Science.gov

Sample records for public key encryption

  1. An Inexpensive Device for Teaching Public Key Encryption

    ERIC Educational Resources Information Center

    Pendegraft, Norman

    2009-01-01

    An inexpensive device to assist in teaching the main ideas of Public Key encryption and its use in class to illustrate the operation of public key encryption is described. It illustrates that there are two keys, and is particularly useful for illustrating that privacy is achieved by using the public key. Initial data from in class use seem to…

  2. Bit-oriented quantum public-key encryption based on quantum perfect encryption

    NASA Astrophysics Data System (ADS)

    Wu, Chenmiao; Yang, Li

    2016-08-01

    A bit-oriented quantum public-key encryption scheme is presented. We use Boolean functions as private-key and randomly changed pairs of quantum state and classical string as public-keys. Following the concept of quantum perfect encryption, we prepare the public-key with Hadamard transformation and Pauli transformation. The quantum part of public-keys is various with different classical strings. In contrast to the typical classical public-key scheme, one private-key in our scheme corresponds to an exponential number of public-keys. We investigate attack to the private-key and prove that the public-key is a totally mixed state. So the adversary cannot acquire any information about private-key from measurement of the public-key. Then, the attack to encryption is analyzed. Since the trace distance between two different ciphertexts is zero, the adversary cannot distinguish between the two ciphertext states and also obtains nothing about plaintext and private-key. Thus, we have the conclusion that the proposed scheme is information-theoretically secure under an attack of the private-key and encryption.

  3. Image encryption using fingerprint as key based on phase retrieval algorithm and public key cryptography

    NASA Astrophysics Data System (ADS)

    Zhao, Tieyu; Ran, Qiwen; Yuan, Lin; Chi, Yingying; Ma, Jing

    2015-09-01

    In this paper, a novel image encryption system with fingerprint used as a secret key is proposed based on the phase retrieval algorithm and RSA public key algorithm. In the system, the encryption keys include the fingerprint and the public key of RSA algorithm, while the decryption keys are the fingerprint and the private key of RSA algorithm. If the users share the fingerprint, then the system will meet the basic agreement of asymmetric cryptography. The system is also applicable for the information authentication. The fingerprint as secret key is used in both the encryption and decryption processes so that the receiver can identify the authenticity of the ciphertext by using the fingerprint in decryption process. Finally, the simulation results show the validity of the encryption scheme and the high robustness against attacks based on the phase retrieval technique.

  4. Image encryption based on nonlinear encryption system and public-key cryptography

    NASA Astrophysics Data System (ADS)

    Zhao, Tieyu; Ran, Qiwen; Chi, Yingying

    2015-03-01

    Recently, optical asymmetric cryptosystem (OACS) has became the focus of discussion and concern of researchers. Some researchers pointed out that OACS was not tenable because of misunderstanding the concept of asymmetric cryptosystem (ACS). We propose an improved cryptosystem using RSA public-key algorithm based on existing OACS and the new system conforms to the basic agreement of public key cryptosystem. At the beginning of the encryption process, the system will produce an independent phase matrix and allocate the input image, which also conforms to one-time pad cryptosystem. The simulation results show that the validity of the improved cryptosystem and the high robustness against attack scheme using phase retrieval technique.

  5. Efficient secure-channel free public key encryption with keyword search for EMRs in cloud storage.

    PubMed

    Guo, Lifeng; Yau, Wei-Chuen

    2015-02-01

    Searchable encryption is an important cryptographic primitive that enables privacy-preserving keyword search on encrypted electronic medical records (EMRs) in cloud storage. Efficiency of such searchable encryption in a medical cloud storage system is very crucial as it involves client platforms such as smartphones or tablets that only have constrained computing power and resources. In this paper, we propose an efficient secure-channel free public key encryption with keyword search (SCF-PEKS) scheme that is proven secure in the standard model. We show that our SCF-PEKS scheme is not only secure against chosen keyword and ciphertext attacks (IND-SCF-CKCA), but also secure against keyword guessing attacks (IND-KGA). Furthermore, our proposed scheme is more efficient than other recent SCF-PEKS schemes in the literature. PMID:25634700

  6. Efficient secure-channel free public key encryption with keyword search for EMRs in cloud storage.

    PubMed

    Guo, Lifeng; Yau, Wei-Chuen

    2015-02-01

    Searchable encryption is an important cryptographic primitive that enables privacy-preserving keyword search on encrypted electronic medical records (EMRs) in cloud storage. Efficiency of such searchable encryption in a medical cloud storage system is very crucial as it involves client platforms such as smartphones or tablets that only have constrained computing power and resources. In this paper, we propose an efficient secure-channel free public key encryption with keyword search (SCF-PEKS) scheme that is proven secure in the standard model. We show that our SCF-PEKS scheme is not only secure against chosen keyword and ciphertext attacks (IND-SCF-CKCA), but also secure against keyword guessing attacks (IND-KGA). Furthermore, our proposed scheme is more efficient than other recent SCF-PEKS schemes in the literature.

  7. A simple public-key attack on phase-truncation-based double-images encryption system

    NASA Astrophysics Data System (ADS)

    Ding, Xiangling; Yang, Gaobo; He, Dajiang

    2015-07-01

    Phase-truncation based double-images cryptosystem can avoid the iterative Fourier transforms and realize double-images encryption. In this paper, a simple public-key attack is proposed to break this cryptosystem by using arbitrary position parameters and three public keys. The attack process is composed of two steps. Firstly, the decryption keys are simply generated with the help of arbitrary position parameters and the three public keys. Secondly, the two approximate values of the original images are obtained by using the generated decryption keys. Moreover, the proposed public-key attack is different from the existing attacks. It is not sensitive to position parameters of the double-images and the computing efficiency is also much better. Computer simulation results further prove its vulnerability.

  8. An efficient and provably-secure certificateless public key encryption scheme for telecare medicine information systems.

    PubMed

    Guo, Rui; Wen, Qiaoyan; Shi, Huixian; Jin, Zhengping; Zhang, Hua

    2013-10-01

    Telecare Medicine Information Systems (TMIS) promote the traditional medical and healthcare services by information and communication technology. Since the physician and caregiver can monitor the patient's physiological condition remotely in TMIS, the confidentiality of this sensitive data should be protected, which is the key issue in the Health Insurance Portability and Accountability Act. In this paper, we propose an efficient certificateless public key encryption scheme without bilinear pairing for TMIS. Our proposal is proved to be secure in the random oracle model under the hardness assumption of computational Diffie-Hellman problem. Moreover, after modifying the original model of the certificateless encryption, this scheme achieves Girault's trust level 3. Compared with the related protocols, the perform evaluations show that our scheme is more efficient and appropriate to collocate with low power mobile devices for TMIS.

  9. Encrypting Digital Camera with Automatic Encryption Key Deletion

    NASA Technical Reports Server (NTRS)

    Oakley, Ernest C. (Inventor)

    2007-01-01

    A digital video camera includes an image sensor capable of producing a frame of video data representing an image viewed by the sensor, an image memory for storing video data such as previously recorded frame data in a video frame location of the image memory, a read circuit for fetching the previously recorded frame data, an encryption circuit having an encryption key input connected to receive the previously recorded frame data from the read circuit as an encryption key, an un-encrypted data input connected to receive the frame of video data from the image sensor and an encrypted data output port, and a write circuit for writing a frame of encrypted video data received from the encrypted data output port of the encryption circuit to the memory and overwriting the video frame location storing the previously recorded frame data.

  10. Universal Keyword Classifier on Public Key Based Encrypted Multikeyword Fuzzy Search in Public Cloud.

    PubMed

    Munisamy, Shyamala Devi; Chokkalingam, Arun

    2015-01-01

    Cloud computing has pioneered the emerging world by manifesting itself as a service through internet and facilitates third party infrastructure and applications. While customers have no visibility on how their data is stored on service provider's premises, it offers greater benefits in lowering infrastructure costs and delivering more flexibility and simplicity in managing private data. The opportunity to use cloud services on pay-per-use basis provides comfort for private data owners in managing costs and data. With the pervasive usage of internet, the focus has now shifted towards effective data utilization on the cloud without compromising security concerns. In the pursuit of increasing data utilization on public cloud storage, the key is to make effective data access through several fuzzy searching techniques. In this paper, we have discussed the existing fuzzy searching techniques and focused on reducing the searching time on the cloud storage server for effective data utilization. Our proposed Asymmetric Classifier Multikeyword Fuzzy Search method provides classifier search server that creates universal keyword classifier for the multiple keyword request which greatly reduces the searching time by learning the search path pattern for all the keywords in the fuzzy keyword set. The objective of using BTree fuzzy searchable index is to resolve typos and representation inconsistencies and also to facilitate effective data utilization. PMID:26380364

  11. Universal Keyword Classifier on Public Key Based Encrypted Multikeyword Fuzzy Search in Public Cloud.

    PubMed

    Munisamy, Shyamala Devi; Chokkalingam, Arun

    2015-01-01

    Cloud computing has pioneered the emerging world by manifesting itself as a service through internet and facilitates third party infrastructure and applications. While customers have no visibility on how their data is stored on service provider's premises, it offers greater benefits in lowering infrastructure costs and delivering more flexibility and simplicity in managing private data. The opportunity to use cloud services on pay-per-use basis provides comfort for private data owners in managing costs and data. With the pervasive usage of internet, the focus has now shifted towards effective data utilization on the cloud without compromising security concerns. In the pursuit of increasing data utilization on public cloud storage, the key is to make effective data access through several fuzzy searching techniques. In this paper, we have discussed the existing fuzzy searching techniques and focused on reducing the searching time on the cloud storage server for effective data utilization. Our proposed Asymmetric Classifier Multikeyword Fuzzy Search method provides classifier search server that creates universal keyword classifier for the multiple keyword request which greatly reduces the searching time by learning the search path pattern for all the keywords in the fuzzy keyword set. The objective of using BTree fuzzy searchable index is to resolve typos and representation inconsistencies and also to facilitate effective data utilization.

  12. Two-chip implementation of the RSA public-key encryption algorithm

    SciTech Connect

    Rieden, R.F.; Snyder, J.B.; Widman, R.J.; Barnard, W.J.

    1982-01-01

    A system has been developed which employs two identical integrated circuits to perform the encryption algorithm developed by Rivest, Shamir, and Adleman (RSA) on a 336-bit message. The integrated circuit used in the system employs the 3-micron polysilicon gate, radiation-hard, CMOS technology developed at Sandia National Laboratories.

  13. Method for encryption and transmission of digital keying data

    DOEpatents

    Mniszewski, Susan M.; Springer, Edward A.; Brenner, David P.

    1988-01-01

    A method for the encryption, transmission, and subsequent decryption of digital keying data. The method utilizes the Data Encryption Standard and is implemented by means of a pair of apparatus, each of which is selectable to operate as either a master unit or remote unit. Each unit contains a set of key encryption keys which are indexed by a common indexing system. The master unit operates upon command from the remote unit to generate a data encryption key and encrypt the data encryption key using a preselected key encryption key. The encrypted data encryption key and an index designator are then downloaded to the remote unit, where the data encryption key is decrypted for subsequent use in the encryption and transmission data. Downloading of the encrypted data encryption key enables frequent change of keys without requiring manual entry or storage of keys at the remote unit.

  14. New Security Results on Encrypted Key Exchange

    SciTech Connect

    Bresson, Emmanuel; Chevassut, Olivier; Pointcheval, David

    2003-12-15

    Schemes for encrypted key exchange are designed to provide two entities communicating over a public network, and sharing a (short) password only, with a session key to be used to achieve data integrity and/or message confidentiality. An example of a very efficient and ''elegant'' scheme for encrypted key exchange considered for standardization by the IEEE P1363 Standard working group is AuthA. This scheme was conjectured secure when the symmetric-encryption primitive is instantiated via either a cipher that closely behaves like an ''ideal cipher,'' or a mask generation function that is the product of the message with a hash of the password. While the security of this scheme in the former case has been recently proven, the latter case was still an open problem. For the first time we prove in this paper that this scheme is secure under the assumptions that the hash function closely behaves like a random oracle and that the computational Diffie-Hellman problem is difficult. Furthermore, since Denial-of-Service (DoS) attacks have become a common threat we enhance AuthA with a mechanism to protect against them.

  15. A Contents Encryption Mechanism Using Reused Key in IPTV

    NASA Astrophysics Data System (ADS)

    Jeong, Yoon-Su; Kim, Yong-Tae; Cho, Young-Bok; Lee, Ki-Jeong; Park, Gil-Cheol; Lee, Sang-Ho

    Recently IPTV is being spotlighted as a new stream service to stably provide video, audio and control signals to subscribers through the application of IP protocol. However, the IPTV system is facing more security threats than the traditional TV. This study proposes a multicasting encryption mechanism for secure transmission of the contents of IPTV by which the content provider encrypts their contents and send the encrypted contents and the key used for encryption of the contents to the user. In order to reduce the time and cost of Head-End, the proposed mechanism encrypts the media contents at the Head-End, embeds the code of the IPTV terminal used at the Head-End in the media contents for user tracking, and performs desynchronization for protection of the media contents from various attacks.

  16. Scheme of Optical Image Encryption with Digital Information Input and Dynamic Encryption Key based on Two LC SLMs

    NASA Astrophysics Data System (ADS)

    Bondareva, A. P.; Cheremkhin, P. A.; Evtikhiev, N. N.; Krasnov, V. V.; Starikov, S. N.

    Scheme of optical image encryption with digital information input and dynamic encryption key based on two liquid crystal spatial light modulators and operating with spatially-incoherent monochromatic illumination is experimentally implemented. Results of experiments on images optical encryption and numerical decryption are presented. Satisfactory decryption error of 0.20÷0.27 is achieved.

  17. Quantum cryptography using coherent states: Randomized encryption and key generation

    NASA Astrophysics Data System (ADS)

    Corndorf, Eric

    With the advent of the global optical-telecommunications infrastructure, an increasing number of individuals, companies, and agencies communicate information with one another over public networks or physically-insecure private networks. While the majority of the traffic flowing through these networks requires little or no assurance of secrecy, the same cannot be said for certain communications between banks, between government agencies, within the military, and between corporations. In these arenas, the need to specify some level of secrecy in communications is a high priority. While the current approaches to securing sensitive information (namely the public-key-cryptography infrastructure and deterministic private-key ciphers like AES and 3DES) seem to be cryptographically strong based on empirical evidence, there exist no mathematical proofs of secrecy for any widely deployed cryptosystem. As an example, the ubiquitous public-key cryptosystems infer all of their secrecy from the assumption that factoring of the product of two large primes is necessarily time consuming---something which has not, and perhaps cannot, be proven. Since the 1980s, the possibility of using quantum-mechanical features of light as a physical mechanism for satisfying particular cryptographic objectives has been explored. This research has been fueled by the hopes that cryptosystems based on quantum systems may provide provable levels of secrecy which are at least as valid as quantum mechanics itself. Unfortunately, the most widely considered quantum-cryptographic protocols (BB84 and the Ekert protocol) have serious implementation problems. Specifically, they require quantum-mechanical states which are not readily available, and they rely on unproven relations between intrusion-level detection and the information available to an attacker. As a result, the secrecy level provided by these experimental implementations is entirely unspecified. In an effort to provably satisfy the cryptographic

  18. Dual key speech encryption algorithm based underdetermined BSS.

    PubMed

    Zhao, Huan; He, Shaofang; Chen, Zuo; Zhang, Xixiang

    2014-01-01

    When the number of the mixed signals is less than that of the source signals, the underdetermined blind source separation (BSS) is a significant difficult problem. Due to the fact that the great amount data of speech communications and real-time communication has been required, we utilize the intractability of the underdetermined BSS problem to present a dual key speech encryption method. The original speech is mixed with dual key signals which consist of random key signals (one-time pad) generated by secret seed and chaotic signals generated from chaotic system. In the decryption process, approximate calculation is used to recover the original speech signals. The proposed algorithm for speech signals encryption can resist traditional attacks against the encryption system, and owing to approximate calculation, decryption becomes faster and more accurate. It is demonstrated that the proposed method has high level of security and can recover the original signals quickly and efficiently yet maintaining excellent audio quality. PMID:24955430

  19. Key management and encryption under the bounded storage model.

    SciTech Connect

    Draelos, Timothy John; Neumann, William Douglas; Lanzone, Andrew J.; Anderson, William Erik

    2005-11-01

    There are several engineering obstacles that need to be solved before key management and encryption under the bounded storage model can be realized. One of the critical obstacles hindering its adoption is the construction of a scheme that achieves reliable communication in the event that timing synchronization errors occur. One of the main accomplishments of this project was the development of a new scheme that solves this problem. We show in general that there exist message encoding techniques under the bounded storage model that provide an arbitrarily small probability of transmission error. We compute the maximum capacity of this channel using the unsynchronized key-expansion as side-channel information at the decoder and provide tight lower bounds for a particular class of key-expansion functions that are pseudo-invariant to timing errors. Using our results in combination with Dziembowski et al. [11] encryption scheme we can construct a scheme that solves the timing synchronization error problem. In addition to this work we conducted a detailed case study of current and future storage technologies. We analyzed the cost, capacity, and storage data rate of various technologies, so that precise security parameters can be developed for bounded storage encryption schemes. This will provide an invaluable tool for developing these schemes in practice.

  20. Security enhanced optical encryption system by random phase key and permutation key.

    PubMed

    He, Mingzhao; Tan, Qiaofeng; Cao, Liangcai; He, Qingsheng; Jin, Guofan

    2009-12-01

    Conventional double random phase encoding (DRPE) encrypts plaintext to white noise-like ciphertext which may attract attention of eavesdroppers, and recent research reported that DRPE is vulnerable to various attacks. Here we propose a security enhanced optical encryption system that can hide the existence of secret information by watermarking. The plaintext is encrypted using iterative fractional Fourier transform with random phase key, and ciphertext is randomly permuted with permutation key before watermarking. Cryptanalysis shows that linearity of the security system has been broken and the permutation key prevent the attacker from accessing the ciphertext in various attacks. A series of simulations have shown the effectiveness of this system and the security strength is enhanced for invisibility, nonlinearity and resistance against attacks. PMID:20052170

  1. Security enhanced optical encryption system by random phase key and permutation key.

    PubMed

    He, Mingzhao; Tan, Qiaofeng; Cao, Liangcai; He, Qingsheng; Jin, Guofan

    2009-12-01

    Conventional double random phase encoding (DRPE) encrypts plaintext to white noise-like ciphertext which may attract attention of eavesdroppers, and recent research reported that DRPE is vulnerable to various attacks. Here we propose a security enhanced optical encryption system that can hide the existence of secret information by watermarking. The plaintext is encrypted using iterative fractional Fourier transform with random phase key, and ciphertext is randomly permuted with permutation key before watermarking. Cryptanalysis shows that linearity of the security system has been broken and the permutation key prevent the attacker from accessing the ciphertext in various attacks. A series of simulations have shown the effectiveness of this system and the security strength is enhanced for invisibility, nonlinearity and resistance against attacks.

  2. Quantitative security evaluation of optical encryption using hybrid phase- and amplitude-modulated keys.

    PubMed

    Sarkadi, Tamás; Koppa, Pál

    2012-02-20

    In the increasing number of system approaches published in the field of optical encryption, the security level of the system is evaluated by qualitative and empirical methods. To quantify the security of the optical system, we propose to use the equivalent of the key length routinely used in algorithmic encryption. We provide a calculation method of the number of independent keys and deduce the binary key length for optical data encryption. We then investigate and optimize the key length of the combined phase- and amplitude-modulated key encryption in the holographic storage environment, which is one of the promising solutions for the security enhancement of single- and double-random phase-encoding encryption and storage systems. We show that a substantial growth of the key length can be achieved by optimized phase and amplitude modulation compared to phase-only encryption. We also provide experimental confirmation of the model results.

  3. 76 FR 48807 - Public Key Infrastructure (PKI) Certificate Action Form

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-09

    ... United States Patent and Trademark Office Public Key Infrastructure (PKI) Certificate Action Form ACTION.... Abstract The United States Patent and Trademark Office (USPTO) uses Public Key Infrastructure (PKI... confidentiality of information submitted to the USPTO. PKI employs public and private encryption keys...

  4. Quantum walk public-key cryptographic system

    NASA Astrophysics Data System (ADS)

    Vlachou, C.; Rodrigues, J.; Mateus, P.; Paunković, N.; Souto, A.

    2015-12-01

    Quantum Cryptography is a rapidly developing field of research that benefits from the properties of Quantum Mechanics in performing cryptographic tasks. Quantum walks are a powerful model for quantum computation and very promising for quantum information processing. In this paper, we present a quantum public-key cryptographic system based on quantum walks. In particular, in the proposed protocol the public-key is given by a quantum state generated by performing a quantum walk. We show that the protocol is secure and analyze the complexity of public key generation and encryption/decryption procedures.

  5. Practical and Secure Recovery of Disk Encryption Key Using Smart Cards

    NASA Astrophysics Data System (ADS)

    Omote, Kazumasa; Kato, Kazuhiko

    In key-recovery methods using smart cards, a user can recover the disk encryption key in cooperation with the system administrator, even if the user has lost the smart card including the disk encryption key. However, the disk encryption key is known to the system administrator in advance in most key-recovery methods. Hence user's disk data may be read by the system administrator. Furthermore, if the disk encryption key is not known to the system administrator in advance, it is difficult to achieve a key authentication. In this paper, we propose a scheme which enables to recover the disk encryption key when the user's smart card is lost. In our scheme, the disk encryption key is not preserved anywhere and then the system administrator cannot know the key before key-recovery phase. Only someone who has a user's smart card and knows the user's password can decrypt that user's disk data. Furthermore, we measured the processing time required for user authentication in an experimental environment using a virtual machine monitor. As a result, we found that this processing time is short enough to be practical.

  6. Vulnerability to chosen-cyphertext attacks of optical encryption schemes based on double random phase keys.

    PubMed

    Carnicer, Arturo; Montes-Usategui, Mario; Arcos, Sergio; Juvells, Ignacio

    2005-07-01

    We show how optical encryption methods based on double random phase keys are vulnerable to an organized attack of the chosen-ciphertext type. The decryption key can be easily obtained by an opponent who has repeated access to either the encryption or decryption machines. However, we have also devised a solution that prevents the attack. Our results cast doubts on the present security of these techniques.

  7. Public Key Cryptography.

    ERIC Educational Resources Information Center

    Tapson, Frank

    1996-01-01

    Describes public key cryptography, also known as RSA, which is a system using two keys, one used to put a message into cipher and another used to decipher the message. Presents examples using small prime numbers. (MKR)

  8. Optical binary image encryption using aperture-key and dual wavelengths.

    PubMed

    Wang, Xiaogang; Chen, Wen; Chen, Xudong

    2014-11-17

    We described a method where the secret binary image that has been encoded into a single amplitude pattern in Fresnel domain can be recovered based on phase retrieval with an aperture-key and wavelength keys, and no holographic recording is needed in the encryption. The predesigned aperture-key not only realizes the intensity modulation of the encrypted image, but also helps to retrieve the secret image with high quality. All the necessary decryption keys can be kept in digital form that facilitates data transmission and loading in image retrieval process. Numerical simulation results are given for testing the validity and security of the proposed approach.

  9. Public/private key certification authority and key distribution. Draft

    SciTech Connect

    Long, J.P.; Christensen, M.J.; Sturtevant, A.P.; Johnston, W.E.

    1995-09-25

    Traditional encryption, which protects messages from prying eyes, has been used for many decades. The present concepts of encryption are built from that heritage. Utilization of modern software-based encryption techniques implies much more than simply converting files to an unreadable form. Ubiquitous use of computers and advances in encryption technology coupled with the use of wide-area networking completely changed the reasons for utilizing encryption technology. The technology demands a new and extensive infrastructure to support these functions. Full understanding of these functions, their utility and value, and the need for an infrastructure, takes extensive exposure to the new paradigm. This paper addresses issues surrounding the establishment and operation of a key management system (i.e., certification authority) that is essential to the successful implementation and wide-spread use of encryption.

  10. Generation of keys for image optical encryption in spatially incoherent light aimed at reduction of image decryption error

    NASA Astrophysics Data System (ADS)

    Cheremkhin, Pavel A.; Evtikhiev, Nikolay N.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Starikov, Sergey N.

    2014-05-01

    At present time methods of optical encryption are actively developed. The majority of existing methods of optical encryption use not only light intensity distribution, easily registered with photosensors, but also its phase distribution which require application of complex holographic schemes in conjunction with spatially coherent light. This leads to complex optical schemes and low decryption quality. To eliminate these disadvantages it is possible to implement optical encryption using spatially incoherent illumination which requires registration of light intensity distribution only. However this applies new restrictions on encryption keys: Fourier spectrum amplitude distribution of encryption key should overlap Fourier spectrum amplitude distribution of image to be encrypted otherwise loss of information is unavoidable. Therefore it seems that best key should have white spectrum. On the other hand due to fact that only light intensity distribution is registered, spectra of image to be encrypted and encryption key always have peaks at zero frequency and their heights depend on corresponding total energy. Since encrypted image contains noise, ratio of its average spectrum energy to noise average energy determines signal to noise ratio of decrypted image. Therefore ratio of amplitude at zero frequency to average spectrum amplitude (RZA) of encryption key defines decrypted images quality. For generation of encryption keys with low RZA method of direct search with random trajectory (DSRT) was used. To estimate impact of key RZA on decrypted images error numerical experiments were conducted. For experiments keys with different RZA values but with same energy value were generated and used. Numerically simulated optical encryption and decryption of set of test images was conducted. Results of experiment demonstrate that application of keys with low RZA generated by DSRT method leads to up to 20% lower error in comparison to keys generated by means of uniform random

  11. Chaotic image encryption based on running-key related to plaintext.

    PubMed

    Guanghui, Cao; Kai, Hu; Yizhi, Zhang; Jun, Zhou; Xing, Zhang

    2014-01-01

    In the field of chaotic image encryption, the algorithm based on correlating key with plaintext has become a new developing direction. However, for this kind of algorithm, some shortcomings in resistance to reconstruction attack, efficient utilization of chaotic resource, and reducing dynamical degradation of digital chaos are found. In order to solve these problems and further enhance the security of encryption algorithm, based on disturbance and feedback mechanism, we present a new image encryption scheme. In the running-key generation stage, by successively disturbing chaotic stream with cipher-text, the relation of running-key to plaintext is established, reconstruction attack is avoided, effective use of chaotic resource is guaranteed, and dynamical degradation of digital chaos is minimized. In the image encryption stage, by introducing random-feedback mechanism, the difficulty of breaking this scheme is increased. Comparing with the-state-of-the-art algorithms, our scheme exhibits good properties such as large key space, long key period, and extreme sensitivity to the initial key and plaintext. Therefore, it can resist brute-force, reconstruction attack, and differential attack.

  12. Chaotic Image Encryption Based on Running-Key Related to Plaintext

    PubMed Central

    Guanghui, Cao; Kai, Hu; Yizhi, Zhang; Jun, Zhou; Xing, Zhang

    2014-01-01

    In the field of chaotic image encryption, the algorithm based on correlating key with plaintext has become a new developing direction. However, for this kind of algorithm, some shortcomings in resistance to reconstruction attack, efficient utilization of chaotic resource, and reducing dynamical degradation of digital chaos are found. In order to solve these problems and further enhance the security of encryption algorithm, based on disturbance and feedback mechanism, we present a new image encryption scheme. In the running-key generation stage, by successively disturbing chaotic stream with cipher-text, the relation of running-key to plaintext is established, reconstruction attack is avoided, effective use of chaotic resource is guaranteed, and dynamical degradation of digital chaos is minimized. In the image encryption stage, by introducing random-feedback mechanism, the difficulty of breaking this scheme is increased. Comparing with the-state-of-the-art algorithms, our scheme exhibits good properties such as large key space, long key period, and extreme sensitivity to the initial key and plaintext. Therefore, it can resist brute-force, reconstruction attack, and differential attack. PMID:24711727

  13. Optical image encryption using password key based on phase retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Zhao, Tieyu; Ran, Qiwen; Yuan, Lin; Chi, Yingying; Ma, Jing

    2016-04-01

    A novel optical image encryption system is proposed using password key based on phase retrieval algorithm (PRA). In the encryption process, a shared image is taken as a symmetric key and the plaintext is encoded into the phase-only mask based on the iterative PRA. The linear relationship between the plaintext and ciphertext is broken using the password key, which can resist the known plaintext attack. The symmetric key and the retrieved phase are imported into the input plane and Fourier plane of 4f system during the decryption, respectively, so as to obtain the plaintext on the CCD. Finally, we analyse the key space of the password key, and the results show that the proposed scheme can resist a brute force attack due to the flexibility of the password key.

  14. Public Key FPGA Software

    SciTech Connect

    Hymel, Ross

    2013-07-25

    The Public Key (PK) FPGA software performs asymmetric authentication using the 163-bit Elliptic Curve Digital Signature Algorithm (ECDSA) on an embedded FPGA platform. A digital signature is created on user-supplied data, and communication with a host system is performed via a Serial Peripheral Interface (SPI) bus. Software includes all components necessary for signing, including custom random number generator for key creation and SHA-256 for data hashing.

  15. Information verification cryptosystem using one-time keys based on double random phase encoding and public-key cryptography

    NASA Astrophysics Data System (ADS)

    Zhao, Tieyu; Ran, Qiwen; Yuan, Lin; Chi, Yingying; Ma, Jing

    2016-08-01

    A novel image encryption system based on double random phase encoding (DRPE) and RSA public-key algorithm is proposed. The main characteristic of the system is that each encryption process produces a new decryption key (even for the same plaintext), thus the encryption system conforms to the feature of the one-time pad (OTP) cryptography. The other characteristic of the system is the use of fingerprint key. Only with the rightful authorization will the true decryption be obtained, otherwise the decryption will result in noisy images. So the proposed system can be used to determine whether the ciphertext is falsified by attackers. In addition, the system conforms to the basic agreement of asymmetric cryptosystem (ACS) due to the combination with the RSA public-key algorithm. The simulation results show that the encryption scheme has high robustness against the existing attacks.

  16. BTM: A Single-Key, Inverse-Cipher-Free Mode for Deterministic Authenticated Encryption

    NASA Astrophysics Data System (ADS)

    Iwata, Tetsu; Yasuda, Kan

    We present a new blockcipher mode of operation named BTM, which stands for Bivariate Tag Mixing. BTM falls into the category of Deterministic Authenticated Encryption, which we call DAE for short. BTM makes all-around improvements over the previous two DAE constructions, SIV (Eurocrypt 2006) and HBS (FSE 2009). Specifically, our BTM requires just one blockcipher key, whereas SIV requires two. Our BTM does not require the decryption algorithm of the underlying blockcipher, whereas HBS does. The BTM mode utilizes bivariate polynomial hashing for authentication, which enables us to handle vectorial inputs of dynamic dimensions. BTM then generates an initial value for its counter mode of encryption by mixing the resulting tag with one of the two variables (hash keys), which avoids the need for an implementation of the inverse cipher.

  17. Novel image compression-encryption hybrid algorithm based on key-controlled measurement matrix in compressive sensing

    NASA Astrophysics Data System (ADS)

    Zhou, Nanrun; Zhang, Aidi; Zheng, Fen; Gong, Lihua

    2014-10-01

    The existing ways to encrypt images based on compressive sensing usually treat the whole measurement matrix as the key, which renders the key too large to distribute and memorize or store. To solve this problem, a new image compression-encryption hybrid algorithm is proposed to realize compression and encryption simultaneously, where the key is easily distributed, stored or memorized. The input image is divided into 4 blocks to compress and encrypt, then the pixels of the two adjacent blocks are exchanged randomly by random matrices. The measurement matrices in compressive sensing are constructed by utilizing the circulant matrices and controlling the original row vectors of the circulant matrices with logistic map. And the random matrices used in random pixel exchanging are bound with the measurement matrices. Simulation results verify the effectiveness, security of the proposed algorithm and the acceptable compression performance.

  18. Channel-Based Key Generation for Encrypted Body-Worn Wireless Sensor Networks.

    PubMed

    Van Torre, Patrick

    2016-09-08

    Body-worn sensor networks are important for rescue-workers, medical and many other applications. Sensitive data are often transmitted over such a network, motivating the need for encryption. Body-worn sensor networks are deployed in conditions where the wireless communication channel varies dramatically due to fading and shadowing, which is considered a disadvantage for communication. Interestingly, these channel variations can be employed to extract a common encryption key at both sides of the link. Legitimate users share a unique physical channel and the variations thereof provide data series on both sides of the link, with highly correlated values. An eavesdropper, however, does not share this physical channel and cannot extract the same information when intercepting the signals. This paper documents a practical wearable communication system implementing channel-based key generation, including an implementation and a measurement campaign comprising indoor as well as outdoor measurements. The results provide insight into the performance of channel-based key generation in realistic practical conditions. Employing a process known as key reconciliation, error free keys are generated in all tested scenarios. The key-generation system is computationally simple and therefore compatible with the low-power micro controllers and low-data rate transmissions commonly used in wireless sensor networks.

  19. Channel-Based Key Generation for Encrypted Body-Worn Wireless Sensor Networks

    PubMed Central

    Van Torre, Patrick

    2016-01-01

    Body-worn sensor networks are important for rescue-workers, medical and many other applications. Sensitive data are often transmitted over such a network, motivating the need for encryption. Body-worn sensor networks are deployed in conditions where the wireless communication channel varies dramatically due to fading and shadowing, which is considered a disadvantage for communication. Interestingly, these channel variations can be employed to extract a common encryption key at both sides of the link. Legitimate users share a unique physical channel and the variations thereof provide data series on both sides of the link, with highly correlated values. An eavesdropper, however, does not share this physical channel and cannot extract the same information when intercepting the signals. This paper documents a practical wearable communication system implementing channel-based key generation, including an implementation and a measurement campaign comprising indoor as well as outdoor measurements. The results provide insight into the performance of channel-based key generation in realistic practical conditions. Employing a process known as key reconciliation, error free keys are generated in all tested scenarios. The key-generation system is computationally simple and therefore compatible with the low-power micro controllers and low-data rate transmissions commonly used in wireless sensor networks. PMID:27618051

  20. Channel-Based Key Generation for Encrypted Body-Worn Wireless Sensor Networks.

    PubMed

    Van Torre, Patrick

    2016-01-01

    Body-worn sensor networks are important for rescue-workers, medical and many other applications. Sensitive data are often transmitted over such a network, motivating the need for encryption. Body-worn sensor networks are deployed in conditions where the wireless communication channel varies dramatically due to fading and shadowing, which is considered a disadvantage for communication. Interestingly, these channel variations can be employed to extract a common encryption key at both sides of the link. Legitimate users share a unique physical channel and the variations thereof provide data series on both sides of the link, with highly correlated values. An eavesdropper, however, does not share this physical channel and cannot extract the same information when intercepting the signals. This paper documents a practical wearable communication system implementing channel-based key generation, including an implementation and a measurement campaign comprising indoor as well as outdoor measurements. The results provide insight into the performance of channel-based key generation in realistic practical conditions. Employing a process known as key reconciliation, error free keys are generated in all tested scenarios. The key-generation system is computationally simple and therefore compatible with the low-power micro controllers and low-data rate transmissions commonly used in wireless sensor networks. PMID:27618051

  1. Analysis of selected methods for the recovery of encrypted WEP key

    NASA Astrophysics Data System (ADS)

    Wójtowicz, Sebastian; Belka, Radosław

    2014-11-01

    This paper deals with some of the WEP (Wired Equivalent Privacy) key decryption methods based on aircrack-ng software, which was embedded in Backtrack operating system (Linux distribution). The 64-bit (40-bit) and 128-bit (104- bit) key encrypted with RC4 cipher weakness was shown. Research methods were made in different network environments. In this work we compared different types of keys to check how strong the RC4 stream cipher can be. The 40-bit and 104-bit WEP key has been tested on IEEE 802.11 based wireless LAN using laptop with live-CD Linux operating system. A short analysis of key creation methods was performed to compare the amount of time necessary to decrypt random and nonrandom WEP keys.

  2. High efficient key-insulated attribute based encryption scheme without bilinear pairing operations.

    PubMed

    Hong, Hanshu; Sun, Zhixin

    2016-01-01

    Attribute based encryption (ABE) has been widely applied for secure data protection in various data sharing systems. However, the efficiency of existing ABE schemes is not high enough since running encrypt and decrypt algorithms need frequent bilinear pairing operations, which may occupy too much computing resources on terminal devices. What's more, since different users may share the same attributes in the system, a single user's private key exposure will threaten the security and confidentiality of the whole system. Therefore, to further decrease the computation cost in attribute based cryptosystem as well as provide secure protection when key exposure happens, in this paper, we firstly propose a high efficient key-insulated ABE algorithm without pairings. The key-insulated mechanism guarantees both forward security and backward security when key exposure or user revocation happens. Besides, during the running of algorithms in our scheme, users and attribute authority needn't run any bilinear pairing operations, which will increase the efficiency to a large extent. The high efficiency and security analysis indicate that our scheme is more appropriate for secure protection in data sharing systems.

  3. Advanced technologies for encryption of satellite links

    NASA Astrophysics Data System (ADS)

    McMahan, Sherry S.

    The use of encryption on satellite links is discussed. Advanced technology exists to provide transmission security for large earth station with data rates up to 50 megabits per second. One of the major concerns in the use of encryption equipment with very small aperture terminals (VSAT) is the key management issue and the related operational costs. The low cost requirement and the lack of physical protection of remote VSATs place severe constraints on the design of encryption equipment. Encryption may be accomplished by embedding a tamper proof encryption module into the baseband unit of each VSAT. VSAT networks are usually star networks where there is a single large earth station that serves as a hub and all satellite communications takes place between each VSAT and the hub earth station. The hub earth station has the secret master key of each VSAT. These master keys are used to downline load encrypted session keys to each VSAT. A more secure alternative is to use public key techniques where each embedded VSAT encryption module internally generates its own secret and public numbers. The secret number never leaves the module while the public number is sent to the hub at the time of initialization of the encryption module into the VSAT. Physical access control to encryption modules of VSAT systems can be implemented using passwords, smart cards or biometrics.

  4. Chaos-based color pathological image encryption scheme using one-time keys.

    PubMed

    Liu, Guoyan; Li, Jie; Liu, Hongjun

    2014-02-01

    This paper proposes an improved chaos-based color pathological image encryption algorithm, using SHA-2 to generate one-time keys. In order to send different ciphered images to different recipients, the hash value of the plain image and a random number are applied to generate one-time initial conditions for Chebyshev maps, to make the key stream change in every confusion process without changing the common initial values. The permuted image is divided into 256-bit long blocks, the avalanche effect is applied to diffuse the blocks, i.e., each block is XORed with the hash value of the prior block. Simulation results demonstrate that the proposed algorithm is robust against common attacks.

  5. Modeling, Simulation and Analysis of Public Key Infrastructure

    NASA Technical Reports Server (NTRS)

    Liu, Yuan-Kwei; Tuey, Richard; Ma, Paul (Technical Monitor)

    1998-01-01

    Security is an essential part of network communication. The advances in cryptography have provided solutions to many of the network security requirements. Public Key Infrastructure (PKI) is the foundation of the cryptography applications. The main objective of this research is to design a model to simulate a reliable, scalable, manageable, and high-performance public key infrastructure. We build a model to simulate the NASA public key infrastructure by using SimProcess and MatLab Software. The simulation is from top level all the way down to the computation needed for encryption, decryption, digital signature, and secure web server. The application of secure web server could be utilized in wireless communications. The results of the simulation are analyzed and confirmed by using queueing theory.

  6. Research on key technologies for data-interoperability-based metadata, data compression and encryption, and their application

    NASA Astrophysics Data System (ADS)

    Yu, Xu; Shao, Quanqin; Zhu, Yunhai; Deng, Yuejin; Yang, Haijun

    2006-10-01

    With the development of informationization and the separation between data management departments and application departments, spatial data sharing becomes one of the most important objectives for the spatial information infrastructure construction, and spatial metadata management system, data transmission security and data compression are the key technologies to realize spatial data sharing. This paper discusses the key technologies for metadata based on data interoperability, deeply researches the data compression algorithms such as adaptive Huffman algorithm, LZ77 and LZ78 algorithm, studies to apply digital signature technique to encrypt spatial data, which can not only identify the transmitter of spatial data, but also find timely whether the spatial data are sophisticated during the course of network transmission, and based on the analysis of symmetric encryption algorithms including 3DES,AES and asymmetric encryption algorithm - RAS, combining with HASH algorithm, presents a improved mix encryption method for spatial data. Digital signature technology and digital watermarking technology are also discussed. Then, a new solution of spatial data network distribution is put forward, which adopts three-layer architecture. Based on the framework, we give a spatial data network distribution system, which is efficient and safe, and also prove the feasibility and validity of the proposed solution.

  7. Design of high-encryption wireless network with distributed host management and dynamic key generation

    NASA Astrophysics Data System (ADS)

    Weber, Robert E.

    2001-11-01

    approximately 15 Gigabyte table of IV values can be used to encrypt any packet. On a network only partially infiltrated, bit-wise manipulated packets can spoof their validity using the linear nature of the CSC checksum. Any combination of passive and active attacks can be used to modify commands as they are being sent or login information can be taken for use on another network to access personal accounts. WEP also has a critical flaw outside of the sophisticated attacks that can be used to subvert its security. WEP uses a shared key known by both the client machines and the base stations. For this reason the key can be lost through human security problems. This includes the loss of equipment to theft, employee turnover and general mishandling of key information. In order to implement secure wireless networks it has become clear that a new scheme must be developed which can address the 3 security concerns mentioned earlier and at the same time function on existing hardware and software.

  8. Experiences of Using a Public Key Infrastructure for the Preparation of Examination Papers.

    ERIC Educational Resources Information Center

    Chadwick, David W.; Tassabehji, Rana; Young, Andrew

    2000-01-01

    Describes a project at the University of Salford (United Kingdom) that transferred examination papers between participants (lecturers, administrators and external examiners) using secure electronic mail via a managed public key infrastructure that used encryption methods. Discusses resistance to change and technology problems. (Contains 6…

  9. Amplitude-phase retrieval attack free image encryption based on two random masks and interference

    NASA Astrophysics Data System (ADS)

    Liansheng, Sui; bei, Zhou; Zhanmin, Wang; qindong, Sun

    2016-11-01

    An amplitude-phase retrieval attack free encryption scheme is proposed by using two random masks, where one is considered as the random image and other as the public key. Initially, the random image is encrypted to two phase-only masks based on interference technique with the help of the public key. These two phase-only masks are real-valued functions and used as the encryption keys. Then, the plain image is encrypted to the ciphertext with the white noise distribution by using the phase-truncated Fourier-transform-based encoding scheme with the previous encryption keys. The encryption process is nonlinear in which no iterative calculation is involved, while the decryption process is linear which can be easily implemented with the 4 f optical system. Moreover, less constraints makes the specific attack unusable. Simulation results are given to verify the feasibility and robustness of the proposed encryption scheme.

  10. Analysis of the secrecy of the running key in quantum encryption channels using coherent states of light

    NASA Astrophysics Data System (ADS)

    Nikulin, Vladimir V.; Hughes, David H.; Malowicki, John; Bedi, Vijit

    2015-05-01

    Free-space optical communication channels offer secure links with low probability of interception and detection. Despite their point-to-point topology, additional security features may be required in privacy-critical applications. Encryption can be achieved at the physical layer by using quantized values of photons, which makes exploitation of such quantum communication links extremely difficult. One example of such technology is keyed communication in quantum noise, a novel quantum modulation protocol that offers ultra-secure communication with competitive performance characteristics. Its utilization relies on specific coherent measurements to decrypt the signal. The process of measurements is complicated by the inherent and irreducible quantum noise of coherent states. This problem is different from traditional laser communication with coherent detection; therefore continuous efforts are being made to improve the measurement techniques. Quantum-based encryption systems that use the phase of the signal as the information carrier impose aggressive requirements on the accuracy of the measurements when an unauthorized party attempts intercepting the data stream. Therefore, analysis of the secrecy of the data becomes extremely important. In this paper, we present the results of a study that had a goal of assessment of potential vulnerability of the running key. Basic results of the laboratory measurements are combined with simulation studies and statistical analysis that can be used for both conceptual improvement of the encryption approach and for quantitative comparison of secrecy of different quantum communication protocols.

  11. Broadcast encryption: paving the road to practical content protection systems

    NASA Astrophysics Data System (ADS)

    Deen, G.; Ponceleon, D.; Leake, Donald, Jr.

    2009-02-01

    Broadcast encryption is a well established alternative to public key encryption for use in content protection systems. It offers significant performance benefits, as well as useful features such a one-to-many delivery, dynamic membership in the authorized receivers group, and provides anonymous access to content, permitting content protection systems to preserve privacy for consumers. Broadcast encryption has been successfully deployed to users for protection of commercial content on digital media such as flash memory devices and optical media for both standard-definition and high-definition content. In this paper, we present the Advanced Secure Content Cluster Technology which applies broadcast encryption to content protection for home media networks

  12. An Identity-Based (IDB) Broadcast Encryption Scheme with Personalized Messages (BEPM)

    PubMed Central

    Xu, Ke; Liao, Yongjian; Qiao, Li

    2015-01-01

    A broadcast encryption scheme with personalized messages (BEPM) is a scheme in which a broadcaster transmits not only encrypted broadcast messages to a subset of recipients but also encrypted personalized messages to each user individually. Several broadcast encryption (BE) schemes allow a broadcaster encrypts a message for a subset S of recipients with public keys and any user in S can decrypt the message with his/her private key. However, these BE schemes can not provide an efficient way to transmit encrypted personalized messages to each user individually. In this paper, we propose a broadcast encryption scheme with a transmission of personalized messages. Besides, the scheme is based on multilinear maps ensure constant ciphertext size and private key size of each user and the scheme can achieve statically security. More realistically, the scheme can be applied to the Conditional Access System (CAS) of pay television (pay-TV) efficiently and safely. PMID:26629817

  13. Virtual microscopy and public-key cryptography for Internet telepathology.

    PubMed

    Strauss, J S; Felten, C L; Okada, D H; Marchevsky, A M

    1999-01-01

    The Internet is a potentially inexpensive, widely available medium for telepathology, but there are concerns about its reliability and security. Using a digital camera, 41 photomicrographs of transbronchial biopsies, at x 100 optical magnification, were captured and digitized at 2700 x 3400 pixel, 24 bit/pixel resolution. The image files were saved in JPEG format at medium compression, attached to text files with patient information, encrypted for security in the S/MIME format using a digital signature and digital envelope, and transmitted by email. Received email files were decrypted automatically and the images viewed with standard software. Telepathology diagnoses were compared with original interpretations. The images averaged 810 kByte in size. The encryption and decryption did not cause significant delays in overall transmission time and, together with transmission, did not produce noticeable image degradation. The received image files could be viewed in a manner that simulated light microscopy. There was agreement between telepathology and original diagnoses in 92% of the cases. All the discrepancies were due to inadequate area selection because the pathological features of interest were present in histological levels other than those photographed. The use of high-resolution digital photomicrography, the Internet and public-key cryptography offers an effective and relatively inexpensive method of telepathology consultation. The method is best suited for the diagnosis of small biopsy specimens that require the transmission of only a few digital images that represent the majority of the biopsy materials.

  14. Phase retrieval encryption in an enhanced optical interference by key phase constraint.

    PubMed

    Shi, Xiaoyan; Chen, Ziyang; Zhao, Daomu; Mao, Haidan; Chen, Linfei

    2015-04-10

    In this paper, we demonstrate a security system by using optical interference and phase retrieval algorithm (PRA) techniques. The modified PRA is proposed to encode the target image into random phase distribution. Optical and digital methods can be used for decryption. By using this method, silhouette elimination is realized. In addition, due to this simplified system design, the iterative rate is improved and the optical decryption realization is easier. Validity and performance of the proposed system are demonstrated by means of numerical simulations. The system encryption capacity as to both binary and gray images is numerically investigated. Then, the decryption procedure is demonstrated by optical experiment means and the decryption result is given.

  15. Quantum circuit for the proof of the security of quantum key distribution without encryption of error syndrome and noisy processing

    SciTech Connect

    Tamaki, Kiyoshi; Kato, Go

    2010-02-15

    One of the simplest security proofs of quantum key distribution is based on the so-called complementarity scenario, which involves the complementarity control of an actual protocol and a virtual protocol [M. Koashi, e-print arXiv:0704.3661 (2007)]. The existing virtual protocol has a limitation in classical postprocessing, i.e., the syndrome for the error-correction step has to be encrypted. In this paper, we remove this limitation by constructing a quantum circuit for the virtual protocol. Moreover, our circuit with a shield system gives an intuitive proof of why adding noise to the sifted key increases the bit error rate threshold in the general case in which one of the parties does not possess a qubit. Thus, our circuit bridges the simple proof and the use of wider classes of classical postprocessing.

  16. Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption

    NASA Astrophysics Data System (ADS)

    Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min

    2016-01-01

    Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information.

  17. Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption

    PubMed Central

    Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min

    2016-01-01

    Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information. PMID:26823196

  18. Information hiding based on double random-phase encoding and public-key cryptography.

    PubMed

    Sheng, Yuan; Xin, Zhou; Alam, Mohammed S; Xi, Lu; Xiao-Feng, Li

    2009-03-01

    A novel information hiding method based on double random-phase encoding (DRPE) and Rivest-Shamir-Adleman (RSA) public-key cryptosystem is proposed. In the proposed technique, the inherent diffusion property of DRPE is cleverly utilized to make up the diffusion insufficiency of RSA public-key cryptography, while the RSA cryptosystem is utilized for simultaneous transmission of the cipher text and the two phase-masks, which is not possible under the DRPE technique. This technique combines the complementary advantages of the DPRE and RSA encryption techniques and brings security and convenience for efficient information transmission. Extensive numerical simulation results are presented to verify the performance of the proposed technique.

  19. Optical encryption interface

    NASA Technical Reports Server (NTRS)

    Jackson, Deborah J. (Inventor)

    1998-01-01

    An analog optical encryption system based on phase scrambling of two-dimensional optical images and holographic transformation for achieving large encryption keys and high encryption speed. An enciphering interface uses a spatial light modulator for converting a digital data stream into a two dimensional optical image. The optical image is further transformed into a hologram with a random phase distribution. The hologram is converted into digital form for transmission over a shared information channel. A respective deciphering interface at a receiver reverses the encrypting process by using a phase conjugate reconstruction of the phase scrambled hologram.

  20. A joint asymmetric watermarking and image encryption scheme

    NASA Astrophysics Data System (ADS)

    Boato, G.; Conotter, V.; De Natale, F. G. B.; Fontanari, C.

    2008-02-01

    Here we introduce a novel watermarking paradigm designed to be both asymmetric, i.e., involving a private key for embedding and a public key for detection, and commutative with a suitable encryption scheme, allowing both to cipher watermarked data and to mark encrypted data without interphering with the detection process. In order to demonstrate the effectiveness of the above principles, we present an explicit example where the watermarking part, based on elementary linear algebra, and the encryption part, exploiting a secret random permutation, are integrated in a commutative scheme.

  1. Fast WEP-Key Recovery Attack Using Only Encrypted IP Packets

    NASA Astrophysics Data System (ADS)

    Teramura, Ryoichi; Asakura, Yasuo; Ohigashi, Toshihiro; Kuwakado, Hidenori; Morii, Masakatu

    Conventional efficient key recovery attacks against Wired Equivalent Privacy (WEP) require specific initialization vectors or specific packets. Since it takes much time to collect the packets sufficiently, any active attack should be performed. An Intrusion Detection System (IDS), however, will be able to prevent the attack. Since the attack logs are stored at the servers, it is possible to prevent such an attack. This paper proposes an algorithm for recovering a 104-bit WEP key from any IP packets in a realistic environment. This attack needs about 36, 500 packets with a success probability 0.5, and the complexity of our attack is equivalent to about 220 computations of the RC4 key setups. Since our attack is passive, it is difficult for both WEP users and administrators to detect our attack.

  2. Double images encryption method with resistance against the specific attack based on an asymmetric algorithm.

    PubMed

    Wang, Xiaogang; Zhao, Daomu

    2012-05-21

    A double-image encryption technique that based on an asymmetric algorithm is proposed. In this method, the encryption process is different from the decryption and the encrypting keys are also different from the decrypting keys. In the nonlinear encryption process, the images are encoded into an amplitude cyphertext, and two phase-only masks (POMs) generated based on phase truncation are kept as keys for decryption. By using the classical double random phase encoding (DRPE) system, the primary images can be collected by an intensity detector that located at the output plane. Three random POMs that applied in the asymmetric encryption can be safely applied as public keys. Simulation results are presented to demonstrate the validity and security of the proposed protocol.

  3. Public key infrastructure for DOE security research

    SciTech Connect

    Aiken, R.; Foster, I.; Johnston, W.E.

    1997-06-01

    This document summarizes the Department of Energy`s Second Joint Energy Research/Defence Programs Security Research Workshop. The workshop, built on the results of the first Joint Workshop which reviewed security requirements represented in a range of mission-critical ER and DP applications, discussed commonalties and differences in ER/DP requirements and approaches, and identified an integrated common set of security research priorities. One significant conclusion of the first workshop was that progress in a broad spectrum of DOE-relevant security problems and applications could best be addressed through public-key cryptography based systems, and therefore depended upon the existence of a robust, broadly deployed public-key infrastructure. Hence, public-key infrastructure ({open_quotes}PKI{close_quotes}) was adopted as a primary focus for the second workshop. The Second Joint Workshop covered a range of DOE security research and deployment efforts, as well as summaries of the state of the art in various areas relating to public-key technologies. Key findings were that a broad range of DOE applications can benefit from security architectures and technologies built on a robust, flexible, widely deployed public-key infrastructure; that there exists a collection of specific requirements for missing or undeveloped PKI functionality, together with a preliminary assessment of how these requirements can be met; that, while commercial developments can be expected to provide many relevant security technologies, there are important capabilities that commercial developments will not address, due to the unique scale, performance, diversity, distributed nature, and sensitivity of DOE applications; that DOE should encourage and support research activities intended to increase understanding of security technology requirements, and to develop critical components not forthcoming from other sources in a timely manner.

  4. Video encryption using chaotic masks in joint transform correlator

    NASA Astrophysics Data System (ADS)

    Saini, Nirmala; Sinha, Aloka

    2015-03-01

    A real-time optical video encryption technique using a chaotic map has been reported. In the proposed technique, each frame of video is encrypted using two different chaotic random phase masks in the joint transform correlator architecture. The different chaotic random phase masks can be obtained either by using different iteration levels or by using different seed values of the chaotic map. The use of different chaotic random phase masks makes the decryption process very complex for an unauthorized person. Optical, as well as digital, methods can be used for video encryption but the decryption is possible only digitally. To further enhance the security of the system, the key parameters of the chaotic map are encoded using RSA (Rivest-Shamir-Adleman) public key encryption. Numerical simulations are carried out to validate the proposed technique.

  5. Number Theory and Public-Key Cryptography.

    ERIC Educational Resources Information Center

    Lefton, Phyllis

    1991-01-01

    Described are activities in the study of techniques used to conceal the meanings of messages and data. Some background information and two BASIC programs that illustrate the algorithms used in a new cryptographic system called "public-key cryptography" are included. (CW)

  6. Compressive Optical Image Encryption

    PubMed Central

    Li, Jun; Sheng Li, Jiao; Yang Pan, Yang; Li, Rong

    2015-01-01

    An optical image encryption technique based on compressive sensing using fully optical means has been proposed. An object image is first encrypted to a white-sense stationary noise pattern using a double random phase encoding (DRPE) method in a Mach-Zehnder interferometer. Then, the encrypted image is highly compressed to a signal using single-pixel compressive holographic imaging in the optical domain. At the receiving terminal, the encrypted image is reconstructed well via compressive sensing theory, and the original image can be decrypted with three reconstructed holograms and the correct keys. The numerical simulations show that the method is effective and suitable for optical image security transmission in future all-optical networks because of the ability of completely optical implementation and substantially smaller hologram data volume. PMID:25992946

  7. Compressive Optical Image Encryption

    NASA Astrophysics Data System (ADS)

    Li, Jun; Sheng Li, Jiao; Yang Pan, Yang; Li, Rong

    2015-05-01

    An optical image encryption technique based on compressive sensing using fully optical means has been proposed. An object image is first encrypted to a white-sense stationary noise pattern using a double random phase encoding (DRPE) method in a Mach-Zehnder interferometer. Then, the encrypted image is highly compressed to a signal using single-pixel compressive holographic imaging in the optical domain. At the receiving terminal, the encrypted image is reconstructed well via compressive sensing theory, and the original image can be decrypted with three reconstructed holograms and the correct keys. The numerical simulations show that the method is effective and suitable for optical image security transmission in future all-optical networks because of the ability of completely optical implementation and substantially smaller hologram data volume.

