results that were consistent with the in vitro binding assay. Moreover, interaction between the CBM and cellulose microfibrils was largely repressed when the cell wall residues were pre-stained with two cellulose dyes. Treating wild-type and bc1 seedlings with the dyes resulted in insensitive root growth responses in bc1 plants. Combined with the evidence that BC1 and three secondary wall cellulose synthases (CESAs) function in different steps of cellulose production as revealed by genetic analysis, we conclude that BC1 modulates cellulose assembly by interacting with cellulose and affecting microfibril crystallinity. PMID:23990797

  5. Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils.

    PubMed

    Liu, Lifeng; Shang-Guan, Keke; Zhang, Baocai; Liu, Xiangling; Yan, Meixian; Zhang, Lanjun; Shi, Yanyun; Zhang, Mu; Qian, Qian; Li, Jiayang; Zhou, Yihua

    2013-01-01

    Cellulose represents the most abundant biopolymer in nature and has great economic importance. Cellulose chains pack laterally into crystalline forms, stacking into a complicated crystallographic structure. However, the mechanism of cellulose crystallization is poorly understood. Here, via functional characterization, we report that Brittle Culm1 (BC1), a COBRA-like protein in rice, modifies cellulose crystallinity. BC1 was demonstrated to be a glycosylphosphatidylinositol (GPI) anchored protein and can be released into cell walls by removal of the GPI anchor. BC1 possesses a carbohydrate-binding module (CBM) at its N-terminus. In vitro binding assays showed that this CBM interacts specifically with crystalline cellulose, and several aromatic residues in this domain are essential for binding. It was further demonstrated that cell wall-localized BC1 via the CBM and GPI anchor is one functional form of BC1. X-ray diffraction (XRD) assays revealed that mutations in BC1 and knockdown of BC1 expression decrease the crystallite width of cellulose; overexpression of BC1 and the CBM-mutated BC1s caused varied crystallinity with results that were consistent with the in vitro binding assay. Moreover, interaction between the CBM and cellulose microfibrils was largely repressed when the cell wall residues were pre-stained with two cellulose dyes. Treating wild-type and bc1 seedlings with the dyes resulted in insensitive root growth responses in bc1 plants. Combined with the evidence that BC1 and three secondary wall cellulose synthases (CESAs) function in different steps of cellulose production as revealed by genetic analysis, we conclude that BC1 modulates cellulose assembly by interacting with cellulose and affecting microfibril crystallinity.

  6. Quantitative changes in the biochemical composition of lignocellulosic residues during the vegetative growth of Lentinula edodes

    PubMed Central

    Gaitán-Hernández, Rigoberto; Esqueda, Martín; Gutiérrez, Aldo; Beltrán-García, Miguel

    2011-01-01

    The chemical changes in barley-straw (BS), wheat-straw (WS) and vineyard-pruning (VP) substrates were determined during colonization of Lentinula edodes mycelia (during primordium development) in solid state fermentation. Primordia appeared 39-50 days after inoculation. VP appeared to promote early sporophore initiation. The concentration of hemicellulose in BS and VP decreased gradually from 25.5% to 15.6% and from 15.8% to 12.3%, respectively. However in WS, hemicellulose decreased from 27.2% to 9.5%. Lignin broke down continuously in BS and WS, with 31.8% and 34.4% degradation, respectively; higher than that of cellulose. During the pinning stage, the C:N ratio decreased in VP and BS, but not in WS. On all substrates the phenols decreased notably throughout the first week of mycelial growth. The time elapsed (days) to pinning was positively correlated with cellulose content (r=0.89), total sugar (r=0.85) and inversely correlated to lignin (r=−1.00) and phenol content (r=−0.55). PMID:24031601

  7. Predominant nonproductive substrate binding by fungal cellobiohydrolase I and implications for activity improvement.

    PubMed

    Rabinovich, Mikhail L; Melnik, Maria S; Herner, Mikhail L; Voznyi, Yakov V; Vasilchenko, Lilia G

    2018-05-21

    Enzymatic conversion of the most abundant renewable source of organic compounds, cellulose to fermentable sugars is attractive for production of green fuels and chemicals. The major component of industrial enzyme systems, cellobiohydrolase I from Hypocrea jecorina (Trichoderma reesei) (HjCel7A) processively splits disaccharide units from the reducing ends of tightly packed cellulose chains. HjCel7A consists of a catalytic domain (CD) and a carbohydrate-binding module (CBM) separated by a linker peptide. A tunnel-shaped substrate-binding site in the CD includes 9 subsites for β-D-glucose units, 7 of which (-7 to -1) precede the catalytic center. Low catalytic activity of Cel7A is the bottleneck and the primary target for improvement. Here it is shown for the first time that, in spite of much lower apparent k cat of HjCel7A at the hydrolysis of β-1,4-glucosidic linkages in the fluorogenic cellotetra- and -pentaose compared to the structurally related endoglucanase I (HjCel7B), the specificity constants (catalytic efficiency) k cat /K m for both enzymes are almost equal in these reactions. The observed activity difference appears from strong nonproductive substrate binding by HjCel7A, particularly significant for MU-β-cellotetraose (MUG 4 ). Interaction of substrates with the subsites -6 and -5 proximal to the non-conserved Gln101 residue in HjCel7A decreases K m,ap by >1500 times. HjCel7A can be nonproductively bound onto cellulose surface with K d ∼2-9 nM via CBM and CD that captures 6 terminal glucose units of cellulose chain. Decomposition of this nonproductive complex can determine the rate of cellulose conversion. MUG 4 is a promising substrate to select active cellobiohydrolase I variants with reduced nonproductive substrate binding. This article is protected by copyright. All rights reserved.

  8. Synthesis and characterization of [BMIM]bromide using microwave-assisted organic synthesis method and its application for dissolution of palm empty fruit bunch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arianie, Lucy, E-mail: lucy205@yahoo.com; Wahyuningrum, Deana, E-mail: deana@chem.itb.ac.id; Nurrachman, Zeily, E-mail: deana@chem.itb.ac.id

    The decrease of cellulose crystallinity index of palm empty fruit bunch is crucial for the next application of cellulose as raw material for various biofuel and its derivatives. The aim of this research is to decrease the cellulose crystallinity index of palm empty fruit bunch using 1-butyl-3-methylimidazoliumbromide or [BMIM] bromide which has been synthesized using Microwave-Assisted Organic Synthesis (MAOS) method. Conventional reaction method has also been carried out to synthesize [BMIM]bromide for comparison as well. The characterization of synthesized product using FTIR, {sup 1}H-NMR, {sup 13}C-NMR and LC-MS showed that these reactions have been carried out successfully. The results showedmore » that MAOS method is up to 90% faster in producing [BMIM]bromide compare to the conventional method. The application of [BMIM]bromide for dissolution of palm empty fruit bunch showed that cellulose and lignin could be extracted using stirring process for 20 hours. The decrease of cellulose crystallinity index and its morphology changes were identified using FTIR and Scanning Electron Microscope.« less

  9. Synthesis and characterization of [BMIM]bromide using microwave-assisted organic synthesis method and its application for dissolution of palm empty fruit bunch

    NASA Astrophysics Data System (ADS)

    Arianie, Lucy; Wahyuningrum, Deana; Nurrachman, Zeily; Natalia, Dessy

    2014-03-01

    The decrease of cellulose crystallinity index of palm empty fruit bunch is crucial for the next application of cellulose as raw material for various biofuel and its derivatives. The aim of this research is to decrease the cellulose crystallinity index of palm empty fruit bunch using 1-butyl-3-methylimidazoliumbromide or [BMIM] bromide which has been synthesized using Microwave-Assisted Organic Synthesis (MAOS) method. Conventional reaction method has also been carried out to synthesize [BMIM]bromide for comparison as well. The characterization of synthesized product using FTIR, 1H-NMR, 13C-NMR and LC-MS showed that these reactions have been carried out successfully. The results showed that MAOS method is up to 90% faster in producing [BMIM]bromide compare to the conventional method. The application of [BMIM]bromide for dissolution of palm empty fruit bunch showed that cellulose and lignin could be extracted using stirring process for 20 hours. The decrease of cellulose crystallinity index and its morphology changes were identified using FTIR and Scanning Electron Microscope.

  10. Elimination of formate production in Clostridium thermocellum.

    PubMed

    Rydzak, Thomas; Lynd, Lee R; Guss, Adam M

    2015-09-01

    The ability of Clostridium thermocellum to rapidly degrade cellulose and ferment resulting hydrolysis products into ethanol makes it a promising platform organism for cellulosic biofuel production via consolidated bioprocessing. Currently, however, ethanol yield is far below theoretical maximum due to branched product pathways that divert carbon and electrons towards formate, H2, lactate, acetate, and secreted amino acids. To redirect carbon and electron flux away from formate, genes encoding pyruvate:formate lyase (pflB) and PFL-activating enzyme (pflA) were deleted. Formate production in the resulting Δpfl strain was eliminated and acetate production decreased by 50 % on both complex and defined medium. The growth rate of the Δpfl strain decreased by 2.9-fold on defined medium and biphasic growth was observed on complex medium. Supplementation of defined medium with 2 mM formate restored Δpfl growth rate to 80 % of the parent strain. The role of pfl in metabolic engineering strategies and C1 metabolism is discussed.

  11. Effect of Waterlogging on Carbohydrate Metabolism and the Quality of Fiber in Cotton (Gossypium hirsutum L.)

    PubMed Central

    Kuai, Jie; Chen, Yinglong; Wang, Youhua; Meng, Yali; Chen, Binglin; Zhao, Wenqing; Zhou, Zhiguo

    2016-01-01

    Transient waterlogging occurs frequently in the Yangtze River and adversely affects cotton fiber quality. However, the carbohydrate metabolic mechanism that affects fiber quality after waterlogging remains undescribed. Here, the effects of five waterlogging levels (0, 3, 6, 9, and 12 days) were assessed during flowering and boll formation to characterize the carbohydrates, enzymes and genes that affect the fiber quality of cotton after waterlogging. The cellulose and sucrose contents of cotton fibers were significantly decreased after waterlogging for 6 (WL6), 9 (WL9), and 12 d (WL12), although these properties were unaffected after 3 (WL3) and 6 days at the fruiting branch 14–15 (FB14–15). Sucrose phosphate synthase (SPS) was the most sensitive to waterlogging among the enzymes tested. SPS activity was decreased by waterlogging at FB6–7, whereas it was significantly enhanced under WL3–6 at FB10–15. Waterlogging down-regulated the expression of fiber invertase at 10 days post anthesis (DPA), whereas that of expansin, β-1,4-glucanase and endoxyloglucan transferase (XET) was up-regulated with increasing waterlogging time. Increased mRNA levels and activities of fiber SuSy at each fruiting branch indicated that SuSy was the main enzyme responsible for sucrose degradation because it was markedly induced by waterlogging and was active even when waterlogging was discontinued. We therefore concluded that the reduction in fiber sucrose and down-regulation of invertase at 10 DPA led to a markedly shorter fiber length under conditions WL6–12. Significantly decreased fiber strength at FB6–11 for WL6–12 was the result of the inhibition of cellulose synthesis and the up-regulation of expansin, β-1,4-glucanase and XET, whereas fiber strength increased under WL3–6 at FB14–15 due to the increased cellulose content of the fibers. Most of the indictors tested revealed that WL6 resulted in the best compensatory performance, whereas exposure to waterlogged conditions for more than 6 days led to an irreversible limitation in fiber development. PMID:27446110

  12. Behavior of cellulose-degrading bacteria in thermophilic anaerobic digestion process.

    PubMed

    Syutsubo, K; Nagaya, Y; Sakai, S; Miya, A

    2005-01-01

    Previously, we found that the newly isolated Clostridium sp. strain JC3 became the dominant cellulose-degrading bacterium in thermophilic methanogenic sludge. In the present study, the behavior of strain JC3 in the thermophilic anaerobic digestion process was investigated quantitatively by molecular biological techniques. A cellulose-degrading experiment was conducted at 55 degrees C with a 9.5 L of anaerobic baffled reactor having three compartments (Nos. 1, 2, 3). Over 80% of the COD input was converted into methane when 2.5 kgCOD m(-3) d(-1) was loaded for an HRT of 27 days. A FISH probe specific for strain JC3 was applied to sludge samples harvested from the baffled reactor. Consequently, the ratio of JC3 cells to DAPI-stained cells increased from below 0.5% (undetectable) to 9.4% (compartment 1), 13.1% (compartment 2) and 21.6% (compartment 3) at day 84 (2.5 kgCOD m(-3)d(-1)). The strain JC3 cell numbers determined by FISH correlated closely with the cellulose-degrading methanogenic activities of retained sludge. A specific primer set targeting the cellulase gene (cellobiohydrolaseA: cbhA) of strain JC3 was designed and applied to digested sludge for treating solid waste such as coffee grounds, wastepaper, garbage, cellulose and so on. The strain JC3 cell numbers determined by quantitative PCR correlated closely with the cellulose-sludge loading of the thermophilic digester. Strain JC3 is thus important in the anaerobic hydrolysis of cellulose in thermophilic anaerobic digestion processes.

  13. Elimination of formate production in Clostridium thermocellum

    DOE PAGES

    Rydzak, Thomas; Lynd, Lee R.; Guss, Adam M.

    2015-07-11

    We study the ability of Clostridium thermocellum to rapidly degrade cellulose and ferment resulting hydrolysis products into ethanol makes it a promising platform organism for cellulosic biofuel production via consolidated bioprocessing. Currently, however, ethanol yield are far below theoretical maximum due to branched product pathways that divert carbon and electrons towards formate, H 2, lactate, acetate, and secreted amino acids. To redirect carbon and electron flux away from formate, pyruvate:formate lyase (pfl) and respective PFL-activating enzyme were deleted. Formate production in the resulting Δpfl strain was eliminated and acetate production decreased by 50% on both complex and defined medium. Growthmore » rate of Δpfl decreased by 2.9-fold on defined medium and diauxic growth was observed on complex medium. Supplementation of defined medium with 2 mM formate restored Δpfl growth rate to 80% of the parent strain. Finally, we discuss the role of pfl in metabolic engineering strategies and C 1 metabolism.« less

  14. The Arabidopsis COBRA Protein Facilitates Cellulose Crystallization at the Plasma Membrane*

    PubMed Central

    Sorek, Nadav; Sorek, Hagit; Kijac, Aleksandra; Szemenyei, Heidi J.; Bauer, Stefan; Hématy, Kian; Wemmer, David E.; Somerville, Chris R.

    2014-01-01

    Mutations in the Arabidopsis COBRA gene lead to defects in cellulose synthesis but the function of COBRA is unknown. Here we present evidence that COBRA localizes to discrete particles in the plasma membrane and is sensitive to inhibitors of cellulose synthesis, suggesting that COBRA and the cellulose synthase complex reside in close proximity on the plasma membrane. Live-cell imaging of cellulose synthesis indicated that, once initiated, cellulose synthesis appeared to proceed normally in the cobra mutant. Using isothermal calorimetry, COBRA was found to bind individual β1–4-linked glucan chains with a KD of 3.2 μm. Competition assays suggests that COBRA binds individual β1–4-linked glucan chains with higher affinity than crystalline cellulose. Solid-state nuclear magnetic resonance studies of the cell wall of the cobra mutant also indicated that, in addition to decreases in cellulose amount, the properties of the cellulose fibrils and other cell wall polymers differed from wild type by being less crystalline and having an increased number of reducing ends. We interpret the available evidence as suggesting that COBRA facilitates cellulose crystallization from the emerging β1–4-glucan chains by acting as a “polysaccharide chaperone.” PMID:25331944

  15. Hydrolysis rate constants at 10-25 °C can be more than doubled by a short anaerobic pre-hydrolysis at 35 °C.

    PubMed

    Zhang, L; Gao, R; Naka, A; Hendrickx, T L G; Rijnaarts, H H M; Zeeman, G

    2016-11-01

    Hydrolysis is the first step of the anaerobic digestion of complex wastewater and considered as the rate limiting step especially at low temperature. Low temperature (10-25 °C) hydrolysis was investigated with and without application of a short pre-hydrolysis at 35 °C. Batch experiments were executed using cellulose and tributyrin as model substrates for carbohydrates and lipids. The results showed that the low temperature anaerobic hydrolysis rate constants increased by a factor of 1.5-10, when the short anaerobic pre-hydrolysis at 35 °C was applied. After the pre-hydrolysis phase at 35 °C and decreasing the temperature, no lag phase was observed in any case. Without the pre-hydrolysis, the lag phase for cellulose hydrolysis at 35-10 °C was 4-30 days. Tributyrin hydrolysis showed no lag phase at any temperature. The hydrolysis efficiency of cellulose increased from 40 to 62%, and from 9.6 to 40% after 9.1 days at 15 and 10 °C, respectively, when the pre-hydrolysis at 35 °C was applied. The hydrolysis efficiency of tributyrin at low temperatures with the pre-hydrolysis at 35 °C was similar to those without the pre-hydrolysis. The hydrolytic activity of the supernatant collected from the digestate after batch digestion of cellulose and tributyrin at 35 °C was higher than that of the supernatants collected from the low temperature (≤25 °C) digestates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. X-ray Studies of Regenerated Cellulose Fibers Wet Spun from Cotton Linter Pulp in NaOH/Thiourea Aqueous Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen,X.; Burger, C.; Fang, D.

    Regenerated cellulose fibers were fabricated by dissolution of cotton linter pulp in NaOH (9.5 wt%) and thiourea (4.5 wt%) aqueous solution followed by wet-spinning and multi-roller drawing. The multi-roller drawing process involved three stages: coagulation (I), coagulation (II) and post-treatment (III). The crystalline structure and morphology of regenerated cellulose fiber was investigated by synchrotron wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques. Results indicated that only the cellulose II crystal structure was found in regenerated cellulose fibers, proving that the cellulose crystals were completely transformed from cellulose I to II structure during spinning from NaOH/thiourea aqueous solution. Themore » crystallinity, orientation and crystal size at each stage were determined from the WAXD analysis. Drawing of cellulose fibers in the coagulation (II) bath (H{sub 2}SO{sub 4}/H{sub 2}O) was found to generate higher orientation and crystallinity than drawing in the post-treatment (III). Although the post-treatment process also increased crystal orientation, it led to a decrease in crystallinity with notable reduction in the anisotropic fraction. Compared with commercial rayon fibers fabricated by the viscose process, the regenerated cellulose fibers exhibited higher crystallinity but lower crystal orientation. SAXS results revealed a clear scattering maximum along the meridian direction in all regenerated cellulose fibers, indicating the formation of lamellar structure during spinning.« less

  17. Kinetic modeling of cellulosic biomass to ethanol via simultaneous saccharification and fermentation: Part I. Accommodation of intermittent feeding and analysis of staged reactors.

    PubMed

    Shao, Xiongjun; Lynd, Lee; Wyman, Charles; Bakker, André

    2009-01-01

    The model of South et al. [South et al. (1995) Enzyme Microb Technol 17(9): 797-803] for simultaneous saccharification of fermentation of cellulosic biomass is extended and modified to accommodate intermittent feeding of substrate and enzyme, cascade reactor configurations, and to be more computationally efficient. A dynamic enzyme adsorption model is found to be much more computationally efficient than the equilibrium model used previously, thus increasing the feasibility of incorporating the kinetic model in a computational fluid dynamic framework in the future. For continuous or discretely fed reactors, it is necessary to use particle conversion in conversion-dependent hydrolysis rate laws rather than reactor conversion. Whereas reactor conversion decreases due to both reaction and exit of particles from the reactor, particle conversion decreases due to reaction only. Using the modified models, it is predicted that cellulose conversion increases with decreasing feeding frequency (feedings per residence time, f). A computationally efficient strategy for modeling cascade reactors involving a modified rate constant is shown to give equivalent results relative to an exhaustive approach considering the distribution of particles in each successive fermenter.

  18. Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass.

    PubMed

    Kim, Youngmi; Ximenes, Eduardo; Mosier, Nathan S; Ladisch, Michael R

    2011-04-07

    Liquid hot water, steam explosion, and dilute acid pretreatments of lignocellulose generate soluble inhibitors which hamper enzymatic hydrolysis as well as fermentation of sugars to ethanol. Toxic and inhibitory compounds will vary with pretreatment and include soluble sugars, furan derivatives (hydroxymethyl fulfural, furfural), organic acids (acetic, formic and, levulinic acid), and phenolic compounds. Their effect is seen when an increase in the concentration of pretreated biomass in a hydrolysis slurry results in decreased cellulose conversion, even though the ratio of enzyme to cellulose is kept constant. We used lignin-free cellulose, Solka Floc, combined with mixtures of soluble components released during pretreatment of wood, to prove that the decrease in the rate and extent of cellulose hydrolysis is due to a combination of enzyme inhibition and deactivation. The causative agents were extracted from wood pretreatment liquid using PEG surfactant, activated charcoal or ethyl acetate and then desorbed, recovered, and added back to a mixture of enzyme and cellulose. At enzyme loadings of either 1 or 25mg protein/g glucan, the most inhibitory components, later identified as phenolics, decreased the rate and extent of cellulose hydrolysis by half due to both inhibition and precipitation of the enzymes. Full enzyme activity occurred when the phenols were removed. Hence detoxification of pretreated woods through phenol removal is expected to reduce enzyme loadings, and therefore reduce enzyme costs, for a given level of cellulose conversion. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. [A study of the properties of tablets from mixtures of two size degrees of alpha-lactose monohydrate and microcrystalline cellulose].

    PubMed

    Muzíková, J

    2006-03-01

    The paper examines the strength and disintegration time of compacts from the mixtures of two types of Tablettosas. Tablettosa 70 and Tablettosa 100 with microcrystalline cellulose represented by Vivapur 102. The mixtures of dry binders were prepared in the ratios of 3:1, 1:1, and 1:3. The effect of two concentrations of the lubricant magnesium stearate on the strength and disintegration time of compacts was also examined. Tablet strength increased with higher representation of microcrystalline cellulose in the mixture, and decreased with higher stearate concentration. The compacts from the mixtures with Tablettosa 100 showed higher strength. Disintegration time was highest in the compacts with the largest perccintage of microcrystalline cellulose, and longer in the case of the mixtures with Tablettosa 100. Stearate did not exert a negative effect on disintegration time. In the mixtures of Tablettosas with Vivapur 102 in a ratio of 1:1, the effect of the model active ingredient acetylsalicylic acid on the above-mentioned properties of tablets was tested. acetylsalicylic acid produced a further decrease in the strength of compacts and shortened the disintegration time in more instances in the cased of the mixtures with Tahlettosa 100.

  20. Design, characterization and in vitro evaluation of a novel thiolated polymer: preactivated carboxymethyl cellulose.

    PubMed

    Laffleur, Flavia; Bacher, Lukas; Netsomboon, Kesinee

    2016-01-01

    To design a novel preactived carboxymethyl cellulose derivative. First, carboxymethyl cellulose (CMC) was chemically modified by amide bond formation between primary amino group of cysteine (CYS) and carboxylic moiety of CMC mediated by carbodiimide. Second, obtained CMCCYS was preactivated with 2,2'-dithiodinicotinic acid. Designed CMC-S-S-MNA was characterized by FT-IR. Furthermore, cytotoxicity was conducted on Caco-2 cell line. Swelling behavior, erosion and release of novel CMC-S-S-MNA were performed compared with thiolated and unmodified cellulose, respectively. CMC-S-S-MNA showed no harmful effect on cells. CMC-S-S-MNA exhibited 2.13-fold higher stability in comparison to unmodified cellulose. Furthermore, preactivated carboxymethyl cellulose-cysteine revealed 1.9-fold controlled released compared with respective unmodified carboxymethyl cellulose. Novel preactivated carboxymethyl cellulose represents a versatile excipient for drug delivery.

  1. Experimental study of the effect of polyanionic cellulose on process of filtrate loss of low-solids drilling fluid

    NASA Astrophysics Data System (ADS)

    yang, P.

    2013-12-01

    Experimental study of the effect of polyanionic cellulose on process of filtrate loss of low-solids drilling fluid Ping Yang 1,2, Min-hui Wu2, Xue-wen Zhu2, Tao Deng2, Xue-qing Sun2 1. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092,China 2. Department of Geotechnical Engineering,Tongji University,Shanghai 200092,China Abstract The process of filtrate loss of low-solids drilling fluid was tested by changing the polyanionic cellulose content in low-solids drilling fluid. The effect of polyanionic cellulose on process of filtrate loss of low-solids drilling fluid was analyzed. The test results showed that when time of filtration is same, the volume of filtrate loss decreases linearly with increasing polyanionic cellulose content. When polyanionic cellulose content is same, the rate of filtrate loss decreases nonlinearly with increasing time and the rate of filtrate loss will reach a stable value.The volume of filtrate loss in 7 to 8 minutes can reaches half of the total volume of filtrate loss. At the same time, the rate of filtrate loss of drilling fluid decreases nonlinearly with increasing viscosity.When the apparent viscosity is between 3.5~4.15 MPa.s, decrease speed of rate of filtrate loss of drilling fluid is quick. The results are helpful for characteristics evaluation of filtrate loss of drilling fluid and control of filtrate loss. Keyword Polyanionic Cellulose,Drilling Fluid,Process of Filtrate Loss Acknowledgments This investigation was supported by the National Natural Science Foundation of China (projects No. 41002093 and 41072205); the Fundamental Research Funds for the Central Universities; the Shanghai Leading Academic Discipline Project (project No. B308), Tongji University; and the Program for Young Excellent Talents, Tongji University. The authors are extremely grateful for the financial support from these five organizations.

  2. Preparation and properties of carboxylated styrene-butadiene rubber/cellulose nanocrystals composites.

    PubMed

    Cao, Xiaodong; Xu, Chuanhui; Liu, Yuhong; Chen, Yukun

    2013-01-30

    A series of carboxylated styrene-butadiene rubber (XSBR)/cellulose nanocrystals (CNs) latex composites were successfully prepared. The vulcanization process, morphology, dynamic viscoelastic behavior, dynamic mechanical property, thermal and mechanical performance of the XSBR/CNs composites were investigated in detail. The results revealed that CNs were dispersed uniformly in the XSBR matrix and formed a strong filler-filler network. The dynamic mechanical analysis (DMA) showed that the glass transition temperature (T(g)) of XSBR matrix was shifted from 48.45 to 50.64 °C with 3 phr CNs, but decreased from 50.64 to 46.28 °C when further increasing CNs content up to 15 phr. The composites exhibited a significant enhancement in tensile strength (from 16.9 to 24.1 MPa) and tear strength (from 43.5 to 65.2 MPa) with loading CNs from 0 to 15 phr. In addition, the thermo-gravimetric analysis (TGA) showed that the temperature at 5% weight loss of the XSBR/CNs composites decreased slightly with an increase of the CNs content. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  3. Sensing the Structural Differences in Cellulose from Apple and Bacterial Cell Wall Materials by Raman and FT-IR Spectroscopy

    PubMed Central

    Szymańska-Chargot, Monika; Cybulska, Justyna; Zdunek, Artur

    2011-01-01

    Raman and Fourier Transform Infrared (FT-IR) spectroscopy was used for assessment of structural differences of celluloses of various origins. Investigated celluloses were: bacterial celluloses cultured in presence of pectin and/or xyloglucan, as well as commercial celluloses and cellulose extracted from apple parenchyma. FT-IR spectra were used to estimate of the Iβ content, whereas Raman spectra were used to evaluate the degree of crystallinity of the cellulose. The crystallinity index (XCRAMAN%) varied from −25% for apple cellulose to 53% for microcrystalline commercial cellulose. Considering bacterial cellulose, addition of xyloglucan has an impact on the percentage content of cellulose Iβ. However, addition of only xyloglucan or only pectins to pure bacterial cellulose both resulted in a slight decrease of crystallinity. However, culturing bacterial cellulose in the presence of mixtures of xyloglucan and pectins results in an increase of crystallinity. The results confirmed that the higher degree of crystallinity, the broader the peak around 913 cm−1. Among all bacterial celluloses the bacterial cellulose cultured in presence of xyloglucan and pectin (BCPX) has the most similar structure to those observed in natural primary cell walls. PMID:22163913

  4. Bioavailability of vitamin B-6 from rat diets containing wheat bran or cellulose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudson, C.A.; Betschart, A.A.; Oace, S.M.

    1988-01-01

    Bioavailability of vitamin B-6 (B-6) in the total diet was studied in male, weanling Sprague-Dawley rats fed fiber-free (FF) diets with 0.2 or 6.9 mg pyridoxine/kg diet (0-, 2- or 6.9-PYR), 20% wheat bran (WB) diets with 3.9- or 5.5-PYR or 7% cellulose (C) diets with 0- or 2-PYR for 28 d. Body weight gain (mean +/- SEM) with 0-PYR was 70 +/- 9.0 and 81.2 +/- 4.2 g for FF and C, respectively. All other groups gained 170-180 g. Urinary excretion of 4-pyridoxic acid (4-PA), a major B-6 metabolite, for FF groups was 1.31 +/- 0.22, 2.26 +/- 0.28more » and 6.39 +/- 1.73 micrograms/24 h, at 0-, 2- and 6.9-PYR, respectively. Rats fed WB diets excreted 4.99 +/- 0.58 and 9.81 +/- 0.76 micrograms/24 h (3.9- and 5.5-PYR, respectively) and those fed C diets excreted 1.46 +/- 0.34 and 2.69 +/- 0.72 micrograms/24 h (0- and 2-PYR). There was increasing turnover and shorter biological half-life of (/sup 14/C)pyridoxine (1 mu Ci injected on d 1) with increasing dietary B-6. Growth, 4-PA and /sup 14/C turnover data indicated that WB contributed to B-6 intake of these rats. Cellulose acted as a simple dietary diluent and had no effect on indices of B-6 status. These data suggest that dietary fiber, as cellulose or the indigestible component of wheat bran, does not adversely affect the bioavailability of vitamin B-6.« less

  5. The application of nanoindentation for determination of cellulose nanofibrils (CNF) nanomechanical properties

    NASA Astrophysics Data System (ADS)

    Yildirim, N.; Shaler, S.

    2016-10-01

    Nanocellulose is a polymer which can be isolated from nature (woods, plants, bacteria, and from sea animals) through chemical or mechanical treatments, as cellulose nanofibrils (CNF), cellulose nanocrystals or bacterial celluloses. Focused global research activities have resulted in decreasing costs. A nascent industry of producers has created a huge market interest in CNF. However, there is still lack of knowledge on the nanomechanical properties of CNF, which create barriers for the scientist and producers to optimize and predict behavior of the final product. In this research, the behavior of CNF under nano compression loads were investigated through three different approaches, Oliver-Pharr (OP), fused silica (FS), and tip imaging (TI) via nanoindentation in an atomic force microscope. The CNF modulus estimates for the three approaches were 16.6 GPa, for OP, 15.8 GPa for FS, and 10.9 GPa for TI. The CNF reduced moduli estimates were consistently higher and followed the same estimate rankings by analysis technique (18.2, 17.4, and 11.9 GPa). This unique study minimizes the uncertainties related to the nanomechanical properties of CNFs and provides increased knowledge on understanding the role of CNFs as a reinforcing material in composites and also improvement in making accurate theoretical calculations and predictions.

  6. The Effect of Alkaline Concentration on Coconut Husk Crystallinity and the Yield of Sugars Released

    NASA Astrophysics Data System (ADS)

    Sangian, H. F.; Widjaja, A.

    2018-02-01

    This work was to analyze the effect of alkaline concentration on coconut coir husk crystallinity and sugar liberated enzymatically. The data showed that the employing of alkaline on lignocellulose transformed the crystallinity. The XRD peaks increased highly which indicated that cellulose was more opened and exposed. After pretreatment, the chemical compositions (cellulose, hemicellulose, and lignin) were changed significantly. The employing 1% alkaline, the cellulosic content inclined if compared to that of non-pretreatment. When the alkaline concentration was added to 4%, the cellulose was decreased slightly which indicated that a part of cellulose and hemicellulose was dissolved into solution. It was found the alkaline pretreatment influenced by the biochemical reaction of treated substrates in producing the reducing sugars. The amounts of sugar liberated enzymatically of coconut husk treated by 1% and 4% alkaline increased to 0.26, and 0.24 g sugar/g (cellulose+hemicellulose), respectively, compared to that of native solid recorded at 0.18 g sugar/g (cellulose+hemicellulose).

  7. Structural Investigations of Fibers and Films of Poly(p-phenylene benzobisthiazole). Volume 1

    DTIC Science & Technology

    1982-05-01

    differential scanning calorimetry, is unrelated to the diffuse scattered intensity [45]. Cellulose acetate which is known to be noncrystalline exhibits a high...Weidinger [45] found the diffuse scattered intensity increased with decreasing density and therefore, increasing void fraction, in air swollen cellulose ... Cellulose , and Poly(y-Benzyl-L-Glutamate)." J. Polym. Sci., Polym. Phys. Ed., 18, 663-682 (1980). 39. C.H. Kao and J.M. Ottino, personal communication

  8. Effect of lignin content on changes occurring in poplar cellulose ultrastructure during dilute acid pretreatment

    DOE PAGES

    Sun, Qining; Foston, Marcus; Meng, Xianzhi; ...

    2014-10-14

    Obtaining a better understanding of the complex mechanisms occurring during lignocellulosic deconstruction is critical to the continued growth of renewable biofuel production. A key step in bioethanol production is thermochemical pretreatment to reduce plant cell wall recalcitrance for downstream processes. Previous studies of dilute acid pretreatment (DAP) have shown significant changes in cellulose ultrastructure that occur during pretreatment, but there is still a substantial knowledge gap with respect to the influence of lignin on these cellulose ultrastructural changes. This study was designed to assess how the presence of lignin influences DAP-induced changes in cellulose ultrastructure, which might ultimately have largemore » implications with respect to enzymatic deconstruction efforts. Native, untreated hybrid poplar (Populus trichocarpa x Populus deltoids) samples and a partially delignified poplar sample (facilitated by acidic sodium chlorite pulping) were separately pretreated with dilute sulfuric acid (0.10 M) at 160°C for 15 minutes and 35 minutes, respectively . Following extensive characterization, the partially delignified biomass displayed more significant changes in cellulose ultrastructure following DAP than the native untreated biomass. With respect to the native untreated poplar, delignified poplar after DAP (in which approximately 40% lignin removal occurred) experienced: increased cellulose accessibility indicated by increased Simons’ stain (orange dye) adsorption from 21.8 to 72.5 mg/g, decreased cellulose weight-average degree of polymerization (DP w) from 3087 to 294 units, and increased cellulose crystallite size from 2.9 to 4.2 nm. These changes following DAP ultimately increased enzymatic sugar yield from 10 to 80%. We conclude that, overall, the results indicate a strong influence of lignin content on cellulose ultrastructural changes occurring during DAP. With the reduction of lignin content during DAP, the enlargement of cellulose microfibril dimensions and crystallite size becomes more apparent. Further, this enlargement of cellulose microfibril dimensions is attributed to specific processes, including the co-crystallization of crystalline cellulose driven by irreversible inter-chain hydrogen bonding (similar to hornification) and/or cellulose annealing that converts amorphous cellulose to paracrystalline and crystalline cellulose. Essentially, lignin acts as a barrier to prevent cellulose crystallinity increase and cellulose fibril coalescence during DAP.« less

  9. Effect of novel antibacterial gallium-carboxymethyl cellulose on Pseudomonas aeruginosa.

    PubMed

    Valappil, Sabeel P; Yiu, Humphrey H P; Bouffier, Laurent; Hope, Christopher K; Evans, Gary; Claridge, John B; Higham, Susan M; Rosseinsky, Matthew J

    2013-02-07

    Gallium has emerged as a new therapeutic agent due partly to the scarcity in development of new antibiotics. In this study, a novel antibacterial gallium exchanged carboxymethyl cellulose (Ga-CMC) has been developed and tested for the susceptibility on a common bacteria, Pseudomonas aeruginosa. The results show that an increase in average molecular weight (MW) from 90 k, 250 k to 700 k of Ga-CMC caused a decrease in antimicrobial activity against planktonic P. aeruginosa. Gallium loading of the Ga-CMC (250 k) samples was altered by varying the amount of functionality (0.7, 0.9 and 1.2 acid groups per mole of carbohydrate) which affected also its antimicrobial activity against planktonic P. aeruginosa. Further, the ability to prevent the growth of biofilms of P. aeruginosa was tested on MW = 250 k samples with 0.9 acid groups per mole of carbohydrate as this sample showed the most promising activity against planktonic P. aeruginosa. Gallium was found to reduce biofilm growth of P. aeruginosa with a maximum effect (0.85 log(10) CFU reduction compared to sodium-carboxymethyl cellulose, Na-CMC) after 24 h. Results of the solubility and ion exchange studies show that this compound is suitable for the controlled release of Ga(3+) upon their breakdown in the presence of bacteria. SEM EDX analysis confirmed that Ga(3+) ions are evenly exchanged on the cellulose surface and systematic controls were carried out to ensure that antibacterial activity is solely due to the presence of gallium as samples intrinsic acidity or nature of counterion did not affect the activity. The results presented here highlight that Ga-CMC may be useful in controlled drug delivery applications, to deliver gallium ions in order to prevent infections due to P. aeruginosa biofilms.

  10. Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis

    PubMed Central

    Kafle, Kabindra; Shin, Heenae; Lee, Christopher M.; Park, Sunkyu; Kim, Seong H.

    2015-01-01

    A comprehensive picture of structural changes of cellulosic biomass during enzymatic hydrolysis is essential for a better understanding of enzymatic actions and development of more efficient enzymes. In this study, a suite of analytical techniques including sum frequency generation (SFG) spectroscopy, infrared (IR) spectroscopy, x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) were employed for lignin-free model biomass samples—Avicel, bleached softwood, and bacterial cellulose—to find correlations between the decrease in hydrolysis rate over time and the structural or chemical changes of biomass during the hydrolysis reaction. The results showed that the decrease in hydrolysis rate over time appears to correlate with the irreversible deposition of non-cellulosic species (either reaction side products or denatured enzymes, or both) on the cellulosic substrate surface. The crystallinity, degree of polymerization, and meso-scale packing of cellulose do not seem to positively correlate with the decrease in hydrolysis rate observed for all three substrates tested in this study. It was also found that the cellulose Iα component of the bacterial cellulose is preferentially hydrolyzed by the enzyme than the cellulose Iβ component. PMID:26463274

  11. Analysis of mercerization process based on the intensity change of deconvoluted resonances of (13)C CP/MAS NMR: Cellulose mercerized under cooling and non-cooling conditions.

    PubMed

    Miura, Kento; Nakano, Takato

    2015-08-01

    The area intensity change of C1, C4, and C6 in spectrum obtained by (13)C CP/MAS NMR and the mutual relationship between their changes were examined for cellulose samples treated with various concentrations of aqueous NaOH solutions under non-cooling and cooling conditions. The area intensity of C1-up and C6-down changed cooperatively with that of C4-down which corresponds to the crystallinity of samples: "-up" and "-down" are the up- and down- field component in a splitting peak of NMR spectrum, respectively. The intensity change of C1-up starts to decrease with decreasing in that of C4-down after that of C6-down is almost complete. These changes were more clearly observed for samples treated under cooling condition. It can be suggested that their characteristic change relates closely to the change in conformation of cellulose chains by induced decrystallization and the subsequent crystallization of cellulose II, and presumed that their changes at microscopic level relate to the macroscopic morphological changes such as contraction along the length of cellulose chains and recovery along the length. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Occurrence of Cellulose-Producing Gluconacetobacter spp. in Fruit Samples and Kombucha Tea, and Production of the Biopolymer.

    PubMed

    Neera; Ramana, Karna Venkata; Batra, Harsh Vardhan

    2015-06-01

    Cellulose producing bacteria were isolated from fruit samples and kombucha tea (a fermented beverage) using CuSO4 solution in modified Watanabe and Yamanaka medium to inhibit yeasts and molds. Six bacterial strains showing cellulose production were isolated and identified by 16S rRNA gene sequencing as Gluconacetobacter xylinus strain DFBT, Ga. xylinus strain dfr-1, Gluconobacter oxydans strain dfr-2, G. oxydans strain dfr-3, Acetobacter orientalis strain dfr-4, and Gluconacetobacter intermedius strain dfr-5. All the cellulose-producing bacteria were checked for the cellulose yield. A potent cellulose-producing bacterium, i.e., Ga. xylinus strain DFBT based on yield (cellulose yield 5.6 g/L) was selected for further studies. Cellulose was also produced in non- conventional media such as pineapple juice medium and hydrolysed corn starch medium. A very high yield of 9.1 g/L cellulose was obtained in pineapple juice medium. Fourier transform infrared spectrometer (FT-IR) analysis of the bacterial cellulose showed the characteristic peaks. Soft cellulose with a very high water holding capacity was produced using limited aeration. Scanning electron microscopy (SEM) was used to analyze the surface characteristics of normal bacterial cellulose and soft cellulose. The structural analysis of the polymer was performed using (13)C solid-state nuclear magnetic resonance (NMR). More interfibrillar space was observed in the case of soft cellulose as compared to normal cellulose. This soft cellulose can find potential applications in the food industry as it can be swallowed easily without chewing.

  13. Effect of delignification upon in vitro digestion of forage cellulose.

    PubMed

    Darcy, B K; Belyea, R L

    1980-10-01

    Orchardgrass forages harvested at two maturities (early and late) were ground through two screens (1 and 8 mm) and digested in vitro as intact forage and forage delignified by permanganate oxidation. Initial and residual cell wall, initial and residual cellulose and potentially digestible cellulose were greater in late intact forage than in the early. In the delignified forage, late cut forage had less residual cellulose than did the early, but initial and potentially digestible cellulose were similar. Particle size had less consistent and smaller effects upon cell wall and cellulose than did maturity. Cellulose of intact orchardgrass was 64% digested at 72 h vs 94% for cellulose of delignified orchardgrass. Digestion rate of cellulose was .0197 and .0220 logn units/hr for early and late cut intact forage and .0554 and .0719 logn units/hr for early and late cut delignified forage. Removal of the inhibitory effects of lignin increased the amount of digestible cellulose, increased the rate at which cellulose degraded and decreased the indigestible cellulose residue. Reduction in lignin could greatly improve forage intake and utilization at moderate levels of animal production.

  14. Downregulation of the Petunia hybrida alpha-expansin gene PhEXP1 reduces the amount of crystalline cellulose in cell walls and leads to phenotypic changes in petal limbs.

    PubMed

    Zenoni, Sara; Reale, Lara; Tornielli, Giovanni Battista; Lanfaloni, Luisa; Porceddu, Andrea; Ferrarini, Alberto; Moretti, Chiaraluce; Zamboni, Anita; Speghini, Adolfo; Ferranti, Francesco; Pezzotti, Mario

    2004-02-01

    The expansins comprise a family of proteins that appear to be involved in the disruption of the noncovalent bonds between cellulose microfibrils and cross-linking glycans, thereby promoting wall creep. To understand better the expansion process in Petunia hybrida (petunia) flowers, we isolated a cDNA corresponding to the PhEXP1 alpha-expansin gene of P. hybrida. Evaluation of the tissue specificity and temporal expression pattern demonstrated that PhEXP1 is preferentially expressed in petal limbs during development. To determine the function of PhEXP1, we used a transgenic antisense approach, which was found to cause a decrease in petal limb size, a reduction in the epidermal cell area, and alterations in cell wall morphology and composition. The diminished cell wall thickness accompanied by a reduction in crystalline cellulose indicates that the activity of PhEXP1 is associated with cellulose metabolism. Our results suggest that expansins play a role in the assembly of the cell wall by affecting either cellulose synthesis or deposition.

  15. Downregulation of the Petunia hybrida α-Expansin Gene PhEXP1 Reduces the Amount of Crystalline Cellulose in Cell Walls and Leads to Phenotypic Changes in Petal Limbs

    PubMed Central

    Zenoni, Sara; Reale, Lara; Tornielli, Giovanni Battista; Lanfaloni, Luisa; Porceddu, Andrea; Ferrarini, Alberto; Moretti, Chiaraluce; Zamboni, Anita; Speghini, Adolfo; Ferranti, Francesco; Pezzotti, Mario

    2004-01-01

    The expansins comprise a family of proteins that appear to be involved in the disruption of the noncovalent bonds between cellulose microfibrils and cross-linking glycans, thereby promoting wall creep. To understand better the expansion process in Petunia hybrida (petunia) flowers, we isolated a cDNA corresponding to the PhEXP1 α-expansin gene of P. hybrida. Evaluation of the tissue specificity and temporal expression pattern demonstrated that PhEXP1 is preferentially expressed in petal limbs during development. To determine the function of PhEXP1, we used a transgenic antisense approach, which was found to cause a decrease in petal limb size, a reduction in the epidermal cell area, and alterations in cell wall morphology and composition. The diminished cell wall thickness accompanied by a reduction in crystalline cellulose indicates that the activity of PhEXP1 is associated with cellulose metabolism. Our results suggest that expansins play a role in the assembly of the cell wall by affecting either cellulose synthesis or deposition. PMID:14742876

  16. Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kafle, Kabindra; Shin, Heenae; Lee, Christopher M.

    A comprehensive picture of structural changes of cellulosic biomass during enzymatic hydrolysis is essential for a better understanding of enzymatic actions and development of more efficient enzymes. In this study, a suite of analytical techniques including sum frequency generation (SFG) spectroscopy, infrared (IR) spectroscopy, x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) were employed for lignin-free model biomass samples—Avicel, bleached softwood, and bacterial cellulose—to find correlations between the decrease in hydrolysis rate over time and the structural or chemical changes of biomass during the hydrolysis reaction. The results showed that the decrease in hydrolysis rate over time appears to correlatemore » with the irreversible deposition of non-cellulosic species (either reaction side products or denatured enzymes, or both) on the cellulosic substrate surface. The crystallinity, degree of polymerization, and meso-scale packing of cellulose do not seem to positively correlate with the decrease in hydrolysis rate observed for all three substrates tested in this study. It was also found that the cellulose Iα component of the bacterial cellulose is preferentially hydrolyzed by the enzyme than the cellulose Iβ component.« less

  17. Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kafle, Kabindra; Shin, Heenae; Lee, Christopher M.

    A comprehensive picture of structural changes of cellulosic biomass during enzymatic hydrolysis is essential for a better understanding of enzymatic actions and development of more efficient enzymes. In this study, a suite of analytical techniques including sum frequency generation (SFG) spectroscopy, infrared (IR) spectroscopy, x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) were employed for lignin-free model biomass samples—Avicel, bleached softwood, and bacterial cellulose—to find correlations between the decrease in hydrolysis rate over time and the structural or chemical changes of biomass during the hydrolysis reaction. The results showed that the decrease in hydrolysis rate over time appears to correlatemore » with the irreversible deposition of non-cellulosic species (either reaction side products or denatured enzymes, or both) on the cellulosic substrate surface. The crystallinity, degree of polymerization, and meso-scale packing of cellulose do not seem to positively correlate with the decrease in hydrolysis rate observed for all three substrates tested in this study. Moreover, it was also found that the cellulose Iα component of the bacterial cellulose is preferentially hydrolyzed by the enzyme than the cellulose Iβ component.« less

  18. Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis

    DOE PAGES

    Kafle, Kabindra; Shin, Heenae; Lee, Christopher M.; ...

    2015-10-14

    A comprehensive picture of structural changes of cellulosic biomass during enzymatic hydrolysis is essential for a better understanding of enzymatic actions and development of more efficient enzymes. In this study, a suite of analytical techniques including sum frequency generation (SFG) spectroscopy, infrared (IR) spectroscopy, x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) were employed for lignin-free model biomass samples—Avicel, bleached softwood, and bacterial cellulose—to find correlations between the decrease in hydrolysis rate over time and the structural or chemical changes of biomass during the hydrolysis reaction. The results showed that the decrease in hydrolysis rate over time appears to correlatemore » with the irreversible deposition of non-cellulosic species (either reaction side products or denatured enzymes, or both) on the cellulosic substrate surface. The crystallinity, degree of polymerization, and meso-scale packing of cellulose do not seem to positively correlate with the decrease in hydrolysis rate observed for all three substrates tested in this study. Moreover, it was also found that the cellulose Iα component of the bacterial cellulose is preferentially hydrolyzed by the enzyme than the cellulose Iβ component.« less

  19. The effects of fruiting positions on cellulose synthesis and sucrose metabolism during cotton (Gossypium hirsutum L.) fiber development.

    PubMed

    Ma, Yina; Wang, Youhua; Liu, Jingran; Lv, Fengjuan; Chen, Ji; Zhou, Zhiguo

    2014-01-01

    Cotton (Gossypium hirsutum L.) boll positions on a fruiting branch vary in their contribution to yield and fiber quality. Fiber properties are dependent on deposition of cellulose in the fiber cell wall, but information about the enzymatic differences in sucrose metabolism between these fruiting positions is lacking. Therefore, two cotton cultivars with different sensitivities to low temperature were tested in 2010 and 2011 to quantify the effect of fruit positions (FPs) on fiber quality in relation to sucrose content, enzymatic activities and sucrose metabolism. The indices including sucrose content, sucrose transformation rate, cellulose content, and the activities of the key enzymes, sucrose phosphate synthase (SPS), acid invertase (AI) and sucrose synthase (SuSy) which inhibit cellulose synthesis and eventually affect fiber quality traits in cotton fiber, were determined. Results showed that as compared with those of FP1, cellulose content, sucrose content, and sucrose transformation rate of FP3 were all decreased, and the variations of cellulose content and sucrose transformation rate caused by FPs in Sumian 15 were larger than those in Kemian 1. Under FP effect, activities of SPS and AI in sucrose regulation were decreased, while SuSy activity in sucrose degradation was increased. The changes in activities of SuSy and SPS in response to FP effect displayed different and large change ranges between the two cultivars. These results indicate that restrained cellulose synthesis and sucrose metabolism in distal FPs are mainly attributed to the changes in the activities of these enzymes. The difference in fiber quality, cellulose synthesis and sucrose metabolism in response to FPs in fiber cells for the two cotton cultivars was mainly determined by the activities of both SuSy and SPS.

  20. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose.

    PubMed

    Saito, Tsuguyuki; Nishiyama, Yoshiharu; Putaux, Jean-Luc; Vignon, Michel; Isogai, Akira

    2006-06-01

    Never-dried native celluloses (bleached sulfite wood pulp, cotton, tunicin, and bacterial cellulose) were disintegrated into individual microfibrils after oxidation mediated by the 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) radical followed by a homogenizing mechanical treatment. When oxidized with 3.6 mmol of NaClO per gram of cellulose, almost the totality of sulfite wood pulp and cotton were readily disintegrated into long individual microfibrils by a treatment with a Waring Blendor, yielding transparent and highly viscous suspensions. When observed by transmission electron microscopy, the wood pulp and cotton microfibrils exhibited a regular width of 3-5 nm. Tunicin and bacterial cellulose could be disintegrated by sonication. A bulk degree of oxidation of about 0.2 per one anhydroglucose unit of cellulose was necessary for a smooth disintegration of sulfite wood pulp, whereas only small amounts of independent microfibrils were obtained at lower oxidation levels. This limiting degree of oxidation decreased in the following order: sulfite wood pulp > cotton > bacterial cellulose, tunicin.

  1. A single molecule study of cellulase hydrolysis of crystalline cellulose

    NASA Astrophysics Data System (ADS)

    Liu, Yu-San; Luo, Yonghua; Baker, John O.; Zeng, Yining; Himmel, Michael E.; Smith, Steve; Ding, Shi-You

    2010-02-01

    Cellobiohydrolase-I (CBH I), a processive exoglucanase secreted by Trichoderma reesei, is one of the key enzyme components in a commercial cellulase mixture currently used for processing biomass to biofuels. CBH I contains a family 7 glycoside hydrolase catalytic module, a family 1 carbohydrate-binding module (CBM), and a highlyglycosylated linker peptide. It has been proposed that the CBH I cellulase initiates the hydrolysis from the reducing end of one cellulose chain and successively cleaves alternate β-1,4-glycosidic bonds to release cellobiose as its principal end product. The role each module of CBH I plays in the processive hydrolysis of crystalline cellulose has yet to be convincingly elucidated. In this report, we use a single-molecule approach that combines optical (Total Internal Reflection Fluorescence microscopy, or TIRF-M) and non-optical (Atomic Force Microscopy, or AFM) imaging techniques to analyze the molecular motion of CBM tagged with green fluorescence protein (GFP), and to investigate the surface structure of crystalline cellulose and changes made in the structure by CBM and CBH I. The preliminary results have revealed a confined nanometer-scale movement of the TrCBM1-GFP bound to cellulose, and decreases in cellulose crystal size as well as increases in surface roughness during CBH I hydrolysis of crystalline cellulose.

  2. Bacterial Cellulose Production from Industrial Waste and by-Product Streams

    PubMed Central

    Tsouko, Erminda; Kourmentza, Constantina; Ladakis, Dimitrios; Kopsahelis, Nikolaos; Mandala, Ioanna; Papanikolaou, Seraphim; Paloukis, Fotis; Alves, Vitor; Koutinas, Apostolis

    2015-01-01

    The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen) 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L) and commercial sucrose (4.9 g/L) were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L) were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102–138 g·water/g·dry bacterial cellulose, viscosities of 4.7–9.3 dL/g, degree of polymerization of 1889.1–2672.8, stress at break of 72.3–139.5 MPa and Young’s modulus of 0.97–1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients. PMID:26140376

  3. Bacterial Cellulose Production from Industrial Waste and by-Product Streams.

    PubMed

    Tsouko, Erminda; Kourmentza, Constantina; Ladakis, Dimitrios; Kopsahelis, Nikolaos; Mandala, Ioanna; Papanikolaou, Seraphim; Paloukis, Fotis; Alves, Vitor; Koutinas, Apostolis

    2015-07-01

    The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen) 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L) and commercial sucrose (4.9 g/L) were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L) were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102-138 g · water/g · dry bacterial cellulose, viscosities of 4.7-9.3 dL/g, degree of polymerization of 1889.1-2672.8, stress at break of 72.3-139.5 MPa and Young's modulus of 0.97-1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients.

  4. Molecular and Biochemical Analyses of CbCel9A/Cel48A, a Highly Secreted Multi-Modular Cellulase by Caldicellulosiruptor bescii during Growth on Crystalline Cellulose

    PubMed Central

    Yi, Zhuolin; Su, Xiaoyun; Revindran, Vanessa; Mackie, Roderick I.; Cann, Isaac

    2013-01-01

    During growth on crystalline cellulose, the thermophilic bacterium Caldicellulosiruptor bescii secretes several cellulose-degrading enzymes. Among these enzymes is CelA (CbCel9A/Cel48A), which is reported as the most highly secreted cellulolytic enzyme in this bacterium. CbCel9A/Cel48A is a large multi-modular polypeptide, composed of an N-terminal catalytic glycoside hydrolase family 9 (GH9) module and a C-terminal GH48 catalytic module that are separated by a family 3c carbohydrate-binding module (CBM3c) and two identical CBM3bs. The wild-type CbCel9A/Cel48A and its truncational mutants were expressed in Bacillus megaterium and Escherichia coli, respectively. The wild-type polypeptide released twice the amount of glucose equivalents from Avicel than its truncational mutant that lacks the GH48 catalytic module. The truncational mutant harboring the GH9 module and the CBM3c was more thermostable than the wild-type protein, likely due to its compact structure. The main hydrolytic activity was present in the GH9 catalytic module, while the truncational mutant containing the GH48 module and the three CBMs was ineffective in degradation of either crystalline or amorphous cellulose. Interestingly, the GH9 and/or GH48 catalytic modules containing the CBM3bs form low-density particles during hydrolysis of crystalline cellulose. Moreover, TM3 (GH9/CBM3c) and TM2 (GH48 with three CBM3 modules) synergistically hydrolyze crystalline cellulose. Deletion of the CBM3bs or mutations that compromised their binding activity suggested that these CBMs are important during hydrolysis of crystalline cellulose. In agreement with this observation, seven of nine genes in a C. bescii gene cluster predicted to encode cellulose-degrading enzymes harbor CBM3bs. Based on our results, we hypothesize that C. bescii uses the GH48 module and the CBM3bs in CbCel9A/Cel48A to destabilize certain regions of crystalline cellulose for attack by the highly active GH9 module and other endoglucanases produced by this hyperthermophilic bacterium. PMID:24358340

  5. [New strains of basidiomycetes that produce bioethanol from lignocellulose biomass].

    PubMed

    Kozhevnikova, E Yu; Petrova, D A; Kopitsyn, D S; Nivikov, A A; Shnyreva, A V; Barkov, A V; Vinokurov, V A

    2016-01-01

    Sixty six isolates were screened for ability of bioethanol production; dynamics of product accumulation and substrate utilization were investigated for two selected strains Trametes hirsuta MT-24.24 and Trametes versicolor IT-1. The strains’ efficiency was evaluated as bioethanol production by 1 g biomass. Strain T. versicolor IT-1 producing over 33 g/L of the ethanol for 9 d was selected. Direct conversion of Na-carboxymethyl cellulose, microcrystalline cellulose and straw was shown with ethanol yields of 2.1, 1.6 and 1.7 g/L, respectively, for 9 d fermentation time.

  6. Evolution of organic matter during the mesophilic composting of lignocellulosic winery wastes.

    PubMed

    Paradelo, Remigio; Moldes, Ana Belén; Barral, María Teresa

    2013-02-15

    Winery wastes were composted in the laboratory during five months in order to study the composting process of lignocellulosic wastes. In a first experiment, spent grape marc was composted alone, and in a second one, hydrolyzed grape marc, which is the residue generated after the acid hydrolysis of spent grape marc for biotechnological purposes, was composted together with vinification lees. During the composting of spent grape marc, total organic matter did not change, and as total N increased only slightly (from 1.7% to 1.9%), the reduction in the C/N ratio was very low (from 31 to 28). The mixture of hydrolyzed grape marc and lees showed bigger changes, reaching a C/N ratio around 20 from the third month on. Water-soluble organic matter followed the usual trend during composting, showing a progressive decrease in both experiments. Although the mixture of hydrolyzed grape marc and lees presented the highest initial water-soluble carbon concentrations, the final values for both experiments were similar (8.1 g kg(-1) for the spent grape marc, and 9.1 g kg(-1) for the mixture). The analysis of the humification parameters did not allow an adequate description of the composting process, maybe as a consequence of the inherent problems existing with alkaline extractions. The total humic substances, which usually increase during composting as a consequence of the humification process, followed no trend, and they were even reduced with respect to the initial values. Notwithstanding, the fractionation of organic matter into cellulose, hemicellulose and lignin enabled a better monitoring of the waste decomposition. Cellulose and hemicellulose were degraded mainly during the first three months of composting, and the progressive reduction of the cellulose/lignin ratio proved that the main evolution of these wastes took place during the first three months of composting. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. A Lytic Polysaccharide Monooxygenase with Broad Xyloglucan Specificity from the Brown-Rot Fungus Gloeophyllum trabeum and Its Action on Cellulose-Xyloglucan Complexes

    PubMed Central

    Kojima, Yuka; Várnai, Anikó; Ishida, Takuya; Sunagawa, Naoki; Petrovic, Dejan M.; Igarashi, Kiyohiko; Jellison, Jody; Goodell, Barry; Alfredsen, Gry; Westereng, Bjørge

    2016-01-01

    ABSTRACT Fungi secrete a set of glycoside hydrolases and lytic polysaccharide monooxygenases (LPMOs) to degrade plant polysaccharides. Brown-rot fungi, such as Gloeophyllum trabeum, tend to have few LPMOs, and information on these enzymes is scarce. The genome of G. trabeum encodes four auxiliary activity 9 (AA9) LPMOs (GtLPMO9s), whose coding sequences were amplified from cDNA. Due to alternative splicing, two variants of GtLPMO9A seem to be produced, a single-domain variant, GtLPMO9A-1, and a longer variant, GtLPMO9A-2, which contains a C-terminal domain comprising approximately 55 residues without a predicted function. We have overexpressed the phylogenetically distinct GtLPMO9A-2 in Pichia pastoris and investigated its properties. Standard analyses using high-performance anion-exchange chromatography–pulsed amperometric detection (HPAEC-PAD) and mass spectrometry (MS) showed that GtLPMO9A-2 is active on cellulose, carboxymethyl cellulose, and xyloglucan. Importantly, compared to other known xyloglucan-active LPMOs, GtLPMO9A-2 has broad specificity, cleaving at any position along the β-glucan backbone of xyloglucan, regardless of substitutions. Using dynamic viscosity measurements to compare the hemicellulolytic action of GtLPMO9A-2 to that of a well-characterized hemicellulolytic LPMO, NcLPMO9C from Neurospora crassa revealed that GtLPMO9A-2 is more efficient in depolymerizing xyloglucan. These measurements also revealed minor activity on glucomannan that could not be detected by the analysis of soluble products by HPAEC-PAD and MS and that was lower than the activity of NcLPMO9C. Experiments with copolymeric substrates showed an inhibitory effect of hemicellulose coating on cellulolytic LPMO activity and did not reveal additional activities of GtLPMO9A-2. These results provide insight into the LPMO potential of G. trabeum and provide a novel sensitive method, a measurement of dynamic viscosity, for monitoring LPMO activity. IMPORTANCE Currently, there are only a few methods available to analyze end products of lytic polysaccharide monooxygenase (LPMO) activity, the most common ones being liquid chromatography and mass spectrometry. Here, we present an alternative and sensitive method based on measurement of dynamic viscosity for real-time continuous monitoring of LPMO activity in the presence of water-soluble hemicelluloses, such as xyloglucan. We have used both these novel and existing analytical methods to characterize a xyloglucan-active LPMO from a brown-rot fungus. This enzyme, GtLPMO9A-2, differs from previously characterized LPMOs in having broad substrate specificity, enabling almost random cleavage of the xyloglucan backbone. GtLPMO9A-2 acts preferentially on free xyloglucan, suggesting a preference for xyloglucan chains that tether cellulose fibers together. The xyloglucan-degrading potential of GtLPMO9A-2 suggests a role in decreasing wood strength at the initial stage of brown rot through degradation of the primary cell wall. PMID:27590806

  8. A comparative study of green composites based on tapioca starch and celluloses

    NASA Astrophysics Data System (ADS)

    Owi, Wei Tieng; Lin, Ong Hui; Sam, Sung Ting; Mern, Chin Kwok; Villagracia, Al Rey; Santos, Gil Nonato C.; Akil, Hazizan Md

    2017-07-01

    The objective of this study was to compare the properties of green composites based on tapioca starch (TS) and celluloses isolated from empty fruit bunches (EFB) and commercial celluloses from cotton linter (supplied by Sigma). Empty fruit bunches (EFB) acted as the main source to obtain the cellulose by using a chemical approach whereas the commercial cellulose from Sigma was used as reference. The TS/cellulose composite films were prepared using cellulose in varying proportions as filler into TS matrix by a casting method. The amount of celluloses added into the tapioca starch were 5, 10, 15, 20 and 25 phr (as per dry mass of TS). The celluloses were characterized using Fourier transform infrared (FTTR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). While the green composite films were analyzed in terms of thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), SEM and tensile properties. FTTR analysis confirmed the removal of non-cellulosic materials such as hemicelluloses and lignin from raw EFB after the chemical treatment. XRD diffractograms revealed that the crystallinity of celluloses EFB increased from 43.1 % of raw EFB to 52.1 %. SEM images showed the fibrillar structure of cellulose isolated from EFB. The TGA and derivative thermogravimetric (DTG) curves of green composite films showed no significant effect on the thermal stability. Melting temperature of TS/cellulose EFB higher than neat TS while TS/cellulose Sigma lower than neat TS. The green composite films with 15 phr cellulose from EFB filler loading provided the best tensile properties in term of its strength and modulus. However, in term of elongation at break, the percentage elongation decreased with the increased of the amount of filler loading. SEM images of the films demonstrated a good interaction between cellulose filler and TS matrix especially with the addition of 15 phr of cellulose from EFB.

  9. Synthesis, characterization, and reactivity of cellulose modified nano zero-valent iron for dye discoloration

    NASA Astrophysics Data System (ADS)

    Wang, Xiangyu; Wang, Pei; Ma, Jun; Liu, Huiling; Ning, Ping

    2015-08-01

    Nano zero-valent iron (NZVI) was innovatively and successfully modified by using hydroxyethyl cellulose (HEC) and hydroxypropylmethyl cellulose (HPMC) as dispersants. The systematic characterization observations (including XRD, SEM and TEM) illustrate that, compared with bare nano zero-valent iron particles (BNZVI), the particle sizes of hydroxyethyl cellulose modified (ENZVI) and hydroxypropylmethyl cellulose modified (PNZVI) were decreased, while the dispersity and antioxidizability of ENZVI and PNZVI particles were increased. The discoloration efficiencies of ENZVI, PNZVI, and BNZVI were compared by using dyes (including orange II, methyl orange, methyl blue, and methylene blue) as target pollutant. The results show that both the discoloration efficiency and reaction rate of ENZVI and PNZVI are higher than that of BNZVI. In addition, effects of dispersant content, dye type, pH value, initial dye concentration, iron dosage, and reaction temperature on discoloration efficiencies were studied. The results show that discoloration efficiency was decreased by increasing initial pH value and dye concentration, and it was increased with the increase the iron dosage and reaction temperature. Under optimized NZVI addition of 0.7 g L-1, the discoloration efficiencies of ENZVI and PNZVI were increased to 96.33% and 98.62%, respectively. And the possible discoloration pathway and dispersant modification mechanism of NZVI were discussed. This study suggests hydroxyethyl cellulose and hydroxypropylmethyl cellulose dispersed NZVI can be utilized as a promising modified nano-material for degradation of dye wastewater.

  10. Spatial and temporal variation in tree-ring α-cellulose oxygen and hydrogen isotope values as a record of water availability in the Atacama Desert

    NASA Astrophysics Data System (ADS)

    Olson, E. J.; Dodd, J. P.

    2015-12-01

    Previous studies have documented that tree ring oxygen and hydrogen isotopes primarily reflect source water; however, biosynthetic fractionation processes modify this signal and can have a varied response to environmental conditions. The degree to which source water contributes to δ2H and δ18O values of plant α-cellulose is species-specific and modern calibration studies are necessary. Here we present a calibration data set of P. tamarugo α-cellulose δ2H and δ18O values from the Atacama Desert in Northern Chile. P. tamarugo trees are endemic to the region and have adapted to the extremely arid environment where average annual precipitation is < 5mm/yr. This modern isotope chronology has been constructed from living P. tamarugo trees (n=12) from the Pampa del Tamarugal Basin in the northern Atacama. Generally, the tree-ring α-cellulose δ18O values are poorly correlated with meteorological data from coastal stations (i.e. Iquique); however, there is good agreement between regional groundwater depth and α-cellulose δ18O values. Most notably, average α-cellulose δ18O values increase by >2 ‰ over the past 20 years associated with a ~1.1 m lowering of the local groundwater table throughout the area. The correlation between a-cellulose isotope values and hydrologic conditions in modern times provides a baseline for interpretation of tree-ring isotope chronologies from the past 9.5 kya. A high-resolution Holocene (1.8-9.1 kya) age record of Prosopis sp. tree ring α-cellulose δ18O values provides a proxy for climatic and hydrologic conditions. During the early Holocene δ18O values range from 31 to 35‰ (2σ=0.58‰), while during the late Holocene values are much more variable (27.4 to 41‰; 2σ=2.64‰). Anthropogenic demand on local water sources is the most significant environmental factor affecting the variation in modern α-cellulose δ18O values; however, climate induced changes in regional water availability are the dominant driver of variability in the paleo-record. Increased variability in α-cellulose δ18O values in the late Holocene most likely indicates a reduction in annual recharge and an increase in episodic flood events driven by ENSO and other modes of atmospheric variability.

  11. Effects of autohydrolysis of Eucalyptus urograndis and Eucalyptus grandis on influence of chemical components and crystallinity index.

    PubMed

    da Silva Morais, Alaine Patrícia; Sansígolo, Cláudio Angeli; de Oliveira Neto, Mario

    2016-08-01

    Samples of Eucalyptus urograndis and Eucalyptus grandis sawdust were autohydrolyzed in aqueous conditions to reach temperatures in the range 110-190°C and reaction times of 0-150min in a minireactor. In each minireactor were used a liquor:wood ratio (10:1 L:kg dry wood), in order to assess the effects of the autohydrolysis severity and the crystalline properties of cellulose. The content of extractives, lignin, holocellulose, cellulose, hemicelluloses and crystallinity index obtained from the solid fraction after autohydrolysis of sawdust were determined. This study demonstrated that the hemicelluloses were extensively removed at 170 and 190°C, whereas cellulose was partly degraded to Eucalyptus urograndis and Eucalyptus grandis sawdust. The lignin content decreased, while the extractives content increased. It was defined that during autohydrolysis, had a slight decreased on crystalline structure of cellulose of Eucalyptus urogandis and Eucalyptus grandis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Physical properties of agave cellulose graft polymethyl methacrylate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosli, Noor Afizah; Ahmad, Ishak; Abdullah, Ibrahim

    2013-11-27

    The grafting polymerization of methyl methacrylate and Agave cellulose was prepared and their structural analysis and morphology were investigated. The grafting reaction was carried out in an aqueous medium using ceric ammonium nitrate as an initiator. The structural analysis of the graft copolymers was carried out by Fourier transform infrared and X-ray diffraction. The graft copolymers were also characterized by field emission scanning electron microscopy (FESEM). An additional peak at 1732 cm{sup −1} which was attributed to the C=O of ester stretching vibration of poly(methyl methacrylate), appeared in the spectrum of grafted Agave cellulose. A slight decrease of crystallinity indexmore » upon grafting was found from 0.74 to 0.68 for cellulose and grafted Agave cellulose, respectively. Another evidence of grafting showed in the FESEM observation, where the surface of the grafted cellulose was found to be roughed than the raw one.« less

  13. Blood Compatibility of Sulfonated Cladophora Nanocellulose Beads.

    PubMed

    Rocha, Igor; Lindh, Jonas; Hong, Jaan; Strømme, Maria; Mihranyan, Albert; Ferraz, Natalia

    2018-03-07

    Sulfonated cellulose beads were prepared by oxidation of Cladophora nanocellulose to 2,3-dialdehyde cellulose followed by sulfonation using bisulfite. The physicochemical properties of the sulfonated beads, i.e., high surface area, high degree of oxidation, spherical shape, and the possibility of tailoring the porosity, make them interesting candidates for the development of immunosorbent platforms, including their application in extracorporeal blood treatments. A desired property for materials used in such applications is blood compatibility; therefore in the present work, we investigate the hemocompatibility of the sulfonated cellulose beads using an in vitro whole blood model. Complement system activation (C3a and sC5b-9 levels), coagulation activation (thrombin-antithrombin (TAT) levels) and hemolysis were evaluated after whole blood contact with the sulfonated beads and the results were compared with the values obtained with the unmodified Cladophora nanocellulose. Results showed that neither of the cellulosic materials presented hemolytic activity. A marked decrease in TAT levels was observed after blood contact with the sulfonated beads, compared with Cladophora nanocellulose. However, the chemical modification did not promote an improvement in Cladophora nanocellulose hemocompatibility in terms of complement system activation. Even though the sulfonated beads presented a significant reduction in pro-coagulant activity compared with the unmodified material, further modification strategies need to be investigated to control the complement activation by the cellulosic materials.

  14. An Investigation on bilayer structures of electrospun polyacrylonitrile nanofibrous membrane and cellulose membrane used as filtration media for apple juice clarification

    NASA Astrophysics Data System (ADS)

    Sawitri, Asti; Miftahul Munir, Muhammad; Edikresnha, Dhewa; Sandi, Ahzab; Fauzi, Ahmad; Rajak, Abdul; Natalia, Dessy; Khairurrijal, Khairurrijal

    2018-05-01

    Nanofibrous membrane has a potential to use in filtration technology with electrospinning as one of the techniques used in synthesizing nanofibers. Polyacrylonitrile (PAN) nanofibrous membranes with various fibers diameters were electrospun by varying its precursor solution concentration. The average fibers diameters of the PAN nanofibrous membranes obtained from the precursor solution concentrations of 6, 9, 12, and 14 wt% were 341, 534, 1274, and 2107 nm, respectively. Filtration media for apple juice clarification were bilayer-structured membranes made of PAN nanofibrous membranes on commercial cellulose microfibrous membranes. It has been shown that the reduction of apple juice color or turbidity performed by the cellulose microfibrous membrane was well enhanced by the presence of the PAN nanofibrous membrane in the bilayer-structured membrane. In addition, the apple-juice color and turbidity reductions increased with decreasing the average fibers diameter of the PAN nanofibrous membrane. Furthermore, the PAN nanofibrous membrane also helped the cellulose microfibrous membrane in the bilayer-structured membrane enhance the reductions of total phenols, protein, and glucose of the apple juice.

  15. Characterization of cellulose structure of Populus plants modified in candidate cellulose biosynthesis genes

    DOE PAGES

    Bali, Garima; Khunsupat, Ratayakorn; Akinosho, Hannah; ...

    2016-09-10

    Here, the recalcitrant nature of lignocellulosic biomass is a combined effect of several factors such as high crystallinity and high degree of polymerization of cellulose, lignin content and structure, and the available surface area for enzymatic degradation (i.e., accessibility). Genetic improvement of feedstock cell wall properties is a path to reducing recalcitrance of lignocellulosic biomass and improving conversion to various biofuels. An advanced understanding of the cellulose biosynthesis pathway is essential to precisely modify cellulose properties of plant cell walls. Here we report on the impact of modified expression of candidate cellulose biosynthesis pathway genes on the ultra-structure of cellulose,more » a key carbohydrate polymer of Populus cell wall using advanced nuclear magnetic resonance approaches. Noteworthy changes were observed in the cell wall characteristics of downregulated KORRIGAN 1 (KOR) and KOR 2 transgenic plants in comparison to the wild-type control. It was observed that all of the transgenic lines showed variation in cellulose ultrastructure, increase in cellulose crystallinity and decrease in the cellulose degree of polymerization. Additionally, the properties of cellulose allomorph abundance and accessibility were found to be variable. Application of such cellulose characterization techniques beyond the traditional measurement of cellulose abundance to comprehensive studies of cellulose properties in larger transgenic and naturally variable populations is expected to provide deeper insights into the complex nature of lignocellulosic material, which can significantly contribute to the development of precisely tailored plants for enhanced biofuels production.« less

  16. Characterization of cellulose structure of Populus plants modified in candidate cellulose biosynthesis genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bali, Garima; Khunsupat, Ratayakorn; Akinosho, Hannah

    Here, the recalcitrant nature of lignocellulosic biomass is a combined effect of several factors such as high crystallinity and high degree of polymerization of cellulose, lignin content and structure, and the available surface area for enzymatic degradation (i.e., accessibility). Genetic improvement of feedstock cell wall properties is a path to reducing recalcitrance of lignocellulosic biomass and improving conversion to various biofuels. An advanced understanding of the cellulose biosynthesis pathway is essential to precisely modify cellulose properties of plant cell walls. Here we report on the impact of modified expression of candidate cellulose biosynthesis pathway genes on the ultra-structure of cellulose,more » a key carbohydrate polymer of Populus cell wall using advanced nuclear magnetic resonance approaches. Noteworthy changes were observed in the cell wall characteristics of downregulated KORRIGAN 1 (KOR) and KOR 2 transgenic plants in comparison to the wild-type control. It was observed that all of the transgenic lines showed variation in cellulose ultrastructure, increase in cellulose crystallinity and decrease in the cellulose degree of polymerization. Additionally, the properties of cellulose allomorph abundance and accessibility were found to be variable. Application of such cellulose characterization techniques beyond the traditional measurement of cellulose abundance to comprehensive studies of cellulose properties in larger transgenic and naturally variable populations is expected to provide deeper insights into the complex nature of lignocellulosic material, which can significantly contribute to the development of precisely tailored plants for enhanced biofuels production.« less

  17. Homogeneous graft copolymerization of styrene onto cellulose in a sulfur dioxide-diethylamine-dimethyl sulfoxide cellulose solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuzuki, M.; Hagiwara, I.; Shiraishi, N.

    1980-12-01

    Graft copolymerization of styrene onto cellulose was studied in a homogeneous system (SO/sub 2/(liquid)- diethylamine (DEA)-dimethyl sulfoxide (DMSO) medium)) by ..gamma..-ray mutual irradiation technique. At the same time, homopolymerization of styrene was also examined separately in DMSO, SO/sub 2/-DMSO, DEA-DMSO, and SO/sub 2/-DEA-DMSO media by the same technique. Polymerization of styrene hardly occurs on concentrations above 10 mole SO/sub 2/-DEA complex per mole glucose unit. Maximum percent grafting was obtained in concentrations of 4 mole, after which it decreased rapidly. Total conversion and percent grafting increased with the irradiation time. The value (=0.55) of the slope of the total conversionmore » rate plotted against the dose was only a little higher than the 1/2 which was expected from normal kinetics. No retardation in homopolymerization of styrene in DMSO, SO/sub 2/-DMSO, and DEA-DMSO was evident, while the retardation of homopolymerization in the SO/sub 2/-DEA-DMSO medium was measurable. Sulfur atoms were detected in the polymers obtained in both of SO/sub 2/-DMSO and SO/sub 2/-DEA-DMSO solutions. All of the molecular weights of polymers obtained in the present experiment were very low (3.9 x 10/sup 3/-1.75 x 10/sup 4/).« less

  18. Hazy Transparent Cellulose Nanopaper

    PubMed Central

    Hsieh, Ming-Chun; Koga, Hirotaka; Suganuma, Katsuaki; Nogi, Masaya

    2017-01-01

    The aim of this study is to clarify light scattering mechanism of hazy transparent cellulose nanopaper. Clear optical transparent nanopaper consists of 3–15 nm wide cellulose nanofibers, which are obtained by the full nanofibrillation of pulp fibers. At the clear transparent nanopaper with 40 μm thickness, their total transmittance are 89.3–91.5% and haze values are 4.9–11.7%. When the pulp fibers are subjected to weak nanofibrillation, hazy transparent nanopapers are obtained. The hazy transparent nanopaper consists of cellulose nanofibers and some microsized cellulose fibers. At the hazy transparent nanopaper with 40 μm thickness, their total transmittance were constant at 88.6–92.1% but their haze value were 27.3–86.7%. Cellulose nanofibers are solid cylinders, whereas the pulp fibers are hollow cylinders. The hollow shape is retained in the microsized cellulose fibers, but they are compressed flat inside the nanopaper. This compressed cavity causes light scattering by the refractive index difference between air and cellulose. As a result, the nanopaper shows a hazy transparent appearance and exhibits a high thermal durability (295–305 °C), and low thermal expansion (8.5–10.6 ppm/K) because of their high density (1.29–1.55 g/cm3) and crystallinity (73–80%). PMID:28128326

  19. Cellulose nanocrystals with tunable surface charge for nanomedicine

    NASA Astrophysics Data System (ADS)

    Hosseinidoust, Zeinab; Alam, Md Nur; Sim, Goeun; Tufenkji, Nathalie; van de Ven, Theo G. M.

    2015-10-01

    Crystalline nanoparticles of cellulose exhibit attractive properties as nanoscale carriers for bioactive molecules in nanobiotechnology and nanomedicine. For applications in imaging and drug delivery, surface charge is one of the most important factors affecting the performance of nanocarriers. However, current methods of preparation offer little flexibility for controlling the surface charge of cellulose nanocrystals, leading to compromised colloidal stability under physiological conditions. We report a synthesis method that results in nanocrystals with remarkably high carboxyl content (6.6 mmol g-1) and offers continuous control over surface charge without any adjustment to the reaction conditions. Six fractions of nanocrystals with various surface carboxyl contents were synthesized from a single sample of softwood pulp with carboxyl contents varying from 6.6 to 1.7 mmol g-1 and were fully characterized. The proposed method resulted in highly stable colloidal nanocrystals that did not aggregate when exposed to high salt concentrations or serum-containing media. Interactions of these fractions with four different tissue cell lines were investigated over a wide range of concentrations (50-300 μg mL-1). Darkfield hyperspectral imaging and confocal microscopy confirmed the uptake of nanocrystals by selected cell lines without any evidence of membrane damage or change in cell density; however a charge-dependent decrease in mitochondrial activity was observed for charge contents higher than 3.9 mmol g-1. A high surface carboxyl content allowed for facile conjugation of fluorophores to the nanocrystals without compromising colloidal stability. The cellular uptake of fluoresceinamine-conjugated nanocrystals exhibited a time-dose dependent relationship and increased significantly with doubling of the surface charge.Crystalline nanoparticles of cellulose exhibit attractive properties as nanoscale carriers for bioactive molecules in nanobiotechnology and nanomedicine. For applications in imaging and drug delivery, surface charge is one of the most important factors affecting the performance of nanocarriers. However, current methods of preparation offer little flexibility for controlling the surface charge of cellulose nanocrystals, leading to compromised colloidal stability under physiological conditions. We report a synthesis method that results in nanocrystals with remarkably high carboxyl content (6.6 mmol g-1) and offers continuous control over surface charge without any adjustment to the reaction conditions. Six fractions of nanocrystals with various surface carboxyl contents were synthesized from a single sample of softwood pulp with carboxyl contents varying from 6.6 to 1.7 mmol g-1 and were fully characterized. The proposed method resulted in highly stable colloidal nanocrystals that did not aggregate when exposed to high salt concentrations or serum-containing media. Interactions of these fractions with four different tissue cell lines were investigated over a wide range of concentrations (50-300 μg mL-1). Darkfield hyperspectral imaging and confocal microscopy confirmed the uptake of nanocrystals by selected cell lines without any evidence of membrane damage or change in cell density; however a charge-dependent decrease in mitochondrial activity was observed for charge contents higher than 3.9 mmol g-1. A high surface carboxyl content allowed for facile conjugation of fluorophores to the nanocrystals without compromising colloidal stability. The cellular uptake of fluoresceinamine-conjugated nanocrystals exhibited a time-dose dependent relationship and increased significantly with doubling of the surface charge. Electronic supplementary information (ESI) available: Additional results are presented in the ESI in Fig. S1 through S4. See DOI: 10.1039/c5nr02506k

  20. Polarization Effects on the Cellulose Dissolution in Ionic Liquids: Molecular Dynamics Simulations with Polarization Model and Integrated Tempering Enhanced Sampling Method.

    PubMed

    Kan, Zigui; Zhu, Qiang; Yang, Lijiang; Huang, Zhixiong; Jin, Biaobing; Ma, Jing

    2017-05-04

    Conformation of cellulose with various degree of polymerization of n = 1-12 in ionic liquid 1,3-dimethylimidazolium chloride ([C 1 mim]Cl) and the intermolecular interaction between them was studied by means of molecular dynamics (MD) simulations with fixed-charge and charge variable polarizable force fields, respectively. The integrated tempering enhanced sampling method was also employed in the simulations in order to improve the sampling efficiency. Cellulose undergoes significant conformational changes from a gaseous right-hand helical twist along the long axis to a flexible conformation in ionic liquid. The intermolecular interactions between cellulose and ionic liquid were studied by both infrared spectrum measurements and theoretical simulations. Designated by their puckering parameters, the pyranose rings of cellulose oligomers are mainly arranged in a chair conformation. With the increase in the degree of polymerization of cellulose, the boat and skew-boat conformations of cellulose appear in the MD simulations, especially in the simulations with polarization model. The number and population of hydrogen bonds between the cellulose and the chloride anions show that chloride anion is prone to form HBs whenever it approaches the hydroxyl groups of cellulose and, thus, each hydroxyl group is fully hydrogen bonded to the chloride anion. MD simulations with polarization model presented more abundant conformations than that with nonpolarization model. The application of the enhanced sampling method further enlarged the conformational spaces that could be visited by facilitating the system escaping from the local minima. It was found that the electrostatics interactions between the cellulose and ionic liquid contribute more to the total interaction energies than the van der Waals interactions. Although the interaction energy between the cellulose and anion is about 2.9 times that between the cellulose and cation, the role of cation is non-negligible. In contrast, the interaction energy between the cellulose and water is too weak to dissolve cellulose in water.

  1. Transparent cellulose/polyhedral oligomeric silsesquioxane nanocomposites with enhanced UV-shielding properties.

    PubMed

    Feng, Ye; Zhang, Jinming; He, Jiasong; Zhang, Jun

    2016-08-20

    The solubility of eight types of polyhedral oligomeric silsesquioxane (POSS) derivatives in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl) and the dispersion of POSS in cellulose matrix were examined. Only a special POSS containing both aminophenyl and nitrophenyl groups (POSS-AN, NH2:NO2=2:6) was selected to prepare nanocomposites, because of its good solubility in AmimCl and high stability during the preparation process. POSS-AN nanoparticles were uniformly dispersed in a cellulose matrix with a size of 30-40nm, and so the resultant cellulose/POSS-AN nanocomposite films were transparent. The mechanical properties of the films achieved a maximum tensile strength of 190MPa after addition of 2wt% POSS-AN. Interestingly, all of the cellulose/POSS-AN films exhibited high UV-absorbing capability. For the 15wt% cellulose/POSS-AN film, the transmittance of UVA (315-400nm) and UVB (280-315nm) was only 9.1% and nearly 0, respectively. The UV aging and shielding experiments showed that the transparent cellulose/POSS-AN nanocomposite films possessed anti-UV aging and UV shielding properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Dietary fructans, but not cellulose, decrease triglyceride accumulation in the liver of obese Zucker fa/fa rats.

    PubMed

    Daubioul, Catherine; Rousseau, Nicolas; Demeure, Roger; Gallez, Bernard; Taper, Henryk; Declerck, Barbara; Delzenne, Nathalie

    2002-05-01

    This study was designed to compare the effects of dietary supplementation with nondigestible carbohydrates, differing in fermentability by colonic bacteria, on hepatic steatosis in growing obese Zucker rats. Male Zucker fa/fa rats were divided into three groups: a control group that received the basal diet, a fructan group that received 10 g highly fermented Synergy 1/100 g diet and a cellulose group that received 10 g poorly fermented Vivapur Microcrystalline cellulose/100 g diet. Rats consuming fructan had a lower energy intake, a lower body weight and less triacylglycerol accumulation in the liver as assessed in vivo by nuclear magnetic resonance (NMR) spectroscopy, and ex vivo by biochemical and histochemical analysis compared with the control and/or cellulose groups. The high fermentation of fructans compared with cellulose was reflected by greater cecal contents and by a twofold greater propionate concentration in the portal vein of rats fed fructan compared with those fed cellulose. By measuring the capacity of hepatocytes isolated from liver of Zucker rats to synthesize triglycerides or total lipids from different precursors, we showed that propionate, at the concentrations measured in the portal vein of rats treated with fructan, selectively decreased the incorporation of acetate into total lipids, a phenomenon that could contribute, along with the lower energy intake, to less triglyceride accumulation in the liver of obese Zucker rats fed dietary fructans.

