Sample records for published fossil record

  1. Fossil moonseeds from the Paleogene of West Gondwana (Patagonia, Argentina).

    PubMed

    Jud, Nathan A; Iglesias, Ari; Wilf, Peter; Gandolfo, Maria A

    2018-06-08

    The fossil record is critical for testing biogeographic hypotheses. Menispermaceae (moonseeds) are a widespread family with a rich fossil record and alternative hypotheses related to their origin and diversification. The family is well-represented in Cenozoic deposits of the northern hemisphere, but the record in the southern hemisphere is sparse. Filling in the southern record of moonseeds will improve our ability to evaluate alternative biogeographic hypotheses. Fossils were collected from the Salamanca (early Paleocene, Danian) and the Huitrera (early Eocene, Ypresian) formations in Chubut Province, Argentina. We photographed them using light microscopy, epifluorescence, and scanning electron microscopy and compared the fossils with similar extant and fossil Menispermaceae using herbarium specimens and published literature. We describe fossil leaves and endocarps attributed to Menispermaceae from Argentinean Patagonia. The leaves are identified to the family, and the endocarps are further identified to the tribe Cissampelideae. The Salamancan endocarp is assigned to the extant genus Stephania. These fossils significantly expand the known range of Menispermaceae in South America, and they include the oldest (ca. 64 Ma) unequivocal evidence of the family worldwide. Our findings highlight the importance of West Gondwana in the evolution of Menispermaceae during the Paleogene. Currently, the fossil record does not discern between a Laurasian or Gondwanan origin; however, it does demonstrate that Menispermaceae grew well outside the tropics by the early Paleocene. The endocarps' affinity with Cissampelideae suggests that diversification of the family was well underway by the earliest Paleocene. © 2018 The Authors. American Journal of Botany is published by Wiley Periodicals, Inc. on behalf of the Botanical Society of America.

  2. The fossil record of ecdysis, and trends in the moulting behaviour of trilobites.

    PubMed

    Daley, Allison C; Drage, Harriet B

    2016-03-01

    Ecdysis, the process of moulting an exoskeleton, is one of the key characters uniting arthropods, nematodes and a number of smaller phyla into Ecdysozoa. The arthropod fossil record, particularly trilobites, eurypterids and decapod crustaceans, yields information on moulting, although the current focus is predominantly descriptive and lacks a broader evolutionary perspective. We here review literature on the fossil record of ecdysis, synthesising research on the behaviour, evolutionary trends, and phylogenetic significance of moulting throughout the Phanerozoic. Approaches vary widely between taxonomic groups, but an overall theme uniting these works suggests that identifying moults in the palaeontological record must take into account the morphology, taphonomy and depositional environment of fossils. We also quantitatively analyse trends in trilobite ecdysis based on a newly generated database of published incidences of moulting behaviour. This preliminary work reveals significant taxonomic and temporal signal in the trilobite moulting fossil record, with free cheek moulting being prevalent across all Orders and throughout the Phanerozoic, and peaks of cephalic moulting in Phacopida during the Ordovician and rostral plate moulting in Redlichiida during the Cambrian. This study and a review of the literature suggest that it is feasible to extract large-scale evolutionary information from the fossil record of moulting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. A comprehensive database of quality-rated fossil ages for Sahul's Quaternary vertebrates.

    PubMed

    Rodríguez-Rey, Marta; Herrando-Pérez, Salvador; Brook, Barry W; Saltré, Frédérik; Alroy, John; Beeton, Nicholas; Bird, Michael I; Cooper, Alan; Gillespie, Richard; Jacobs, Zenobia; Johnson, Christopher N; Miller, Gifford H; Prideaux, Gavin J; Roberts, Richard G; Turney, Chris S M; Bradshaw, Corey J A

    2016-07-19

    The study of palaeo-chronologies using fossil data provides evidence for past ecological and evolutionary processes, and is therefore useful for predicting patterns and impacts of future environmental change. However, the robustness of inferences made from fossil ages relies heavily on both the quantity and quality of available data. We compiled Quaternary non-human vertebrate fossil ages from Sahul published up to 2013. This, the FosSahul database, includes 9,302 fossil records from 363 deposits, for a total of 478 species within 215 genera, of which 27 are from extinct and extant megafaunal species (2,559 records). We also provide a rating of reliability of individual absolute age based on the dating protocols and association between the dated materials and the fossil remains. Our proposed rating system identified 2,422 records with high-quality ages (i.e., a reduction of 74%). There are many applications of the database, including disentangling the confounding influences of hypothetical extinction drivers, better spatial distribution estimates of species relative to palaeo-climates, and potentially identifying new areas for fossil discovery.

  4. A comprehensive database of quality-rated fossil ages for Sahul’s Quaternary vertebrates

    PubMed Central

    Rodríguez-Rey, Marta; Herrando-Pérez, Salvador; Brook, Barry W.; Saltré, Frédérik; Alroy, John; Beeton, Nicholas; Bird, Michael I.; Cooper, Alan; Gillespie, Richard; Jacobs, Zenobia; Johnson, Christopher N.; Miller, Gifford H.; Prideaux, Gavin J.; Roberts, Richard G.; Turney, Chris S.M.; Bradshaw, Corey J.A.

    2016-01-01

    The study of palaeo-chronologies using fossil data provides evidence for past ecological and evolutionary processes, and is therefore useful for predicting patterns and impacts of future environmental change. However, the robustness of inferences made from fossil ages relies heavily on both the quantity and quality of available data. We compiled Quaternary non-human vertebrate fossil ages from Sahul published up to 2013. This, the FosSahul database, includes 9,302 fossil records from 363 deposits, for a total of 478 species within 215 genera, of which 27 are from extinct and extant megafaunal species (2,559 records). We also provide a rating of reliability of individual absolute age based on the dating protocols and association between the dated materials and the fossil remains. Our proposed rating system identified 2,422 records with high-quality ages (i.e., a reduction of 74%). There are many applications of the database, including disentangling the confounding influences of hypothetical extinction drivers, better spatial distribution estimates of species relative to palaeo-climates, and potentially identifying new areas for fossil discovery. PMID:27434208

  5. Fossilized Mammalian Erythrocytes Associated With a Tick Reveal Ancient Piroplasms.

    PubMed

    Poinar, George

    2017-07-01

    Ticks transmit a variety of pathogenic organisms to vertebrates, especially mammals. The fossil record of such associations is extremely rare. An engorged nymphal tick of the genus Ambylomma in Dominican amber was surrounded by erythrocytes from its mammalian host. Some of the exposed erythrocytes contained developmental stages of a hemoprotozoan resembling members of the Order Piroplasmida. The fossil piroplasm is described, its stages compared with those of extant piroplasms, and reasons provided why the mammalian host could have been a primate. The parasites were also found in the gut epithelial cells and body cavity of the fossil tick. Aside from providing the first fossil mammalian red blood cells and the first fossil intraerythrocytic hemoparasites, the present discovery shows that tick-piroplasm associations were already well established in the Tertiary. This discovery provides a timescale that can be used in future studies on the evolution of the Piroplasmida. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com Version of Record, first published online March 20, 2017 with fixed content and layout in compliance with Art. 8.1.3.2 ICZN.

  6. Ceratopetalum (Cunoniaceae) fruits of Australasian affinity from the early Eocene Laguna del Hunco flora, Patagonia, Argentina.

    PubMed

    Gandolfo, María A; Hermsen, Elizabeth J

    2017-03-01

    Radially symmetrical, five-winged fossil fruits from the highly diverse early Eocene Laguna del Hunco flora of Chubut Province, Patagonia, Argentina, are named, described and illustrated. The main goals are to assess the affinities of the fossils and to place them in an evolutionary, palaeoecological and biogeographic context. Specimens of fossil fruits were collected from the Tufolitas Laguna del Hunco. They were prepared, photographed and compared with similar extant and fossil fruits using published literature. Their structure was also evaluated by comparing them with that of modern Ceratopetalum (Cunoniaceae) fruits through examination of herbarium specimens. The Laguna del Hunco fossil fruits share the diagnostic features that characterize modern and fossil Ceratopetalum (symmetry, number of fruit wings, presence of a conspicuous floral nectary and overall venation pattern). The pattern of the minor wing (sepal) veins observed in the Patagonian fossil fruits is different from that of modern and previously described fossil Ceratopetalum fruits; therefore, a new fossil species is recognized. An apomorphy (absence of petals) suggests that the fossils belong within crown-group Ceratopetalum . The Patagonian fossil fruits are the oldest known record for Ceratopetalum . Because the affinities, provenance and age of the fossils are so well established, this new Ceratopetalum fossil species is an excellent candidate for use as a calibration point in divergence dating studies of the family Cunoniaceae. It represents the only record of Ceratopetalum outside Australasia, and further corroborates the biogeographic connection between the Laguna del Hunco flora and ancient and modern floras of the Australasian region. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company.

  7. New Eocene Coleoid (Cephalopoda) Diversity from Statolith Remains: Taxonomic Assignation, Fossil Record Analysis, and New Data for Calibrating Molecular Phylogenies

    PubMed Central

    Neige, Pascal; Lapierre, Hervé; Merle, Didier

    2016-01-01

    New coleoid cephalopods are described from statolith remains from the Middle Eocene (Middle Lutetian) of the Paris Basin. Fifteen fossil statoliths are identified and assigned to the Sepiidae (Sepia boletzkyi sp. nov.,? Sepia pira sp. nov.), Loliginidae (Loligo clarkei sp. nov.), and Ommastrephidae (genus indet.) families. The sediments containing these fossils indicate permanent aquatic settings in the infralittoral domain. These sediments range in age from 46 Mya to 43 Mya. Analysis of the fossil record of statoliths (from findings described here, together with a review of previously published data) indicates marked biases in our knowledge. Fossil statoliths are known from as far back as the Early Jurassic (199.3 to 190.8 Mya) but surprisingly, to the best of our knowledge, no record occurs in the Cretaceous. This is a “knowledge bias” and clearly calls for further studies. Finally, we attempt to compare findings described here with fossils previously used to constrain divergence and/or diversification ages of some coleoid subclades in molecular phylogenies. This comparison clearly indicates that the new records detailed here will challenge some estimated divergence times of coleoid cephalopod subclades. PMID:27192490

  8. New Eocene Coleoid (Cephalopoda) Diversity from Statolith Remains: Taxonomic Assignation, Fossil Record Analysis, and New Data for Calibrating Molecular Phylogenies.

    PubMed

    Neige, Pascal; Lapierre, Hervé; Merle, Didier

    2016-01-01

    New coleoid cephalopods are described from statolith remains from the Middle Eocene (Middle Lutetian) of the Paris Basin. Fifteen fossil statoliths are identified and assigned to the Sepiidae (Sepia boletzkyi sp. nov.,? Sepia pira sp. nov.), Loliginidae (Loligo clarkei sp. nov.), and Ommastrephidae (genus indet.) families. The sediments containing these fossils indicate permanent aquatic settings in the infralittoral domain. These sediments range in age from 46 Mya to 43 Mya. Analysis of the fossil record of statoliths (from findings described here, together with a review of previously published data) indicates marked biases in our knowledge. Fossil statoliths are known from as far back as the Early Jurassic (199.3 to 190.8 Mya) but surprisingly, to the best of our knowledge, no record occurs in the Cretaceous. This is a "knowledge bias" and clearly calls for further studies. Finally, we attempt to compare findings described here with fossils previously used to constrain divergence and/or diversification ages of some coleoid subclades in molecular phylogenies. This comparison clearly indicates that the new records detailed here will challenge some estimated divergence times of coleoid cephalopod subclades.

  9. The origin of animals: Can molecular clocks and the fossil record be reconciled?

    PubMed

    Cunningham, John A; Liu, Alexander G; Bengtson, Stefan; Donoghue, Philip C J

    2017-01-01

    The evolutionary emergence of animals is one of the most significant episodes in the history of life, but its timing remains poorly constrained. Molecular clocks estimate that animals originated and began diversifying over 100 million years before the first definitive metazoan fossil evidence in the Cambrian. However, closer inspection reveals that clock estimates and the fossil record are less divergent than is often claimed. Modern clock analyses do not predict the presence of the crown-representatives of most animal phyla in the Neoproterozoic. Furthermore, despite challenges provided by incomplete preservation, a paucity of phylogenetically informative characters, and uncertain expectations of the anatomy of early animals, a number of Neoproterozoic fossils can reasonably be interpreted as metazoans. A considerable discrepancy remains, but much of this can be explained by the limited preservation potential of early metazoans and the difficulties associated with their identification in the fossil record. Critical assessment of both records may permit better resolution of the tempo and mode of early animal evolution. © 2016 The Authors BioEssays Published by WILEY Periodicals, Inc.

  10. A detailed taxonomy of Upper Cretaceous and lower Tertiary Crassatellidae in the Eastern United States; an example of the nature of extinction at the boundary

    USGS Publications Warehouse

    Wingard, G. Lynn

    1993-01-01

    Current theories on the causes of extinction at the CretaceousTertiary boundary have been based on previously published data; however, few workers have stopped to ask the question, 'How good is the basic data set?' To test the accuracy of the published record, a quantitative and qualitative analysis of the Crassatellidae (Mollusca, Bivalvia) of the Gulf and Mid-Atlantic Coastal Plains of the United States for the Upper Cretaceous and lower Tertiary was conducted. Thirty-eight species names and four generic names are used in publications for the Crassatellidae within the geographic and stratigraphic constraints of this analysis. Fourteen of the 38 species names are represented by statistically valid numbers of specimens and were tested by using canonical discriminant analysis. All 38 names, with the exception of 1 invalid name and 4 names for which no representative specimen could be located, were evaluated qualitatively. The results show that the published fossil record is highly inaccurate. Only 8 valid, recognizable species exist in the Crassatellidae within the limits of this study, 14 names are synonymized, and 11 names are represented by indeterminate molds or poorly preserved specimens. Three of the four genera are well founded; the fourth is based on the juvenile of another genus and therefore synonymized. This detailed taxonomic analysis of the Crassatellidae illustrates that the published fossil record is not reliable. Calculations of evolutionary and paleobiologic significance based on poorly defined, overly split fossil groups, such as the Crassatellidae, are biased in the following ways: Rates of evolution and extinction are higher, Faunal turnover at mass extinctions appears more catastrophic, Species diversity is high, Average species durations are shortened, and Geographic ranges are restricted. The data on the taxonomically standardized Crassatellidae show evolutionary rates one-quarter to one-half that of the published fossil record; faunal change at the Cretaceous-Tertiary boundary that was not catastrophic; a constant number of species on each side of the Cretaceous-Tertiary boundary; a decrease in abundance in the Tertiary; and lower species diversity, longer average species durations, and expanded geographic ranges. Similar detailed taxonomic studies need to be conducted on other groups of organisms to test the patterns illustrated for the Crassatellidae and to determine the extent and direction of the bias in the published fossil record. Answers to our questions about evolutionary change cannot be found in the literature but rather with the fossils themselves. Evolution and extinction occur within small populations of species groups, and it is only through detailed analysis of these groups that we can achieve an understanding of the causes and effects of evolution and extinction.

  11. Federico Cesi and his field studies on the origin of fossils between 1610 and 1630.

    PubMed

    Scott, A C

    2001-09-01

    In 1603 Federico Cesi, along with four of his friends, founded the first Scientific Academy in Europe, the Accademia dei Lincei, which included Galileo Galillei as a member. Between 1611 and 1630 Cesi undertook an ambitious project to collect and record fossils from his lands around Acquasparta in Umbria. He had drawings and descriptions made of all the excavated fossils, fossil woods and their sites of origin. He died before his work could be published and it was left to his friend Francesco Stelluti to publish a monograph in which he claimed that evidence demonstrated that the fossil woods were formed from stone and were 'not once living'. The corpus of drawings, now in the Royal Collection at Windsor, has allowed the project to be reconstructed and fieldwork in Italy has shown that the complex nature of the fossil preservation could have easily confused the researchers and have led to misinterpretation of the fossils. This research by Cesi is the first to combine field and specimen data to interpret the origin of fossils and has been widely neglected by historians of Science.

  12. The Ecological Rise of Whales Chronicled by the Fossil Record.

    PubMed

    Pyenson, Nicholas D

    2017-06-05

    The evolution of cetaceans is one of the best examples of macroevolution documented from the fossil record. While ecological transitions dominate each phase of cetacean history, this context is rarely stated explicitly. The first major ecological phase involves a transition from riverine and deltaic environments to marine ones, concomitant with dramatic evolutionary transformations documented in their early fossil record. The second major phase involves ecological shifts associated with evolutionary innovations: echolocation (facilitating hunting prey at depth) and filter-feeding (enhancing foraging efficiency on small prey). This latter phase involves body size shifts, attributable to changes in foraging depth and environmental forcing, as well as re-invasions of freshwater systems on continental basins by multiple lineages. Modern phenomena driving cetacean ecology, such as trophic dynamics and arms races, have an evolutionary basis that remains mostly unexamined. The fossil record of cetaceans provides an historical basis for understanding current ecological mechanisms and consequences, especially as global climate change rapidly alters ocean and river ecosystems at rates and scales comparable to those over geologic time. Published by Elsevier Ltd.

  13. Fossilized embryos are widespread but the record is temporally and taxonomically biased

    USGS Publications Warehouse

    Donoghue, P.C.J.; Kouchinsky, A.; Waloszek, Dieter; Bengtson, S.; Dong, X.-P.; Val'Kov, A.K.; Cunningham, J.A.; Repetski, J.E.

    2006-01-01

    We report new discoveries of embryos and egg capsules from the Lower Cambrian of Siberia, Middle Cambrian of Australia and Lower Ordovician of North America. Together with existing records, embryos have now been recorded from four of the seven continents. However, the new discoveries highlight secular and systematic biases in the fossil record of embryonic stages. The temporal window within which the embryos and egg capsules are found is of relatively short duration; it ends in the Early Ordovician and is roughly coincident with that of typical "Orsten"-type faunas. The reduced occurrence of such fossils has been attributed to reducing levels of phosphate in marine waters during the early Paleozoic, but may also be owing to the increasing depth of sediment mixing by infaunal metazoans. Furthermore, most records younger than the earliest Cambrian are of a single kind - large eggs and embryos of the priapulid-like scalidophoran Markuelia. We explore alternative explanations for the low taxonomic diversity of embryos recovered thus far, including sampling, size, anatomy, ecology, and environment, concluding that the preponderance of Markuelia embryos is due to its precocious development of cuticle at an embryonic stage, predisposing it to preservation through action as a substrate on which microbially mediated precipitation of authigenic calcium phosphate may occur. The fossil record of embryos may be limited to a late Neoproterozoic to early Ordovician snapshot that is subject to dramatic systematic bias. Together, these biases must be considered seriously in attempts to use the fossil record to arbitrate between hypotheses of developmental and life history evolution implicated in the origin of metazoan clades. ?? 2006 Blackwell Publishing Ltd.

  14. On microbial contaminants, micropseudofossils, and the oldest records of life

    USGS Publications Warehouse

    Cloud, P.; Morrison, K.

    1979-01-01

    Microbial contaminants may be introduced on outcrop as well as en route to or in the laboratory. Micropseudofossils may be natural or man-made. It is possible to recognize such misleading objects and important that they are not allowed to dilute the growing record of authentic pre-Phanerozoic life. Filamentous microbial contaminants from minute cracks in samples of ancient carbonate rocks from Brazil (perhaps 1 Ga old) and South Africa (???2.3 Ga old) are similar to occurrences previously described as fossils. Published records of supposedly Archean microbial life also include microcontaminants and laboratory artifacts. Although microstructures from sedimentary rocks of the Swaziland system could be fossils, they are not demonstrably so. The oldest structurally preserved fossils yet known seem to be the filaments described by Lois Nagy from stromatolitic limestone in the ???2.3 Ga old Malmani Dolomite of South Africa. It will be difficult to establish unequivocal older records in the absence of definitive ultrastructural or micro-chemical evidence. ?? 1979.

  15. Development and Application of Sr/Ca-δ18O-Sea Surface Temperature calibrations for Last Glacial Maximum-Aged Isopora corals in the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Brenner, L. D.; Linsley, B. K.; Potts, D. C.; Felis, T.; Mcgregor, H. V.; Gagan, M. K.; Inoue, M.; Tudhope, A. W.; Esat, T. M.; Thompson, W. G.; Tiwari, M.; Fallon, S.; Humblet, M.; Yokoyama, Y.; Webster, J.

    2016-12-01

    Isopora (Acroporidae) are sub-massive to massive corals found on most modern and fossil Indo-Pacific reefs. Despite their abundance, they are largely absent from the paleoceanographic literature but have the potential to provide proxy data where other commonly used corals, such as Porites, are sparse. The retrieval of Isopora fossils during International Ocean Discovery Program Leg 325 in the Great Barrier Reef (GBR) signaled the need to evaluate their possible paleoceanographic utility. We developed modern skeletal Sr/Ca- and δ18O-sea surface temperature (SST) calibrations for six modern Isopora colonies collected at Heron Island in the southern GBR. Pairing the coral Sr/Ca record with monthly SST data yielded Reduced Major Axis Sr/Ca- and δ18O-SST sensitivities of -0.054 mmol/mol/°C and -0.152 ‰/°C, respectively, falling within the range of published Porites values. We applied our Isopora-based regressions and previously published sensitivities from other species to a suite (n=37) of fossil samples collected from IODP 32. The calibrations produced a range of 3-7°C of warming, averaging 5°C, in the GBR from 22 ka to modern climate. This SST change is similar or slightly larger than other coral studies and larger than planktonic foraminifera Mg/Ca records. The planktonic Mg/Ca records from the Indonesian and Western Pacific Warm Pools indicate a warming of 3-3.5°C since 23ka (Linsley et al., 2010) while a fossil coral record from Tahiti indicates a warming of 3.2°C from 9.5ka to present (DeLong et al., 2010) and western Pacific coral records suggest a cooling of 5-6°C (Gagan et al., 2010; Guilderson et al., 1994: Beck et al., 1997), although these value might require rescaling (Gagan et al., 2012) resulting in slightly warmer temperature calculations. Our Isopora fossils from the GBR speak to the spatial heterogeneity of warming since the LGM and the continued need to develop more records for a more comprehensive understanding of the deglaciation.

  16. Ceratopetalum (Cunoniaceae) fruits of Australasian affinity from the early Eocene Laguna del Hunco flora, Patagonia, Argentina

    PubMed Central

    Hermsen, Elizabeth J

    2017-01-01

    Abstract Background and Aims Radially symmetrical, five-winged fossil fruits from the highly diverse early Eocene Laguna del Hunco flora of Chubut Province, Patagonia, Argentina, are named, described and illustrated. The main goals are to assess the affinities of the fossils and to place them in an evolutionary, palaeoecological and biogeographic context. Methods Specimens of fossil fruits were collected from the Tufolitas Laguna del Hunco. They were prepared, photographed and compared with similar extant and fossil fruits using published literature. Their structure was also evaluated by comparing them with that of modern Ceratopetalum (Cunoniaceae) fruits through examination of herbarium specimens. Key Results The Laguna del Hunco fossil fruits share the diagnostic features that characterize modern and fossil Ceratopetalum (symmetry, number of fruit wings, presence of a conspicuous floral nectary and overall venation pattern). The pattern of the minor wing (sepal) veins observed in the Patagonian fossil fruits is different from that of modern and previously described fossil Ceratopetalum fruits; therefore, a new fossil species is recognized. An apomorphy (absence of petals) suggests that the fossils belong within crown-group Ceratopetalum. Conclusions The Patagonian fossil fruits are the oldest known record for Ceratopetalum. Because the affinities, provenance and age of the fossils are so well established, this new Ceratopetalum fossil species is an excellent candidate for use as a calibration point in divergence dating studies of the family Cunoniaceae. It represents the only record of Ceratopetalum outside Australasia, and further corroborates the biogeographic connection between the Laguna del Hunco flora and ancient and modern floras of the Australasian region. PMID:28110267

  17. Methods for the quantitative comparison of molecular estimates of clade age and the fossil record.

    PubMed

    Clarke, Julia A; Boyd, Clint A

    2015-01-01

    Approaches quantifying the relative congruence, or incongruence, of molecular divergence estimates and the fossil record have been limited. Previously proposed methods are largely node specific, assessing incongruence at particular nodes for which both fossil data and molecular divergence estimates are available. These existing metrics, and other methods that quantify incongruence across topologies including entirely extinct clades, have so far not taken into account uncertainty surrounding both the divergence estimates and the ages of fossils. They have also treated molecular divergence estimates younger than previously assessed fossil minimum estimates of clade age as if they were the same as cases in which they were older. However, these cases are not the same. Recovered divergence dates younger than compared oldest known occurrences require prior hypotheses regarding the phylogenetic position of the compared fossil record and standard assumptions about the relative timing of morphological and molecular change to be incorrect. Older molecular dates, by contrast, are consistent with an incomplete fossil record and do not require prior assessments of the fossil record to be unreliable in some way. Here, we compare previous approaches and introduce two new descriptive metrics. Both metrics explicitly incorporate information on uncertainty by utilizing the 95% confidence intervals on estimated divergence dates and data on stratigraphic uncertainty concerning the age of the compared fossils. Metric scores are maximized when these ranges are overlapping. MDI (minimum divergence incongruence) discriminates between situations where molecular estimates are younger or older than known fossils reporting both absolute fit values and a number score for incompatible nodes. DIG range (divergence implied gap range) allows quantification of the minimum increase in implied missing fossil record induced by enforcing a given set of molecular-based estimates. These metrics are used together to describe the relationship between time trees and a set of fossil data, which we recommend be phylogenetically vetted and referred on the basis of apomorphy. Differences from previously proposed metrics and the utility of MDI and DIG range are illustrated in three empirical case studies from angiosperms, ostracods, and birds. These case studies also illustrate the ways in which MDI and DIG range may be used to assess time trees resultant from analyses varying in calibration regime, divergence dating approach or molecular sequence data analyzed. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Cryptic iridescence in a fossil weevil generated by single diamond photonic crystals.

    PubMed

    McNamara, Maria E; Saranathan, Vinod; Locatelli, Emma R; Noh, Heeso; Briggs, Derek E G; Orr, Patrick J; Cao, Hui

    2014-11-06

    Nature's most spectacular colours originate in integumentary tissue architectures that scatter light via nanoscale modulations of the refractive index. The most intricate biophotonic nanostructures are three-dimensional crystals with opal, single diamond or single gyroid lattices. Despite intense interest in their optical and structural properties, the evolution of such nanostructures is poorly understood, due in part to a lack of data from the fossil record. Here, we report preservation of single diamond (Fd-3m) three-dimensional photonic crystals in scales of a 735,000 year old specimen of the brown Nearctic weevil Hypera diversipunctata from Gold Run, Canada, and in extant conspecifics. The preserved red to green structural colours exhibit near-field brilliancy yet are inconspicuous from afar; they most likely had cryptic functions in substrate matching. The discovery of pristine fossil examples indicates that the fossil record is likely to yield further data on the evolution of three-dimensional photonic nanostructures and their biological functions. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  19. Using more than the oldest fossils: dating osmundaceae with three Bayesian clock approaches.