  8. Arithmetic for Public-Key Cryptography

    NASA Astrophysics Data System (ADS)

    Sakiyama, Kazuo; Batina, Lejla

    In this chapter, we discuss arithmetic algorithms used for implementing public-key cryptography (PKC). More precisely, we explore the various algorithms for RSA exponentiation and point/divisor multiplication for curve-based cryptography. The selection of the algorithms has a profound impact on the trade-off between cost, performance, and security. The goal of this chapter is to introduce the different recoding techniques to reduce the number of computations efficiently.

  9. PEM public key certificate cache server

    NASA Astrophysics Data System (ADS)

    Cheung, T.

    1993-12-01

    Privacy Enhanced Mail (PEM) provides privacy enhancement services to users of Internet electronic mail. Confidentiality, authentication, message integrity, and non-repudiation of origin are provided by applying cryptographic measures to messages transferred between end systems by the Message Transfer System. PEM supports both symmetric and asymmetric key distribution. However, the prevalent implementation uses a public key certificate-based strategy, modeled after the X.509 directory authentication framework. This scheme provides an infrastructure compatible with X.509. According to RFC 1422, public key certificates can be stored in directory servers, transmitted via non-secure message exchanges, or distributed via other means. Directory services provide a specialized distributed database for OSI applications. The directory contains information about objects and then provides structured mechanisms for accessing that information. Since directory services are not widely available now, a good approach is to manage certificates in a centralized certificate server. This document describes the detailed design of a centralized certificate cache serve. This server manages a cache of certificates and a cache of Certificate Revocation Lists (CRL's) for PEM applications. PEMapplications contact the server to obtain/store certificates and CRL's. The server software is programmed in C and ELROS. To use this server, ISODE has to be configured and installed properly. The ISODE library 'libisode.a' has to be linked together with this library because ELROS uses the transport layer functions provided by 'libisode.a.' The X.500 DAP library that is included with the ELROS distribution has to be linked in also, since the server uses the DAP library functions to communicate with directory servers.

  10. Low-Power Public Key Cryptography

    SciTech Connect

    BEAVER,CHERYL L.; DRAELOS,TIMOTHY J.; HAMILTON,VICTORIA A.; SCHROEPPEL,RICHARD C.; GONZALES,RITA A.; MILLER,RUSSELL D.; THOMAS,EDWARD V.

    2000-11-01

    This report presents research on public key, digital signature algorithms for cryptographic authentication in low-powered, low-computation environments. We assessed algorithms for suitability based on their signature size, and computation and storage requirements. We evaluated a variety of general purpose and special purpose computing platforms to address issues such as memory, voltage requirements, and special functionality for low-powered applications. In addition, we examined custom design platforms. We found that a custom design offers the most flexibility and can be optimized for specific algorithms. Furthermore, the entire platform can exist on a single Application Specific Integrated Circuit (ASIC) or can be integrated with commercially available components to produce the desired computing platform.

  11. Optical image encryption in phase space

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Xu, Xiaobin; Situ, Guohai; Wu, Quanying

    2014-11-01

    In the field of optical information security, the research of double random phase encoding is becoming deeper with each passing day, however the encryption system is linear, and the dependencies between plaintext and ciphertext is not complicated, with leaving a great hidden danger to the security of the encryption system. In this paper, we encrypted the higher dimensional Wigner distribution function of low dimensional plaintext by using the bilinear property of Wigner distribution function. Computer simulation results show that this method can not only enlarge the key space, but also break through the linear characteristic of the traditional optical encryption technology. So it can significantly improve the safety of the encryption system.

  12. Private predictive analysis on encrypted medical data.

    PubMed

    Bos, Joppe W; Lauter, Kristin; Naehrig, Michael

    2014-08-01

    Increasingly, confidential medical records are being stored in data centers hosted by hospitals or large companies. As sophisticated algorithms for predictive analysis on medical data continue to be developed, it is likely that, in the future, more and more computation will be done on private patient data. While encryption provides a tool for assuring the privacy of medical information, it limits the functionality for operating on such data. Conventional encryption methods used today provide only very restricted possibilities or none at all to operate on encrypted data without decrypting it first. Homomorphic encryption provides a tool for handling such computations on encrypted data, without decrypting the data, and without even needing the decryption key. In this paper, we discuss possible application scenarios for homomorphic encryption in order to ensure privacy of sensitive medical data. We describe how to privately conduct predictive analysis tasks on encrypted data using homomorphic encryption. As a proof of concept, we present a working implementation of a prediction service running in the cloud (hosted on Microsoft's Windows Azure), which takes as input private encrypted health data, and returns the probability for suffering cardiovascular disease in encrypted form. Since the cloud service uses homomorphic encryption, it makes this prediction while handling only encrypted data, learning nothing about the submitted confidential medical data.

  13. Privacy-preserving photo sharing based on a public key infrastructure

    NASA Astrophysics Data System (ADS)

    Yuan, Lin; McNally, David; Küpçü, Alptekin; Ebrahimi, Touradj

    2015-09-01

    A significant number of pictures are posted to social media sites or exchanged through instant messaging and cloud-based sharing services. Most social media services offer a range of access control mechanisms to protect users privacy. As it is not in the best interest of many such services if their users restrict access to their shared pictures, most services keep users' photos unprotected which makes them available to all insiders. This paper presents an architecture for a privacy-preserving photo sharing based on an image scrambling scheme and a public key infrastructure. A secure JPEG scrambling is applied to protect regional visual information in photos. Protected images are still compatible with JPEG coding and therefore can be viewed by any one on any device. However, only those who are granted secret keys will be able to descramble the photos and view their original versions. The proposed architecture applies an attribute-based encryption along with conventional public key cryptography, to achieve secure transmission of secret keys and a fine-grained control over who may view shared photos. In addition, we demonstrate the practical feasibility of the proposed photo sharing architecture with a prototype mobile application, ProShare, which is built based on iOS platform.

  14. Quantum computing on encrypted data.

    PubMed

    Fisher, K A G; Broadbent, A; Shalm, L K; Yan, Z; Lavoie, J; Prevedel, R; Jennewein, T; Resch, K J

    2014-01-01

    The ability to perform computations on encrypted data is a powerful tool for protecting privacy. Recently, protocols to achieve this on classical computing systems have been found. Here, we present an efficient solution to the quantum analogue of this problem that enables arbitrary quantum computations to be carried out on encrypted quantum data. We prove that an untrusted server can implement a universal set of quantum gates on encrypted quantum bits (qubits) without learning any information about the inputs, while the client, knowing the decryption key, can easily decrypt the results of the computation. We experimentally demonstrate, using single photons and linear optics, the encryption and decryption scheme on a set of gates sufficient for arbitrary quantum computations. As our protocol requires few extra resources compared with other schemes it can be easily incorporated into the design of future quantum servers. These results will play a key role in enabling the development of secure distributed quantum systems.

  15. Optical encryption in spatially-incoherent light using two LC SLMs for both information input and encryption element imaging

    NASA Astrophysics Data System (ADS)

    Bondareva, Alyona P.; Cheremkhin, Pavel A.; Evtikhiev, Nikolay N.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Starikov, Sergey N.

    2014-10-01

    At present time methods of optical encryption are actively developed. The majority of existing methods of optical encryption use not only light intensity distribution, easily registered with photosensors, but also its phase distribution which require application of complex holographic schemes in conjunction with spatially coherent monochromatic illumination. This leads to complex optical schemes and low decryption quality. To eliminate these disadvantages it is possible to implement optical encryption using spatially incoherent monochromatic illumination which requires registration of light intensity distribution only. Encryption is accomplished by means of optical convolution of image of scene to be encrypted and encryption diffractive optical element (DOE) point spread function (PSF) which serves as encryption key. Encryption process is described as follows. Scene is illuminated with spatially-incoherent monochromatic light. In the absence of encryption DOE lens forms image of scene in photosensor plane. DOE serves as encryption element, its PSF - encryption key. Light passing through DOE forms convolution of object image and DOE PSF. Registered by photosensor convolution is encrypted image. Decryption was conducted numerically on computer by means of inverse filtration with regularization. Kinoforms were used as encryption DOE because they have single diffraction order. Two liquid crystal (LC) spatial light modulators (SLM) were used to implement dynamic digital information input and dynamic encryption key change. As input scene amplitude LC SLM HoloEye LC2002 with 800×600 pixels 32×32 μm2 and 256 gray levels was used. To image synthesized encryption kinoforms phase LC SLM HoloEye PLUTO VIS with 1920×1080 pixels 8×8 μm2 and 256 phase levels was used. Set of test images was successfully optically encrypted and then numerically decrypted. Encrypted images contents are hidden. Decrypted images despite quite high noise levels are positively recognizable

  16. Optical encryption in single shot digital holography

    NASA Astrophysics Data System (ADS)

    Lin, Ching-Yang; Chen, Gu-Liang; Kuo, Ming-Kuei; Chang, Chi-Ching; Yau, Hon-Fai

    2007-09-01

    We propose a novel optical encryption approach using a lenticular lens array (LLA) as a deterministic phase modulator and the single-shot digital holographic scheme. In the proposed scheme, the input amplitude image is encrypted and interferes with the reference wave phase, which is modulated by a LLA, then recorded holographically by a digital CCD camera to form an encrypted hologram. A decryption key is obtained from the key hologram using numerical reconstruction. The image is decrypted using a digital holographic approach after which the encrypted hologram is multiplying the numerical reconstructed key for decryption. The experimental results show that only an encrypted hologram is needed. Moreover with this approach, the decryption procedure can be rapidly accomplished using a personal computer, presenting a decrypted image of satisfactory image quality. Finally the selective sensitivity of the key rotation is also investigated.

  17. Dual encryption scheme of images using polarized light.

    PubMed

    Alfalou, A; Brosseau, C

    2010-07-01

    We propose and analyze a dual encryption/decryption scheme, motivated by recent interest in polarization encoding. Compared to standard optical encryption methods, which are based on phase and amplitude manipulation, this encryption procedure relying on Mueller-Stokes formalism provides large flexibility in the key encryption design. The effectiveness of our algorithm is discussed, thanks to a numerical simulation of the polarization encryption/decryption procedure of a 256 gray-level image. Of additional special interest is the immunity of this encryption algorithm to brute force attacks.

  18. Novel Image Encryption based on Quantum Walks

    PubMed Central

    Yang, Yu-Guang; Pan, Qing-Xiang; Sun, Si-Jia; Xu, Peng

    2015-01-01

    Quantum computation has achieved a tremendous success during the last decades. In this paper, we investigate the potential application of a famous quantum computation model, i.e., quantum walks (QW) in image encryption. It is found that QW can serve as an excellent key generator thanks to its inherent nonlinear chaotic dynamic behavior. Furthermore, we construct a novel QW-based image encryption algorithm. Simulations and performance comparisons show that the proposal is secure enough for image encryption and outperforms prior works. It also opens the door towards introducing quantum computation into image encryption and promotes the convergence between quantum computation and image processing. PMID:25586889

  19. Physical-layer encryption on the public internet: A stochastic approach to the Kish-Sethuraman cipher

    NASA Astrophysics Data System (ADS)

    Gunn, Lachlan J.; Chappell, James M.; Allison, Andrew; Abbott, Derek

    2014-09-01

    While information-theoretic security is often associated with the one-time pad and quantum key distribution, noisy transport media leave room for classical techniques and even covert operation. Transit times across the public internet exhibit a degree of randomness, and cannot be determined noiselessly by an eavesdropper. We demonstrate the use of these measurements for information-theoretically secure communication over the public internet.

  20. Development of a public key infrastructure across multiple enterprises

    SciTech Connect

    Sharick, T.M.; Long, J.P.; Desind, B.J.

    1997-05-01

    Main-stream applications are beginning to incorporate public key cryptography. It can be difficult to deploy this technology without a robust infrastructure to support it. It can also be difficult to deploy a public key infrastructure among multiple enterprises when different applications and standards must be supported. This discussion chronicles the efforts by a team within the US Department of Energy`s Nuclear Weapons Complex to build a public key infrastructure and deploy applications that use it. The emphasis of this talk will be on the lessons learned during this effort and an assessment of the overall impact of this technology.

  1. Partially Key Distribution with Public Key Cryptosystem Based on Error Control Codes

    NASA Astrophysics Data System (ADS)

    Tavallaei, Saeed Ebadi; Falahati, Abolfazl

    Due to the low level of security in public key cryptosystems based on number theory, fundamental difficulties such as "key escrow" in Public Key Infrastructure (PKI) and a secure channel in ID-based cryptography, a new key distribution cryptosystem based on Error Control Codes (ECC) is proposed . This idea is done by some modification on McEliece cryptosystem. The security of ECC cryptosystem obtains from the NP-Completeness of block codes decoding. The capability of generating public keys with variable lengths which is suitable for different applications will be provided by using ECC. It seems that usage of these cryptosystems because of decreasing in the security of cryptosystems based on number theory and increasing the lengths of their keys would be unavoidable in future.

  2. Optical image encryption topology.

    PubMed

    Yong-Liang, Xiao; Xin, Zhou; Qiong-Hua, Wang; Sheng, Yuan; Yao-Yao, Chen

    2009-10-15

    Optical image encryption topology is proposed based on the principle of random-phase encoding. Various encryption topological units, involving peer-to-peer, ring, star, and tree topologies, can be realized by an optical 6f system. These topological units can be interconnected to constitute an optical image encryption network. The encryption and decryption can be performed in both digital and optical methods.

  3. A Public-Key Based Authentication and Key Establishment Protocol Coupled with a Client Puzzle.

    ERIC Educational Resources Information Center

    Lee, M. C.; Fung, Chun-Kan

    2003-01-01

    Discusses network denial-of-service attacks which have become a security threat to the Internet community and suggests the need for reliable authentication protocols in client-server applications. Presents a public-key based authentication and key establishment protocol coupled with a client puzzle protocol and validates it through formal logic…

  4. Group key management

    SciTech Connect

    Dunigan, T.; Cao, C.

    1997-08-01

    This report describes an architecture and implementation for doing group key management over a data communications network. The architecture describes a protocol for establishing a shared encryption key among an authenticated and authorized collection of network entities. Group access requires one or more authorization certificates. The implementation includes a simple public key and certificate infrastructure. Multicast is used for some of the key management messages. An application programming interface multiplexes key management and user application messages. An implementation using the new IP security protocols is postulated. The architecture is compared with other group key management proposals, and the performance and the limitations of the implementation are described.

  5. An Efficient and Provable Secure Revocable Identity-Based Encryption Scheme

    PubMed Central

    Wang, Changji; Li, Yuan; Xia, Xiaonan; Zheng, Kangjia

    2014-01-01

    Revocation functionality is necessary and crucial to identity-based cryptosystems. Revocable identity-based encryption (RIBE) has attracted a lot of attention in recent years, many RIBE schemes have been proposed in the literature but shown to be either insecure or inefficient. In this paper, we propose a new scalable RIBE scheme with decryption key exposure resilience by combining Lewko and Waters’ identity-based encryption scheme and complete subtree method, and prove our RIBE scheme to be semantically secure using dual system encryption methodology. Compared to existing scalable and semantically secure RIBE schemes, our proposed RIBE scheme is more efficient in term of ciphertext size, public parameters size and decryption cost at price of a little looser security reduction. To the best of our knowledge, this is the first construction of scalable and semantically secure RIBE scheme with constant size public system parameters. PMID:25238418

  6. An investigation of DUA caching strategies for public key certificates

    SciTech Connect

    Cheung, T.C.

    1993-11-01

    Internet Privacy Enhanced Mail (PEM) provides security services to users of Internet electronic mail. PEM is designed with the intention that it will eventually obtain public key certificates from the X.500 directory service. However, such a capability is not present in most PEM implementations today. While the prevalent PEM implementation uses a public key certificate-based strategy, certificates are mostly distributed via e-mail exchanges, which raises several security and performance issues. In this thesis research, we changed the reference PEM implementation to make use of the X.500 directory service instead of local databases for public key certificate management. The thesis discusses some problems with using the X.500 directory service, explores the relevant issues, and develops an approach to address them. The approach makes use of a memory cache to store public key certificates. We implemented a centralized cache server and addressed the denial-of-service security problem that is present in the server. In designing the cache, we investigated several cache management strategies. One result of our study is that the use of a cache significantly improves performance. Our research also indicates that security incurs extra performance cost. Different cache replacement algorithms do not seem to yield significant performance differences, while delaying dirty-writes to the backing store does improve performance over immediate writes.

  7. Public Expenditures on Children through 2008: Key Facts

    ERIC Educational Resources Information Center

    Macomber, Jennifer; Isaacs, Julia; Kent, Adam; Vericker, Tracy

    2010-01-01

    This report provides the key findings on the public spending on children through 2008. They are: (1) Spending on children increased under the American Recovery and Reinvestment Act (ARRA) and other stimulus spending, but not proportionately to other federal spending. As ARRA expires, we project that spending on children will decline, assuming no…

  8. Public-key management in mobile ad hoc networks

    NASA Astrophysics Data System (ADS)

    Lin, Haifeng; Jiang, Anna; Bai, Di; Liu, Yunfei

    A mobile ad hoc network is a new type of wireless networking paradigm which, in general, consists of solely mobile hosts and dispenses with infrastructure. One main challenge in design of mobile ad hoc networks is the vulnerability to security attacks. Without physical boundaries, a mobile ad hoc network faces many more security threats than a wired network does. Therefore the security of mobile ad hoc networks is one of the major research interests in wireless communications. In contrast with conventional networks, public key management protocols of mobile ad hoc networks do not based on infrastructures, where we can use trusted third parties or centralized servers for key management. This is because that the topology of mobile ad hoc networks is unknown due to link and node failures and to node mobility. For these factors, traditional key management solutions which require on-line trusted authorities or certificate authorities are not suitable for securing mobile ad hoc networks. In this report, we first review some existed public-key management protocols for mobile ad hoc networks and after that we propose a fully distributed public -key management model which does not need the third trusted authority.

  9. Joint reversible data hiding and image encryption

    NASA Astrophysics Data System (ADS)

    Yang, Bian; Busch, Christoph; Niu, Xiamu

    2010-01-01

    Image encryption process is jointed with reversible data hiding in this paper, where the data to be hided are modulated by different secret keys selected for encryption. To extract the hided data from the cipher-text, the different tentative decrypted results are tested against typical random distribution in both spatial and frequency domain and the goodnessof- fit degrees are compared to extract one hided bit. The encryption based data hiding process is inherently reversible. Experiments demonstrate the proposed scheme's effectiveness on natural and textural images, both in gray-level and binary forms.

  10. Digital Image Encryption Scheme Based on Multiple Chaotic Systems

    NASA Astrophysics Data System (ADS)

    Abd El-Latif, Ahmed A.; Li, Li; Zhang, Tiejun; Wang, Ning; Song, Xianhua; Niu, Xiamu

    2012-06-01

    Image encryption is a challenging task due to the significant level of sophistication achieved by forgerers and other cybercriminals. Advanced encryption methods for secure transmission, storage, and retrieval of digital images are increasingly needed for a number of military, medical, homeland security, and other applications. In this paper, we introduce a new digital image encryption algorithm. The new algorithm employs multiple chaotic systems and cryptographic primitive operations within the encryption process, which are efficiently implemented on modern processors, and adopts round keys for encryption using a chaotic map. Experiments conducted show that the proposed algorithm possesses robust security features such as fairly uniform distribution, high sensitivity to both keys and plainimages, almost ideal entropy, and the ability to highly de-correlate adjacent pixels in the cipherimages. Furthermore, it has a large key space, which greatly increases its security for image encryption applications.

  11. GENERAL: Efficient quantum secure communication with a publicly known key

    NASA Astrophysics Data System (ADS)

    Li, Chun-Yan; Li, Xi-Han; Deng, Fu-Guo; Zhou, Hong-Yu

    2008-07-01

    This paper presents a simple way for an eavesdropper to eavesdrop freely the secret message in the experimental realization of quantum communication protocol proposed by Beige et al (2002 Acta Phys. Pol. A 101 357). Moreover, it introduces an efficient quantum secure communication protocol based on a publicly known key with decoy photons and two biased bases by modifying the original protocol. The total efficiency of this new protocol is double that of the original one. With a low noise quantum channel, this protocol can be used for transmitting a secret message. At present, this protocol is good for generating a private key efficiently.

  12. An application of different dioids in public key cryptography

    SciTech Connect

    Durcheva, Mariana I.

    2014-11-18

    Dioids provide a natural framework for analyzing a broad class of discrete event dynamical systems such as the design and analysis of bus and railway timetables, scheduling of high-throughput industrial processes, solution of combinatorial optimization problems, the analysis and improvement of flow systems in communication networks. They have appeared in several branches of mathematics such as functional analysis, optimization, stochastic systems and dynamic programming, tropical geometry, fuzzy logic. In this paper we show how to involve dioids in public key cryptography. The main goal is to create key – exchange protocols based on dioids. Additionally the digital signature scheme is presented.

  13. Key-phrase based classification of public health web pages.

    PubMed

    Dolamic, Ljiljana; Boyer, Célia

    2013-01-01

    This paper describes and evaluates the public health web pages classification model based on key phrase extraction and matching. Easily extendible both in terms of new classes as well as the new language this method proves to be a good solution for text classification faced with the total lack of training data. To evaluate the proposed solution we have used a small collection of public health related web pages created by a double blind manual classification. Our experiments have shown that by choosing the adequate threshold value the desired value for either precision or recall can be achieved.

  14. Optical design of cipher block chaining (CBC) encryption mode by using digital holography

    NASA Astrophysics Data System (ADS)

    Gil, Sang Keun; Jeon, Seok Hee; Jung, Jong Rae; Kim, Nam

    2016-03-01

    We propose an optical design of cipher block chaining (CBC) encryption by using digital holographic technique, which has higher security than the conventional electronic method because of the analog-type randomized cipher text with 2-D array. In this paper, an optical design of CBC encryption mode is implemented by 2-step quadrature phase-shifting digital holographic encryption technique using orthogonal polarization. A block of plain text is encrypted with the encryption key by applying 2-step phase-shifting digital holography, and it is changed into cipher text blocks which are digital holograms. These ciphered digital holograms with the encrypted information are Fourier transform holograms and are recorded on CCDs with 256 gray levels quantized intensities. The decryption is computed by these encrypted digital holograms of cipher texts, the same encryption key and the previous cipher text. Results of computer simulations are presented to verify that the proposed method shows the feasibility in the high secure CBC encryption system.

  15. A Survey of Research Progress and Development Tendency of Attribute-Based Encryption

    PubMed Central

    Pang, Liaojun; Yang, Jie; Jiang, Zhengtao

    2014-01-01

    With the development of cryptography, the attribute-based encryption (ABE) draws widespread attention of the researchers in recent years. The ABE scheme, which belongs to the public key encryption mechanism, takes attributes as public key and associates them with the ciphertext or the user's secret key. It is an efficient way to solve open problems in access control scenarios, for example, how to provide data confidentiality and expressive access control at the same time. In this paper, we survey the basic ABE scheme and its two variants: the key-policy ABE (KP-ABE) scheme and the ciphertext-policy ABE (CP-ABE) scheme. We also pay attention to other researches relating to the ABE schemes, including multiauthority, user/attribute revocation, accountability, and proxy reencryption, with an extensive comparison of their functionality and performance. Finally, possible future works and some conclusions are pointed out. PMID:25101313

  16. Report on the Development of the Advanced Encryption Standard (AES).

    PubMed

    Nechvatal, J; Barker, E; Bassham, L; Burr, W; Dworkin, M; Foti, J; Roback, E

    2001-01-01

    In 1997, the National Institute of Standards and Technology (NIST) initiated a process to select a symmetric-key encryption algorithm to be used to protect sensitive (unclassified) Federal information in furtherance of NIST's statutory responsibilities. In 1998, NIST announced the acceptance of 15 candidate algorithms and requested the assistance of the cryptographic research community in analyzing the candidates. This analysis included an initial examination of the security and efficiency characteristics for each algorithm. NIST reviewed the results of this preliminary research and selected MARS, RC™, Rijndael, Serpent and Twofish as finalists. Having reviewed further public analysis of the finalists, NIST has decided to propose Rijndael as the Advanced Encryption Standard (AES). The research results and rationale for this selection are documented in this report. PMID:27500035

  17. Multiply-agile encryption in high speed communication networks

    SciTech Connect

    Pierson, L.G.; Witzke, E.L.

    1997-05-01

    Different applications have different security requirements for data privacy, data integrity, and authentication. Encryption is one technique that addresses these requirements. Encryption hardware, designed for use in high-speed communications networks, can satisfy a wide variety of security requirements if that hardware is key-agile, robustness-agile and algorithm-agile. Hence, multiply-agile encryption provides enhanced solutions to the secrecy, interoperability and quality of service issues in high-speed networks. This paper defines these three types of agile encryption. Next, implementation issues are discussed. While single-algorithm, key-agile encryptors exist, robustness-agile and algorithm-agile encryptors are still research topics.

  18. A high performance hardware implementation image encryption with AES algorithm

    NASA Astrophysics Data System (ADS)

    Farmani, Ali; Jafari, Mohamad; Miremadi, Seyed Sohrab

    2011-06-01

    This paper describes implementation of a high-speed encryption algorithm with high throughput for encrypting the image. Therefore, we select a highly secured symmetric key encryption algorithm AES(Advanced Encryption Standard), in order to increase the speed and throughput using pipeline technique in four stages, control unit based on logic gates, optimal design of multiplier blocks in mixcolumn phase and simultaneous production keys and rounds. Such procedure makes AES suitable for fast image encryption. Implementation of a 128-bit AES on FPGA of Altra company has been done and the results are as follow: throughput, 6 Gbps in 471MHz. The time of encrypting in tested image with 32*32 size is 1.15ms.

  19. A quantum approach to homomorphic encryption

    PubMed Central

    Tan, Si-Hui; Kettlewell, Joshua A.; Ouyang, Yingkai; Chen, Lin; Fitzsimons, Joseph F.

    2016-01-01

    Encryption schemes often derive their power from the properties of the underlying algebra on the symbols used. Inspired by group theoretic tools, we use the centralizer of a subgroup of operations to present a private-key quantum homomorphic encryption scheme that enables a broad class of quantum computation on encrypted data. The quantum data is encoded on bosons of distinct species in distinct spatial modes, and the quantum computations are manipulations of these bosons in a manner independent of their species. A particular instance of our encoding hides up to a constant fraction of the information encrypted. This fraction can be made arbitrarily close to unity with overhead scaling only polynomially in the message length. This highlights the potential of our protocol to hide a non-trivial amount of information, and is suggestive of a large class of encodings that might yield better security. PMID:27658349

  20. Compressive sensing based ptychography image encryption

    NASA Astrophysics Data System (ADS)

    Rawat, Nitin

    2015-09-01

    A compressive sensing (CS) based ptychography combined with an optical image encryption is proposed. The diffraction pattern is recorded through ptychography technique further compressed by non-uniform sampling via CS framework. The system requires much less encrypted data and provides high security. The diffraction pattern as well as the lesser measurements of the encrypted samples serves as a secret key which make the intruder attacks more difficult. Furthermore, CS shows that the linearly projected few random samples have adequate information for decryption with a dramatic volume reduction. Experimental results validate the feasibility and effectiveness of our proposed technique compared with the existing techniques. The retrieved images do not reveal any information with the original information. In addition, the proposed system can be robust even with partial encryption and under brute-force attacks.

  1. A quantum approach to homomorphic encryption

    NASA Astrophysics Data System (ADS)

    Tan, Si-Hui; Kettlewell, Joshua A.; Ouyang, Yingkai; Chen, Lin; Fitzsimons, Joseph F.

    2016-09-01

    Encryption schemes often derive their power from the properties of the underlying algebra on the symbols used. Inspired by group theoretic tools, we use the centralizer of a subgroup of operations to present a private-key quantum homomorphic encryption scheme that enables a broad class of quantum computation on encrypted data. The quantum data is encoded on bosons of distinct species in distinct spatial modes, and the quantum computations are manipulations of these bosons in a manner independent of their species. A particular instance of our encoding hides up to a constant fraction of the information encrypted. This fraction can be made arbitrarily close to unity with overhead scaling only polynomially in the message length. This highlights the potential of our protocol to hide a non-trivial amount of information, and is suggestive of a large class of encodings that might yield better security.

  2. Attribute-Based Proxy Re-Encryption with Keyword Search

    PubMed Central

    Shi, Yanfeng; Liu, Jiqiang; Han, Zhen; Zheng, Qingji; Zhang, Rui; Qiu, Shuo

    2014-01-01

    Keyword search on encrypted data allows one to issue the search token and conduct search operations on encrypted data while still preserving keyword privacy. In the present paper, we consider the keyword search problem further and introduce a novel notion called attribute-based proxy re-encryption with keyword search (), which introduces a promising feature: In addition to supporting keyword search on encrypted data, it enables data owners to delegate the keyword search capability to some other data users complying with the specific access control policy. To be specific, allows (i) the data owner to outsource his encrypted data to the cloud and then ask the cloud to conduct keyword search on outsourced encrypted data with the given search token, and (ii) the data owner to delegate other data users keyword search capability in the fine-grained access control manner through allowing the cloud to re-encrypted stored encrypted data with a re-encrypted data (embedding with some form of access control policy). We formalize the syntax and security definitions for , and propose two concrete constructions for : key-policy and ciphertext-policy . In the nutshell, our constructions can be treated as the integration of technologies in the fields of attribute-based cryptography and proxy re-encryption cryptography. PMID:25549257

  3. Attribute-based proxy re-encryption with keyword search.

    PubMed

    Shi, Yanfeng; Liu, Jiqiang; Han, Zhen; Zheng, Qingji; Zhang, Rui; Qiu, Shuo

    2014-01-01

    Keyword search on encrypted data allows one to issue the search token and conduct search operations on encrypted data while still preserving keyword privacy. In the present paper, we consider the keyword search problem further and introduce a novel notion called attribute-based proxy re-encryption with keyword search (ABRKS), which introduces a promising feature: In addition to supporting keyword search on encrypted data, it enables data owners to delegate the keyword search capability to some other data users complying with the specific access control policy. To be specific, ABRKS allows (i) the data owner to outsource his encrypted data to the cloud and then ask the cloud to conduct keyword search on outsourced encrypted data with the given search token, and (ii) the data owner to delegate other data users keyword search capability in the fine-grained access control manner through allowing the cloud to re-encrypted stored encrypted data with a re-encrypted data (embedding with some form of access control policy). We formalize the syntax and security definitions for ABRKS, and propose two concrete constructions for ABRKS: key-policy ABRKS and ciphertext-policy ABRKS. In the nutshell, our constructions can be treated as the integration of technologies in the fields of attribute-based cryptography and proxy re-encryption cryptography.

  4. Attribute-based proxy re-encryption with keyword search.

    PubMed

    Shi, Yanfeng; Liu, Jiqiang; Han, Zhen; Zheng, Qingji; Zhang, Rui; Qiu, Shuo

    2014-01-01

    Keyword search on encrypted data allows one to issue the search token and conduct search operations on encrypted data while still preserving keyword privacy. In the present paper, we consider the keyword search problem further and introduce a novel notion called attribute-based proxy re-encryption with keyword search (ABRKS), which introduces a promising feature: In addition to supporting keyword search on encrypted data, it enables data owners to delegate the keyword search capability to some other data users complying with the specific access control policy. To be specific, ABRKS allows (i) the data owner to outsource his encrypted data to the cloud and then ask the cloud to conduct keyword search on outsourced encrypted data with the given search token, and (ii) the data owner to delegate other data users keyword search capability in the fine-grained access control manner through allowing the cloud to re-encrypted stored encrypted data with a re-encrypted data (embedding with some form of access control policy). We formalize the syntax and security definitions for ABRKS, and propose two concrete constructions for ABRKS: key-policy ABRKS and ciphertext-policy ABRKS. In the nutshell, our constructions can be treated as the integration of technologies in the fields of attribute-based cryptography and proxy re-encryption cryptography. PMID:25549257

  5. 75 FR 20364 - Public Buildings Service; Key Largo Beacon Annex Site; Key Largo, FL; Transfer of Property

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-19

    ... From the Federal Register Online via the Government Publishing Office GENERAL SERVICES ADMINISTRATION Public Buildings Service; Key Largo Beacon Annex Site; Key Largo, FL; Transfer of Property..., identified as Key Largo Beacon Annex Site, Key Largo, FL to the U.S. Fish and Wildlife Service, Department...

  6. Three-dimensional information encryption and anticounterfeiting using digital holography.

    PubMed

    Shiu, Min-Tzung; Chew, Yang-Kun; Chan, Huang-Tian; Wong, Xin-Yu; Chang, Chi-Ching

    2015-01-01

    In this work, arbitrary micro phase-step digital holography with optical interferometry and digital image processing is utilized to obtain information about an image of a three-dimensional object and encrypting keys. Then, a computer-generated hologram is used for the purpose of holographic encryption. All information about the keys is required to perform the decryption, comprising the amplitude and phase distribution of the encrypting key, the distance of image reconstruction, zero-order term elimination, and twin-image term suppression. In addition to using identifiable information on different image planes and linear superposition processing hidden within the encrypted information, not only can we convey an important message, but we can also achieve anticounterfeiting. This approach retains the strictness of traditional holographic encryption and the convenience of digital holographic processing without image distortion. Therefore, this method provides better solutions to earlier methods for the security of the transmission of holographic information.

  7. Public key cryptosystem based on max-semirings

    NASA Astrophysics Data System (ADS)

    Durcheva, Mariana I.; Trendafilov, Ivan D.

    2012-11-01

    When we replace addition and multiplication of real numbers by the operations of taking the maximum of two numbers and of adding two numbers respectively, we obtain the so-called max-algebra which offers an attractive language to deal with certain problems in automata theory, scheduling theory, discrete event systems, manufacturing systems, telecommunication networks, parallel processing systems and traffic control. The aim of this paper is to employ max-algebra as platforms for secret key establishment between two individuals whose only means of communication is a public channel. The proposed new cryptographic protocols are based on the difficulty of solving matrix equations since matrices over max-semirings are generally not invertible.

  8. The Case for Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Stebila, Douglas; Mosca, Michele; Lütkenhaus, Norbert

    Quantum key distribution (QKD) promises secure key agreement by using quantum mechanical systems. We argue that QKD will be an important part of future cryptographic infrastructures. It can provide long-term confidentiality for encrypted information without reliance on computational assumptions. Although QKD still requires authentication to prevent man-in-the-middle attacks, it can make use of either information-theoretically secure symmetric key authentication or computationally secure public key authentication: even when using public key authentication, we argue that QKD still offers stronger security than classical key agreement.

  9. Optimal Symmetric Ternary Quantum Encryption Schemes

    NASA Astrophysics Data System (ADS)

    Wang, Yu-qi; She, Kun; Huang, Ru-fen; Ouyang, Zhong

    2016-07-01

    In this paper, we present two definitions of the orthogonality and orthogonal rate of an encryption operator, and we provide a verification process for the former. Then, four improved ternary quantum encryption schemes are constructed. Compared with Scheme 1 (see Section 2.3), these four schemes demonstrate significant improvements in term of calculation and execution efficiency. Especially, under the premise of the orthogonal rate ɛ as secure parameter, Scheme 3 (see Section 4.1) shows the highest level of security among them. Through custom interpolation functions, the ternary secret key source, which is composed of the digits 0, 1 and 2, is constructed. Finally, we discuss the security of both the ternary encryption operator and the secret key source, and both of them show a high level of security and high performance in execution efficiency.

  10. All-optical encryption based on interleaved waveband switching modulation for optical network security.

    PubMed

    Fok, Mable P; Prucnal, Paul R

    2009-05-01

    All-optical encryption for optical code-division multiple-access systems with interleaved waveband-switching modulation is experimentally demonstrated. The scheme explores dual-pump four-wave mixing in a 35 cm highly nonlinear bismuth oxide fiber to achieve XOR operation of the plaintext and the encryption key. Bit 0 and bit 1 of the encrypted data are represented by two different wavebands. Unlike on-off keying encryption methods, the encrypted data in this approach has the same intensity for both bit 0 and bit 1. Thus no plaintext or ciphertext signatures are observed.

  11. Double color image encryption using iterative phase retrieval algorithm in quaternion gyrator domain.

    PubMed

    Shao, Zhuhong; Shu, Huazhong; Wu, Jiasong; Dong, Zhifang; Coatrieux, Gouenou; Coatrieux, Jean Louis

    2014-03-10

    This paper describes a novel algorithm to encrypt double color images into a single undistinguishable image in quaternion gyrator domain. By using an iterative phase retrieval algorithm, the phase masks used for encryption are obtained. Subsequently, the encrypted image is generated via cascaded quaternion gyrator transforms with different rotation angles. The parameters in quaternion gyrator transforms and phases serve as encryption keys. By knowing these keys, the original color images can be fully restituted. Numerical simulations have demonstrated the validity of the proposed encryption system as well as its robustness against loss of data and additive Gaussian noise. PMID:24663832

  12. Quantum Image Encryption Algorithm Based on Quantum Image XOR Operations

    NASA Astrophysics Data System (ADS)

    Gong, Li-Hua; He, Xiang-Tao; Cheng, Shan; Hua, Tian-Xiang; Zhou, Nan-Run

    2016-07-01

    A novel encryption algorithm for quantum images based on quantum image XOR operations is designed. The quantum image XOR operations are designed by using the hyper-chaotic sequences generated with the Chen's hyper-chaotic system to control the control-NOT operation, which is used to encode gray-level information. The initial conditions of the Chen's hyper-chaotic system are the keys, which guarantee the security of the proposed quantum image encryption algorithm. Numerical simulations and theoretical analyses demonstrate that the proposed quantum image encryption algorithm has larger key space, higher key sensitivity, stronger resistance of statistical analysis and lower computational complexity than its classical counterparts.

  13. Three-dimensional optical encryption based on ptychography

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Li, Tuo; Wang, Yali; Qiao, Liang; Yang, Xiubo; Shi, Yishi

    2015-10-01

    We propose a novel optical encryption system for three-dimension imaging combined with three-dimension Ptychography. Employing the proposed cryptosystem, a 3D object can be encrypted and decrypted successfully. Compared with the conventional three-dimensional cryptosystem, not only encrypting the pure amplitude 3D object is available, but also the encryption of complex amplitude 3D object is achievable. Considering that the probes overlapping with each other is the crucial factor in ptychography, their complex-amplitude functions can serve as a kind of secret keys that lead to the enlarged key space and the enhanced system security. Varies of simulation results demonstrate that the feasibility and robust of the cryptosystem. Furthermore, the proposed system could also be used for other potential applications, such as three-dimensional information hiding and multiple images encryption.

  14. Sandia Scalable Encryption Software

    1997-08-13

    Sandia Scalable Encryption Library (SSEL) Version 1.0 is a library of functions that implement Sandia''s scalable encryption algorithm. This algorithm is used to encrypt Asynchronous Transfer Mode (ATM) data traffic, and is capable of operating on an arbitrary number of bits at a time (which permits scaling via parallel implementations), while being interoperable with differently scaled versions of this algorithm. The routines in this library implement 8 bit and 32 bit versions of a non-linearmore » mixer which is compatible with Sandia''s hardware-based ATM encryptor.« less

  15. Investigating Encrypted Material

    NASA Astrophysics Data System (ADS)

    McGrath, Niall; Gladyshev, Pavel; Kechadi, Tahar; Carthy, Joe

    When encrypted material is discovered during a digital investigation and the investigator cannot decrypt the material then s/he is faced with the problem of how to determine the evidential value of the material. This research is proposing a methodology of extracting probative value from the encrypted file of a hybrid cryptosystem. The methodology also incorporates a technique for locating the original plaintext file. Since child pornography (KP) images and terrorist related information (TI) are transmitted in encrypted format the digital investigator must ask the question Cui Bono? - who benefits or who is the recipient? By doing this the scope of the digital investigation can be extended to reveal the intended recipient.

  16. A novel image encryption algorithm based on DNA subsequence operation.

    PubMed

    Zhang, Qiang; Xue, Xianglian; Wei, Xiaopeng

    2012-01-01

    We present a novel image encryption algorithm based on DNA subsequence operation. Different from the traditional DNA encryption methods, our algorithm does not use complex biological operation but just uses the idea of DNA subsequence operations (such as elongation operation, truncation operation, deletion operation, etc.) combining with the logistic chaotic map to scramble the location and the value of pixel points from the image. The experimental results and security analysis show that the proposed algorithm is easy to be implemented, can get good encryption effect, has a wide secret key's space, strong sensitivity to secret key, and has the abilities of resisting exhaustive attack and statistic attack.

  17. A DRM based on renewable broadcast encryption

    NASA Astrophysics Data System (ADS)

    Ramkumar, Mahalingam; Memon, Nasir

    2005-07-01

    We propose an architecture for digital rights management based on a renewable, random key pre-distribution (KPD) scheme, HARPS (hashed random preloaded subsets). The proposed architecture caters for broadcast encryption by a trusted authority (TA) and by "parent" devices (devices used by vendors who manufacture compliant devices) for periodic revocation of devices. The KPD also facilitates broadcast encryption by peer devices, which permits peers to distribute content, and efficiently control access to the content encryption secret using subscription secrets. The underlying KPD also caters for broadcast authentication and mutual authentication of any two devices, irrespective of the vendors manufacturing the device, and thus provides a comprehensive solution for securing interactions between devices taking part in a DRM system.

  18. Image encryption using eight dimensional chaotic cat map

    NASA Astrophysics Data System (ADS)

    Ganesan, K.; Murali, K.

    2014-06-01

    In recent years, a large number of discrete chaotic cryptographic algorithms have been proposed. However, most of them encounter some problems such as lack of robustness and security. In this paper, we introduce a new image encryption algorithm based on eight-dimensional (nonlinear) chaotic cat map. Encryption of image is different from that of texts due to some intrinsic features of image such as bulk data capacity and high redundancy, which are generally difficult to handle by traditional methods. In traditional methods the key space is small and the security is weak. The proposed algorithm tries to address these problems and also tries to enhance the encryption speed. In this paper an eight dimensional chaotic cat map is used to encrypt the intensity values of pixels using lookup table method thereby significantly increasing the speed and security of encryption. The proposed algorithm is found to be resistive against chosen/known-plaintext attacks, statistical and differential attacks.

  19. Toward nanoworld-based secure encryption for enduring data storage.

    PubMed

    Grosges, Thomas; Barchiesi, Dominique

    2010-07-15

    The generation of encryption secret keys with a high level of security is crucial to ensure secure enduring data storage and is a challenging topic of investigation. We show that the use of nano-objects and optical response permits us to produce a complex optical tomography map, which can be used as a pseudorandom generator that satisfies the basic requirements for encryption based on the secret key.

  20. Argumentation Key to Communicating Climate Change to the Public

    NASA Astrophysics Data System (ADS)

    Bleicher, R. E.; Lambert, J. L.

    2012-12-01

    Argumentation plays an important role in how we communicate climate change science to the public and is a key component integrated throughout the Next Generation Science Standards. A scientific argument can be described as a disagreement between explanations with data being used to justify each position. Argumentation is social process where two or more individuals construct and critique arguments (Kuhn & Udell, 2003; Nussbaum, 1997). Sampson, Grooms, and Walker's (2011) developed a framework for understanding the components of a scientific argument. The three components start with a claim (a conjecture, conclusion, explanation, or an answer to a research question). This claim must fit the evidence (observations that show trends over time, relationships between variables or difference between groups). The evidence must be justified with reasoning (explains how the evidence supports the explanation and whey it should count as support). In a scientific argument, or debate, the controversy focuses on how data were collected, what data can or should be included, and what inferences can be made based on a set of evidence. Toulmin's model (1969) also includes rebutting or presenting an alternative explanation supported by counter evidence and reasoning of why the alternative is not the appropriate explanation for the question of the problem. The process of scientific argumentation should involve the construction and critique of scientific arguments, one that involves the consideration of alternative hypotheses (Lawson, 2003). Scientific literacy depends as much on the ability to refute and recognize poor scientific arguments as much as it does on the ability to present an effective argument based on good scientific data (Osborne, 2010). Argument is, therefore, a core feature of science. When students learn to construct a sound scientific argument, they demonstrate critical thinking and a mastery of the science being taught. To present a convincing argument in support of

  1. Encryption and the loss of patient data.

    PubMed

    Miller, Amalia R; Tucker, Catherine E

    2011-01-01

    Fast-paced IT advances have made it increasingly possible and useful for firms to collect data on their customers on an unprecedented scale. One downside of this is that firms can experience negative publicity and financial damage if their data are breached. This is particularly the case in the medical sector, where we find empirical evidence that increased digitization of patient data is associated with more data breaches. The encryption of customer data is often presented as a potential solution, because encryption acts as a disincentive for potential malicious hackers, and can minimize the risk of breached data being put to malicious use. However, encryption both requires careful data management policies to be successful and does not ward off the insider threat. Indeed, we find no empirical evidence of a decrease in publicized instances of data loss associated with the use of encryption. Instead, there are actually increases in the cases of publicized data loss due to internal fraud or loss of computer equipment.

  2. Optical image encryption by random shifting in fractional Fourier domains.

    PubMed

    Hennelly, B; Sheridan, J T

    2003-02-15

    A number of methods have recently been proposed in the literature for the encryption of two-dimensional information by use of optical systems based on the fractional Fourier transform. Typically, these methods require random phase screen keys for decrypting the data, which must be stored at the receiver and must be carefully aligned with the received encrypted data. A new technique based on a random shifting, or jigsaw, algorithm is proposed. This method does not require the use of phase keys. The image is encrypted by juxtaposition of sections of the image in fractional Fourier domains. The new method has been compared with existing methods and shows comparable or superior robustness to blind decryption. Optical implementation is discussed, and the sensitivity of the various encryption keys to blind decryption is examined.

  3. On the Security of a Simple Three-Party Key Exchange Protocol without Server's Public Keys

    PubMed Central

    Nam, Junghyun; Choo, Kim-Kwang Raymond; Park, Minkyu; Paik, Juryon; Won, Dongho

    2014-01-01

    Authenticated key exchange protocols are of fundamental importance in securing communications and are now extensively deployed for use in various real-world network applications. In this work, we reveal major previously unpublished security vulnerabilities in the password-based authenticated three-party key exchange protocol according to Lee and Hwang (2010): (1) the Lee-Hwang protocol is susceptible to a man-in-the-middle attack and thus fails to achieve implicit key authentication; (2) the protocol cannot protect clients' passwords against an offline dictionary attack; and (3) the indistinguishability-based security of the protocol can be easily broken even in the presence of a passive adversary. We also propose an improved password-based authenticated three-party key exchange protocol that addresses the security vulnerabilities identified in the Lee-Hwang protocol. PMID:25258723

  4. On the security of a simple three-party key exchange protocol without server's public keys.

    PubMed

    Nam, Junghyun; Choo, Kim-Kwang Raymond; Park, Minkyu; Paik, Juryon; Won, Dongho

    2014-01-01

    Authenticated key exchange protocols are of fundamental importance in securing communications and are now extensively deployed for use in various real-world network applications. In this work, we reveal major previously unpublished security vulnerabilities in the password-based authenticated three-party key exchange protocol according to Lee and Hwang (2010): (1) the Lee-Hwang protocol is susceptible to a man-in-the-middle attack and thus fails to achieve implicit key authentication; (2) the protocol cannot protect clients' passwords against an offline dictionary attack; and (3) the indistinguishability-based security of the protocol can be easily broken even in the presence of a passive adversary. We also propose an improved password-based authenticated three-party key exchange protocol that addresses the security vulnerabilities identified in the Lee-Hwang protocol. PMID:25258723

  5. An image encryption algorithm utilizing julia sets and hilbert curves.

    PubMed

    Sun, Yuanyuan; Chen, Lina; Xu, Rudan; Kong, Ruiqing

    2014-01-01

    Image encryption is an important and effective technique to protect image security. In this paper, a novel image encryption algorithm combining Julia sets and Hilbert curves is proposed. The algorithm utilizes Julia sets' parameters to generate a random sequence as the initial keys and gets the final encryption keys by scrambling the initial keys through the Hilbert curve. The final cipher image is obtained by modulo arithmetic and diffuse operation. In this method, it needs only a few parameters for the key generation, which greatly reduces the storage space. Moreover, because of the Julia sets' properties, such as infiniteness and chaotic characteristics, the keys have high sensitivity even to a tiny perturbation. The experimental results indicate that the algorithm has large key space, good statistical property, high sensitivity for the keys, and effective resistance to the chosen-plaintext attack.

  6. The fast encryption package

    NASA Technical Reports Server (NTRS)

    Bishop, Matt

    1988-01-01

    The organization of some tools to help improve passwork security at a UNIX-based site is described along with how to install and use them. These tools and their associated library enable a site to force users to pick reasonably safe passwords (safe being site configurable) and to enable site management to try to crack existing passworks. The library contains various versions of a very fast implementation of the Data Encryption Standard and of the one-way encryption functions used to encryp the password.

  7. Secure key storage and distribution

    DOEpatents

    Agrawal, Punit

    2015-06-02

    This disclosure describes a distributed, fault-tolerant security system that enables the secure storage and distribution of private keys. In one implementation, the security system includes a plurality of computing resources that independently store private keys provided by publishers and encrypted using a single security system public key. To protect against malicious activity, the security system private key necessary to decrypt the publication private keys is not stored at any of the computing resources. Rather portions, or shares of the security system private key are stored at each of the computing resources within the security system and multiple security systems must communicate and share partial decryptions in order to decrypt the stored private key.

  8. A DNA-Inspired Encryption Methodology for Secure, Mobile Ad Hoc Networks

    NASA Technical Reports Server (NTRS)

    Shaw, Harry

    2012-01-01

    Users are pushing for greater physical mobility with their network and Internet access. Mobile ad hoc networks (MANET) can provide an efficient mobile network architecture, but security is a key concern. A figure summarizes differences in the state of network security for MANET and fixed networks. MANETs require the ability to distinguish trusted peers, and tolerate the ingress/egress of nodes on an unscheduled basis. Because the networks by their very nature are mobile and self-organizing, use of a Public Key Infra structure (PKI), X.509 certificates, RSA, and nonce ex changes becomes problematic if the ideal of MANET is to be achieved. Molecular biology models such as DNA evolution can provide a basis for a proprietary security architecture that achieves high degrees of diffusion and confusion, and resistance to cryptanalysis. A proprietary encryption mechanism was developed that uses the principles of DNA replication and steganography (hidden word cryptography) for confidentiality and authentication. The foundation of the approach includes organization of coded words and messages using base pairs organized into genes, an expandable genome consisting of DNA-based chromosome keys, and a DNA-based message encoding, replication, and evolution and fitness. In evolutionary computing, a fitness algorithm determines whether candidate solutions, in this case encrypted messages, are sufficiently encrypted to be transmitted. The technology provides a mechanism for confidential electronic traffic over a MANET without a PKI for authenticating users.

  9. Attribute-Based Encryption with Partially Hidden Ciphertext Policies

    NASA Astrophysics Data System (ADS)

    Nishide, Takashi; Yoneyama, Kazuki; Ohta, Kazuo

    We propose attribute-based encryption schemes where encryptor-specified policies (called ciphertext policies) are hidden. By using our schemes, an encryptor can encrypt data with a hidden access control policy. A decryptor obtains her secret key associated with her attributes from a trusted authority in advance and if the attributes associated with the decryptor's secret key do not satisfy the access control policy associated with the encrypted data, the decryptor cannot decrypt the data or guess even what access control policy was specified by the encryptor. We prove security of our construction based on the Decisional Bilinear Diffie-Hellman assumption and the Decision Linear assumption. In our security notion, even the legitimate decryptor cannot obtain the information about the access control policy associated with the encrypted data more than the fact that she can decrypt the data.

  10. Quantum Image Encryption Algorithm Based on Image Correlation Decomposition

    NASA Astrophysics Data System (ADS)

    Hua, Tianxiang; Chen, Jiamin; Pei, Dongju; Zhang, Wenquan; Zhou, Nanrun

    2015-02-01

    A novel quantum gray-level image encryption and decryption algorithm based on image correlation decomposition is proposed. The correlation among image pixels is established by utilizing the superposition and measurement principle of quantum states. And a whole quantum image is divided into a series of sub-images. These sub-images are stored into a complete binary tree array constructed previously and then randomly performed by one of the operations of quantum random-phase gate, quantum revolving gate and Hadamard transform. The encrypted image can be obtained by superimposing the resulting sub-images with the superposition principle of quantum states. For the encryption algorithm, the keys are the parameters of random phase gate, rotation angle, binary sequence and orthonormal basis states. The security and the computational complexity of the proposed algorithm are analyzed. The proposed encryption algorithm can resist brute force attack due to its very large key space and has lower computational complexity than its classical counterparts.

  11. Key Performance Indicators of Public Universities Based on Quality Assessment Criteria in Thailand

    ERIC Educational Resources Information Center

    Sukboonyasatit, Kritsana; Thanapaisarn, Chaiwit; Manmar, Lampang

    2011-01-01

    The research objective was to develop public universities' key performance indicators. Qualitative research and interviews were employed with each public university's senior executive and quality assessors. The sample group was selected by the office of the public sector development commission and Thailand's public universities can be separated…

  12. Photonic encryption using all optical logic.

    SciTech Connect

    Blansett, Ethan L.; Schroeppel, Richard Crabtree; Tang, Jason D.; Robertson, Perry J.; Vawter, Gregory Allen; Tarman, Thomas David; Pierson, Lyndon George

    2003-12-01

    With the build-out of large transport networks utilizing optical technologies, more and more capacity is being made available. Innovations in Dense Wave Division Multiplexing (DWDM) and the elimination of optical-electrical-optical conversions have brought on advances in communication speeds as we move into 10 Gigabit Ethernet and above. Of course, there is a need to encrypt data on these optical links as the data traverses public and private network backbones. Unfortunately, as the communications infrastructure becomes increasingly optical, advances in encryption (done electronically) have failed to keep up. This project examines the use of optical logic for implementing encryption in the photonic domain to achieve the requisite encryption rates. In order to realize photonic encryption designs, technology developed for electrical logic circuits must be translated to the photonic regime. This paper examines two classes of all optical logic (SEED, gain competition) and how each discrete logic element can be interconnected and cascaded to form an optical circuit. Because there is no known software that can model these devices at a circuit level, the functionality of the SEED and gain competition devices in an optical circuit were modeled in PSpice. PSpice allows modeling of the macro characteristics of the devices in context of a logic element as opposed to device level computational modeling. By representing light intensity as voltage, 'black box' models are generated that accurately represent the intensity response and logic levels in both technologies. By modeling the behavior at the systems level, one can incorporate systems design tools and a simulation environment to aid in the overall functional design. Each black box model of the SEED or gain competition device takes certain parameters (reflectance, intensity, input response), and models the optical ripple and time delay characteristics. These 'black box' models are interconnected and cascaded in an

  13. Cryptanalysis of Chatterjee-Sarkar Hierarchical Identity-Based Encryption Scheme at PKC 06

    NASA Astrophysics Data System (ADS)

    Park, Jong Hwan; Lee, Dong Hoon

    In 2006, Chatterjee and Sarkar proposed a hierarchical identity-based encryption (HIBE) scheme which can support an unbounded number of identity levels. This property is particularly useful in providing forward secrecy by embedding time components within hierarchical identities. In this paper we show that their scheme does not provide the claimed property. Our analysis shows that if the number of identity levels becomes larger than the value of a fixed public parameter, an unintended receiver can reconstruct a new valid ciphertext and decrypt the ciphertext using his or her own private key. The analysis is similarly applied to a multi-receiver identity-based encryption scheme presented as an application of Chatterjee and Sarkar's HIBE scheme.