  3. Partially hydrolyzed guar gum increases intestinal absorption of iron in growing rats with iron deficiency anemia.

    PubMed

    de Cássia Freitas, Karine; Amancio, Olga Maria Silvério; Ferreira Novo, Neil; Fagundes-Neto, Ulysses; de Morais, Mauro Batista

    2006-10-01

    The objective of this study was to evaluate the effect of partially hydrolyzed guar gum (PHGG) dietary fiber towards intestinal iron absorption, for dietary intake and on the growth of rats with iron deficiency anemia in comparison to those fed on a diet with cellulose and without dietary fiber. Male Wistar rats (n=24) weaned at 21 days were fed with AIN93-G diet without iron for 2 weeks in order to induce iron deficiency anemia. At 36 days old, the anemic rats were divided into three groups: (1) PHGG group-100g of PHGG per kg of diet; (2) Cellulose group-100g of cellulose per kg of diet; (3) Control group-diet without dietary fiber. All the diets had 25mg of elemental iron/kg of diet added to lead to recovery from iron deficiency anemia. The final hemoglobin values in g/dl, for the PHGG group, the cellulose group and the control group were, respectively: 11.3+/-1.2, 8.6+/-0.7 and 8.1+/-0.9 (P<0.001). The levels of hepatic iron, in mug/g of dry tissue, in the same order, were: 322.2+/-66.6, 217.2+/-59.1 and 203.7+/-42.4 (P<0.001). Apparent iron intestinal absorption was, respectively: 67.5+/-8.9%, 35.4+/-15.3% and 31.3+/-24.9% (P<0.001). The three groups consumed similar quantities of diet. The changes in weight and in body length were similar in the three groups studied. PHGG led to greater intestinal absorption of iron, regeneration of hemoglobin and hepatic levels of iron than diet with cellulose and diet control.

  4. Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy.

    PubMed

    Oh, Sang Youn; Yoo, Dong Il; Shin, Younsook; Kim, Hwan Chul; Kim, Hak Yong; Chung, Yong Sik; Park, Won Ho; Youk, Ji Ho

    2005-10-31

    Crystalline structures of cellulose (named as Cell 1), NaOH-treated cellulose (Cell 2), and subsequent CO2-treated cellulose (Cell 2-C) were analyzed by wide-angle X-ray diffraction and FTIR spectroscopy. Transformation from cellulose I to cellulose II was observed by X-ray diffraction for Cell 2 treated with 15-20 wt% NaOH. Subsequent treatment with CO2 also transformed the Cell 2-C treated with 5-10 wt% NaOH. Many of the FTIR bands including 2901, 1431, 1282, 1236, 1202, 1165, 1032, and 897 cm(-1) were shifted to higher wave number (by 2-13 cm(-1)). However, the bands at 3352, 1373, and 983 cm(-1) were shifted to lower wave number (by 3-95 cm(-1)). In contrast to the bands at 1337, 1114, and 1058 cm(-1), the absorbances measured at 1263, 993, 897, and 668 cm(-1) were increased. The FTIR spectra of hydrogen-bonded OH stretching vibrations at around 3352 cm(-1) were resolved into three bands for cellulose I and four bands for cellulose II, assuming that all the vibration modes follow Gaussian distribution. The bands of 1 (3518 cm(-1)), 2 (3349 cm(-1)), and 3 (3195 cm(-1)) were related to the sum of valence vibration of an H-bonded OH group and an intramolecular hydrogen bond of 2-OH ...O-6, intramolecular hydrogen bond of 3-OH...O-5 and the intermolecular hydrogen bond of 6-O...HO-3', respectively. Compared with the bands of cellulose I, a new band of 4 (3115 cm(-1)) related to intermolecular hydrogen bond of 2-OH...O-2' and/or intermolecular hydrogen bond of 6-OH...O-2' in cellulose II appeared. The crystallinity index (CI) was obtained by X-ray diffraction [CI(XD)] and FTIR spectroscopy [CI(IR)]. Including absorbance ratios such as A1431,1419/A897,894 and A1263/A1202,1200, the CI(IR) was evaluated by the absorbance ratios using all the characteristic absorbances of cellulose. The CI(XD) was calculated by the method of Jayme and Knolle. In addition, X-ray diffraction curves, with and without amorphous halo correction, were resolved into portions of cellulose I and cellulose II lattice. From the ratio of the peak area, that is, peak area of cellulose I (or cellulose II)/total peak area, CI(XD) were divided into CI(XD-CI) for cellulose I and CI(XD-CII) for cellulose II. The correlation between CI(XD-CI) (or CI(XD-CII)) and CI(IR) was evaluated, and the bands at 2901 (2802), 1373 (1376), 897 (894), 1263, 668 cm(-1) were good for the internal standard (or denominator) of CI(IR), which increased the correlation coefficient. Both fraction of the absorbances showing peak shift were assigned as the alternate components of CI(IR). The crystallite size was decreased to constant value for Cell 2 treated at >or= 15 wt% NaOH. The crystallite size of Cell 2-C (cellulose II) was smaller than that of Cell 2 (cellulose I) treated at 5-10 wt% NaOH. But the crystallite size of Cell 2-C (cellulose II) was larger than that of Cell 2 (cellulose II) treated at 15-20 wt% NaOH.

  5. Lung biodurability and free radical production of cellulose nanomaterials

    PubMed Central

    Stefaniak, Aleksandr B.; Seehra, Mohindar S.; Fix, Natalie R.; Leonard, Stephen S.

    2015-01-01

    The potential applications of cellulose nanomaterials in advanced composites and biomedicine makes it imperative to understand their pulmonary exposure to human health. Here, we report the results on the biodurability of three cellulose nanocrystal (CNC), two cellulose nanofibril (CNF) and a benchmark cellulose microcrystal (CMC) when exposed to artificial lung airway lining fluid (SUF, pH 7.3) for up to 7 days and alveolar macrophage phagolysosomal fluid (PSF, pH 4.5) for up to 9 months. X-ray diffraction analysis was used to monitor biodurability and thermogravimetry, surface area, hydrodynamic diameter, zeta potential and free radical generation capacity of the samples were determined (in vitro cell-free and RAW 264.7 cell line models). The CMC showed no measurable changes in crystallinity (xCR) or crystallite size D in either SUF or PSF. For one CNC, a slight decrease in xCR and D in SUF was observed. In acidic PSF, a slight increase in xCR with exposure time was observed, possibly due to dissolution of the amorphous component. In a cell-free reaction with H2O2, radicals were observed; the CNCs and a CNF generated significantly more ●OH radicals than the CMC (p<0.05). The ●OH radical production correlates with particle decomposition temperature and is explained by the higher surface area to volume ratio of the CNCs. Based on their biodurability, mechanical clearance would be the primary mechanism for lung clearance of cellulose materials. The production of ●OH radicals indicates the need for additional studies to characterize the potential inhalation hazards of cellulose. PMID:25265049

  6. Patatin-related phospholipase A, pPLAIIIα, modulates the longitudinal growth of vegetative tissues and seeds in rice

    PubMed Central

    Liu, Guangmeng; Zhang, Ke; Ai, Jun; Deng, Xianjun; Hong, Yueyun; wang, Xuemin

    2015-01-01

    Patatin-related phospholipase A (pPLA) hydrolyses glycerolipids to produce fatty acids and lysoglycerolipids. The Oryza sativa genome has 21 putative pPLAs that are grouped into five subfamilies. Overexpression of OspPLAIIIα resulted in a dwarf phenotype with decreased length of rice stems, roots, leaves, seeds, panicles, and seeds, whereas OspPLAIIIα-knockout plants had longer panicles and seeds. OspPLAIIIα-overexpressing plants were less sensitive than wild-type and knockout plants to gibberellin-promoted seedling elongation. OspPLAIIIα overexpression and knockout had an opposite effect on the expression of the growth repressor SLENDER1 in the gibberellin signalling process. OspPLAIIIα-overexpressing plants had decreased mechanical strength and cellulose content, but exhibited increases in the expression of several cellulose synthase genes. These results indicate that OspPLAIIIα plays a role in rice vegetative and reproductive growth and that the constitutive, high activity of OspPLAIIIα suppresses cell elongation. The decreased gibberellin response in overexpressing plants is probably a result of the decreased ability to make cellulose for anisotropic cell expansion. PMID:26290597

  7. Cellulose and hemicellulose-degrading enzymes in Fusarium commune transcriptome and functional characterization of three identified xylanases.

    PubMed

    Huang, Yuhong; Busk, Peter Kamp; Lange, Lene

    2015-06-01

    Specific enzymes from plant-pathogenic microbes demonstrate high effectiveness for natural lignocellulosic biomass degradation and utilization. The secreted lignocellulolytic enzymes of Fusarium species have not been investigated comprehensively, however. In this study we compared cellulose and hemicellulose-degrading enzymes of classical fungal enzyme producers with those of Fusarium species. The results indicated that Fusarium species are robust cellulose and hemicellulose degraders. Wheat bran, carboxymethylcellulose and xylan-based growth media induced a broad spectrum of lignocellulolytic enzymes in Fusarium commune. Prediction of the cellulose and hemicellulose-degrading enzymes in the F. commune transcriptome using peptide pattern recognition revealed 147 genes encoding glycoside hydrolases and six genes encoding lytic polysaccharide monooxygenases (AA9 and AA11), including all relevant cellulose decomposing enzymes (GH3, GH5, GH6, GH7, GH9, GH45 and AA9), and abundant hemicellulases. We further applied peptide pattern recognition to reveal nine and seven subfamilies of GH10 and GH11 family enzymes, respectively. The uncharacterized XYL10A, XYL10B and XYL11 enzymes of F. commune were classified, respectively, into GH10 subfamily 1, subfamily 3 and GH11 subfamily 1. These xylanases were successfully expressed in the PichiaPink™ system with the following properties: the purified recombinant XYL10A had interesting high specific activity; XYL10B was active at alkaline conditions with both endo-1,4-β-d-xylanase and β-xylosidase activities; and XYL11 was a true xylanase characterized by high substrate specificity. These results indicate that F. commune with genetic modification is a promising source of enzymes for the decomposition of lignocellulosic biomass. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Oxidative cleavage and hydrolytic boosting of cellulose in soybean spent flakes by Trichoderma reesei Cel61A lytic polysaccharide monooxygenase.

    PubMed

    Pierce, Brian C; Agger, Jane Wittrup; Wichmann, Jesper; Meyer, Anne S

    2017-03-01

    The auxiliary activity family 9 (AA9) copper-dependent lytic polysaccharide monooxygenase (LPMO) from Trichoderma reesei (EG4; TrCel61A) was investigated for its ability to oxidize the complex polysaccharides from soybean. The substrate specificity of the enzyme was assessed against a variety of substrates, including both soy spent flake, a by-product of the soy food industry, and soy spent flake pretreated with sodium hydroxide. Products from enzymatic treatments were analyzed using mass spectrometry and high performance anion exchange chromatography. We demonstrate that TrCel61A is capable of oxidizing cellulose from both pretreated soy spent flake and phosphoric acid swollen cellulose, oxidizing at both the C1 and C4 positions. In addition, we show that the oxidative activity of TrCel61A displays a synergistic effect capable of boosting endoglucanase activity, and thereby substrate depolymerization of soy cellulose, by 27%. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Utilization of composite membrane polyethyleneglycol-polystyrene-cellulose acetate from pineapple leaf fibers in lowering levels of methyl orange batik waste

    NASA Astrophysics Data System (ADS)

    Delsy, E. V. Y.; Irmanto; Kazanah, F. N.

    2017-02-01

    Pineapple leaves are agricultural waste from the pineapple that the fibers can be utilized as raw material in cellulose acetate membranes. First, made pineapple leaf fibers into pulp and then converted into cellulose acetate by acetylation process in four stages consisting of activation, acetylation, hydrolysis and purification. Cellulose acetate then used as the raw material to manufacture composite membrane with addition of polystyrene and poly (ethylene glycol) as porogen. Composite membrane is made using phase inversion method with dichloromethane-acetone as a solvent. The result of FTIR analysis (Fourier transform infra-red) showed that the absorption of the carbonyl group (C=O) is at 1643.10 cm-1 and acetyl group (C-O ) at 1227.01 cm-1, with a molecular weight of 8.05 x 104 g/mol and the contents (rate) of acetyl is 37.31%. PS-PEG-CA composite membrane had also been characterized by measuring the water flux values and its application to decrease methyl orange content (level) in batik waste. The results showed that the water flux value is of 25.62 L/(m2.hour), and the decrease percentage of methyl orange content in batik waste is 71.53%.

  10. Formulation of an alginate-vineyard pruning waste composite as a new eco-friendly adsorbent to remove micronutrients from agroindustrial effluents.

    PubMed

    Vecino, X; Devesa-Rey, R; Moldes, A B; Cruz, J M

    2014-09-01

    The cellulosic fraction of vineyard pruning waste (free of hemicellulosic sugars) was entrapped in calcium alginate beads and evaluated as an eco-friendly adsorbent for the removal of different nutrients and micronutrients (Mg, P, Zn, K, N-NH4, SO4, TN, TC and PO4) from an agroindustrial effluent (winery wastewater). Batch adsorption studies were performed by varying the amounts of cellulosic adsorbent (0.5-2%), sodium alginate (1-5%) and calcium chloride (0.05-0.9M) included in the biocomposite. The optimal formulation of the adsorbent composite varied depending on the target contaminant. Thus, for the adsorption of cationic contaminants (Mg, Zn, K, N-NH4 and TN), the best mixture comprised 5% sodium alginate, 0.05M calcium chloride and 0.5% cellulosic vineyard pruning waste, whereas for removal of anionic compounds (P, SO4 and PO4), the optimal mixture comprised 1% sodium alginate, 0.9M calcium chloride and 0.5% cellulosic vineyard pruning waste. To remove TC from the winery wastewater, the optimal mixture comprised 3% of sodium alginate, 0.475M calcium chloride and 0.5% cellulosic vineyard pruning waste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Cellulose biosynthesis in Acetobacter xylinum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, F.C.

    1988-01-01

    Time-lapse video microscopy has shown periodic reversals during the synthesis of cellulose. In the presence of Congo Red, Acetobacter produces a band of fine fibrils. The direction of cell movement is perpendicular to the longitudinal axis of cell, and the rate of movement was decreased. A linear row of particles, presumably the cellulose synthesizing complexes, was found on the outer membrane by freeze-fracture technique. During the cell cycle, the increase of particles in linear row, the differentiation to four linear rows and the separation of the linear rows have been observed. A digitonin-solubilized cellulose synthase was prepared from A. xylinum,more » and incubated under conditions known to lead to active in vitro synthesis of 1,4-{beta}-D-glucan polymer. Electron microscopy revealed that clusters of fibrils were assembled within minutes. Individual fibrils are 17 {plus minus} 2 angstroms in diameter. Evidence for the cellulosic composition of newly synthesized fibrils was based on incorporation of tritium from UDP-({sup 3}H) glucose binding of gold-labeled cellobiohydrolase, and an electron diffraction pattern identified as cellulose II polymorph instead of cellulose I.« less

  12. Cellulose synthase stoichiometry in aspen differs from Arabidopsis and Norway spruce.

    PubMed

    Zhang, Xueyang; Dominguez, Pia Guadalupe; Kumar, Manoj; Bygdell, Joakim; Miroshnichenko, Sergey; Sundberg, Bjorn; Wingsle, Gunnar; Niittyla, Totte

    2018-05-14

    Cellulose is synthesised at the plasma membrane by cellulose synthase complexes (CSCs) containing cellulose synthases (CESAs). Genetic analysis and CESA isoform quantification indicate that cellulose in the secondary cell walls of Arabidopsis (Arabidopsis thaliana) is synthesised by isoforms CESA4, CESA7 and CESA8 in equimolar amounts. Here, we used quantitative proteomics to investigate whether the CSC model based on Arabidopsis secondary cell wall CESA stoichiometry can be applied to the angiosperm tree aspen (Populus tremula) and the gymnosperm tree Norway spruce (Picea abies). In the developing xylem of aspen the secondary cell wall CESA stoichiometry was 3:2:1 for PtCESA8a/b : PtCESA4 : PtCESA7a/b, while in Norway spruce the stoichiometry was 1:1:1 as previously observed in Arabidopsis. Furthermore, in aspen tension wood the secondary cell wall CESA stoichiometry changed to 8:3:1 for PtCESA8a/b : PtCESA4 : PtCESA7a/b. PtCESA8b represented 73% of the total secondary cell wall CESA pool, and quantitative PCR analysis of CESA transcripts in cryo-sectioned tension wood revealed increased PtCESA8b expression during formation of the cellulose-enriched gelatinous layer while the transcripts of PtCESA4, PtCESA7a/b and PtCESA8a decreased. A wide-angle X-ray scattering analysis showed that the shift in CESA stoichiometry in tension wood coincided with an increase in crystalline cellulose microfibril diameter suggesting that the CSC CESA composition influences microfibril properties. The aspen CESA stoichiometry results raise the possibility of alternative CSC models, and suggest that homomeric PtCESA8b complexes are responsible for cellulose biosynthesis in the gelatinous layer in tension wood. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  13. Dynamic-mechanical and thermomechanical properties of cellulose nanofiber/polyester resin composites.

    PubMed

    Lavoratti, Alessandra; Scienza, Lisete Cristine; Zattera, Ademir José

    2016-01-20

    Composites of unsaturated polyester resin (UPR) and cellulose nanofibers (CNFs) obtained from dry cellulose waste of softwood (Pinus sp.) and hardwood (Eucalyptus sp.) were developed. The fiber properties and the influence of the CNFs in the dynamic-mechanical and thermomechanical properties of the composites were evaluated. CNFs with a diameter of 70-90 nm were obtained. Eucalyptus sp. has higher α-cellulose content than Pinus sp. fibers. The crystallinity of the cellulose pulps decreased after grinding. However, high values were still obtained. The chemical composition of the fibers was not significantly altered by the grinding process. Eucalyptus sp. CNF composites had water absorption close to the neat resin at 1 wt% filler. The dynamic-mechanical properties of Eucalyptus sp. CNFs were slightly increased and the thermal stability was improved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A Facile Pathway to Modify Cellulose Composite Film by Reducing Wettability and Improving Barrier towards Moisture.

    PubMed

    Hu, Xiaorong; Chen, Lin; Tao, Dandan; Ma, Zhaocheng; Liu, Shilin

    2017-01-05

    The hydrophilic property of cellulose is a key limiting factor for its wide application. Here, a novel solution impregnation pathway was developed to increase the hydrophobic properties of cellulose. When compared with the regenerated cellulose (RC), the composite films showed a decrease in water uptake ability towards water vapor, and an increase of the water contact angle from 29° to 65° with increasing resin content in the composites, with only a slight change in the transmittance. Furthermore, the Young's modulus value increased from 3.2 GPa (RC film) to 5.1 GPa (RCBEA50 film). The results indicated that the composites had combined the advantages of cellulose and biphenyl A epoxy acrylate prepolymer (BEA) resin. The presented method has great potential for the preparation of biocomposites with improved properties. The overall results suggest that composite films can be used as high-performance packaging materials.

  15. A Facile Pathway to Modify Cellulose Composite Film by Reducing Wettability and Improving Barrier towards Moisture

    PubMed Central

    Hu, Xiaorong; Chen, Lin; Tao, Dandan; Ma, Zhaocheng; Liu, Shilin

    2017-01-01

    The hydrophilic property of cellulose is a key limiting factor for its wide application. Here, a novel solution impregnation pathway was developed to increase the hydrophobic properties of cellulose. When compared with the regenerated cellulose (RC), the composite films showed a decrease in water uptake ability towards water vapor, and an increase of the water contact angle from 29° to 65° with increasing resin content in the composites, with only a slight change in the transmittance. Furthermore, the Young’s modulus value increased from 3.2 GPa (RC film) to 5.1 GPa (RCBEA50 film). The results indicated that the composites had combined the advantages of cellulose and biphenyl A epoxy acrylate prepolymer (BEA) resin. The presented method has great potential for the preparation of biocomposites with improved properties. The overall results suggest that composite films can be used as high-performance packaging materials. PMID:28772399

  16. Processive Degradation of Crystalline Cellulose by a Multimodular Endoglucanase via a Wirewalking Mode.

    PubMed

    Zhang, Kun-Di; Li, Wen; Wang, Ye-Fei; Zheng, Yan-Lin; Tan, Fang-Cheng; Ma, Xiao-Qing; Yao, Li-Shan; Bayer, Edward A; Wang, Lu-Shan; Li, Fu-Li

    2018-05-14

    Processive hydrolysis of crystalline cellulose by cellulases is a critical step for lignocellulose deconstruction. The classic Trichoderma reesei exoglucanase TrCel7A, which has a closed active-site tunnel, starts each processive run by threading the tunnel with a cellulose chain. Loop regions are necessary for tunnel conformation, resulting in weak thermostability of fungal exoglucanases. However, endoglucanase CcCel9A, from the thermophilic bacterium Clostridium cellulosi, comprises a glycoside hydrolase (GH) family 9 module with an open cleft and five carbohydrate-binding modules (CBMs) and hydrolyzes crystalline cellulose processively. How CcCel9A and other similar GH9 enzymes bind to the smooth surface of crystalline cellulose to achieve processivity is still unknown. Our results demonstrate that the C-terminal CBM3b and three CBMX2s enhance productive adsorption to cellulose, while the CBM3c adjacent to the GH9 is tightly bound to 11 glucosyl units, thereby extending the catalytic cleft to 17 subsites, which facilitates decrystallization by forming a supramodular binding surface. In the open cleft, the strong interaction forces between substrate-binding subsites and glucosyl rings enable cleavage of the hydrogen bonds and extraction of a single cellulose chain. In addition, subsite -4 is capable of drawing the chain to its favored location. Cellotetraose is released from the open cleft as the initial product to achieve high processivity, which is further hydrolyzed to cellotriose, cellobiose and glucose by the catalytic cleft of the endoglucanase. On this basis, we propose a wirewalking mode for processive degradation of crystalline cellulose by an endoglucanase, which provides insights for rational design of industrial cellulases.

  17. Development of swelling/floating gastroretentive drug delivery system based on a combination of hydroxyethyl cellulose and sodium carboxymethyl cellulose for Losartan and its clinical relevance in healthy volunteers with CYP2C9 polymorphism.

    PubMed

    Chen, Ray-Neng; Ho, Hsiu-O; Yu, Chiao-Ya; Sheu, Ming-Thau

    2010-01-31

    The aim of this study was to develop an optimal gastroretentive drug delivery system (GRDDS) for administering Losartan. Additionally, the influence of optimized GRDDS on the bioavailability of Losartan and the formation extent of active metabolite E3174 by CYP2C9 polymorphism was investigated. Swellable and floatable GRDDS tablets combining hydroxyethyl cellulose (HEC), sodium carboxymethyl cellulose (NaCMC), and sodium bicarbonate were prepared at various compression pressures for evaluating swelling characteristics and floating capacity. Then Losartan was incorporated into optimized formulations for in vitro and in vivo characterizations. An appropriate ratio of HEC to NaCMC, addition of sodium bicarbonate, and compression at lower pressures resulted in the tablets floating over SGF for more than 16 h and swelling to 2 cm in diameter within 3h. The release patterns of Losartan from these tablets were pH-dependent. Results of the clinical trials showed that the mean bioavailability from GRD-A (HEC 91.67%, sodium bicarbonate 3.33% and Losartan 8.33%) was approximately 164%, relative to the immediate-release product (Cozaar). MRT and t(max) values were greater and C(max) values were lower for the GRDDS tablets compared with Cozaa. The lower bioavailability of Losartan in the CYP2C9*1/*1 subjects than CYP2C9*1/*3 subjects was found and could be due to the variety of enzymatic activity. Copyright 2009 Elsevier B.V. All rights reserved.

  18. Thermophilic Bacillus coagulans requires less cellulases for simultaneous saccharification and fermentation of cellulose to products than mesophilic microbial biocatalysts.

    PubMed

    Ou, Mark S; Mohammed, Nazimuddin; Ingram, L O; Shanmugam, K T

    2009-05-01

    Ethanol production from lignocellulosic biomass depends on simultaneous saccharification of cellulose to glucose by fungal cellulases and fermentation of glucose to ethanol by microbial biocatalysts (SSF). The cost of cellulase enzymes represents a significant challenge for the commercial conversion of lignocellulosic biomass into renewable chemicals such as ethanol and monomers for plastics. The cellulase concentration for optimum SSF of crystalline cellulose with fungal enzymes and a moderate thermophile, Bacillus coagulans, was determined to be about 7.5 FPU g(-1) cellulose. This is about three times lower than the amount of cellulase required for SSF with Saccharomyces cerevisiae, Zymomonas mobilis, or Lactococcus lactis subsp. lactis whose growth and fermentation temperature optimum is significantly lower than that of the fungal cellulase activity. In addition, B. coagulans also converted about 80% of the theoretical yield of products from 40 g/L of crystalline cellulose in about 48 h of SSF with 10 FPU g(-1) cellulose while yeast, during the same period, only produced about 50% of the highest yield produced at end of 7 days of SSF. These results show that a match in the temperature optima for cellulase activity and fermentation is essential for decreasing the cost of cellulase in cellulosic ethanol production.

  19. Biodegradability of regenerated cellulose films in soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, L.; Liu, H.; Zheng, L.

    1996-12-01

    Regenerated cellulose films and a water-resistant film coated with thin Tung oil were prepared by using a cellulose cuoxam solution from pulps of cotton linter, cotton stalk, and wheat straw. They were buried in the soil to test biodegradability. The results showed that viscosity average molecular weight M{sub {eta}}, tensile strength {sigma}{sub b}, and the weight of the degraded films decreased sharply with the progress of degradation time, and the kinetics of decay were discussed. The degradation half-lives t{sub 1/2} of the films in soil at 10--20 C were given to be 30--42 days, and after 2 months the filmsmore » were decomposed into CO{sub 2} and water. The {alpha}-cellulose in soil was more readily biodegraded than hemicellulose, and regenerated cellulose film was more readily biodegraded than kraft paper. Nuclear magnetic resonance and scanning electron micrographs indicated that the biodegradation process of the films was performed through random breakdown of bonds of cellulose macromolecules resulting from the microorganism cleavage.« less

  20. Promoting anaerobic biogasification of corn stover through biological pretreatment by liquid fraction of digestate (LFD).

    PubMed

    Hu, Yun; Pang, Yunzhi; Yuan, Hairong; Zou, Dexun; Liu, Yanping; Zhu, Baoning; Chufo, Wachemo Akiber; Jaffar, Muhammad; Li, Xiujin

    2015-01-01

    A new biological pretreatment method by using liquid fraction of digestate (LFD) was advanced for promoting anaerobic biogasification efficiency of corn stover. 17.6% TS content and ambient temperature was appropriate for pretreatment. The results showed that C/N ratio decreased to about 30, while total lignin, cellulose, and hemicellulose (LCH) contents were reduced by 8.1-19.4% after pretreatment. 3-days pretreatment was considered to be optimal, resulting in 70.4% more biogas production, 66.3% more biomethane yield and 41.7% shorter technical digestion time compared with the untreated stover. The reductions on VS, cellulose, and hemicellulose were increased by 22.1-35.9%, 22.3-35.4%, and 19.8-27.2% for LFD-treated stovers. The promoted anaerobic biogasification efficiency was mainly attributed to the improved biodegradability due to the pre-decomposition role of the bacteria in LFD. The method proved to be an efficient and low cost approach for producing bioenergy from corn stover, meanwhile, reducing LFD discharge and minimizing its potential pollution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Microbial pretreatment of corn stovers by solid-state cultivation of Phanerochaete chrysosporium for biogas production.

    PubMed

    Liu, Shan; Wu, Shubiao; Pang, Changle; Li, Wei; Dong, Renjie

    2014-02-01

    The microbial pretreatment of corn stover and corn stover silage was achieved via the solid-state cultivation of Phanerochaete chrysosporium; pretreatment effects on the biodegradability and subsequent anaerobic production of biogas were investigated. The peak levels of daily biogas production and CH₄ yield from corn stover silage were approximately twice that of corn stover. Results suggested that ensiling was a potential pretreatment method to stimulate biogas production from corn stover. Surface morphology and Fourier-transform infrared spectroscopy analyses demonstrated that the microbial pretreatment of corn stover silage improved biogas production by 10.5 to 19.7% and CH4 yield by 11.7 to 21.2% because pretreatment could decrease dry mass loss (14.2%) and increase substrate biodegradability (19.9% cellulose, 32.4% hemicellulose, and 22.6% lignin). By contrast, the higher dry mass loss in corn stover (55.3%) after microbial pretreatment was accompanied by 54.7% cellulose, 64.0% hemicellulose, and 61.1% lignin degradation but did not significantly influence biogas production.

  2. Ionic liquid-regenerated macroporous cellulose monolith: Fabrication, characterization and its protein chromatography.

    PubMed

    Du, Kaifeng

    2017-04-21

    Macroporous cellulose monolith as chromatographic support was successfully fabricated from an ionic liquid dissolved cellulose solution by an emulsification method and followed by the cross-linking reaction and DEAE modification. With the physical characterization, the cellulose monolith featured by both the interconnected macropores in range of 0.5-2.5μm and the diffusion pores centered at about 10nm. Given the bimodal pore system, the monolith possessed the specific surface area of 36.4m 2 g -1 and the column permeability of about 7.45×10 -14 m 2 . After the DEAE modification, the anion cellulose monolith was evaluated for its chromatography performances. It demonstrated that the static and dynamic adsorption capacity of BSA reached about 66.7mgmL -1 and 43.9mgmL -1 at 10% breakthrough point, respectively. The results were comparable to other chromatographic adsorbent. In addition, the proteins mixture with different pI was well separated at high flow velocity (611.0cmh -1 ) and high protein recovery (over 97%), proving the macroporous cellulose monolith had excellent separation performance. In this way, the prepared cellulose monolith with bimodal pores system is expected for the potential application in high-speed chromatography. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A Lytic Polysaccharide Monooxygenase with Broad Xyloglucan Specificity from the Brown-Rot Fungus Gloeophyllum trabeum and Its Action on Cellulose-Xyloglucan Complexes.

    PubMed

    Kojima, Yuka; Várnai, Anikó; Ishida, Takuya; Sunagawa, Naoki; Petrovic, Dejan M; Igarashi, Kiyohiko; Jellison, Jody; Goodell, Barry; Alfredsen, Gry; Westereng, Bjørge; Eijsink, Vincent G H; Yoshida, Makoto

    2016-11-15

    Fungi secrete a set of glycoside hydrolases and lytic polysaccharide monooxygenases (LPMOs) to degrade plant polysaccharides. Brown-rot fungi, such as Gloeophyllum trabeum, tend to have few LPMOs, and information on these enzymes is scarce. The genome of G. trabeum encodes four auxiliary activity 9 (AA9) LPMOs (GtLPMO9s), whose coding sequences were amplified from cDNA. Due to alternative splicing, two variants of GtLPMO9A seem to be produced, a single-domain variant, GtLPMO9A-1, and a longer variant, GtLPMO9A-2, which contains a C-terminal domain comprising approximately 55 residues without a predicted function. We have overexpressed the phylogenetically distinct GtLPMO9A-2 in Pichia pastoris and investigated its properties. Standard analyses using high-performance anion-exchange chromatography-pulsed amperometric detection (HPAEC-PAD) and mass spectrometry (MS) showed that GtLPMO9A-2 is active on cellulose, carboxymethyl cellulose, and xyloglucan. Importantly, compared to other known xyloglucan-active LPMOs, GtLPMO9A-2 has broad specificity, cleaving at any position along the β-glucan backbone of xyloglucan, regardless of substitutions. Using dynamic viscosity measurements to compare the hemicellulolytic action of GtLPMO9A-2 to that of a well-characterized hemicellulolytic LPMO, NcLPMO9C from Neurospora crassa revealed that GtLPMO9A-2 is more efficient in depolymerizing xyloglucan. These measurements also revealed minor activity on glucomannan that could not be detected by the analysis of soluble products by HPAEC-PAD and MS and that was lower than the activity of NcLPMO9C. Experiments with copolymeric substrates showed an inhibitory effect of hemicellulose coating on cellulolytic LPMO activity and did not reveal additional activities of GtLPMO9A-2. These results provide insight into the LPMO potential of G. trabeum and provide a novel sensitive method, a measurement of dynamic viscosity, for monitoring LPMO activity. Currently, there are only a few methods available to analyze end products of lytic polysaccharide monooxygenase (LPMO) activity, the most common ones being liquid chromatography and mass spectrometry. Here, we present an alternative and sensitive method based on measurement of dynamic viscosity for real-time continuous monitoring of LPMO activity in the presence of water-soluble hemicelluloses, such as xyloglucan. We have used both these novel and existing analytical methods to characterize a xyloglucan-active LPMO from a brown-rot fungus. This enzyme, GtLPMO9A-2, differs from previously characterized LPMOs in having broad substrate specificity, enabling almost random cleavage of the xyloglucan backbone. GtLPMO9A-2 acts preferentially on free xyloglucan, suggesting a preference for xyloglucan chains that tether cellulose fibers together. The xyloglucan-degrading potential of GtLPMO9A-2 suggests a role in decreasing wood strength at the initial stage of brown rot through degradation of the primary cell wall. Copyright © 2016 Kojima et al.

  4. Accelerated hydrolysis of substituted cellulose for potential biofuel production: kinetic study and modeling.

    PubMed

    Mu, Bingnan; Xu, Helan; Yang, Yiqi

    2015-11-01

    In this work, kinetics of substitution accelerated cellulose hydrolysis with multiple reaction stages was investigated to lay foundation for mechanism study and molecular design of substituting compounds. High-efficiency hydrolysis of cellulose is critical for cellulose-based bioethanol production. It is known that, substitution could substantially decrease activation energy and increase reaction rate of acidic hydrolysis of glycosidic bonds in cellulose. However, reaction kinetics and mechanism of the accelerated hydrolysis were not fully revealed. In this research, it was proved that substitution therefore accelerated hydrolysis only occurred in amorphous regions of cellulose fibers, and was a process with multiple reaction stages. With molar ratio of substitution less than 1%, the overall hydrolysis rate could be increased for around 10 times. We also quantified the relationship between the hydrolysis rate of individual reaction stage and its major influences, including molar ratio of substitution, activation energy of acidic hydrolysis, pH and temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. New approach for extraction of cellulose from tucumã's endocarp and its structural characterization

    NASA Astrophysics Data System (ADS)

    Manzato, L.; Rabelo, L. C. A.; de Souza, S. M.; da Silva, C. G.; Sanches, E. A.; Rabelo, D.; Mariuba, L. A. M.; Simonsen, J.

    2017-09-01

    The recycling of plant wasted materials into useful products represents a green alternative to prevent environmental problems. Tucumã palm fruit (Astrocaryum aculeatum Meyer) is widely used in Amazon region for food and crafts. Due to the large amount of wasted Tucumã's endocarp, this work proposes a new approach for extraction of cellulose and its structural characterization. X-ray Diffraction (XRD), Rietveld Refinement, Scanning Electron Microscopy (SEM), Infrared-transform Fourier Spectroscopy (FTIR) and Thermal Analysis (TG/DSC) have been used for characterization of the extracted cellulose. XRD patterns of the in natura tucumã's endocarp has showed a natural crystalline content embedded in a non-crystalline matrix. Nanocrystals of cellulose have been observed in the XRD pattern of the extracted cellulose, showing a good agreement with type II. Rietveld refinement allowed the cell parameters obtainment (a = 8.43(1) Å, b = 9.50(1) Å, c = 9.39(3) Å and γ = 118.43(4)°). Apparent average crystallite size and microstrain were, respectively, 20.0 Å and 0.1%. Two different methods were applied for estimative of crystallinity percentage. In the first method the height ratio between the intensity of the crystalline peak and the total intensity after the subtraction of the non-crystalline content was applied, leading to 48.5%. The second approach was performed using the amorphous area and the total area of the (1 1 0) peak from the experimental diffractogram, leading to 31.5%. The difference in crystallinity percentage concerning these two used approaches may be explained due to the first method does not consider the broad peaks resulted from nanocrystals diffraction. FTIR spectroscopy has evidenced a cellulose type II structure. SEM images showed micrometric sized fibers with ranged thicknesses. However, a new morphology of spherical nanostructures was observed on the type II matrix fibers. Thermal analysis suggests that the extracted cellulose have low thermal stability, which resulted from poor ordered, packed chains. A large exothermic band was found in DSC curve and associated to the release of energy from the amorphous phase degradation. Thus, this work successfully extracted cellulose from tucumã's endocarp and allowed its structural, morphological and thermal characterization.

  6. [Cellulose synthase genes that control the fiber formation of flax (Linum usitatissimum L.)].

    PubMed

    Galinovskiĭ, D V; Anisimova, N V; Raĭskiĭ, A P; Leont'ev, V N; Titok, V V; Hotyleva, L V

    2014-01-01

    Four cellulose synthase genes were identified by analysis of their class-specific regions (CSRII) in plants of fiber flax during the "rapid growth" stage. These genes were designated as LusCesA1, LusCesA4, LusCesA7 and LusCesA9. LusCesA4, LusCesA7, and LusCesA9 genes were expressed in the stem; LusCesA1 and LusCesA4 genes were expressed in the apex part of plants, and the LusCesA4 gene was expressed in the leaves of fiber flax. The expression of the LusCesA7 and LusCesA9 genes was specific to the stems of fiber flax. These genes may influence the quality of the flax fiber.

  7. Granulocyte elastase, beta-thromboglobulin, and C3d during acetate or bicarbonate hemodialysis with Hemophan compared to a cellulose acetate membrane.

    PubMed

    Stegmayr, B G; Esbensen, K; Gutierrez, A; Lundberg, L; Nielsen, B; Stroemsaeter, C E; Wehle, B

    1992-01-01

    Twenty-two patients were dialysed in a cross-over design using Hemophan or cellulose acetate membranes. The dialysate buffer was acetate (n = 12) or bicarbonate (n = 10). Blood was sampled at 0, 15, 60 and 180 min and mean values were adjusted for changes in total protein in each sample. At 15 min during dialysis a decrease in leukocytes and platelets occurred with both membranes, irrespective of the buffer (Wilcoxon, p less than 0.006). During dialysis, increases were found in granulocyte elastase inhibitor complex (E- alpha 1-PI), beta-thromboglobulin and C3d. beta 2-microglobulin was not significantly changed in blood after dialysis with Hemophan or cellulose acetate membranes with bicarbonate buffer. Side effects were more pronounced at 180 min during dialysis with bicarbonate in patients using cellulose acetate than with Hemophan (p = 0.021, n = 8). Hemophan seemed to be more favourable than cellulose acetate membranes in regard to leukopenia and E- alpha 1-PI. The dialysate buffer may also alter membrane biocompatibility.

  8. Improved growth and ethanol fermentation of Saccharomyces cerevisiae in the presence of acetic acid by overexpression of SET5 and PPR1.

    PubMed

    Zhang, Ming-Ming; Zhao, Xin-Qing; Cheng, Cheng; Bai, Feng-Wu

    2015-12-01

    To better understand the contribution of zinc-finger proteins to environmental stress tolerance, particularly inhibition from acetic acid, which is a potent inhibitor for cellulosic ethanol production by microbial fermentations, SET5 and PPR1 were overexpressed in Saccharomyces cerevisiae BY4741. With 5 g/L acetic acid addition, engineered strains BY4741/SET5 and BY4741/PPR1 showed improved growth and enhanced ethanol fermentation performance compared to that with the control strain. Similar results were also observed in ethanol production using corn stover hydrolysate. Further studies indicated that SET5 and PPR1 overexpression in S. cerevisiae significantly improved activities of antioxidant enzymes and ATP generation in the presence of acetic acid, and consequently decreased intracellular accumulation of reactive oxygen species (50.9 and 45.7%, respectively). These results revealed the novel functions of SET5 and PPR1 for the improvement of yeast acetic acid tolerance, and also implicated the involvement of these proteins in oxidative stress defense and energy metabolism in S. cerevisiae. This work also demonstrated that overexpression of SET5 and PPR1 would be a feasible strategy to increase cellulosic ethanol production efficiency. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. OmpA influences Escherichia coli biofilm formation by repressing cellulose production through the CpxRA two-component system.

    PubMed

    Ma, Qun; Wood, Thomas K

    2009-10-01

    Previously we discovered that OmpA of Escherichia coli increases biofilm formation on polystyrene surfaces (González Barrios et al., Biotechnol Bioeng, 93:188-200, 2006a). Here we show OmpA influences biofilm formation differently on hydrophobic and hydrophilic surfaces since it represses cellulose production which is hydrophilic. OmpA increased biofilm formation on polystyrene, polypropylene, and polyvinyl surfaces while it decreased biofilm formation on glass surfaces. Sand column assays corroborated that OmpA decreases attachment to hydrophilic surfaces. The ompA mutant formed sticky colonies, and the extracellular polysaccharide that caused stickiness was identified as cellulose. A whole-transcriptome study revealed that OmpA induces the CpxRA two-component signal transduction pathway that responds to membrane stress. CpxA phosphorylates CpxR and results in reduced csgD expression. Reduced CsgD production represses adrA expression and results in reduced cellulose production since CsgD and AdrA are responsible for 3,5-cyclic diguanylic acid and cellulose synthesis. Real-time polymerase chain reaction confirmed csgD and adrA are repressed by OmpA. Biofilm and cellulose assays with double deletion mutants adrA ompA, csgB ompA, and cpxR ompA confirmed OmpA decreased cellulose production and increased biofilm formation on polystyrene surfaces through CpxR and AdrA. Further evidence of the link between OmpA and the CpxRA system was that overproduction of OmpA disrupted the membrane and led to cell lysis. Therefore, OmpA inhibits cellulose production through the CpxRA stress response system, and this reduction in cellulose increases biofilm formation on hydrophobic surfaces.

  10. Patatin-related phospholipase A, pPLAIIIα, modulates the longitudinal growth of vegetative tissues and seeds in rice.

    PubMed

    Liu, Guangmeng; Zhang, Ke; Ai, Jun; Deng, Xianjun; Hong, Yueyun; Wang, Xuemin

    2015-11-01

    Patatin-related phospholipase A (pPLA) hydrolyses glycerolipids to produce fatty acids and lysoglycerolipids. The Oryza sativa genome has 21 putative pPLAs that are grouped into five subfamilies. Overexpression of OspPLAIIIα resulted in a dwarf phenotype with decreased length of rice stems, roots, leaves, seeds, panicles, and seeds, whereas OspPLAIIIα-knockout plants had longer panicles and seeds. OspPLAIIIα-overexpressing plants were less sensitive than wild-type and knockout plants to gibberellin-promoted seedling elongation. OspPLAIIIα overexpression and knockout had an opposite effect on the expression of the growth repressor SLENDER1 in the gibberellin signalling process. OspPLAIIIα-overexpressing plants had decreased mechanical strength and cellulose content, but exhibited increases in the expression of several cellulose synthase genes. These results indicate that OspPLAIIIα plays a role in rice vegetative and reproductive growth and that the constitutive, high activity of OspPLAIIIα suppresses cell elongation. The decreased gibberellin response in overexpressing plants is probably a result of the decreased ability to make cellulose for anisotropic cell expansion. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. DECREASE Final Technical Report: Development of a Commercial Ready Enzyme Application System for Ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teter, Sarah A

    Conversion of biomass to sugars plays a central in reducing our dependence on petroleum, as it allows production of a wide range of biobased fuels and chemicals, through fermentation of those sugars. The DECREASE project delivers an effective enzyme cocktail for this conversion, enabling reduced costs for producing advanced biofuels such as cellulosic ethanol. Benefits to the public contributed by growth of the advanced biofuels industry include job creation, economic growth, and energy security. The DECREASE primary project objective was to develop a two-fold improved enzyme cocktail, relative to an advanced cocktail (CZP00005) that had been developed previously (from 2000-more » 2007). While the final milestone was delivery of all enzyme components as an experimental mixture, a secondary objective was to deploy an improved cocktail within 3 years following the close of the project. In February 2012, Novozymes launched Cellic CTec3, a multi-enzyme cocktail derived in part from components developed under DECREASE. The externally validated performance of CTec3 and an additional component under project benchmarking conditions indicated a 1.8-fold dose reduction in enzyme dose required for 90% conversion (based on all available glucose and xylose sources) of NREL dilute acid pretreated PCS, relative to the starting advanced enzyme cocktail. While the ability to achieve 90% conversion is impressive, targeting such high levels of biomass digestion is likely not the most cost effective strategy. Novozymes techno economic modeling showed that for NREL's dilute acid pretreated corn stover (PCS), 80% target conversion enables a lower total production cost for cellulosic ethanol than for 90% conversion, and this was also found to be the case when cost assumptions were based on the NREL 2002 Design Report. A 1.8X dose-reduction was observed for 80% conversion in the small scale (50 g) DECREASE benchmark assay for CTec3 and an additional component. An upscaled experiment (in 0.5 kg kettle reactors) was performed to compare the starting enzyme mixture CZP00005 with CTec3 alone; these results indicated a 1.9X dose- reduction for 80% conversion. The CTec3 composition does not include the best available enzyme components from the DECREASE effort. While these components are not yet available in a commercial product, experimental mixtures were assayed in a smaller scale assay using DECREASE PCS, at high solids loadings (21.5% TS). The results indicated that the newer mixtures required 2.9X-less enzyme for 90% conversion, and 3.2X-less enzyme for 80% conversion, relative to the starting enzyme cocktail. In conclusion, CTec3 delivers a 1.8-1.9X dose reduction on NREL PCS at high solids loadings, and the next generation enzyme from Novozymes will continue to show dramatically improved biochemical performance. CTec3 allows reduced costs today, and the experimental cocktails point to continued biotechnological improvements that will further drive down costs for biorefineries of tomorrow.« less

  12. Dispersion Process and Effect of Oleic Acid on Properties of Cellulose Sulfate- Oleic Acid Composite Film

    PubMed Central

    Chen, Guo; Zhang, Bin; Zhao, Jun

    2015-01-01

    The cellulose sulfate (CS) is a newly developed cellulose derivative. The work aimed to investigate the effect of oleic acid (OA) content on properties of CS-OA film. The process of oleic acid dispersion into film was described to evaluate its effect on the properties of the film. Among the formulations evaluated, the OA addition decreased the solubility and water vapor permeability of the CS-OA film. The surface contact angle changed from 64.2° to 94.0° by increasing CS/OA ratio from 1:0 to 1:0.25 (w/w). The TS increased with OA content below 15% and decreased with OA over 15%, but the ε decreased with higher OA content. The micro-cracking matrices and micro pores in the film indicated the condense structure of the film destroyed by the incorporation of oleic acid. No chemical interaction between the OA and CS was observed in the XRD and FTIR spectrum. Film formulation containing 2% (w/w) CS, 0.3% (w/w) glycerol and 0.3% (w/w) OA, showed good properties of mechanic, barrier to moisture and homogeneity.

  13. OsCESA9 conserved-site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose DP and crystallinity in rice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Fengcheng; Xie, Guosheng; Huang, Jiangfeng

    Genetic modification of plant cell walls has been posed to reduce lignocellulose recalcitrance for enhancing biomass saccharification. Several dozen CESA mutants have been reported since cellulose synthase (CESA) gene was first identified, but almost all mutants exhibit the defective phenotypes in plant growth and development. Here, the rice (Oryza sativa) Osfc16 mutant with substitutions (W481C, P482S) at P-CR conserved site in CESA9 shows a slightly affected plant growth and higher biomass yield by 25%–41% compared with wild type (Nipponbare, a japonica variety). Chemical and ultrastructural analyses indicate that Osfc16 has a significantly reduced cellulose crystallinity (CrI) and thinner secondary cellmore » walls compared with wild type. CESA co-IP detection, together with implementations of a proteasome inhibitor (MG132) and two distinct cellulose inhibitors (Calcofluor, CGA), shows that CESA9 mutation could affect integrity of CESA4/7/9 complexes, which may lead to rapid CESA proteasome degradation for low-DP cellulose biosynthesis. These may reduce cellulose CrI, which improves plant lodging resistance, a major and integrated agronomic trait on plant growth and grain production, and enhances biomass enzymatic saccharification by up to 2.3-fold and ethanol productivity by 34%–42%. Our study has for the first time reported a direct modification for the low-DP cellulose production that has broad applications in biomass industries.« less

  14. OsCESA9 conserved-site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose DP and crystallinity in rice

    DOE PAGES

    Li, Fengcheng; Xie, Guosheng; Huang, Jiangfeng; ...

    2017-03-15

    Genetic modification of plant cell walls has been posed to reduce lignocellulose recalcitrance for enhancing biomass saccharification. Several dozen CESA mutants have been reported since cellulose synthase (CESA) gene was first identified, but almost all mutants exhibit the defective phenotypes in plant growth and development. Here, the rice (Oryza sativa) Osfc16 mutant with substitutions (W481C, P482S) at P-CR conserved site in CESA9 shows a slightly affected plant growth and higher biomass yield by 25%–41% compared with wild type (Nipponbare, a japonica variety). Chemical and ultrastructural analyses indicate that Osfc16 has a significantly reduced cellulose crystallinity (CrI) and thinner secondary cellmore » walls compared with wild type. CESA co-IP detection, together with implementations of a proteasome inhibitor (MG132) and two distinct cellulose inhibitors (Calcofluor, CGA), shows that CESA9 mutation could affect integrity of CESA4/7/9 complexes, which may lead to rapid CESA proteasome degradation for low-DP cellulose biosynthesis. These may reduce cellulose CrI, which improves plant lodging resistance, a major and integrated agronomic trait on plant growth and grain production, and enhances biomass enzymatic saccharification by up to 2.3-fold and ethanol productivity by 34%–42%. Our study has for the first time reported a direct modification for the low-DP cellulose production that has broad applications in biomass industries.« less

  15. Characteristics and enzymatic hydrolysis of cellulose-rich fractions from steam exploded and sequentially alkali delignified bamboo (Phyllostachys pubescens).

    PubMed

    Sun, Shao-Ni; Cao, Xue-Fei; Zhang, Xue-Ming; Xu, Feng; Sun, Run-Cang; Jones, Gwynn Lloyd

    2014-07-01

    In this study, cellulose-rich fractions from bamboo were prepared with steam explosion pretreatment (SEP) followed by a successive alkaline delignification to improve the enzymatic digestibility for an efficient bioethanol production. The cellulose-rich fractions obtained were characterized by FT-IR, XRD, CP/MAS (13)C NMR, SEM, and BET surface area. It was found that the SEP alone significantly removed partial hemicelluloses, while the synergistic treatment by SEP and alkaline delignification removed most hemicelluloses and lignin. Results from enzymatic hydrolysis showed that SEP alone improved the enzymatic hydrolysis rate by 7.9-33.1%, while the synergistic treatment by SEP and alkaline delignification enhanced the rate by 45.7-63.9%. The synergistic treatment by SEP at 2.0 MPa for 5 min with water impregnation followed by a successive alkaline delignification with 0.5% NaOH and 70% ethanol containing 1.5% NaOH resulted in a maximum enzymatic hydrolysis rate of 70.6%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. COBRA-LIKE2, a Member of the Glycosylphosphatidylinositol-Anchored COBRA-LIKE Family, Plays a Role in Cellulose Deposition in Arabidopsis Seed Coat Mucilage Secretory Cells1,2[OPEN

    PubMed Central

    Ben-Tov, Daniela; Abraham, Yael; Stav, Shira; Thompson, Kevin; Loraine, Ann; Elbaum, Rivka; de Souza, Amancio; Pauly, Markus; Kieber, Joseph J.; Harpaz-Saad, Smadar

    2015-01-01

    Differentiation of the maternally derived seed coat epidermal cells into mucilage secretory cells is a common adaptation in angiosperms. Recent studies identified cellulose as an important component of seed mucilage in various species. Cellulose is deposited as a set of rays that radiate from the seed upon mucilage extrusion, serving to anchor the pectic component of seed mucilage to the seed surface. Using transcriptome data encompassing the course of seed development, we identified COBRA-LIKE2 (COBL2), a member of the glycosylphosphatidylinositol-anchored COBRA-LIKE gene family in Arabidopsis (Arabidopsis thaliana), as coexpressed with other genes involved in cellulose deposition in mucilage secretory cells. Disruption of the COBL2 gene results in substantial reduction in the rays of cellulose present in seed mucilage, along with an increased solubility of the pectic component of the mucilage. Light birefringence demonstrates a substantial decrease in crystalline cellulose deposition into the cellulosic rays of the cobl2 mutants. Moreover, crystalline cellulose deposition into the radial cell walls and the columella appears substantially compromised, as demonstrated by scanning electron microscopy and in situ quantification of light birefringence. Overall, the cobl2 mutants display about 40% reduction in whole-seed crystalline cellulose content compared with the wild type. These data establish that COBL2 plays a role in the deposition of crystalline cellulose into various secondary cell wall structures during seed coat epidermal cell differentiation. PMID:25583925

  17. Comprehensive Transcriptome Analysis of Developing Xylem Responding to Artificial Bending and Gravitational Stimuli in Betula platyphylla

    PubMed Central

    Wang, Chao; Zhang, Nan; Gao, Caiqiu; Cui, Zhiyuan; Sun, Dan; Yang, Chuanping; Wang, Yucheng

    2014-01-01

    Betula platyphylla Suk (birch) is a fast-growing woody species that is important in pulp industries and the biofuels. However, as an important pulp species, few studies had been performed on its wood formation. In the present study, we investigated the molecular responses of birch xylem to artificial bending and gravitational stimuli. After trunks of birch trees were subjected to bending for 8 weeks, the cellulose content was significantly greater in tension wood (TW) than in opposite wood (OW) or normal wood (NW), whereas the lignin content in TW was significantly lower than that in OW and NW. In addition, TW grew more rapidly than OW and generated TW-specific fibers with an additional G-layer. Three transcriptome libraries were constructed from TW, OW and NW of B. platyphylla, respectively, after the plants were subjected to artificial bending. Overall, 80,909 nonredundant unigenes with a mean size of 768 nt were assembled. Expression profiles were generated, and 9,684 genes were found to be significantly differentially expressed among the TW, OW and NW libraries. These included genes involved in secondary cell wall structure, wood composition, and cellulose or lignin biosynthesis. Our study showed that during TW formation, genes involved in cellulose synthesis were induced, while the expression of lignin synthesis-related genes decreased, resulting in increased cellulose content and decreased lignin levels in TW. In addition, fasciclin-like arabinogalactan proteins play important role in TW formation. These findings may provide important insights into wood formation at the molecular level. PMID:24586282

  18. Phosphoric acid pretreatment of Achyranthes aspera and Sida acuta weed biomass to improve enzymatic hydrolysis.

    PubMed

    Siripong, Premjet; Duangporn, Premjet; Takata, Eri; Tsutsumi, Yuji

    2016-03-01

    Achyranthes aspera and Sida acuta, two types of weed biomass are abundant and waste in Thailand. We focus on them as novel feedstock for bio-ethanol production because they contain high-cellulose content (45.9% and 46.9%, respectively) and unutilized material. Phosphoric acid (70%, 75%, and 80%) was employed for the pretreatment to improve by enzymatic hydrolysis. The pretreatment process removed most of the xylan and a part of the lignin from the weeds, while most of the glucan remained. The cellulose conversion to glucose was greater for pretreated A. aspera (86.2 ± 0.3%) than that of the pretreated S. acuta (82.2 ± 1.1%). Thus, the removal of hemicellulose significantly affected the efficiency of the enzymatic hydrolysis. The scanning electron microscopy images showed the exposed fibrous cellulose on the cell wall surface, and this substantial change of the surface structure contributed to improving the enzyme accessibility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Enantiomeric separation of type I and type II pyrethroid insecticides with different chiral stationary phases by reversed-phase high-performance liquid chromatography.

    PubMed

    Zhang, Ping; Yu, Qian; He, Xiulong; Qian, Kun; Xiao, Wei; Xu, Zhifeng; Li, Tian; He, Lin

    2018-04-01

    The enantiomeric separation of type I (bifenthrin, BF) and type II (lambda-cyhalothrin, LCT) pyrethroid insecticides on Lux Cellulose-1, Lux Cellulose-3, and Chiralpak IC chiral columns was investigated by reversed-phase high-performance liquid chromatography. Methanol/water or acetonitrile/water was used as mobile phase at a flow rate of 0.8 mL/min. The effects of chiral stationary phase, mobile phase composition, column temperature, and thermodynamic parameters on enantiomer separation were carefully studied. Bifenthrin got a partial separation on Lux Cellulose-1 column and baseline separation on Lux Cellulose-3 column, while LCT enantiomers could be completely separated on both Lux Cellulose-1 and Lux Cellulose-3 columns. Chiralpak IC provided no separation ability for both BF and LCT. Retention factor (k) and selectivity factor (α) decreased with the column temperature increasing from 10°C to 40°C for both BF and LCT enantiomers. Thermodynamic parameters including ∆H and ∆S were also calculated, and the maximum R s were not always obtained at lowest temperature. Furthermore, the quantitative analysis methods for BF and LCT enantiomers in soil and water were also established. Such results provide a new approach for pyrethroid separation under reversed-phase condition and contribute to environmental risk assessment of pyrethroids at enantiomer level. © 2017 Wiley Periodicals, Inc.

  20. Saccharification of Cellulose by Recombinant Rhodococcus opacus PD630 Strains

    PubMed Central

    Hetzler, Stephan; Bröker, Daniel

    2013-01-01

    The noncellulolytic actinomycete Rhodococcus opacus strain PD630 is the model oleaginous prokaryote with regard to the accumulation and biosynthesis of lipids, which serve as carbon and energy storage compounds and can account for as much as 87% of the dry mass of the cell in this strain. In order to establish cellulose degradation in R. opacus PD630, we engineered strains that episomally expressed six different cellulase genes from Cellulomonas fimi ATCC 484 (cenABC, cex, cbhA) and Thermobifida fusca DSM43792 (cel6A), thereby enabling R. opacus PD630 to degrade cellulosic substrates to cellobiose. Of all the enzymes tested, five exhibited a cellulase activity toward carboxymethyl cellulose (CMC) and/or microcrystalline cellulose (MCC) as high as 0.313 ± 0.01 U · ml−1, but recombinant strains also hydrolyzed cotton, birch cellulose, copy paper, and wheat straw. Cocultivations of recombinant strains expressing different cellulase genes with MCC as the substrate were carried out to identify an appropriate set of cellulases for efficient hydrolysis of cellulose by R. opacus. Based on these experiments, the multicellulase gene expression plasmid pCellulose was constructed, which enabled R. opacus PD630 to hydrolyze as much as 9.3% ± 0.6% (wt/vol) of the cellulose provided. For the direct production of lipids from birch cellulose, a two-step cocultivation experiment was carried out. In the first step, 20% (wt/vol) of the substrate was hydrolyzed by recombinant strains expressing the whole set of cellulase genes. The second step was performed by a recombinant cellobiose-utilizing strain of R. opacus PD630, which accumulated 15.1% (wt/wt) fatty acids from the cellobiose formed in the first step. PMID:23793636

  1. Bacterial cellulose-kaolin nanocomposites for application as biomedical wound healing materials

    NASA Astrophysics Data System (ADS)

    Wanna, Dwi; Alam, Catharina; Toivola, Diana M.; Alam, Parvez

    2013-12-01

    This short communication provides preliminary experimental details on the structure-property relationships of novel biomedical kaolin-bacterial cellulose nanocomposites. Bacterial cellulose is an effective binding agent for kaolin particles forming reticulated structures at kaolin-cellulose interfaces and entanglements when the cellulose fraction is sufficiently high. The mechanical performance of these materials hence improves with an increased fraction of bacterial cellulose, though this also causes the rate of blood clotting to decrease. These composites have combined potential as both short-term (kaolin) and long-term (bacterial cellulose) wound healing materials.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Best, F.M.; Ferrieri, R.; Best, F.M.

    Validamycin A was used to inhibit in vivo trehalase activity in tobacco enabling the study of subsequent changes in new C partitioning into cellulosic biomass and lignin precursors. After 12-h exposure to treatment, plants were pulse labeled using radioactive {sup 11}CO{sub 2}, and the partitioning of isotope was traced into [{sup 11}C]cellulose and [{sup 11}C]hemicellulose, as well as into [{sup 11}C]phenylalanine, the precursor for lignin. Over this time course of treatment, new carbon partitioning into hemicellulose and cellulose was increased, while new carbon partitioning into phenylalanine was decreased. This trend was accompanied by a decrease in phenylalanine ammonia-lyase activity. Aftermore » 4 d of exposure to validamycin A, we also measured leaf protein content and key C and N metabolite pools. Extended treatment increased foliar cellulose and starch content, decreased sucrose, and total amino acid and nitrate content, and had no effect on total protein.« less

  3. Physicochemical characterization of novel Schiff bases derived from developed bacterial cellulose 2,3-dialdehyde.

    PubMed

    Keshk, Sherif M A S; Ramadan, Ahmed M; Bondock, Samir

    2015-08-20

    The synthesis of two novel Schiff's bases (cellulose-2,3-bis-[(4-methylene-amino)-benzene-sulfonamide] (5) & cellulose-2,3-bis-[(4-methylene-amino)-N-(thiazol-2-yl)-benzenesulfonamide] (6) via condensation reactions of periodate oxidized developed bacterial cellulose ODBC (2) with sulfa drugs [sulfanilamide (3) & sulfathiazole (4)] was reported. The physicochemical characterization of the condensation products was performed using FTIR, (1)H NMR, (13)C NMR spectral analyses, X-ray diffraction and DTA. The ODBC exhibited the highest degree of oxidation based on the aldehyde group number percentage (82.9%), which confirms the highest reactivity of developed bacterial cellulose [DBC (1)]. The X-ray diffractograms indicated an increase in the interplanar distance of the cellulose Schiff base (6) compared to ODBC (2) due to sulfathiazole (4) inclusion between ODBC (2) sheets corresponding to the 1 1 0 plane. In addition, the aldehyde content of Schiff base (6) was (20.8%) much lower than that of Schiff base (5) (41.5%). These results confirmed the high affinity of sulfathiazole (4) to the ODBC (2) chain, and the substantial changes in the original properties of ODBC were due to these chemical modifications rather than the sulfanilamide (3). Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Changes in composition, cellulose degradability and biochemical methane potential of Miscanthus species during the growing season.

    PubMed

    Peng, Xiaowei; Li, Chao; Liu, Jing; Yi, Zili; Han, Yejun

    2017-07-01

    The composition, cellulose degradability and biochemical methane potential (BMP) of M. sinensis, M. floridulus, Miscanthus×giganteus and M. lutarioriparius were investigated concomitantly at different growth/harvest times during their growing season. For all the four species, there was only a slight change in the compositional content. Meanwhile there was a huge change in the BMP values. At the growth time of 60days the BMPs ranged from 247.1 to 266.5mlg -1 VS. As growth time was prolonged, the BMPs decreased by 11-35%. For each species, the BMP was positively correlated to the cellulose degradability with the correlation coefficients (R 2 ) ranging from 0.8055 to 0.9925. This suggests that besides the biomass yield, it is justifiable to consider cellulose degradability when selecting the suitable harvest time for biofuels production from Miscanthus, especially in tropical and subtropical regions where Miscanthus can be harvested twice or more within a year. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Poly(vinyl alcohol) films reinforced with nanofibrillated cellulose (NFC) isolated from corn husk by high intensity ultrasonication.

    PubMed

    Xiao, Shaoliang; Gao, Runan; Gao, LiKun; Li, Jian

    2016-01-20

    This work was aimed at fabricating and characterizing poly(vinyl alcohol) films that were reinforced by nanofibrillated corn husk celluloses using a combination of chemical pretreatments and ultrasonication. The obtained nanofibrillated celluloses (NFCs) possessed a narrow width ranging from 50 to 250 nm and a high aspect ratio (394). The crystalline type of NFC was cellulose I type. Compared with the original corn husks, the NCF crystallinity and thermal stability increased due to the removal of the hemicelluloses and lignin. PVA films containing different NFC concentrations (0.5%, 1%, 3%, 5%, 7% and 9%, w/w, dry basis) were examined. The 1% PVA/NFC reinforced films exhibited a highly visible light transmittance of 80%, and its tensile strength and the tensile strain at break were increased by 1.47 and 1.80 times compared to that of the pure PVA film, respectively. The NFC with high aspect ratio and high crystallinity is beneficial to the improvement of the mechanical strength and thermal stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Methods of saccharification of polysaccharides in plants

    DOEpatents

    Howard, John; Fake, Gina

    2014-04-29

    Saccharification of polysaccharides of plants is provided, where release of fermentable sugars from cellulose is obtained by adding plant tissue composition. Production of glucose is obtained without the need to add additional .beta.-glucosidase. Adding plant tissue composition to a process using a cellulose degrading composition to degrade cellulose results in an increase in the production of fermentable sugars compared to a process in which plant tissue composition is not added. Using plant tissue composition in a process using a cellulose degrading enzyme composition to degrade cellulose results in decrease in the amount of cellulose degrading enzyme composition or exogenously applied cellulase required to produce fermentable sugars.

  7. Directed Biosynthesis of Oriented Crystalline Cellulose for Advanced Composite Fibers

    DTIC Science & Technology

    2012-05-03

    8 growth rate Table 2. An optimized minimal salts high conductivity growth medium (named 9 Son-Matsuoka- Fructose , SMF) based on the optimized...basis for a high -conductivity medium for Acetobacter that also contained corn steep liquor. List of Figures Figure 1. Scanning electron micrographs of...bacterial cellulose production include corn steep liquor (Matsuoka et al., 1996) apples, beer wort (Brown, 1886; Herrmann, 1928), corn syrup , kale (black

  8. The effect of different anti-solvent and coconut shell content on properties of coconut shell regenerated cellulose biocomposite films

    NASA Astrophysics Data System (ADS)

    Hahary, Farah Norain; Husseinsyah, Salmah; Mostapha@Zakaria, Marliza

    2016-07-01

    In this study, coconut shell (CS) regenerated cellulose (RC) biocomposite films was prepared using dimethylacetamide/lithium chloride (DMAc/LiCl) solvent system. The effect of anti-solvents such as water and methanol for regeneration of cellulose and coconut shell content on properties of CS-RC biocomposite films was investigated. The used of water as anti-solvent for cellulose regeneration was found to have higher tensile properties compared to regenerated cellulose using methanol. Besides, the X-Ray diffraction (XRD) analysis also revealed that RC using water as anti-solvent have higher crystallinity index (CrI) than CS-RC biocomposite film using methanol. The tensile strength and modulus elasticity of CS-RC biocomposite films increased up to 3 wt% CS and decreased with further addition of CS. The elongation at break of CS-RC biocomposite films decreased with the increment of CS. The CrI of CS-RC bioocmposite films up to 3 wt% and decreased with at higher content of CS.

  9. Salmonella promotes virulence by repressing cellulose production

    PubMed Central

    Pontes, Mauricio H.; Lee, Eun-Jin; Choi, Jeongjoon; Groisman, Eduardo A.

    2015-01-01

    Cellulose is the most abundant organic polymer on Earth. In bacteria, cellulose confers protection against environmental insults and is a constituent of biofilms typically formed on abiotic surfaces. We report that, surprisingly, Salmonella enterica serovar Typhimurium makes cellulose when inside macrophages. We determine that preventing cellulose synthesis increases virulence, whereas stimulation of cellulose synthesis inside macrophages decreases virulence. An attenuated mutant lacking the mgtC gene exhibited increased cellulose levels due to increased expression of the cellulose synthase gene bcsA and of cyclic diguanylate, the allosteric activator of the BcsA protein. Inactivation of bcsA restored wild-type virulence to the Salmonella mgtC mutant, but not to other attenuated mutants displaying a wild-type phenotype regarding cellulose. Our findings indicate that a virulence determinant can promote pathogenicity by repressing a pathogen's antivirulence trait. Moreover, they suggest that controlling antivirulence traits increases long-term pathogen fitness by mediating a trade-off between acute virulence and transmission. PMID:25848006

  10. A Negative Regulator of Cellulose Biosynthesis, bcsR, Affects Biofilm Formation, and Adhesion/Invasion Ability of Cronobacter sakazakii.

    PubMed

    Gao, Jian-Xin; Li, Ping; Du, Xin-Jun; Han, Zhong-Hui; Xue, Rui; Liang, Bin; Wang, Shuo

    2017-01-01

    Cronobacter sakazakii is an important foodborne pathogen that causes neonatal meningitis and sepsis, with high mortality in neonates. However, very little information is available regarding the pathogenesis of C. sakazakii at the genetic level. In our previous study, a cellulose biosynthesis-related gene ( bcsR ) was shown to be involved in C. sakazakii adhesion/invasion into epithelial cells. In this study, the detailed functions of this gene were investigated using a gene knockout technique. A bcsR knockout mutant (Δ bcsR ) of C. sakazakii ATCC BAA-894 showed decreased adhesion/invasion (3.9-fold) in human epithelial cell line HCT-8. Biofilm formation by the mutant was reduced to 50% of that exhibited by the wild-type (WT) strain. Raman spectrometry was used to detect variations in biofilm components caused by bcsR knockout, and certain components, including carotenoids, fatty acids, and amides, were significantly reduced. However, another biofilm component, cellulose, was increased in Δ bcsR , suggesting that bcsR negatively affects cellulose biosynthesis. This result was also verified via RT-PCR, which demonstrated up-regulation of five crucial cellulose synthesis genes ( bcsA, B, C, E, Q ) in Δ bcsR . Furthermore, the expression of other virulence or biofilm-related genes, including flagellar assembly genes ( fliA, C, D ) and toxicity-related genes ( ompA, ompX, hfq ), was studied. The expression of fliC and ompA in the Δ bcsR mutant was found to be remarkably reduced compared with that in the wild-type and the others were also affected excepted ompX . In summary, bcsR is a negative regulator of cellulose biosynthesis but positively regulates biofilm formation and the adhesion/invasion ability of C. sakazakii .

  11. [Study on spectroscopic characterization and property of PES/ micro-nano cellulose composite membrane material].

    PubMed

    Tang, Huan-Wei; Zhang, Li-Ping; Li, Shuai; Zhao, Guang-Jie; Qin, Zhu; Sun, Su-Qin

    2010-03-01

    In the present paper, the functional groups of PES/micro-nano cellulose composite membrane materials were characterized by Fourier transform infrared spectroscopy (FTIR). Also, changes in crystallinity in composite membrane materials were analyzed using X-ray diffraction (XRD). The effects of micro-nano cellulose content on hydrophilic property of composite membrane material were studied by measuring hydrophilic angle. The images of support layer structure of pure PES membrane material and composite membrane material were showed with scanning electron microscope (SEM). These results indicated that in the infrared spectrogram, the composite membrane material had characteristic peaks of both PES and micro-nano cellulose without appearance of other new characteristics peaks. It revealed that there were no new functional groups in the composite membrane material, and the level of molecular compatibility was achieved, which was based on the existence of inter-molecular hydrogen bond association between PES and micro-nano cellulose. Due to the existence of micro-nano cellulose, the crystallinity of composite membrane material was increased from 37.7% to 47.9%. The more the increase in micro-nano cellulose mass fraction, the better the van de Waal force and hydrogen bond force between composite membrane material and water were enhanced. The hydrophilic angle of composite membrane material was decreased from 55.8 degrees to 45.8 degrees and the surface energy was raised from 113.7 to 123.5 mN x m(-2). Consequently, the hydrophilic property of composite membrane material was improved. The number of pores in the support layer of composite membrane material was lager than that of pure PES membrane. Apparently, pores were more uniformly distributed.

  12. Highly Effective Electromagnetic Interference Shielding Materials based on Silver Nanowire/Cellulose Papers.

    PubMed

    Lee, Tae-Won; Lee, Sang-Eui; Jeong, Young Gyu

    2016-05-25

    We fabricated silver nanowire (AgNW)-coated cellulose papers with a hierarchical structure by an efficient and facile dip-coating process, and investigated their microstructures, electrical conductivity and electromagnetic interference (EMI) shielding effectiveness. SEM images confirm that AgNWs are coated dominantly on the paper surfaces, although they exist partially in the inner parts of the cellulose papers, which demonstrates that the AgNW density gradually decreases in thickness direction of the AgNW/cellulose papers. This result is supported by the anisotropic apparent electrical conductivity of the AgNW/cellulose papers depending on in-plane or thickness direction. Even for a AgNW/cellulose paper obtained by a single dip-coating cycle, the apparent electrical conductivity in the in-plane direction of 0.34 S/cm is achieved, which is far higher than the neat cellulose paper with ∼10(-11) S/cm. In addition, the apparent electrical conductivity of the papers in the in-plane direction increases significantly from 0.34 to 67.51 S/cm with increasing the number of dip-coating cycle. Moreover, although the AgNW/cellulose paper with 67.51 S/cm possesses 0.53 vol % AgNW only, it exhibits high EMI shielding performance of ∼48.6 dB at 1 GHz. This indicates that the cellulose paper structure is highly effective to form a conductive AgNW network. Overall, it can be concluded that the AgNW/cellulose papers with high flexibility and low density can be used as electrically conductive components and EMI shielding elements in advanced application areas.

  13. Cellulose Aggregation under Hydrothermal Pretreatment Conditions.

    PubMed

    Silveira, Rodrigo L; Stoyanov, Stanislav R; Kovalenko, Andriy; Skaf, Munir S

    2016-08-08

    Cellulose, the most abundant biopolymer on Earth, represents a resource for sustainable production of biofuels. Thermochemical treatments make lignocellulosic biomaterials more amenable to depolymerization by exposing cellulose microfibrils to enzymatic or chemical attacks. In such treatments, the solvent plays fundamental roles in biomass modification, but the molecular events underlying these changes are still poorly understood. Here, the 3D-RISM-KH molecular theory of solvation has been employed to analyze the role of water in cellulose aggregation under different thermodynamic conditions. The results show that, under ambient conditions, highly structured hydration shells around cellulose create repulsive forces that protect cellulose microfibrils from aggregating. Under hydrothermal pretreatment conditions, however, the hydration shells lose structure, and cellulose aggregation is favored. These effects are largely due to a decrease in cellulose-water interactions relative to those at ambient conditions, so that cellulose-cellulose attractive interactions become prevalent. Our results provide an explanation to the observed increase in the lateral size of cellulose crystallites when biomass is subject to pretreatments and deepen the current understanding of the mechanisms of biomass modification.

  14. Co-production of bio-ethanol, xylonic acid and slow-release nitrogen fertilizer from low-cost straw pulping solid residue.

    PubMed

    Huang, Chen; Ragauskas, Arthur J; Wu, Xinxing; Huang, Yang; Zhou, Xuelian; He, Juan; Huang, Caoxing; Lai, Chenhuan; Li, Xin; Yong, Qiang

    2018-02-01

    A novel bio-refinery sequence yielding varieties of co-products was developed using straw pulping solid residue. This process utilizes neutral sulfite pretreatment which under optimal conditions (160 °C and 3% (w/v) sulfite charge) provides 64.3% delignification while retaining 90% of cellulose and 67.3% of xylan. The pretreated solids exhibited excellent enzymatic digestibility, with saccharification yields of 86.9% and 81.1% for cellulose and xylan, respectively. After pretreatment, the process of semi-simultaneous saccharification and fermentation (S-SSF) and bio-catalysis was investigated. The results revealed that decreased ethanol yields were achieved when solid loading increased from 5% to 30%. An acceptable ethanol yield of 76.8% was obtained at 20% solid loading. After fermentation, bio-catalysis of xylose remaining in fermentation broth resulted in near 100% xylonic acid (XA) yield at varied solid loadings. To complete the co-product portfolio, oxidation ammoniation of the dissolved lignin successfully transformed it into biodegradable slow-release nitrogen fertilizer with excellent agricultural properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Single and binary adsorption of heavy metal ions from aqueous solutions using sugarcane cellulose-based adsorbent.

    PubMed

    Wang, Futao; Pan, Yuanfeng; Cai, Pingxiong; Guo, Tianxiang; Xiao, Huining

    2017-10-01

    A high efficient and eco-friendly sugarcane cellulose-based adsorbent was prepared in an attempt to remove Pb 2+ , Cu 2+ and Zn 2+ from aqueous solutions. The effects of initial concentration of heavy metal ions and temperature on the adsorption capacity of the bioadsorbent were investigated. The adsorption isotherms showed that the adsorption of Pb 2+ , Cu 2+ and Zn 2+ followed the Langmuir model and the maximum adsorptions were as high as 558.9, 446.2 and 363.3mg·g -1 , respectively, in single component system. The binary component system was better described with the competitive Langmuir isotherm model. The three dimensional sorption surface of binary component system demonstrated that the presence of Pb 2+ decreased the sorption of Cu 2+ , but the adsorption amount of other metal ions was not affected. The result from SEM-EDAX revealed that the adsorption of metal ions on bioadsorbent was mainly driven by coordination, ion exchange and electrostatic association. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Cellulose Biorefinery Based on a Combined Catalytic and Biotechnological Approach for Production of 5-HMF and Ethanol.

    PubMed

    Sorokina, Ksenia N; Taran, Oxana P; Medvedeva, Tatiana B; Samoylova, Yuliya V; Piligaev, Alexandr V; Parmon, Valentin N

    2017-02-08

    In this study, a combination of catalytic and biotechnological processes was proposed for the first time for application in a cellulose biorefinery for the production of 5-hydroxymethylfurfural (5-HMF) and bioethanol. Hydrolytic dehydration of the mechanically activated microcrystalline cellulose over a carbon-based mesoporous Sibunt-4 catalyst resulted in moderate yields of glucose and 5-HMF (21.1-25.1 and 6.6-9.4 %). 5-HMF was extracted from the resulting mixture with isobutanol and subjected to ethanol fermentation. A number of yeast strains were isolated that also revealed high thermotolerance (up to 50 °C) and resistance to inhibitors found in the hydrolysates. The strains Kluyveromyces marxianus C1 and Ogataea polymorpha CBS4732 were capable of producing ethanol from processed catalytic hydrolysates of cellulose at 42 °C, with yields of 72.0±5.7 and 75.2±4.3 % from the maximum theoretical yield of ethanol, respectively. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Filling the gap: Calibration of the low molar-mass range of cellulose in size exclusion chromatography with cello-oligomers.

    PubMed

    Oberlerchner, J T; Vejdovszky, P; Zweckmair, T; Kindler, A; Koch, S; Rosenau, T; Potthast, A

    2016-11-04

    Degraded celluloses are becoming increasingly important as part of product streams coming from various biorefinery scenarios. Analysis of the molar mass distribution of such fractions is a challenge, since neither established methods for mono- or disaccharides nor common methods for polysaccharide characterization cover the intermediate oligomer range appropriately. Size exclusion chromatography (SEC) with multi-angle laser light scattering (MALLS), the standard approach for celluloses, suffers from decreased scattering intensities in the lower-molar mass range. The limitation in the low-molecular range can, in principle, be overcome by calibration, but calibration standards for such "short" celluloses are either not readily available or structurally remote and thus questionable. In this paper, we present the calibration of a SEC system- for the first time - with monodisperse cellooligomer standards up to about 3400gmol -1 . These cellooligomers are "short-chain celluloses" and can be seen as the "true" standard compounds, by contrast to commonly used standards that are chemically different from cellulose, such as pullulan, dextran, polystyrene, or poly(methyl methacrylate). The calibration is compared against those commercial standards and correction factors are calculated. Calibrations with non-cellulose standards can now be adjusted to yield better fitting results, and data already available can be corrected retrospectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. CASTING SLIPS FOR FABRICATION OF REFRACTORY METAL WARE

    DOEpatents

    Stoddard, S.D.; Nuckolls, D.E.; Cowan, R.E.

    1962-09-01

    A composition is given for slip casting tungsten metal. The composition consists essentially of tungsten metal with an average particle size of 0.9 micron, an organic vehicle such as methyl chloroform, o-xylene, n-butyl acetate, isobutyl acetate, and 1, 1, 2, 2-tetrachlorethane, and a suspending agent such as ethyl cellulose, with the approximate ratio of said vehicle to the tungsten metal being 12 cc of a solution containing from 5 to about 20 grams of said ethyl cellulose in 400 cc of said organic vehicle per 100 grams of metal. (AEC)

  19. Cellulosic hydrogen production with a sequencing bacterial hydrolysis and dark fermentation strategy.

    PubMed

    Lo, Yung-Chung; Bai, Ming-Der; Chen, Wen-Ming; Chang, Jo-Shu

    2008-11-01

    In this study, cellulose hydrolysis activity of two mixed bacterial consortia (NS and QS) was investigated. Combination of NS culture and BHM medium exhibited better hydrolytic activity under the optimal condition of 35 degrees C, initial pH 7.0, and 100rpm agitation. The NS culture could hydrolyze carboxymethyl cellulose (CMC), rice husk, bagasse and filter paper, among which CMC gave the best hydrolysis performance. The CMC hydrolysis efficiency increased with increasing CMC concentration from 5 to 50g/l. With a CMC concentration of 10g/l, the total reducing sugar (RS) production and the RS producing rate reached 5531.0mg/l and 92.9mg/l/h, respectively. Furthermore, seven H2-producing bacterial isolates (mainly Clostridium species) were used to convert the cellulose hydrolysate into H2 energy. With an initial RS concentration of 0.8g/l, the H2 production and yield was approximately 23.8ml/l and 1.21mmol H2/g RS (0.097mmol H2/g cellulose), respectively.

  20. A universal route for the simultaneous extraction and functionalization of cellulose nanocrystals from industrial and agricultural celluloses

    NASA Astrophysics Data System (ADS)

    Chen, Guo-Yin; Yu, Hou-Yong; Zhang, Cai-Hong; Zhou, Ying; Yao, Ju-Ming

    2016-02-01

    A simple route was designed to extract the cellulose nanocrystals (CNCs) with formate groups from industrial and agricultural celluloses like microcrystalline cellulose (MCC), viscose fiber, ginger fiber, and bamboo fiber. The effect of reaction time on the microstructure and properties of the CNCs was investigated in detail, while microstructure and properties of different CNCs were compared. The rod-like CNCs (MCC) with hundreds of nanometers in length and about 10 nm in width, nanofibrillated CNCs (ginger fiber bamboo fiber) with average width of 30 nm and the length of 1 μm, and spherical CNCs (viscose fiber) with the width of 56 nm were obtained by one-step HCOOH/HCl hydrolysis. The CNCs with improved thermal stability showed the maximum degradation temperature ( T max) of 368.9-388.2 °C due to the introduction of formate groups (reducibility) and the increased crystallinity. Such CNCs may be used as an effective template for the synthesis of nanohybrids or reinforcing material for high-performance nanocomposites.

  1. [Effects of hot-NaOH pretreatment on Jerusalem artichoke stalk composition and subsequent enzymatic hydrolysis].

    PubMed

    Wang, Qing; Qiu, Jingwen; Li, Yang; Shen, Fei

    2015-10-01

    In order to explore the possibility of Jerusalem artichoke stalk for bioenergy conversion, we analyzed the main composition of whole stalk, pitch, and core of the stalk. Meanwhile, these parts were pretreated with different NaOH concentrations at 121 degrees C. Afterwards, enzymatic hydrolysis was performed to evaluate the pretreatment efficiency. Jerusalem artichoke stalk was characterized by relatively high lignin content (32.0%) compared with traditional crop stalks. The total carbohydrate content was close to that of crop stalks, but with higher cellulose content (40.5%) and lower hemicellulose (19.6%) than those of traditional crop stalks. After pretreatment, the lignin content in the whole stalk, pitch, and core decreased by 13.1%-13.4%, 8.3%-13.5%, and 19.9%-27.2%, respectively, compared with the unpretreated substrates. The hemicellulose content in the whole stalk, pitch, and core decreased 87.8%-96.9%, 87.6%-95.0%, and 74.0%-90.2%, respectively. Correspondingly, the cellulose content in the pretreated whole stalk, pitch, and core increased by 56.5%-60.2%, 52.2%-55.4%, and 62.7%-73.2%, respectively. Moreover, increase of NaOH concentration for pretreatment could improve the enzymatic hydrolysis of the whole stalk and pitch by 2.3-2.6 folds and 10.3-18.5 folds, respectively. The hydrolysis of pretreated stalk core decreased significantly as 2.0 mol/L NaOH was employed, although the increased NaOH concentration can also improve its hydrolysis performance. Based on these results, hot-NaOH can be regarded as an option for Jerusalem artichoke stalk pretreatment. Increasing NaOH concentration was beneficial to hemicellulose and lignin removal, and consequently improved sugar conversion. However, the potential decrease of sugar conversion of the pretreated core by higher NaOH concentration suggested further optimization on the pretreatment conditions should be performed.

  2. Improvement of pesticide adsorption capacity of cellulose fibre by high-energy irradiation-initiated grafting of glycidyl methacrylate

    NASA Astrophysics Data System (ADS)

    Takács, Erzsébet; Wojnárovits, László; Koczog Horváth, Éva; Fekete, Tamás; Borsa, Judit

    2012-09-01

    Cellulose as a renewable raw material was used for preparation of adsorbent of organic impurities in wastewater treatment. Hydrophobic surface of cellulose substrate was developed by grafting glycidyl methacrylate in simultaneous grafting using gamma irradiation initiation. Water uptake of cellulose significantly decreased while adsorption of phenol and a pesticide molecule (2,4-dichlorophenoxyacetic acid: 2,4-D) increased upon grafting. Adsorption equilibrium data fitted the Freundlich isotherm for both solutes.

  3. Evaluation of cellulose-binding domain fused to a lipase for the lipase immobilization.

    PubMed

    Hwang, Sangpill; Ahn, Jungoh; Lee, Sumin; Lee, Tai Gyu; Haam, Seungjoo; Lee, Kangtaek; Ahn, Ik-Sung; Jung, Joon-Ki

    2004-04-01

    A cellulose-binding domain (CBD) fragment of a cellulase gene of Trichoderma hazianum was fused to a lipase gene of Bacillus stearothermophilus L1 to make a gene cluster for CBD-BSL lipase. The specific activity of CBD-BSL lipase for oil hydrolysis increased by 33% after being immobilized on Avicel (microcrystalline cellulose), whereas those of CBD-BSL lipase and BSL lipase decreased by 16% and 54%, respectively, after being immobilized on silica gel. Although the loss of activity of an enzyme immobilized by adsorption has been reported previously, the loss of activity of the CBD-BSL lipase immobilized on Avicel was less than 3% after 12 h due to the irreversible binding of CBD to Avicel.

  4. Radiation-induced change of optical property of hydroxypropyl cellulose hydrogel containing methacrylate compounds: As a basis for development of a new type of radiation dosimeter

    NASA Astrophysics Data System (ADS)

    Yamashita, Shinichi; Hiroki, Akihiro; Taguchi, Mitsumasa

    2014-08-01

    Hydrogels with matrix of a cellulose derivative, hydrogel of hydroxpropyl cellulose (HPC), containing two of methacrylate compounds (2-hydroxyethyl methacrylate (HEMA) and poly(ethylene glycol) dimethacrylate (9G)) were irradiated with 60Co γ-rays. The gels become white with irradiation, and thus, could be candidates of a new type of radiation dosimeter utilized in radiation therapy because the gels become white with irradiation and can be confirmed directly by human eyes even at low doses of 1-2 Gy. Radiation-induced change of optical properties, haze value and UV-vis absorption spectrum, of the irradiated gels was measured. Dose response of the white turbidity appearance was different for different compositions of the methacrylate compounds as well as for different dose rates. The degree of the radiation-induced white turbidity was quantified by measuring haze value, showing linear dose response in low dose region (<2 Gy). We also analyzed the gels with a UV-vis spectrometer and HEMA- and 9G-rich gels gave different spectral shapes, indicating that there are at least two mechanisms leading to the white turbidity. In addition, dose rate dependence was smaller for 9G-rich gels than HEMA-rich gels in the range of 0.015-1.5 Gy/min.