    PubMed

    Grimm, Guido W; Kapli, Paschalia; Bomfleur, Benjamin; McLoughlin, Stephen; Renner, Susanne S

    2015-05-01

    A major concern in molecular clock dating is how to use information from the fossil record to calibrate genetic distances from DNA sequences. Here we apply three Bayesian dating methods that differ in how calibration is achieved-"node dating" (ND) in BEAST, "total evidence" (TE) dating in MrBayes, and the "fossilized birth-death" (FBD) in FDPPDiv-to infer divergence times in the royal ferns. Osmundaceae have 16-17 species in four genera, two mainly in the Northern Hemisphere and two in South Africa and Australasia; they are the sister clade to the remaining leptosporangiate ferns. Their fossil record consists of at least 150 species in ∼17 genera. For ND, we used the five oldest fossils, whereas for TE and FBD dating, which do not require forcing fossils to nodes and thus can use more fossils, we included up to 36 rhizomes and frond compression/impression fossils, which for TE dating were scored for 33 morphological characters. We also subsampled 10%, 25%, and 50% of the 36 fossils to assess model sensitivity. FBD-derived divergence ages were generally greater than those inferred from ND; two of seven TE-derived ages agreed with FBD-obtained ages, the others were much younger or much older than ND or FBD ages. We prefer the FBD-derived ages because they best fit the Osmundales fossil record (including Triassic fossils not used in our study). Under the preferred model, the clade encompassing extant Osmundaceae (and many fossils) dates to the latest Paleozoic to Early Triassic; divergences of the extant species occurred during the Neogene. Under the assumption of constant speciation and extinction rates, the FBD approach yielded speciation and extinction rates that overlapped those obtained from just neontological data. However, FBD estimates of speciation and extinction are sensitive to violations in the assumption of continuous fossil sampling; therefore, these estimates should be treated with caution. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Phylogeny and Divergence Times of Lemurs Inferred with Recent and Ancient Fossils in the Tree.

    PubMed

    Herrera, James P; Dávalos, Liliana M

    2016-09-01

    Paleontological and neontological systematics seek to answer evolutionary questions with different data sets. Phylogenies inferred for combined extant and extinct taxa provide novel insights into the evolutionary history of life. Primates have an extensive, diverse fossil record and molecular data for living and extinct taxa are rapidly becoming available. We used two models to infer the phylogeny and divergence times for living and fossil primates, the tip-dating (TD) and fossilized birth-death process (FBD). We collected new morphological data, especially on the living and extinct endemic lemurs of Madagascar. We combined the morphological data with published DNA sequences to infer near-complete (88% of lemurs) time-calibrated phylogenies. The results suggest that primates originated around the Cretaceous-Tertiary boundary, slightly earlier than indicated by the fossil record and later than previously inferred from molecular data alone. We infer novel relationships among extinct lemurs, and strong support for relationships that were previously unresolved. Dates inferred with TD were significantly older than those inferred with FBD, most likely related to an assumption of a uniform branching process in the TD compared with a birth-death process assumed in the FBD. This is the first study to combine morphological and DNA sequence data from extinct and extant primates to infer evolutionary relationships and divergence times, and our results shed new light on the tempo of lemur evolution and the efficacy of combined phylogenetic analyses. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. The Fossil Calibration Database-A New Resource for Divergence Dating.

    PubMed

    Ksepka, Daniel T; Parham, James F; Allman, James F; Benton, Michael J; Carrano, Matthew T; Cranston, Karen A; Donoghue, Philip C J; Head, Jason J; Hermsen, Elizabeth J; Irmis, Randall B; Joyce, Walter G; Kohli, Manpreet; Lamm, Kristin D; Leehr, Dan; Patané, Josés L; Polly, P David; Phillips, Matthew J; Smith, N Adam; Smith, Nathan D; Van Tuinen, Marcel; Ware, Jessica L; Warnock, Rachel C M

    2015-09-01

    Fossils provide the principal basis for temporal calibrations, which are critical to the accuracy of divergence dating analyses. Translating fossil data into minimum and maximum bounds for calibrations is the most important-often least appreciated-step of divergence dating. Properly justified calibrations require the synthesis of phylogenetic, paleontological, and geological evidence and can be difficult for nonspecialists to formulate. The dynamic nature of the fossil record (e.g., new discoveries, taxonomic revisions, updates of global or local stratigraphy) requires that calibration data be updated continually lest they become obsolete. Here, we announce the Fossil Calibration Database (http://fossilcalibrations.org), a new open-access resource providing vetted fossil calibrations to the scientific community. Calibrations accessioned into this database are based on individual fossil specimens and follow best practices for phylogenetic justification and geochronological constraint. The associated Fossil Calibration Series, a calibration-themed publication series at Palaeontologia Electronica, will serve as a key pipeline for peer-reviewed calibrations to enter the database. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. The fossil record and taphonomy of butterflies and moths (Insecta, Lepidoptera): implications for evolutionary diversity and divergence-time estimates.

    PubMed

    Sohn, Jae-Cheon; Labandeira, Conrad C; Davis, Donald R

    2015-02-04

    It is conventionally accepted that the lepidopteran fossil record is significantly incomplete when compared to the fossil records of other, very diverse, extant insect orders. Such an assumption, however, has been based on cumulative diversity data rather than using alternative statistical approaches from actual specimen counts. We reviewed documented specimens of the lepidopteran fossil record, currently consisting of 4,593 known specimens that are comprised of 4,262 body fossils and 331 trace fossils. The temporal distribution of the lepidopteran fossil record shows significant bias towards the late Paleocene to middle Eocene time interval. Lepidopteran fossils also record major shifts in preservational style and number of represented localities at the Mesozoic stage and Cenozoic epoch level of temporal resolution. Only 985 of the total known fossil specimens (21.4%) were assigned to 23 of the 40 extant lepidopteran superfamilies. Absolute numbers and proportions of preservation types for identified fossils varied significantly across superfamilies. The secular increase of lepidopteran family-level diversity through geologic time significantly deviates from the general pattern of other hyperdiverse, ordinal-level lineages. Our statistical analyses of the lepidopteran fossil record show extreme biases in preservation type, age, and taxonomic composition. We highlight the scarcity of identified lepidopteran fossils and provide a correspondence between the latest lepidopteran divergence-time estimates and relevant fossil occurrences at the superfamily level. These findings provide caution in interpreting the lepidopteran fossil record through the modeling of evolutionary diversification and in determination of divergence time estimates.

  3. Fruits and wood of Parinari from the early Miocene of Panama and the fossil record of Chrysobalanaceae.

    PubMed

    Jud, Nathan A; Nelson, Chris W; Herrera, Fabiany

    2016-02-01

    Chrysobalanaceae are woody plants with over 500 species in 20 genera. They are among the most common trees in tropical forests, but a sparse fossil record has limited our ability to test evolutionary and biogeographic hypotheses, and several previous reports of Chrysobalanaceae megafossils are doubtful. We prepared fossil endocarps and wood collected from the lower Miocene beds along the Panama Canal using the cellulose acetate peel technique and examined them using light microscopy. We compared the fossil endocarps with previously published fossils and with fruits from herbarium specimens. We compared the fossil wood with photographs and descriptions of extant species. Parinari endocarps can be distinguished from other genera within Chrysobalanaceae by a suite of features, i.e., thick wall, a secondary septum, seminal cavities lined with dense, woolly trichomes, and two ovate to lingulate basal germination plugs. Fossil endocarps from the Cucaracha, Culebra, and La Boca Formations confirm that Parinari was present in the neotropics by the early Miocene. The earliest unequivocal evidence of crown-group Chrysobalanaceae is late Oligocene-early Miocene, and the genus Parinari was distinct by at least 19 million years ago. Parinari and other Chrysobalanaceae likely reached the neotropics via long-distance dispersal rather than vicariance. The presence of Parinari in the Cucaracha flora supports the interpretation of a riparian, moist tropical forest environment. Parinari was probably a canopy-dominant tree in the Cucaracha forest and took advantage of the local megafauna for seed dispersal. © 2016 Botanical Society of America.

  4. A dating success story: genomes and fossils converge on placental mammal origins

    PubMed Central

    2012-01-01

    The timing of the placental mammal radiation has been a source of contention for decades. The fossil record of mammals extends over 200 million years, but no confirmed placental mammal fossils are known prior to 64 million years ago, which is approximately 1.5 million years after the Cretaceous-Paleogene (K-Pg) mass extinction that saw the end of non-avian dinosaurs. Thus, it came as a great surprise when the first published molecular clock studies suggested that placental mammals originated instead far back in the Cretaceous, in some cases doubling divergence estimates based on fossils. In the last few decades, more than a hundred new genera of Mesozoic mammals have been discovered, and molecular divergence studies have grown from simple clock-like models applied to a few genes to sophisticated analyses of entire genomes. Yet, molecular and fossil-based divergence estimates for placental mammal origins have remained remote, with knock-on effects for macro-scale reconstructions of mammal evolution. A few recent molecular studies have begun to converge with fossil-based estimates, and a new phylogenomic study in particular shows that the palaeontological record was mostly correct; most placental mammal orders diversified after the K-Pg mass extinction. While a small gap still remains for Late Cretaceous supraordinal divergences, this study has significantly improved the congruence between molecular and palaeontological data and heralds a broader integration of these fields of evolutionary science. PMID:22883371

  5. The phylogeny and evolutionary history of tyrannosauroid dinosaurs.

    PubMed

    Brusatte, Stephen L; Carr, Thomas D

    2016-02-02

    Tyrannosauroids--the group of carnivores including Tyrannosaurs rex--are some of the most familiar dinosaurs of all. A surge of recent discoveries has helped clarify some aspects of their evolution, but competing phylogenetic hypotheses raise questions about their relationships, biogeography, and fossil record quality. We present a new phylogenetic dataset, which merges published datasets and incorporates recently discovered taxa. We analyze it with parsimony and, for the first time for a tyrannosauroid dataset, Bayesian techniques. The parsimony and Bayesian results are highly congruent, and provide a framework for interpreting the biogeography and evolutionary history of tyrannosauroids. Our phylogenies illustrate that the body plan of the colossal species evolved piecemeal, imply no clear division between northern and southern species in western North America as had been argued, and suggest that T. rex may have been an Asian migrant to North America. Over-reliance on cranial shape characters may explain why published parsimony studies have diverged and filling three major gaps in the fossil record holds the most promise for future work.

  6. The phylogeny and evolutionary history of tyrannosauroid dinosaurs

    PubMed Central

    Brusatte, Stephen L.; Carr, Thomas D.

    2016-01-01

    Tyrannosauroids—the group of carnivores including Tyrannosaurs rex—are some of the most familiar dinosaurs of all. A surge of recent discoveries has helped clarify some aspects of their evolution, but competing phylogenetic hypotheses raise questions about their relationships, biogeography, and fossil record quality. We present a new phylogenetic dataset, which merges published datasets and incorporates recently discovered taxa. We analyze it with parsimony and, for the first time for a tyrannosauroid dataset, Bayesian techniques. The parsimony and Bayesian results are highly congruent, and provide a framework for interpreting the biogeography and evolutionary history of tyrannosauroids. Our phylogenies illustrate that the body plan of the colossal species evolved piecemeal, imply no clear division between northern and southern species in western North America as had been argued, and suggest that T. rex may have been an Asian migrant to North America. Over-reliance on cranial shape characters may explain why published parsimony studies have diverged and filling three major gaps in the fossil record holds the most promise for future work. PMID:26830019

  7. The phylogeny and evolutionary history of tyrannosauroid dinosaurs

    NASA Astrophysics Data System (ADS)

    Brusatte, Stephen L.; Carr, Thomas D.

    2016-02-01

    Tyrannosauroids—the group of carnivores including Tyrannosaurs rex—are some of the most familiar dinosaurs of all. A surge of recent discoveries has helped clarify some aspects of their evolution, but competing phylogenetic hypotheses raise questions about their relationships, biogeography, and fossil record quality. We present a new phylogenetic dataset, which merges published datasets and incorporates recently discovered taxa. We analyze it with parsimony and, for the first time for a tyrannosauroid dataset, Bayesian techniques. The parsimony and Bayesian results are highly congruent, and provide a framework for interpreting the biogeography and evolutionary history of tyrannosauroids. Our phylogenies illustrate that the body plan of the colossal species evolved piecemeal, imply no clear division between northern and southern species in western North America as had been argued, and suggest that T. rex may have been an Asian migrant to North America. Over-reliance on cranial shape characters may explain why published parsimony studies have diverged and filling three major gaps in the fossil record holds the most promise for future work.

  8. The Quaternary fossil-pollen record and global change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimm, E.C.

    Fossil pollen provide one of the most valuable records of vegetation and climate change during the recent geological past. Advantages of the fossil-pollen record are that deposits containing fossil pollen are widespread, especially in areas having natural lakes, that fossil pollen occurs in continuous stratigraphic sequences spanning millennia, and that fossil pollen occurs in quantitative assemblages permitting a multivariate approach for reconstructing past vegetation and climates. Because of stratigraphic continuity, fossil pollen records climate cycles on a wide range of scales, from annual to the 100 ka Milankovitch cycles. Receiving particular emphasis recently are decadal to century scale changes, possiblemore » from the sediments of varved lakes, and late Pleistocene events on a 5--10 ka scale possibly correlating with the Heinrich events in the North Atlantic marine record or the Dansgaard-Oeschger events in the Greenland ice-core record. Researchers have long reconstructed vegetation and climate by qualitative interpretation of the fossil-pollen record. Recently quantitative interpretation has developed with the aid of large fossil-pollen databases and sophisticated numerical models. In addition, fossil pollen are important climate proxy data for validating General Circulation Models, which are used for predicting the possible magnitude future climate change. Fossil-pollen data also contribute to an understanding of ecological issues associated with global climate change, including questions of how and how rapidly ecosystems might respond to abrupt climate change.« less

  9. Dental development in living and fossil orangutans.

    PubMed

    Smith, Tanya M

    2016-05-01

    Numerous studies have investigated molar development in extant and fossil hominoids, yet relatively little is known about orangutans, the only great ape with an extensive fossil record. This study characterizes aspects of dental development, including cuspal enamel daily secretion rate, long-period line periodicities, cusp-specific molar crown formation times and extension rates, and initiation and completion ages in living and fossil orangutan postcanine teeth. Daily secretion rate and periodicities in living orangutans are similar to previous reports, while crown formation times often exceed published values, although direct comparisons are limited. One wild Bornean individual died at 4.5 years of age with fully erupted first molars (M1s), while a captive individual and a wild Sumatran individual likely erupted their M1s around five or six years of age. These data underscore the need for additional samples of orangutans of known sex, species, and developmental environment to explore potential sources of variation in molar emergence and their relationship to life history variables. Fossil orangutans possess larger crowns than living orangutans, show similarities in periodicities, and have faster daily secretion rate, longer crown formation times, and slower extension rates. Molar crown formation times exceed reported values for other fossil apes, including Gigantopithecus blacki. When compared to African apes, both living and fossil orangutans show greater cuspal enamel thickness values and periodicities, resulting in longer crown formation times and slower extension rates. Several of these variables are similar to modern humans, representing examples of convergent evolution. Molar crown formation does not appear to be equivalent among extant great apes or consistent within living and fossil members of Pongo or Homo. Copyright © 2016 The Author. Published by Elsevier Ltd.. All rights reserved.

  10. Likelihood of Tree Topologies with Fossils and Diversification Rate Estimation.

    PubMed

    Didier, Gilles; Fau, Marine; Laurin, Michel

    2017-11-01

    Since the diversification process cannot be directly observed at the human scale, it has to be studied from the information available, namely the extant taxa and the fossil record. In this sense, phylogenetic trees including both extant taxa and fossils are the most complete representations of the diversification process that one can get. Such phylogenetic trees can be reconstructed from molecular and morphological data, to some extent. Among the temporal information of such phylogenetic trees, fossil ages are by far the most precisely known (divergence times are inferences calibrated mostly with fossils). We propose here a method to compute the likelihood of a phylogenetic tree with fossils in which the only considered time information is the fossil ages, and apply it to the estimation of the diversification rates from such data. Since it is required in our computation, we provide a method for determining the probability of a tree topology under the standard diversification model. Testing our approach on simulated data shows that the maximum likelihood rate estimates from the phylogenetic tree topology and the fossil dates are almost as accurate as those obtained by taking into account all the data, including the divergence times. Moreover, they are substantially more accurate than the estimates obtained only from the exact divergence times (without taking into account the fossil record). We also provide an empirical example composed of 50 Permo-Carboniferous eupelycosaur (early synapsid) taxa ranging in age from about 315 Ma (Late Carboniferous) to 270 Ma (shortly after the end of the Early Permian). Our analyses suggest a speciation (cladogenesis, or birth) rate of about 0.1 per lineage and per myr, a marginally lower extinction rate, and a considerable hidden paleobiodiversity of early synapsids. [Extinction rate; fossil ages; maximum likelihood estimation; speciation rate.]. © The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Contemporaneous trace and body fossils from a late Pleistocene Lakebed in Victoria, Australia, allow assessment of bias in the fossil record.

    PubMed

    Camens, Aaron Bruce; Carey, Stephen Paul

    2013-01-01

    The co-occurrence of vertebrate trace and body fossils within a single geological formation is rare and the probability of these parallel records being contemporaneous (i.e. on or near the same bedding plane) is extremely low. We report here a late Pleistocene locality from the Victorian Volcanic Plains in south-eastern Australia in which demonstrably contemporaneous, but independently accumulated vertebrate trace and body fossils occur. Bite marks from a variety of taxa are also present on the bones. This site provides a unique opportunity to examine the biases of these divergent fossil records (skeletal, footprints and bite marks) that sampled a single fauna. The skeletal record produced the most complete fauna, with the footprint record indicating a markedly different faunal composition with less diversity and the feeding traces suggesting the presence, amongst others, of a predator not represented by either the skeletal or footprint records. We found that the large extinct marsupial predator Thylacoleo was the only taxon apparently represented by all three records, suggesting that the behavioral characteristics of large carnivores may increase the likelihood of their presence being detected within a fossil fauna. In contrast, Diprotodon (the largest-ever marsupial) was represented only by trace fossils at this site and was absent from the site's skeletal record, despite its being a common and easily detected presence in late Pleistocene skeletal fossil faunas elsewhere in Australia. Small mammals absent from the footprint record for the site were represented by skeletal fossils and bite marks on bones.

  12. Contemporaneous Trace and Body Fossils from a Late Pleistocene Lakebed in Victoria, Australia, Allow Assessment of Bias in the Fossil Record

    PubMed Central

    Camens, Aaron Bruce; Carey, Stephen Paul

    2013-01-01

    The co-occurrence of vertebrate trace and body fossils within a single geological formation is rare and the probability of these parallel records being contemporaneous (i.e. on or near the same bedding plane) is extremely low. We report here a late Pleistocene locality from the Victorian Volcanic Plains in south-eastern Australia in which demonstrably contemporaneous, but independently accumulated vertebrate trace and body fossils occur. Bite marks from a variety of taxa are also present on the bones. This site provides a unique opportunity to examine the biases of these divergent fossil records (skeletal, footprints and bite marks) that sampled a single fauna. The skeletal record produced the most complete fauna, with the footprint record indicating a markedly different faunal composition with less diversity and the feeding traces suggesting the presence, amongst others, of a predator not represented by either the skeletal or footprint records. We found that the large extinct marsupial predator Thylacoleo was the only taxon apparently represented by all three records, suggesting that the behavioral characteristics of large carnivores may increase the likelihood of their presence being detected within a fossil fauna. In contrast, Diprotodon (the largest-ever marsupial) was represented only by trace fossils at this site and was absent from the site's skeletal record, despite its being a common and easily detected presence in late Pleistocene skeletal fossil faunas elsewhere in Australia. Small mammals absent from the footprint record for the site were represented by skeletal fossils and bite marks on bones. PMID:23301008

  13. Metamorphosis Is Ancestral for Crown Euarthropods, and Evolved in the Cambrian or Earlier.

    PubMed

    Wolfe, Joanna M

    2017-09-01

    Macroevolutionary developmental biology employs fossilized ontogenetic data and phylogenetic comparative methods to probe the evolution of development at ancient nodes. Despite the prevalence of ecologically differentiated larval forms in marine invertebrates, it has been frequently presumed that the ancestors of arthropods were direct developers, and that metamorphosis may not have evolved until the Ordovician or later. Using fossils and new dated phylogenies, I infer that metamorphosis was likely ancestral for crown arthropods, contradicting this assumption. Based on a published morphological dataset encompassing 217 exceptionally preserved fossil and 96 extant taxa, fossils were directly incorporated into both the topology and age estimates, as in "tip dating" analyses. Using data from post-embryonic fossils representing 25 species throughout stem and crown arthropod lineages (as well as most of the 96 extant taxa), characters for metamorphosis were assigned based on inferred ecological changes in development (e.g., changes in habitat and adaptive landscape). Under all phylogenetic hypotheses, metamorphosis was supported as most likely ancestral to both ecdysozoans and euarthropods. Care must be taken to account for potential drastic post-embryonic morphological changes in evolutionary analyses. Many stem group euarthrpods may have had ecologically differentiated larval stages that did not preserve in the fossil record. Moreover, a complex life cycle and planktonic ecology may have evolved in the Ediacaran or earlier, and may have typified the pre-Cambrian explosion "wormworld" prior to the origin of crown group euarthropods. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  14. First Fossil Record of Alphonsea Hk. f. & T. (Annonaceae) from the Late Oligocene Sediments of Assam, India and Comments on Its Phytogeography

    PubMed Central

    Srivastava, Gaurav; Mehrotra, Rakesh C.

    2013-01-01

    A new fossil leaf impression of Alphonsea Hk. f. & T. of the family Annonaceae is described from the Late Oligocene sediments of Makum Coalfield, Assam, India. This is the first authentic record of the fossil of Alphonsea from the Tertiary rocks of South Asia. The Late Oligocene was the time of the last significant globally warm climate and the fossil locality was at 10°–15°N palaeolatitude. The known palaeoflora and sedimentological studies indicate a fluvio-marine deltaic environment with a mosaic of mangrove, fluvial, mire and lacustrine depositional environments. During the depositional period the suturing between the Indian and Eurasian plates was not complete to facilitate the plant migration. The suturing was over by the end of the Late Oligocene/beginning of Early Miocene resulting in the migration of the genus to Southeast Asia where it is growing profusely at present. The present study is in congruence with the earlier published palaeofloral and molecular phylogenetic data. The study also suggests that the Indian plate was not only a biotic ferry during its northward voyage from Gondwana to Asia but also a place for the origin of several plant taxa. PMID:23349701

  15. Evolutionary History of the Asian Horned Frogs (Megophryinae): Integrative Approaches to Timetree Dating in the Absence of a Fossil Record.

    PubMed

    Mahony, Stephen; Foley, Nicole M; Biju, S D; Teeling, Emma C

    2017-03-01

    Molecular dating studies typically need fossils to calibrate the analyses. Unfortunately, the fossil record is extremely poor or presently nonexistent for many species groups, rendering such dating analysis difficult. One such group is the Asian horned frogs (Megophryinae). Sampling all generic nomina, we combined a novel ∼5 kb dataset composed of four nuclear and three mitochondrial gene fragments to produce a robust phylogeny, with an extensive external morphological study to produce a working taxonomy for the group. Expanding the molecular dataset to include out-groups of fossil-represented ancestral anuran families, we compared the priorless RelTime dating method with the widely used prior-based Bayesian timetree method, MCMCtree, utilizing a novel combination of fossil priors for anuran phylogenetic dating. The phylogeny was then subjected to ancestral phylogeographic analyses, and dating estimates were compared with likely biogeographic vicariant events. Phylogenetic analyses demonstrated that previously proposed systematic hypotheses were incorrect due to the paraphyly of genera. Molecular phylogenetic, morphological, and timetree results support the recognition of Megophryinae as a single genus, Megophrys, with a subgenus level classification. Timetree results using RelTime better corresponded with the known fossil record for the out-group anuran tree. For the priorless in-group, it also outperformed MCMCtree when node date estimates were compared with likely influential historical biogeographic events, providing novel insights into the evolutionary history of this pan-Asian anuran group. Given a relatively small molecular dataset, and limited prior knowledge, this study demonstrates that the computationally rapid RelTime dating tool may outperform more popular and complex prior reliant timetree methodologies. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. The fossil record of the sixth extinction.

    PubMed

    Plotnick, Roy E; Smith, Felisa A; Lyons, S Kathleen

    2016-05-01

    Comparing the magnitude of the current biodiversity crisis with those in the fossil record is difficult without an understanding of differential preservation. Integrating data from palaeontological databases with information on IUCN status, ecology and life history characteristics of contemporary mammals, we demonstrate that only a small and biased fraction of threatened species (< 9%) have a fossil record, compared with 20% of non-threatened species. We find strong taphonomic biases related to body size and geographic range. Modern species with a fossil record tend to be large and widespread and were described in the 19(th) century. The expected magnitude of the current extinction based only on species with a fossil record is about half of that of one based on all modern species; values for genera are similar. The record of ancient extinctions may be similarly biased, with many species having originated and gone extinct without leaving a tangible record. © 2016 John Wiley & Sons Ltd/CNRS.

  17. A revised checklist of Nepticulidae fossils (Lepidoptera) indicates an Early Cretaceous origin.

    PubMed

    Doorenweerd, Camiel; Nieukerken, Erik J Van; Sohn, Jae-Cheon; Labandeira, Conrad C

    2015-05-27

    With phylogenetic knowledge of Lepidoptera rapidly increasing, catalysed by increasingly powerful molecular techniques, the demand for fossil calibration points to estimate an evolutionary timeframe for the order is becoming an increasingly pressing issue. The family Nepticulidae is a species rich, basal branch within the phylogeny of the Lepidoptera, characterized by larval leaf-mining habits, and thereby represents a potentially important lineage whose evolutionary history can be established more thoroughly with the potential use of fossil calibration points. Using our experience with extant global Nepticulidae, we discuss a list of characters that may be used to assign fossil leaf mines to Nepticulidae, and suggest useful methods for classifying relevant fossil material. We present a checklist of 79 records of Nepticulidae representing adult and leaf-mine fossils mentioned in literature, often with multiple exemplars constituting a single record. We provide our interpretation of these fossils. Two species now are included in the collective generic name Stigmellites: Stigmellites resupinata (Krassilov, 2008) comb. nov. (from Ophiheliconoma) and Stigmellites almeidae (Martins-Neto, 1989) comb. nov. (from Nepticula). Eleven records are for the first time attributed to Nepticulidae. After discarding several dubious records, including one possibly placing the family at a latest Jurassic position, we conclude that the oldest fossils likely attributable to Nepticulidae are several exemplars representing a variety of species from the Dakota Formation (USA). The relevant strata containing these earliest fossils are now dated at 102 Ma (million years ago) in age, corresponding to the latest Albian Stage of the Early Cretaceous. Integration of all records in the checklist shows that a continuous presence of nepticulid-like leaf mines preserved as compression-impression fossils and by amber entombment of adults have a fossil record extending to the latest Early Cretaceous.