  14. Security enhancement of a phase-truncation based image encryption algorithm.

    PubMed

    Wang, Xiaogang; Zhao, Daomu

    2011-12-20

    The asymmetric cryptosystem, which is based on phase-truncated Fourier transforms (PTFTs), can break the linearity of conventional systems. However, it has been proven to be vulnerable to a specific attack based on iterative Fourier transforms when the two random phase masks are used as public keys to encrypt different plaintexts. An improvement from the asymmetric cryptosystem may be taken by relocating the amplitude values in the output plane. In this paper, two different methods are adopted to realize the amplitude modulation of the output image. The first one is to extend the PTFT-based asymmetrical cryptosystem into the anamorphic fractional Fourier transform domain directly, and the second is to add an amplitude mask in the Fourier plane of the encryption scheme. Some numerical simulations are presented to prove the good performance of the proposed cryptosystems.

  15. DOE and Public Involvement A Key to Successful Clean Up

    SciTech Connect

    Sarten, S.

    2008-07-01

    The combination of two vital elements in the Oak Ridge, TN area are the Department of Energy and the education of the public, at any age, of the necessary work that is and has been going on this region of the country since the setting aside of land during the World War II era. A wide variety of interested citizens from surrounding counties make up a group of individuals that bring different elements of education and involvement to form a committee of whose interest is the Department of Energy's handling of contaminated material. The effort of one of the committees on this board has given the public a resource of material to develop a better understanding of the history and stewardship efforts taking place at the Oak Ridge Reservation. (authors)

  16. Chaos based encryption system for encrypting electroencephalogram signals.

    PubMed

    Lin, Chin-Feng; Shih, Shun-Han; Zhu, Jin-De

    2014-05-01

    In the paper, we use the Microsoft Visual Studio Development Kit and C# programming language to implement a chaos-based electroencephalogram (EEG) encryption system involving three encryption levels. A chaos logic map, initial value, and bifurcation parameter for the map were used to generate Level I chaos-based EEG encryption bit streams. Two encryption-level parameters were added to these elements to generate Level II chaos-based EEG encryption bit streams. An additional chaotic map and chaotic address index assignment process was used to implement the Level III chaos-based EEG encryption system. Eight 16-channel EEG Vue signals were tested using the encryption system. The encryption was the most rapid and robust in the Level III system. The test yielded superior encryption results, and when the correct deciphering parameter was applied, the EEG signals were completely recovered. However, an input parameter error (e.g., a 0.00001 % initial point error) causes chaotic encryption bit streams, preventing the recovery of 16-channel EEG Vue signals.

  17. ATM encryption testing

    NASA Astrophysics Data System (ADS)

    Capell, Joyce; Deeth, David

    1996-01-01

    This paper describes why encryption was selected by Lockheed Martin Missiles & Space as the means for securing ATM networks. The ATM encryption testing program is part of an ATM network trial provided by Pacific Bell under the California Research Education Network (CalREN). The problem being addressed is the threat to data security which results when changing from a packet switched network infrastructure to a circuit switched ATM network backbone. As organizations move to high speed cell-based networks, there is a break down in the traditional security model which is designed to protect packet switched data networks from external attacks. This is due to the fact that most data security firewalls filter IP packets, restricting inbound and outbound protocols, e.g. ftp. ATM networks, based on cell-switching over virtual circuits, does not support this method for restricting access since the protocol information is not carried by each cell. ATM switches set up multiple virtual connections, thus there is no longer a single point of entry into the internal network. The problem is further complicated by the fact that ATM networks support high speed multi-media applications, including real time video and video teleconferencing which are incompatible with packet switched networks. The ability to restrict access to Lockheed Martin networks in support of both unclassified and classified communications is required before ATM network technology can be fully deployed. The Lockheed Martin CalREN ATM testbed provides the opportunity to test ATM encryption prototypes with actual applications to assess the viability of ATM encryption methodologies prior to installing large scale ATM networks. Two prototype ATM encryptors are being tested: (1) `MILKBUSH' a prototype encryptor developed by NSA for transmission of government classified data over ATM networks, and (2) a prototype ATM encryptor developed by Sandia National Labs in New Mexico, for the encryption of proprietary data.

  18. Image encryption algorithm based on the random local phase encoding in gyrator transform domains

    NASA Astrophysics Data System (ADS)

    Liu, Zhengjun; Yang, Meng; Liu, Wei; Li, She; Gong, Min; Liu, Wanyu; Liu, Shutian

    2012-09-01

    A random local phase encoding method is presented for encrypting a secret image. Some random polygons are introduced to control the local regions of random phase encoding. The data located in the random polygon is encoded by random phase encoding. The random phase data is the main key in this encryption method. The different random phases calculated by using a monotonous function are employed. The random data defining random polygon serves as an additional key for enhancing the security of the image encryption scheme. Numerical simulations are given for demonstrating the performance of the proposed encryption approach.

  19. A Literature Review on Image Encryption Techniques

    NASA Astrophysics Data System (ADS)

    Khan, Majid; Shah, Tariq

    2014-12-01

    Image encryption plays a paramount part to guarantee classified transmission and capacity of image over web. Then again, a real-time image encryption confronts a more noteworthy test because of vast measure of information included. This paper exhibits an audit on image encryption in spatial, frequency and hybrid domains with both full encryption and selective encryption strategy.

  20. Image encryption algorithm based on wavelet packet decomposition and discrete linear canonical transform

    NASA Astrophysics Data System (ADS)

    Sharma, K. K.; Jain, Heena

    2013-01-01

    The security of digital data including images has attracted more attention recently, and many different image encryption methods have been proposed in the literature for this purpose. In this paper, a new image encryption method using wavelet packet decomposition and discrete linear canonical transform is proposed. The use of wavelet packet decomposition and DLCT increases the key size significantly making the encryption more robust. Simulation results of the proposed technique are also presented.

  1. Wikipedia: A Key Tool for Global Public Health Promotion

    PubMed Central

    Heilman, James M; Kemmann, Eckhard; Bonert, Michael; Chatterjee, Anwesh; Ragar, Brent; Beards, Graham M; Iberri, David J; Harvey, Matthew; Thomas, Brendan; Stomp, Wouter; Martone, Michael F; Lodge, Daniel J; Vondracek, Andrea; de Wolff, Jacob F; Liber, Casimir; Grover, Samir C; Vickers, Tim J; Meskó, Bertalan

    2011-01-01

    The Internet has become an important health information resource for patients and the general public. Wikipedia, a collaboratively written Web-based encyclopedia, has become the dominant online reference work. It is usually among the top results of search engine queries, including when medical information is sought. Since April 2004, editors have formed a group called WikiProject Medicine to coordinate and discuss the English-language Wikipedia’s medical content. This paper, written by members of the WikiProject Medicine, discusses the intricacies, strengths, and weaknesses of Wikipedia as a source of health information and compares it with other medical wikis. Medical professionals, their societies, patient groups, and institutions can help improve Wikipedia’s health-related entries. Several examples of partnerships already show that there is enthusiasm to strengthen Wikipedia’s biomedical content. Given its unique global reach, we believe its possibilities for use as a tool for worldwide health promotion are underestimated. We invite the medical community to join in editing Wikipedia, with the goal of providing people with free access to reliable, understandable, and up-to-date health information. PMID:21282098

  2. A New Color Image Encryption Scheme Using CML and a Fractional-Order Chaotic System

    PubMed Central

    Wu, Xiangjun; Li, Yang; Kurths, Jürgen

    2015-01-01

    The chaos-based image cryptosystems have been widely investigated in recent years to provide real-time encryption and transmission. In this paper, a novel color image encryption algorithm by using coupled-map lattices (CML) and a fractional-order chaotic system is proposed to enhance the security and robustness of the encryption algorithms with a permutation-diffusion structure. To make the encryption procedure more confusing and complex, an image division-shuffling process is put forward, where the plain-image is first divided into four sub-images, and then the position of the pixels in the whole image is shuffled. In order to generate initial conditions and parameters of two chaotic systems, a 280-bit long external secret key is employed. The key space analysis, various statistical analysis, information entropy analysis, differential analysis and key sensitivity analysis are introduced to test the security of the new image encryption algorithm. The cryptosystem speed is analyzed and tested as well. Experimental results confirm that, in comparison to other image encryption schemes, the new algorithm has higher security and is fast for practical image encryption. Moreover, an extensive tolerance analysis of some common image processing operations such as noise adding, cropping, JPEG compression, rotation, brightening and darkening, has been performed on the proposed image encryption technique. Corresponding results reveal that the proposed image encryption method has good robustness against some image processing operations and geometric attacks. PMID:25826602

  3. A new color image encryption scheme using CML and a fractional-order chaotic system.

    PubMed

    Wu, Xiangjun; Li, Yang; Kurths, Jürgen

    2015-01-01

    The chaos-based image cryptosystems have been widely investigated in recent years to provide real-time encryption and transmission. In this paper, a novel color image encryption algorithm by using coupled-map lattices (CML) and a fractional-order chaotic system is proposed to enhance the security and robustness of the encryption algorithms with a permutation-diffusion structure. To make the encryption procedure more confusing and complex, an image division-shuffling process is put forward, where the plain-image is first divided into four sub-images, and then the position of the pixels in the whole image is shuffled. In order to generate initial conditions and parameters of two chaotic systems, a 280-bit long external secret key is employed. The key space analysis, various statistical analysis, information entropy analysis, differential analysis and key sensitivity analysis are introduced to test the security of the new image encryption algorithm. The cryptosystem speed is analyzed and tested as well. Experimental results confirm that, in comparison to other image encryption schemes, the new algorithm has higher security and is fast for practical image encryption. Moreover, an extensive tolerance analysis of some common image processing operations such as noise adding, cropping, JPEG compression, rotation, brightening and darkening, has been performed on the proposed image encryption technique. Corresponding results reveal that the proposed image encryption method has good robustness against some image processing operations and geometric attacks.

  4. Public key suppression and recovery using a PANDA ring resonator for high security communication

    NASA Astrophysics Data System (ADS)

    Juleang, Pakorn; Phongsanam, Prapas; Mitatha, Somsak; Yupapin, Preecha P.

    2011-03-01

    An interesting security technique that uses the dark-bright soliton conversion control within the microring resonator is proposed. The obtained outputs for a dark-bright soliton dynamic state can be controlled and used to form the public key suppression for communication security application. However, a good design should be possible to be fabricated; therefore, by using the parameters based on the practical device parameters, the simulation results obtained have shown that the proposed system can indeed be achieved. The public key suppression and public key recovery can be used in a highly secure communication system and has potential applications in optical cryptography.

  5. High speed data encryption and decryption using stimulated Brillouin scattering effect in optical fiber

    NASA Astrophysics Data System (ADS)

    Yi, Lilin; Zhang, Tao; Hu, Weisheng

    2011-11-01

    A novel all-optical encryption/decryption method based on stimulated Brillouin scattering (SBS) effect in optical fiber is proposed for the first time. The operation principle is explained in detail and the encryption and decryption performance is experimentally evaluated. The encryption keys could be the SBS gain amplitude, bandwidth, central wavelength and spectral shape, which are configurable and flexibly controlled by the users. We experimentally demonstrate the SBS encryption/decryption process of a 10.86-Gb/s non-return-to-zero (NRZ) data by using both phase-modulated and current-dithered Brillouin pumps for proof-of-concept. Unlike the traditional optical encryption methods of chaotic communications and optical code-division-multiplexing access (OCDMA), the SBS based encryption/decryption technique can directly upgrade the current optical communication system to a secure communication system without changing the terminal transceivers, which is completely compatible with the current optical communication systems.

  6. Image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing

    NASA Astrophysics Data System (ADS)

    Zhou, Nanrun; Pan, Shumin; Cheng, Shan; Zhou, Zhihong

    2016-08-01

    Most image encryption algorithms based on low-dimensional chaos systems bear security risks and suffer encryption data expansion when adopting nonlinear transformation directly. To overcome these weaknesses and reduce the possible transmission burden, an efficient image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing is proposed. The original image is measured by the measurement matrices in two directions to achieve compression and encryption simultaneously, and then the resulting image is re-encrypted by the cycle shift operation controlled by a hyper-chaotic system. Cycle shift operation can change the values of the pixels efficiently. The proposed cryptosystem decreases the volume of data to be transmitted and simplifies the keys distribution simultaneously as a nonlinear encryption system. Simulation results verify the validity and the reliability of the proposed algorithm with acceptable compression and security performance.

  7. Opto-digital image encryption by using Baker mapping and 1-D fractional Fourier transform

    NASA Astrophysics Data System (ADS)

    Liu, Zhengjun; Li, She; Liu, Wei; Liu, Shutian

    2013-03-01

    We present an optical encryption method based on the Baker mapping in one-dimensional fractional Fourier transform (1D FrFT) domains. A thin cylinder lens is controlled by computer for implementing 1D FrFT at horizontal direction or vertical direction. The Baker mapping is introduced to scramble the amplitude distribution of complex function. The amplitude and phase of the output of encryption system are regarded as encrypted image and key. Numerical simulation has been performed for testing the validity of this encryption scheme.

  8. Breaking down the barriers of using strong authentication and encryption in resource constrained embedded systems

    NASA Astrophysics Data System (ADS)

    Knobler, Ron; Scheffel, Peter; Jackson, Scott; Gaj, Kris; Kaps, Jens Peter

    2013-05-01

    Various embedded systems, such as unattended ground sensors (UGS), are deployed in dangerous areas, where they are subject to compromise. Since numerous systems contain a network of devices that communicate with each other (often times with commercial off the shelf [COTS] radios), an adversary is able to intercept messages between system devices, which jeopardizes sensitive information transmitted by the system (e.g. location of system devices). Secret key algorithms such as AES are a very common means to encrypt all system messages to a sufficient security level, for which lightweight implementations exist for even very resource constrained devices. However, all system devices must use the appropriate key to encrypt and decrypt messages from each other. While traditional public key algorithms (PKAs), such as RSA and Elliptic Curve Cryptography (ECC), provide a sufficiently secure means to provide authentication and a means to exchange keys, these traditional PKAs are not suitable for very resource constrained embedded systems or systems which contain low reliability communication links (e.g. mesh networks), especially as the size of the network increases. Therefore, most UGS and other embedded systems resort to pre-placed keys (PPKs) or other naïve schemes which greatly reduce the security and effectiveness of the overall cryptographic approach. McQ has teamed with the Cryptographic Engineering Research Group (CERG) at George Mason University (GMU) to develop an approach using revolutionary cryptographic techniques that provides both authentication and encryption, but on resource constrained embedded devices, without the burden of large amounts of key distribution or storage.

  9. Security of a Class of Knapsack Public-Key Cryptosystems against Low-Density Attack

    NASA Astrophysics Data System (ADS)

    Nasako, Takeshi; Murakami, Yasuyuki; Kasahara, Masao

    In 2003, Kobayashi et al. proposed a new class of knapsack public-key cryptosystems over Gaussian integer ring. This scheme using two-sequences as the public key. In 2005, Sakamoto and Hayashi proposed an improved version of Kobayashi's scheme. In this paper, we propose the knapsack PKC using l-sequences as the public key and present the low-density attack on it. We have described Schemes R and G for l=2, in which the public keys are constructed over rational integer ring and over Gaussian integer ring, respectively. We discusses on the difference of the security against the low-density attack. We show that the security levels of Schemes R and G differ only slightly.

  10. An ECDLP-Based Threshold Proxy Signature Scheme Using Self-Certified Public Key System

    NASA Astrophysics Data System (ADS)

    Xue, Qingshui; Li, Fengying; Zhou, Yuan; Zhang, Jiping; Cao, Zhenfu; Qian, Haifeng

    In a (t, n) threshold proxy signature scheme, one original signer delegates a group of n proxy signers to sign messages on behalf of the original signer. When the proxy signature is created, at leastt proxy signers cooperate to generate valid proxy signatures and any less than t proxy signers can’t cooperatively generate valid proxy signatures. So far, all of proposed threshold proxy signature schemes are based on public key systems with certificates, which have some disadvantages such as checking the certificate list when needing certificates. Most threshold proxy signature schemes use Shamir’s threshold secret share scheme. Identity-based public key system is not pretty mature. Self-certified public key systems have attracted more and more attention because of its advantages. Based on Hsu et al’s self-certified public key system and Li et al’s proxy signature scheme, one threshold proxy signature scheme based on ECDLP and self-certified public key system is proposed. As far as we know, it is the first scheme based on ECDLP and self-certified public key system. The proposed scheme can provide the security properties of proxy protection, verifiability, strong identifiability, strong unforgeability, strong repudiability, distinguishability, known signers and prevention of misuse of proxy signing power. That is, internal attacks, external attacks, collusion attacks, equation attacks and public key substitution attacks can be resisted. In the proxy signature verification phase, the authentication of the original and the proxy signers’ public keys and the verification of the threshold proxy signature are executed together. In addition, the computation overhead and communication cost of the proposed scheme are analyzed as well.

  11. A palmprint-based cryptosystem using double encryption

    NASA Astrophysics Data System (ADS)

    Kumar, Amioy; Kumar, Ajay

    2008-03-01

    We propose a novel cryptographic construct incorporating biometrics which insures a secure communication between two channels just by using Palmprint. The cryptosystem utilizes the advantages of both symmetric and asymmetric cryptographic approaches simultaneously; we denote it as double encryption. Any document in communication is first encrypted using symmetric cryptographic approach; the symmetric key involved is then encrypted using Asymmetric approach. Finally, the concept of fuzzy vault is explored to create a secure vault around the asymmetric key. We investigate the possible usage of palmprints in fuzzy vault to develop a user friendly and reliable crypto system. The experimental results from the proposed approach on the real palmprint images suggest its possible usage in an automated palmprint based key generation system.

  12. Data publication and dissemination of interactive keys under the open access model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The concepts of publication, citation and dissemination of interactive keys and other online keys are discussed and illustrated by a sample paper published in the present issue (doi: 10.3897/zookeys.21.271). The present model is based on previous experience with several existing examples of publishi...

  13. Deterministic phase encoding encryption in arbitrary phase-step digital holography

    NASA Astrophysics Data System (ADS)

    Chang, Chi-Ching; Hsieh, Wang Ta; Kuo, Ming Kuei

    2010-05-01

    A deterministic phase-encoded encryption system, which adopts a lenticular lens array (LLA) sheet as a phase modulator (key), based on arbitrary two-step phase-shift interferometry (PSI), with an unknown phase step, is presented. The principle of encryption and decryption which is using a LLA in arbitrary unknown two-step PSI is given. With the aid of key holograms (right key), it can be theoretically shown that only the reconstructed object wavefront term will be left in the image plane, and all the accompany undesired terms be eliminated. Thus the hidden information of object wavefront in this encryption system can be numerically and successfully decrypted using arbitrary unknown two-step PSI with right key. For comparisons, computer simulations are carried out to verify the principle of encryption and decryption without key, with wrong key and with right key, respectively.

  14. Encryption and networking applications

    SciTech Connect

    Long, J.P.

    1995-04-01

    The DOE requires that sensitive unclassified data be protected while being transmitted electronically. On most large networks it is difficult and expensive to provide the required level of physical protection. At Sandia National Laboratories, we are assembling the structure necessary to protect sensitive unclassified data using software-based encryption. This approach has the advantage that the data can be protected after arrival at its destination without additional investment While Sandia has expertise in cryptography, we had not used cryptography in this field. This discussion deals with the client-server model of file-based data exchange and interactive access to on-line data bases using Unix workstations, Macs and PCs.

  15. Secure Genomic Computation through Site-Wise Encryption.

    PubMed

    Zhao, Yongan; Wang, XiaoFeng; Tang, Haixu

    2015-01-01

    Commercial clouds provide on-demand IT services for big-data analysis, which have become an attractive option for users who have no access to comparable infrastructure. However, utilizing these services for human genome analysis is highly risky, as human genomic data contains identifiable information of human individuals and their disease susceptibility. Therefore, currently, no computation on personal human genomic data is conducted on public clouds. To address this issue, here we present a site-wise encryption approach to encrypt whole human genome sequences, which can be subject to secure searching of genomic signatures on public clouds. We implemented this method within the Hadoop framework, and tested it on the case of searching disease markers retrieved from the ClinVar database against patients' genomic sequences. The secure search runs only one order of magnitude slower than the simple search without encryption, indicating our method is ready to be used for secure genomic computation on public clouds.

  16. Secure Genomic Computation through Site-Wise Encryption.

    PubMed

    Zhao, Yongan; Wang, XiaoFeng; Tang, Haixu

    2015-01-01

    Commercial clouds provide on-demand IT services for big-data analysis, which have become an attractive option for users who have no access to comparable infrastructure. However, utilizing these services for human genome analysis is highly risky, as human genomic data contains identifiable information of human individuals and their disease susceptibility. Therefore, currently, no computation on personal human genomic data is conducted on public clouds. To address this issue, here we present a site-wise encryption approach to encrypt whole human genome sequences, which can be subject to secure searching of genomic signatures on public clouds. We implemented this method within the Hadoop framework, and tested it on the case of searching disease markers retrieved from the ClinVar database against patients' genomic sequences. The secure search runs only one order of magnitude slower than the simple search without encryption, indicating our method is ready to be used for secure genomic computation on public clouds. PMID:26306278

  17. Secure Genomic Computation through Site-Wise Encryption

    PubMed Central

    Zhao, Yongan; Wang, XiaoFeng; Tang, Haixu

    2015-01-01

    Commercial clouds provide on-demand IT services for big-data analysis, which have become an attractive option for users who have no access to comparable infrastructure. However, utilizing these services for human genome analysis is highly risky, as human genomic data contains identifiable information of human individuals and their disease susceptibility. Therefore, currently, no computation on personal human genomic data is conducted on public clouds. To address this issue, here we present a site-wise encryption approach to encrypt whole human genome sequences, which can be subject to secure searching of genomic signatures on public clouds. We implemented this method within the Hadoop framework, and tested it on the case of searching disease markers retrieved from the ClinVar database against patients’ genomic sequences. The secure search runs only one order of magnitude slower than the simple search without encryption, indicating our method is ready to be used for secure genomic computation on public clouds. PMID:26306278

  18. Cancelable face verification using optical encryption and authentication.

    PubMed

    Taheri, Motahareh; Mozaffari, Saeed; Keshavarzi, Parviz

    2015-10-01

    In a cancelable biometric system, each instance of enrollment is distorted by a transform function, and the output should not be retransformed to the original data. This paper presents a new cancelable face verification system in the encrypted domain. Encrypted facial images are generated by a double random phase encoding (DRPE) algorithm using two keys (RPM1 and RPM2). To make the system noninvertible, a photon counting (PC) method is utilized, which requires a photon distribution mask for information reduction. Verification of sparse images that are not recognizable by direct visual inspection is performed by unconstrained minimum average correlation energy filter. In the proposed method, encryption keys (RPM1, RPM2, and PDM) are used in the sender side, and the receiver needs only encrypted images and correlation filters. In this manner, the system preserves privacy if correlation filters are obtained by an adversary. Performance of PC-DRPE verification system is evaluated under illumination variation, pose changes, and facial expression. Experimental results show that utilizing encrypted images not only increases security concerns but also enhances verification performance. This improvement can be attributed to the fact that, in the proposed system, the face verification problem is converted to key verification tasks. PMID:26479930

  19. Fractional Hartley transform applied to optical image encryption

    NASA Astrophysics Data System (ADS)

    Jimenez, C.; Torres, C.; Mattos, L.

    2011-01-01

    A new method for image encryption is introduced on the basis of two-dimensional (2-D) generalization of 1-D fractional Hartley transform that has been redefined recently in search of its inverse transform We encrypt the image by two fractional orders and random phase codes. It has an advantage over Hartley transform, for its fractional orders can also be used as addictional keys, and that, of course, strengthens image security. Only when all of these keys are correct, can the image be well decrypted. Computer simulations are also perfomed to confirm the possibilty of proposed method.

  20. Design and Realisation of Chaotic Encryption Systems

    NASA Astrophysics Data System (ADS)

    Schwarz, Wolfgang; Falk, Thomas

    2002-07-01

    Chaotic signal transmission systems are often claimed to be secure by itself. Using a simple example it is shown, that this is not true and that exact design criteria have to be set up before starting the design of a chaotic encryption system. Then, beginning with statistical design objectives an information encryption system is systematically designed. The structure design leads to a controlled filter structure with overflow nonlinearity, the parameter design has to assure chaotic behaviour and mixing properties of the encoded signal. This defines the limits for the choice of the parameter set representing the key for the encryption. After developing the system structure the system is realized by electronic circuitry. Discrete and IC versions of the solution are presented. In order to prove that the system meets the design requirements experimental results are provided. It can be shown that in a n-th order system the statistical characteristics up to the n-th order of the output signal will not be affected by the input signal. The paper closes with some security estimates for the designed system.

  1. Double-image encryption based on discrete fractional random transform and chaotic maps

    NASA Astrophysics Data System (ADS)

    Li, Huijuan; Wang, Yurong

    2011-07-01

    A novel double-image encryption algorithm is proposed, based on discrete fractional random transform and chaotic maps. The random matrices used in the discrete fractional random transform are generated by using a chaotic map. One of the two original images is scrambled by using another chaotic map, and then encoded into the phase of a complex matrix with the other original image as its amplitude. Then this complex matrix is encrypted by the discrete fractional random transform. By applying the correct keys which consist of initial values, control parameters, and truncated positions of the chaotic maps, and fractional orders, the two original images can be recovered without cross-talk. Numerical simulation has been performed to test the validity and the security of the proposed encryption algorithm. Encrypting two images together by this algorithm creates only one encrypted image, whereas other single-image encryption methods create two encrypted images. Furthermore, this algorithm requires neither the use of phase keys nor the use of matrix keys. In this sense, this algorithm can raise the efficiency when encrypting, storing or transmitting.

  2. Image encryption combining multiple generating sequences controlled fractional DCT with dependent scrambling and diffusion

    NASA Astrophysics Data System (ADS)

    Liang, Yaru; Liu, Guoping; Zhou, Nanrun; Wu, Jianhua

    2015-02-01

    Based on the fractional discrete cosine transform with multiple generating sequences (MGSFrDCT) and the dependent scrambling and diffusion (DSD), an image encryption algorithm is proposed, in which the multiple-generating sequences greatly enlarge the key space of the encryption system. The real-valued output of MGSFrDCT is beneficial to storage, display and transmission of the cipher-text. During the stage of confusion and diffusion, the locations and values of all MGSFrDCT transformed coefficients change due to DSD, and the initial values and fractional orders of encryption system depend not only on the cipher keys but also on the plain-image due to introduction of a disturbance factor, which allows the encryption system to resist the known-plaintext and chosen-plaintext attacks. Experimental results demonstrate that the proposed encryption algorithm is feasible, effective and secure and able to resist common classical attacks.

  3. Quantum Color Image Encryption Algorithm Based on A Hyper-Chaotic System and Quantum Fourier Transform

    NASA Astrophysics Data System (ADS)

    Tan, Ru-Chao; Lei, Tong; Zhao, Qing-Min; Gong, Li-Hua; Zhou, Zhi-Hong

    2016-09-01

    To improve the slow processing speed of the classical image encryption algorithms and enhance the security of the private color images, a new quantum color image encryption algorithm based on a hyper-chaotic system is proposed, in which the sequences generated by the Chen's hyper-chaotic system are scrambled and diffused with three components of the original color image. Sequentially, the quantum Fourier transform is exploited to fulfill the encryption. Numerical simulations show that the presented quantum color image encryption algorithm possesses large key space to resist illegal attacks, sensitive dependence on initial keys, uniform distribution of gray values for the encrypted image and weak correlation between two adjacent pixels in the cipher-image.

  4. Efficient and Secure Self-Organized Public Key Management for Mobile Ad Hoc Networks

    NASA Astrophysics Data System (ADS)

    Choi, Daeseon; Lee, Younho; Park, Yongsu; Jin, Seung-Hun; Yoon, Hyunsoo

    This paper presents a fully self-organized key management scheme for mobile ad hoc networks. Unlike most previous schemes, there is no priori shared secret or no priori trust relationship in the proposed scheme; every node plays the same role and carries out the same function of key management. The proposed scheme consists of (1) Handshaking (HS) and (2) Certificate request/reply (CRR) procedures. In HS, a node acquires the public key of the approaching node via a secure side channel. In CRR, a node requests certificates of a remote node via a radio channel to the nodes that it has HSed. If the number of received valid certificates that contain the same public key exceeds a given threshold, the node accepts the remote node's public key as valid. Security is rigorously analyzed against various known attacks and network costs are intensively analyzed mathematically. Using this analysis, we provide parameter selection guideline to optimize performance and to maintain security for diverse cases. Simulation results show that every node acquires the public keys of all other nodes at least 5 times faster than in a previous scheme.

  5. Analysis of the Skills Used in Public Broadcasting's Key Jobs with Recommended Uses by Public Broadcasting Organizations.

    ERIC Educational Resources Information Center

    Olian, Judy; Schneier, Craig E.

    Designed to provide a listing of knowledge, skills, and abilities (collectively known as KSAs) that could be used by public broadcasting stations for recruitment, selection, promotion, evaluation, training, and staff career development, this document addresses three key broadcasting personnel areas. These areas are programming/production,…

  6. Optical image encryption via photon-counting imaging and compressive sensing based ptychography

    NASA Astrophysics Data System (ADS)

    Rawat, Nitin; Hwang, In-Chul; Shi, Yishi; Lee, Byung-Geun

    2015-06-01

    In this study, we investigate the integration of compressive sensing (CS) and photon-counting imaging (PCI) techniques with a ptychography-based optical image encryption system. Primarily, the plaintext real-valued image is optically encrypted and recorded via a classical ptychography technique. Further, the sparse-based representations of the original encrypted complex data can be produced by combining CS and PCI techniques with the primary encrypted image. Such a combination takes an advantage of reduced encrypted samples (i.e., linearly projected random compressive complex samples and photon-counted complex samples) that can be exploited to realize optical decryption, which inherently serves as a secret key (i.e., independent to encryption phase keys) and makes an intruder attack futile. In addition to this, recording fewer encrypted samples provides a substantial bandwidth reduction in online transmission. We demonstrate that the fewer sparse-based complex samples have adequate information to realize decryption. To the best of our knowledge, this is the first report on integrating CS and PCI with conventional ptychography-based optical image encryption.

  7. A no-key-exchange secure image sharing scheme based on Shamir's three-pass cryptography protocol and the multiple-parameter fractional Fourier transform.

    PubMed

    Lang, Jun

    2012-01-30

    In this paper, we propose a novel secure image sharing scheme based on Shamir's three-pass protocol and the multiple-parameter fractional Fourier transform (MPFRFT), which can safely exchange information with no advance distribution of either secret keys or public keys between users. The image is encrypted directly by the MPFRFT spectrum without the use of phase keys, and information can be shared by transmitting the encrypted image (or message) three times between users. Numerical simulation results are given to verify the performance of the proposed algorithm.

  8. Interactive identification protocol based on a quantum public-key cryptosystem

    NASA Astrophysics Data System (ADS)

    Wu, Chenmiao; Yang, Li

    2014-11-01

    We propose two interactive identification protocols based on a general construction of quantum public-key cryptosystem. Basic protocol contains set-up phase and authentication phase. Participants do operation with quantum computing of Boolean function in two-round transmission of authentication phase. Basic one only ensures completeness and soundness, but leaks information about private-key. We modify basic protocol with random string and random Boolean permutation. After modification, both transmitted states in two-round transmission can be proved to be ultimate mixed states. No participant or attacker will get useful information about private-key by measuring such states. Modified protocol achieves property of zero-knowledge.

  9. Optical multiple-image encryption based on phase encoding algorithm in the Fresnel transform domain

    NASA Astrophysics Data System (ADS)

    Huang, Jian-Ji; Hwang, Hone-Ene; Chen, Chun-Yuan; Chen, Ching-Mu

    2012-10-01

    A novel method of the optical multiple-image encryption based on the modified Gerchberg-Saxton algorithm (MGSA) is presented. This proposed method with an architecture of two adjacent phase only functions (POFs) in the Fresnel transform (FrT) domain that can extremely increase capacity of system for completely avoiding the crosstalk between the decrypted images. Each encrypted target image is separately encoded into a POF by using the MGSA which is with constraining the encrypted target image. Each created POF is then added to a prescribed fixed POF composed of a proposed MGSA-based phase encoding algorithm. Not only the wavelength and multiple-position parameters in the FrT domain as keys to increase system security, the created POFs are also served mutually as the encryption keys to decrypt target image based on cascading two POFs scheme. Compared with prior methods [23,24], the main advantages of this proposed encryption system is that it does not need any transformative lenses and that makes it very efficient and easy to implement optically. Simulation results show that this proposed encryption system can successfully achieve the multiple-image encryption with multiple-position keys, which is more advantageous in security than previous work [24] for its decryption process with only two POFs keys to accomplish this task.

  10. Helping Students Adapt to Computer-Based Encrypted Examinations

    ERIC Educational Resources Information Center

    Baker-Eveleth, Lori; Eveleth, Daniel M.; O'Neill, Michele; Stone, Robert W.

    2006-01-01

    The College of Business and Economics at the University of Idaho conducted a pilot study that used commercially available encryption software called Securexam to deliver computer-based examinations. A multi-step implementation procedure was developed, implemented, and then evaluated on the basis of what students viewed as valuable. Two key aspects…

  11. Color image encryption based on gyrator transform and Arnold transform

    NASA Astrophysics Data System (ADS)

    Sui, Liansheng; Gao, Bo

    2013-06-01

    A color image encryption scheme using gyrator transform and Arnold transform is proposed, which has two security levels. In the first level, the color image is separated into three components: red, green and blue, which are normalized and scrambled using the Arnold transform. The green component is combined with the first random phase mask and transformed to an interim using the gyrator transform. The first random phase mask is generated with the sum of the blue component and a logistic map. Similarly, the red component is combined with the second random phase mask and transformed to three-channel-related data. The second random phase mask is generated with the sum of the phase of the interim and an asymmetrical tent map. In the second level, the three-channel-related data are scrambled again and combined with the third random phase mask generated with the sum of the previous chaotic maps, and then encrypted into a gray scale ciphertext. The encryption result has stationary white noise distribution and camouflage property to some extent. In the process of encryption and decryption, the rotation angle of gyrator transform, the iterative numbers of Arnold transform, the parameters of the chaotic map and generated accompanied phase function serve as encryption keys, and hence enhance the security of the system. Simulation results and security analysis are presented to confirm the security, validity and feasibility of the proposed scheme.

  12. Final Report for the Scaled Asynchronous Transfer Mode (ATM) Encryption Laboratory Directed Research and Development Project

    SciTech Connect

    Pierson, L.G.; Witzke, E.L.

    1999-01-01

    This effort studied the integration of innovative methods of key management crypto synchronization, and key agility while scaling encryption speed. Viability of these methods for encryption of ATM cell payloads at the SONET OC- 192 data rate (10 Gb/s), and for operation at OC-48 rates (2.5 Gb/s) was shown. An SNL-Developed pipelined DES design was adapted for the encryption of ATM cells. A proof-of-principle prototype circuit board containing 11 Electronically Programmable Logic Devices (each holding the equivalent of 100,000 gates) was designed, built, and used to prototype a high speed encryptor.

  13. Optical stream-cipher-like system for image encryption based on Michelson interferometer.

    PubMed

    Yang, Bing; Liu, Zhengjun; Wang, Bo; Zhang, Yan; Liu, Shutian

    2011-01-31

    A novel optical image encryption scheme based on interference is proposed. The original image is digitally encoded into one phase-only mask by employing an improved Gerchberg-Saxton phase retrieval algorithm together with another predefined random phase mask which serves as the encryption key. The decryption process can be implemented optically based on Michelson interferometer by using the same key. The scheme can be regarded as a stream-cipher-like encryption system, the encryption and decryption keys are the same, however the operations are different. The position coordinates and light wavelength can also be used as additional keys during the decryption. Numerical simulations have demonstrated the validity and robustness of the proposed method.

  14. Image encryption in the wavelet domain

    NASA Astrophysics Data System (ADS)

    Bao, Long; Zhou, Yicong; Chen, C. L. Philip

    2013-05-01

    Most existing image encryption algorithms often transfer the original image into a noise-like image which is an apparent visual sign indicating the presence of an encrypted image. Motivated by the data hiding technologies, this paper proposes a novel concept of image encryption, namely transforming an encrypted original image into another meaningful image which is the final resulting encrypted image and visually the same as the cover image, overcoming the mentioned problem. Using this concept, we introduce a new image encryption algorithm based on the wavelet decomposition. Simulations and security analysis are given to show the excellent performance of the proposed concept and algorithm.

  15. 76 FR 126 - Requirement for Commercial Users To Use Commercial Public Key Information (PKI) Certificate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF DEFENSE Department of the Army Requirement for Commercial Users To Use Commercial Public Key Information (PKI) Certificate AGENCY: Department of the Army, DoD. Surface Deployment and Distribution Command (SDDC)....

  16. Management of PEM public key certificates using X.500 directory service: Some problems and solutions

    SciTech Connect

    Cheung, Terry C.

    1993-08-01

    Internet Privacy Enhanced Mail (PEM) provides security services to users of Internet electronic mail. While the prevalent PEM implementation uses a public key certificate-based strategy, certificates are mostly distributed vie e-mail exchanges, which raises several security and performance issues. This paper discusses some problems with this strategy, explores the relevant issues, and develops an approach to address them.

  17. Image encryption based on the reality-preserving multiple-parameter fractional Fourier transform

    NASA Astrophysics Data System (ADS)

    Lang, Jun

    2012-05-01

    In recent years, a number of methods have been proposed in the literature for the encryption of two-dimensional information by using the fractional Fourier transform, but most of their encryptions are complex values and need digital hologram technique to record information, which is inconvenient for digital transmission. In this paper, we propose a new approach for image encryption based on the real-valuedness and decorrelation property of the reality-preserving multiple-parameter fractional Fourier transform in order to meet the requirements of the secure image transmission. In the proposed scheme, the original and encrypted images are respectively in the spatial domain and the reality-preserving multiple-parameter fractional Fourier transformed domain determined by the encryption keys. Numerical simulations are performed to demonstrate that the proposed method is reliable and more robust to blind decryption than several existing methods.

  18. The Development of a Portable Hard Disk Encryption/Decryption System with a MEMS Coded Lock

    PubMed Central

    Zhang, Weiping; Chen, Wenyuan; Tang, Jian; Xu, Peng; Li, Yibin; Li, Shengyong

    2009-01-01

    In this paper, a novel portable hard-disk encryption/decryption system with a MEMS coded lock is presented, which can authenticate the user and provide the key for the AES encryption/decryption module. The portable hard-disk encryption/decryption system is composed of the authentication module, the USB portable hard-disk interface card, the ATA protocol command decoder module, the data encryption/decryption module, the cipher key management module, the MEMS coded lock controlling circuit module, the MEMS coded lock and the hard disk. The ATA protocol circuit, the MEMS control circuit and AES encryption/decryption circuit are designed and realized by FPGA(Field Programmable Gate Array). The MEMS coded lock with two couplers and two groups of counter-meshing-gears (CMGs) are fabricated by a LIGA-like process and precision engineering method. The whole prototype was fabricated and tested. The test results show that the user's password could be correctly discriminated by the MEMS coded lock, and the AES encryption module could get the key from the MEMS coded lock. Moreover, the data in the hard-disk could be encrypted or decrypted, and the read-write speed of the dataflow could reach 17 MB/s in Ultra DMA mode. PMID:22291566

  19. Experimental protocol for packaging and encrypting multiple data

    NASA Astrophysics Data System (ADS)

    Fredy Barrera, John; Trejos, Sorayda; Tebaldi, Myrian; Torroba, Roberto

    2013-05-01

    We present a novel single optical packaging and encryption (SOPE) procedure for multiple inputs. This procedure is based on a merging of a 2f scheme with a digital holographic technique to achieve efficient handling of multiple data. Through the 2f system with a random phase mask attached in its input plane, and the holographic technique, we obtain each processed input. A posteriori filtering and repositioning protocol on each hologram followed by an addition of all processed data, allows storing these data to form a single package. The final package is digitally multiplied by a second random phase mask acting as an encryption mask. In this way, the final user receives only one encrypted information unit and a single key, instead of a conventional multiple-image collecting method and several keys. Processing of individual images is cast into an optimization problem. The proposed optimization aims to simplify the handling and recovery of images while packing all of them into a single unit. The decoding process does not have the usual cross-talk or noise problems involved in other methods, as filtering and repositioning precedes the encryption step. All data are recovered in just one step at the same time by applying a simple Fourier transform operation and the decoding key. The proposed protocol takes advantage of optical processing and the versatility of the digital format. Experiments have been conducted using a Mach-Zehnder interferometer. An application is subsequently demonstrated to illustrate the feasibility of the SOPE procedure.

  20. Photonic encryption : modeling and functional analysis of all optical logic.

    SciTech Connect

    Tang, Jason D.; Schroeppel, Richard Crabtree; Robertson, Perry J.

    2004-10-01

    With the build-out of large transport networks utilizing optical technologies, more and more capacity is being made available. Innovations in Dense Wave Division Multiplexing (DWDM) and the elimination of optical-electrical-optical conversions have brought on advances in communication speeds as we move into 10 Gigabit Ethernet and above. Of course, there is a need to encrypt data on these optical links as the data traverses public and private network backbones. Unfortunately, as the communications infrastructure becomes increasingly optical, advances in encryption (done electronically) have failed to keep up. This project examines the use of optical logic for implementing encryption in the photonic domain to achieve the requisite encryption rates. This paper documents the innovations and advances of work first detailed in 'Photonic Encryption using All Optical Logic,' [1]. A discussion of underlying concepts can be found in SAND2003-4474. In order to realize photonic encryption designs, technology developed for electrical logic circuits must be translated to the photonic regime. This paper examines S-SEED devices and how discrete logic elements can be interconnected and cascaded to form an optical circuit. Because there is no known software that can model these devices at a circuit level, the functionality of S-SEED devices in an optical circuit was modeled in PSpice. PSpice allows modeling of the macro characteristics of the devices in context of a logic element as opposed to device level computational modeling. By representing light intensity as voltage, 'black box' models are generated that accurately represent the intensity response and logic levels in both technologies. By modeling the behavior at the systems level, one can incorporate systems design tools and a simulation environment to aid in the overall functional design. Each black box model takes certain parameters (reflectance, intensity, input response), and models the optical ripple and time delay

  1. 47 CFR 90.553 - Encryption.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) and 1 CFR part 51. Copies of the standard listed in this section that are incorporated by reference... employed then the following encryption protocol must be used: Project 25 DES Encryption Protocol,...

  2. 47 CFR 90.553 - Encryption.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) and 1 CFR part 51. Copies of the standard listed in this section that are incorporated by reference... employed then the following encryption protocol must be used: Project 25 DES Encryption Protocol,...

  3. A new optical image encryption method based on multi-beams interference and vector composition

    NASA Astrophysics Data System (ADS)

    Chen, Linfei; Liu, Jingyu; Wen, Jisen; Gao, Xiong; Mao, Haidan; Shi, Xiaoyan; Qu, Qingling

    2015-06-01

    In this paper, a new method for optical image encryption based on multi-beams interference principle and vector composition is proposed. In this encryption, the original image is encoded into n-1 phase only masks which are regarded as the keys of the encryption system and a ciphertext according to multi-beams interference principle and vector composition. In decryption process, n beams of parallel incident light illuminate at the phase only masks and the ciphertext, and we can obtain the decrypted image at output plane after Fourier transforms. The security of the proposed method is discussed, finding that no decrypted image can be obtained only when all the keys used are right. Furthermore, the keys can be stored separately resulting in improving the security of encryption system. Computer simulation results are presented to verify the validity of the proposed method.

  4. Testing a Variety of Encryption Technologies

    SciTech Connect

    Henson, T J

    2001-04-09

    Review and test speeds of various encryption technologies using Entrust Software. Multiple encryption algorithms are included in the product. Algorithms tested were IDEA, CAST, DES, and RC2. Test consisted of taking a 7.7 MB Word document file which included complex graphics and timing encryption, decryption and signing. Encryption is discussed in the GIAC Kickstart section: Information Security: The Big Picture--Part VI.

  5. Multistakeholder regional collaboratives have been key drivers of public reporting, but now face challenges.

    PubMed

    Young, Gary J

    2012-03-01

    Multistakeholder regional collaboratives have assumed a prominent role in producing public reports about health care providers' performance. I conducted an in-depth study of eight such US collaboratives, examining their accomplishments, management practices, and future challenges. I found that these collaboratives have made key contributions to public reporting and have built trust and cooperation among stakeholders who, in other settings, are competitive or even adversarial. Challenges for collaboratives include securing ongoing funding; negotiating complex and contentious issues around expanded reporting activities, such as publishing measures of providers' efficiency; and establishing more flexible and efficient decision-making processes.

  6. Private genome analysis through homomorphic encryption

    PubMed Central

    2015-01-01

    Background The rapid development of genome sequencing technology allows researchers to access large genome datasets. However, outsourcing the data processing o the cloud poses high risks for personal privacy. The aim of this paper is to give a practical solution for this problem using homomorphic encryption. In our approach, all the computations can be performed in an untrusted cloud without requiring the decryption key or any interaction with the data owner, which preserves the privacy of genome data. Methods We present evaluation algorithms for secure computation of the minor allele frequencies and χ2 statistic in a genome-wide association studies setting. We also describe how to privately compute the Hamming distance and approximate Edit distance between encrypted DNA sequences. Finally, we compare performance details of using two practical homomorphic encryption schemes - the BGV scheme by Gentry, Halevi and Smart and the YASHE scheme by Bos, Lauter, Loftus and Naehrig. Results The approach with the YASHE scheme analyzes data from 400 people within about 2 seconds and picks a variant associated with disease from 311 spots. For another task, using the BGV scheme, it took about 65 seconds to securely compute the approximate Edit distance for DNA sequences of size 5K and figure out the differences between them. Conclusions The performance numbers for BGV are better than YASHE when homomorphically evaluating deep circuits (like the Hamming distance algorithm or approximate Edit distance algorithm). On the other hand, it is more efficient to use the YASHE scheme for a low-degree computation, such as minor allele frequencies or χ2 test statistic in a case-control study. PMID:26733152

  7. Understanding Price Elasticities to Inform Public Health Research and Intervention Studies: Key Issues

    PubMed Central

    Nghiem, Nhung; Genç, Murat; Blakely, Tony

    2013-01-01

    Pricing policies such as taxes and subsidies are important tools in preventing and controlling a range of threats to public health. This is particularly so in tobacco and alcohol control efforts and efforts to change dietary patterns and physical activity levels as a means of addressing increases in noncommunicable diseases. To understand the potential impact of pricing policies, it is critical to understand the nature of price elasticities for consumer products. For example, price elasticities are key parameters in models of any food tax or subsidy that aims to quantify health impacts and cost-effectiveness. We detail relevant terms and discuss key issues surrounding price elasticities to inform public health research and intervention studies. PMID:24028228

  8. Understanding price elasticities to inform public health research and intervention studies: key issues.

    PubMed

    Nghiem, Nhung; Wilson, Nick; Genç, Murat; Blakely, Tony

    2013-11-01

    Pricing policies such as taxes and subsidies are important tools in preventing and controlling a range of threats to public health. This is particularly so in tobacco and alcohol control efforts and efforts to change dietary patterns and physical activity levels as a means of addressing increases in noncommunicable diseases. To understand the potential impact of pricing policies, it is critical to understand the nature of price elasticities for consumer products. For example, price elasticities are key parameters in models of any food tax or subsidy that aims to quantify health impacts and cost-effectiveness. We detail relevant terms and discuss key issues surrounding price elasticities to inform public health research and intervention studies. PMID:24028228

  9. Efficient certificate-based signcryption secure against public key replacement attacks and insider attacks.

    PubMed

    Lu, Yang; Li, Jiguo

    2014-01-01

    Signcryption is a useful cryptographic primitive that achieves confidentiality and authentication in an efficient manner. As an extension of signcryption in certificate-based cryptography, certificate-based signcryption preserves the merits of certificate-based cryptography and signcryption simultaneously. In this paper, we present an improved security model of certificate-based signcryption that covers both public key replacement attack and insider security. We show that an existing certificate-based signcryption scheme is insecure in our model. We also propose a new certificate-based signcryption scheme that achieves security against both public key replacement attacks and insider attacks. We prove in the random oracle model that the proposed scheme is chosen-ciphertext secure and existentially unforgeable. Performance analysis shows that the proposed scheme outperforms all the previous certificate-based signcryption schemes in the literature.

  10. Efficient Certificate-Based Signcryption Secure against Public Key Replacement Attacks and Insider Attacks

    PubMed Central

    Li, Jiguo

    2014-01-01

    Signcryption is a useful cryptographic primitive that achieves confidentiality and authentication in an efficient manner. As an extension of signcryption in certificate-based cryptography, certificate-based signcryption preserves the merits of certificate-based cryptography and signcryption simultaneously. In this paper, we present an improved security model of certificate-based signcryption that covers both public key replacement attack and insider security. We show that an existing certificate-based signcryption scheme is insecure in our model. We also propose a new certificate-based signcryption scheme that achieves security against both public key replacement attacks and insider attacks. We prove in the random oracle model that the proposed scheme is chosen-ciphertext secure and existentially unforgeable. Performance analysis shows that the proposed scheme outperforms all the previous certificate-based signcryption schemes in the literature. PMID:24959606

  11. Optics based biometric encryption using log polar transform

    NASA Astrophysics Data System (ADS)

    Saini, Nirmala; Sinha, Aloka

    2010-01-01

    We propose an optics based biometric encryption technique using log polar transform. In this method, the key of the encryption process has been linked to the fingerprint of the enrolled person. The order of fractional Fourier transform and the seed values of the chaotic random phase masks in combination act as the key for the encryption process. In order to link the combined key to the fingerprint, a lookup table has been formed by the key and the log polar transform of the fingerprint. The linking algorithm not only encrypts the image of the enrolled person but also authenticates the input image. The main advantage of this method is its capability to retrieve the same key in the decryption process by using the live fingerprint. The key is not required to be communicated to the receiver side. The retrieval of the image is possible only when the live fingerprint of the enrolled person is presented at the decryption side. The real life fingerprints have been used to demonstrate the proposed technique. Simulations have been performed on the Matlab platform to validate the proposed technique. The signal to noise ratio and mean square error has been calculated in order to support the proposed technique. The effect of the rotation and the scaling of the fingerprints have been studied to check the key retrieval from the live fingerprint of the enrolled person. The study of the different whorl types of fingerprint of different persons has also been done to check the efficacy of the key retrieval from the whorl types of the live fingerprints of different person.

  12. Deterministic phase encoding encryption in single shot digital holography

    NASA Astrophysics Data System (ADS)

    Chen, G.-L.; Yang, W.-K.; Wang, J. C.; Chang, C.-C.

    2008-11-01

    We demonstrate a deterministic phase-encoded encryption system based on the digital holography and adopted a lenticular lens array (LLA) sheet as a phase modulator. In the proposed scheme the holographic patterns of encrypted images are captured digitally by a digital CCD. This work also adopt a novel, simple and effective technique that is used to suppress numerically the major blurring caused by the zero-order image in the numerical reconstruction. The decryption key is acquired as a digital hologram, called the key hologram. Therefore, the retrieval of the original information can be achieved by multiplying the encrypted hologram with a numerical generated phase-encoded wave. The storage and transmission of all holograms can be carried out by all-digital means. Simulation and experimental results demonstrate that the proposed approach can be operated in single procedure only and represent the satisfactory decrypted image. Finally, rotating and shifting the LLA is applied to investigate the tolerance of decryption to demonstrate the feasibility in the holographic encryption, as well as can also be used to provide the higher security.

  13. Communicating Herschel Key Programs in Solar System Studies to the Public

    NASA Astrophysics Data System (ADS)

    Rengel, M.; Hartogh, P.; Müller, T.

    2011-10-01

    The Herschel Space Observatory, one of the cornerstone missions of the European Space Agency (ESA) with participation from NASA, is delivering a wealth of far-infrared and sub-millimeter observations of the cold Universe. A considerable part of the observing time for the nominal three year mission lifetime has been awarded in the form of Key Programs. Between the 42 key programs (guaranteed and open times), only two key programs are dedicated to study the Solar System: "Water and Related Chemistry in the Solar System", also known as Herschel Solar System Observations (HssO) project [1], and "TNOs are Cool: A Survey of the Transneptunian Region" [2]. In the framework of these Programs, a serie of public outreach activities and efforts of its results are being carried out. We present some of the outreach strategies developed (e.g. press releases, web pages, logos, public lectures, exhibitions, interviews, reports, etc.) and some plans in this direction. Our activities introduce people to knowledge and beauty of solar system research and wider the opportunities for the public to become more involved in topics like solar system studies, specially in the times of frequent exo-planet discoveries.

  14. Opto-digital spectrum encryption by using Baker mapping and gyrator transform

    NASA Astrophysics Data System (ADS)

    Chen, Hang; Zhao, Jiguang; Liu, Zhengjun; Du, Xiaoping

    2015-03-01

    A concept of spectrum information hidden technology is proposed in this paper. We present an optical encryption algorithm for hiding both the spatial and spectrum information by using the Baker mapping in gyrator transform domains. The Baker mapping is introduced for scrambling the every single band of the hyperspectral image before adding the random phase functions. Subsequently, three thin cylinder lenses are controlled by PC for implementing the gyrator transform. The amplitude and phase information in the output plane can be regarded as the encrypted information and main key. Some numerical simulations are made to test the validity and capability of the proposed encryption algorithm.

  15. Double image encryption by using iterative random binary encoding in gyrator domains.

    PubMed

    Liu, Zhengjun; Guo, Qing; Xu, Lie; Ahmad, Muhammad Ashfaq; Liu, Shutian

    2010-05-24

    We propose a double image encryption by using random binary encoding and gyrator transform. Two secret images are first regarded as the real part and imaginary part of complex function. Chaotic map is used for obtaining random binary matrix. The real part and imaginary part of complex function are exchanged under the control of random binary data. An iterative structure composed of the random binary encoding method is designed and employed for enhancing the security of encryption algorithm. The parameters in chaotic map and gyrator transform serve as the keys of this encryption scheme. Some numerical simulations have been made, to demonstrate the performance this algorithm.

  16. Enhancement of utilization of encryption engine

    DOEpatents

    Robertson, Robert J.; Witzke, Edward L.

    2008-04-22

    A method of enhancing throughput of a pipelined encryption/decryption engine for an encryption/decryption process has a predetermined number of stages and provides feedback around the stages (and of such an encryption/decryption engine) by receiving a source datablock for a given stage and encryption/decryption context identifier; indexing according to the encryption/decryption context identifier into a bank of initial variables to retrieve an initial variable for the source datablock; and generating an output datablock from the source datablock and its corresponding initial variable.

  17. Ensemble of Chaotic and Naive Approaches for Performance Enhancement in Video Encryption

    PubMed Central

    Chandrasekaran, Jeyamala; Thiruvengadam, S. J.