  5. Cellulose Supplementation Early in Life Ameliorates Colitis in Adult Mice

    PubMed Central

    Nagy-Szakal, Dorottya; Hollister, Emily B.; Luna, Ruth Ann; Szigeti, Reka; Tatevian, Nina; Smith, C. Wayne; Versalovic, James; Kellermayer, Richard

    2013-01-01

    Decreased consumption of dietary fibers, such as cellulose, has been proposed to promote the emergence of inflammatory bowel diseases (IBD: Crohn disease [CD] and ulcerative colitis [UC]) where intestinal microbes are recognized to play an etiologic role. However, it is not known if transient fiber consumption during critical developmental periods may prevent consecutive intestinal inflammation. The incidence of IBD peaks in young adulthood indicating that pediatric environmental exposures may be important in the etiology of this disease group. We studied the effects of transient dietary cellulose supplementation on dextran sulfate sodium (DSS) colitis susceptibility during the pediatric period in mice. Cellulose supplementation stimulated substantial shifts in the colonic mucosal microbiome. Several bacterial taxa decreased in relative abundance (e.g., Coriobacteriaceae [p = 0.001]), and other taxa increased in abundance (e.g., Peptostreptococcaceae [p = 0.008] and Clostridiaceae [p = 0.048]). Some of these shifts persisted for 10 days following the cessation of cellulose supplementation. The changes in the gut microbiome were associated with transient trophic and anticolitic effects 10 days following the cessation of a cellulose-enriched diet, but these changes diminished by 40 days following reversal to a low cellulose diet. These findings emphasize the transient protective effect of dietary cellulose in the mammalian large bowel and highlight the potential role of dietary fibers in amelioration of intestinal inflammation. PMID:23437211

  6. Metadata Analysis of Phanerochaete chrysosporium Gene Expression Data Identified Common CAZymes Encoding Gene Expression Profiles Involved in Cellulose and Hemicellulose Degradation.

    PubMed

    Kameshwar, Ayyappa Kumar Sista; Qin, Wensheng

    2017-01-01

    In literature, extensive studies have been conducted on popular wood degrading white rot fungus, Phanerochaete chrysosporium about its lignin degrading mechanisms compared to the cellulose and hemicellulose degrading abilities. This study delineates cellulose and hemicellulose degrading mechanisms through large scale metadata analysis of P. chrysosporium gene expression data (retrieved from NCBI GEO) to understand the common expression patterns of differentially expressed genes when cultured on different growth substrates. Genes encoding glycoside hydrolase classes commonly expressed during breakdown of cellulose such as GH-5,6,7,9,44,45,48 and hemicellulose are GH-2,8,10,11,26,30,43,47 were found to be highly expressed among varied growth conditions including simple customized and complex natural plant biomass growth mediums. Genes encoding carbohydrate esterase class enzymes CE (1,4,8,9,15,16) polysaccharide lyase class enzymes PL-8 and PL-14, and glycosyl transferases classes GT (1,2,4,8,15,20,35,39,48) were differentially expressed in natural plant biomass growth mediums. Based on these results, P. chrysosporium, on natural plant biomass substrates was found to express lignin and hemicellulose degrading enzymes more than cellulolytic enzymes except GH-61 (LPMO) class enzymes, in early stages. It was observed that the fate of P. chrysosporium transcriptome is significantly affected by the wood substrate provided. We believe, the gene expression findings in this study plays crucial role in developing genetically efficient microbe with effective cellulose and hemicellulose degradation abilities.

  7. Cas9 Nickase-Assisted RNA Repression Enables Stable and Efficient Manipulation of Essential Metabolic Genes in Clostridium cellulolyticum.

    PubMed

    Xu, Tao; Li, Yongchao; He, Zhili; Van Nostrand, Joy D; Zhou, Jizhong

    2017-01-01

    Essential gene functions remain largely underexplored in bacteria. Clostridium cellulolyticum is a promising candidate for consolidated bioprocessing; however, its genetic manipulation to reduce the formation of less-valuable acetate is technically challenging due to the essentiality of acetate-producing genes. Here we developed a Cas9 nickase-assisted chromosome-based RNA repression to stably manipulate essential genes in C. cellulolyticum . Our plasmid-based expression of antisense RNA (asRNA) molecules targeting the phosphotransacetylase ( pta ) gene successfully reduced the enzymatic activity by 35% in cellobiose-grown cells, metabolically decreased the acetate titer by 15 and 52% in wildtype transformants on cellulose and xylan, respectively. To control both acetate and lactate simultaneously, we transformed the repression plasmid into lactate production-deficient mutant and found the plasmid delivery reduced acetate titer by more than 33%, concomitant with negligible lactate formation. The strains with pta gene repression generally diverted more carbon into ethanol. However, further testing on chromosomal integrants that were created by double-crossover recombination exhibited only very weak repression because DNA integration dramatically lessened gene dosage. With the design of a tandem repetitive promoter-driven asRNA module and the use of a new Cas9 nickase genome editing tool, a chromosomal integrant (LM3P) was generated in a single step and successfully enhanced RNA repression, with a 27% decrease in acetate titer on cellulose in antibiotic-free medium. These results indicate the effectiveness of tandem promoter-driven RNA repression modules in promoting gene repression in chromosomal integrants. Our combinatorial method using a Cas9 nickase genome editing tool to integrate the gene repression module demonstrates easy-to-use and high-efficiency advantages, paving the way for stably manipulating genes, even essential ones, for functional characterization and microbial engineering.

  8. Cas9 Nickase-Assisted RNA Repression Enables Stable and Efficient Manipulation of Essential Metabolic Genes in Clostridium cellulolyticum

    PubMed Central

    Xu, Tao; Li, Yongchao; He, Zhili; Van Nostrand, Joy D.; Zhou, Jizhong

    2017-01-01

    Essential gene functions remain largely underexplored in bacteria. Clostridium cellulolyticum is a promising candidate for consolidated bioprocessing; however, its genetic manipulation to reduce the formation of less-valuable acetate is technically challenging due to the essentiality of acetate-producing genes. Here we developed a Cas9 nickase-assisted chromosome-based RNA repression to stably manipulate essential genes in C. cellulolyticum. Our plasmid-based expression of antisense RNA (asRNA) molecules targeting the phosphotransacetylase (pta) gene successfully reduced the enzymatic activity by 35% in cellobiose-grown cells, metabolically decreased the acetate titer by 15 and 52% in wildtype transformants on cellulose and xylan, respectively. To control both acetate and lactate simultaneously, we transformed the repression plasmid into lactate production-deficient mutant and found the plasmid delivery reduced acetate titer by more than 33%, concomitant with negligible lactate formation. The strains with pta gene repression generally diverted more carbon into ethanol. However, further testing on chromosomal integrants that were created by double-crossover recombination exhibited only very weak repression because DNA integration dramatically lessened gene dosage. With the design of a tandem repetitive promoter-driven asRNA module and the use of a new Cas9 nickase genome editing tool, a chromosomal integrant (LM3P) was generated in a single step and successfully enhanced RNA repression, with a 27% decrease in acetate titer on cellulose in antibiotic-free medium. These results indicate the effectiveness of tandem promoter-driven RNA repression modules in promoting gene repression in chromosomal integrants. Our combinatorial method using a Cas9 nickase genome editing tool to integrate the gene repression module demonstrates easy-to-use and high-efficiency advantages, paving the way for stably manipulating genes, even essential ones, for functional characterization and microbial engineering. PMID:28936208

  9. Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics.

    PubMed

    Xu, Xuezhu; Zhou, Jian; Jiang, Long; Lubineau, Gilles; Ng, Tienkhee; Ooi, Boon S; Liao, Hsien-Yu; Shen, Chao; Chen, Long; Zhu, J Y

    2016-06-16

    Paper is an excellent candidate to replace plastics as a substrate for flexible electronics due to its low cost, renewability and flexibility. Cellulose nanopaper (CNP), a new type of paper made of nanosized cellulose fibers, is a promising substrate material for transparent and flexible electrodes due to its potentially high transparency and high mechanical strength. Although CNP substrates can achieve high transparency, they are still characterized by high diffuse transmittance and small direct transmittance, resulting in high optical haze of the substrates. In this study, we proposed a simple methodology for large-scale production of high-transparency, low-haze CNP comprising both long cellulose nanofibrils (CNFs) and short cellulose nanocrystals (CNCs). By varying the CNC/CNF ratio in the hybrid CNP, we could tailor its total transmittance, direct transmittance and diffuse transmittance. By increasing the CNC content, the optical haze of the hybrid CNP could be decreased and its transparency could be increased. The direct transmittance and optical haze of the CNP were 75.1% and 10.0%, respectively, greatly improved from the values of previously reported CNP (31.1% and 62.0%, respectively). Transparent, flexible electrodes were fabricated by coating the hybrid CNP with silver nanowires (AgNWs). The electrodes showed a low sheet resistance (minimum 1.2 Ω sq(-1)) and a high total transmittance (maximum of 82.5%). The electrodes were used to make a light emitting diode (LED) assembly to demonstrate their potential use in flexible displays.

  10. Determination of Odor Release in Hydrocolloid Model Systems Containing Original or Carboxylated Cellulose at Different pH Values Using Static Headspace Gas Chromatographic (SHS-GC) Analysis

    PubMed Central

    Lee, Sang Mi; Shin, Gil-Ok; Park, Kyung Min; Chang, Pahn-Shick; Kim, Young-Suk

    2013-01-01

    Static headspace gas chromatographic (SHS-GC) analysis was performed to determine the release of 13 odorants in hydrocolloid model systems containing original or regio-selectively carboxylated cellulose at different pH values. The release of most odor compounds was decreased in the hydrocolloid solutions compared to control, with the amounts of 2-propanol, 3-methyl-1-butanol, and 2,3-butanedione released into the headspace being less than those of any other odor compound in the hydrocolloid model systems. However, there was no considerable difference between original cellulose-containing and carboxylated-cellulose containing systems in the release of most compounds, except for relatively long-chain esters such as ethyl caprylate and ethyl nonanoate. The release from the original and carboxylated cellulose solutions controlled to pH 10 was significantly higher than that from solutions adjusted to pH 4 and 7 in the case of some esters (ethyl acetate, methyl propionate, ethyl propionate, ethyl butyrate, butyl propionate, ethyl caproate) and alcohols (2-propanol, 3-methyl-1-butanol), in particular, ethyl butyrate and 3-methyl-1-butanol. In contrast, the release of 2,3-butanedione from both the original and carboxylated cellulose solutions was increased at pH 4 and 7 compared to that at pH 10 by about 70% and 130%, respectively. Our study demonstrated that the release of some odorants could be changed significantly by addition of both original and carboxylated cellulose in hydrocolloid model systems, but only minor effect was observed in pH of the solution. PMID:23447013

  11. Cellulose and lignin biosynthesis is altered by ozone in wood of hybrid poplar (Populus tremula×alba)

    PubMed Central

    Richet, Nicolas; Afif, Dany; Huber, Françoise; Pollet, Brigitte; Banvoy, Jacques; El Zein, Rana; Lapierre, Catherine; Dizengremel, Pierre; Perré, Patrick; Cabané, Mireille

    2011-01-01

    Wood formation in trees is a dynamic process that is strongly affected by environmental factors. However, the impact of ozone on wood is poorly documented. The objective of this study was to assess the effects of ozone on wood formation by focusing on the two major wood components, cellulose and lignin, and analysing any anatomical modifications. Young hybrid poplars (Populus tremula×alba) were cultivated under different ozone concentrations (50, 100, 200, and 300 nl l−1). As upright poplars usually develop tension wood in a non-set pattern, the trees were bent in order to induce tension wood formation on the upper side of the stem and normal or opposite wood on the lower side. Biosynthesis of cellulose and lignin (enzymes and RNA levels), together with cambial growth, decreased in response to ozone exposure. The cellulose to lignin ratio was reduced, suggesting that cellulose biosynthesis was more affected than that of lignin. Tension wood was generally more altered than opposite wood, especially at the anatomical level. Tension wood may be more susceptible to reduced carbon allocation to the stems under ozone exposure. These results suggested a coordinated regulation of cellulose and lignin deposition to sustain mechanical strength under ozone. The modifications of the cellulose to lignin ratio and wood anatomy could allow the tree to maintain radial growth while minimizing carbon cost. PMID:21357770

  12. Organosolv-Water Cosolvent Phase Separation on Cellulose and its Influence on the Physical Deconstruction of Cellulose: A Molecular Dynamics Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Micholas Dean; Cheng, Xiaolin; Petridis, Loukas

    Deconstruction of cellulose is crucial for the chemical conversion of lignocellulose into fuel/bioproduct precursors. Recently, a water-organosolv cosolvent system (THF-water) has been shown to both phase-separate on cellulose surfaces and partially deconstruct Avicel (cellulose) in the absence of acid. Here we employ molecular dynamics simulations to determine whether other common water-organosolv cosolvent systems (acetone, ethanol, and γ-valerolactone) exhibit phase separation at cellulose surface and whether this alters a purely physical cellulose dissociation pathway. Despite finding varied degrees of phase-separation of organosolv on cellulose surfaces, physical dissociation is not enhanced. Interestingly, however, the total amount the median water-cellulose contact lifetimes increasesmore » for the cosolvent systems in the order of THF > acetone > ethanol > γ-valerolactone. Together our results indicate two points: a purely physical process for deconstruction of cellulose is unlikely for these cosolvents, and in THF-water, unlike γ-valerolactone- (and some concentrations of acetone and ethanol) water cosolvents, a significant fraction of surface water is slowed. As a result, this slowing may be of importance in enhancing chemical deconstruction of cellulose, as it permits an increase in potential THF-water-cellulose reactions, even while the amount of water near cellulose is decreased.« less

  13. Organosolv-Water Cosolvent Phase Separation on Cellulose and its Influence on the Physical Deconstruction of Cellulose: A Molecular Dynamics Analysis

    DOE PAGES

    Smith, Micholas Dean; Cheng, Xiaolin; Petridis, Loukas; ...

    2017-11-03

    Deconstruction of cellulose is crucial for the chemical conversion of lignocellulose into fuel/bioproduct precursors. Recently, a water-organosolv cosolvent system (THF-water) has been shown to both phase-separate on cellulose surfaces and partially deconstruct Avicel (cellulose) in the absence of acid. Here we employ molecular dynamics simulations to determine whether other common water-organosolv cosolvent systems (acetone, ethanol, and γ-valerolactone) exhibit phase separation at cellulose surface and whether this alters a purely physical cellulose dissociation pathway. Despite finding varied degrees of phase-separation of organosolv on cellulose surfaces, physical dissociation is not enhanced. Interestingly, however, the total amount the median water-cellulose contact lifetimes increasesmore » for the cosolvent systems in the order of THF > acetone > ethanol > γ-valerolactone. Together our results indicate two points: a purely physical process for deconstruction of cellulose is unlikely for these cosolvents, and in THF-water, unlike γ-valerolactone- (and some concentrations of acetone and ethanol) water cosolvents, a significant fraction of surface water is slowed. As a result, this slowing may be of importance in enhancing chemical deconstruction of cellulose, as it permits an increase in potential THF-water-cellulose reactions, even while the amount of water near cellulose is decreased.« less

  14. Organosolv-Water Cosolvent Phase Separation on Cellulose and its Influence on the Physical Deconstruction of Cellulose: A Molecular Dynamics Analysis.

    PubMed

    Smith, Micholas Dean; Cheng, Xiaolin; Petridis, Loukas; Mostofian, Barmak; Smith, Jeremy C

    2017-11-03

    Deconstruction of cellulose is crucial for the chemical conversion of lignocellulose into fuel/bioproduct precursors. Recently, a water-organosolv cosolvent system (THF-water) has been shown to both phase-separate on cellulose surfaces and partially deconstruct Avicel  (cellulose) in the absence of acid. Here we employ molecular dynamics simulations to determine whether other common water-organosolv cosolvent systems (acetone, ethanol, and γ-valerolactone) exhibit phase separation at cellulose surface and whether this alters a purely physical cellulose dissociation pathway. Despite finding varied degrees of phase-separation of organosolv on cellulose surfaces, physical dissociation is not enhanced. Interestingly, however, the total amount the median water-cellulose contact lifetimes increases for the cosolvent systems in the order of THF > acetone > ethanol > γ-valerolactone. Together our results indicate two points: a purely physical process for deconstruction of cellulose is unlikely for these cosolvents, and in THF-water, unlike γ-valerolactone- (and some concentrations of acetone and ethanol) water cosolvents, a significant fraction of surface water is slowed. This slowing may be of importance in enhancing chemical deconstruction of cellulose, as it permits an increase in potential THF-water-cellulose reactions, even while the amount of water near cellulose is decreased.

  15. Biosynthesis and Characterization of Nanocellulose-Gelatin Films

    PubMed Central

    Taokaew, Siriporn; Seetabhawang, Sutasinee; Siripong, Pongpun; Phisalaphong, Muenduen

    2013-01-01

    A nanocellulose-gelatin (bacterial cellulose gelatin (BCG)) film was developed by a supplement of gelatin, at a concentration of 1%–10% w/v, in a coconut-water medium under the static cultivation of Acetobacter xylinum. The two polymers exhibited a certain degree of miscibility. The BCG film displayed dense and uniform homogeneous structures. The Fourier transform infrared spectroscopy (FTIR) results demonstrated interactions between the cellulose and gelatin. Incorporation of gelatin into a cellulose nanofiber network resulted in significantly improved optical transparency and water absorption capacity of the films. A significant drop in the mechanical strengths and a decrease in the porosity of the film were observed when the supplement of gelatin was more than 3% (w/v). The BCG films showed no cytotoxicity against Vero cells. PMID:28809339

  16. Hydrolysis of dilute acid-pretreated cellulose under mild hydrothermal conditions.

    PubMed

    Chimentão, R J; Lorente, E; Gispert-Guirado, F; Medina, F; López, F

    2014-10-13

    The hydrolysis of dilute acid-pretreated cellulose was investigated in a conventional oven and under microwave heating. Two acids--sulfuric and oxalic--were studied. For both hydrothermal conditions (oven and microwave) the resultant total organic carbon (TOC) values obtained by the hydrolysis of the cellulose pretreated with sulfuric acid were higher than those obtained by the hydrolysis of the cellulose pretreated with oxalic acid. However, the dicarboxylic acid exhibited higher hydrolytic efficiency towards glucose. The hydrolysis of cellulose was greatly promoted by microwave heating. The Rietveld method was applied to fit the X-ray patterns of the resultant cellulose after hydrolysis. Oxalic acid preferentially removed the amorphous region of the cellulose and left the crystalline region untouched. On the other hand, sulfuric acid treatment decreased the ordering of the cellulose by partially disrupting its crystalline structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashim, Muzna; Univ. of Tennessee, Knoxville, TN; Sun, Qining

    The aim of this work was to evaluate the efficiency of an ionic liquid (IL) 1-butyl-3-methylimidazolium acetate ([C4mim][OAc]) pretreatment (110 C for 30 min) in comparison to high severity autohydrolysis pretreatment in terms of delignification, cellulose crystallinity and enzymatic digestibility. The increase in severity of autohydrolysis pretreatment had positive effect on glucan digestibility, but was limited by the crystallinity of cellulose. [C4mim][OAc] pretreated sugarcane bagasse exhibited a substantial decrease in lignin content, reduced cellulose crystallinity, and enhanced glucan and xylan digestibility. Glucan and xylan digestibility was determined as 97.4% and 98.6% from [C4mim][OAc] pretreated bagasse, and 62.1% and 57.5% frommore » the bagasse autohydrolyzed at 205 C for 6 min, respectively. The results indicated the improved digestibility and hydrolysis rates after [C4mim][OAc] pretreatment when compared against a comparable autohydrolyzed biomass.« less

  18. A randomized controlled trial: the effect of inulin on weight management and ectopic fat in subjects with prediabetes.

    PubMed

    Guess, Nicola D; Dornhorst, Anne; Oliver, Nick; Bell, Jimmy D; Thomas, E Louise; Frost, Gary S

    2015-01-01

    Fat infiltration of the liver, muscle and pancreas is associated with insulin resistance and risk of diabetes. Weight loss reduces ectopic fat deposition and risk of diabetes, but is difficult to sustain to due to compensatory increases in appetite. Fermentable carbohydrates have been shown to decrease appetite and food intake, and promote weight loss in overweight subjects. In animal studies, fermentable carbohydrate reduces ectopic fat independent of weight loss. We aimed to investigate the effect of the fermentable carbohydrate inulin on weight maintenance, appetite and ectopic fat in subjects with prediabetes. Forty-four subjects with prediabetes were randomized to 18 weeks' inulin or cellulose supplementation. During weeks 1-9 (weight loss phase) all subjects had four visits with a dietitian to guide them towards a 5 % weight loss. During weeks 10-18 (weight maintenance phase) subjects continued taking their assigned supplementation and were asked to maintain the weight they had lost but were offered no further support. All subjects attended study sessions at baseline, 9 and 18 weeks for measurement of weight; assessment of adipose tissue and ectopic fat content by magnetic resonance imaging and magnetic resonance spectroscopy; glucose, insulin and GLP-1 levels following a meal tolerance test; and appetite by ad libitum meal test and visual analogue scales. Both groups lost approximately 5 % of their body weight by week nine (-5.3 ± 0.1 % vs -4.3 ± 0.4 %, p = 0.13, but the inulin group lost significantly more weight between 9 and 18 weeks (-2.3 ± 0.5 % vs -0.6 ± 0.4 %, p = 0.012). Subjects taking inulin had lower hepatic (p = 0.02) and soleus muscle (p < 0.05) fat content at 18 weeks compared to control even after controlling for weight loss and consumed less at the ad libitum meal test (p = 0.027). Fasting glucose significantly decreased at week nine only (p = 0.005), insulin concentrations did not change, and there was a significant increase in GLP-1 in the cellulose group at 9 and 18 weeks (p < 0.03, p < 0.00001). Inulin may have a two-pronged effect on the risk of diabetes by 1) promoting weight loss 2) reducing intrahepatocellular and intramyocellular lipid in people with prediabetes independent of weight loss. NCT01841073.

  19. Nanocoating cellulose paper based microextraction combined with nanospray mass spectrometry for rapid and facile quantitation of ribonucleosides in human urine.

    PubMed

    Wan, Lingzhong; Zhu, Haijing; Guan, Yafeng; Huang, Guangming

    2017-07-01

    A rapid and facile analytical method for quantification of ribonucleosides in human urine was developed by the combination of nanocoating cellulose paper based microextraction and nanoelectrospray ionization-tandem mass spectrometry (nESI-MS/MS). Cellulose paper used for microextraction was modified by nano-precision deposition of uniform ultrathin zirconia gel film using a sol-gel process. Due to the large surface area of the cellulose paper and the strong affinity between zirconia and the cis-diol compounds, the target analytes were selectively extracted from the complex matrix. Thus, the detection sensitivity was greatly improved. Typically, the nanocoating cellulose paper was immersed into the diluted urine for selective extraction of target analytes, then the extracted analytes were subjected to nESI-MS/MS detection. The whole analytical procedure could be completed within 10min. The method was evaluated by the determination of ribonucleosides (adenosine, cytidine, uridine, guanosine) in urine sample. The signal intensities of the ribonuclesides extracted by the nanocoating cellulose paper were greatly enhanced by 136-459-folds compared with the one of the unmodified cellulose paper based microextraction. The limits of detection (LODs) and the limits of quantification (LOQs) of the four ribonucleosides were in the range of 0.0136-1.258μgL -1 and 0.0454-4.194μgL -1 , respectively. The recoveries of the target nucleosides from spiked human urine were in the range of 75.64-103.49% with the relative standard deviations (RSDs) less than 9.36%. The results demonstrate the potential of the proposed method for rapid and facile determination of endogenous ribonucleosides in urine sample. Copyright © 2017. Published by Elsevier B.V.

  20. Investigation of water mobility and diffusivity in hydrating micronized low-substituted hydroxypropyl cellulose, hydroxypropylmethyl cellulose, and hydroxypropyl cellulose matrix tablets by magnetic resonance imaging (MRI).

    PubMed

    Kojima, Masazumi; Nakagami, Hiroaki

    2002-12-01

    The water mobility and diffusivity in the gel-layer of hydrating low-substituted hydroxypropyl cellulose (LH41) tablets with or without a drug were investigated by magnetic resonance imaging (MRI) and compared with those properties in the gel-layer of hydroxypropylmethyl cellulose (HPMC) and hydroxypropyl cellulose (HPC) tablets. For this purpose, a localized image-analysis method was newly developed, and the spin-spin relaxation time (T(2)) and apparent self-diffusion coefficient (ADC) of water in the gel-layer were visualized in one-dimensional maps. Those maps showed that the extent of gel-layer growth in the tablets was in the order of HPC>HPMC>LH41, and there was a water mobility gradient across the gel-layers of all three tablet formulations. The T(2) and ADC in the outer parts of the gel-layers were close to those of free water. In contrast, these values in the inner parts of the gel-layer decreased progressively; suggesting that the water mobility and diffusivity around the core interface were highly restricted. Furthermore, the correlation between the T(2) of (1)H proton in the gel-layer of the tablets and the drug release rate from the tablets was observed.

  1. Accelerating the degradation of green plant waste with chemical decomposition agents.

    PubMed

    Kejun, Sun; Juntao, Zhang; Ying, Chen; Zongwen, Liao; Lin, Ruan; Cong, Liu

    2011-10-01

    Degradation of green plant waste is often difficult, and excess maturity times are typically required. In this study, we used lignin, cellulose and hemicellulose assays; scanning electron microscopy; infrared spectrum analysis and X-ray diffraction analysis to investigate the effects of chemical decomposition agents on the lignocellulose content of green plant waste, its structure and major functional groups and the mechanism of accelerated degradation. Our results showed that adding chemical decomposition agents to Ficus microcarpa var. pusillifolia sawdust reduced the contents of lignin by 0.53%-11.48% and the contents of cellulose by 2.86%-7.71%, and increased the contents of hemicellulose by 2.92%-33.63% after 24 h. With increasing quantities of alkaline residue and sodium lignosulphonate, the lignin content decreased. Scanning electron microscopy showed that, after F. microcarpa var. pusillifolia sawdust was treated with chemical decomposition agents, lignocellulose tube wall thickness increased significantlyIncreases of 29.41%, 3.53% and 34.71% were observed after treatment with NaOH, alkaline residue and sodium lignosulphonate, respectively. Infrared spectroscopy showed that CO and aromatic skeleton stretching absorption peaks were weakened and the C-H vibrational absorption peak from out-of-plane in positions 2 and 6 (S units) (890-900 cm(-1)) was strengthened after F. microcarpa var. pusillifolia sawdust was treated with chemical decomposition agents, indicating a reduction in lignin content. Several absorption peaks [i.e., C-H deformations (asymmetry in methyl groups, -CH(3)- and -CH(2)-) (1450-1460 cm(-1)); Aliphatic C-H stretching in methyl and phenol OH (1370-1380 cm(-1)); CO stretching (cellulose and hemicellulose) (1040-1060 cm(-1))] that indicate the presence of a chemical bond between lignin and cellulose was reduced, indicating that the chemical bond between lignin and cellulose had been partially broken. X-ray diffraction analysis showed that NaOH, alkaline residue and sodium lignosulphonate can reduce the relative crystallinity of lignocellulose in F. microcarpa var. pusillifolia by 2.64%, 13.24%, 12.44%, respectively. The C-H vibrational absorption peak from out-of-plane in positions 2 and 6 (S units) comes from the vibration of the sugar anomeric carbon. Because lignin is a phenolic, not carbohydrate polymer, the relative absorption intensity of this peak should be stronger at lower lignin contents. Compared to CK, the peak intensities increased in treatments T1, T5 and T9, indicating reduced lignin contents and increased sugar contents after CDA treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Simultaneous saccharification and cofermentation of lignocellulosic residues from commercial furfural production and corn kernels using different nutrient media

    PubMed Central

    2011-01-01

    Background As the supply of starch grain and sugar cane, currently the main feedstocks for bioethanol production, become limited, lignocelluloses will be sought as alternative materials for bioethanol production. Production of cellulosic ethanol is still cost-inefficient because of the low final ethanol concentration and the addition of nutrients. We report the use of simultaneous saccharification and cofermentation (SSCF) of lignocellulosic residues from commercial furfural production (furfural residue, FR) and corn kernels to compare different nutritional media. The final ethanol concentration, yield, number of live yeast cells, and yeast-cell death ratio were investigated to evaluate the effectiveness of integrating cellulosic and starch ethanol. Results Both the ethanol yield and number of live yeast cells increased with increasing corn-kernel concentration, whereas the yeast-cell death ratio decreased in SSCF of FR and corn kernels. An ethanol concentration of 73.1 g/L at 120 h, which corresponded to a 101.1% ethanol yield based on FR cellulose and corn starch, was obtained in SSCF of 7.5% FR and 14.5% corn kernels with mineral-salt medium. SSCF could simultaneously convert cellulose into ethanol from both corn kernels and FR, and SSCF ethanol yield was similar between the organic and mineral-salt media. Conclusions Starch ethanol promotes cellulosic ethanol by providing important nutrients for fermentative organisms, and in turn cellulosic ethanol promotes starch ethanol by providing cellulosic enzymes that convert the cellulosic polysaccharides in starch materials into additional ethanol. It is feasible to produce ethanol in SSCF of FR and corn kernels with mineral-salt medium. It would be cost-efficient to produce ethanol in SSCF of high concentrations of water-insoluble solids of lignocellulosic materials and corn kernels. Compared with prehydrolysis and fed-batch strategy using lignocellulosic materials, addition of starch hydrolysates to cellulosic ethanol production is a more suitable method to improve the final ethanol concentration. PMID:21801455

  3. Acetobacter xylinum Mutant with High Cellulose Productivity and an Ordered Structure.

    PubMed

    Watanabe, K; Tabuchi, M; Ishikawa, A; Takemura, H; Tsuchida, T; Morinaga, Y; Yoshinaga, F

    1998-01-01

    Acetobacter xylinum subsp. sucrofermentans BPR2001, a cellulose-producing bacterium, that was newly isolated from a natural source, produced large amounts of the water-soluble polysaccharide, acetan. UDP-glucose is known to be the direct precursor in the synthetic pathways of both cellulose and acetan. We attempted to breed mutant strains and succeeded in obtaining one, BPR3001A, which produced 65% more bacterial cellulose and accumulated 83% less acetan than the parent strain, BPR2001. The cellulose formed was found to be structurally ordered, with higher degrees of polymerization and crystallinity and larger crystallite size than those produced by BPR2001 and other conventional strains. Furthermore, a processed dry sheet of this cellulose exhibited a higher Young's modulus than that of the wild strain. The ordered structure of the cellulose obtained was probably due to the decreased amount of acetan which may reflect the ribbon assembly of cellulose fibrils without prevention of hydrogen bonding between microfibrils.

  4. Cellulose esters synthesized using a tetrabutylammonium acetate and dimethylsulfoxide solvent system

    NASA Astrophysics Data System (ADS)

    Yu, Yongqi; Miao, Jiaojiao; Jiang, Zeming; Sun, Haibo; Zhang, Liping

    2016-07-01

    Cellulose acetate (CA) and cellulose acetate propionate (CAP) were homogeneously synthesized in a novel tetrabutylammonium acetate/dimethyl sulfoxide (DMSO) solvent system, without any catalyst, at temperatures below 70 °C. The molecular structures of the cellulose esters (CEs) and distributions of the substituents in the anhydroglucose repeating units were determined using 13C cross-polarization magic angle spinning nuclear magnetic resonance spectroscopy, and the degree of substitution (DS) values were determined using 1H nuclear magnetic resonance spectroscopy. The structures of the CEs, regenerated cellulose (RC), and pulp were determined using Fourier transform infrared spectroscopy. The thermal properties of the products were determined using thermogravimetric analysis. The temperatures of initial decomposition of the CEs were up to 40 °C higher than those of the RC and pulp. All the CEs were highly soluble in DMSO, but were insoluble in acetone. CAs with DS values less than 2.6 swelled or were poorly dissolved in CHCl3, but those with DS values above 2.9 dissolved rapidly. CAPs with DS values above 2.6 had good solubilities in ethyl acetate.

  5. Effects of lignin-metal complexation on enzymatic hydrolysis of cellulose

    Treesearch

    H. Liu; Junyong Zhu; S.Y. Fu

    2010-01-01

    This study investigated the inhibition of enzymatic hydrolysis by unbound lignin (soluble and insoluble) with or without the addition of metal compounds. Sulfonated, Organosolv, and Kraft lignin were added in aqueous enzyme-cellulose systems at different concentrations before hydrolysis. The measured substrate enzymatic digestibility (SED) of cellulose was decreased by...

  6. Chimeric proteins combining phosphatase and cellulose-binding activities: proof-of-concept and application in the hydrolysis of paraoxon.

    PubMed

    Gonçalves, Larissa M; Chaimovich, Hernan; Cuccovia, Iolanda M; Marana, Sandro R

    2014-05-01

    Phosphatases for organophosphate degradation and carbohydrate-binding domains (CBMs) have potential biotechnological applications. As a proof-of-concept, a soluble chimeric protein that combines acid phosphatase (AppA) from Escherichia coli and a CBM from Xanthomonas axonopodis pv. citri (AppA-CBM) was produced in E.coli. AppACBM adsorbed in microcrystalline cellulose Avicel PH101 catalyzed the hydrolysis of p-nitrophenyl phosphate (PNPP). The binding to microcrystalline cellulose displayed saturation behavior with an apparent binding constant (Kb) of 22 ± 5 mg and a maximum binding (Bmax) of 1.500 ± 0.001 enzyme units. Binding was highest at pH 2.5 and decreased above pH 6.5, as previously observed for family 2 CBMs. The Km values for PNPP of AppA-CBM and native AppA were identical (2.7 mM). To demonstrate that this strategy for protein engineering has practical applications and is largely functional, even for phosphatases exhibiting diverse folds, a chimeric protein combining human paraoxonase 1 (hPON1) and the CBM was produced. Both PON1-CBM and hPON1 had identical Km values for paraoxon (1.3 mM). Additionally, hPON1 bound to microcrystalline cellulose with a Kb of 27 ± 3 mg, the same as that observed for AppA-CBM. These data show that the phosphatase domains are as functional in both of the chimeric proteins as they are in the native enzymes and that the CBM domain maintains the same cellulose affinity. Therefore, the engineering of chimeric proteins combining domains of phosphatases and CBMs is fully feasible, resulting in chimeric enzymes that exhibit potential for OP detoxification.

  7. [Characterization and microbial community shifts of rice strawdegrading microbial consortia].

    PubMed

    Wang, Chunfang; Ma, Shichun; Huang, Yan; Liu, Laiyan; Fan, Hui; Deng, Yu

    2016-12-04

    To study the relationship between microbial community and degradation rate of rice straw, we compared and analyzed cellulose-decomposing ability, microbial community structures and shifts of microbial consortia F1 and F2. We determined exoglucanase activity by 3, 5-dinitrosalicylic acid colorimetry. We determined content of cellulose, hemicellulose and lignin in rice straw by Van Soest method, and calculated degradation rates of rice straw by the weight changes before and after a 10-day incubation. We analyzed and compared the microbial communities and functional microbiology shifts by clone libraries, Miseq analysis and real time-PCR based on the 16S rRNA gene and cel48 genes. Total degradation rate, cellulose, and hemicellulose degradation rate of microbial consortia F1 were significantly higher than that of F2. The variation trend of exoglucanase activity in both microbial consortia F1 and F2 was consistent with that of cel48 gene copies. Microbial diversity of F1 was complex with aerobic bacteria as dominant species, whereas that of F2 was simple with a high proportion of anaerobic cellulose decomposing bacteria in the later stage of incubation. In the first 4 days, unclassified Bacillales and Bacillus were dominant in both F1 and F2. The dominant species and abundance became different after 4-day incubation, Bacteroidetes and Firmicutes were dominant phyla of F1 and F2, respectively. Although Petrimonas and Pusillimonas were common dominant species in F1 and F2, abundance of Petrimonas in F2 (38.30%) was significantly higher than that in F1 (9.47%), and the abundance of Clostridiales OPB54 in F2 increased to 14.85% after 8-day incubation. The abundance of cel48 gene related with cellulose degradation rate and exoglucanase activity, and cel48 gene has the potential as a molecular marker to monitor the process of cellulose degradation. Microbial community structure has a remarkable impact on the degradation efficiency of straw cellulose, and Petrimonas, Paenibacillus, Bacillales, Clostridiales were vital species for microbial consortia F1 and F2 decomposing rice straw.

  8. Green thermal-assisted synthesis and characterization of novel cellulose-Mg(OH)2 nanocomposite in PEG/NaOH solvent.

    PubMed

    Ponomarev, Nikolai; Repo, Eveliina; Srivastava, Varsha; Sillanpää, Mika

    2017-11-15

    Synthesis of nanocomposites was performed using microcrystalline cellulose (MCC), MgCl 2 in PEG/NaOH solvent by a thermal-assisted method at different temperatures by varying time and the amount of MCC. Results of XRD, FTIR, and EDS mapping showed that the materials consisted of only cellulose (CL) and magnesium hydroxide (MH). According to FTIR and XRD, it was found that crystallinity of MH in cellulose nanocomposites is increased with temperature and heating time and decreased with increasing of cellulose amount. The PEG/NaOH solvent has a significant effect on cellulose and Mg(OH) 2 morphology. BET and BJH results demonstrated the effects of temperature and cellulose amount on the pore size corresponding to mesoporous materials. TG and DTG analyses showed the increased thermal stability of cellulose nanocomposites with increasing temperature. TEM and SEM analyses showed an even distribution of MH nanostructures with various morphology in the cellulose matrix. The cellulose presented as the polymer matrix in the nanocomposites. It was supposed the possible interaction between cellulose and Mg(OH) 2 . The novel synthesis method used in this study is feasible, cost-efficient and environmentally friendly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Mammographic and Ultrasonographic Findings of Oxidized Regenerated Cellulose in Breast Cancer Surgery: A 5-Year Experience.

    PubMed

    Giuliani, Michela; Fubelli, Rita; Patrolecco, Federica; Rella, Rossella; Borelli, Cristina; Buccheri, Chiara; Di Giovanni, Silvia Eleonora; Belli, Paolo; Romani, Maurizio; Rinaldi, Pierluigi; Bufi, Enida; Franceschini, Gianluca; Bonomo, Lorenzo

    2015-10-01

    The purpose of this study was to describe the ultrasonographic (US) and mammographic (MX) findings in patients who underwent breast-conserving surgery followed by oxidized regenerated cellulose (ORC) implantation in the surgical cavity and their size variations in follow-up. We retrospectively reviewed 417 MX and 743 US images performed between January 2009 and January 2014 for 262 women who underwent breast-conserving surgery. All patients underwent US, only 203 women underwent MX examination. In 170 of 262 patients, US examinations showed abnormal findings. Three main US patterns were identified: (1) complex masses: well-encapsulated ipoisoechoic lesions with circumscribed margins with internal hyperechoic nodules (56%); (2) hypoanechoic lesions without internal hyperechoic nodules (24%); and (3) completely anechoic collections (20%). Moreover, Doppler ultrasound examination was performed on all of the patients. In 95 of 203 patients, MX examinations showed abnormalities. Four main MX patterns were identified: (1) round or oval opacity with circumscribed margins (58%); (2) round or oval opacity with indistinct or ill-defined margins (17%); (3) irregular opacity with indistinct or spiculated margins (9%); and (4) architectural distortion or focal asymmetry (15%). Most of the lesions showed a decrease in size at US and MX follow-up examination and the decrease was statistically significant (P < .01). When applied to the surgical residual cavity, ORC aids to control local hemorrhage and reduce the risk of postoperative infections, but can lead to alterations in surgical scar. Thus, knowledge of the radiological findings might allow avoidance of misdiagnosis of tumor recurrence or unnecessary diagnostic examinations. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Stable-Carbon Isotopic Composition of Maple Sap and Foliage 1

    PubMed Central

    Leavitt, Steven W.; Long, Austin

    1985-01-01

    The 13C/12C ratios of Acer grandidentatum sap sugar collected during the dormant period are compared to those of buds, leaves, and wood developed over the following growing season. As the primary carbon source for cellulose manufacture at initiation of annual growth in deciduous trees, sap sucrose would be expected to have an isotopic composition similar to first-formed cellulose. Although constancy in concentration and 13C/12C ratios of the maple sap sugar suggests any gains or losses (e.g. to maintenance metabolism) do not appreciably alter composition, the 13C/12C ratios of cellulose of the enlarging buds in the spring are quite distinct from those of the sap sugar, seemingly precluding a simple direct biochemical pathway of sap sucrose→glucose→cellulose in favor of a more complex pathway with greater likelihood of isotopic fractionation. The 13C/12C ratios of the leaves and in the growth ring were initially similar to the sap sugar but decreased steadily over the growing season. PMID:16664259

  11. What limits the yield of levoglucosan during fast pyrolysis of cellulose?

    NASA Astrophysics Data System (ADS)

    Proano-Aviles, Juan

    The pyrolysis of cellulose to form levoglucosan is investigated in this study. Although the stoichiometric yield of levoglucosan from the pyrolysis of cellulose is expected to be 100%, only about 60 wt.% yields are reported in the literature. Several possible reasons for this limitation are investigated through experiments in micropyrolyzers and computational studies on the depolymerization of cellulose. Heat and mass transfer limitations in an experimental apparatus is one possible limitation on the yield of levoglucosan. Repolymerization of condensed phase reaction intermediates could prevent the formation and release of volatile levoglucosan. Thermohydrolysis of pyrolyzing cellulose to form non-volatile and thermally unstable glucose has also been proposed as a mechanism that reduces levoglucosan yields. Secondary reactions in the gas phase were also investigated to explain limitations on levoglucosan yields. Population balance models were developed to test ideas on how cellulose depolymerized to form levoglucosan at less than stoichiometric yields. These models were supported with chemical kinetic data obtained from transient pyrolysis experiments. Under carefully controlled experimental conditions, no evidence was found for heat and mass transfer effects limiting levoglucosan yields to 60 wt.% nor do secondary reactions in the condensed- or gas-phases appear to offer a satisfactory explanation. Based on modeling results, it appears levoglucosan-forming reaction rates that decrease as oligosaccharide chain length decreases is the most plausible explanation for limitations on levoglucosan yield from cellulose.

  12. Comparison of autohydrolysis and ionic liquid 1-butyl-3-methylimidazolium acetate pretreatment to enhance enzymatic hydrolysis of sugarcane bagasse

    DOE PAGES

    Hashim, Muzna; Univ. of Tennessee, Knoxville, TN; Sun, Qining; ...

    2016-11-02

    The aim of this work was to evaluate the efficiency of an ionic liquid (IL) 1-butyl-3-methylimidazolium acetate ([C4mim][OAc]) pretreatment (110 C for 30 min) in comparison to high severity autohydrolysis pretreatment in terms of delignification, cellulose crystallinity and enzymatic digestibility. The increase in severity of autohydrolysis pretreatment had positive effect on glucan digestibility, but was limited by the crystallinity of cellulose. [C4mim][OAc] pretreated sugarcane bagasse exhibited a substantial decrease in lignin content, reduced cellulose crystallinity, and enhanced glucan and xylan digestibility. Glucan and xylan digestibility was determined as 97.4% and 98.6% from [C4mim][OAc] pretreated bagasse, and 62.1% and 57.5% frommore » the bagasse autohydrolyzed at 205 C for 6 min, respectively. The results indicated the improved digestibility and hydrolysis rates after [C4mim][OAc] pretreatment when compared against a comparable autohydrolyzed biomass.« less

  13. Formation of wood secondary cell wall may involve two type cellulose synthase complexes in Populus.

    PubMed

    Xi, Wang; Song, Dongliang; Sun, Jiayan; Shen, Junhui; Li, Laigeng

    2017-03-01

    Cellulose biosynthesis is mediated by cellulose synthases (CesAs), which constitute into rosette-like cellulose synthase complexe (CSC) on the plasma membrane. Two types of CSCs in Arabidopsis are believed to be involved in cellulose synthesis in the primary cell wall and secondary cell walls, respectively. In this work, we found that the two type CSCs participated cellulose biosynthesis in differentiating xylem cells undergoing secondary cell wall thickening in Populus. During the cell wall thickening process, expression of one type CSC genes increased while expression of the other type CSC genes decreased. Suppression of different type CSC genes both affected the wall-thickening and disrupted the multilaminar structure of the secondary cell walls. When CesA7A was suppressed, crystalline cellulose content was reduced, which, however, showed an increase when CesA3D was suppressed. The CesA suppression also affected cellulose digestibility of the wood cell walls. The results suggest that two type CSCs are involved in coordinating the cellulose biosynthesis in formation of the multilaminar structure in Populus wood secondary cell walls.

  14. Effects of Soil Salinity on Sucrose Metabolism in Cotton Fiber

    PubMed Central

    Liu, Jingran; Luo, Junyu; Zhao, Xinhua; Dong, Helin; Ma, Yan; Sui, Ning; Zhou, Zhiguo; Meng, Yali

    2016-01-01

    Cotton (Gosspium hirsutum L.) is classified as a salt tolerant crop. However, its yield and fiber quality are negatively affected by soil salinity. Studies on the enzymatic differences in sucrose metabolism under different soil salinity levels are lacking. Therefore, field experiments, using two cotton cultivars, CCRI-79 (salt-tolerant) and Simian 3 (salt-sensitive), were conducted in 2013 and 2014 at three different salinity levels (1.15 dS m-1 [low soil salinity], 6.00 dS m-1 [medium soil salinity], and 11.46 dS m-1 [high soil salinity]). The objective was to elucidate the effects of soil salinity on sucrose content and the activity of key enzymes that are related to sucrose metabolism in cotton fiber. Results showed that as the soil salinity increased, cellulose content, sucrose content, and sucrose transformation rate declined; the decreases in cellulose content and sucrose transformation rate caused by the increase in soil salinity were more in Simian 3 than those in CCRI-79. With increase in soil salinity, activities of sucrose metabolism enzymes sucrose phophate synthase (SPS), acidic invertase, and alkaline invertase were decreased, whereas sucrose synthase (SuSy) activity increased. However, the changes displayed in the SuSy and SPS activities in response to increase in soil salinity were different and the differences were large between the two cotton cultivars. These results illustrated that suppressed cellulose synthesis and sucrose metabolism under high soil salinity were mainly due to the change in SPS, SuSy, and invertase activities, and the difference in cellulose synthesis and sucrose metabolism in fiber for the two cotton cultivars in response to soil salinity was determined mainly by both SuSy and SPS activities. PMID:27227773

  15. Complete genome sequence and comparative genome analysis of Klebsiella oxytoca HKOPL1 isolated from giant panda feces.

    PubMed

    Jiang, Jingwei; Tun, Hein Min; Mauroo, Nathalie France; Ma, Angel Po Yee; Chan, San Yuen; Leung, Frederick C

    2014-11-23

    The giant panda (Ailuropoda melanoleuca) is an endangered species well-known for ingesting bamboo as a major part of their diet despite the fact that it belongs to order Carnivora. However, the giant panda's draft genome shows no direct evidence of enzymatic genes responsible for cellulose digestion. To explore this phenomenon, we study the giant panda's gut microbiota using genomic approaches in order to better understand their physiological processes as well as any potential microbial cellulose digestion processes. A complete genome of isolated Klebsiella oxytoca HKOPL1 of 5.9 Mb has been successfully sequenced, closed and comprehensively annotated against various databases. Genome comparisons within the Klebsiella genus and K. oxytoca species have also been performed. A total of 5,772 genes were predicted, and among them, 211 potential virulence genes, 35 pathogenicity island-like regions, 1,615 potential horizontal transferring genes, 23 potential antibiotics resistant genes, a potential prophage integrated region, 8 genes in 2,3-Butanediol production pathway and 3 genes in the cellulose degradation pathway could be identified and discussed based on the comparative genomic studies between the complete genome sequence of K. oxytoca HKOPL1 and other Klebsiella strains. A functional study shows that K. oxytoca HKOPL1 can degrade cellulose within 72 hours. Phylogenomic studies indicate that K. oxytoca HKOPL1 is clustered with K. oxytoca strains 1686 and E718. K. oxytoca HKOPL1 is a gram-negative bacterium able to degrade cellulose. We report here the first complete genome sequence of K. oxytoca isolated from giant panda feces. These studies have provided further insight into the role of gut microbiota in giant panda digestive physiology. In addition, K. oxytoca HKOPL1 has the potential for biofuel application in terms of cellulose degradation and potential for the production of 2,3-Butanediol (an important industrial raw material).

  16. Caldicellulosiruptor Core and Pangenomes Reveal Determinants for Noncellulosomal Thermophilic Deconstruction of Plant Biomass

    PubMed Central

    Blumer-Schuette, Sara E.; Giannone, Richard J.; Zurawski, Jeffrey V.; Ozdemir, Inci; Ma, Qin; Yin, Yanbin; Xu, Ying; Kataeva, Irina; Poole, Farris L.; Adams, Michael W. W.; Hamilton-Brehm, Scott D.; Elkins, James G.; Larimer, Frank W.; Land, Miriam L.; Hauser, Loren J.; Cottingham, Robert W.; Hettich, Robert L.

    2012-01-01

    Extremely thermophilic bacteria of the genus Caldicellulosiruptor utilize carbohydrate components of plant cell walls, including cellulose and hemicellulose, facilitated by a diverse set of glycoside hydrolases (GHs). From a biofuel perspective, this capability is crucial for deconstruction of plant biomass into fermentable sugars. While all species from the genus grow on xylan and acid-pretreated switchgrass, growth on crystalline cellulose is variable. The basis for this variability was examined using microbiological, genomic, and proteomic analyses of eight globally diverse Caldicellulosiruptor species. The open Caldicellulosiruptor pangenome (4,009 open reading frames [ORFs]) encodes 106 GHs, representing 43 GH families, but only 26 GHs from 17 families are included in the core (noncellulosic) genome (1,543 ORFs). Differentiating the strongly cellulolytic Caldicellulosiruptor species from the others is a specific genomic locus that encodes multidomain cellulases from GH families 9 and 48, which are associated with cellulose-binding modules. This locus also encodes a novel adhesin associated with type IV pili, which was identified in the exoproteome bound to crystalline cellulose. Taking into account the core genomes, pangenomes, and individual genomes, the ancestral Caldicellulosiruptor was likely cellulolytic and evolved, in some cases, into species that lost the ability to degrade crystalline cellulose while maintaining the capacity to hydrolyze amorphous cellulose and hemicellulose. PMID:22636774

  17. Toward early safety alert endpoints: exploring biomarkers suggestive of microbicide failure.

    PubMed

    Mauck, Christine K; Lai, Jaim Jou; Weiner, Debra H; Chandra, Neelima; Fichorova, Raina N; Dezzutti, Charlene S; Hillier, Sharon L; Archer, David F; Creinin, Mitchell D; Schwartz, Jill L; Callahan, Marianne M; Doncel, Gustavo F

    2013-11-01

    Several microbicides, including nonoxynol-9 (N-9) and cellulose sulfate (CS), looked promising during early trials but failed in efficacy trials. We aimed to identify Phase I mucosal safety endpoints that might explain that failure. In a blinded, randomized, parallel trial, 60 healthy premenopausal sexually abstinent women applied Universal HEC placebo, 6% CS or 4% N-9 gel twice daily for 13½ days. Endpoints included immune biomarkers in cervicovaginal lavage (CVL) and endocervical cytobrushes, inflammatory infiltrates in vaginal biopsies, epithelial integrity by naked eye, colposcopy, and histology, CVL anti-HIV activity, vaginal microflora, pH, and adverse events. Twenty women enrolled per group. Soluble/cellular markers were similar with CS and placebo, except secretory leukocyte protease inhibitor (SLPI) levels decreased in CVL, and CD3(+) and CD45(+) cells increased in biopsies after CS use. Increases in interleukin (IL)-8, IL-1, IL-1RA, and myeloperoxidase (MPO) and decreases in SLPI were significant with N-9. CVL anti-HIV activity was significantly higher during CS use compared to N-9 or placebo. CS users tended to have a higher prevalence of intermediate Nugent score, Escherichia coli, and Enterococcus and fewer gram-negative rods. Most Nugent scores diagnostic for bacterial vaginosis were in N-9 users. All cases of histological inflammation or deep epithelial disruption occurred in N-9 users. While the surfactant N-9 showed obvious biochemical and histological signs of inflammation, more subtle changes, including depression of SLPI, tissue influx of CD45(+) and CD3(+) cells, and subclinical microflora shifts were associated with CS use and may help to explain the clinical failure of nonsurfactant microbicides.

  18. Cellulose effects on morphology and elasticity of Vibrio fischeri biofilms.

    PubMed

    Ziemba, Christopher; Shabtai, Yael; Piatkovsky, Maria; Herzberg, Moshe

    2016-01-01

    Cellulose effects on Vibrio fischeri biofilm morphology were tested for the wild-type and two of its isogenic mutants that either exhibit increased cellulose production or do not produce cellulose at all. Confocal laser scanning microscopy imaging of each biofilm revealed that total sessile volume increases with cellulose expression, but the size of colonies formed with cellulose was smaller, creating a more diffuse biofilm. These morphological differences were not attributed to variations in bacterial deposition, extracellular polymeric substances affinity to the surface or bacterial growth. A positive correlation was found between cellulose expression, Young's (elastic) modulus of the biofilm analyzed with atomic force microscope and shear modulus of the related extracellular polymeric substances layers analyzed with quartz crystal microbalance with dissipation monitoring. Cellulose production also correlated positively with concentrations of extracellular DNA. A significant negative correlation was observed between cellulose expression and rates of diffusion through the extracellular polymeric substances. The difference observed in biofilm morphology is suggested as a combined result of cellulose and likely extracellular DNA (i) increasing biofilm Young's modulus, making shear removal more difficult, and (ii) decreased diffusion rate of nutrients and wastes into and out of the biofilm, which effectively limits colony size.

  19. Bionanocomposites produced from cassava starch and oil palm mesocarp cellulose nanowhiskers.

    PubMed

    Campos, Adriana de; Sena Neto, Alfredo R de; Rodrigues, Vanessa B; Luchesi, Bruno R; Moreira, Francys K V; Correa, Ana Carolina; Mattoso, Luiz H C; Marconcini, José M

    2017-11-01

    Cassava starch films reinforced with cellulose nanowhiskers from oil palm mesocarp fibers were produced by casting. Nanowhiskers were obtained by sulphuric acid hydrolysis followed by microfluidization and incorporated in starch films at various loadings (1-10wt%). Morphological and mechanical characterizations showed that the reinforcing effect of oil palm cellulose nanowhiskers was significant at loadings of up to 6wt%, which was determined to be the nanowhiskers percolation threshold. Above this content, formation of agglomerates became more significant, causing a decrease in mechanical properties of starch bionanocomposites. Below percolation threshold, such as 2wt%, elongation at break increased by 70%, showing an effective reinforcing effect. Dynamic mechanical analyses revealed filler/matrix interactions through hydrogen bonding in bionanocomposites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The effect of leachate recirculation with enzyme cellulase addition on waste stability in landfill bioreactor

    NASA Astrophysics Data System (ADS)

    Saffira, N.; Kristanto, G. A.

    2018-01-01

    Landfill bioreactor with leachate recirculation is known to enhance waste stabilization. However, the composition of waste in Indonesia is comprised by organic waste which is lignocellulosic materials that considered take a long time to degrade under anaerobic condition. To accelerate the degradation process, enzyme addition is ought to do. Cellulase is an enzyme that can catalyse cellulose and other polysaccharide decomposition processes. Therefore, operation of waste degradation using leachate recirculation with a cellulase addition to enhance waste stabilization was investigated using anaerobic bioreactor landfill. The experiment was performed on 2 conditions; leachate recirculation with cellulase addition and recirculation only as a control. The addition of cellulase is reported to be significant in decreasing organic content, represented by volatile solid parameter. The volatile solid reduction in the cellulase augmented reactor and control reactor was 17.86% and 7.90%, respectively. Cellulase addition also resulted in the highest cellulose reduction. Settlement of the landfill in a bioreactor with enzyme addition (32.67%) was reported to be higher than the control (19.33%). Stabilization of landfill review by the decreasing rate constant of the cellulose and lignin ratio parameter was more rapidly achieved by the enzyme addition (0.014 day-1) compared to control (0.002 day-1).

  1. Rhelogical and antibacterial performance of sodium alginate/zinc oxide composite coating for cellulosic paper.

    PubMed

    Wu, Wei; Liu, Tao; He, Haibing; Wu, Xihu; Cao, Xianwu; Jin, Jia; Sun, Qijun; Roy, Vellaisamy A L; Li, Robert K Y

    2018-07-01

    Coating of antibacterial layer on the surface of cellulosic paper has numerous potential applications. In the present work, sodium alginate (SA) served as a binder to disperse Zn 2+ and the prepared zinc oxide (ZnO) particles were used as antibacterial agents. The rheology test revealed that there were cross-linking between Zn 2+ and SA molecular chains in the aqueous solution, resulting in the viscosity of ZnO/SA composite coating increased in the low shear rate region and decreased in the high shear rate region as compared with pure SA. SEM and EDS mapping images showed that the ZnO particles were prepared successfully at 120 °C and dispersed homogeneously on the surface of cellulose fibers and the pores of cellulosic papers. The thermal stabilities of the coated papers decreased as compared to the original blank cellulosic paper, which was ascribed to the low thermal stability of SA and the catalytic effect of ZnO on SA. The tensile stress and Young's modulus of ZnO/SA composite coated paper increased up 39.5% and 30.7%, respectively, as compared with those of blank cellulosic paper. The antibacterial activity tests indicated that the ZnO/SA composite coating endowed the cellulosic paper with effectively growth inhibition of both Gram-negative bacteria E. coli and Gram-positive bacteria S. aureu. Copyright © 2018. Published by Elsevier B.V.

  2. Understanding the impact of ionic liquid pretreatment on eucalyptus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Centikol, Ozgul; Dibble, Dean; Cheng, Gang

    2010-01-01

    The development of cost-competitive biofuels necessitates the realization of advanced biomass pretreatment technologies. Ionic liquids provide a basis for one of the most promising pretreatment technologies and are known to allow effective processing of cellulose and some biomass species. Here, we demonstrate that the ionic liquid 1-ethyl-3-methyl imidazolium acetate, [C2mim][OAc], induces structural changes at the molecular level in the cell wall of Eucalyptus globulus. Deacetylation of xylan, acetylation of the lignin units, selective removal of guaiacyl units (increasing the syringyl:guaiacyl ratio) and decreased {beta}-ether content were the most prominent changes observed. Scanning electron microscopy images of the plant cell wallmore » sections reveal extensive swelling during [C2mim][OAc] pretreatment. X-ray diffraction measurements indicate a change in cellulose crystal structure from cellulose I to cellulose II after [C2mim][OAc] pretreatment. Enzymatic saccharification of the pretreated material produced increased sugar yields and improved hydrolysis kinetics after [C2mim][OAc] pretreatment. These results provide new insight into the mechanism of ionic liquid pretreatment and reaffirm that this approach may be promising for the production of cellulosic biofuels from woody biomass.« less

  3. Declining snowpack and forest productivity in a montane ecosystem in the Northern Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Hu, J.; Clute, T.; Simpson, T.; Hoylman, Z. H.; Jencso, K. G.

    2016-12-01

    Across the western U.S., declining snowpacks have increased drought, leading to reduced productivity rates in high elevation forests. As climate projections predict decreases in the ratio of snow/rainfall by the end of the century, this shift in the mode of precipitation could potentially lead to further decreases in forest productivity. However, different tree species across the montane ecosystem might respond differently to these shifts; while some tree species might experience decreased growth rates, other species might capitalize on the extra rainfall and increase growth rates. Furthermore, the landscape topography will also play an important role by modulating the sensitivity of different trees to these changing precipitation regimes. In this study, we examined the long-term patterns of plant water source use across an elevational gradient in western Montana. Because snow and rain have distinct oxygen isotopic values, we analyzed the δ18O of cellulose from tree rings at annual time scales to track changes in source water in two main species: Pseudotsuga menziezii and Pinus Ponderosa at both high and low elevation. We also used the same cores to link growth rate with the dominant source water. We first compared the annual changes in δ18O of cellulose with available SNOTEL and Snow Course data. We found poor agreement between snowpack depth and δ18O of cellulose prior to 1980. However, after 1980, we found a strong negative relationship; small snowpack years resulted in enriched δ18O of cellulose values while large snowpack years resulted in depleted δ18O of cellulose values. We then used the Craig-Gordon model along with our input of δ18O of cellulose to back calculate source water and found strong agreement between modeled versus measured values. Since the δ18O of cellulose also captures the atmospheric conditions, we then tested the sensitivity of the Craig-Gordon model to changes in relative humidity versus source water. These preliminary results a strong source water signal recorded in the δ18O of cellulose; furthermore, these results suggest that since the 1980's, the trees are consistently using less snowmelt as a water source, coinciding with decreasing snowpack records throughout the western U.S.

  4. Characteristics of cellulose-microalgae composite

    NASA Astrophysics Data System (ADS)

    Hwang, Kyo-Jung; Kwon, Gu-Joong; Yang, Ji-Wook; Kim, Sung-yeol; Kim, Dae-Young

    2017-10-01

    The composites were prepared in order of mixing the cellulose with the N. commune, dissolution-regeneration procedure by LiOH/Urea aqueous solution and freeze-drying. Before the freeze-drying, internal pores of the composites were substituted with an organic solvent. SEM analysis showed that the increase of N. commune results in blockage of cellulose network structure. Brunauer-Emmett-Teller (BET) surface area analysis showed the decrease of mesopore and macropore as the N. commune ratio increases, also the decrease of the specific surface area was shown. The composites appear to have different thermogravimetric analysis properties with the pure N. commune or cellulose itself. Fourier transform infrared spectroscopy (FT-IR) spectra of the composites have specific peaks of the cellulose and N. commune, and increase of N. commune ratio results broadening of peaks relevant to proteins, lipids, and fatty acids. The composites showed higher adsorptivity as the N. commune ratio increases. Especially, the adsorptivity was higher than active carbon before 120 minutes of adsorption. The composite is expected to be used for the situations which need urgent adsorption.

  5. Synthesis of cellulose diacetate based copolymer electrospun nanofibers for tissues scaffold

    NASA Astrophysics Data System (ADS)

    Liang, Wencheng; Hou, Jia; Fang, Xiangchen; Bai, Fudong; Zhu, Tonghe; Gao, Feifei; Wei, Chao; Mo, Xiumei; Lang, Meidong

    2018-06-01

    In this study, a novel cellulose diacetate based copolymer used as tissues scaffold, cellulose diacetate-graft-poly(ethylene terephthalate) (CDA-g-PET) was developed by "graft onto" strategy using 3-Isocyanatomethyl-3,5,5-trimethylcyc-lohexyl isocyanate (IPDI) as a coupling reagent of cellulose diacetate and poly(ethylene terephthalate), and using dibutyltin dilaurate (DBTDL) and 1-butyl-3-methylimidazolium chloride salt ([Bmim]Cl) as catalysts. CDA-g-PET copolymers with five different grafting ratios were obtained by the regulation of the reaction time. It was proved by the FT-IR spectra of the purified copolymers that PET had been successfully grafted onto CDA backbone. Afterwards, CDA-g-PET nanofibers were fabricated via electrospinning and further were cross-linked by means of treating in glutaraldehyde (25%wt) aqueous solution for 48 h. The uniform and smooth fiber morphology was proved by SEM and the diameter decreased with the increase of grafting ratio. Moreover, the value of TGA revealed that the grafting PET onto CDA backbone would improve heat-resistant quality of CDA and help to improve the ability of thermo processing. The graft of PET onto CDA significantly enhanced mechanical property of copolymer compared with CDA. The results of hemolysis ratio indicated that hemolysis ratio has decreased compared with CDA, highlighting the potential application in the field of contacting with blood. In vitro cell viability indicated that CDA-g-PET would enhance biocompatibility compared with CDA.

  6. Co-downregulation of the hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyl transferase and coumarate 3-hydroxylase significantly increases cellulose content in transgenic alfalfa (Medicago sativa L.).

    PubMed

    Tong, Zongyong; Li, Heng; Zhang, Rongxue; Ma, Lei; Dong, Jiangli; Wang, Tao

    2015-10-01

    Lignin is a component of the cell wall that is essential for growth, development, structure and pathogen resistance in plants, but high lignin is an obstacle to the conversion of cellulose to ethanol for biofuel. Genetically modifying lignin and cellulose contents can be a good approach to overcoming that obstacle. Alfalfa (Medicago sativa L.) is rich in lignocellulose biomass and used as a model plant for the genetic modification of lignin in this study. Two key enzymes in the lignin biosynthesis pathway-hydroxycinnamoyl -CoA:shikimate hydroxycinnamoyl transferase (HCT) and coumarate 3-hydroxylase (C3H)-were co-downregulated. Compared to wild-type plants, the lignin content in the modified strain was reduced by 38%, cellulose was increased by 86.1%, enzyme saccharification efficiency was increased by 10.9%, and cell wall digestibility was increased by 13.0%. The modified alfalfa exhibited a dwarf phenotype, but normal above ground biomass. This approach provides a new strategy for reducing lignin and increasing cellulose contents and creates a new genetically modified crop with enhanced value for biofuel. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Hybrid ternary rice paper-manganese oxide-carbon nanotube nanocomposites for flexible supercapacitors

    NASA Astrophysics Data System (ADS)

    Jiang, Wenchao; Zhang, Kaixi; Wei, Li; Yu, Dingshan; Wei, Jun; Chen, Yuan

    2013-10-01

    Modern portable electronic devices create a strong demand for flexible energy storage devices. Paper based nanocomposites are attractive as sustainable materials for such applications. Here, we directly explored the hydroxyl chemistry of cellulose fibers to synthesize hybrid ternary nanocomposites, comprised of rice paper, single-walled carbon nanotubes (SWCNTs) and manganese oxide nanoparticles. The functional groups on cellulose fibers can react with adsorbed permanganate ions, resulting in uniform deposition of manganese oxide nanoparticles. SWCNTs coated on top of manganese oxide nanoparticles form a highly conductive network connecting individual manganese oxide particles. By using the hybrid ternary composites as electrodes, the assembled two-electrode supercapacitors demonstrated high capacitance (260.2 F g-1), energy (9.0 W h kg-1), power (59.7 kW kg-1), and cycle stability (12% drop after 3000 cycles). In addition, the nanocomposites show good strength and excellent mechanical flexibility, and their capacitance shows negligible changes after bending more than 100 times. These findings suggest that opportunities exist to further explore the rich chemistry of cellulose fibers for innovative energy applications.Modern portable electronic devices create a strong demand for flexible energy storage devices. Paper based nanocomposites are attractive as sustainable materials for such applications. Here, we directly explored the hydroxyl chemistry of cellulose fibers to synthesize hybrid ternary nanocomposites, comprised of rice paper, single-walled carbon nanotubes (SWCNTs) and manganese oxide nanoparticles. The functional groups on cellulose fibers can react with adsorbed permanganate ions, resulting in uniform deposition of manganese oxide nanoparticles. SWCNTs coated on top of manganese oxide nanoparticles form a highly conductive network connecting individual manganese oxide particles. By using the hybrid ternary composites as electrodes, the assembled two-electrode supercapacitors demonstrated high capacitance (260.2 F g-1), energy (9.0 W h kg-1), power (59.7 kW kg-1), and cycle stability (12% drop after 3000 cycles). In addition, the nanocomposites show good strength and excellent mechanical flexibility, and their capacitance shows negligible changes after bending more than 100 times. These findings suggest that opportunities exist to further explore the rich chemistry of cellulose fibers for innovative energy applications. Electronic supplementary information (ESI) available: Chemical structures of functional groups on cellulose fibers, the surface water wettability of rice paper, CV curves of supercapacitors at different scan rates, galvanostatic charge-discharge curves of supercapacitors at different current densities, TGA profiles of the SWCNT-MnO2-paper composites synthesized at different temperatures, TEM images of MnO2 particles deposited on rice paper at different temperatures, photographs of supercapacitors under different bending test conditions, and a video of bending and folding the SWCNT-MnO2-paper composites. See DOI: 10.1039/c3nr03010e

  8. The Dickeya dadantii biofilm matrix consists of cellulose nanofibres, and is an emergent property dependent upon the type III secretion system and the cellulose synthesis operon.

    PubMed

    Jahn, Courtney E; Selimi, Dija A; Barak, Jeri D; Charkowski, Amy O

    2011-10-01

    Dickeya dadantii is a plant-pathogenic bacterium that produces cellulose-containing biofilms, called pellicles, at the air-liquid interface of liquid cultures. D. dadantii pellicle formation appears to be an emergent property dependent upon at least three gene clusters, including cellulose synthesis, type III secretion system (T3SS) and flagellar genes. The D. dadantii cellulose synthesis operon is homologous to that of Gluconacetobacter xylinus, which is used for industrial cellulose production, and the cellulose nanofibres produced by D. dadantii were similar in diameter and branching pattern to those produced by G. xylinus. Salmonella enterica, an enterobacterium closely related to D. dadantii, encodes a second type of cellulose synthesis operon, and it produced biofilm strands that differed in width and branching pattern from those of D. dadantii and G. xylinus. Unlike any previously described cellulose fibre, the D. dadantii cellulose nanofibres were decorated with bead-like structures. Mutation of the cellulose synthesis operon genes resulted in loss of cellulose synthesis and production of a cellulase-resistant biofilm. Mutation of other genes required for pellicle formation, including those encoding FliA (a sigma factor that regulates flagella production), HrpL (a sigma factor that regulates the T3SS), and AdrA, a GGDEF protein, affected both biofilm and cell morphology. Mutation of the cellulose synthase bcsA or of bcsC resulted in decreased accumulation of the T3SS-secreted protein HrpN.

  9. Fabrication and characterization of regenerated cellulose films obtained from oil palm empty fruit bunch

    NASA Astrophysics Data System (ADS)

    Nor Amalini, A.; Melina Cheah, M. Y.; Wan Rosli, W. D.; Hayati, S.; Mohamad Haafiz, M. K.

    2017-12-01

    Development of regenerated cellulose (RC) derived from underutilized cellulosic biomass has recently gained attention as potential petroleum-based polymer replacers. The objective of this current work is to evaluate the properties of RC films obtained from oil palm empty fruit bunch microcrystalline cellulose (OPEFB-MCC) through environmental process. The RC films were fabricated by using different amounts of OPEFB-MCC (4, 6 and 8 %) and 1-butyl-3-methylimidazolium chloride (BMIMCl) was used as green OPEFB-MCC dissolving medium. The resultant RC films were then characterized by means of Fourier transform infrared (FTIR) spectroscopy, mechanical, thermal and morphological properties by using tensile test, differential scanning colorimetry (DSC), and scanning electron microscopy (SEM) respectively. Increase in OPEFB-MCC amounts from 4 to 8 % enhanced the tensile strength and elongation at break of RC by 101 and 78 %, respectively, indicating stronger and more flexible films were formed. It is interesting to note that the Tg (101-154 °C) and Tm(130-187 °C) were found shifted to higher temperature with higher proportions of OPEFB-MCC in RC films. Meanwhile, FTIR analysis showed no new peak presented in RC films, suggesting that BMIMCl is a non-derivatizing solvent to OPEFB-MCC. Conspicuous changes in the spectra of RC films compared to OPEFB-MCC at 3200-3600 cm-1, 1430 cm-1, 1162 cm-1, 1111 cm-1, 1020-1040 cm-1 and 896 cm-1 were associated with transformation of cellulose I to cellulose II structure or/and decrease in crystallinity occurred after regeneration process. SEM micrographs of the RC films revealed that higher OPEFB-MCC contents exhibited smoother and more homogeneous surfaces morphology. Overall, OPEFB-MCC exhibited good film forming ability for RC production and may offer potential application in various industries including food packaging, medical goods and electronic devices.

  10. Highly Flexible and Conductive Cellulose-Mediated PEDOT:PSS/MWCNT Composite Films for Supercapacitor Electrodes.

    PubMed

    Zhao, Dawei; Zhang, Qi; Chen, Wenshuai; Yi, Xin; Liu, Shouxin; Wang, Qingwen; Liu, Yixing; Li, Jian; Li, Xianfeng; Yu, Haipeng

    2017-04-19

    Recent improvements in flexible electronics have increased the need to develop flexible and lightweight power sources. However, current flexible electrodes are limited by low capacitance, poor mechanical properties, and lack of cycling stability. In this article, we describe an ionic liquid-processed supramolecular assembly of cellulose and 3,4-ethylenedioxythiophene for the formation of a flexible and conductive cellulose/poly(3,4-ethylenedioxythiophene) PEDOT:poly(styrene sulfonate) (PSS) composite matrix. On this base, multiwalled carbon nanotubes (MWCNTs) were incorporated into the matrix to fabricate an MWCNT-reinforced cellulose/PEDOT:PSS film (MCPP), which exhibited favorable flexibility and conductivity. The MCPP-based electrode displayed comprehensively excellent electrochemical properties, such as a low resistance of 0.45 Ω, a high specific capacitance of 485 F g -1 at 1 A g -1 , and good cycling stability, with a capacity retention of 95% after 2000 cycles at 2 A g -1 . An MCPP-based symmetric solid-state supercapacitor with Ni foam as the current collector and PVA/KOH gel as the electrolyte exhibited a specific capacitance of 380 F g -1 at 0.25 A g -1 and achieved a maximum energy density of 13.2 Wh kg -1 (0.25 A g -1 ) with a power density of 0.126 kW kg -1 or an energy density of 4.86 Wh kg -1 at 10 A g -1 , corresponding to a high power density of 4.99 kW kg -1 . Another kind of MCPP-based solid-state supercapacitor without the Ni foam showed excellent flexibility and a high volumetric capacitance of 50.4 F cm -3 at 0.05 A cm -3 . Both the electrodes and the supercapacitors were environmentally stable and could be operated under remarkable deformation or high temperature without damage to their structural integrity or a significant decrease in capacitive performance. Overall, this work provides a strategy for the fabrication of flexible and conductive energy-storage films with ionic liquid-processed cellulose as a medium.

  11. A laparoscopic intraperitoneal onlay mesh technique for the repair of an indirect inguinal hernia.

    PubMed Central

    Fitzgibbons, R J; Salerno, G M; Filipi, C J; Hunter, W J; Watson, P

    1994-01-01

    OBJECTIVE: This study was done (1) to determine whether congenital indirect inguinal hernias in male pigs could be repaired by placing a polypropylene mesh prosthesis over the defect intra-abdominally, (2) to measure the incidence of adhesions between intra-abdominal viscera and the prosthesis with and without the adhesion barrier oxidized regenerated cellulose, (3) to determine the incidence of other complications, and (4) to assess the effect on fertility. SUMMARY BACKGROUND DATA: Several techniques for laparoscopic inguinal herniorrhaphy are currently being evaluated to determine whether there are advantages over conventional inguinal herniorrhaphy. Perhaps the most controversial is the intraperitoneal onlay mesh procedure (IPOM). Its advantage is its simplicity (in that the repair is accomplished by placing a prosthesis over the hernia defect intra-abdominally, avoiding a groin dissection). Its disadvantage is the potential for complications because the prosthesis is in contact with the intra-abdominal viscera. METHODS: In male pigs, polypropylene mesh alone or polypropylene mesh plus the adhesion barrier oxidized regenerated cellulose (composite prosthesis) was fixed to the peritoneum surrounding the hernia defect. In phase 1 (6-week follow-up), two groups of 13 pigs each underwent herniorrhaphy at laparotomy or laparoscopy. In phase 2 (7.1-month follow-up), 21 pigs underwent laparoscopic herniorrhaphy. RESULTS: All IPOM herniorrhaphies were successful. The prostheses adhered most frequently to the bladder, followed by small bowel, peritoneum, and cord structures. Prosthetic erosion into these organs was not observed. Laparoscopically placed prostheses in phases 1 and 2 had significantly less surface covered by adhesions (13% +/- 13% and 19% +/- 27%, respectively) and a lower adhesion tenacity grade (1.5 +/- 0.9 and 1.3 +/- 1.1, respectively) than those placed at laparotomy (44% +/- 27% and 2.5 +/- 0.7, respectively; p < 0.01). In phase 1, a histologic evaluation of laparoscopically placed specimens demonstrated significantly thinner above-mesh fibrotic tissue compared with the prostheses implanted at laparotomy (p < 0.04). In either phase, the use of the adhesion barrier did not produce any histologic difference between the polypropylene alone and the composite prosthesis. Fertility studies were performed in phase 2 and showed no adverse effects caused by either prosthesis. CONCLUSIONS: This study demonstrated that the intraperitoneal placement of a polypropylene prosthesis was an effective technique for indirect inguinal herniorrhaphy in a pig. Furthermore, with laparotomy, the addition of oxidized regenerated cellulose significantly decreased the rate of adhesion formation to the prosthesis. However, oxidized regenerated cellulose would appear to have no value when used with a prosthesis placed laparoscopically. Images Figure 1. Figure 2. Figure 5. Figure 5. PMID:8129485

  12. Cellulose nanomaterials as green nanoreinforcements for polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Dufresne, Alain

    2017-12-01

    Unexpected and attractive properties can be observed when decreasing the size of a material down to the nanoscale. Cellulose is no exception to the rule. In addition, the highly reactive surface of cellulose resulting from the high density of hydroxyl groups is exacerbated at this scale. Different forms of cellulose nanomaterials, resulting from a top-down deconstruction strategy (cellulose nanocrystals, cellulose nanofibrils) or bottom-up strategy (bacterial cellulose), are potentially useful for a large number of industrial applications. These include the paper and cardboard industry, use as reinforcing filler in polymer nanocomposites, the basis for low-density foams, additives in adhesives and paints, as well as a wide variety of filtration, electronic, food, hygiene, cosmetic and medical products. This paper focuses on the use of cellulose nanomaterials as a filler for the preparation of polymer nanocomposites. Impressive mechanical properties can be obtained for these materials. They obviously depend on the type of nanomaterial used, but the crucial point is the processing technique. The emphasis is on the melt processing of such nanocomposite materials, which has not yet been properly resolved and remains a challenge. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  13. Microscopic Structural Changes in Paddy Straw Pretreated with Trichoderma reesei MTCC 164 and Coriolus versicolor MTCC 138.

    PubMed

    Phutela, Urmila Gupta; Sahni, Nidhi

    2013-06-01

    The present study reports the pretreatment of paddy straw by Trichoderma reesei MTCC 164 and Coriolus versicolor MTCC 138 to observe the changes in chemical composition and its correlation with change of surface structure, morphology and porosity of paddy straw. Compared with untreated straw, cellulose decreased by 15.9 and 19.3 % in T. reesei MTCC 164 and C. versicolor MTCC 138 pretreated paddy straw respectively. Lignin content increased by 41.4 % in T. reesei pretreated paddy straw whereas decreased by 19.1 % in C. versicolor pretreated straw. The microscopic structural changes were examined by scanning electron microscopy under reasonable conditions. Results showed that digestibility of paddy straw are increased by treating paddy straw with both the cultures. Both surface area and pore size of treated straw were increased partially due to solubilization of silica components.

  14. Decomposition of lignin and holocellulose on Acacia mangium leaves and twigs by six fungal isolates from nature.

    PubMed

    Djarwanto; Tachibana, S

    2010-06-15

    This research was conducted in the aim of preventing wild fire through reducing potential energy source to become in situ fertilizer. To prevent forest fires by reducing wood waste using lignocellulose-degrading fungi, six fungal isolates were tested for lignin and cellulose-degrading activity with Acacia mangium leaves and twigs over a period of 1 to 3 months. The fungi degraded 8.9-27.1% of the lignin and 14-31% of the holocellulose. The degradation rate varied depending on the fungal species. An increase in incubation time tended to decrease the amounts of holocellulose and lignin. However, the hot water soluble tended to increase following a longer incubation period. From the results obtained here, more time was needed to degrade lignin rather than other components in the sample.

  15. Acid hydrolysis of cellulosic fibres: Comparison of bleached kraft pulp, dissolving pulps and cotton textile cellulose.

    PubMed

    Palme, Anna; Theliander, Hans; Brelid, Harald

    2016-01-20

    The behaviour of different cellulosic fibres during acid hydrolysis has been investigated and the levelling-off degree of polymerisation (LODP) has been determined. The study included a bleached kraft pulp (both never-dried and once-dried) and two dissolving pulps (once-dried). Additionally, cotton cellulose from new cotton sheets and sheets discarded after long-time use was studied. Experimental results from the investigation, together with results found in literature, imply that ultrastructural differences between different fibres affect their susceptibility towards acid hydrolysis. Drying of a bleached kraft pulp was found to enhance the rate of acid hydrolysis and also result in a decrease in LODP. This implies that the susceptibility of cellulosic fibres towards acid hydrolysis is affected by drying-induced stresses in the cellulose chains. In cotton cellulose, it was found that use and laundering gave a substantial loss in the degree of polymerisation (DP), but that the LODP was only marginally affected. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Nanoarmoring of Enzymes by Interlocking in Cellulose Fibers With Poly(Acrylic Acid).

    PubMed

    Riccardi, Caterina M; Kasi, Rajeswari M; Kumar, Challa V

    2017-01-01

    A simple method for interlocking glucose oxidase (GOx) and horseradish peroxidase (HRP) in cellulose fibers using poly(acrylic acid) (PAA) as an armor around the enzyme, without any need for activation of the cellulose support, is reported here. The resulting enzyme paper is an inexpensive, stable, simple, wearable, and washable biosensor. PAA functions as a multifunctional tether to interlock the enzyme molecules around the paper fibers so that the enzymes are protected against thermal/chemical denaturation and not released from the paper when washed with a detergent. The decreased conformational entropy of the interlocked enzyme protected by the nanoarmor is likely responsible for increased enzyme stability to heat and chemical denaturants (retained ≥70 percent enzyme activity after washing with urea or SDS for 30min), and the polymer protects the enzyme against inactivation by proteases, bacteria, inhibitors, etc. The kinetics of the interlocked enzyme were similar to that of the enzyme in solution. The V max was 6(±0.5)mM per minute before washing, then increased slightly to 9(±1.4)mM per minute after washing with water. The K m was 22(±6.4mM), which was slightly higher compared to GOx in solution (25-27mM). Because the surface area of the paper does not limit the enzyme loading, about 20% of enzyme was successfully loaded onto the paper (0.2g enzyme per gram of paper), and ≥95% of the enzyme was retained after washing. Interlocking works with other enzymes such as laccase, where ≥60% of the enzyme activity is retained. This novel methodology provides a low cost, simple, modular approach of achieving high enzyme loadings in ordinary filter paper, not limited by cellulose surface area, and there has been no need for complex methods of enzyme engineering or toxic methods of activation of the solid support to prepare highly active biocatalysts. © 2017 Elsevier Inc. All rights reserved.

  17. Modern calibration of Tussac grass (Poa flabellata) as a new paleoclimate proxy in the Falkland Islands

    NASA Astrophysics Data System (ADS)

    Groff, D. V.; Williams, D. G.; Gill, J. L.

    2017-12-01

    Monospecific stands of Tussac grasses (Poa flabellata) are a peat forming community found along coastal fringes of the Falkland Islands, and other sub-Antarctic islands in the South Atlantic region. Vegetation in peatlands record variation in regional precipitation and temperature in the cellulose of root and leaf plant tissues. A modern proof-of-concept study has determined how modern living P. flabellata records temperature, relative humidity, and precipitation using carbon (δ13C) and oxygen (δ18O) stable isotopes of leaf and root cellulose. At four locations in the Falkland Islands, P. flabellata plants were collected monthly and temperature (°C) and relative humidity (%) were measured continuously between September 1, 2015 to September 1, 2016. Monthly composite precipitation at each location was used to construct a local meteoric water line using δ2H and δ18O. Measurements of δ13C in leaf cellulose positively correlated with monthly average temperature (Pearson's r=0.82) and negatively correlated with relative humidity (Pearson's r = -0.76) across all sites, but not δ13C of root cellulose. Across all sites, the mean summer δ13C of leaf cellulose (-24.28‰) was significantly greater than winter (-26.80‰; t=8.91, df=73, p<0.001), and mean seasonal temperatures range from 9.32°C to 3.68°C for summer and winter, respectively. Measurements of δ18O in precipitation and leaf cellulose indicate a weak negative correlation (Pearson's r = -0.20), as well as δ18O in root cellulose (Pearson's r= -0.30). The δ13C isotope composition in leaf cellulose, along with the abundance of macrofossil P. flabellata leaves in peat deposits spanning the Holocene, supports the use of coastal grasslands formed by P. flabellata in the Falkland Islands as a paleoclimate proxy in the South Atlantic region.

  18. Effect of ancymidol on cell wall metabolism in growing maize cells.

    PubMed

    Hernández-Altamirano, J Mabel; Largo-Gosens, Asier; Martínez-Rubio, Romina; Pereda, Diego; Álvarez, Jesús M; Acebes, José L; Encina, Antonio; García-Angulo, Penélope

    2018-04-01

    Ancymidol inhibits the incorporation of cellulose into cell walls of maize cell cultures in a gibberellin-independent manner, impairing cell growth; the reduction in the cellulose content is compensated with xylans. Ancymidol is a plant growth retardant which impairs gibberellin biosynthesis. It has been reported to inhibit cellulose synthesis by tobacco cells, based on its cell-malforming effects. To ascertain the putative role of ancymidol as a cellulose biosynthesis inhibitor, we conducted a biochemical study of its effect on cell growth and cell wall metabolism in maize cultured cells. Ancymidol concentrations ≤ 500 µM progressively reduced cell growth and induced globular cell shape without affecting cell viability. However, cell growth and viability were strongly reduced by ancymidol concentrations ≥ 1.5 mM. The I 50 value for the effect of ancymidol on FW gain was 658 µM. A reversal of the inhibitory effects on cell growth was observed when 500 µM ancymidol-treated cultures were supplemented with 100 µM GA 3 . Ancymidol impaired the accumulation of cellulose in cell walls, as monitored by FTIR spectroscopy. Cells treated with 500 µM ancymidol showed a ~ 60% reduction in cellulose content, with no further change as the ancymidol concentration increased. Cellulose content was partially restored by 100 µM GA 3 . Radiolabeling experiments confirmed that ancymidol reduced the incorporation of [ 14 C]glucose into α-cellulose and this reduction was not reverted by the simultaneous application of GA 3 . RT-PCR analysis indicated that the cellulose biosynthesis inhibition caused by ancymidol is not related to a downregulation of ZmCesA gene expression. Additionally, ancymidol treatment increased the incorporation of [ 3 H]arabinose into a hemicellulose-enriched fraction, and up-regulated ZmIRX9 and ZmIRX10L gene expression, indicating an enhancement in the biosynthesis of arabinoxylans as a compensatory response to cellulose reduction.

  19. CP/MAS ¹³C NMR study of pulp hornification using nanocrystalline cellulose as a model system.

    PubMed

    Idström, Alexander; Brelid, Harald; Nydén, Magnus; Nordstierna, Lars

    2013-01-30

    The hornification process of paper pulp was investigated using solid-state (13)C NMR spectroscopy. Nanocrystalline cellulose was used to serve as a model system of the crystalline parts of the fibrils in pulp fibers. Characterization of the nanocrystalline cellulose dimensions was carried out using scanning electron microscopy. The samples were treated by drying and wetting cycles prior to NMR analysis where the hornification phenomenon was recorded by spectral changes of the cellulose C-4 carbon signals. An increase of the crystalline signal and a decrease of the signals corresponding to the accessible amorphous domains were found for both paper pulp and nanocrystalline cellulose. These spectral changes grew stronger with repeating drying and wetting cycles. The results show that cellulose co-crystallization contribute to hornification. Another conclusion is that the surfaces of higher hydrophobicity in cellulose fibrils have an increased preference for aggregation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Immobilization of Lactase onto Various Polymer Nanofibers for Enzyme Stabilization and Recycling.