  18. Cenozoic seawater Sr/Ca evolution

    NASA Astrophysics Data System (ADS)

    Sosdian, Sindia M.; Lear, Caroline H.; Tao, Kai; Grossman, Ethan L.; O'Dea, Aaron; Rosenthal, Yair

    2012-10-01

    Records of seawater chemistry help constrain temporal variations in geochemical processes that impact the global carbon cycle and climate through Earth's history. Here we reconstruct Cenozoic seawater Sr/Ca (Sr/Casw) using fossil Conus and turritellid gastropod Sr/Ca. Combined with an oxygen isotope paleotemperature record from the same samples, the gastropod record suggests that Sr/Caswwas slightly higher in the Eocene (˜11.4 ± 3 mmol/mol) than today (˜8.54 mmol/mol) and remained relatively stable from the mid- to late Cenozoic. We compare our gastropod Cenozoic Sr/Casw record with a published turritellid gastropod Sr/Casw record and other published biogenic (benthic foraminifera, fossil fish teeth) and inorganic precipitate (calcite veins) Sr/Caswrecords. Once the uncertainties with our gastropod-derived Sr/Casw are taken into account the Sr/Casw record agrees reasonably well with biogenic Sr/Caswrecords. Assuming a seawater [Ca] history derived from marine evaporite inclusions, all biogenic-based Sr/Casw reconstructions imply decreasing seawater [Sr] through the Cenozoic, whereas the calcite vein Sr/Casw reconstruction implies increasing [Sr] through the Cenozoic. We apply a simple geochemical model to examine the implications of divergence among these seawater [Sr] reconstructions and suggest that the interpretation and uncertainties associated with the gastropod and calcite vein proxies need to be revisited. Used in conjunction with records of carbonate depositional fluxes, our favored seawater Sr/Ca scenarios point to a significant increase in the proportion of aragonite versus calcite deposition in shelf sediments from the Middle Miocene, coincident with the proliferation of coral reefs. We propose that this occurred at least 10 million years after the seawater Mg/Ca threshold was passed, and was instead aided by declining levels of atmospheric carbon dioxide.

  19. At the feet of the dinosaurs: the early history and radiation of lizards.

    PubMed

    Evans, Susan E

    2003-11-01

    Lizards, snakes and amphisbaenians together constitute the Squamata, the largest and most diverse group of living reptiles. Despite their current success, the early squamate fossil record is extremely patchy. The last major survey of squamate palaeontology and evolution was published 20 years ago. Since then, there have been major changes in systematic theory and methodology, as well as a steady trickle of new fossil finds. This review examines our current understanding of the first 150 million years of squamate evolution in the light of the new data and changing ideas. Contrary to previous reports, no squamate fossils are currently documented before the Jurassic. Nonetheless, indirect evidence predicts that squamates had evolved by at least the middle Triassic, and had diversified into existing major lineages before the end of this period. There is thus a major gap in the squamate record at a time when key morphological features were evolving. With the exception of fragmentary remains from Africa and India, Jurassic squamates are known only from localities in northern continents (Laurasia). The situation improves in the Early Cretaceous, but the southern (Gondwanan) record remains extremely poor. This constrains palaeobiogeographic discussion and makes it difficult to predict centres of origin for major squamate clades on the basis of fossil evidence alone. Preliminary mapping of morphological characters onto a consensus tree demonstrates stages in the sequence of acquisition for some characters of the skull and postcranial skeleton, but many crucial stages--most notably those relating to the acquisition of squamate skull kinesis--remain unclear.

  20. Sporadic sampling, not climatic forcing, drives observed early hominin diversity.

    PubMed

    Maxwell, Simon J; Hopley, Philip J; Upchurch, Paul; Soligo, Christophe

    2018-05-08

    The role of climate change in the origin and diversification of early hominins is hotly debated. Most accounts of early hominin evolution link observed fluctuations in species diversity to directional shifts in climate or periods of intense climatic instability. None of these hypotheses, however, have tested whether observed diversity patterns are distorted by variation in the quality of the hominin fossil record. Here, we present a detailed examination of early hominin diversity dynamics, including both taxic and phylogenetically corrected diversity estimates. Unlike past studies, we compare these estimates to sampling metrics for rock availability (hominin-, primate-, and mammal-bearing formations) and collection effort, to assess the geological and anthropogenic controls on the sampling of the early hominin fossil record. Taxic diversity, primate-bearing formations, and collection effort show strong positive correlations, demonstrating that observed patterns of early hominin taxic diversity can be explained by temporal heterogeneity in fossil sampling rather than genuine evolutionary processes. Peak taxic diversity at 1.9 million years ago (Ma) is a sampling artifact, reflecting merely maximal rock availability and collection effort. In contrast, phylogenetic diversity estimates imply peak diversity at 2.4 Ma and show little relation to sampling metrics. We find that apparent relationships between early hominin diversity and indicators of climatic instability are, in fact, driven largely by variation in suitable rock exposure and collection effort. Our results suggest that significant improvements in the quality of the fossil record are required before the role of climate in hominin evolution can be reliably determined. Copyright © 2018 the Author(s). Published by PNAS.

  1. Organic molecules as chemical fossils - The molecular fossil record

    NASA Technical Reports Server (NTRS)

    Eglinton, G.

    1983-01-01

    The study of biochemical clues to the early earth and the origin of life is discussed. The methods used in such investigation are described, including the extraction, fractionation, and analysis of geolipids and the analysis of kerogen. The occurrence of molecular fossils in the geological record is examined, discussing proposed precursor-product relationships and the molecular assessment of deep sea sediments, ancient sediments, and crude petroleums. Alterations in the molecular record due to diagenesis and catagenesis are considered, and the use of microbial lipids as molecular fossils is discussed. The results of searches for molecular fossils in Precambrian sediments are assessed.

  2. The late Middle Pleistocene hominin fossil record of eastern Asia: synthesis and review.

    PubMed

    Bae, Christopher J

    2010-01-01

    Traditionally, Middle Pleistocene hominin fossils that cannot be allocated to Homo erectus sensu lato or modern H. sapiens have been assigned to different specific taxa. For example, in eastern Asia, these hominin fossils have been classified as archaic, early, or premodern H. sapiens. An increasing number of Middle Pleistocene hominin fossils are currently being assigned to H. heidelbergensis. This is particularly the case for the African and European Middle Pleistocene hominin fossil record. There have been suggestions that perhaps the eastern Asian late Middle Pleistocene hominins can also be allocated to the H. heidelbergensis hypodigm. In this article, I review the current state of the late Middle Pleistocene hominin fossil record from eastern Asia and examine the various arguments for assigning these hominins to the different specific taxa. The two primary conclusions drawn from this review are as follows: 1) little evidence currently exists in the eastern Asian Middle Pleistocene hominin fossil record to support their assignment to H. heidelbergensis; and 2) rather than add to the growing list of hominin fossil taxa by using taxonomic names like H. daliensis for northeast Asian fossils and H. mabaensis for Southeast Asian fossils, it is better to err on the side of caution and continue to use the term archaic H. sapiens to represent all of these hominin fossils. What should be evident from this review is the need for an increase in the quality and quantity of the eastern Asian hominin fossil data set. Fortunately, with the increasing number of large-scale multidisciplinary paleoanthropological field and laboratory research projects in eastern Asia, the record is quickly becoming better understood. Copyright © 2010 Wiley-Liss, Inc.

  3. Potential pitfalls of reconstructing deep time evolutionary history with only extant data, a case study using the canidae (mammalia, carnivora).

    PubMed

    Finarelli, John A; Goswami, Anjali

    2013-12-01

    Reconstructing evolutionary patterns and their underlying processes is a central goal in biology. Yet many analyses of deep evolutionary histories assume that data from the fossil record is too incomplete to include, and rely solely on databases of extant taxa. Excluding fossil taxa assumes that character state distributions across living taxa are faithful representations of a clade's entire evolutionary history. Many factors can make this assumption problematic. Fossil taxa do not simply lead-up to extant taxa; they represent now-extinct lineages that can substantially impact interpretations of character evolution for extant groups. Here, we analyze body mass data for extant and fossil canids (dogs, foxes, and relatives) for changes in mean and variance through time. AIC-based model selection recovered distinct models for each of eight canid subgroups. We compared model fit of parameter estimates for (1) extant data alone and (2) extant and fossil data, demonstrating that the latter performs significantly better. Moreover, extant-only analyses result in unrealistically low estimates of ancestral mass. Although fossil data are not always available, reconstructions of deep-time organismal evolution in the absence of deep-time data can be highly inaccurate, and we argue that every effort should be made to include fossil data in macroevolutionary studies. © 2013 The Authors. Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  4. The evolution of methods for establishing evolutionary timescales

    PubMed Central

    2016-01-01

    The fossil record is well known to be incomplete. Read literally, it provides a distorted view of the history of species divergence and extinction, because different species have different propensities to fossilize, the amount of rock fluctuates over geological timescales, as does the nature of the environments that it preserves. Even so, patterns in the fossil evidence allow us to assess the incompleteness of the fossil record. While the molecular clock can be used to extend the time estimates from fossil species to lineages not represented in the fossil record, fossils are the only source of information concerning absolute (geological) times in molecular dating analysis. We review different ways of incorporating fossil evidence in modern clock dating analyses, including node-calibrations where lineage divergence times are constrained using probability densities and tip-calibrations where fossil species at the tips of the tree are assigned dates from dated rock strata. While node-calibrations are often constructed by a crude assessment of the fossil evidence and thus involves arbitrariness, tip-calibrations may be too sensitive to the prior on divergence times or the branching process and influenced unduly affected by well-known problems of morphological character evolution, such as environmental influence on morphological phenotypes, correlation among traits, and convergent evolution in disparate species. We discuss the utility of time information from fossils in phylogeny estimation and the search for ancestors in the fossil record. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325838

  5. The evolution of methods for establishing evolutionary timescales.

    PubMed

    Donoghue, Philip C J; Yang, Ziheng

    2016-07-19

    The fossil record is well known to be incomplete. Read literally, it provides a distorted view of the history of species divergence and extinction, because different species have different propensities to fossilize, the amount of rock fluctuates over geological timescales, as does the nature of the environments that it preserves. Even so, patterns in the fossil evidence allow us to assess the incompleteness of the fossil record. While the molecular clock can be used to extend the time estimates from fossil species to lineages not represented in the fossil record, fossils are the only source of information concerning absolute (geological) times in molecular dating analysis. We review different ways of incorporating fossil evidence in modern clock dating analyses, including node-calibrations where lineage divergence times are constrained using probability densities and tip-calibrations where fossil species at the tips of the tree are assigned dates from dated rock strata. While node-calibrations are often constructed by a crude assessment of the fossil evidence and thus involves arbitrariness, tip-calibrations may be too sensitive to the prior on divergence times or the branching process and influenced unduly affected by well-known problems of morphological character evolution, such as environmental influence on morphological phenotypes, correlation among traits, and convergent evolution in disparate species. We discuss the utility of time information from fossils in phylogeny estimation and the search for ancestors in the fossil record.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. © 2016 The Authors.

  6. Haootia quadriformis n. gen., n. sp., interpreted as a muscular cnidarian impression from the Late Ediacaran period (approx. 560 Ma).

    PubMed

    Liu, Alexander G; Matthews, Jack J; Menon, Latha R; McIlroy, Duncan; Brasier, Martin D

    2014-10-22

    Muscle tissue is a fundamentally eumetazoan attribute. The oldest evidence for fossilized muscular tissue before the Early Cambrian has hitherto remained moot, being reliant upon indirect evidence in the form of Late Ediacaran ichnofossils. We here report a candidate muscle-bearing organism, Haootia quadriformis n. gen., n. sp., from approximately 560 Ma strata in Newfoundland, Canada. This taxon exhibits sediment moulds of twisted, superimposed fibrous bundles arranged quadrilaterally, extending into four prominent bifurcating corner branches. Haootia is distinct from all previously published contemporaneous Ediacaran macrofossils in its symmetrically fibrous, rather than frondose, architecture. Its bundled fibres, morphology, and taphonomy compare well with the muscle fibres of fossil and extant Cnidaria, particularly the benthic Staurozoa. Haootia quadriformis thus potentially provides the earliest body fossil evidence for both metazoan musculature, and for Eumetazoa, in the geological record.

  7. Haootia quadriformis n. gen., n. sp., interpreted as a muscular cnidarian impression from the Late Ediacaran period (approx. 560 Ma)

    PubMed Central

    Liu, Alexander G.; Matthews, Jack J.; Menon, Latha R.; McIlroy, Duncan; Brasier, Martin D.

    2014-01-01

    Muscle tissue is a fundamentally eumetazoan attribute. The oldest evidence for fossilized muscular tissue before the Early Cambrian has hitherto remained moot, being reliant upon indirect evidence in the form of Late Ediacaran ichnofossils. We here report a candidate muscle-bearing organism, Haootia quadriformis n. gen., n. sp., from approximately 560 Ma strata in Newfoundland, Canada. This taxon exhibits sediment moulds of twisted, superimposed fibrous bundles arranged quadrilaterally, extending into four prominent bifurcating corner branches. Haootia is distinct from all previously published contemporaneous Ediacaran macrofossils in its symmetrically fibrous, rather than frondose, architecture. Its bundled fibres, morphology, and taphonomy compare well with the muscle fibres of fossil and extant Cnidaria, particularly the benthic Staurozoa. Haootia quadriformis thus potentially provides the earliest body fossil evidence for both metazoan musculature, and for Eumetazoa, in the geological record. PMID:25165764

  8. Heterogeneous Rates of Molecular Evolution and Diversification Could Explain the Triassic Age Estimate for Angiosperms.

    PubMed

    Beaulieu, Jeremy M; O'Meara, Brian C; Crane, Peter; Donoghue, Michael J

    2015-09-01

    Dating analyses based on molecular data imply that crown angiosperms existed in the Triassic, long before their undisputed appearance in the fossil record in the Early Cretaceous. Following a re-analysis of the age of angiosperms using updated sequences and fossil calibrations, we use a series of simulations to explore the possibility that the older age estimates are a consequence of (i) major shifts in the rate of sequence evolution near the base of the angiosperms and/or (ii) the representative taxon sampling strategy employed in such studies. We show that both of these factors do tend to yield substantially older age estimates. These analyses do not prove that younger age estimates based on the fossil record are correct, but they do suggest caution in accepting the older age estimates obtained using current relaxed-clock methods. Although we have focused here on the angiosperms, we suspect that these results will shed light on dating discrepancies in other major clades. ©The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. A compendium of fossil marine animal families, 2nd edition

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1992-01-01

    A comprehensive listing of 4075 taxonomic families of marine animals known from the fossil record is presented. This listing covers invertebrates, vertebrates, and animal-like protists, gives time intervals of apparent origination and extinction, and provides literature sources for these data. The time intervals are mostly 81 internationally recognized stratigraphic stages; more than half of the data are resolved to one of 145 substage divisions, providing more highly resolved data for studies of taxic macroevolution. Families are classified by order, class, and phylum, reflecting current classifications in the published literature. This compendium is a new edition of the 1982 publication, correcting errors and presenting greater stratigraphic resolution and more current ideas about acceptable families and their classification.

  10. The first darter (Aves: Anhingidae) fossils from India (late Pliocene).

    PubMed

    Stidham, Thomas; Patnaik, Rajeev; Krishan, Kewal; Singh, Bahadur; Ghosh, Abhik; Singla, Ankita; Kotla, Simran S

    2017-01-01

    New fossils from the latest Pliocene portion of the Tatrot Formation exposed in the Siwalik Hills of northern India represent the first fossil record of a darter (Anhingidae) from India. The darter fossils possibly represent a new species, but the limited information on the fossil record of this group restricts their taxonomic allocation. The Pliocene darter has a deep pit on the distal face of metatarsal trochlea IV not reported in other anhingids, it has an open groove for the m. flexor perforatus et perforans digiti II tendon on the hypotarsus unlike New World anhingid taxa, and these darter specimens are the youngest of the handful of Neogene records of the group from Asia. These fossil specimens begin to fill in a significant geographic and temporal gap in the fossil record of this group that is largely known from other continents and other time periods. The presence of a darter and pelican (along with crabs, fish, turtles, and crocodilians) in the same fossil-bearing horizon strongly indicates the past presence of a substantial water body (large pond, lake, or river) in the interior of northern India in the foothills of the Himalayan Mountains.

  11. Passifloraceae seeds from the late Eocene of Colombia.

    PubMed

    Martínez, Camila

    2017-12-01

    The plant fossil record for the neotropics is still sparse and temporally discontinuous. The location and description of new fossil material are fundamental for understanding evolutionary and biogeographic patterns of lineages. A new fossil record of Passifloraceae from the late Eocene of Colombia is described in this study. Plant fossils were collected from a new locality from the Eocene Esmeraldas Formation. Eighteen fossil seeds were selected, described, and compared with fossil and extant angiosperm seeds based on the literature and herbarium collections. Taxonomic affinities of the fossil seeds within Passifloraceae s.l. were evaluated by comparing morphological characters of the seeds in a phylogenetic context. Stratigraphic information associated with the fossil locality was used to interpret the environment and taphonomic processes associated with fossil deposition. A new seed fossil genus and species, Passifloroidesperma sogamosense gen. and sp. nov., is described and associated with the subfamily Passifloroideae based on the presence of a foveolate seed surface, ruminate endosperm, and a seed coat with prismatic palisade cells. The depositional environment of the locality is described as a floodplain associated with river channels. A detailed review of the Passifloraceae fossil record indicates that P. sogamosense is the oldest confirmed record of Passifloraceae. Its late Eocene age provides a minimum age that can be used as a calibration point for the crown Passifloroideae node in future dating analyses that together with its neotropical geographic location can shed light on the origin and diversification of the subfamily. © 2017 Botanical Society of America.

  12. A Jurassic wood providing insights into the earliest step in Ginkgo wood evolution.

    PubMed

    Jiang, Zikun; Wang, Yongdong; Philippe, Marc; Zhang, Wu; Tian, Ning; Zheng, Shaolin

    2016-12-16

    The fossil record of Ginkgo leaf and reproductive organs has been well dated to the Mid-Jurassic (170 Myr). However, the fossil wood record that can safely be assigned to Ginkgoales has not yet been reported from strata predating the late Early Cretaceous (ca. 100 Myr). Here, we report a new fossil wood from the Mid-Late Jurassic transition deposit (153-165 Myr) of northeastern China. The new fossil wood specimen displays several Ginkgo features, including inflated axial parenchyma and intrusive tracheid tips. Because it is only slightly younger than the oldest recorded Ginkgo reproductive organs (the Yima Formation, 170 Myr), this fossil wood very probably represents the oldest bona fide fossil Ginkgo wood and the missing ancestral form of Ginkgo wood evolution.

  13. A Jurassic wood providing insights into the earliest step in Ginkgo wood evolution

    NASA Astrophysics Data System (ADS)

    Jiang, Zikun; Wang, Yongdong; Philippe, Marc; Zhang, Wu; Tian, Ning; Zheng, Shaolin

    2016-12-01

    The fossil record of Ginkgo leaf and reproductive organs has been well dated to the Mid-Jurassic (170 Myr). However, the fossil wood record that can safely be assigned to Ginkgoales has not yet been reported from strata predating the late Early Cretaceous (ca. 100 Myr). Here, we report a new fossil wood from the Mid-Late Jurassic transition deposit (153-165 Myr) of northeastern China. The new fossil wood specimen displays several Ginkgo features, including inflated axial parenchyma and intrusive tracheid tips. Because it is only slightly younger than the oldest recorded Ginkgo reproductive organs (the Yima Formation, 170 Myr), this fossil wood very probably represents the oldest bona fide fossil Ginkgo wood and the missing ancestral form of Ginkgo wood evolution.

  14. Food for thought: Sub-fossil and fossil chelonian remains from Franchthi Cave and Megalopolis confirm a glacial refuge for Emys orbicularis in Peloponnesus (S. Greece)

    NASA Astrophysics Data System (ADS)

    Vlachos, Evangelos; Delfino, Massimo

    2016-10-01

    Peloponnesus peninsula (S. Greece) shows a remarkable extant chelonian fauna that has received considerable attention from a molecular and morphological point of view. Here we present new evidence from the fossil and sub-fossil record of two important sites in the area, Franchthi Cave and Megalopolis. The archaeological material from Franchthi Cave (Upper Paleolithic - Neolithic/latest Pleistocene - early Holocene) represents food remains from small game prey of the humans that inhabited the cave. The palaeontological material from Megalopolis (Late Pleistocene) comes from old and new excavations. The studied specimens, combined with information from molecular, climatic and zoological works, provide for the first time direct evidence for the presence of the European pond turtle, Emys orbicularis, in the glacial refuge of South Greece that was hypothesized on the basis of the results of molecular investigations. We also describe other chelonian taxa present in the localities, the Hermann's tortoise Testudo hermanni and the Balkan stripe-necked terrapin Mauremys rivulata, and review previously published chelonian material from Peloponnesus.

  15. Integrating fossils, phylogenies, and niche models into biogeography to reveal ancient evolutionary history: the case of Hypericum (hypericaceae).

    PubMed

    Meseguer, Andrea S; Lobo, Jorge M; Ree, Richard; Beerling, David J; Sanmartín, Isabel

    2015-03-01

    In disciplines such as macroevolution that are not amenable to experimentation, scientists usually rely on current observations to test hypotheses about historical events, assuming that "the present is the key to the past." Biogeographers, for example, used this assumption to reconstruct ancestral ranges from the distribution of extant species. Yet, under scenarios of high extinction rates, the biodiversity we observe today might not be representative of the historical diversity and this could result in incorrect biogeographic reconstructions. Here, we introduce a new approach to incorporate into biogeographic inference the temporal, spatial, and environmental information provided by the fossil record, as a direct evidence of the extinct biodiversity fraction. First, inferences of ancestral ranges for those nodes in the phylogeny calibrated with the fossil record are constrained to include the geographic distribution of the fossil. Second, we use fossil distribution and past climate data to reconstruct the climatic preferences and potential distribution of ancestral lineages over time, and use this information to build a biogeographic model that takes into account "ecological connectivity" through time. To show the power of this approach, we reconstruct the biogeographic history of the large angiosperm genus Hypericum, which has a fossil record extending back to the Early Cenozoic. Unlike previous reconstructions based on extant species distributions, our results reveal that Hypericum stem lineages were already distributed in the Holarctic before diversification of its crown-group, and that the geographic distribution of the genus has been relatively stable throughout the climatic oscillations of the Cenozoic. Geographical movement was mediated by the existence of climatic corridors, like Beringia, whereas the equatorial tropical belt acted as a climatic barrier, preventing Hypericum lineages to reach the southern temperate regions. Our study shows that an integrative approach to historical biogeography-that combines sources of evidence as diverse as paleontology, ecology, and phylogenetics-could help us obtain more accurate reconstructions of ancient evolutionary history. It also reveals the confounding effect different rates of extinction across regions have in biogeography, sometimes leading to ancestral areas being erroneously inferred as recent colonization events. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.

  16. Fossil-Fuel C02 Emissions Database and Exploration System

    NASA Astrophysics Data System (ADS)

    Krassovski, M.; Boden, T.; Andres, R. J.; Blasing, T. J.

    2012-12-01

    The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL) quantifies the release of carbon from fossil-fuel use and cement production at global, regional, and national spatial scales. The CDIAC emission time series estimates are based largely on annual energy statistics published at the national level by the United Nations (UN). CDIAC has developed a relational database to house collected data and information and a web-based interface to help users worldwide identify, explore and download desired emission data. The available information is divided in two major group: time series and gridded data. The time series data is offered for global, regional and national scales. Publications containing historical energy statistics make it possible to estimate fossil fuel CO2 emissions back to 1751. Etemad et al. (1991) published a summary compilation that tabulates coal, brown coal, peat, and crude oil production by nation and year. Footnotes in the Etemad et al.(1991) publication extend the energy statistics time series back to 1751. Summary compilations of fossil fuel trade were published by Mitchell (1983, 1992, 1993, 1995). Mitchell's work tabulates solid and liquid fuel imports and exports by nation and year. These pre-1950 production and trade data were digitized and CO2 emission calculations were made following the procedures discussed in Marland and Rotty (1984) and Boden et al. (1995). The gridded data presents annual and monthly estimates. Annual data presents a time series recording 1° latitude by 1° longitude CO2 emissions in units of million metric tons of carbon per year from anthropogenic sources for 1751-2008. The monthly, fossil-fuel CO2 emissions estimates from 1950-2008 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2011), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). This presentation introduces newly build database and web interface, reflects the present state and functionality of the Fossil-Fuel CO2 Emissions Database and Exploration System as well as future plans for expansion.

  17. Absolute measures of the completeness of the fossil record

    NASA Technical Reports Server (NTRS)

    Foote, M.; Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1999-01-01

    Measuring the completeness of the fossil record is essential to understanding evolution over long timescales, particularly when comparing evolutionary patterns among biological groups with different preservational properties. Completeness measures have been presented for various groups based on gaps in the stratigraphic ranges of fossil taxa and on hypothetical lineages implied by estimated evolutionary trees. Here we present and compare quantitative, widely applicable absolute measures of completeness at two taxonomic levels for a broader sample of higher taxa of marine animals than has previously been available. We provide an estimate of the probability of genus preservation per stratigraphic interval, and determine the proportion of living families with some fossil record. The two completeness measures use very different data and calculations. The probability of genus preservation depends almost entirely on the Palaeozoic and Mesozoic records, whereas the proportion of living families with a fossil record is influenced largely by Cenozoic data. These measurements are nonetheless highly correlated, with outliers quite explicable, and we find that completeness is rather high for many animal groups.

  18. Afrotarsius chatrathi, first tarsiiform primate (? Tarsiidae) from Africa

    USGS Publications Warehouse

    Simons, E.L.; Bown, T.M.

    1985-01-01

    Tarsiiform primates have long been regarded as a Laurasian group, with an extensive fossil record in the Eocene of North America and Europe1-4 and two important but less well-known records from Asia5,6. The only living genus is Tarsius (Tarsiidae), whereas all of the fossil tarsier-like primates are usually placed in the extinct family Omomyidae3. We now report the discovery of Afrotarsius chatrathi from early Oligocene rocks of Fayum Province, Egypt. This is the first known tarsiiform primate from Africa. Compared with fossil primates, the molar tooth morphology of this diminutive prosimian is most similar to that of the European Eocene microchoerine Pseudoloris; however, the closest similarity is to the molars of Tarsius. Because the phylogenetic relationships among living Tarsius and the omomyids remain unclear7,8 and because of the fragmentary nature of the only known specimen of this new primate, allocation of Afrotarsius to either Omomyidae or Tarsiidae is necessarily provisional. As we believe that its molar teeth are more like those of Tarsius than of any omomyids (including Pseudoloris), we tentatively assign the new genus to the extant family Tarsiidae as its only known fossil representative. Recovery of a Tarsius-like primate from Africa suggests that it or its ancestors might have been immigrants from Europe, may have been derived from an unknown Asian stock related to the ancestry of Tarsius, or may have originated in Africa. ?? 1985 Nature Publishing Group.