    2015-01-01

    Owing to the growth of high performance network technologies, multimedia applications over the Internet are increasing exponentially. Applications like video conferencing, video-on-demand, and pay-per-view depend upon encryption algorithms for providing confidentiality. Video communication is characterized by distinct features such as large volume, high redundancy between adjacent frames, video codec compliance, syntax compliance, and application specific requirements. Naive approaches for video encryption encrypt the entire video stream with conventional text based cryptographic algorithms. Although naive approaches are the most secure for video encryption, the computational cost associated with them is very high. This research work aims at enhancing the speed of naive approaches through chaos based S-box design. Chaotic equations are popularly known for randomness, extreme sensitivity to initial conditions, and ergodicity. The proposed methodology employs two-dimensional discrete Henon map for (i) generation of dynamic and key-dependent S-box that could be integrated with symmetric algorithms like Blowfish and Data Encryption Standard (DES) and (ii) generation of one-time keys for simple substitution ciphers. The proposed design is tested for randomness, nonlinearity, avalanche effect, bit independence criterion, and key sensitivity. Experimental results confirm that chaos based S-box design and key generation significantly reduce the computational cost of video encryption with no compromise in security. PMID:26550603

  18. Ensemble of Chaotic and Naive Approaches for Performance Enhancement in Video Encryption.

    PubMed

    Chandrasekaran, Jeyamala; Thiruvengadam, S J

    2015-01-01

    Owing to the growth of high performance network technologies, multimedia applications over the Internet are increasing exponentially. Applications like video conferencing, video-on-demand, and pay-per-view depend upon encryption algorithms for providing confidentiality. Video communication is characterized by distinct features such as large volume, high redundancy between adjacent frames, video codec compliance, syntax compliance, and application specific requirements. Naive approaches for video encryption encrypt the entire video stream with conventional text based cryptographic algorithms. Although naive approaches are the most secure for video encryption, the computational cost associated with them is very high. This research work aims at enhancing the speed of naive approaches through chaos based S-box design. Chaotic equations are popularly known for randomness, extreme sensitivity to initial conditions, and ergodicity. The proposed methodology employs two-dimensional discrete Henon map for (i) generation of dynamic and key-dependent S-box that could be integrated with symmetric algorithms like Blowfish and Data Encryption Standard (DES) and (ii) generation of one-time keys for simple substitution ciphers. The proposed design is tested for randomness, nonlinearity, avalanche effect, bit independence criterion, and key sensitivity. Experimental results confirm that chaos based S-box design and key generation significantly reduce the computational cost of video encryption with no compromise in security. PMID:26550603

  19. Symmetric weak ternary quantum homomorphic encryption schemes

    NASA Astrophysics Data System (ADS)

    Wang, Yuqi; She, Kun; Luo, Qingbin; Yang, Fan; Zhao, Chao

    2016-03-01

    Based on a ternary quantum logic circuit, four symmetric weak ternary quantum homomorphic encryption (QHE) schemes were proposed. First, for a one-qutrit rotation gate, a QHE scheme was constructed. Second, in view of the synthesis of a general 3 × 3 unitary transformation, another one-qutrit QHE scheme was proposed. Third, according to the one-qutrit scheme, the two-qutrit QHE scheme about generalized controlled X (GCX(m,n)) gate was constructed and further generalized to the n-qutrit unitary matrix case. Finally, the security of these schemes was analyzed in two respects. It can be concluded that the attacker can correctly guess the encryption key with a maximum probability pk = 1/33n, thus it can better protect the privacy of users’ data. Moreover, these schemes can be well integrated into the future quantum remote server architecture, and thus the computational security of the users’ private quantum information can be well protected in a distributed computing environment.

  20. Secure Obfuscation for Encrypted Group Signatures

    PubMed Central

    Fan, Hongfei; Liu, Qin

    2015-01-01

    In recent years, group signature techniques are widely used in constructing privacy-preserving security schemes for various information systems. However, conventional techniques keep the schemes secure only in normal black-box attack contexts. In other words, these schemes suppose that (the implementation of) the group signature generation algorithm is running in a platform that is perfectly protected from various intrusions and attacks. As a complementary to existing studies, how to generate group signatures securely in a more austere security context, such as a white-box attack context, is studied in this paper. We use obfuscation as an approach to acquire a higher level of security. Concretely, we introduce a special group signature functionality-an encrypted group signature, and then provide an obfuscator for the proposed functionality. A series of new security notions for both the functionality and its obfuscator has been introduced. The most important one is the average-case secure virtual black-box property w.r.t. dependent oracles and restricted dependent oracles which captures the requirement of protecting the output of the proposed obfuscator against collision attacks from group members. The security notions fit for many other specialized obfuscators, such as obfuscators for identity-based signatures, threshold signatures and key-insulated signatures. Finally, the correctness and security of the proposed obfuscator have been proven. Thereby, the obfuscated encrypted group signature functionality can be applied to variants of privacy-preserving security schemes and enhance the security level of these schemes. PMID:26167686

  1. A pipelined FPGA implementation of an encryption algorithm based on genetic algorithm

    NASA Astrophysics Data System (ADS)

    Thirer, Nonel

    2013-05-01

    With the evolution of digital data storage and exchange, it is essential to protect the confidential information from every unauthorized access. High performance encryption algorithms were developed and implemented by software and hardware. Also many methods to attack the cipher text were developed. In the last years, the genetic algorithm has gained much interest in cryptanalysis of cipher texts and also in encryption ciphers. This paper analyses the possibility to use the genetic algorithm as a multiple key sequence generator for an AES (Advanced Encryption Standard) cryptographic system, and also to use a three stages pipeline (with four main blocks: Input data, AES Core, Key generator, Output data) to provide a fast encryption and storage/transmission of a large amount of data.

  2. Asymmetric multiple-image encryption based on the cascaded fractional Fourier transform

    NASA Astrophysics Data System (ADS)

    Li, Yanbin; Zhang, Feng; Li, Yuanchao; Tao, Ran

    2015-09-01

    A multiple-image cryptosystem is proposed based on the cascaded fractional Fourier transform. During an encryption procedure, each of the original images is directly separated into two phase masks. A portion of the masks is subsequently modulated into an interim mask, which is encrypted into the ciphertext image; the others are used as the encryption keys. Using phase truncation in the fractional Fourier domain, one can use an asymmetric cryptosystem to produce a real-valued noise-like ciphertext, while a legal user can reconstruct all of the original images using a different group of phase masks. The encryption key is an indivisible part of the corresponding original image and is still useful during decryption. The proposed system has high resistance to various potential attacks, including the chosen-plaintext attack. Numerical simulations also demonstrate the security and feasibility of the proposed scheme.

  3. Masking property of quantum random cipher with phase mask encryption

    NASA Astrophysics Data System (ADS)

    Sohma, Masaki; Hirota, Osamu

    2014-10-01

    The security analysis of physical encryption protocol based on coherent pulse position modulation (CPPM) originated by Yuen is one of the most interesting topics in the study of cryptosystem with a security level beyond the Shannon limit. Although the implementation of CPPM scheme has certain difficulty, several methods have been proposed recently. This paper deals with the CPPM encryption in terms of symplectic transformation, which includes a phase mask encryption as a special example, and formulates a unified security analysis for such encryption schemes. Specifically, we give a lower bound of Eve's symbol error probability using reliability function theory to ensure that our proposed system exceeds the Shannon limit. Then we assume the secret key is given to Eve after her heterodyne measurement. Since this assumption means that Eve has a great advantage in the sense of the conventional cryptography, the lower bound of her error indeed ensures the security level beyond the Shannon limit. In addition, we show some numerical examples of the security performance.

  4. Selectively Encrypted Pull-Up Based Watermarking of Biometric data

    NASA Astrophysics Data System (ADS)

    Shinde, S. A.; Patel, Kushal S.

    2012-10-01

    Biometric authentication systems are becoming increasingly popular due to their potential usage in information security. However, digital biometric data (e.g. thumb impression) are themselves vulnerable to security attacks. There are various methods are available to secure biometric data. In biometric watermarking the data are embedded in an image container and are only retrieved if the secrete key is available. This container image is encrypted to have more security against the attack. As wireless devices are equipped with battery as their power supply, they have limited computational capabilities; therefore to reduce energy consumption we use the method of selective encryption of container image. The bit pull-up-based biometric watermarking scheme is based on amplitude modulation and bit priority which reduces the retrieval error rate to great extent. By using selective Encryption mechanism we expect more efficiency in time at the time of encryption as well as decryption. Significant reduction in error rate is expected to be achieved by the bit pull-up method.

  5. A symmetrical image encryption scheme in wavelet and time domain

    NASA Astrophysics Data System (ADS)

    Luo, Yuling; Du, Minghui; Liu, Junxiu

    2015-02-01

    There has been an increasing concern for effective storages and secure transactions of multimedia information over the Internet. Then a great variety of encryption schemes have been proposed to ensure the information security while transmitting, but most of current approaches are designed to diffuse the data only in spatial domain which result in reducing storage efficiency. A lightweight image encryption strategy based on chaos is proposed in this paper. The encryption process is designed in transform domain. The original image is decomposed into approximation and detail components using integer wavelet transform (IWT); then as the more important component of the image, the approximation coefficients are diffused by secret keys generated from a spatiotemporal chaotic system followed by inverse IWT to construct the diffused image; finally a plain permutation is performed for diffusion image by the Logistic mapping in order to reduce the correlation between adjacent pixels further. Experimental results and performance analysis demonstrate the proposed scheme is an efficient, secure and robust encryption mechanism and it realizes effective coding compression to satisfy desirable storage.

  6. Optical asymmetric image encryption using gyrator wavelet transform

    NASA Astrophysics Data System (ADS)

    Mehra, Isha; Nishchal, Naveen K.

    2015-11-01

    In this paper, we propose a new optical information processing tool termed as gyrator wavelet transform to secure a fully phase image, based on amplitude- and phase-truncation approach. The gyrator wavelet transform constitutes four basic parameters; gyrator transform order, type and level of mother wavelet, and position of different frequency bands. These parameters are used as encryption keys in addition to the random phase codes to the optical cryptosystem. This tool has also been applied for simultaneous compression and encryption of an image. The system's performance and its sensitivity to the encryption parameters, such as, gyrator transform order, and robustness has also been analyzed. It is expected that this tool will not only update current optical security systems, but may also shed some light on future developments. The computer simulation results demonstrate the abilities of the gyrator wavelet transform as an effective tool, which can be used in various optical information processing applications, including image encryption, and image compression. Also this tool can be applied for securing the color image, multispectral, and three-dimensional images.

  7. In science communication, why does the idea of the public deficit always return? Exploring key influences.

    PubMed

    Suldovsky, Brianne

    2016-05-01

    Despite mounting criticism, the deficit model remains an integral part of science communication research and practice. In this article, I advance three key factors that contribute to the idea of the public deficit in science communication, including the purpose of science communication, how communication processes and outcomes are conceptualized, and how science and scientific knowledge are defined. Affording science absolute epistemic privilege, I argue, is the most compelling factor contributing to the continued use of the deficit model. In addition, I contend that the deficit model plays a necessary, though not sufficient, role in science communication research and practice. Areas for future research are discussed.

  8. Encryption for Remote Control via Internet or Intranet

    NASA Technical Reports Server (NTRS)

    Lineberger, Lewis

    2005-01-01

    A data-communication protocol has been devised to enable secure, reliable remote control of processes and equipment via a collision-based network, while using minimal bandwidth and computation. The network could be the Internet or an intranet. Control is made secure by use of both a password and a dynamic key, which is sent transparently to a remote user by the controlled computer (that is, the computer, located at the site of the equipment or process to be controlled, that exerts direct control over the process). The protocol functions in the presence of network latency, overcomes errors caused by missed dynamic keys, and defeats attempts by unauthorized remote users to gain control. The protocol is not suitable for real-time control, but is well suited for applications in which control latencies up to about 0.5 second are acceptable. The encryption scheme involves the use of both a dynamic and a private key, without any additional overhead that would degrade performance. The dynamic key is embedded in the equipment- or process-monitor data packets sent out by the controlled computer: in other words, the dynamic key is a subset of the data in each such data packet. The controlled computer maintains a history of the last 3 to 5 data packets for use in decrypting incoming control commands. In addition, the controlled computer records a private key (password) that is given to the remote computer. The encrypted incoming command is permuted by both the dynamic and private key. A person who records the command data in a given packet for hostile purposes cannot use that packet after the public key expires (typically within 3 seconds). Even a person in possession of an unauthorized copy of the command/remote-display software cannot use that software in the absence of the password. The use of a dynamic key embedded in the outgoing data makes the central-processing unit overhead very small. The use of a National Instruments DataSocket(TradeMark) (or equivalent) protocol or

  9. A new simultaneous compression and encryption method for images suitable to recognize form by optical correlation

    NASA Astrophysics Data System (ADS)

    Alfalou, Ayman; Elbouz, Marwa; Jridi, Maher; Loussert, Alain

    2009-09-01

    In some recognition form applications (which require multiple images: facial identification or sign-language), many images should be transmitted or stored. This requires the use of communication systems with a good security level (encryption) and an acceptable transmission rate (compression rate). In the literature, several encryption and compression techniques can be found. In order to use optical correlation, encryption and compression techniques cannot be deployed independently and in a cascade manner. Otherwise, our system will suffer from two major problems. In fact, we cannot simply use these techniques in a cascade manner without considering the impact of one technique over another. Secondly, a standard compression can affect the correlation decision, because the correlation is sensitive to the loss of information. To solve both problems, we developed a new technique to simultaneously compress & encrypt multiple images using a BPOF optimized filter. The main idea of our approach consists in multiplexing the spectrums of different transformed images by a Discrete Cosine Transform (DCT). To this end, the spectral plane should be divided into several areas and each of them corresponds to the spectrum of one image. On the other hand, Encryption is achieved using the multiplexing, a specific rotation functions, biometric encryption keys and random phase keys. A random phase key is widely used in optical encryption approaches. Finally, many simulations have been conducted. Obtained results corroborate the good performance of our approach. We should also mention that the recording of the multiplexed and encrypted spectra is optimized using an adapted quantification technique to improve the overall compression rate.

  10. An improved piecewise linear chaotic map based image encryption algorithm.

    PubMed

    Hu, Yuping; Zhu, Congxu; Wang, Zhijian

    2014-01-01

    An image encryption algorithm based on improved piecewise linear chaotic map (MPWLCM) model was proposed. The algorithm uses the MPWLCM to permute and diffuse plain image simultaneously. Due to the sensitivity to initial key values, system parameters, and ergodicity in chaotic system, two pseudorandom sequences are designed and used in the processes of permutation and diffusion. The order of processing pixels is not in accordance with the index of pixels, but it is from beginning or end alternately. The cipher feedback was introduced in diffusion process. Test results and security analysis show that not only the scheme can achieve good encryption results but also its key space is large enough to resist against brute attack.

  11. Secure Data Aggregation with Fully Homomorphic Encryption in Large-Scale Wireless Sensor Networks

    PubMed Central

    Li, Xing; Chen, Dexin; Li, Chunyan; Wang, Liangmin

    2015-01-01

    With the rapid development of wireless communication technology, sensor technology, information acquisition and processing technology, sensor networks will finally have a deep influence on all aspects of people’s lives. The battery resources of sensor nodes should be managed efficiently in order to prolong network lifetime in large-scale wireless sensor networks (LWSNs). Data aggregation represents an important method to remove redundancy as well as unnecessary data transmission and hence cut down the energy used in communication. As sensor nodes are deployed in hostile environments, the security of the sensitive information such as confidentiality and integrity should be considered. This paper proposes Fully homomorphic Encryption based Secure data Aggregation (FESA) in LWSNs which can protect end-to-end data confidentiality and support arbitrary aggregation operations over encrypted data. In addition, by utilizing message authentication codes (MACs), this scheme can also verify data integrity during data aggregation and forwarding processes so that false data can be detected as early as possible. Although the FHE increase the computation overhead due to its large public key size, simulation results show that it is implementable in LWSNs and performs well. Compared with other protocols, the transmitted data and network overhead are reduced in our scheme. PMID:26151208

  12. Novel Authentication of Monitoring Data Through the use of Secret and Public Cryptographic Keys

    SciTech Connect

    Benz, Jacob M.; Tolk, Keith; Tanner, Jennifer E.

    2014-07-21

    The Office of Nuclear Verification (ONV) is supporting the development of a piece of equipment to provide data authentication and protection for a suite of monitoring sensors as part of a larger effort to create an arms control technology toolkit. This device, currently called the Red Box, leverages the strengths of both secret and public cryptographic keys to authenticate, digitally sign, and pass along monitoring data to allow for host review, and redaction if necessary, without the loss of confidence in the authenticity of the data by the monitoring party. The design of the Red Box will allow for the addition and removal of monitoring equipment and can also verify that the data was collected by authentic monitoring equipment prior to signing the data and sending it to the host and for review. The host will then forward the data to the monitor for review and inspection. This paper will highlight the progress to date of the Red Box development, and will explain the novel method of leveraging both symmetric and asymmetric (secret and public key) cryptography to authenticate data within a warhead monitoring regime.

  13. Global trade, public health, and health services: stakeholders' constructions of the key issues.

    PubMed

    Waitzkin, Howard; Jasso-Aguilar, Rebeca; Landwehr, Angela; Mountain, Carolyn

    2005-09-01

    Focusing mainly on the United States and Latin America, we aimed to identify the constructions of social reality held by the major stakeholders participating in policy debates about global trade, public health, and health services. In a multi-method, qualitative design, we used three sources of data: research and archival literature, 1980-2004; interviews with key informants who represented major organizations participating in these debates, 2002-2004; and organizational reports, 1980-2004. We targeted several types of organizations: government agencies, international financial institutions (IFIs) and trade organizations, international health organizations, multinational corporations, and advocacy groups. Many governments in Latin America define health as a right and health services as a public good. Thus, the government bears responsibility for that right. In contrast, the US government's philosophy of free trade and promoting a market economy assumes that by expanding the private sector, improved economic conditions will improve overall health with a minimum government provision of health care. US government agencies also view promotion of global health as a means to serve US interests. IFIs have emphasized reforms that include reduction and privatization of public sector services. International health organizations have tended to adopt the policy perspectives of IFIs and trade organizations. Advocacy groups have emphasized the deleterious effects of international trade agreements on public health and health services. Organizational stakeholders hold widely divergent constructions of reality regarding trade, public health, and health services. Social constructions concerning trade and health reflect broad ideologies concerning the impacts of market processes. Such constructions manifest features of "creed," regarding the role of the market in advancing human purposes and meeting human needs. Differences in constructions of trade and health constrain policies to

  14. Resistance of the double random phase encryption against various attacks.

    PubMed

    Frauel, Yann; Castro, Albertina; Naughton, Thomas J; Javidi, Bahram

    2007-08-01

    Several attacks are proposed against the double random phase encryption scheme. These attacks are demonstrated on computer-generated ciphered images. The scheme is shown to be resistant against brute force attacks but susceptible to chosen and known plaintext attacks. In particular, we describe a technique to recover the exact keys with only two known plain images. We compare this technique to other attacks proposed in the literature.

  15. Dual-channel in-line digital holographic double random phase encryption

    PubMed Central

    Das, Bhargab; Yelleswarapu, Chandra S; Rao, D V G L N

    2012-01-01

    We present a robust encryption method for the encoding of 2D/3D objects using digital holography and virtual optics. Using our recently developed dual-plane in-line digital holography technique, two in-line digital holograms are recorded at two different planes and are encrypted using two different double random phase encryption configurations, independently. The process of using two mutually exclusive encryption channels makes the system more robust against attacks since both the channels should be decrypted accurately in order to get a recognizable reconstruction. Results show that the reconstructed object is unrecognizable even when the portion of the correct phase keys used during decryption is close to 75%. The system is verified against blind decryptions by evaluating the SNR and MSE. Validation of the proposed method and sensitivities of the associated parameters are quantitatively analyzed and illustrated. PMID:23471012

  16. Dual-channel in-line digital holographic double random phase encryption.

    PubMed

    Das, Bhargab; Yelleswarapu, Chandra S; Rao, D V G L N

    2012-10-01

    We present a robust encryption method for the encoding of 2D/3D objects using digital holography and virtual optics. Using our recently developed dual-plane in-line digital holography technique, two in-line digital holograms are recorded at two different planes and are encrypted using two different double random phase encryption configurations, independently. The process of using two mutually exclusive encryption channels makes the system more robust against attacks since both the channels should be decrypted accurately in order to get a recognizable reconstruction. Results show that the reconstructed object is unrecognizable even when the portion of the correct phase keys used during decryption is close to 75%. The system is verified against blind decryptions by evaluating the SNR and MSE. Validation of the proposed method and sensitivities of the associated parameters are quantitatively analyzed and illustrated.

  17. Butterfly Encryption Scheme for Resource-Constrained Wireless Networks.

    PubMed

    Sampangi, Raghav V; Sampalli, Srinivas

    2015-09-15

    Resource-constrained wireless networks are emerging networks such as Radio Frequency Identification (RFID) and Wireless Body Area Networks (WBAN) that might have restrictions on the available resources and the computations that can be performed. These emerging technologies are increasing in popularity, particularly in defence, anti-counterfeiting, logistics and medical applications, and in consumer applications with growing popularity of the Internet of Things. With communication over wireless channels, it is essential to focus attention on securing data. In this paper, we present an encryption scheme called Butterfly encryption scheme. We first discuss a seed update mechanism for pseudorandom number generators (PRNG), and employ this technique to generate keys and authentication parameters for resource-constrained wireless networks. Our scheme is lightweight, as in it requires less resource when implemented and offers high security through increased unpredictability, owing to continuously changing parameters. Our work focuses on accomplishing high security through simplicity and reuse. We evaluate our encryption scheme using simulation, key similarity assessment, key sequence randomness assessment, protocol analysis and security analysis.

  18. Butterfly Encryption Scheme for Resource-Constrained Wireless Networks †

    PubMed Central

    Sampangi, Raghav V.; Sampalli, Srinivas

    2015-01-01

    Resource-constrained wireless networks are emerging networks such as Radio Frequency Identification (RFID) and Wireless Body Area Networks (WBAN) that might have restrictions on the available resources and the computations that can be performed. These emerging technologies are increasing in popularity, particularly in defence, anti-counterfeiting, logistics and medical applications, and in consumer applications with growing popularity of the Internet of Things. With communication over wireless channels, it is essential to focus attention on securing data. In this paper, we present an encryption scheme called Butterfly encryption scheme. We first discuss a seed update mechanism for pseudorandom number generators (PRNG), and employ this technique to generate keys and authentication parameters for resource-constrained wireless networks. Our scheme is lightweight, as in it requires less resource when implemented and offers high security through increased unpredictability, owing to continuously changing parameters. Our work focuses on accomplishing high security through simplicity and reuse. We evaluate our encryption scheme using simulation, key similarity assessment, key sequence randomness assessment, protocol analysis and security analysis. PMID:26389899

  19. An enhanced sub-image encryption method

    NASA Astrophysics Data System (ADS)

    Wang, Xing-Yuan; Zhang, Ying-Qian; Liu, Lin-Tao

    2016-11-01

    Recently a parallel sub-image encryption method is proposed by Mirzaei et al., which is based on a total shuffling and parallel encryption algorithm. In this paper, we firstly show that the method can be attacked by chosen plaintext attack and then propose an enhanced sub-image algorithm, which can completely resist the chosen plaintext attack. Moreover, our improved algorithm can reduce the encryption time dramatically. The experimental results also prove that the improved encryption algorithm is secure enough. So the improved method can be used in image transmission system.

  20. Novel image encryption scheme based on Chebyshev polynomial and Duffing map.

    PubMed

    Stoyanov, Borislav; Kordov, Krasimir

    2014-01-01

    We present a novel image encryption algorithm using Chebyshev polynomial based on permutation and substitution and Duffing map based on substitution. Comprehensive security analysis has been performed on the designed scheme using key space analysis, visual testing, histogram analysis, information entropy calculation, correlation coefficient analysis, differential analysis, key sensitivity test, and speed test. The study demonstrates that the proposed image encryption algorithm shows advantages of more than 10(113) key space and desirable level of security based on the good statistical results and theoretical arguments. PMID:25143970

  1. Novel Image Encryption Scheme Based on Chebyshev Polynomial and Duffing Map

    PubMed Central

    2014-01-01

    We present a novel image encryption algorithm using Chebyshev polynomial based on permutation and substitution and Duffing map based on substitution. Comprehensive security analysis has been performed on the designed scheme using key space analysis, visual testing, histogram analysis, information entropy calculation, correlation coefficient analysis, differential analysis, key sensitivity test, and speed test. The study demonstrates that the proposed image encryption algorithm shows advantages of more than 10113 key space and desirable level of security based on the good statistical results and theoretical arguments. PMID:25143970

  2. Modular multiplication in GF(p) for public-key cryptography

    NASA Astrophysics Data System (ADS)

    Olszyna, Jakub

    Modular multiplication forms the basis of modular exponentiation which is the core operation of the RSA cryptosystem. It is also present in many other cryptographic algorithms including those based on ECC and HECC. Hence, an efficient implementation of PKC relies on efficient implementation of modular multiplication. The paper presents a survey of most common algorithms for modular multiplication along with hardware architectures especially suitable for cryptographic applications in energy constrained environments. The motivation for studying low-power and areaefficient modular multiplication algorithms comes from enabling public-key security for ultra-low power devices that can perform under constrained environments like wireless sensor networks. Serial architectures for GF(p) are analyzed and presented. Finally proposed architectures are verified and compared according to the amount of power dissipated throughout the operation.

  3. Countermeasures against Power Analysis Attacks for the NTRU Public Key Cryptosystem

    NASA Astrophysics Data System (ADS)

    Lee, Mun-Kyu; Song, Jeong Eun; Choi, Dooho; Han, Dong-Guk

    The NTRU cryptosystem is a public key system based on lattice problems. While its theoretical security has been well studied, little effort has been made to analyze its security against implementation attacks including power analysis attacks. In this paper, we show that a typical software implementation of NTRU is vulnerable to the simple power analysis and the correlation power analysis including a second-order power attack. We also present novel countermeasures to prevent these attacks, and perform experiments to estimate the performance overheads of our countermeasures. According to our experimental results, the overheads in required memory and execution time are only 8.17% and 9.56%, respectively, over a Tmote Sky equipped with an MSP430 processor.

  4. Healthcare public key infrastructure (HPKI) and non-profit organization (NPO): essentials for healthcare data exchange.

    PubMed

    Takeda, Hiroshi; Matsumura, Yasushi; Nakagawa, Katsuhiko; Teratani, Tadamasa; Qiyan, Zhang; Kusuoka, Hideo; Matsuoka, Masami

    2004-01-01

    To share healthcare information and to promote cooperation among healthcare providers and customers (patients) under computerized network environment, a non-profit organization (NPO), named as OCHIS, was established at Osaka, Japan in 2003. Since security and confidentiality issues on the Internet have been major concerns in the OCHIS, the system has been based on healthcare public key infrastructure (HPKI), and found that there remained problems to be solved technically and operationally. An experimental study was conducted to elucidate the central and the local function in terms of a registration authority and a time stamp authority by contracting with the Ministry of Economics and Trading Industries in 2003. This paper describes the experimental design with NPO and the results of the study concerning message security and HPKI. The developed system has been operated practically in Osaka urban area.

  5. Healthcare public key infrastructure (HPKI) and non-profit organization (NPO): essentials for healthcare data exchange.

    PubMed

    Takeda, Hiroshi; Matsumura, Yasushi; Nakagawa, Katsuhiko; Teratani, Tadamasa; Qiyan, Zhang; Kusuoka, Hideo; Matsuoka, Masami

    2004-01-01

    To share healthcare information and to promote cooperation among healthcare providers and customers (patients) under computerized network environment, a non-profit organization (NPO), named as OCHIS, was established at Osaka, Japan in 2003. Since security and confidentiality issues on the Internet have been major concerns in the OCHIS, the system has been based on healthcare public key infrastructure (HPKI), and found that there remained problems to be solved technically and operationally. An experimental study was conducted to elucidate the central and the local function in terms of a registration authority and a time stamp authority by contracting with the Ministry of Economics and Trading Industries in 2003. This paper describes the experimental design with NPO and the results of the study concerning message security and HPKI. The developed system has been operated practically in Osaka urban area. PMID:15361019

  6. Health and safety's stewardship of key business values: employees, public trust, and responsibility to shareholders.

    PubMed

    Fulwiler, R D

    1993-11-01

    This paper reviews how one company has been able to develop and implement a highly effective job safety and health system and to sustain it at a high level of performance. This process begins with a simple but clear corporate safety and health policy statement: "Procter & Gamble insists on safe operation." It is driven by three critical values, namely: 1) its employees, 2) its public trust, and 3) its profits. The impact of workers' compensation costs on company profits is examined, along with the enormous savings in these costs that have been achieved by the company's commitment to total quality. This is followed by brief descriptions of the company's "Total Incident Rate" and it's "Key Elements" systems, and the relationships between them. The paper concludes with a description of the company's model for enabling all employees to make recommendations for continuous improvement of health and safety systems throughout all of the company's operations.

  7. The construction of a public key infrastructure for healthcare information networks in Japan.

    PubMed

    Sakamoto, N

    2001-01-01

    The digital signature is a key technology in the forthcoming Internet society for electronic healthcare as well as for electronic commerce. Efficient exchanges of authorized information with a digital signature in healthcare information networks require a construction of a public key infrastructure (PKI). In order to introduce a PKI to healthcare information networks in Japan, we proposed a development of a user authentication system based on a PKI for user management, user authentication and privilege management of healthcare information systems. In this paper, we describe the design of the user authentication system and its implementation. The user authentication system provides a certification authority service and a privilege management service while it is comprised of a user authentication client and user authentication serves. It is designed on a basis of an X.509 PKI and is implemented with using OpenSSL and OpenLDAP. It was incorporated into the financial information management system for the national university hospitals and has been successfully working for about one year. The hospitals plan to use it as a user authentication method for their whole healthcare information systems. One implementation of the system is free to the national university hospitals with permission of the Japanese Ministry of Education, Culture, Sports, Science and Technology. Another implementation is open to the other healthcare institutes by support of the Medical Information System Development Center (MEDIS-DC). We are moving forward to a nation-wide construction of a PKI for healthcare information networks based on it. PMID:11604934

  8. The construction of a public key infrastructure for healthcare information networks in Japan.

    PubMed

    Sakamoto, N

    2001-01-01

    The digital signature is a key technology in the forthcoming Internet society for electronic healthcare as well as for electronic commerce. Efficient exchanges of authorized information with a digital signature in healthcare information networks require a construction of a public key infrastructure (PKI). In order to introduce a PKI to healthcare information networks in Japan, we proposed a development of a user authentication system based on a PKI for user management, user authentication and privilege management of healthcare information systems. In this paper, we describe the design of the user authentication system and its implementation. The user authentication system provides a certification authority service and a privilege management service while it is comprised of a user authentication client and user authentication serves. It is designed on a basis of an X.509 PKI and is implemented with using OpenSSL and OpenLDAP. It was incorporated into the financial information management system for the national university hospitals and has been successfully working for about one year. The hospitals plan to use it as a user authentication method for their whole healthcare information systems. One implementation of the system is free to the national university hospitals with permission of the Japanese Ministry of Education, Culture, Sports, Science and Technology. Another implementation is open to the other healthcare institutes by support of the Medical Information System Development Center (MEDIS-DC). We are moving forward to a nation-wide construction of a PKI for healthcare information networks based on it.

  9. Mapping the key issues shaping the landscape of global public health.

    PubMed

    Ager, Alastair; Yu, Gary; Hermosilla, Sabrina

    2012-01-01

    A survey of global health experts attending an invited meeting provided a means to map key issues perceived to be shaping emerging global public health agendas. Eighty-five participants proposed three major issues likely to have the most significant impact on the field of global health in the coming years. Six raters grouped the resultant items, with multi-dimensional scaling (MDS) analysis producing a composite two-dimensional map depicting the overall patterning of items. Thematic clusters were incorporated within four major domains: changing health and prevention needs (15% of items), globalisation and global health governance (33% of items), transforming health systems (30% of items) and innovations in science and technology (7% of items). The remaining 15% of items addressed forms of environmental change. The distribution of items across domains was not significantly influenced by the current professional role of participants, their current location in the 'global north' or 'global south' or their region of focus (although the latter approached threshold significance). The constraints on interpretation imposed by the biases influencing participation in the survey are noted. However, the exercise suggests the potential for coherently defining shared agendas for diverse stakeholders to address emerging priorities. The closer integration of environmental concerns with other global public issues is clearly warranted. PMID:22765282

  10. Mapping the key issues shaping the landscape of global public health.

    PubMed

    Ager, Alastair; Yu, Gary; Hermosilla, Sabrina

    2012-01-01

    A survey of global health experts attending an invited meeting provided a means to map key issues perceived to be shaping emerging global public health agendas. Eighty-five participants proposed three major issues likely to have the most significant impact on the field of global health in the coming years. Six raters grouped the resultant items, with multi-dimensional scaling (MDS) analysis producing a composite two-dimensional map depicting the overall patterning of items. Thematic clusters were incorporated within four major domains: changing health and prevention needs (15% of items), globalisation and global health governance (33% of items), transforming health systems (30% of items) and innovations in science and technology (7% of items). The remaining 15% of items addressed forms of environmental change. The distribution of items across domains was not significantly influenced by the current professional role of participants, their current location in the 'global north' or 'global south' or their region of focus (although the latter approached threshold significance). The constraints on interpretation imposed by the biases influencing participation in the survey are noted. However, the exercise suggests the potential for coherently defining shared agendas for diverse stakeholders to address emerging priorities. The closer integration of environmental concerns with other global public issues is clearly warranted.

  11. A novel stream encryption scheme with avalanche effect

    NASA Astrophysics Data System (ADS)

    Min, Lequan; Chen, Guanrong

    2013-11-01

    This paper proposes a novel stream encryption scheme with avalanche effect (SESAE). Using this scheme and an ideal pseudorandom number generator (PRNG) to generate d-bit segment binary key streams, one can encrypt a plaintext such that by using any key stream generated from a different seed to decrypt the ciphertext, the decrypted plaintext will become an avalanche-like text which has 2 d - 1 consecutive one's with a high probability. As a cost, the required bits of the ciphertext are d times those of the plaintext. A corresponding avalanche-type encryption theorem is established. Two chaotic 12-bit segment PRNGs are designed. A generalized FIPS140 test and SESAE test for the two chaotic PRNGs, RC4 12-bit segment PRNG and 12-bit segment Matlab PRNG are implemented. The SESAE tests for 16-bit segment PRNGs are also compared. The results suggest that those PRNGs are able to generate the SESAEs which are similar to those generated via ideal PRNGs.

  12. Using Conjoint Analysis to Estimate Employers Preferences for Key Competencies of Master Level Dutch Graduates Entering the Public Health Field

    ERIC Educational Resources Information Center

    Biesma, R. G.; Pavlova, M.; van Merode, G. G.; Groot, W.

    2007-01-01

    This paper uses an experimental design to estimate preferences of employers for key competencies during the transition from initial education to the labor market. The study is restricted to employers of entry-level academic graduates entering public health organizations in the Netherlands. Given the changing and complex demands in public health,…

  13. Vital Collaboratives, Alliances, and Partnerships: A Search for Key Elements of an Effective Public-Private Partnership

    ERIC Educational Resources Information Center

    Young, Charles Keith

    2010-01-01

    Owing to the significant structural changes that have occurred in the global marketplace over the past 2 decades, a corresponding increase of public-private partnerships have been established among the business sector, local governments, and public community colleges. This qualitative project sought to identify and substantiate key elements that…

  14. Binary-tree encryption strategy for optical multiple-image encryption.

    PubMed

    Yi, Jiawang; Tan, Guanzheng

    2016-07-10

    In traditional optical multiple-image encryption schemes, different images typically have almost the same encryption or decryption process. Provided that an attacker manages to correctly decrypt some image, the conventional attacks upon other images are much easier to be made. In this paper, a binary-tree encryption strategy for multiple images is proposed to resist the attacks in this case. The encryption schemes produced by this strategy can not only increase the security of multiple-image encryption, but also realize an authority management with high security among the users sharing a cipher image. For a simulation test, we devise a basic binary-tree encryption scheme, whose encryption nodes are based on an asymmetric double random phase encoding in the gyrator domain. The favorable simulation results about the tested scheme can testify to the feasibility of the strategy.

  15. Quantum image encryption based on generalized affine transform and logistic map

    NASA Astrophysics Data System (ADS)

    Liang, Hao-Ran; Tao, Xiang-Yang; Zhou, Nan-Run

    2016-07-01

    Quantum circuits of the generalized affine transform are devised based on the novel enhanced quantum representation of digital images. A novel quantum image encryption algorithm combining the generalized affine transform with logistic map is suggested. The gray-level information of the quantum image is encrypted by the XOR operation with a key generator controlled by the logistic map, while the position information of the quantum image is encoded by the generalized affine transform. The encryption keys include the independent control parameters used in the generalized affine transform and the logistic map. Thus, the key space is large enough to frustrate the possible brute-force attack. Numerical simulations and analyses indicate that the proposed algorithm is realizable, robust and has a better performance than its classical counterpart in terms of computational complexity.

  16. A hybrid heuristic algorithm to improve known-plaintext attack on Fourier plane encryption.

    PubMed

    Liu, Wensi; Yang, Guanglin; Xie, Haiyan

    2009-08-01

    A hybrid heuristic attack scheme that combines the hill climbing algorithm and the simulated annealing algorithm is proposed to speed up the search procedure and to obtain a more accurate solution to the original key in the Fourier plane encryption algorithm. And a unit cycle is adopted to analyze the value space of the random phase. The experimental result shows that our scheme can obtain more accurate solution to the key that can achieve better decryption result both for the selected encrypted image and another unseen ciphertext image. The searching time is significantly reduced while without any exceptional case in searching procedure. For an image of 64x64 pixels, our algorithm costs a comparatively short computing time, about 1 minute, can retrieve the approximated key with the normalized root mean squared error 0.1, therefore, our scheme makes the known-plaintext attack on the Fourier plane image encryption more practical, stable, and effective.

  17. Simultaneous image compression, fusion and encryption algorithm based on compressive sensing and chaos

    NASA Astrophysics Data System (ADS)

    Liu, Xingbin; Mei, Wenbo; Du, Huiqian

    2016-05-01

    In this paper, a novel approach based on compressive sensing and chaos is proposed for simultaneously compressing, fusing and encrypting multi-modal images. The sparsely represented source images are firstly measured with the key-controlled pseudo-random measurement matrix constructed using logistic map, which reduces the data to be processed and realizes the initial encryption. Then the obtained measurements are fused by the proposed adaptive weighted fusion rule. The fused measurement is further encrypted into the ciphertext through an iterative procedure including improved random pixel exchanging technique and fractional Fourier transform. The fused image can be reconstructed by decrypting the ciphertext and using a recovery algorithm. The proposed algorithm not only reduces data volume but also simplifies keys, which improves the efficiency of transmitting data and distributing keys. Numerical results demonstrate the feasibility and security of the proposed scheme.

  18. 15 CFR Supplement No. 6 to Part 742 - Guidelines for Submitting Review Requests for Encryption Items

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... asymmetric encryption algorithms and key lengths and how the algorithms are used, including relevant... cipher block chaining mode). (2) State the key management algorithms, including modulus sizes, that are supported. (3) For products with proprietary algorithms, include a textual description and the source...

  19. Manticore and CS mode : parallelizable encryption with joint cipher-state authentication.

    SciTech Connect

    Torgerson, Mark Dolan; Draelos, Timothy John; Schroeppel, Richard Crabtree; Miller, Russell D.; Beaver, Cheryl Lynn; Anderson, William Erik

    2004-10-01

    We describe a new mode of encryption with inexpensive authentication, which uses information from the internal state of the cipher to provide the authentication. Our algorithms have a number of benefits: (1) the encryption has properties similar to CBC mode, yet the encipherment and authentication can be parallelized and/or pipelined, (2) the authentication overhead is minimal, and (3) the authentication process remains resistant against some IV reuse. We offer a Manticore class of authenticated encryption algorithms based on cryptographic hash functions, which support variable block sizes up to twice the hash output length and variable key lengths. A proof of security is presented for the MTC4 and Pepper algorithms. We then generalize the construction to create the Cipher-State (CS) mode of encryption that uses the internal state of any round-based block cipher as an authenticator. We provide hardware and software performance estimates for all of our constructions and give a concrete example of the CS mode of encryption that uses AES as the encryption primitive and adds a small speed overhead (10-15%) compared to AES alone.

  20. Multiple-image encryption based on compressive holography using a multiple-beam interferometer

    NASA Astrophysics Data System (ADS)

    Wan, Yuhong; Wu, Fan; Yang, Jinghuan; Man, Tianlong

    2015-05-01

    Multiple-image encryption techniques not only improve the encryption capacity but also facilitate the transmission and storage of the ciphertext. We present a new method of multiple-image encryption based on compressive holography with enhanced data security using a multiple-beam interferometer. By modifying the Mach-Zehnder interferometer, the interference of multiple object beams and unique reference beam is implemented for encrypting multiple images simultaneously into one hologram. The original images modulated with the random phase masks are put in different positions with different distance away from the CCD camera. Each image plays the role of secret key for other images to realize the mutual encryption. Four-step phase shifting technique is combined with the holographic recording. The holographic recording is treated as a compressive sensing process, thus the decryption process is inverted as a minimization problem and the two-step iterative shrinkage/thresholding algorithm (TwIST) is employed to solve this optimization problem. The simulated results about multiple binary and grayscale images encryption are demonstrated to verify the validity and robustness of our proposed method.

  1. 15 CFR 742.15 - Encryption items.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... where the change is limited to updates of encryption software components where the product is otherwise... Memorandum of November 15, 1996, exports and reexports of encryption software, like exports and reexports of... because of any informational or theoretical value that such software may reflect, contain, or...

  2. 15 CFR 742.15 - Encryption items.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... where the change is limited to updates of encryption software components where the product is otherwise... Memorandum of November 15, 1996, exports and reexports of encryption software, like exports and reexports of... because of any informational or theoretical value that such software may reflect, contain, or...

  3. 15 CFR 742.15 - Encryption items.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... where the change is limited to updates of encryption software components where the product is otherwise... Memorandum of November 15, 1996, exports and reexports of encryption software, like exports and reexports of... because of any informational or theoretical value that such software may reflect, contain, or...

  4. 15 CFR 742.15 - Encryption items.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... where the change is limited to updates of encryption software components where the product is otherwise... Memorandum of November 15, 1996, exports and reexports of encryption software, like exports and reexports of... because of any informational or theoretical value that such software may reflect, contain, or...

  5. Space-based optical image encryption.

    PubMed

    Chen, Wen; Chen, Xudong

    2010-12-20

    In this paper, we propose a new method based on a three-dimensional (3D) space-based strategy for the optical image encryption. The two-dimensional (2D) processing of a plaintext in the conventional optical encryption methods is extended to a 3D space-based processing. Each pixel of the plaintext is considered as one particle in the proposed space-based optical image encryption, and the diffraction of all particles forms an object wave in the phase-shifting digital holography. The effectiveness and advantages of the proposed method are demonstrated by numerical results. The proposed method can provide a new optical encryption strategy instead of the conventional 2D processing, and may open up a new research perspective for the optical image encryption.

  6. Optical encryption for large-sized images

    NASA Astrophysics Data System (ADS)

    Sanpei, Takuho; Shimobaba, Tomoyoshi; Kakue, Takashi; Endo, Yutaka; Hirayama, Ryuji; Hiyama, Daisuke; Hasegawa, Satoki; Nagahama, Yuki; Sano, Marie; Oikawa, Minoru; Sugie, Takashige; Ito, Tomoyoshi

    2016-02-01

    We propose an optical encryption framework that can encrypt and decrypt large-sized images beyond the size of the encrypted image using our two methods: random phase-free method and scaled diffraction. In order to record the entire image information on the encrypted image, the large-sized images require the random phase to widely diffuse the object light over the encrypted image; however, the random phase gives rise to the speckle noise on the decrypted images, and it may be difficult to recognize the decrypted images. In order to reduce the speckle noise, we apply our random phase-free method to the framework. In addition, we employ scaled diffraction that calculates light propagation between planes with different sizes by changing the sampling rates.

  7. Coordination between veterinary services and other relevant authorities: a key component of good public governance.

    PubMed

    Bellemain, V

    2012-08-01

    Coordination between Veterinary Services and other relevant authorities is a key component of good public governance, especially for effective action and optimal management of available resources. The importance of good coordination is reflected in the World Organisation for Animal Health'Tool forthe Evaluation of Performance of Veterinary Services', which includes a critical competency on coordination. Many partners from technical, administrative and legal fields are involved. The degree of formalisation of coordination tends to depend on a country's level of organisation and development. Contingency plans against avian influenza led to breakthroughs in many countries in the mid-2000s. While interpersonal relationships remain vital, not everything should hinge on them. Organisation and management are critical to operational efficiency. The distribution of responsibilities needs to be defined clearly, avoiding duplication and areas of conflict. Lead authorities should be designated according to subject (Veterinary Services in animal health areas) and endowed with the necessary legitimacy. Lead authorities will be responsible for coordinating the drafting and updating of the relevant documents: agreements between authorities, contingency plans, standard operating procedures, etc. PMID:23413730

  8. Multiple image encryption by phase retrieval

    NASA Astrophysics Data System (ADS)

    Di, Hong; Kang, Yanmei; Liu, Yueqin; Zhang, Xin

    2016-07-01

    Multiple image encryption (MIE) was proposed to increase the efficiency of encrypting images by processing several images simultaneously. Because of the advantage of optical technology in processing twodimensional images at high throughput, MIE has been significantly improved by use of methods originating from optics. Phase retrieval was the process of algorithmically finding solutions to the phase loss problem due to light detectors only capturing the intensity. It was to retrieve phase information for the determination of a structure from diffraction data. Error-reduction algorithm is a typical phase retrieval method. Here, we employ it to illustrate that methods in phase retrieval are able to encrypt multiple images and compress them into encrypted data simultaneously. Moreover, the decryption is also designed to handle multiple images at the same time. The whole process including both the encryption and decryption is proposed to improve MIE with respect to the compression and efficiency. The feasibility and encryption of the MIE scheme is demonstrated with encryption experiments under Gaussian white noise and unauthorized access.

  9. Optical image encryption based on multi-beam interference and common vector decomposition

    NASA Astrophysics Data System (ADS)

    Chen, Linfei; He, Bingyu; Chen, Xudong; Gao, Xiong; Liu, Jingyu

    2016-02-01

    Based on multi-beam interference and common vector decomposition, we propose a new method for optical image encryption. In encryption process, the information of an original image is encoded into n amplitude masks and n phase masks which are regarded as a ciphertext and many keys. In decryption process, parallel light irradiates the amplitude masks and phase masks, then passes through lens that takes place Fourier transform, and finally we obtain the original image at the output plane after interference. The security of the encryption system is also discussed in the paper, and we find that only when all the keys are correct, can the information of the original image be recovered. Computer simulation results are presented to verify the validity and the security of the proposed method.

  10. Video Encryption and Decryption on Quantum Computers

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Iliyasu, Abdullah M.; Venegas-Andraca, Salvador E.; Yang, Huamin

    2015-08-01

    A method for video encryption and decryption on quantum computers is proposed based on color information transformations on each frame encoding the content of the encoding the content of the video. The proposed method provides a flexible operation to encrypt quantum video by means of the quantum measurement in order to enhance the security of the video. To validate the proposed approach, a tetris tile-matching puzzle game video is utilized in the experimental simulations. The results obtained suggest that the proposed method enhances the security and speed of quantum video encryption and decryption, both properties required for secure transmission and sharing of video content in quantum communication.

  11. Optical image encryption based on diffractive imaging.

    PubMed

    Chen, Wen; Chen, Xudong; Sheppard, Colin J R

    2010-11-15

    In this Letter, we propose a method for optical image encryption based on diffractive imaging. An optical multiple random phase mask encoding system is applied, and one of the phase-only masks is selected and laterally translated along a preset direction during the encryption process. For image decryption, a phase retrieval algorithm is proposed to extract a high-quality plaintext. The feasibility and effectiveness of the proposed method are demonstrated by numerical results. The proposed method can provide a new strategy instead of conventional interference methods, and it may open up a new research perspective for optical image encryption.

  12. Application of input amplitude masks in image encryption with spatially incoherent illumination for increase of decrypted images signal-to-noise ratio

    NASA Astrophysics Data System (ADS)

    Cheremkhin, Pavel A.; Evtikhiev, Nikolay N.; Krasnov, Vitaly V.; Molodtsov, Dmitriy Y.; Rodin, Vladislav G.; Shifrina, Anna V.

    2016-04-01

    The majority of existing methods of optical encryption use not only light intensity distribution, easily registered with photosensors, but also its phase distribution. This provides best encryption strength for fixed quantities of elements and phase levels in a mask. Downsides are holographic registration scheme used in order to register not only light intensity distribution but also its phase distribution and speckle noise occurring due to coherent illumination. That factors lead to very poor decryption quality when it comes from computer simulations to optical implementations. Method of optical encryption with spatially incoherent illumination does not have drawbacks inherent to coherent systems, however, as only light intensity distribution is considered, mean value of image to be encrypted is always above zero which leads to intensive zero spatial frequency peak in image spectrum. Therefore, in case of spatially incoherent illumination, image spectrum, as well as encryption key spectrum, cannot be white. If encryption is based on convolution operation, no matter coherent light used or not, Fourier spectrum amplitude distribution of encryption key should overlap Fourier spectrum amplitude distribution of image to be encrypted otherwise loss of information is unavoidable. Another factor affecting decrypted image quality is original image spectrum. Usually, most part of image energy is concentrated in area of low frequencies. Consequently, only this area in encrypted image contains information about original image, while other areas contain only noise. We propose to use additional encoding of input scene to increase size of the area containing useful information. This provides increase of signal-to-noise ratio in encrypted image and consequentially increases quality of decrypted images. Results of computer simulations of test images optical encryption with spatially incoherent illumination and additional input amplitude masks are presented.

  13. Key challenges of offshore wind power: Three essays addressing public acceptance, stakeholder conflict, and wildlife impacts

    NASA Astrophysics Data System (ADS)

    Bates, Alison Waterbury

    been proposed. The essay examines how the public considers the societal tradeoffs that are made to develop small-scale, in-view demonstration wind projects instead of larger facilities farther offshore. Results indicate that a strong majority of the public supports near-shore demonstration wind projects in both states. Primary reasons for support include benefits to wildlife, cost of electricity, and job creation, while the primary reasons for opposition include wildlife impacts, aesthetics, tourism, and user conflicts. These factors differ between coastal Delaware and greater Atlantic City and highlight the importance of local, community engagement in the early stages of development. The second essay examines the interaction of a new proposed use of the ocean---offshore wind---and a key existing ocean user group---commercial fishers. A key component of offshore wind planning includes consideration of existing uses of the marine environment in order to optimally site wind projects while minimizing conflicts. Commercial fisheries comprise an important stakeholder group, and may be one of the most impacted stakeholders from offshore renewable energy development. Concern of the fishing industry stems from possible interference with productive fishing grounds and access within wind developments resulting in costs from increased effort or reduction in catch. Success of offshore wind development may in part depend on the acceptance of commercial fishers, who are concerned about loss of access to fishing grounds. Using a quantitative, marine spatial planning approach in the siting of offshore wind projects with respect to commercial fishing in the mid-Atlantic, U.S., this essay develops a spatially explicit representation of potential conflicts and compatibilities between these two industries in the mid-Atlantic region of the United States. Areas that are highly valuable to the wind industry are determined through a spatial suitability model using variable cost per unit

  14. Design of an image encryption scheme based on a multiple chaotic map

    NASA Astrophysics Data System (ADS)

    Tong, Xiao-Jun

    2013-07-01

    In order to solve the problem that chaos is degenerated in limited computer precision and Cat map is the small key space, this paper presents a chaotic map based on topological conjugacy and the chaotic characteristics are proved by Devaney definition. In order to produce a large key space, a Cat map named block Cat map is also designed for permutation process based on multiple-dimensional chaotic maps. The image encryption algorithm is based on permutation-substitution, and each key is controlled by different chaotic maps. The entropy analysis, differential analysis, weak-keys analysis, statistical analysis, cipher random analysis, and cipher sensibility analysis depending on key and plaintext are introduced to test the security of the new image encryption scheme. Through the comparison to the proposed scheme with AES, DES and Logistic encryption methods, we come to the conclusion that the image encryption method solves the problem of low precision of one dimensional chaotic function and has higher speed and higher security.

  15. A Signcryption based Light Weight Key Exchange Protocol

    NASA Astrophysics Data System (ADS)

    Feng, Yong; Wei, Qian; Zhang, Xing

    Traditional cryptography based authenticated Diffie-Hellman key exchange protocols expose the problems of efficiency and privacy since signature-then-encryption is heavy to wireless communication special for flexible dynamic deployment, i.e., wireless mesh networks, wireless sensor networks, mobile ad hoc networks, etc., in computational cost and communicational overhead and traditional digital signature allows anyone to verify its validity using the corresponding public key. In this paper, we propose a signcryption based light weight key exchange protocol named SLWKE which can provide resistance to traditional attacks, i.e., eavesdropping, deducing, replaying, interleaving, forging and repudiating, and unknown key-share attack and save computational cost by three modular calculations, i.e., one modular inversion, one modular addition and one modular multiplicative, included in a signature s and communicational overhead by secure length of IqI in comparison to signcryption based direct key exchange using a time-stamp protocol termed Dkeuts.

  16. WEDDS: The WITS Encrypted Data Delivery System

    NASA Technical Reports Server (NTRS)

    Norris, J.; Backes, P.

    1999-01-01

    WEDDS, the WITS Encrypted Data Delivery System, is a framework for supporting distributed mission operations by automatically transferring sensitive mission data in a secure and efficient manner to and from remote mission participants over the internet.

  17. An Investigation of the National School Board Association Key Work Standards for Public Policy Leadership and School Board Chair Performance

    ERIC Educational Resources Information Center

    Quarles, Roger C.

    2011-01-01

    This multiple case qualitative study addressed the National School Board Association's (NSBA) Key Work standards for public policy leadership by local school boards, and how three elite school board chairs understood and implemented those standards. Elite board chair status was defined by experience, training, and peer recognition. The study…

  18. Multiple-image encryption using polarized light encoding and the optical interference principle in the Fresnel-transform domain.

    PubMed

    Wang, Qu; Guo, Qing; Zhou, Jinyun

    2013-12-20

    We propose a multiple-image encryption scheme, based on polarized light encoding and the interference principle of phase-only masks (POMs), in the Fresnel-transform (FrT) domain. In this scheme, each secret image is converted into an intensity image by polarized light encoding, where a random key image and a pixilated polarizer with random angles are employed as keys. The intensity encrypted images produced by different secret images are convolved together and then inverse Fresnel-transformed. Phase and amplitude truncations are used to generate the asymmetric decryption keys. The phase-truncated inverse FrT spectrum is sent into an interference-based encryption (IBE) system to analytically obtain two POMs. To reduce the transmission and storage load on the keys, the chaotic mapping method is employed to generate random distributions of keys for encryption and decryption. One can recover all secret images successfully only if the corresponding decryption keys, the mechanism of FrTs, and correct chaotic conditions are known. The inherent silhouette problem can be thoroughly resolved by polarized light encoding in this proposal, without using any time-consuming iterative methods. The entire encryption and decryption process can be realized digitally, or in combination with optical means. Numerical simulation results are presented to verify the effectiveness and performance of the proposed scheme.

  19. A sensitive data extraction algorithm based on the content associated encryption technology for ICS

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Hao, Huang; Xie, Changsheng

    With the development of HD video, the protection of copyright becomes more complicated. More advanced copyright protection technology is needed. Traditional digital copyright protection technology generally uses direct or selective encryption algorithm and the key does not associate with the video content [1]. Once the encryption method is cracked or the key is stolen, the copyright of the video will be violated. To address this issue, this paper proposes a Sensitive Data Extraction Algorithm (SDEA) based on the content associated encryption technology which applies to the Internet Certification Service (ICS). The principle of content associated encryption is to extract some data from the video and use this extracted data as the key to encrypt the rest data. The extracted part from video is called sensitive data, and the rest part is called the main data. After extraction, the main data will not be played or poorly played. The encrypted sensitive data reach the terminal device through the safety certificated network and the main data are through ICS disc. The terminal equipments are responsible for synthesizing and playing these two parts of data. Consequently, even if the main data on disc is illegally obtained, the video cannot be played normally due to the lack of necessary sensitive data. It is proved by experiments that ICS using SDEA can destruct the video effectively with 0.25% extraction rates and the destructed video cannot be played well. It can also guarantee the consistency of the destructive effect on different videos with different contents. The sensitive data can be transported smoothly under the home Internet bandwidth.