    PubMed

    Jin, Lihua; Li, Ye; Ren, Xiang-Hao; Lee, Jung-Heon

    2015-08-01

    Five different polymer nanofibers, namely, polyaniline nanofiber (PANI), magnetically separable polyaniline nanofiber (PAMP), magnetically separable DEAE cellulose fiber (DEAE), magnetically separable CM cellulose fiber (CM), and polystyrene nanofiber (PSNF), have been used for the immobilization of lactase (E.C. 3.2.1.23). Except for CM and PSNF, three polymers showed great properties. The catalytic activities (kcat) of the free, PANI, PAMP, and magnetic DEAE-cellulose were determined to be 4.0, 2.05, 0.59, and 0.042 mM/min·mg protein, respectively. The lactase immobilized on DEAE, PANI, and PAMP showed improved stability and recyclability. PANI- and PAMP-lactase showed only a 0-3% decrease in activity after 3 months of vigorous shaking conditions (200 rpm) and at room temperature (25°C). PANI-, PAMP-, and DEAE-lactase showed a high percentage of conversion (100%, 47%, and 12%) after a 1 h lactose hydrolysis reaction. The residual activities of PANI-, PAMP-, and DEAE-lactase after 10 times of recycling were 98%, 96%, and 97%, respectively.

  1. Integrated ‘omics analysis for studying the microbial community response to a pH perturbation of a cellulose-degrading bioreactor culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boaro, Amy A.; Kim, Young-Mo; Konopka, Allan

    2014-12-01

    Integrated ‘omics have been used on pure cultures and co-cultures, yet they have not been applied to complex microbial communities to examine questions of perturbation response. In this study, we used integrated ‘omics to measure the perturbation response of a cellulose-degrading bioreactor community fed with microcrystalline cellulose (Avicel). We predicted that a pH decrease by addition of a pulse of acid would reduce microbial community diversity and temporarily reduce reactor function such as cellulose degradation. However, 16S rDNA pyrosequencing results revealed increased alpha diversity in the microbial community after the perturbation, and a persistence of the dominant community members overmore » the duration of the experiment. Proteomics results showed a decrease in activity of proteins associated with Fibrobacter succinogenes two days after the perturbation followed by increased protein abundances six days after the perturbation. The decrease in cellulolytic activity suggested by the proteomics was confirmed by the accumulation of Avicel in the reactor. Metabolomics showed a pattern similar to that of the proteome, with amino acid production decreasing two days after the perturbation and increasing after six days. This study demonstrated that community ‘omics data provides valuable information about the interactions and function of anaerobic cellulolytic community members after a perturbation.« less

  2. Biotechnological production of phenyllactic acid and biosurfactants from trimming vine shoot hydrolyzates by microbial coculture fermentation.

    PubMed

    Rodríguez-Pazo, Noelia; Salgado, José Manuel; Cortés-Diéguez, Sandra; Domínguez, José Manuel

    2013-04-01

    Coculture fermentations show advantages for producing food additives from agroindustrial wastes, considering that different specified microbial strains are combined to improve the consumption of mixed sugars obtained by hydrolysis. This technology dovetails with both the growing interest of consumers towards the use of natural food additives and with stricter legislations and concern in developed countries towards the management of wastes. The use of this technology allows valorization of both cellulosic and hemicellulosic fractions of trimming vine shoots for the production of lactic acid (LA), phenyllactic acid (PLA), and biosurfactants (BS). This work compares the study of the potential of hemicellulosic and cellulosic fractions of trimming vine shoots as cheaper and renewable carbon sources for PLA and BS production by independent or coculture fermentations. The highest LA and PLA concentrations, 43.0 g/L and 1.58 mM, respectively, were obtained after 144 h during the fermentation of hemicellulosic sugars and simultaneous saccharification and fermentation (SSF) carried out by cocultures of Lactobacillus plantarum and Lactobacillus pentosus. Additionally, cell-bond BS decreased the surface tension (ST) in 17.2 U; meanwhile, cell-free supernatants (CFS) showed antimicrobial activity against Salmonella enterica and Listeria monocytogenes with inhibition halos of 12.1±0.6 mm and 11.5±0.9 mm, respectively.

  3. Identification and Characterization of a Large Protein Essential for Degradation of the Crystalline Region of Cellulose by Cytophaga hutchinsonii

    PubMed Central

    Wang, Sen; Zhao, Dong; Bai, Xinfeng; Zhang, Weican

    2016-01-01

    ABSTRACT Cytophaga hutchinsonii is a Gram-negative bacterium that can efficiently degrade crystalline cellulose by a unique mechanism different from the free cellulase or cellulosome strategy. In this study, chu_3220, encoding the hypothetical protein CHU_3220 (205 kDa), was identified by insertional mutation and gene deletion as the first gene essential for degradation of the crystalline region but not the amorphous region of cellulose by C. hutchinsonii. A chu_3220 deletion mutant was defective in the degradation of crystalline cellulose and increased the degree of crystallinity of Avicel PH101 but could still degrade amorphous cellulose completely. CHU_3220 was found to be located on the outer surface of the outer membrane and could bind to cellulose. It contains 15 PbH1 domains and a C-terminal domain (CHU_C) that was proved to be critical for the localization of CHU_3220 on the cell surface and the function of CHU_3220 in crystalline cellulose degradation. Moreover, the degradation of crystalline cellulose was intact-cell dependent and inhibited by NaN3. Further study showed that chu_3220 was induced by cellulose and that the endoglucanase activity on the cell surface was significantly reduced without chu_3220. Real-time PCR revealed that the transcription of most genes encoding endoglucanases located on the cell surface was decreased in the chu_3220 deletion mutant, indicating that chu_3220 might also play a role in the regulation of the expression of some endoglucanases. IMPORTANCE Cytophaga hutchinsonii could efficiently degrade crystalline cellulose with a unique mechanism without cellulosomes and free cellulases. It lacks proteins that are thought to play important roles in disruption of the crystalline region of cellulose, including exoglucanases, lytic polysaccharide monooxygenases, expansins, expansin-like proteins, or swollenins, and most of its endoglucanases lack carbohydrate binding modules. The mechanism of the degradation of crystalline cellulose is still unknown. In this study, chu_3220 was identified as the first gene essential for the degradation of the crystalline region but not the amorphous region of cellulose. CHU_3220 is a high-molecular-weight protein located on the outer surface of the outer membrane and could bind to cellulose. We proposed that CHU_3220 might be an essential component of a protein complex on the cell surface in charge of the decrystallization of crystalline cellulose. The degradation of crystalline cellulose by C. hutchinsonii was not only dependent on intact cells but also required the energy supplied by the cells. This was obviously different from other known cellulose depolymerization system. Our study has shed more light on the novel strategy of crystalline cellulose degradation by C. hutchinsonii. PMID:27742681

  4. Neutron Reflectometry and QCM-D Study of the Interaction of Cellulase Enzymes with Films of Amorphous Cellulose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halbert, Candice E; Ankner, John Francis; Kent, Michael S

    2011-01-01

    Improving the efficiency of enzymatic hydrolysis of cellulose is one of the key technological hurdles to reduce the cost of producing ethanol and other transportation fuels from lignocellulosic material. A better understanding of how soluble enzymes interact with insoluble cellulose will aid in the design of more efficient enzyme systems. We report a study involving neutron reflectometry (NR) and quartz crystal microbalance with dissipation (QCM-D) of the interaction of a commercial fungal enzyme extract (T. viride), two purified endoglucanses from thermophilic bacteria (Cel9A from A. acidocaldarius and Cel5A from T. maritima), and a mesophilic fungal endoglucanase (Cel45A from H. insolens)more » with amorphous cellulose films. The use of amorphous cellulose is motivated by the promise of ionic liquid pretreatment as a second generation technology that disrupts the native crystalline structure of cellulose. NR reveals the profile of water through the film at nm resolution, while QCM-D provides changes in mass and film stiffness. At 20 oC and 0.3 mg/ml, the T. viride cocktail rapidly digested the entire film, beginning from the surface followed by activity throughout the bulk of the film. For similar conditions, Cel9A and Cel5A were active for only a short period of time and only at the surface of the film, with Cel9A releasing 40 from the ~ 700 film and Cel5A resulting in only a slight roughening/swelling effect at the surface. Subsequent elevation of the temperature to the Topt in each case resulted in a very limited increase in activity, corresponding to the loss of an additional 60 from the film for Cel9A and 20 from the film for Cel5A, and very weak penetration into and digestion within the bulk of the film, before the activity again ceased. The results for Cel9A and Cel5A contrast sharply with results for Cel45A where very rapid and extensive penetration and digestion within the bulk of the film was observed at 20 C. We speculate that the large differences are due to the use of the thermophilic enzymes far below their optimal temperatures and also the presence of a cellulose binding module (CBM) on Cel45A while the thermophilic enzymes lack a CBM.« less

  5. Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum.

    PubMed

    Li, Zheng; Wang, Lifen; Hua, Jiachuan; Jia, Shiru; Zhang, Jianfei; Liu, Hao

    2015-04-20

    The work is aimed to investigate the suitability of waste water of candied jujube-processing industry for the production of bacterial cellulose (BC) by Gluconacetobacter xylinum CGMCC No.2955 and to study the structure properties of bacterial cellulose membranes. After acid pretreatment, the glucose of hydrolysate was higher than that of waste water of candied jujube. The volumetric yield of bacterial cellulose in hydrolysate was 2.25 g/L, which was 1.5-folds of that in waste water of candied jujube. The structures indicated that the fiber size distribution was 3-14 nm in those media with an average diameter being around 5.9 nm. The crystallinity index of BC from pretreatment medium was lower than that of without pretreatment medium and BCs from various media had similar chemical binding. Ammonium citrate was a key factor for improving production yield and the crystallinity index of BC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Cellulose production in Pseudomonas syringae pv. syringae: a compromise between epiphytic and pathogenic lifestyles.

    PubMed

    Arrebola, Eva; Carrión, Víctor J; Gutiérrez-Barranquero, José Antonio; Pérez-García, Alejandro; Rodríguez-Palenzuela, Pablo; Cazorla, Francisco M; de Vicente, Antonio

    2015-07-01

    Genome sequencing and annotation have revealed a putative cellulose biosynthetic operon in the strain Pseudomonas syringae pv. syringae UMAF0158, the causal agent of bacterial apical necrosis. Bioinformatics analyses and experimental methods were used to confirm the functionality of the cellulose biosynthetic operon. In addition, the results showed the contribution of the cellulose operon to important aspects of P. syringae pv. syringae biology, such as the formation of biofilms and adhesion to the leaf surface of mango, suggesting that this operon increases epiphytic fitness. However, based on the incidence and severity of the symptoms observed in tomato leaflets, cellulose expression reduces virulence, as cellulose-deficient mutants increased the area of necrosis, whereas the cellulose-overproducing strain decreased the area of necrosis compared with the wild type. In conclusion, the results of this study show that the epiphytic and pathogenic stages of the P. syringae pv. syringae UMAF0158 lifestyle are intimately affected by cellulose production. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Multilevel composition fractionation process for high-value utilization of wheat straw cellulose.

    PubMed

    Chen, Hong-Zhang; Liu, Zhi-Hua

    2014-01-01

    Biomass refining into multiple products has gained considerable momentum due to its potential benefits for economic and environmental sustainability. However, the recalcitrance of biomass is a major challenge in bio-based product production. Multilevel composition fractionation processes should be beneficial in overcoming biomass recalcitrance and achieving effective conversion of multiple compositions of biomass. The present study concerns the fractionation of wheat straw using steam explosion, coupled with ethanol extraction, and that this facilitates the establishment of sugars and lignin platform and enables the production of regenerated cellulose films. The results showed that the hemicellulose fractionation yield was 73% under steam explosion at 1.6 MPa for 5.2 minutes, while the lignin fractionation yield was 90% by ethanol extraction at 160°C for 2 hours and with 60% ethanol (v/v). The cellulose yield reached up to 93% after steam explosion coupled with ethanol extraction. Therefore, cellulose sugar, hemicellulose sugar, and lignin platform were established effectively in the present study. Long fibers (retained by a 40-mesh screening) accounted for 90% of the total cellulose fibers, and the glucan conversion of short fibers was 90% at 9.0 hours with a cellulase loading of 25 filter paper units/g cellulose in enzymatic hydrolysis. Regenerated cellulose film was prepared from long fibers using [bmim]Cl, and the tensile strength and breaking elongation was 120 MPa and 4.8%, respectively. The cross-section of regenerated cellulose film prepared by [bmim]Cl displayed homogeneous structure, which indicated a dense architecture and a better mechanical performance. Multilevel composition fractionation process using steam explosion followed by ethanol extraction was shown to be an effective process by which wheat straw could be fractionated into different polymeric fractions with high yields. High-value utilization of wheat straw cellulose was achieved by preparing regenerated cellulose film using [bmim]Cl.

  8. Cellulose as an extracellular matrix component present in Enterobacter sakazakii biofilms.

    PubMed

    Grimm, Maya; Stephan, Roger; Iversen, Carol; Manzardo, Giuseppe G G; Rattei, Thomas; Riedel, Kathrin; Ruepp, Andreas; Frishman, Dmitrij; Lehner, Angelika

    2008-01-01

    Cellulose was identified and characterized as an extracellular matrix component present in the biofilm of an Enterobacter sakazakii clinical isolate grown in nutrient-deficient (M9) medium. Using a bacterial artificial cloning approach in Escherichia coli and subsequent screening of transformants for fluorescence on calcofluor plates, nine genes organized in two operons were identified as putatively responsible for the biosynthesis of cellulose. In addition to the genes already described for cellulose production, two more genes were identified, putatively transcribed together with the genes from the first operon. Putative cellulose in E. sakazakii ES5 biofilm grown on glass coverslips was visualized by calcofluor staining and confocal fluorescence laser scanning microscopy. For the first time, the presence of cellulose in biofilms produced by E. sakazakii was confirmed by methylation analysis.

  9. Influence of homogenization treatment on physicochemical properties and enzymatic hydrolysis rate of pure cellulose fibers.

    PubMed

    Jacquet, N; Vanderghem, C; Danthine, S; Blecker, C; Paquot, M

    2013-02-01

    The aim of this study is to compare the effect of different homogenization treatments on the physicochemical properties and the hydrolysis rate of a pure bleached cellulose. Results obtained show that homogenization treatments improve the enzymatic hydrolysis rate of the cellulose fibers by 25 to 100 %, depending of the homogenization treatment applied. Characterization of the samples showed also that homogenization had an impact on some physicochemical properties of the cellulose. For moderate treatment intensities (pressure below 500 b and degree of homogenization below 25), an increase of water retention values (WRV) that correlated to the increase of the hydrolysis rate was highlighted. Result also showed that the overall crystallinity of the cellulose properties appeared not to be impacted by the homogenization treatment. For higher treatment intensities, homogenized cellulose samples developed a stable tridimentional network that contributes to decrease cellulase mobility and slowdown the hydrolysis process.

  10. Functionality of Immunoglobulin G and Immunoglobulin M Antibody Physisorbed on Cellulosic Films

    PubMed Central

    Huang, Ziwei; Raghuwanshi, Vikram Singh; Garnier, Gil

    2017-01-01

    The functionality and aging mechanism of antibodies physisorbed onto cellulosic films was investigated. Blood grouping antibodies immunoglobulin G (IgG) and immunoglobulin M (IgM) were adsorbed onto smooth cellulose acetate (CAF) and regenerated cellulose (RCF) films. Cellulose films and adsorbed IgG layers were characterized at the air and liquid interface by X-ray and neutron reflectivity (NR), respectively. Cellulose film 208 Å thick (in air) swell to 386 Å once equilibrated in water. IgG adsorbs from solution onto cellulose as a partial layer 62 Å thick. IgG and IgM antibodies were adsorbed onto cellulose and cellulose acetate films, air dried, and aged at room temperature for periods up to 20 days. Antibody functionality and surface hydrophobicity were measured everyday with the size of red blood cell (RBC) agglutinates (using RBC specific to IgG/IgM) and the water droplet contact angle, respectively. The functionality of the aged IgG/IgM decreases faster if physisorbed on cellulose than on cellulose acetate and correlates to surface hydrophobicity. IgG physisorbed on RCF or CAF age better and remain functional longer than physisorbed IgM. We found a correlation between antibody stability and hydrogen bond formation ability of the system, evaluated from antibody carbonyl concentration and cellulosic surface hydroxyl concentration. Antibody physisorbs on cellulose by weak dipole forces and hydrogen bonds. Strong hydrogen bonding contributes to the physisorption of antibody on cellulose into a non-functional configuration in which the molecule relaxes by rotation of hydophobic groups toward the air interface. PMID:28770196

  11. Linking carbon supply to root cell-wall chemistry and mechanics at high altitudes in Abies georgei

    PubMed Central

    Genet, Marie; Li, Mingcai; Luo, Tianxiang; Fourcaud, Thierry; Clément-Vidal, Anne; Stokes, Alexia

    2011-01-01

    Background and Aims The mobile carbon supply to different compartments of a tree is affected by climate, but its impact on cell-wall chemistry and mechanics remains unknown. To understand better the variability in root growth and biomechanics in mountain forests subjected to substrate mass movement, we investigated root chemical and mechanical properties of mature Abies georgei var. smithii (Smith fir) growing at different elevations on the Tibet–Qinghai Plateau. Methods Thin and fine roots (0·1–4·0 mm in diameter) were sampled at three different elevations (3480, 3900 and 4330 m, the last corresponding to the treeline). Tensile resistance of roots of different diameter classes was measured along with holocellulose and non-structural carbon (NSC) content. Key Results The mean force necessary to break roots in tension decreased significantly with increasing altitude and was attributed to a decrease in holocellulose content. Holocellulose was significantly lower in roots at the treeline (29·5 ± 1·3 %) compared with those at 3480 m (39·1 ± 1·0 %). Roots also differed significantly in NSC, with 35·6 ± 4·1 mg g−1 dry mass of mean total soluble sugars in roots at 3480 m and 18·8 ± 2·1 mg g−1 dry mass in roots at the treeline. Conclusions Root mechanical resistance, holocellulose and NSC content all decreased with increasing altitude. Holocellulose is made up principally of cellulose, the biosynthesis of which depends largely on NSC supply. Plants synthesize cellulose when conditions are optimal and NSC is not limiting. Thus, cellulose synthesis in the thin and fine roots measured in our study is probably not a priority in mature trees growing at very high altitudes, where climatic factors will be limiting for growth. Root NSC stocks at the treeline may be depleted through over-demand for carbon supply due to increased fine root production or winter root growth. PMID:21186240

  12. Microorganisms applying for artificial soil regeneration technology in space greenhouses

    NASA Astrophysics Data System (ADS)

    Krivobok, A. S.

    2012-04-01

    The space greenhouse and technology for growing plants are being designed in frame of bio-technical life support systems development. During long-term space missions such greenhouse could provide the crew with vitamins and rough plant fiber. One of the important elements of the plant cultivation technology in the absence of earth gravity is organization and support the optimum root area. The capillary-porous substrate composed of anionites (FIBAN -1) and cationites (FIBAN -22-1) synthetic salt-saturated fibers is developed for plant cultivation in space and named "BIONA-V3". The BIONA main features are high productivity and usability. But the pointed features are not constant: the substrate productivity will be decreasing gradually from vegetation to vegetation course of plant residues and root secretions accumulation. Also, the basic hydro-physical characteristic of root zone will be shifted. Furthermore, saprotrophic microflora will develop and lead to increasing the level of microbial contamination of whole inhabit isolated module. Due to these changes the substrate useful life is limited and store mass is increased in long-term missions. For overhaul-period renewal it' necessary to remove the roots residues and other organic accumulation providing safety of the substrate capillary-porous structure. The basic components of 24-days old plant roots (Brassica chinensis, L) are cellulose (35 %) hemicellulose (11 %) and lignin (10 %). We see that one of the possible ways for roots residues removal from fibrous BIONA is microorganisms applying with strong cellulolytic and ligninolytic activities. The fungi Trichoderma sp., cellulolytic bacteria associations, and some genus of anaerobic thermophilic cellulolitic bacteria have been used for roots residues biodegradation. In case of applying cellulolytic fungi Trichoderma sp. considerable decrease of microcrystalline cellulose has been noted in both liquid and solid state fermentation. Cellulolytic fungi weight has been increased up to 30 % from initial roots dry weight. When the bacterial association derived from organic compost was used, the roots dry weight reduction was not exceeded 20 % in liquid state fermentation after 21 days. But the total cellulose was quietly steady, only the readily accessible soluble fractions were consumed. It was found that the most promising microorganisms for pointed task are anaerobic, thermophilic bacterium Clostridium thermocellum F9 and Caldicellulosiruptor bescii DSM 6725. It has been shown that its' in the liquid medium with the roots residuals during 10 days provides root biomass degradation up to 45 % and double decrease of crystalline cellulose. It's known that one of the possible ways to improve biodegradation process efficiency is applying of physical-chemical pretreatment for plant biomass. We used the pretreatment of BIONA substrate in microwave irradiation in 0,7 % sodium hydroxide water solution with addition of 0,5 % of hydrogen peroxide. It has allowed hydrolyzing the roots biomass partially and making the cellulose portion accessible to subsequent biodegradation. The alkaline pretreatment and the subsequent degradation by anaerobic, thermophilic bacterium Clostridium thermocellum, had lead to root biomass decrease up to 85% during 10 days. The examined procedure has allowed to restore the initial pore space volume of BIONA substrate and its' hydro-physical properties. It has made used-up BIONA suitable for the subsequent plant cultivation. The obtained results are the basis for future development of fibrous artificial soils regeneration technologies particularly for space greenhouses

  13. Inhibition of cellulases by phenols

    USDA-ARS?s Scientific Manuscript database

    The inhibition of enzymes by the end products that they make is a well-known phenomenon. Another form of inhibition is manifested by the decrease in hydrolysis of pretreated cellulosic material as the concentration of solid biomass material increases, even though the ratio of enzyme to cellulose is...

  14. The effect of clay catalyst on the chemical composition of bio-oil obtained by co-pyrolysis of cellulose and polyethylene.

    PubMed

    Solak, Agnieszka; Rutkowski, Piotr

    2014-02-01

    Cellulose/polyethylene (CPE) mixture 3:1, w/w with and without three clay catalysts (K10 - montmorillonite K10, KSF - montmorillonite KSF, B - Bentonite) addition were subjected to pyrolysis at temperatures 400, 450 and 500°C with heating rate of 100°C/s to produce bio-oil with high yield. The pyrolytic oil yield was in the range of 41.3-79.5 wt% depending on the temperature, the type and the amount of catalyst. The non-catalytic fast pyrolysis at 500°C gives the highest yield of bio-oil (79.5 wt%). The higher temperature of catalytic pyrolysis of cellulose/polyethylene mixture the higher yield of bio-oil is. Contrarily, increasing amount of montmorillonite results in significant, almost linear decrease in bio-oil yield followed by a significant increase of gas yield. The addition of clay catalysts to CPE mixture has a various influence on the distribution of bio-oil components. The addition of montmorillonite K10 to cellulose/polyethylene mixture promotes the deepest conversion of polyethylene and cellulose. Additionally, more saturated than unsaturated hydrocarbons are present in resultant bio-oils. The proportion of liquid hydrocarbons is the highest when a montmorillonite K10 is acting as a catalyst. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. A cellulose binding domain protein restores female fertility when expressed in transgenic Bintje potato.

    PubMed

    Jones, Richard W; Perez, Frances G

    2016-03-18

    Expression of a gene encoding the family 1 cellulose binding domain protein CBD1, identified in the cellulosic cell wall of the potato late blight pathogen Phytophthora infestans, was tested in transgenic potato to determine if it had an influence on plant cell walls and resistance to late blight. Multiple regenerants of potato (cv. Bintje) were developed and selected for high expression of CBD 1 transcripts. Tests with detached leaflets showed no evidence of increased or decreased resistance to P. infestans, in comparison with the blight susceptible Bintje controls, however, changes in plant morphology were evident in CBD 1 transgenics. Plant height increases were evident, and most importantly, the ability to produce seed berries from a previously sterile cultivar. Immunolocalization of CBD 1 in seed berries revealed the presence throughout the tissue. While Bintje control plants are male and female sterile, CBD 1 transgenics were female fertile. Crosses made using pollen from the late blight resistant Sarpo Mira and transgenic CBD1 Bintje as the female parent demonstrated the ability to introgress P. infestans targeted resistance genes, as well as genes responsible for color and tuber shape, into Bintje germplasm. A family 1 cellulose-binding domain (CBD 1) encoding gene from the potato late blight pathogen P. infestans was used to develop transgenic Bintje potato plants. Transgenic plants became female fertile, allowing for a previously sterile cultivar to be used in breeding improvement. Selection for the absence of the CBD transgene in progeny should allow for immediate use of a genetically enhanced material. Potential for use in other Solanaceous crops is proposed.

  16. Expression of two functionally distinct plant endo-beta-1,4-glucanases is essential for the compatible interaction between potato cyst nematode and its hosts.

    PubMed

    Karczmarek, Aneta; Fudali, Sylwia; Lichocka, Malgorzata; Sobczak, Miroslaw; Kurek, Wojciech; Janakowski, Slawomir; Roosien, Jan; Golinowski, Wladyslaw; Bakker, Jaap; Goverse, Aska; Helder, Johannes

    2008-06-01

    For the proliferation of their feeding sites (syncytia), the potato cyst nematode Globodera rostochiensis is thought to recruit plant endo-beta-1,4-glucanases (EGases, EC. 3.2.1.4). Reverse-transcription polymerase chain reaction experiments on tomato (Solanum lycopersicum) indicated that the expression of two out of the at least eight EGases, namely Sl-cel7 and Sl-cel9C1, is specifically upregulated during syncytium formation. In situ hybridization and immunodetection studies demonstrated that both EGases are specifically expressed inside and adjacent to proliferating syncytia. To assess the importance of Sl-cel7 and Sl-cel9C1 for nematode development, we decided to knock them out individually. Sl-cel9C1 probably is the only class C EGase in tomato, and we were unable to regenerate Sl-cel9C1-silenced plants. Potato (S. tuberosum), a close relative of tomato, harbors at least two class C EGases, and St-cel7-or St-cel9C1-silenced potato plants showed no obvious aberrant phenotype. Infection with potato cyst nematodes resulted in a severe reduction of the number of adult females (up to 60%) and a sharp increase in the fraction of females without eggs (up to 89%). Hence, the recruitment of CEL7, an enzyme that uses xyloglucan and noncrystalline cellulose as natural substrates, and CEL9C1, an enzyme that uses crystalline cellulose, is essential for growth and development of potato cyst nematodes.

  17. Greenhouse gas implications of a 32 billion gallon bioenergy landscape in the US

    NASA Astrophysics Data System (ADS)

    DeLucia, E. H.; Hudiburg, T. W.; Wang, W.; Khanna, M.; Long, S.; Dwivedi, P.; Parton, W. J.; Hartman, M. D.

    2015-12-01

    Sustainable bioenergy for transportation fuel and greenhouse gas (GHGs) reductions may require considerable changes in land use. Perennial grasses have been proposed because of their potential to yield substantial biomass on marginal lands without displacing food and reduce GHG emissions by storing soil carbon. Here, we implemented an integrated approach to planning bioenergy landscapes by combining spatially-explicit ecosystem and economic models to predict a least-cost land allocation for a 32 billion gallon (121 billion liter) renewable fuel mandate in the US. We find that 2022 GHG transportation emissions are decreased by 7% when 3.9 million hectares of eastern US land are converted to perennial grasses supplemented with corn residue to meet cellulosic ethanol requirements, largely because of gasoline displacement and soil carbon storage. If renewable fuel production is accompanied by a cellulosic biofuel tax credit, CO2 equivalent emissions could be reduced by 12%, because it induces more cellulosic biofuel and land under perennial grasses (10 million hectares) than under the mandate alone. While GHG reducing bioenergy landscapes that meet RFS requirements and do not displace food are possible, the reductions in GHG emissions are 50% less compared to previous estimates that did not account for economically feasible land allocation.

  18. Characterization of a new multifunctional beta-glucosidase from Musca domestica.

    PubMed

    Zhang, Shu; Huang, Jian; Hu, Rong; Guo, Guo; Shang, Xiaoli; Wu, Jianwei

    2017-08-01

    To engineer Pichia pastoris for heterologous production of cellulase from Musca domestica and explore its potential for industrial applications. A new beta-glucosidase gene (bg), encoding 562 amino acids, was cloned from M. domestica by using rapid amplification of cDNA ends. The gene bg was linked to pPICZαA and expressed in P. pastoris with a yield of 500 mg l -1 . The enzyme has the maximum activity with 27.6 U mg -1 towards cellulose. The beta-glucosidase has stable activity from 20 to 70 °C and can tolerate one-mole glucose. It has the maximum activities for salicin (25.9 ± 1.8 U mg -1 ), cellobiose (40.1 ± 2.3 U mg -1 ) and cellulose (27.6 ± 3.5 U mg -1 ). The wide-range substrate activities of the beta-glucosidase were further verified by matrix-assisted laser desorption/ionization mass spectra. Structural analysis shows that the beta-glucosidase belongs to glycoside hydrolase family Ι and possesses O-glycosylation sites. Thus, a multifunctional beta-glucosidase was expressed from M. domestica and provides a potential tool for industrial application of cellulose.

  19. Synergetic effect of yeast cell-surface expression of cellulase and expansin-like protein on direct ethanol production from cellulose

    PubMed Central

    2013-01-01

    Background Numerous studies have examined the direct fermentation of cellulosic materials by cellulase-expressing yeast; however, ethanol productivity in these systems has not yet reached an industrial level. Certain microorganisms, such as the cellulolytic fungus Trichoderma reesei, produce expansin-like proteins, which have a cellulose-loosening effect that may increase the breakdown of cellulose. Here, to improve the direct conversion of cellulose to ethanol, yeast Saccharomyces cerevisiae co-displaying cellulase and expansin-like protein on the cell surface were constructed and examined for direct ethanol fermentation performance. Results The cellulase and expansin-like protein co-expressing strain showed 246 mU/g-wet cell of phosphoric acid swollen cellulose (PASC) degradation activity, which corresponded to 2.9-fold higher activity than that of a cellulase-expressing strain. This result clearly demonstrated that yeast cell-surface expressed cellulase and expansin-like protein act synergistically to breakdown cellulose. In fermentation experiments examining direct ethanol production from PASC, the cellulase and expansin-like protein co-expressing strain produced 3.4 g/L ethanol after 96 h of fermentation, a concentration that was 1.4-fold higher than that achieved by the cellulase-expressing strain (2.5 g/L). Conclusions The PASC degradation and fermentation ability of an engineered yeast strain was markedly improved by co-expressing cellulase and expansin-like protein on the cell surface. To our knowledge, this is the first report to demonstrate the synergetic effect of co-expressing cellulase and expansin-like protein on a yeast cell surface, which may be a promising strategy for constructing direct ethanol fermenting yeast from cellulose. PMID:23835302

  20. Polymer blend of PLA/PHBV based bionanocomposites reinforced with nanocrystalline cellulose for potential application as packaging material.

    PubMed

    Dasan, Y K; Bhat, A H; Ahmad, Faiz

    2017-02-10

    The current research discusses the development of poly (lactic acid) (PLA) and poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) reinforced nanocrystalline cellulose bionanocomposites. The nanocrystalline cellulose was derived from waste oil palm empty fruit bunch fiber by acid hydrolysis process. The resulting nanocrystalline cellulose suspension was then surface functionalized by TEMPO-mediated oxidation and solvent exchange process. Furthermore, the PLA/PHBV/nanocrystalline cellulose bionanocomposites were produced by solvent casting method. The effect of the addition of nanocrystalline cellulose on structural, morphology, mechanical and barrier properties of bionanocomposites was investigated. The results revealed that the developed bionanocomposites showed improved mechanical properties and decrease in oxygen permeability rate. Therefore, the developed bio-based composite incorporated with an optimal composition of nanocrystalline cellulose exhibits properties as compared to the polymer blend. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Thickness effect of kenaf cellulose membrane on its morphological, physical and tensile properties

    NASA Astrophysics Data System (ADS)

    Hashim, Sharifah Nurul Ain Syed; Zakaria, Sarani; Jaafar, Sharifah Nabihah Syed; Chia, Chin Hua

    2016-11-01

    Dissolution of kenaf core cellulose was undergone in NaOH/Urea solvent and the cellulose solution was casted with three different thicknesses (0.04 mm, 0.06 mm and 0.07 mm) followed by coagulation in 5 % of H2SO4 to form regenerated cellulose membrane. The XRD results showed that the crystallinity index (CrI) of kenaf core cellulose membrane decreased after been regenerated into cellulose II. The surface morphology showed that the pores of the membrane became smaller as the thickness of cellulose membrane increased. The transparency tests demonstrated the thinner samples (0.04 mm) gave higher light transmittance than the thickest samples (0.07 mm). The kenaf core membrane with 0.07 mm thickness possessed highest tensile strength and breaking elongation at σ = 33.48 and ɛ = 8.03 relatively and also exhibited the largest pore size.

  2. Effects of various fiber additions on lipid digestion during in vitro digestion of beef patties.

    PubMed

    Hur, S J; Lim, B O; Park, G B; Joo, S T

    2009-01-01

    The purpose of this study was to examine the effect of various fiber additions on lipid digestion during the in vitro digestion of beef patties. The control patties were prepared with 90.5% lean meat and 9.5% tallow. Treatments consisted of 90% lean meat with 9.5% tallow and either 0.5% cellulose, 0.5% chitosan, or 0.5% pectin. The beef patties were then passed through an in vitro digestion model that simulated the composition of the mouth, stomach, and small intestine juices. The change in structure and properties of the lipid droplets was monitored by laser scanning confocal fluorescence microscopy. In general, there was a decrease in lipid droplet diameter as the droplets moved from mouth to stomach to small intestine. The amount of free fatty acid dramatically increased after in vitro digestion in all beef patties. The amount of free fatty acid was, however, lower in beef patties containing chitosan and pectin than other beef patties after in vitro digestion. Beef patties containing various fibers had lower thiobarbituric acid-reactive substances (TBARS) values than samples with no fibers. Among the samples to which fibers were added, chitosan and pectin had lower TBARS than beef patties with cellulose. The cholesterol content decreased after in vitro digestion in all beef patties but was not different among the beef patties before and after in vitro digestion. These results enhance our understanding of the physicochemical and structural changes that occur to ground beef within the gastrointestinal tract.

  3. Films based on oxidized starch and cellulose from barley.

    PubMed

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Deon, Vinícius Gonçalves; Pinto, Vânia Zanella; Villanova, Franciene Almeida; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-11-20

    Starch and cellulose fibers were isolated from grains and the husk from barley, respectively. Biodegradable films of native starch or oxidized starches and glycerol with different concentrations of cellulose fibers (0%, 10% and 20%) were prepared. The films were characterized by morphological, mechanical, barrier, and thermal properties. Cellulose fibers isolated from the barley husk were obtained with 75% purity and high crystallinity. The morphology of the films of the oxidized starches, regardless of the fiber addition, was more homogeneous as compared to the film of the native starch. The addition of cellulose fibers in the films increased the tensile strength and decreased elongation. The water vapor permeability of the film of oxidized starch with 20% of cellulose fibers was lower than the without fibers. However the films with cellulose fibers had the highest decomposition with the initial temperature and thermal stability. The oxidized starch and cellulose fibers from barley have a good potential for use in packaging. The addition of cellulose fibers in starch films can contribute to the development of films more resistant that can be applied in food systems to maintain its integrity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Chitinase-like1/pom-pom1 and its homolog CTL2 are glucan-interacting proteins important for cellulose biosynthesis in Arabidopsis.

    PubMed

    Sánchez-Rodríguez, Clara; Bauer, Stefan; Hématy, Kian; Saxe, Friederike; Ibáñez, Ana Belén; Vodermaier, Vera; Konlechner, Cornelia; Sampathkumar, Arun; Rüggeberg, Markus; Aichinger, Ernst; Neumetzler, Lutz; Burgert, Ingo; Somerville, Chris; Hauser, Marie-Theres; Persson, Staffan

    2012-02-01

    Plant cells are encased by a cellulose-containing wall that is essential for plant morphogenesis. Cellulose consists of β-1,4-linked glucan chains assembled into paracrystalline microfibrils that are synthesized by plasma membrane-located cellulose synthase (CESA) complexes. Associations with hemicelluloses are important for microfibril spacing and for maintaining cell wall tensile strength. Several components associated with cellulose synthesis have been identified; however, the biological functions for many of them remain elusive. We show that the chitinase-like (CTL) proteins, CTL1/POM1 and CTL2, are functionally equivalent, affect cellulose biosynthesis, and are likely to play a key role in establishing interactions between cellulose microfibrils and hemicelluloses. CTL1/POM1 coincided with CESAs in the endomembrane system and was secreted to the apoplast. The movement of CESAs was compromised in ctl1/pom1 mutant seedlings, and the cellulose content and xyloglucan structures were altered. X-ray analysis revealed reduced crystalline cellulose content in ctl1 ctl2 double mutants, suggesting that the CTLs cooperatively affect assembly of the glucan chains, which may affect interactions between hemicelluloses and cellulose. Consistent with this hypothesis, both CTLs bound glucan-based polymers in vitro. We propose that the apoplastic CTLs regulate cellulose assembly and interaction with hemicelluloses via binding to emerging cellulose microfibrils.

  5. CHITINASE-LIKE1/POM-POM1 and Its Homolog CTL2 Are Glucan-Interacting Proteins Important for Cellulose Biosynthesis in Arabidopsis[W][OA

    PubMed Central

    Sánchez-Rodríguez, Clara; Bauer, Stefan; Hématy, Kian; Saxe, Friederike; Ibáñez, Ana Belén; Vodermaier, Vera; Konlechner, Cornelia; Sampathkumar, Arun; Rüggeberg, Markus; Aichinger, Ernst; Neumetzler, Lutz; Burgert, Ingo; Somerville, Chris; Hauser, Marie-Theres; Persson, Staffan

    2012-01-01

    Plant cells are encased by a cellulose-containing wall that is essential for plant morphogenesis. Cellulose consists of β-1,4-linked glucan chains assembled into paracrystalline microfibrils that are synthesized by plasma membrane–located cellulose synthase (CESA) complexes. Associations with hemicelluloses are important for microfibril spacing and for maintaining cell wall tensile strength. Several components associated with cellulose synthesis have been identified; however, the biological functions for many of them remain elusive. We show that the chitinase-like (CTL) proteins, CTL1/POM1 and CTL2, are functionally equivalent, affect cellulose biosynthesis, and are likely to play a key role in establishing interactions between cellulose microfibrils and hemicelluloses. CTL1/POM1 coincided with CESAs in the endomembrane system and was secreted to the apoplast. The movement of CESAs was compromised in ctl1/pom1 mutant seedlings, and the cellulose content and xyloglucan structures were altered. X-ray analysis revealed reduced crystalline cellulose content in ctl1 ctl2 double mutants, suggesting that the CTLs cooperatively affect assembly of the glucan chains, which may affect interactions between hemicelluloses and cellulose. Consistent with this hypothesis, both CTLs bound glucan-based polymers in vitro. We propose that the apoplastic CTLs regulate cellulose assembly and interaction with hemicelluloses via binding to emerging cellulose microfibrils. PMID:22327741

  6. A new method for recovery of cellulose from lignocellulosic bio-waste: Pile processing.

    PubMed

    Tezcan, Erdem; Atıcı, Oya Galioğlu

    2017-12-01

    This paper presents a new delignification method (pile processing) for the recovery of cellulose from lignocellulosic bio-wastes, adapted from heap leaching technology in metallurgy. The method is based on the stacking of cellulosic materials in a pile, irrigation of the pile with aqueous reactive solution from the top, lignin and hemicellulose removal and enrichment of cellulose by the reactive solution while percolation occurs through the bottom of the pile, recirculating the reactive solution after adjusting several values such as chemical concentrations, and allow the system run until the desired time or cellulose purity. Laboratory scale systems were designed using fall leaves (FL) as lignocellulosic waste materials. The ideal condition for FL was noted as: 0.1g solid NaOH addition per gram of FL into the irrigating solution resulting in instant increase in pH to about 13.8, later allowing self-decrease in pH due to delignification over time down to 13.0, at which point another solid NaOH addition was performed. The new method achieved enrichment of cellulose from 30% to 81% and removal of 84% of the lignin that prevents industrial application of lignocellulosic bio-waste using total of 0.3g NaOH and 4ml of water per gram of FL at environmental temperature and pressure. While the stirring reactions used instead of pile processing required the same amount of NaOH, they needed at least 12ml of water and delignification was only 56.1%. Due to its high delignification performance using common and odorless chemicals and simple equipment in mild conditions, the pile processing method has great promise for the industrial evaluation of lignocellulosic bio-waste. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The effect of seaweed Ecklonia maxima extract and mineral nitrogen on fodder grass chemical composition.

    PubMed

    Ciepiela, Grażyna Anna; Godlewska, Agnieszka; Jankowska, Jolanta

    2016-02-01

    The objective of this study was to determine the effect of the biostimulant Kelpak and different nitrogen rates on cellulose, hemicellulose and lignin contents as well as non-structural carbohydrates in orchard grass and Braun's festulolium. The experiment was a split-plot arrangement with three replicates. It was set up at the experimental facility of the University of Natural Sciences and Humanities, Siedlce, in late April 2009. The following factors were examined: biostimulant with the trade name Kelpak SL applied at 2 dm(3) ha(-1) and a control-no biostimulant; nitrogen application rates 50 and 150 kg ha(-1) and a control (0 kg ha(-1)); pure stands of grass species grown in monoculture--orchard grass (Dactylis glomerata), cv. Amila,-Braun's festulolium (Festulolium braunii), cv. Felopa. Kelpak significantly increased non-structural carbohydrates, and increasing nitrogen rates reduced the concentration of these components in plants. Increasing nitrogen rates significantly decreased cellulose, hemicellulose, lignin and non-structural carbohydrate contents. Compared with orchard grass, Braun's festulolium proved to be of a higher nutritional value due to lower cellulose, hemicellulose and lignin contents and more non-structural carbohydrates. The aforementioned contents in the grasses differed significantly depending on the cut. Most cellulose and non-structural carbohydrates were determined in second-cut grass whereas most hemicellulose and lignin in second-cut grass.

  8. Removal of pesticides from white and red wines by microfiltration.

    PubMed

    Doulia, Danae S; Anagnos, Efstathios K; Liapis, Konstantinos S; Klimentzos, Demetrios A

    2016-11-05

    The aim of this work is the investigation of microfiltration in removing pesticides from a white and a red Greek wine. Six membranes with pore size 0.45μm were investigated. Two mixtures of 23 and 9 pesticides, and single pesticide solutions were added in the wine. The pesticides tested belong to 11 chemical groups. Solid phase extraction (SPE) followed by gas chromatography (GC) with electron capture detector (ECD) were performed to analyze pesticide residues of the filtered fortified wine. Distinct behavior was exhibited by each membrane. Cellulose acetate and cellulose nitrate showed higher mean pesticide removal for both wines, followed by polyethersulfone, regenerated cellulose, and polyamides. The filtration effectiveness was correlated to the membrane type and to the pesticide chemical structure and properties (octanol-water partition coefficient, water solubility) and compared for the wines tested. In most cases, the more hydrophobic pesticides (pyrethroids and aldrin) showed higher removal from red wine than white wine. Adsorption on membranes was increased by increasing hydrophobicity and decreasing hydrophilicity of organic pesticide molecule. The removal of each pesticide from its single solution was generally higher than that from its mixtures, allowing the estimation of the antagonistic and synergistic effects of pesticides in the mixtures. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Pt nanocatalysts supported on reduced graphene oxide for selective conversion of cellulose or cellobiose to sorbitol.

    PubMed

    Wang, Ding; Niu, Wenqi; Tan, Minghui; Wu, Mingbo; Zheng, Xuejun; Li, Yanpeng; Tsubaki, Noritatsu

    2014-05-01

    Pt nanocatalysts loaded on reduced graphene oxide (Pt/RGO) were prepared by means of a convenient microwave-assisted reduction approach with ethylene glycol as reductant. The conversion of cellulose or cellobiose into sorbitol was used as an application reaction to investigate their catalytic performance. Various metal nanocatalysts loaded on RGO were compared and RGO-supported Pt exhibited the highest catalytic activity with 91.5 % of sorbitol yield from cellobiose. The catalytic performances of Pt nanocatalysts supported on different carbon materials or on silica support were also compared. The results showed that RGO was the best catalyst support, and the yield of sorbitol was as high as 91.5 % from cellobiose and 58.9 % from cellulose, respectively. The improvement of catalytic activity was attributed to the appropriate Pt particle size and hydrogen spillover effect of Pt/RGO catalyst. Interestingly, the size and dispersion of supported Pt particles could be easily regulated by convenient adjustment of the microwave heating temperature. The catalytic performance was found to initially increase and then decrease with increasing particle size. The optimum Pt particle size was 3.6 nm. These findings may offer useful guidelines for designing novel catalysts with beneficial catalytic performance for biomass conversion. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Inadequacy, Impurity and Infidelity; Modifying the Modified Brendel Alpha-Cellulose Extraction Method for Resinous Woods in Stable Isotope Dendroclimatology

    NASA Astrophysics Data System (ADS)

    Brookman, T. H.; Whittaker, T. E.; King, P. L.; Horton, T. W.

    2011-12-01

    Stable isotope dendroclimatology is a burgeoning field in palaeoclimate science due to its unique potential to contribute (sub)annually resolved climate records, over millennial timescales, to the terrestrial palaeoclimate record. Until recently the time intensive methods precluded long-term climate reconstructions. Advances in continuous-flow mass spectrometry and isolation methods for α-cellulose (ideal for palaeoclimate studies as, unlike other wood components, it retains its initial isotopic composition) have made long-term, calendar dated palaeoclimate reconstructions a viable proposition. The Modified Brendel (mBrendel) α-cellulose extraction method is a fast, cost-effective way of preparing whole-wood samples for stable oxygen and carbon isotope analysis. However, resinous woods often yield incompletely processed α-cellulose using the standard mBrendel approach. As climate signals may be recorded by small (<1%) isotopic shifts it is important to investigate if incomplete processing affects the accuracy and precision of tree-ring isotopic records. In an effort to address this methodological issue, we investigated three highly resinous woods: kauri (Agathis australis), ponderosa pine (Pinus ponderosa) and huon pine (Lagarastrobus franklinii). Samples of each species were treated with 16 iterations of the mBrendel, varying reaction temperature, time and reagent volumes. Products were investigated using microscopic and bulk transmission Fourier Transform infrared spectroscopy (FITR) to reveal variations in the level of processing; poorly-digested fibres display a peak at 1520cm-1 suggesting residual lignin and a peak at ~1600cm-1 in some samples suggests retained resin. Despite the different levels of purity, replicate analyses of samples processed by high temperature digestion yielded consistent δ18O within and between experiments. All α-cellulose samples were 5-7% enriched compared to the whole-wood, suggesting that even incomplete processing at high temperature can provide acceptable δ18O analytical external precision. For kauri, short, lower temperature extractions produced α-cellulose with δ18O consistently ~1% lower than longer, higher temperature kauri experiments. These findings suggest that temperature and time are significant variables that influence the analytical precision of α-cellulose stable isotope analysis and that resinous hardwoods (e.g. kauri) may require longer and/or hotter digestions than softwoods. The effects of mBrendel variants on the carbon isotope ratio precision of α-cellulose extracts will also be presented. Our findings indicate that the standard mBrendel α-cellulose extraction method may not fully remove lignins and resins depending on the type of wood being analysed. Residual impurities can decrease analytical precision and accuracy. Fortunately, FTIR analysis prior to isotopic analysis is a relatively fast and cost effective way to determine α-cellulose extract purity, ultimately improving the data quality, accuracy and utility of tree-ring based stable isotopic climate records.

  11. Effect of steam explosion and microbial fermentation on cellulose and lignin degradation of corn stover.

    PubMed

    Chang, Juan; Cheng, Wei; Yin, Qingqiang; Zuo, Ruiyu; Song, Andong; Zheng, Qiuhong; Wang, Ping; Wang, Xiao; Liu, Junxi

    2012-01-01

    In order to increase nutrient values of corn stover, effects of steam explosion (2.5 MPa, 200 s) and Aspergillus oryzae (A. oryzae) fermentation on cellulose and lignin degradation were studied. The results showed the contents of cellulose, hemicellulose and lignin in the exploded corn stover were 8.47%, 50.45% and 36.65% lower than that in the untreated one, respectively (P<0.05). The contents of cellulose and hemicellulose in the exploded and fermented corn stover (EFCS) were decreased by 24.36% and 69.90%, compared with the untreated one (P<0.05); decreased by 17.35% and 38.59%, compared with the exploded one (P<0.05). The scanning electron microscope observations demonstrated that the combined steam explosion and fermentation destructed corn stover. The activities of enzymes in EFCS were increased. The metabolic experiment showed that about 8% EFCS could be used to replace corn meal in broiler diets, which made EFCS become animal feedstuff possible. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. The Disulfide Bonding System Suppresses CsgD-Independent Cellulose Production in Escherichia coli

    PubMed Central

    Hufnagel, David A.; DePas, William H.

    2014-01-01

    The bacterial extracellular matrix encases cells and protects them from host-related and environmental insults. The Escherichia coli master biofilm regulator CsgD is required for the production of the matrix components curli and cellulose. CsgD activates the diguanylate cyclase AdrA, which in turn stimulates cellulose production through cyclic di-GMP (c-di-GMP). Here, we identified and characterized a CsgD- and AdrA-independent cellulose production pathway that was maximally active when cultures were grown under reducing conditions or when the disulfide bonding system (DSB) was compromised. The CsgD-independent cellulose activation pathway was dependent on a second diguanylate cyclase, called YfiN. c-di-GMP production by YfiN was repressed by the periplasmic protein YfiR, and deletion of yfiR promoted CsgD-independent cellulose production. Conversely, when YfiR was overexpressed, cellulose production was decreased. Finally, we found that YfiR was oxidized by DsbA and that intraprotein YfiR disulfide bonds stabilized YfiR in the periplasm. Altogether, we showed that reducing conditions and mutations in the DSB system caused hyperactivation of YfiN and subsequent CsgD-independent cellulose production. PMID:25112475

  13. The disulfide bonding system suppresses CsgD-independent cellulose production in Escherichia coli.

    PubMed

    Hufnagel, David A; DePas, William H; Chapman, Matthew R

    2014-11-01

    The bacterial extracellular matrix encases cells and protects them from host-related and environmental insults. The Escherichia coli master biofilm regulator CsgD is required for the production of the matrix components curli and cellulose. CsgD activates the diguanylate cyclase AdrA, which in turn stimulates cellulose production through cyclic di-GMP (c-di-GMP). Here, we identified and characterized a CsgD- and AdrA-independent cellulose production pathway that was maximally active when cultures were grown under reducing conditions or when the disulfide bonding system (DSB) was compromised. The CsgD-independent cellulose activation pathway was dependent on a second diguanylate cyclase, called YfiN. c-di-GMP production by YfiN was repressed by the periplasmic protein YfiR, and deletion of yfiR promoted CsgD-independent cellulose production. Conversely, when YfiR was overexpressed, cellulose production was decreased. Finally, we found that YfiR was oxidized by DsbA and that intraprotein YfiR disulfide bonds stabilized YfiR in the periplasm. Altogether, we showed that reducing conditions and mutations in the DSB system caused hyperactivation of YfiN and subsequent CsgD-independent cellulose production. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. Grafting of bacterial polyhydroxybutyrate (PHB) onto cellulose via in situ reactive extrusion with dicumyl peroxide.

    PubMed

    Wei, Liqing; McDonald, Armando G; Stark, Nicole M

    2015-03-09

    Polyhydroxybutyrate (PHB) was grafted onto cellulose fiber by dicumyl peroxide (DCP) radical initiation via in situ reactive extrusion. The yield of the grafted (cellulose-g-PHB) copolymer was recorded and grafting efficiency was found to be dependent on the reaction time and DCP concentration. The grafting mechanism was investigated by electron spin resonance (ESR) analysis and showed the presence of radicals produced by DCP radical initiation. The grafted copolymer structure was determined by nuclear magnetic resonance (NMR) spectroscopy. Scanning electronic microscopy (SEM) showed that the cellulose-g-PHB copolymer formed a continuous phase between the surfaces of cellulose and PHB as compared to cellulose-PHB blends. The relative crystallinity of cellulose and PHB were quantified from Fourier transform infrared (FTIR) spectra and X-ray diffraction (XRD) results, while the absolute degree of crystallinity was evaluated by differential scanning calorimetry (DSC). The reduction of crystallinity indicated the grafting reaction occurred not just in the amorphous region but also slightly in crystalline regions of both cellulose and PHB. The smaller crystal sizes suggested the brittleness of PHB was decreased. Thermogravimetric analysis (TGA) showed that the grafted copolymer was stabilized relative to PHB. By varying the reaction parameters the compositions (%PHB and %cellulose) of resultant cellulose-g-PHB copolymer are expected to be manipulated to obtain tunable properties.

  15. The effect of liquid hot water pretreatment on the chemical-structural alteration and the reduced recalcitrance in poplar.

    PubMed

    Li, Mi; Cao, Shilin; Meng, Xianzhi; Studer, Michael; Wyman, Charles E; Ragauskas, Arthur J; Pu, Yunqiao

    2017-01-01

    Hydrothermal pretreatment using liquid hot water (LHW) is capable of substantially reducing the cell wall recalcitrance of lignocellulosic biomass. It enhances the saccharification of polysaccharides, particularly cellulose, into glucose with relatively low capital required. Due to the close association with biomass recalcitrance, the structural change of the components of lignocellulosic materials during the pretreatment is crucial to understand pretreatment chemistry and advance the bio-economy. Although the LHW pretreatment has been extensively applied and studied, the molecular structural alteration during pretreatment and its significance to reduced recalcitrance have not been well understood. We investigated the effects of LHW pretreatment with different severity factors (log R 0 ) on the structural changes of fast-grown poplar ( Populus trichocarpa ). With the severity factor ranging from 3.6 to 4.2, LHW pretreatment resulted in a substantial xylan solubilization by 50-77% ( w/w , dry matter). The molecular weights of the remained hemicellulose in pretreated solids also have been significantly reduced by 63-75% corresponding to LHW severity factor from 3.6 to 4.2. In addition, LHW had a considerable impact on the cellulose structure. The cellulose crystallinity increased 6-9%, whereas its degree of polymerization decreased 35-65% after pretreatment. We found that the pretreatment severity had an empirical linear correlation with the xylan solubilization ( R 2  = 0.98, r  = + 0.99), hemicellulose molecular weight reduction ( R 2  = 0.97, r  = - 0.96 and R 2  = 0.93, r  = - 0.98 for number-average and weight-average degree of polymerization, respectively), and cellulose crystallinity index increase ( R 2  = 0.98, r  = + 0.99). The LHW pretreatment also resulted in small changes in lignin structure such as decrease of β- O -4' ether linkages and removal of cinnamyl alcohol end group and acetyl group, while the S/G ratio of lignin in LHW pretreated poplar residue remained no significant change compared with the untreated poplar. This study revealed that the solubilization of xylan, the reduction of hemicellulose molecular weights and cellulose degree of polymerization, and the cleavage of alkyl-aryl ether bonds in lignin resulted from LHW pretreatment are critical factors associated with reduced cell wall recalcitrance. The chemical-structural changes of the three major components, cellulose, lignin, and hemicellulose, during LHW pretreatment provide useful and fundamental information of factors governing feedstock recalcitrance during hydrothermal pretreatment.

  16. Effect of Evaporation Time on Separation Performance of Polysulfone/Cellulose Acetate (PSF/CA) Membrane

    NASA Astrophysics Data System (ADS)

    Syahbanu, Intan; Piluharto, Bambang; Khairi, Syahrul; Sudarko

    2018-01-01

    Polysulfone and cellulose acetate are common material in separation. In this research, polysulfone/cellulose actetate (PSF/CA) blend membrane was prepared. The aim of this research was to study effect of evaporation time in casting of PSF/CA membrane and its performance in filtration. CA was obtained by acetylation process of bacterial cellulose (BC) from fermentation of coconut water. Fourier Transform Infra Red (FTIR) Spectroscopy was used to examine functional groups of BC, CA and commercial cellulose acetate. Subtitution of acetyl groups determined by titration method. Blend membranes were prepared through phase inversion technique in which composition of PSF/PEG/CA/NMP(%w) was 15/5/5/75. Polyethyleneglycol (PEG) and N-methyl-2-pyrrolidone (NMP) were act as pore forming agent and solvent, respectively. Variation of evaporation times were used as parameter to examine water uptake, flux, and morphology of PSF/CA blend membranes. FTIR spectra of CA show characteristic peak of acetyl group at 1220 cm-1 indicated that BC was acetylated succesfully. Degree of subtitution of BCA was found at 2.62. Highest water flux was performed at 2 bar obtained at 106.31 L.m-2.h-1 at 0 minute variation, and decrease as increasing evaporation time. Morphology of PSF/BCA blend membranes were investigated by Scanning Electron Microscopy (SEM) showed that porous asymetric membrane were formed.

  17. Surface Photochemistry: 3,3′-Dialkylthia and Selenocarbocyanine Dyes Adsorbed onto Microcrystalline Cellulose

    PubMed Central

    Vieira Ferreira, Luís F.; Ferreira, Diana P.; Duarte, Paulo; Oliveira, A. S.; Torres, E.; Machado, I. Ferreira; Almeida, P.; Reis, Lucinda V.; Santos, Paulo F.

    2012-01-01

    In this work, thia and selenocarbocyanines with n-alkyl chains of different length, namely with methyl, ethyl, propyl, hexyl and decyl substituents, were studied in homogeneous and heterogeneous media for comparison purposes. For both carbocyanine dyes adsorbed onto microcrystalline cellulose, a remarkable increase in the fluorescence quantum yields and lifetimes were detected, when compared with solution. Contrary to the solution behaviour, where the increase in the n-alkyl chains length increases to a certain extent the fluorescence emission ΦF and τF, on powdered solid samples a decrease of ΦF and τF was observed. The use of an integrating sphere enabled us to obtain absolute ΦF’s for all the powdered samples. The main difference for liquid homogeneous samples is that the increase of the alkyl chain strongly decreases the ΦF values, both for thiacarbocyanines and selenocarbocyanines. A lifetime distribution analysis for the fluorescence of these dyes adsorbed onto microcrystalline cellulose, evidenced location on the ordered and crystalline part of the substrate, as well as on the more disordered region where the lifetime is smaller. The increase of the n-alkyl chains length decreases the photoisomer emission for the dyes adsorbed onto microcrystalline cellulose, as detected for high fluences of the laser excitation, for most samples. PMID:22312274

  18. Extraction and characterization of cellulose nanowhiskers from Mandacaru (Cereus jamacaru DC.) spines

    USDA-ARS?s Scientific Manuscript database

    Cellulose nanowhiskers were extracted from the spines of Mandacaru (Cereus jamacaru DC.) spines, a cactus native to the Caatinga biome of in northeastern Brazil, using sulfuric acid hydrolysis preceeded by mercerization and bleaching. Nanowhisker size decreased from about 400 to 260 nm when extracti...

  19. The inhibition of hemicellulosic sugars on cellulose hydrolysis are highly dependant on the cellulase productive binding, processivity, and substrate surface charges.

    PubMed

    Zhai, Rui; Hu, Jinguang; Saddler, Jack N

    2018-06-01

    In this study, the influence of major hemicellulosic sugars (mannose and xylose) on cellulose hydrolysis and major enzyme activities were evaluated by using both commercial enzyme cocktail and purified cellulase monocomponents over a "library" of cellulosic substrates. Surprisingly, the results showed that unlike glucose, mannose/xylose did not inhibit individual cellulase activities but significantly decreased their hydrolytic performance on cellulose substrates. When various enzyme-substrate interactions (e.g. adsorption/desorption, productive binding, and processive moving) were evaluated, it appeared that these hemicellulosic sugars significantly reduced the productive binding and processivity of Cel7A, which in turn limited cellulase hydrolytic efficacy. Among a range of major cellulose characteristics (e.g. crystallinity, degree of polymerization, accessibility, and surface charges), the acid group content of the cellulosic substrates seemed to be the main driver that determined the extent of hemicellulosic sugar inhibition. Our results provided new insights for better understanding the sugar inhibition mechanisms of cellulose hydrolysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Biodegradability of regenerated cellulose films coated with polyurethane/natural polymers interpenetrating polymer networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, L.; Zhou, J.; Huang, J.

    1999-11-01

    Interpenetrating polymer network (IPN) coatings synthesized from castor-oil-based polyurethane (PU) with chitosan, nitrocellulose, or elaeostearin were coated on regenerated cellulose (RC) film for curing at 80--100 C for 2--5 min, providing biodegradable, water-resistant cellulose films coded, respectively, as RCCH, RCNC, and RCEs. The coated films were buried in natural soil for decaying and inoculated with a spore suspension of fungi on the agar medium, respectively, to test biodegradability. The viscosity-average molecular weight, M{sub {eta}}, and the weight of the degraded films decreased sharply with the progress of degradation. The degradation half-lifes, t{sub 1/2}, of the films in soil at 30more » C were found to be 19 days for RC, 25 days for RCNC, 32 days for RCCH, and 45 days for the RCEs films. Scanning electron microscopy (SEM) showed that the extent of decay followed in the order RC {gt} RCNC {gt} RCCH {gt} RCEs. SEM, infrared (IR), high-performance liquid chromatography (HPLC), and CO{sub 2} evolution results indicated that the microorganisms directly attacked the water-resistant coating layer and then penetrated into the cellulose to speedily metabolize, while accompanying with producing CO{sub 2}, H{sub 2}O, glucose cleaved from cellulose, and small molecules decomposed from the coatings.« less

  1. The effect of clay catalyst on the chemical composition of bio-oil obtained by co-pyrolysis of cellulose and polyethylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solak, Agnieszka; Rutkowski, Piotr, E-mail: piotr.rutkowski@pwr.wroc.pl

    2014-02-15

    Highlights: • Non-catalytic and catalytic fast pyrolysis of cellulose/polyethylene blend was carried out in a laboratory scale reactor. • Optimization of process temperature was done. • Optimization of clay catalyst type and amount for co-pyrolysis of cellulose and polyethylene was done. • The product yields and the chemical composition of bio-oil was investigated. - Abstract: Cellulose/polyethylene (CPE) mixture 3:1, w/w with and without three clay catalysts (K10 – montmorillonite K10, KSF – montmorillonite KSF, B – Bentonite) addition were subjected to pyrolysis at temperatures 400, 450 and 500 °C with heating rate of 100 °C/s to produce bio-oil with highmore » yield. The pyrolytic oil yield was in the range of 41.3–79.5 wt% depending on the temperature, the type and the amount of catalyst. The non-catalytic fast pyrolysis at 500 °C gives the highest yield of bio-oil (79.5 wt%). The higher temperature of catalytic pyrolysis of cellulose/polyethylene mixture the higher yield of bio-oil is. Contrarily, increasing amount of montmorillonite results in significant, almost linear decrease in bio-oil yield followed by a significant increase of gas yield. The addition of clay catalysts to CPE mixture has a various influence on the distribution of bio-oil components. The addition of montmorillonite K10 to cellulose/polyethylene mixture promotes the deepest conversion of polyethylene and cellulose. Additionally, more saturated than unsaturated hydrocarbons are present in resultant bio-oils. The proportion of liquid hydrocarbons is the highest when a montmorillonite K10 is acting as a catalyst.« less

  2. Cellulosic fibers and nonwovens from solutions: Processing and properties

    NASA Astrophysics Data System (ADS)

    Dahiya, Atul

    Cellulose is a renewable and bio-based material source extracted from wood that has the potential to generate value added products such as composites, fibers, and nonwoven textiles. This research was focused on the potential of cellulose as the raw material for fiber spinning and melt blowing of nonwovens. The cellulose was dissolved in two different benign solvents: the amine oxide 4-N-methyl morpholine oxide monohydrate (NMMO•H2O) (lyocell process); and the ionic liquid (IL) 1-butyl-3-methylimidazolium chloride ([C 4MIM]Cl). The solvents have essentially no vapor pressure and are biologically degradable, making them environmentally advantageous for manufacturing processes. The objectives of this research were to: (1) characterize solutions of NMMO and [C4MIM]Cl; (2) develop processing techniques to melt blow nonwoven webs from cellulose using NMMO as a solvent; (3) electrospin cellulosic fibers from the [C4MIM]Cl solvent; (4) spin cellulosic single fibers from the [C4MIM]Cl solvent. Different concentration solutions of cellulose in NMMO and [C4MIM]Cl were initially characterized rheologically and thermally to understand their behavior under different conditions of stress, strain, and temperature. Results were used to determine processing conditions and concentrations for the melt blowing, fiber spinning, and electrospinning experiments. The cellulosic nonwoven webs and fibers were characterized for their physical and optical properties such as tensile strength, water absorbency, fiber diameter, and fiber surface. Thermal properties were also measured by thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. Lyocell webs were successfully melt blown from the 14% cellulose solution. Basis weights of the webs were 27, 79, and 141 g/m2 and thicknesses ranged from 0.3-0.9 mm, depending on die temperatures and die to collector distance. The average fiber diameter achieved was 2.3 microns. The 6% lyocell solutions exhibited poor spinability and did not form nonwoven webs. The electrospun nonwoven webs obtained were evaluated for fiber diameter and surface/web structure using scanning electron microscopy (SEM). The fibers obtained were in the range of 17-25 microns and the fiber surfaces and shapes varied with spinning conditions. A capillary rheometer was used to spin single fibers from [C 4MIM]Cl. Circular fibers in diameter ranging from 12-84 microns were obtained.

  3. Effect of urea and urea-gamma treatments on cellulose degradation of Thai rice straw and corn stalk

    NASA Astrophysics Data System (ADS)

    Banchorndhevakul, Siriwattana

    2002-08-01

    Cellulose degradation of 20% urea treated and 20% urea-10 kGy gamma treated Thai rice straw and corn stalk showed that combination effect of urea and gamma radiation gave a higher % decrease in neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), cellulose, hemicellulose, and lignin and cutin in comparison with urea effect only for both room temperature storage and room temperature +258 K storage. The results also indicated that cellulose degradation proceeded with time, even at 258 K. A drastic drop to less than half of the original contents in NDF, ADF, and ADL could not be obtained in this study.

  4. Influence of molecular weight and degree of substitution of various carboxymethyl celluloses on unheated and heated emulsion-type sausage models.

    PubMed

    Gibis, Monika; Schuh, Valerie; Allard, Karin; Weiss, Jochen

    2017-03-01

    Four carboxymethyl celluloses (CMCs) differing in molecular weight (M W ) and degree of substitution (°DS) were initially characterized in NaCl solution (0.1 M) and on properties of emulsion-type sausage models. The impact of the different CMCs (0-2 wt%) on the rheological behavior and firmness of an emulsion-type sausage models containing 1.8wt% NaCl was studied. Rheology (unheated/heated) and firmness (heated) showed an increasing effect with increasing CMC concentrations. Addition of>1wt% CMC led to a decrease in storage modulus of the unheated/heated batter and to a decrease in firmness of heated independent of the CMC-type used. CLSM revealed that high amounts of CMCs prevented formation of a coherent protein matrix. Water-binding capacity indicated that CMC contributed to the water-retention capability of sausage batters. Small differences between the CMCs were observed using various °DS and similar M W. Results indicate that the addition of low CMC concentrations (≤0.5wt%) may help to reduce fat content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Synthesis design of Y3Al5O12: Ce3+ phosphor for fabrication of ceramic converter in automotive application

    NASA Astrophysics Data System (ADS)

    Kwon, Seok Bin; Choi, Seung Hee; Yoo, Jung Hyeon; Jeong, Seong Guk; Song, Young Hyun; Yoon, Dae Ho

    2018-06-01

    A cellulose-assisted, liquid-phase precursor (LPP) was used to synthesize a YAG phosphor radiating near 530 nm with a particle size of 400 nm, which may be implemented in many applications. The mixture of the materials was homogeneous, and the cellulose-assisted LPP method involved a liquid-phase reaction at a lower temperature compared to a solid-state reaction (SSR). The reaction was performed at 1200, 1300 and 1400 °C, and the composition ratio of the samples was controlled based on yttrium (L1: 2.7, L2: 2.8, L3: 2.9, L4: 2.95, and L5: 3.1 M). ∼400 nm particles were obtained at 1200 °C and ∼1 μm at 1300 °C. At 1200 °C, the PL intensity was the highest in the Y3.1Al5O12 sample. At 1300 and 1400 °C, the strongest intensity was evident in the Y2.9Al5O12 sample. The XRD patterns for all temperatures showed a YAG phase in JCPDS.

  6. Free Energy Landscape of Cellulose as a Driving Factor in the Mobility of Adsorbed Water.

    PubMed

    Kulasinski, Karol

    2017-06-06

    The diffusion coefficient of water adsorbed in hydrophilic porous materials, such as noncrystalline cellulose, depends on water activity. Faster diffusion at higher water concentrations is observed in experimental and modeling studies. In this paper, two asymptotic water concentrations, near-vacuum and fully saturated, are investigated at the surface of crystalline cellulose with molecular dynamics simulations. An increasing water concentration leads to significant changes in the free energy landscape due to perturbation of local electrostatic potential. Smoothening of strong energy minima, corresponding to sorption sites, and formation of layered structure facilitates water transport in the vicinity of cellulose. The determined transition probabilities and hydrogen bond stability reflect the changes in the energy landscape. As a result of a concentration increase, the emerging basins of attraction and spreading out of those existing in the diluted state lead to an increase in water entropy. Thermal fluctuations of cellulose are demonstrated to rearrange the landscape in the diluted limit, increase adsorbed water entropy, and decrease the water-cellulose H-bond lifetime.

  7. Peptide arrays on cellulose support: SPOT synthesis, a time and cost efficient method for synthesis of large numbers of peptides in a parallel and addressable fashion.

    PubMed

    Hilpert, Kai; Winkler, Dirk F H; Hancock, Robert E W

    2007-01-01

    Peptide synthesis on cellulose using SPOT technology allows the parallel synthesis of large numbers of addressable peptides in small amounts. In addition, the cost per peptide is less than 1% of peptides synthesized conventionally on resin. The SPOT method follows standard fluorenyl-methoxy-carbonyl chemistry on conventional cellulose sheets, and can utilize more than 600 different building blocks. The procedure involves three phases: preparation of the cellulose membrane, stepwise coupling of the amino acids and cleavage of the side-chain protection groups. If necessary, peptides can be cleaved from the membrane for assays performed using soluble peptides. These features make this method an excellent tool for screening large numbers of peptides for many different purposes. Potential applications range from simple binding assays, to more sophisticated enzyme assays and studies with living microbes or cells. The time required to complete the protocol depends on the number and length of the peptides. For example, 400 9-mer peptides can be synthesized within 6 days.

  8. Retention of metal and sulphate ions from acidic mining water by anionic nanofibrillated cellulose.

    PubMed

    Venäläinen, Salla H; Hartikainen, Helinä

    2017-12-01

    We carried out an adsorption experiment to investigate the ability of anionic nanofibrillated cellulose (NFC) to retain metal and SO 4 2- ions from authentic highly acidic (pH3.2) mining water. Anionic NFC gels of different consistencies (1.1-%, 1.4-% and 1.8-% w/w) were allowed to react for 10min with mining water, after which NFC-induced changes in the metal and SO 4 2- concentrations of the mining water were determined. The sorption capacities of the NFC gels were calculated as the difference between the element concentrations in the untreated and NFC-treated mining water samples. All the NFCs efficiently co-adsorbed both metals and SO 4 2- . The retention of metals was concluded to take place through formation of metal-ligand complexes. The reaction between the NFC ligand and the polyvalent cations renders the cellulose nanofibrils positively charged and, thus, able to retain SO 4 2- electrostatically. Adsorption capacity of the NFC gels substantially increased upon decreasing DM content as a result of the dilution-induced weakening of the mutual interactions between individual cellulose nanofibrils. This outcome reveals that the dilution of the NFC gel not only increases its purification capacity but also reduces the demand for cellulosic raw material. These results suggest that anionic NFC made of renewable materials serves as an environmentally sound and multifunctional purification agent for acidic multimetal mining waters or AMDs of high ionic strength. Unlike industrial minerals traditionally used to precipitate valuable metals from acidic mining effluents before their permanent disposal from the material cycle, NFC neither requires mining of unrenewable raw materials nor produces inorganic sludges. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Noncomparative contraceptive efficacy of cellulose sulfate gel.

    PubMed

    Mauck, Christine K; Freziers, Ron G; Walsh, Terri L; Peacock, Karen; Schwartz, Jill L; Callahan, Marianne M

    2008-03-01

    To estimate the 6-month cumulative probability of pregnancy, short-term adverse effects, and acceptability of cellulose sulfate vaginal contraceptive gel. Two hundred fertile heterosexual couples were enrolled in this single-center, phase II, 6-month noncomparative study conducted at the California Family Health Council in Los Angeles, California. Couples did not desire pregnancy, were at low risk for sexually transmitted diseases, and agreed to use 3.5 mL of cellulose sulfate gel intravaginally before each coital act as their primary means of contraception. Scheduled follow-up visits took place after one menstrual cycle and at study completion, which occurred after 6 months and six menstrual cycles had elapsed. In addition, participants were instructed to call the site at the onset of each menses to review their diary cards. The cumulative probabilities of pregnancy during 6 months and six cycles of typical use were 13.4% (95% confidence interval [CI] 7.5-19.4%) and 13.9% (95% CI 7.7-20.2%), respectively, and during 6 cycles of correct and consistent ("perfect") use: 3.9% (95% CI 0.0-9.2%). Slightly over one fourth of the women and one man reported experiencing gel-related adverse events, two thirds of which were mild and only possibly related to the gel. Three quarters of women and men reported that they would buy cellulose sulfate gel for contraception. Cellulose sulfate vaginal gel yields pregnancy rates comparable to nonoxynol-9 and few adverse events among couples at low risk for sexually transmitted diseases.

  10. Production of high concentrated cellulosic ethanol by acetone/water oxidized pretreated beech wood.

    PubMed

    Katsimpouras, Constantinos; Kalogiannis, Konstantinos G; Kalogianni, Aggeliki; Lappas, Angelos A; Topakas, Evangelos

    2017-01-01

    Lignocellulosic biomass is an abundant and inexpensive resource for biofuel production. Alongside its biotechnological conversion, pretreatment is essential to enable efficient enzymatic hydrolysis by making cellulose susceptible to cellulases. Wet oxidation of biomass, such as acetone/water oxidation, that employs hot acetone, water, and oxygen, has been found to be an attractive pretreatment method for removing lignin while producing less degradation products. The remaining enriched cellulose fraction has the potential to be utilized under high gravity enzymatic saccharification and fermentation processes for the cost-competing production of bioethanol. Beech wood residual biomass was pretreated following an acetone/water oxidation process aiming at the production of high concentration of cellulosic ethanol. The effect of pressure, reaction time, temperature, and acetone-to-water ratio on the final composition of the pretreated samples was studied for the efficient utilization of the lignocellulosic feedstock. The optimal conditions were acetone/water ratio 1:1, 40 atm initial pressure of 40 vol% O 2 gas, and 64 atm at reaction temperature of 175 °C for 2 h incubation. The pretreated beech wood underwent an optimization step studying the effect of enzyme loading and solids content on the enzymatic liquefaction/saccharification prior to fermentation. In a custom designed free-fall mixer at 50 °C for either 6 or 12 h of prehydrolysis using an enzyme loading of 9 mg/g dry matter at 20 wt% initial solids content, high ethanol concentration of 75.9 g/L was obtained. The optimization of the pretreatment process allowed the efficient utilization of beech wood residual biomass for the production of high concentrations of cellulosic ethanol, while obtaining lignin that can be upgraded towards high-added-value chemicals. The threshold of 4 wt% ethanol concentration that is required for the sustainable bioethanol production was surpassed almost twofold, underpinning the efficient conversion of biomass to ethanol and bio-based chemicals on behalf of the biorefinery concept.

  11. Recovery of resources for advanced life support space applications: effect of retention time on biodegradation of two crop residues in a fed-batch, continuous stirred tank reactor.

    PubMed

    Strayer, R F; Finger, B W; Alazraki, M P; Cook, K; Garland, J L

    2002-09-01

    Bioreactor retention time is a key process variable that will influence costs that are relevant to long distance space travel or long duration space habitation. However. little is known about the effects of this parameter on the microbiological treatment options that are being proposed for Advanced Life Support (ALS) systems. Two bioreactor studies were designed to examine this variable. In the first one, six retention times ranging from 1.3 to 21.3 days--were run in duplicate, 81 working-volume continuous stirred tank reactors (CSTR) that were fed ALS wheat residues. Ash-free dry weight loss, carbon mineralization, soluble TOC reduction, changes in fiber content (cellulose, hemicellulose, and lignin), bacterial numbers, and mineral recoveries were monitored. At short retention times--1.33 days--biodegradation was poor (total: 16-20%, cellulose - 12%, hemicellulose - 28%) but soluble TOC was decreased by 75-80% and recovery of major crop inorganic nutrients was adequate, except for phosphorus. A high proportion of the total bacteria (ca. 83%) was actively respiring. At the longest retention time tested, 21.3 days, biodegradation was good (total: 55-60%, cellulose ca. 70%, hemicellulose - ca. 55%) and soluble TOC was decreased by 80%. Recovery of major nutrients, except phosphorus, remained adequate. A very low proportion of total bacteria was actively respiring (ca. 16%). The second bioreactor study used potato residue to determine if even shorter retention times could be used (range 0.25-2.0 days). Although overall biodegradation deteriorated, the degradation of soluble TOC continued to be ca. 75%. We conclude that if the goal of ALS bioprocessing is maximal degradation of crop residues, including cellulose, then retention times of 10 days or longer will be needed. If the goal is to provide inorganic nutrients with the smallest volume/weight bioreactor possible, then a retention time of 1 day (or less) is sufficient.

  12. Recovery of resources for advanced life support space applications: effect of retention time on biodegradation of two crop residues in a fed-batch, continuous stirred tank reactor

    NASA Technical Reports Server (NTRS)

    Strayer, R. F.; Finger, B. W.; Alazraki, M. P.; Cook, K.; Garland, J. L.

    2002-01-01

    Bioreactor retention time is a key process variable that will influence costs that are relevant to long distance space travel or long duration space habitation. However. little is known about the effects of this parameter on the microbiological treatment options that are being proposed for Advanced Life Support (ALS) systems. Two bioreactor studies were designed to examine this variable. In the first one, six retention times ranging from 1.3 to 21.3 days--were run in duplicate, 81 working-volume continuous stirred tank reactors (CSTR) that were fed ALS wheat residues. Ash-free dry weight loss, carbon mineralization, soluble TOC reduction, changes in fiber content (cellulose, hemicellulose, and lignin), bacterial numbers, and mineral recoveries were monitored. At short retention times--1.33 days--biodegradation was poor (total: 16-20%, cellulose - 12%, hemicellulose - 28%) but soluble TOC was decreased by 75-80% and recovery of major crop inorganic nutrients was adequate, except for phosphorus. A high proportion of the total bacteria (ca. 83%) was actively respiring. At the longest retention time tested, 21.3 days, biodegradation was good (total: 55-60%, cellulose ca. 70%, hemicellulose - ca. 55%) and soluble TOC was decreased by 80%. Recovery of major nutrients, except phosphorus, remained adequate. A very low proportion of total bacteria was actively respiring (ca. 16%). The second bioreactor study used potato residue to determine if even shorter retention times could be used (range 0.25-2.0 days). Although overall biodegradation deteriorated, the degradation of soluble TOC continued to be ca. 75%. We conclude that if the goal of ALS bioprocessing is maximal degradation of crop residues, including cellulose, then retention times of 10 days or longer will be needed. If the goal is to provide inorganic nutrients with the smallest volume/weight bioreactor possible, then a retention time of 1 day (or less) is sufficient.

  13. Structural studies of Neurospora crassa LPMO9D and redox partner CDHIIA using neutron crystallography and small-angle scattering.

    PubMed

    Bodenheimer, Annette M; O'Dell, William B; Stanley, Christopher B; Meilleur, Flora

    2017-08-07

    Sensitivity to hydrogen/deuterium and lack of observable radiation damage makes cold neutrons an ideal probe the structural studies of proteins with highly photosensitive groups such as the copper center of lytic polysaccharide monooxygenases (LPMOs) and flavin adenine dinucleotide (FAD) and heme redox cofactors of cellobiose dehydrogenases (CDHs). Here, neutron crystallography and small-angle neutron scattering are used to investigate Neurospora crassa LPMO9D (NcLPMO9D) and CDHIIA (NcCDHIIA), respectively. The presence of LPMO greatly enhances the efficiency of commercial glycoside hydrolase cocktails in the depolymerization of cellulose. LPMOs can receive electrons from CDHs to activate molecular dioxygen for the oxidation of cellulose resulting in chain cleavage and disruption of local crystallinity. Using neutron protein crystallography, the hydrogen/deuterium atoms of NcLPMO9D could be located throughout the structure. At the copper active site, the protonation states of the side chains of His1, His84, His157 and Tyr168, and the orientation of water molecules could be determined. Small-angle neutron scattering measurements provided low resolution models of NcCDHIIA with both the dehydrogenase and cytochrome domains in oxidized states that exhibited elongated conformations. This work demonstrates the suitability of neutron diffraction and scattering for characterizing enzymes critical to oxidative cellulose deconstruction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Structural studies of Neurospora crassa LPMO9D and redox partner CDHIIA using neutron crystallography and small-angle scattering

    DOE PAGES

    Bodenheimer, Annette M.; O'Dell, William B.; Stanley, Christopher B.; ...

    2017-03-04

    Sensitivity to hydrogen/deuterium and lack of observable radiation damage makes cold neutrons an ideal probe the structural studies of proteins with highly photosensitive groups such as the copper center of lytic polysaccharide monooxygenases (LPMOs) and flavin adenine dinucleotide (FAD) and heme redox cofactors of cellobiose dehydrogenases (CDHs). In this paper, neutron crystallography and small-angle neutron scattering are used to investigate Neurospora crassa LPMO9D (NcLPMO9D) and CDHIIA (NcCDHIIA), respectively. The presence of LPMO greatly enhances the efficiency of commercial glycoside hydrolase cocktails in the depolymerization of cellulose. LPMOs can receive electrons from CDHs to activate molecular dioxygen for the oxidation ofmore » cellulose resulting in chain cleavage and disruption of local crystallinity. Using neutron protein crystallography, the hydrogen/deuterium atoms of NcLPMO9D could be located throughout the structure. At the copper active site, the protonation states of the side chains of His1, His84, His157 and Tyr168, and the orientation of water molecules could be determined. Small-angle neutron scattering measurements provided low resolution models of NcCDHIIA with both the dehydrogenase and cytochrome domains in oxidized states that exhibited elongated conformations. Finally, this work demonstrates the suitability of neutron diffraction and scattering for characterizing enzymes critical to oxidative cellulose deconstruction.« less

  15. Structural studies of Neurospora crassa LPMO9D and redox partner CDHIIA using neutron crystallography and small-angle scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodenheimer, Annette M.; O'Dell, William B.; Stanley, Christopher B.

    Sensitivity to hydrogen/deuterium and lack of observable radiation damage makes cold neutrons an ideal probe the structural studies of proteins with highly photosensitive groups such as the copper center of lytic polysaccharide monooxygenases (LPMOs) and flavin adenine dinucleotide (FAD) and heme redox cofactors of cellobiose dehydrogenases (CDHs). In this paper, neutron crystallography and small-angle neutron scattering are used to investigate Neurospora crassa LPMO9D (NcLPMO9D) and CDHIIA (NcCDHIIA), respectively. The presence of LPMO greatly enhances the efficiency of commercial glycoside hydrolase cocktails in the depolymerization of cellulose. LPMOs can receive electrons from CDHs to activate molecular dioxygen for the oxidation ofmore » cellulose resulting in chain cleavage and disruption of local crystallinity. Using neutron protein crystallography, the hydrogen/deuterium atoms of NcLPMO9D could be located throughout the structure. At the copper active site, the protonation states of the side chains of His1, His84, His157 and Tyr168, and the orientation of water molecules could be determined. Small-angle neutron scattering measurements provided low resolution models of NcCDHIIA with both the dehydrogenase and cytochrome domains in oxidized states that exhibited elongated conformations. Finally, this work demonstrates the suitability of neutron diffraction and scattering for characterizing enzymes critical to oxidative cellulose deconstruction.« less

  16. Chemical Modification of Cellulose Esters for Oral Drug Delivery

    NASA Astrophysics Data System (ADS)

    Meng, Xiangtao

    Polymer functional groups have critical impacts upon physical, chemical and mechanical properties, and thus affect the specific applications of the polymer. Functionalization of cellulose esters and ethers has been under extensive investigation for applications including drug delivery, cosmetics, food ingredients, and automobile coating. In oral delivery of poorly water-soluble drugs, amorphous solid dispersion (ASD) formulations have been used, prepared by forming miscible blends of polymers and drugs to inhibit crystallization and enhance bioavailability of the drug. The Edgar and Taylor groups have revealed that some cellulose o-carboxyalkanoates were highly effective as ASD polymers, with the pendant carboxylic acid groups providing both specific polymer-drug interactions and pHtriggered release through swelling of the ionized polymer matrix. While a variety of functional groups such as hydroxyl and amide groups are also of interest, cellulose functionalization has relied heavily on classical methods such as esterification and etherification for appending functional groups. These methods, although they have been very useful, are limited in two respects. First, they typically employ harsh reaction conditions. Secondly, each synthetic pathway is only applicable for one or a narrow group of functionalities due to restrictions imposed by the required reaction conditions. To this end, there is a great impetus to identify novel reactions in cellulose modification that are mild, efficient and ideally modular. In the initial effort to design and synthesize cellulose esters for oral drug delivery, we developed several new methods in cellulose functionalization, which can overcome drawbacks of conventional synthetic pathways, provide novel cellulose derivatives that are otherwise inaccessible, and present a platform for structure-property relationship study. Cellulose o-hydroxyalkanoates were previously difficult to access as the hydroxyl groups, if not protected, react with carboxylic acid/carbonyl during a typical esterification reaction or ring opening of lactones, producing cellulose-g-polyester and homopolyester. We demonstrated the viability of chemoselective olefin hydroboration-oxidation in the synthesis of cellulose o-hydroxyesters in the presence of ester groups. Cellulose esters with terminally olefinic side chains were transformed to the target products by two-step, one-pot hydroborationoxidation reactions, using 9-borabicyclo[3.3.1]nonane (9-BBN) as hydroboration agent, followed by oxidizing the organoborane intermediate to a primary alcohol using mildly alkaline H2O2. The use of 9-BBN as hydroboration agent and sodium acetate as base catalyst in oxidation successfully avoided cleavage of ester linkages by borane reduction and base catalyzed hydrolysis. With the impetus of modular and efficient synthesis, we introduced olefin crossmetathesis (CM) in polysaccharide functionalization. Using Grubbs type catalyst, cellulose esters with terminally olefinic side chains were reacted with various CM partners including acrylic acid, acrylates and acrylamides to afford families of functionalized cellulose esters. Molar excesses of CM partners were used in order to suppress potential crosslinking caused by self-metathesis between terminally olefinic side chains. Amide CM partners can chelate with the ruthenium catalyst and cause low conversions in conventional solvents such as THF. While the inherent reactivity toward CM and tendency of acrylamides to chelate Ru is influenced by the acrylamide N-substituents, employing acetic acid as a solvent significantly improved the conversion of certain acrylamides. We observed that the CM products are prone to crosslinking during storage, and found that the crosslinking is likely caused by free radical abstraction of gamma-hydrogen of the alpha,beta-unsaturation and subsequent recombination. We further demonstrated successful hydrogenation of these alpha,beta-unsaturated acids, esters, and amides, thereby eliminating the potential for radical-induced crosslinking during storage. The alpha,beta-unsaturation on CM products can cause crosslinking due to gamma-H abstraction and recombination if not reduced immediately after reaction. Instead of eliminating the double bond by hydrogenation, we described a method to make use of these reactive conjugated olefins by post-CM thiol-Michael addition. Under amine catalysis, different CM products and thiols were combined and reacted. Using proper thiols and catalyst, complete conversion can be achieved under mild reaction conditions. The combination of the two modular reactions creates versatile access to multi-functionalized cellulose derivatives. Compared with conventional reactions, these reactions enable click or click-like conjugation of functional groups onto cellulose backbone. The modular profile of the reactions enables clean and informative structure-property relationship studies for ASD. These approaches also provide opportunities for the synthesis of chemically and architecturally diverse cellulosic polymers that are otherwise difficult to access, opening doors for many other applications such as antimicrobial, antifouling, in vivo drug delivery, and bioconjugation. We believe that the cellulose functionalization approaches we pioneered can be expanded to the modification of other polysaccharides and polymers, and that these reactions will become useful tools in the toolbox of polymer/polysaccharide chemists.