  19. Discriminating signal from noise in the fossil record of early vertebrates reveals cryptic evolutionary history

    PubMed Central

    Sansom, Robert S.; Randle, Emma; Donoghue, Philip C. J.

    2015-01-01

    The fossil record of early vertebrates has been influential in elucidating the evolutionary assembly of the gnathostome bodyplan. Understanding of the timing and tempo of vertebrate innovations remains, however, mired in a literal reading of the fossil record. Early jawless vertebrates (ostracoderms) exhibit restriction to shallow-water environments. The distribution of their stratigraphic occurrences therefore reflects not only flux in diversity, but also secular variation in facies representation of the rock record. Using stratigraphic, phylogenetic and palaeoenvironmental data, we assessed the veracity of the fossil records of the jawless relatives of jawed vertebrates (Osteostraci, Galeaspida, Thelodonti, Heterostraci). Non-random models of fossil recovery potential using Palaeozoic sea-level changes were used to calculate confidence intervals of clade origins. These intervals extend the timescale for possible origins into the Upper Ordovician; these estimates ameliorate the long ghost lineages inferred for Osteostraci, Galeaspida and Heterostraci, given their known stratigraphic occurrences and stem–gnathostome phylogeny. Diversity changes through the Silurian and Devonian were found to lie within the expected limits predicted from estimates of fossil record quality indicating that it is geological, rather than biological factors, that are responsible for shifts in diversity. Environmental restriction also appears to belie ostracoderm extinction and demise rather than competition with jawed vertebrates. PMID:25520359

  20. Biogeographic Dating of Speciation Times Using Paleogeographically Informed Processes.

    PubMed

    Landis, Michael J

    2017-03-01

    Standard models of molecular evolution cannot estimate absolute speciation times alone, and require external calibrations to do so, such as fossils. Because fossil calibration methods rely on the incomplete fossil record, a great number of nodes in the tree of life cannot be dated precisely. However, many major paleogeographical events are dated, and since biogeographic processes depend on paleogeographical conditions, biogeographic dating may be used as an alternative or complementary method to fossil dating. I demonstrate how a time-stratified biogeographic stochastic process may be used to estimate absolute divergence times by conditioning on dated paleogeographical events. Informed by the current paleogeographical literature, I construct an empirical dispersal graph using 25 areas and 26 epochs for the past 540 Ma of Earth's history. Simulations indicate biogeographic dating performs well so long as paleogeography imposes constraint on biogeographic character evolution. To gauge whether biogeographic dating may be of practical use, I analyzed the well-studied turtle clade (Testudines) to assess how well biogeographic dating fares when compared to fossil-calibrated dating estimates reported in the literature. Fossil-free biogeographic dating estimated the age of the most recent common ancestor of extant turtles to be from the Late Triassic, which is consistent with fossil-based estimates. Dating precision improves further when including a root node fossil calibration. The described model, paleogeographical dispersal graph, and analysis scripts are available for use with RevBayes. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Arthropod colonization of land--linking molecules and fossils in oribatid mites (Acari, Oribatida).

    PubMed

    Schaefer, Ina; Norton, Roy A; Scheu, Stefan; Maraun, Mark

    2010-10-01

    Terrestrial fossils that document the early colonization of land are scarce for >100 my after the Cambrian explosion. This raises the question whether life on land did not exist or just did not fossilize. With a molecular dating technique, we analyzed the origin of terrestrial chelicerate microarthropods (Acari, Oribatida) which have a fossil record since the Middle Devonian that is exceptional among soil animals. Our results suggest that oribatid mites originated in the Precambrian (571+/-37 mya) and that the radiation of basal groups coincides with the gap in the terrestrial fossil record between the Cambrian explosion and the earliest fossilized records of continental ecosystems. Further, they suggest that the colonization of land started via the interstitial, approximately 150 my earlier than the oldest fossils of terrestrial ecosystems. Overall, the results imply that omnivorous and detritivorous arthropods formed a major component in early terrestrial food webs, thereby facilitating the invasion of terrestrial habitats by later colonizers of higher trophic levels. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Phylogenetic analysis of molecular and morphological data highlights uncertainty in the relationships of fossil and living species of Elopomorpha (Actinopterygii: Teleostei).

    PubMed

    Dornburg, Alex; Friedman, Matt; Near, Thomas J

    2015-08-01

    Elopomorpha is one of the three main clades of living teleost fishes and includes a range of disparate lineages including eels, tarpons, bonefishes, and halosaurs. Elopomorphs were among the first groups of fishes investigated using Hennigian phylogenetic methods and continue to be the object of intense phylogenetic scrutiny due to their economic significance, diversity, and crucial evolutionary status as the sister group of all other teleosts. While portions of the phylogenetic backbone for Elopomorpha are consistent between studies, the relationships among Albula, Pterothrissus, Notacanthiformes, and Anguilliformes remain contentious and difficult to evaluate. This lack of phylogenetic resolution is problematic as fossil lineages are often described and placed taxonomically based on an assumed sister group relationship between Albula and Pterothrissus. In addition, phylogenetic studies using morphological data that sample elopomorph fossil lineages often do not include notacanthiform or anguilliform lineages, potentially introducing a bias toward interpreting fossils as members of the common stem of Pterothrissus and Albula. Here we provide a phylogenetic analysis of DNA sequences sampled from multiple nuclear genes that include representative taxa from Albula, Pterothrissus, Notacanthiformes and Anguilliformes. We integrate our molecular dataset with a morphological character matrix that spans both living and fossil elopomorph lineages. Our results reveal substantial uncertainty in the placement of Pterothrissus as well as all sampled fossil lineages, questioning the stability of the taxonomy of fossil Elopomorpha. However, despite topological uncertainty, our integration of fossil lineages into a Bayesian time calibrated framework provides divergence time estimates for the clade that are consistent with previously published age estimates based on the elopomorph fossil record and molecular estimates resulting from traditional node-dating methods. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Structure and function of a compound eye, more than half a billion years old.

    PubMed

    Schoenemann, Brigitte; Pärnaste, Helje; Clarkson, Euan N K

    2017-12-19

    Until now, the fossil record has not been capable of revealing any details of the mechanisms of complex vision at the beginning of metazoan evolution. Here, we describe functional units, at a cellular level, of a compound eye from the base of the Cambrian, more than half a billion years old. Remains of early Cambrian arthropods showed the external lattices of enormous compound eyes, but not the internal structures or anything about how those compound eyes may have functioned. In a phosphatized trilobite eye from the lower Cambrian of the Baltic, we found lithified remnants of cellular systems, typical of a modern focal apposition eye, similar to those of a bee or dragonfly. This shows that sophisticated eyes already existed at the beginning of the fossil record of higher organisms, while the differences between the ancient system and the internal structures of a modern apposition compound eye open important insights into the evolution of vision. Copyright © 2017 the Author(s). Published by PNAS.

  4. Corrected placement of Mus-Rattus fossil calibration forces precision in the molecular tree of rodents.

    PubMed

    Kimura, Yuri; Hawkins, Melissa T R; McDonough, Molly M; Jacobs, Louis L; Flynn, Lawrence J

    2015-09-28

    Time calibration derived from the fossil record is essential for molecular phylogenetic and evolutionary studies. Fossil mice and rats, discovered in the Siwalik Group of Pakistan, have served as one of the best-known fossil calibration points in molecular phylogenic studies. Although these fossils have been widely used as the 12 Ma date for the Mus/Rattus split or a more basal split, conclusive paleontological evidence for the nodal assignments has been absent. This study analyzes newly recognized characters that demonstrate lineage separation in the fossil record of Siwalik murines and examines the most reasonable nodal placement of the diverging lineages in a molecular phylogenetic tree by ancestral state reconstruction. Our specimen-based approach strongly indicates that Siwalik murines of the Karnimata clade are fossil members of the Arvicanthini-Otomyini-Millardini clade, which excludes Rattus and its relatives. Combining the new interpretation with the widely accepted hypothesis that the Progonomys clade includes Mus, the lineage separation event in the Siwalik fossil record represents the Mus/Arvicanthis split. Our test analysis on Bayesian age estimates shows that this new calibration point provides more accurate estimates of murine divergence than previous applications. Thus, we define this fossil calibration point and refine two other fossil-based points for molecular dating.

  5. Corrected placement of Mus-Rattus fossil calibration forces precision in the molecular tree of rodents

    PubMed Central

    Kimura, Yuri; Hawkins, Melissa T. R.; McDonough, Molly M.; Jacobs, Louis L.; Flynn, Lawrence J.

    2015-01-01

    Time calibration derived from the fossil record is essential for molecular phylogenetic and evolutionary studies. Fossil mice and rats, discovered in the Siwalik Group of Pakistan, have served as one of the best-known fossil calibration points in molecular phylogenic studies. Although these fossils have been widely used as the 12 Ma date for the Mus/Rattus split or a more basal split, conclusive paleontological evidence for the nodal assignments has been absent. This study analyzes newly recognized characters that demonstrate lineage separation in the fossil record of Siwalik murines and examines the most reasonable nodal placement of the diverging lineages in a molecular phylogenetic tree by ancestral state reconstruction. Our specimen-based approach strongly indicates that Siwalik murines of the Karnimata clade are fossil members of the Arvicanthini-Otomyini-Millardini clade, which excludes Rattus and its relatives. Combining the new interpretation with the widely accepted hypothesis that the Progonomys clade includes Mus, the lineage separation event in the Siwalik fossil record represents the Mus/Arvicanthis split. Our test analysis on Bayesian age estimates shows that this new calibration point provides more accurate estimates of murine divergence than previous applications. Thus, we define this fossil calibration point and refine two other fossil-based points for molecular dating. PMID:26411391

  6. Evolutionary and preservational constraints on origins of biologic groups: divergence times of eutherian mammals

    NASA Technical Reports Server (NTRS)

    Foote, M.; Hunter, J. P.; Janis, C. M.; Sepkoski, J. J. Jr

    1999-01-01

    Some molecular clock estimates of divergence times of taxonomic groups undergoing evolutionary radiation are much older than the groups' first observed fossil record. Mathematical models of branching evolution are used to estimate the maximal rate of fossil preservation consistent with a postulated missing history, given the sum of species durations implied by early origins under a range of species origination and extinction rates. The plausibility of postulated divergence times depends on origination, extinction, and preservation rates estimated from the fossil record. For eutherian mammals, this approach suggests that it is unlikely that many modern orders arose much earlier than their oldest fossil records.

  7. Stickleback fishes: Bridging the gap between population biology and paleobiology.

    PubMed

    Bell, M A

    1988-12-01

    Integration of evolutionary mechanisms and phylogeny requires study of phenotypes that change in the fossil record and continue to evolve in extant populations. Pelvic reduction in the three-spined stickle-back has evolved rapidly in a Miocene fossil assemblage and in numerous extant isolated lake populations throughout its distribution. Although pelvic reduction is caused by selection, expression of reduced pelvic phenotypes is constrained by development and other factors. However, lineages with pelvis reduction rapidly go extinct while lineages that retain the fully formed pelvic girdle tend to persist. Existence of pelvic reduction since the Miocene has depended on an equilibrium between divergence and extinction. The phylogenetic topology resulting from this process differs greatly from the conventional view of evolutionary history, and could only be recognized by analysis of both extant populations and fossil material. If this phylogenetic topology is common, it may help to account for the different perceptions that population biologists and paleobiologists have of evolutionary tempo. Copyright © 1988. Published by Elsevier Ltd.

  8. New records and species of Crepidodera Chevrolat (Coleoptera: Chrysomelidae) in Eocene European amber, with a brief review of described fossil beetles from Bitterfeld amber.

    PubMed

    Bukejs, Andris; Biondi, Maurizio; Alekseev, Vitalii I

    2016-11-15

    Based on six relatively well-preserved specimens from Eocene Baltic amber, Crepidodera tertiotertiaria sp. nov. is described. The new species is illustrated and compared with morphologically similar extant and fossil relatives. It is the third described fossil species of Crepidodera Chevrolat. In addition to the new taxon, new fossil records of C. decolorata Nadein & Perkovsky from Baltic and Bitterfeld amber are presented. A key to species of Crepidodera described from fossil resins is provided, and a checklist of Coleoptera described from Bitterfeld amber is compiled.

  9. The shape of pterosaur evolution: evidence from the fossil record.

    PubMed

    Dyke, G J; McGowan, A J; Nudds, R L; Smith, D

    2009-04-01

    Although pterosaurs are a well-known lineage of Mesozoic flying reptiles, their fossil record and evolutionary dynamics have never been adequately quantified. On the basis of a comprehensive data set of fossil occurrences correlated with taxon-specific limb measurements, we show that the geological ages of pterosaur specimens closely approximate hypothesized patterns of phylogenetic divergence. Although the fossil record has expanded greatly in recent years, collectorship still approximates a sigmoid curve over time as many more specimens (and thus taxa) still remain undiscovered, yet our data suggest that the pterosaur fossil record is unbiased by sites of exceptional preservation (lagerstätte). This is because as new species are discovered the number of known formations and sites yielding pterosaur fossils has also increased - this would not be expected if the bulk of the record came from just a few exceptional faunas. Pterosaur morphological diversification is, however, strongly age biased: rarefaction analysis shows that peaks of diversity occur in the Late Jurassic and Early Cretaceous correlated with periods of increased limb disparity. In this respect, pterosaurs appear unique amongst flying vertebrates in that their disparity seems to have peaked relatively late in clade history. Comparative analyses also show that there is little evidence that the evolutionary diversification of pterosaurs was in any way constrained by the appearance and radiation of birds.

  10. An Early Holocene Record of Cimex (Hemiptera: Cimicidae) From Western North America.

    PubMed

    Adams, Martin E; Jenkins, Dennis L

    2017-07-01

    The subfossil remains of 14 cimicids (Hemiptera: Cimicidae) were recovered during archaeological investigations of the Paisley Five Mile Point Cave site (35LK3400), an exceptionally well-dated (n = 229 radiocarbon dates) late Pleistocene-early Holocene rock shelter site in south-central Oregon. Nine of the specimens have been assigned to three modern species of Nearctic Cimicidae-Cimex antennatus Usinger & Ueshima, Cimex latipennis Usinger & Ueshima, and Cimex pilosellus (Horváth)-whereas the remaining five individuals were too fragmentary to positively identify. The chronology of the insect assemblage puts one specimen at circa 5,100 calibrated years before present (cal. yr BP), and the remaining 13 range in age from 9,400 to almost 11,000 cal. yr BP. Although fossil and subfossil cimicid remains have been recovered at other archaeological sites, the fossil record for bed bugs is largely undocumented. The Paisley Caves specimens thus far represent the oldest remains of the genus in probable contact with humans on record. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Three-dimensional reconstruction and the phylogeny of extinct chelicerate orders

    PubMed Central

    Dunlop, Jason

    2014-01-01

    Arachnids are an important group of arthropods. They are: diverse and abundant; a major constituent of many terrestrial ecosystems; and possess a deep and extensive fossil record. In recent years a number of exceptionally preserved arachnid fossils have been investigated using tomography and associated techniques, providing valuable insights into their morphology. Here we use X-ray microtomography to reconstruct members of two extinct arachnid orders. In the Haptopoda, we demonstrate the presence of ‘clasp-knife’ chelicerae, and our novel redescription of a member of the Phalangiotarbida highlights leg details, but fails to resolve chelicerae in the group due to their small size. As a result of these reconstructions, tomographic studies of three-dimensionally preserved fossils now exist for three of the four extinct orders, and for fossil representatives of several extant ones. Such studies constitute a valuable source of high fidelity data for constructing phylogenies. To illustrate this, here we present a cladistic analysis of the chelicerates to accompany these reconstructions. This is based on a previously published matrix, expanded to include fossil taxa and relevant characters, and allows us to: cladistically place the extinct arachnid orders; explicitly test some earlier hypotheses from the literature; and demonstrate that the addition of fossils to phylogenetic analyses can have broad implications. Phylogenies based on chelicerate morphology—in contrast to molecular studies—have achieved elements of consensus in recent years. Our work suggests that these results are not robust to the addition of novel characters or fossil taxa. Hypotheses surrounding chelicerate phylogeny remain in a state of flux. PMID:25405073

  12. Delineating modern variation from extinct morphology in the fossil record using shells of the Eastern Box Turtle (Terrapene carolina)

    PubMed Central

    2018-01-01

    Characterization of morphological variation in the shells of extant Eastern Box Turtles, Terrapene carolina, provides a baseline for comparison to fossil populations. It also provides an example of the difficulties inherent to recognizing intraspecific diversity in the fossil record. The degree to which variation in fossils of T. carolina can be accommodated by extant variation in the species has been disagreed upon for over eighty years. Using morphometric analyses of the carapace, I address the relationship between modern and fossil T. carolina in terms of sexual dimorphism, geographic and subspecific variation, and allometric variation. Modern T. carolina display weak male-biased sexual size dimorphism. Sexual shape dimorphism cannot be reliably detected in the fossil record. Rather than a four-part subspecific division, patterns of geographic variation are more consistent with clinal variation between various regions in the species distribution. Allometric patterns are qualitatively similar to those documented in other emydid turtles and explain a significant amount of shape variation. When allometric patterns are accounted for, Holocene specimens are not significantly different from modern specimens. In contrast, several geologically older specimens have significantly different carapace shape with no modern analogue. Those large, fossilized specimens represent extinct variation occupying novel portions of morphospace. This study highlights the need for additional documentation of modern osteological variation that can be used to test hypotheses of intraspecific evolution in the fossil record. PMID:29513709

  13. Crustaceans from bitumen clast in Carboniferous glacial diamictite extend fossil record of copepods.

    PubMed

    Selden, Paul A; Huys, Rony; Stephenson, Michael H; Heward, Alan P; Taylor, Paul N

    2010-08-10

    Copepod crustaceans are extremely abundant but, because of their small size and fragility, they fossilize poorly. Their fossil record consists of one Cretaceous (c. 115 Ma) parasite and a few Miocene (c. 14 Ma) fossils. In this paper, we describe abundant crustacean fragments, including copepods, from a single bitumen clast in a glacial diamictite of late Carboniferous age (c. 303 Ma) from eastern Oman. Geochemistry identifies the source of the bitumen as an oilfield some 100-300 km to the southwest, which is consistent with an ice flow direction from glacial striae. The bitumen likely originated as an oil seep into a subglacial lake. This find extends the fossil record of copepods by some 188 Ma, and of free-living forms by 289 Ma. The copepods include evidence of the extant family Canthocamptidae, believed to have colonized fresh water in Pangaea during Carboniferous times.

  14. Molecular Decay of the Tooth Gene Enamelin (ENAM) Mirrors the Loss of Enamel in the Fossil Record of Placental Mammals

    PubMed Central

    Meredith, Robert W.; Gatesy, John; Murphy, William J.; Ryder, Oliver A.; Springer, Mark S.

    2009-01-01

    Vestigial structures occur at both the anatomical and molecular levels, but studies documenting the co-occurrence of morphological degeneration in the fossil record and molecular decay in the genome are rare. Here, we use morphology, the fossil record, and phylogenetics to predict the occurrence of “molecular fossils” of the enamelin (ENAM) gene in four different orders of placental mammals (Tubulidentata, Pholidota, Cetacea, Xenarthra) with toothless and/or enamelless taxa. Our results support the “molecular fossil” hypothesis and demonstrate the occurrence of frameshift mutations and/or stop codons in all toothless and enamelless taxa. We then use a novel method based on selection intensity estimates for codons (ω) to calculate the timing of iterated enamel loss in the fossil record of aardvarks and pangolins, and further show that the molecular evolutionary history of ENAM predicts the occurrence of enamel in basal representatives of Xenarthra (sloths, anteaters, armadillos) even though frameshift mutations are ubiquitous in ENAM sequences of living xenarthrans. The molecular decay of ENAM parallels the morphological degeneration of enamel in the fossil record of placental mammals and provides manifest evidence for the predictive power of Darwin's theory. PMID:19730686

  15. Estimating times of extinction in the fossil record

    PubMed Central

    Marshall, Charles R.

    2016-01-01

    Because the fossil record is incomplete, the last fossil of a taxon is a biased estimate of its true time of extinction. Numerous methods have been developed in the palaeontology literature for estimating the true time of extinction using ages of fossil specimens. These methods, which typically give a confidence interval for estimating the true time of extinction, differ in the assumptions they make and the nature and amount of data they require. We review the literature on such methods and make some recommendations for future directions. PMID:27122005

  16. Estimating times of extinction in the fossil record.

    PubMed

    Wang, Steve C; Marshall, Charles R

    2016-04-01

    Because the fossil record is incomplete, the last fossil of a taxon is a biased estimate of its true time of extinction. Numerous methods have been developed in the palaeontology literature for estimating the true time of extinction using ages of fossil specimens. These methods, which typically give a confidence interval for estimating the true time of extinction, differ in the assumptions they make and the nature and amount of data they require. We review the literature on such methods and make some recommendations for future directions. © 2016 The Author(s).

  17. The first Loranthaceae fossils from Africa

    PubMed Central

    2018-01-01

    Abstract An ongoing re-investigation of the early Miocene Saldanha Bay (South Africa) palynoflora, using combined light and scanning electron microscopy (single grain method), is revealing several pollen types new to the African fossil record. One of the elements identified is Loranthaceae pollen. These grains represent the first and only fossil record of Loranthaceae in Africa. The fossil pollen grains resemble those produced by the core Lorantheae and are comparable to recent Asian as well as some African taxa/lineages. Molecular and fossil signals indicate that Loranthaceae dispersed into Africa via Asia sometime during the Eocene. The present host range of African Loranthaceae and the composition of the palynoflora suggest that the fossil had a range of potential host taxa to parasitise during the early Miocene in the Saldanha Bay region. PMID:29780299

  18. Measuring Stratigraphic Congruence Across Trees, Higher Taxa, and Time.

    PubMed

    O'Connor, Anne; Wills, Matthew A

    2016-09-01

    The congruence between the order of cladistic branching and the first appearance dates of fossil lineages can be quantified using a variety of indices. Good matching is a prerequisite for the accurate time calibration of trees, while the distribution of congruence indices across large samples of cladograms has underpinned claims about temporal and taxonomic patterns of completeness in the fossil record. The most widely used stratigraphic congruence indices are the stratigraphic consistency index (SCI), the modified Manhattan stratigraphic measure (MSM*), and the gap excess ratio (GER) (plus its derivatives; the topological GER and the modified GER). Many factors are believed to variously bias these indices, with several empirical and simulation studies addressing some subset of the putative interactions. This study combines both approaches to quantify the effects (on all five indices) of eight variables reasoned to constrain the distribution of possible values (the number of taxa, tree balance, tree resolution, range of first occurrence (FO) dates, center of gravity of FO dates, the variability of FO dates, percentage of extant taxa, and percentage of taxa with no fossil record). Our empirical data set comprised 647 published animal and plant cladograms spanning the entire Phanerozoic, and for these data we also modeled the effects of mean age of FOs (as a proxy for clade age), the taxonomic rank of the clade, and the higher taxonomic group to which it belonged. The center of gravity of FO dates had not been investigated hitherto, and this was found to correlate most strongly with some measures of stratigraphic congruence in our empirical study (top-heavy clades had better congruence). The modified GER was the index least susceptible to bias. We found significant differences across higher taxa for all indices; arthropods had lower congruence and tetrapods higher congruence. Stratigraphic congruence-however measured-also varied throughout the Phanerozoic, reflecting the taxonomic composition of our sample. Notably, periods containing a high proportion of arthropods had poorer congruence overall than those with higher proportions of tetrapods. [Fossil calibration; gap excess ratio; manhattan stratigraphic metric; molecular clocks; stratigraphic congruence.]. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society of Systematic Biologists.

  19. Species longevity in North American fossil mammals.

    PubMed

    Prothero, Donald R

    2014-08-01

    Species longevity in the fossil record is related to many paleoecological variables and is important to macroevolutionary studies, yet there are very few reliable data on average species durations in Cenozoic fossil mammals. Many of the online databases (such as the Paleobiology Database) use only genera of North American Cenozoic mammals and there are severe problems because key groups (e.g. camels, oreodonts, pronghorns and proboscideans) have no reliable updated taxonomy, with many invalid genera and species and/or many undescribed genera and species. Most of the published datasets yield species duration estimates of approximately 2.3-4.3 Myr for larger mammals, with small mammals tending to have shorter species durations. My own compilation of all the valid species durations in families with updated taxonomy (39 families, containing 431 genera and 998 species, averaging 2.3 species per genus) yields a mean duration of 3.21 Myr for larger mammals. This breaks down to 4.10-4.39 Myr for artiodactyls, 3.14-3.31 Myr for perissodactyls and 2.63-2.95 Myr for carnivorous mammals (carnivorans plus creodonts). These averages are based on a much larger, more robust dataset than most previous estimates, so they should be more reliable for any studies that need species longevity to be accurately estimated. © 2013 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  20. Trace fossils and substrates of the terminal Proterozoic–Cambrian transition: Implications for the record of early bilaterians and sediment mixing

    PubMed Central

    Droser, Mary L.; Jensen, Sören; Gehling, James G.

    2002-01-01

    The trace fossil record is important in determining the timing of the appearance of bilaterian animals. A conservative estimate puts this time at ≈555 million years ago. The preservational potential of traces made close to the sediment–water interface is crucial to detecting early benthic activity. Our studies on earliest Cambrian sediments suggest that shallow tiers were preserved to a greater extent than typical for most of the Phanerozoic, which can be attributed both directly and indirectly to the low levels of sediment mixing. The low levels of sediment mixing meant that thin event beds were preserved. The shallow depth of sediment mixing also meant that muddy sediments were firm close to the sediment–water interface, increasing the likelihood of recording shallow-tier trace fossils in muddy sediments. Overall, trace fossils can provide a sound record of the onset of bilaterian benthic activity. PMID:12271130

  1. New methods reveal oldest known fossil epiphyllous moss: Bryiidites utahensis gen. et sp. nov. (Bryidae).

    PubMed

    Barclay, Richard S; McElwain, Jennifer C; Duckett, Jeffrey G; van Es, Maarten H; Mostaert, Anika S; Pressel, Silvia; Sageman, Bradley B

    2013-12-01

    Epiphyllous bryophytes are a highly characteristic feature of many humid tropical forest ecosystems. In contrast to the extensive fossil record for the leaves of their host plants, the record is virtually nonexistent for the epiphylls themselves, despite a fossil record for mosses that begins in the Middle Carboniferous Period, 330 million years ago. Epifluorescence optical microscopy, scanning electron microscopy, and atomic force microscopy were employed to investigate an intimate association between a newly discovered epiphyllous moss and a Lauraceae plant host from the middle Cretaceous. We describe the oldest fossil specimen of an epiphyllous moss, Bryiidites utahensis gen. et sp. nov., identified from an individual specimen only 450 µm long, situated on an approximately one millimeter square fossil leaf fragment. The moss epiphyll is exquisitely preserved as germinating spores and short-celled protonemata with transverse and oblique cross-walls closely matching those of extant epiphyllous mosses on the surface of the plant-leaf hosts. The extension of the epiphyll record back to the middle Cretaceous provides fossil evidence for the appearance of epiphyllous mosses during the diversification of flowering plants, at least 95 million years ago. It also provides substantive evidence for a tropical maritime climate in central North America during the middle Cretaceous.