  20. Dual-Layer Video Encryption using RSA Algorithm

    NASA Astrophysics Data System (ADS)

    Chadha, Aman; Mallik, Sushmit; Chadha, Ankit; Johar, Ravdeep; Mani Roja, M.

    2015-04-01

    This paper proposes a video encryption algorithm using RSA and Pseudo Noise (PN) sequence, aimed at applications requiring sensitive video information transfers. The system is primarily designed to work with files encoded using the Audio Video Interleaved (AVI) codec, although it can be easily ported for use with Moving Picture Experts Group (MPEG) encoded files. The audio and video components of the source separately undergo two layers of encryption to ensure a reasonable level of security. Encryption of the video component involves applying the RSA algorithm followed by the PN-based encryption. Similarly, the audio component is first encrypted using PN and further subjected to encryption using the Discrete Cosine Transform. Combining these techniques, an efficient system, invulnerable to security breaches and attacks with favorable values of parameters such as encryption/decryption speed, encryption/decryption ratio and visual degradation; has been put forth. For applications requiring encryption of sensitive data wherein stringent security requirements are of prime concern, the system is found to yield negligible similarities in visual perception between the original and the encrypted video sequence. For applications wherein visual similarity is not of major concern, we limit the encryption task to a single level of encryption which is accomplished by using RSA, thereby quickening the encryption process. Although some similarity between the original and encrypted video is observed in this case, it is not enough to comprehend the happenings in the video.

  1. Symmetric encryption algorithms using chaotic and non-chaotic generators: A review

    PubMed Central

    Radwan, Ahmed G.; AbdElHaleem, Sherif H.; Abd-El-Hafiz, Salwa K.

    2015-01-01

    This paper summarizes the symmetric image encryption results of 27 different algorithms, which include substitution-only, permutation-only or both phases. The cores of these algorithms are based on several discrete chaotic maps (Arnold’s cat map and a combination of three generalized maps), one continuous chaotic system (Lorenz) and two non-chaotic generators (fractals and chess-based algorithms). Each algorithm has been analyzed by the correlation coefficients between pixels (horizontal, vertical and diagonal), differential attack measures, Mean Square Error (MSE), entropy, sensitivity analyses and the 15 standard tests of the National Institute of Standards and Technology (NIST) SP-800-22 statistical suite. The analyzed algorithms include a set of new image encryption algorithms based on non-chaotic generators, either using substitution only (using fractals) and permutation only (chess-based) or both. Moreover, two different permutation scenarios are presented where the permutation-phase has or does not have a relationship with the input image through an ON/OFF switch. Different encryption-key lengths and complexities are provided from short to long key to persist brute-force attacks. In addition, sensitivities of those different techniques to a one bit change in the input parameters of the substitution key as well as the permutation key are assessed. Finally, a comparative discussion of this work versus many recent research with respect to the used generators, type of encryption, and analyses is presented to highlight the strengths and added contribution of this paper. PMID:26966561

  2. Symmetric encryption algorithms using chaotic and non-chaotic generators: A review.

    PubMed

    Radwan, Ahmed G; AbdElHaleem, Sherif H; Abd-El-Hafiz, Salwa K

    2016-03-01

    This paper summarizes the symmetric image encryption results of 27 different algorithms, which include substitution-only, permutation-only or both phases. The cores of these algorithms are based on several discrete chaotic maps (Arnold's cat map and a combination of three generalized maps), one continuous chaotic system (Lorenz) and two non-chaotic generators (fractals and chess-based algorithms). Each algorithm has been analyzed by the correlation coefficients between pixels (horizontal, vertical and diagonal), differential attack measures, Mean Square Error (MSE), entropy, sensitivity analyses and the 15 standard tests of the National Institute of Standards and Technology (NIST) SP-800-22 statistical suite. The analyzed algorithms include a set of new image encryption algorithms based on non-chaotic generators, either using substitution only (using fractals) and permutation only (chess-based) or both. Moreover, two different permutation scenarios are presented where the permutation-phase has or does not have a relationship with the input image through an ON/OFF switch. Different encryption-key lengths and complexities are provided from short to long key to persist brute-force attacks. In addition, sensitivities of those different techniques to a one bit change in the input parameters of the substitution key as well as the permutation key are assessed. Finally, a comparative discussion of this work versus many recent research with respect to the used generators, type of encryption, and analyses is presented to highlight the strengths and added contribution of this paper.

  3. Optical image encryption based on cascaded iterative angular spectrum algorithm and its implementation with parallel hardware

    NASA Astrophysics Data System (ADS)

    Yu, Biin; Peng, Xiang; Tian, Jindong; Niu, Hanben

    2006-01-01

    A cascaded iterative angular spectrum approach (CIASA) based on the methodology of virtual optics is presented for optical security applications. The technique encodes the target image into two different phase only masks (POM) using a concept of free-space angular spectrum propagation. The two phase-masks are designed and located in any two arbitrary planes interrelated through the free space propagation domain in order to implement the optical encryption or authenticity verification. And both phase masks can serve as enciphered texts. Compared with previous methods, the proposed algorithm employs an improved searching strategy: modifying the phase-distributions of both masks synchronously as well as enlarging the searching space. And with such a scheme, we make use of a high performance floating-point Digital Signal Processor (DSP) to accomplish a design of multiple-locks and multiple-keys optical image encryption system. An evaluation of the system performance is made and it is shown that the algorithm results in much faster convergence and better image quality for the recovered image. And two masks and system parameters can be used to design keys for image encryption, therefore the decrypted image can be obtained only when all these keys are under authorization. This key-assignment strategy may reduce the risk of being intruded and show a high security level. These characters may introduce a high level security that makes the encrypted image more difficult to be decrypted by an unauthorized person.

  4. Symmetric encryption algorithms using chaotic and non-chaotic generators: A review.

    PubMed

    Radwan, Ahmed G; AbdElHaleem, Sherif H; Abd-El-Hafiz, Salwa K

    2016-03-01

    This paper summarizes the symmetric image encryption results of 27 different algorithms, which include substitution-only, permutation-only or both phases. The cores of these algorithms are based on several discrete chaotic maps (Arnold's cat map and a combination of three generalized maps), one continuous chaotic system (Lorenz) and two non-chaotic generators (fractals and chess-based algorithms). Each algorithm has been analyzed by the correlation coefficients between pixels (horizontal, vertical and diagonal), differential attack measures, Mean Square Error (MSE), entropy, sensitivity analyses and the 15 standard tests of the National Institute of Standards and Technology (NIST) SP-800-22 statistical suite. The analyzed algorithms include a set of new image encryption algorithms based on non-chaotic generators, either using substitution only (using fractals) and permutation only (chess-based) or both. Moreover, two different permutation scenarios are presented where the permutation-phase has or does not have a relationship with the input image through an ON/OFF switch. Different encryption-key lengths and complexities are provided from short to long key to persist brute-force attacks. In addition, sensitivities of those different techniques to a one bit change in the input parameters of the substitution key as well as the permutation key are assessed. Finally, a comparative discussion of this work versus many recent research with respect to the used generators, type of encryption, and analyses is presented to highlight the strengths and added contribution of this paper. PMID:26966561

  5. The Right to Strike in Public Employment. Key Issues Series--No. 15. Second Edition, Revised.

    ERIC Educational Resources Information Center

    Sterret, Grace; Aboud, Antone

    Since the 1960s, the number of strikes by public employees, especially local government employees, has increased, and the number of employees belonging to unions or associations has about tripled. Recently, attention has been focused on strikes by public employees as a result of the strike in 1981 by air traffic controllers and their subsequent…

  6. Using wavefront coding technique as an optical encryption system: reliability analysis and vulnerabilities assessment

    NASA Astrophysics Data System (ADS)

    Konnik, Mikhail V.

    2012-04-01

    Wavefront coding paradigm can be used not only for compensation of aberrations and depth-of-field improvement but also for an optical encryption. An optical convolution of the image with the PSF occurs when a diffractive optical element (DOE) with a known point spread function (PSF) is placed in the optical path. In this case, an optically encoded image is registered instead of the true image. Decoding of the registered image can be performed using standard digital deconvolution methods. In such class of optical-digital systems, the PSF of the DOE is used as an encryption key. Therefore, a reliability and cryptographic resistance of such an encryption method depends on the size and complexity of the PSF used for optical encoding. This paper gives a preliminary analysis on reliability and possible vulnerabilities of such an encryption method. Experimental results on brute-force attack on the optically encrypted images are presented. Reliability estimation of optical coding based on wavefront coding paradigm is evaluated. An analysis of possible vulnerabilities is provided.

  7. Securing information using optically generated biometric keys

    NASA Astrophysics Data System (ADS)

    Verma, Gaurav; Sinha, Aloka

    2016-11-01

    In this paper, we present a new technique to obtain biometric keys by using the fingerprint of a person for an optical image encryption system. The key generation scheme uses the fingerprint biometric information in terms of the amplitude mask (AM) and the phase mask (PM) of the reconstructed fingerprint image that is implemented using the digital holographic technique. Statistical tests have been conducted to check the randomness of the fingerprint PM key that enables its usage as an image encryption key. To explore the utility of the generated biometric keys, an optical image encryption system has been further demonstrated based on the phase retrieval algorithm and the double random phase encoding scheme in which keys for the encryption are used as the AM and the PM key. The advantage associated with the proposed scheme is that the biometric keys’ retrieval requires the simultaneous presence of the fingerprint hologram and the correct knowledge of the reconstruction parameters at the decryption stage, which not only verifies the authenticity of the person but also protects the valuable fingerprint biometric features of the keys. Numerical results are carried out to prove the feasibility and the effectiveness of the proposed encryption system.

  8. Texture Analysis of Chaotic Coupled Map Lattices Based Image Encryption Algorithm

    NASA Astrophysics Data System (ADS)

    Khan, Majid; Shah, Tariq; Batool, Syeda Iram

    2014-09-01

    As of late, data security is key in different enclosures like web correspondence, media frameworks, therapeutic imaging, telemedicine and military correspondence. In any case, a large portion of them confronted with a few issues, for example, the absence of heartiness and security. In this letter, in the wake of exploring the fundamental purposes of the chaotic trigonometric maps and the coupled map lattices, we have presented the algorithm of chaos-based image encryption based on coupled map lattices. The proposed mechanism diminishes intermittent impact of the ergodic dynamical systems in the chaos-based image encryption. To assess the security of the encoded image of this scheme, the association of two nearby pixels and composition peculiarities were performed. This algorithm tries to minimize the problems arises in image encryption.

  9. Key Motivational Factors in the Retention of Three Generations of Public High School Mathematics Teachers

    ERIC Educational Resources Information Center

    Pospichal, Wendy

    2011-01-01

    Purpose: The purpose of this study was to describe and compare the similarities and differences between five key motivational factors: (a) new teacher induction, (b) noninduction mentor support in the early years of teaching, (c) salary and benefits, (d) working conditions, and (e) administrative support influential in retention of employment in…

  10. 15 CFR Supplement No. 5 to Part 742 - Encryption Registration

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... classification requests and self-classification reports for encryption items must be supported by an encryption... (h) Smartcards or other identity management (i) Computer or network forensics (j) Software...

  11. 15 CFR Supplement No. 5 to Part 742 - Encryption Registration

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... classification requests and self-classification reports for encryption items must be supported by an encryption... (h) Smartcards or other identity management (i) Computer or network forensics (j) Software...

  12. 15 CFR Supplement No. 5 to Part 742 - Encryption Registration

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... classification requests and self-classification reports for encryption items must be supported by an encryption... (h) Smartcards or other identity management (i) Computer or network forensics (j) Software...

  13. Implementation notes on bdes(1). [data encryption implementation

    NASA Technical Reports Server (NTRS)

    Bishop, Matt

    1991-01-01

    This note describes the implementation of bdes, the file encryption program being distributed in the 4.4 release of the Berkeley Software Distribution. It implements all modes of the Data Encryption Standard program.

  14. Finding your voice: key elements to consider when writing for publication.

    PubMed

    Wollin, Judy Ann; Fairweather, Carrie Therese

    The dissemination of nursing knowledge rests on optimizing the accessibility of such knowledge among nurses and all other healthcare professionals. Nursing publications of all types, including research, case studies, reports, literature reviews, clinical audits, reflections on practice and letters to the editor, are important mechanisms for sharing knowledge and experience. Nurses need to publish their knowledge and experiences to inform and reflect on nursing practice. Barriers to writing for publication include inexperience and lack of know how. This article provides guidance for the novice writer.

  15. Interviewing Key Informants: Strategic Planning for a Global Public Health Management Program

    ERIC Educational Resources Information Center

    Kun, Karen E.; Kassim, Anisa; Howze, Elizabeth; MacDonald, Goldie

    2013-01-01

    The Centers for Disease Control and Prevention's Sustainable Management Development Program (SMDP) partners with low- and middle-resource countries to develop management capacity so that effective global public health programs can be implemented and better health outcomes can be achieved. The program's impact however, was variable. Hence, there…

  16. Collaboration with HEIs: A Key Capacity Building Block for the Uganda Water and Sanitation Public Sector

    ERIC Educational Resources Information Center

    Kayaga, Sam

    2007-01-01

    The capacity of public service staff in developing countries is crucial for achieving the Millennium Development Goals. Literature from developed countries shows that, working with higher education institutions (HEIs), industries have improved their human resource capacity through continuing professional development. This paper reports on research…

  17. On the security of a new image encryption scheme based on chaotic map lattices.

    PubMed

    Arroyo, David; Rhouma, Rhouma; Alvarez, Gonzalo; Li, Shujun; Fernandez, Veronica

    2008-09-01

    This paper reports a detailed cryptanalysis of a recently proposed encryption scheme based on the logistic map [A. Pisarchik et al., Chaos 16, 033118 (2006)]. Some problems are emphasized concerning the key space definition and the implementation of the cryptosystem using floating-point operations. It is also shown how it is possible to reduce considerably the key space through a ciphertext-only attack. Moreover, a timing attack allows for the estimation of part of the key due to the existent relationship between this part of the key and the encryption/decryption time. As a result, the main features of the cryptosystem do not satisfy the demands of secure communications. Some hints are offered to improve the cryptosystem under study according to those requirements.

  18. 48 CFR 352.239-71 - Standard for encryption language.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 4 2014-10-01 2014-10-01 false Standard for encryption... Standard for encryption language. As prescribed in 339.101(d)(2), the Contracting Officer shall insert the following clause: Standard for Encryption Language (January 2010) (a) The Contractor shall use...

  19. 48 CFR 352.239-71 - Standard for encryption language.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 4 2012-10-01 2012-10-01 false Standard for encryption... Standard for encryption language. As prescribed in 339.101(d)(2), the Contracting Officer shall insert the following clause: Standard for Encryption Language (January 2010) (a) The Contractor shall use...

  20. 48 CFR 352.239-71 - Standard for encryption language.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 4 2013-10-01 2013-10-01 false Standard for encryption... Standard for encryption language. As prescribed in 339.101(d)(2), the Contracting Officer shall insert the following clause: Standard for Encryption Language (January 2010) (a) The Contractor shall use...

  1. A study on the integrity and authentication of weather observation data using Identity Based Encryption.

    PubMed

    Seo, Jung Woo; Lee, Sang Jin

    2016-01-01

    Weather information provides a safe working environment by contributing to the economic activity of the nation, and plays role of the prevention of natural disasters, which can cause large scaled casualties and damage of property. Especially during times of war, weather information plays a more important role than strategy, tactics and information about trends of the enemy. Also, it plays an essential role for the taking off and landing of fighter jet and the sailing of warships. If weather information, which plays a major role in national security and economy, gets misused for cyber terrorism resulting false weather information, it could be a huge threat for national security and the economy. We propose a plan to safely transmit the measured value from meteorological sensors through a meteorological telecommunication network in order to guarantee the confidentiality and integrity of the data despite cyber-attacks. Also, such a plan allows one to produce reliable weather forecasts by performing mutual authentication through authentication devices. To make sure of this, one can apply an Identity Based Signature to ensure the integrity of measured data, and transmit the encrypted weather information with mutual authentication about the authentication devices. There are merits of this research: It is not necessary to manage authentication certificates unlike the Public Key Infrastructure methodology, and it provides a powerful security measure with the capability to be realized in a small scale computing environment, such as the meteorological observation system due to the low burden on managing keys. PMID:27536509

  2. A chaos-based digital image encryption scheme with an improved diffusion strategy.

    PubMed

    Fu, Chong; Chen, Jun-jie; Zou, Hao; Meng, Wei-hong; Zhan, Yong-feng; Yu, Ya-wen

    2012-01-30

    Chaos-based image cipher has been widely investigated over the last decade or so to meet the increasing demand for real-time secure image transmission over public networks. In this paper, an improved diffusion strategy is proposed to promote the efficiency of the most widely investigated permutation-diffusion type image cipher. By using the novel bidirectional diffusion strategy, the spreading process is significantly accelerated and hence the same level of security can be achieved with fewer overall encryption rounds. Moreover, to further enhance the security of the cryptosystem, a plain-text related chaotic orbit turbulence mechanism is introduced in diffusion procedure by perturbing the control parameter of the employed chaotic system according to the cipher-pixel. Extensive cryptanalysis has been performed on the proposed scheme using differential analysis, key space analysis, various statistical analyses and key sensitivity analysis. Results of our analyses indicate that the new scheme has a satisfactory security level with a low computational complexity, which renders it a good candidate for real-time secure image transmission applications.

  3. A study on the integrity and authentication of weather observation data using Identity Based Encryption.

    PubMed

    Seo, Jung Woo; Lee, Sang Jin

    2016-01-01

    Weather information provides a safe working environment by contributing to the economic activity of the nation, and plays role of the prevention of natural disasters, which can cause large scaled casualties and damage of property. Especially during times of war, weather information plays a more important role than strategy, tactics and information about trends of the enemy. Also, it plays an essential role for the taking off and landing of fighter jet and the sailing of warships. If weather information, which plays a major role in national security and economy, gets misused for cyber terrorism resulting false weather information, it could be a huge threat for national security and the economy. We propose a plan to safely transmit the measured value from meteorological sensors through a meteorological telecommunication network in order to guarantee the confidentiality and integrity of the data despite cyber-attacks. Also, such a plan allows one to produce reliable weather forecasts by performing mutual authentication through authentication devices. To make sure of this, one can apply an Identity Based Signature to ensure the integrity of measured data, and transmit the encrypted weather information with mutual authentication about the authentication devices. There are merits of this research: It is not necessary to manage authentication certificates unlike the Public Key Infrastructure methodology, and it provides a powerful security measure with the capability to be realized in a small scale computing environment, such as the meteorological observation system due to the low burden on managing keys.

  4. Public-private relationships in biobanking: a still underestimated key component of open innovation.

    PubMed

    Hofman, Paul; Bréchot, Christian; Zatloukal, Kurt; Dagher, Georges; Clément, Bruno

    2014-01-01

    Access to human bioresources is essential to the understanding of human diseases and to the discovery of new biomarkers aimed at improving the diagnosis, prognosis, and the predictive response of patients to treatments. The use of biospecimens is strictly controlled by ethical assessment, which complies with the laws of the country. These laws regulate the partnerships between the biobanks and industrial actors. However, private-public partnerships (PPP) can be limiting for several reasons, which can hamper the discovery of new biological tests and new active molecules targeted to human diseases. The bottlenecks and roadblocks in establishing these partnerships include: poor organization of the biobank in setting up PPP, evaluation of the cost of human samples, the absence of experience on the public side in setting up contracts with industry, and the fact that public and private partners may not share the same objectives. However, it is critical, in particular for academic biobanks, to establish strong PPP to accelerate translational research for the benefits of patients, and to allow the sustainability of the biobank. The purpose of this review is to discuss the main bottlenecks and roadblocks that can hamper the establishment of PPP based on solid and trusting relationships. PMID:24337181

  5. Public health economics: a systematic review of guidance for the economic evaluation of public health interventions and discussion of key methodological issues

    PubMed Central

    2013-01-01

    Background If Public Health is the science and art of how society collectively aims to improve health, and reduce inequalities in health, then Public Health Economics is the science and art of supporting decision making as to how society can use its available resources to best meet these objectives and minimise opportunity cost. A systematic review of published guidance for the economic evaluation of public health interventions within this broad public policy paradigm was conducted. Methods Electronic databases and organisation websites were searched using a 22 year time horizon (1990–2012). References of papers were hand searched for additional papers for inclusion. Government reports or peer-reviewed published papers were included if they; referred to the methods of economic evaluation of public health interventions, identified key challenges of conducting economic evaluations of public health interventions or made recommendations for conducting economic evaluations of public health interventions. Guidance was divided into three categories UK guidance, international guidance and observations or guidance provided by individual commentators in the field of public health economics. An assessment of the theoretical frameworks underpinning the guidance was made and served as a rationale for categorising the papers. Results We identified 5 international guidance documents, 7 UK guidance documents and 4 documents by individual commentators. The papers reviewed identify the main methodological challenges that face analysts when conducting such evaluations. There is a consensus within the guidance that wider social and environmental costs and benefits should be looked at due to the complex nature of public health. This was reflected in the theoretical underpinning as the majority of guidance was categorised as extra-welfarist. Conclusions In this novel review we argue that health economics may have come full circle from its roots in broad public policy economics. We may

  6. Simultaneous compression and encryption of closely resembling images: application to video sequences and polarimetric images.

    PubMed

    Aldossari, M; Alfalou, A; Brosseau, C

    2014-09-22

    This study presents and validates an optimized method of simultaneous compression and encryption designed to process images with close spectra. This approach is well adapted to the compression and encryption of images of a time-varying scene but also to static polarimetric images. We use the recently developed spectral fusion method [Opt. Lett.35, 1914-1916 (2010)] to deal with the close resemblance of the images. The spectral plane (containing the information to send and/or to store) is decomposed in several independent areas which are assigned according a specific way. In addition, each spectrum is shifted in order to minimize their overlap. The dual purpose of these operations is to optimize the spectral plane allowing us to keep the low- and high-frequency information (compression) and to introduce an additional noise for reconstructing the images (encryption). Our results show that not only can the control of the spectral plane enhance the number of spectra to be merged, but also that a compromise between the compression rate and the quality of the reconstructed images can be tuned. We use a root-mean-square (RMS) optimization criterion to treat compression. Image encryption is realized at different security levels. Firstly, we add a specific encryption level which is related to the different areas of the spectral plane, and then, we make use of several random phase keys. An in-depth analysis at the spectral fusion methodology is done in order to find a good trade-off between the compression rate and the quality of the reconstructed images. Our new proposal spectral shift allows us to minimize the image overlap. We further analyze the influence of the spectral shift on the reconstructed image quality and compression rate. The performance of the multiple-image optical compression and encryption method is verified by analyzing several video sequences and polarimetric images.

  7. Optical color image encryption based on computer generated hologram and chaotic theory

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Jin, Hongzhen; Ma, Lihong; Li, Yong; Jin, Weimin

    2013-10-01

    A novel technique of optical color image encryption and decryption based on computer generated hologram (CGH) and chaotic theory is proposed. The tri-color separated images of an image to be encrypted are encoded with three random phase arrays constructed by a chaotic sequence of the deterministic non-linear system, respectively. Then Burch's encoding method using the modified off-axis reference beam is adopted to fabricate the CGH as the encryption image. A clear original color image can be reconstructed as long as the correct initial value of chaotic sequence and the correct system parameters are given. The initial value of chaotic function with a very small change will lead to the generation of an entirely different chaotic sequences. As a result, the random phase array changes dramatically and the original image cannot be recovered rightly. Serving as the secret keys, the initial values of chaotic sequence and system parameters reduce the amount of the key data. And the digital encryption image is also more favorable to be stored and transmitted. The feasibility and its robustness against occlusion and noise attacks are verified by numerical simulations.

  8. Structured Benefit-risk assessment: a review of key publications and initiatives on frameworks and methodologies.

    PubMed

    Mt-Isa, Shahrul; Ouwens, Mario; Robert, Veronique; Gebel, Martin; Schacht, Alexander; Hirsch, Ian

    2016-07-01

    Introduction The conduct of structured benefit-risk assessment (BRA) of pharmaceutical products is a key area of interest for regulatory agencies and the pharmaceutical industry. However, the acceptance of a standardized approach and implementation are slow. Statisticians play major roles in these organizations, and have a great opportunity to be involved and drive the shaping of future BRA. Method We performed a literature search of recent reviews and initiatives assessing BRA methodologies, and grouped them to assist those new to BRA in learning, understanding, and choosing methodologies. We summarized the key points and discussed the impact of this emerging field on various stakeholders, particularly statisticians in the pharmaceutical industry. Results We provide introductory, essential, special interest, and further information and initiatives materials that direct readers to the most relevant materials, which were published between 2000 and 2013.  Based on recommendations in these materials we supply a toolkit of advocated BRA methodologies. Discussion Despite initiatives promoting these methodologies, there are still barriers, one of which being the lack of a consensus on the most appropriate methodologies among stakeholders. However, this opens up opportunities, for statisticians in the pharmaceutical industry especially, to champion appropriate BRA methodology use throughout the pharmaceutical product lifecycle. Conclusions This article may serve as a starting point for discussions and to reach a mutual consensus for methodology selection in a particular situation. Regulators and pharmaceutical industry should continue to collaborate to develop and take forward BRA methodologies, and by clear communication develop a mutual understanding of the key issues. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25981683

  9. Structured Benefit-risk assessment: a review of key publications and initiatives on frameworks and methodologies.

    PubMed

    Mt-Isa, Shahrul; Ouwens, Mario; Robert, Veronique; Gebel, Martin; Schacht, Alexander; Hirsch, Ian

    2016-07-01

    Introduction The conduct of structured benefit-risk assessment (BRA) of pharmaceutical products is a key area of interest for regulatory agencies and the pharmaceutical industry. However, the acceptance of a standardized approach and implementation are slow. Statisticians play major roles in these organizations, and have a great opportunity to be involved and drive the shaping of future BRA. Method We performed a literature search of recent reviews and initiatives assessing BRA methodologies, and grouped them to assist those new to BRA in learning, understanding, and choosing methodologies. We summarized the key points and discussed the impact of this emerging field on various stakeholders, particularly statisticians in the pharmaceutical industry. Results We provide introductory, essential, special interest, and further information and initiatives materials that direct readers to the most relevant materials, which were published between 2000 and 2013.  Based on recommendations in these materials we supply a toolkit of advocated BRA methodologies. Discussion Despite initiatives promoting these methodologies, there are still barriers, one of which being the lack of a consensus on the most appropriate methodologies among stakeholders. However, this opens up opportunities, for statisticians in the pharmaceutical industry especially, to champion appropriate BRA methodology use throughout the pharmaceutical product lifecycle. Conclusions This article may serve as a starting point for discussions and to reach a mutual consensus for methodology selection in a particular situation. Regulators and pharmaceutical industry should continue to collaborate to develop and take forward BRA methodologies, and by clear communication develop a mutual understanding of the key issues. Copyright © 2015 John Wiley & Sons, Ltd.

  10. A Scenario-Based Protocol Checker for Public-Key Authentication Scheme

    NASA Astrophysics Data System (ADS)

    Saito, Takamichi

    Security protocol provides communication security for the internet. One of the important features of it is authentication with key exchange. Its correctness is a requirement of the whole of the communication security. In this paper, we introduce three attack models realized as their attack scenarios, and provide an authentication-protocol checker for applying three attack-scenarios based on the models. We also utilize it to check two popular security protocols: Secure SHell (SSH) and Secure Socket Layer/Transport Layer Security (SSL/TLS).

  11. Binary DNA Nanostructures for Data Encryption

    PubMed Central

    Halvorsen, Ken; Wong, Wesley P.

    2012-01-01

    We present a simple and secure system for encrypting and decrypting information using DNA self-assembly. Binary data is encoded in the geometry of DNA nanostructures with two distinct conformations. Removing or leaving out a single component reduces these structures to an encrypted solution of ssDNA, whereas adding back this missing “decryption key” causes the spontaneous formation of the message through self-assembly, enabling rapid read out via gel electrophoresis. Applications include authentication, secure messaging, and barcoding. PMID:22984477

  12. A novel image encryption algorithm based on chaos maps with Markov properties

    NASA Astrophysics Data System (ADS)

    Liu, Quan; Li, Pei-yue; Zhang, Ming-chao; Sui, Yong-xin; Yang, Huai-jiang

    2015-02-01

    In order to construct high complexity, secure and low cost image encryption algorithm, a class of chaos with Markov properties was researched and such algorithm was also proposed. The kind of chaos has higher complexity than the Logistic map and Tent map, which keeps the uniformity and low autocorrelation. An improved couple map lattice based on the chaos with Markov properties is also employed to cover the phase space of the chaos and enlarge the key space, which has better performance than the original one. A novel image encryption algorithm is constructed on the new couple map lattice, which is used as a key stream generator. A true random number is used to disturb the key which can dynamically change the permutation matrix and the key stream. From the experiments, it is known that the key stream can pass SP800-22 test. The novel image encryption can resist CPA and CCA attack and differential attack. The algorithm is sensitive to the initial key and can change the distribution the pixel values of the image. The correlation of the adjacent pixels can also be eliminated. When compared with the algorithm based on Logistic map, it has higher complexity and better uniformity, which is nearer to the true random number. It is also efficient to realize which showed its value in common use.

  13. Security of image encryption scheme based on multi-parameter fractional Fourier transform

    NASA Astrophysics Data System (ADS)

    Zhao, Tieyu; Ran, Qiwen; Yuan, Lin; Chi, Yingying; Ma, Jing

    2016-10-01

    Recently, multi-parameter fractional Fourier transform (MPFRFT) has been widely applied in the optics cryptosystem, which has attracted more and more researchers' attention. However, in further study we find a serious security problem on the MPFRFT which is the multi-choice of decryption key corresponding to an encryption key. The existence of multi-decryption-key hinders the application of this algorithm. We present a new generalized fractional Fourier transform, which can overcome the problem and enlarge the key space. The simulation results show that the proposed algorithm has higher security and key sensitivity.

  14. Why sustainable population growth is a key to climate change and public health equity.

    PubMed

    Howat, Peter; Stoneham, Melissa

    2011-12-01

    Australia's population could reach 42 million by 2050. This rapid population growth, if unabated, will have significant social, public health and environmental implications. On the one hand, it is a major driver of climate change and environmental degradation; on the other it is likely to be a major contributor to growing social and health issues including a decline in quality of life for many residents. Disadvantaged and vulnerable groups will be most affected. The environmental, social and health-related issues include: pressure on the limited arable land in Australia; increased volumes of industrial and domestic waste; inadequate essential services; traffic congestion; lack of affordable housing; declining mental health; increased obesity problems; and inadequate aged care services. Many of these factors are related to the aggravation of climate change and health inequities. It is critical that the Australian Government develops a sustainable population plan with stabilisation of population growth as an option. The plan needs to ensure adequate hospitals and healthcare services, education facilities, road infrastructure, sustainable transport options, water quality and quantity, utilities and other amenities that are already severely overburdened in Australian cities. There is a need for a guarantee that affordable housing will be available and priority be given to training young people and Indigenous people for employment. This paper presents evidence to support the need for the stabilisation of population growth as one of the most significant measures to control climate change as well as to improve public health equity.

  15. Identity-Based Verifiably Encrypted Signatures without Random Oracles

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Wu, Qianhong; Qin, Bo

    Fair exchange protocol plays an important role in electronic commerce in the case of exchanging digital contracts. Verifiably encrypted signatures provide an optimistic solution to these scenarios with an off-line trusted third party. In this paper, we propose an identity-based verifiably encrypted signature scheme. The scheme is non-interactive to generate verifiably encrypted signatures and the resulting encrypted signature consists of only four group elements. Based on the computational Diffie-Hellman assumption, our scheme is proven secure without using random oracles. To the best of our knowledge, this is the first identity-based verifiably encrypted signature scheme provably secure in the standard model.

  16. The experiments and analysis of several selective video encryption methods

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Yang, Cheng; Wang, Lei

    2013-07-01

    This paper presents four methods for selective video encryption based on the MPEG-2 video compression,including the slices, the I-frames, the motion vectors, and the DCT coefficients. We use the AES encryption method for simulation experiment for the four methods on VS2010 Platform, and compare the video effects and the processing speed of each frame after the video encrypted. The encryption depth can be arbitrarily selected, and design the encryption depth by using the double limit counting method, so the accuracy can be increased.

  17. Error function attack of chaos synchronization based encryption schemes.

    PubMed

    Wang, Xingang; Zhan, Meng; Lai, C-H; Gang, Hu

    2004-03-01

    Different chaos synchronization based encryption schemes are reviewed and compared from the practical point of view. As an efficient cryptanalysis tool for chaos encryption, a proposal based on the error function attack is presented systematically and used to evaluate system security. We define a quantitative measure (quality factor) of the effective applicability of a chaos encryption scheme, which takes into account the security, the encryption speed, and the robustness against channel noise. A comparison is made of several encryption schemes and it is found that a scheme based on one-way coupled chaotic map lattices performs outstandingly well, as judged from quality factor.

  18. Database security and encryption technology research and application

    NASA Astrophysics Data System (ADS)

    Zhu, Li-juan

    2013-03-01

    The main purpose of this paper is to discuss the current database information leakage problem, and discuss the important role played by the message encryption techniques in database security, As well as MD5 encryption technology principle and the use in the field of website or application. This article is divided into introduction, the overview of the MD5 encryption technology, the use of MD5 encryption technology and the final summary. In the field of requirements and application, this paper makes readers more detailed and clearly understood the principle, the importance in database security, and the use of MD5 encryption technology.

  19. An optical authentication system based on encryption technique and multimodal biometrics

    NASA Astrophysics Data System (ADS)

    Yuan, Sheng; Zhang, Tong; Zhou, Xin; Liu, Xuemei; Liu, Mingtang

    2013-12-01

    A major concern nowadays for a biometric credential management system is its potential vulnerability to protect its information sources. To prevent a genuine user's templates from both internal and external threats, a novel and simple method combined optical encryption with multimodal biometric authentication technique is proposed. In this method, the standard biometric templates are generated real-timely by the verification keys owned by legal user so that they are unnecessary to be stored in a database. Compared with the traditional recognition algorithms, storage space and matching time are greatly saved. In addition, the verification keys are difficult to be forged due to the utilization of optical encryption technique. Although the verification keys are lost or stolen, they are useless for others in absence of the legal owner's biometric. A series of numerical simulations are performed to demonstrate the feasibility and performance of this method.

  20. Public channel cryptography by synchronization of neural networks and chaotic maps.

    PubMed

    Mislovaty, Rachel; Klein, Einat; Kanter, Ido; Kinzel, Wolfgang

    2003-09-12

    Two different kinds of synchronization have been applied to cryptography: synchronization of chaotic maps by one common external signal and synchronization of neural networks by mutual learning. By combining these two mechanisms, where the external signal to the chaotic maps is synchronized by the nets, we construct a hybrid network which allows a secure generation of secret encryption keys over a public channel. The security with respect to attacks, recently proposed by Shamir et al., is increased by chaotic synchronization.

  1. 47 CFR 90.553 - Encryption.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... incorporation by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. The standard can also be... approves this incorporation by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of...) or Triple Data Encryption Algorithm (TDEA), in addition to but not in place of AES, for...

  2. Optical encryption with selective computational ghost imaging

    NASA Astrophysics Data System (ADS)

    Zafari, Mohammad; kheradmand, Reza; Ahmadi-Kandjani, Sohrab

    2014-10-01

    Selective computational ghost imaging (SCGI) is a technique which enables the reconstruction of an N-pixel image from N measurements or less. In this paper we propose an optical encryption method based on SCGI and experimentally demonstrate that this method has much higher security under eavesdropping and unauthorized accesses compared with previous reported methods.

  3. Small private key MQPKS on an embedded microprocessor.

    PubMed

    Seo, Hwajeong; Kim, Jihyun; Choi, Jongseok; Park, Taehwan; Liu, Zhe; Kim, Howon

    2014-03-19

    Multivariate quadratic (MQ) cryptography requires the use of long public and private keys to ensure a sufficient security level, but this is not favorable to embedded systems, which have limited system resources. Recently, various approaches to MQ cryptography using reduced public keys have been studied. As a result of this, at CHES2011 (Cryptographic Hardware and Embedded Systems, 2011), a small public key MQ scheme, was proposed, and its feasible implementation on an embedded microprocessor was reported at CHES2012. However, the implementation of a small private key MQ scheme was not reported. For efficient implementation, random number generators can contribute to reduce the key size, but the cost of using a random number generator is much more complex than computing MQ on modern microprocessors. Therefore, no feasible results have been reported on embedded microprocessors. In this paper, we propose a feasible implementation on embedded microprocessors for a small private key MQ scheme using a pseudo-random number generator and hash function based on a block-cipher exploiting a hardware Advanced Encryption Standard (AES) accelerator. To speed up the performance, we apply various implementation methods, including parallel computation, on-the-fly computation, optimized logarithm representation, vinegar monomials and assembly programming. The proposed method reduces the private key size by about 99.9% and boosts signature generation and verification by 5.78% and 12.19% than previous results in CHES2012.

  4. Small Private Key PKS on an Embedded Microprocessor

    PubMed Central

    Seo, Hwajeong; Kim, Jihyun; Choi, Jongseok; Park, Taehwan; Liu, Zhe; Kim, Howon

    2014-01-01

    Multivariate quadratic ( ) cryptography requires the use of long public and private keys to ensure a sufficient security level, but this is not favorable to embedded systems, which have limited system resources. Recently, various approaches to cryptography using reduced public keys have been studied. As a result of this, at CHES2011 (Cryptographic Hardware and Embedded Systems, 2011), a small public key scheme, was proposed, and its feasible implementation on an embedded microprocessor was reported at CHES2012. However, the implementation of a small private key scheme was not reported. For efficient implementation, random number generators can contribute to reduce the key size, but the cost of using a random number generator is much more complex than computing on modern microprocessors. Therefore, no feasible results have been reported on embedded microprocessors. In this paper, we propose a feasible implementation on embedded microprocessors for a small private key scheme using a pseudo-random number generator and hash function based on a block-cipher exploiting a hardware Advanced Encryption Standard (AES) accelerator. To speed up the performance, we apply various implementation methods, including parallel computation, on-the-fly computation, optimized logarithm representation, vinegar monomials and assembly programming. The proposed method reduces the private key size by about 99.9% and boosts signature generation and verification by 5.78% and 12.19% than previous results in CHES2012. PMID:24651722

  5. On the security of gyrator transform-based image encryption by chosen-plaintext attack

    NASA Astrophysics Data System (ADS)

    Sang, Jun; Alam, Mohammad S.; Cai, Bin

    2016-04-01

    For the gyrator transform-based image encryption, besides the random operations, the rotation angles used in the gyrator transforms are also taken as the secret keys, which makes such cryptosystems to be more secure. To analyze the security of such cryptosystems, one may start from analyzing the security of a single gyrator transform. In this paper, the security of the gyrator transform-based image encryption by chosen-plaintext attack was discussed in theory. By using the impulse functions as the chosen-plaintext, it was concluded that: (1) For a single gyrator transform, by choosing a plaintext, the rotation angle can be obtained very easily and efficiently; (2) For image encryption with a single random phase encoding and a single gyrator transform, it is hard to find the rotation angle directly with a chosen-plaintext attack. However, assuming the value of one of the elements in the random phase mask is known, the rotation angle can be obtained very easily with a chosen-plaintext attack, and the random phase mask can also be recovered. Furthermore, by exhaustively searching the value of one of the elements in the random phase mask, the rotation angle as well as the random phase mask may be recovered. By obtaining the relationship between the rotation angle and the random phase mask for image encryption with a single random phase encoding and a single gyrator transform, it may be useful for further study on the security of the iterative random operations in the gyrator transform domains.

  6. Single-channel color image encryption using phase retrieve algorithm in fractional Fourier domain

    NASA Astrophysics Data System (ADS)

    Sui, Liansheng; Xin, Meiting; Tian, Ailing; Jin, Haiyan

    2013-12-01

    A single-channel color image encryption is proposed based on a phase retrieve algorithm and a two-coupled logistic map. Firstly, a gray scale image is constituted with three channels of the color image, and then permuted by a sequence of chaotic pairs generated by the two-coupled logistic map. Secondly, the permutation image is decomposed into three new components, where each component is encoded into a phase-only function in the fractional Fourier domain with a phase retrieve algorithm that is proposed based on the iterative fractional Fourier transform. Finally, an interim image is formed by the combination of these phase-only functions and encrypted into the final gray scale ciphertext with stationary white noise distribution by using chaotic diffusion, which has camouflage property to some extent. In the process of encryption and decryption, chaotic permutation and diffusion makes the resultant image nonlinear and disorder both in spatial domain and frequency domain, and the proposed phase iterative algorithm has faster convergent speed. Additionally, the encryption scheme enlarges the key space of the cryptosystem. Simulation results and security analysis verify the feasibility and effectiveness of this method.

  7. FORESEE: Fully Outsourced secuRe gEnome Study basEd on homomorphic Encryption

    PubMed Central

    2015-01-01

    Background The increasing availability of genome data motivates massive research studies in personalized treatment and precision medicine. Public cloud services provide a flexible way to mitigate the storage and computation burden in conducting genome-wide association studies (GWAS). However, data privacy has been widely concerned when sharing the sensitive information in a cloud environment. Methods We presented a novel framework (FORESEE: Fully Outsourced secuRe gEnome Study basEd on homomorphic Encryption) to fully outsource GWAS (i.e., chi-square statistic computation) using homomorphic encryption. The proposed framework enables secure divisions over encrypted data. We introduced two division protocols (i.e., secure errorless division and secure approximation division) with a trade-off between complexity and accuracy in computing chi-square statistics. Results The proposed framework was evaluated for the task of chi-square statistic computation with two case-control datasets from the 2015 iDASH genome privacy protection challenge. Experimental results show that the performance of FORESEE can be significantly improved through algorithmic optimization and parallel computation. Remarkably, the secure approximation division provides significant performance gain, but without missing any significance SNPs in the chi-square association test using the aforementioned datasets. Conclusions Unlike many existing HME based studies, in which final results need to be computed by the data owner due to the lack of the secure division operation, the proposed FORESEE framework support complete outsourcing to the cloud and output the final encrypted chi-square statistics. PMID:26733391

  8. Calculation of key reduction for B92 QKD protocol

    NASA Astrophysics Data System (ADS)

    Mehic, Miralem; Partila, Pavol; Tovarek, Jaromir; Voznak, Miroslav

    2015-05-01

    It is well known that Quantum Key Distribution (QKD) can be used with the highest level of security for distribution of the secret key, which is further used for symmetrical encryption. B92 is one of the oldest QKD protocols. It uses only two non-orthogonal states, each one coding for one bit-value. It is much faster and simpler when compared to its predecessors, but with the idealized maximum efficiencies of 25% over the quantum channel. B92 consists of several phases in which initial key is significantly reduced: secret key exchange, extraction of the raw key (sifting), error rate estimation, key reconciliation and privacy amplification. QKD communication is performed over two channels: the quantum channel and the classical public channel. In order to prevent a man-in-the-middle attack and modification of messages on the public channel, authentication of exchanged values must be performed. We used Wegman-Carter authentication because it describes an upper bound for needed symmetric authentication key. We explained the reduction of the initial key in each of QKD phases.

  9. NES++: number system for encryption based privacy preserving speaker verification

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Feng, Tao; Zhao, Xi; Shi, Weidong

    2014-05-01

    As speech based operation becomes a main hand-free interaction solution between human and mobile devices (i.e., smartphones, Google Glass), privacy preserving speaker verification receives much attention nowadays. Privacy preserving speaker verification can be achieved through many different ways, such as fuzzy vault and encryption. Encryption based solutions are promising as cryptography is based on solid mathematic foundations and the security properties can be easily analyzed in a well established framework. Most current asymmetric encryption schemes work on finite algebraic structures, such as finite group and finite fields. However, the encryption scheme for privacy preserving speaker verification must handle floating point numbers. This gap must be filled to make the overall scheme practical. In this paper, we propose a number system that meets the requirements of both speaker verification and the encryption scheme used in the process. It also supports addition homomorphic property of Pailliers encryption, which is crucial for privacy preserving speaker verification. As asymmetric encryption is expensive, we propose a method of packing several numbers into one plain-text and the computation overhead is greatly reduced. To evaluate the performance of this method, we implement Pailliers encryption scheme over proposed number system and the packing technique. Our findings show that the proposed solution can fulfill the gap between speaker verification and encryption scheme very well, and the packing technique improves the overall performance. Furthermore, our solution is a building block of encryption based privacy preserving speaker verification, the privacy protection and accuracy rate are not affected.

  10. VLSI design of an RSA encryption/decryption chip using systolic array based architecture

    NASA Astrophysics Data System (ADS)

    Sun, Chi-Chia; Lin, Bor-Shing; Jan, Gene Eu; Lin, Jheng-Yi

    2016-09-01

    This article presents the VLSI design of a configurable RSA public key cryptosystem supporting the 512-bit, 1024-bit and 2048-bit based on Montgomery algorithm achieving comparable clock cycles of current relevant works but with smaller die size. We use binary method for the modular exponentiation and adopt Montgomery algorithm for the modular multiplication to simplify computational complexity, which, together with the systolic array concept for electric circuit designs effectively, lower the die size. The main architecture of the chip consists of four functional blocks, namely input/output modules, registers module, arithmetic module and control module. We applied the concept of systolic array to design the RSA encryption/decryption chip by using VHDL hardware language and verified using the TSMC/CIC 0.35 m 1P4 M technology. The die area of the 2048-bit RSA chip without the DFT is 3.9 × 3.9 mm2 (4.58 × 4.58 mm2 with DFT). Its average baud rate can reach 10.84 kbps under a 100 MHz clock.

  11. Restricted Authentication and Encryption for Cyber-physical Systems

    SciTech Connect

    Kirkpatrick, Michael S; Bertino, Elisa; Sheldon, Frederick T

    2009-01-01

    Cyber-physical systems (CPS) are characterized by the close linkage of computational resources and physical devices. These systems can be deployed in a number of critical infrastructure settings. As a result, the security requirements of CPS are different than traditional computing architectures. For example, critical functions must be identified and isolated from interference by other functions. Similarly, lightweight schemes may be required, as CPS can include devices with limited computing power. One approach that offers promise for CPS security is the use of lightweight, hardware-based authentication. Specifically, we consider the use of Physically Unclonable Functions (PUFs) to bind an access request to specific hardware with device-specific keys. PUFs are implemented in hardware, such as SRAM, and can be used to uniquely identify the device. This technology could be used in CPS to ensure location-based access control and encryption, both of which would be desirable for CPS implementations.

  12. Evaluation of unique identifiers used as keys to match identical publications in Pure and SciVal - a case study from health science.

    PubMed

    Madsen, Heidi Holst; Madsen, Dicte; Gauffriau, Marianne

    2016-01-01

    Unique identifiers (UID) are seen as an effective key to match identical publications across databases or identify duplicates in a database. The objective of the present study is to investigate how well UIDs work as match keys in the integration between Pure and SciVal, based on a case with publications from the health sciences. We evaluate the matching process based on information about coverage, precision, and characteristics of publications matched versus not matched with UIDs as the match keys. We analyze this information to detect errors, if any, in the matching process. As an example we also briefly discuss how publication sets formed by using UIDs as the match keys may affect the bibliometric indicators number of publications, number of citations, and the average number of citations per publication.  The objective is addressed in a literature review and a case study. The literature review shows that only a few studies evaluate how well UIDs work as a match key. From the literature we identify four error types: Duplicate digital object identifiers (DOI), incorrect DOIs in reference lists and databases, DOIs not registered by the database where a bibliometric analysis is performed, and erroneous optical or special character recognition. The case study explores the use of UIDs in the integration between the databases Pure and SciVal. Specifically journal publications in English are matched between the two databases. We find all error types except erroneous optical or special character recognition in our publication sets. In particular the duplicate DOIs constitute a problem for the calculation of bibliometric indicators as both keeping the duplicates to improve the reliability of citation counts and deleting them to improve the reliability of publication counts will distort the calculation of average number of citations per publication. The use of UIDs as a match key in citation linking is implemented in many settings, and the availability of UIDs may become

  13. Evaluation of unique identifiers used as keys to match identical publications in Pure and SciVal - a case study from health science.

    PubMed

    Madsen, Heidi Holst; Madsen, Dicte; Gauffriau, Marianne

    2016-01-01

    Unique identifiers (UID) are seen as an effective key to match identical publications across databases or identify duplicates in a database. The objective of the present study is to investigate how well UIDs work as match keys in the integration between Pure and SciVal, based on a case with publications from the health sciences. We evaluate the matching process based on information about coverage, precision, and characteristics of publications matched versus not matched with UIDs as the match keys. We analyze this information to detect errors, if any, in the matching process. As an example we also briefly discuss how publication sets formed by using UIDs as the match keys may affect the bibliometric indicators number of publications, number of citations, and the average number of citations per publication.  The objective is addressed in a literature review and a case study. The literature review shows that only a few studies evaluate how well UIDs work as a match key. From the literature we identify four error types: Duplicate digital object identifiers (DOI), incorrect DOIs in reference lists and databases, DOIs not registered by the database where a bibliometric analysis is performed, and erroneous optical or special character recognition. The case study explores the use of UIDs in the integration between the databases Pure and SciVal. Specifically journal publications in English are matched between the two databases. We find all error types except erroneous optical or special character recognition in our publication sets. In particular the duplicate DOIs constitute a problem for the calculation of bibliometric indicators as both keeping the duplicates to improve the reliability of citation counts and deleting them to improve the reliability of publication counts will distort the calculation of average number of citations per publication. The use of UIDs as a match key in citation linking is implemented in many settings, and the availability of UIDs may become

  14. Evaluation of unique identifiers used as keys to match identical publications in Pure and SciVal – a case study from health science

    PubMed Central

    Madsen, Heidi Holst; Madsen, Dicte; Gauffriau, Marianne

    2016-01-01

    Unique identifiers (UID) are seen as an effective key to match identical publications across databases or identify duplicates in a database. The objective of the present study is to investigate how well UIDs work as match keys in the integration between Pure and SciVal, based on a case with publications from the health sciences. We evaluate the matching process based on information about coverage, precision, and characteristics of publications matched versus not matched with UIDs as the match keys. We analyze this information to detect errors, if any, in the matching process. As an example we also briefly discuss how publication sets formed by using UIDs as the match keys may affect the bibliometric indicators number of publications, number of citations, and the average number of citations per publication.  The objective is addressed in a literature review and a case study. The literature review shows that only a few studies evaluate how well UIDs work as a match key. From the literature we identify four error types: Duplicate digital object identifiers (DOI), incorrect DOIs in reference lists and databases, DOIs not registered by the database where a bibliometric analysis is performed, and erroneous optical or special character recognition. The case study explores the use of UIDs in the integration between the databases Pure and SciVal. Specifically journal publications in English are matched between the two databases. We find all error types except erroneous optical or special character recognition in our publication sets. In particular the duplicate DOIs constitute a problem for the calculation of bibliometric indicators as both keeping the duplicates to improve the reliability of citation counts and deleting them to improve the reliability of publication counts will distort the calculation of average number of citations per publication. The use of UIDs as a match key in citation linking is implemented in many settings, and the availability of UIDs may become

  15. Evaluation of unique identifiers used as keys to match identical publications in Pure and SciVal – a case study from health science

    PubMed Central

    Madsen, Heidi Holst; Madsen, Dicte; Gauffriau, Marianne

    2016-01-01

    Unique identifiers (UID) are seen as an effective key to match identical publications across databases or identify duplicates in a database. The objective of the present study is to investigate how well UIDs work as match keys in the integration between Pure and SciVal, based on a case with publications from the health sciences. We evaluate the matching process based on information about coverage, precision, and characteristics of publications matched versus not matched with UIDs as the match keys. We analyze this information to detect errors, if any, in the matching process. As an example we also briefly discuss how publication sets formed by using UIDs as the match keys may affect the bibliometric indicators number of publications, number of citations, and the average number of citations per publication.  The objective is addressed in a literature review and a case study. The literature review shows that only a few studies evaluate how well UIDs work as a match key. From the literature we identify four error types: Duplicate digital object identifiers (DOI), incorrect DOIs in reference lists and databases, DOIs not registered by the database where a bibliometric analysis is performed, and erroneous optical or special character recognition. The case study explores the use of UIDs in the integration between the databases Pure and SciVal. Specifically journal publications in English are matched between the two databases. We find all error types except erroneous optical or special character recognition in our publication sets. In particular the duplicate DOIs constitute a problem for the calculation of bibliometric indicators as both keeping the duplicates to improve the reliability of citation counts and deleting them to improve the reliability of publication counts will distort the calculation of average number of citations per publication. The use of UIDs as a match key in citation linking is implemented in many settings, and the availability of UIDs may become

  16. Ghost imaging using labyrinth-like phase modulation patterns for high-efficiency and high-security optical encryption

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Chen, Xudong

    2015-01-01

    Ghost imaging has attracted more and more current attention due to its marked physical characteristics, and many physical applications, such as sensing and optical security, have been explored. In this letter, we propose ghost imaging using labyrinth-like phase modulation patterns for optical encryption. Since only one phase-only mask should be pre-set and the labyrinth patterns occupy only few spaces, high-efficiency storage or transmission of system keys can be implemented. In addition, each labyrinth pattern (i.e., phase modulation pattern) possesses high randomness and flexibility, hence high security can be guaranteed for the proposed optical encryption.

  17. Image encryption using P-Fibonacci transform and decomposition

    NASA Astrophysics Data System (ADS)

    Zhou, Yicong; Panetta, Karen; Agaian, Sos; Chen, C. L. Philip

    2012-03-01

    Image encryption is an effective method to protect images or videos by transferring them into unrecognizable formats for different security purposes. To improve the security level of bit-plane decomposition based encryption approaches, this paper introduces a new image encryption algorithm by using a combination of parametric bit-plane decomposition along with bit-plane shuffling and resizing, pixel scrambling and data mapping. The algorithm utilizes the Fibonacci P-code for image bit-plane decomposition and the 2D P-Fibonacci transform for image encryption because they are parameter dependent. Any new or existing method can be used for shuffling the order of the bit-planes. Simulation analysis and comparisons are provided to demonstrate the algorithm's performance for image encryption. Security analysis shows the algorithm's ability against several common attacks. The algorithm can be used to encrypt images, biometrics and videos.

  18. An OFDM-Based Speech Encryption System without Residual Intelligibility

    NASA Astrophysics Data System (ADS)

    Tseng, Der-Chang; Chiu, Jung-Hui

    Since an FFT-based speech encryption system retains a considerable residual intelligibility, such as talk spurts and the original intonation in the encrypted speech, this makes it easy for eavesdroppers to deduce the information contents from the encrypted speech. In this letter, we propose a new technique based on the combination of an orthogonal frequency division multiplexing (OFDM) scheme and an appropriate QAM mapping method to remove the residual intelligibility from the encrypted speech by permuting several frequency components. In addition, the proposed OFDM-based speech encryption system needs only two FFT operations instead of the four required by the FFT-based speech encryption system. Simulation results are presented to show the effectiveness of this proposed technique.

  19. Steganography and encrypting based on immunochemical systems.

    PubMed

    Kim, Kyung-Woo; Bocharova, Vera; Halámek, Jan; Oh, Min-Kyu; Katz, Evgeny

    2011-05-01

    Steganography and encrypting were demonstrated with immuno-specific systems. IgG-proteins were used as invisible ink developed with complementary antibodies labeled with enzymes producing color spots. The information security was achieved by mixing the target protein-antigens used for the text encoding with masking proteins of similar composition but having different bioaffinity. Two different texts were simultaneously encoded by using two different encoding proteins in a mixture. Various encrypting techniques were exemplified with the immuno-systems used for the steganography. Future use of the developed approach for information protection and watermark-technology was proposed. Scaling down the encoded text to a micro-size is feasible with the use of nanotechnology.

  20. Novel permutation measures for image encryption algorithms

    NASA Astrophysics Data System (ADS)

    Abd-El-Hafiz, Salwa K.; AbdElHaleem, Sherif H.; Radwan, Ahmed G.