  17. Hybrid ternary rice paper-manganese oxide-carbon nanotube nanocomposites for flexible supercapacitors.

    PubMed

    Jiang, Wenchao; Zhang, Kaixi; Wei, Li; Yu, Dingshan; Wei, Jun; Chen, Yuan

    2013-11-21

    Modern portable electronic devices create a strong demand for flexible energy storage devices. Paper based nanocomposites are attractive as sustainable materials for such applications. Here, we directly explored the hydroxyl chemistry of cellulose fibers to synthesize hybrid ternary nanocomposites, comprised of rice paper, single-walled carbon nanotubes (SWCNTs) and manganese oxide nanoparticles. The functional groups on cellulose fibers can react with adsorbed permanganate ions, resulting in uniform deposition of manganese oxide nanoparticles. SWCNTs coated on top of manganese oxide nanoparticles form a highly conductive network connecting individual manganese oxide particles. By using the hybrid ternary composites as electrodes, the assembled two-electrode supercapacitors demonstrated high capacitance (260.2 F g(-1)), energy (9.0 W h kg(-1)), power (59.7 kW kg(-1)), and cycle stability (12% drop after 3000 cycles). In addition, the nanocomposites show good strength and excellent mechanical flexibility, and their capacitance shows negligible changes after bending more than 100 times. These findings suggest that opportunities exist to further explore the rich chemistry of cellulose fibers for innovative energy applications.

  18. Effects of alternative energy sources on bacterial cellulose characteristics produced by Komagataeibacter medellinensis.

    PubMed

    Molina-Ramírez, Carlos; Enciso, Carla; Torres-Taborda, Mabel; Zuluaga, Robin; Gañán, Piedad; Rojas, Orlando J; Castro, Cristina

    2018-05-27

    Bacterial cellulose (BC) was produced by Komagataeibacter medellinensis using Hestrin and Schramm modified medium in the presence of alternative energy sources (AES), such as ethanol and acetic acid, to explore the effect of AES on the characteristics and properties of the resulting BC. In this study, the physicochemical and structural characteristics of the obtained BC were determined using Fourier-transform infrared spectroscopy, X-ray diffraction spectrometry, thermogravimetric analysis, and mechanical testing analysis. Ethanol and acetic acid (at 0.1 wt%) were proven to improve the BC yield by K. medellinensis by 279% and 222%, respectively. However, the crystallinity index (%), the degree of polymerization, and maximum rate of degradation temperatures decreased by 9.2%, 36%, and 4.96%, respectively, by the addition of ethanol and by 7.2%, 27%, and 4.21%, respectively, by the addition of acetic acid. The significance of this work, lies on the fact that there is not any report about how BC properties change when substances like ethanol or acetic acid are added to culture medium, and which is the mechanism that provokes those changes, that in our case we could demonstrate the relationship of a higher BC production rate (provoked by ethanol and acetic acid adding) and changes in BC properties. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Microwave-induced combustion: Thermal and morphological aspects for understanding the mechanism of ignition process for analytical applications.

    PubMed

    Pedrotti, Matheus F; Pereira, Leticia S F; Bizzi, Cezar A; Paniz, Jose N G; Barin, Juliano S; Flores, Erico M M

    2017-11-01

    In the present work, for the first time a systematic study was performed using an infrared camera and scanning electron microscopy (SEM) coupled to energy dispersive X-ray spectrometry (EDS) to evaluate the mechanisms involved in microwave-induced combustion method, which has been extensively used for sample preparation. Cellulose and glass fiber discs, wetted with the igniter solution (6molL -1 NH 4 NO 3 ), were evaluated under microwave field in a monomode system. The temperature of the discs surface was recorded during microwave irradiation and the effect of NH 4 NO 3 concentration and irradiation time on cellulose oxidation was evaluated. The morphology of the discs surface was characterized by SEM before and after irradiation in an inert atmosphere. According to the results, the surface temperature of the discs increased near to 100°C and remained in this temperature for few seconds while water evaporate. After that, temperature increased over 200°C due to the thermal decomposition of NH 4 NO 3 salt, releasing a large amount of energy that accelerates cellulose oxidation. The higher the igniter concentration, the shorter was the microwave irradiation time for cellulose oxidation. The SEM images revealed that cellulose disc was more porous after microwave irradiation, enhancing oxygen diffusion within the paper and making easier its ignition. The EDS spectrum of cellulose and glass fiber discs showed that signal intensity for nitrogen decreased after microwave irradiation, showing that NH 4 NO 3 was consumed during this process. Therefore, it was demonstrated that the ignition process is the result of synergic interaction of NH 4 NO 3 thermal decomposition and organic matter oxidation (cellulose) releasing heat and feeding the chain reaction. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Cellulose Deficiency Is Enhanced on Hyper Accumulation of Sucrose by a H+-Coupled Sucrose Symporter1[OPEN

    PubMed Central

    Yeats, Trevor H.; Sorek, Hagit

    2016-01-01

    In order to understand factors controlling the synthesis and deposition of cellulose, we have studied the Arabidopsis (Arabidopsis thaliana) double mutant shaven3 shaven3-like1 (shv3svl1), which was shown previously to exhibit a marked cellulose deficiency. We discovered that exogenous sucrose (Suc) in growth medium greatly enhances the reduction in hypocotyl elongation and cellulose content of shv3svl1. This effect was specific to Suc and was not observed with other sugars or osmoticum. Live-cell imaging of fluorescently labeled cellulose synthase complexes revealed a slowing of cellulose synthase complexes in shv3svl1 compared with the wild type that is enhanced in a Suc-conditional manner. Solid-state nuclear magnetic resonance confirmed a cellulose deficiency of shv3svl1 but indicated that cellulose crystallinity was unaffected in the mutant. A genetic suppressor screen identified mutants of the plasma membrane Suc/H+ symporter SUC1, indicating that the accumulation of Suc underlies the Suc-dependent enhancement of shv3svl1 phenotypes. While other cellulose-deficient mutants were not specifically sensitive to exogenous Suc, the feronia (fer) receptor kinase mutant partially phenocopied shv3svl1 and exhibited a similar Suc-conditional cellulose defect. We demonstrate that shv3svl1, like fer, exhibits a hyperpolarized plasma membrane H+ gradient that likely underlies the enhanced accumulation of Suc via Suc/H+ symporters. Enhanced intracellular Suc abundance appears to favor the partitioning of carbon to starch rather than cellulose in both mutants. We conclude that SHV3-like proteins may be involved in signaling during cell expansion that coordinates proton pumping and cellulose synthesis. PMID:27013021

  1. Short time ionic liquids pretreatment on lignocellulosic biomass to enhance enzymatic saccharification.

    PubMed

    Uju; Shoda, Yasuhiro; Nakamoto, Aya; Goto, Masahiro; Tokuhara, Wataru; Noritake, Yoshiyuki; Katahira, Satoshi; Ishida, Nobuhiro; Nakashima, Kazunori; Ogino, Chiaki; Kamiya, Noriho

    2012-01-01

    The potential of 1-buthyl-3-methylpyridinium chloride, [Bmpy][Cl], as a pretreatment solvent for lignocellulosic biomasses, Bagasse and Eucalyptus, was investigated. The yields of regenerated biomasses ranged between 35% and 96%, and varied according to the pretreatment time, type of ionic liquid (IL) and biomass. The pretreatment of the biomass with [Bmpy][Cl] resulted in up to 8-fold increase in the cellulose conversion when compared with the untreated biomass. For a short pretreatment period (i.e., 10 min), [Bmpy][Cl] showed better performance than 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]) with respect to the initial enzymatic saccharification rates. The increase in the reaction rates with [Emim][OAc] treatment was because of a reduction in the cellulose crystallinity. In contrast, a decrease in the crystallinity index was not clearly observed for the biomass pretreated with [Bmpy][Cl], and the enhancement of the enzymatic saccharification rates using this IL is presumably due to a reduction in the degree of polymerization of cellulose in the biomass. Copyright © 2011. Published by Elsevier Ltd.

  2. Biosorption of Cu(II) ions by cellulose of cabbage waste as biosorbent from agricultural waste

    NASA Astrophysics Data System (ADS)

    Heraldy, Eddy; Wireni, Lestari, Witri Wahyu

    2016-02-01

    Biosorption on lignocellulosic wastes has been identified as an appropriate alternative technology to remove heavy metal ions from wastewater. The purpose of this research was to study the ability of cabbage waste biosorbent prepared from agricultural waste on biosorption of Cu(II). Cabbage waste biosorbent was activated with sodium hydroxide at concentration 0.1 M. The biosorption optimum conditions were studied with initial pH (2-8), biosorbent dosage (0.2-1) g/L, contact time (15-90) minutes, and metal ion concentrations (10-100) mg/L by batch method. Experimental data were analyzed in terms of two kinetic models such as pseudo-first-order and pseudo-second-order models. Langmuir and Freundlich isotherm models were applied to describe the biosorption process. The results showed that cabbage biosorbent activated by 0.1 M sodium hydroxide enhanced the biosorption capacity from 9,801 mg/g to 12,26 mg/g. The FTIR spectra have shown a typical absorption of cellulose and typical absorption of lignin decrease after activation process. The kinetic biosorption was determined to be appropriate to the pseudo-second order model with constant rate of 0,091 g/mg.min, and the biosorption equilibrium was described well by the Langmuir isotherm model with maximum biosorption capacity of 37.04 mg/g for Cu(II) at pH 5, biosorption proses was spontaneous in nature with biosorption energy 25.86 kJ/mol at 302 K.

  3. Increased functional properties and thermal stability of flexible cellulose nanocrystal/ZnO films.

    PubMed

    Lizundia, E; Urruchi, A; Vilas, J L; León, L M

    2016-01-20

    In this work we attempt to improve the functional properties and thermal stability of cellulose nanocrystal (CNC) films by means of eco-friendly materials and processes. Mechanically flexible films of closely packed CNCs with concentrations up to 5 wt.% of zinc oxide (ZnO) nanoparticles have been prepared by a simple, standard and environmentally friendly method using solely water. Results reveal that ultraviolet light is blocked by 98.5% at 1 wt.% ZnO while good transparency is maintained. A sharp hydrophobicity increase is observed with the addition of ZnO which would enhance the durability of films by decreasing the water diffusion through the material. The thermal degradation activation energy (E) presents an increase of 141%, denoting a high thermal stability of films, which would result beneficial for their potential application in the field of flexible electronics. Mechanical results demonstrate a high structural integrity of CNC/ZnO as a result of the occurring strong cellulosic inter- and intramolecular interactions within the closely packed CNC network. In overall, this work highlights the potential for environmentally friendly processing of sustainable nanostructured functional materials based on cellulose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Structure and properties of cellulose and cellulose/guar blend membranes prepared from the n-methyl morpholine n-oxide/water solvent system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Mengkui; Winter, W.T.

    1995-12-01

    This paper describes membranes of cellulose or its blends with guar gums. Their morphology, hydration behavior, mechanical properties and permselectivity are all dependent upon preparation conditions. Wet membranes exhibit decreased strength but increased elasticity with increasing guar content. Morphologies of the wet membranes range from microporous to macrovoids to systems of regularly arranged conduits and could be formed in a reproducible manner. Dry membranes were invariably dense. Both wet and dry membranes had markedly higher permeation rates for molecules with 400 < M < 4000 than similarly treated commercial cellulose dialysis membranes and the rates increased with increasing guar content.more » Dried membranes of either cellulose or the blends showed appreciable permselectivity in this same intermediate molecular weight range which disappeared with increasing guar content.« less

  5. Cellulose-dependent expression and antibacterial characteristics of surfactin from Bacillus subtilis HH2 isolated from the giant panda

    PubMed Central

    Zhong, Zhijun; Su, Huaiyi; Li, Jin; Li, Haozhou; Feng, Fan; Lan, Jingchao; Zhang, Zhihe; Fu, Hualin; Hu, Yanchun; Cao, Suizhong; Chen, Weigang; Deng, Jiabo; Yu, Jianqiu; Zhang, Wenping

    2018-01-01

    Surfactin secreted by Bacillus subtilis can confer strong, diverse antipathogenic effects, thereby benefitting the host. Carbon source is an important factor for surfactin production. However, the mechanism that bacteria utilize cellulose, the most abundant substance in the intestines of herbivores, to produce surfactin remains unclear. Here, we used B. subtilis HH2, isolated from the feces of a giant panda, as a model to determine changes in surfactin expression in the presence of different concentrations of cellulose by quantitative polymerase chain reaction and high-performance liquid chromatography. We further investigated the antimicrobial effects of surfactin against three common intestinal pathogens (Escherichia coli, Staphylococcus aureus, and Salmonella enterica) and its resistance to high temperature (60–121°C), pH (1–12), trypsin (100–300 μg/mL, pH 8), and pepsin (100–300 μg/mL, pH 2). The results showed that the surfactin expressed lowest in bacteria cultured in the presence of 1% glucose medium as the carbon source, whereas increased in an appropriate cellulose concentration (0.67% glucose and 0.33% cellulose). The surfactin could inhibit E. coli and Staphylococcus aureus, but did not affect efficiently for Salmonella enterica. The antibacterial ability of surfactin did not differ according to temperature (60–100°C), pH (2–11), trypsin (100–300 μg/mL), and pepsin (100–300 μg/mL; P > 0.05), but decreased significantly at extreme environments (121°C, pH 1 or 12; P < 0.05) compared with that in the control group (37°C, pH = 7, without any protease). In conclusion, our findings indicated that B. subtilis HH2 could increase surfactin expression in an appropriate cellulose environment and thus provide benefits to improve the intestinal health of herbivores. PMID:29385201

  6. Cellulose-dependent expression and antibacterial characteristics of surfactin from Bacillus subtilis HH2 isolated from the giant panda.

    PubMed

    Zhou, Ziyao; Liu, Furui; Zhang, Xinyue; Zhou, Xiaoxiao; Zhong, Zhijun; Su, Huaiyi; Li, Jin; Li, Haozhou; Feng, Fan; Lan, Jingchao; Zhang, Zhihe; Fu, Hualin; Hu, Yanchun; Cao, Suizhong; Chen, Weigang; Deng, Jiabo; Yu, Jianqiu; Zhang, Wenping; Peng, Guangneng

    2018-01-01

    Surfactin secreted by Bacillus subtilis can confer strong, diverse antipathogenic effects, thereby benefitting the host. Carbon source is an important factor for surfactin production. However, the mechanism that bacteria utilize cellulose, the most abundant substance in the intestines of herbivores, to produce surfactin remains unclear. Here, we used B. subtilis HH2, isolated from the feces of a giant panda, as a model to determine changes in surfactin expression in the presence of different concentrations of cellulose by quantitative polymerase chain reaction and high-performance liquid chromatography. We further investigated the antimicrobial effects of surfactin against three common intestinal pathogens (Escherichia coli, Staphylococcus aureus, and Salmonella enterica) and its resistance to high temperature (60-121°C), pH (1-12), trypsin (100-300 μg/mL, pH 8), and pepsin (100-300 μg/mL, pH 2). The results showed that the surfactin expressed lowest in bacteria cultured in the presence of 1% glucose medium as the carbon source, whereas increased in an appropriate cellulose concentration (0.67% glucose and 0.33% cellulose). The surfactin could inhibit E. coli and Staphylococcus aureus, but did not affect efficiently for Salmonella enterica. The antibacterial ability of surfactin did not differ according to temperature (60-100°C), pH (2-11), trypsin (100-300 μg/mL), and pepsin (100-300 μg/mL; P > 0.05), but decreased significantly at extreme environments (121°C, pH 1 or 12; P < 0.05) compared with that in the control group (37°C, pH = 7, without any protease). In conclusion, our findings indicated that B. subtilis HH2 could increase surfactin expression in an appropriate cellulose environment and thus provide benefits to improve the intestinal health of herbivores.

  7. Assessing the potential to decrease the Gulf of Mexico hypoxic zone with Midwest US perennial cellulosic feedstock production

    USDA-ARS?s Scientific Manuscript database

    The goal of this research is to determine the changes in streamflow, dissolved inorganic nitrogen (DIN) leaching and export to the Gulf of Mexico associated with a range of large-scale dedicated perennial cellulosic bioenergy production scenarios within in the Mississippi-Atchafalaya River Basin (MA...

  8. Identifying and overcoming the effect of mass transfer limitation on decreased yield in enzymatic hydrolysis of lignocellulose at high solid concentrations.

    PubMed

    Du, Jian; Cao, Yuan; Liu, Guodong; Zhao, Jian; Li, Xuezhi; Qu, Yinbo

    2017-04-01

    Cellulose conversion decreases significantly with increasing solid concentrations during enzymatic hydrolysis of insoluble lignocellulosic materials. Here, mass transfer limitation was identified as a significant determining factor of this decrease by studying the hydrolysis of delignified corncob residue in shake flask, the most used reaction vessel in bench scale. Two mass transfer efficiency-related factors, mixing speed and flask filling, were shown to correlate closely with cellulose conversion at solid loadings higher than 15% DM. The role of substrate characteristics in mass transfer performance was also significant, which was revealed by the saccharification of two corn stover substrates with different pretreatment methods at the same solid loading. Several approaches including premix, fed-batch operation, and particularly the use of horizontal rotating reactor were shown to be valid in facilitating cellulose conversion via improving mass transfer efficiency at solid concentrations higher than 15% DM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Insights into the effect of dilute acid, hot water or alkaline pretreatment on cellulose accessible surface area and the overall porosity of Populus

    DOE PAGES

    Meng, Xianzhi; Wells, Tyrone; Sun, Qining; ...

    2015-06-19

    Pretreatment is known to render biomass more reactive to cellulase by altering the chemical compositions as well as physical structures of biomass. Simons stain technique along with mercury porosimetry were applied on the acid, neutral, and alkaline pretreated materials to measure the accessible surface area of cellulose and pore size distribution of Populus. Results indicated that acid pretreatment is much more effective than water and alkaline pretreatment in terms of cellulose accessibility increase. Further investigation suggests that lignin does not dictate cellulose accessibility to the extent that hemicellulose does, but it does restrict xylan accessibility which in turn controls themore » access of cellulase to cellulose. The most interesting finding is that severe acid pretreatment significantly decreases the average pore size, i.e., 90% average size decrease could be observed after 60 min dilute acid pretreatment at 160 °C; moreover, the nano-pore space formed between coated microfibrils is increased after pretreatment, especially for the acid pretreatment, suggesting this particular type of biomass porosity is probably the most fundamental barrier to effective enzymatic hydrolysis.« less

  10. Preparation and activity of bubbling-immobilized cellobiase within chitosan-alginate composite.

    PubMed

    Wang, Fang; Su, Rong-Xin; Qi, Wei; Zhang, Ming-Jia; He, Zhi-Min

    2010-01-01

    Cellobiase can hydrolyze cellobiose into glucose; it plays a key role in the process of cellulose hydrolysis by reducing the product inhibition. To reuse the enzyme and improve the economic value of cellulosic ethanol, cellobiase was immobilized using sodium alginate and chitosan as carriers by the bubbling method. The immobilization conditions were optimized as follows: enzyme loading of 100 U cellobiase/g carrier, 30 min immobilization, 3.5 wt% sodium alginate, 0.25 wt% chitosan, and 2 wt% calcium chloride. Compared to free enzyme, the immobilized cellobiase had a decreased apparent K(m) and the maximum activity at a lower pH, indicating its higher acidic and thermal stability. The immobilized cellobiase was further tested in the hydrolysis of cellobiose and various cellulosic substrates (microcrystalline cellulose, filter paper, and ammonia-pretreated corn cobs). Together with cellulases, the immobilized cellobiase converted the cellulosic substrates into glucose with the rate and extent similar to the free enzyme.

  11. Driving carbon flux through exogenous butyryl-CoA: Acetate CoA-transferase to produce butyric acid at high titer in Thermobifida fusca.

    PubMed

    Deng, Yu; Mao, Yin; Zhang, Xiaojuan

    2015-12-20

    Butyric acid, a 4-carbon short chain fatty acid, is widely used in chemical, food, and pharmaceutical industries. The low activity of butyryl-CoA: acetate CoA-transferase in Thermobifida fusca muS, a thermophilic actinobacterium whose optimal temperature was 55°C, was found to hinder the accumulation of high yield of butyric acid. In order to solve this problem, an exogenous butyryl-CoA: acetate CoA-transferase gene (actA) from Thermoanaerobacterium thermosaccharolyticum DSM571 was integrated into the chromosome of T. fusca muS by replacing celR gene, forming T. fusca muS-1. We demonstrated that on 5g/L cellulose, the yield of butyric acid by the engineered muS-1 strain was increased by 42.9 % compared to the muS strain. On 100g/L of cellulose, the muS-1 strain could consume 90.5% of total cellulose in 144h, with 33.2g/L butyric acid produced. Furthermore, on the mix substrates including the major components of biomass: cellulose, xylose, mannose and galactose, 70.4g/L butyric acid was produced in 168h by fed-batch fermentation. To validate the ability of fermenting biomass, the muS-1 strain was grown on the milled corn stover ranging from 200 to 250μm. The muS-1 strain had the highest butyrate titer 17.1g/L on 90g/L corn stover. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Using the β-glucosidase catalyzed reaction product glucose to improve the ionic liquid tolerance of β-glucosidases.

    PubMed

    Goswami, Shubhasish; Gupta, Neha; Datta, Supratim

    2016-01-01

    Pretreating biomass with ionic liquids (IL) increases enzyme accessibility and cellulose is typically recovered through precipitation with an anti-solvent. An industrially feasible pretreatment and hydrolysis process requires robust cellulases that are stable and active in the presence of either small amounts of ILs co-precipitated with recovered cellulose or for saccharifications in the presence of IL. β-glucosidase (BG) hydrolyzes cellobiose into two molecules of glucose (Glc) and is the last step of biomass hydrolysis. These enzymes are prone not only to product inhibition by glucose but also to inactivation by ILs. With increasing interest in IL-based pretreatment methods, there is increasing focus toward a search for Glc-tolerant and IL-tolerant BG. We identified a BG belonging to the GH1 family, H0HC94, encoded in Agrobacterium tumefaciens 5A, and cloned and overexpressed the protein in Escherichia coli. H0HC94 exhibited high enzymatic activity with β-glycosidic substrates (248 µmol/min/mg on pNPGlc and 262 µmol/min/mg on cellobiose) and tolerant to Glc (apparent K i = 686 mM). Further evidence of Glc-based stabilization came from the increase in melting temperature of H0HC94, with increasing Glc concentrations. The half-life of H0HC94 also increased between 2- and 20-fold in the presence of increasing concentrations of Glc. In the presence of 0.9 M of different [C2mim]-based ionic liquids, the specific activity of H0HC94 decreased by around 20-30 %. However, the addition of 100 mM glucose to the IL-enzyme mix resulted in a more stable enzyme as evidenced by the slight recovery of H0HC94 melting temperature and up to tenfold increase in half-life. This higher stability came at a cost of 2-10 % decrease in specific activity. The steady-state kinetic analyses for a subset of the ionic liquids tested indicate that the enzyme undergoes uncompetitive inhibition by glucose and ionic liquid, indicating the possibility of binding of the ionic liquid and glucose to the enzyme-substrate complex. H0HC94 is a Glc-stabilized BG that is also tolerant up to 0.9 M concentrations of different IL's and indicates the possibilities of using an IL-Glc-based cellulose solvent that displays enzyme-compatibility.

  13. Reuse of red algae waste for the production of cellulose nanocrystals and its application in polymer nanocomposites.

    PubMed

    El Achaby, Mounir; Kassab, Zineb; Aboulkas, Adil; Gaillard, Cédric; Barakat, Abdellatif

    2018-01-01

    Red algae is widely available around the world and its exploitation for the production of agar products has become an important industry in recent years. The industrial processing of red algae generates a large quantity of solid fibrous wastes, which constitutes a source of serious environmental problems. In the present work, the utilization of red algae waste as raw material to produce high-quality cellulose nanocrystals (CNC) has been investigated, and the ability of the as-isolated CNC to reinforce polymer has been studied. Red algae waste was chemically treated via alkali, bleaching and acid hydrolysis treatments, in order to obtain pure cellulose microfibers and CNC. The raw waste and the as-extracted cellulosic materials were successively characterized at different stages of treatments using serval analysis techniques. It was found that needle-like shaped CNC were successfully isolated at nanometric scale with diameters and lengths ranged from 5.2±2.9 to 9.1±3.1nm, and from 285.4±36.5 to 315.7±30.3nm, respectively, and the crystallinity index ranged from 81 to 87%, depending on the hydrolysis time (30, 40 and 80min). The as-extracted CNC were used as nanofillers for the production of polyvinyl alcohol (PVA)-based nanocomposite films with improved thermal and tensile properties, as well as optical transparency. It is shown that the addition of 8wt% CNC into the PVA matrix increased the Young's modulus by 215%, the tensile strength by 150%, and the toughness by 45%. Additionally, the nanocomposite films maintained the same transparency level of the neat PVA film (transmittance of ∼90% in the visible region), suggesting that the CNC were dispersed at the nanoscale. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Use of Chemical Fractionation and Proton Nuclear Magnetic Resonance to Probe the Physical Structure of the Primary Plant Cell Wall 1

    PubMed Central

    Taylor, Iain E. P.; Wallace, Julia C.; MacKay, Alex L.; Volke, Frank

    1990-01-01

    Proton magnetic resonance has been used to monitor the microscopic physical properties of etiolated hypocotyl cell walls from Phaseolus vulgaris L. at all stages in a series of chemical fractionations with ammonium oxalate and potassium hydroxide. Solid echo measurements indicate that 75% of the polymers in the intact cell wall, including the cellulose and most of the hemicelluloses, are arranged such that there is almost complete restraint of molecular motion. The chemical fractionations generally altered the physical structures of the remaining cell wall components. Digestion with 0.25% ammonium oxalate/oxalic acid solubilized the pectin and increased the mobility of the hemicellulose I component. Extraction with 4% potassium hydroxide removed the hemicellulose I component and loosened the hemicellulose II. Further extraction with 24% potassium hydroxide removed the hemicellulose II and loosened some of the cellulose. The cellulose crystallinity, as monitored by Jeener echo measurements decreased from 83% to 63% during these fractionations. We conclude that, while hemicellulose I is firmly attached to hemicellulose II, it is not in a closely packed structure. Hemicellulose II is strongly bound to cellulose and has a much more closely packed structure. PMID:16667683

  15. Monitoring Meso-Scale Ordering of Cellulose in Intact Plant Cell Walls Using Sum Frequency Generation Spectroscopy1[C][W][OPEN

    PubMed Central

    Park, Yong Bum; Lee, Christopher M.; Koo, Bon-Wook; Park, Sunkyu; Cosgrove, Daniel J.; Kim, Seong H.

    2013-01-01

    Sum frequency generation (SFG) vibration spectroscopy can selectively detect crystalline cellulose without spectral interference from cell wall matrix components. Here, we show that the cellulose SFG spectrum is sensitive to cellulose microfibril alignment and packing within the cell wall. SFG intensity at 2,944 cm−1 correlated well with crystalline cellulose contents of various regions of the Arabidopsis (Arabidopsis thaliana) inflorescence, while changes in the 3,320/2,944 cm−1 intensity ratio suggest subtle changes in cellulose ordering as tissues mature. SFG analysis of two cellulose synthase mutants (irx1/cesa8 and irx3/cesa7) indicates a reduction in cellulose content without evidence of altered cellulose structure. In primary cell walls of Arabidopsis, cellulose exhibited a characteristic SFG peak at 2,920 and 3,320 cm−1, whereas in secondary cell walls, it had peaks at 2,944 and 3,320 cm−1. Starch (amylose) gave an SFG peak at 2,904 cm−1 (CH methine) whose intensity increased with light exposure prior to harvest. Selective removal of matrix polysaccharides from primary cell walls by acid hydrolysis resulted in an SFG spectrum resembling that of secondary wall cellulose. Our results show that SFG spectroscopy is sensitive to the ordering of cellulose microfibrils in plant cell walls at the meso scale (nm to μm) that is important for cell wall architecture but cannot be probed by other spectroscopic or diffraction techniques. PMID:23995148

  16. NMR relaxometric probing of ionic liquid dynamics and diffusion under mesoscopic confinement within bacterial cellulose ionogels

    NASA Astrophysics Data System (ADS)

    Smith, Chip J.; Gehrke, Sascha; Hollóczki, Oldamur; Wagle, Durgesh V.; Heitz, Mark P.; Baker, Gary A.

    2018-05-01

    Bacterial cellulose ionogels (BCIGs) represent a new class of material comprising a significant content of entrapped ionic liquid (IL) within a porous network formed from crystalline cellulose microfibrils. BCIGs suggest unique opportunities in separations, optically active materials, solid electrolytes, and drug delivery due to the fact that they can contain as much as 99% of an IL phase by weight, coupled with an inherent flexibility, high optical transparency, and the ability to control ionogel cross-sectional shape and size. To allow for the tailoring of BCIGs for a multitude of applications, it is necessary to better understand the underlying principles of the mesoscopic confinement within these ionogels. Toward this, we present a study of the structural, relaxation, and diffusional properties of the ILs, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf2N]) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([bmpy][Tf2N]), using 1H and 19F NMR T1 relaxation times, rotational correlation times, and diffusion ordered spectroscopy (DOSY) diffusion coefficients, accompanied by molecular dynamics (MD) simulations. We observed that the cation methyl groups in both ILs were primary points of interaction with the cellulose chains and, while the pore size in cellulose is rather large, [emim]+ diffusion was slowed by ˜2-fold, whereas [Tf2N]- diffusion was unencumbered by incorporation in the ionogel. While MD simulations of [bmpy][Tf2N] confinement at the interface showed a diffusion coefficient decrease roughly 3-fold compared to the bulk liquid, DOSY measurements did not reveal any significant changes in diffusion. This suggests that the [bmpy][Tf2N] alkyl chains dominate diffusion through formation of apolar domains. This is in contrast to [emim][Tf2N] where delocalized charge appears to preclude apolar domain formation, allowing interfacial effects to be manifested at a longer range in [emim][Tf2N].

  17. Properties of cellulose/Thespesia lampas short fibers bio-composite films.

    PubMed

    Ashok, B; Reddy, K Obi; Madhukar, K; Cai, J; Zhang, L; Rajulu, A Varada

    2015-01-01

    Cellulose was dissolved in pre cooled environment friendly solvent (aq.7% sodium hydroxide+12% urea) and regenerated with 5%H2SO4 as coagulation bath. Using cellulose as matrix and alkali treated short natural fibers extracted from the newly identified Thespesia lampas plant as fillers the green composite films were prepared. The films were found to be non toxic. The effect of fiber loading on the tensile properties and thermal stability was studied. The fractographs indicated better interfacial bonding between the fibers and cellulose. The crystallinity of the composite films was found to be lower than the matrix and decreased with increasing fiber content. In spite of better interfacial bonding, the tensile properties of the composites were found to be lower than those of the matrix and decreased with increasing fiber content and this behavior was attributed to the random orientation of the fibers in the composites. The thermal stability of the composite films was higher than the matrix and increased with fiber content. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Mapping of a Cellulose-Deficient Mutant Named dwarf1-1 in Sorghum bicolor to the Green Revolution Gene gibberellin20-oxidase Reveals a Positive Regulatory Association between Gibberellin and Cellulose Biosynthesis.

    PubMed

    Petti, Carloalberto; Hirano, Ko; Stork, Jozsef; DeBolt, Seth

    2015-09-01

    Here, we show a mechanism for expansion regulation through mutations in the green revolution gene gibberellin20 (GA20)-oxidase and show that GAs control biosynthesis of the plants main structural polymer cellulose. Within a 12,000 mutagenized Sorghum bicolor plant population, we identified a single cellulose-deficient and male gametophyte-dysfunctional mutant named dwarf1-1 (dwf1-1). Through the Sorghum propinquum male/dwf1-1 female F2 population, we mapped dwf1-1 to a frameshift in GA20-oxidase. Assessment of GAs in dwf1-1 revealed ablation of GA. GA ablation was antagonistic to the expression of three specific cellulose synthase genes resulting in cellulose deficiency and growth dwarfism, which were complemented by exogenous bioactive gibberellic acid application. Using quantitative polymerase chain reaction, we found that GA was positively regulating the expression of a subset of specific cellulose synthase genes. To cross reference data from our mapped Sorghum sp. allele with another monocotyledonous plant, a series of rice (Oryza sativa) mutants involved in GA biosynthesis and signaling were isolated, and these too displayed cellulose deficit. Taken together, data support a model whereby suppressed expansion in green revolution GA genes involves regulation of cellulose biosynthesis. © 2015 American Society of Plant Biologists. All Rights Reserved.

  19. Covalently bonded ionic liquid onto cellulose for fast adsorption and efficient separation of Cr(VI): Batch, column and mechanism investigation.

    PubMed

    Dong, Zhen; Zhao, Long

    2018-06-01

    Combining the advantages of both cellulose and ionic liquid, ionic liquid functionalized cellulose (ILFC) as adsorbent was prepared through radiation grafting glycidyl methacrylate onto cellulose microsphere following by reaction with ionic liquid 1-aminopropyl-3-methyl imidazolium nitrate. Its adsorption properties towards Cr(VI) were investigated in batch and column experiments. In batch experiments, the adsorption kinetics was well fitted with pseudo-second-order mode with equilibrium time of 2 h and the adsorption capacity reached 181.8 mg/g at pH 2 calculated from Langmuir model. In fixed column, both Yoon-Nelson and Thomas models gave satisfactory fit to experimental data and breakthrough curves, and equilibrium adsorption capacity calculated by Thomas model was 161.0 mg/g. Moreover, ILFC exhibited high selectivity towards Cr(VI) even in synthetic chrome-plating wastewater. Besides, adsorption/desorption test revealed ILFC can be regenerated and reused several times without obvious decrease in adsorbed amount. The adsorption process was demonstrated to anion exchange-reduction mechanism via XPS analysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Dianthins, ribosome-damaging proteins with anti-viral properties from Dianthus caryophyllus L. (carnation).

    PubMed Central

    Stirpe, F; Williams, D G; Onyon, L J; Legg, R F; Stevens, W A

    1981-01-01

    1. Dianthin 30 and dianthin 32, two proteins isolated from the leaves of Diathus caryophyllus (carnation), were purified to homogeneity by chromatography on CM-cellulose. 2. The mol.wt. of dianthin 30 is 29 500 and that of dianthin 32 is 31 700. Both dianthins are glycoproteins containing mannose. 3. Dianthins inhibit protein synthesis in a lysate of rabbit reticulocytes, with an ID50 (concentration giving 50% inhibition) of 9.15 ng/ml (dianthin 30) and 3.6 ng/ml (dianthin 32). They act by damaging ribosomes in a less-than-equimolar ratio. Protein synthesis by intact cells is partially inhibited by dianthins at a concentration of 100 microgram/ml. 4. Dianthins mixed with tobacco-mosaic virus strongly decrease the number of local lesions on leaves of Nicotiana glutinosa. Images Fig. 2. PMID:7316958

  1. Native Cellulose Microfiber-Based Hybrid Piezoelectric Generator for Mechanical Energy Harvesting Utility.

    PubMed

    Alam, Md Mehebub; Mandal, Dipankar

    2016-01-27

    A flexible hybrid piezoelectric generator (HPG) based on native cellulose microfiber (NCMF) and polydimethylsiloxane (PDMS) with multi wall carbon nanotubes (MWCNTs) as conducting filler is presented where the further chemical treatment of the cellulose and traditional electrical poling steps for piezoelectric voltage generation is avoided. It delivers a high electrical throughput that is an open circuit voltage of ∼30 V and power density ∼9.0 μW/cm(3) under repeated hand punching. We demonstrate to power up various portable electronic units by HPG. Because cellulose is a biocompatible material, suggesting that HPG may have greater potential in biomedical applications such as implantable power source in human body.

  2. Enhancement of Cellulose Degradation by Cattle Saliva

    PubMed Central

    Seki, Yasutaka; Kikuchi, Yukiko; Kimura, Yoshihiro; Yoshimoto, Ryo; Takahashi, Masatoshi; Aburai, Kenichi; Kanai, Yoshihiro; Ruike, Tatsushi; Iwabata, Kazuki; Sugawara, Fumio; Sakai, Hideki; Abe, Masahiko; Sakaguchi, Kengo

    2015-01-01

    Saccharification of cellulose is a promising technique for producing alternative source of energy. However, the efficiency of conversion of cellulose into soluble sugar using any currently available methodology is too low for industrial application. Many additives, such as surfactants, have been shown to enhance the efficiency of cellulose-to-sugar conversion. In this study, we have examined first whether cattle saliva, as an additive, would enhance the cellulase-catalyzed hydrolysis of cellulose, and subsequently elucidated the mechanism by which cattle saliva enhanced this conversion. Although cattle saliva, by itself, did not degrade cellulose, it enhanced the cellulase-catalyzed degradation of cellulose. Thus, the amount of reducing sugar produced increased approximately 2.9-fold by the addition of cattle saliva. We also found that non-enzymatic proteins, which were present in cattle saliva, were responsible for causing the enhancement effect. Third, the mechanism of cattle saliva mediated enhancement of cellulase activity was probably similar to that of the canonical surfactants. Cattle saliva is available in large amounts easily and cheaply, and it can be used without further purification. Thus, cattle saliva could be a promising additive for efficient saccharification of cellulose on an industrial scale. PMID:26402242

  3. Effects of Pectin Molecular Weight Changes on the Structure, Dynamics, and Polysaccharide Interactions of Primary Cell Walls of Arabidopsis thaliana: Insights from Solid-State NMR.

    PubMed

    Phyo, Pyae; Wang, Tuo; Xiao, Chaowen; Anderson, Charles T; Hong, Mei

    2017-09-11

    Significant cellulose-pectin interactions in plant cell walls have been reported recently based on 2D 13 C solid-state NMR spectra of intact cell walls, but how these interactions affect cell growth has not been probed. Here, we characterize two Arabidopsis thaliana lines with altered expression of the POLYGALACTURONASE INVOLVED IN EXPANSION1 (PGX1) gene, which encodes a polygalacturonase that cleaves homogalacturonan (HG). PGX1 AT plants overexpress PGX1, have HG with lower molecular weight, and grow larger, whereas pgx1-2 knockout plants have HG with higher molecular weight and grow smaller. Quantitative 13 C solid-state NMR spectra show that PGX1 AT cell walls have lower galacturonic acid and xylose contents and higher HG methyl esterification than controls, whereas high molecular weight pgx1-2 walls have similar galacturonic acid content and methyl esterification as controls. 1 H-transferred 13 C INEPT spectra indicate that the interfibrillar HG backbones are more aggregated whereas the RG-I side chains are more dispersed in PGX1 AT cell walls than in pgx1-2 walls. In contrast, the pectins that are close to cellulose become more mobile and have weaker cross peaks with cellulose in PGX1 AT walls than in pgx1-2 walls. Together, these results show that polygalacturonase-mediated plant growth is accompanied by increased esterification and decreased cross-linking of HG, increased aggregation of interfibrillar HG, and weaker HG-cellulose interactions. These structural and dynamical differences give molecular insights into how pectins influence wall dynamics during cell growth.

  4. Both solubility and chemical stability of curcumin are enhanced by solid dispersion in cellulose derivative matrices.

    PubMed

    Li, Bin; Konecke, Stephanie; Wegiel, Lindsay A; Taylor, Lynne S; Edgar, Kevin J

    2013-10-15

    Amorphous solid dispersions (ASD) of curcumin (Cur) in cellulose derivative matrices, hydroxypropylmethylcellulose acetate succinate (HPMCAS), carboxymethylcellulose acetate butyrate (CMCAB), and cellulose acetate adipate propionate (CAAdP) were prepared in order to investigate the structure-property relationship and identify polymer properties necessary to effectively increase Cur aqueous solution concentration. XRD results indicated that all investigated solid dispersions were amorphous, even at a 9:1 Cur:polymer ratio. Both stability against crystallization and Cur solution concentration from these ASDs were significantly higher than those from physical mixtures and crystalline Cur. Remarkably, curcumin was also stabilized against chemical degradation in solution. Chemical stabilization was polymer-dependent, with stabilization in CAAdP>CMCAB>HPMCAS>PVP, while matrices enhanced solution concentration as PVP>HPMCAS>CMCAB≈CAAdP. HPMCAS/Cur dispersions have useful combinations of pH-triggered release profile, chemical stabilization, and strong enhancement of Cur solution concentration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. 21 CFR 172.870 - Hydroxypropyl cellulose.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... additive is used in accordance with good manufacturing practice. [46 FR 50065, Oct. 9, 1981] ... FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.870 Hydroxypropyl cellulose. The food additive hydroxypropyl...

  6. Oil-in-water emulsions stabilised by cellulose ethers: stability, structure and in vitro digestion.

    PubMed

    Borreani, Jennifer; Espert, María; Salvador, Ana; Sanz, Teresa; Quiles, Amparo; Hernando, Isabel

    2017-04-19

    The effect of cellulose ethers in oil-in-water emulsions on stability during storage and on texture, microstructure and lipid digestibility during in vitro gastrointestinal digestion was investigated. All the cellulose ether emulsions showed good physical and oxidative stability during storage. In particular, the methylcellulose with high methoxyl substituents (HMC) made it possible to obtain emulsions with high consistency which remained almost unchanged during gastric digestion, and thus could enhance fullness and satiety perceptions at gastric level. Moreover, the HMC emulsion slowed down lipid digestion to a greater extent than a conventional protein emulsion or the emulsions stabilised by the other cellulose ethers. Therefore, HMC emulsions could be used in weight management to increase satiation capacity and decrease lipid digestion.

  7. Formulation and synthesis of hydrogels having lower critical solution temperature near body temperature

    NASA Astrophysics Data System (ADS)

    Abidin, A. Z.; Graha, H. P. R.; Trirahayu, D. A.

    2017-07-01

    Copolymerization between bacterial cellulose nanocrystal (CN) and methyl cellulose (MC) was carried out using UV light to produce a biocompatible hydrogel at body temperature and liquid at room temperature. Viscosity and salt effect of the MC and copolymer solution at room temperature and its Lower Critical Solution Temperature (LCST) were evaluated. The analysis showed that the higher concentration of methyl cellulose and salt content in the solution produced lower LCST and higher solution viscosity. All samples of polymer solution with MC concentrations of 1 and 2% have a viscosity less than 5000 cP at room temperature. The solutions with MC concentration of 1, 2, and 3% have respectively LCST of 59, 58, and 57°C, while its copolymer solutions with CN concentration of 0.1, 0.3, and 0.5% have respectively LCST of 55, 51, and 41°C. The salt addition to the solution of MC-CN copolymer with concentrations of 1x and 1.5x Phosphat Buffered Saline (PBS) produces respectively LCST of 47 and 38°C. The results suggest that the copolymer solution of MC-CN could produce a lower LCST and the addition of salt could amplify the effect of LCST decrease that can be used to produce a biocompatible hydrogel with LCST as close as body temperature.

  8. Synthesis and electrospinning carboxymethyl cellulose lithium (CMC-Li) modified 9,10-anthraquinone (AQ) high-rate lithium-ion battery.

    PubMed

    Qiu, Lei; Shao, Ziqiang; Liu, Minglong; Wang, Jianquan; Li, Pengfa; Zhao, Ming

    2014-02-15

    New cellulose derivative CMC-Li was synthesized, and nanometer CMC-Li fiber was applied to lithium-ion battery and coated with AQ by electrospinning. Under the protection of inert gas, modified AQ/carbon nanofibers (CNF)/Li nanometer composite material was obtained by carbonization in 280 °C as lithium battery anode materials for the first time. The morphologies and structures performance of materials were characterized by using IR, (1)H NMR, SEM, CV and EIS, respectively. Specific capacity was increased from 197 to 226.4 mAhg(-1) after modification for the first discharge at the rate of 2C. Irreversible reduction reaction peaks of modified material appeared between 1.5 and 1.7 V and the lowest oxidation reduction peak of the difference were 0.42 V, the polarization was weaker. Performance of cell with CMC-Li with the high degree of substitution (DS) was superior to that with low DS. Cellulose materials were applied to lithium battery to improve battery performance by electrospinning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Monitoring meso-scale ordering of cellulose in intact plant cell walls using sum frequency generation spectroscopy.

    PubMed

    Park, Yong Bum; Lee, Christopher M; Koo, Bon-Wook; Park, Sunkyu; Cosgrove, Daniel J; Kim, Seong H

    2013-10-01

    Sum frequency generation (SFG) vibration spectroscopy can selectively detect crystalline cellulose without spectral interference from cell wall matrix components. Here, we show that the cellulose SFG spectrum is sensitive to cellulose microfibril alignment and packing within the cell wall. SFG intensity at 2,944 cm(-1) correlated well with crystalline cellulose contents of various regions of the Arabidopsis (Arabidopsis thaliana) inflorescence, while changes in the 3,320/2,944 cm(-1) intensity ratio suggest subtle changes in cellulose ordering as tissues mature. SFG analysis of two cellulose synthase mutants (irx1/cesa8 and irx3/cesa7) indicates a reduction in cellulose content without evidence of altered cellulose structure. In primary cell walls of Arabidopsis, cellulose exhibited a characteristic SFG peak at 2,920 and 3,320 cm(-1), whereas in secondary cell walls, it had peaks at 2,944 and 3,320 cm(-1). Starch (amylose) gave an SFG peak at 2,904 cm(-1) (CH methine) whose intensity increased with light exposure prior to harvest. Selective removal of matrix polysaccharides from primary cell walls by acid hydrolysis resulted in an SFG spectrum resembling that of secondary wall cellulose. Our results show that SFG spectroscopy is sensitive to the ordering of cellulose microfibrils in plant cell walls at the meso scale (nm to μm) that is important for cell wall architecture but cannot be probed by other spectroscopic or diffraction techniques.

  10. Cellulose supplementation early in life ameliorates colitis in adult mice

    USDA-ARS?s Scientific Manuscript database

    Decreased consumption of dietary fibers, such as cellulose, has been proposed to promote the emergence of inflammatory bowel diseases (Crohn disease and ulcerative colitis) where intestinal microbes are recognized to play an etiologic role. However, it is not known if transient fiber consumption dur...

  11. Mineralization of Detrital Lignocelluloses by Salt Marsh Sediment Microflora †

    PubMed Central

    Maccubbin, A. E.; Hodson, Robert E.

    1980-01-01

    Specifically radiolabeled 14C-(cellulose)-lignocellulose and 14C-(lignin)-lignocellulose were isolated from labeled cuttings of Spartina alterniflora (cordgrass) and Pinus elliottii (slash pine). These were used to estimate the rates of mineralization to CO2 of lignocelluloses of estuarine and terrestrial origin in salt marsh estuarine sediments. The lignin moiety of pine lignocellulose was mineralized 10 to 14 times more slowly than that of Spartina lignocellulose, depending on the source of inoculum. Average values for percent mineralization after 835 h of incubation were 1.4 and 13.9%, respectively. For Spartina lignocellulose, mineralization of the cellulose moiety was three times faster than that of the lignin moiety. Average values for percent mineralization after 720 h of incubation were 32.1 and 10.6%, respectively. Lignocellulose and lignin contents of live pine and Spartina plants were analyzed and found to be 60.7 and 20.9%, respectively, for pine and 75.6 and 15.1%, respectively, for Spartina. PMID:16345647

  12. On-site hydrolytic enzymes production from fungal co-cultivation of Bermuda grass and corn cob.

    PubMed

    Amaro-Reyes, Aldo; Gracida, Jorge; Huizache-Peña, Nelson; Elizondo-García, Norberto; Salazar-Martínez, José; García Almendárez, Blanca E; Regalado, Carlos

    2016-07-01

    Solid state fermentation (SSF) is used to produce industrial enzymes. The objective of this study was to use a co-culture of Aspergillus niger GS1 and Trichoderma reesei, grown on a mixture of Bermuda grass and corn cob to obtain fermented forage (FF) rich in hydrolytic enzymes, as a value added ingredient for animal feed. FPase, amylase and xylanase productivities (dry matter, DM) were 8.8, 181.4, and 42.1Ug(-1)h(-1), respectively (1U=reducing sugars released min(-1)), after 12-16h of SSF with C/N=60. Cellulose, hemicellulose and lignin decreased 1.6-, 2.7- and 1.9-fold (DM), respectively. In vitro ruminal and true digestibility of DM was improved 2.4- and 1.4-fold. Ruminal digestion of FF reduced 1.32-fold the acetate:propionate ratio, which may reduce the environmental impact of ruminants feeding. On-site hydrolytic enzymes productivity using SSF without enzymes extraction could be of economic potential for digestibility improvement in animal feed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Study of the physical properties of calcium alginate hydrogel beads containing vineyard pruning waste for dye removal.

    PubMed

    Vecino, X; Devesa-Rey, R; Cruz, J M; Moldes, A B

    2015-01-22

    In this work the morphological and surface properties of a biocomposite formulated with vineyard pruning waste entrapped in calcium alginate hydrogel beads were studied. The formulation of the calcium alginate hydrogel beads, containing vineyard pruning waste, was based on the capacity of this green adsorbent to remove dye compounds from wastewater, observing that in the optimum condition (1.25% of cellulosic residue, 2.2% of sodium alginate and 0.475 mol L(-1) CaCl2) the percentage of dyes was reduced up to 74.6%. At lower concentration of CaCl2, high-resolution optical images show that the elongation of the vineyard-alginate biocomposite decreased, whereas the compactness increased. Moreover, higher concentrations of cellulosic residue increased the biocomposite roundness in comparison with biocomposite without the cellulosic residue. Interferometric perfilometry analysis (Ra, Rq, Rz and Rt) revealed that high concentrations of CaCl2 increased the roughness of the of the calcium alginate hydrogel beads observing vesicles in the external surface. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Structural Insights into the Affinity of Cel7A Carbohydrate-binding Module for Lignin*

    PubMed Central

    Strobel, Kathryn L.; Pfeiffer, Katherine A.; Blanch, Harvey W.; Clark, Douglas S.

    2015-01-01

    The high cost of hydrolytic enzymes impedes the commercial production of lignocellulosic biofuels. High enzyme loadings are required in part due to their non-productive adsorption to lignin, a major component of biomass. Despite numerous studies documenting cellulase adsorption to lignin, few attempts have been made to engineer enzymes to reduce lignin binding. In this work, we used alanine-scanning mutagenesis to elucidate the structural basis for the lignin affinity of Trichoderma reesei Cel7A carbohydrate binding module (CBM). T. reesei Cel7A CBM mutants were produced with a Talaromyces emersonii Cel7A catalytic domain and screened for their binding to cellulose and lignin. Mutation of aromatic and polar residues on the planar face of the CBM greatly decreased binding to both cellulose and lignin, supporting the hypothesis that the cellulose-binding face is also responsible for lignin affinity. Cellulose and lignin affinity of the 31 mutants were highly correlated, although several mutants displayed selective reductions in lignin or cellulose affinity. Four mutants with increased cellulose selectivity (Q2A, H4A, V18A, and P30A) did not exhibit improved hydrolysis of cellulose in the presence of lignin. Further reduction in lignin affinity while maintaining a high level of cellulose affinity is thus necessary to generate an enzyme with improved hydrolysis capability. This work provides insights into the structural underpinnings of lignin affinity, identifies residues amenable to mutation without compromising cellulose affinity, and informs engineering strategies for family one CBMs. PMID:26209638

  15. Structure and properties of novel fibers spun from cellulose in NaOH/thiourea aqueous solution.

    PubMed

    Ruan, Dong; Zhang, Lina; Zhou, Jinping; Jin, Huiming; Chen, Hui

    2004-12-15

    Cellulose was dissolved rapidly in a NaOH/thiourea aqueous solution (9.5:4.5 in wt.-%) to prepare a transparent cellulose solution, which was employed, for the first time, to spin a new class of regenerated cellulose fibers by wet spinning. The structure and mechanical properties of the resulting cellulose fibers were characterized, and compared with those of commercially available viscose rayon, cuprammonium rayon and Lyocell fibers. The results from wide angle X-ray diffraction and CP/MAS 13C NMR indicated that the novel cellulose fibers have a structure typical for a family II cellulose and possessed relatively high degrees of crystallinity. Scanning electron microscopy (SEM) and optical microscopy images revealed that the cross-section of the fibers is circular, similar to natural silk. The new fibers have higher molecular weights and better mechanical properties than those of viscose rayon. This low-cost technology is simple, different from the polluting viscose process. The dissolution and regeneration of the cellulose in the NaOH/thiourea aqueous solutions were a physical process and a sol-gel transition rather than a chemical reaction, leading to the smoothness and luster of the fibers. This work provides a potential application in the field of functional fiber manufacturing.

  16. Poroelastic Mechanical Effects of Hemicelluloses on Cellulosic Hydrogels under Compression

    PubMed Central

    Lopez-Sanchez, Patricia; Cersosimo, Julie; Wang, Dongjie; Flanagan, Bernadine; Stokes, Jason R.; Gidley, Michael J.

    2015-01-01

    Hemicelluloses exhibit a range of interactions with cellulose, the mechanical consequences of which in plant cell walls are incompletely understood. We report the mechanical properties of cell wall analogues based on cellulose hydrogels to elucidate the contribution of xyloglucan or arabinoxylan as examples of two hemicelluloses displaying different interactions with cellulose. We subjected the hydrogels to mechanical pressures to emulate the compressive stresses experienced by cell walls in planta. Our results revealed that the presence of either hemicellulose increased the resistance to compression at fast strain rates. However, at slow strain rates, only xyloglucan increased composite strength. This behaviour could be explained considering the microstructure and the flow of water through the composites confirming their poroelastic nature. In contrast, small deformation oscillatory rheology showed that only xyloglucan decreased the elastic moduli. These results provide evidence for contrasting roles of different hemicelluloses in plant cell wall mechanics and man-made cellulose-based composite materials. PMID:25794048

  17. Poroelastic mechanical effects of hemicelluloses on cellulosic hydrogels under compression.

    PubMed

    Lopez-Sanchez, Patricia; Cersosimo, Julie; Wang, Dongjie; Flanagan, Bernadine; Stokes, Jason R; Gidley, Michael J

    2015-01-01

    Hemicelluloses exhibit a range of interactions with cellulose, the mechanical consequences of which in plant cell walls are incompletely understood. We report the mechanical properties of cell wall analogues based on cellulose hydrogels to elucidate the contribution of xyloglucan or arabinoxylan as examples of two hemicelluloses displaying different interactions with cellulose. We subjected the hydrogels to mechanical pressures to emulate the compressive stresses experienced by cell walls in planta. Our results revealed that the presence of either hemicellulose increased the resistance to compression at fast strain rates. However, at slow strain rates, only xyloglucan increased composite strength. This behaviour could be explained considering the microstructure and the flow of water through the composites confirming their poroelastic nature. In contrast, small deformation oscillatory rheology showed that only xyloglucan decreased the elastic moduli. These results provide evidence for contrasting roles of different hemicelluloses in plant cell wall mechanics and man-made cellulose-based composite materials.

  18. Fracture Surface Morphology and Impact Strength of Cellulose/PLA Composites.

    PubMed

    Gao, Honghong; Qiang, Tao

    2017-06-07

    Polylactide (PLA)-based composite materials reinforced with ball-milled celluloses were manufactured by extrusion blending followed by injection molding. Their surface morphology from impact fracture were imaged with scanning electron microscopy (SEM) and investigated by calculating their fractal dimensions. Then, linear regression was used to explore the relationship between fractal dimension and impact strength of the resultant cellulose/PLA composite materials. The results show that filling the ball-milled celluloses into PLA can improve the impact toughness of PLA by a minimum of 38%. It was demonstrated that the fracture pattern of the cellulose/PLA composite materials is different from that of pristine PLA. For the resultant composite materials, the fractal dimension of the impact fractured surfaces increased with increasing filling content and decreasing particle size of the ball-milled cellulose particles. There were highly positive correlations between fractal dimension of the fractured surfaces and impact strength of the cellulose/PLA composites. However, the linearity between fractal dimension and impact strength were different for the different methods, due to their different R-squared values. The approach presented in this work will help to understand the structure-property relationships of composite materials from a new perspective.

  19. Fracture Surface Morphology and Impact Strength of Cellulose/PLA Composites

    PubMed Central

    Gao, Honghong; Qiang, Tao

    2017-01-01

    Polylactide (PLA)-based composite materials reinforced with ball-milled celluloses were manufactured by extrusion blending followed by injection molding. Their surface morphology from impact fracture were imaged with scanning electron microscopy (SEM) and investigated by calculating their fractal dimensions. Then, linear regression was used to explore the relationship between fractal dimension and impact strength of the resultant cellulose/PLA composite materials. The results show that filling the ball-milled celluloses into PLA can improve the impact toughness of PLA by a minimum of 38%. It was demonstrated that the fracture pattern of the cellulose/PLA composite materials is different from that of pristine PLA. For the resultant composite materials, the fractal dimension of the impact fractured surfaces increased with increasing filling content and decreasing particle size of the ball-milled cellulose particles. There were highly positive correlations between fractal dimension of the fractured surfaces and impact strength of the cellulose/PLA composites. However, the linearity between fractal dimension and impact strength were different for the different methods, due to their different R-squared values. The approach presented in this work will help to understand the structure–property relationships of composite materials from a new perspective. PMID:28772983

  20. Improving Cellulose Dissolution in Ionic Liquids by Tuning the Size of the Ions: Impact of the Length of the Alkyl Chains in Tetraalkylammonium Carboxylate.

    PubMed

    Meng, Xiangqian; Devemy, Julien; Verney, Vincent; Gautier, Arnaud; Husson, Pascale; Andanson, Jean-Michel

    2017-04-22

    Twenty ionic liquids based on tetraalkylammonium cations and carboxylate anions have been synthesized, characterized, and tested for cellulose dissolution. The amount of cellulose dissolved in these ionic liquids depends strongly on the size of the ions: from 0 to 22 wt % cellulose can be dissolved at 90 °C. The best ionic liquids are less viscous and ammonium carboxylate based ionic liquids can dissolve as much as imidazolium-based ones. The viscosity of an ionic liquid can be decreased by the addition of DMSO as a cosolvent. After the addition of cosolvent, similar amounts of cellulose per ions are reached for most ionic liquids. As observed by rheology, ionic liquids with the longest alkyl chains form a gel when a high amount of cellulose is dissolved; this drastically limits their potential. Molecular simulations and IR spectroscopy have also been used with the aim of understanding how molecular interactions differ between efficient and inefficient ionic liquids. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The effect of fire retardants on the fire response characteristics of cellulosic materials

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Brauer, D. P.

    1978-01-01

    The resistance to ignition of fire retardant-treated wood, cotton, and cellulose insulation was studied. The proprietary composition used to treat wood was found to increase resistance to ignition and to reduce smoke toxicity. Cotton treated with boric acid (added by padding on or by vapor phase process) was found to have increased resistance to ignition and decreased smoke toxicity. Boric acid increased the resistance of cellulose insulation to ignition but also slightly increased the smoke toxicity.

  2. COBRA-LIKE2, a member of the glycosylphosphatidylinositol-anchored COBRA-LIKE family, plays a role in cellulose deposition in arabidopsis seed coat mucilage secretory cells.

    PubMed

    Ben-Tov, Daniela; Abraham, Yael; Stav, Shira; Thompson, Kevin; Loraine, Ann; Elbaum, Rivka; de Souza, Amancio; Pauly, Markus; Kieber, Joseph J; Harpaz-Saad, Smadar

    2015-03-01

    Differentiation of the maternally derived seed coat epidermal cells into mucilage secretory cells is a common adaptation in angiosperms. Recent studies identified cellulose as an important component of seed mucilage in various species. Cellulose is deposited as a set of rays that radiate from the seed upon mucilage extrusion, serving to anchor the pectic component of seed mucilage to the seed surface. Using transcriptome data encompassing the course of seed development, we identified COBRA-LIKE2 (COBL2), a member of the glycosylphosphatidylinositol-anchored COBRA-LIKE gene family in Arabidopsis (Arabidopsis thaliana), as coexpressed with other genes involved in cellulose deposition in mucilage secretory cells. Disruption of the COBL2 gene results in substantial reduction in the rays of cellulose present in seed mucilage, along with an increased solubility of the pectic component of the mucilage. Light birefringence demonstrates a substantial decrease in crystalline cellulose deposition into the cellulosic rays of the cobl2 mutants. Moreover, crystalline cellulose deposition into the radial cell walls and the columella appears substantially compromised, as demonstrated by scanning electron microscopy and in situ quantification of light birefringence. Overall, the cobl2 mutants display about 40% reduction in whole-seed crystalline cellulose content compared with the wild type. These data establish that COBL2 plays a role in the deposition of crystalline cellulose into various secondary cell wall structures during seed coat epidermal cell differentiation. © 2015 American Society of Plant Biologists. All Rights Reserved.

  3. Quantitative proteomic study of Aspergillus Fumigatus secretome revealed deamidation of secretory enzymes.

    PubMed

    Adav, Sunil S; Ravindran, Anita; Sze, Siu Kwan

    2015-04-24

    Aspergillus sp. plays an essential role in lignocellulosic biomass recycling and is also exploited as cell factories for the production of industrial enzymes. This study profiled the secretome of Aspergillus fumigatus when grown with cellulose, xylan and starch by high throughput quantitative proteomics using isobaric tags for relative and absolute quantification (iTRAQ). Post translational modifications (PTMs) of proteins play a critical role in protein functions. However, our understanding of the PTMs in secretory proteins is limited. Here, we present the identification of PTMs such as deamidation of secreted proteins of A. fumigatus. This study quantified diverse groups of extracellular secreted enzymes and their functional classification revealed cellulases and glycoside hydrolases (32.9%), amylases (0.9%), hemicellulases (16.2%), lignin degrading enzymes (8.1%), peptidases and proteases (11.7%), chitinases, lipases and phosphatases (7.6%), and proteins with unknown function (22.5%). The comparison of quantitative iTRAQ results revealed that cellulose and xylan stimulates expression of specific cellulases and hemicellulases, and their abundance level as a function of substrate. In-depth data analysis revealed deamidation as a major PTM of key cellulose hydrolyzing enzymes like endoglucanases, cellobiohydrolases and glucosidases. Hemicellulose degrading endo-1,4-beta-xylanase, monosidases, xylosidases, lignin degrading laccase, isoamyl alcohol oxidase and oxidoreductases were also found to be deamidated. The filamentous fungi play an essential role in lignocellulosic biomass recycling and fungal strains belonging to Aspergillus were also exploited as cell factories for the production of organic acids, pharmaceuticals, and industrially important enzymes. In this study, extracellular proteins secreted by thermophilic A. fumigatus when grown with cellulose, xylan and starch were profiled using isobaric tags for relative and absolute quantification (iTRAQ) by adopting liquid chromatography tandem mass spectrometry. The comparison of quantitative iTRAQ results revealed that cellulose and xylan stimulate expression of specific cellulases and hemicellulases, and expression level as a function of substrate. Post translational modifications revealed deamidation of key cellulases including endoglucanases, cellobiohydrolases and glucosidases; and hemicellulases and lignin degrading enzymes. The knowledge on deamidated enzymes along with specific sites of modifications could be crucial information for further functional studies of these enzymes of A. fumigatus. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. CelR, an Ortholog of the Diguanylate Cyclase PleD of Caulobacter, Regulates Cellulose Synthesis in Agrobacterium tumefaciens

    PubMed Central

    Barnhart, D. Michael; Su, Shengchang; Baccaro, Brenna E.; Banta, Lois M.

    2013-01-01

    Cellulose fibrils play a role in attachment of Agrobacterium tumefaciens to its plant host. While the genes for cellulose biosynthesis in the bacterium have been identified, little is known concerning the regulation of the process. The signal molecule cyclic di-GMP (c-di-GMP) has been linked to the regulation of exopolysaccharide biosynthesis in many bacterial species, including A. tumefaciens. In this study, we identified two putative diguanylate cyclase genes, celR (atu1297) and atu1060, that influence production of cellulose in A. tumefaciens. Overexpression of either gene resulted in increased cellulose production, while deletion of celR, but not atu1060, resulted in decreased cellulose biosynthesis. celR overexpression also affected other phenotypes, including biofilm formation, formation of a polar adhesion structure, plant surface attachment, and virulence, suggesting that the gene plays a role in regulating these processes. Analysis of celR and Δcel mutants allowed differentiation between phenotypes associated with cellulose production, such as biofilm formation, and phenotypes probably resulting from c-di-GMP signaling, which include polar adhesion, attachment to plant tissue, and virulence. Phylogenetic comparisons suggest that species containing both celR and celA, which encodes the catalytic subunit of cellulose synthase, adapted the CelR protein to regulate cellulose production while those that lack celA use CelR, called PleD, to regulate specific processes associated with polar localization and cell division. PMID:24038703

  5. Near infrared leaf reflectance modeling

    NASA Technical Reports Server (NTRS)

    Parrish, J. B.

    1985-01-01

    Near infrared leaf reflectance modeling using Fresnel's equation (Kumar and Silva, 1973) and Snell's Law successfully approximated the spectral curve for a 0.25-mm turgid oak leaf lying on a Halon background. Calculations were made for ten interfaces, air-wax, wax-cellulose, cellulose-water, cellulose-air, air-water, and their inverses. A water path of 0.5 mm yielded acceptable results, and it was found that assignment of more weight to those interfaces involving air versus water or cellulose, and less to those involving wax, decreased the standard deviation of the error for all wavelengths. Data suggest that the air-cell interface is not the only important contributor to the overall reflectance of a leaf. Results also argue against the assertion that the near infrared plateau is a function of cell structure within the leaf.

  6. Enzyme immobilization on ultrafine cellulose fibers via poly(acrylic acid) electrolyte grafts.

    PubMed

    Chen, Hong; Hsieh, You-Lo

    2005-05-20

    Ultrafine cellulose fiber (diameter 200-400 nm) surfaces were grafted with polyacrylic acid (PAA) via either ceric ion initiated polymerization or methacrylation of cellulose with methacrylate chloride (MACl) and subsequent free-radical polymerization of acrylic acid. PAA grafts by ceric ion initiated polymerization increased with increasing reaction time (2-24 h), monomer (0.3-2.4 M), and initiator (1-10 mM) concentrations, and spanned a broad range from 5.5-850%. PAA grafts on the methacrylated cellulose fibers also increased with increasing molar ratios of MACl to cellulosic hydroxyl groups (MACl/OH, 2-6.4) and monomer acrylic acid (AA) to initiator potassium persulfate (KPS) ratios ([AA]/[KPS], 1.5-6), and were in a much narrower range between 12.8% and 29.4%. The adsorption of lipase (at 1 mg/ml lipase and pH 7) and the activity of adsorbed lipase (pH 8.5, 30 degrees C), in both cases decreased with increasing PAA grafts. The highest adsorption and activity of the lipase on the ceric ion initiated grafted fibers were 1.28 g/g PAA and 4.3 U/mg lipase, respectively, at the lowest grafting level of 5.5% PAA, whereas they were 0.33 g/g PAA and 7.1 U/mg lipase, respectively, at 12.8% PAA grafts on the methacrylated and grafted fibers. The properties of the grafted fibers and the absorption behavior and activity of lipase suggest that the PAA grafts are gel-like by ceric-initiated reaction and brush-like by methacrylation and polymerization. The adsorbed lipase on the ceric ion-initiated grafted surface possessed greatly improved organic solvent stability over the crude lipase. The adsorbed lipases exhibited 0.5 and 0.3 of the initial activity in the second and third assay cycles, respectively. (c) 2004 Wiley Periodicals, Inc.

  7. Quantitative (13)C MultiCP solid-state NMR as a tool for evaluation of cellulose crystallinity index measured directly inside sugarcane biomass.

    PubMed

    Bernardinelli, Oigres Daniel; Lima, Marisa Aparecida; Rezende, Camila Alves; Polikarpov, Igor; deAzevedo, Eduardo Ribeiro

    2015-01-01

    The crystallinity index (CI) is often associated with changes in cellulose structure after biological and physicochemical pretreatments. While some results obtained with lignocellulosic biomass demonstrate a progressive increase in the CI as a function of pretreatments, it is also shown that the CI can significantly vary depending on the choice of the measurement method. Besides, the influence of the CI on the recalcitrance of biomass has been controversial for a long time, but the most recent results tend to point out that the efficiency of pretreatments in reducing the recalcitrance is not clearly correlated with the decrease of the CI. Much of this controversy is somewhat associated with the inability to distinguish between the CI of the cellulose inside the biomass and the CI of the full biomass, which contains other amorphous components such as lignin and hemicellulose. Cross polarization by multiple contact periods (Multi-CP) method was used to obtain quantitative (13)C solid-state nuclear magnetic resonance (ssNMR) spectra of sugarcane bagasse biomass submitted to two-step pretreatments and/or enzymatic hydrolysis. By comparing the dipolar filtered Multi-CP (13)C NMR spectra of untreated bagasse samples with those of samples submitted to acid pretreatment, we show that a 1% H2SO4-assisted pretreatment was very effective in removing practically all the hemicellulose signals. This led us to propose a spectral editing procedure based on the subtraction of MultiCP spectra of acid-treated biomass from that of the extracted lignin, to obtain a virtually pure cellulose spectrum. Based on this idea, we were able to evaluate the CI of the native cellulose inside the sugarcane bagasse biomass. The results show the validity of the proposed method as a tool for evaluating the variations in the CI of the cellulose inside biomasses of similar kinds. Despite a clear increase in the CI of biomass as measured by X-ray diffraction, no significant variations were observed in the CI of the cellulose inside the biomass after a particular 1% H2SO4/0.25-4% NaOH chemical-assisted pretreatments. The CI of cellulose inside the biomass solid fraction that remained after the enzymatic hydrolysis was also evaluated. The results show a slight increase in crystallinity.

  8. Nano-web structures constructed with a cellulose acetate/lithium chloride/polyethylene oxide hybrid: modeling, fabrication and characterization.

    PubMed

    Broumand, Atefeh; Emam-Djomeh, Zahra; Khodaiyan, Faramarz; Mirzakhanlouei, Sasan; Davoodi, Driush; Moosavi-Movahedi, Ali A

    2015-01-22

    Electrospun nano-web structures (ENWSs) were successfully fabricated from ionized binary solution of cellulose(Mn30)/polyethylene oxide(Mn200) (CA/PEO of 0.5-1.5). Final concentration of polymers was 12% (w/v) in the solution, and lithium chloride was used as ionizing agent. Response surface methodology (RSM) was applied to the optimize fabrication of ENWSs. Results of multiple linear regression analysis revealed that the solution properties and ENWSs morphology were strongly influenced by CA/PEO. An increase in PEO amount increased the viscosity which is a function of molecular weight, and as a result raised the entanglement of polymeric solution but decreased the surface tension that all support nanofibers fabrication. The size of nanofibers decreased with reducing PEO and LiCl concentration. Increasing the content of LiCl promoted the electrical conductivity (EC) value; however, junction zones were formed. The overall optimum region was found to be at combined level of 1.5% CA/PEO and 0.49% (w/v) LiCl. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Self-discharge performance of Ni-MH battery by using electrodes with hydrophilic/hydrophobic surface

    NASA Astrophysics Data System (ADS)

    Li, Xiaofeng; Wang, Xiaojie; Dong, Huichao; Xia, Tongchi; Wang, Lizhen; Song, Yanhua

    2013-12-01

    The polytetrafluoroethylene (PTFE) and carboxymethyl cellulose (CMC) film is separately coated on the surface of the metal hydride (MH) and Ni(OH)2 electrodes to obtain the electrodes with hydrophobic or hydrophilic surface. The effects of the surface treatment on the oxygen and hydrogen evolution from the electrodes are studied by using cyclic voltammetry tests. Although the positive and negative active materials of the Ni-MH batteries show a lower self-decomposition rate after the CMC treatment, the self-discharge rate of the batteries show little change. On the contrary, the self-discharge rate of the batteries decreases from 35.9% to 27.1% by using the PTFE-treated Ni(OH)2 electrodes, which might be related to the suppression of the reaction between NiOOH and H2 by the hydrophobic film.

  10. The anisotropy1 D604N Mutation in the Arabidopsis Cellulose Synthase1 Catalytic Domain Reduces Cell Wall Crystallinity and the Velocity of Cellulose Synthase Complexes1[W][OA

    PubMed Central

    Fujita, Miki; Himmelspach, Regina; Ward, Juliet; Whittington, Angela; Hasenbein, Nortrud; Liu, Christine; Truong, Thy T.; Galway, Moira E.; Mansfield, Shawn D.; Hocart, Charles H.; Wasteneys, Geoffrey O.

    2013-01-01

    Multiple cellulose synthase (CesA) subunits assemble into plasma membrane complexes responsible for cellulose production. In the Arabidopsis (Arabidopsis thaliana) model system, we identified a novel D604N missense mutation, designated anisotropy1 (any1), in the essential primary cell wall CesA1. Most previously identified CesA1 mutants show severe constitutive or conditional phenotypes such as embryo lethality or arrest of cellulose production but any1 plants are viable and produce seeds, thus permitting the study of CesA1 function. The dwarf mutants have reduced anisotropic growth of roots, aerial organs, and trichomes. Interestingly, cellulose microfibrils were disordered only in the epidermal cells of the any1 inflorescence stem, whereas they were transverse to the growth axis in other tissues of the stem and in all elongated cell types of roots and dark-grown hypocotyls. Overall cellulose content was not altered but both cell wall crystallinity and the velocity of cellulose synthase complexes were reduced in any1. We crossed any1 with the temperature-sensitive radial swelling1-1 (rsw1-1) CesA1 mutant and observed partial complementation of the any1 phenotype in the transheterozygotes at rsw1-1’s permissive temperature (21°C) and full complementation by any1 of the conditional rsw1-1 root swelling phenotype at the restrictive temperature (29°C). In rsw1-1 homozygotes at restrictive temperature, a striking dissociation of cellulose synthase complexes from the plasma membrane was accompanied by greatly diminished motility of intracellular cellulose synthase-containing compartments. Neither phenomenon was observed in the any1 rsw1-1 transheterozygotes, suggesting that the proteins encoded by the any1 allele replace those encoded by rsw1-1 at restrictive temperature. PMID:23532584

  11. The anisotropy1 D604N mutation in the Arabidopsis cellulose synthase1 catalytic domain reduces cell wall crystallinity and the velocity of cellulose synthase complexes.

    PubMed

    Fujita, Miki; Himmelspach, Regina; Ward, Juliet; Whittington, Angela; Hasenbein, Nortrud; Liu, Christine; Truong, Thy T; Galway, Moira E; Mansfield, Shawn D; Hocart, Charles H; Wasteneys, Geoffrey O

    2013-05-01

    Multiple cellulose synthase (CesA) subunits assemble into plasma membrane complexes responsible for cellulose production. In the Arabidopsis (Arabidopsis thaliana) model system, we identified a novel D604N missense mutation, designated anisotropy1 (any1), in the essential primary cell wall CesA1. Most previously identified CesA1 mutants show severe constitutive or conditional phenotypes such as embryo lethality or arrest of cellulose production but any1 plants are viable and produce seeds, thus permitting the study of CesA1 function. The dwarf mutants have reduced anisotropic growth of roots, aerial organs, and trichomes. Interestingly, cellulose microfibrils were disordered only in the epidermal cells of the any1 inflorescence stem, whereas they were transverse to the growth axis in other tissues of the stem and in all elongated cell types of roots and dark-grown hypocotyls. Overall cellulose content was not altered but both cell wall crystallinity and the velocity of cellulose synthase complexes were reduced in any1. We crossed any1 with the temperature-sensitive radial swelling1-1 (rsw1-1) CesA1 mutant and observed partial complementation of the any1 phenotype in the transheterozygotes at rsw1-1's permissive temperature (21°C) and full complementation by any1 of the conditional rsw1-1 root swelling phenotype at the restrictive temperature (29°C). In rsw1-1 homozygotes at restrictive temperature, a striking dissociation of cellulose synthase complexes from the plasma membrane was accompanied by greatly diminished motility of intracellular cellulose synthase-containing compartments. Neither phenomenon was observed in the any1 rsw1-1 transheterozygotes, suggesting that the proteins encoded by the any1 allele replace those encoded by rsw1-1 at restrictive temperature.

  12. Studies of cellulose surfaces by titration and ESCA

    NASA Astrophysics Data System (ADS)

    Stenius, Per; Laine, Janne

    1994-01-01

    The surface properties of unbleached kraft pulp fibers of varying lignin content prepared by digestion with different amounts of excess alkali have been investigated using polyelectrolyte titration, potentiometric titration and ESCA. The surfaces contain two different acidic groups that dissociate completely above pH 7.5, one with pK ≈ 3.6 and one with pK ≈ 5.7. The amount of the latter group correlates directly with the amount of lignin in the pulp. The ESCA analysis indicates that the relative amount of carboxylic groups and alkyl carbon in the surface decreases as the lignin content decreases and also that material with high alkyl carbon content is enriched in the outermost surface of the cellulose. Thus, a combination of ESCA analysis and high-precision titrations is able to yield a very detailed picture of the effect of digestion conditions on surface properties of cellulose fibers of direct relevance to paper properties.

  13. Effect of pretreatment severity on accumulation of major degradation products from dilute acid pretreated corn stover and subsequent inhibition of enzymatic hydrolysis of cellulose.

    PubMed

    Um, Byung-Hwan; van Walsum, G Peter

    2012-09-01

    The concept of reaction severity, which combines residence time and temperature, is often used in the pulp and paper and biorefining industries. The influence of corn stover pretreatment severity on yield of sugar and major degradation products and subsequent effects on enzymatic cellulose hydrolysis was investigated. The pretreatment residence time and temperature, combined into the severity factor (Log R(o)), were varied with constant acid concentration. With increasing severity, increasing concentrations of furfural and 5-hydroxymethylfurfural (5-HMF) coincided with decreasing yields of oligosaccharides. With further increase in severity factor, the concentrations of furans decreased, while the formation of formic acid and lactic acid increased. For example, from severity 3.87 to 4.32, xylose decreased from 6.39 to 5.26 mg/mL, while furfural increased from 1.04 to 1.33 mg/mL; as the severity was further increased to 4.42, furfural diminished to 1.23 mg/mL as formate rose from 0.62 to 1.83 mg/mL. The effects of dilute acid hydrolyzate, acetic acid, and lignin, in particular, on enzymatic hydrolysis were investigated with a rapid microassay method. The microplate method gave considerable time and cost savings compared to the traditional assay protocol, and it is applicable to a broad range of lignocellulosic substrates.

  14. Fabrication of electric papers of graphene nanosheet shelled cellulose fibres by dispersion and infiltration as flexible electrodes for energy storage

    NASA Astrophysics Data System (ADS)

    Kang, Yan-Ru; Li, Ya-Li; Hou, Feng; Wen, Yang-Yang; Su, Dong

    2012-05-01

    An electrically conductive and electrochemically active composite paper of graphene nanosheet (GNS) coated cellulose fibres was fabricated via a simple paper-making process of dispersing chemically synthesized GNS into a cellulose pulp, followed by infiltration. The GNS nanosheet was deposited onto the cellulose fibers, forming a coating, during infiltration. It forms a continuous network through a bridge of interconnected cellulose fibres at small GNS loadings (3.2 wt%). The GNS/cellulose paper is as flexible and mechanically tough as the pure cellulose paper. The electrical measurements show the composite paper has a sheet resistance of 1063 Ω □-1 and a conductivity of 11.6 S m-1. The application of the composite paper as a flexible double layer supercapacitor in an organic electrolyte (LiPF6) displays a high capacity of 252 F g-1 at a current density of 1 A g-1 with respect to GNS. Moreover, the paper can be used as the anode in a lithium battery, showing distinct charge and discharge performances. The simple process for synthesising the GNS functionalized cellulose papers is attractive for the development of high performance papers for electrical, electrochemical and multifunctional applications.An electrically conductive and electrochemically active composite paper of graphene nanosheet (GNS) coated cellulose fibres was fabricated via a simple paper-making process of dispersing chemically synthesized GNS into a cellulose pulp, followed by infiltration. The GNS nanosheet was deposited onto the cellulose fibers, forming a coating, during infiltration. It forms a continuous network through a bridge of interconnected cellulose fibres at small GNS loadings (3.2 wt%). The GNS/cellulose paper is as flexible and mechanically tough as the pure cellulose paper. The electrical measurements show the composite paper has a sheet resistance of 1063 Ω □-1 and a conductivity of 11.6 S m-1. The application of the composite paper as a flexible double layer supercapacitor in an organic electrolyte (LiPF6) displays a high capacity of 252 F g-1 at a current density of 1 A g-1 with respect to GNS. Moreover, the paper can be used as the anode in a lithium battery, showing distinct charge and discharge performances. The simple process for synthesising the GNS functionalized cellulose papers is attractive for the development of high performance papers for electrical, electrochemical and multifunctional applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30318c

  15. The reuse of wastepaper for the extraction of cellulose nanocrystals.

    PubMed

    Danial, Wan Hazman; Abdul Majid, Zaiton; Mohd Muhid, Mohd Nazlan; Triwahyono, Sugeng; Bakar, Mohd Bakri; Ramli, Zainab

    2015-03-15

    The study reports on the preparation of cellulose nanocrystals (CNCs) from wastepaper, as an environmental friendly approach of source material, which can be a high availability and low-cost precursor for cellulose nanomaterial processing. Alkali and bleaching treatments were employed for the extraction of cellulose particles followed by controlled-conditions of acid hydrolysis for the isolation of CNCs. Attenuated total reflectance Fourier Transform Infrared (ATR FTIR) spectroscopy was used to analyze the cellulose particles extracted while Transmission electron microscopy images confirmed the presence of CNCs. The diameters of CNCs are in the range of 3-10nm with a length of 100-300nm while a crystallinity index of 75.9% was determined from X-ray diffraction analysis. The synthesis of this high aspect ratio of CNCs paves the way toward alternative reuse of wastepaper in the production of CNCs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Influence of mineral matter on pyrolysis of palm oil wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Haiping; Chen, Hanping; Zheng, Chuguang

    2006-09-15

    The influence of mineral matter on pyrolysis of biomass (including pure biomass components, synthesized biomass, and natural biomass) was investigated using a thermogravimetric analyzer (TGA). First, the mineral matter, KCl, K{sub 2}CO{sub 3}, Na{sub 2}CO{sub 3}, CaMg(CO{sub 3}){sub 2}, Fe{sub 2}O{sub 3}, and Al{sub 2}O{sub 3}, was mixed respectively with the three main biomass components (hemicellulose, cellulose, and lignin) at a weight ratio (C/W) of 0.1 and its pyrolysis characteristics were investigated. Most of these mineral additives, except for K{sub 2}CO{sub 3}, demonstrated negligible influence. Adding K{sub 2}CO{sub 3} inhibited the pyrolysis of hemicellulose by lowering its mass loss ratemore » by 0.3 wt%/{sup o}C, while it enhanced the pyrolysis of cellulose by shifting the pyrolysis to a lower temperature. With increased K{sub 2}CO{sub 3} added, the weight loss of cellulose in the lower temperature zone (200-315 {sup o}C) increased greatly, and the activation energies of hemicellulose and cellulose pyrolysis decreased notably from 204 to 42 kJ/mol. Second, studies on the synthetic biomass of hemicellulose, cellulose, lignin, and K{sub 2}CO{sub 3} (as a representative of minerals) indicated that peaks of cellulose and hemicellulose pyrolysis became overlapped with addition of K{sub 2}CO{sub 3} (at C/W=0.05-0.1), due to the catalytic effect of K{sub 2}CO{sub 3} lowering cellulose pyrolysis to a lower temperature. Finally, a local representative biomass--palm oil waste (in the forms of original material and material pretreated through water washing or K{sub 2}CO{sub 3} addition)--was studied. Water washing shifted pyrolysis of palm oil waste to a higher temperature by 20 {sup o}C, while K{sub 2}CO{sub 3} addition lowered the peak temperature of pyrolysis by {approx}50{sup o}C. It was therefore concluded that the obvious catalytic effect of adding K{sub 2}CO{sub 3} might be attributed to certain fundamental changes in terms of chemical structure of hemicellulose or decomposition steps of cellulose in the course of pyrolysis. (author)« less

  17. Biodegradation of Poly(3-hydroxybutyrate- co-3-hydroxyhexanoate) Plastic under Anaerobic Sludge and Aerobic Seawater Conditions: Gas Evolution and Microbial Diversity.

    PubMed

    Wang, Shunli; Lydon, Keri A; White, Evan M; Grubbs, Joe B; Lipp, Erin K; Locklin, Jason; Jambeck, Jenna R

    2018-05-15

    Poly(3-hydroxybutyrate- co-3-hydroxyhexanoate) (poly(3HB- co-3HHx)) thermoplastics are a promising biodegradable alternative to traditional plastics for many consumer applications. Biodegradation measured by gaseous carbon loss of several types of poly(3HB- co-3HHx) plastic was investigated under anaerobic conditions and aerobic seawater environments. Under anaerobic conditions, the biodegradation levels of a manufactured sheet of poly(3HB- co-3HHx) and cellulose powder were not significantly different from one another over 85 days with 77.1 ± 6.1 and 62.9 ± 19.7% of the carbon converted to gas, respectively. However, the sheet of poly(3HB- co-3HHx) had significantly higher methane yield ( p ≤ 0.05), 483.8 ± 35.2 mL·g -1 volatile solid (VS), compared to cellulose controls, 290.1 ± 92.7 mL·g -1 VS, which is attributed to a greater total carbon content. Under aerobic seawater conditions (148-195 days at room temperature), poly(3HB- co-3HHx) sheets were statistically similar to cellulose for biodegradation as gaseous carbon loss (up to 83% loss in about 6 months), although the degradation rate was lower than that for cellulose. The microbial diversity was investigated in both experiments to explore the dominant bacteria associated with biodegradation of poly(3HB- co-3HHx) plastic. For poly(3HB- co-3HHx) treatments, Cloacamonales and Thermotogales were enriched under anaerobic sludge conditions, while Clostridiales, Gemmatales, Phycisphaerales, and Chlamydiales were the most enriched under aerobic seawater conditions.

  18. Assessing the impact of lyophilization process in production of implants based on the bacterial cellulose using Raman spectroscopy method

    NASA Astrophysics Data System (ADS)

    Timchenko, E. V.; Timchenko, P. E.; Pisareva, E. V.; Vlasov, M. Yu; Revin, V. V.; Klenova, N. A.; Asadova, A. A.