  2. Species-energy relationship in the deep sea: A test using the Quaternary fossil record

    USGS Publications Warehouse

    Hunt, G.; Cronin, T. M.; Roy, K.

    2005-01-01

    Little is known about the processes regulating species richness in deep-sea communities. Here we take advantage of natural experiments involving climate change to test whether predictions of the species-energy hypothesis hold in the deep sea. In addition, we test for the relationship between temperature and species richness predicted by a recent model based on biochemical kinetics of metabolism. Using the deep-sea fossil record of benthic foraminifera and statistical meta-analyses of temperature-richness and productivity-richness relationships in 10 deep-sea cores, we show that temperature but not productivity is a significant predictor of species richness over the past c. 130 000 years. Our results not only show that the temperature-richness relationship in the deep-sea is remarkably similar to that found in terrestrial and shallow marine habitats, but also that species richness tracks temperature change over geological time, at least on scales of c. 100 000 years. Thus, predicting biotic response to global climate change in the deep sea would require better understanding of how temperature regulates the occurrences and geographical ranges of species. ??2005 Blackwell Publishing Ltd/CNRS.

  3. Total-Evidence Dating under the Fossilized Birth-Death Process.

    PubMed

    Zhang, Chi; Stadler, Tanja; Klopfstein, Seraina; Heath, Tracy A; Ronquist, Fredrik

    2016-03-01

    Bayesian total-evidence dating involves the simultaneous analysis of morphological data from the fossil record and morphological and sequence data from recent organisms, and it accommodates the uncertainty in the placement of fossils while dating the phylogenetic tree. Due to the flexibility of the Bayesian approach, total-evidence dating can also incorporate additional sources of information. Here, we take advantage of this and expand the analysis to include information about fossilization and sampling processes. Our work is based on the recently described fossilized birth-death (FBD) process, which has been used to model speciation, extinction, and fossilization rates that can vary over time in a piecewise manner. So far, sampling of extant and fossil taxa has been assumed to be either complete or uniformly at random, an assumption which is only valid for a minority of data sets. We therefore extend the FBD process to accommodate diversified sampling of extant taxa, which is standard practice in studies of higher-level taxa. We verify the implementation using simulations and apply it to the early radiation of Hymenoptera (wasps, ants, and bees). Previous total-evidence dating analyses of this data set were based on a simple uniform tree prior and dated the initial radiation of extant Hymenoptera to the late Carboniferous (309 Ma). The analyses using the FBD prior under diversified sampling, however, date the radiation to the Triassic and Permian (252 Ma), slightly older than the age of the oldest hymenopteran fossils. By exploring a variety of FBD model assumptions, we show that it is mainly the accommodation of diversified sampling that causes the push toward more recent divergence times. Accounting for diversified sampling thus has the potential to close the long-discussed gap between rocks and clocks. We conclude that the explicit modeling of fossilization and sampling processes can improve divergence time estimates, but only if all important model aspects, including sampling biases, are adequately addressed. ©The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.

  4. Precambrian evolution and the rock record

    NASA Technical Reports Server (NTRS)

    Awramik, S.

    1985-01-01

    The Precambrian time which refers to geological time prior to the first appearance of animals with mineralized hard parts was investigated. Best estimates for this event are around 570 million years ago. Because the rock record begins some 3,800 million years ago the Precambrian encompasses about 84% of geologic time. The fossil record for this immense span of time is dominated by prokaryotes and the sedimentary structures produced by them. The first fossil remains that are considered eukaryotic are found in 1,000 million year old rocks. The first animals may be as old as 700 million years. The fossil records of the first 84% of the Earth's history are collected and described.

  5. Oldest record of Metrosideros (Myrtaceae): Fossil flowers, fruits, and leaves from Australia.

    PubMed

    Tarran, Myall; Wilson, Peter G; Hill, Robert S

    2016-04-01

    Myrtaceous fossil capsular fruits and flowers from the northwest of Tasmania, in the Early Oligocene-aged Little Rapid River (LRR) deposit, are described. The reproductive organs are found in association with Myrtaceous leaves previously thought to belong to a fleshy-fruited genus, Xanthomyrtus at both LRR, and an Eocene Tasmanian site at Hasties, which are reassessed with fresh morphological evidence. Standard Light Microscopy (LM) and Scanning Electron Microscopy (SEM) were used to investigate cuticular characters and an auto-montage camera system was used to take high-resolution images of fossil and extant fruits. Fossils are identified using a nearest living relative (NLR) approach. The fossil fruits and flowers share a number of characters with genera of capsular-fruited Myrtaceae, in particular sharing several synapomorphies with species of Metrosideros subg. Metrosideros (tribe: Metrosidereae). The fossil is here described, and named Metrosideros leunigii, sp. nov. This research establishes the presence of Metrosideros (aff. subg. Metrosideros) in the Eocene-Oligocene (∼40-30 mya) of Tasmania, Australia. This is the first fossil record of Metrosideros in Australia, as well as the oldest conclusive fossil record, and may provide evidence for an Australian origin of the genus. It is also yet another example of extinction in the Tertiary of a group of plants on the Australian mainland that is only found today on nearby Pacific landmasses. © 2016 Botanical Society of America.

  6. Gaps in the Rock and Fossil Records and Implications for the Rate and Mode of Evolution.

    ERIC Educational Resources Information Center

    Smith, Grant Sackett

    1988-01-01

    Examines three types of gaps in the fossil record: real gaps, imaginary gaps, and temporary gaps. Reviews some recent evidence concerning evolution from the paleontological record of microfossils, invertebrates, and vertebrates in order to make some general conclusions regarding the manner in which life evolved on earth. (CW)

  7. Insect diversity in the fossil record

    NASA Technical Reports Server (NTRS)

    Labandeira, C. C.; Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1993-01-01

    Insects possess a surprisingly extensive fossil record. Compilation of the geochronologic ranges of insect families demonstrates that their diversity exceeds that of preserved vertebrate tetrapods through 91 percent of their evolutionary history. The great diversity of insects was achieved not by high origination rates but rather by low extinction rates comparable to the low rates of slowly evolving marine invertebrate groups. The great radiation of modern insects began 245 million years ago and was not accelerated by the expansion of angiosperms during the Cretaceous period. The basic trophic machinery of insects was in place nearly 100 million years before angiosperms appeared in the fossil record.

  8. The fossil record of evolution: Data on diversification and extinction

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J., Jr.

    1991-01-01

    Understanding of the evolution of complex life, and of the roles that changing terrestrial and extraterrestrial environments played in life's history, is dependent upon synthetic knowledge of the fossil record. Paleontologists have been describing fossils for more that two centuries. However, much of this information is dispersed in monographs and journal articles published throughout the world. Over the past several years, this literature was surveyed, and a data base on times of origination and extinction of fossil genera was compiled. The data base, which now holds approximately 32,000 genera, covers all taxonomic groups of marine animals, incorporates the most recent taxonomic assignments, and uses a detailed global time framework that can resolve originations and extinctions to intervals averaging three million years in duration. These data can be used to compile patterns of global biodiversity, measure rates of taxic evolution, and test hypotheses concerning adaptive radiations, mass extinctions, etc. Thus far, considerable effort was devoted to using the data to test the hypothesis of periodicity of mass extinction. Rates of extinction measured from the data base have also been used to calibrate models of evolutionary radiations in marine environments. It was observed that new groups, or clades of animals (i.e., orders and classes) tend to reach appreciable diversity first in nearshore environments and then to radiate in more offshore environments; during decline, these clades may disappear from the nearshore while persisting in offshore, deep water habitats. These observations have led to suggestions that there is something special about stressful or perturbed environments that promotes the evolution of novel kinds of animals that can rapidly replace their predecessors. The numerical model that is being investigated to study this phenomenon treats environments along onshore-offshore gradients as if they were discrete habitats. Other aspects of this investigation are presented.

  9. Major Radiations in the Evolution of Caviid Rodents: Reconciling Fossils, Ghost Lineages, and Relaxed Molecular Clocks

    PubMed Central

    Pérez, María Encarnación; Pol, Diego

    2012-01-01

    Background Caviidae is a diverse group of caviomorph rodents that is broadly distributed in South America and is divided into three highly divergent extant lineages: Caviinae (cavies), Dolichotinae (maras), and Hydrochoerinae (capybaras). The fossil record of Caviidae is only abundant and diverse since the late Miocene. Caviids belongs to Cavioidea sensu stricto (Cavioidea s.s.) that also includes a diverse assemblage of extinct taxa recorded from the late Oligocene to the middle Miocene of South America (“eocardiids”). Results A phylogenetic analysis combining morphological and molecular data is presented here, evaluating the time of diversification of selected nodes based on the calibration of phylogenetic trees with fossil taxa and the use of relaxed molecular clocks. This analysis reveals three major phases of diversification in the evolutionary history of Cavioidea s.s. The first two phases involve two successive radiations of extinct lineages that occurred during the late Oligocene and the early Miocene. The third phase consists of the diversification of Caviidae. The initial split of caviids is dated as middle Miocene by the fossil record. This date falls within the 95% higher probability distribution estimated by the relaxed Bayesian molecular clock, although the mean age estimate ages are 3.5 to 7 Myr older. The initial split of caviids is followed by an obscure period of poor fossil record (refered here as the Mayoan gap) and then by the appearance of highly differentiated modern lineages of caviids, which evidentially occurred at the late Miocene as indicated by both the fossil record and molecular clock estimates. Conclusions The integrated approach used here allowed us identifying the agreements and discrepancies of the fossil record and molecular clock estimates on the timing of the major events in cavioid evolution, revealing evolutionary patterns that would not have been possible to gather using only molecular or paleontological data alone. PMID:23144757

  10. Assessing the completeness of the fossil record using brachiopod Lazarus taxa

    NASA Astrophysics Data System (ADS)

    Gearty, W.; Payne, J.

    2012-12-01

    Lazarus taxa, organisms that disappear from the fossil record only to reappear later, provide a unique opportunity to assess the completeness of the fossil record. In this study, we apply logistic regression to quantify the associations of body size, geographic extent, and species diversity with the probability of being a Lazarus genus using the Phanerozoic fossil record of brachiopods. We find that both the geographic range and species diversity of a genus are inversely associated with the probability of being a Lazarus taxon in the preceding or succeeding stage. In contrast, body size exhibits little association with the probability of becoming a Lazarus taxon. A model including species diversity and geographic extent as predictors performs best among all combinations examined, whereas a model including only shell size as a predictor performs the worst - even worse than a model that assumes Lazarus taxa are randomly drawn from all available genera. These findings suggest that geographic range and species richness data can be used to improve estimates of extensions on the observed fossil ranges of genera and, thereby, better correct for sampling effects in estimates of taxonomic diversity change through the Phanerozoic.

  11. Diagnosing Homo sapiens in the fossil record.

    PubMed

    Stringer, Christopher Brian; Buck, Laura Tabitha

    2014-01-01

    Diagnosing Homo sapiens is a critical question in the study of human evolution. Although what constitutes living members of our own species is straightforward, in the fossil record this is still a matter of much debate. The issue is complicated by questions of species diagnoses and ideas about the mode by which a new species is born, by the arguments surrounding the behavioural and cognitive separateness of the species, by the increasing appreciation of variation in the early African H. sapiens record and by new DNA evidence of hybridization with extinct species. This study synthesizes thinking on the fossils, archaeology and underlying evolutionary models of the last several decades with recent DNA results from both H. sapiens and fossil species. It is concluded that, although it may not be possible or even desirable to cleanly partition out a homogenous morphological description of recent H. sapiens in the fossil record, there are key, distinguishing morphological traits in the cranium, dentition and pelvis that can be usefully employed to diagnose the H. sapiens lineage. Increasing advances in retrieving and understanding relevant genetic data provide a complementary and perhaps potentially even more fruitful means of characterizing the differences between H. sapiens and its close relatives.

  12. The oldest Mahonia (Berberidaceae) fossil from East Asia and its biogeographic implications.

    PubMed

    Huang, Jian; Su, Tao; Lebereton-Anberrée, Julie; Zhang, Shi-Tao; Zhou, Zhe-Kun

    2016-03-01

    Interpretation of the biogeography of the genus Mahonia (Berberidaceae) is limited by the lack of fossil records in East Asia. Compressed fossil foliage, described here as Mahonia mioasiatica sp. nov., were collected from the Upper Miocene Xiaolongtan Formation in Wenshan, Yunnan, southwest China. These specimens represent the oldest reliable fossil record of Mahonia in East Asia. This new fossil species shows a general similarity to Group Orientales and is most similar to the extant eastern Asian Mahonia conferta. Considering other fossil evidence of Mahonia, we propose a migration route of this genus to Asia over the North Atlantic Land Bridge rather than the Bering Land Bridge. Our results also suggest that North America, Europe and East Asia have been successive centers of diversity for the genus, as a consequence of diversification in Group Orientales potentially related to historical climate change.

  13. Cretaceous flowers of Nymphaeaceae and implications for complex insect entrapment pollination mechanisms in early angiosperms.

    PubMed

    Gandolfo, M A; Nixon, K C; Crepet, W L

    2004-05-25

    Based on recent molecular systematics studies, the water lily lineage (Nymphaeales) provides an important key to understanding ancestral angiosperm morphology and is of considerable interest in the context of angiosperm origins. Therefore, the fossil record of Nymphaeales potentially provides evidence on both the timing and nature of diversification of one of the earliest clades of flowering plants. Recent fossil evidence of Turonian age (approximately 90 million years B.P.) includes fossil flowers with characters that, upon rigorous analysis, firmly place them within Nymphaeaceae. Unequivocally the oldest floral record of the Nymphaeales, these fossils are closely related to the modern Nymphaealean genera Victoria (the giant Amazon water lily) and Euryale. Although the fossils are much smaller than their modern relatives, the precise and dramatic correspondence between the fossil floral morphology and that of modern Victoria flowers suggests that beetle entrapment pollination was present in the earliest part of the Late Cretaceous.

  14. Tetrapod trackways from the early Middle Devonian period of Poland.

    PubMed

    Niedźwiedzki, Grzegorz; Szrek, Piotr; Narkiewicz, Katarzyna; Narkiewicz, Marek; Ahlberg, Per E

    2010-01-07

    The fossil record of the earliest tetrapods (vertebrates with limbs rather than paired fins) consists of body fossils and trackways. The earliest body fossils of tetrapods date to the Late Devonian period (late Frasnian stage) and are preceded by transitional elpistostegids such as Panderichthys and Tiktaalik that still have paired fins. Claims of tetrapod trackways predating these body fossils have remained controversial with regard to both age and the identity of the track makers. Here we present well-preserved and securely dated tetrapod tracks from Polish marine tidal flat sediments of early Middle Devonian (Eifelian stage) age that are approximately 18 million years older than the earliest tetrapod body fossils and 10 million years earlier than the oldest elpistostegids. They force a radical reassessment of the timing, ecology and environmental setting of the fish-tetrapod transition, as well as the completeness of the body fossil record.

  15. Ancient fossil specimens of extinct species are genetically more distant to an outgroup than extant sister species are

    PubMed Central

    Huang, Shi

    2009-01-01

    There exists a remarkable correlation between genetic distance as measured by protein or DNA dissimilarity and time of species divergence as inferred from fossil records. This observation has provoked the molecular clock hypothesis. However, data inconsistent with the hypothesis have steadily accumulated in recent years from studies of extant organisms. Here the published DNA and protein sequences from ancient fossil specimens were examined to see if they would support the molecular clock hypothesis. The hypothesis predicts that ancient specimens cannot be genetically more distant to an outgroup than extant sister species are. Also, two distinct ancient specimens cannot be genetically more distant than their extant sister species are. The findings here do not conform to these predictions. Neanderthals are more distant to chimpanzees and gorillas than modern humans are. Dinosaurs are more distant to frogs than extant birds are. Mastodons are more distant to opossums than other placental mammals are. The genetic distance between dinosaurs and mastodons is greater than that between extant birds and mammals. Therefore, while the molecular clock hypothesis is consistent with some data from extant organisms, it has yet to find support from ancient fossils. Far more damaging to the hypothesis than data from extant organisms, which merely question the constancy of mutation rate, the study of ancient fossil organisms here challenges for the first time the fundamental premise of modern evolution theory that genetic distances had always increased with time in the past history of life on Earth. PMID:18600632

  16. The non-uniformity of fossil preservation.

    PubMed

    Holland, Steven M

    2016-07-19

    The fossil record provides the primary source of data for calibrating the origin of clades. Although minimum ages of clades are given by the oldest preserved fossil, these underestimate the true age, which must be bracketed by probabilistic methods based on multiple fossil occurrences. Although most of these methods assume uniform preservation rates, this assumption is unsupported over geological timescales. On geologically long timescales (more than 10 Myr), the origin and cessation of sedimentary basins, and long-term variations in tectonic subsidence, eustatic sea level and sedimentation rate control the availability of depositional facies that preserve the environments in which species lived. The loss of doomed sediments, those with a low probability of preservation, imparts a secular trend to fossil preservation. As a result, the fossil record is spatially and temporally non-uniform. Models of fossil preservation should reflect this non-uniformity by using empirical estimates of fossil preservation that are spatially and temporally partitioned, or by using indirect proxies of fossil preservation. Geologically, realistic models of preservation will provide substantially more reliable estimates of the origination of clades.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. © 2016 The Author(s).

  17. The non-uniformity of fossil preservation

    PubMed Central

    2016-01-01

    The fossil record provides the primary source of data for calibrating the origin of clades. Although minimum ages of clades are given by the oldest preserved fossil, these underestimate the true age, which must be bracketed by probabilistic methods based on multiple fossil occurrences. Although most of these methods assume uniform preservation rates, this assumption is unsupported over geological timescales. On geologically long timescales (more than 10 Myr), the origin and cessation of sedimentary basins, and long-term variations in tectonic subsidence, eustatic sea level and sedimentation rate control the availability of depositional facies that preserve the environments in which species lived. The loss of doomed sediments, those with a low probability of preservation, imparts a secular trend to fossil preservation. As a result, the fossil record is spatially and temporally non-uniform. Models of fossil preservation should reflect this non-uniformity by using empirical estimates of fossil preservation that are spatially and temporally partitioned, or by using indirect proxies of fossil preservation. Geologically, realistic models of preservation will provide substantially more reliable estimates of the origination of clades. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325828

  18. Molecular systematics of the Canidae.

    PubMed

    Wayne, R K; Geffen, E; Girman, D J; Koepfli, K P; Lau, L M; Marshall, C R

    1997-12-01

    Despite numerous systematic studies, the relationships among many species within the dog family, Canidae, remain unresolved. Two problems of broad evolutionary significance are the origins of the taxonomically rich canidae fauna of South America and the development in three species of the trenchant heel, a unique meat-cutting blade on the lower first molar. The first problem is of interest because the fossil record provides little evidence for the origins of divergent South American species such as the maned wolf and the bush dog. The second issue is problematic because the trenchant heel, although complex in form, may have evolved independently to assist in the processing of meat. We attempted to resolve these two issues and five other specific taxonomic controversies by phylogenetic analysis of 2,001 base pairs of mitochondrial DNA (mtDNA) sequence data from 23 canidae species. The mtDNA tree topology, coupled with data from the fossil record, and estimates of rates of DNA sequence divergence suggest at least three and possibly four North American invasions of South America. This result implies that an important chapter in the evolution of modern canids remains to be discovered in the fossil record and that the South American canidae endemism is as much the result of extinction outside of South America as it is due to speciation within South America. The origin of the trenchant heel is not well resolved by our data, although the maximum parsimony tree is weakly consistent with a single origin followed by multiple losses of the character in several extant species. A combined analysis of the mtDNA data and published morphological data provides unexpected support for a monophyletic South American canidae clade. However, the homogeneity partition tests indicate significant heterogeneity between the two data sets.

  19. Radiometric age determinations on Pliocene/Pleistocene formations in the lower Omo basin, Ethiopia

    USGS Publications Warehouse

    Brown, F.H.; Lajoie, K.R.

    1971-01-01

    THE potassium-argon ages presented here were obtained during 1966 to 1969 in order to provide an absolute time scale for the stratigraphic work by the international Omo Research Expedition in the Pliocene/Pleistocene formations (unpublished work of F. H. B., J. de Heinzelin and F. C. Howell) in south-west Ethiopia. Although some of these dates are not new1-3, most of the analytical procedures and data have not been presented. We also present a list of fossil localities recorded by the University of Chicago contingent of the expedition within the Shungura Formation. Preliminary descriptions of the Hominidae have been published already3,4. ?? 1971 Nature Publishing Group.

  20. A multi-calibrated mitochondrial phylogeny of extant Bovidae (Artiodactyla, Ruminantia) and the importance of the fossil record to systematics.

    PubMed

    Bibi, Faysal

    2013-08-08

    Molecular phylogenetics has provided unprecedented resolution in the ruminant evolutionary tree. However, molecular age estimates using only one or a few (often misapplied) fossil calibration points have produced a diversity of conflicting ages for important evolutionary events within this clade. I here identify 16 fossil calibration points of relevance to the phylogeny of Bovidae and Ruminantia and use these, individually and together, to construct a dated molecular phylogeny through a reanalysis of the full mitochondrial genome of over 100 ruminant species. The new multi-calibrated tree provides ages that are younger overall than found in previous studies. Among these are young ages for the origin of crown Ruminantia (39.3-28.8 Ma), and crown Bovidae (17.3-15.1 Ma). These are argued to be reasonable hypotheses given that many basal fossils assigned to these taxa may in fact lie on the stem groups leading to the crown clades, thus inflating previous age estimates. Areas of conflict between molecular and fossil dates do persist, however, especially with regard to the base of the rapid Pecoran radiation and the sister relationship of Moschidae to Bovidae. Results of the single-calibrated analyses also show that a very wide range of molecular age estimates are obtainable using different calibration points, and that the choice of calibration point can influence the topology of the resulting tree. Compared to the single-calibrated trees, the multi-calibrated tree exhibits smaller variance in estimated ages and better reflects the fossil record. The use of a large number of vetted fossil calibration points with soft bounds is promoted as a better approach than using just one or a few calibrations, or relying on internal-congruency metrics to discard good fossil data. This study also highlights the importance of considering morphological and ecological characteristics of clades when delimiting higher taxa. I also illustrate how phylogeographic and paleoenvironmental hypotheses inferred from a tree containing only extant taxa can be problematic without consideration of the fossil record. Incorporating the fossil record of Ruminantia is a necessary step for future analyses aiming to reconstruct the evolutionary history of this clade.

  1. Experimental analysis of decay biases in the fossil record of lobopodians

    NASA Astrophysics Data System (ADS)

    Murdock, Duncan; Gabbott, Sarah; Purnell, Mark

    2016-04-01

    If fossils are to realize their full potential in reconstructing the tree of life we must understand how our view of ancient organisms is obscured by taphonomic filters of decay and preservation. In most cases, processes of decay will leave behind either nothing or only the most decay resistant body parts, and even in those rare instances where soft tissues are fossilized we cannot assume that the resulting fossil, however exquisite, represents a faithful anatomical representation of the animal as it was in life.Recent experiments have shown that the biases introduced by decay can be far from random; in chordates, for example, the most phylogenetically informative characters are also the most decay-prone, resulting in 'stemward slippage'. But how widespread is this phenomenon, and are there other non-random biases linked to decay? Intuitively, we make assumptions about the likelihood of different kinds of characters to survive and be preserved, with knock-on effects for anatomical and phylogenetic interpretations. To what extent are these assumptions valid? We combine our understanding of the fossil record of lobopodians with insights from decay experiments of modern onychophorans (velvet worms) to test these assumptions. Our analysis demonstrates that taphonomically informed tests of character interpretations have the potential to improve phylogenetic resolution. This approach is widely applicable to the fossil record - allowing us to ground-truth some of the assumptions involved in describing exceptionally preserved fossil material.

  2. Evidence for Evolution from the Vertebrate Fossil Record.

    ERIC Educational Resources Information Center

    Gingerich, Philip D.

    1983-01-01

    Discusses three examples of evolutionary transition in the vertebrate fossil record, considering evolutionary transitions at the species level. Uses archaic squirrel-like Paleocine primates, the earliest primates of modern aspect, as examples. Also reviews new evidence on the origin of whales and their transition from land to sea. (JN)

  3. Production of CO2 from Fossil Fuel Burning by Fuel Type, 1860-1982

    DOE Data Explorer

    Rotty, R.M. [Oak Ridge Associated Univ., Oak Ridge, TN (United States); Marland, G. [Oak Ridge Associated Univ., Oak Ridge, TN (United States)

    2004-01-01

    Global carbon dioxide emissions for 1950 through 1982 were estimated by Marland and Rotty (1984) from fuel production data from the U.N. Energy Statistics Yearbook (1983, 1984). Data before 1950 came from Keeling (1973). Fuel-production data were used in these calculations because they appeared to be more reliable on a global basis than fuel-consumption data. The data given are the year and annual global CO2 emissions (annual global total; cumulative global total since 1860; and annual global emissions from solid fuels, liquid fuels, natural gas, gas flaring, and cement manufacturing). These data provide the only pre-1950 estimates of the amount of carbon emitted to the atmosphere from fossil-fuel burning. The CO2 emission record since 1950 has been updated and revised several times with the most recent estimates being published by Marland et al. (1989).