    2016-10-01

    This paper proposes two measures for the evaluation of permutation techniques used in image encryption. First, a general mathematical framework for describing the permutation phase used in image encryption is presented. Using this framework, six different permutation techniques, based on chaotic and non-chaotic generators, are described. The two new measures are, then, introduced to evaluate the effectiveness of permutation techniques. These measures are (1) Percentage of Adjacent Pixels Count (PAPC) and (2) Distance Between Adjacent Pixels (DBAP). The proposed measures are used to evaluate and compare the six permutation techniques in different scenarios. The permutation techniques are applied on several standard images and the resulting scrambled images are analyzed. Moreover, the new measures are used to compare the permutation algorithms on different matrix sizes irrespective of the actual parameters used in each algorithm. The analysis results show that the proposed measures are good indicators of the effectiveness of the permutation technique.

  1. Triple-image encryption based on phase-truncated Fresnel transform and basic vector operation.

    PubMed

    Pan, Xuemei; Meng, Xiangfeng; Yang, Xiulun; Wang, Yurong; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi

    2015-10-01

    A triple-image encryption method is proposed that is based on phase-truncated Fresnel transform (PTFT), basic vector composition, and XOR operation. In the encryption process, two random phase masks, with one each placed at the input plane and the transform plane, are generated by basic vector resolution operations over the first and the second plaintext images, and then a ciphered image in the input plane is fabricated by XOR encoding for the third plaintext image. When the cryptosystem is illuminated by an on-axis plane, assisted by PTFT, the ciphered image is finally encrypted into an amplitude-only noise-like image in the output plane. During decryption, possessing the correct private key, decryption keys, and the assistant geometrical parameter keys, and placing them at the corresponding correct positions, the original three plaintext images can be successfully decrypted by inverse PTFT, basic vector composition, and XOR decoding. Theoretical analysis and numerical simulations both verify the feasibility of the proposed method. PMID:26479627

  2. Privacy protection in HealthGrid: distributing encryption management over the VO.

    PubMed

    Torres, Erik; de Alfonso, Carlos; Blanquer, Ignacio; Hernández, Vicente

    2006-01-01

    Grid technologies have proven to be very successful in tackling challenging problems in which data access and processing is a bottleneck. Notwithstanding the benefits that Grid technologies could have in Health applications, privacy leakages of current DataGrid technologies due to the sharing of data in VOs and the use of remote resources, compromise its widespreading. Privacy control for Grid technology has become a key requirement for the adoption of Grids in the Healthcare sector. Encrypted storage of confidential data effectively reduces the risk of disclosure. A self-enforcing scheme for encrypted data storage can be achieved by combining Grid security systems with distributed key management and classical cryptography techniques. Virtual Organizations, as the main unit of user management in Grid, can provide a way to organize key sharing, access control lists and secure encryption management. This paper provides programming models and discusses the value, costs and behavior of such a system implemented on top of one of the latest Grid middlewares. This work is partially funded by the Spanish Ministry of Science and Technology in the frame of the project Investigación y Desarrollo de Servicios GRID: Aplicación a Modelos Cliente-Servidor, Colaborativos y de Alta Productividad, with reference TIC2003-01318. PMID:16823130

  3. Privacy protection in HealthGrid: distributing encryption management over the VO.

    PubMed

    Torres, Erik; de Alfonso, Carlos; Blanquer, Ignacio; Hernández, Vicente

    2006-01-01

    Grid technologies have proven to be very successful in tackling challenging problems in which data access and processing is a bottleneck. Notwithstanding the benefits that Grid technologies could have in Health applications, privacy leakages of current DataGrid technologies due to the sharing of data in VOs and the use of remote resources, compromise its widespreading. Privacy control for Grid technology has become a key requirement for the adoption of Grids in the Healthcare sector. Encrypted storage of confidential data effectively reduces the risk of disclosure. A self-enforcing scheme for encrypted data storage can be achieved by combining Grid security systems with distributed key management and classical cryptography techniques. Virtual Organizations, as the main unit of user management in Grid, can provide a way to organize key sharing, access control lists and secure encryption management. This paper provides programming models and discusses the value, costs and behavior of such a system implemented on top of one of the latest Grid middlewares. This work is partially funded by the Spanish Ministry of Science and Technology in the frame of the project Investigación y Desarrollo de Servicios GRID: Aplicación a Modelos Cliente-Servidor, Colaborativos y de Alta Productividad, with reference TIC2003-01318.

  4. Interference-based multiple-image encryption by phase-only mask multiplexing with high quality retrieved images

    NASA Astrophysics Data System (ADS)

    Qin, Yi; Jiang, Hualong; Gong, Qiong

    2014-11-01

    We propose a novel interference-based method for multiple-image encryption by phase-only mask (POM) multiplexing. The information of multiple images can be encrypted into two POMs (i.e. ciphertexts) without any iterative process. For correct decryption, one should hold the ciphertexts as well as the private keys, which are also POMs obtained analytically. Moreover, the bothersome silhouette problem can also be thoroughly resolved during the generation procedure of these POMs. The retrieved images by this method are totally free from the cross-talk noise that puzzles previous interference-based multiple-image encryption methods. Numerical results are presented to verify the validity of the proposed approach.

  5. Multiple-image encryption by space multiplexing based on compressive sensing and the double-random phase-encoding technique.

    PubMed

    Deepan, B; Quan, C; Wang, Y; Tay, C J

    2014-07-10

    In this paper, a new multiple-image encryption and decryption technique that utilizes the compressive sensing (CS) concept along with a double-random phase encryption (DRPE) has been proposed. The space multiplexing method is employed for integrating multiple-image data. The method, which results in a nonlinear encryption system, is able to overcome the vulnerability of classical DRPE. The CS technique and space multiplexing are able to provide additional key space in the proposed method. A numerical experiment of the proposed method is implemented and the results show that the proposed method has good accuracy and is more robust than classical DRPE. The proposed system is also employed against chosen-plaintext attacks and it is found that the inclusion of compressive sensing enhances robustness against the attacks.

  6. MV-OPES: Multivalued-Order Preserving Encryption Scheme: A Novel Scheme for Encrypting Integer Value to Many Different Values

    NASA Astrophysics Data System (ADS)

    Kadhem, Hasan; Amagasa, Toshiyuki; Kitagawa, Hiroyuki

    Encryption can provide strong security for sensitive data against inside and outside attacks. This is especially true in the “Database as Service” model, where confidentiality and privacy are important issues for the client. In fact, existing encryption approaches are vulnerable to a statistical attack because each value is encrypted to another fixed value. This paper presents a novel database encryption scheme called MV-OPES (Multivalued — Order Preserving Encryption Scheme), which allows privacy-preserving queries over encrypted databases with an improved security level. Our idea is to encrypt a value to different multiple values to prevent statistical attacks. At the same time, MV-OPES preserves the order of the integer values to allow comparison operations to be directly applied on encrypted data. Using calculated distance (range), we propose a novel method that allows a join query between relations based on inequality over encrypted values. We also present techniques to offload query execution load to a database server as much as possible, thereby making a better use of server resources in a database outsourcing environment. Our scheme can easily be integrated with current database systems as it is designed to work with existing indexing structures. It is robust against statistical attack and the estimation of true values. MV-OPES experiments show that security for sensitive data can be achieved with reasonable overhead, establishing the practicability of the scheme.

  7. Color image encryption using iterative phase retrieve process in quaternion Fourier transform domain

    NASA Astrophysics Data System (ADS)

    Sui, Liansheng; Duan, Kuaikuai

    2015-02-01

    A single-channel color image encryption method is proposed based on iterative phase iterative process in quaternion Fourier transform domain. First, three components of the plain color image is confused respectively by using cat map. Second, the confused components are combined into a pure quaternion image, which is encode to the phase only function by using an iterative phase retrieval process. Finally, the phase only function is encrypted into the gray scale ciphertext with stationary white noise distribution based on the chaotic diffusion, which has camouflage property to some extent. The corresponding plain color image can be recovered from the ciphertext only with correct keys in the decryption process. Simulation results verify the feasibility and effectiveness of the proposed method.

  8. Security-enhanced chaos communication with time-delay signature suppression and phase encryption.

    PubMed

    Xue, Chenpeng; Jiang, Ning; Lv, Yunxin; Wang, Chao; Li, Guilan; Lin, Shuqing; Qiu, Kun

    2016-08-15

    A security-enhanced chaos communication scheme with time delay signature (TDS) suppression and phase-encrypted feedback light is proposed, in virtue of dual-loop feedback with independent high-speed phase modulation. We numerically investigate the property of TDS suppression in the intensity and phase space and quantitatively discuss security of the proposed system by calculating the bit error rate of eavesdroppers who try to crack the system by directly filtering the detected signal or by using a similar semiconductor laser to synchronize the link signal and extract the data. The results show that TDS embedded in the chaotic carrier can be well suppressed by properly setting the modulation frequency, which can keep the time delay a secret from the eavesdropper. Moreover, because the feedback light is encrypted, without the accurate time delay and key, the eavesdropper cannot reconstruct the symmetric operation conditions and decode the correct data. PMID:27519064

  9. Impulse attack-free four random phase mask encryption based on a 4-f optical system.

    PubMed

    Kumar, Pramod; Joseph, Joby; Singh, Kehar

    2009-04-20

    Optical encryption methods based on double random phase encryption (DRPE) have been shown to be vulnerable to different types of attacks. The Fourier plane random phase mask (RPM), which is the most important key, can be cracked with a single impulse function attack. Such an attack is viable because the Fourier transform of a delta function is a unity function. Formation of a unity function can be avoided if RPMs are placed in front of both lenses in a 4-f optical setup, thereby protecting the DRPE from an impulse attack. We have performed numerical simulations to verify the proposed scheme. Resistance of this scheme is checked against the brute force and the impulse function attacks. The experimental results validate the feasibility of the scheme.

  10. Simultaneous optical image compression and encryption using error-reduction phase retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Liu, Zhengjun; Liu, Shutian

    2015-12-01

    We report a simultaneous image compression and encryption scheme based on solving a typical optical inverse problem. The secret images to be processed are multiplexed as the input intensities of a cascaded diffractive optical system. At the output plane, a compressed complex-valued data with a lot fewer measurements can be obtained by utilizing error-reduction phase retrieval algorithm. The magnitude of the output image can serve as the final ciphertext while its phase serves as the decryption key. Therefore the compression and encryption are simultaneously completed without additional encoding and filtering operations. The proposed strategy can be straightforwardly applied to the existing optical security systems that involve diffraction and interference. Numerical simulations are performed to demonstrate the validity and security of the proposal.

  11. Status Report on the First Round of the Development of the Advanced Encryption Standard

    PubMed Central

    Nechvatal, James; Barker, Elaine; Dodson, Donna; Dworkin, Morris; Foti, James; Roback, Edward

    1999-01-01

    In 1997, the National Institute of Standards and Technology (NIST) initiated a process to select a symmetric-key encryption algorithm to be used to protect sensitive (unclassified) Federal information in furtherance of NIST’s statutory responsibilities. In 1998, NIST announced the acceptance of 15 candidate algorithms and requested the assistance of the cryptographic research community in analyzing the candidates. This analysis included an initial examination of the security and efficiency characteristics for each algorithm. NIST has reviewed the results of this research and selected five algorithms (MARS, RC6™, Rijndael, Serpent and Twofish) as finalists. The research results and rationale for the selection of the finalists are documented in this report. The five finalists will be the subject of further study before the selection of one or more of these algorithms for inclusion in the Advanced Encryption Standard.

  12. P-code enhanced method for processing encrypted GPS signals without knowledge of the encryption code

    NASA Technical Reports Server (NTRS)

    Meehan, Thomas K. (Inventor); Thomas, Jr., Jess Brooks (Inventor); Young, Lawrence E. (Inventor)

    2000-01-01

    In the preferred embodiment, an encrypted GPS signal is down-converted from RF to baseband to generate two quadrature components for each RF signal (L1 and L2). Separately and independently for each RF signal and each quadrature component, the four down-converted signals are counter-rotated with a respective model phase, correlated with a respective model P code, and then successively summed and dumped over presum intervals substantially coincident with chips of the respective encryption code. Without knowledge of the encryption-code signs, the effect of encryption-code sign flips is then substantially reduced by selected combinations of the resulting presums between associated quadrature components for each RF signal, separately and independently for the L1 and L2 signals. The resulting combined presums are then summed and dumped over longer intervals and further processed to extract amplitude, phase and delay for each RF signal. Precision of the resulting phase and delay values is approximately four times better than that obtained from straight cross-correlation of L1 and L2. This improved method provides the following options: separate and independent tracking of the L1-Y and L2-Y channels; separate and independent measurement of amplitude, phase and delay L1-Y channel; and removal of the half-cycle ambiguity in L1-Y and L2-Y carrier phase.

  13. THRIVE: threshold homomorphic encryption based secure and privacy preserving biometric verification system

    NASA Astrophysics Data System (ADS)

    Karabat, Cagatay; Kiraz, Mehmet Sabir; Erdogan, Hakan; Savas, Erkay

    2015-12-01

    In this paper, we introduce a new biometric verification and template protection system which we call THRIVE. The system includes novel enrollment and authentication protocols based on threshold homomorphic encryption where a private key is shared between a user and a verifier. In the THRIVE system, only encrypted binary biometric templates are stored in a database and verification is performed via homomorphically randomized templates, thus, original templates are never revealed during authentication. Due to the underlying threshold homomorphic encryption scheme, a malicious database owner cannot perform full decryption on encrypted templates of the users in the database. In addition, security of the THRIVE system is enhanced using a two-factor authentication scheme involving user's private key and biometric data. Using simulation-based techniques, the proposed system is proven secure in the malicious model. The proposed system is suitable for applications where the user does not want to reveal her biometrics to the verifier in plain form, but needs to prove her identity by using biometrics. The system can be used with any biometric modality where a feature extraction method yields a fixed size binary template and a query template is verified when its Hamming distance to the database template is less than a threshold. The overall connection time for the proposed THRIVE system is estimated to be 336 ms on average for 256-bit biometric templates on a desktop PC running with quad core 3.2 GHz CPUs at 10 Mbit/s up/down link connection speed. Consequently, the proposed system can be efficiently used in real-life applications.

  14. Phase encryption of biometrics in diffractive optical elements.

    PubMed

    Johnson, E G; Brasher, J D

    1996-08-15

    A new technique for the optical encoding of images is presented. The method of generalized projections is used to design diffractive optical elements for the phase encryption of biometrics for security applications. The encryption algorithm converges rapidly, and the decryption is seen to be secure and tolerant to additive noise. PMID:19876322

  15. 48 CFR 352.239-71 - Standard for encryption language.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false Standard for encryption language. 352.239-71 Section 352.239-71 Federal Acquisition Regulations System HEALTH AND HUMAN SERVICES... Standard for encryption language. As prescribed in 339.101(d)(2), the Contracting Officer shall insert...

  16. 48 CFR 352.239-71 - Standard for encryption language.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... language. 352.239-71 Section 352.239-71 Federal Acquisition Regulations System HEALTH AND HUMAN SERVICES... Standard for encryption language. As prescribed in 339.101(d)(2), the Contracting Officer shall insert the following clause: Standard for Encryption Language (January 2010) (a) The Contractor shall use...

  17. Stego Optical Encryption Based on Chaotic Baker's Map Transformation

    NASA Astrophysics Data System (ADS)

    Hussain, Iqtadar; Gondal, Muhammad Asif

    2014-06-01

    In this article, an optical image encryption algorithm based on chaotic baker's map is presented. The stego-image is encrypted with the help of double random phase encoding algorithm and then produced disorder with the help of chaotic transformation. Security test shows that the reading of proposed algorithm is very close to the optimal values.

  18. Simultaneous nonlinear encryption of grayscale and color images based on phase-truncated fractional Fourier transform and optical superposition principle.

    PubMed

    Wang, Xiaogang; Zhao, Daomu

    2013-09-01

    A nonlinear color and grayscale images cryptosystem based on phase-truncated fractional Fourier transform and optical superposition principle is proposed. In order to realize simultaneous encryption of color and grayscale images, each grayscale image is first converted into two phase masks by using an optical coherent superposition, one of which is treated as a part of input information that will be fractional Fourier transformed while the other in the form of a chaotic random phase mask (CRPM) is used as a decryption key. For the purpose of optical performance, all the processes are performed through three channels, i.e., red, green, and blue. Different from most asymmetric encryption methods, the decryption process is designed to be linear for the sake of effective decryption. The encryption level of a double random phase encryption based on phase-truncated Fourier transform is enhanced by extending it into fractional Fourier domain and the load of the keys management and transmission is lightened by using CRPMs. The security of the proposed cryptosystem is discussed and computer simulation results are presented to verify the validity of the proposed method.

  19. Assessing the performance of a method of simultaneous compression and encryption of multiple images and its resistance against various attacks.

    PubMed

    Alfalou, A; Brosseau, C; Abdallah, N; Jridi, M

    2013-04-01

    We introduce a double optimization procedure for spectrally multiplexing multiple images. This technique is adapted from a recently proposed optical setup implementing the discrete cosine transformation (DCT). The new analysis technique is a combination of spectral fusion based on the properties of DCT, specific spectral filtering, and quantization of the remaining encoded frequencies using an optimal number of bits. Spectrally multiplexing multiple images defines a first level of encryption. A second level of encryption based on a real key image is used to reinforce encryption. A set of numerical simulations and a comparison with the well known JPEG (Joint Photographic Experts Group) image compression standard have been carried out to demonstrate the improved performances of this method. The focus here will differ from the method of simultaneous fusion, compression, and encryption of multiple images (SFCE) [Opt. Express 19, 24023 (2011)] in the following ways. Firstly, we shall be concerned with optimizing the compression rate by adapting the size of the spectral block to each target image and decreasing the number of bits required to encode each block. This size adaptation is achieved by means of the root-mean-square (RMS) time-frequency criterion. We found that this size adaptation provides a good tradeoff between bandwidth of spectral plane and number of reconstructed output images. Secondly, the encryption rate is improved by using a real biometric key and randomly changing the rotation angle of each block before spectral fusion. By using a real-valued key image we have been able to increase the compression rate of 50% over the original SFCE method. We provide numerical examples of the effects for size, rotation, and shifting of DCT-blocks which play noteworthy roles in the optimization of the bandwidth of the spectral plane. Inspection of the results for different types of attack demonstrates the robustness of our procedure.

  20. Perceptual security of encrypted images based on wavelet scaling analysis

    NASA Astrophysics Data System (ADS)

    Vargas-Olmos, C.; Murguía, J. S.; Ramírez-Torres, M. T.; Mejía Carlos, M.; Rosu, H. C.; González-Aguilar, H.

    2016-08-01

    The scaling behavior of the pixel fluctuations of encrypted images is evaluated by using the detrended fluctuation analysis based on wavelets, a modern technique that has been successfully used recently for a wide range of natural phenomena and technological processes. As encryption algorithms, we use the Advanced Encryption System (AES) in RBT mode and two versions of a cryptosystem based on cellular automata, with the encryption process applied both fully and partially by selecting different bitplanes. In all cases, the results show that the encrypted images in which no understandable information can be visually appreciated and whose pixels look totally random present a persistent scaling behavior with the scaling exponent α close to 0.5, implying no correlation between pixels when the DFA with wavelets is applied. This suggests that the scaling exponents of the encrypted images can be used as a perceptual security criterion in the sense that when their values are close to 0.5 (the white noise value) the encrypted images are more secure also from the perceptual point of view.

  1. Color image encryption based on color blend and chaos permutation in the reality-preserving multiple-parameter fractional Fourier transform domain

    NASA Astrophysics Data System (ADS)

    Lang, Jun

    2015-03-01

    In this paper, we propose a novel color image encryption method by using Color Blend (CB) and Chaos Permutation (CP) operations in the reality-preserving multiple-parameter fractional Fourier transform (RPMPFRFT) domain. The original color image is first exchanged and mixed randomly from the standard red-green-blue (RGB) color space to R‧G‧B‧ color space by rotating the color cube with a random angle matrix. Then RPMPFRFT is employed for changing the pixel values of color image, three components of the scrambled RGB color space are converted by RPMPFRFT with three different transform pairs, respectively. Comparing to the complex output transform, the RPMPFRFT transform ensures that the output is real which can save storage space of image and convenient for transmission in practical applications. To further enhance the security of the encryption system, the output of the former steps is scrambled by juxtaposition of sections of the image in the reality-preserving multiple-parameter fractional Fourier domains and the alignment of sections is determined by two coupled chaotic logistic maps. The parameters in the Color Blend, Chaos Permutation and the RPMPFRFT transform are regarded as the key in the encryption algorithm. The proposed color image encryption can also be applied to encrypt three gray images by transforming the gray images into three RGB color components of a specially constructed color image. Numerical simulations are performed to demonstrate that the proposed algorithm is feasible, secure, sensitive to keys and robust to noise attack and data loss.

  2. Multiple Lookup Table-Based AES Encryption Algorithm Implementation

    NASA Astrophysics Data System (ADS)

    Gong, Jin; Liu, Wenyi; Zhang, Huixin

    Anew AES (Advanced Encryption Standard) encryption algorithm implementation was proposed in this paper. It is based on five lookup tables, which are generated from S-box(the substitution table in AES). The obvious advantages are reducing the code-size, improving the implementation efficiency, and helping new learners to understand the AES encryption algorithm and GF(28) multiplication which are necessary to correctly implement AES[1]. This method can be applied on processors with word length 32 or above, FPGA and others. And correspondingly we can implement it by VHDL, Verilog, VB and other languages.

  3. Stego optical encryption based on chaotic S-box transformation

    NASA Astrophysics Data System (ADS)

    Hussain, Iqtadar; Azam, Naveed Ahmed; Shah, Tariq

    2014-09-01

    In this article, an optical image encryption algorithm with an information hiding technique is presented. In this algorithm, a secret image is implanted into the cover image. After that the stego-image is encrypted with the help of double random phase encoding algorithm and chaotic substitution box transformation. Also, we present a comparative analysis between images “without substitution box transformation”, “with substitution box transformation” and “with chaotic substitution box transformation”. Security test shows that image transform with chaotic substitution box transformation is better than others. Furthermore we analyze proposed encryption scheme with other existing techniques and come to close that our algorithm is better than others.

  4. Securing electronic health records with broadcast encryption schemes.

    PubMed

    Susilo, Willy; Win, Khin Than

    2006-01-01

    Information security is a concern in integrated electronic health record systems (EHRs). This paper discusses the development of a mathematical model to secure the access of EHRs. In this paper, we incorporate the notion of a broadcast encryption scheme for securing EHRs. We present a novel solution to allow a secure access to the EHRs whilst minimising the number of the encrypted ciphertexts. In a nutshell, our proposed solution enjoys shorter ciphertexts compared to having multiple ciphertexts encrypted for several different participants. Our proposed solution is applicable in practice to solve an existing open problem in the effort of securing EHRs.

  5. A lossless encryption method for medical images using edge maps.

    PubMed

    Zhou, Yicong; Panetta, Karen; Agaian, Sos

    2009-01-01

    Image encryption is an effective approach for providing security and privacy protection for medical images. This paper introduces a new lossless approach, called EdgeCrypt, to encrypt medical images using the information contained within an edge map. The algorithm can fully protect the selected objects/regions within medical images or the entire medical images. It can also encrypt other types of images such as grayscale images or color images. The algorithm can be used for privacy protection in the real-time medical applications such as wireless medical networking and mobile medical services.

  6. System for processing an encrypted instruction stream in hardware

    DOEpatents

    Griswold, Richard L.; Nickless, William K.; Conrad, Ryan C.

    2016-04-12

    A system and method of processing an encrypted instruction stream in hardware is disclosed. Main memory stores the encrypted instruction stream and unencrypted data. A central processing unit (CPU) is operatively coupled to the main memory. A decryptor is operatively coupled to the main memory and located within the CPU. The decryptor decrypts the encrypted instruction stream upon receipt of an instruction fetch signal from a CPU core. Unencrypted data is passed through to the CPU core without decryption upon receipt of a data fetch signal.

  7. Perspectives on key principles of generalist medical practice in public service in sub-saharan africa: a qualitative study

    PubMed Central

    2011-01-01

    Background The principles and practice of Family Medicine that arose in developed Western countries have been imported and adopted in African countries without adequate consideration of their relevance and appropriateness to the African context. In this study we attempted to elicit a priori principles of generalist medical practice from the experience of long-serving medical officers in a variety of African counties, through which we explored emergent principles of Family Medicine in our own context. Methods A descriptive study design was utilized, using qualitative methods. 16 respondents who were clinically active medical practitioners, working as generalists in the public services or non-profit sector for at least 5 years, and who had had no previous formal training or involvement in academic Family Medicine, were purposively selected in 8 different countries in southern, western and east Africa, and interviewed. Results The respondents highlighted a number of key issues with respect to the external environment within which they work, their collective roles, activities and behaviours, as well as the personal values and beliefs that motivate their behaviour. The context is characterized by resource constraints, high workload, traditional health beliefs, and the difficulty of referring patients to the next level of care. Generalist clinicians in sub-Saharan Africa need to be competent across a wide range of clinical disciplines and procedural skills at the level of the district hospital and clinic, in both chronic and emergency care. They need to understand the patient's perspective and context, empowering the patient and building an effective doctor-patient relationship. They are also managers, focused on coordinating and improving the quality of clinical care through teamwork, training and mentoring other health workers in the generalist setting, while being life-long learners themselves. However, their role in the community, was found to be more aspirational

  8. Security Analysis of Image Encryption Based on Gyrator Transform by Searching the Rotation Angle with Improved PSO Algorithm.

    PubMed

    Sang, Jun; Zhao, Jun; Xiang, Zhili; Cai, Bin; Xiang, Hong

    2015-01-01

    Gyrator transform has been widely used for image encryption recently. For gyrator transform-based image encryption, the rotation angle used in the gyrator transform is one of the secret keys. In this paper, by analyzing the properties of the gyrator transform, an improved particle swarm optimization (PSO) algorithm was proposed to search the rotation angle in a single gyrator transform. Since the gyrator transform is continuous, it is time-consuming to exhaustedly search the rotation angle, even considering the data precision in a computer. Therefore, a computational intelligence-based search may be an alternative choice. Considering the properties of severe local convergence and obvious global fluctuations of the gyrator transform, an improved PSO algorithm was proposed to be suitable for such situations. The experimental results demonstrated that the proposed improved PSO algorithm can significantly improve the efficiency of searching the rotation angle in a single gyrator transform. Since gyrator transform is the foundation of image encryption in gyrator transform domains, the research on the method of searching the rotation angle in a single gyrator transform is useful for further study on the security of such image encryption algorithms. PMID:26251910

  9. Security Analysis of Image Encryption Based on Gyrator Transform by Searching the Rotation Angle with Improved PSO Algorithm

    PubMed Central

    Sang, Jun; Zhao, Jun; Xiang, Zhili; Cai, Bin; Xiang, Hong

    2015-01-01

    Gyrator transform has been widely used for image encryption recently. For gyrator transform-based image encryption, the rotation angle used in the gyrator transform is one of the secret keys. In this paper, by analyzing the properties of the gyrator transform, an improved particle swarm optimization (PSO) algorithm was proposed to search the rotation angle in a single gyrator transform. Since the gyrator transform is continuous, it is time-consuming to exhaustedly search the rotation angle, even considering the data precision in a computer. Therefore, a computational intelligence-based search may be an alternative choice. Considering the properties of severe local convergence and obvious global fluctuations of the gyrator transform, an improved PSO algorithm was proposed to be suitable for such situations. The experimental results demonstrated that the proposed improved PSO algorithm can significantly improve the efficiency of searching the rotation angle in a single gyrator transform. Since gyrator transform is the foundation of image encryption in gyrator transform domains, the research on the method of searching the rotation angle in a single gyrator transform is useful for further study on the security of such image encryption algorithms. PMID:26251910

  10. An optimized watermarking scheme using an encrypted gyrator transform computer generated hologram based on particle swarm optimization.

    PubMed

    Li, Jianzhong

    2014-04-21

    In this paper, a novel secure optimal image watermarking scheme using an encrypted gyrator transform computer generated hologram (CGH) in the contourlet domain is presented. A new encrypted CGH technique, which is based on the gyrator transform, the random phase mask, the three-step phase-shifting interferometry and the Fibonacci transform, has been proposed to produce a hologram of a watermark first. With the huge key space of the encrypted CGH, the security strength of the watermarking system is enhanced. To achieve better imperceptibility, an improved quantization embedding algorithm is proposed to embed the encrypted CGH into the low frequency sub-band of the contourlet-transformed host image. In order to obtain the highest possible robustness without losing the imperceptibility, particle swarm optimization algorithm is employed to search the optimal embedding parameter of the watermarking system. In comparison with other method, the proposed watermarking scheme offers better performances for both imperceptibility and robustness. Experimental results demonstrate that the proposed image watermarking is not only secure and invisible, but also robust against a variety of attacks.

  11. Security Analysis of Image Encryption Based on Gyrator Transform by Searching the Rotation Angle with Improved PSO Algorithm.

    PubMed

    Sang, Jun; Zhao, Jun; Xiang, Zhili; Cai, Bin; Xiang, Hong

    2015-08-05

    Gyrator transform has been widely used for image encryption recently. For gyrator transform-based image encryption, the rotation angle used in the gyrator transform is one of the secret keys. In this paper, by analyzing the properties of the gyrator transform, an improved particle swarm optimization (PSO) algorithm was proposed to search the rotation angle in a single gyrator transform. Since the gyrator transform is continuous, it is time-consuming to exhaustedly search the rotation angle, even considering the data precision in a computer. Therefore, a computational intelligence-based search may be an alternative choice. Considering the properties of severe local convergence and obvious global fluctuations of the gyrator transform, an improved PSO algorithm was proposed to be suitable for such situations. The experimental results demonstrated that the proposed improved PSO algorithm can significantly improve the efficiency of searching the rotation angle in a single gyrator transform. Since gyrator transform is the foundation of image encryption in gyrator transform domains, the research on the method of searching the rotation angle in a single gyrator transform is useful for further study on the security of such image encryption algorithms.

  12. An optimized watermarking scheme using an encrypted gyrator transform computer generated hologram based on particle swarm optimization.

    PubMed

    Li, Jianzhong

    2014-04-21

    In this paper, a novel secure optimal image watermarking scheme using an encrypted gyrator transform computer generated hologram (CGH) in the contourlet domain is presented. A new encrypted CGH technique, which is based on the gyrator transform, the random phase mask, the three-step phase-shifting interferometry and the Fibonacci transform, has been proposed to produce a hologram of a watermark first. With the huge key space of the encrypted CGH, the security strength of the watermarking system is enhanced. To achieve better imperceptibility, an improved quantization embedding algorithm is proposed to embed the encrypted CGH into the low frequency sub-band of the contourlet-transformed host image. In order to obtain the highest possible robustness without losing the imperceptibility, particle swarm optimization algorithm is employed to search the optimal embedding parameter of the watermarking system. In comparison with other method, the proposed watermarking scheme offers better performances for both imperceptibility and robustness. Experimental results demonstrate that the proposed image watermarking is not only secure and invisible, but also robust against a variety of attacks. PMID:24787882

  13. A non-linear preprocessing for opto-digital image encryption using multiple-parameter discrete fractional Fourier transform

    NASA Astrophysics Data System (ADS)

    Azoug, Seif Eddine; Bouguezel, Saad

    2016-01-01

    In this paper, a novel opto-digital image encryption technique is proposed by introducing a new non-linear preprocessing and using the multiple-parameter discrete fractional Fourier transform (MPDFrFT). The non-linear preprocessing is performed digitally on the input image in the spatial domain using a piecewise linear chaotic map (PLCM) coupled with the bitwise exclusive OR (XOR). The resulting image is multiplied by a random phase mask before applying the MPDFrFT to whiten the image. Then, a chaotic permutation is performed on the output of the MPDFrFT using another PLCM different from the one used in the spatial domain. Finally, another MPDFrFT is applied to obtain the encrypted image. The parameters of the PLCMs together with the multiple fractional orders of the MPDFrFTs constitute the secret key for the proposed cryptosystem. Computer simulation results and security analysis are presented to show the robustness of the proposed opto-digital image encryption technique and the great importance of the new non-linear preprocessing introduced to enhance the security of the cryptosystem and overcome the problem of linearity encountered in the existing permutation-based opto-digital image encryption schemes.

  14. A layered searchable encryption scheme with functional components independent of encryption methods.

    PubMed

    Luo, Guangchun; Peng, Ningduo; Qin, Ke; Chen, Aiguo

    2014-01-01

    Searchable encryption technique enables the users to securely store and search their documents over the remote semitrusted server, which is especially suitable for protecting sensitive data in the cloud. However, various settings (based on symmetric or asymmetric encryption) and functionalities (ranked keyword query, range query, phrase query, etc.) are often realized by different methods with different searchable structures that are generally not compatible with each other, which limits the scope of application and hinders the functional extensions. We prove that asymmetric searchable structure could be converted to symmetric structure, and functions could be modeled separately apart from the core searchable structure. Based on this observation, we propose a layered searchable encryption (LSE) scheme, which provides compatibility, flexibility, and security for various settings and functionalities. In this scheme, the outputs of the core searchable component based on either symmetric or asymmetric setting are converted to some uniform mappings, which are then transmitted to loosely coupled functional components to further filter the results. In such a way, all functional components could directly support both symmetric and asymmetric settings. Based on LSE, we propose two representative and novel constructions for ranked keyword query (previously only available in symmetric scheme) and range query (previously only available in asymmetric scheme).

  15. Optical interference-based multiple-image encryption using spherical wave illumination and gyrator transform.

    PubMed

    Abuturab, Muhammad Rafiq

    2014-10-10

    A new optical interference-based multiple-image encryption using spherical wave illumination and gyrator transform is proposed. In this proposal, each secret color image is divided into normalized red, green, and blue component images and independently encoded into corresponding phase-only component images. Then each phase-only component image of all the images are combined together to produce a single-phase-only component image as an input component image, which is bounded with a random phase mask to form a complex image. The two phase-only masks are analytically obtained from the inverse Fourier transformation of the complex image. The host image is chosen as the first phase-only mask, and the complex image hidden in the host image is regarded as the second phase-only mask. The spherical wave is generated to simultaneously illuminate phase-only masks. Then two modulated masks are gyrator transformed. The corresponding transformed images are phase truncated to obtain encrypted images and amplitude truncated to construct decryption keys. The decryption keys, angles of gyrator transform, wavelength and radius of the spherical wave, and individual decryption keys for authorized users are sensitive keys, which enhance the security layers of the system. The proposed system can be implemented by using optoelectronic architecture. Numerical simulation results demonstrate the flexibility of the system.

  16. Smart Investment 2002 Public Opinion Survey: Highlights & Key Findings [and] Statewide Community Perception Analysis, 2002. Summary Report.

    ERIC Educational Resources Information Center

    Sutton, Lorna; Purcell, Jennifer K.

    The Smart Investment 2002 Public Opinion Survey measures public opinion about the importance and effectiveness of college programs, interest in possible future participation in colleges classes, satisfaction with information received from other colleges, and other topics. The survey was conducted on the phone and used 1,190 adult Washington…

  17. Evaluation of case management needs of clients from non-English speaking backgrounds by key workers in a public agency.

    PubMed

    Shackleton, M G

    1999-12-01

    Twenty key workers in a government agency evaluated the effectiveness of their interventions with culturally diverse clients. The sample comprised 73 clients, from 18 language groups. Forty per cent reported not having enough to do during the day and seventy-three per cent were visited regularly by their key workers. Ninety-two per cent were social security recipients. Though eighty-five per cent of key worker respondents perceived that the major needs of their clients were being met, twenty-one per cent felt they had insufficient contact with clients. The cultural appropriateness of interventions and client's accessibility to services were not confirmed in anecdotal comments.

  18. Research on medical image encryption in telemedicine systems.

    PubMed

    Dai, Yin; Wang, Huanzhen; Zhou, Zixia; Jin, Ziyi

    2016-04-29

    Recently, advances in computers and high-speed communication tools have led to enhancements in remote medical consultation research. Laws in some localities require hospitals to encrypt patient information (including images of the patient) before transferring the data over a network. Therefore, developing suitable encryption algorithms is quite important for modern medicine. This paper demonstrates a digital image encryption algorithm based on chaotic mapping, which uses the no-period and no-convergence properties of a chaotic sequence to create image chaos and pixel averaging. Then, the chaotic sequence is used to encrypt the image, thereby improving data security. With this method, the security of data and images can be improved. PMID:27163302

  19. Photon-counting multifactor optical encryption and authentication

    NASA Astrophysics Data System (ADS)

    Pérez-Cabré, E.; Mohammed, E. A.; Millán, M. S.; Saadon, H. L.

    2015-02-01

    The multifactor optical encryption authentication method [Opt. Lett., 31 721-3 (2006)] reinforces optical security by allowing the simultaneous authentication of up to four factors. In this work, the photon-counting imaging technique is applied to the multifactor encrypted function so that a sparse phase-only distribution is generated for the encrypted data. The integration of both techniques permits an increased capacity for signal hiding with simultaneous data reduction for better fulfilling the general requirements of protection, storage and transmission. Cryptanalysis of the proposed method is carried out in terms of chosen-plaintext and chosen-ciphertext attacks. Although the multifactor authentication process is not substantially altered by those attacks, its integration with the photon-counting imaging technique prevents from possible partial disclosure of any encrypted factor, thus increasing the security level of the overall process. Numerical experiments and results are provided and discussed.

  20. Optical image encryption using multilevel Arnold transform and noninterferometric imaging

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Chen, Xudong

    2011-11-01

    Information security has attracted much current attention due to the rapid development of modern technologies, such as computer and internet. We propose a novel method for optical image encryption using multilevel Arnold transform and rotatable-phase-mask noninterferometric imaging. An optical image encryption scheme is developed in the gyrator transform domain, and one phase-only mask (i.e., phase grating) is rotated and updated during image encryption. For the decryption, an iterative retrieval algorithm is proposed to extract high-quality plaintexts. Conventional encoding methods (such as digital holography) have been proven vulnerably to the attacks, and the proposed optical encoding scheme can effectively eliminate security deficiency and significantly enhance cryptosystem security. The proposed strategy based on the rotatable phase-only mask can provide a new alternative for data/image encryption in the noninterferometric imaging.

  1. Noise removing in encrypted color images by statistical analysis

    NASA Astrophysics Data System (ADS)

    Islam, N.; Puech, W.

    2012-03-01

    Cryptographic techniques are used to secure confidential data from unauthorized access but these techniques are very sensitive to noise. A single bit change in encrypted data can have catastrophic impact over the decrypted data. This paper addresses the problem of removing bit error in visual data which are encrypted using AES algorithm in the CBC mode. In order to remove the noise, a method is proposed which is based on the statistical analysis of each block during the decryption. The proposed method exploits local statistics of the visual data and confusion/diffusion properties of the encryption algorithm to remove the errors. Experimental results show that the proposed method can be used at the receiving end for the possible solution for noise removing in visual data in encrypted domain.

  2. Efficient Hardware Implementation of the Lightweight Block Encryption Algorithm LEA

    PubMed Central

    Lee, Donggeon; Kim, Dong-Chan; Kwon, Daesung; Kim, Howon

    2014-01-01

    Recently, due to the advent of resource-constrained trends, such as smartphones and smart devices, the computing environment is changing. Because our daily life is deeply intertwined with ubiquitous networks, the importance of security is growing. A lightweight encryption algorithm is essential for secure communication between these kinds of resource-constrained devices, and many researchers have been investigating this field. Recently, a lightweight block cipher called LEA was proposed. LEA was originally targeted for efficient implementation on microprocessors, as it is fast when implemented in software and furthermore, it has a small memory footprint. To reflect on recent technology, all required calculations utilize 32-bit wide operations. In addition, the algorithm is comprised of not complex S-Box-like structures but simple Addition, Rotation, and XOR operations. To the best of our knowledge, this paper is the first report on a comprehensive hardware implementation of LEA. We present various hardware structures and their implementation results according to key sizes. Even though LEA was originally targeted at software efficiency, it also shows high efficiency when implemented as hardware. PMID:24406859

  3. Double image encryption based on phase-amplitude mixed encoding and multistage phase encoding in gyrator transform domains

    NASA Astrophysics Data System (ADS)

    Wang, Qu; Guo, Qing; Lei, Liang

    2013-06-01

    We present a novel method for double image encryption that is based on amplitude-phase mixed encoding and multistage random phase encoding in gyrator transform (GT) domains. In the amplitude-phase mixed encoding operation, a random binary distribution matrix is defined to mixed encode two primitive images to a single complex-valued image, which is then encrypted into a stationary white noise distribution by the multistage phase encoding with GTs. Compared with the earlier methods that uses fully phase encoding, the proposed method reduces the difference between two primitive images in key space and sensitivity to the GT orders. The primitive images can be recovered exactly by applying correct keys with initial conditions of chaotic system, the GT orders and the pixel scrambling operation. Numerical simulations demonstrate that the proposed scheme has considerably high security level and certain robustness against data loss and noise disturbance.

  4. Information encryption and compression based on random polarization modulation in a joint transform correlator scheme under vector beam illumination

    NASA Astrophysics Data System (ADS)

    Lin, Chao; Shen, Xueju; Hu, Wengang

    2015-07-01

    We demonstrate that a vectorial beam with a random polarization state can be used as the illumination source in a joint transform correlator configuration to encrypt and compress images. Illumination light featuring both space-variant phase and a space-variant polarization distribution can be generated using a common-path interferometric arrangement. A hybrid joint power spectrum is registered using an array of linear micro-polarizers that is closely attached to a charge-coupled device in the recording plane. Introduction of the vectorial beam into a security application enables simultaneous manipulation of multiple light wave parameters, which will significantly enlarge the key dimensions and key space of the cryptosystem. This vectorial optical cryptosystem may also provoke interest in probing optical vector encryption methods.

  5. 77 FR 39489 - Notice of Public Meetings for the Naval Air Station Key West Airfield Operations Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-03

    ... Intent to prepare this Draft EIS was published in the Federal Register on May 12, 2010 (75 FR 26739). The... Boulevard, Key West, Florida 33040. 2. Thursday, August 2, 2012, Tennessee Williams Theater at Florida...

  6. Authentication and encryption in the Snow disease surveillance network.

    PubMed

    Bellika, Johan Gustav; Ilebrekke, Lars; Bakkevoll, Per Atle; Johansen, Håvard; Scholl, Jeremiah; Johansen, Monika Alise

    2009-01-01

    The paper presents how authentication and encryption is implemented in the Snow disease surveillance network. Requirements for the authentication mechanism were collected from General Practitioners (GPs). The identity of each Snow user is preserved across health institutions allowing GPs to move freely between health institutions and use the system independent of location. This ability is combined with close to zero user account administration within the participating institutions. The system provides global user certificate revocation and end-to-end encryption.

  7. Cryptanalysis of an information encryption in phase space

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Quan, C.; Tay, C. J.

    2016-10-01

    In this paper, we evaluate the security of an information encryption in phase space. We show that the scheme is vulnerable to two kinds of attack, namely, a chosen-ciphertext attack and a known-plaintext attack which is based on an iterative phase-retrieval algorithm using multiple plaintext-ciphertext pairs. The validity of the proposed methods of attack is verified by numerical simulations. The results cast doubts on the present security of information encryption in phase space.

  8. Challenges, alternatives, and paths to sustainability: better public health promotion using social networking pages as key tools.

    PubMed

    Zaidan, A A; Zaidan, B B; Kadhem, Z; Larbani, M; Lakulu, M B; Hashim, M

    2015-02-01

    This paper discusses the possibility of promoting public health and implementing educational health services using Facebook. We discuss the challenges and strengths of using such a platform as a tool for public health care systems from two different perspectives, namely, the view of IT developers and that of physicians. We present a new way of evaluating user interactivity in health care systems from tools provided by Facebook that measure statistical traffic in the Internet. Findings show that Facebook is a very promising tool in promoting e-health services in Web 2.0. Results from statistical traffic show that a Facebook page is more efficient than other pages in promoting public health.

  9. New color image encryption algorithm based on compound chaos mapping and hyperchaotic cellular neural network

    NASA Astrophysics Data System (ADS)

    Li, Jinqing; Bai, Fengming; Di, Xiaoqiang

    2013-01-01

    We propose an image encryption/decryption algorithm based on chaotic control parameter and hyperchaotic system with the composite permutation-diffusion structure. Compound chaos mapping is used to generate control parameters in the permutation stage. The high correlation between pixels is shuffled. In the diffusion stage, compound chaos mapping of different initial condition and control parameter generates the diffusion parameters, which are applied to hyperchaotic cellular neural networks. The diffusion key stream is obtained by this process and implements the pixels' diffusion. Compared with the existing methods, both simulation and statistical analysis of our proposed algorithm show that the algorithm has a good performance against attacks and meets the corresponding security level.

  10. A Fingerprint Encryption Scheme Based on Irreversible Function and Secure Authentication

    PubMed Central

    Yu, Jianping; Zhang, Peng; Wang, Shulan

    2015-01-01

    A fingerprint encryption scheme based on irreversible function has been designed in this paper. Since the fingerprint template includes almost the entire information of users' fingerprints, the personal authentication can be determined only by the fingerprint features. This paper proposes an irreversible transforming function (using the improved SHA1 algorithm) to transform the original minutiae which are extracted from the thinned fingerprint image. Then, Chinese remainder theorem is used to obtain the biokey from the integration of the transformed minutiae and the private key. The result shows that the scheme has better performance on security and efficiency comparing with other irreversible function schemes. PMID:25873989

  11. A fingerprint encryption scheme based on irreversible function and secure authentication.

    PubMed

    Yang, Yijun; Yu, Jianping; Zhang, Peng; Wang, Shulan

    2015-01-01

    A fingerprint encryption scheme based on irreversible function has been designed in this paper. Since the fingerprint template includes almost the entire information of users' fingerprints, the personal authentication can be determined only by the fingerprint features. This paper proposes an irreversible transforming function (using the improved SHA1 algorithm) to transform the original minutiae which are extracted from the thinned fingerprint image. Then, Chinese remainder theorem is used to obtain the biokey from the integration of the transformed minutiae and the private key. The result shows that the scheme has better performance on security and efficiency comparing with other irreversible function schemes. PMID:25873989

  12. A fingerprint encryption scheme based on irreversible function and secure authentication.

    PubMed

    Yang, Yijun; Yu, Jianping; Zhang, Peng; Wang, Shulan

    2015-01-01

    A fingerprint encryption scheme based on irreversible function has been designed in this paper. Since the fingerprint template includes almost the entire information of users' fingerprints, the personal authentication can be determined only by the fingerprint features. This paper proposes an irreversible transforming function (using the improved SHA1 algorithm) to transform the original minutiae which are extracted from the thinned fingerprint image. Then, Chinese remainder theorem is used to obtain the biokey from the integration of the transformed minutiae and the private key. The result shows that the scheme has better performance on security and efficiency comparing with other irreversible function schemes.

  13. A New Quaternion-Based Encryption Method for DICOM Images.

    PubMed

    Dzwonkowski, Mariusz; Papaj, Michal; Rykaczewski, Roman

    2015-11-01

    In this paper, a new quaternion-based lossless encryption technique for digital image and communication on medicine (DICOM) images is proposed. We have scrutinized and slightly modified the concept of the DICOM network to point out the best location for the proposed encryption scheme, which significantly improves speed of DICOM images encryption in comparison with those originally embedded into DICOM advanced encryption standard and triple data encryption standard algorithms. The proposed algorithm decomposes a DICOM image into two 8-bit gray-tone images in order to perform encryption. The algorithm implements Feistel network like the scheme proposed by Sastry and Kumar. It uses special properties of quaternions to perform rotations of data sequences in 3D space for each of the cipher rounds. The images are written as Lipschitz quaternions, and modular arithmetic was implemented for operations with the quaternions. A computer-based analysis has been carried out, and the obtained results are shown at the end of this paper. PMID:26276993

  14. Secure data aggregation in wireless sensor networks using homomorphic encryption

    NASA Astrophysics Data System (ADS)

    Kumar, Manish; Verma, Shekhar; Lata, Kusum

    2015-04-01

    In a Wireless Sensor Network (WSN), aggregation exploits the correlation between spatially and temporally proximate sensor data to reduce the total data volume to be transmitted to the sink. Mobile agents (MAs) fit into this paradigm, and data can be aggregated and collected by an MA from different sensor nodes using context specific codes. The MA-based data collection suffers due to large size of a typical WSN and is prone to security problems. In this article, homomorphic encryption in a clustered WSN has been proposed for secure and efficient data collection using MAs. The nodes keep encrypted data that are given to an MA for data aggregation tasks. The MA performs all the data aggregation operations upon encrypted data as it migrates between nodes in a tree-like structure in which the nodes are leafs and the cluster head is the root of the tree. It returns and deposits the encrypted aggregated data to the cluster head after traversing through all the intra cluster nodes over a shortest path route. The homomorphic encryption and aggregation processing in encrypted domain makes the data collection process secure. Simulation results confirm the effectiveness of the proposed secure data aggregation mechanism. In addition to security, MA-based mechanism leads to lesser delay and bandwidth requirements.

  15. MPH education for the 21st century: motivation, rationale, and key principles for the new Columbia public health curriculum.

    PubMed

    Fried, Linda P; Begg, Melissa D; Bayer, Ronald; Galea, Sandro

    2014-01-01

    Public health is at a watershed moment. The world's health needs are changing, and complex problems require interdisciplinary approaches and systems-based solutions. Our longer lives and changing environments necessitate life-course and structural approaches to prevention. This argues strongly for public health graduate education that adequately prepares trainees to tackle emerging challenges and to lead now and in the future. Nearly a century of scholarship and scientific advances may offer a blueprint for training the next generation of public health leaders. We articulate a case for change; discuss some of the foundational principles that should guide public health education; and discuss what such a change might look like building on prior scholarship, on the examples set by other disciplines, and on our own experience.

  16. MPH Education for the 21st Century: Motivation, Rationale, and Key Principles for the New Columbia Public Health Curriculum

    PubMed Central

    Fried, Linda P.; Begg, Melissa D.; Bayer, Ronald

    2014-01-01

    Public health is at a watershed moment. The world’s health needs are changing, and complex problems require interdisciplinary approaches and systems-based solutions. Our longer lives and changing environments necessitate life-course and structural approaches to prevention. This argues strongly for public health graduate education that adequately prepares trainees to tackle emerging challenges and to lead now and in the future. Nearly a century of scholarship and scientific advances may offer a blueprint for training the next generation of public health leaders. We articulate a case for change; discuss some of the foundational principles that should guide public health education; and discuss what such a change might look like building on prior scholarship, on the examples set by other disciplines, and on our own experience. PMID:24228646

  17. Known plaintext attack on double random phase encoding using fingerprint as key and a method for avoiding the attack.

    PubMed

    Tashima, Hideaki; Takeda, Masafumi; Suzuki, Hiroyuki; Obi, Takashi; Yamaguchi, Masahiro; Ohyama, Nagaaki

    2010-06-21

    We have shown that the application of double random phase encoding (DRPE) to biometrics enables the use of biometrics as cipher keys for binary data encryption. However, DRPE is reported to be vulnerable to known-plaintext attacks (KPAs) using a phase recovery algorithm. In this study, we investigated the vulnerability of DRPE using fingerprints as cipher keys to the KPAs. By means of computational experiments, we estimated the encryption key and restored the fingerprint image using the estimated key. Further, we propose a method for avoiding the KPA on the DRPE that employs the phase retrieval algorithm. The proposed method makes the amplitude component of the encrypted image constant in order to prevent the amplitude component of the encrypted image from being used as a clue for phase retrieval. Computational experiments showed that the proposed method not only avoids revealing the cipher key and the fingerprint but also serves as a sufficiently accurate verification system. PMID:20588510

  18. Biometrics based key management of double random phase encoding scheme using error control codes

    NASA Astrophysics Data System (ADS)

    Saini, Nirmala; Sinha, Aloka

    2013-08-01

    In this paper, an optical security system has been proposed in which key of the double random phase encoding technique is linked to the biometrics of the user to make it user specific. The error in recognition due to the biometric variation is corrected by encoding the key using the BCH code. A user specific shuffling key is used to increase the separation between genuine and impostor Hamming distance distribution. This shuffling key is then further secured using the RSA public key encryption to enhance the security of the system. XOR operation is performed between the encoded key and the feature vector obtained from the biometrics. The RSA encoded shuffling key and the data obtained from the XOR operation are stored into a token. The main advantage of the present technique is that the key retrieval is possible only in the simultaneous presence of the token and the biometrics of the user which not only authenticates the presence of the original input but also secures the key of the system. Computational experiments showed the effectiveness of the proposed technique for key retrieval in the decryption process by using the live biometrics of the user.

  19. A joint watermarking/encryption algorithm for verifying medical image integrity and authenticity in both encrypted and spatial domains.

    PubMed

    Bouslimi, D; Coatrieux, G; Roux, Ch

    2011-01-01

    In this paper, we propose a new joint watermarking/encryption algorithm for the purpose of verifying the reliability of medical images in both encrypted and spatial domains. It combines a substitutive watermarking algorithm, the quantization index modulation (QIM), with a block cipher algorithm, the Advanced Encryption Standard (AES), in CBC mode of operation. The proposed solution gives access to the outcomes of the image integrity and of its origins even though the image is stored encrypted. Experimental results achieved on 8 bits encoded Ultrasound images illustrate the overall performances of the proposed scheme. By making use of the AES block cipher in CBC mode, the proposed solution is compliant with or transparent to the DICOM standard.

  20. A joint watermarking/encryption algorithm for verifying medical image integrity and authenticity in both encrypted and spatial domains.

    PubMed

    Bouslimi, D; Coatrieux, G; Roux, Ch

    2011-01-01

    In this paper, we propose a new joint watermarking/encryption algorithm for the purpose of verifying the reliability of medical images in both encrypted and spatial domains. It combines a substitutive watermarking algorithm, the quantization index modulation (QIM), with a block cipher algorithm, the Advanced Encryption Standard (AES), in CBC mode of operation. The proposed solution gives access to the outcomes of the image integrity and of its origins even though the image is stored encrypted. Experimental results achieved on 8 bits encoded Ultrasound images illustrate the overall performances of the proposed scheme. By making use of the AES block cipher in CBC mode, the proposed solution is compliant with or transparent to the DICOM standard. PMID:22256213

  1. Data Hiding a Key Management for Interoperable Urban Services

    NASA Astrophysics Data System (ADS)

    Balitanas, Maricel O.; Kim, Taihoon

    Availability of a reliable urban services data is the key component for an industrialized area. Urban settings are challenging places for experimentation and deployment and along with its complexity insecurity also contributes a bigger challenge. To address such issues this paper has defined the implementation issues in integrating Geospatial services data and web services technologies and proposed a methodology of securing the systems. The proposition presented earlier is a symmetric encryption which is to share the common key for doing both encryption and decryption secretly, and periodically.

  2. Challenges, alternatives, and paths to sustainability: better public health promotion using social networking pages as key tools.

    PubMed

    Zaidan, A A; Zaidan, B B; Kadhem, Z; Larbani, M; Lakulu, M B; Hashim, M

    2015-02-01

    This paper discusses the possibility of promoting public health and implementing educational health services using Facebook. We discuss the challenges and strengths of using such a platform as a tool for public health care systems from two different perspectives, namely, the view of IT developers and that of physicians. We present a new way of evaluating user interactivity in health care systems from tools provided by Facebook that measure statistical traffic in the Internet. Findings show that Facebook is a very promising tool in promoting e-health services in Web 2.0. Results from statistical traffic show that a Facebook page is more efficient than other pages in promoting public health. PMID:25631841

  3. 77 FR 16228 - Key Hyundai of Manchester, LLC; Analysis of Proposed Consent Order To Aid Public Comment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-20

    ... From the Federal Register Online via the Government Publishing Office FEDERAL TRADE COMMISSION Key... the following address: Federal Trade Commission, Office of the Secretary, Room H-113 (Annex D), 600... INFORMATION: Pursuant to section 6(f) of the Federal Trade Commission Act, 38 Stat. 721, 15 U.S.C. 46(f),...