    2017-01-01

    In this article we present the research results of lyophilization process influence on the composition of hybrid materials based on the bacterial cellulose (BC) using Raman spectroscopy method. As an object of research was used BC, as well as hybrids based on it, comprising the various combinations of hydroxyapatite (HAP) and collagen. Our studies showed that during the lyophilization process changes the ratio of the individual components. It was found that for samples hybrid based on BC with addition of HAP occurs increase of PO4 3- peak intensity in the region 956 cm-1 with decreasing width, which indicates a change in the degree of HAP crystallinity.

  19. Role of the Filters in the Formation and Stabilization of Semiquinone Radicals Collected from Cigarette Smoke

    PubMed Central

    Maskos, Zofia; Dellinger, Barry

    2013-01-01

    The fractional pyrolysis of Bright tobacco was performed in nitrogen atmosphere over the temperature range of 240 – 510 °C in a specially constructed, high temperature flow reactor system. Electron paramagnetic resonance (EPR) spectroscopy was used to analyze the free radicals in the initially produced total particular matter (TPM) and in TPM after exposure to ambient air (aging). Different filters have been used to collect TPM from tobacco smoke: cellulosic, cellulose nitrate, cellulose acetate, nylon, Teflon and Cambridge. The collection of the primary radicals (measured immediately after collection of TPM on filters), the formation and stabilization of the secondary radicals (defined as radicals formed during aging of TPM samples on the filters) depend significantly on the material of the filter. A mechanistic explanation about different binding capability of the filters decreasing in the order: cellulosic < cellulose nitrate < cellulose acetate < nylon ~ teflon is presented. Different properties were observed for the Cambridge filter. Specific care must be taken using the filters for identification of radicals from tobacco smoke to avoid artifacts in each case. PMID:24265513

  20. Developing cellulolytic Yarrowia lipolytica as a platform for the production of valuable products in consolidated bioprocessing of cellulose.

    PubMed

    Guo, Zhong-Peng; Robin, Julien; Duquesne, Sophie; O'Donohue, Michael Joseph; Marty, Alain; Bordes, Florence

    2018-01-01

    Both industrial biotechnology and the use of cellulosic biomass as feedstock for the manufacture of various commercial goods are prominent features of the bioeconomy. In previous work, with the aim of developing a consolidated bioprocess for cellulose bioconversion, we conferred cellulolytic activity of Yarrowia lipolytica , one of the most widely studied "nonconventional" oleaginous yeast species. However, further engineering this strain often leads to the loss of previously introduced heterologous genes due to the presence of multiple LoxP sites when using Cre -recombinase to remove previously employed selection markers. In the present study, we first optimized the strategy of expression of multiple cellulases and rescued selection makers to obtain an auxotrophic cellulolytic Y. lipolytica strain. Then we pursued the quest, exemplifying how this cellulolytic Y. lipolytica strain can be used as a CBP platform for the production of target products. Our results reveal that overexpression of SCD1 gene, encoding stearoyl-CoA desaturase, and DGA1 , encoding acyl-CoA:diacylglycerol acyltransferase, confers the obese phenotype to the cellulolytic Y. lipolytica . When grown in batch conditions and minimal medium, the resulting strain consumed 12 g/L cellulose and accumulated 14% (dry cell weight) lipids. Further enhancement of lipid production was achieved either by the addition of glucose or by enhancing cellulose consumption using a commercial cellulase cocktail. Regarding the latter option, although the addition of external cellulases is contrary to the concept of CBP, the amount of commercial cocktail used remained 50% lower than that used in a conventional process (i.e., without internalized production of cellulases). The introduction of the LIP2 gene into cellulolytic Y. lipolytica led to the production of a strain capable of producing lipase 2 while growing on cellulose. Remarkably, when the strain was grown on glucose, the expression of six cellulases did not alter the level of lipase production. When grown in batch conditions on cellulose, the engineered strain consumed 16 g/L cellulose and produced 9.0 U/mL lipase over a 96-h period. The lipase yield was 562 U lipase/g cellulose, which represents 60% of that obtained on glucose. Finally, expression of the hydroxylase from Claviceps purpurea (CpFAH12) in cellulolytic Y. lipolytica procured a strain that can produce ricinoleic acid (RA). Using this strain in batch cultures revealed that the consumption of 11 g/L cellulose sustained the production of 2.2 g/L RA in the decane phase, 69% of what was obtained on glucose. In summary, this study has further demonstrated the potential of cellulolytic Y. lipolytica as a microbial platform for the bioconversion of cellulose into target products. Its ability to be used in consolidated process designs has been exemplified and clues revealing how cellulose consumption can be further enhanced using commercial cellulolytic cocktails are provided.

  1. Comparing the effects of nano-sized sugarcane fiber with cellulose and psyllium on hepatic cellular signaling in mice

    PubMed Central

    Wang, Zhong Q; Yu, Yongmei; Zhang, Xian H; Floyd, Z Elizabeth; Boudreau, Anik; Lian, Kun; Cefalu, William T

    2012-01-01

    Aim To compare the effects of dietary fibers on hepatic cellular signaling in mice. Methods Mice were randomly divided into four groups (n = 9/group): high-fat diet (HFD) control, cellulose, psyllium, and sugarcane fiber (SCF) groups. All mice were fed a HFD with or without 10% dietary fiber (w/w) for 12 weeks. Body weight, food intake, fasting glucose, and fasting insulin levels were measured. At the end of the study, hepatic fibroblast growth factor (FGF) 21, AMP-activated protein kinase (AMPK) and insulin signaling protein content were determined. Results Hepatic FGF21 content was significantly lowered, but βKlotho, fibroblast growth factor receptor 1, fibroblast growth factor receptor 3, and peroxisome proliferator-activated receptor alpha proteins were significantly increased in the SCF group compared with those in the HFD group (P < 0.01). SCF supplementation also significantly enhanced insulin and AMPK signaling, as well as decreased hepatic triglyceride and cholesterol in comparison with the HFD mice. The study has shown that dietary fiber, especially SCF, significantly attenuates lipid accumulation in the liver by enhancing hepatic FGF21, insulin, and AMPK signaling in mice fed a HFD. Conclusion This study suggests that the modulation of gastrointestinal factors by dietary fibers may play a key role in both enhancing hepatic multiple cellular signaling and reducing lipid accumulation. PMID:22787396

  2. Stable dye-sensitized solar cells based on a gel electrolyte with ethyl cellulose as the gelator

    NASA Astrophysics Data System (ADS)

    Vasei, Maryam; Tajabadi, Fariba; Jabbari, Ali; Taghavinia, Nima

    2015-09-01

    A simple gelating process is developed for the conventional acetonitrile-based electrolyte of dye solar cells, based on ethyl cellulose as the gelator. The electrolyte becomes quasi-solid-state upon addition of an ethanolic solution of ethyl cellulose to the conventional acetonitrile-based liquid electrolyte. The photovoltaic conversion efficiency with the new gel electrolyte is only slightly lower than with the liquid electrolyte, e.g., 6.5 % for liquid electrolyte versus 5.9 % for gel electrolyte with 5.8 wt% added ethyl cellulose. Electrolyte gelation has small effect on the ionic diffusion coefficient of iodide, and the devices are remarkably stable for at least 550 h under irradiation at 55 °C.

  3. Morphology and enzyme production of Trichoderma reesei Rut C-30 are affected by the physical and structural characteristics of cellulosic substrates.

    PubMed

    Peciulyte, Ausra; Anasontzis, George E; Karlström, Katarina; Larsson, Per Tomas; Olsson, Lisbeth

    2014-11-01

    The industrial production of cellulolytic enzymes is dominated by the filamentous fungus Trichoderma reesei (anamorph of Hypocrea jecorina). In order to develop optimal enzymatic cocktail, it is of importance to understand the natural regulation of the enzyme profile as response to the growth substrate. The influence of the complexity of cellulose on enzyme production by the microorganisms is not understood. In the present study we attempted to understand how different physical and structural properties of cellulose-rich substrates affected the levels and profiles of extracellular enzymes produced by T. reesei. Enzyme production by T. reesei Rut C-30 was studied in submerged cultures on five different cellulose-rich substrates, namely, commercial cellulose Avicel® and industrial-like cellulosic pulp substrates which consist mainly of cellulose, but also contain residual hemicellulose and lignin. In order to evaluate the hydrolysis of the substrates by the fungal enzymes, the spatial polymer distributions were characterised by cross-polarisation magic angle spinning carbon-13 nuclear magnetic resonance (CP/MAS (13)C-NMR) in combination with spectral fitting. Proteins in culture supernatants at early and late stages of enzyme production were labeled by Tandem Mass Tags (TMT) and protein profiles were analysed by liquid chromatography-tandem mass spectrometry. The data have been deposited to the ProteomeXchange with identifier PXD001304. In total 124 proteins were identified and quantified in the culture supernatants, including cellulases, hemicellulases, other glycoside hydrolases, lignin-degrading enzymes, auxiliary activity 9 (AA9) family (formerly GH61), supporting activities of proteins and enzymes acting on cellulose, proteases, intracellular proteins and several hypothetical proteins. Surprisingly, substantial differences in the enzyme profiles were found even though there were minor differences in the chemical composition between the cellulose-rich substrates. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Network formation of nanofibrillated cellulose in solution blended poly(methyl methacrylate) composites.

    PubMed

    Littunen, Kuisma; Hippi, Ulla; Saarinen, Tapio; Seppälä, Jukka

    2013-01-02

    Composites of poly(methyl methacrylate) (PMMA) and nanofibrillated cellulose (NFC) were prepared by solution blending and further processed by injection and compression molding. To improve adhesion at the PMMA/NFC interface, the nanofibrils were covalently grafted with PMMA. Formation of a percolating nanofibril network was observed between 1 and 5 wt.% of NFC by dynamic rotational rheometry in molten state. This observation was further supported by the behavior of glass transition temperature which decreased at low NFC concentrations but recovered above the percolation threshold, indicating a decreased mobility of the matrix polymer. This effect was more pronounced with ungrafted NFC, possibly due to a stronger network. The unmodified NFC induced a minor degradation of the molar mass of PMMA. As thin plates, the composites were transparent at low NFC concentrations but became partially aggregated at the highest NFC concentrations. Despite the continuous NFC network, tensile testing showed no improvement of the mechanical properties. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. High Infrared Blocking Cellulose Film Based on Amorphous to Anatase Transition of TiO2 via Atomic Layer Deposition.

    PubMed

    Li, Wenbin; Li, Linfeng; Wu, Xi; Li, Junyu; Jiang, Lang; Yang, Hongjun; Ke, Guizhen; Cao, Genyang; Deng, Bo; Xu, Weilin

    2018-06-27

    A high IR-blocking cellulose film was designed based on an amorphous to anatase transition of TiO 2 using atomic layer deposition (ALD). This transition was realized at 250 °C, at which the cellulose is thermal stable. Optimized ALD condition of 250 °C and 1200 cycles give us an excellent heat insulator, which could significantly reduce the enclosed space temperature from 59.2 to 51.9 °C after exposure to IR lamp for 5 min.

  6. The Use of Cellulose Nanocrystals for Potential Application in Topical Delivery of Hydroquinone.

    PubMed

    Taheri, Azade; Mohammadi, Mina

    2015-07-01

    Nanotechnology-based drug delivery systems can enhance drug permeation through the skin and improve the drug stability. The biodegradability and biocompatibility of cellulose nanocrystals have made these nanoparticles good candidates to use in biomedical applications. The hyperpigmentation is a common skin disorder that could be caused by number of reasons such as sun exposure and pregnancy. Hydroquinone could inhibit the production of melanin and eliminate the discolorations of skin. This study is aimed at introducing cellulose nanocrystals as suitable carriers for drug delivery to skin. Prepared cellulose nanocrystals were characterized by dynamic light scattering and atomic force microscopy. The size of cellulose nanocrystals determined using dynamic light scattering was 301 ± 10 nm. Hydroquinone-cellulose nanocrystal complex was prepared by incubating of hydroquinone solution in cellulose nanocrystals suspension. The size of hydroquinone-cellulose nanocrystal complex determined using dynamic light scattering was 310 ± 10 nm. The hydroquinone content of the hydroquinone-cellulose complex was determined using UV/vis spectroscopy. Hydroquinone was bound to cellulose nanocrystals representing 79.3 ± 2% maximum binding efficiency when 1.1 mg hydroquinone was added to 1 mL of cellulose nanocrystals suspension (2 mg cellulose nanocrystal). The hydroquinone-cellulose nanocrystal complex showed an approximately sustained release profile of hydroquinone. Approximately, 80% of bound hydroquinone released in 4 h. © 2014 John Wiley & Sons A/S.

  7. Potential air emission impacts of cellulosic ethanol production at seven demonstration refineries in the United States.

    PubMed

    Jones, Donna Lee

    2010-09-01

    This paper reports on the estimated potential air emissions, as found in air permits and supporting documentation, for seven of the first group of precommercial or "demonstration" cellulosic ethanol refineries (7CEDF) currently operating or planning to operate in the United States in the near future. These seven refineries are designed to produce from 330,000 to 100 million gal of ethanol per year. The overall average estimated air emission rates for criteria, hazardous, and greenhouse gas pollutants at the 7CEDF are shown here in terms of tons per year and pounds per gallon of ethanol produced. Water use rates estimated for the cellulosic ethanol refineries are also noted. The air emissions are then compared with similar estimates from a U.S. cellulosic ethanol pilot plant, a commercial Canadian cellulosic ethanol refinery, four commercial U.S. corn ethanol refineries, and U.S. petroleum refineries producing gasoline. The U.S. Environmental Protection Agency (EPA) air pollution rules that may apply to cellulosic ethanol refineries are also discussed. Using the lowest estimated emission rates from these cellulosic ethanol demonstration facilities to project air emissions, EPA's major source thresholds for criteria and hazardous air pollutants might not be exceeded by cellulosic ethanol refineries that produce as high as 25 million gal per year of ethanol (95 ML). Emissions are expected to decrease at cellulosic ethanol refineries as the process matures and becomes more commercially viable.

  8. A Customized Gene Expression Microarray Reveals That the Brittle Stem Phenotype fs2 of Barley Is Attributable to a Retroelement in the HvCesA4 Cellulose Synthase Gene1[W][OA

    PubMed Central

    Burton, Rachel A.; Ma, Gang; Baumann, Ute; Harvey, Andrew J.; Shirley, Neil J.; Taylor, Jillian; Pettolino, Filomena; Bacic, Antony; Beatty, Mary; Simmons, Carl R.; Dhugga, Kanwarpal S.; Rafalski, J. Antoni; Tingey, Scott V.; Fincher, Geoffrey B.

    2010-01-01

    The barley (Hordeum vulgare) brittle stem mutants, fs2, designated X054 and M245, have reduced levels of crystalline cellulose compared with their parental lines Ohichi and Shiroseto. A custom-designed microarray, based on long oligonucleotide technology and including genes involved in cell wall metabolism, revealed that transcript levels of very few genes were altered in the elongation zone of stem internodes, but these included a marked decrease in mRNA for the HvCesA4 cellulose synthase gene of both mutants. In contrast, the abundance of several hundred transcripts changed in the upper, maturation zones of stem internodes, which presumably reflected pleiotropic responses to a weakened cell wall that resulted from the primary genetic lesion. Sequencing of the HvCesA4 genes revealed the presence of a 964-bp solo long terminal repeat of a Copia-like retroelement in the first intron of the HvCesA4 genes of both mutant lines. The retroelement appears to interfere with transcription of the HvCesA4 gene or with processing of the mRNA, and this is likely to account for the lower crystalline cellulose content and lower stem strength of the mutants. The HvCesA4 gene maps to a position on chromosome 1H of barley that coincides with the previously reported position of fs2. PMID:20530215

  9. A Novel FC116/BC10 Mutation Distinctively Causes Alteration in the Expression of the Genes for Cell Wall Polymer Synthesis in Rice

    PubMed Central

    Zhang, Mingliang; Wei, Feng; Guo, Kai; Hu, Zhen; Li, Yuyang; Xie, Guosheng; Wang, Yanting; Cai, Xiwen; Peng, Liangcai; Wang, Lingqiang

    2016-01-01

    We report isolation and characterization of a fragile culm mutant fc116 that displays reduced mechanical strength caused by decreased cellulose content and altered cell wall structure in rice. Map-based cloning revealed that fc116 was a base substitution mutant (G to A) in a putative beta-1,6-N-acetylglucosaminyltransferase (C2GnT) gene (LOC_Os05g07790, allelic to BC10). This mutation resulted in one amino acid missing within a newly-identified protein motif “R, RXG, RA.” The FC116/BC10 gene was lowly but ubiquitously expressed in the all tissues examined across the whole life cycle of rice, and slightly down-regulated during secondary growth. This mutant also exhibited a significant increase in the content of hemicelluloses and lignins, as well as the content of pentoses (xylose and arabinose). But the content of hexoses (glucose, mannose, and galactose) was decreased in both cellulosic and non-cellulosic (pectins and hemicelluloses) fractions of the mutant. Transcriptomic analysis indicated that the typical genes in the fc116 mutant were up-regulated corresponding to xylan biosynthesis, as well as lignin biosynthesis including p-hydroxyphenyl (H), syringyl (S), and guaiacyl (G). Our results indicate that FC116 has universal function in regulation of the cell wall polymers in rice. PMID:27708650

  10. The potential environmental impact of waste from cellulosic ethanol production.

    PubMed

    Menetrez, Marc Y

    2010-02-01

    The increasing production of ethanol has been established as an important contributor to future energy independence. Although ethanol demand is increasing, a growing economic trend in decreased profitability and resource conflicts have called into question the future of grain-based ethanol production. Growing emphasis is being placed on utilizing cellulosic feedstocks to produce ethanol, and the need for renewable resources has made the development of cellulosic ethanol a national priority. Cellulosic ethanol production plants are being built in many areas of the United States to evaluate various feedstocks and processes. The waste streams from many varying processes that are being developed contain a variety of components. Differences in ethanol generation processes and feedstocks are producing waste streams unique to biofuel production, which could be potentially harmful to the environment if adequate care is not taken to manage those risks. Waste stream management and utilization of the cellulosic ethanol process are equally important components of the development of this industry.

  11. Downregulation of a UDP-Arabinomutase Gene in Switchgrass (Panicum virgatum L.) Results in Increased Cell Wall Lignin While Reducing Arabinose-Glycans

    DOE PAGES

    Willis, Jonathan D.; Smith, James A.; Mazarei, Mitra; ...

    2016-10-26

    Switchgrass (Panicum virgatum L.) is a C 4 perennial prairie grass and a dedicated feedstock for lignocellulosic biofuels. Saccharification and biofuel yields are inhibited by the plant cell wall's natural recalcitrance against enzymatic degradation. Plant hemicellulose polysaccharides such as arabinoxylans structurally support and cross-link other cell wall polymers. Grasses predominately have Type II cell walls that are abundant in arabinoxylan, which comprise nearly 25% of aboveground biomass. A primary component of arabinoxylan synthesis is uridine diphosphate (UDP) linked to arabinofuranose (Araf). A family of UDP-arabinopyranose mutase (UAM)/reversible glycosylated polypeptides catalyze the interconversion between UDP-arabinopyranose (UDP-Arap) and UDP-Araf. The expression ofmore » a switchgrass arabinoxylan biosynthesis pathway gene, PvUAM1, was decreased via RNAi to investigate its role in cell wall recalcitrance in the feedstock. PvUAM1 encodes a switchgrass homolog of UDP-arabinose mutase, which converts UDP-Arap to UDP-Araf. Southern blot analysis revealed each transgenic line contained between one to at least seven T-DNA insertions, resulting in some cases, a 95% reduction of native PvUAM1 transcript in stem internodes. Transgenic plants had increased pigmentation in vascular tissues at nodes, but were otherwise similar in morphology to the non-transgenic control. Cell wall-associated arabinose was decreased in leaves and stems by over 50%, but there was an increase in cellulose. In addition, there was a commensurate change in arabinose side chain extension. Cell wall lignin composition was altered with a concurrent increase in lignin content and transcript abundance of lignin biosynthetic genes in mature tillers. Enzymatic saccharification efficiency was unchanged in the transgenic plants relative to the control. Plants with attenuated PvUAM1 transcript had increased cellulose and lignin in cell walls. A decrease in cell wall-associated arabinose was expected, which was likely caused by fewer Araf residues in the arabinoxylan. The decrease in arabinoxylan may cause a compensation response to maintain cell wall integrity by increasing cellulose and lignin biosynthesis. In cases in which increased lignin is desired, e.g., feedstocks for carbon fiber production, downregulated UAM1 coupled with altered expression of other arabinoxylan biosynthesis genes might result in even higher production of lignin in biomass.« less

  12. Downregulation of a UDP-Arabinomutase Gene in Switchgrass (Panicum virgatum L.) Results in Increased Cell Wall Lignin While Reducing Arabinose-Glycans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willis, Jonathan D.; Smith, James A.; Mazarei, Mitra

    Switchgrass (Panicum virgatum L.) is a C 4 perennial prairie grass and a dedicated feedstock for lignocellulosic biofuels. Saccharification and biofuel yields are inhibited by the plant cell wall's natural recalcitrance against enzymatic degradation. Plant hemicellulose polysaccharides such as arabinoxylans structurally support and cross-link other cell wall polymers. Grasses predominately have Type II cell walls that are abundant in arabinoxylan, which comprise nearly 25% of aboveground biomass. A primary component of arabinoxylan synthesis is uridine diphosphate (UDP) linked to arabinofuranose (Araf). A family of UDP-arabinopyranose mutase (UAM)/reversible glycosylated polypeptides catalyze the interconversion between UDP-arabinopyranose (UDP-Arap) and UDP-Araf. The expression ofmore » a switchgrass arabinoxylan biosynthesis pathway gene, PvUAM1, was decreased via RNAi to investigate its role in cell wall recalcitrance in the feedstock. PvUAM1 encodes a switchgrass homolog of UDP-arabinose mutase, which converts UDP-Arap to UDP-Araf. Southern blot analysis revealed each transgenic line contained between one to at least seven T-DNA insertions, resulting in some cases, a 95% reduction of native PvUAM1 transcript in stem internodes. Transgenic plants had increased pigmentation in vascular tissues at nodes, but were otherwise similar in morphology to the non-transgenic control. Cell wall-associated arabinose was decreased in leaves and stems by over 50%, but there was an increase in cellulose. In addition, there was a commensurate change in arabinose side chain extension. Cell wall lignin composition was altered with a concurrent increase in lignin content and transcript abundance of lignin biosynthetic genes in mature tillers. Enzymatic saccharification efficiency was unchanged in the transgenic plants relative to the control. Plants with attenuated PvUAM1 transcript had increased cellulose and lignin in cell walls. A decrease in cell wall-associated arabinose was expected, which was likely caused by fewer Araf residues in the arabinoxylan. The decrease in arabinoxylan may cause a compensation response to maintain cell wall integrity by increasing cellulose and lignin biosynthesis. In cases in which increased lignin is desired, e.g., feedstocks for carbon fiber production, downregulated UAM1 coupled with altered expression of other arabinoxylan biosynthesis genes might result in even higher production of lignin in biomass.« less

  13. Comparison of cellulosic ethanol yields from midwestern maize and reconstructed tallgrass prairie systems managed for bioenergy

    USDA-ARS?s Scientific Manuscript database

    Maize- and prairie-based systems were investigated as cellulosic feedstocks by conducting a 9 ha side-by-side comparison on fertile soils in the Midwestern United States. Maize was grown continuously with adequate fertilization over years both with and without a winter rye cover crop, and the 31-spe...

  14. Enhanced conversion of plant biomass into glucose using transgenic rice-produced endoglucanase for cellulosic ethanol.

    PubMed

    Oraby, Hesham; Venkatesh, Balan; Dale, Bruce; Ahmad, Rashid; Ransom, Callista; Oehmke, James; Sticklen, Mariam

    2007-12-01

    The catalytic domain of Acidothermus cellulolyticus thermostable endoglucanase gene (encoding for endo-1,4-beta-glucanase enzyme or E1) was constitutively expressed in rice. Molecular analyses of T1 plants confirmed presence and expression of the transgene. The amount of E1 enzyme accounted for up to 4.9% of the plant total soluble proteins, and its accumulation had no apparent deleterious effects on plant growth and development. Approximately 22 and 30% of the cellulose of the Ammonia Fiber Explosion (AFEX)-pretreated rice and maize biomass respectively was converted into glucose using rice E1 heterologous enzyme. As rice is the major food crop of the world with minimal use for its straw, our results suggest a successful strategy for producing biologically active hydrolysis enzymes in rice to help generate alcohol fuel, by substituting the wasteful and polluting practice of rice straw burning with an environmentally friendly technology.

  15. In vitro studies to show sequestration of matrix metalloproteinases by silver-containing wound care products.

    PubMed

    Walker, Michael; Bowler, Philip G; Cochrane, Christine A

    2007-09-01

    Excess or "uncontrolled" proteinase activity in the wound bed has been implicated as one factor that may delay or compromise wound healing. One proteinase group--matrix metalloproteinases--includes collagenases, elastase, and gelatinases and can be endogenous (cell) or exogenous (bacterial) in origin. A study was conducted to assess the ability of five silver-containing wound care products to reduce a known matrix metalloproteinase supernatant concentration in vitro. Four silver-containing wound dressings (a carboxy-methyl cellulose, a nanocrystalline, a hydro-alginate, and a collagen/oxidized regenerated cellulose composite dressing), along with a 0.5% aqueous silver nitrate [w/v] solution and controls for matrix metalloproteinase-2 and matrix metalloproteinase-9 sourced from ex vivo dermal tissue and blood monocytes, respectively, were used. Extracts were separated and purified using gelatine-Sepharose column chromatography and dialysis and polyacrylamide gel electrophoretic zymography was used to analyze specific matrix metalloproteinase activity. All dressings and the solution were shown to sequester both matrix metalloproteinases. The silver-containing carboxy-methyl cellulose dressing showed significantly greater sequestration for matrix metalloproteinase-2 at 6 and 24 hours (P< 0.001) compared to the other treatments. For matrix metalloproteinase-9, both the carboxy-methyl cellulose dressing and the oxidized regenerated cellulose dressing achieved significant sequestration when compared to the other treatments at 24 hours (P <0.001), which was maintained to 48 hours (P < 0.001). Results from this study show that silver-containing dressings are effective in sequestering matrix metalloproteinase-2 and -9 and that this can be achieved without a sacrificial protein (eg, collagen). Although the varying ability of wound dressings to sequester matrix metalloproteinases has been shown in vitro, further in vivo evidence is required to confirm these findings.

  16. Fractionation of lignocellulosic biopolymers from sugarcane bagasse using formic acid-catalyzed organosolv process.

    PubMed

    Suriyachai, Nopparat; Champreda, Verawat; Kraikul, Natthakorn; Techanan, Wikanda; Laosiripojana, Navadol

    2018-05-01

    A one-step formic acid-catalyzed organosolv process using a low-boiling point acid-solvent system was studied for fractionation of sugarcane bagasse. Compared to H 2 SO 4 , the use of formic acid as a promoter resulted in higher efficiency and selectivity on removals of hemicellulose and lignin with increased enzymatic digestibility of the cellulose-enriched solid fraction. The optimal condition from central composite design analysis was determined as 40 min residence time at 159 °C using water/ethanol/ethyl acetate/formic acid in the respective ratios of 43:20:16:21%v/v. Under this condition, a 94.6% recovery of cellulose was obtained in the solid with 80.2% cellulose content while 91.4 and 80.4% of hemicellulose and lignin were removed to the aqueous-alcohol-acid and ethyl acetate phases, respectively. Enzymatic hydrolysis of the solid yielded 84.5% glucose recovery compared to available glucan in the raw material. Physicochemical analysis revealed intact cellulose fibers with decreased crystallinity while the hemicellulose was partially recovered as mono- and oligomeric sugars. High-purity organosolv lignin with < 1% sugar cross-contamination was obtained with no major structural modification according to Fourier-transform infrared spectroscopy. The work represents an alternative process for efficient fractionation of lignocellulosic biomass in biorefineries.

  17. Dissolving process of a cellulose bunch in ionic liquids: a molecular dynamics study.

    PubMed

    Li, Yao; Liu, Xiaomin; Zhang, Suojiang; Yao, Yingying; Yao, Xiaoqian; Xu, Junli; Lu, Xingmei

    2015-07-21

    In recent years, a variety of ionic liquids (ILs) were found to be capable of dissolving cellulose and mechanistic studies were also reported. However, there is still a lack of detailed information at the molecular level. Here, long time molecular dynamics simulations of cellulose bunch in 1-ethyl-3-methylimidazolium acetate (EmimAc), 1-ethyl-3-methylimidazolium chloride (EmimCl), 1-butyl-3-methylimidazolium chloride (BmimCl) and water were performed to analyze the inherent interaction and dissolving mechanism. Complete dissolution of the cellulose bunch was observed in EmimAc, while little change took place in EmimCl and BmimCl, and nothing significant happened in water. The deconstruction of the hydrogen bond (H-bond) network in cellulose was found and analyzed quantitatively. The synergistic effect of cations and anions was revealed by analyzing the whole dissolving process. Initially, cations bind to the side face of the cellulose bunch and anions insert into the cellulose strands to form H-bonds with hydroxyl groups. Then cations start to intercalate into cellulose chains due to their strong electrostatic interaction with the entered anions. The H-bonds formed by Cl(-) cannot effectively separate the cellulose chain and that is the reason why EmimCl and BmimCl dissolve cellulose more slowly. These findings deepen people's understanding on how ILs dissolve cellulose and would be helpful for designing new efficient ILs to dissolve cellulose.

  18. Influence of the simultaneous addition of bentonite and cellulose fibers on the mechanical and barrier properties of starch composite-films.

    PubMed

    de Moraes, J Oliveira; Müller, C M O; Laurindo, J B

    2012-02-01

    The addition of nanoclay or cellulose fibers has been presented in the literature as a suitable alternative for reinforcing starch films. The aim of the present work was to evaluate the effect of the simultaneous incorporation of nanoclay (bentonite) and cellulose fibers on the mechanical and water barrier properties of the resultant composite-films. Films were prepared by casting with 3% in weight of cassava starch, using glycerol as plasticizer (0.30 g per g of starch), cellulose fibers at a concentration of 0.30 g of fibers per g of starch and nanoclay (0.05 g clay per g starch and 0.10 g clay per g starch). The addition of cellulose fibers and nanoclay increased the tensile strength of the films 8.5 times and the Young modulus 24 times but reduced the elongation capacity 14 times. The water barrier properties of the composite-films to which bentonite and cellulose fibers were added were approximately 60% inferior to those of starch films. Diffractograms showed that the nanoclay was intercalated in the polymeric matrix. These results indicate that the simultaneous addition of bentonite and cellulose fibers is a suitable alternative to increase the tensile strength of the films and decrease their water vapor permeabilities.

  19. Green heterogeneous Pd(II) catalyst produced from chitosan-cellulose micro beads for green synthesis of biaryls.

    PubMed

    Baran, Talat; Sargin, Idris; Kaya, Murat; Menteş, Ayfer

    2016-11-05

    In green catalyst systems, both the catalyst and the technique should be environmentally safe. In this study we designed a green palladium(II) catalyst for microwave-assisted Suzuki CC coupling reactions. The catalyst support was produced from biopolymers; chitosan and cellulose. The catalytic activity of the catalyst was tested on 16 substrates in solvent-free media and compared with those of commercial palladium salts. Reusability tests were done. The catalyst was also used in conventional reflux-heating system to demonstrate the efficiency of microwave heating method. We recorded high activity, selectivity and excellent TONs (6600) and TOFs (82500) just using a small catalyst loading (1.5×10(-3)mol%) in short reaction time (5min). The catalyst exhibited a long lifetime (9 runs). The findings indicated that both green chitosan/cellulose-Pd(II) catalyst and the microwave heating are suitable for synthesis of biaryl compounds by using Suzuki CC coupling reactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Fabrication of electric papers of graphene nanosheet shelled cellulose fibres by dispersion and infiltration as flexible electrodes for energy storage.

    PubMed

    Kang, Yan-Ru; Li, Ya-Li; Hou, Feng; Wen, Yang-Yang; Su, Dong

    2012-05-21

    An electrically conductive and electrochemically active composite paper of graphene nanosheet (GNS) coated cellulose fibres was fabricated via a simple paper-making process of dispersing chemically synthesized GNS into a cellulose pulp, followed by infiltration. The GNS nanosheet was deposited onto the cellulose fibers, forming a coating, during infiltration. It forms a continuous network through a bridge of interconnected cellulose fibres at small GNS loadings (3.2 wt%). The GNS/cellulose paper is as flexible and mechanically tough as the pure cellulose paper. The electrical measurements show the composite paper has a sheet resistance of 1063 Ω□(-1) and a conductivity of 11.6 S m(-1). The application of the composite paper as a flexible double layer supercapacitor in an organic electrolyte (LiPF(6)) displays a high capacity of 252 F g(-1) at a current density of 1 A g(-1) with respect to GNS. Moreover, the paper can be used as the anode in a lithium battery, showing distinct charge and discharge performances. The simple process for synthesising the GNS functionalized cellulose papers is attractive for the development of high performance papers for electrical, electrochemical and multifunctional applications.

  1. CBD binding domain fused γ-lactamase from Sulfolobus solfataricus is an efficient catalyst for (-) γ-lactam production.

    PubMed

    Wang, Jianjun; Zhu, Junge; Min, Cong; Wu, Sheng

    2014-05-13

    γ-lactamase is used for the resolution of γ-lactam which is utilized in the synthesizing of abacavir and peramivir. In some cases, enzymatic method is the most utilized method because of its high efficiency and productivity. The cellulose binding domain (CBD) of cellulose is often used as the bio-specific affinity matrix for enzyme immobilization. Cellulose is cheap and it has excellent chemical and physical properties. Meanwhile, binding between cellulose and CBD is tight and the desorption rarely happened. We prepared two fusion constructs of the γ-lactamase gene gla, which was from Sulfolobus solfataricus P2. These two constructs had Cbd (cellulose binding domain from Clostridium thermocellum) fused at amino or carboxyl terminus of the γ-lactamase. These two constructs were heterogeneously expressed in E. coli rosetta (DE3) as two fusion proteins. Both of them were immobilized well on Avicel (microcrystalline cellulose matrix). The apparent kinetic parameters revealed that carboxyl terminus fused protein (Gla-linker-Cbd) was a better catalyst. The V(max) and k(cat) value of Avicel immobilized Gla-linker-Cbd were 381 U mg⁻¹ and 4.7 × 10⁵ s⁻¹ respectively. And the values of the free Gla-linker-Cbd were 151 U mg⁻¹ and 1.8 × 10⁵ s⁻¹ respectively. These data indicated that the catalytic efficiency of the enzyme was upgraded after immobilization. The immobilized Gla-linker-Cbd had a 10-degree temperature optimum dropping from 80°C to 70°C but it was stable when incubated at 60°C for 48 h. It remained stable in catalyzing 20-batch reactions. After optimization, the immobilized enzyme concentration in transformation was set as 200 mg/mL. We found out that there was inhibition that occurred to the immobilized enzyme when substrate concentration exceeded 60 mM. Finally a 10 mL-volume transformation was conducted, in which 0.6 M substrate was hydrolyzed and the resolution was completed within 9 h with a 99.5% ee value. Cellulose is the most abundant and renewable material on the Earth. The absorption between Cbd domain and cellulose is a bio-green process. The cellulose immobilized fusion Gla exhibited good catalytic characters, therefore we think the cellulose immobilized Gla is a promising catalyst for the industrial preparation of (-) - γ-lactam.

  2. [Degradation of lignocellulose in the corn straw by Bacillus amyloliquefaciens MN-8].

    PubMed

    Li, Hong-ya; Li, Shu-na; Wang, Shu-xiang; Wang, Quan; Xue, Yin-yin; Zhu, Bao-cheng

    2015-05-01

    Microbial degradation of lignocellulose is one of the key problems that need to be solved urgently in the process of utilizing biomass resource. Bacillus amyloliquefaciens MN-8 is our previously isolated bacterium capable of degrading lignin. To determine the capability of strain MN-8 to degrade lignocellulose of corn straw, B. amyloliquefaciens MN-8 was inoculated and fermented with solid-state corn straw powder-MSM culture medium. The changes in the enzyme activity and degradation products of lignocellulose were monitored in the process of fermentation using the FTIR and GC/MS. The results showed that B. amyloliquefaciens MN-8 could produce lignin peroxidase, manganese peroxidase, cellulase and hemicellulase enzymes. The activities of all these enzymes reached the peak after being incubated for 10-16 days, and the highest enzyme activities were 55.0, 16.7, 45.4 and 60.5 U · g(-1), respectively. After 24 d of incubation, the degradation percentages of lignin, cellulose and hemicellulose were up to 42.9%, 40.6% and 27.1%, respectively. The spectroscopic data by FTIR indicated that the intensities of characteristic absorption peaks of lignin, cellulose and hemicellulose of the corn straw were decreased, indicating that the lignocellulose was degraded partly after being fermented by B. amyloliquefaciens MN-8. GC/MS analysis also demonstrated that strain MN-8 could degrade lignocellulose efficiently. It could depolymerize lignin into some monomeric compounds with retention of phenylpropane structure unit, such as amphetamine, benzene acetone and benzene propanoic acids, by the rupture of β-O-4 bond connected between lignin monomer, and it further oxidized some monomer compounds into Cα carbonyl compounds, such as 2-amino-1-benzeneacetone and 4-hydroxy-3,5-dimethoxy-acetophenone. The GC/MS analysis of the degradation products of cellulose and hemicellulose showed that there were not only monosaccharide compounds, such as glucose, mannose and galactose, but also some glycolysis products including formic acid, acetic acid, propionic acid, 1,1-ethanediol and 3-hydroxy butyric acid. Our results demonstrated that B. amyloliquefaciens MN-8 is capable of degrading lignocelluse of the corn straw effectively and the degradation capacity depends on the lignocellulase activity.

  3. Chemistry of 5,8-dihydroxy-[1,4]-benzoquinone, a key chromophore in aged cellulosics

    USDA-ARS?s Scientific Manuscript database

    2,5-Dihydroxy-[1,4]-benzoquione is one of the three key chromophores found in aged cellulosics. Knowledge of the general reactivity and chemistry of this compound is helpful for a better understanding of cellulose aging and yellowing as well as bleaching of cellulosic materials - processes which als...

  4. Replacing process water and nitrogen sources with biogas slurry during cellulosic ethanol production.

    PubMed

    You, Yang; Wu, Bo; Yang, Yi-Wei; Wang, Yan-Wei; Liu, Song; Zhu, Qi-Li; Qin, Han; Tan, Fu-Rong; Ruan, Zhi-Yong; Ma, Ke-Dong; Dai, Li-Chun; Zhang, Min; Hu, Guo-Quan; He, Ming-Xiong

    2017-01-01

    Environmental issues, such as the fossil energy crisis, have resulted in increased public attention to use bioethanol as an alternative renewable energy. For ethanol production, water and nutrient consumption has become increasingly important factors being considered by the bioethanol industry as reducing the consumption of these resources would decrease the overall cost of ethanol production. Biogas slurry contains not only large amounts of wastewater, but also the nutrients required for microbial growth, e.g., nitrogen, ammonia, phosphate, and potassium. Therefore, biogas slurry is an attractive potential resource for bioethanol production that could serve as an alternative to process water and nitrogen sources. In this study, we propose a method that replaces the process water and nitrogen sources needed for cellulosic ethanol production by Zymomonas mobilis with biogas slurry. To test the efficacy of these methods, corn straw degradation following pretreatment with diluted NaOH and enzymatic hydrolysis in the absence of fresh water was evaluated. Then, ethanol fermentation using the ethanologenic bacterial strain Z. mobilis ZMT2 was conducted without supplementing with additional nitrogen sources. After pretreatment with 1.34% NaOH (w/v) diluted in 100% biogas slurry and continuous enzymatic hydrolysis for 144 h, 29.19 g/L glucose and 12.76 g/L xylose were generated from 30 g dry corn straw. The maximum ethanol concentration acquired was 13.75 g/L, which was a yield of 72.63% ethanol from the hydrolysate medium. Nearly 94.87% of the ammonia nitrogen was depleted and no nitrate nitrogen remained after ethanol fermentation. The use of biogas slurry as an alternative to process water and nitrogen sources may decrease the cost of cellulosic ethanol production by 10.0-20.0%. By combining pretreatment with NaOH diluted in biogas slurry, enzymatic hydrolysis, and ethanol fermentation, 56.3 kg of ethanol was produced by Z. mobilis ZMT-2 through fermentation of 1000 kg of dried corn straw. In this study, biogas slurry replaced process water and nitrogen sources during cellulosic ethanol production. The results suggest that biogas slurry is a potential alternative to water when pretreating corn straw and, thus, has important potential applications in cellulosic ethanol production from corn straw. This study not only provides a novel method for utilizing biogas slurry, but also demonstrates a means of reducing the overall cost of cellulosic ethanol.

  5. Valorization of lignin and cellulose in acid-steam-exploded corn stover by a moderate alkaline ethanol post-treatment based on an integrated biorefinery concept.

    PubMed

    Yang, Sheng; Zhang, Yue; Yue, Wen; Wang, Wei; Wang, Yun-Yan; Yuan, Tong-Qi; Sun, Run-Cang

    2016-01-01

    Due to the unsustainable consumption of fossil resources, great efforts have been made to convert lignocellulose into bioethanol and commodity organic compounds through biological methods. The conversion of cellulose is impeded by the compactness of plant cell wall matrix and crystalline structure of the native cellulose. Therefore, appropriate pretreatment and even post-treatment are indispensable to overcome this problem. Additionally, an adequate utilization of coproduct lignin will be important for improving the economic viability of modern biorefinery industries. The effectiveness of moderate alkaline ethanol post-treatment on the bioconversion efficiency of cellulose in the acid-steam-exploded corn stover was investigated in this study. Results showed that an increase of the alcoholic sodium hydroxide (NaOH) concentration from 0.05 to 4% led to a decrease in the lignin content in the post-treated samples from 32.8 to 10.7%, while the cellulose digestibility consequently increased. The cellulose conversion of the 4% alcoholic NaOH integrally treated corn stover reached up to 99.3% after 72 h, which was significantly higher than that of the acid steam exploded corn stover without post-treatment (57.3%). In addition to the decrease in lignin content, an expansion of cellulose I lattice induced by the 4% alcoholic NaOH post-treatment played a significant role in promoting the enzymatic hydrolysis of corn stover. More importantly, the lignin fraction (AL) released during the 4% alcoholic NaOH post-treatment and the lignin-rich residue (EHR) remained after the enzymatic hydrolysis of the 4% alcoholic NaOH post-treated acid-steam-exploded corn stover were employed to synthesize lignin-phenol-formaldehyde (LPF) resins. The plywoods prepared with the resins exhibit satisfactory performances. An alkaline ethanol system with an appropriate NaOH concentration could improve the removal of lignin and modification of the crystalline structure of cellulose in acid-steam-exploded corn stover, and consequently significantly improve the conversion of cellulose through enzymatic hydrolysis for biofuel production. The lignin fractions obtained as byproducts could be applied in high performance LPF resin preparation. The proposed model for the integral valorization of corn stover in this study is worth of popularization.

  6. Growth and enzymatic activity of Leucoagaricus gongylophorus, a mutualistic fungus isolated from the leaf-cutting ant Atta mexicana, on cellulose and lignocellulosic biomass.

    PubMed

    Vigueras, G; Paredes-Hernández, D; Revah, S; Valenzuela, J; Olivares-Hernández, R; Le Borgne, S

    2017-08-01

    A mutualistic fungus of the leaf-cutting ant Atta mexicana was isolated and identified as Leucoagaricus gongylophorus. This isolate had a close phylogenetic relationship with L. gongylophorus fungi cultivated by other leaf-cutting ants as determined by ITS sequencing. A subcolony started with ~500 A. mexicana workers could process 2 g day -1 of plant material and generate a 135 cm 3 fungus garden in 160 days. The presence of gongylidia structures of ~35 μm was observed on the tip of the hyphae. The fungus could grow without ants on semi-solid cultures with α-cellulose and microcrystalline cellulose and in solid-state cultures with grass and sugarcane bagasse, as sole sources of carbon. The maximum CO 2 production rate on grass (V max  = 17·5 mg CO 2  L g -1  day -1 ) was three times higher than on sugarcane bagasse (V max  = 6·6 mg CO 2  L g -1 day -1 ). Recoveries of 32·9 mg glucose  g biomass -1 and 12·3 mg glucose  g biomass -1 were obtained from the fungal biomass and the fungus garden, respectively. Endoglucanase activity was detected on carboxymethylcellulose agar plates. This is the first study reporting the growth of L. gongylophorus from A. mexicana on cellulose and plant material. According to the best of our knowledge, this is the first report about the growth of Leucoagaricus gongylophorus, isolated from the colony of the ant Atta mexicana, on semisolid medium with cellulose and solid-state cultures with lignocellulosic materials. The maximum CO 2 production rate on grass was three times higher than on sugarcane bagasse. Endoglucanase activity was detected and it was possible to recover glucose from the fungal gongylidia. The cellulolytic activity could be used to process lignocellulosic residues and obtain sugar or valuable products, but more work is needed in this direction. © 2017 The Society for Applied Microbiology.

  7. A cytotoxic protein (BF-CT1) purified from Bungarus fasciatus venom acts through apoptosis, modulation of PI3K/AKT, MAPKinase pathway and cell cycle regulation.

    PubMed

    Bhattacharya, Shamik; Das, Tanaya; Biswas, Archita; Gomes, Aparna; Gomes, Antony; Dungdung, Sandhya Rekha

    2013-11-01

    BF-CT1, a 13 kDa protein isolated from Bungarus fasciatus snake venom through CM cellulose ion exchange chromatography at 0.02 M NaCl salt gradient showed cytotoxicity in in vitro and in vivo experimental models. In in vivo Ehrlich ascites carcinoma (EAC) induced BALB/c mice model, BF-CT1 treatment reduced EAC cell count significantly through apoptotic cell death pathway as evidenced by FACS analysis, increased caspase 3, 9 activity and altered pro, antiapoptotic protein expression. BF-CT1 treatment caused cell shrinkage, chromatin condensation and induced apoptosis through increased caspase 3, caspase 9 activity, PARP cleavage and down regulation of heat shock proteins in U937 leukemic cell line. Cytosolic cytochrome C production was increased after BF-CT1 treatment upon U937 cell line. BF-CT1 treated U937 cell showed cell cycle arrest at sub G1 phase through cyclin D and CDK down regulation with up regulation of p15 and p16. It also down regulated PI3K/AKT pathway and MAPkinase pathway and promoted apoptosis and regulated cell proliferation in U937 cells. BF-CT1 prevented angiogenesis in in vitro U937 cell line through decreased VEGF and TGF-β1 production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Reduced Graphene Oxide/Alumina, A Good Accelerant for Cellulose-Based Artificial Nacre with Excellent Mechanical, Barrier, and Conductive Properties.

    PubMed

    Shahzadi, Kiran; Zhang, Xueming; Mohsin, Imran; Ge, Xuesong; Jiang, Yijun; Peng, Hui; Liu, Huizhou; Li, Hui; Mu, Xindong

    2017-06-27

    In this article, a simple strategy was employed to fabricate bioinspired hybrid composite with carboxymethyl cellulose (CMC), graphene oxide, and reduced graphene oxide/alumina (rGO/Al) by a facile solution casting method. The tensile strength and toughness of rGO/Al-CMC-GO can reach 586.6 ± 12 MPa, 12.1 ± 0.44 MJm -3 , respectively, due to the interface strengthening of alumina, which is 1.43 and 12 times higher than steel and about 4.3 and 6.7 times that of nature nacre. The artificial nacre hybrid composite is conductive due to the introduction of rGO/Al on the surface. Interestingly this structure can also be coated on the surface of cotton thread to give the thread good mechanical performance and conductivity. Additionally, the artificial nacre has better fire shielding and gas barrier properties. The oxygen permeability (OP) for 1% rGO/Al-CMC decreased from 0.0265 to 0.003 mLμm m -2 day -1 kpa -1 , the water vapor permeability (WVP) decreased from 0.363 to 0.205 gmmm -2 day -1 kpa -1 when the concentration increased from 1% rGO/Al to 6% rGO/Al. It is believed this work provided a simple and feasible strategy to fabricate ultrastrong and ultratough graphene-based artificial nacre multifunctional materials.

  9. High consistency cellulase treatment of hardwood prehydrolysis kraft based dissolving pulp.

    PubMed

    Wang, Qiang; Liu, Shanshan; Yang, Guihua; Chen, Jiachuan; Ni, Yonghao

    2015-01-01

    For enzymatic treatment of dissolving pulp, there is a need to improve the process to facilitate its commercialization. For this purpose, the high consistency cellulase treatment was conducted based on the hypothesis that a high cellulose concentration would favor the interactions of cellulase and cellulose, thus improves the cellulase efficiency while decreasing the water usage. The results showed that compared with a low consistency of 3%, the high consistency of 20% led to 24% increases of cellulase adsorption ratio. As a result, the viscosity decrease and Fock reactivity increase at consistency of 20% were enhanced from 510 mL/g and 70.3% to 471 mL/g and 77.6%, respectively, compared with low consistency of 3% at 24h. The results on other properties such as alpha cellulose, alkali solubility and molecular weight distribution also supported the conclusion that a high consistency of cellulase treatment was more effective than a low pulp consistency process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Oxygen isotope values of tree ring α-cellulose as a proxy of hydroclimate variability in arid regions

    NASA Astrophysics Data System (ADS)

    Dodd, J. P.; Freimuth, E. J.; Olson, E. J.; Diefendorf, A. F.

    2015-12-01

    One of the main goals of tree ring isotope studies is to reconstruct climate-driven variations in the source water and antecedent precipitation; however, evaporation in the soil and leaves can significantly modify the isotope values of the source water. This is particularly the case in arid environments where evaporative effects are perhaps the most significant unknown variable when attempting to reconstruct regional-scale hydroclimate variations from tree ring isotope proxies. To quantify the effects of extreme aridity on α-cellulose δ18O values, we measured the oxygen isotope values of groundwater, xylem water, leaf water, and tree ring α-cellulose in an endemic species of drought-resistant trees (Prosopis tamarugo) from different microenvironments throughout the Atacama Desert of Northern Chile. Average annual precipitation is <5 mm/yr, and groundwater is the primary water source for P. tamarugo trees in the region. Groundwater δ18O values at the sample locations range from -6.7 to -9.7‰, and xylem water δ18O values record a systematic increase (ave. Δ18Ox-gw =+1.3‰; 2σ =1.0‰). Leaf waters are significantly affected by evaporative enrichment with a range of δ18O values from 7 to 23‰. This range most likely reflects a number of physiological and environmental conditions including tree size, canopy development, and sample time (i.e. morning vs. evening). However, despite the large variation in leaf water δ18O values, the average difference between the α-cellulose and groundwater is very consistent (Δ18Oc-gw = +39.7‰; 2σ =1.3‰). P. tamarugo samples were collected in austral spring, when tree growth was at its maximum; therefore, any seasonal variations in plant physiology not captured with this dataset will have a limited impact on cellulose production. These data demonstrate that despite the variable evaporative enrichment of 18O in the leaf water, the α-cellulose δ18O values provide a remarkably consistent record of variations in groundwater δ18O values in this extremely arid environment.

  11. Enantioselective potential of polysaccharide-based chiral stationary phases in supercritical fluid chromatography.

    PubMed

    Kucerova, Gabriela; Kalikova, Kveta; Tesarova, Eva

    2017-06-01

    The enantioselective potential of two polysaccharide-based chiral stationary phases for analysis of chiral structurally diverse biologically active compounds was evaluated in supercritical fluid chromatography using a set of 52 analytes. The chiral selectors immobilized on 2.5 μm silica particles were tris-(3,5-dimethylphenylcarmabate) derivatives of cellulose or amylose. The influence of the polysaccharide backbone, different organic modifiers, and different mobile phase additives on retention and enantioseparation was monitored. Conditions for fast baseline enantioseparation were found for the majority of the compounds. The success rate of baseline and partial enantioseparation with cellulose-based chiral stationary phase was 51.9% and 15.4%, respectively. Using amylose-based chiral stationary phase we obtained 76.9% of baseline enantioseparations and 9.6% of partial enantioseparations of the tested compounds. The best results on cellulose-based chiral stationary phase were achieved particularly with propane-2-ol and a mixture of isopropylamine and trifluoroacetic acid as organic modifier and additive to CO 2 , respectively. Methanol and basic additive isopropylamine were preferred on amylose-based chiral stationary phase. The complementary enantioselectivity of the cellulose- and amylose-based chiral stationary phases allows separation of the majority of the tested structurally different compounds. Separation systems were found to be directly applicable for analyses of biologically active compounds of interest. © 2017 Wiley Periodicals, Inc.

  12. All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application.

    PubMed

    Ghaderi, Moein; Mousavi, Mohammad; Yousefi, Hossein; Labbafi, Mohsen

    2014-04-15

    All-cellulose nanocomposite (ACNC) film was produced from sugarcane bagasse nanofibers using N,N-dimethylacetamide/lithium chloride solvent. The average diameter of bagasse fibers (14 μm) was downsized to 39 nm after disk grinding process. X-ray diffraction showed that apparent crystallinity and crystallite size decreased relatively to an increased duration of dissolution time. Thermogravimetric analysis confirmed that thermal stability of the ACNC was slightly less than that of the pure cellulose nanofiber sheet. Tensile strength of the fiber sheet, nanofiber sheet and ACNC prepared with 10 min dissolution time were 8, 101 and 140 MPa, respectively. Water vapor permeability (WVP) of the ACNC film increased relatively to an increased duration of dissolution time. ACNC can be considered as a multi-performance material with potential for application in cellulose-based food packaging owing to its promising properties (tough, bio-based, biodegradable and acceptable levels of WVP). Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Heterologous expression and biochemical characterization of a GHF9 endoglucanase from the termite Reticulitermes speratus in Pichia pastoris.

    PubMed

    Zhang, Pengfei; Yuan, Xianghua; Du, Yuguang; Li, Jian-Jun

    2018-06-01

    Cellulases are of great significance for full utilization of lignocellulosic biomass. Termites have an efficient ability to degrade cellulose. Heterologous production of the termite-origin cellulases is the first step to realize their industrial applications. The use of P. pastoris for the expression of recombinant proteins has become popular. The endoglucanase from Reticulitermes speratus (RsEG), belonging to glycoside hydrolase family 9 (GHF9), has not been produced in P. pastoris yet. A mutant RsEG m (G91A/Y97W/K429A) was successfully overexpressed in P. pastoris. RsEG m , with optimum pH 5.0, was active over the pH range of 4.0 to 9.0, and exhibited superior pH stability over between pH 4.0 and pH 11.0. It displayed the highest activity and good stability at 40 °C, but lost activity quickly at 50 °C. The apparent kinetic parameters of RsEG m against Carboxymethyl Cellulose (CMC) were determined, with K m and V max of 7.6 mg/ml and 5.4 μmol/min•mg respectively. Co 2+ , Mn 2+ and Fe 2+ enhanced the activity of RsEG m by 32.0, 19.5 and 11.2% respectively, while Pb 2+ and Cu 2+ decreased its activity by 19.6 and 12.7% separately. RsEG m could be overexpressed in P. pastoris. It was stable between pH 4.0 and pH 11.0, and exhibited higher stability at temperatures ≤ 40 °C. This endoglucanase may have potential to be used in the field of laundry, textile and lignocellulose-based biofuels and chemicals.

  14. Whey protein aerogel as blended with cellulose crystalline particles or loaded with fish oil.

    PubMed

    Ahmadi, Maede; Madadlou, Ashkan; Saboury, Ali Akbar

    2016-04-01

    Whey protein hydrogels blended with nanocrystalline and microcrystalline cellulose particles (NCC and MCC, respectively) were prepared, followed by freeze-drying, to produce aerogels. NCC blending increased the Young's modulus, and elastic character, of the protein aerogel. Aerogels were microporous and mesoporous materials, as characterized by the pores sizing 1.2 nm and 12.2 nm, respectively. Blending with NCC decreased the count of both microporous and mesoporous-classified pores at the sub-100 nm pore size range investigated. In contrast, MCC blending augmented the specific surface area and pores volume of the aerogel. It also increased moisture sorption affinity of aerogel. The feasibility of conveying hydrophobic nutraceuticals by aerogels was evaluated through loading fish oil into the non-blended aerogel. Oil loading altered its microstructure, corresponding to a peak displacement in Fourier-transform infra-red spectra, which was ascribed to increased hydrophobic interactions. Surface coating of aerogel with zein decreased the oxidation susceptibility of the loaded oil during subsequent storage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Effect of mistletoe combined with carboxymethyl cellulose on dry eye in postmenopausal women

    PubMed Central

    Jiang, Nan; Ye, Lin-Hong; Ye, Lei; Yu, Jing; Yang, Qi-Chen; Yuan, Qing; Zhu, Pei-Wen; Shao, Yi

    2017-01-01

    AIM To investigate the protective effect of mistletoe combined with carboxymethyl cellulose eye drops on dry eye in postmenopausal women. METHODS Sixty postmenopause female patients diagnosed of dry eye were assigned randomly to mistletoe combined with carboxymethyl cellulose eye drops treatment group (n=30) and control group treated with normal saline eye drops (n=30). The subjective symptoms of ocular surface, Ocular Surface Disease Index (OSDI), tear film function tests, tear protein and corneal morphology by confocal scanning microscopy were analyzed before treatment and at 1, 2, 4 and 8wk after treatment respectively. To ensure the safety of the trial, all patients were examined with systolic pressure, diastolic pressure, glutamic-pyruvic transaminase, glutamic oxaloacetic transaminase, urine creatinine, and blood urea nitrogen at 8wk after treatment. RESULTS There were no obvious differences between two groups before the treatment (P>0.05). In two months after the treatment, the symptoms of ocular surface, OSDI, tear protein, and tear film function were only slightly changed in normal saline eye drops group. However, all indices were improved after the treatment of mistletoe combined with carboxymethyl cellulose eye drops group (P<0.05). In addition, the average amount of corneal epithelium basal cells and inflammatory cells of mistletoe treated group were 3174±379 and 38±25 cells/mm2, significantly decreased as compared to the control group with 4309±612 and 158± 61 cells/mm2, respectively. In the control group, although nerves still maintained straight under corneal epithelium, the number of nerves were significantly decreased, as compared with normal female. In the mistletoe treated group, the number of nerves was only slightly reduced, compared with normal female. CONCLUSION Mistletoe combined with carboxymethyl cellulose eye drops can alleviate the symptoms and signs of dry eye symptoms. PMID:29181309

  16. Properties of bologna-type sausages with pork back-fat replaced with pork skin and amorphous cellulose.

    PubMed

    de Oliveira Faria, Miriam; Cipriano, Tayssa Martins; da Cruz, Adriano Gomes; Santos, Bibiana Alves Dos; Pollonio, Marise Aparecida Rodrigues; Campagnol, Paulo Cezar Bastianello

    2015-06-01

    Bologna-type sausages were produced with 50% of their pork back-fat content replaced with gels elaborated with different ratios of pork skin, water, and amorphous cellulose (1:1:0, 1:1:0.1, 1:1:0.2, 1:1:0.3, and 1:1:0.4). The impact of such replacement on the physico-chemical characteristics and the consumer sensory profiling was evaluated. The modified treatments had 42% less fat, 18% more protein, and 8% more moisture than the control group. Treatments with amorphous cellulose had a lower cooking loss and higher emulsion stability. High amorphous cellulose content (1:1:0.3 and 1:1:0.4) increased hardness, gumminess, and chewiness. The gel formulated with the ratio of 1:1:0.2 (pork skin: water: amorphous cellulose gel) provided a sensory sensation similar to that provided by fat and allowed products of good acceptance to be obtained. Therefore, a combination of pork skin and amorphous cellulose is useful in improving technological quality and producing healthier and sensory acceptable bologna-type sausages. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Glycosidases induced in Aspergillus tamarii. Mycelial alpha-D-galactosidases.

    PubMed Central

    Civas, A; Eberhard, R; Le Dizet, P; Petek, F

    1984-01-01

    Two alpha-D-galactosidases (alpha-D-galactoside galactohydrolase, EC 3.2.1.22) produced by Aspergillus tamarii were purified from the mycelial extract by a procedure including chromatography on hydroxyapatite, DEAE-cellulose and ECTEOLA-cellulose. Each of these enzymes showed a single protein band corresponding to the alpha-D-galactosidase activity when examined by polyacrylamide-gel electrophoresis. They catalysed the hydrolysis of o-nitrophenyl alpha-D-galactoside, melibiose, raffinose and stachyose, but did not attack the galactomannans. Their Mr values were respectively 265000 +/- 5000 and 254000 +/- 5000 by the method of Hedrick & Smith [(1968) Arch. Biochem. Biophys. 126, 155-164]. Polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate in each case showed a single protein band, with Mr 88000 and 77500 respectively. The purified enzymes contained carbohydrate, consisting of N-acetylglucosamine, mannose, glucose and galactose in the estimated molar proportions of 1:9:5:8 in alpha-galactosidase I. Images Fig. 1. PMID:6331398

  18. Chemistry of 5,8-dihydroxy-[1,4]-naphtoquinone, a key chromophore in aged cellulosics

    USDA-ARS?s Scientific Manuscript database

    5,8-Dihydroxy-[1,4]-naphthoquinone (DHNQ) is one of the key chromophores found in aged cellulosics. Cellulose aging and yellowing as well as bleaching of cellulosic materials are key processes in the pulp and paper industries and have considerable economic importance: the knowledge of the general re...

  19. Non-cellulosic polysaccharides from cotton fibre are differently impacted by textile processing.

    PubMed

    Runavot, Jean-Luc; Guo, Xiaoyuan; Willats, William G T; Knox, J Paul; Goubet, Florence; Meulewaeter, Frank

    2014-01-01

    Cotton fibre is mainly composed of cellulose, although non-cellulosic polysaccharides play key roles during fibre development and are still present in the harvested fibre. This study aimed at determining the fate of non-cellulosic polysaccharides during cotton textile processing. We analyzed non-cellulosic cotton fibre polysaccharides during different steps of cotton textile processing using GC-MS, HPLC and comprehensive microarray polymer profiling to obtain monosaccharide and polysaccharide amounts and linkage compositions. Additionally, in situ detection was used to obtain information on polysaccharide localization and accessibility. We show that pectic and hemicellulosic polysaccharide levels decrease during cotton textile processing and that some processing steps have more impact than others. Pectins and arabinose-containing polysaccharides are strongly impacted by the chemical treatments, with most being removed during bleaching and scouring. However, some forms of pectin are more resistant than others. Xylan and xyloglucan are affected in later processing steps and to a lesser extent, whereas callose showed a strong resistance to the chemical processing steps. This study shows that non-cellulosic polysaccharides are differently impacted by the treatments used in cotton textile processing with some hemicelluloses and callose being resistant to these harsh treatments.

  20. Leaf cellulose δD and δ18O trends with elevation differ in direction among co-occurring, semiarid plant species

    USGS Publications Warehouse

    Terwilliger, Vallery J.; Betancourt, Julio L.; Leavitt, Steven W.; Van De Water, Peter K.

    2002-01-01

    The potential to reconstruct paleoclimate from analyses of stable isotopes in fossil leaf cellulose could be enhanced by adequate calibration. This potential is likely to be particularly great in mid-latitude deserts, where a rich store of fossil leaves is available from rodent middens. Trends in ??D and ??18O of leaf cellulose were examined for three species growing across climatic gradients caused by elevation and slope aspect in southeastern Utah, USA. The species differed in morphology (Pinus edulis vs. Yucca glauca), photosynthetic pathway (C3 Y. glauca vs. CAM Yucca baccata) or both (P. edulis vs. Y. baccata). The ??DLCN (leaf cellulose nitrate) and ??18OLC (leaf cellulose) values of P. edulis decreased with elevation. Stem water ??D values either increased (in spring) or did not change with elevation (in summer). Needle water ??D values usually decreased with elevation and differed greatly with leaf age. These results suggest that ?? cellulose values of P. edulis record the effects of climate on the isotopic composition of leaf water but not climate effects on meteoric water. In contrast to P. edulis, ??DLCN values of Y. glauca increased with elevation. The ??18O LC values ofc Y. glauca also increased with elevation but less significantly and only on south-facing slopes. The ?? cellulose values in both P. edulis and Y. glauca were most significantly related to changes in temperature, although temperature and precipitation were negatively correlated in the study area. Where all three species co-occurred, their ??DLCN values differed but their ??18O LC values were the same. The disparity in ??DLCN between Y. baccata and the other species corresponds to differences in biochemical fractionations associated with photosynthetic pathway. Biochemical fractionations may also contribute to differences between the two C3 species. Knowledge of factors affecting responses of individual plant species to environment may be required to infer climate from ??DLCN and ??18OLC. ?? 2002 Elsevier Science Ltd.

  1. In Situ Generation of Cellulose Nanocrystals in Polycaprolactone Nanofibers: Effects on Crystallinity, Mechanical Strength, Biocompatibility, and Biomimetic Mineralization.

    PubMed

    Joshi, Mahesh Kumar; Tiwari, Arjun Prasad; Pant, Hem Raj; Shrestha, Bishnu Kumar; Kim, Han Joo; Park, Chan Hee; Kim, Cheol Sang

    2015-09-09

    Post-electrospinning treatment is a facile process to improve the properties of electrospun nanofibers for various applications. This technique is commonly used when direct electrospinning is not a suitable option to fabricate a nonwoven membrane of the desired polymer in a preferred morphology. In this study, a representative natural-synthetic hybrid of cellulose acetate (CA) and polycaprolactone (PCL) in different ratios was fabricated using an electrospinning process, and CA in the hybrid fiber was transformed into cellulose (CL) by post-electrospinning treatment via alkaline saponification. Scanning electron microscopy was employed to study the effects of polymer composition and subsequent saponification on the morphology of the nanofibers. Increasing the PCL content in the PCL/CA blend solution caused a gradual decrease in viscosity, resulting in smoother and more uniform fibers. The saponification of fibers lead to pronounced changes in the physicochemical properties. The crystallinity of the PCL in the composite fiber was varied according to the composition of the component polymers. The water contact angle was considerably decreased (from 124° to less than 20°), and the mechanical properties were greatly enhanced (Young's Modulus was improved by ≈20-30 fold, tensile strength by 3-4 fold, and tensile stress by ≈2-4 fold) compared to those of PCL and PCL/CA membranes. Regeneration of cellulose chains in the nanofibers increased the number of hydroxyl groups, which increased the hydrogen bonding, thereby improving the mechanical properties and wettability of the composite nanofibers. The improved wettability and presence of surface functional groups enhanced the ability to nucleate bioactive calcium phosphate crystals throughout the matrix when exposed to a simulated body fluid solution. Experimental results of cell viability assay, confocal microscopy, and scanning electron microscopy imaging showed that the fabricated nanofibrous membranes have excellent ability for MC3T3-E1 cell proliferation and growth. Given the versatility and widespread use of cellulose-synthetic hybrid systems in the construction of tissue-engineered scaffolds, this work provides a novel strategy to fabricate the biopolymer-based materials for applications in tissue engineering and regenerative medicine.

  2. Adsorption of TNT, DNAN, NTO, FOX7, and NQ onto cellulose, chitin, and cellulose triacetate. Insights from Density Functional Theory calculations

    NASA Astrophysics Data System (ADS)

    Todde, Guido; Jha, Sanjiv K.; Subramanian, Gopinath; Shukla, Manoj K.

    2018-02-01

    Insensitive munitions (IM) compounds such as DNAN (2,4-dinitroanisole), NTO (3-nitro-1,2,4-triazol-5-one), NQ (nitroguanidine), and FOX7 (1,1-diamino-2,2-dinitroethene) reduce the risk of accidental explosions due to shock and high temperature exposure. These compounds are being used as replacements for sensitive munition compounds such as TNT (2,4,6-trinitromethylbenzene) and RDX (1,3,5-hexahydro-1,3,5-trinitro-1,3,5-triazine). NTO and NQ in IM compounds are more soluble than TNT or RDX, hence they can easily spread in the environment and get dissolved if exposed to precipitation. DNAN solubility is comparable to TNT solubility. Cellulosic biomass, due to its abundance in the environment and its chemical structure, has a high probability of adsorbing these IM compounds, and thus, it is important to investigate the interactions between cellulose and cellulose like biopolymers (e.g. cellulose triacetate and chitin) with IM compounds. Using Density Functional Theory methods, we have studied the adsorption of TNT, DNAN, NTO, NQ, and FOX7 onto cellulose Iα and Iβ, chitin, and cellulose triacetate I (CTA I). Solvent effects on the adsorption were also investigated. Our results show that all contaminants are more strongly adsorbed onto chitin and cellulose Iα than onto CTA I and cellulose Iβ. Dispersion forces were found to be the predominant contribution to the adsorption energies of all contaminants.

  3. Production and Characterization of Organic Solvent-Tolerant Cellulase from Bacillus amyloliquefaciens AK9 Isolated from Hot Spring.

    PubMed

    Irfan, Muhammad; Tayyab, Ammara; Hasan, Fariha; Khan, Samiullah; Badshah, Malik; Shah, Aamer Ali

    2017-08-01

    A cellulase-producing bacterium, designated as strain AK9, was isolated from a hot spring of Tatta Pani, Azad Kashmir, Pakistan. The bacterium was identified as Bacillus amyloliquefaciens through 16S rRNA sequencing. Cellulase from strain AK9 was able to liberate glucose from soluble cellulose and carboxymethyl cellulose (CMC). Enzyme was purified through size exclusion chromatography and a single band of ∼47 kDa was observed on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme was purified with recovery of 35.5%, 3.6-fold purity with specific activity of 31 U mg -1 . The purified cellulase retained its activity over a wide range of temperature (50-70 °C) and pH (3-7) with maximum stability at 60 °C and pH 5.0. The activity inhibited by ethylenediaminetetraacetic acid (EDTA), suggested that it was metalloenzyme. Diethyl pyrocarbonate (DEPC) and β-mercaptoethanol significantly inhibited cellulase activity that revealed the essentiality of histidine residues and disulfide bonds for its catalytic function. It was stable in non-ionic surfactants, in the presence of various metal ions, and in water-insoluble organic solvents. Approximately 9.1% of reducing sugar was released after enzymatic saccharification of DAP-pretreated agro-residue, compared to a very low percentage by autohydrolysis treatment. Hence, it is concluded that cellulase from B. amyloliquefaciens AK9 can potentially be used in bioconversion of lignocellulosic biomass to fermentable sugars.

  4. Cellulose pretreatment with 1-n-butyl-3-methylimidazolium chloride for solid acid-catalyzed hydrolysis.

    PubMed

    Kim, Soo-Jin; Dwiatmoko, Adid Adep; Choi, Jae Wook; Suh, Young-Woong; Suh, Dong Jin; Oh, Moonhyun

    2010-11-01

    This study has been focused on developing a cellulose pretreatment process using 1-n-butyl-3-methylimidazolium chloride ([bmim]Cl) for subsequent hydrolysis over Nafion(R) NR50. Thus, several pretreatment variables such as the pretreatment period and temperature, and the [bmim]Cl amount were varied. Additionally, the [bmim]Cl-treated cellulose samples were characterized by X-ray diffraction analysis, and their crystallinity index values including CI(XD), CI(XD-CI) and CI(XD-CII) were then calculated. When correlated with these values, the concentrations of total reducing sugars (TRS) obtained by the pretreatment of native cellulose (NC) and glucose produced by the hydrolysis reaction were found to show a distinct relationship with the [CI(NC)-CI(XD)] and CI(XD-CII) values, respectively. Consequently, the cellulose pretreatment step with [bmim]Cl is to loosen a crystalline cellulose through partial transformation of cellulose I to cellulose II and, furthermore, the TRS release, while the subsequent hydrolysis of [bmim]Cl-treated cellulose over Nafion(R) NR50 is effective to convert cellulose II to glucose. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Preparation and characterization of nanocrystalline cellulose/Eucommia ulmoides gum nanocomposite film.

    PubMed

    Sun, Qianqian; Zhao, Xinkun; Wang, Dongmei; Dong, Juane; She, Diao; Peng, Pai

    2018-02-01

    The nanocomposite films were prepared using Eucommia ulmoides gum (EUG) matrix reinforced with nanocrystalline cellulose (NCC) at different concentrations. Subsequently, the obtained films were characterized by Raman spectra, AFM, XRD, TGA, and DSC. Meanwhile, the wettability, mechanical, and water vapor barrier properties of these films were analyzed. AFM noticed that the average sizes of NCC were 81.95×50.17×13.06nm, while the size of molecular chain for EUG was 2530×57.33×1.28nm. In comparison with control film, a certain amount of NCC obviously improved elongation at break and enhanced their crystallinity and ΔH m . More importantly, NCC/EUG nanocomposite films presented lower thermal stability, glass transition temperature (T g ), melting temperature (T m ), and water vapor permeability (WVP) values, especially the WVP values of 4% NCC film were the lowest as 0.28×10 -9 , 0.30×10 -9 , and 0.58×10 -9 g/m/h/Pa at RH 34%, 55%, and 76%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Adsorption of TNT, DNAN, NTO, FOX7 and NQ onto Cellulose, Chitin and Cellulose Triacetate. Insights from Density Functional Theory Calculations

    NASA Astrophysics Data System (ADS)

    Todde, Guido; Jha, Sanjiv; Subramanian, Gopinath; Shukla, Manoj

    Insensitive munitions (IM) like DNAN (2,4-dinitroanisole), NTO (3-nitro-1,2,4-triazol-5-one), NQ (nitroguanidine) and FOX7 (1,1-diamino-2,2-dinitroethene) reduce the risk of accidental explosions due to shock and high temperature exposure. These compounds are used as replacement for TNT (2,4,6-trinitromethylbenzene) and RDX (1,3,5-hexahydro-1,3,5-trinitro-1,3,5-triazine). Unfortunately they are more soluble than TNT or RDX, hence they can easily spread in the environment and get dissolved by precipitation. Due to the abundance of cellulosic biomass in the environment it is important to investigate the adsorption of these new contaminants onto cellulose and cellulose derivative surfaces. Using Density Functional Theory methods we have studied the adsorption of TNT, DNAN, NTO, NQ and FOX7 onto cellulose I α and I β, chitin and cellulose triacetate. The solvent effect on the adsorption was also investigated. Our results show how all contaminants are adsorbed onto chitin and cellulose I α. FOX7 is very weakly absorbed onto cellulose I β which is mainly found in wood and ramie fibers.

  7. Culture medium pH influence on Gluconacetobacter physiology: Cellulose production rate and yield enhancement in presence of multiple carbon sources.

    PubMed

    Yassine, Fatima; Bassil, Nathalie; Flouty, Roula; Chokr, Ali; Samrani, Antoine El; Boiteux, Gisèle; Tahchi, Mario El

    2016-08-01

    Gluconacetobacter genera are valued for bacterial cellulose (BC) and acetic acid production. BC is produced at optimal yields in classical microbiological media that are expensive for a large scale of production. In addition, BC usage for industrial purposes is limited due to low conversion rate into cellulose and to long incubation duration. In this paper, Gluconacetobacter isolated from apple vinegar was kinetically studied to evaluate cellulose production in presence of different carbon sources. Acetic and citric acid effect on Gluconacetobacter metabolism is clarified. It was shown that Gluconacetobacter uses glucose as a primary carbon source for cells growth and products formation. Acetic acid employment as a co-carbon source in Hestrin Schramm medium showed an increase of 17% in BC yield with a moderate decrease in the crystallite size of the resulting polymer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Composition, texture and methane potential of cellulosic residues from Lewis acids organosolv pulping of wheat straw.

    PubMed

    Constant, Sandra; Barakat, Abdellatif; Robitzer, Mike; Di Renzo, Francesco; Dumas, Claire; Quignard, Françoise

    2016-09-01

    Cellulosic pulps have been successfully isolated from wheat straw through a Lewis acids organosolv treatment. The use of Lewis acids with different hardness produced pulps with different delignification degrees. The cellulosic residue was characterised by chemical composition, X-ray diffraction, FT-IR spectroscopy, N2 physisorption, scanning electron microscopy and potential for anaerobic digestibility. Surface area and pore volume increased with the hardness of the Lewis acid, in correspondence with the decrease of the amount of lignin and hemicellulose in the pulp. The non linearity of the correlation between porosity and composition suggests that an agglomeration of cellulose fibrils occurs in the early stages of pulping. All organosolv pulps presented a significantly higher methane potential than the parent straw. A methane evolution of 295Ncm(3)/g OM was reached by a moderate improvement of the accessibility of the native straw. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Microbial Community Response to Carbon Substrate Amendment in Mercury Impacted Sediments: Implications on Microbial Methylation of Mercury.

    NASA Astrophysics Data System (ADS)

    Elias, D. A.; Somenahally, A. C.; Moberly, J. G.; Hurt, R. A., Jr.; Brown, S. D.; Podar, M.; Palumbo, A. V.; Gilmour, C. C.

    2015-12-01

    Methylmercury (MeHg) is a neurotoxic and bio-accumulative product of the microbial methylation of inorganic mercury (Hg(II)). Methylating organisms are now known to exist in almost all anaerobic niches including fermentation, Fe(III)- and sulfate- reduction as well as methanogenesis. The study objective was to determine the effect of different carbon sources on the microbial community and methylating populations in particular along a Hg contaminated creek. Sediment cores from upstream and downstream at the Hg contaminated East Fork Poplar Creek (EFPC), Oak Ridge TN, and a background site were sectioned by depth, and Hg-methylation potential (HgMP) assays were performed using stable isotope spikes. Sediments from the lowest depth possessed the highest in-situ activity. Replicate samples were amended with different carbon substrates (cellulose, acetate, propionate, lactate, ethanol and methanol), spiked with stable isotopes for HgMP assays and incubated for 24hrs. Sequencing of the 16S rRNA gene was performed to determine alterations in Bacterial and Archaeal population dynamics. Additionally, bioinformatics and our new qualitative and quantitative hgcAB primers were utilized to determine microbial community structure alterations and correlate organism and gene abundance with altered MeHg generation. HgMP was significantly reduced in cellulose amended sediments while acetate and propionate slightly decreased HgMP in both sites. Methanol, ethanol and lactate increased the HgMP in EFPC downstream while cellulose amendment significantly decreased the Proteobacteria, and the Firmicutes increased but none are currently known to produce MeHg. Geobacter bemidjiensis in particular significantly decreased in cellulose amended sediments in all three sites from being predominant in-situ. This suggests that in EFPC downstream and background sites, the prevalent Hg-methyaltors might be Deltaprotebacteria, since upstream, cellulose amendment did not reduce HgMP even though relative composition of Deltaproteobacteria decreased significantly. Hence the phylogenetic distribution of Hg-methylating bacteria upstream may be much broader. Most Archaea belonged to either Euryarchaeota or Crenarchaeota, but there were no consistent trends with specific groups among the treatments.

  10. Effects of habitual chitosan intake on bone mass, bone-related metabolic markers and duodenum CaBP D9K mRNA in ovariectomized SHRSP rats.

    PubMed

    Yang, Chu-Ya; Oh, Tae-Woong; Nakajima, Daito; Maeda, Atsuko; Naka, Tatsuki; Kim, Chang-Sun; Igawa, Shoji; Ohta, Fukio

    2002-10-01

    We have demonstrated that the habitual intake of chitosan can decrease bone mass in ovariectomized (OVX) SHRSP rats fed a low-Ca diet (0.1%). In the present study, we examined both the etiology of bone loss induced by dietary chitosan and the preventive effect of vitamin C supplementation. Rats were OVX and maintained on one of the following diets for 6 wk: 10% cellulose (CE). 10% chitosan (CH) or 10% chitosan with sodium ascorbate (CHVC). CH caused a significant reduction in bone mineral density (BMD) and stiffness in femurs and the fourth lumbar vertebrae (L4). There was no significant difference in intestinal Ca absorption between CH and CE, whereas CH intake significantly reduced intestinal P absorption. The bone loss in CH rats was accompanied with an increase in urinary Ca excretion and a decrease in serum Ca as well as a significant increment In serum PTH and 1,25(OH)2D3. The vitamin D receptor and calcium binding protein D9K mRNAs were also significantly increased in the duodenum of CH rats. Vitamin C supplementation to CH caused an increase in the Ca and P contents of femurs as well as BMD of the L4, with a decrease in urinary Ca excretion. These results indicate that dietary chitosan with low Ca intake possibly induces the loss of bone mass by enhancing urinary Ca excretion rather than by inhibiting Ca absorption, and that vitamin C supplementation could prevent bone loss caused by chitosan through the increment of retained Ca followed by suppression of urinary Ca excretion.

  11. Biocompatibility of Subcutaneously Implanted Plant-Derived Cellulose Biomaterials.

    PubMed

    Modulevsky, Daniel J; Cuerrier, Charles M; Pelling, Andrew E

    2016-01-01

    There is intense interest in developing novel biomaterials which support the invasion and proliferation of living cells for potential applications in tissue engineering and regenerative medicine. Decellularization of existing tissues have formed the basis of one major approach to producing 3D scaffolds for such purposes. In this study, we utilize the native hypanthium tissue of apples and a simple preparation methodology to create implantable cellulose scaffolds. To examine biocompatibility, scaffolds were subcutaneously implanted in wild-type, immunocompetent mice (males and females; 6-9 weeks old). Following the implantation, the scaffolds were resected at 1, 4 and 8 weeks and processed for histological analysis (H&E, Masson's Trichrome, anti-CD31 and anti-CD45 antibodies). Histological analysis revealed a characteristic foreign body response to the scaffold 1 week post-implantation. However, the immune response was observed to gradually disappear by 8 weeks post-implantation. By 8 weeks, there was no immune response in the surrounding dermis tissue and active fibroblast migration within the cellulose scaffold was observed. This was concomitant with the deposition of a new collagen extracellular matrix. Furthermore, active blood vessel formation within the scaffold was observed throughout the period of study indicating the pro-angiogenic properties of the native scaffolds. Finally, while the scaffolds retain much of their original shape they do undergo a slow deformation over the 8-week length of the study. Taken together, our results demonstrate that native cellulose scaffolds are biocompatible and exhibit promising potential as a surgical biomaterial.

  12. Biocompatibility of Subcutaneously Implanted Plant-Derived Cellulose Biomaterials

    PubMed Central

    Pelling, Andrew E.

    2016-01-01

    There is intense interest in developing novel biomaterials which support the invasion and proliferation of living cells for potential applications in tissue engineering and regenerative medicine. Decellularization of existing tissues have formed the basis of one major approach to producing 3D scaffolds for such purposes. In this study, we utilize the native hypanthium tissue of apples and a simple preparation methodology to create implantable cellulose scaffolds. To examine biocompatibility, scaffolds were subcutaneously implanted in wild-type, immunocompetent mice (males and females; 6–9 weeks old). Following the implantation, the scaffolds were resected at 1, 4 and 8 weeks and processed for histological analysis (H&E, Masson’s Trichrome, anti-CD31 and anti-CD45 antibodies). Histological analysis revealed a characteristic foreign body response to the scaffold 1 week post-implantation. However, the immune response was observed to gradually disappear by 8 weeks post-implantation. By 8 weeks, there was no immune response in the surrounding dermis tissue and active fibroblast migration within the cellulose scaffold was observed. This was concomitant with the deposition of a new collagen extracellular matrix. Furthermore, active blood vessel formation within the scaffold was observed throughout the period of study indicating the pro-angiogenic properties of the native scaffolds. Finally, while the scaffolds retain much of their original shape they do undergo a slow deformation over the 8-week length of the study. Taken together, our results demonstrate that native cellulose scaffolds are biocompatible and exhibit promising potential as a surgical biomaterial. PMID:27328066

  13. Anomalous scaling law of strength and toughness of cellulose nanopaper

    PubMed Central

    Zhu, Hongli; Zhu, Shuze; Jia, Zheng; Parvinian, Sepideh; Li, Yuanyuan; Vaaland, Oeyvind; Hu, Liangbing; Li, Teng

    2015-01-01

    The quest for both strength and toughness is perpetual in advanced material design; unfortunately, these two mechanical properties are generally mutually exclusive. So far there exists only limited success of attaining both strength and toughness, which often needs material-specific, complicated, or expensive synthesis processes and thus can hardly be applicable to other materials. A general mechanism to address the conflict between strength and toughness still remains elusive. Here we report a first-of-its-kind study of the dependence of strength and toughness of cellulose nanopaper on the size of the constituent cellulose fibers. Surprisingly, we find that both the strength and toughness of cellulose nanopaper increase simultaneously (40 and 130 times, respectively) as the size of the constituent cellulose fibers decreases (from a mean diameter of 27 μm to 11 nm), revealing an anomalous but highly desirable scaling law of the mechanical properties of cellulose nanopaper: the smaller, the stronger and the tougher. Further fundamental mechanistic studies reveal that reduced intrinsic defect size and facile (re)formation of strong hydrogen bonding among cellulose molecular chains is the underlying key to this new scaling law of mechanical properties. These mechanistic findings are generally applicable to other material building blocks, and therefore open up abundant opportunities to use the fundamental bottom-up strategy to design a new class of functional materials that are both strong and tough. PMID:26150482

  14. OsMYB103L, an R2R3-MYB transcription factor, influences leaf rolling and mechanical strength in rice (Oryza sativa L.).

    PubMed

    Yang, Chunhua; Li, Dayong; Liu, Xue; Ji, Chengjun; Hao, Lili; Zhao, Xianfeng; Li, Xiaobing; Chen, Caiyan; Cheng, Zhukuan; Zhu, Lihuang

    2014-06-06

    The shape of grass leaves possesses great value in both agronomy and developmental biology research. Leaf rolling is one of the important traits in rice (Oryza sativa L.) breeding. MYB transcription factors are one of the largest gene families and have important roles in plant development, metabolism and stress responses. However, little is known about their functions in rice. In this study, we report the functional characterization of a rice gene, OsMYB103L, which encodes an R2R3-MYB transcription factor. OsMYB103L was localized in the nucleus with transactivation activity. Overexpression of OsMYB103L in rice resulted in a rolled leaf phenotype. Further analyses showed that expression levels of several cellulose synthase genes (CESAs) were significantly increased, as was the cellulose content in OsMYB103L overexpressing lines. Knockdown of OsMYB103L by RNA interference led to a decreased level of cellulose content and reduced mechanical strength in leaves. Meanwhile, the expression levels of several CESA genes were decreased in these knockdown lines. These findings suggest that OsMYB103L may target CESA genes for regulation of cellulose synthesis and could potentially be engineered for desirable leaf shape and mechanical strength in rice.