  4. Fossils of parasites: what can the fossil record tell us about the evolution of parasitism?

    PubMed

    Leung, Tommy L F

    2017-02-01

    Parasites are common in many ecosystems, yet because of their nature, they do not fossilise readily and are very rare in the geological record. This makes it challenging to study the evolutionary transition that led to the evolution of parasitism in different taxa. Most studies on the evolution of parasites are based on phylogenies of extant species that were constructed based on morphological and molecular data, but they give us an incomplete picture and offer little information on many important details of parasite-host interactions. The lack of fossil parasites also means we know very little about the roles that parasites played in ecosystems of the past even though it is known that parasites have significant influences on many ecosystems. The goal of this review is to bring attention to known fossils of parasites and parasitism, and provide a conceptual framework for how research on fossil parasites can develop in the future. Despite their rarity, there are some fossil parasites which have been described from different geological eras. These fossils include the free-living stage of parasites, parasites which became fossilised with their hosts, parasite eggs and propagules in coprolites, and traces of pathology inflicted by parasites on the host's body. Judging from the fossil record, while there were some parasite-host relationships which no longer exist in the present day, many parasite taxa which are known from the fossil record seem to have remained relatively unchanged in their general morphology and their patterns of host association over tens or even hundreds of millions of years. It also appears that major evolutionary and ecological transitions throughout the history of life on Earth coincided with the appearance of certain parasite taxa, as the appearance of new host groups also provided new niches for potential parasites. As such, fossil parasites can provide additional data regarding the ecology of their extinct hosts, since many parasites have specific life cycles and transmission modes which reflect certain aspects of the host's ecology. The study of fossil parasites can be conducted using existing techniques in palaeontology and palaeoecology, and microscopic examination of potential material such as coprolites may uncover more fossil evidence of parasitism. However, I also urge caution when interpreting fossils as examples of parasites or parasitism-induced traces. I point out a number of cases where parasitism has been spuriously attributed to some fossil specimens which, upon re-examination, display traits which are just as (if not more) likely to be found in free-living taxa. The study of parasite fossils can provide a more complete picture of the ecosystems and evolution of life throughout Earth's history. © 2015 Cambridge Philosophical Society.

  5. Phanerozoic marine diversity: rock record modelling provides an independent test of large-scale trends.

    PubMed

    Smith, Andrew B; Lloyd, Graeme T; McGowan, Alistair J

    2012-11-07

    Sampling bias created by a heterogeneous rock record can seriously distort estimates of marine diversity and makes a direct reading of the fossil record unreliable. Here we compare two independent estimates of Phanerozoic marine diversity that explicitly take account of variation in sampling-a subsampling approach that standardizes for differences in fossil collection intensity, and a rock area modelling approach that takes account of differences in rock availability. Using the fossil records of North America and Western Europe, we demonstrate that a modelling approach applied to the combined data produces results that are significantly correlated with those derived from subsampling. This concordance between independent approaches argues strongly for the reality of the large-scale trends in diversity we identify from both approaches.

  6. Benthic foraminiferal assemblage formation: Theory and observation for the European Arctic margin

    NASA Astrophysics Data System (ADS)

    Loubere, Paul; Rayray, Shan

    2016-09-01

    We use theory and observation to determine how benthic foraminiferal populations living in a range of sedimentary microenvironments are translated into fossil assemblages along the continental margin of the European Arctic. We examine downcore stained (cell tracker green and rose Bengal) and total species shell abundances through the sediment mixing (bioturbation) zone. This, in combination with porewater geochemical measurements, allows us to establish zones of production and destruction for species' shells, and deduce how the fossil record is being generated by the living community. For many taxa, shell production is high in the upper, oxic, sedimentary layer, but destruction in this zone is also high. Hence, contribution to the fossil record is biased to more infaunal populations and species. Taxa producing near, or below, the anoxic boundary of the sediments are particularly important to the developing fossil record of the fjord environment. We find that taxon relative and absolute abundances change continuously through the biologically active sediment profile. This has implications for reconstructing paleoenvironments using benthic foraminiferal assemblages, and potentially for the geochemistry of individual fossil taxa.

  7. Benthic foraminiferal assemblage formation: Theory and observation for the European Arctic Margin

    NASA Astrophysics Data System (ADS)

    Loubere, Paul; Rayray, Shan

    2016-07-01

    We use theory and observation to determine how benthic foraminiferal populations living in a range of sedimentary microenvironments are translated into fossil assemblages along the continental margin of the European Arctic. We examine downcore stained (cell tracker green and rose Bengal) and total species shell abundances through the sediment mixing (bioturbation) zone. This, in combination with porewater geochemical measurements, allows us to establish zones of production and destruction for species' shells, and deduce how the fossil record is being generated by the living community. For many taxa, shell production is high in the upper, oxic, sedimentary layer, but destruction in this zone is also high. Hence, contribution to the fossil record is biased to more infaunal populations and species. Taxa producing near, or below, the anoxic boundary of the sediments are particularly important to the developing fossil record of the fjord environment. We find that taxon relative and absolute abundances change continuously through the biologically active sediment profile. This has implications for reconstructing paleoenvironments using benthic foraminiferal assemblages, and potentially for the geochemistry of individual fossil taxa.

  8. Identifying Fossil Shell Resources via Geophysical Surveys: Chesapeake Bay Region, Virginia

    DTIC Science & Technology

    2016-05-01

    ER D C/ CH L TR -1 6- 4 Chesapeake Fossil Shell Survey Identifying Fossil Shell Resources via Geophysical Surveys: Chesapeake Bay Region...other technical reports published by ERDC, visit the ERDC online library at http://acwc.sdp.sirsi.net/client/default. Chesapeake Fossil Shell...Survey ERDC/CHL TR-16-4 May 2016 Identifying Fossil Shell Resources via Geophysical Surveys: Chesapeake Bay Region, Virginia Heidi M. Wadman and Jesse

  9. An early Oligocene fossil demonstrates treeshrews are slowly evolving "living fossils".

    PubMed

    Li, Qiang; Ni, Xijun

    2016-01-14

    Treeshrews are widely considered a "living model" of an ancestral primate, and have long been called "living fossils". Actual fossils of treeshrews, however, are extremely rare. We report a new fossil species of Ptilocercus treeshrew recovered from the early Oligocene (~34 Ma) of China that represents the oldest definitive fossil record of the crown group of treeshrews and nearly doubles the temporal length of their fossil record. The fossil species is strikingly similar to the living Ptilocercus lowii, a species generally recognized as the most plesiomorphic extant treeshrew. It demonstrates that Ptilocercus treeshrews have undergone little evolutionary change in their morphology since the early Oligocene. Morphological comparisons and phylogenetic analysis support the long-standing idea that Ptilocercus treeshrews are morphologically conservative and have probably retained many characters present in the common stock that gave rise to archontans, which include primates, flying lemurs, plesiadapiforms and treeshrews. This discovery provides an exceptional example of slow morphological evolution in a mammalian group over a period of 34 million years. The persistent and stable tropical environment in Southeast Asia through the Cenozoic likely played a critical role in the survival of such a morphologically conservative lineage.

  10. Organic preservation of fossil musculature with ultracellular detail

    PubMed Central

    McNamara, Maria; Orr, Patrick J.; Kearns, Stuart L.; Alcalá, Luis; Anadón, Pere; Peñalver-Mollá, Enrique

    2010-01-01

    The very labile (decay-prone), non-biomineralized, tissues of organisms are rarely fossilized. Occurrences thereof are invaluable supplements to a body fossil record dominated by biomineralized tissues, which alone are extremely unrepresentative of diversity in modern and ancient ecosystems. Fossil examples of extremely labile tissues (e.g. muscle) that exhibit a high degree of morphological fidelity are almost invariably replicated by inorganic compounds such as calcium phosphate. There is no consensus as to whether such tissues can be preserved with similar morphological fidelity as organic remains, except when enclosed inside amber. Here, we report fossilized musculature from an approximately 18 Myr old salamander from lacustrine sediments of Ribesalbes, Spain. The muscle is preserved organically, in three dimensions, and with the highest fidelity of morphological preservation yet documented from the fossil record. Preserved ultrastructural details include myofilaments, endomysium, layering within the sarcolemma, and endomysial circulatory vessels infilled with blood. Slight differences between the fossil tissues and their counterparts in extant amphibians reflect limited degradation during fossilization. Our results provide unequivocal evidence that high-fidelity organic preservation of extremely labile tissues is not only feasible, but likely to be common. This is supported by the discovery of similarly preserved tissues in the Eocene Grube Messel biota. PMID:19828545

  11. 'Fish' (Actinopterygii and Elasmobranchii) diversification patterns through deep time.

    PubMed

    Guinot, Guillaume; Cavin, Lionel

    2016-11-01

    Actinopterygii (ray-finned fishes) and Elasmobranchii (sharks, skates and rays) represent more than half of today's vertebrate taxic diversity (approximately 33000 species) and form the largest component of vertebrate diversity in extant aquatic ecosystems. Yet, patterns of 'fish' evolutionary history remain insufficiently understood and previous studies generally treated each group independently mainly because of their contrasting fossil record composition and corresponding sampling strategies. Because direct reading of palaeodiversity curves is affected by several biases affecting the fossil record, analytical approaches are needed to correct for these biases. In this review, we propose a comprehensive analysis based on comparison of large data sets related to competing phylogenies (including all Recent and fossil taxa) and the fossil record for both groups during the Mesozoic-Cainozoic interval. This approach provides information on the 'fish' fossil record quality and on the corrected 'fish' deep-time phylogenetic palaeodiversity signals, with special emphasis on diversification events. Because taxonomic information is preserved after analytical treatment, identified palaeodiversity events are considered both quantitatively and qualitatively and put within corresponding palaeoenvironmental and biological settings. Results indicate a better fossil record quality for elasmobranchs due to their microfossil-like fossil distribution and their very low diversity in freshwater systems, whereas freshwater actinopterygians are diverse in this realm with lower preservation potential. Several important diversification events are identified at familial and generic levels for elasmobranchs, and marine and freshwater actinopterygians, namely in the Early-Middle Jurassic (elasmobranchs), Late Jurassic (actinopterygians), Early Cretaceous (elasmobranchs, freshwater actinopterygians), Cenomanian (all groups) and the Paleocene-Eocene interval (all groups), the latter two representing the two most exceptional radiations among vertebrates. For each of these events along with the Cretaceous-Paleogene extinction, we provide an in-depth review of the taxa involved and factors that may have influenced the diversity patterns observed. Among these, palaeotemperatures, sea-levels, ocean circulation and productivity as well as continent fragmentation and environment heterogeneity (reef environments) are parameters that largely impacted on 'fish' evolutionary history, along with other biotic constraints. © 2015 Cambridge Philosophical Society.

  12. Mio-Pliocene Faunal Exchanges and African Biogeography: The Record of Fossil Bovids

    PubMed Central

    Bibi, Faysal

    2011-01-01

    The development of the Ethiopian biogeographic realm since the late Miocene is here explored with the presentation and review of fossil evidence from eastern Africa. Prostrepsiceros cf. vinayaki and an unknown species of possible caprin affinity are described from the hominid-bearing Asa Koma and Kuseralee Members (∼5.7 and ∼5.2 Ma) of the Middle Awash, Ethiopia. The Middle Awash Prostrepsiceros cf. vinayaki constitutes the first record of this taxon from Africa, previously known from the Siwaliks and Arabia. The possible caprin joins a number of isolated records of caprin or caprin-like taxa recorded, but poorly understood, from the late Neogene of Africa. The identification of these two taxa from the Middle Awash prompts an overdue review of fossil bovids from the sub-Saharan African record that demonstrate Eurasian affinities, including the reduncin Kobus porrecticornis, and species of Tragoportax. The fossil bovid record provides evidence for greater biological continuity between Africa and Eurasia in the late Miocene and earliest Pliocene than is found later in time. In contrast, the early Pliocene (after 5 Ma) saw the loss of any significant proportions of Eurasian-related taxa, and the continental dominance of African-endemic taxa and lineages, a pattern that continues today. PMID:21358825

  13. A new Cheirolepidiaceae (Coniferales) from the Early Jurassic of Patagonia (Argentina): Reconciling the records of impression and permineralized fossils.

    PubMed

    Escapa, Ignacio; Leslie, Andrew

    2017-02-01

    Plants preserved in different fossil modes provide complementary data concerning the paleobiology and evolutionary relationships among plant groups. New material from the Early Jurassic of Patagonia shows the importance of combining these sources of information, as we describe the first compression/impression fossils of Pararaucaria , a genus of the extinct conifer family Cheirolepidiaceae previously known from permineralized fossils. These fossils extend the temporal range of this genus and may allow its wider recognition in the fossil record. We studied fossil plants from the Early Jurassic (Pleinsbachian-Toarcian) locality of Taquetrén in Patagonia, Argentina using standard paleobotanical preparation and description techniques. Pararaucaria taquetrensis consists of isolated ovuliferous scales and small seed cones with helically arranged bract-scale complexes attached to scale-leaf foliage. Bract-scale complexes consist of separated bracts and ovuliferous scales with two seeds and three broad distal lobes. Pararaucaria taquetrensis represents the oldest known Cheirolepidiaceae seed cones from the Southern Hemisphere, and this material highlights the importance of compression and impression fossils in understanding the distribution of fossil taxa. This material also suggests that Cheirolepidiaceae cone scales can be easily confused with those of another common conifer family, the Araucariaceae, which has important implications for accurately understanding Mesozoic conifer diversity and paleoecology. © 2017 Botanical Society of America.

  14. Paleopedology Comes Down to Earth.

    ERIC Educational Resources Information Center

    Retallack, Greg J.

    1983-01-01

    Discusses content, laboratory work, and field studies of a senior-level course in paleopedology (study of fossil soils). The course explores interpretation of ancient terrestrial environments from fossil soils and the study of the fossil record of such soils as an additional approach to earth history. (JN)

  15. Unravelling the nature of Waiparaconus, a pennatulacean (Cnidaria: Octocorallia) from the Late Mesozoic-Early Cainozoic of the Southern Hemisphere.

    PubMed

    Buckeridge, John S; Campbell, Hamish J; Maurizot, Pierre

    2014-03-01

    Enigmatic calcareous conical fossils have been known from marine Paleocene-Eocene sequences of New Zealand since the early 1870s. More recently, similar fossils have been recorded from both Late Cretaceous marine sequences of Western Australia, New Caledonia and Antarctica, and possibly from the Eocene of South America. The present paper extends the record to the late Cretaceous of New Caledonia. These remains are unlike any living taxa, and have been variously interpreted as molluscs (rudistid bivalves), cirripedes (stalked barnacles), annelids and inorganic structures. Assignation to the Cirripedia has been refuted by Buckeridge (1983, 1993), who proposed that the material would be better placed within the Cnidaria. We investigate this hypothesis in light of the New Caledonian material and by comparison with living gorgonians and pennatulaceans, and demonstrate that Waiparaconus is best placed within the Pennatulacea. Waiparaconus zelandicus varies in form somewhat, with 3 morphotypes defined and reinforced by geography. Comment is provided on the imperative to fit organic remains into known groups, with reflection on what may happen if taxa are left in insertae sedis. © 2013 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  16. Extending the fossil record of Polytrichaceae: Early Cretaceous Meantoinea alophosioides gen. et sp. nov., permineralized gametophytes with gemma cups from Vancouver Island.

    PubMed

    Bippus, Alexander C; Stockey, Ruth A; Rothwell, Gar W; Tomescu, Alexandru M F

    2017-04-01

    Diverse in modern ecosystems, mosses are dramatically underrepresented in the fossil record. Furthermore, most pre-Cenozoic mosses are known only from compression fossils, lacking detailed anatomical information. When preserved, anatomy vastly improves resolution in the systematic placement of fossils. Lower Cretaceous deposits at Apple Bay (Vancouver Island, British Columbia, Canada) contain a diverse anatomically preserved flora that includes numerous bryophytes, many of which have yet to be characterized. Among them is a polytrichaceous moss that is described here. Fossil moss gametophytes preserved in four carbonate concretions were studied in serial sections prepared using the cellulose acetate peel technique. We describe Meantoinea alophosioides gen. et sp. nov., a polytrichaceous moss with terminal gemma cups containing stalked, lenticular gemmae. Leaves with characteristic costal anatomy, differentiated into sheathing base and free lamina and bearing photosynthetic lamellae, along with a conducting strand in the stem, place Meantoinea in family Polytrichaceae. The bistratose leaf lamina with an adaxial layer of mamillose cells, short photosynthetic lamellae restricted to the costa, and presence of gemma cups indicate affinities with basal members of the Polytrichaceae, such as Lyellia , Bartramiopsis , and Alophosia . Meantoinea alophosioides enriches the documented moss diversity of an already-diverse Early Cretaceous plant fossil assemblage. This is the third moss described from the Apple Bay plant fossil assemblage and represents the first occurrence of gemma cups in a fossil moss. It is also the oldest unequivocal record of Polytrichaceae, providing a hard minimum age for the group of 136 million years. © 2017 Botanical Society of America.

  17. Fidelity of fossil n-alkanes from leaf to paleosol and applications to the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Bush, R. T.; McInerney, F. A.; Baczynski, A. A.; Wing, S. L.

    2011-12-01

    Long chain n-alkanes (C21-C35) are well-known as biomarkers of terrestrial plants. They can be preserved across a wide range of terrestrial and marine environments, survive in the sedimentary record for millions of years, and can serve as proxies for ancient environments. Most n-alkane records are derived from sediments rather than directly from fossil leaves. However, little is known about the fidelity of the n-alkane record: how and where leaf preservation relates to n-alkane preservation and how patterns of n-alkane carbon isotope ratios (δ13C) compare to living relatives. To examine these questions, we analyzed n-alkanes from fluvial sediments and individual leaf fossils collected in the Bighorn Basin, Wyoming, across the Paleocene-Eocene Thermal Maximum (PETM) carbon isotope excursion. We assessed the fidelity of the n-alkane signature from individual fossil leaves via three separate means. 1) Spatial variations were assessed by comparing n-alkane concentrations on a fossil leaf and in sediments both directly adjacent to the leaf and farther away. Absolute concentrations were greater within the compression fossil than in the directly adjacent sediment, which were in turn greater than in more distant sediment. 2) n-Alkane abundances and distributions were examined in fossil leaves having a range of preservational quality, from fossils with intact cuticle to carbonized fossils lacking cuticle and higher-order venation. The best preserved fossils preserved a higher concentration of n-alkanes and showed the most similar n-alkane distribution to living relatives. However, a strong odd over even predominance suggests a relatively unmodified plant source occurred in all samples regardless of preservation state. 3) n-Alkane δ13C values were measured for both fossil leaves and their living relatives. Both the saw-tooth pattern of δ13C values between odd and even chain lengths and the general decrease in δ13C values with increasing chain length are consistent with modern plant data. These results suggest that n-alkanes extracted directly from a fossil leaf provide a true signature of an individual leaf fossil rather than a mixture from the entire plant community. Therefore, comparisons between fossil morphotypes and between fossil and related modern taxa should be robust. Furthermore, by placing fossil leaf data within the context of the chemostratigraphy of Bighorn Basin sediments across the P-E boundary, fossil leaf n-alkanes can be used to bridge the gap between our understanding of modern plant lipids and bulk lipid data from sediments across the PETM. It has been hypothesized that changes in the both the molecular distribution and carbon isotope composition of n-alkanes across the PETM were due to changes in the local plant community, which included a large proportion of deciduous gymnosperms before and after-but not during-the PETM. Analysis of fossils such as Ginkgo and angiosperms provides the opportunity to compare and distinguish the molecular and isotopic signatures of gymnosperms and angiosperms. These comparisons shed light on the dynamics of climate and ecosystem changes as they are recorded in the signatures of lipid biomarkers.

  18. A lower Cretaceous (Valanginian) seed cone provides the earliest fossil record for Picea (Pinaceae).

    PubMed

    Klymiuk, Ashley A; Stockey, Ruth A

    2012-06-01

    Sequence analyses for Pinaceae have suggested that extant genera diverged in the late Mesozoic. While the fossil record indicates that Pinaceae was highly diverse during the Cretaceous, there are few records of living genera. This description of an anatomically preserved seed cone extends the fossil record for Picea A. Dietrich (Pinaceae) by ∼75 Ma. The specimen was collected from the Apple Bay locality of Vancouver Island (Lower Cretaceous, Valanginian) and is described from anatomical sections prepared using cellulose acetate peels. Cladistic analyses of fossil and extant pinaceous seed cones employed parsimony ratchet searches of an anatomical and morphological matrix. This new seed cone has a combination of characters shared only with the genus Picea A. Dietr. and is thus described as Picea burtonii Klymiuk et Stockey sp. nov. Bisaccate pollen attributable to Picea is found in the micropyles of several ovules, corroborating the designation of this cone as an early spruce. Cladistic analyses place P. burtonii with extant Picea and an Oligocene representative of the genus. Furthermore, our analyses indicate that Picea is sister to Cathaya Chun et Kuang, and P. burtonii helps to establish a minimum date for this node in hypotheses of conifer phylogeny. As an early member of the extant genus Picea, this seed cone extends the fossil record of Picea to the Valanginian Stage of the Early Cretaceous, ca. 136 Ma, thereby resolving a ghost lineage predicted by molecular divergence analyses, and offers new insight into the evolution of Pinaceae.

  19. Gene Regulatory Networks, Homology, and the Early Panarthropod Fossil Record.

    PubMed

    Tweedt, Sarah M

    2017-09-01

    The arthropod body plan is widely believed to have derived from an ancestral form resembling Cambrian-aged fossil lobopodians, and interpretations of morphological and molecular data have long favored this hypothesis. It is possible, however, that appendages and other morphologies observed in extinct and living panarthropods evolved independently. The key to distinguishing between morphological homology and homoplasy lies in the study of developmental gene regulatory networks (GRNs), and specifically, in determining the unique genetic circuits that construct characters. In this study, I discuss character identity and panarthropod appendage evolution within a developmental GRN framework, with a specific focus on potential limb character identity networks ("ChINs"). I summarize recent molecular studies, and argue that current data do not rule out the possibility of independent panarthropod limb evolution. The link between character identity and GRN architecture has broad implications for homology assessment, and this genetic framework offers alternative approaches to fossil character coding, phylogenetic analyses, and future research into the origin of the arthropod body plan. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  20. Electron Spin Resonance Dating of Toxodon Tooth from Upper Ribeira Valley, São Paulo, Brazil.

    PubMed

    Kinoshita, Angela; Ghilardi, Aline Marcele; Fernandes, Marcelo Adorna; Figueiredo, Ana Maria G; Baffa, Oswaldo

    2016-12-01

    Electron spin resonance (ESR) dating was applied to date a sample of fossil tooth found in Ribeira Valley, São Paulo, Brazil. This region is characterized by abundant fossil records of Pleistocene-Holocene South American megafauna belonging to different faunistic moments related to climate changes during the quaternary. As the number of fossils dated is not too large, the dating of materials from this region will provide important information to better understand the events associated with the presence and extinction of these species. The equivalent dose (D e ) was determined using single exponential fitting resulting in (24 ± 1)Gy. The D e was converted to age using ROSY ESR Dating program and the concentration of radioisotopes present in the sample and soil determined through neutron activation analysis. The ages cover the range of 25-34 ka. This information is important to contextualize other findings in the region from different sites and to help obtain better information about the climate changes in this region. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. The Completeness of the Fossil Record of Mesozoic Birds: Implications for Early Avian Evolution

    PubMed Central

    Brocklehurst, Neil; Upchurch, Paul; Mannion, Philip D.; O'Connor, Jingmai

    2012-01-01

    Many palaeobiological analyses have concluded that modern birds (Neornithes) radiated no earlier than the Maastrichtian, whereas molecular clock studies have argued for a much earlier origination. Here, we assess the quality of the fossil record of Mesozoic avian species, using a recently proposed character completeness metric which calculates the percentage of phylogenetic characters that can be scored for each taxon. Estimates of fossil record quality are plotted against geological time and compared to estimates of species level diversity, sea level, and depositional environment. Geographical controls on the avian fossil record are investigated by comparing the completeness scores of species in different continental regions and latitudinal bins. Avian fossil record quality varies greatly with peaks during the Tithonian-early Berriasian, Aptian, and Coniacian–Santonian, and troughs during the Albian-Turonian and the Maastrichtian. The completeness metric correlates more strongly with a ‘sampling corrected’ residual diversity curve of avian species than with the raw taxic diversity curve, suggesting that the abundance and diversity of birds might influence the probability of high quality specimens being preserved. There is no correlation between avian completeness and sea level, the number of fluviolacustrine localities or a recently constructed character completeness metric of sauropodomorph dinosaurs. Comparisons between the completeness of Mesozoic birds and sauropodomorphs suggest that small delicate vertebrate skeletons are more easily destroyed by taphonomic processes, but more easily preserved whole. Lagerstätten deposits might therefore have a stronger impact on reconstructions of diversity of smaller organisms relative to more robust forms. The relatively poor quality of the avian fossil record in the Late Cretaceous combined with very patchy regional sampling means that it is possible neornithine lineages were present throughout this interval but have not yet been sampled or are difficult to identify because of the fragmentary nature of the specimens. PMID:22761723

  2. Holocene melt-water variations recorded in Antarctic coastal marine benthic assemblages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berkman, P.A.

    Climate changes can influence the input of meltwater from the polar ice sheets. In Antarctica, signatures of meltwater input during the Holocene may be recorded in the benthic fossils which exist at similar altitudes above sea level in emerged beaches around the continent Interpreting the fossils as meltwater proxy records would be enhanced by understanding the modern ecology of the species in adjacent marine environments. Characteristics of an extant scallop assemblage in West McMurdo Sound, Antarctica, have been evaluated across a summer meltwater gradient to provide examples of meltwater records that may be contained in proximal scallop fossils. Integrating environmentalmore » proxies from coastal benthic assemblages around Antarctica, over ecological and geological time scales, is a necessary step in evaluating the marginal responses of the ice sheets to climate changes during the Holocene.« less

  3. Introducing Evolution to Non-Biology Majors via the Fossil Record: A Case Study from the Israeli High School System.

    ERIC Educational Resources Information Center

    Dodick, Jeff; Orion, Nir

    2003-01-01

    Discusses challenges faced in the teaching and learning of evolution. Presents a curricular program and a case study on evolutionary biology. Investigates students' conceptual knowledge after exposure to the program "From Dinosaurs to Darwin," which focuses on fossil records as evidence of evolution. (Contains 32 references.) (YDS)

  4. A multi-calibrated mitochondrial phylogeny of extant Bovidae (Artiodactyla, Ruminantia) and the importance of the fossil record to systematics

    PubMed Central

    2013-01-01

    Background Molecular phylogenetics has provided unprecedented resolution in the ruminant evolutionary tree. However, molecular age estimates using only one or a few (often misapplied) fossil calibration points have produced a diversity of conflicting ages for important evolutionary events within this clade. I here identify 16 fossil calibration points of relevance to the phylogeny of Bovidae and Ruminantia and use these, individually and together, to construct a dated molecular phylogeny through a reanalysis of the full mitochondrial genome of over 100 ruminant species. Results The new multi-calibrated tree provides ages that are younger overall than found in previous studies. Among these are young ages for the origin of crown Ruminantia (39.3–28.8 Ma), and crown Bovidae (17.3–15.1 Ma). These are argued to be reasonable hypotheses given that many basal fossils assigned to these taxa may in fact lie on the stem groups leading to the crown clades, thus inflating previous age estimates. Areas of conflict between molecular and fossil dates do persist, however, especially with regard to the base of the rapid Pecoran radiation and the sister relationship of Moschidae to Bovidae. Results of the single-calibrated analyses also show that a very wide range of molecular age estimates are obtainable using different calibration points, and that the choice of calibration point can influence the topology of the resulting tree. Compared to the single-calibrated trees, the multi-calibrated tree exhibits smaller variance in estimated ages and better reflects the fossil record. Conclusions The use of a large number of vetted fossil calibration points with soft bounds is promoted as a better approach than using just one or a few calibrations, or relying on internal-congruency metrics to discard good fossil data. This study also highlights the importance of considering morphological and ecological characteristics of clades when delimiting higher taxa. I also illustrate how phylogeographic and paleoenvironmental hypotheses inferred from a tree containing only extant taxa can be problematic without consideration of the fossil record. Incorporating the fossil record of Ruminantia is a necessary step for future analyses aiming to reconstruct the evolutionary history of this clade. PMID:23927069

  5. Early Pliocene anuran fossils from Kanapoi, Kenya, and the first fossil record for the African burrowing frog Hemisus (Neobatrachia: Hemisotidae).