  4. Analyzing the Effectiveness of the Self-organized Public-Key Management System on MANETs under the Lack of Cooperation and the Impersonation Attacks

    NASA Astrophysics Data System (ADS)

    da Silva, Eduardo; Dos Santos, Aldri Luiz; Lima, Michele N.; Albini, Luiz Carlos Pessoa

    Among the key management schemes for MANETs, the Self-Organized Public-Key Management System (PGP-Like) is the main chaining-based key management scheme. It is fully self-organized and does not require any certificate authority. Two kinds of misbehavior attacks are considered to be great threats to PGP-Like: lack of cooperation and impersonation attacks. This work quantifies the impact of such attacks on the PGP-Like. Simulation results show that PGP-Like was able to maintain its effectiveness when submitted to the lack of cooperation attack, contradicting previously theoretical results. It correctly works even in the presence of more than 60% of misbehaving nodes, although the convergence time is affected with only 20% of misbehaving nodes. On the other hand, PGP-Like is completely vulnerable to the impersonation attack. Its functionality is affected with just 5% of misbehaving nodes, confirming previously theoretical results.

  5. A Key Informant Survey To Assess Service Adequacy in California's Publicly Funded Alcohol and Other Drug Treatment System.

    ERIC Educational Resources Information Center

    Clapp, John D.; Hohman, Melinda M.

    2002-01-01

    Study examined administrators' perceptions of service adequacy, provision of services, and evaluation of services of publicly funded alcohol and other drug treatment systems in California. Administrators reported that systems adequately serve most populations; however some suggested that adolescents, elderly, and homeless were not as adequately…

  6. Biomolecular optical data storage and data encryption.

    PubMed

    Fischer, Thorsten; Neebe, Martin; Juchem, Thorsten; Hampp, Norbert A

    2003-03-01

    The use of bacteriorhodopsin (BR) as an active layer in write-once-read-many optical storage is presented. This novel feature of BR materials may be used on a wide variety of substrates, among them transparent substrates but also paper and plastics. The physical basis of the recording process is polarization-sensitive two-photon absorption. As an example for this new BR application, an identification card equipped with an optical recording strip is presented, which has a capacity of about 1 MB of data. The recording density currently used is 125 kB/cm2, which is far from the optical limits but allows operation with cheap terminals using plastic optics. In the examples given, data are stored in blocks of 10 kB each. A special optical encryption procedure allows the stored data to be protected from unauthorized reading. The molecular basis of this property is again the polarization-sensitive recording mechanism. The unique combination of optical storage, photochromism, and traceability of the BR material is combined on the single-molecule level. BR introduces a new quality of storage capability for applications with increased security and anticounterfeiting requirements.

  7. Dissemination of public health information: key tools utilised by the NECOBELAC network in Europe and Latin America

    PubMed Central

    De Castro, Paola; Marsili, Daniela; Poltronieri, Elisabetta; Calderón, Carlos Agudelo

    2012-01-01

    Background Open Access (OA) to scientific information is an important step forward in communication patterns, yet we still need to reinforce OA principles to promote a cultural change of traditional publishing practices. The advantages of free access to scientific information are even more evident in public health where knowledge is directly associated with human wellbeing. Objectives An OA ‘consolidation’ initiative in public health is presented to show how the involvement of people and institutions is fundamental to create awareness on OA and promote a cultural change. This initiative is developed within the project NEtwork of COllaboration Between Europe and Latin American Caribbean countries (NECOBELAC), financed by the European Commission. Methods Three actions are envisaged: Capacity building through a flexible and sustainable training programme on scientific writing and OA publishing; creation of training tools based on semantic web technologies; development of a network of supporting institutions. Results In 2010–2011, 23 training initiatives were performed involving 856 participants from 15 countries; topic maps on scientific publication and OA were produced; 195 institutions are included in the network. Conclusions Cultural change in scientific dissemination practices is a long process requiring a flexible approach and strong commitment by all stakeholders. PMID:22630360

  8. Publications

    Cancer.gov

    Information about NCI publications including PDQ cancer information for patients and health professionals, patient-education publications, fact sheets, dictionaries, NCI blogs and newsletters and major reports.

  9. Forensic watermarking and bit-rate conversion of partially encrypted AAC bitstreams

    NASA Astrophysics Data System (ADS)

    Lemma, Aweke; Katzenbeisser, Stefan; Celik, Mehmet U.; Kirbiz, S.

    2008-02-01

    Electronic Music Distribution (EMD) is undergoing two fundamental shifts. The delivery over wired broadband networks to personal computers is being replaced by delivery over heterogeneous wired and wireless networks, e.g. 3G and Wi-Fi, to a range of devices such as mobile phones, game consoles and in-car players. Moreover, restrictive DRM models bound to a limited set of devices are being replaced by flexible standards-based DRM schemes and increasingly forensic tracking technologies based on watermarking. Success of these EMD services will partially depend on scalable, low-complexity and bandwidth eficient content protection systems. In this context, we propose a new partial encryption scheme for Advanced Audio Coding (AAC) compressed audio which is particularly suitable for emerging EMD applications. The scheme encrypts only the scale-factor information in the AAC bitstream with an additive one-time-pad. This allows intermediate network nodes to transcode the bitstream to lower data rates without accessing the decryption keys, by increasing the scale-factor values and re-quantizing the corresponding spectral coeficients. Furthermore, the decryption key for each user is customized such that the decryption process imprints the audio with a unique forensic tracking watermark. This constitutes a secure, low-complexity watermark embedding process at the destination node, i.e. the player. As opposed to server-side embedding methods, the proposed scheme lowers the computational burden on servers and allows for network level bandwidth saving measures such as multi-casting and caching.

  10. Double-image encryption based on discrete multiple-parameter fractional angular transform and two-coupled logistic maps

    NASA Astrophysics Data System (ADS)

    Sui, Liansheng; Duan, Kuaikuai; Liang, Junli

    2015-05-01

    A new discrete fractional transform defined by the fractional order, periodicity and vector parameters is presented, which is named as the discrete multiple-parameter fractional angular transform. Based on this transform and two-coupled logistic map, a double-image encryption scheme is proposed. First, an enlarged image is obtained by connecting two plaintext images sequentially and scrambled by using a chaotic permutation process, in which the sequences of chaotic pairs generated by using the two-coupled logistic map. Then, the scrambled enlarged image is decomposed into two new components. Second, a chaotic random phase mask is generated based on the logistic map, with which one of two components is converted to the modulation phase mask. Another component is encoded into an interim matrix with the help of the modulation phase mask. Finally, the two-dimensional discrete multiple-parameter fractional angular transform is performed on the interim matrix to obtain the ciphertext with stationary white noise distribution. The proposed encryption scheme has an obvious advantage that no phase keys are used in the encryption and decryption process, which is convenient to key management. Moreover, the security of the cryptosystem can be enhanced by using extra parameters such as initial values of chaos functions, fractional orders and vector parameters of transform. Simulation results and security analysis verify the feasibility and effectiveness of the proposed scheme.

  11. A novel color image encryption algorithm based on genetic recombination and the four-dimensional memristive hyperchaotic system

    NASA Astrophysics Data System (ADS)

    Chai, Xiu-Li; Gan, Zhi-Hua; Lu, Yang; Zhang, Miao-Hui; Chen, Yi-Ran

    2016-10-01

    Recently, many image encryption algorithms based on chaos have been proposed. Most of the previous algorithms encrypt components R, G, and B of color images independently and neglect the high correlation between them. In the paper, a novel color image encryption algorithm is introduced. The 24 bit planes of components R, G, and B of the color plain image are obtained and recombined into 4 compound bit planes, and this can make the three components affect each other. A four-dimensional (4D) memristive hyperchaotic system generates the pseudorandom key streams and its initial values come from the SHA 256 hash value of the color plain image. The compound bit planes and key streams are confused according to the principles of genetic recombination, then confusion and diffusion as a union are applied to the bit planes, and the color cipher image is obtained. Experimental results and security analyses demonstrate that the proposed algorithm is secure and effective so that it may be adopted for secure communication. Project supported by the National Natural Science Foundation of China (Grant Nos. 61203094 and 61305042), the Natural Science Foundation of the United States (Grant Nos. CNS-1253424 and ECCS-1202225), the Science and Technology Foundation of Henan Province, China (Grant No. 152102210048), the Foundation and Frontier Project of Henan Province, China (Grant No. 162300410196), the Natural Science Foundation of Educational Committee of Henan Province, China (Grant No. 14A413015), and the Research Foundation of Henan University, China (Grant No. xxjc20140006).

  12. Combined data encryption and compression using chaos functions

    NASA Astrophysics Data System (ADS)

    Bose, Ranjan; Pathak, Saumitr

    2004-10-01

    Past research in the field of cryptography has not given much consideration to arithmetic coding as a feasible encryption technique, with studies proving compression-specific arithmetic coding to be largely unsuitable for encryption. Nevertheless, adaptive modelling, which offers a huge model, variable in structure, and as completely as possible a function of the entire text that has been transmitted since the time the model was initialised, is a suitable candidate for a possible encryption-compression combine. The focus of the work presented in this paper has been to incorporate recent results of chaos theory, proven to be cryptographically secure, into arithmetic coding, to devise a convenient method to make the structure of the model unpredictable and variable in nature, and yet to retain, as far as is possible, statistical harmony, so that compression is possible. A chaos-based adaptive arithmetic coding-encryption technique has been designed, developed and tested and its implementation has been discussed. For typical text files, the proposed encoder gives compression between 67.5% and 70.5%, the zero-order compression suffering by about 6% due to encryption, and is not susceptible to previously carried out attacks on arithmetic coding algorithms.

  13. Enhanced Usage of Keys Obtained by Physical, Unconditionally Secure Distributions

    NASA Astrophysics Data System (ADS)

    Kish, Laszlo B.; Granqvist, Claes-Göran

    2015-04-01

    Unconditionally secure physical key distribution schemes are very slow, and it is practically impossible to use a one-time-pad based cipher to guarantee unconditional security for the encryption of data because using the key bits more than once gives out statistical information, for example via the known-plain-text-attack or by utilizing known components of the protocol and language statistics. Here, we outline a protocol that reduces this speed problem and allows almost-one-time-pad based communication with an unconditionally secure physical key of finite length. The physical, unconditionally secure key is not used for data encryption but is employed in order to generate and share a new software-based key without any known-plain-text component. The software-only-based key distribution is then changed from computationally secure to unconditionally secure, because the communicated key-exchange data (algorithm parameters, one-way functions of random numbers, etc.) are encrypted in an unconditionally secure way with a one-time-pad. For practical applications, this combined physical/software key distribution based communication looks favorable compared to the software-only and physical-only key distribution based communication whenever the speed of the physical key distribution is much lower than that of the software-based key distribution. A mathematical security proof of this new scheme remains an open problem.

  14. Content-based image retrieval in homomorphic encryption domain.

    PubMed

    Bellafqira, Reda; Coatrieux, Gouenou; Bouslimi, Dalel; Quellec, Gwenole

    2015-08-01

    In this paper, we propose a secure implementation of a content-based image retrieval (CBIR) method that makes possible diagnosis aid systems to work in externalized environment and with outsourced data as in cloud computing. This one works with homomorphic encrypted images from which it extracts wavelet based image features next used for subsequent image comparison. By doing so, our system allows a physician to retrieve the most similar images to a query image in an outsourced database while preserving data confidentiality. Our Secure CBIR is the first one that proposes to work with global image features extracted from encrypted images and does not induce extra communications in-between the client and the server. Experimental results show it achieves retrieval performance as good as if images were processed non-encrypted. PMID:26736909

  15. Image encryption using random sequence generated from generalized information domain

    NASA Astrophysics Data System (ADS)

    Xia-Yan, Zhang; Guo-Ji, Zhang; Xuan, Li; Ya-Zhou, Ren; Jie-Hua, Wu

    2016-05-01

    A novel image encryption method based on the random sequence generated from the generalized information domain and permutation–diffusion architecture is proposed. The random sequence is generated by reconstruction from the generalized information file and discrete trajectory extraction from the data stream. The trajectory address sequence is used to generate a P-box to shuffle the plain image while random sequences are treated as keystreams. A new factor called drift factor is employed to accelerate and enhance the performance of the random sequence generator. An initial value is introduced to make the encryption method an approximately one-time pad. Experimental results show that the random sequences pass the NIST statistical test with a high ratio and extensive analysis demonstrates that the new encryption scheme has superior security.

  16. Privacy preserving index for encrypted electronic medical records.

    PubMed

    Chen, Yu-Chi; Horng, Gwoboa; Lin, Yi-Jheng; Chen, Kuo-Chang

    2013-12-01

    With the development of electronic systems, privacy has become an important security issue in real-life. In medical systems, privacy of patients' electronic medical records (EMRs) must be fully protected. However, to combine the efficiency and privacy, privacy preserving index is introduced to preserve the privacy, where the EMR can be efficiently accessed by this patient or specific doctor. In the literature, Goh first proposed a secure index scheme with keyword search over encrypted data based on a well-known primitive, Bloom filter. In this paper, we propose a new privacy preserving index scheme, called position index (P-index), with keyword search over the encrypted data. The proposed index scheme is semantically secure against the adaptive chosen keyword attack, and it also provides flexible space, lower false positive rate, and search privacy. Moreover, it does not rely on pairing, a complicate computation, and thus can search over encrypted electronic medical records from the cloud server efficiently.

  17. Simultaneous fusion, compression, and encryption of multiple images.

    PubMed

    Alfalou, A; Brosseau, C; Abdallah, N; Jridi, M

    2011-11-21

    We report a new spectral multiple image fusion analysis based on the discrete cosine transform (DCT) and a specific spectral filtering method. In order to decrease the size of the multiplexed file, we suggest a procedure of compression which is based on an adapted spectral quantization. Each frequency is encoded with an optimized number of bits according its importance and its position in the DC domain. This fusion and compression scheme constitutes a first level of encryption. A supplementary level of encryption is realized by making use of biometric information. We consider several implementations of this analysis by experimenting with sequences of gray scale images. To quantify the performance of our method we calculate the MSE (mean squared error) and the PSNR (peak signal to noise ratio). Our results consistently improve performances compared to the well-known JPEG image compression standard and provide a viable solution for simultaneous compression and encryption of multiple images.

  18. Efficient medical information retrieval in encrypted Electronic Health Records.

    PubMed

    Pruski, Cédric; Wisniewski, François

    2012-01-01

    The recent development of eHealth platforms across the world, whose main objective is to centralize patient's healthcare information to ensure the best continuity of care, requires the development of advanced tools and techniques for supporting health professionals in retrieving relevant information in this vast quantity of data. However, for preserving patient's privacy, some countries decided to de-identify and encrypt data contained in the shared Electronic Health Records, which reinforces the complexity of proposing efficient medical information retrieval approach. In this paper, we describe an original approach exploiting standards metadata as well as knowledge organizing systems to overcome the barriers of data encryption for improving the results of medical information retrieval in centralized and encrypted Electronic Health Records. This is done through the exploitation of semantic properties provided by knowledge organizing systems, which enable query expansion. Furthermore, we provide an overview of the approach together with illustrating examples and a discussion on the advantages and limitations of the provided framework.

  19. Interlinking journal and wiki publications through joint citation: Working examples from ZooKeys and Plazi on Species-ID.

    PubMed

    Penev, Lyubomir; Hagedorn, Gregor; Mietchen, Daniel; Georgiev, Teodor; Stoev, Pavel; Sautter, Guido; Agosti, Donat; Plank, Andreas; Balke, Michael; Hendrich, Lars; Erwin, Terry

    2011-04-14

    Scholarly publishing and citation practices have developed largely in the absence of versioned documents. The digital age requires new practices to combine the old and the new. We describe how the original published source and a versioned wiki page based on it can be reconciled and combined into a single citation reference. We illustrate the citation mechanism by way of practical examples focusing on journal and wiki publishing of taxon treatments. Specifically, we discuss mechanisms for permanent cross-linking between the static original publication and the dynamic, versioned wiki, as well as for automated export of journal content to the wiki, to reduce the workload on authors, for combining the journal and the wiki citation and for integrating it with the attribution of wiki contributors.

  20. Image/video encryption using single shot digital holography

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyu; Tang, Chen; Zhu, Xinjun; Li, Biyuan; Wang, Linlin; Yan, Xiusheng

    2015-05-01

    We propose a method for image/video encryption that combines double random-phase encoding in the Fresnel domain with a single shot digital holography. In this method, a complex object field can be reconstructed with only single frame hologram based on a constrained optimization method. The system without multiple shots and Fourier lens is simple, and allows to dynamically encrypt information. We test the proposed method on a computer simulated image, a grayscale image and a video in AVI format. Also we investigate the quality of the decryption process and the performance against noise attacks. The experimental results demonstrate the performance of the method.

  1. Scrambling-based speech encryption via compressed sensing

    NASA Astrophysics Data System (ADS)

    Zeng, Li; Zhang, Xiongwei; Chen, Liang; Fan, Zhangjun; Wang, Yonggang

    2012-12-01

    Conventional speech scramblers have three disadvantages, including heavy communication overhead, signal features underexploitation, and low attack resistance. In this study, we propose a scrambling-based speech encryption scheme via compressed sensing (CS). Distinguished from conventional scramblers, the above problems are solved in a unified framework by utilizing the advantages of CS. The presented encryption idea is general and easily applies to speech communication systems. Compared with the state-of-the-art methods, the proposed scheme provides lower residual intelligibility and greater cryptanalytic efforts. Meanwhile, it ensures desirable channel usage and notable resistibility to hostile attack. Extensive experimental results also confirm the effectiveness of the proposed scheme.

  2. Joint compression and encryption using chaotically mutated Huffman trees

    NASA Astrophysics Data System (ADS)

    Hermassi, Houcemeddine; Rhouma, Rhouma; Belghith, Safya

    2010-10-01

    This paper introduces a new scheme for joint compression and encryption using the Huffman codec. A basic tree is first generated for a given message and then based on a keystream generated from a chaotic map and depending from the input message, the basic tree is mutated without changing the statistical model. Hence a symbol can be coded by more than one codeword having the same length. The security of the scheme is tested against the known plaintext attack and the brute force attack. Performance analysis including encryption/decryption speed, additional computational complexity and compression ratio are given.

  3. Information and Communication Technologies (ICT) as keys to the enhancement of public awareness about potential earth impacts

    NASA Astrophysics Data System (ADS)

    Usikov, Denis A.

    2013-09-01

    The 2007 Planetary Defense Conference recommends "to provide or enhance Internet sites to show how threats evolve and to illustrate possible action scenarios". Thereby, establishment of informational and communicational AsteroidAware web-site with the exact, authentic data about the past and the present of Earth's impact events will assist in achievement of positive results and progress in different directions on political, international, social and scientific levels. Expanded ICT's capabilities for popularization of planetary defense can help in resolving the problem of low public interest. The project's primary intent lies in popularizing the concept of planetary defenses and attracting attention to the potential dangers that threaten the Earth from outer space. The result of the efforts falling into the boundaries of this project would be an increased amount of social participation in the process of developing solutions for and increasing awareness of potential collisions between various astral bodies and the Earth. The project is also aimed at creating a foundation for the interaction between scientists and executives from around the world to facilitate international efforts of searching for fitting measures towards lowering threat levels and developing strategies revolving around united actions against potential threats.

  4. An arbitrated quantum signature protocol based on the chained CNOT operations encryption

    NASA Astrophysics Data System (ADS)

    Li, Feng-Guang; Shi, Jian-Hong

    2015-06-01

    At present, the encryption scheme used by most arbitrated quantum signature (AQS) protocols is quantum one-time pad (QOTP) which encrypts data qubit by qubit. Though QOTP can achieve high security for data encryption, it is not suitable for AQS. There are many attacks on AQS using QOTP. In this paper, we propose an AQS protocol based on another encryption scheme called the chained CNOT operations, which encrypts quantum message ensemble. Our protocol preserves all merits in the similar AQS schemes and has better security. Security analysis shows that our protocol cannot be forged and disavowed under the existing attacks.

  5. Publications.

    ERIC Educational Resources Information Center

    Aviation/Space, 1980

    1980-01-01

    Presents a variety of publications available from government and nongovernment sources. The government publications are from the Federal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA) and are designed for educators, students, and the public. (Author/SA)

  6. The SECOQC quantum key distribution network in Vienna

    NASA Astrophysics Data System (ADS)

    Peev, M.; Pacher, C.; Alléaume, R.; Barreiro, C.; Bouda, J.; Boxleitner, W.; Debuisschert, T.; Diamanti, E.; Dianati, M.; Dynes, J. F.; Fasel, S.; Fossier, S.; Fürst, M.; Gautier, J.-D.; Gay, O.; Gisin, N.; Grangier, P.; Happe, A.; Hasani, Y.; Hentschel, M.; Hübel, H.; Humer, G.; Länger, T.; Legré, M.; Lieger, R.; Lodewyck, J.; Lorünser, T.; Lütkenhaus, N.; Marhold, A.; Matyus, T.; Maurhart, O.; Monat, L.; Nauerth, S.; Page, J.-B.; Poppe, A.; Querasser, E.; Ribordy, G.; Robyr, S.; Salvail, L.; Sharpe, A. W.; Shields, A. J.; Stucki, D.; Suda, M.; Tamas, C.; Themel, T.; Thew, R. T.; Thoma, Y.; Treiber, A.; Trinkler, P.; Tualle-Brouri, R.; Vannel, F.; Walenta, N.; Weier, H.; Weinfurter, H.; Wimberger, I.; Yuan, Z. L.; Zbinden, H.; Zeilinger, A.

    2009-07-01

    In this paper, we present the quantum key distribution (QKD) network designed and implemented by the European project SEcure COmmunication based on Quantum Cryptography (SECOQC) (2004-2008), unifying the efforts of 41 research and industrial organizations. The paper summarizes the SECOQC approach to QKD networks with a focus on the trusted repeater paradigm. It discusses the architecture and functionality of the SECOQC trusted repeater prototype, which has been put into operation in Vienna in 2008 and publicly demonstrated in the framework of a SECOQC QKD conference held from October 8 to 10, 2008. The demonstration involved one-time pad encrypted telephone communication, a secure (AES encryption protected) video-conference with all deployed nodes and a number of rerouting experiments, highlighting basic mechanisms of the SECOQC network functionality. The paper gives an overview of the eight point-to-point network links in the prototype and their underlying technology: three plug and play systems by id Quantique, a one way weak pulse system from Toshiba Research in the UK, a coherent one-way system by GAP Optique with the participation of id Quantique and the AIT Austrian Institute of Technology (formerly ARCAustrian Research Centers GmbH—ARC is now operating under the new name AIT Austrian Institute of Technology GmbH following a restructuring initiative.), an entangled photons system by the University of Vienna and the AIT, a continuous-variables system by Centre National de la Recherche Scientifique (CNRS) and THALES Research and Technology with the participation of Université Libre de Bruxelles, and a free space link by the Ludwig Maximillians University in Munich connecting two nodes situated in adjacent buildings (line of sight 80 m). The average link length is between 20 and 30 km, the longest link being 83 km. The paper presents the architecture and functionality of the principal networking agent—the SECOQC node module, which enables the authentic

  7. Multiple-image encryption scheme with a single-pixel detector

    NASA Astrophysics Data System (ADS)

    Yuan, Sheng; Liu, Xuemei; Zhou, Xin; Li, Zhongyang

    2016-08-01

    A multiple-image encryption (MIE) scheme with a single-pixel detector has been proposed according to the principle of ghost imaging. In this scheme, each of the spatially coherent laser beams is modified by a set of phase-mask keys and illuminates on a secret image. All of the transmitted lights are recorded together by a single-pixel (bucket) detector to obtain a ciphertext, but anyone of the secret images can be decrypted from the ciphertext independently without any mutually overlapped despite some noise in them. The MIE scheme will bring convenience for data storage and transmission, especially in the case that different secret images need to be distributed to different authorized users, because the ciphertext is a real-valued function and this scheme can effectively avoid the secret images being extracted mutually. The basic principle of the MIE scheme is described theoretically and verified by computer simulations. Finally, the feasibility, robustness and encryption capacity are also tested numerically.

  8. Disinvestment policy and the public funding of assisted reproductive technologies: outcomes of deliberative engagements with three key stakeholder groups

    PubMed Central

    2014-01-01

    Background Measures to improve the quality and sustainability of healthcare practice and provision have become a policy concern. In addition, the involvement of stakeholders in health policy decision-making has been advocated, as complex questions arise around the structure of funding arrangements in a context of limited resources. Using a case study of assisted reproductive technologies (ART), deliberative engagements with a range of stakeholder groups were held on the topic of how best to structure the distribution of Australian public funding in this domain. Methods Deliberative engagements were carried out with groups of ART consumers, clinicians and community members. The forums were informed by a systematic review of ART treatment safety and effectiveness (focusing, in particular, on maternal age and number of treatment cycles), as well as by international policy comparisons, and ethical and cost analyses. Forum discussions were transcribed and subject to thematic analysis. Results Each forum demonstrated stakeholders’ capacity to understand concepts of choice under resource scarcity and disinvestment, and to countenance options for ART funding not always aligned with their interests. Deliberations in each engagement identified concerns around ‘equity’ and ‘patient responsibility’, culminating in a broad preference for (potential) ART subsidy restrictions to be based upon individual factors rather than maternal age or number of treatment cycles. Community participants were open to restrictions based upon measures of body mass index (BMI) and smoking status, while consumers and clinicians saw support to improve these factors as part of an ART treatment program, as distinct from a funding criterion. All groups advocated continued patient co-payments, with measures in place to provide treatment access to those unable to pay (namely, equity of access). Conclusions Deliberations yielded qualitative, socially-negotiated evidence required to inform ethical

  9. Tree-Homomorphic Encryption and Scalable Hierarchical Secret-Ballot Elections

    NASA Astrophysics Data System (ADS)

    Kiayias, Aggelos; Yung, Moti

    In this work we present a new paradigm for trust and work distribution in a hierarchy of servers that aims to achieve scalability of work and trust simultaneously. The paradigm is implemented with a decryption capability which is distributed and forces a workflow along a tree structure, enforcing distribution of the workload as well as fairness and partial disclosure (privacy) properties. We call the method "tree-homomorphic" since it extends traditional homomorphic encryption and we exemplify its usage within a large scale election scheme, showing how it contributes to the properties that such a scheme needs. We note that existing design models over which e-voting schemes have been designed for, do not adapt to scale with respect to a combination of privacy and trust (fairness); thus we present a model emphasizing the scaling of privacy and fairness in parallel to the growth and distribution of the election structure. We present two instantiations of e-voting schemes that are robust, publicly verifiable, and support multiple candidate ballot casting employing tree-homomorphic encryption schemes. We extend the scheme to allow the voters in a smallest administrated election unit to employ a security mechanism that protects their privacy even if all authorities are corrupt.

  10. Portable RSA encryption-decryption subprogram for protecting proprietary text

    SciTech Connect

    Hanson, R.J.

    1981-09-01

    A virtually portable (FORTRAN) version of the RSA (Rivest, Shamir, Adleman) algorithm for encryption and decryption of proprietary text has been written. This system uses three previously developed software packages. These are an extended precision integer arithmetic package, an error processing package, and machine-sensitive input/output subprograms from the Text Exchange System.

  11. Lithographically Encrypted Inverse Opals for Anti-Counterfeiting Applications.

    PubMed

    Heo, Yongjoon; Kang, Hyelim; Lee, Joon-Seok; Oh, You-Kwan; Kim, Shin-Hyun

    2016-07-01

    Colloidal photonic crystals possess inimitable optical properties of iridescent structural colors and unique spectral shape, which render them useful for security materials. This work reports a novel method to encrypt graphical and spectral codes in polymeric inverse opals to provide advanced security. To accomplish this, this study prepares lithographically featured micropatterns on the top surface of hydrophobic inverse opals, which serve as shadow masks against the surface modification of air cavities to achieve hydrophilicity. The resultant inverse opals allow rapid infiltration of aqueous solution into the hydrophilic cavities while retaining air in the hydrophobic cavities. Therefore, the structural color of inverse opals is regioselectively red-shifted, disclosing the encrypted graphical codes. The decoded inverse opals also deliver unique reflectance spectral codes originated from two distinct regions. The combinatorial code composed of graphical and optical codes is revealed only when the aqueous solution agreed in advance is used for decoding. In addition, the encrypted inverse opals are chemically stable, providing invariant codes with high reproducibility. In addition, high mechanical stability enables the transfer of the films onto any surfaces. This novel encryption technology will provide a new opportunity in a wide range of security applications. PMID:27259060

  12. Image encryption using the two-dimensional logistic chaotic map

    NASA Astrophysics Data System (ADS)

    Wu, Yue; Yang, Gelan; Jin, Huixia; Noonan, Joseph P.

    2012-01-01

    Chaos maps and chaotic systems have been proved to be useful and effective for cryptography. In our study, the two-dimensional logistic map with complicated basin structures and attractors are first used for image encryption. The proposed method adopts the classic framework of the permutation-substitution network in cryptography and thus ensures both confusion and diffusion properties for a secure cipher. The proposed method is able to encrypt an intelligible image into a random-like one from the statistical point of view and the human visual system point of view. Extensive simulation results using test images from the USC-SIPI image database demonstrate the effectiveness and robustness of the proposed method. Security analysis results of using both the conventional and the most recent tests show that the encryption quality of the proposed method reaches or excels the current state-of-the-art methods. Similar encryption ideas can be applied to digital data in other formats (e.g., digital audio and video). We also publish the cipher MATLAB open-source-code under the web page https://sites.google.com/site/tuftsyuewu/source-code.

  13. A joint signal processing and cryptographic approach to multimedia encryption.

    PubMed

    Mao, Yinian; Wu, Min

    2006-07-01

    In recent years, there has been an increasing trend for multimedia applications to use delegate service providers for content distribution, archiving, search, and retrieval. These delegate services have brought new challenges to the protection of multimedia content confidentiality. This paper discusses the importance and feasibility of applying a joint signal processing and cryptographic approach to multimedia encryption, in order to address the access control issues unique to multimedia applications. We propose two atomic encryption operations that can preserve standard compliance and are friendly to delegate processing. Quantitative analysis for these operations is presented to demonstrate that a good tradeoff can be made between security and bitrate overhead. In assisting the design and evaluation of media security systems, we also propose a set of multimedia-oriented security scores to quantify the security against approximation attacks and to complement the existing notion of generic data security. Using video as an example, we present a systematic study on how to strategically integrate different atomic operations to build a video encryption system. The resulting system can provide superior performance over both generic encryption and its simple adaptation to video in terms of a joint consideration of security, bitrate overhead, and friendliness to delegate processing.

  14. 15 CFR Supplement No. 5 to Part 742 - Encryption Registration

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE EXPORT ADMINISTRATION REGULATIONS CONTROL POLICY-CCL BASED CONTROLS Pt. 742, Supp. 5 Supplement No. 5 to Part 742—Encryption Registration Certain... algorithms or protocols that have not been adopted or approved by a duly recognized international...

  15. Lithographically Encrypted Inverse Opals for Anti-Counterfeiting Applications.

    PubMed

    Heo, Yongjoon; Kang, Hyelim; Lee, Joon-Seok; Oh, You-Kwan; Kim, Shin-Hyun

    2016-07-01

    Colloidal photonic crystals possess inimitable optical properties of iridescent structural colors and unique spectral shape, which render them useful for security materials. This work reports a novel method to encrypt graphical and spectral codes in polymeric inverse opals to provide advanced security. To accomplish this, this study prepares lithographically featured micropatterns on the top surface of hydrophobic inverse opals, which serve as shadow masks against the surface modification of air cavities to achieve hydrophilicity. The resultant inverse opals allow rapid infiltration of aqueous solution into the hydrophilic cavities while retaining air in the hydrophobic cavities. Therefore, the structural color of inverse opals is regioselectively red-shifted, disclosing the encrypted graphical codes. The decoded inverse opals also deliver unique reflectance spectral codes originated from two distinct regions. The combinatorial code composed of graphical and optical codes is revealed only when the aqueous solution agreed in advance is used for decoding. In addition, the encrypted inverse opals are chemically stable, providing invariant codes with high reproducibility. In addition, high mechanical stability enables the transfer of the films onto any surfaces. This novel encryption technology will provide a new opportunity in a wide range of security applications.

  16. Color image encryption by using Yang-Gu mixture amplitude-phase retrieval algorithm in gyrator transform domain and two-dimensional Sine logistic modulation map

    NASA Astrophysics Data System (ADS)

    Sui, Liansheng; Liu, Benqing; Wang, Qiang; Li, Ye; Liang, Junli

    2015-12-01

    A color image encryption scheme is proposed based on Yang-Gu mixture amplitude-phase retrieval algorithm and two-coupled logistic map in gyrator transform domain. First, the color plaintext image is decomposed into red, green and blue components, which are scrambled individually by three random sequences generated by using the two-dimensional Sine logistic modulation map. Second, each scrambled component is encrypted into a real-valued function with stationary white noise distribution in the iterative amplitude-phase retrieval process in the gyrator transform domain, and then three obtained functions are considered as red, green and blue channels to form the color ciphertext image. Obviously, the ciphertext image is real-valued function and more convenient for storing and transmitting. In the encryption and decryption processes, the chaotic random phase mask generated based on logistic map is employed as the phase key, which means that only the initial values are used as private key and the cryptosystem has high convenience on key management. Meanwhile, the security of the cryptosystem is enhanced greatly because of high sensitivity of the private keys. Simulation results are presented to prove the security and robustness of the proposed scheme.

  17. Fast Video Encryption Using the H.264 Error Propagation Property for Smart Mobile Devices

    PubMed Central

    Chung, Yongwha; Lee, Sungju; Jeon, Taewoong; Park, Daihee

    2015-01-01

    In transmitting video data securely over Video Sensor Networks (VSNs), since mobile handheld devices have limited resources in terms of processor clock speed and battery size, it is necessary to develop an efficient method to encrypt video data to meet the increasing demand for secure connections. Selective encryption methods can reduce the amount of computation needed while satisfying high-level security requirements. This is achieved by selecting an important part of the video data and encrypting it. In this paper, to ensure format compliance and security, we propose a special encryption method for H.264, which encrypts only the DC/ACs of I-macroblocks and the motion vectors of P-macroblocks. In particular, the proposed new selective encryption method exploits the error propagation property in an H.264 decoder and improves the collective performance by analyzing the tradeoff between the visual security level and the processing speed compared to typical selective encryption methods (i.e., I-frame, P-frame encryption, and combined I-/P-frame encryption). Experimental results show that the proposed method can significantly reduce the encryption workload without any significant degradation of visual security. PMID:25850068

  18. Fast video encryption using the H.264 error propagation property for smart mobile devices.

    PubMed

    Chung, Yongwha; Lee, Sungju; Jeon, Taewoong; Park, Daihee

    2015-01-01

    In transmitting video data securely over Video Sensor Networks (VSNs), since mobile handheld devices have limited resources in terms of processor clock speed and battery size, it is necessary to develop an efficient method to encrypt video data to meet the increasing demand for secure connections. Selective encryption methods can reduce the amount of computation needed while satisfying high-level security requirements. This is achieved by selecting an important part of the video data and encrypting it. In this paper, to ensure format compliance and security, we propose a special encryption method for H.264, which encrypts only the DC/ACs of I-macroblocks and the motion vectors of P-macroblocks. In particular, the proposed new selective encryption method exploits the error propagation property in an H.264 decoder and improves the collective performance by analyzing the tradeoff between the visual security level and the processing speed compared to typical selective encryption methods (i.e., I-frame, P-frame encryption, and combined I-/P-frame encryption). Experimental results show that the proposed method can significantly reduce the encryption workload without any significant degradation of visual security. PMID:25850068

  19. Fast video encryption using the H.264 error propagation property for smart mobile devices.

    PubMed

    Chung, Yongwha; Lee, Sungju; Jeon, Taewoong; Park, Daihee

    2015-04-02

    In transmitting video data securely over Video Sensor Networks (VSNs), since mobile handheld devices have limited resources in terms of processor clock speed and battery size, it is necessary to develop an efficient method to encrypt video data to meet the increasing demand for secure connections. Selective encryption methods can reduce the amount of computation needed while satisfying high-level security requirements. This is achieved by selecting an important part of the video data and encrypting it. In this paper, to ensure format compliance and security, we propose a special encryption method for H.264, which encrypts only the DC/ACs of I-macroblocks and the motion vectors of P-macroblocks. In particular, the proposed new selective encryption method exploits the error propagation property in an H.264 decoder and improves the collective performance by analyzing the tradeoff between the visual security level and the processing speed compared to typical selective encryption methods (i.e., I-frame, P-frame encryption, and combined I-/P-frame encryption). Experimental results show that the proposed method can significantly reduce the encryption workload without any significant degradation of visual security.

  20. All-optical cryptography of M-QAM formats by using two-dimensional spectrally sliced keys.

    PubMed

    Abbade, Marcelo L F; Cvijetic, Milorad; Messani, Carlos A; Alves, Cleiton J; Tenenbaum, Stefan

    2015-05-10

    There has been an increased interest in enhancing the security of optical communications systems and networks. All-optical cryptography methods have been considered as an alternative to electronic data encryption. In this paper we propose and verify the use of a novel all-optical scheme based on cryptographic keys applied on the spectral signal for encryption of the M-QAM modulated data with bit rates of up to 200 gigabits per second.

  1. All-optical cryptography of M-QAM formats by using two-dimensional spectrally sliced keys.

    PubMed

    Abbade, Marcelo L F; Cvijetic, Milorad; Messani, Carlos A; Alves, Cleiton J; Tenenbaum, Stefan

    2015-05-10

    There has been an increased interest in enhancing the security of optical communications systems and networks. All-optical cryptography methods have been considered as an alternative to electronic data encryption. In this paper we propose and verify the use of a novel all-optical scheme based on cryptographic keys applied on the spectral signal for encryption of the M-QAM modulated data with bit rates of up to 200 gigabits per second. PMID:25967489

  2. Implications for alcohol minimum unit pricing advocacy: what can we learn for public health from UK newsprint coverage of key claim-makers in the policy debate?

    PubMed

    Hilton, Shona; Wood, Karen; Patterson, Chris; Katikireddi, Srinivasa Vittal

    2014-02-01

    On May 24th 2012, Scotland passed the Alcohol (Minimum Pricing) Bill. Minimum unit pricing (MUP) is an intervention that raises the price of the cheapest alcohol to reduce alcohol consumption and related harms. There is a growing literature on industry's influence in policymaking and media representations of policies, but relatively little about frames used by key claim-makers in the public MUP policy debate. This study elucidates the dynamic interplay between key claim-makers to identify lessons for policy advocacy in the media in the UK and internationally. Content analysis was conducted on 262 articles from seven UK and three Scottish national newspapers between 1st May 2011 and 31st May 2012, retrieved from electronic databases. Advocates' and critics' constructions of the alcohol problem and MUP were examined. Advocates depicted the problem as primarily driven by cheap alcohol and marketing, while critics' constructions focused on youth binge drinkers and dependent drinkers. Advocates justified support by citing the intervention's targeted design, but critics denounced the policy as illegal, likely to encourage illicit trade, unsupported by evidence and likely to be ineffective, while harming the responsible majority, low-income consumers and businesses. Critics' arguments were consistent over time, and single statements often encompassed multiple rationales. This study presents advocates with several important lessons for promoting policies in the media. Firstly, it may be useful to shift focus away from young binge drinkers and heavy drinkers, towards population-level over-consumption. Secondly, advocates might focus on presenting the policy as part of a wider package of alcohol policies. Thirdly, emphasis on the success of recent public health policies could help portray the UK and Scotland as world leaders in tackling culturally embedded health and social problems through policy; highlighting past successes when presenting future policies may be a valuable

  3. Implications for alcohol minimum unit pricing advocacy: what can we learn for public health from UK newsprint coverage of key claim-makers in the policy debate?

    PubMed

    Hilton, Shona; Wood, Karen; Patterson, Chris; Katikireddi, Srinivasa Vittal

    2014-02-01

    On May 24th 2012, Scotland passed the Alcohol (Minimum Pricing) Bill. Minimum unit pricing (MUP) is an intervention that raises the price of the cheapest alcohol to reduce alcohol consumption and related harms. There is a growing literature on industry's influence in policymaking and media representations of policies, but relatively little about frames used by key claim-makers in the public MUP policy debate. This study elucidates the dynamic interplay between key claim-makers to identify lessons for policy advocacy in the media in the UK and internationally. Content analysis was conducted on 262 articles from seven UK and three Scottish national newspapers between 1st May 2011 and 31st May 2012, retrieved from electronic databases. Advocates' and critics' constructions of the alcohol problem and MUP were examined. Advocates depicted the problem as primarily driven by cheap alcohol and marketing, while critics' constructions focused on youth binge drinkers and dependent drinkers. Advocates justified support by citing the intervention's targeted design, but critics denounced the policy as illegal, likely to encourage illicit trade, unsupported by evidence and likely to be ineffective, while harming the responsible majority, low-income consumers and businesses. Critics' arguments were consistent over time, and single statements often encompassed multiple rationales. This study presents advocates with several important lessons for promoting policies in the media. Firstly, it may be useful to shift focus away from young binge drinkers and heavy drinkers, towards population-level over-consumption. Secondly, advocates might focus on presenting the policy as part of a wider package of alcohol policies. Thirdly, emphasis on the success of recent public health policies could help portray the UK and Scotland as world leaders in tackling culturally embedded health and social problems through policy; highlighting past successes when presenting future policies may be a valuable

  4. Implications for alcohol minimum unit pricing advocacy: What can we learn for public health from UK newsprint coverage of key claim-makers in the policy debate?

    PubMed Central

    Hilton, Shona; Wood, Karen; Patterson, Chris; Katikireddi, Srinivasa Vittal

    2014-01-01

    On May 24th 2012, Scotland passed the Alcohol (Minimum Pricing) Bill. Minimum unit pricing (MUP) is an intervention that raises the price of the cheapest alcohol to reduce alcohol consumption and related harms. There is a growing literature on industry's influence in policymaking and media representations of policies, but relatively little about frames used by key claim-makers in the public MUP policy debate. This study elucidates the dynamic interplay between key claim-makers to identify lessons for policy advocacy in the media in the UK and internationally. Content analysis was conducted on 262 articles from seven UK and three Scottish national newspapers between 1st May 2011 and 31st May 2012, retrieved from electronic databases. Advocates' and critics' constructions of the alcohol problem and MUP were examined. Advocates depicted the problem as primarily driven by cheap alcohol and marketing, while critics' constructions focused on youth binge drinkers and dependent drinkers. Advocates justified support by citing the intervention's targeted design, but critics denounced the policy as illegal, likely to encourage illicit trade, unsupported by evidence and likely to be ineffective, while harming the responsible majority, low-income consumers and businesses. Critics' arguments were consistent over time, and single statements often encompassed multiple rationales. This study presents advocates with several important lessons for promoting policies in the media. Firstly, it may be useful to shift focus away from young binge drinkers and heavy drinkers, towards population-level over-consumption. Secondly, advocates might focus on presenting the policy as part of a wider package of alcohol policies. Thirdly, emphasis on the success of recent public health policies could help portray the UK and Scotland as world leaders in tackling culturally embedded health and social problems through policy; highlighting past successes when presenting future policies may be a valuable

  5. Security analysis of an encryption scheme based on nonpositional polynomial notations

    NASA Astrophysics Data System (ADS)

    Kapalova, Nursulu; Dyusenbayev, Dilmukhanbet

    2016-01-01

    The aim of the research was to conduct a cryptographic analysis of an encryption scheme developed on the basis of nonpositional polynomial notations to estimate the algorithm strength. Nonpositional polynomial notations (NPNs) are residue number systems (RNSs) based on irreducible polynomials over GF(2). To evaluate if the algorithms developed on the basis of NPNs are secure, mathematical models of cryptanalysis involving algebraic, linear and differential methods have been designed. The cryptanalysis is as follows. A system of nonlinear equations is obtained from a function transforming plaintext into ciphertext with a key. Next, a possibility of transition of the nonlinear system to a linear one is considered. The cryptanalysis was conducted for the cases with known: 1) ciphertext; 2) plaintext and the related ciphertext; 3) plaintext file format; and 4) ASCII-encoded plaintext.

  6. A novel image encryption algorithm using chaos and reversible cellular automata

    NASA Astrophysics Data System (ADS)

    Wang, Xingyuan; Luan, Dapeng

    2013-11-01

    In this paper, a novel image encryption scheme is proposed based on reversible cellular automata (RCA) combining chaos. In this algorithm, an intertwining logistic map with complex behavior and periodic boundary reversible cellular automata are used. We split each pixel of image into units of 4 bits, then adopt pseudorandom key stream generated by the intertwining logistic map to permute these units in confusion stage. And in diffusion stage, two-dimensional reversible cellular automata which are discrete dynamical systems are applied to iterate many rounds to achieve diffusion on bit-level, in which we only consider the higher 4 bits in a pixel because the higher 4 bits carry almost the information of an image. Theoretical analysis and experimental results demonstrate the proposed algorithm achieves a high security level and processes good performance against common attacks like differential attack and statistical attack. This algorithm belongs to the class of symmetric systems.

  7. A blind robust watermarking scheme with non-cascade iterative encrypted kinoform.

    PubMed

    Deng, Ke; Yang, Guanglin; Xie, Haiyan

    2011-05-23

    A blind robust watermarking scheme is proposed. A watermark is firstly transformed into a non-cascade iterative encrypted kinoform with non-cascade phase retrieve algorithm and random fractional Fourier transform (RFrFT). An iterative algorithm and Human Visual System (HVS) are both presented to adaptively embed the kinoform watermark into corresponding 2-level DWT coefficients of the cover image. The kinoform accounts for much less data amount to be embedded than regular computer-generated hologram (CGH). And the kinoform can be extracted with the only right phase key and right fractional order, and reconstructed to represent original watermark without original cover image. The experiments have shown the scheme's high security, good imperceptibility, and robustness to resist attacks such as noise, compression, filtering, cropping.

  8. Encrypted Fourier holographic data storage with variable data reference wave for optical information security

    NASA Astrophysics Data System (ADS)

    Sheeja, M. K.; Ajith Kumar, P. T.; Nair, Achuthsankar S.

    2008-03-01

    In this work two liquid crystal spatial light modulators (LCSLMs) were applied to encode a reference beam and holographic storage of a set of encrypted data pages that formed the object beam. The SLMs were developed by converting two 84×48 pixels mobile phone displays and were set in transmissive mode. Fourier holograms were recorded in a red sensitive photopolymer emulsion (SM635C of POLYGRAMA, Brazil), coated on a glass substrate. While replay the reconstructed data page, recorded against a specific reference beam was captured by using a CCD camera and processed in a personal computer for decryption. The encoded reference beam forms a unique key to the individual hologram recorded through shift multiplexing. Diffraction efficiency of holograms was calculated and was found to be about 45%. The system offers a very cost effective solution for secure data storage and retrieval and can be used for storing valuable software, security documents etc.

  9. HyDEn: A Hybrid Steganocryptographic Approach for Data Encryption Using Randomized Error-Correcting DNA Codes

    PubMed Central

    Regoui, Chaouki; Durand, Guillaume; Belliveau, Luc; Léger, Serge

    2013-01-01

    This paper presents a novel hybrid DNA encryption (HyDEn) approach that uses randomized assignments of unique error-correcting DNA Hamming code words for single characters in the extended ASCII set. HyDEn relies on custom-built quaternary codes and a private key used in the randomized assignment of code words and the cyclic permutations applied on the encoded message. Along with its ability to detect and correct errors, HyDEn equals or outperforms existing cryptographic methods and represents a promising in silico DNA steganographic approach. PMID:23984392

  10. HyDEn: a hybrid steganocryptographic approach for data encryption using randomized error-correcting DNA codes.

    PubMed

    Tulpan, Dan; Regoui, Chaouki; Durand, Guillaume; Belliveau, Luc; Léger, Serge

    2013-01-01

    This paper presents a novel hybrid DNA encryption (HyDEn) approach that uses randomized assignments of unique error-correcting DNA Hamming code words for single characters in the extended ASCII set. HyDEn relies on custom-built quaternary codes and a private key used in the randomized assignment of code words and the cyclic permutations applied on the encoded message. Along with its ability to detect and correct errors, HyDEn equals or outperforms existing cryptographic methods and represents a promising in silico DNA steganographic approach.

  11. Physical layer one-time-pad data encryption through synchronized semiconductor laser networks

    NASA Astrophysics Data System (ADS)

    Argyris, Apostolos; Pikasis, Evangelos; Syvridis, Dimitris

    2016-02-01

    Semiconductor lasers (SL) have been proven to be a key device in the generation of ultrafast true random bit streams. Their potential to emit chaotic signals under conditions with desirable statistics, establish them as a low cost solution to cover various needs, from large volume key generation to real-time encrypted communications. Usually, only undemanding post-processing is needed to convert the acquired analog timeseries to digital sequences that pass all established tests of randomness. A novel architecture that can generate and exploit these true random sequences is through a fiber network in which the nodes are semiconductor lasers that are coupled and synchronized to central hub laser. In this work we show experimentally that laser nodes in such a star network topology can synchronize with each other through complex broadband signals that are the seed to true random bit sequences (TRBS) generated at several Gb/s. The potential for each node to access real-time generated and synchronized with the rest of the nodes random bit streams, through the fiber optic network, allows to implement an one-time-pad encryption protocol that mixes the synchronized true random bit sequence with real data at Gb/s rates. Forward-error correction methods are used to reduce the errors in the TRBS and the final error rate at the data decoding level. An appropriate selection in the sampling methodology and properties, as well as in the physical properties of the chaotic seed signal through which network locks in synchronization, allows an error free performance.

  12. Novel secret key generation techniques using memristor devices

    NASA Astrophysics Data System (ADS)

    Abunahla, Heba; Shehada, Dina; Yeun, Chan Yeob; Mohammad, Baker; Jaoude, Maguy Abi

    2016-02-01

    This paper proposes novel secret key generation techniques using memristor devices. The approach depends on using the initial profile of a memristor as a master key. In addition, session keys are generated using the master key and other specified parameters. In contrast to existing memristor-based security approaches, the proposed development is cost effective and power efficient since the operation can be achieved with a single device rather than a crossbar structure. An algorithm is suggested and demonstrated using physics based Matlab model. It is shown that the generated keys can have dynamic size which provides perfect security. Moreover, the proposed encryption and decryption technique using the memristor based generated keys outperforms Triple Data Encryption Standard (3DES) and Advanced Encryption Standard (AES) in terms of processing time. This paper is enriched by providing characterization results of a fabricated microscale Al/TiO2/Al memristor prototype in order to prove the concept of the proposed approach and study the impacts of process variations. The work proposed in this paper is a milestone towards System On Chip (SOC) memristor based security.

  13. Data encryption standard ASIC design and development report.

    SciTech Connect

    Robertson, Perry J.; Pierson, Lyndon George; Witzke, Edward L.

    2003-10-01

    This document describes the design, fabrication, and testing of the SNL Data Encryption Standard (DES) ASIC. This device was fabricated in Sandia's Microelectronics Development Laboratory using 0.6 {micro}m CMOS technology. The SNL DES ASIC was modeled using VHDL, then simulated, and synthesized using Synopsys, Inc. software and finally IC layout was performed using Compass Design Automation's CAE tools. IC testing was performed by Sandia's Microelectronic Validation Department using a HP 82000 computer aided test system. The device is a single integrated circuit, pipelined realization of DES encryption and decryption capable of throughputs greater than 6.5 Gb/s. Several enhancements accommodate ATM or IP network operation and performance scaling. This design is the latest step in the evolution of DES modules.

  14. An image encryption scheme based on quantum logistic map

    NASA Astrophysics Data System (ADS)

    Akhshani, A.; Akhavan, A.; Lim, S.-C.; Hassan, Z.

    2012-12-01

    The topic of quantum chaos has begun to draw increasing attention in recent years. While a satisfactory definition for it is not settled yet in order to differentiate between its classical counterparts. Dissipative quantum maps can be characterized by sensitive dependence on initial conditions, like classical maps. Considering this property, an implementation of image encryption scheme based on the quantum logistic map is proposed. The security and performance analysis of the proposed image encryption is performed using well-known methods. The results of the reliability analysis are encouraging and it can be concluded that, the proposed scheme is efficient and secure. The results of this study also suggest application of other quantum maps such as quantum standard map and quantum baker map in cryptography and other aspects of security and privacy.

  15. Novel implementation of memristive systems for data encryption and obfuscation

    NASA Astrophysics Data System (ADS)

    Du, Nan; Manjunath, Niveditha; Shuai, Yao; Bürger, Danilo; Skorupa, Ilona; Schüffny, René; Mayr, Christian; Basov, Dimitri N.; Di Ventra, Massimiliano; Schmidt, Oliver G.; Schmidt, Heidemarie

    2014-03-01

    With the rise of big data handling, new solutions are required to drive cryptographic algorithms for maintaining data security. Here, we exploit the nonvolatile, nonlinear resistance change in BiFeO3 memristors [Shuai et al., J. Appl. Phys. 109, 124117 (2011)] by applying a voltage for the generation of second and higher harmonics and develop a new memristor-based encoding system from it to encrypt and obfuscate data. It is found that a BiFeO3 memristor in high and low resistance state can be used to generate two clearly distinguishable sets of second and higher harmonics as recently predicted theoretically [Cohen et al., Appl. Phys. Lett. 100, 133109 (2012)]. The computed autocorrelation of encrypted data using higher harmonics generated by a BiFeO3 memristor shows that the encoded data distribute randomly.

  16. On applying molecular computation to the data encryption standard.

    PubMed

    Adleman, L M; Rothemund, P W; Roweis, S; Winfree, E

    1999-01-01

    Recently, Boneh, Dunworth, and Lipton (1996) described the potential use of molecular computation in attacking the United States Data Encryption Standard (DES). Here, we provide a description of such an attack using the sticker model of molecular computation. Our analysis suggests that such an attack might be mounted on a tabletop machine using approximately a gram of DNA and might succeed even in the presence of a large number of errors.

  17. Encryption and the Loss of Patient Data

    ERIC Educational Resources Information Center

    Miller, Amalia R.; Tucker, Catherine E.

    2011-01-01

    Fast-paced IT advances have made it increasingly possible and useful for firms to collect data on their customers on an unprecedented scale. One downside of this is that firms can experience negative publicity and financial damage if their data are breached. This is particularly the case in the medical sector, where we find empirical evidence that…

  18. Optical multiple-image encryption based on multiplane phase retrieval and interference

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Chen, Xudong

    2011-11-01

    In this paper, we propose a new method for optical multiple-image encryption based on multiplane phase retrieval and interference. An optical encoding system is developed in the Fresnel domain. A phase-only map is iteratively extracted based on a multiplane phase retrieval algorithm, and multiple plaintexts are simultaneously encrypted. Subsequently, the extracted phase-only map is further encrypted into two phase-only masks based on a non-iterative interference algorithm. During image decryption, the advantages and security of the proposed optical cryptosystem are analyzed. Numerical results are presented to demonstrate the validity of the proposed optical multiple-image encryption method.

  19. Interference-based multiple-image encryption with silhouette removal by position multiplexing.

    PubMed

    Qin, Yi; Gong, Qiong

    2013-06-10

    An approach for multiple-image encryption based on interference and position multiplexing is proposed. In the encryption process, multiple images are analytically hidden into three phase-only masks (POMs). The encryption algorithm for this method is quite simple and does not need iterative encoding. For decryption, both the digital method and optical method could be employed. Also, we analyze the multiplexing capacity through the correlation coefficient. In addition, the silhouette problem that exists in previous interference-based encryption methods with two POMs can be eliminated during the generation procedure of POMs based on the interference principle. Simulation results are presented to verify the validity of the proposed approach.