  15. Reducing sugar loss in enzymatic hydrolysis of ethylenediamine pretreated corn stover.

    PubMed

    Li, Wen-Chao; Li, Xia; Qin, Lei; Zhu, Jia-Qing; Han, Xiao; Li, Bing-Zhi; Yuan, Ying-Jin

    2017-01-01

    In this study, the effect of ethylenediamine (EDA) on enzymatic hydrolysis with different cellulosic substrates and the approaches to reduce sugar loss in enzymatic hydrolysis were investigated. During enzymatic hydrolysis, xylose yield reduced 21.2%, 18.1% and 13.0% with 7.5mL/L EDA for AFEX pretreated corn stover (CS), washed EDA pretreated CS and CS cellulose. FTIR and GPC analysis demonstrated EDA reacted with sugar and produced high molecular weight (MW) compounds. EDA was prone to react with xylose other than glucose. H 2 O 2 and Na 2 SO 3 cannot prevent sugar loss in glucose/xylose-EDA mixture, although they inhibited the browning and high MW compounds formation. By decreasing temperature to 30°C, the loss of xylose yield reduced to only 3.8%, 3.6% and 4.2% with 7.5mL/L EDA in the enzymatic hydrolysis of AFEX pretreated CS, washed EDA pretreated CS and CS cellulose. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Chemical and thermal studies on esterification of EDTA with raw cellulose and mercerized cellulose EFB

    NASA Astrophysics Data System (ADS)

    Azamkamal, Fatihah; Zakaria, Sarani; Gan, Sinyee; Kaco, Hatika

    2018-04-01

    Oil palm empty fruit bunch fibre (EFB) was bleached using four stages bleaching sequences (DEED) where D was a bleaching process composed of 1.7 wt% NaClO2 and buffer solution while E was composed of NaOH solution. Raw cellulose and mercerized cellulose which treated with 3.5 N sodium hydroxide were used as a raw material for esterification with ethylenediaminetetraacetic acid (EDTA) and enhancement with acetic acid. The samples of raw cellulose and mercerized cellulose were observed using optical microscope. The thermal properties of raw cellulose and mercerized cellulose esterified with EDTA were studied. The effect of mercerized cellulose on esterification process of EDTA was investigated. The studies suggested that the mercerization process affect the thermal stability of the cellulose. The transmittance of FTIR band showed that raw cellulose gave better esterification product compared to mercerized cellulose. Hence, the mercerization process of cellulose does not improve the esterification of cellulose with EDTA.

  17. Surface acetylation of bamboo cellulose: preparation and rheological properties.

    PubMed

    Cai, Jie; Fei, Peng; Xiong, Zhouyi; Shi, Yongjun; Yan, Kai; Xiong, Hanguo

    2013-01-30

    In this study, purified bamboo cellulose was used to synthesize cellulose diacetate (B-CDA). The synthesis was controlled by determination of the degree of substitution and insoluble residue content. The product then was characterized by FTIR. The rheological properties of B-CDA solutions in acetone/N,N-dimethylacetamide (DMAc) solvent system were systematically investigated on an advanced rheometer, including the dependence of apparent viscosity η(α), non-Newtonian index n, and structural viscosity index Δη on the concentration and temperature of the solutions. B-CDA-acetone/DMAc solution is a shear-thinning fluid. With increasing solution concentration and decreasing temperature, Δη increased, whereas n decreased, which indicates a deteriorating spinnability. Moreover, the values of the viscous flow activation energy E(η) based on the Arrhenius equation increased when the shear rate γ was enhanced, which indicates that the η(α) of the solution is more sensitive to temperature in the higher γ values. The results are favorable for predicting the B-CDA solution spinnability. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Optimization of isolation of cellulose from orange peel using sodium hydroxide and chelating agents.

    PubMed

    Bicu, Ioan; Mustata, Fanica

    2013-10-15

    Response surface methodology was used to optimize cellulose recovery from orange peel using sodium hydroxide (NaOH) as isolation reagent, and to minimize its ash content using ethylenediaminetetraacetic acid (EDTA) as chelating agent. The independent variables were NaOH charge, EDTA charge and cooking time. Other two constant parameters were cooking temperature (98 °C) and liquid-to-solid ratio (7.5). The dependent variables were cellulose yield and ash content. A second-order polynomial model was used for plotting response surfaces and for determining optimum cooking conditions. The analysis of coefficient values for independent variables in the regression equation showed that NaOH and EDTA charges were major factors influencing the cellulose yield and ash content, respectively. Optimum conditions were defined by: NaOH charge 38.2%, EDTA charge 9.56%, and cooking time 317 min. The predicted cellulose yield was 24.06% and ash content 0.69%. A good agreement between the experimental values and the predicted was observed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Fabrication of Amperometric Glucose Sensor Using Glucose Oxidase-Cellulose Nanofiber Aqueous Solution.

    PubMed

    Yasuzawa, Mikito; Omura, Yuya; Hiura, Kentaro; Li, Jiang; Fuchiwaki, Yusuke; Tanaka, Masato

    2015-01-01

    Cellulose nanofiber aqueous solution, which remained virtually transparent for more than one week, was prepared by using the clear upper layer of diluted cellulose nanofiber solution produced by wet jet milling. Glucose oxidase (GOx) was easily dissolved in this solution and GOx-immobilized electrode was easily fabricated by simple repetitious drops of GOx-cellulose solution on the surface of a platinum-iridium electrode. Glucose sensor properties of the obtained electrodes were examined in phosphate buffer solution of pH 7.4 at 40°C. The obtained electrode provided a glucose sensor response with significantly high response speed and good linear relationship between glucose concentration and response current. After an initial decrease of response sensitivity for a few days, relatively constant sensitivity was obtained for about 20 days. Nevertheless, the influence of electroactive compounds such as ascorbic acid, uric acid and acetoaminophen were not negletable.

  20. Polymyxin B immobilized on cross-linked cellulose microspheres for endotoxin adsorption.

    PubMed

    Cao, Xiaodong; Zhu, Biyan; Zhang, Xufeng; Dong, Hua

    2016-01-20

    Cross-linked cellulose microspheres (CL-CMs) were successfully prepared by inverse crosslinking suspension method. NaOH/urea aqueous solution was used as solvent to dissolve cellulose at low temperature. The microspheres presented good spherical shape and monodispersity, which were applied to synthesize endotoxin adsorbent with polymyxin B (PMB) as ligand. The adsorbent showed good adsorption capability on endotoxin in physiologic saline solution and the maximum adsorption capacity was 3605 EU/g (1 EU=100 pg). It was worth noting that more than 70% of endotoxin could be effectively removed from the human plasma with the initial concentration of endotoxin ranged from 1 EU/mL to 5 EU/mL. The dynamic adsorption efficiency of endotoxin was 72.3% at the plasma perfusion rate of 300 mL/h with the endotoxin concentration of 4 EU/mL, while the variation of plasma protein before and after adsorption was only 8.9%. It suggests that the PMB immobilized CL-CMs have great potential application in clinical blood purification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Water in polymer membranes. 4. Raman scattering from cellulose acetate films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scherer, J.R.; Bailey, G.F.; Kint, S.

    Raman scattering was observed from thin film optical waveguides of cellulose acetate exposed to water vapor from 0% to 100% relative humidity (RH), and from dilute solutions of water in methyl acetate. Spectra of cellulose acetate (CA398, 39.8% acetyl) at low RH and cellulose triacetate (CTA) at low and high RH are consistent with the presence of water monomers that are weakly hydrogen bonded to acetyl C=O groups. Differences between the spectra of water in CA398 and CTA at low RH are attributed to sequential hydrogen bonding involving OH groups in CA398. At high RH, CA398 and CTA (to amore » lesser extent) show bands attributed to water/water interactions that are similar to those found in sequentially hydrogen-bonded hydrates. CA398 films that are annealed at high temperatures exhibit decreased water/water interactions at high RH. Exposure of CA398 films to D/sub 2/O converts > 90% of all polymer OH groups to OD groups. This indicates that water is accessible to nearly all regions of the polymer containing OH groups. Annealing does not alter this accessibility but does reduce the total water content by roughly half, at 100% RH. Hydrogen-bonded C=O groups are associated with a band centered at 1731 cm/sup -1/ which increases in intensity with increasing water content in the film but does not shift in frequency. 38 references, 16 figures, 1 table.« less

  2. Bioethanol production from sugarcane bagasse by simultaneous sacarification and fermentation using Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Hernawan, Maryana, R.; Pratiwi, D.; Wahono, S. K.; Darsih, C.; Hayati, S. N.; Poeloengasih, C. D.; Nisa, K.; Indrianingsih, A. W.; Prasetyo, D. J.; Jatmiko, T. H.; Kismurtono, M.; Rosyida, V. T.

    2017-03-01

    Sugarcane bagasse (SCB) is most abundant agricultural wastes in the world. It is an attractive feedstock for the large-scale biological production of bioethanol. However, the limitation in bagase use is its high degree of complexity because of its mixed composition of extremely inhomogeneous fibers. Therefore, ethanol production from bagase is often complex, with three main steps, i.e pretreatment, sacharification, and fermentation. Here we used alkali pretreatment using delignification reactor with NaOH 1N and 1.5 bar for 2 hours. Followed by Simultaneous Sacarification and Fermentation (SSF) using Saccharomyces cerevisiae in addition of cellulase and β-glucosidase enzyme. We found that the alkaline pretreatment can decrease cellulose crystallinity, decrease lignin content up to 84.83% and increased cellulose content up to 74.29%. SSF using cellulase enzymes and combination of cellulase enzymes and β-glucosidase derived bioethanol levels respectively 5.87±0.78% and 6.83±0.07%. In conclusion these results strongly suggest that addition of β-glucosidase enzyme on alkali-pretreated bagasse increased the bioethanol production.

  3. Pyrolysis behavior of different type of materials contained in the rejects of packaging waste sorting plants.

    PubMed

    Adrados, A; De Marco, I; Lopez-Urionabarrenechea, A; Caballero, B M; Laresgoiti, M F

    2013-01-01

    In this paper rejected streams coming from a waste packaging material recovery facility have been characterized and separated into families of products of similar nature in order to determine the influence of different types of ingredients in the products obtained in the pyrolysis process. The pyrolysis experiments have been carried out in a non-stirred batch 3.5 dm(3) reactor, swept with 1 L min(-1) N(2), at 500°C for 30 min. Pyrolysis liquids are composed of an organic phase and an aqueous phase. The aqueous phase is greater as higher is the cellulosic material content in the sample. The organic phase contains valuable chemicals as styrene, ethylbenzene and toluene, and has high heating value (HHV) (33-40 MJ kg(-1)). Therefore they could be used as alternative fuels for heat and power generation and as a source of valuable chemicals. Pyrolysis gases are mainly composed of hydrocarbons but contain high amounts of CO and CO(2); their HHV is in the range of 18-46 MJ kg(-1). The amount of COCO(2) increases, and consequently HHV decreases as higher is the cellulosic content of the waste. Pyrolysis solids are mainly composed of inorganics and char formed in the process. The cellulosic materials lower the quality of the pyrolysis liquids and gases, and increase the production of char. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. The effect of deuteration on the structure of bacterial cellulose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bali, Garima; Foston, Marcus; O'Neill, Hugh Michael

    2013-01-01

    ABSTRACT In vivo generated deuterated bacterial cellulose, cultivated from 100% deuterated glycerol in D2O medium, was analyzed for deuterium incorporation by ionic liquid dissolution and 2H and 1H nuclear magnetic resonance (NMR). A solution NMR method of the dissolved cellulose was used to determine that this bacterial cellulose had 85 % deuterium incorporation. Acetylation and 1H and 2H NMR of deuterated bacterial cellulose indicated near equal deuteration at all sites of the glucopyranosyl ring except C-6 which was partly deuterated. Despite the high level of deuterium incorporation there were no significant differences in the molecular and morphological properties were observedmore » for the deuterated and protio bacterial cellulose samples. The highly deuterated bacterial cellulose presented here can be used as a model substrate for studying cellulose biopolymer properties via future small angle neutron scattering (SANS) studies.« less

  5. Cellulose whisker/epoxy resin nanocomposites.

    PubMed

    Tang, Liming; Weder, Christoph

    2010-04-01

    New nanocomposites composed of cellulose nanofibers or "whiskers" and an epoxy resin were prepared. Cellulose whiskers with aspect ratios of approximately 10 and approximately 84 were isolated from cotton and sea animals called tunicates, respectively. Suspensions of these whiskers in dimethylformamide were combined with an oligomeric difunctional diglycidyl ether of bisphenol A with an epoxide equivalent weight of 185-192 and a diethyl toluenediamine-based curing agent. Thin films were produced by casting these mixtures and subsequent curing. The whisker content was systematically varied between 4 and 24% v/v. Electron microscopy studies suggest that the whiskers are evenly dispersed within the epoxy matrix. Dynamic mechanical thermoanalysis revealed that the glass transition temperature (T(g)) of the materials was not significantly influenced by the incorporation of the cellulose filler. Between room temperature and 150 degrees C, i.e., below T(g), the tensile storage moduli (E') of the nanocomposites increased modestly, for example from 1.6 GPa for the neat polymer to 4.9 and 3.6 GPa for nanocomposites comprising 16% v/v tunicate or cotton whiskers. The relative reinforcement was more significant at 185 degrees C (i.e., above T(g)), where E' was increased from approximately 16 MPa (neat polymer) to approximately 1.6 GPa (tunicate) or approximately 215 MPa (cotton). The mechanical properties of the new materials are well-described by the percolation model and are the result of the formation of a percolating whisker network in which stress transfer is facilitated by strong interactions between the whiskers.

  6. Anisotropic Cell Expansion Is Affected through the Bidirectional Mobility of Cellulose Synthase Complexes and Phosphorylation at Two Critical Residues on CESA31[OPEN

    PubMed Central

    Liu, Yanmei; Bauer, Stefan

    2016-01-01

    Here we report that phosphorylation status of S211 and T212 of the CESA3 component of Arabidopsis (Arabidopsis thaliana) cellulose synthase impacts the regulation of anisotropic cell expansion as well as cellulose synthesis and deposition and microtubule-dependent bidirectional mobility of CESA complexes. Mutation of S211 to Ala caused a significant decrease in the length of etiolated hypocotyls and primary roots, while root hairs were not significantly affected. By contrast, the S211E mutation stunted the growth of root hairs, but primary roots were not significantly affected. Similarly, T212E caused a decrease in the length of root hairs but not root length. However, T212E stunted the growth of etiolated hypocotyls. Live-cell imaging of fluorescently labeled CESA showed that the rate of movement of CESA particles was directionally asymmetric in etiolated hypocotyls of S211A and T212E mutants, while similar bidirectional velocities were observed with the wild-type control and S211E and T212A mutant lines. Analysis of cell wall composition and the innermost layer of cell wall suggests a role for phosphorylation of CESA3 S211 and T212 in cellulose aggregation into fibrillar bundles. These results suggest that microtubule-guided bidirectional mobility of CESA complexes is fine-tuned by phosphorylation of CESA3 S211 and T212, which may, in turn, modulate cellulose synthesis and organization, resulting in or contributing to the observed defects of anisotropic cell expansion. PMID:26969722

  7. Effects of bagasse microfibrillated cellulose and cationic polyacrylamide on key properties of bagasse paper.

    PubMed

    Djafari Petroudy, Seyed Rahman; Syverud, Kristin; Chinga-Carrasco, Gary; Ghasemain, Ali; Resalati, Hossein

    2014-01-01

    This study explores the benefits of using bagasse microfibrillated cellulose (MFC) in bagasse paper. Two different types of MFC were produced from DED bleached soda bagasse pulp. The MFC was added to soda bagasse pulp furnishes in different amounts. Cationic polyacrylamide (C-PAM) was selected as retention aid. The results show that addition of MFC increased the strength of paper as expected. Interestingly, 1% MFC in combination with 0.1% C-PAM yielded similar drainage time as the reference pulp, which did not contain MFC. In addition, the samples containing 1% MFC and 0.1% C-PAM yielded (i) a significant increment of the tensile index, (ii) a minor decrease of opacity and (iii) preserved Gurley porosity. Hence, this study proves that small fractions of MFC in combination with adequate retention aids can have positive effects with respect to paper properties, which is most interesting from an industrial point of view. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Surface Modification of Nanocellulose Substrates

    NASA Astrophysics Data System (ADS)

    Zoppe, Justin Orazio

    Cellulose fibers constitute an important renewable raw material that is utilized in many commercial applications in non-food, paper, textiles and composite materials. Chemical functionalization is an important approach for improving the properties of cellulose based materials. Different approaches are used to graft polymeric chains onto cellulose substrates, which can be classified by two principal routes, namely 'grafting onto' or 'grafting from' methods. Never-dried cellulose nanocrystals (CNCs) or nanowhiskers produced from sulfuric acid hydrolysis of ramie fibers were used as substrates for surface chemical functionalization with various macromolecules. In addition, the use of cellulose nanocrystals to reinforce poly(epsilon-caprolactone) (PCL) nanofibers was studied. Chemical grafting with low molecular weight polycaprolactone diol onto cellulose nanocrystals was carried out in an attempt to improve the interfacial adhesion with the fiber matrix. Significant improvements in the mechanical properties of the nanofibers after reinforcement with unmodified cellulose nanocrystals were confirmed. Fiber webs from PCL reinforced with 2.5% unmodified CNCs showed ca. 1.5-fold increase in Young's modulus and ultimate strength compared to PCL webs. The CNCs were also grafted with poly(N-isopropylacrylamide) (poly(NiPAAm)) brushes via surface-initiated single-electron transfer living radical polymerization (SI-SETLRP) under various conditions at room temperature. The grafting process depended on the initiator and/or monomer concentrations used. No observable damage occurred to the CNCs after grafting, as determined by X-ray diffraction. Size exclusion chromatography analyses of polymer chains cleaved from the cellulose nanocrystals indicated that a higher degree of polymerization was achieved by increasing initiator or monomer loading, most likely caused by local heterogeneities yielding higher rates of polymerization. In addition, the colloidal stability and thermo-responsive behavior of poly(NiPAAm) brushes grafted from nanoparticles of CNCs of varying graft densities and molecular weights was investigated. Halo areas surrounding grafted CNCs that were adsorbed on silica and imaged with an AFM were indicative of the grafted polymer brushes. Aggregation of nanoparticles carrying grafts of high degree of polymerization was observed. The responsiveness of CNCs in liquid medium and as spin-coated films was determined by using light scattering, viscometry and Colloidal Probe Microscopy (CPM). Light transmittance measurements showed temperaturedependent aggregation originating from the different graft densities and molecular weights and a sharp increase in dispersion viscosity as the temperature approached the LCST. The lower critical solution temperature (LCST) of grafted poly(NiPAAm) brushes was found to decrease with the ionic strength as is the case of neat poly(NiPAAm) in aqueous solution. CPM in aqueous media for asymmetric systems consisting of thin films of CNCs and a colloidal silica probe showed the distinctive effects of the grafted polymer brushes on the interaction (repulsive and adhesive) forces. The origin of such forces was mainly electrostatic and steric in the case of bare and grafted CNCs, respectively. A decrease in the onset of attractive and adhesion forces of grafted CNCs films was observed with the ionic strength of the aqueous solution medium. The decreased mobility of polymer brushes upon partial collapse and decreased availability of hydrogen bonding sites with higher electrolyte concentration were hypothesized as main reasons for the less prominent polymer bridging between interacting surfaces. Finally, poly(NiPAAm)-g-CNCs were utilized as a Pickering emulsions stabilizer. All emulsions formed were oil-in-water confirmed by a drop test. Various drop sizes were obtained as characterized by laser scattering particle size analysis and optical microscopy. Anisotropic colloidal assemblies of grafted CNCs at the oil-water interface were observed in freeze-fractured samples via Transmission Electron Microscopy. Emulsions were stable for over three months at the time of writing this thesis, however rapidly broke above the LCST as determined by rheometry.

  9. Influence of Cellulose Nanofillers on the Rheological Properties of Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    El Kissi, Nadia; Alloin, Fannie; Dufresne, Alain; Sanchez, Jean-Yves; Bossard, Frédéric; D'Aprea, Alessandra; Leroy, Séverine

    2008-07-01

    In this study, nanocomposite polymer electrolytes, based on high molecular weight PEO were prepared from high aspect ratio natural cellulosic nanofillers. The thermomechanical behaviour of the resulting nanocomposites was investigated using differential scanning calorimetry, dynamic mechanical analysis and rheometrical measurements. The influence of entanglements versus percolation mechanism on the determination of the mechanical properties of the composite was also investigated. Shear rheometry of the unfilled PEO and related nanocomposites shows that the shear viscosity first decreases when the concentration in cellulose increases. Then typical suspension behaviour is obtained and the viscosity increases with the concentration. This observation is in agreement with DSC and DMA results and is explained in terms of polymer-filler interactions. Interactions between cellulose fillers, are responsible for the reinforcing effect above the melting temperature of the matrix, through the formation of a stiff network that is well predicted by a percolation concept.

  10. Interactions of fungi from fermented sausage with regenerated cellulose casings.

    PubMed

    Sreenath, Hassan K; Jeffries, Thomas W

    2011-11-01

    This research examined cellulolytic effects of fungi and other microbes present in cured sausages on the strength and stability of regenerated cellulose casings (RCC) used in the sausage industry. Occasionally during the curing process, RCC would split or fail, thereby leading to loss of product. The fungus Penicillium sp. BT-F-1, which was isolated from fermented sausages, and other fungi, which were introduced to enable the curing process, produced small amounts of cellulases on RCC in both liquid and solid cultivations. During continued incubation for 15-60 days in solid substrate cultivation (SSC) on RCC support, the fungus Penicillium sp isolate BT-F-1 degraded the casings' dry weights by 15-50% and decreased their tensile strengths by ~75%. Similarly commercial cellulase(s) resulted in 20-50% degradation of RCC in 48 h. During incubation with Penicillium sp BT-F-1, the surface structure of RCC collapsed, resulting in loss of strength and stability of casings. The matrix of industrial RCC comprised 88-93% glucose polymer residues with 0.8-4% xylan impurities. Premature casing failure appeared to result from operating conditions in the manufacturing process that allowed xylan to build up in the extrusion bath. The sausage fungus Penicillium sp BT-F-1 produced xylanases to break down soft xylan pockets prior to slow cellulosic dissolution of RCC.

  11. Chitosan/titanium dioxide nanocomposite coatings: Rheological behavior and surface application to cellulosic paper.

    PubMed

    Tang, Yanjun; Hu, Xiulan; Zhang, Xinqi; Guo, Daliang; Zhang, Junhua; Kong, Fangong

    2016-10-20

    Incorporation of nanofillers into a polymeric matrix has received much attention as a route to reinforced polymer nanocomposites. In the present work, an environmentally friendly chitosan (CTS)/titanium dioxide (TiO2) nanocomposite coating was designed/prepared and subsequently employed for imparting antibacterium and improved mechanical properties to cellulosic paper via surface coating. Effect of TiO2 nanoparticle loadings on the rheological behavior of nanocomposite coatings was investigated. Surface application of CTS/TiO2 nanocomposite coatings to cellulosic paper was performed, and the antibacterial activity and mechanical properties of surface-coated cellulosic paper were examined. Results showed that the increased TiO2 nanoparticle loadings decreased the viscosity and dynamic viscoelasticity of the as-prepared coatings, and improved the antibacterial activity and mechanical properties of surface-coated cellulosic paper. The optimum loading of TiO2 nanoparticles was identified at 10%. This work suggested that CTS/TiO2 nanocomposite coatings may have the potential to be used as a promising antibacterial protective coating for paper packaging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. [Biomimetic mineralization of rod-like cellulose nano-whiskers and spectrum analysis].

    PubMed

    Qu, Ping; Wang, Xuan; Cui, Xiao-xia; Zhang, Li-ping

    2012-05-01

    Cellulose nano-whiskers/nano-hydroxyapatite composite was prepared with biomimetic mineralization using rod-like cellulose nano-whiskers as template. The cellulose nano-whiskers and cellulose nano-whiskers/nano-hydroxyapatite composite were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope-energy dispersive analysis of X-rays (SEM-EDXA). Variation and distribution of carbon, oxygen, calcium, and phosphorus in the composites were studied. The morphologies and growth mechanism of nano-hydroxyapatite were analyzed. The results showed that nano-hydroxyapatite was formed on the surface of cellulose nano-whiskers; the carbon-oxygen ratio of cellulose nano-whiskers and cellulose nano-whiskers/nano-hydroxyapatite composite was 1.81 and 1.54, respectively; the calcium-phosphorus ratio of the composite was 1.70. The nucleation of nano-hydroxyapatite was around the hydroxyl groups of cellulose nano-whiskers. It is suggested that there is coordination between the hydroxyl groups of cellulose nano-whiskers and calcium ions of nano-hydroxyapatite. The nano-hydroxyapatite can distribute in the matrix of cellulose nano-whiskers. From the atomic force microscope (AFM) images, we can see that the diameter of the spherical nano-hydroxyapatite particles was about 20 nm.

  13. The impact of alterations in lignin deposition on cellulose organization of the plant cell wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jiliang; Kim, Jeong Im; Cusumano, Joanne C.

    Background: Coordination of synthesis and assembly of the polymeric components of cell walls is essential for plant growth and development. Given the degree of co-mingling and cross-linking among cell wall components, cellulose organization must be dependent on the organization of other polymers such as lignin. Here we seek to identify aspects of that codependency by studying the structural organization of cellulose fibrils in stems from Arabidopsis plants harboring mutations in genes encoding enzymes involved in lignin biosynthesis. Plants containing high levels of G-lignin, S-lignin, H-lignin, aldehyde-rich lignin, and ferulic acid-containing lignin, along with plants with very low lignin content weremore » grown and harvested and longitudinal sections of stem were prepared and dried. Scanning X-ray microdiffraction was carried out using a 5-micron beam that moved across the sections in 5-micron steps and complete diffraction patterns were collected at each raster point. Approximately, 16,000 diffraction patterns were analyzed to determine cellulose fibril orientation and order within the tissues making up the stems. Results: Several mutations-most notably those exhibiting (1) down-regulation of cinnamoyl CoA reductase which leads to cell walls deficient in lignin and (2) defect of cinnamic acid 4-hydroxylase which greatly reduces lignin content-exhibited significant decrease in the proportion of oriented cellulose fibrils in the cell wall. Distinctions between tissues were maintained in all variants and even in plants exhibiting dramatic changes in cellulosic order the trends between tissues (where apparent) were generally maintained. The resilience of cellulose to degradative processes was investigated by carrying out the same analysis on samples stored in water for 30 days prior to data collection. This treatment led to significant loss of cellulosic order in plants rich in aldehyde or H-lignin, less change in wild type, and essentially no change in samples with high levels of G-or S-lignin. Conclusions: These studies demonstrate that changes in lignin biosynthesis lead to significant disruption in the orientation and order of cellulose fibrils in all tissues of the stem. These dramatic phenotypic changes, in mutants with lignin rich in aldehyde or H-units, correlate with the impact the mutations have on the enzymatic degradation of the plant cell wall.« less

  14. Improved Blackbody Simulator

    DTIC Science & Technology

    1974-06-01

    28 - ABS Resins ................... 012 0.02 Carbon & Free-Cutting Steels%,. . . . . 27 - Acrylics ......................... 0.12 0.10 Alloy...Borosilicate Glasses................. 0.7 - Zinc At Its Alloys ................. 65.3 60.5 Alkyds .... .... .............. 010 0.20 Tungsten Carbide Cermet...cast).............47.6 25 ABS Resins ............ .. IS 3 FlowbnFie ........... 7 - Cellulose Acetate ............ &. 1.9 Pajadafi CW

  15. Synthesis of Novel Cellulose Carbamates Possessing Terminal Amino Groups and Their Bioactivity.

    PubMed

    Ganske, Kristin; Wiegand, Cornelia; Hipler, Uta-Christina; Heinze, Thomas

    2016-03-01

    Cellulose phenyl carbonates are an excellent platform to synthesize a broad variety of soluble and functional cellulose carbamates. In this study, the synthesis of cellulose carbamates with terminal amino groups, namely ω-aminoethylcellulose- and ω-aminoethyl-p-aminobenzyl-cellulose carbamate, is discussed. The products are well soluble and their structures can be clearly described by NMR spectroscopy. The cellulose carbamates exhibit a bactericide and fungicide activity in vitro. The ω-aminoethylcellulose carbamate possesses a strong activity against Candida albicans and Staphylococcus aureus (IC50 of 0.02 mg mL(-1) and 0.05 mg mL(-1)). The antimicrobial activity and cytotoxicity can be improved by p-amino-benzylamine (ABA) as an additional substituent. The mixed cellulose carbamate exhibits a high biocompatibility (LC50 of 3.18 mg mL(-1)) and forms films on cotton and PES, which exhibit a strong activity against S. aureus and Klebsiella pneumoniae. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Comprehensive Analysis of the COBRA-Like (COBL) Gene Family in Gossypium Identifies Two COBLs Potentially Associated with Fiber Quality

    PubMed Central

    Niu, Erli; Shang, Xiaoguang; Cheng, Chaoze; Bao, Jianghao; Zeng, Yanda; Cai, Caiping; Du, Xiongming; Guo, Wangzhen

    2015-01-01

    COBRA-Like (COBL) genes, which encode a plant-specific glycosylphosphatidylinositol (GPI) anchored protein, have been proven to be key regulators in the orientation of cell expansion and cellulose crystallinity status. Genome-wide analysis has been performed in A. thaliana, O. sativa, Z. mays and S. lycopersicum, but little in Gossypium. Here we identified 19, 18 and 33 candidate COBL genes from three sequenced cotton species, diploid cotton G. raimondii, G. arboreum and tetraploid cotton G. hirsutum acc. TM-1, respectively. These COBL members were anchored onto 10 chromosomes in G. raimondii and could be divided into two subgroups. Expression patterns of COBL genes showed highly developmental and spatial regulation in G. hirsutum acc. TM-1. Of them, GhCOBL9 and GhCOBL13 were preferentially expressed at the secondary cell wall stage of fiber development and had significantly co-upregulated expression with cellulose synthase genes GhCESA4, GhCESA7 and GhCESA8. Besides, GhCOBL9 Dt and GhCOBL13 Dt were co-localized with previously reported cotton fiber quality quantitative trait loci (QTLs) and the favorable allele types of GhCOBL9 Dt had significantly positive correlations with fiber quality traits, indicating that these two genes might play an important role in fiber development. PMID:26710066

  17. 16 CFR 1404.1 - Scope, application, and effective date.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... electrical light fixture or where cellulose insulation is installed too close to the exhaust flues from heat... REGULATIONS CELLULOSE INSULATION § 1404.1 Scope, application, and effective date. (a) Scope. This part 1404 establishes a requirement for manufacturers, including importers, of cellulose insulation to notify (1...

  18. 16 CFR 1404.1 - Scope, application, and effective date.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... electrical light fixture or where cellulose insulation is installed too close to the exhaust flues from heat... REGULATIONS CELLULOSE INSULATION § 1404.1 Scope, application, and effective date. (a) Scope. This part 1404 establishes a requirement for manufacturers, including importers, of cellulose insulation to notify (1...

  19. 16 CFR 1404.1 - Scope, application, and effective date.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... electrical light fixture or where cellulose insulation is installed too close to the exhaust flues from heat... REGULATIONS CELLULOSE INSULATION § 1404.1 Scope, application, and effective date. (a) Scope. This part 1404 establishes a requirement for manufacturers, including importers, of cellulose insulation to notify (1...

  20. 16 CFR 1404.1 - Scope, application, and effective date.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... electrical light fixture or where cellulose insulation is installed too close to the exhaust flues from heat... REGULATIONS CELLULOSE INSULATION § 1404.1 Scope, application, and effective date. (a) Scope. This part 1404 establishes a requirement for manufacturers, including importers, of cellulose insulation to notify (1...

  1. Structural and molecular dynamics studies of a C1-oxidizing lytic polysaccharide monooxygenase from Heterobasidion irregulare reveal amino acids important for substrate recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bing; Kognole, Abhishek A.; Wu, Miao

    Lytic polysaccharide monooxygenases (LPMOs) are a group of recently discovered enzymes that play important roles in the decomposition of recalcitrant polysaccharides. Here, we report the biochemical, structural, and computational characterization of an LPMO from the white-rot fungus Heterobasidion irregulare (HiLPMO9B). This enzyme oxidizes cellulose at the C1 carbon of glycosidic linkages. The crystal structure of HiLPMO9B was determined at 2.1 A resolution using X-ray crystallography. Unlike the majority of the currently available C1-specific LPMO structures, the HiLPMO9B structure contains an extended L2 loop, connecting ..beta..-strands ..beta..2 and ..beta..3 of the ..beta..-sandwich structure. Molecular dynamics (MD) simulations suggest roles for bothmore » aromatic and acidic residues in the substrate binding of HiLPMO9B, with the main contribution from the residues located on the extended region of the L2 loop (Tyr20) and the LC loop (Asp205, Tyr207, and Glu210). Asp205 and Glu210 were found to be involved in the hydrogen bonding with the hydroxyl group of the C6 carbon of glucose moieties directly or via a water molecule. Two different binding orientations were observed over the course of the MD simulations. In each orientation, the active-site copper of this LPMO preferentially skewed toward the pyranose C1 of the glycosidic linkage over the targeted glycosidic bond. This study provides additional insight into cellulose binding by C1-specific LPMOs, giving a molecular-level picture of active site substrate interactions.« less

  2. Effects of complex carbon addition to soil CO2 efflux and isotopic composition to soils near dead and live piñon pine trees

    NASA Astrophysics Data System (ADS)

    Powers, H.; McDowell, N.; Breecker, D. O.

    2010-12-01

    We test the hypothesis that soils collected near dead and living pinus edulous (piñon pine) trees should show a difference in their capacities to decompose complex carbon compounds. Since soils near dead trees have a large amount of cellulose and other complex carbon, the soil microbial community should be selected to metabolize cellulose. We collected soils from both live and dead piñon trees, added cellulose to half of the replicates, and placed them in microcosms for incubation. The microcosms were periodically sampled by a trace gas analyzer (TGA100, Campbell Scientific, USA) for CO2 concentration and δ13C and δ18O analysis. We found that CO2 evolution rates from live soils were significantly higher than rates from dead soils (1.1 and 0.6 ug CO2 g-1 soil s-1 respectively); soils with added cellulose displayed higher rates (1.1 and 0.8 and ug CO2 g-1 soil s-1). We did not see any significant differences in δ13C values between treatments, but there was a difference in δ18O between soils treated with cellulose and soils with no cellulose. Soils from both dead and live trees showed an increase in CO2 efflux when cellulose was added; however there was no distinguishable difference in efflux rate between live and dead soils in the cellulose added treatments.

  3. A new procedure to produce lignocellulosic anion exchangers from agricultural waste materials.

    PubMed

    Orlando, U S; Baes, A U; Nishijima, W; Okada, M

    2002-07-01

    Two lignocellulosic agricultural waste materials (LCM), sugarcane bagasse (BG) and rice hull (RH), were converted into weak-base anion exchanger and evaluated for their exchanger capacity for nitrate. Pure cellulose (PC) and pure alkaline lignin (PL) were also used as reference materials to elucidate possible reactivity in LCM. Epoxy and amino groups were introduced into BG, RH, PC and PL substrates after the reaction with epichlorohydrin and dimethylamine in the presence of pyridine and an organic solvent N,N-dimethylformamide (DMF). Amino group incorporation into cellulose decreased with the presence of water in the reaction mixture and increased with the reaction time and presence of a catalyst (pyridine). The highest maximum nitrate exchange capacity (Qmax) and yields of the prepared exchangers was obtained from PL (1.8 mmol g(-1) and 412.5%), followed by BG (1.41 mmol g(-1) and 300%), PC (1.34 mmol g(-1) and 166%) and RH (1.32 mmol g(-1) and 180%). The proposed synthetic procedure was effective in modifying PL, PC and LCM chemically resulting in a higher yield and nitrate removal capacity.

  4. How does cellulosome composition influence deconstruction of lignocellulosic substrates in Clostridium (Ruminiclostridium) thermocellum DSM 1313?

    PubMed

    Yoav, Shahar; Barak, Yoav; Shamshoum, Melina; Borovok, Ilya; Lamed, Raphael; Dassa, Bareket; Hadar, Yitzhak; Morag, Ely; Bayer, Edward A

    2017-01-01

    Bioethanol production processes involve enzymatic hydrolysis of pretreated lignocellulosic biomass into fermentable sugars. Due to the relatively high cost of enzyme production, the development of potent and cost-effective cellulolytic cocktails is critical for increasing the cost-effectiveness of bioethanol production. In this context, the multi-protein cellulolytic complex of Clostridium ( Ruminiclostridium ) thermocellum, the cellulosome, was studied here. C. thermocellum is known to assemble cellulosomes of various subunit (enzyme) compositions, in response to the available carbon source. In the current study, different carbon sources were used, and their influence on both cellulosomal composition and the resultant activity was investigated. Glucose, cellobiose, microcrystalline cellulose, alkaline-pretreated switchgrass, alkaline-pretreated corn stover, and dilute acid-pretreated corn stover were used as sole carbon sources in the growth media of C. thermocellum strain DSM 1313. The purified cellulosomes were compared for their activity on selected cellulosic substrates. Interestingly, cellulosomes derived from cells grown on lignocellulosic biomass showed no advantage in hydrolyzing the original carbon source used for their production. Instead, microcrystalline cellulose- and glucose-derived cellulosomes were equal or superior in their capacity to deconstruct lignocellulosic biomass. Mass spectrometry analysis revealed differential composition of catalytic and structural subunits (scaffoldins) in the different cellulosome samples. The most abundant catalytic subunits in all cellulosome types include Cel48S, Cel9K, Cel9Q, Cel9R, and Cel5G. Microcrystalline cellulose- and glucose-derived cellulosome samples showed higher endoglucanase-to-exoglucanase ratios and higher catalytic subunit-per-scaffoldin ratios compared to lignocellulose-derived cellulosome types. The results reported here highlight the finding that cellulosomes derived from cells grown on glucose and microcrystalline cellulose are more efficient in their action on cellulosic substrates than other cellulosome preparations. These results should be considered in the future development of C. thermocellum -based cellulolytic cocktails, designer cellulosomes, or engineering of improved strains for deconstruction of lignocellulosic biomass.

  5. Production, Optimization, and Characterization of Organic Solvent Tolerant Cellulases from a Lignocellulosic Waste-Degrading Actinobacterium, Promicromonospora sp. VP111.

    PubMed

    Thomas, Lebin; Ram, Hari; Kumar, Alok; Singh, Ved Pal

    2016-07-01

    High costs of natural cellulose utilization and cellulase production are an industrial challenge. In view of this, an isolated soil actinobacterium identified as Promicromonospora sp. VP111 showed potential for production of major cellulases (CMCase, FPase, and β-glucosidase) utilizing untreated agricultural lignocellulosic wastes. Extensive disintegration of microcrystalline cellulose and adherence on it during fermentation divulged true cellulolytic efficiency of the strain. Conventional optimization resulted in increased cellulase yield in a cost-effective medium, and the central composite design (CCD) analysis revealed cellulase production to be limited by cellulose and ammonium sulfate. Cellulase activities were enhanced by Co(+2) (1 mM) and retained up to 60 °C and pH 9.0, indicating thermo-alkaline tolerance. Cellulases showed stability in organic solvents (25 % v/v) with log P ow  ≥ 1.24. Untreated wheat straw during submerged fermentation was particularly degraded and yielded about twofold higher levels of cellulases than with commercial cellulose (Na-CMC and avicel) which is especially economical. Thus, this is the first detailed report on cellulases from an efficient strain of Promicromonospora that was non-hemolytic, alkali-halotolerant, antibiotic (erythromycin, kanamycin, rifampicin, cefaclor, ceftazidime) resistant, multiple heavy metal (Mo(+6) = W(+6) > Pb(+2) > Mn(+2) > Cr(+3) > Sn(+2)), and organic solvent (n-hexane, isooctane) tolerant, which is industrially and environmentally valuable.

  6. High brightness phosphorescent organic light emitting diodes on transparent and flexible cellulose films.

    PubMed

    Purandare, Sumit; Gomez, Eliot F; Steckl, Andrew J

    2014-03-07

    Organic light-emitting diodes (OLED) were fabricated on flexible and transparent reconstituted cellulose obtained from wood pulp. Cellulose is naturally available, abundant, and biodegradable and offers a unique substrate alternative for the fabrication of flexible OLEDs. Transparent cellulose material was formed by dissolution of cellulose in an organic solvent (dimethyl acetamide) at elevated temperature (165 °C) in the presence of a salt (LiCl). The optical transmission of 40-μm thick transparent cellulose sheet averaged 85% over the visible spectrum. High brightness and high efficiency thin film OLEDs were fabricated on transparent cellulose films using phosphorescent Ir(ppy)3 as the emitter material. The OLEDs achieved current and luminous emission efficiencies as high as 47 cd A(-1) and 20 lm W(-1), respectively, and a maximum brightness of 10,000 cd m(-2).

  7. High brightness phosphorescent organic light emitting diodes on transparent and flexible cellulose films

    NASA Astrophysics Data System (ADS)

    Purandare, Sumit; Gomez, Eliot F.; Steckl, Andrew J.

    2014-03-01

    Organic light-emitting diodes (OLED) were fabricated on flexible and transparent reconstituted cellulose obtained from wood pulp. Cellulose is naturally available, abundant, and biodegradable and offers a unique substrate alternative for the fabrication of flexible OLEDs. Transparent cellulose material was formed by dissolution of cellulose in an organic solvent (dimethyl acetamide) at elevated temperature (165 °C) in the presence of a salt (LiCl). The optical transmission of 40-μm thick transparent cellulose sheet averaged 85% over the visible spectrum. High brightness and high efficiency thin film OLEDs were fabricated on transparent cellulose films using phosphorescent Ir(ppy)3 as the emitter material. The OLEDs achieved current and luminous emission efficiencies as high as 47 cd A-1 and 20 lm W-1, respectively, and a maximum brightness of 10 000 cd m-2.

  8. Characterization of cellulose II nanoparticles regenerated from ionic liquid, 1-butyl-3-methylimidazolium chloride

    USDA-ARS?s Scientific Manuscript database

    Regenerated cellulose nanoparticles (RCNs) including both elongated fiber and spherical structures were prepared from microcrystalline cellulose (MCC)and cotton using 1-butyl-3-methylimidazolium chloride followed by high-pressure homogenization. The crystalline structure of RCNs was cellulose II in ...

  9. Reducing sugar production of sweet sorghum bagasse kraft pulp

    NASA Astrophysics Data System (ADS)

    Solihat, Nissa Nurfajrin; Fajriutami, Triyani; Adi, Deddy Triyono Nugroho; Fatriasari, Widya; Hermiati, Euis

    2017-01-01

    Kraft pulping of sweet sorghum bagasse (SSB) has been used for effective delignification method for cellulose production. This study was conducted to evaluate the performance pulp kraft of SSB for reducing sugar production. The study intended to investigate the effect of active alkali and sulfidity loading variation of SSB pulp kraft on reducing sugar yield per biomass. The SSB pulp was prepared after pulping using three variations of active alkali (17, 19, and 22%) and sulfidity loading (20, 22, and 24%) at 170°C for 4 h with liquor to wood ratio of 10. A total of 9 pulps were obtained from these pretreatments. Delignification pretreatment has been succesfully removed lignin and hemicellulose more than 90% and 50%, respectively. Increasing active alkali and sulfidity loading has significantly increased lignin removal caused by disruption of the cell wall structure for releasing lignin into black liquor in the cellulose extraction. The enzymatic hydrolysis of pulp was carried out with cellulase loading of 40 FPU per g substrate in the shaking incubator at 50°C and 150 rpm for 78 h. For each 24 h, the reducing sugar yield (DNS assay) has been observed. Even though the lignin and hemicellulose loss occurred along with higher active alkali loading, this condition tends to decrease its yield. The reducing sugar concentration varied between 7-8 g/L. Increasing active alkali and sulfidity was significantly decreased the reducing sugar per biomass. Pulp delignified by 17% active alkali and 20% sulfidity has demonstrated the maximum reducing sugar yield per biomass of 45.57% resulted after 72 h enzymatic hydrolysis. These results indicated that kraft pulping was success to degrade more lignin and hemicellulose content to facilitate the enzyme for breaking down the cellulose into its sugar monomer. A high loss of lignin and hemicellulose are not single factor to improve digestibility of SSB. This sugar has potential for yeast fermented into bioethanol.

  10. Enhanced plastic deformations of nanofibrillated cellulose film by adsorbed moisture and protein-mediated interactions.

    PubMed

    Malho, Jani-Markus; Ouellet-Plamondon, Claudiane; Rüggeberg, Markus; Laaksonen, Päivi; Ikkala, Olli; Burgert, Ingo; Linder, Markus B

    2015-01-12

    Biological composites are typically based on an adhesive matrix that interlocks rigid reinforcing elements in fiber composite or brick-and-mortar assemblies. In nature, the adhesive matrix is often made up of proteins, which are also interesting model systems, as they are unique among polymers in that we know how to engineer their structures with atomic detail and to select protein elements for specific interactions with other components. Here we studied how fusion proteins that consist of cellulose binding proteins linked to proteins that show a natural tendency to form multimer complexes act as an adhesive matrix in combination with nanofibrillated cellulose. We found that the fusion proteins are retained with the cellulose and that the proteins mainly affect the plastic yield behavior of the cellulose material as a function of water content. Interestingly, the proteins increased the moisture absorption of the composite, but the well-known plastifying effect of water was clearly decreased. The work helps to understand the functional basis of nanocellulose composites as materials and aims toward building model systems for molecular biomimetic materials.

  11. Phosphated Cellulose as an Efficient Biomaterial for Aqueous Drug Ranitidine Removal

    PubMed Central

    Bezerra, Roosevelt D. S.; Silva, Márcia M. F.; Morais, Alan I. S.; Osajima, Josy A.; Santos, Maria R. M. C.; Airoldi, Claudio; Silva Filho, Edson C.

    2014-01-01

    Crystalline cellulose chemically modified through a reaction with sodium trimetaphosphate (STMP) in an acidic or basic condition yielded Cel-P4 and Cel-P10. These phosphated solids were characterized by elemental analysis, X-ray diffraction (XRD), infrared (IR) spectroscopy, scanning electron microscopy (SEM), nuclear magnetic resonance (NMR) at the solid state for phosphorus nucleus and dispersive X-ray energy. The elemental results demonstrated that the phosphorylation reaction was more efficient in the basic medium, as supported by the amount of phosphorous content. The synthesized biomaterials decreased in crystallinity in comparison to the precursor cellulose, with an increase in roughness and present two distinct phosphorus environments in the formed structure. The phosphated cellulose in an alkaline condition was applied to sorb the drug ranitidine. This process was applied in varying pH, time, temperature and concentration. The best sorption kinetic model to fit the experimental data was the pseudo-second-order with a coefficient correlation of 0.8976, and the Langmuir isotherm model was the most adjusted to the variation in concentration. The efficient drug sorption has a low dependence on temperature, with maximum values of 85.0, 82.0 mg and 85.7 mg·g−1 for Cel-P10 at 298, 308 and 318 K, respectively. The best sorption occurred at pH = 6 with a saturation time of 210 min. PMID:28788283

  12. Bacterial production of short-chain organic acids and trehalose from levulinic acid: a potential cellulose-derived building block as a feedstock for microbial production.

    PubMed

    Habe, Hiroshi; Sato, Shun; Morita, Tomotake; Fukuoka, Tokuma; Kirimura, Kohtaro; Kitamoto, Dai

    2015-02-01

    Levulinic acid (LA) is a platform chemical derived from cellulosic biomass, and the expansion of LA utilization as a feedstock is important for production of a wide variety of chemicals. To investigate the potential of LA as a substrate for microbial conversion to chemicals, we isolated and identified LA-utilizing bacteria. Among the six isolated strains, Pseudomonas sp. LA18T and Rhodococcus hoagie LA6W degraded up to 70 g/L LA in a high-cell-density system. The maximal accumulation of acetic acid by strain LA18T and propionic acid by strain LA6W was 13.6 g/L and 9.1 g/L, respectively, after a 4-day incubation. Another isolate, Burkholderia stabilis LA20W, produced trehalose extracellularly in the presence of 40 g/L LA to approximately 2 g/L. These abilities to produce useful compounds supported the potential of microbial LA conversion for future development and cellulosic biomass utilization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Effect of cooking temperature on the crystallinity of acid hydrolysed-oil palm cellulose

    NASA Astrophysics Data System (ADS)

    Kuthi, Fatin Afifah Binti Ahmad; Badri, Khairiah Haji

    2014-09-01

    In this research, we studied the effect of acid hydrolysis temperature on the crystallinity of cellulose produced from empty fruit bunch (EFB). The hydrolysis temperature was studied from 120 to 140 °C at a fixed time and sulfuric acid, H2SO4 concentration which were 1 h and 1% (v/v) respectively. X-ray diffractometry (XRD) was carried out to measure the crystallinity of cellulose produced at varying hydrolysis temperatures. During hydrolysis, the amorphous region of α-cellulose was removed and the crystalline region was obtained. Percentage of crystallinity (CrI) for acid hydrolysed cellulose at 120, 130 and 140 °C were 54.21, 50.59 and 50.55 % respectively. Morphological studies using scanning electron microscope (SEM) showed that acid hydrolysis defibrilised to microfibrils in α-cellulose. The extraction process to produce α-cellulose has also been successfully carried out as the impurities at the outer surface, lignin and hemicellulose were removed. These findings were supported by the disappearance of peaks at 1732, 1512 and 1243 cm-1 on Fourier Transform infrared (FTIR) spectrum of α-cellulose. Similar peaks were identified in both the commercial microcrystalline cellulose (C-MCC) and acid hydrolysed cellulose (H-EFB), indicating the effectiveness of heat-catalysed acid hydrolysis.

  14. Expression analysis of cellulose synthase and main cytoskeletal protein genes in flax (Linum usitatissimum L.).

    PubMed

    Galinousky, Dmitry; Padvitski, Tsimafei; Bayer, Galina; Pirko, Yaroslav; Pydiura, Nikolay; Anisimova, Natallia; Nikitinskaya, Tatyana; Khotyleva, Liubov; Yemets, Alla; Kilchevsky, Aleksandr; Blume, Yaroslav

    2017-08-09

    Fiber flax is an important source of natural fiber and a comprehensive model for the plant fiber biogenesis studies. Cellulose-synthase (CesA) and cytoskeletal genes are known to be important for the cell wall biogenesis in general and for the biogenesis of flax fibers in particular. Currently, knowledge about activity of these genes during the plant growth is limited. In this study, we have investigated flax fiber biogenesis by measuring expression of CesA and cytoskeletal genes at two stages of the flax development (seedlings and stems at the rapid growth stage) in several flax subspecies (elongatum, mediterraneum, crepitans). RT-qPCR has been used to quantify the expression of LusСesA1, LusСesA4, LusСesA7, LusСesA6, Actin, and α-Tubulin genes in plant samples. We report that CesA genes responsible for the secondary cell wall synthesis (LusCesA4, LusCesA7) have different expression pattern compared with CesA genes responsible for the primary cell wall synthesis (LusCesA1, LusCesA6): an average expression of LusCesA4 and LusCesA7 genes is relatively high in seedlings and further increases in stems at the rapid growth stage, whereas an average expression of LusCesA1 and LusCesA6 genes decreases. Interestingly, LusCesA1 is the only studied gene with different expression dynamics between the flax subspecies: its expression decreases by 5.2-10.7 folds in elongatum and mediterraneum but does not change in crepitans subspecies when the rapid growth stage and seedlings are compared. The expression of cytoskeleton genes (coding actin and α-tubulin) is relatively stable and significantly higher than the expression of cellulose-synthase genes in all the studied samples. © 2017 International Federation for Cell Biology.

  15. CELLULOSE SYNTHASE INTERACTIVE1 Is Required for Fast Recycling of Cellulose Synthase Complexes to the Plasma Membrane in Arabidopsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Lei; Singh, Abhishek; Bashline, Logan

    Plants are constantly subjected to various biotic and abiotic stresses and have evolved complex strategies to cope with these stresses. For example, plant cells endocytose plasma membrane material under stress and subsequently recycle it back when the stress conditions are relieved. Cellulose biosynthesis is a tightly regulated process that is performed by plasma membrane-localized cellulose synthase (CESA) complexes (CSCs). However, the regulatory mechanism of cellulose biosynthesis under abiotic stress has not been well explored. In this study, we show that small CESA compartments (SmaCCs) or microtubule-associated cellulose synthase compartments (MASCs) are critical for fast recovery of CSCs to the plasmamore » membrane after stress is relieved in Arabidopsis thaliana. This SmaCC/MASC-mediated fast recovery of CSCs is dependent on CELLULOSE SYNTHASE INTERACTIVE1 (CSI1), a protein previously known to represent the link between CSCs and cortical microtubules. Independently, AP2M, a core component in clathrin-mediated endocytosis, plays a role in the formation of SmaCCs/MASCs. Together, our study establishes a model in which CSI1-dependent SmaCCs/MASCs are formed through a process that involves endocytosis, which represents an important mechanism for plants to quickly regulate cellulose synthesis under abiotic stress.« less

  16. Replica-exchange molecular dynamics simulations of cellulose solvated in water and in the ionic liquid 1-butyl-3-methylimidazolium chloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mostofian, Barmak; Cheng, Xiaolin; Smith, Jeremy C.

    2014-09-02

    Ionic liquids have become a popular solvent for cellulose pretreatment in biorefineries due to their efficiency in dissolution and their reusability. Understanding the interactions between cations, anions, and cellulose is key to the development of better solvents and the improvement of pretreatment conditions. While previous studies described the interactions between ionic liquids and cellulose fibers, shedding light on the initial stages of the cellulose dissolution process, we study the end state of that process by exploring the structure and dynamics of a single cellulose decamer solvated in 1-butyl-3-methyl-imidazolium chloride (BmimCl) and in water using replica-exchange molecular dynamics. In both solvents,more » global structural features of the cellulose chain are similar. However, analyses of local structural properties show that cellulose explores greater conformational variability in the ionic liquid than in water. For instance, in BmimCl the cellulose intramolecular hydrogen bond O3H'••• O5 is disrupted more often resulting in greater flexibility of the solute. Our results indicate that the cellulose chain is more dynamic in BmimCl than in water, which may play a role in the favorable dissolution of cellulose in the ionic liquid. Here, the calculation of the configurational entropy of the cellulose decamer confirms its higher conformational flexibility in BmimCl than in water at elevated temperatures.« less

  17. The Effect of Water Molecules on Mechanical Properties of Cell Walls

    NASA Astrophysics Data System (ADS)

    Rahbar, Nima; Youssefian, Sina

    The unique properties of bamboo fibers come from their natural composite structures that comprise mainly cellulose nanofibrils in a matrix of intertwined hemicellulose and lignin called lignin-carbohydrate complex (LCC). Here, we have utilized atomistic simulations to investigate the mechanical properties and mechanisms of interactions between these materials, in the presence of water molecules. The role of hemicellulose found to be enhancing the mechanical properties and lignin found to be providing the strength of bamboo fibers. The abundance of Hbonds in hemicellulose chains is responsible for improving the mechanical behavior of LCC. The strong van der Waals forces between lignin molecules and cellulose nanofibrils are responsible for higher adhesion energy between LCC/cellulose nanofibrils. We also found out that the amorphous regions of cellulose nanofibrils is the weakest interface in bamboo Microfibrils. In presence of water, the elastic modulus of lignin increases at low water content and decreases in higher water content, whereas the hemicellulose elastic modulus constantly decreases. The variations of Radial Distribution Function and Free Fractional Volume of these materials with water suggest that water molecules enhance the mechanical properties of lignin by filling voids in the system and creating Hbond bridges between polymer chains. For hemicellulose, however, the effect is always regressive due to the destructive effect of water molecules on the Hbond of its dense structure.

  18. CESA TRAFFICKING INHIBITOR inhibits cellulose deposition and interferes with the trafficking of cellulose synthase complexes and their associated proteins KORRIGAN1 and POM2/CELLULOSE SYNTHASE INTERACTIVE PROTEIN1.

    PubMed

    Worden, Natasha; Wilkop, Thomas E; Esteve, Victor Esteva; Jeannotte, Richard; Lathe, Rahul; Vernhettes, Samantha; Weimer, Bart; Hicks, Glenn; Alonso, Jose; Labavitch, John; Persson, Staffan; Ehrhardt, David; Drakakaki, Georgia

    2015-02-01

    Cellulose synthase complexes (CSCs) at the plasma membrane (PM) are aligned with cortical microtubules (MTs) and direct the biosynthesis of cellulose. The mechanism of the interaction between CSCs and MTs, and the cellular determinants that control the delivery of CSCs at the PM, are not yet well understood. We identified a unique small molecule, CESA TRAFFICKING INHIBITOR (CESTRIN), which reduces cellulose content and alters the anisotropic growth of Arabidopsis (Arabidopsis thaliana) hypocotyls. We monitored the distribution and mobility of fluorescently labeled cellulose synthases (CESAs) in live Arabidopsis cells under chemical exposure to characterize their subcellular effects. CESTRIN reduces the velocity of PM CSCs and causes their accumulation in the cell cortex. The CSC-associated proteins KORRIGAN1 (KOR1) and POM2/CELLULOSE SYNTHASE INTERACTIVE PROTEIN1 (CSI1) were differentially affected by CESTRIN treatment, indicating different forms of association with the PM CSCs. KOR1 accumulated in bodies similar to CESA; however, POM2/CSI1 dissociated into the cytoplasm. In addition, MT stability was altered without direct inhibition of MT polymerization, suggesting a feedback mechanism caused by cellulose interference. The selectivity of CESTRIN was assessed using a variety of subcellular markers for which no morphological effect was observed. The association of CESAs with vesicles decorated by the trans-Golgi network-localized protein SYNTAXIN OF PLANTS61 (SYP61) was increased under CESTRIN treatment, implicating SYP61 compartments in CESA trafficking. The properties of CESTRIN compared with known CESA inhibitors afford unique avenues to study and understand the mechanism under which PM-associated CSCs are maintained and interact with MTs and to dissect their trafficking routes in etiolated hypocotyls. © 2015 American Society of Plant Biologists. All Rights Reserved.

  19. Thermal assisted alkaline pretreatment of rice husk for enhanced biomass deconstruction and enzymatic saccharification: Physico-chemical and structural characterization.

    PubMed

    Shahabazuddin, Md; Sarat Chandra, T; Meena, S; Sukumaran, R K; Shetty, N P; Mudliar, S N

    2018-04-21

    Thermal assisted alkaline pretreatment (TAAP) of rice husk (RH) was investigated to facilitate enzymatic saccharification by enhancing the enzyme accessibility to cellulosic components. Statistically guided experiments based on the Box-Behnken design involving four factors viz. biomass loading, particle size, NaOH loading and reaction time was considered for optimization. The maximum sugar yield of 371 mg g -1 biomass was obtained at optimized pretreatment condition [biomass loading (10% w/w), particle size (0.25-0.625 mm), NaOH loading (2% w/w), and reaction time (40 min)]. The TAAP of RH resulted in the efficient removal of lignin (14.9-54% (w/w)) with low hemicellulose solubilization [10.7-33.1% (w/w)] and with a simultaneous increase in cellulose concentration [32.65-51.65% (w/w)]. The SEM analysis indicated increased porosity and biomass disruption during TAAP. The FTIR analysis showed progressive removal of noncellulosic constituents, and XRD analysis revealed an increase in cellulose crystallinity post-TAAP indicating the effectiveness of pretreatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Co-electrospun poly(ɛ-caprolactone)/cellulose nanofibers-fabrication and characterization.

    PubMed

    Ahmed, Farooq; Saleemi, Sidra; Khatri, Zeeshan; Abro, Muhammad Ishaque; Kim, Ick-Soo

    2015-01-22

    We report fabrication of poly (ɛ-caprolactone) (PCL)/cellulose (CEL) nanofiber blends via co-electrospinning for the possible use as biofilters and biosensor strips. Five different ratios of PCL to CEL were fabricated to investigate the wicking behavior. The cellulose acetate (CA) was taken as precursor to make cellulose nanofibers. Double nozzles were employed for jetting constituent polymers toward collector drum independently and resultant nanofibers webs were deacetylated in aqueous alkaline solution to convert CA into CEL as confirmed by FTIR spectra. FTIR further revealed that there is no effect of deacetylation on PCL nanofiber. The morphology of each blend webs under SEM showed uniform and bead-free nanofibers. Wicking behavior for five different ratios of PCL/CEL suggested that increasing CEL ratio in the blend enhanced the wicking front height; however, X-ray diffraction patterns of PCL/CEL showed a slight decrease in crystallinity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Characterization nano crystalline cellulose from sugarcane baggase for reinforcement in polymer composites: Effect of formic acid concentrations

    NASA Astrophysics Data System (ADS)

    Aprilia, N. A. S.; Mulyati, S.; Alam, P. N.; Karmila; Ambarita, A. C.

    2018-04-01

    Nanocellulose from sugarcane bagasse for reinforcement in polymer composites has isolated from formic acid (FA) with different concentration. This research was conducted with three level concentration of FA ei. 15, 30 and 50%. The nanocellulose were successfully prepared with variations of total yields of 66.66, 67.33 and 69.33% respectively with increase of FA concentrations at 6 hours of hidrolysis time. The obtained nanocellulose were characterized by fourier transform infrared (FT-IR) spectroscopy confirmed the introduction of carboxyl goups on the surface of cellulose. The X-ray diffraction (XRD) spectra proved the existence of cellulose, with a highly crystalline of 62.466, 71.033, and 76.296% with increase of FA concentrations. The size of crystallinity of nanocellulose were decreased with increased of FA concentration. The result investigated that size of crystallinity of nano cellulose reduced from 4.37, 4.15 and 3.94 nm.

  2. Green synthesis of a typical chiral stationary phase of cellulose-tris(3, 5-dimethylphenylcarbamate)

    PubMed Central

    2013-01-01

    Background At present, the study on the homogeneous-phase derivatization of cellulose in ionic liquid is mainly focused on its acetylation. To the best of our knowledge, there has been no such report on the preparation of cellulose-tris(3,5-dimethylphenylcarbamate) (CDMPC) with ionic liquid 1-allyl-3-methyl-imidazolium chloride (AmimCl) so far. Results With ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl) as a reaction solvent, cellulose-tris(3,5-dimethylphenylcarbamate) (CDMPC) was synthesized by the reaction of 3,5-dimethylphenyl isocyanate and soluble microcrystalline cellulose in a homogeneous phase. The synthesized CDMPC was then coated onto the surfaces of aminopropyl silica gel to prepare a chiral stationary phase (CSP). The prepared CSP was successfully used in chiral separation of seven racemic pesticides by high performance liquid chromatography (HPLC). Good chiral separation was obtained using n-hexane and different modifiers as the mobile phases under the optimal percentage and column temperature, with the resolution of metalaxyl, diniconazole, flutriafol, paclobutrazol, hexaconazole, myclobutanil and hexythiazox of 1.73, 1.56, 1.26, 1.00, 1.18, 1.14 and 1.51, respectively. The experimental results suggested it was a good choice using a green solvent of AmimCl for cellulose functionalization. Conclusion CDMPC was successfully synthesized as the chiral selector by reacting 3, 5-dimethylphenyl isocyanate with dissolved microcrystalline cellulose in a green ionic liquid of AmimCl. PMID:23890199

  3. Characterization of cellulose acetates according to DS and molar mass using two-dimensional chromatography.

    PubMed

    Ghareeb, Hewa Othman; Radke, Wolfgang

    2013-11-06

    A two-dimensional liquid chromatographic method (2D LC) was developed to analyze the heterogeneities of cellulose acetates (CA) in the DS-range DS=1.5-2.9 with respect to both, molar mass and degree of substitution (DS). The method uses gradient liquid chromatography (HPLC) as the first dimension in order to separate by DS followed by separation of the different fractions by size (SEC) in the second dimension. The 2D experiments revealed different correlations between gradient and SEC elution volume. These correlations might arise from differences in the synthetic conditions. The newly developed 2D LC separation therefore provides new insights into the heterogeneity of CAs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Cellulose Microfibril Formation by Surface-Tethered Cellulose Synthase Enzymes.

    PubMed

    Basu, Snehasish; Omadjela, Okako; Gaddes, David; Tadigadapa, Srinivas; Zimmer, Jochen; Catchmark, Jeffrey M

    2016-02-23

    Cellulose microfibrils are pseudocrystalline arrays of cellulose chains that are synthesized by cellulose synthases. The enzymes are organized into large membrane-embedded complexes in which each enzyme likely synthesizes and secretes a β-(1→4) glucan. The relationship between the organization of the enzymes in these complexes and cellulose crystallization has not been explored. To better understand this relationship, we used atomic force microscopy to visualize cellulose microfibril formation from nickel-film-immobilized bacterial cellulose synthase enzymes (BcsA-Bs), which in standard solution only form amorphous cellulose from monomeric BcsA-B complexes. Fourier transform infrared spectroscopy and X-ray diffraction techniques show that surface-tethered BcsA-Bs synthesize highly crystalline cellulose II in the presence of UDP-Glc, the allosteric activator cyclic-di-GMP, as well as magnesium. The cellulose II cross section/diameter and the crystal size and crystallinity depend on the surface density of tethered enzymes as well as the overall concentration of substrates. Our results provide the correlation between cellulose microfibril formation and the spatial organization of cellulose synthases.

  5. Cellulose Synthesis and Its Regulation

    PubMed Central

    Li, Shundai; Bashline, Logan; Lei, Lei; Gu, Ying

    2014-01-01

    Cellulose, the most abundant biopolymer synthesized on land, is made of linear chains of ß (1–4) linked D-glucose. As a major structural component of the cell wall, cellulose is important not only for industrial use but also for plant growth and development. Cellulose microfibrils are tethered by other cell wall polysaccharides such as hemicellulose, pectin, and lignin. In higher plants, cellulose is synthesized by plasma membrane-localized rosette cellulose synthase complexes. Despite the recent advances using a combination of molecular genetics, live cell imaging, and spectroscopic tools, many aspects of the cellulose synthesis remain a mystery. In this chapter, we highlight recent research progress towards understanding the mechanism of cellulose synthesis in Arabidopsis. PMID:24465174

  6. Characterisation of water hyacinth with microwave-heated alkali pretreatment for enhanced enzymatic digestibility and hydrogen/methane fermentation.

    PubMed

    Lin, Richen; Cheng, Jun; Song, Wenlu; Ding, Lingkan; Xie, Binfei; Zhou, Junhu; Cen, Kefa

    2015-04-01

    Microwave-heated alkali pretreatment (MAP) was investigated to improve enzymatic digestibility and H2/CH4 production from water hyacinth. SEM revealed that MAP deconstructed the lignocellulose matrix and swelled the surfaces of water hyacinth. XRD indicated that MAP decreased the crystallinity index from 16.0 to 13.0 because of cellulose amorphisation. FTIR indicated that MAP effectively destroyed the lignin structure and disrupted the crystalline cellulose to reduce crystallinity. The reducing sugar yield of 0.296 g/gTVS was achieved at optimal hydrolysis conditions (microwave temperature = 190°C, time = 10 min, and cellulase dosage = 5 wt%). The sequentially fermentative hydrogen and methane yields from water hyacinth with MAP and enzymatic hydrolysis were increased to 63.9 and 172.5 mL/gTVS, respectively. The energy conversion efficiency (40.0%) in the two-stage hydrogen and methane cogeneration was lower than that (49.5%) in the one-stage methane production (237.4 mL/gTVS) from water hyacinth with MAP and enzymatic hydrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Synthesis and Characterization of Cellulose Derivatives for Water Repellent Properties

    USDA-ARS?s Scientific Manuscript database

    In this presentation, we will discuss the synthesis and structural characterizations of nitro-benzyl cellulose (1), amino-benzyl cellulose (2) and pentafluoro –benzyl cellulose (3). All cellulose derivatives are synthesized by etherification process in lithium chloride/N,N-dimethylacetamide homogene...

  8. Estimation of wood density and chemical composition by means of diffuse reflectance mid-infrared Fourier transform (DRIFT-MIR) spectroscopy.

    PubMed

    Nuopponen, Mari H; Birch, Gillian M; Sykes, Rob J; Lee, Steve J; Stewart, Derek

    2006-01-11

    Sitka spruce (Picea sitchensis) samples (491) from 50 different clones as well as 24 different tropical hardwoods and 20 Scots pine (Pinus sylvestris) samples were used to construct diffuse reflectance mid-infrared Fourier transform (DRIFT-MIR) based partial least squares (PLS) calibrations on lignin, cellulose, and wood resin contents and densities. Calibrations for density, lignin, and cellulose were established for all wood species combined into one data set as well as for the separate Sitka spruce data set. Relationships between wood resin and MIR data were constructed for the Sitka spruce data set as well as the combined Scots pine and Sitka spruce data sets. Calibrations containing only five wavenumbers instead of spectral ranges 4000-2800 and 1800-700 cm(-1) were also established. In addition, chemical factors contributing to wood density were studied. Chemical composition and density assessed from DRIFT-MIR calibrations had R2 and Q2 values in the ranges of 0.6-0.9 and 0.6-0.8, respectively. The PLS models gave residual mean squares error of prediction (RMSEP) values of 1.6-1.9, 2.8-3.7, and 0.4 for lignin, cellulose, and wood resin contents, respectively. Density test sets had RMSEP values ranging from 50 to 56. Reduced amount of wavenumbers can be utilized to predict the chemical composition and density of a wood, which should allow measurements of these properties using a hand-held device. MIR spectral data indicated that low-density samples had somewhat higher lignin contents than high-density samples. Correspondingly, high-density samples contained slightly more polysaccharides than low-density samples. This observation was consistent with the wet chemical data.

  9. Improved assay for quantitating adherence of ruminal bacteria to cellulose.

    PubMed Central

    Rasmussen, M A; White, B A; Hespell, R B

    1989-01-01

    A quantitative technique suitable for the determination of adherence of ruminal bacteria to cellulose was developed. This technique employs adherence of cells to cellulose disks and alleviates the problem of nonspecific cell entrapment within cellulose particles. By using this technique, it was demonstrated that the adherence of Ruminococcus flavefaciens FD1 to cellulose was inhibited by formaldehyde, methylcellulose, and carboxymethyl cellulose. Adherence was unaffected by acid hydrolysates of methylcellulose, glucose, and cellobiose. PMID:2782879

  10. Preparation and Characterization of Blended Films from Quaternized Hemicelluloses and Carboxymethyl Cellulose

    PubMed Central

    Qi, Xian-Ming; Liu, Shi-Yun; Chu, Fang-Bing; Pang, Shuai; Liang, Yan-Ru; Guan, Ying; Peng, Feng; Sun, Run-Cang

    2015-01-01

    Utilization of hemicelluloses from biomass energy is an important approach to explore renewable resources. A convenient, quick, and inexpensive method for the preparation of blended films from quaternized hemicelluloses (QH) and carboxymethyl cellulose (CMC) was introduced into this study. QH and CMC solution were first mixed to form homogeneous suspension, and then were dried under vacuum to fabricate the blended films. The FT-IR and XRD results indicated that the linkage between QH and CMC was due to the hydrogen bonding and electrostatic interaction. From the results of mechanical properties and water vapor permeability (WVP), the tensile strength of the blended films increased with the QH/CMC content ratio increasing in appropriate range, and the WVP of the blended films decreased. The maximum value of tensile strength of blend film achieved was 27.4 MPa. In addition, the transmittances of the blended films increased with the decreasing of QH/CMC content ratio. When the weight ratio (QH: CMC) was 1:1.5, the blend film showed the best light transmittance (45%). All the results suggested that the blended films could be used in areas of application in the coating and packaging fields from the good tensile strength, transmittance, and low WVP. PMID:28787804

  11. Preparation and Characterization of Blended Films from Quaternized Hemicelluloses and Carboxymethyl Cellulose.

    PubMed

    Qi, Xian-Ming; Liu, Shi-Yun; Chu, Fang-Bing; Pang, Shuai; Liang, Yan-Ru; Guan, Ying; Peng, Feng; Sun, Run-Cang

    2015-12-23

    Utilization of hemicelluloses from biomass energy is an important approach to explore renewable resources. A convenient, quick, and inexpensive method for the preparation of blended films from quaternized hemicelluloses (QH) and carboxymethyl cellulose (CMC) was introduced into this study. QH and CMC solution were first mixed to form homogeneous suspension, and then were dried under vacuum to fabricate the blended films. The FT-IR and XRD results indicated that the linkage between QH and CMC was due to the hydrogen bonding and electrostatic interaction. From the results of mechanical properties and water vapor permeability (WVP), the tensile strength of the blended films increased with the QH/CMC content ratio increasing in appropriate range, and the WVP of the blended films decreased. The maximum value of tensile strength of blend film achieved was 27.4 MPa. In addition, the transmittances of the blended films increased with the decreasing of QH/CMC content ratio. When the weight ratio (QH: CMC) was 1:1.5, the blend film showed the best light transmittance (45%). All the results suggested that the blended films could be used in areas of application in the coating and packaging fields from the good tensile strength, transmittance, and low WVP.

  12. Flexible cellulose and ZnO hybrid nanocomposite and its UV sensing characteristics

    NASA Astrophysics Data System (ADS)

    Mun, Seongcheol; Kim, Hyun Chan; Ko, Hyun-U.; Zhai, Lindong; Kim, Jung Woong; Kim, Jaehwan

    2017-12-01

    This paper reports the synthesis and UV sensing characteristics of a cellulose and ZnO hybrid nanocomposite (CEZOHN) prepared by exploiting the synergetic effects of ZnO functionality and the renewability of cellulose. Vertically aligned ZnO nanorods were grown well on a flexible cellulose film by direct ZnO seeding and hydrothermal growing processes. The ZnO nanorods have the wurtzite structure and an aspect ratio of 9 11. Photoresponse of the prepared CEZOHN was evaluated by measuring photocurrent under UV illumination. CEZOHN shows bi-directional, linear and fast photoresponse as a function of UV intensity. Electrode materials, light sources, repeatability, durability and flexibility of the prepared CEZOHN were tested and the photocurrent generation mechanism is discussed. The silver nanowire coating used for electrodes on CEZOHN is compatible with a transparent UV sensor. The prepared CEZOHN is flexible, transparent and biocompatible, and hence can be used for flexible and wearable UV sensors.

  13. Randomised clinical trial: colestyramine vs. hydroxypropyl cellulose in patients with functional chronic watery diarrhoea.

    PubMed

    Fernández-Bañares, F; Rosinach, M; Piqueras, M; Ruiz-Cerulla, A; Modolell, I; Zabana, Y; Guardiola, J; Esteve, M

    2015-06-01

    Idiopathic bile acid malabsorption (BAM) has been suggested as a cause of chronic watery diarrhoea, with a response to colestyramine in 70% of patients. However, the efficacy of this drug has never been investigated in placebo-controlled trials. To evaluate the efficacy of colestyramine as compared with hydroxypropyl cellulose in the treatment of functional chronic watery diarrhoea. Patients with chronic watery diarrhoea were randomly assigned to groups given colestyramine sachets 4 g twice daily (n = 13) or identical hydroxypropyl cellulose sachets (n = 13) for 8 weeks. The primary end-point was clinical remission defined as a mean of 3 or fewer stools per day during the week before the visit, with less than 1 watery stool per day. A secondary end-point was the reduction in daily watery stool number. SeHCAT test was performed in all patients, but an abnormal test was not a prerequisite to be included. All included patients had a SeHCAT 7-day retention ≤20%. There were no statistical differences in the percentage of patients in clinical remission at week 8 between colestyramine and hydroxypropyl cellulose with either intention-to-treat (53.8% vs. 38.4%; P = 0.43) or per-protocol (63.6% vs. 38.4%; P = 0.22) analyses. However, the mean per cent decrease in watery stool number was significantly higher with colestyramine than with hydroxypropyl cellulose (-92.4 ± 3.5% vs. -75.8 ± 7.1%; P = 0.048). The rate of adverse events related to study drugs did not differ between groups. Colestyramine (4 g twice daily) is effective and safe for short-term treatment of patients with chronic watery diarrhoea presumably secondary to BAM. Clinical Trials Register number EudraCT 2009-011149-14. © 2015 John Wiley & Sons Ltd.

  14. Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film.

    PubMed

    Huq, Tanzina; Salmieri, Stephane; Khan, Avik; Khan, Ruhul A; Le Tien, Canh; Riedl, Bernard; Fraschini, Carole; Bouchard, Jean; Uribe-Calderon, Jorge; Kamal, Musa R; Lacroix, Monique

    2012-11-06

    Nanocrystalline cellulose (NCC) reinforced alginate-based nanocomposite film was prepared by solution casting. The NCC content in the matrix was varied from 1 to 8% ((w/w) % dry matrix). It was found that the nanocomposite reinforced with 5 wt% NCC content exhibits the highest tensile strength which was increased by 37% compared to the control. Incorporation of NCC also significantly improved water vapor permeability (WVP) of the nanocomposite showing a 31% decrease due to 5 wt% NCC loading. Molecular interactions between alginate and NCC were supported by Fourier Transform Infrared Spectroscopy. The X-ray diffraction studies also confirmed the appearance of crystalline peaks due to the presence of NCC inside the films. Thermal stability of alginate-based nanocomposite films was improved after incorporation of NCC. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Dynamic and Structure of Polymer-Cellulose Composite Electrolyte for Li-ion Battery

    NASA Astrophysics Data System (ADS)

    Zhan, Pengfei; Maranas, Janna

    Crystalline PEO6LiX complex is a tunnel-like polymer/salt structure that promotes fast Li motion. The application is limited because high ion conductivity is only observed with short molecular weight PEO, as the molecular weight increase, tunnels are misaligned and the conductivity is decreased. High aspect ratio nanofillers based on cellulose nanowhiskers are hypothesized to promote the formation of tunnel structures. Compared with unfilled electrolyte, the room temperature ion conductivity increased as much as 1100% in filled electrolyte. With wide angle x-ray scattering (WAXS), we observe that the structure transitions from amorphous phase to crystalline phase as we add cellulose nanowhiskers and this is because the interaction between cellulose surface and polymer chain enhances the crystallization. From the temperature dependence of conductivity, the calculated Li+ hopping activation energy is shown to be lower in acidic cellulose nanowhisker filled samples. Our quasi-elastic neutron scattering (QENS) indicates with acidic surface, the rotation of PEO6 channels are more stabilized and this could be the origin of the low activation energy and high conductivity

  16. CESA TRAFFICKING INHIBITOR Inhibits Cellulose Deposition and Interferes with the Trafficking of Cellulose Synthase Complexes and Their Associated Proteins KORRIGAN1 and POM2/CELLULOSE SYNTHASE INTERACTIVE PROTEIN11[OPEN

    PubMed Central

    Wilkop, Thomas E.; Esteve, Victor Esteva; Jeannotte, Richard; Lathe, Rahul; Vernhettes, Samantha; Weimer, Bart; Hicks, Glenn; Alonso, Jose; Labavitch, John; Persson, Staffan; Ehrhardt, David; Drakakaki, Georgia

    2015-01-01

    Cellulose synthase complexes (CSCs) at the plasma membrane (PM) are aligned with cortical microtubules (MTs) and direct the biosynthesis of cellulose. The mechanism of the interaction between CSCs and MTs, and the cellular determinants that control the delivery of CSCs at the PM, are not yet well understood. We identified a unique small molecule, CESA TRAFFICKING INHIBITOR (CESTRIN), which reduces cellulose content and alters the anisotropic growth of Arabidopsis (Arabidopsis thaliana) hypocotyls. We monitored the distribution and mobility of fluorescently labeled cellulose synthases (CESAs) in live Arabidopsis cells under chemical exposure to characterize their subcellular effects. CESTRIN reduces the velocity of PM CSCs and causes their accumulation in the cell cortex. The CSC-associated proteins KORRIGAN1 (KOR1) and POM2/CELLULOSE SYNTHASE INTERACTIVE PROTEIN1 (CSI1) were differentially affected by CESTRIN treatment, indicating different forms of association with the PM CSCs. KOR1 accumulated in bodies similar to CESA; however, POM2/CSI1 dissociated into the cytoplasm. In addition, MT stability was altered without direct inhibition of MT polymerization, suggesting a feedback mechanism caused by cellulose interference. The selectivity of CESTRIN was assessed using a variety of subcellular markers for which no morphological effect was observed. The association of CESAs with vesicles decorated by the trans-Golgi network-localized protein SYNTAXIN OF PLANTS61 (SYP61) was increased under CESTRIN treatment, implicating SYP61 compartments in CESA trafficking. The properties of CESTRIN compared with known CESA inhibitors afford unique avenues to study and understand the mechanism under which PM-associated CSCs are maintained and interact with MTs and to dissect their trafficking routes in etiolated hypocotyls. PMID:25535279

  17. Characterization of films made with chayote tuber and potato starches blending with cellulose nanoparticles.

    PubMed

    Aila-Suárez, Selene; Palma-Rodríguez, Heidi M; Rodríguez-Hernández, Adriana I; Hernández-Uribe, Juan P; Bello-Pérez, Luis A; Vargas-Torres, Apolonio

    2013-10-15

    The aim of this study was to characterize chayotextle starch films reinforced with cellulose (C) and cellulose nanoparticle (CN) (at concentrations of 0.3%, 0.5%, 0.8% and 1.2%), using thermal, mechanical, physicochemical, permeability, and water solubility tests. C was acid-treated to obtain CN. The films were prepared by casting; potato starch and C were used as the control. The solubility of the starch films decreased with the addition of C and CN compared with its respective film without C and CN. No statistical difference (α=0.05) was found in the films added with different concentrations of C and CN. In general, the mechanical properties were improved with the addition of C and CN, and higher values of tensile strength and elastic modulus were determined in the films reinforced with CN. The melting temperature and enthalpy increased with the addition of C and CN, and the values of both thermal parameters were higher in the films with CN than with C; the enthalpy value of the film decreased when the concentration of C or CN increased in the composite. Low concentration of C and CN is better distributed in the matrix film. The addition of C and CN in the starch films improved some mechanical, barrier, and functional properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Cytotoxicity and expression of genes involved in the cellular stress response and apoptosis in mammalian fibroblast exposed to cotton cellulose nanofibers

    NASA Astrophysics Data System (ADS)

    Pereira, M. M.; Raposo, N. R. B.; Brayner, R.; Teixeira, E. M.; Oliveira, V.; Quintão, C. C. R.; Camargo, L. S. A.; Mattoso, L. H. C.; Brandão, H. M.

    2013-02-01

    Cellulose nanofibers (CNF) have mechanical properties that make them very attractive for applications in the construction of polymeric matrices, drug delivery and tissue engineering. However, little is known about their impact on mammalian cells. The objective of this study was to evaluate the cytotoxicity of CNF and their effect on gene expression of fibroblasts cultured in vitro. The morphology of CNF was analyzed by transmission electron microscopy and the surface charge by Zeta potential. Cell viability was analyzed by flow cytometry assay and gene expression of biomarkers focused on cell stress response such as Heat shock protein 70.1 (HSP70.1) and Peroxiredoxin 1 (PRDX1) and apoptosis as B-cell leukemia (BCL-2) and BCL-2 associated X protein (BAX) by RT-PCR assay. Low concentrations of CNF (0.02-100 μg ml-1) did not cause cell death; however, at concentrations above 200 μg ml-1, the nanofibers significantly decreased cell viability (86.41 ± 5.37%). The exposure to high concentrations of CNF (2000 and 5000 μg ml-1) resulted in increased HSP70.1, PRDX1 and BAX gene expression. The current study concludes that, under the conditions tested, high concentrations (2000 and 5000 μg ml-1) of CNF cause decreased cell viability and affect the expression of stress- and apoptosis-associated molecular markers.

  19. Inactivation of Cellobiose Dehydrogenases Modifies the Cellulose Degradation Mechanism of Podospora anserina.

    PubMed

    Tangthirasunun, Narumon; Navarro, David; Garajova, Sona; Chevret, Didier; Tong, Laetitia Chan Ho; Gautier, Valérie; Hyde, Kevin D; Silar, Philippe; Berrin, Jean-Guy

    2017-01-15

    Conversion of biomass into high-value products, including biofuels, is of great interest to developing sustainable biorefineries. Fungi are an inexhaustible source of enzymes to degrade plant biomass. Cellobiose dehydrogenases (CDHs) play an important role in the breakdown through synergistic action with fungal lytic polysaccharide monooxygenases (LPMOs). The three CDH genes of the model fungus Podospora anserina were inactivated, resulting in single and multiple CDH mutants. We detected almost no difference in growth and fertility of the mutants on various lignocellulose sources, except on crystalline cellulose, on which a 2-fold decrease in fertility of the mutants lacking P. anserina CDH1 (PaCDH1) and PaCDH2 was observed. A striking difference between wild-type and mutant secretomes was observed. The secretome of the mutant lacking all CDHs contained five beta-glucosidases, whereas the wild type had only one. P. anserina seems to compensate for the lack of CDH with secretion of beta-glucosidases. The addition of P. anserina LPMO to either the wild-type or mutant secretome resulted in improvement of cellulose degradation in both cases, suggesting that other redox partners present in the mutant secretome provided electrons to LPMOs. Overall, the data showed that oxidative degradation of cellulosic biomass relies on different types of mechanisms in fungi. Plant biomass degradation by fungi is a complex process involving dozens of enzymes. The roles of each enzyme or enzyme class are not fully understood, and utilization of a model amenable to genetic analysis should increase the comprehension of how fungi cope with highly recalcitrant biomass. Here, we report that the cellobiose dehydrogenases of the model fungus Podospora anserina enable it to consume crystalline cellulose yet seem to play a minor role on actual substrates, such as wood shavings or miscanthus. Analysis of secreted proteins suggests that Podospora anserina compensates for the lack of cellobiose dehydrogenase by increasing beta-glucosidase expression and using an alternate electron donor for LPMO. Copyright © 2016 American Society for Microbiology.

  20. Inactivation of Cellobiose Dehydrogenases Modifies the Cellulose Degradation Mechanism of Podospora anserina

    PubMed Central

    Tangthirasunun, Narumon; Navarro, David; Garajova, Sona; Chevret, Didier; Tong, Laetitia Chan Ho; Gautier, Valérie; Hyde, Kevin D.

    2016-01-01

    ABSTRACT Conversion of biomass into high-value products, including biofuels, is of great interest to developing sustainable biorefineries. Fungi are an inexhaustible source of enzymes to degrade plant biomass. Cellobiose dehydrogenases (CDHs) play an important role in the breakdown through synergistic action with fungal lytic polysaccharide monooxygenases (LPMOs). The three CDH genes of the model fungus Podospora anserina were inactivated, resulting in single and multiple CDH mutants. We detected almost no difference in growth and fertility of the mutants on various lignocellulose sources, except on crystalline cellulose, on which a 2-fold decrease in fertility of the mutants lacking P. anserina CDH1 (PaCDH1) and PaCDH2 was observed. A striking difference between wild-type and mutant secretomes was observed. The secretome of the mutant lacking all CDHs contained five beta-glucosidases, whereas the wild type had only one. P. anserina seems to compensate for the lack of CDH with secretion of beta-glucosidases. The addition of P. anserina LPMO to either the wild-type or mutant secretome resulted in improvement of cellulose degradation in both cases, suggesting that other redox partners present in the mutant secretome provided electrons to LPMOs. Overall, the data showed that oxidative degradation of cellulosic biomass relies on different types of mechanisms in fungi. IMPORTANCE Plant biomass degradation by fungi is a complex process involving dozens of enzymes. The roles of each enzyme or enzyme class are not fully understood, and utilization of a model amenable to genetic analysis should increase the comprehension of how fungi cope with highly recalcitrant biomass. Here, we report that the cellobiose dehydrogenases of the model fungus Podospora anserina enable it to consume crystalline cellulose yet seem to play a minor role on actual substrates, such as wood shavings or miscanthus. Analysis of secreted proteins suggests that Podospora anserina compensates for the lack of cellobiose dehydrogenase by increasing beta-glucosidase expression and using an alternate electron donor for LPMO. PMID:27836848

  1. Isolation and identification of cellulose-producing strain Komagataeibacter intermedius from fermented fruit juice.

    PubMed

    Lin, Shin-Ping; Huang, Yin-Hsuan; Hsu, Kai-Di; Lai, Ying-Jang; Chen, Yu-Kuo; Cheng, Kuan-Chen

    2016-10-20

    A bacterial cellulose (BC) producing strain isolated from fermented fruit juice was identified as Komagataeibacter intermedius (K. intermedius) FST213-1 by 16s rDNA sequencing analysis and biochemical characteristics test. K. intermedius FST213-1 can produce BC within pH 4-9 and exhibit maximum BC production (1.2g/L) at pH 8 in short-term (4-day) cultivation. Results of Fourier transform infrared spectroscopy, X-ray diffraction, water content, thermogravimetric analysis and mechanical property indicated that BC produced from K. intermedius FST213-1 exhibits higher water content ability (99.5%), lower thermostability (315°C), lower crystallinity (79.3%) and similar mechanical properties in comparison with the specimen from model BC producer, Gluconacetobacter xylinus 23769. Based on these analyses, the novel based-resistant strain K. intermedius FST213-1 can efficiently produce BC, which can be applied for industrial manufacturing with potential features. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Bioplastic production from cellulose of oil palm empty fruit bunch

    NASA Astrophysics Data System (ADS)

    Isroi; Cifriadi, A.; Panji, T.; Wibowo, Nendyo A.; Syamsu, K.