    PubMed

    Delfino, Massimo

    2017-07-13

    Isolated amphibian bones from the early Pliocene of Kanapoi (West Turkana, Kenya) help to improve the scarce fossil record of the late Neogene and Quaternary amphibians from East Africa. All currently available 579 bones are referable exclusively to the Anura (frogs and toads). More than half of the remains (366) are identified as Hemisus cf. Hemisus marmoratus, an extant species that still inhabits Kenya, but apparently not the northwest of the country and the Turkana area in particular. The rest of the remains are identified simply as Anura indet. because of poor preservation or non congruence with the relatively few African extant taxa whose osteology is known in detail. The Hemisus material represents the first fossil record for Hemisotidae, an endemic African family of peculiar, head-first burrowing frogs, whose sister taxon relationships indicate a divergence from brevicipitids in the Late Cretaceous or early Paleocene. The ecological requirements of extant H. marmoratus suggest that the Kanapoi area surrounding the fluvial and deltaic settings, from where the fossil remains of vertebrates were buried, was likely a grassland or relatively dry, open low tree-shrub savanna. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Origin of bonebeds in Quaternary tank deposits

    NASA Astrophysics Data System (ADS)

    Araújo-Júnior, Hermínio Ismael de; Porpino, Kleberson de Oliveira; Bergqvist, Lílian Paglarelli

    2017-07-01

    Tank deposits are an exceptional type of fossiliferous deposit and bear a remarkably fossil record of the Pleistocene megafauna of South America, particularly of Brazil. The taphonomy of vertebrate remains preserved in this type of environmental context was clearly driven by climate, similarly to most of the Quaternary continental fossil record. The formation of the vertebrates fossil record in tank deposits was influenced by the climate seasonality typical of arid climate. The taphonomic history of most tank deposits is a consequence of this seasonality and, as a result, the paleoecological data preserved in their fossil assemblages is reliable with respect to paleobiological and paleoenvironmental settings of the Quaternary ecosystems of the Brazilian Intertropical Region (BIR). Other tank deposits experienced an unusual taphonomic history that, besides climate, was affected by recurrent events of reworking produced by the depositional agents dominant in the surrounding alluvial plains. The conclusions obtained here concerning the main taphonomic settings and formative processes that characterize fossil vertebrate assemblages of tank deposits will help further studies aimed to recover information on the paleoecology of Quaternary fauna collected in such deposits by allowing a better understanding of their time and spatial resolutions and other potential biases.

  7. Adaptation, plant evolution, and the fossil record

    NASA Technical Reports Server (NTRS)

    Knoll, A. H.; Niklas, K. J.

    1987-01-01

    The importance of adaptation in determining patterns of evolution has become an important focus of debate in evolutionary biology. As it pertains to paleobotany, the issue is whether or not adaptive evolution mediated by natural selection is sufficient to explain the stratigraphic distributions of taxa and character states observed in the plant fossil record. One means of addressing this question is the functional evaluation of stratigraphic series of plant organs set in the context of paleoenvironmental change and temporal patterns of floral composition within environments. For certain organ systems, quantitative estimates of biophysical performance can be made on the basis of structures preserved in the fossil record. Performance estimates for plants separated in time or space can be compared directly. Implicit in different hypotheses of the forces that shape the evolutionary record (e.g. adaptation, mass extinction, rapid environmental change, chance) are predictions about stratigraphic and paleoenvironmental trends in the efficacy of functional performance. Existing data suggest that following the evolution of a significant structural innovation, adaptation for improved functional performance can be a major determinant of evolutionary changes in plants; however, there are structural and development limits to functional improvement, and once these are reached, the structure in question may no longer figure strongly in selection until and unless a new innovation evolves. The Silurian-Devonian paleobotanical record is consistent with the hypothesis that the succession of lowland floodplain dominants preserved in the fossil record of this interval was determined principally by the repeated evolution of new taxa that rose to ecological importance because of competitive advantages conferred by improved biophysical performance. This does not seem to be equally true for Carboniferous-Jurassic dominants of swamp and lowland floodplain environments. In these cases, environmental disruption appears to have been a major factor in shaping the fossil record. This does not mean that continuing adaptation was not important during this interval, but it may indicate that adaptive evolution was strongest in environments other than those best represented in the paleobotanical record.

  8. Adaptation, plant evolution, and the fossil record.

    PubMed

    Knoll, A H; Niklas, K J

    1987-01-01

    The importance of adaptation in determining patterns of evolution has become an important focus of debate in evolutionary biology. As it pertains to paleobotany, the issue is whether or not adaptive evolution mediated by natural selection is sufficient to explain the stratigraphic distributions of taxa and character states observed in the plant fossil record. One means of addressing this question is the functional evaluation of stratigraphic series of plant organs set in the context of paleoenvironmental change and temporal patterns of floral composition within environments. For certain organ systems, quantitative estimates of biophysical performance can be made on the basis of structures preserved in the fossil record. Performance estimates for plants separated in time or space can be compared directly. Implicit in different hypotheses of the forces that shape the evolutionary record (e.g. adaptation, mass extinction, rapid environmental change, chance) are predictions about stratigraphic and paleoenvironmental trends in the efficacy of functional performance. Existing data suggest that following the evolution of a significant structural innovation, adaptation for improved functional performance can be a major determinant of evolutionary changes in plants; however, there are structural and development limits to functional improvement, and once these are reached, the structure in question may no longer figure strongly in selection until and unless a new innovation evolves. The Silurian-Devonian paleobotanical record is consistent with the hypothesis that the succession of lowland floodplain dominants preserved in the fossil record of this interval was determined principally by the repeated evolution of new taxa that rose to ecological importance because of competitive advantages conferred by improved biophysical performance. This does not seem to be equally true for Carboniferous-Jurassic dominants of swamp and lowland floodplain environments. In these cases, environmental disruption appears to have been a major factor in shaping the fossil record. This does not mean that continuing adaptation was not important during this interval, but it may indicate that adaptive evolution was strongest in environments other than those best represented in the paleobotanical record.

  9. The first fossil of a bolbitidoid fern belongs to the early-divergent lineages of Elaphoglossum (Dryopteridaceae).

    PubMed

    Lóriga, Josmaily; Schmidt, Alexander R; Moran, Robbin C; Feldberg, Kathrin; Schneider, Harald; Heinrichs, Jochen

    2014-09-01

    • Closing gaps in the fossil record and elucidating phylogenetic relationships of mostly incomplete fossils are major challenges in the reconstruction of the diversification of fern lineages through time. The cosmopolitan family Dryopteridaceae represents one of the most species-rich families of leptosporangiate ferns, yet its fossil record is sparse and poorly understood. Here, we describe a fern inclusion in Miocene Dominican amber and investigate its relationships to extant Dryopteridaceae.• The morphology of the fossil was compared with descriptions of extant ferns, resulting in it being tentatively assigned to the bolbitidoid fern genus Elaphoglossum. This assignment was confirmed by reconstructing the evolution of the morphological characters preserved in the inclusion on a molecular phylogeny of 158 extant bolbitidoid ferns. To assess the morphology-based assignment of the fossil to Elaphoglossum, we examined DNA-calibrated divergence time estimates against the age of the amber deposits from which it came.• The fossil belongs to Elaphoglossum and is the first of a bolbitidoid fern. Its assignment to a particular section of Elaphoglossum could not be determined; however, sects. Lepidoglossa, Polytrichia, and Setosa can be discounted because the fossil lacks subulate scales or scales with acicular marginal hairs. Thus, the fossil might belong to either sects. Amygdalifolia, Wrightiana, Elaphoglossum, or Squamipedia or to an extinct lineage.• The discovery of a Miocene Elaphoglossum fossil provides remarkable support to current molecular clock-based estimates of the diversification of these ferns. © 2014 Botanical Society of America, Inc.

  10. Extant-only comparative methods fail to recover the disparity preserved in the bird fossil record.

    PubMed

    Mitchell, Jonathan S

    2015-09-01

    Most extant species are in clades with poor fossil records, and recent studies of comparative methods show they have low power to infer even highly simplified models of trait evolution without fossil data. Birds are a well-studied radiation, yet their early evolutionary patterns are still contentious. The fossil record suggests that birds underwent a rapid ecological radiation after the end-Cretaceous mass extinction, and several smaller, subsequent radiations. This hypothesized series of repeated radiations from fossil data is difficult to test using extant data alone. By uniting morphological and phylogenetic data on 604 extant genera of birds with morphological data on 58 species of extinct birds from 50 million years ago, the "halfway point" of avian evolution, I have been able to test how well extant-only methods predict the diversity of fossil forms. All extant-only methods underestimate the disparity, although the ratio of within- to between-clade disparity does suggest high early rates. The failure of standard models to predict high early disparity suggests that recent radiations are obscuring deep time patterns in the evolution of birds. Metrics from different models can be used in conjunction to provide more valuable insights than simply finding the model with the highest relative fit. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  11. Middle Pleistocene lower back and pelvis from an aged human individual from the Sima de los Huesos site, Spain.

    PubMed

    Bonmatí, Alejandro; Gómez-Olivencia, Asier; Arsuaga, Juan-Luis; Carretero, José Miguel; Gracia, Ana; Martínez, Ignacio; Lorenzo, Carlos; Bérmudez de Castro, José María; Carbonell, Eudald

    2010-10-26

    We report a nearly complete lumbar spine from the Middle Pleistocene site of the Sima de los Huesos (SH) that is assigned to the previously published SH male Pelvis 1 [Arsuaga JL, et al. (1999). Nature 399: 255-258]. The "SH Pelvis 1 individual" is a unique nearly complete lumbo-pelvic complex from the human Middle Pleistocene fossil record, and offers a rare glimpse into the anatomy and past lifeways of Homo heidelbergensis. A revised reconstruction of Pelvis 1, together with the current fossil evidence, confirms our previous hypothesis that the morphology of this pelvis represents the primitive pattern within the genus Homo. Here we argue that this primitive pattern is also characterized by sexual dimorphism in the pelvic canal shape, implying complicated deliveries. In addition, this individual shows signs of lumbar kyphotic deformity, spondylolisthesis, and Baastrup disease. This suite of lesions would have postural consequences and was most likely painful. As a result, the individual's daily physical activities would have been restricted to some extent. Reexamination of the age-at-death agrees with this individual being over 45 y old, relying on the modern human pattern of changes of the articular surfaces of the os coxae. The presence of degenerative pathological lesions and the advanced age-at-death of this individual make it the most ancient postcranial evidence of an aged individual in the human fossil record. Additional nonpathological SH lumbo-pelvic remains are consistent with previous hypotheses, suggesting a less-pronounced sagittal spinal curvature in Neandertals compared with Homo sapiens.

  12. Middle Pleistocene lower back and pelvis from an aged human individual from the Sima de los Huesos site, Spain

    PubMed Central

    Bonmatí, Alejandro; Gómez-Olivencia, Asier; Arsuaga, Juan-Luis; Carretero, José Miguel; Gracia, Ana; Martínez, Ignacio; Lorenzo, Carlos; Bérmudez de Castro, José María; Carbonell, Eudald

    2010-01-01

    We report a nearly complete lumbar spine from the Middle Pleistocene site of the Sima de los Huesos (SH) that is assigned to the previously published SH male Pelvis 1 [Arsuaga JL, et al. (1999). Nature 399: 255–258]. The “SH Pelvis 1 individual” is a unique nearly complete lumbo-pelvic complex from the human Middle Pleistocene fossil record, and offers a rare glimpse into the anatomy and past lifeways of Homo heidelbergensis. A revised reconstruction of Pelvis 1, together with the current fossil evidence, confirms our previous hypothesis that the morphology of this pelvis represents the primitive pattern within the genus Homo. Here we argue that this primitive pattern is also characterized by sexual dimorphism in the pelvic canal shape, implying complicated deliveries. In addition, this individual shows signs of lumbar kyphotic deformity, spondylolisthesis, and Baastrup disease. This suite of lesions would have postural consequences and was most likely painful. As a result, the individual’s daily physical activities would have been restricted to some extent. Reexamination of the age-at-death agrees with this individual being over 45 y old, relying on the modern human pattern of changes of the articular surfaces of the os coxae. The presence of degenerative pathological lesions and the advanced age-at-death of this individual make it the most ancient postcranial evidence of an aged individual in the human fossil record. Additional nonpathological SH lumbo-pelvic remains are consistent with previous hypotheses, suggesting a less-pronounced sagittal spinal curvature in Neandertals compared with Homo sapiens. PMID:20937858

  13. Practice makes perfect: Performance optimisation in 'arboreal' parkour athletes illuminates the evolutionary ecology of great ape anatomy.

    PubMed

    Halsey, Lewis G; Coward, Samuel R L; Crompton, Robin H; Thorpe, Susannah K S

    2017-02-01

    An animal's size is central to its ecology, yet remarkably little is known about the selective pressures that drive this trait. A particularly compelling example is how ancestral apes evolved large body mass in such a physically and energetically challenging environment as the forest canopy, where weight-bearing branches and lianas are flexible, irregular and discontinuous, and the majority of preferred foods are situated on the most flexible branches at the periphery of tree crowns. To date the issue has been intractable due to a lack of relevant fossil material, the limited capacity of the fossil record to reconstruct an animal's behavioural ecology and the inability to measure energy consumption in freely moving apes. We studied the oxygen consumption of parkour athletes while they traversed an arboreal-like course as an elite model ape, to test the ecomorphological and behavioural mechanisms by which a large-bodied ape could optimize its energetic performance during tree-based locomotion. Our results show that familiarity with the arboreal-like course allowed the athletes to substantially reduce their energy expenditure. Furthermore, athletes with larger arm spans and shorter legs were particularly adept at finding energetic savings. Our results flesh out the scanty fossil record to offer evidence that long, strong arms, broad chests and a strong axial system, combined with the frequent use of uniform branch-to-branch arboreal pathways, were critical to off-setting the mechanical and energetic demands of large mass in ancestral apes. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  14. First report of fossil "keratose" demosponges in Phanerozoic carbonates: preservation and 3-D reconstruction.

    PubMed

    Luo, Cui; Reitner, Joachim

    2014-06-01

    Fossil record of Phanerozoic non-spicular sponges, beside of being important with respect to the lineage evolution per se, could provide valuable references for the investigation of Precambrian ancestral animal fossils. However, although modern phylogenomic studies resolve non-spicular demosponges as the sister group of the remaining spiculate demosponges, the fossil record of the former is extremely sparse or unexplored compared to that of the latter; the Middle Cambrian Vauxiidae Walcott 1920, is the only confirmed fossil taxon of non-spicular demosponges. Here, we describe carbonate materials from Devonian (Upper Givetian to Lower Frasnian) bioherms of northern France and Triassic (Anisian) microbialites of Poland that most likely represent fossil remnants of keratose demosponges. These putative fossils of keratose demosponges are preserved as automicritic clumps. They are morphologically distinguishable from microbial fabrics but similar to other spiculate sponge fossils, except that the skeletal elements consist of fibrous networks instead of assembled spicules. Consistent with the immunological behavior of sponges, these fibrous skeletons often form a rim at the edge of the automicritic aggregate, separating the inner part of the aggregate from foreign objects. To confirm the architecture of these fibrous networks, two fossil specimens and a modern thorectid sponge for comparison were processed for three-dimensional (3-D) reconstruction using serial grinding tomography. The resulting fossil reconstructions are three-dimensionally anastomosing, like modern keratose demosponges, but their irregular and nonhierarchical meshes indicate a likely verongid affinity, although a precise taxonomic conclusion cannot be made based on the skeletal architecture alone. This study is a preliminary effort, but an important start to identify fossil non-spicular demosponges in carbonates and to re-evaluate their fossilization potential.

  15. An analytical approach for estimating fossil record and diversification events in sharks, skates and rays.

    PubMed

    Guinot, Guillaume; Adnet, Sylvain; Cappetta, Henri

    2012-01-01

    Modern selachians and their supposed sister group (hybodont sharks) have a long and successful evolutionary history. Yet, although selachian remains are considered relatively common in the fossil record in comparison with other marine vertebrates, little is known about the quality of their fossil record. Similarly, only a few works based on specific time intervals have attempted to identify major events that marked the evolutionary history of this group. Phylogenetic hypotheses concerning modern selachians' interrelationships are numerous but differ significantly and no consensus has been found. The aim of the present study is to take advantage of the range of recent phylogenetic hypotheses in order to assess the fit of the selachian fossil record to phylogenies, according to two different branching methods. Compilation of these data allowed the inference of an estimated range of diversity through time and evolutionary events that marked this group over the past 300 Ma are identified. Results indicate that with the exception of high taxonomic ranks (orders), the selachian fossil record is by far imperfect, particularly for generic and post-Triassic data. Timing and amplitude of the various identified events that marked the selachian evolutionary history are discussed. Some identified diversity events were mentioned in previous works using alternative methods (Early Jurassic, mid-Cretaceous, K/T boundary and late Paleogene diversity drops), thus reinforcing the efficiency of the methodology presented here in inferring evolutionary events. Other events (Permian/Triassic, Early and Late Cretaceous diversifications; Triassic/Jurassic extinction) are newly identified. Relationships between these events and paleoenvironmental characteristics and other groups' evolutionary history are proposed.

  16. Earth's early fossil record: Why not look for similar fossils on Mars?

    NASA Technical Reports Server (NTRS)

    Awramik, Stanley M.

    1989-01-01

    The oldest evidence of life on Earth is discussed with attention being given to the structure and formation of stromatolites and microfossils. Fossilization of microbes in calcium carbonate or chert media is discussed. In searching for fossil remains on Mars, some lessons learned from the study of Earth's earliest fossil record can be applied. Certain sedimentary rock types and sedimentary rock configurations should be targeted for investigation and returned by the Martian rover and ultimately by human explorers. Domical, columnar to wavy laminated stratiform sedimentary rocks that resemble stromatolites should be actively sought. Limestone, other carbonates, and chert are the favored lithology. Being macroscopic, stromatolites might be recognized by an intelligent unmanned rover. In addition, black, waxy chert with conchoidal fracture should be sought. Chert is by far the preferred lithology for the preservation of microbes and chemical fossils. Even under optimal geological conditions (little or no metamorphism or tectonic alteration, excellent outcrops, and good black chert) and using experienced field biogeologists, the chances of finding well preserved microbial remains in chert are very low.

  17. Miocene Fossils Reveal Ancient Roots for New Zealand's Endemic Mystacina (Chiroptera) and Its Rainforest Habitat.

    PubMed

    Hand, Suzanne J; Lee, Daphne E; Worthy, Trevor H; Archer, Michael; Worthy, Jennifer P; Tennyson, Alan J D; Salisbury, Steven W; Scofield, R Paul; Mildenhall, Dallas C; Kennedy, Elizabeth M; Lindqvist, Jon K

    2015-01-01

    The New Zealand endemic bat family Mystacinidae comprises just two Recent species referred to a single genus, Mystacina. The family was once more diverse and widespread, with an additional six extinct taxa recorded from Australia and New Zealand. Here, a new mystacinid is described from the early Miocene (19-16 Ma) St Bathans Fauna of Central Otago, South Island, New Zealand. It is the first pre-Pleistocene record of the modern genus and it extends the evolutionary history of Mystacina back at least 16 million years. Extant Mystacina species occupy old-growth rainforest and are semi-terrestrial with an exceptionally broad omnivorous diet. The majority of the plants inhabited, pollinated, dispersed or eaten by modern Mystacina were well-established in southern New Zealand in the early Miocene, based on the fossil record from sites at or near where the bat fossils are found. Similarly, many of the arthropod prey of living Mystacina are recorded as fossils in the same area. Although none of the Miocene plant and arthropod species is extant, most are closely related to modern taxa, demonstrating potentially long-standing ecological associations with Mystacina.

  18. Miocene Fossils Reveal Ancient Roots for New Zealand’s Endemic Mystacina (Chiroptera) and Its Rainforest Habitat

    PubMed Central

    Hand, Suzanne J.; Lee, Daphne E.; Worthy, Trevor H.; Archer, Michael; Worthy, Jennifer P.; Tennyson, Alan J. D.; Salisbury, Steven W.; Scofield, R. Paul; Mildenhall, Dallas C.; Kennedy, Elizabeth M.; Lindqvist, Jon K.

    2015-01-01

    The New Zealand endemic bat family Mystacinidae comprises just two Recent species referred to a single genus, Mystacina. The family was once more diverse and widespread, with an additional six extinct taxa recorded from Australia and New Zealand. Here, a new mystacinid is described from the early Miocene (19–16 Ma) St Bathans Fauna of Central Otago, South Island, New Zealand. It is the first pre-Pleistocene record of the modern genus and it extends the evolutionary history of Mystacina back at least 16 million years. Extant Mystacina species occupy old-growth rainforest and are semi-terrestrial with an exceptionally broad omnivorous diet. The majority of the plants inhabited, pollinated, dispersed or eaten by modern Mystacina were well-established in southern New Zealand in the early Miocene, based on the fossil record from sites at or near where the bat fossils are found. Similarly, many of the arthropod prey of living Mystacina are recorded as fossils in the same area. Although none of the Miocene plant and arthropod species is extant, most are closely related to modern taxa, demonstrating potentially long-standing ecological associations with Mystacina. PMID:26083758

  19. The Great Fossil Fiasco: Teaching about Peer Review.

    ERIC Educational Resources Information Center

    Gift, Nancy; Krasny, Marianne

    2003-01-01

    Describes a lesson that engages middle school students in learning about peer review. Uses the article "Archaeoraptor Fossil Trail," which was published in the November, 1999 issue of "National Geographic" as an example of a real life story of how peer review forces scientists to critically re-examine a fossil discovery. (SOE)

  20. Miocene leaves of Elaeagnus (Elaeagnaceae) from the Qinghai-Tibet Plateau, its modern center of diversity and endemism.

    PubMed

    Su, Tao; Wilf, Peter; Xu, He; Zhou, Zhe-Kun

    2014-08-01

    • The Qinghai-Tibet Plateau is a major center of plant diversity and endemism, but little is known about how this developed due to the region's very scarce paleobotanical record. The silverberry genus Elaeagnus (Elaeagnaceae) reaches its greatest diversity (54 species) and endemism (36 species) in this area. Fossil Elaeagnaceae could provide significant evidence for the phylogeny and biogeography of the family and contribute primary data regarding the evolution of the unique Qinghai-Tibet Plateau flora in its dramatic setting of tectonic and climatic change.• We describe four fossil leaves with diagnostic features of Elaeagnus from the late Miocene of eastern Tibet, modern altitude of 3910 m a.s.l.. We also review prior fossil records of Elaeagnaceae.• The well-preserved, densely packed, stellate scales on fossil leaf surfaces are diagnostic of Elaeagnaceae. We assign these fossil leaves to Elaeagnus tibetensis T. Su et Z.K. Zhou sp. nov., comprising the first confirmed fossil Elaeagnus leaves worldwide.• Elaeagnus was present in eastern Tibet by the late Miocene. Together with previous fossil records, the new species supports a Holarctic history of the family. The diversification of Elaeagnus in the Qinghai-Tibet Plateau and adjacent areas might have been driven by continuous uplift at least since the late Miocene, causing formation of complex topography and climate with high rainfall seasonality. The characteristic scales on leaf surfaces are likely to be an important functional adaptation to seasonal droughts during early spring. © 2014 Botanical Society of America, Inc.

  1. Global Climate Change (GCC) Issues and Their Impacts on the US Army Corps of Engineers

    DTIC Science & Technology

    1991-11-01

    Amazon River flow. At first this flow was channeled down the Mississippi River to the Gulf of Mexico: "... about 11,000 years ago, however, a major...Foraminifera ( fossil evidence of microorganisms that inhabit water masses of specific temperature and salinity) from surface waters of the Gulf of...records can be tied into tree ring records (both current and fossilized ) to produce an accurate record for the last 8,200 years. This type of study is

  2. Interpreting terrestrial organic carbon isotope records across natural and anthropogenic pCO2 change

    NASA Astrophysics Data System (ADS)

    Schubert, B.; Jahren, H.

    2014-12-01

    Changes in the net carbon isotope fractionation (Δδ13C) measured in organic carbon from terrestrial substrates results from changes in climate, plant community shifts, and pCO2 level, but separating out these effects in the geologic record can be difficult. Here we present a compilation of 614 Δδ13C measurements on bulk terrestrial organic matter (TOM) and fossil leaves from 23 distinct records within 19 published studies that span the last 30,000 years up to the industrial revolution. To this dataset we add 2735 Δδ13C measurements made on tree ring tissue from 51 records that extend from 1950 to 2010. These records together span the ~80 ppm rise in pCO2 from the Late Glacial to through the Holocene (190-270 ppm; fossil leaves and TOM), and the ~70 ppm rise observed across the last 60 years (310-380 ppm; tree-ring tissue). We find a 2.0‰ relative increase in Δδ13C value across Termination 1 (18,000-11,500 years BP) and a 1.0‰ increase in Δδ13C value recorded in tree rings between 1950 and 2010. We use our recently developed relationship between pCO2 and Δδ13C to show that both increases in Δδ13C value exactly match, in trend and absolute magnitude, the increase in Δδ13C value we predict from our equations in response to rising pCO2 levels. These results have significance for the interpretation of terrestrial organic isotope records spanning both natural and anthropogenic pCO2 changes; we contend that environmental reconstructions based on long-term terrestrial Δδ13C records cannot be accurately interpreted until the isotope data are adjusted for known changes in pCO2 concentration.