  20. An Integrated Signaling-Encryption Mechanism to Reduce Error Propagation in Wireless Communications: Performance Analyses

    SciTech Connect

    Olama, Mohammed M; Matalgah, Mustafa M; Bobrek, Miljko

    2015-01-01

    Traditional encryption techniques require packet overhead, produce processing time delay, and suffer from severe quality of service deterioration due to fades and interference in wireless channels. These issues reduce the effective transmission data rate (throughput) considerably in wireless communications, where data rate with limited bandwidth is the main constraint. In this paper, performance evaluation analyses are conducted for an integrated signaling-encryption mechanism that is secure and enables improved throughput and probability of bit-error in wireless channels. This mechanism eliminates the drawbacks stated herein by encrypting only a small portion of an entire transmitted frame, while the rest is not subject to traditional encryption but goes through a signaling process (designed transformation) with the plaintext of the portion selected for encryption. We also propose to incorporate error correction coding solely on the small encrypted portion of the data to drastically improve the overall bit-error rate performance while not noticeably increasing the required bit-rate. We focus on validating the signaling-encryption mechanism utilizing Hamming and convolutional error correction coding by conducting an end-to-end system-level simulation-based study. The average probability of bit-error and throughput of the encryption mechanism are evaluated over standard Gaussian and Rayleigh fading-type channels and compared to the ones of the conventional advanced encryption standard (AES).

  1. A novel color image encryption scheme using alternate chaotic mapping structure

    NASA Astrophysics Data System (ADS)

    Wang, Xingyuan; Zhao, Yuanyuan; Zhang, Huili; Guo, Kang

    2016-07-01

    This paper proposes an color image encryption algorithm using alternate chaotic mapping structure. Initially, we use the R, G and B components to form a matrix. Then one-dimension logistic and two-dimension logistic mapping is used to generate a chaotic matrix, then iterate two chaotic mappings alternately to permute the matrix. For every iteration, XOR operation is adopted to encrypt plain-image matrix, then make further transformation to diffuse the matrix. At last, the encrypted color image is obtained from the confused matrix. Theoretical analysis and experimental results has proved the cryptosystem is secure and practical, and it is suitable for encrypting color images.

  2. Encryption On Grayscale Image For Digital Image Confidentiality Using Shamir Secret Sharing Scheme

    NASA Astrophysics Data System (ADS)

    Rodiah; Anggraini, Dyah; Fitrianingsih; Kazhimi, Farizan

    2016-04-01

    The use of high-frequency internet in the process of exchanging information and digital transaction is often accompanied by transmitting digital image in the form of raster images. Secret sharing schemes are multiparty protocols that related to the key establishment which provides protection against any threats of losing cryptography key. The greater the key duplication, the higher the risk of losing the key and vice versa. In this study, Secret Sharing Method was used by employing Shamir Threshold Scheme Algorithm on grayscale digital image with the size of 256×256 pixel obtaining 128×128 pixels of shared image with threshold values (4, 8). The result number of shared images were 8 parts and the recovery process can be carried out by at least using 4 shares of the 8 parts. The result of encryption on grayscale image is capable of producing vague shared image (i.e., no perceptible information), therefore a message in the form of digital image can be kept confidential and secure.

  3. Gray-scale and color optical encryption based on computational ghost imaging

    NASA Astrophysics Data System (ADS)

    Tanha, Mehrdad; Kheradmand, Reza; Ahmadi-Kandjani, Sohrab

    2012-09-01

    We propose two approaches for optical encryption based on computational ghost imaging. These methods have the capability of encoding ghost images reconstructed from gray-scale images and colored objects. We experimentally demonstrate our approaches under eavesdropping in two different setups, thereby proving the robustness and simplicity thereof for encryption compared with previous algorithms.

  4. 15 CFR 748.3 - Classification requests, advisory opinions, and encryption review requests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... opinions, and encryption review requests. 748.3 Section 748.3 Commerce and Foreign Trade Regulations... § 748.3 Classification requests, advisory opinions, and encryption review requests. (a) Introduction... determination based on the submission of a review request prepared in accordance with the instructions...

  5. 75 FR 43819 - Clarification of Grace Period for Encryption Registration Requirement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... of Industry and Security (BIS) published a final rule (75 FR 36482) that, inter alia, established an... Encryption Registration Requirement AGENCY: Bureau of Industry and Security, Commerce. ACTION: Final rule; correcting amendments. SUMMARY: This rule clarifies the intent of the encryption registration...

  6. An Anti-Cheating Visual Cryptography Scheme Based on Chaotic Encryption System

    NASA Astrophysics Data System (ADS)

    Han, Yanyan; Xu, Zhuolin; Ge, Xiaonan; He, Wencai

    By chaotic encryption system and introducing the trusted third party (TTP), in this paper, an anti-cheating visual cryptography scheme (VCS) is proposed. The scheme solved the problem of dishonest participants and improved the security of chaotic encryption system. Simulation results and analysis show that the recovery image is acceptable, the system can detect the cheating in participants effectively and with high security.

  7. Intelligent policy making? Key actors' perspectives on the development and implementation of an early years' initiative in Scotland's public health arena.

    PubMed

    Deas, L; Mattu, L; Gnich, W

    2013-11-01

    Increased political enthusiasm for evidence-based policy and action has re-ignited interest in the use of evidence within political and practitioner networks. Theories of evidence-based policy making and practice are being re-considered in an attempt to better understand the processes through which knowledge translation occurs. Understanding how policy develops, and practice results, has the potential to facilitate effective evidence use. Further knowledge of the factors which shape healthcare delivery and their influence in different contexts is needed. This paper explores the processes involved in the development of a complex intervention in Scotland's National Health Service (NHS). It uses a national oral health programme for children (Childsmile) as a case study, drawing upon key actors' perceptions of the influence of different drivers (research evidence, practitioner knowledge and values, policy, and political and local context) to programme development. Framework analysis is used to analyse stakeholder accounts from in-depth interviews. Documentary review is also undertaken. Findings suggest that Childsmile can be described as an 'evidence-informed' intervention, blending available research evidence with knowledge from practitioner experience and continual learning through evaluation, to plan delivery. The importance of context was underscored, in terms of the need to align with prevailing political ideology and in the facilitative strength of networks within the relatively small public health community in Scotland. Respondents' perceptions support several existing theoretical models of translation, however no single theory offered a comprehensive framework covering all aspects of the complex processes reported. Childsmile's use of best available evidence and on-going contribution to knowledge suggest that the programme is an example of intelligent policy making with international relevance. PMID:24034945

  8. Intelligent policy making? Key actors' perspectives on the development and implementation of an early years' initiative in Scotland's public health arena.

    PubMed

    Deas, L; Mattu, L; Gnich, W

    2013-11-01

    Increased political enthusiasm for evidence-based policy and action has re-ignited interest in the use of evidence within political and practitioner networks. Theories of evidence-based policy making and practice are being re-considered in an attempt to better understand the processes through which knowledge translation occurs. Understanding how policy develops, and practice results, has the potential to facilitate effective evidence use. Further knowledge of the factors which shape healthcare delivery and their influence in different contexts is needed. This paper explores the processes involved in the development of a complex intervention in Scotland's National Health Service (NHS). It uses a national oral health programme for children (Childsmile) as a case study, drawing upon key actors' perceptions of the influence of different drivers (research evidence, practitioner knowledge and values, policy, and political and local context) to programme development. Framework analysis is used to analyse stakeholder accounts from in-depth interviews. Documentary review is also undertaken. Findings suggest that Childsmile can be described as an 'evidence-informed' intervention, blending available research evidence with knowledge from practitioner experience and continual learning through evaluation, to plan delivery. The importance of context was underscored, in terms of the need to align with prevailing political ideology and in the facilitative strength of networks within the relatively small public health community in Scotland. Respondents' perceptions support several existing theoretical models of translation, however no single theory offered a comprehensive framework covering all aspects of the complex processes reported. Childsmile's use of best available evidence and on-going contribution to knowledge suggest that the programme is an example of intelligent policy making with international relevance.

  9. Encrypted imaging based on algebraic implementation of double random phase encoding.

    PubMed

    Nakano, Kazuya; Takeda, Masafumi; Suzuki, Hiroyuki; Yamaguchi, Masahiro

    2014-05-10

    The security of important information captured by sensors and cameras is currently a growing concern as information theft via techniques such as side-channel attacks become increasingly more prevalent. Double random phase encoding (DRPE) is an optical encryption method based on optical Fourier transform that is currently being used to implement secure coherent optical systems. In this paper, we propose a new DRPE implementation for incoherent optical systems based on integral photography that can be applied to "encrypted imaging (EI)" to optically encrypt an image before it is captured by an image sensor. Because the proposed incoherent DRPE is constituted from conventional DRPE by rewriting the optical encryption via discretization and Euler's formula, its security level is the same as that of conventional DRPE. The results of an experiment in which we encrypted a plaintext image optically and then decrypted it numerically demonstrate that our proposed incoherent optical security system is feasible.

  10. Optical image encryption and hiding based on a modified Mach-Zehnder interferometer.

    PubMed

    Li, Jun; Li, Jiaosheng; Shen, Lina; Pan, Yangyang; Li, Rong

    2014-02-24

    A method for optical image hiding and for optical image encryption and hiding in the Fresnel domain via completely optical means is proposed, which encodes original object image into the encrypted image and then embeds it into host image in our modified Mach-Zehnder interferometer architecture. The modified Mach-Zehnder interferometer not only provides phase shifts to record complex amplitude of final encrypted object image on CCD plane but also introduces host image into reference path of the interferometer to hide it. The final encrypted object image is registered as interference patterns, which resemble a Fresnel diffraction pattern of the host image, and thus the secure information is imperceptible to unauthorized receivers. The method can simultaneously realize image encryption and image hiding at a high speed in pure optical system. The validity of the method and its robustness against some common attacks are investigated by numerical simulations and experiments.

  11. The effect of algorithm-agile encryption on ATM quality of service

    SciTech Connect

    Sholander, P.; Tarman, T.; Pierson, L.; Hutchinson, R.

    1997-04-01

    Asynchronous Transfer Mode (ATM) users often open multiple ATM Virtual Circuits (VCs) to multiple ATM users on multiple ATM networks. Each network and user may implement a different encryption policy. Hence ATM users may need shared, flexible hardware-based 3encryption that supports multiple encryption algorithms for multiple concurrent ATM users and VCs. An algorithm-agile encryption architecture, that uses multiple, parallel encryption-pipelines, is proposed. That algorithm-agile encryptor`s effect on the ATM Quality of Service (QoS) metrics, such as Cell Transfer Delay (CTD) and Cell Delay Variation (CDV), is analyzed. Bounds on the maximum CDV and the CDV`s probability density are derived.

  12. Error-reduction techniques and error analysis for fully phase- and amplitude-based encryption.

    PubMed

    Javidi, B; Towghi, N; Maghzi, N; Verrall, S C

    2000-08-10

    The performance of fully phase- and amplitude-based encryption processors is analyzed. The effects of noise perturbations on the encrypted information are considered. A thresholding method of decryption that further reduces the mean-squared error (MSE) for the fully phase- and amplitude-based encryption processes is provided. The proposed thresholding scheme significantly improves the performance of fully phase- and amplitude-based encryption, as measured by the MSE metric. We obtain analytical MSE bounds when thresholding is used for both decryption methods, and we also present computer-simulation results. These results show that the fully phase-based method is more robust. We also give a formal proof of a conjecture about the decrypted distribution of distorted encrypted information. This allows the analytical bounds of the MSE to be extended to more general non-Gaussian, nonadditive, nonstationary distortions. Computer simulations support this extension.

  13. VIRTEX-5 Fpga Implementation of Advanced Encryption Standard Algorithm

    NASA Astrophysics Data System (ADS)

    Rais, Muhammad H.; Qasim, Syed M.

    2010-06-01

    In this paper, we present an implementation of Advanced Encryption Standard (AES) cryptographic algorithm using state-of-the-art Virtex-5 Field Programmable Gate Array (FPGA). The design is coded in Very High Speed Integrated Circuit Hardware Description Language (VHDL). Timing simulation is performed to verify the functionality of the designed circuit. Performance evaluation is also done in terms of throughput and area. The design implemented on Virtex-5 (XC5VLX50FFG676-3) FPGA achieves a maximum throughput of 4.34 Gbps utilizing a total of 399 slices.

  14. 76 FR 1059 - Publicly Available Mass Market Encryption Software and Other Specified Publicly Available...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-07

    ... ``Know Your Customer'' guidance provided in the EAR (see 67 FR 38855, 38857, June 6, 2002). Therefore, a... extended by successive Presidential Notices, the most recent being that of August 12, 2010, 75 FR 50681....O. 13026, 61 FR 58767, 3 CFR, 1996 Comp., p. 228; E.O. 13222, 66 FR 44025, 3 CFR, 2001 Comp., p....

  15. Cost-Effective Encryption-Based Autonomous Routing Protocol for Efficient and Secure Wireless Sensor Networks.

    PubMed

    Saleem, Kashif; Derhab, Abdelouahid; Orgun, Mehmet A; Al-Muhtadi, Jalal; Rodrigues, Joel J P C; Khalil, Mohammed Sayim; Ali Ahmed, Adel

    2016-01-01

    The deployment of intelligent remote surveillance systems depends on wireless sensor networks (WSNs) composed of various miniature resource-constrained wireless sensor nodes. The development of routing protocols for WSNs is a major challenge because of their severe resource constraints, ad hoc topology and dynamic nature. Among those proposed routing protocols, the biology-inspired self-organized secure autonomous routing protocol (BIOSARP) involves an artificial immune system (AIS) that requires a certain amount of time to build up knowledge of neighboring nodes. The AIS algorithm uses this knowledge to distinguish between self and non-self neighboring nodes. The knowledge-building phase is a critical period in the WSN lifespan and requires active security measures. This paper proposes an enhanced BIOSARP (E-BIOSARP) that incorporates a random key encryption mechanism in a cost-effective manner to provide active security measures in WSNs. A detailed description of E-BIOSARP is presented, followed by an extensive security and performance analysis to demonstrate its efficiency. A scenario with E-BIOSARP is implemented in network simulator 2 (ns-2) and is populated with malicious nodes for analysis. Furthermore, E-BIOSARP is compared with state-of-the-art secure routing protocols in terms of processing time, delivery ratio, energy consumption, and packet overhead. The findings show that the proposed mechanism can efficiently protect WSNs from selective forwarding, brute-force or exhaustive key search, spoofing, eavesdropping, replaying or altering of routing information, cloning, acknowledgment spoofing, HELLO flood attacks, and Sybil attacks. PMID:27043572

  16. Cost-Effective Encryption-Based Autonomous Routing Protocol for Efficient and Secure Wireless Sensor Networks

    PubMed Central

    Saleem, Kashif; Derhab, Abdelouahid; Orgun, Mehmet A.; Al-Muhtadi, Jalal; Rodrigues, Joel J. P. C.; Khalil, Mohammed Sayim; Ali Ahmed, Adel

    2016-01-01

    The deployment of intelligent remote surveillance systems depends on wireless sensor networks (WSNs) composed of various miniature resource-constrained wireless sensor nodes. The development of routing protocols for WSNs is a major challenge because of their severe resource constraints, ad hoc topology and dynamic nature. Among those proposed routing protocols, the biology-inspired self-organized secure autonomous routing protocol (BIOSARP) involves an artificial immune system (AIS) that requires a certain amount of time to build up knowledge of neighboring nodes. The AIS algorithm uses this knowledge to distinguish between self and non-self neighboring nodes. The knowledge-building phase is a critical period in the WSN lifespan and requires active security measures. This paper proposes an enhanced BIOSARP (E-BIOSARP) that incorporates a random key encryption mechanism in a cost-effective manner to provide active security measures in WSNs. A detailed description of E-BIOSARP is presented, followed by an extensive security and performance analysis to demonstrate its efficiency. A scenario with E-BIOSARP is implemented in network simulator 2 (ns-2) and is populated with malicious nodes for analysis. Furthermore, E-BIOSARP is compared with state-of-the-art secure routing protocols in terms of processing time, delivery ratio, energy consumption, and packet overhead. The findings show that the proposed mechanism can efficiently protect WSNs from selective forwarding, brute-force or exhaustive key search, spoofing, eavesdropping, replaying or altering of routing information, cloning, acknowledgment spoofing, HELLO flood attacks, and Sybil attacks. PMID:27043572

  17. Cost-Effective Encryption-Based Autonomous Routing Protocol for Efficient and Secure Wireless Sensor Networks.

    PubMed

    Saleem, Kashif; Derhab, Abdelouahid; Orgun, Mehmet A; Al-Muhtadi, Jalal; Rodrigues, Joel J P C; Khalil, Mohammed Sayim; Ali Ahmed, Adel

    2016-01-01

    The deployment of intelligent remote surveillance systems depends on wireless sensor networks (WSNs) composed of various miniature resource-constrained wireless sensor nodes. The development of routing protocols for WSNs is a major challenge because of their severe resource constraints, ad hoc topology and dynamic nature. Among those proposed routing protocols, the biology-inspired self-organized secure autonomous routing protocol (BIOSARP) involves an artificial immune system (AIS) that requires a certain amount of time to build up knowledge of neighboring nodes. The AIS algorithm uses this knowledge to distinguish between self and non-self neighboring nodes. The knowledge-building phase is a critical period in the WSN lifespan and requires active security measures. This paper proposes an enhanced BIOSARP (E-BIOSARP) that incorporates a random key encryption mechanism in a cost-effective manner to provide active security measures in WSNs. A detailed description of E-BIOSARP is presented, followed by an extensive security and performance analysis to demonstrate its efficiency. A scenario with E-BIOSARP is implemented in network simulator 2 (ns-2) and is populated with malicious nodes for analysis. Furthermore, E-BIOSARP is compared with state-of-the-art secure routing protocols in terms of processing time, delivery ratio, energy consumption, and packet overhead. The findings show that the proposed mechanism can efficiently protect WSNs from selective forwarding, brute-force or exhaustive key search, spoofing, eavesdropping, replaying or altering of routing information, cloning, acknowledgment spoofing, HELLO flood attacks, and Sybil attacks.

  18. 'Yeast mail': a novel Saccharomyces application (NSA) to encrypt messages.

    PubMed

    Rosemeyer, Helmut; Paululat, Achim; Heinisch, Jürgen J

    2014-09-01

    The universal genetic code is used by all life forms to encode biological information. It can also be used to encrypt semantic messages and convey them within organisms without anyone but the sender and recipient knowing, i.e., as a means of steganography. Several theoretical, but comparatively few experimental, approaches have been dedicated to this subject, so far. Here, we describe an experimental system to stably integrate encrypted messages within the yeast genome using a polymerase chain reaction (PCR)-based, one-step homologous recombination system. Thus, DNA sequences encoding alphabetical and/or numerical information will be inherited by yeast propagation and can be sent in the form of dried yeast. Moreover, due to the availability of triple shuttle vectors, Saccharomyces cerevisiae can also be used as an intermediate construction device for transfer of information to either Drosophila or mammalian cells as steganographic containers. Besides its classical use in alcoholic fermentation and its modern use for heterologous gene expression, we here show that baker's yeast can thus be employed in a novel Saccharomyces application (NSA) as a simple steganographic container to hide and convey messages.

  19. Selective encryption for H.264/AVC video coding

    NASA Astrophysics Data System (ADS)

    Shi, Tuo; King, Brian; Salama, Paul

    2006-02-01

    Due to the ease with which digital data can be manipulated and due to the ongoing advancements that have brought us closer to pervasive computing, the secure delivery of video and images has become a challenging problem. Despite the advantages and opportunities that digital video provide, illegal copying and distribution as well as plagiarism of digital audio, images, and video is still ongoing. In this paper we describe two techniques for securing H.264 coded video streams. The first technique, SEH264Algorithm1, groups the data into the following blocks of data: (1) a block that contains the sequence parameter set and the picture parameter set, (2) a block containing a compressed intra coded frame, (3) a block containing the slice header of a P slice, all the headers of the macroblock within the same P slice, and all the luma and chroma DC coefficients belonging to the all the macroblocks within the same slice, (4) a block containing all the ac coefficients, and (5) a block containing all the motion vectors. The first three are encrypted whereas the last two are not. The second method, SEH264Algorithm2, relies on the use of multiple slices per coded frame. The algorithm searches the compressed video sequence for start codes (0x000001) and then encrypts the next N bits of data.

  20. Physically secured orthogonal frequency division multiplexing-passive optical network employing noise-based encryption and signal recovery process

    NASA Astrophysics Data System (ADS)

    Jin, Wei; Zhang, Chongfu; Yuan, Weicheng

    2016-02-01

    We propose a physically enhanced secure scheme for direct detection-orthogonal frequency division multiplexing-passive optical network (DD-OFDM-PON) and long reach coherent detection-orthogonal frequency division multiplexing-passive optical network (LRCO-OFDM-PON), by employing noise-based encryption and channel/phase estimation. The noise data generated by chaos mapping are used to substitute training sequences in preamble to realize channel estimation and frame synchronization, and also to be embedded on variable number of key-selected randomly spaced pilot subcarriers to implement phase estimation. Consequently, the information used for signal recovery is totally hidden as unpredictable noise information in OFDM frames to mask useful information and to prevent illegal users from correctly realizing OFDM demodulation, and thereby enhancing resistance to attackers. The levels of illegal-decryption complexity and implementation complexity are theoretically discussed. Through extensive simulations, the performances of the proposed channel/phase estimation and the security introduced by encrypted pilot carriers have been investigated in both DD-OFDM and LRCO-OFDM systems. In addition, in the proposed secure DD-OFDM/LRCO-OFDM PON models, both legal and illegal receiving scenarios have been considered. These results show that, by utilizing the proposed scheme, the resistance to attackers can be significantly enhanced in DD-OFDM-PON and LRCO-OFDM-PON systems without performance degradations.

  1. Security of Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Lütkenhaus, Norbert

    2007-03-01

    Quantum Key Distribution (QKD) is the most advanced application of Quantum Information Science. It allows extending secret keys over some distances in such a way that the security of the resulting key material can be guaranteed by the laws of quantum mechanics. In contrast to presently used encryption techniques, the security of QKD can be proven in terms of information-theoretic measures. The resulting key can then be used for many tasks, including exchanging secret messages. QKD has been developed in the language of abstract two-level systems, the qubits. They cannot be easily implemented in optical signals. It took some time to bring the protocols and theory of QKD to the point where they fit to the realities of fiber-optical or free-space applications, including lossy channels. Today, QKD schemes can be implemented reliably using standard off-the-shelf components. Information theoretic security is a theoretical concept. Naturally, it is impossible to demonstrate directly that a given experimental set-up indeed creates a secret key. What one can do is to show that the experiment can give data within a certain parameters regime, such as error rate and loss rate, for which a security proof exists. I will discuss what parameter regime gives provable secure key and which parameter regime cannot lead to secret key. It is desirable to prove `unconditional security,' as it is termed in the world of classical cryptography: no assumption is made about the attacks of an eavesdropper on the quantum channel. However, one has to assume that the signal structure and the measurement device are correctly described by the adopted model and that no eavesdropper can intrude the sender or receiver unit. In this talk I will briefly introduce the concept of QKD and optical implementations. Especially I will discuss security aspects of modern approaches of QKD schemes that allow us to increase the covered distance and the achievable rate.

  2. Optical multiple-image encryption based on the chaotic structured phase masks under the illumination of a vortex beam in the gyrator domain.

    PubMed

    Liansheng, Sui; Bei, Zhou; Xiaojuan, Ning; Ailing, Tian

    2016-01-11

    A novel multiple-image encryption scheme using the nonlinear iterative phase retrieval algorithm in the gyrator transform domain under the illumination of an optical vortex beam is proposed. In order to increase the randomness, the chaotic structured phase mask based on the logistic map, Fresnel zone plate and radial Hilbert mask is proposed. With the help of two chaotic phase masks, each plain image is encoded into two phase-only masks that are considered as the private keys by using the iterative phase retrieval process in the gyrator domain. Then, the second keys of all plain images are modulated into the ciphertext, which has the stationary white noise distribution. Due to the use of the chaotic structured phase masks, the problem of axis alignment in the optical setup can easily be solved. Two private keys are directly relative to the plain images, which makes that the scheme has high resistance against various potential attacks. Moreover, the use of the vortex beam that can integrates more system parameters as the additional keys into one phase mask can improve the security level of the cryptosystem, which makes the key space enlarged widely. Simulation results are given to verify the feasibility and robustness of the proposed encryption scheme.

  3. Secure Communication Based on a Hybrid of Chaos and Ica Encryptions

    NASA Astrophysics Data System (ADS)

    Chen, Wei Ching; Yuan, John

    Chaos and independent component analysis (ICA) encryptions are two novel schemes for secure communications. In this paper, a new scheme combining chaos and ICA techniques is proposed to enhance the security level during communication. In this scheme, a master chaotic system is embedded at the transmitter. The message signal is mixed with a chaotic signal and a Gaussian white noise into two mixed signals and then transmitted to the receiver through the public channels. A signal for synchronization is transmitted through another public channel to the receiver where a slave chaotic system is embedded to reproduce the chaotic signal. A modified ICA is used to recover the message signal at the receiver. Since only two of the three transmitted signals contain the information of message signal, a hacker would not be able to retrieve the message signal by using ICA even though all the transmitted signals are intercepted. Spectrum analyses are used to prove that the message signal can be securely hidden under this scheme.

  4. Context adaptive binary arithmetic coding-based data hiding in partially encrypted H.264/AVC videos

    NASA Astrophysics Data System (ADS)

    Xu, Dawen; Wang, Rangding

    2015-05-01

    A scheme of data hiding directly in a partially encrypted version of H.264/AVC videos is proposed which includes three parts, i.e., selective encryption, data embedding and data extraction. Selective encryption is performed on context adaptive binary arithmetic coding (CABAC) bin-strings via stream ciphers. By careful selection of CABAC entropy coder syntax elements for selective encryption, the encrypted bitstream is format-compliant and has exactly the same bit rate. Then a data-hider embeds the additional data into partially encrypted H.264/AVC videos using a CABAC bin-string substitution technique without accessing the plaintext of the video content. Since bin-string substitution is carried out on those residual coefficients with approximately the same magnitude, the quality of the decrypted video is satisfactory. Video file size is strictly preserved even after data embedding. In order to adapt to different application scenarios, data extraction can be done either in the encrypted domain or in the decrypted domain. Experimental results have demonstrated the feasibility and efficiency of the proposed scheme.

  5. Steganographic optical image encryption system based on reversible data hiding and double random phase encoding

    NASA Astrophysics Data System (ADS)

    Chuang, Cheng-Hung; Chen, Yen-Lin

    2013-02-01

    This study presents a steganographic optical image encryption system based on reversible data hiding and double random phase encoding (DRPE) techniques. Conventional optical image encryption systems can securely transmit valuable images using an encryption method for possible application in optical transmission systems. The steganographic optical image encryption system based on the DRPE technique has been investigated to hide secret data in encrypted images. However, the DRPE techniques vulnerable to attacks and many of the data hiding methods in the DRPE system can distort the decrypted images. The proposed system, based on reversible data hiding, uses a JBIG2 compression scheme to achieve lossless decrypted image quality and perform a prior encryption process. Thus, the DRPE technique enables a more secured optical encryption process. The proposed method extracts and compresses the bit planes of the original image using the lossless JBIG2 technique. The secret data are embedded in the remaining storage space. The RSA algorithm can cipher the compressed binary bits and secret data for advanced security. Experimental results show that the proposed system achieves a high data embedding capacity and lossless reconstruction of the original images.

  6. Image encryption and compression based on kronecker compressed sensing and elementary cellular automata scrambling

    NASA Astrophysics Data System (ADS)

    Chen, Tinghuan; Zhang, Meng; Wu, Jianhui; Yuen, Chau; Tong, You

    2016-10-01

    Because of simple encryption and compression procedure in single step, compressed sensing (CS) is utilized to encrypt and compress an image. Difference of sparsity levels among blocks of the sparsely transformed image degrades compression performance. In this paper, motivated by this difference of sparsity levels, we propose an encryption and compression approach combining Kronecker CS (KCS) with elementary cellular automata (ECA). In the first stage of encryption, ECA is adopted to scramble the sparsely transformed image in order to uniformize sparsity levels. A simple approximate evaluation method is introduced to test the sparsity uniformity. Due to low computational complexity and storage, in the second stage of encryption, KCS is adopted to encrypt and compress the scrambled and sparsely transformed image, where the measurement matrix with a small size is constructed from the piece-wise linear chaotic map. Theoretical analysis and experimental results show that our proposed scrambling method based on ECA has great performance in terms of scrambling and uniformity of sparsity levels. And the proposed encryption and compression method can achieve better secrecy, compression performance and flexibility.

  7. Universal and special keys based on phase-truncated Fourier transform

    PubMed Central

    Qin, Wan; Peng, Xiang; Meng, Xiangfeng; Gao, Bruce

    2013-01-01

    We propose a novel optical asymmetric cryptosystem based on a phase-truncated Fourier transform. Two decryption keys independent of each other are generated. They are referred to as universal key and special key, respectively. Each of them can be used for decryption independently in absence of the other. The universal key is applicable to decrypt any ciphertext encoded by the same encryption key, but with poor legibility. On the contrary, the special key is adequate for legible decryption, but only valid for one ciphertext corresponding to the specified plaintext. A set of simulation results show the interesting performance of two types of de cryption keys. PMID:25339784

  8. Research on an E-mail Encryption Protocol Based on Quantum Teleportation

    NASA Astrophysics Data System (ADS)

    Shufen, Xiao; Yumin, Dong; Hongyang, Ma; Libo, Chen

    2016-07-01

    With the rapid development of information technology (IT), E-mail has become an important communication tool between human beings. Meanwhile, E-mail safety becomes increasingly important because of its universal applications. In order to overcome shortages of classical E-mail encryption, an E-mail encryption protocol based on quantum teleportation was proposed. It makes quantum encryption of E-mails during sending and receiving processes by taking advantages of entanglement and nonclonability of quantum, thus ensuring safety and reliability of E-mail transmission.

  9. Optical holographic encrypted data storage using lenticular lens array phase-encoded multiplexing

    NASA Astrophysics Data System (ADS)

    Chang, C. C.; Chen, G. L.; Teng, P. C.; Young, W. K.

    2006-04-01

    We propose a novel optical holographic encrypted data storage scheme based on phase encoding multiplexed scheme. In the proposed data storage scheme, patterns of encrypted images are stored holographically in a photorefractive LiNbO 3:Fe crystal by using lenticular lens array (LLA) sheet phase-encoded multiplexing. Experimental results show that rotating a LLA placed as a phase modulator in the path of the reference beam provides a simple yet effective method of increasing the holographic storage capabilities of the crystal. Combining this rotational multiplexing with two-axis tilting multiplexing offers not only further data storage capabilities but also data encryption possibilities.

  10. Optical encryption and QR codes: secure and noise-free information retrieval.

    PubMed

    Barrera, John Fredy; Mira, Alejandro; Torroba, Roberto

    2013-03-11

    We introduce for the first time the concept of an information "container" before a standard optical encrypting procedure. The "container" selected is a QR code which offers the main advantage of being tolerant to pollutant speckle noise. Besides, the QR code can be read by smartphones, a massively used device. Additionally, QR code includes another secure step to the encrypting benefits the optical methods provide. The QR is generated by means of worldwide free available software. The concept development probes that speckle noise polluting the outcomes of normal optical encrypting procedures can be avoided, then making more attractive the adoption of these techniques. Actual smartphone collected results are shown to validate our proposal.

  11. A cubic map chaos criterion theorem with applications in generalized synchronization based pseudorandom number generator and image encryption.

    PubMed

    Yang, Xiuping; Min, Lequan; Wang, Xue

    2015-05-01

    This paper sets up a chaos criterion theorem on a kind of cubic polynomial discrete maps. Using this theorem, Zhou-Song's chaos criterion theorem on quadratic polynomial discrete maps and generalized synchronization (GS) theorem construct an eight-dimensional chaotic GS system. Numerical simulations have been carried out to verify the effectiveness of theoretical results. The chaotic GS system is used to design a chaos-based pseudorandom number generator (CPRNG). Using FIPS 140-2 test suit/Generalized FIPS 140-2, test suit tests the randomness of two 1000 key streams consisting of 20 000 bits generated by the CPRNG, respectively. The results show that there are 99.9%/98.5% key streams to have passed the FIPS 140-2 test suit/Generalized FIPS 140-2 test. Numerical simulations show that the different keystreams have an average 50.001% same codes. The key space of the CPRNG is larger than 2(1345). As an application of the CPRNG, this study gives an image encryption example. Experimental results show that the linear coefficients between the plaintext and the ciphertext and the decrypted ciphertexts via the 100 key streams with perturbed keys are less than 0.00428. The result suggests that the decrypted texts via the keystreams generated via perturbed keys of the CPRNG are almost completely independent on the original image text, and brute attacks are needed to break the cryptographic system.

  12. A cubic map chaos criterion theorem with applications in generalized synchronization based pseudorandom number generator and image encryption

    SciTech Connect

    Yang, Xiuping Min, Lequan Wang, Xue

    2015-05-15

    This paper sets up a chaos criterion theorem on a kind of cubic polynomial discrete maps. Using this theorem, Zhou-Song's chaos criterion theorem on quadratic polynomial discrete maps and generalized synchronization (GS) theorem construct an eight-dimensional chaotic GS system. Numerical simulations have been carried out to verify the effectiveness of theoretical results. The chaotic GS system is used to design a chaos-based pseudorandom number generator (CPRNG). Using FIPS 140-2 test suit/Generalized FIPS 140-2, test suit tests the randomness of two 1000 key streams consisting of 20 000 bits generated by the CPRNG, respectively. The results show that there are 99.9%/98.5% key streams to have passed the FIPS 140-2 test suit/Generalized FIPS 140-2 test. Numerical simulations show that the different keystreams have an average 50.001% same codes. The key space of the CPRNG is larger than 2{sup 1345}. As an application of the CPRNG, this study gives an image encryption example. Experimental results show that the linear coefficients between the plaintext and the ciphertext and the decrypted ciphertexts via the 100 key streams with perturbed keys are less than 0.00428. The result suggests that the decrypted texts via the keystreams generated via perturbed keys of the CPRNG are almost completely independent on the original image text, and brute attacks are needed to break the cryptographic system.

  13. A fast image encryption algorithm based on chaotic map

    NASA Astrophysics Data System (ADS)

    Liu, Wenhao; Sun, Kehui; Zhu, Congxu

    2016-09-01

    Derived from Sine map and iterative chaotic map with infinite collapse (ICMIC), a new two-dimensional Sine ICMIC modulation map (2D-SIMM) is proposed based on a close-loop modulation coupling (CMC) model, and its chaotic performance is analyzed by means of phase diagram, Lyapunov exponent spectrum and complexity. It shows that this map has good ergodicity, hyperchaotic behavior, large maximum Lyapunov exponent and high complexity. Based on this map, a fast image encryption algorithm is proposed. In this algorithm, the confusion and diffusion processes are combined for one stage. Chaotic shift transform (CST) is proposed to efficiently change the image pixel positions, and the row and column substitutions are applied to scramble the pixel values simultaneously. The simulation and analysis results show that this algorithm has high security, low time complexity, and the abilities of resisting statistical analysis, differential, brute-force, known-plaintext and chosen-plaintext attacks.

  14. Tunable solid-state fluorescent materials for supramolecular encryption

    PubMed Central

    Hou, Xisen; Ke, Chenfeng; Bruns, Carson J.; McGonigal, Paul R.; Pettman, Roger B.; Stoddart, J. Fraser

    2015-01-01

    Tunable solid-state fluorescent materials are ideal for applications in security printing technologies. A document possesses a high level of security if its encrypted information can be authenticated without being decoded, while also being resistant to counterfeiting. Herein, we describe a heterorotaxane with tunable solid-state fluorescent emissions enabled through reversible manipulation of its aggregation by supramolecular encapsulation. The dynamic nature of this fluorescent material is based on a complex set of equilibria, whose fluorescence output depends non-linearly on the chemical inputs and the composition of the paper. By applying this system in fluorescent security inks, the information encoded in polychromic images can be protected in such a way that it is close to impossible to reverse engineer, as well as being easy to verify. This system constitutes a unique application of responsive complex equilibria in the form of a cryptographic algorithm that protects valuable information printed using tunable solid-state fluorescent materials. PMID:25901677

  15. 15 CFR Supplement No. 6 to Part 742 - Technical Questionnaire for Encryption Items

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... non-technical description of the type of product (e.g., routers, disk drives, cell phones, and chips... (Commodity Classification Automated Tracking System (CCATS) number, Encryption Registration Number...

  16. 15 CFR Supplement No. 6 to Part 742 - Technical Questionnaire for Encryption Items

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... non-technical description of the type of product (e.g., routers, disk drives, cell phones, and chips... (Commodity Classification Automated Tracking System (CCATS) number, Encryption Registration Number...

  17. 15 CFR Supplement No. 6 to Part 742 - Technical Questionnaire for Encryption Items

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... non-technical description of the type of product (e.g., routers, disk drives, cell phones, and chips... (Commodity Classification Automated Tracking System (CCATS) number, Encryption Registration Number...

  18. Improved decryption quality and security of a joint transform correlator-based encryption system

    NASA Astrophysics Data System (ADS)

    Vilardy, Juan M.; Millán, María S.; Pérez-Cabré, Elisabet

    2013-02-01

    Some image encryption systems based on modified double random phase encoding and joint transform correlator architecture produce low quality decrypted images and are vulnerable to a variety of attacks. In this work, we analyse the algorithm of some reported methods that optically implement the double random phase encryption in a joint transform correlator. We show that it is possible to significantly improve the quality of the decrypted image by introducing a simple nonlinear operation in the encrypted function that contains the joint power spectrum. This nonlinearity also makes the system more resistant to chosen-plaintext attacks. We additionally explore the system resistance against this type of attack when a variety of probability density functions are used to generate the two random phase masks of the encryption-decryption process. Numerical results are presented and discussed.

  19. Optical color-image encryption and synthesis using coherent diffractive imaging in the Fresnel domain.

    PubMed

    Chen, Wen; Chen, Xudong; Sheppard, Colin J R

    2012-02-13

    We propose a new method using coherent diffractive imaging for optical color-image encryption and synthesis in the Fresnel domain. An optical multiple-random-phase-mask encryption system is applied, and a strategy based on lateral translations of a phase-only mask is employed during image encryption. For the decryption, an iterative phase retrieval algorithm is applied to extract high-quality decrypted color images from diffraction intensity maps (i.e., ciphertexts). In addition, optical color-image synthesis is also investigated based on coherent diffractive imaging. Numerical results are presented to demonstrate feasibility and effectiveness of the proposed method. Compared with conventional interference methods, coherent diffractive imaging approach may open up a new research perspective or can provide an effective alternative for optical color-image encryption and synthesis.

  20. Experimental scrambling and noise reduction applied to the optical encryption of QR codes.

    PubMed

    Barrera, John Fredy; Vélez, Alejandro; Torroba, Roberto

    2014-08-25

    In this contribution, we implement two techniques to reinforce optical encryption, which we restrict in particular to the QR codes, but could be applied in a general encoding situation. To our knowledge, we present the first experimental-positional optical scrambling merged with an optical encryption procedure. The inclusion of an experimental scrambling technique in an optical encryption protocol, in particular dealing with a QR code "container", adds more protection to the encoding proposal. Additionally, a nonlinear normalization technique is applied to reduce the noise over the recovered images besides increasing the security against attacks. The opto-digital techniques employ an interferometric arrangement and a joint transform correlator encrypting architecture. The experimental results demonstrate the capability of the methods to accomplish the task.

  1. Optical color image encryption based on an asymmetric cryptosystem in the Fresnel domain

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Chen, Xudong

    2011-08-01

    In recent years, optical color image encryption has attracted much attention in the information security field. Some approaches, such as digital holography, have been proposed to encrypt color images, but the previously proposed methods are developed based on optical symmetric cryptographic strategies. In this paper, we apply an optical asymmetric cryptosystem for the color image encryption instead of conventional symmetric cryptosystems. A phase-truncated strategy is applied in the Fresnel domain, and multiple-wavelength and indexed image methods are further employed. The security of optical asymmetric cryptosystem is also analyzed during the decryption. Numerical results are presented to demonstrate the feasibility and effectiveness of the proposed optical asymmetric cryptosystem for color image encryption.

  2. A novel chaotic map and an improved chaos-based image encryption scheme.

    PubMed

    Zhang, Xianhan; Cao, Yang

    2014-01-01

    In this paper, we present a novel approach to create the new chaotic map and propose an improved image encryption scheme based on it. Compared with traditional classic one-dimensional chaotic maps like Logistic Map and Tent Map, this newly created chaotic map demonstrates many better chaotic properties for encryption, implied by a much larger maximal Lyapunov exponent. Furthermore, the new chaotic map and Arnold's Cat Map based image encryption method is designed and proved to be of solid robustness. The simulation results and security analysis indicate that such method not only can meet the requirement of imagine encryption, but also can result in a preferable effectiveness and security, which is usable for general applications.

  3. Separable and Error-Free Reversible Data Hiding in Encrypted Image with High Payload

    PubMed Central

    Yin, Zhaoxia; Luo, Bin; Hong, Wien

    2014-01-01

    This paper proposes a separable reversible data-hiding scheme in encrypted image which offers high payload and error-free data extraction. The cover image is partitioned into nonoverlapping blocks and multigranularity encryption is applied to obtain the encrypted image. The data hider preprocesses the encrypted image and randomly selects two basic pixels in each block to estimate the block smoothness and indicate peak points. Additional data are embedded into blocks in the sorted order of block smoothness by using local histogram shifting under the guidance of the peak points. At the receiver side, image decryption and data extraction are separable and can be free to choose. Compared to previous approaches, the proposed method is simpler in calculation while offering better performance: larger payload, better embedding quality, and error-free data extraction, as well as image recovery. PMID:24977214

  4. Spread spectrum image data hiding in the encrypted discrete cosine transform coefficients

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqiang; Wang, Z. Jane

    2013-10-01

    Digital watermarking and data hiding are important tools for digital rights protection of media data. Spread spectrum (SS)-based watermarking and data-hiding approaches are popular due to their outstanding robustness, but their security might not be sufficient. To improve the security of SS, a SS-based image data-hiding approach is proposed by encrypting the discrete cosine transform coefficients of the host image with the piecewise linear chaotic map, before the operation of watermark embedding. To evaluate the performance of the proposed approach, simulations and analyses of its robustness and security are carried out. The average bit-error-rate values on 100 real images from the Berkeley segmentation dataset under the JPEG compression, additive Gaussian noise, salt and pepper noise, and cropping attacks are reported. Experimental results show that the proposed approach can maintain the high robustness of traditional SS schemes and, meanwhile, also improve the security. The proposed approach can extend the key space of traditional SS schemes from 10 to 10 and thus can resist brute-force attack and unauthorized detection watermark attack.

  5. Security-enhanced phase encryption assisted by nonlinear optical correlation via sparse phase

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Wang, Xiaogang; Chen, Xudong

    2015-03-01

    We propose a method for security-enhanced phase encryption assisted by a nonlinear optical correlation via a sparse phase. Optical configurations are established based on a phase retrieval algorithm for embedding an input image and the secret data into phase-only masks. We found that when one or a few phase-only masks generated during data hiding are sparse, it is possible to integrate these sparse masks into those phase-only masks generated during the encoding of the input image. Synthesized phase-only masks are used for the recovery, and sparse distributions (i.e., binary maps) for generating the incomplete phase-only masks are considered as additional parameters for the recovery of secret data. It is difficult for unauthorized receivers to know that a useful phase has been sparsely distributed in the finally generated phase-only masks for secret-data recovery. Only when the secret data are correctly verified can the input image obtained with valid keys be claimed as targeted information.

  6. A joint image encryption and watermarking algorithm based on compressive sensing and chaotic map

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Cai, Hong-Kun; Zheng, Hong-Ying

    2015-06-01

    In this paper, a compressive sensing (CS) and chaotic map-based joint image encryption and watermarking algorithm is proposed. The transform domain coefficients of the original image are scrambled by Arnold map firstly. Then the watermark is adhered to the scrambled data. By compressive sensing, a set of watermarked measurements is obtained as the watermarked cipher image. In this algorithm, watermark embedding and data compression can be performed without knowing the original image; similarly, watermark extraction will not interfere with decryption. Due to the characteristics of CS, this algorithm features compressible cipher image size, flexible watermark capacity, and lossless watermark extraction from the compressed cipher image as well as robustness against packet loss. Simulation results and analyses show that the algorithm achieves good performance in the sense of security, watermark capacity, extraction accuracy, reconstruction, robustness, etc. Project supported by the Open Research Fund of Chongqing Key Laboratory of Emergency Communications, China (Grant No. CQKLEC, 20140504), the National Natural Science Foundation of China (Grant Nos. 61173178, 61302161, and 61472464), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 106112013CDJZR180005 and 106112014CDJZR185501).

  7. High security chaotic multiple access scheme for visible light communication systems with advanced encryption standard interleaving

    NASA Astrophysics Data System (ADS)

    Qiu, Junchao; Zhang, Lin; Li, Diyang; Liu, Xingcheng

    2016-06-01

    Chaotic sequences can be applied to realize multiple user access and improve the system security for a visible light communication (VLC) system. However, since the map patterns of chaotic sequences are usually well known, eavesdroppers can possibly derive the key parameters of chaotic sequences and subsequently retrieve the information. We design an advanced encryption standard (AES) interleaving aided multiple user access scheme to enhance the security of a chaotic code division multiple access-based visible light communication (C-CDMA-VLC) system. We propose to spread the information with chaotic sequences, and then the spread information is interleaved by an AES algorithm and transmitted over VLC channels. Since the computation complexity of performing inverse operations to deinterleave the information is high, the eavesdroppers in a high speed VLC system cannot retrieve the information in real time; thus, the system security will be enhanced. Moreover, we build a mathematical model for the AES-aided VLC system and derive the theoretical information leakage to analyze the system security. The simulations are performed over VLC channels, and the results demonstrate the effectiveness and high security of our presented AES interleaving aided chaotic CDMA-VLC system.

  8. Information encryption and retrieval in mid-RF range using acousto-optic chaos

    NASA Astrophysics Data System (ADS)

    Chatterjee, Monish R.; Kundur, Abhinay

    2012-06-01

    In recent work, low-frequency AC signal encryption, decryption and retrieval using system-parameter based keys at the receiver stage of an acousto-optic (A-O) Bragg cell under first-order feedback have been demonstrated [1,2]. The corresponding nonlinear dynamics have also been investigated using the Lyapunov exponent and the so-called bifurcation maps [3]. The results were essentially restricted to A-O chaos around 10 KHz, and (baseband) signal bandwidths in the 1-4 KHz range. The results have generally been satisfactory, and parameter tolerances (prior to severe signal distortion at the output) in the +/-5% - +/-10% range have been obtained. Periodic AC waveforms, and a short audio clip have been examined in this series of investigations. Obviously, a main drawback in the above series of simulations has been the low and impractical signal bandwidths used. The effort to increase the bandwidth involves designing a feedback system with much higher chaos frequency that would then be amenable to higher BW information. In this paper, we re-visit the problem for the case where the feedback delay time is reduced considerably, and the system parameters in the transmitter adjusted in order to drive the system with a DC driver bias into chaos. Reducing the feedback time delay to less than 1 μs, an average chaos frequency of about 10 MHz was achieved after a few trials. For the AC application, a chaos region was chosen that would allow a large enough dynamic range for the width of the available passband. Based on these dynamic choices, periodic AC signals with 1 MHz (fundamental) bandwidth were used for the RF bias driver (along with a DC bias). A triangular wave and a rectangular pulse train were chosen as examples. Results for these cases are presented here, along with comments on the system performance, and the possibility of including (static) images for signal encryption. Overall, the results are encouraging, and affirm the possibility of using A-O chaos for securely

  9. Analysis of S-box in Image Encryption Using Root Mean Square Error Method

    NASA Astrophysics Data System (ADS)

    Hussain, Iqtadar; Shah, Tariq; Gondal, Muhammad Asif; Mahmood, Hasan

    2012-07-01

    The use of substitution boxes (S-boxes) in encryption applications has proven to be an effective nonlinear component in creating confusion and randomness. The S-box is evolving and many variants appear in literature, which include advanced encryption standard (AES) S-box, affine power affine (APA) S-box, Skipjack S-box, Gray S-box, Lui J S-box, residue prime number S-box, Xyi S-box, and S8 S-box. These S-boxes have algebraic and statistical properties which distinguish them from each other in terms of encryption strength. In some circumstances, the parameters from algebraic and statistical analysis yield results which do not provide clear evidence in distinguishing an S-box for an application to a particular set of data. In image encryption applications, the use of S-boxes needs special care because the visual analysis and perception of a viewer can sometimes identify artifacts embedded in the image. In addition to existing algebraic and statistical analysis already used for image encryption applications, we propose an application of root mean square error technique, which further elaborates the results and enables the analyst to vividly distinguish between the performances of various S-boxes. While the use of the root mean square error analysis in statistics has proven to be effective in determining the difference in original data and the processed data, its use in image encryption has shown promising results in estimating the strength of the encryption method. In this paper, we show the application of the root mean square error analysis to S-box image encryption. The parameters from this analysis are used in determining the strength of S-boxes

  10. Cryptanalysis of "an improvement over an image encryption method based on total shuffling"

    NASA Astrophysics Data System (ADS)

    Akhavan, A.; Samsudin, A.; Akhshani, A.

    2015-09-01

    In the past two decades, several image encryption algorithms based on chaotic systems had been proposed. Many of the proposed algorithms are meant to improve other chaos based and conventional cryptographic algorithms. Whereas, many of the proposed improvement methods suffer from serious security problems. In this paper, the security of the recently proposed improvement method for a chaos-based image encryption algorithm is analyzed. The results indicate the weakness of the analyzed algorithm against chosen plain-text.

  11. An image encryption algorithm based on 3D cellular automata and chaotic maps

    NASA Astrophysics Data System (ADS)

    Del Rey, A. Martín; Sánchez, G. Rodríguez

    2015-05-01

    A novel encryption algorithm to cipher digital images is presented in this work. The digital image is rendering into a three-dimensional (3D) lattice and the protocol consists of two phases: the confusion phase where 24 chaotic Cat maps are applied and the diffusion phase where a 3D cellular automata is evolved. The encryption method is shown to be secure against the most important cryptanalytic attacks.

  12. Simultaneous edge sensing compression and encryption for real-time video transmission

    NASA Astrophysics Data System (ADS)

    Al-Hayani, Nazar; Al-Jawad, Naseer; Jassim, Sabah

    2014-05-01

    Video compression and encryption became an essential part in multimedia application and video conferencing in particular. Applying both techniques simultaneously is one of the challenges where the size and the quality are important. In this paper we are suggesting the use of wavelet transform in order to deal with the low frequency coefficients when undertaking the encryption on the wavelet high frequency coefficients while accomplishing the compression. Applying both methods simultaneously is not new. In this paper we are suggesting a way to improve the security level of the encryption with better computational performance in both encryption and compression. Both encryption and compression in this paper are based on edges extraction from the wavelet high frequency sub-bands. Although there are some research perform the edge detection on the spatial domain, but the number of edges produced based on wavelet can be dynamic which have an effect on the compression ratio dynamically. Moreover, this kind of edge detection in wavelet domain will add different level of selective encryption.

  13. Medical Mutual uses BabyLink as a key program in care management. Public relations strategies bring a barrage of print and TV stories.

    PubMed

    Herreria, J

    1998-01-01

    Medical Mutual of Ohio launched a statewide public relations campaign to increase utilization of Babylink, a free perinatal education and intervention program. Media activity reached its highest level during the spring months. The number of referrals to the program more than doubled when compared to pre-campaign activity. PMID:10387286

  14. Florida Keys

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Florida Keys are a chain of islands, islets and reefs extending from Virginia Key to the Dry Tortugas for about 309 kilometers (192 miles). The keys are chiefly limestone and coral formations. The larger islands of the group are Key West (with its airport), Key Largo, Sugarloaf Key, and Boca Chica Key. A causeway extends from the mainland to Key West.

    This image was acquired on October 28, 2001, by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long- term research effort to understand and protect our home planet. Through the study of Earth, NASA will help to provide sound science to policy and economic

  15. On the complexity of search for keys in quantum cryptography

    NASA Astrophysics Data System (ADS)

    Molotkov, S. N.

    2016-03-01

    The trace distance is used as a security criterion in proofs of security of keys in quantum cryptography. Some authors doubted that this criterion can be reduced to criteria used in classical cryptography. The following question has been answered in this work. Let a quantum cryptography system provide an ɛ-secure key such that ½‖ρ XE - ρ U ⊗ ρ E ‖1 < ɛ, which will be repeatedly used in classical encryption algorithms. To what extent does the ɛ-secure key reduce the number of search steps (guesswork) as compared to the use of ideal keys? A direct relation has been demonstrated between the complexity of the complete consideration of keys, which is one of the main security criteria in classical systems, and the trace distance used in quantum cryptography. Bounds for the minimum and maximum numbers of search steps for the determination of the actual key have been presented.

  16. Application of Mean of Absolute Deviation Method for the Selection of Best Nonlinear Component Based on Video Encryption

    NASA Astrophysics Data System (ADS)

    Anees, Amir; Khan, Waqar Ahmad; Gondal, Muhammad Asif; Hussain, Iqtadar

    2013-07-01

    The aim of this work is to make use of the mean of absolute deviation (MAD) method for the evaluation process of substitution boxes used in the advanced encryption standard. In this paper, we use the MAD technique to analyze some popular and prevailing substitution boxes used in encryption processes. In particular, MAD is applied to advanced encryption standard (AES), affine power affine (APA), Gray, Lui J., Residue Prime, S8 AES, SKIPJACK, and Xyi substitution boxes.

  17. Key Nutrients.

    ERIC Educational Resources Information Center

    Federal Extension Service (USDA), Washington, DC.

    Lessons written to help trainer agents prepare aides for work with families in the Food and Nutrition Program are presented in this booklet. The key nutrients discussed in the 10 lessons are protein, carbohydrates, fat, calcium, iron, iodine, and Vitamins A, B, C, and D. the format of each lesson is as follows: Purpose, Presentation, Application…

  18. Generation of plaintext-independent private key based on conditional decomposition strategy

    NASA Astrophysics Data System (ADS)

    Lin, Chao; Shen, Xueju; Lei, Ming

    2016-11-01

    We propose to generate the plaintext-independent private keys in optical asymmetric cryptosystem (OACS) based on the strategy of conditional decomposition (CD). Following this strategy, an OACS is designed with the principle of superposition of two vectorial beams. The proposed cryptosystem can remove the silhouette which is discovered in the two beams interference-based cryptosystem. To relieve the difficulty of key distribution, a structured spiral phase key (SSPK) is utilized instead of the random phase key (RPK). And a comparison on the performance of two kinds of keys in both the encryption and decryption process is made to show the advantage of SSPK over RPK.

  19. Practical issues in quantum-key-distribution postprocessing

    SciTech Connect

    Fung, C.-H. Fred; Chau, H. F.; Ma Xiongfeng

    2010-01-15

    Quantum key distribution (QKD) is a secure key generation method between two distant parties by wisely exploiting properties of quantum mechanics. In QKD, experimental measurement outcomes on quantum states are transformed by the two parties to a secret key. This transformation is composed of many logical steps (as guided by security proofs), which together will ultimately determine the length of the final secret key and its security. We detail the procedure for performing such classical postprocessing taking into account practical concerns (including the finite-size effect and authentication and encryption for classical communications). This procedure is directly applicable to realistic QKD experiments and thus serves as a recipe that specifies what postprocessing operations are needed and what the security level is for certain lengths of the keys. Our result is applicable to the BB84 protocol with a single or entangled photon source.

  20. Practical issues in quantum-key-distribution postprocessing

    NASA Astrophysics Data System (ADS)

    Fung, Chi-Hang Fred; Ma, Xiongfeng; Chau, H. F.

    2010-01-01

    Quantum key distribution (QKD) is a secure key generation method between two distant parties by wisely exploiting properties of quantum mechanics. In QKD, experimental measurement outcomes on quantum states are transformed by the two parties to a secret key. This transformation is composed of many logical steps (as guided by security proofs), which together will ultimately determine the length of the final secret key and its security. We detail the procedure for performing such classical postprocessing taking into account practical concerns (including the finite-size effect and authentication and encryption for classical communications). This procedure is directly applicable to realistic QKD experiments and thus serves as a recipe that specifies what postprocessing operations are needed and what the security level is for certain lengths of the keys. Our result is applicable to the BB84 protocol with a single or entangled photon source.