    2017-05-01

    Empty fruit bunch is available abundantly in Indonesia as side product of CPO production. EFB production in Indonesia reached 28.65 million tons in 2015. EFB consist of 36.67% cellulose, 13.50% hemicellulose and 31.16% lignin. By calculation, potential cellulose from EFB is 11.50 million tons. Cellulose could be utilized as source for bioplastic production. This research aims to develop bioplastic production based on cellulose from EFB and to increase added value of EFB. Cellulose fiber has no plastic properties. Molecular modification of cellulose, composite with plasticizer and compatibilizer is a key success for utilization of cellulose for bioplastic. Main steps of bioplastic production from EFB are: 1) isolation and purification of cellulose, 2) cellulose modification and 3) synthesis of bioplastic. Cellulose was isolated by sodium hydroxide methods and bleached using sodium hypochlorite. Purity of obtained cellulose was 97%. Cellulose yield could reach 30% depend on cellulose content of EFB. Cellulose side chain was oxidized to reduce hydroxyl group and increase the carboxyl group. Bioplastic synthesis used glycerol as plasticizer and cassava starch as matrix. This research was successfully producing bioplastic sheet by casting method. In future prospects, bioplastic from EFB cellulose can be developed as plastic bag and food packaging.

  3. Characterization of Cellulose Synthesis in Plant Cells

    PubMed Central

    Maleki, Samaneh Sadat; Mohammadi, Kourosh; Ji, Kong-shu

    2016-01-01

    Cellulose is the most significant structural component of plant cell wall. Cellulose, polysaccharide containing repeated unbranched β (1-4) D-glucose units, is synthesized at the plasma membrane by the cellulose synthase complex (CSC) from bacteria to plants. The CSC is involved in biosynthesis of cellulose microfibrils containing 18 cellulose synthase (CesA) proteins. Macrofibrils can be formed with side by side arrangement of microfibrils. In addition, beside CesA, various proteins like the KORRIGAN, sucrose synthase, cytoskeletal components, and COBRA-like proteins have been involved in cellulose biosynthesis. Understanding the mechanisms of cellulose biosynthesis is of great importance not only for improving wood production in economically important forest trees to mankind but also for plant development. This review article covers the current knowledge about the cellulose biosynthesis-related gene family. PMID:27314060

  4. Structure of Cellulose Microfibrils in Primary Cell Walls from Collenchyma1[C][W][OA

    PubMed Central

    Thomas, Lynne H.; Forsyth, V. Trevor; Šturcová, Adriana; Kennedy, Craig J.; May, Roland P.; Altaner, Clemens M.; Apperley, David C.; Wess, Timothy J.; Jarvis, Michael C.

    2013-01-01

    In the primary walls of growing plant cells, the glucose polymer cellulose is assembled into long microfibrils a few nanometers in diameter. The rigidity and orientation of these microfibrils control cell expansion; therefore, cellulose synthesis is a key factor in the growth and morphogenesis of plants. Celery (Apium graveolens) collenchyma is a useful model system for the study of primary wall microfibril structure because its microfibrils are oriented with unusual uniformity, facilitating spectroscopic and diffraction experiments. Using a combination of x-ray and neutron scattering methods with vibrational and nuclear magnetic resonance spectroscopy, we show that celery collenchyma microfibrils were 2.9 to 3.0 nm in mean diameter, with a most probable structure containing 24 chains in cross section, arranged in eight hydrogen-bonded sheets of three chains, with extensive disorder in lateral packing, conformation, and hydrogen bonding. A similar 18-chain structure, and 24-chain structures of different shape, fitted the data less well. Conformational disorder was largely restricted to the surface chains, but disorder in chain packing was not. That is, in position and orientation, the surface chains conformed to the disordered lattice constituting the core of each microfibril. There was evidence that adjacent microfibrils were noncovalently aggregated together over part of their length, suggesting that the need to disrupt these aggregates might be a constraining factor in growth and in the hydrolysis of cellulose for biofuel production. PMID:23175754

  5. Combined effect of enzyme inducers and nitrate on selective lignin degradation in wheat straw by Ganoderma lobatum.

    PubMed

    Hermosilla, Edward; Schalchli, Heidi; Mutis, Ana; Diez, María Cristina

    2017-09-01

    Lignin is one of the main barriers to obtaining added-value products from cellulosic fraction of lignocellulosic biomass due to its random aromatic structure and strong association with cellulose and hemicellulose. Inorganic and organic compounds have been used as enzyme inducers to increase the ligninolytic potential of white-rot fungi, without considering their effect on the selectivity of degradation. In this study, the selective lignin degradation in wheat straw by Ganoderma lobatum was optimized using a central composite design to evaluate the combined effect of Fe 2+ and Mn 2+ as inducers of ligninolytic enzymes and NO 3 - as an additional nitrogen source. Selective lignin degradation was promoted to maximize lignin degradation and minimize weight losses. The optimal conditions were 0.18 M NO 3 - , 0.73 mM Fe 2+ , and 1 mM Mn 2+ , which resulted in 50.0% lignin degradation and 18.5% weight loss after 40 days of fungal treatment. A decrease in absorbance at 1505 and 900 cm -1 in fungal-treated samples was observed in the FTIR spectra, indicating lignin and cellulose degradation in fungal-treated wheat straw, respectively. The main ligninolytic enzymes detected during lignin degradation were manganese-dependent and manganese-independent peroxidases. Additionally, confocal laser scanning microscopy revealed that lignin degradation in wheat straw by G. lobatum resulted in higher cellulose accessibility. We concluded that the addition of enzyme inducers and NO 3 - promotes selective lignin degradation in wheat straw by G. lobatum.

  6. Catalytic conversion of cellulose to liquid hydrocarbon fuels by progressive removal of oxygen to facilitate separation processes and achieve high selectivities

    DOEpatents

    Dumesic, James A.; Ruiz, Juan Carlos Serrano; West, Ryan M.

    2015-06-30

    Described is a method to make liquid chemicals. The method includes deconstructing cellulose to yield a product mixture comprising levulinic acid and formic acid, converting the levulinic acid to .gamma.-valerolactone, and converting the .gamma.-valerolactone to pentanoic acid. Alternatively, the .gamma.-valerolactone can be converted to a mixture of n-butenes. The pentanoic acid can be decarboxylated yield 1-butene or ketonized to yield 5-nonanone. The 5-nonanone can be hydrodeoxygenated to yield nonane, or 5-nonanone can be reduced to yield 5-nonanol. The 5-nonanol can be dehydrated to yield nonene, which can be dimerized to yield a mixture of C.sub.9 and C.sub.18 olefins, which can be hydrogenated to yield a mixture of alkanes.

  7. Catalytic conversion of cellulose to liquid hydrocarbon fuels by progressive removal of oxygen to facilitate separation processes and achieve high selectivities

    DOEpatents

    Dumesic, James A [Verona, WI; Ruiz, Juan Carlos Serrano [Madison, WI; West, Ryan M [Madison, WI

    2014-01-07

    Described is a method to make liquid chemicals. The method includes deconstructing cellulose to yield a product mixture comprising levulinic acid and formic acid, converting the levulinic acid to .gamma.-valerolactone, and converting the .gamma.-valerolactone to pentanoic acid. Alternatively, the .gamma.-valerolactone can be conveted to a mixture of n-butenes. The pentanoic acid can be decarboxylated yield 1-butene or ketonized to yield 5-nonanone. The 5-nonanone can be hydrodeoxygenated to yield nonane, or 5-nonanone can be reduced to yield 5-nonanol. The 5-nonanol can be dehydrated to yield nonene, which can be dimerized to yield a mixture of C.sub.9 and C.sub.18 olefins, which can be hydrogenated to yield a mixture of alkanes.

  8. Biodegradation of the alkaline cellulose degradation products generated during radioactive waste disposal.

    PubMed

    Rout, Simon P; Radford, Jessica; Laws, Andrew P; Sweeney, Francis; Elmekawy, Ahmed; Gillie, Lisa J; Humphreys, Paul N

    2014-01-01

    The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP) including α and β forms of isosaccharinic acid (ISA) and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118) in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7 × 10(-2) hr(-1) (SE ± 2.9 × 10(-3)). These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility.

  9. Enzymatic hydrolysis of cellulose pretreated with ionic liquids and N-methyl Morpholine N-Oxide

    NASA Astrophysics Data System (ADS)

    Yau Li, Elizabeth

    The effect of N-methyl Morpholine N-Oxide (NMMO), 1-ethyl-3-methyl-imidazolium acetate ([Emim]Ac) and 1-ethyl-3-methyl-imidazolium diethyl phosphate ([Emim]DEP) on pretreatment and enzymatic hydrolysis of dissolving pulp was studied. X-ray diffraction measurements of regenerated cellulose from these solvents showed that solvent pretreatment reduces the crystallinity of cellulose. However, crystallinity might not be a major factor affecting the in-situ enzymatic hydrolysis of cellulose in these solvents. Although regenerated cellulose from [Emim]DEP showed the lowest crystallinity index (˜15%), in-situ enzymatic hydrolysis of cellulose dissolved in NMMO showed the highest cellulose conversion (68% compared to 65% for [Emim]Ac and 37% for [Emim]DEP at enzyme loading of 122 FPU/g). Moreover, results showed that enzymes could tolerate up to NMMO concentration of 100 g/L and still yield full conversion of cellulose. Since it is not necessary to remove all the NMMO, less amount of water will be required for the washing step and thus the process will be more economical. The HCH-1 model was used in an attempt to model the enzymatic hydrolysis of cellulose in NMMO. With the incorporation of NMMO inhibition and a factor to account for unreacted cellulose, the model was able to correlate the experimental data of the enzymatic hydrolysis of cellulose (6.68 g/L) at various NMMO concentrations (0, 50, 100, 150 and 250 g/L). However, the experimental results also suggest that NMMO might be deactivating the enzymes rather than inhibiting them. More studies need to be done at varying cellulose, NMMO and enzyme concentrations to find the exact nature of this deactivation of NMMO.

  10. Nitrogen fertilization challenges the climate benefit of cellulosic biofuels

    DOE PAGES

    Ruan, Leilei; Bhardwaj, Ajay K.; Hamilton, Stephen K.; ...

    2016-06-01

    Cellulosic biofuels are intended to improve future energy and climate security. Nitrogen (N) fertilizer is commonly recommended to stimulate yields but can increase losses of the greenhouse gas nitrous oxide (N 2O) and other forms of reactive N, including nitrate. We measured soil N2O emissions and nitrate leaching along a switchgrass ( Panicum virgatum) high resolution N-fertilizer gradient for three years post-establishment. Results revealed an exponential increase in annual N2O emissions that each year became stronger (R 2 > 0.9, P < 0.001) and deviated further from the fixed percentage assumed for IPCC Tier 1 emission factors. Concomitantly, switchgrass yieldsmore » became less responsive each year to N fertilizer. Nitrate leaching (and calculated indirect N2O emissions) also increased exponentially in response to N inputs, but neither methane (CH4) uptake nor soil organic carbon changed detectably. Overall, N fertilizer inputs at rates greater than crop need curtailed the climate benefit of ethanol production almost two-fold, from a maximum mitigation capacity of–5.71 ± 0.22 Mg CO 2e ha –1 yr –1 in switchgrass fertilized at 56 kgNha –1 to only –2.97 ± 0.18 MgCO 2e ha –1 yr –1 in switchgrass fertilized at 196 kgNha –1. In conclusion, minimizing N fertilizer use will be an important strategy for fully realizing the climate benefits of cellulosic biofuel production.« less

  11. Nitrogen fertilization challenges the climate benefit of cellulosic biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruan, Leilei; Bhardwaj, Ajay K.; Hamilton, Stephen K.

    Cellulosic biofuels are intended to improve future energy and climate security. Nitrogen (N) fertilizer is commonly recommended to stimulate yields but can increase losses of the greenhouse gas nitrous oxide (N 2O) and other forms of reactive N, including nitrate. We measured soil N2O emissions and nitrate leaching along a switchgrass ( Panicum virgatum) high resolution N-fertilizer gradient for three years post-establishment. Results revealed an exponential increase in annual N2O emissions that each year became stronger (R 2 > 0.9, P < 0.001) and deviated further from the fixed percentage assumed for IPCC Tier 1 emission factors. Concomitantly, switchgrass yieldsmore » became less responsive each year to N fertilizer. Nitrate leaching (and calculated indirect N2O emissions) also increased exponentially in response to N inputs, but neither methane (CH4) uptake nor soil organic carbon changed detectably. Overall, N fertilizer inputs at rates greater than crop need curtailed the climate benefit of ethanol production almost two-fold, from a maximum mitigation capacity of–5.71 ± 0.22 Mg CO 2e ha –1 yr –1 in switchgrass fertilized at 56 kgNha –1 to only –2.97 ± 0.18 MgCO 2e ha –1 yr –1 in switchgrass fertilized at 196 kgNha –1. In conclusion, minimizing N fertilizer use will be an important strategy for fully realizing the climate benefits of cellulosic biofuel production.« less

  12. A dual mechanism of cellulose deficiency in shv3svl1

    PubMed Central

    Yeats, Trevor H.; Somerville, Chris R.

    2016-01-01

    ABSTRACT SHAVEN3 (SHV3) and its homolog SHAVEN3-like 1 (SVL1) encode glycosylphosphatidylinositol (GPI)-anchored proteins (GAPs) that are involved in cellulose biosynthesis and hypocotyl elongation in Arabidopsis thaliana. In a recent report, we showed that the cellulose and hypocotyl elongation defects of the shv3svl1 double mutant are greatly enhanced by exogenous sucrose in the growth medium. Further investigation of this phenomenon showed that shv3svl1 exhibits a hyperpolarized plasma membrane (PM) proton gradient that is coupled with enhanced accumulation of sucrose via the PM sucrose/proton symporter SUC1. The resulting high intracellular sucrose concentration appears to favor starch synthesis at the expense of cellulose synthesis. Here, we describe our interpretation of these results in terms of 2 potential regulators of cellulose synthesis: intracellular sucrose concentration and a putative signaling pathway that involves SHV3-like proteins. PMID:27494413

  13. Enzymatic properties of Thermoanaerobacterium thermosaccharolyticum β-glucosidase fused to Clostridium cellulovorans cellulose binding domain and its application in hydrolysis of microcrystalline cellulose.

    PubMed

    Zhao, Linguo; Pang, Qian; Xie, Jingcong; Pei, Jianjun; Wang, Fei; Fan, Song

    2013-11-14

    The complete degradation of the cellulose requires the synergistic action of endo-β-glucanase, exo-β-glucanase, and β-glucosidase. But endo-β-glucanase and exo-β-glucanase can be recovered by solid-liquid separation in cellulose hydrolysis by their cellulose binding domain (CBD), however, the β-glucosidases cannot be recovered because of most β-glucosidases without the CBD, so additional β-glucosidases are necessary for the next cellulose degradation. This will increase the cost of cellulose degradation. The glucose-tolerant β-glucosidase (BGL) from Thermoanaerobacterium thermosaccharolyticum DSM 571 was fused with cellulose binding domain (CBD) of Clostridium cellulovorans cellulosome anchoring protein by a peptide linker. The fusion enzyme (BGL-CBD) gene was overexpressed in Escherichia coli with the maximum β-glucosidase activity of 17 U/mL. Recombinant BGL-CBD was purified by heat treatment and following by Ni-NTA affinity. The enzymatic characteristics of the BGL-CBD showed optimal activities at pH 6.0 and 65°C. The fusion of CBD structure enhanced the hydrolytic efficiency of the BGL-CBD against cellobiose, which displayed a 6-fold increase in Vmax/Km in comparison with the BGL. A gram of cellulose was found to absorb 643 U of the fusion enzyme (BGL-CBD) in pH 6.0 at 50°C for 25 min with a high immobilization efficiency of 90%. Using the BGL-CBD as the catalyst, the yield of glucose reached a maximum of 90% from 100 g/L cellobiose and the BGL-CBD could retain over 85% activity after five batches with the yield of glucose all above 70%. The performance of the BGL-CBD on microcrystalline cellulose was also studied. The yield of the glucose was increased from 47% to 58% by adding the BGL-CBD to the cellulase, instead of adding the Novozyme 188. The hydrolytic activity of BGL-CBD is greater than that of the Novozyme 188 in cellulose degradation. The article provides a prospect to decrease significantly the operational cost of the hydrolysis process.

  14. Enzymatic properties of Thermoanaerobacterium thermosaccharolyticum β-glucosidase fused to Clostridium cellulovorans cellulose binding domain and its application in hydrolysis of microcrystalline cellulose

    PubMed Central

    2013-01-01

    Background The complete degradation of the cellulose requires the synergistic action of endo-β-glucanase, exo-β-glucanase, and β-glucosidase. But endo-β-glucanase and exo-β-glucanase can be recovered by solid–liquid separation in cellulose hydrolysis by their cellulose binding domain (CBD), however, the β-glucosidases cannot be recovered because of most β-glucosidases without the CBD, so additional β-glucosidases are necessary for the next cellulose degradation. This will increase the cost of cellulose degradation. Results The glucose-tolerant β-glucosidase (BGL) from Thermoanaerobacterium thermosaccharolyticum DSM 571 was fused with cellulose binding domain (CBD) of Clostridium cellulovorans cellulosome anchoring protein by a peptide linker. The fusion enzyme (BGL-CBD) gene was overexpressed in Escherichia coli with the maximum β-glucosidase activity of 17 U/mL. Recombinant BGL-CBD was purified by heat treatment and following by Ni-NTA affinity. The enzymatic characteristics of the BGL-CBD showed optimal activities at pH 6.0 and 65°C. The fusion of CBD structure enhanced the hydrolytic efficiency of the BGL-CBD against cellobiose, which displayed a 6-fold increase in V max /K m in comparison with the BGL. A gram of cellulose was found to absorb 643 U of the fusion enzyme (BGL-CBD) in pH 6.0 at 50°C for 25 min with a high immobilization efficiency of 90%. Using the BGL-CBD as the catalyst, the yield of glucose reached a maximum of 90% from 100 g/L cellobiose and the BGL-CBD could retain over 85% activity after five batches with the yield of glucose all above 70%. The performance of the BGL-CBD on microcrystalline cellulose was also studied. The yield of the glucose was increased from 47% to 58% by adding the BGL-CBD to the cellulase, instead of adding the Novozyme 188. Conclusions The hydrolytic activity of BGL-CBD is greater than that of the Novozyme 188 in cellulose degradation. The article provides a prospect to decrease significantly the operational cost of the hydrolysis process. PMID:24228818

  15. Magnetic poly(lactide-co-glycolide) (PLGA) and cellulose particles for MRI-based cell tracking

    PubMed Central

    Nkansah, Michael K.; Thakral, Durga; Shapiro, Erik M.

    2010-01-01

    Biodegradable, superparamagnetic micro- and nanoparticles of poly(lactide-co-glycolide) (PLGA) and cellulose were designed, fabricated and characterized for magnetic cell labeling. Monodisperse nanocrystals of magnetite were incorporated into micro- and nanoparticles of PLGA and cellulose with high efficiency using an oil-in-water single emulsion technique. Superparamagnetic cores had high magnetization (72.1 emu/g). The resulting polymeric particles had smooth surface morphology and high magnetite content (43.3 wt% for PLGA and 69.6 wt% for cellulose). While PLGA and cellulose nanoparticles displayed highest r2* values per millimole of iron (399 s-1mM-1 for cellulose and 505 s-1mM-1 for PLGA), micron-sized PLGA particles had a much higher r2* per particle than either. After incubation for a month in citrate buffer (pH 5.5), magnetic PLGA particles lost close to 50% of their initial r2* molar relaxivity, while magnetic cellulose particles remained intact, preserving over 85% of their initial r2* molar relaxivity. Lastly, mesenchymal stem cells and human breast adenocarcinoma cells were magnetically labeled using these particles with no detectable cytotoxicity. These particles are ideally suited for non-invasive cell tracking in vivo via MRI and due to their vastly different degradation properties, offer unique potential for dedicated use for either short (PLGA-based particles) or long term (cellulose-based particles) experiments. PMID:21404328

  16. Mechanical behavior of cellulose microfibrils in tension wood, in relation with maturation stress generation.

    PubMed

    Clair, Bruno; Alméras, Tancrède; Yamamoto, Hiroyuki; Okuyama, Takashi; Sugiyama, Junji

    2006-08-01

    A change in cellulose lattice spacing can be detected during the release of wood maturation stress by synchrotron x-ray diffraction experiment. The lattice strain was found to be the same order of magnitude as the macroscopic strain. The fiber repeat distance, 1.033 nm evaluated for tension wood after the release of maturation stress was equal to the conventional wood values, whereas the value before stress release was larger, corresponding to a fiber repeat of 1.035 nm, nearly equal to that of cotton and ramie. Interestingly, the fiber repeat varied from 1.033 nm for wood to 1.040 nm for algal cellulose, with an increasing order of lateral size of cellulose microfibrils so far reported. These lines of experiments demonstrate that, before the stress release, the cellulose was in a state of tension, which is, to our knowledge, the first experimental evidence supporting the assumption that tension is induced in cellulose microfibrils.

  17. Preparation of acetylated nanofibrillated cellulose from corn stalk microcrystalline cellulose and its reinforcing effect on starch films.

    PubMed

    Cheng, Li; Zhang, Dongli; Gu, Zhengbiao; Li, Zhaofeng; Hong, Yan; Li, Caiming

    2018-05-01

    Acetylated nanofibrillated cellulose (ANFC) with different degrees of substitution (DS) was prepared from corn-stalk microcrystalline cellulose (MCC) using chemical-mechanical combined processes. The physicochemical properties of nanofibrillated cellulose (NFC) and ANFC were investigated together with the influence of added nanoparticles on the mechanical properties of starch films. The acetylation reaction was monitored by Fourier transform infrared (FT-IR) and titration. Particle size and morphological of NFC and ANFC were studied by atomic force microscope (AFM). The results suggested that NFC had nano-order-unit web-like network with mean diameter of ~24 nm. The thermostability of all samples was found to decrease as the modification extent rose, and mechanical disposal revealed no significant influence on the DS and crystalline structure of cellulose. The ANFC with the DS value of 0.35 demonstrated the best enhancement effect on starch films, with increased tension strength (TS) by 201%. The tensile tests confirmed that the web-like network structure of NFC was more conducive to strength, and proper chemical modification could improve the uniform dispersion of nano-fillers in starch to result in higher strength performances. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Feasibility of e-paper made with cellulose

    NASA Astrophysics Data System (ADS)

    Yoo, K. H.; Han, K. J.; Chen, Yi; Kang, K. S.; Kim, Jaehwan

    2008-03-01

    Cellulose is a beneficial material that has low cost, light weight, high compatibility, and biodegradability. Recently electro-active paper (EAPap) composed with cellulose was discovered as a smart material for application to variety industrial fields such as smart wall-paper, actuator, and magic carpet. It also exhibited actuator property through ion migration and piezoelectric effect. Since cellulose acetate (CA) film has optically transparent property, we focused on optical field application, such as electronic paper, prismsheet, and polarized film. Since CA can be easily dissolved in variety of organic solvent, various weight % (from 1 to 25 wt. %) of CA solution in acetone was prepared. Polydimethylsilane (PDMS) master pattern was fabricated on the silicone wafer. CA solution was poured to the master mold and dried using spin-coating or tape casting method. Various shape and height patterns, such as circle, honeycomb, and rectangular patterns were fabricated using 12 wt. % CA solution. The resulting pattern showed uniform size in the large area without defect. These patterns can be utilized as a substrate and cell pattern for the electronic paper. To investigate saponification (SA) effect to convert CA to regenerated cellulose, CA film was immersed into the sodium methoxide solution in methanol for various times. The fabricated CA films were stretched and immersed into the sodium methoxide solution in methanol to desubstitute the acetate group. These regenerated cellulose films have larger mechanical strength than CA films. Although the UV-visible transmittance was decreased as increasing SA time, the transmittance of the further SA process and stretched film backed up near untreated CA film. Although the cross-sectional image of the saponified and unstretched CA film did not have specific directional structure, the cross-sectional FESEM image of the saponified and stretched CA film had one directional fiber structure. The fiber was aligned to the stretched direction. Most of the compositions were one directional ordered nanofibers having diameter of approximately 30nm.

  19. A Gibberellin-Mediated DELLA-NAC Signaling Cascade Regulates Cellulose Synthesis in Rice.

    PubMed

    Huang, Debao; Wang, Shaogan; Zhang, Baocai; Shang-Guan, Keke; Shi, Yanyun; Zhang, Dongmei; Liu, Xiangling; Wu, Kun; Xu, Zuopeng; Fu, Xiangdong; Zhou, Yihua

    2015-06-01

    Cellulose, which can be converted into numerous industrial products, has important impacts on the global economy. It has long been known that cellulose synthesis in plants is tightly regulated by various phytohormones. However, the underlying mechanism of cellulose synthesis regulation remains elusive. Here, we show that in rice (Oryza sativa), gibberellin (GA) signals promote cellulose synthesis by relieving the interaction between SLENDER RICE1 (SLR1), a DELLA repressor of GA signaling, and NACs, the top-layer transcription factors for secondary wall formation. Mutations in GA-related genes and physiological treatments altered the transcription of CELLULOSE SYNTHASE genes (CESAs) and the cellulose level. Multiple experiments demonstrated that transcription factors NAC29/31 and MYB61 are CESA regulators in rice; NAC29/31 directly regulates MYB61, which in turn activates CESA expression. This hierarchical regulation pathway is blocked by SLR1-NAC29/31 interactions. Based on the results of anatomical analysis and GA content examination in developing rice internodes, this signaling cascade was found to be modulated by varied endogenous GA levels and to be required for internode development. Genetic and gene expression analyses were further performed in Arabidopsis thaliana GA-related mutants. Altogether, our findings reveal a conserved mechanism by which GA regulates secondary wall cellulose synthesis in land plants and provide a strategy for manipulating cellulose production and plant growth. © 2015 American Society of Plant Biologists. All rights reserved.

  20. A Gibberellin-Mediated DELLA-NAC Signaling Cascade Regulates Cellulose Synthesis in Rice[OPEN

    PubMed Central

    Huang, Debao; Wang, Shaogan; Zhang, Baocai; Shang-Guan, Keke; Shi, Yanyun; Zhang, Dongmei; Liu, Xiangling; Wu, Kun; Xu, Zuopeng; Fu, Xiangdong; Zhou, Yihua

    2015-01-01

    Cellulose, which can be converted into numerous industrial products, has important impacts on the global economy. It has long been known that cellulose synthesis in plants is tightly regulated by various phytohormones. However, the underlying mechanism of cellulose synthesis regulation remains elusive. Here, we show that in rice (Oryza sativa), gibberellin (GA) signals promote cellulose synthesis by relieving the interaction between SLENDER RICE1 (SLR1), a DELLA repressor of GA signaling, and NACs, the top-layer transcription factors for secondary wall formation. Mutations in GA-related genes and physiological treatments altered the transcription of CELLULOSE SYNTHASE genes (CESAs) and the cellulose level. Multiple experiments demonstrated that transcription factors NAC29/31 and MYB61 are CESA regulators in rice; NAC29/31 directly regulates MYB61, which in turn activates CESA expression. This hierarchical regulation pathway is blocked by SLR1-NAC29/31 interactions. Based on the results of anatomical analysis and GA content examination in developing rice internodes, this signaling cascade was found to be modulated by varied endogenous GA levels and to be required for internode development. Genetic and gene expression analyses were further performed in Arabidopsis thaliana GA-related mutants. Altogether, our findings reveal a conserved mechanism by which GA regulates secondary wall cellulose synthesis in land plants and provide a strategy for manipulating cellulose production and plant growth. PMID:26002868

  1. Continuous Cellulosic Bioethanol Fermentation by Cyclic Fed-Batch Cocultivation

    PubMed Central

    Jiang, He-Long; He, Qiang; He, Zhili; Hemme, Christopher L.; Wu, Liyou

    2013-01-01

    Cocultivation of cellulolytic and saccharolytic microbial populations is a promising strategy to improve bioethanol production from the fermentation of recalcitrant cellulosic materials. Earlier studies have demonstrated the effectiveness of cocultivation in enhancing ethanolic fermentation of cellulose in batch fermentation. To further enhance process efficiency, a semicontinuous cyclic fed-batch fermentor configuration was evaluated for its potential in enhancing the efficiency of cellulose fermentation using cocultivation. Cocultures of cellulolytic Clostridium thermocellum LQRI and saccharolytic Thermoanaerobacter pseudethanolicus strain X514 were tested in the semicontinuous fermentor as a model system. Initial cellulose concentration and pH were identified as the key process parameters controlling cellulose fermentation performance in the fixed-volume cyclic fed-batch coculture system. At an initial cellulose concentration of 40 g liter−1, the concentration of ethanol produced with pH control was 4.5-fold higher than that without pH control. It was also found that efficient cellulosic bioethanol production by cocultivation was sustained in the semicontinuous configuration, with bioethanol production reaching 474 mM in 96 h with an initial cellulose concentration of 80 g liter−1 and pH controlled at 6.5 to 6.8. These results suggested the advantages of the cyclic fed-batch process for cellulosic bioethanol fermentation by the cocultures. PMID:23275517

  2. The TcEG1 beetle (Tribolium castaneum) cellulase produced in transgenic switchgrass is active at alkaline pH and auto-hydrolyzes biomass for increased cellobiose release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willis, Jonathan D.; Grant, Joshua N.; Mazarei, Mitra

    Genetically engineered biofuel crops, such as switchgrass (Panicum virgatum L.), that produce their own cell wall-digesting cellulase enzymes would reduce costs of cellulosic biofuel production. To date, non-bioenergy plant models have been used in nearly all studies assessing the synthesis and activity of plant-produced fungal and bacterial cellulases. One potential source for cellulolytic enzyme genes is herbivorous insects adapted to digest plant cell walls. Here we examine the potential of transgenic switchgrass-produced TcEG1 cellulase from Tribolium castaneum (red flour beetle). This enzyme, when overproduced in Escherichia coli and Saccharomyces cerevisiae, efficiently digests cellulose at optima of 50 °C and pHmore » 12.0. TcEG1 that was produced in green transgenic switchgrass tissue had a range of endoglucanase activity of 0.16–0.05 units (µM glucose release/min/mg) at 50 °C and pH 12.0. TcEG1 activity from air-dried leaves was unchanged from that from green tissue, but when tissue was dried in a desiccant oven (46 °C), specific enzyme activity decreased by 60%. When transgenic biomass was “dropped-in” into an alkaline buffer (pH 12.0) and allowed to incubate at 50 °C, cellobiose release was increased up to 77% over non-transgenic biomass. Saccharification was increased in one transgenic event by 28%, which had a concurrent decrease in lignin content of 9%. Histological analysis revealed an increase in cell wall thickness with no change to cell area or perimeter. Transgenic plants produced more, albeit narrower, tillers with equivalent dry biomass as the control. This work describes the first study in which an insect cellulase has been produced in transgenic plants; in this case, the dedicated bioenergy crop switchgrass. Switchgrass overexpressing the TcEG1 gene appeared to be morphologically similar to its non-transgenic control and produced equivalent dry biomass. Therefore, we propose TcEG1 transgenics could be bred with other transgenic germplasm (e.g., low-lignin lines) to yield new switchgrass with synergistically reduced recalcitrance to biofuel production. In addition, transgenes for other cell wall degrading enzymes may be stacked with TcEG1 in switchgrass to yield complementary cell wall digestion features and complete auto-hydrolysis.« less

  3. The TcEG1 beetle (Tribolium castaneum) cellulase produced in transgenic switchgrass is active at alkaline pH and auto-hydrolyzes biomass for increased cellobiose release

    DOE PAGES

    Willis, Jonathan D.; Grant, Joshua N.; Mazarei, Mitra; ...

    2017-11-30

    Genetically engineered biofuel crops, such as switchgrass (Panicum virgatum L.), that produce their own cell wall-digesting cellulase enzymes would reduce costs of cellulosic biofuel production. To date, non-bioenergy plant models have been used in nearly all studies assessing the synthesis and activity of plant-produced fungal and bacterial cellulases. One potential source for cellulolytic enzyme genes is herbivorous insects adapted to digest plant cell walls. Here we examine the potential of transgenic switchgrass-produced TcEG1 cellulase from Tribolium castaneum (red flour beetle). This enzyme, when overproduced in Escherichia coli and Saccharomyces cerevisiae, efficiently digests cellulose at optima of 50 °C and pHmore » 12.0. TcEG1 that was produced in green transgenic switchgrass tissue had a range of endoglucanase activity of 0.16–0.05 units (µM glucose release/min/mg) at 50 °C and pH 12.0. TcEG1 activity from air-dried leaves was unchanged from that from green tissue, but when tissue was dried in a desiccant oven (46 °C), specific enzyme activity decreased by 60%. When transgenic biomass was “dropped-in” into an alkaline buffer (pH 12.0) and allowed to incubate at 50 °C, cellobiose release was increased up to 77% over non-transgenic biomass. Saccharification was increased in one transgenic event by 28%, which had a concurrent decrease in lignin content of 9%. Histological analysis revealed an increase in cell wall thickness with no change to cell area or perimeter. Transgenic plants produced more, albeit narrower, tillers with equivalent dry biomass as the control. This work describes the first study in which an insect cellulase has been produced in transgenic plants; in this case, the dedicated bioenergy crop switchgrass. Switchgrass overexpressing the TcEG1 gene appeared to be morphologically similar to its non-transgenic control and produced equivalent dry biomass. Therefore, we propose TcEG1 transgenics could be bred with other transgenic germplasm (e.g., low-lignin lines) to yield new switchgrass with synergistically reduced recalcitrance to biofuel production. In addition, transgenes for other cell wall degrading enzymes may be stacked with TcEG1 in switchgrass to yield complementary cell wall digestion features and complete auto-hydrolysis.« less

  4. Influence of distillers grains resulting from a cellulosic ethanol process utilizing corn kernel fiber on nutrient digestibility of lambs and steer feedlot performance.

    PubMed

    Lundy, E L; Loy, D D; Hansen, S L

    2015-05-01

    Two experiments evaluated the effects on animal performance of traditional wet distillers grains (T-WDG) compared to cellulosic wet distillers grains (C-WDG) from a new process converting corn kernel fiber into cellulosic ethanol. The resulting coproduct has greater CP and decreased starch and ether extract (EE) concentrations (34.0% CP, 1.6% starch, 7.3% EE) compared to T-WDG (32.5% CP, 5.1% starch, 7.7% EE). In Exp. 1, 10 wethers (34.1 ± 2.35 kg, SD) were used in a replicated 5 × 5 Latin square to evaluate digestibility of DM, fiber, EE, and N. Diets including a corn-based control with 7.5% T-WDG and 7.5% C-WDG (CORN); 30% or 45% inclusion of T-WDG; and 30% or 45% inclusion of C-WDG. Between CORN, 30% T-WDG, 45% T-WDG, or 45% C-WDG, DMI was not different (P ≥ 0.11), but lambs fed 30% C-WDG had decreased (P ≤ 0.05) DMI compared to other diets. Compared to CORN and 30% T-WDG, DM digestibility was lesser ( P< 0.05) for 45% T-WDG or 30% C-WDG, while 45% C-WDG has lesser (P ≤ 0.05) DM digestibility than all other treatments. Digestibility of NDF was not affected by treatment (P= 0.13), and ADF digestibility was not different ( 0.21) between CORN, 30% T-WDG, 30% C-WDG, or 45% C-WDG. However, digestibility of ADF tended to differ (P = 0.06) between 30% T-WDG and 45% C-WDG and was greater (P ≤ 0.05) in lambs fed 45% T-WDG compared to other treatments. In Exp. 2, 168 steers (421 ± 23.9 kg, SD) were used in a randomized complete block design to determine the impact of C-WDG or T-WDG on growth performance and carcass characteristics. Diets included a corn-based control (CON), 30% T-WDG (TRAD), 30% C-WDG (CEL), and 18% C-WDG and 12% condensed corn distillers solubles (CEL+CCDS; = 7 pens of 6 steers/pen). Steers fed TRAD had improved (P ≤ 0.01) ADG, G:F, and HCW compared to steers fed the CON diet. No differences (P ≥ 0.16) in ADG and HCW were noted for steers fed CEL compared to TRAD; however, steers fed CEL had decreased (P = 0.01) G:F due to increased (P = 0.02) DMI compared to TRAD-fed steers. Steers fed CEL or CEL+CCDS did not differ (P = 0.50) in G:F, but CEL+CCDS-fed steers had lesser (P ≤ 0.01) DMI and ADG likely due to greater S content of the CEL+CCDS diet. Overall, while DM digestibility of lambs fed 30% C-WDG was lesser than 30% T-WDG, performance of steers finished on C-WDG was similar to those fed T-WDG. However, WDG from the secondary fermentation appeared to have lesser energy than T-WDG, while maintaining similar cattle performance to corn-fed controls.

  5. Improving the enzymatic hydrolysis of thermo-mechanical fiber from Eucalyptus urophylla by a combination of hydrothermal pretreatment and alkali fractionation.

    PubMed

    Sun, Shaoni; Cao, Xuefei; Sun, Shaolong; Xu, Feng; Song, Xianliang; Sun, Run-Cang; Jones, Gwynn Lloyd

    2014-01-01

    The recalcitrance of lignocellulosic biomass is a major limitation for its conversion into biofuels by enzymatic hydrolysis. The use of a pretreatment technology is an essential step to diminish biomass recalcitrance for bioethanol production. In this study, a two-step pretreatment using hydrothermal pretreatment at various temperatures and alkali fractionation was performed on eucalyptus fiber. The detailed chemical composition, physicochemical characteristics, and morphology of the pretreated fibers in each of the fractions were evaluated to advance the performance of eucalyptus fiber in enzymatic digestibility. The hydrothermal pretreatment (100 to 220°C) significantly degraded hemicelluloses, resulting in an increased crystallinity of the pretreated fibers. However, as the pretreatment temperature reached 240°C, partial cellulose was degraded, resulting in a reduced crystallinity of cellulose. As compared to the hydrothermal pretreatment alone, a combination of hydrothermal and alkali treatments significantly removed hemicelluloses and lignin, resulting in an improved enzymatic hydrolysis of the cellulose-rich fractions. As compared with the raw fiber, the enzymatic hydrolysis rate increased 1.1 to 8.5 times as the hydrothermal pretreatment temperature increased from 100 to 240°C. Interestingly, after a combination of hydrothermal pretreatment and alkali fractionation, the enzymatic hydrolysis rate increased 3.7 to 9.2 times. Taking into consideration the consumption of energy and the production of xylo-oligosaccharides and lignin, an optimum pretreatment condition was found to be hydrothermal pretreatment at 180°C for 30 min and alkali fractionation with 2% NaOH at 90°C for 2.5 h, in which 66.3% cellulose was converted into glucose by enzymatic hydrolysis. The combination of hydrothermal pretreatment and alkali fractionation was a promising method to remove hemicelluloses and lignin as well as overcome the biomass recalcitrance for enzymatic hydrolysis from eucalyptus fiber. In addition, the various techniques applied in this work constituted an efficient approach to understand the underlying chemical and morphological changes of the cellulose-rich fractions.

  6. Influence of the crystalline structure of cellulose on the production of ethanol from lignocellulose biomass

    NASA Astrophysics Data System (ADS)

    Smuga-Kogut, Małgorzata; Zgórska, Kazimiera; Szymanowska-Powałowska, Daria

    2016-01-01

    In recent years, much attention has been devoted to the possibility of using lignocellulosic biomass for energy. Bioethanol is a promising substitute for conventional fossil fuels and can be produced from straw and wood biomass. Therefore, the aim of this paper was to investigate the effect of 1-ethyl-3-methylimidazolium pretreatment on the structure of cellulose and the acquisition of reducing sugars and bioethanol from cellulosic materials. Material used in the study was rye straw and microcrystalline cellulose subjected to ionic liquid 1-ethyl-3-methylimidazolium pretreatment. The morphology of cellulose fibres in rye straw and microcrystalline cellulose was imaged prior to and after ionic liquid pretreatment. Solutions of ionic liquid-treated and untreated cellulosic materials were subjected to enzymatic hydrolysis in order to obtain reducing sugars, which constituted a substrate for alcoholic fermentation. An influence of the ionic liquid on the cellulose structure, accumulation of reducing sugars in the process of hydrolysis of this material, and an increase in ethanol amount after fermentation was observed. The ionic liquid did not affect cellulolytic enzymes negatively and did not inhibit yeast activity. The amount of reducing sugars and ethyl alcohol was higher in samples purified with 1-ethyl-3-methy-limidazolium acetate. A change in the supramolecular structure of cellulose induced by the ionic liquid was also observed.

  7. Cost-effective production of bacterial cellulose using acidic food industry by-products.

    PubMed

    Revin, Victor; Liyaskina, Elena; Nazarkina, Maria; Bogatyreva, Alena; Shchankin, Mikhail

    2018-03-13

    To reduce the cost of obtaining bacterial cellulose, acidic by-products of the alcohol and dairy industries were used without any pretreatment or addition of other nitrogen sources. Studies have shown that the greatest accumulation of bacterial cellulose (6.19g/L) occurs on wheat thin stillage for 3 days of cultivation under dynamic conditions, which is almost 3 times higher than on standard Hestrin and Schramm medium (2.14g/L). The use of whey as a nutrient medium makes it possible to obtain 5.45g/L bacterial cellulose under similar conditions of cultivation. It is established that the pH of the medium during the growth of Gluconacetobacter sucrofermentans B-11267 depends on the feedstock used and its initial value. By culturing the bacterium on thin stillage and whey, there is a decrease in the acidity of the waste. It is shown that the infrared spectra of bacterial cellulose obtained in a variety of environments have a similar character, but we found differences in the micromorphology and crystallinity of the resulting biopolymer. Copyright © 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  8. The operable modeling of simultaneous saccharification and fermentation of ethanol production from cellulose.

    PubMed

    Shen, Jiacheng; Agblevor, Foster A

    2010-03-01

    An operable batch model of simultaneous saccharification and fermentation (SSF) for ethanol production from cellulose has been developed. The model includes four ordinary differential equations that describe the changes of cellobiose, glucose, yeast, and ethanol concentrations with respect to time. These equations were used to simulate the experimental data of the four main components in the SSF process of ethanol production from microcrystalline cellulose (Avicel PH101). The model parameters at 95% confidence intervals were determined by a MATLAB program based on the batch experimental data of the SSF. Both experimental data and model simulations showed that the cell growth was the rate-controlling step at the initial period in a series of reactions of cellulose to ethanol, and later, the conversion of cellulose to cellobiose controlled the process. The batch model was extended to the continuous and fed-batch operating models. For the continuous operation in the SSF, the ethanol productivities increased with increasing dilution rate, until a maximum value was attained, and rapidly decreased as the dilution rate approached the washout point. The model also predicted a relatively high ethanol mass for the fed-batch operation than the batch operation.

  9. Conversion of cellulose and cellobiose into sorbitol catalyzed by ruthenium supported on a polyoxometalate/metal-organic framework hybrid.

    PubMed

    Chen, Jinzhu; Wang, Shengpei; Huang, Jing; Chen, Limin; Ma, Longlong; Huang, Xing

    2013-08-01

    Cellulose and cellobiose were selectively converted into sorbitol over water-tolerant phosphotungstic acid (PTA)/metal- organic-framework-hybrid-supported ruthenium catalysts, Ru-PTA/MIL-100(Cr), under aqueous hydrogenation conditions. The goal was to investigate the relationship between the acid/metal balance of bifunctional catalysts Ru-PTA/MIL-100(Cr) and their performance in the catalytic conversion of cellulose and cellobiose into sugar alcohols. The control of the amount and strength of acid sites in the supported PTA/MIL-100(Cr) was achieved through the effective control of encapsulated-PTA loading in MIL-100(Cr). This design and preparation method led to an appropriately balanced Ru-PTA/MIL-100(Cr) in terms of Ru dispersion and hydrogenation capacity on the one hand, and acid site density of PTA/MIL-100(Cr) (responsible for acid-catalyzed hydrolysis) on the other hand. The ratio of acid site density to the number of Ru surface atoms (nA /nRu ) of Ru-PTA/MIL-100(Cr) was used to monitor the balance between hydrogenation and hydrolysis functions; the optimum balance between the two catalytic functions, that is, 8.84

  10. Fate of 2,4,6-Trinitrotoluene in a Simulated Compost System

    DTIC Science & Technology

    1994-09-01

    to the NaOH solution. The insoluble material remaining after the NaOH fractionation con- tained the humin fraction as well as remaining cellulose ...insoluble) (solb) HUMIN + CELLULOSE MIBK (insoluble) (MIBK) (aqueous) ICELLULOSE HUMIN HUMIC ACID + FULVIC ACID +HCI to pH 1 (insoLuble) (soluble...0.5 N NaOH (insoluble) (soluble) HUMIN+ CELLULOSE • MIBK (insoluble) (MIBK) (aqueous) CELLULOSE HUMIN HUMIC ACID + FULVIC ACID + HUMIN +HCl to pH 1

  11. Synthesis and acid catalysis of cellulose-derived carbon-based solid acid

    NASA Astrophysics Data System (ADS)

    Suganuma, Satoshi; Nakajima, Kiyotaka; Kitano, Masaaki; Yamaguchi, Daizo; Kato, Hideki; Hayashi, Shigenobu; Hara, Michikazu

    2010-06-01

    SO 3H-bearing amorphous carbon, prepared by partial carbonization of cellulose followed by sulfonation in fuming H 2SO 4, was applied as a solid catalyst for the acid-catalyzed hydrolysis of β-1,4 glucan, including cellobiose and crystalline cellulose. Structural analyses revealed that the resulting carbon material consists of graphene sheets with 1.5 mmol g -1 of SO 3H groups, 0.4 mmol g -1 of COOH, and 5.6 mmol g -1 of phenolic OH groups. The carbon catalyst showed high catalytic activity for the hydrolysis of β-1,4 glycosidic bonds in both cellobiose and crystalline cellulose. Pure crystalline cellulose was not hydrolyzed by conventional strong solid Brønsted acid catalysts such as niobic acid, Nafion ® NR-50, and Amberlyst-15, whereas the carbon catalyst efficiently hydrolyzes cellulose into water-soluble saccharides. The catalytic performance of the carbon catalyst is due to the large adsorption capacity for hydrophilic reactants and the adsorption ability of β-1,4 glucan, which is not adsorbed to other solid acids.

  12. A customized gene expression microarray reveals that the brittle stem phenotype fs2 of barley is attributable to a retroelement in the HvCesA4 cellulose synthase gene.

    PubMed

    Burton, Rachel A; Ma, Gang; Baumann, Ute; Harvey, Andrew J; Shirley, Neil J; Taylor, Jillian; Pettolino, Filomena; Bacic, Antony; Beatty, Mary; Simmons, Carl R; Dhugga, Kanwarpal S; Rafalski, J Antoni; Tingey, Scott V; Fincher, Geoffrey B

    2010-08-01

    The barley (Hordeum vulgare) brittle stem mutants, fs2, designated X054 and M245, have reduced levels of crystalline cellulose compared with their parental lines Ohichi and Shiroseto. A custom-designed microarray, based on long oligonucleotide technology and including genes involved in cell wall metabolism, revealed that transcript levels of very few genes were altered in the elongation zone of stem internodes, but these included a marked decrease in mRNA for the HvCesA4 cellulose synthase gene of both mutants. In contrast, the abundance of several hundred transcripts changed in the upper, maturation zones of stem internodes, which presumably reflected pleiotropic responses to a weakened cell wall that resulted from the primary genetic lesion. Sequencing of the HvCesA4 genes revealed the presence of a 964-bp solo long terminal repeat of a Copia-like retroelement in the first intron of the HvCesA4 genes of both mutant lines. The retroelement appears to interfere with transcription of the HvCesA4 gene or with processing of the mRNA, and this is likely to account for the lower crystalline cellulose content and lower stem strength of the mutants. The HvCesA4 gene maps to a position on chromosome 1H of barley that coincides with the previously reported position of fs2.

  13. Bacteroides cellulosilyticus sp. nov., a cellulolytic bacterium from the human gut microbial community.

    PubMed

    Robert, Céline; Chassard, Christophe; Lawson, Paul A; Bernalier-Donadille, Annick

    2007-07-01

    A strictly anaerobic cellulolytic bacterium, strain CRE21(T), was isolated from a human faecal sample. Cells were Gram-negative non-motile rods that were about 1.7 microm in length and 0.9 microm in width. Strain CRE21(T) degraded different types of cellulose and was able to grow on a variety of carbohydrates. Cellulose and sugars were mainly converted to acetate, propionate and succinate. The G+C content of the DNA was 41.1 mol%. 16S rRNA gene sequence analysis revealed that the isolate belonged to the genus Bacteroides with highest sequence similarity to the type strain of Bacteroides intestinalis (98 %). DNA-DNA hybridization results revealed that strain CRE21(T) was distinct from B. intestinalis (40 % DNA-DNA relatedness). Strain CRE21(T) also showed several characteristics distinct from B. intestinalis. In particular, it exhibited different capacity to degrade polysaccharides such as cellulose. On the basis of phylogenetic analysis and the morphological, physiological and biochemical data presented in this study, strain CRE21(T) can be readily differentiated from recognized species of the genus Bacteroides. The name Bacteroides cellulosilyticus sp. nov. is proposed to accommodate this organism. The type strain is CRE21(T) (=DSM 14838(T)=CCUG 44979(T)).

  14. REVISED GUIDELINES FOR USING CELLULOSE DEGRADATION PRODUCT-IMPACTED KD VALUES FOR PERFORMANCE ASSESSMENTS AND COMPOSITE ANALYSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, D.

    2012-05-14

    Cellulosic materials include wood, paper, rags, and cardboard products. These materials are co-disposed with radiological waste at the Savannah River Site's (SRS) E-Area Low-Level Waste Facility (ELLWF). Cellulosic materials readily degrade in the environment to form cellulose degradation products (CDP) that will partition to the sediment or remain mobile in the groundwater. Savannah River National Lab (SRNL) has conducted studies to estimate the impact of CDP on radionuclide sorption to SRS sediments (Kd values). It was found that CDP impact on radionuclide sorption varies with radionuclide and CDP concentration. Furthermore, it was found that the amount of carbon (C) inmore » the system could increase or decrease Kd values with respect to the base case of when no CDP was added. Throughout the expected pH range of the ELLWF, a low concentration of CDP in the system would increase Kd values (because C would sorb to the sediment and provide more exchange sites for radionuclides to sorb), whereas greater concentrations of CDP ({ge}20 mg/L C) would decrease Kd values (because C would remain in solution and complex the radionuclide and not permit the radionuclide to sorb to the sediment). A review of >230 dissolved organic carbon (DOC) groundwater concentrations in the Old Radioactive Waste Burial Ground (ORWBG) at the SRS indicated that the average DOC concentration, a gross measure of CDP, was 5 mg/L C. At approximately this DOC concentration, the laboratory studies demonstrated that no anions (Tc, I, or Se) or cations (Ni, Sr, Ce, Eu, Zr, or Th) have decreased sorption in the presence of carbon (an analogue for CDP).« less

  15. Scale Up of Malonic Acid Fermentation Process: Cooperative Research and Development Final Report, CRADA Number CRD-16-612

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schell, Daniel J

    The goal of this work is to use the large fermentation vessels in the National Renewable Energy Laboratory's (NREL) Integrated Biorefinery Research Facility (IBRF) to scale-up Lygos' biological-based process for producing malonic acid and to generate performance data. Initially, work at the 1 L scale validated successful transfer of Lygos' fermentation protocols to NREL using a glucose substrate. Outside of the scope of the CRADA with NREL, Lygos tested their process on lignocellulosic sugars produced by NREL at Lawrence Berkeley National Laboratory's (LBNL) Advanced Biofuels Process Development Unit (ABPDU). NREL produced these cellulosic sugar solutions from corn stover using amore » separate cellulose/hemicellulose process configuration. Finally, NREL performed fermentations using glucose in large fermentors (1,500- and 9,000-L vessels) to intermediate product and to demonstrate successful performance of Lygos' technology at larger scales.« less

  16. Cellulose synthase interactive protein 1 (CSI1) mediates the intimate relationship between cellulose microfibrils and cortical microtubules.

    PubMed

    Lei, Lei; Li, Shundai; Gu, Ying

    2012-07-01

    Cellulose is synthesized at the plasma membrane by protein complexes known as cellulose synthase complexes (CSCs). The cellulose-microtubule alignment hypothesis states that there is a causal link between the orientation of cortical microtubules and orientation of nascent cellulose microfibrils. The mechanism behind the alignment hypothesis is largely unknown. CESA interactive protein 1 (CSI1) interacts with CSCs and potentially links CSCs to the cytoskeleton. CSI1 not only co-localizes with CSCs but also travels bi-directionally in a speed indistinguishable from CSCs. The linear trajectories of CSI1-RFP coincide with the underlying microtubules labeled by YFP-TUA5. In the absence of CSI1, both the distribution and the motility of CSCs are defective and the alignment of CSCs and microtubules is disrupted. These observations led to the hypothesis that CSI1 directly mediates the interaction between CSCs and microtubules. In support of this hypothesis, CSI1 binds to microtubules directly by an in vitro microtubule-binding assay. In addition to a role in serving as a messenger from microtubule to CSCs, CSI1 labels SmaCCs/MASCs, a compartment that has been proposed to be involved in CESA trafficking and/or delivery to the plasma membrane.

  17. Cellulose synthase interactive protein 1 (CSI1) mediates the intimate relationship between cellulose microfibrils and cortical microtubules

    PubMed Central

    Lei, Lei; Li, Shundai; Gu, Ying

    2012-01-01

    Cellulose is synthesized at the plasma membrane by protein complexes known as cellulose synthase complexes (CSCs). The cellulose-microtubule alignment hypothesis states that there is a causal link between the orientation of cortical microtubules and orientation of nascent cellulose microfibrils. The mechanism behind the alignment hypothesis is largely unknown. CESA interactive protein 1 (CSI1) interacts with CSCs and potentially links CSCs to the cytoskeleton. CSI1 not only co-localizes with CSCs but also travels bi-directionally in a speed indistinguishable from CSCs. The linear trajectories of CSI1-RFP coincide with the underlying microtubules labeled by YFP-TUA5. In the absence of CSI1, both the distribution and the motility of CSCs are defective and the alignment of CSCs and microtubules is disrupted. These observations led to the hypothesis that CSI1 directly mediates the interaction between CSCs and microtubules. In support of this hypothesis, CSI1 binds to microtubules directly by an in vitro microtubule-binding assay. In addition to a role in serving as a messenger from microtubule to CSCs, CSI1 labels SmaCCs/MASCs, a compartment that has been proposed to be involved in CESA trafficking and/or delivery to the plasma membrane. PMID:22751327

  18. 40 CFR Table 1 to Subpart Uuuu of... - Emission Limits and Work Practice Standards

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cellulosic sponge operation i. reduce total uncontrolled sulfide emissions (reported as carbon disulfide) by... process unit” mean “cellulose food casing, rayon, cellulosic sponge, cellophane, or cellulose ether...

  19. Effect of geochemical properties on degradation of trichloroethylene by stabilized zerovalent iron nanoparticle with Na-acrylic copolymer.

    PubMed

    Chen, Meng-yi; Su, Yuh-fan; Shih, Yang-hsin

    2014-11-01

    Stable nanoscale zero-valent iron (NZVI) particles have been developed to remediate chlorinated compounds. The degradation kinetics and efficiency of trichloroethylene (TCE) by a commercial stabilized NZVI with Na-acrylic copolymer (acNZVI) were investigated and compared with those by laboratory-synthesized NZVI and carboxymethyl cellulose (CMC)-stabilized NZVI particles. Results show that the degradation of TCE by acNZVI was faster than that by NZVI and CMC-NZVI. Increase in temperature enhanced the degradation rate and efficiency of TCE with acNZVI. The activation energy of TCE degradation by acNZVI was estimated to be 23 kJ/mol. The degradation rate constants of TCE decreased from 0.064 to 0.026 min(-1) with decrease in initial pH from 9.03 to 4.23. Common groundwater anions including NO3(-), Cl(-), HCO3(-), and SO4(2-) inhibited slightly the degradation efficiencies of TCE by acNZVI. The Na-acrylic copolymer-stabilized NZVI, which exhibited high degradation kinetics and efficiency, could be a good remediation agent for chlorinated organic compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Synthesis and characterization of cellulose nanocrystals as reinforcing agent in solely palm based polyurethane foam

    NASA Astrophysics Data System (ADS)

    Septevani, Athanasia Amanda; Annamalai, Pratheep K.; Martin, Darren J.

    2017-11-01

    The increasing awareness of the environment and the economy of petroleum resources has driven the development of alternative processes and raw materials based on sustainable and renewable biomaterials with excellent properties. This study is aimed to use biologically renewable cellulose nanocrystals (CNC) as reinforcing agent to enhance the properties of polyurethane foams (PUF) based on solely palm-polyol. Rod-like shape cellulose nanocrystals (CNC) was successfully isolated from cotton based resources via strong acid hydrolysis with the average width, length and aspect ratio about 14.7 ± 4.9 nm, 167.7 ± 23.2 nm and 11.4, respectively. The crystallinity of CNC was confirmed by using X-ray diffraction (XRD) and differential scanning calorimetry (DSC) and was found at 82.8% and 83.8%, respectively. This obtained cellulose nanocrystals (CNC) at a loading of 0.4 wt. % was then incorporated via solvent-free sonication method in the model of palm based polyurethane foam. The preliminary results showed that the effect of CNC on the mechanical properties afforded a significant improvement on the compressive strength and modulus without affecting much their tensile strength. The results on thermal stability and thermal transitions were found unchanged whereas the storage modulus revealed substantial improvement with the presence of CNC with almost two fold from 0.7 MPa to 1.3 MPa (˜86 %).

  1. [Sorption properties of various polysaccharide matrixes to Lactobacillus plantarum 8RA-3 bacteria].

    PubMed

    Bondarenko, V M; Larionov, I V; Rybal'chenko, O V; Potokin, I L; Ryzhankova, A V

    2011-01-01

    Study of sorption properties of various spherical polysaccharide matrixes designated as Spherocell to probiotic Lactobacillus plantarum 8RA-3 bacteria. Industrial strain of L. plantarum 8PA-3 was used. The process of immobilization of lactobacilli on 3 variants of spherical sorbents was studied. The first sorbent - neutral, composed of nonpolar cellulose matrix with ("0") charge, the second--DEAE obtained by modification of cellulose by diethylaminoethyl groups with positive ("+") charge and the third--CM (carboxymethyl) with negative ("-") charge. Cellulose matrixes were designated by us by the term Spherocell. Immobilization of bacterial cells on Spherocell was performed by addition of suspension containing 1.0 x 10(9) CFU/ml. The effect of bacterial immobilization was evaluated by CFU/ ml titration and by electron microscopy. The dependence on matrix charge of adsorption immobilization on sorbent granules of lactobacilli cells was shown. At certain equal parameters (granule size, surface characteristics, charge value) the positively charged matrix sorbed 3-10 times more cells than neutral and 20-25 times more than negatively charged matrix. Each 100-180 microm Spherocell DEAE particle could sorb more than 1000 viable bacterial cells. Positively charged polysaccharide matrix Spherocell DEAE obtained by modification of cellulose by diethylaminoethyl groups is promising for creation of immobilized probiotic preparations.

  2. A Structural Study of CESA1 Catalytic Domain of Arabidopsis Cellulose Synthesis Complex: Evidence for CESA Trimers1

    PubMed Central

    Zhang, Qiu; Petridis, Loukas; Nixon, B. Tracy; Haigler, Candace H.; Kalluri, Udaya; Coates, Leighton; Smith, Jeremy C.; Meiler, Jens

    2016-01-01

    A cellulose synthesis complex with a “rosette” shape is responsible for synthesis of cellulose chains and their assembly into microfibrils within the cell walls of land plants and their charophyte algal progenitors. The number of cellulose synthase proteins in this large multisubunit transmembrane protein complex and the number of cellulose chains in a microfibril have been debated for many years. This work reports a low resolution structure of the catalytic domain of CESA1 from Arabidopsis (Arabidopsis thaliana; AtCESA1CatD) determined by small-angle scattering techniques and provides the first experimental evidence for the self-assembly of CESA into a stable trimer in solution. The catalytic domain was overexpressed in Escherichia coli, and using a two-step procedure, it was possible to isolate monomeric and trimeric forms of AtCESA1CatD. The conformation of monomeric and trimeric AtCESA1CatD proteins were studied using small-angle neutron scattering and small-angle x-ray scattering. A series of AtCESA1CatD trimer computational models were compared with the small-angle x-ray scattering trimer profile to explore the possible arrangement of the monomers in the trimers. Several candidate trimers were identified with monomers oriented such that the newly synthesized cellulose chains project toward the cell membrane. In these models, the class-specific region is found at the periphery of the complex, and the plant-conserved region forms the base of the trimer. This study strongly supports the “hexamer of trimers” model for the rosette cellulose synthesis complex that synthesizes an 18-chain cellulose microfibril as its fundamental product. PMID:26556795

  3. Xyloglucan Deficiency Disrupts Microtubule Stability and Cellulose Biosynthesis in Arabidopsis, Altering Cell Growth and Morphogenesis1[OPEN

    PubMed Central

    Xiao, Chaowen; Zhang, Tian; Zheng, Yunzhen

    2016-01-01

    Xyloglucan constitutes most of the hemicellulose in eudicot primary cell walls and functions in cell wall structure and mechanics. Although Arabidopsis (Arabidopsis thaliana) xxt1 xxt2 mutants lacking detectable xyloglucan are viable, they display growth defects that are suggestive of alterations in wall integrity. To probe the mechanisms underlying these defects, we analyzed cellulose arrangement, microtubule patterning and dynamics, microtubule- and wall-integrity-related gene expression, and cellulose biosynthesis in xxt1 xxt2 plants. We found that cellulose is highly aligned in xxt1 xxt2 cell walls, that its three-dimensional distribution is altered, and that microtubule patterning and stability are aberrant in etiolated xxt1 xxt2 hypocotyls. We also found that the expression levels of microtubule-associated genes, such as MAP70-5 and CLASP, and receptor genes, such as HERK1 and WAK1, were changed in xxt1 xxt2 plants and that cellulose synthase motility is reduced in xxt1 xxt2 cells, corresponding with a reduction in cellulose content. Our results indicate that loss of xyloglucan affects both the stability of the microtubule cytoskeleton and the production and patterning of cellulose in primary cell walls. These findings establish, to our knowledge, new links between wall integrity, cytoskeletal dynamics, and wall synthesis in the regulation of plant morphogenesis. PMID:26527657

  4. Characterization of cellulolytic microbial consortium enriched on Napier grass using metagenomic approaches.

    PubMed

    Kanokratana, Pattanop; Wongwilaiwalin, Sarunyou; Mhuantong, Wuttichai; Tangphatsornruang, Sithichoke; Eurwilaichitr, Lily; Champreda, Verawat

    2018-04-01

    Energy grass is a promising substrate for production of biogas by anaerobic digestion. However, the conversion efficiency is limited by the enzymatically recalcitrant nature of cellulosic wastes. In this study, an active, structurally stable mesophilic lignocellulolytic degrading microbial consortium (Np-LMC) was constructed from forest compost soil microbiota by successive subcultivation on Napier grass under facultative anoxic conditions. According to tagged 16S rRNA gene amplicon sequencing, increasing abundance of facultative Proteobacteria was found in the middle of batch cycle which was then subsequently replaced by the cellulose degraders Firmicutes and Bacteroidetes along with decreasing CMCase, xylanase, and β-glucanase activity profiles in the supernatant after 5 days of incubation. Anaerobic/facultative bacteria Dysgonomonas and Sedimentibacter and aerobic bacteria Comamonas were the major genera found in Np-LMC. The consortium was active on degradation of the native and delignified grass. Direct shotgun sequencing of the consortium metagenome revealed relatively high abundance of genes encoding for various lignocellulose degrading enzymes in 23 glycosyl hydrolase (GH) families compared to previously reported cellulolytic microbial communities in mammalian digestive tracts. Enzymes attacking cellulose and hemicellulose were dominated by GH2, 3, 5, 9, 10, 26, 28 and 43 in addition to a variety of carbohydrate esterases (CE) and auxiliary activities (AA), reflecting adaptation of the enzyme systems to the native herbaceous substrate. The consortium identified here represents the microcosm specifically bred on energy grass, with potential for enhancing degradation of fibrous substrates in bioenergy industry. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Performance of cellulose acetate butyrate membranes in hyperfiltration of sodium chloride and urea feed solution

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Leban, M.

    1973-01-01

    Cellulose acetate butyrate (CAB) membranes are shown to give high salt and urea rejection with water flux of about 3 gallons/sq ft per day at 600 psig. Membranes prepared from a formulation containing glyoxal show a significant increase in flux and decrease in salt and urea rejection with drying time. Zero drying time gives maximum urea and salt rejection and is therefore most suitable for hyperfiltration of sodium chloride and urea feed solution.

  6. Assessment of the adhesive properties of the bacterial polysaccharide FucoPol.

    PubMed

    Araújo, Diana; Alves, Vitor D; Campos, Joana; Coelhoso, Isabel; Sevrin, Chantal; Grandfils, Christian; Freitas, Filomena; Reis, Maria A M

    2016-11-01

    To address the industry's interest in finding novel biobased glues, the adhesive properties of the bacterial polysaccharide FucoPol were evaluated through shear bond strength tests. A FucoPol solution was used to bond different materials, namely, wood, glass, cardboard and cellulose acetate film. The shear strength was compared to that of the same adherends bonded with commercial synthetic glues. Wood-wood joints bonded with FucoPol formulation withstood 742.2±9.8kPa shear strength without detachment. FucoPol adhesive capacity for cardboard was comparable to that of the tested commercial glues (425±8.9kPa), yielding similar shear strength values (416.0±12.9kPa), while improved performance was shown for glass (115.1±26.2kPa) and cellulose acetate film (153.7±11.3kPa) comparing to the commercial glues (67.7-97.5kPa and 79.4-92.7kPa, respectively). This study demonstrates the adhesive properties of FucoPol, opening up the opportunity of using this bacterial polysaccharide for the development of new natural water-based glues, suitable to bond different materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Hydrolysis of cellulose catalyzed by quaternary ammonium perrhenates in 1-allyl-3-methylimidazolium chloride.

    PubMed

    Wang, Jingyun; Zhou, Mingdong; Yuan, Yuguo; Zhang, Quan; Fang, Xiangchen; Zang, Shuliang

    2015-12-01

    Quaternary ammonium perrhenates were applied as catalyst to promote the hydrolysis of cellulose in 1-allyl-3-methylimidazolium chloride ([Amim]Cl). The quaternary ammonium perrhenates displayed good catalytic performance for cellulose hydrolysis. Water was also proven to be effective to promote cellulose hydrolysis. Accordingly, 97% of total reduced sugar (TRS) and 42% of glucose yields could be obtained under the condition of using 5mol% of tetramethyl ammonium perrhenate as catalyst, 70μL of water, ca. 0.6mmol of microcrystalline cellulose (MCC) and 2.0g of [Amim]Cl as solvent under microwave irradiation for 30min at 150°C (optimal conditions). The influence of quaternary ammonium cation on the efficiency of cellulose hydrolysis was examined based on different cation structures of perrhenates. The mechanism on perrhenate catalyzed cellulose hydrolysis is also discussed, whereas hydrogen bonding between ReO4 anion and hydroxyl groups of cellulose is assumed to be the key step for depolymerization of cellulose. Copyright © 2015. Published by Elsevier Ltd.

  8. Functional reconstitution of cellulose synthase in Escherichia coli.

    PubMed

    Imai, Tomoya; Sun, Shi-Jing; Horikawa, Yoshiki; Wada, Masahisa; Sugiyama, Junji

    2014-11-10

    Cellulose is a high molecular weight polysaccharide of β1 → 4-d-glucan widely distributed in nature-from plant cell walls to extracellular polysaccharide in bacteria. Cellulose synthase, together with other auxiliary subunit(s) in the cell membrane, facilitates the fibrillar assembly of cellulose polymer chains into a microfibril. The gene encoding the catalytic subunit of cellulose synthase is cesA and has been identified in many cellulose-producing organisms. Very few studies, however, have shown that recombinant CesA protein synthesizes cellulose polymer, but the mechanism by which CesA protein synthesizes cellulose microfibrils is not known. Here we show that cellulose-synthesizing activity is successfully reconstituted in Escherichia coli by expressing the bacterial cellulose synthase complex of Gluconacetobacter xylinus: CesA and CesB (formerly BcsA and BcsB, respectively). Cellulose synthase activity was, however, only detected when CesA and CesB were coexpressed with diguanyl cyclase (DGC), which synthesizes cyclic-di-GMP (c-di-GMP), which in turn activates cellulose-synthesizing activity in bacteria. Direct observation by electron microscopy revealed extremely thin fibrillar structures outside E. coli cells, which were removed by cellulase treatment. This fiber structure is not likely to be the native crystallographic form of cellulose I, given that it was converted to cellulose II by a chemical treatment milder than ever described. We thus putatively conclude that this fine fiber is an unprecedented structure of cellulose. Despite the inability of the recombinant enzyme to synthesize the native structure of cellulose, the system described in this study, named "CESEC (CEllulose-Synthesizing E. Coli)", represents a useful tool for functional analyses of cellulose synthase and for seeding new nanomaterials.

  9. Water vapor sorption properties of cellulose nanocrystals and nanofibers using dynamic vapor sorption apparatus.

    PubMed

    Guo, Xin; Wu, Yiqiang; Xie, Xinfeng

    2017-10-27

    Hygroscopic behavior is an inherent characteristic of nanocellulose which strongly affects its applications. In this study, the water vapor sorption behavior of four nanocellulose samples, such as cellulose nanocrystals and nanofibers with cellulose I and II structures (cellulose nanocrystals (CNC) I, CNC II, cellulose nanofibers (CNF) I, and CNF II) were studied by dynamic vapor sorption. The highly reproducible data including the running time, real-time sample mass, target relative humidity (RH), actual RH, and isotherm temperature were recorded during the sorption process. In analyzing these data, significant differences in the total running time, equilibrium moisture content, sorption hysteresis and sorption kinetics between these four nanocellulose samples were confirmed. It was important to note that CNC I, CNC II, CNF I, and CNF II had equilibrium moisture contents of 21.4, 28.6, 33.2, and 38.9%, respectively, at a RH of 95%. Then, the sorption kinetics behavior was accurately described by using the parallel exponential kinetics (PEK) model. Furthermore, the Kelvin-Voigt model was introduced to interpret the PEK behavior and calculate the modulus of these four nanocellulose samples.

  10. Adsorption of Heavy Metals by Graphene Oxide/Cellulose Hydrogel Prepared from NaOH/Urea Aqueous Solution

    PubMed Central

    Chen, Xiong; Zhou, Sukun; Zhang, Liming; You, Tingting; Xu, Feng

    2016-01-01

    By taking advantage of cellulose, graphene oxide (GO), and the process for crosslinking using epichlorohydrin (ECH), we propose a simple and novel method to prepare GO/cellulose hydrogel with good potential to adsorb metal ions. GO nanosheets containing carboxyl and hydroxyl groups were introduced into the surface of the cellulose hydrogel with retention of the gel structure and its nanoporous property. Due to the introduction of GO, the GO/cellulose composite hydrogels exhibited good compressive strength. Adsorption capacity of Cu2+ significantly increases with an increase in the GO/cellulose ratio and GO/cellulose hydrogel showed high adsorption rates. The calculated adsorption capacities at equilibrium (qecal) for GO/cellulose hydrogel (GO:cellulose = 20:100 in weight) was up to 94.34 mg·g−1, which was much higher than that of the pristine cellulose hydrogels. Furthermore, GO/cellulose hydrogel exhibited high efficient regeneration and metal ion recovery, and high adsorption capacity for Zn2+, Fe3+, and Pb2+. PMID:28773705

  11. Physicochemical structural changes of cellulosic substrates during enzymatic saccharification

    DOE PAGES

    Meng, Xianzhi; Yoo, Chang Geun; Li, Mi; ...

    2016-12-30

    Enzymatic hydrolysis represents one of the major steps and barriers in the commercialization process of converting cellulosic substrates into biofuels and other value added products. It is usually achieved by a synergistic action of enzyme mixture typically consisting of multiple enzymes such as glucanase, cellobiohydrolase and β-glucosidase with different mode of actions. Due to the innate biomass recalcitrance, enzymatic hydrolysis normally starts with an initial fast rate of hydrolysis followed by a rapid decrease of rate toward the end of hydrolysis. With majority of literature studies focusing on the effect of key substrate characteristics on the initial rate or finalmore » yield of enzymatic hydrolysis, information about physicochemical structural changes of cellulosic substrates during enzymatic hydrolysis is still quite limited. Consequently, what slows down the reaction rate toward the end of hydrolysis is not well understood. Lastly, this review highlights recent advances in understanding the structural changes of cellulosic substrates during the hydrolysis process, to better understand the fundamental mechanisms of enzymatic hydrolysis.« less

  12. Physicochemical structural changes of cellulosic substrates during enzymatic saccharification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Xianzhi; Yoo, Chang Geun; Li, Mi

    Enzymatic hydrolysis represents one of the major steps and barriers in the commercialization process of converting cellulosic substrates into biofuels and other value added products. It is usually achieved by a synergistic action of enzyme mixture typically consisting of multiple enzymes such as glucanase, cellobiohydrolase and β-glucosidase with different mode of actions. Due to the innate biomass recalcitrance, enzymatic hydrolysis normally starts with an initial fast rate of hydrolysis followed by a rapid decrease of rate toward the end of hydrolysis. With majority of literature studies focusing on the effect of key substrate characteristics on the initial rate or finalmore » yield of enzymatic hydrolysis, information about physicochemical structural changes of cellulosic substrates during enzymatic hydrolysis is still quite limited. Consequently, what slows down the reaction rate toward the end of hydrolysis is not well understood. Lastly, this review highlights recent advances in understanding the structural changes of cellulosic substrates during the hydrolysis process, to better understand the fundamental mechanisms of enzymatic hydrolysis.« less

  13. Stable-carbon isotopic composition of maple sap and foliage.

    PubMed

    Leavitt, S W; Long, A

    1985-06-01

    The (13)C/(12)C ratios of Acer grandidentatum sap sugar collected during the dormant period are compared to those of buds, leaves, and wood developed over the following growing season. As the primary carbon source for cellulose manufacture at initiation of annual growth in deciduous trees, sap sucrose would be expected to have an isotopic composition similar to first-formed cellulose. Although constancy in concentration and (13)C/(12)C ratios of the maple sap sugar suggests any gains or losses (e.g. to maintenance metabolism) do not appreciably alter composition, the (13)C/(12)C ratios of cellulose of the enlarging buds in the spring are quite distinct from those of the sap sugar, seemingly precluding a simple direct biochemical pathway of sap sucrose-->glucose-->cellulose in favor of a more complex pathway with greater likelihood of isotopic fractionation. The (13)C/(12)C ratios of the leaves and in the growth ring were initially similar to the sap sugar but decreased steadily over the growing season.

  14. Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis.

    PubMed

    Raman, Babu; Pan, Chongle; Hurst, Gregory B; Rodriguez, Miguel; McKeown, Catherine K; Lankford, Patricia K; Samatova, Nagiza F; Mielenz, Jonathan R

    2009-01-01

    Economic feasibility and sustainability of lignocellulosic ethanol production requires the development of robust microorganisms that can efficiently degrade and convert plant biomass to ethanol. The anaerobic thermophilic bacterium Clostridium thermocellum is a candidate microorganism as it is capable of hydrolyzing cellulose and fermenting the hydrolysis products to ethanol and other metabolites. C. thermocellum achieves efficient cellulose hydrolysis using multiprotein extracellular enzymatic complexes, termed cellulosomes. In this study, we used quantitative proteomics (multidimensional LC-MS/MS and (15)N-metabolic labeling) to measure relative changes in levels of cellulosomal subunit proteins (per CipA scaffoldin basis) when C. thermocellum ATCC 27405 was grown on a variety of carbon sources [dilute-acid pretreated switchgrass, cellobiose, amorphous cellulose, crystalline cellulose (Avicel) and combinations of crystalline cellulose with pectin or xylan or both]. Cellulosome samples isolated from cultures grown on these carbon sources were compared to (15)N labeled cellulosome samples isolated from crystalline cellulose-grown cultures. In total from all samples, proteomic analysis identified 59 dockerin- and 8 cohesin-module containing components, including 16 previously undetected cellulosomal subunits. Many cellulosomal components showed differential protein abundance in the presence of non-cellulose substrates in the growth medium. Cellulosome samples from amorphous cellulose, cellobiose and pretreated switchgrass-grown cultures displayed the most distinct differences in composition as compared to cellulosome samples from crystalline cellulose-grown cultures. While Glycoside Hydrolase Family 9 enzymes showed increased levels in the presence of crystalline cellulose, and pretreated switchgrass, in particular, GH5 enzymes showed increased levels in response to the presence of cellulose in general, amorphous or crystalline. Overall, the quantitative results suggest a coordinated substrate-specific regulation of cellulosomal subunit composition in C. thermocellum to better suit the organism's needs for growth under different conditions. To date, this study provides the most comprehensive comparison of cellulosomal compositional changes in C. thermocellum in response to different carbon sources. Such studies are vital to engineering a strain that is best suited to grow on specific substrates of interest and provide the building blocks for constructing designer cellulosomes with tailored enzyme composition for industrial ethanol production.

  15. Influence of granulating method on physical and mechanical properties, compression behavior, and compactibility of lactose and microcrystalline cellulose granules.

    PubMed

    Horisawa, E; Danjo, K; Sunada, H

    2000-06-01

    The physical and mechanical properties of lactose (LC) and microcrystalline cellulose (MCC) granules prepared by various granulating methods were determined, and their effects on the compression and strength of the tablets were examined. From the force-displacement curve obtained in a crushing test on a single granule, all LC granules appeared brittle, and MCC granules were somewhat plastically deformable. Inter-granular porosity epsilon inter clearly decreased with greater spherical granule shape for both materials. Decrease in intragranular porosity epsilon intra enhanced the crushing force of a single granule Fg. Agitating granulation brought about the most compactness and hardness of granules. In granule compression tests, the initial slope of Heckel plots K1 appeared closely related to ease of filling voids in a granule bed by the slippage or rolling of granules. The reciprocal of the slope in the succeeding step 1/K2 in compression of MCC granules indicated positive correlation to Fg, while in LC granules, no such obvious relation was evident. 1/K2 differed only slightly among granulating methods. Tensile strength of tablets Tt obtained by compression of various LC granules was low as a whole and was little influenced by granulating method. For MCC granules, which are plastically deformable, tablet strength greatly depended on granulation. Granules prepared by extruding or dry granulation gave strong tablets. Tablets prepared from granules made by the agitating method showed particularly low Tt. From stereomicroscopic observation, the contact area between granule particles in a tablet appeared smaller; this would explain the decrease in inter-granular bond formation.

  16. Pretreatment of corn stover using wet oxidation to enhance enzymatic digestibility.

    PubMed

    Varga, Eniko; Schmidt, Anette S; Réczey, Kati; Thomsen, Anne Belinda

    2003-01-01

    Corn stover is an abundant, promising raw material for fuel ethanol production. Although it has a high cellulose content, without pretreatment it resists enzymatic hydrolysis, like most lignocellulosic materials. Wet oxidation (water, oxygen, mild alkali or acid, elevated temperature and pressure) was investigated to enhance the enzymatic digestibility of corn stover. Six different combinations of reaction temperature, time, and pH were applied. The best conditions (60 g/L of corn stover, 195 degrees C, 15 min, 12 bar O2, 2 g/L of Na2CO3) increased the enzymatic conversion of corn stover four times, compared to untreated material. Under these conditions 60% of hemicellulose and 30% of lignin were solubilized, whereas 90% of cellulose remained in the solid fraction. After 24-h hydrolysis at 50 degrees C using 25 filter paper units (FPU)/g of drymatter (DM) biomass, the achieved conversion of cellulose to glucose was about 85%. Decreasing the hydrolysis temperature to 40 degrees C increased hydrolysis time from 24 to 72 h. Decreasing the enzyme loading to 5 FPU/g of DM biomass slightly decreased the enzymatic conversion from 83.4 to 71%. Thus, enzyme loading can be reduced without significantly affecting the efficiency of hydrolysis, an important economical aspect.

  17. Influence of carboxymethyl cellulose and sodium alginate on sweetness intensity of Aspartame.

    PubMed

    Han, Xue; Xu, Shu-Zhen; Dong, Wen-Rui; Wu, Zhai; Wang, Ren-Hai; Chen, Zhong-Xiu

    2014-12-01

    Sensory evaluation of Aspartame in the presence of sodium carboxymethyl cellulose (CMC-L) and sodium alginate (SA) revealed that only CMC-L showed a suppression effect, while SA did not. By using an artificial taste receptor model, we found that the presence of SA or CMC-L resulted in a decrease in association constants. Further investigation of CMC-L solution revealed that the decrease in water mobility and diffusion also contribute to the suppression effect. In the case of SA, the decreased viscosity and comparatively higher amount of free water facilitated the diffusion of sweetener, which might compensate for the decreased binding constant between Aspartame and receptor. This may suppress the impact of SA on sweetness intensity. The results suggest that exploring the binding affinity of taste molecules with the receptor, along with water mobility and diffusion in hydrocolloidal structures, provide sufficient information for understanding the mechanism behind the effect of macromolecular hydrocolloids on taste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Cholesterol-lowering effect of non-viscous soluble dietary fiber Nutriose6 in moderately hypercholesterolemic hamsters.

    PubMed

    Juhel, Christine; Tosini, Fredéric; Steib, Marlène; Wils, Daniel; Guerin-Deremaux, Laetitia; Lairon, Denis; Cara, Louis

    2011-03-01

    NUTRIOSE6 is a new wheat starch-based low-digestible carbohydrate. This study investigated the effect of this soluble non-viscous fiber on cholesterol metabolism. Hamsters fed with 0.25% cholesterol-enriched diet (CHO) were given graded amounts of NUTRIOSE6, i.e., 0% (cellulose, CHO), 3% (N3), 6% (N6) or 9% (N9) (w:w). As compared to CHO diet, 9% NUTRIOSE6 significantly lowered plasma and LDL cholesterol by 14.5 and 23.8%, respectively. The LDL-cholesterol lowering effect was also significant with the 6% dose (-21.4%). NUTRIOSE6 diets prevented hepatic cholesterol accumulation (-10 to -20%) and significantly decreased bile cholesterol (-47 to -68%) and phospholipids (-30 to -45%) concentrations. The 9% NUTRIOSE6 diet significantly decreased the rate of dietary cholesterol absorption (-25%) and markedly stimulated faecal neutral sterol (+81%) and bile salts (+220%) excretion. No significant change in cholesterol 7-alpha-hydroxylase or LDL-receptor activities was observed whereas 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity was reduced by 29%. Reduced cholesterol and bile salt absorptions and lowered cholesterol synthesis are likely mechanisms underlying the cholesterol lowering effect of NUTRIOSE6. Results suggest the use of NUTRIOSE6 as a new dietary cholesterol-lowering agent that should be tested in humans as treatment and evenly prevention of mild hypercholesterolemia.

  19. Preparation of carboxymethyl cellulose produced from purun tikus (Eleocharis dulcis)

    NASA Astrophysics Data System (ADS)

    Sunardi, Febriani, Nina Mutia; Junaidi, Ahmad Budi

    2017-08-01

    Sodium carboxymethyl cellulose (Na-CMC) is one of the important modified cellulose, a water-soluble cellulose, which is widely used in many application of food, pharmaceuticals, detergent, paper coating, dispersing agent, and others. The main raw material of modified cellulose is cellulose from wood and cotton. Recently, much attention has been attracted to the use of various agriculture product and by-product, grass, and residual biomass as cellulose and modified cellulose source for addressing an environmental and economic concern. Eleocharis dulcis, commonly known as purun tikus (in Indonesia), is a native aquatic plant of swamp area (wetland) in Kalimantan, which consists of 30-40% cellulose. It is significantly considered as one of the alternative resources for cellulose. The aims of present study were to isolate cellulose from E. dulcis and then to synthesise Na-CMC from isolated cellulose. Preparation of carboxymethyl cellulose from E. dulcis was carried out by an alkalization and etherification process of isolated cellulose, using various concentration of sodium hydroxide (NaOH) and monochloroacetic acid (MCA). The results indicated that the optimum reaction of alkalization was reached at 20% NaOH and etherification at the mass fraction ratio of MCA to cellulose 1.0. The optimum reaction has the highest solubility and degree of substitution. The carboxymethylation process of cellulose was confirmed by Fourier Transform Infrared spectroscopy (FTIR). In addition, changes in crystallinity of cellulose and Na-CMC were evaluated by X-ray diffraction (XRD).

  20. A novel solid-state fractionation of naphthenic acid fraction components from oil sands process-affected water.

    PubMed

    Mohamed, Mohamed H; Wilson, Lee D; Shah, Jaimin R; Bailey, Jon; Peru, Kerry M; Headley, John V

    2015-10-01

    Various sorbent materials were evaluated for the fractionation of naphthenic acid fraction components (NAFCs) from oil sand process-affected water (OSPW). The solid phase materials include activated carbon (AC), cellulose, iron oxides (magnetite and goethite), polyaniline (PANI) and three types of biochar derived from biomass (BC-1; rice husks, BC-2; acacia low temperature and BC-3; acacia high temperature). NAFCs were semi-quantified using electrospray ionization high resolution Orbitrap mass spectrometry (ESI-MS) and the metals were assessed by inductively coupled plasma optical emission spectrometry (ICP-OES). The average removal efficacy of NAFCs by AC was 95%. The removal efficacy decreased in the following order: AC, BC-1>BC-2, BC-3, goethite>PANI>cellulose, magnetite. The removal of metals did not follow a clear trend; however, there was notable leaching of potassium by AC and biochar samples. The bound NAFCs by AC were desorbed efficiently with methanol. Methanol regeneration and recycling of AC revealed 88% removal on the fourth cycle; a 4.4% decrease from the first cycle. This fractionation method represents a rapid, cost-effective, efficient, and green strategy for NAFCs from OSPW, as compared with conventional solvent extraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

Top