  3. The origin of the animals and a 'Savannah' hypothesis for early bilaterian evolution.

    PubMed

    Budd, Graham E; Jensen, Sören

    2017-02-01

    The earliest evolution of the animals remains a taxing biological problem, as all extant clades are highly derived and the fossil record is not usually considered to be helpful. The rise of the bilaterian animals recorded in the fossil record, commonly known as the 'Cambrian explosion', is one of the most significant moments in evolutionary history, and was an event that transformed first marine and then terrestrial environments. We review the phylogeny of early animals and other opisthokonts, and the affinities of the earliest large complex fossils, the so-called 'Ediacaran' taxa. We conclude, based on a variety of lines of evidence, that their affinities most likely lie in various stem groups to large metazoan groupings; a new grouping, the Apoikozoa, is erected to encompass Metazoa and Choanoflagellata. The earliest reasonable fossil evidence for total-group bilaterians comes from undisputed complex trace fossils that are younger than about 560 Ma, and these diversify greatly as the Ediacaran-Cambrian boundary is crossed a few million years later. It is generally considered that as the bilaterians diversified after this time, their burrowing behaviour destroyed the cyanobacterial mat-dominated substrates that the enigmatic Ediacaran taxa were associated with, the so-called 'Cambrian substrate revolution', leading to the loss of almost all Ediacara-aspect diversity in the Cambrian. Why, though, did the energetically expensive and functionally complex burrowing mode of life so typical of later bilaterians arise? Here we propose a much more positive relationship between late-Ediacaran ecologies and the rise of the bilaterians, with the largely static Ediacaran taxa acting as points of concentration of organic matter both above and below the sediment surface. The breaking of the uniformity of organic carbon availability would have signalled a decisive shift away from the essentially static and monotonous earlier Ediacaran world into the dynamic and burrowing world of the Cambrian. The Ediacaran biota thus played an enabling role in bilaterian evolution similar to that proposed for the Savannah environment for human evolution and bipedality. Rather than being obliterated by the rise of the bilaterians, the subtle remnants of Ediacara-style taxa within the Cambrian suggest that they remained significant components of Phanerozoic communities, even though at some point their enabling role for bilaterian evolution was presumably taken over by bilaterians or other metazoans. Bilaterian evolution was thus an essentially benthic event that only later impacted the planktonic environment and the style of organic export to the sea floor. © 2015 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

  4. From Fossil Parasitoids to Vectors: Insects as Parasites and Hosts.

    PubMed

    Nagler, Christina; Haug, Joachim T

    2015-01-01

    Within Metazoa, it has been proposed that as many as two-thirds of all species are parasitic. This propensity towards parasitism is also reflected within insects, where several lineages independently evolved a parasitic lifestyle. Parasitic behaviour ranges from parasitic habits in the strict sense, but also includes parasitoid, phoretic or kleptoparasitic behaviour. Numerous insects are also the host for other parasitic insects or metazoans. Insects can also serve as vectors for numerous metazoan, protistan, bacterial and viral diseases. The fossil record can report this behaviour with direct (parasite associated with its host) or indirect evidence (insect with parasitic larva, isolated parasitic insect, pathological changes of host). The high abundance of parasitism in the fossil record of insects can reveal important aspects of parasitic lifestyles in various evolutionary lineages. For a comprehensive view on fossil parasitic insects, we discuss here different aspects, including phylogenetic systematics, functional morphology and a direct comparison of fossil and extant species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. First record of Podocarpoid fossil wood in South China

    PubMed Central

    Li, Long; Jin, Jian-Hua; Quan, Cheng; Oskolski, Alexei A.

    2016-01-01

    A new species of fossil conifer wood, Podocarpoxylon donghuaiense sp. nov., is described from the late Eocene of Nadu Formation in Baise Basin of the Guangxi Province, South China. This fossil wood is characterized by distinct growth rings, circular to oval tracheids in cross section, 1–2-seriate opposite pits on radial tracheid walls, uniseriate (rarely biseriate) rays, smooth end walls of ray parenchyma cells, and the absence of resin ducts, suggesting its affinity to Podocarpaceae. The new species is distinctive from other Cenozoic woods ascribed to this family by the combination of distinctive growth rings, the absence of axial parenchyma, the occurrence of bordered pits on tangential tracheid walls, and the occurrence of 3–4 cuppressoid or taxodioid pits on cross-fields. This represents the first record of podocarpoid fossil wood in South China and provides fossil evidence for the early dispersal and diversification of Podocarpaceae in eastern Asia as well as for mild temperate seasonal climate in this region during the late Eocene. PMID:27571780

  6. Temperature variations in the southern Great Lakes during the last deglaciation: Comparison between pollen and GDGT proxies

    NASA Astrophysics Data System (ADS)

    Watson, Benjamin I.; Williams, John W.; Russell, James M.; Jackson, Stephen T.; Shane, Linda; Lowell, Thomas V.

    2018-02-01

    Our understanding of deglacial climate history in the southern Great Lakes region of the United States is primarily based upon fossil pollen data, with few independent and multi-proxy climate reconstructions. Here we introduce a new, well-dated fossil pollen record from Stotzel-Leis, OH, and a new deglacial temperature record based on branched glycerol dialkyl glycerol tetraethers (brGDGTs) at Silver Lake, OH. We compare these new data to previously published records and to a regional stack of pollen-based temperature reconstructions from Stotzel-Leis, Silver Lake, and three other well-dated sites. The new and previously published pollen records at Stotzel-Leis are similar, but our new age model brings vegetation events into closer alignment with known climatic events such as the Younger Dryas (YD). brGDGT-inferred temperatures correlate strongly with pollen-based regional temperature reconstructions, with the strongest correlation obtained for a global soil-based brGDGT calibration (r2 = 0.88), lending confidence to the deglacial reconstructions and the use of brGDGT and regional pollen stacks as paleotemperature proxies in eastern North America. However, individual pollen records show large differences in timing, rates, and amplitudes of inferred temperature change, indicating caution with paleoclimatic inferences based on single-site pollen records. From 16.0 to 10.0ka, both proxies indicate that regional temperatures rose by ∼10 °C, roughly double the ∼5 °C estimates for the Northern Hemisphere reported in prior syntheses. Change-point analysis of the pollen stack shows accelerated warming at 14.0 ± 1.2ka, cooling at 12.6 ± 0.4ka, and warming from 11.6 ± 0.5ka into the Holocene. The timing of Bølling-Allerød (B-A) warming and YD onset in our records lag by ∼300-500 years those reported in syntheses of temperature records from the northern mid-latitudes. This discrepancy is too large to be attributed to uncertainties in radiocarbon dating, and correlation between pollen and brGDGT temperature reconstructions rules out vegetation lags as a cause. However, the YD termination appears synchronous among the brGDGT record, regional pollen stack, and Northern Hemisphere stack. The cause of the larger and lagged temperature changes in the southern Great Lakes relative to Northern Hemisphere averages remains unclear, but may be due to the effects of continentality and ice sheet extent on regional climate evolution.

  7. Temperature variations in the southern Great Lakes during the last deglaciation: Comparison between pollen and GDGT proxies

    USGS Publications Warehouse

    Watson, Benjamin I.; Williams, John W.; Russell, James M.; Jackson, Stephen T.; Shane, Linda; Lowell, Thomas V.

    2018-01-01

    Our understanding of deglacial climate history in the southern Great Lakes region of the United States is primarily based upon fossil pollen data, with few independent and multi-proxy climate reconstructions. Here we introduce a new, well-dated fossil pollen record from Stotzel-Leis, OH, and a new deglacial temperature record based on branched glycerol dialkyl glycerol tetraethers (brGDGTs) at Silver Lake, OH. We compare these new data to previously published records and to a regional stack of pollen-based temperature reconstructions from Stotzel-Leis, Silver Lake, and three other well-dated sites. The new and previously published pollen records at Stotzel-Leis are similar, but our new age model brings vegetation events into closer alignment with known climatic events such as the Younger Dryas (YD). brGDGT-inferred temperatures correlate strongly with pollen-based regional temperature reconstructions, with the strongest correlation obtained for a global soil-based brGDGT calibration (r2 = 0.88), lending confidence to the deglacial reconstructions and the use of brGDGT and regional pollen stacks as paleotemperature proxies in eastern North America. However, individual pollen records show large differences in timing, rates, and amplitudes of inferred temperature change, indicating caution with paleoclimatic inferences based on single-site pollen records. From 16.0 to 10.0ka, both proxies indicate that regional temperatures rose by ∼10 °C, roughly double the ∼5 °C estimates for the Northern Hemisphere reported in prior syntheses. Change-point analysis of the pollen stack shows accelerated warming at 14.0 ± 1.2ka, cooling at 12.6 ± 0.4ka, and warming from 11.6 ± 0.5ka into the Holocene. The timing of Bølling-Allerød (B-A) warming and YD onset in our records lag by ∼300–500 years those reported in syntheses of temperature records from the northern mid-latitudes. This discrepancy is too large to be attributed to uncertainties in radiocarbon dating, and correlation between pollen and brGDGT temperature reconstructions rules out vegetation lags as a cause. However, the YD termination appears synchronous among the brGDGT record, regional pollen stack, and Northern Hemisphere stack. The cause of the larger and lagged temperature changes in the southern Great Lakes relative to Northern Hemisphere averages remains unclear, but may be due to the effects of continentality and ice sheet extent on regional climate evolution.

  8. A new species of the genus Orchesia Latreille (Coleoptera: Melandryidae) from Baltic amber with a key to species described from fossil resins.

    PubMed

    Alekseev, Vitalii I; Bukejs, Andris

    2015-04-17

    Orchesia (Orchestera) canaliculata sp. nov. is described and illustrated from Eocene Baltic amber (Kaliningrad Region, Russia). New fossil records on O. turkini Alekseev & Bukejs and O. rasnitzyni Nikitsky are presented. A key to species of Orchesia Latreille, described from fossil resins, is provided.

  9. How Theories on Origins Can Be Taught in Public Schools without Controversy.

    ERIC Educational Resources Information Center

    Sunderland, Luther D.

    The two general concepts of how living organisms originated are defined: namely, common ancestry evolution and the abrupt appearance of completed organisms on earth. The fossil record is examined from the deepest first fossil-bearing rocks to the top of the geologic column. Evidence obtained from fossil museums is presented so students can…

  10. Molecular and Paleontological Evidence for a Post-Cretaceous Origin of Rodents

    PubMed Central

    Wu, Shaoyuan; Wu, Wenyu; Zhang, Fuchun; Ye, Jie; Ni, Xijun; Sun, Jimin; Edwards, Scott V.; Meng, Jin; Organ, Chris L.

    2012-01-01

    The timing of the origin and diversification of rodents remains controversial, due to conflicting results from molecular clocks and paleontological data. The fossil record tends to support an early Cenozoic origin of crown-group rodents. In contrast, most molecular studies place the origin and initial diversification of crown-Rodentia deep in the Cretaceous, although some molecular analyses have recovered estimated divergence times that are more compatible with the fossil record. Here we attempt to resolve this conflict by carrying out a molecular clock investigation based on a nine-gene sequence dataset and a novel set of seven fossil constraints, including two new rodent records (the earliest known representatives of Cardiocraniinae and Dipodinae). Our results indicate that rodents originated around 61.7–62.4 Ma, shortly after the Cretaceous/Paleogene (K/Pg) boundary, and diversified at the intraordinal level around 57.7–58.9 Ma. These estimates are broadly consistent with the paleontological record, but challenge previous molecular studies that place the origin and early diversification of rodents in the Cretaceous. This study demonstrates that, with reliable fossil constraints, the incompatibility between paleontological and molecular estimates of rodent divergence times can be eliminated using currently available tools and genetic markers. Similar conflicts between molecular and paleontological evidence bedevil attempts to establish the origination times of other placental groups. The example of the present study suggests that more reliable fossil calibration points may represent the key to resolving these controversies. PMID:23071573

  11. How many dinosaur species were there? Fossil bias and true richness estimated using a Poisson sampling model

    PubMed Central

    Starrfelt, Jostein; Liow, Lee Hsiang

    2016-01-01

    The fossil record is a rich source of information about biological diversity in the past. However, the fossil record is not only incomplete but has also inherent biases due to geological, physical, chemical and biological factors. Our knowledge of past life is also biased because of differences in academic and amateur interests and sampling efforts. As a result, not all individuals or species that lived in the past are equally likely to be discovered at any point in time or space. To reconstruct temporal dynamics of diversity using the fossil record, biased sampling must be explicitly taken into account. Here, we introduce an approach that uses the variation in the number of times each species is observed in the fossil record to estimate both sampling bias and true richness. We term our technique TRiPS (True Richness estimated using a Poisson Sampling model) and explore its robustness to violation of its assumptions via simulations. We then venture to estimate sampling bias and absolute species richness of dinosaurs in the geological stages of the Mesozoic. Using TRiPS, we estimate that 1936 (1543–2468) species of dinosaurs roamed the Earth during the Mesozoic. We also present improved estimates of species richness trajectories of the three major dinosaur clades: the sauropodomorphs, ornithischians and theropods, casting doubt on the Jurassic–Cretaceous extinction event and demonstrating that all dinosaur groups are subject to considerable sampling bias throughout the Mesozoic. PMID:26977060

  12. How many dinosaur species were there? Fossil bias and true richness estimated using a Poisson sampling model.

    PubMed

    Starrfelt, Jostein; Liow, Lee Hsiang

    2016-04-05

    The fossil record is a rich source of information about biological diversity in the past. However, the fossil record is not only incomplete but has also inherent biases due to geological, physical, chemical and biological factors. Our knowledge of past life is also biased because of differences in academic and amateur interests and sampling efforts. As a result, not all individuals or species that lived in the past are equally likely to be discovered at any point in time or space. To reconstruct temporal dynamics of diversity using the fossil record, biased sampling must be explicitly taken into account. Here, we introduce an approach that uses the variation in the number of times each species is observed in the fossil record to estimate both sampling bias and true richness. We term our technique TRiPS (True Richness estimated using a Poisson Sampling model) and explore its robustness to violation of its assumptions via simulations. We then venture to estimate sampling bias and absolute species richness of dinosaurs in the geological stages of the Mesozoic. Using TRiPS, we estimate that 1936 (1543-2468) species of dinosaurs roamed the Earth during the Mesozoic. We also present improved estimates of species richness trajectories of the three major dinosaur clades: the sauropodomorphs, ornithischians and theropods, casting doubt on the Jurassic-Cretaceous extinction event and demonstrating that all dinosaur groups are subject to considerable sampling bias throughout the Mesozoic. © 2016 The Authors.

  13. Calcification and Silicification: Fossilization Potential of Cyanobacteria from Stromatolites of Niuafo‘ou's Caldera Lakes (Tonga) and Implications for the Early Fossil Record

    PubMed Central

    Kazmierczak, Józef; Łukomska-Kowalczyk, Maja; Kempe, Stephan

    2012-01-01

    Abstract Calcification and silicification processes of cyanobacterial mats that form stromatolites in two caldera lakes of Niuafo‘ou Island (Vai Lahi and Vai Si‘i) were evaluated, and their importance as analogues for interpreting the early fossil record are discussed. It has been shown that the potential for morphological preservation of Niuafo‘ou cyanobacteria is highly dependent on the timing and type of mineral phase involved in the fossilization process. Four main modes of mineralization of cyanobacteria organic parts have been recognized: (i) primary early postmortem calcification by aragonite nanograins that transform quickly into larger needle-like crystals and almost totally destroy the cellular structures, (ii) primary early postmortem silicification of almost intact cyanobacterial cells that leave a record of spectacularly well-preserved cellular structures, (iii) replacement by silica of primary aragonite that has already recrystallized and obliterated the cellular structures, (iv) occasional replacement of primary aragonite precipitated in the mucopolysaccharide sheaths and extracellular polymeric substances by Al-Mg-Fe silicates. These observations suggest that the extremely scarce earliest fossil record may, in part, be the result of (a) secondary replacement by silica of primary carbonate minerals (aragonite, calcite, siderite), which, due to recrystallization, had already annihilated the cellular morphology of the mineralized microbiota or (b) relatively late primary silicification of already highly degraded and no longer morphologically identifiable microbial remains. Key Words: Stromatolites—Cyanobacteria—Calcification—Silicification—Niuafo‘ou (Tonga)—Archean. Astrobiology 12, 535–548. PMID:22794297

  14. Evaluating the Impact of Genomic Data and Priors on Bayesian Estimates of the Angiosperm Evolutionary Timescale.

    PubMed

    Foster, Charles S P; Sauquet, Hervê; van der Merwe, Marlien; McPherson, Hannah; Rossetto, Maurizio; Ho, Simon Y W

    2017-05-01

    The evolutionary timescale of angiosperms has long been a key question in biology. Molecular estimates of this timescale have shown considerable variation, being influenced by differences in taxon sampling, gene sampling, fossil calibrations, evolutionary models, and choices of priors. Here, we analyze a data set comprising 76 protein-coding genes from the chloroplast genomes of 195 taxa spanning 86 families, including novel genome sequences for 11 taxa, to evaluate the impact of models, priors, and gene sampling on Bayesian estimates of the angiosperm evolutionary timescale. Using a Bayesian relaxed molecular-clock method, with a core set of 35 minimum and two maximum fossil constraints, we estimated that crown angiosperms arose 221 (251-192) Ma during the Triassic. Based on a range of additional sensitivity and subsampling analyses, we found that our date estimates were generally robust to large changes in the parameters of the birth-death tree prior and of the model of rate variation across branches. We found an exception to this when we implemented fossil calibrations in the form of highly informative gamma priors rather than as uniform priors on node ages. Under all other calibration schemes, including trials of seven maximum age constraints, we consistently found that the earliest divergences of angiosperm clades substantially predate the oldest fossils that can be assigned unequivocally to their crown group. Overall, our results and experiments with genome-scale data suggest that reliable estimates of the angiosperm crown age will require increased taxon sampling, significant methodological changes, and new information from the fossil record. [Angiospermae, chloroplast, genome, molecular dating, Triassic.]. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Is evolutionary history repeatedly rewritten in light of new fossil discoveries?

    PubMed

    Tarver, J E; Donoghue, P C J; Benton, M J

    2011-02-22

    Mass media and popular science journals commonly report that new fossil discoveries have 'rewritten evolutionary history'. Is this merely journalistic hyperbole or is our sampling of systematic diversity so limited that attempts to derive evolutionary history from these datasets are premature? We use two exemplars-catarrhine primates (Old World monkeys and apes) and non-avian dinosaurs-to investigate how the maturity of datasets can be assessed. Both groups have been intensively studied over the past 200 years and so should represent pinnacles in our knowledge of vertebrate systematic diversity. We test the maturity of these datasets by assessing the completeness of their fossil records, their susceptibility to changes in macroevolutionary hypotheses and the balance of their phylogenies through study time. Catarrhines have shown prolonged stability, with discoveries of new species being evenly distributed across the phylogeny, and thus have had little impact on our understanding of their fossil record, diversification and evolution. The reverse is true for dinosaurs, where the addition of new species has been non-random and, consequentially, their fossil record, tree shape and our understanding of their diversification is rapidly changing. The conclusions derived from these analyses are relevant more generally: the maturity of systematic datasets can and should be assessed before they are exploited to derive grand macroevolutionary hypotheses.

  16. Primate diversification inferred from phylogenies and fossils.

    PubMed

    Herrera, James P

    2017-12-01

    Biodiversity arises from the balance between speciation and extinction. Fossils record the origins and disappearance of organisms, and the branching patterns of molecular phylogenies allow estimation of speciation and extinction rates, but the patterns of diversification are frequently incongruent between these two data sources. I tested two hypotheses about the diversification of primates based on ∼600 fossil species and 90% complete phylogenies of living species: (1) diversification rates increased through time; (2) a significant extinction event occurred in the Oligocene. Consistent with the first hypothesis, analyses of phylogenies supported increasing speciation rates and negligible extinction rates. In contrast, fossils showed that while speciation rates increased, speciation and extinction rates tended to be nearly equal, resulting in zero net diversification. Partially supporting the second hypothesis, the fossil data recorded a clear pattern of diversity decline in the Oligocene, although diversification rates were near zero. The phylogeny supported increased extinction ∼34 Ma, but also elevated extinction ∼10 Ma, coinciding with diversity declines in some fossil clades. The results demonstrated that estimates of speciation and extinction ignoring fossils are insufficient to infer diversification and information on extinct lineages should be incorporated into phylogenetic analyses. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  17. Ten years in the library: new data confirm paleontological patterns

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1993-01-01

    A comparison is made between compilations of times of origination and extinction of fossil marine animal families published in 1982 and 1992. As a result of ten years of library research, half of the information in the compendia has changed: families have been added and deleted, low-resolution stratigraphic data been improved, and intervals of origination and extinction have been altered. Despite these changes, apparent macroevolutionary patterns for the entire marine fauna have remained constant. Diversity curves compiled from the two data bases are very similar, with a goodness-of-fit of 99%; the principal difference is that the 1992 curve averages 13% higher than the older curve. Both numbers and percentages of origination and extinction also match well, with fits ranging from 83% to 95%. All major events of radiation and extinction are identical. Therefore, errors in large paleontological data bases and arbitrariness of included taxa are not necessarily impediments to the analysis of pattern in the fossil record, so long as the data are sufficiently numerous.

  18. The geographical distribution of grey wolves (Canis lupus) in China: a systematic review.

    PubMed

    Wang, Lu; Ma, Ya-Ping; Zhou, Qi-Jun; Zhang, Ya-Ping; Savolaimen, Peter; Wang, Guo-Dong

    2016-11-18

    The grey wolf ( Canis lupus ) is one of the most widely distributed terrestrial mammals, and its distribution and ecology in Europe and North America are largely well described. However, the distribution of grey wolf in southern China is still highly controversial. Several well-known western literatures stated that there are no grey wolves in southern China, while the presence of grey wolf across China has been indicated in A Guide to the Mammals of China , published by Princeton University Press. It is essential to solve this discrepancy since dogs may have originated from grey wolfs in southern China. Therefore, we systematically investigated Chinese literatures about wild animal surveys and identified more than 100 articles and books that included information of the distribution of grey wolves in China. We also surveyed the collections of three Chinese natural museums and found 26 grey wolf skins specimens collected across China. Moreover, we investigated the fossil records of wolf in China and identified 25 archaeological sites with wolf remains including south China. In conclusion, with the comprehensive summary of Chinese literatures, museum specimens and fossil records, we demonstrate that grey wolves does distribute across all parts of the Chinese mainland, including the most southern parts of China.

  19. The importance of sampling standardization for comparisons of insect herbivory in deep time: a case study from the late Palaeozoic

    NASA Astrophysics Data System (ADS)

    Schachat, Sandra R.; Labandeira, Conrad C.; Maccracken, S. Augusta

    2018-03-01

    Sampling standardization has not been fully addressed for the study of insect herbivory in the fossil record. The effects of sampling within a single locality were explored almost a decade ago, but the importance of sampling standardization for comparisons of herbivory across space and time has not yet been evaluated. Here, we present a case study from the Permian in which we evaluate the impact of sampling standardization on comparisons of insect herbivory from two localities that are similar in age and floral composition. Comparisons of insect damage type (DT) diversity change dramatically when the number of leaves examined is standardized by surface area. This finding suggests that surface area should always be taken into account for comparisons of DT diversity. In addition, the three most common metrics of herbivory-DT diversity, proportion of leaves herbivorized and proportion of leaf surface area herbivorized-are inherently decoupled from each other. The decoupling of the diversity and intensity of insect herbivory necessitates a reinterpretation of published data because they had been conflated in previous studies. Future studies should examine the divergent ecological factors that underlie these metrics. We conclude with suggestions to guide the sampling and analysis of herbivorized leaves in the fossil record.

  20. The geographical distribution of grey wolves (Canis lupus) in China: a systematic review

    PubMed Central

    WANG, Lu; MA, Ya-Ping; ZHOU, Qi-Jun; ZHANG, Ya-Ping; SAVOLAINEN, Peter; WANG, Guo-Dong

    2016-01-01

    The grey wolf (Canis lupus) is one of the most widely distributed terrestrial mammals, and its distribution and ecology in Europe and North America are largely well described. However, the distribution of grey wolf in southern China is still highly controversial. Several well-known western literatures stated that there are no grey wolves in southern China, while the presence of grey wolf across China has been indicated in A Guide to the Mammals of China, published by Princeton University Press. It is essential to solve this discrepancy since dogs may have originated from grey wolfs in southern China. Therefore, we systematically investigated Chinese literatures about wild animal surveys and identified more than 100 articles and books that included information of the distribution of grey wolves in China. We also surveyed the collections of three Chinese natural museums and found 26 grey wolf skins specimens collected across China. Moreover, we investigated the fossil records of wolf in China and identified 25 archaeological sites with wolf remains including south China. In conclusion, with the comprehensive summary of Chinese literatures, museum specimens and fossil records, we demonstrate that grey wolves does distribute across all parts of the Chinese mainland, including the most southern parts of China. PMID:28105796

  1. A rich fossil record yields calibrated phylogeny for Acanthaceae (Lamiales) and evidence for marked biases in timing and directionality of intercontinental disjunctions.

    PubMed

    Tripp, Erin A; McDade, Lucinda A

    2014-09-01

    More than a decade of phylogenetic research has yielded a well-sampled, strongly supported hypothesis of relationships within the large ( > 4000 species) plant family Acanthaceae. This hypothesis points to intriguing biogeographic patterns and asymmetries in sister clade diversity but, absent a time-calibrated estimate for this evolutionary history, these patterns have remained unexplored. Here, we reconstruct divergence times within Acanthaceae using fossils as calibration points and experimenting with both fossil selection and effects of invoking a maximum age prior related to the origin of Eudicots. Contrary to earlier reports of a paucity of fossils of Lamiales (an order of ∼ 23,000 species that includes Acanthaceae) and to the expectation that a largely herbaceous to soft-wooded and tropical lineage would have few fossils, we recovered 51 reports of fossil Acanthaceae. Rigorous evaluation of these for accurate identification, quality of age assessment and utility in dating yielded eight fossils judged to merit inclusion in analyses. With nearly 10 kb of DNA sequence data, we used two sets of fossils as constraints to reconstruct divergence times. We demonstrate differences in age estimates depending on fossil selection and that enforcement of maximum age priors substantially alters estimated clade ages, especially in analyses that utilize a smaller rather than larger set of fossils. Our results suggest that long-distance dispersal events explain present-day distributions better than do Gondwanan or northern land bridge hypotheses. This biogeographical conclusion is for the most part robust to alternative calibration schemes. Our data support a minimum of 13 Old World (OW) to New World (NW) dispersal events but, intriguingly, only one in the reverse direction. Eleven of these 13 were among Acanthaceae s.s., which comprises > 90% of species diversity in the family. Remarkably, if minimum age estimates approximate true history, these 11 events occurred within the last ∼ 20 myr even though Acanthaceae s.s is over 3 times as old. A simulation study confirmed that these dispersal events were significantly skewed toward the present and not simply a chance occurrence. Finally, we review reports of fossils that have been assigned to Acanthaceae that are substantially older than the lower Cretaceous estimate for Angiosperms as a whole (i.e., the general consensus that has resulted from several recent dating and fossil-based studies in plants). This is the first study to reconstruct divergence times among clades of Acanthaceae and sets the stage for comparative evolutionary research in this and related families that have until now been thought to have extremely poor fossil resources. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Instrumentation and Control for Fossil-Energy Processes

    NASA Technical Reports Server (NTRS)

    Mark, A., Jr.

    1984-01-01

    Instrumentation and control requirements for fossil-energy processes discussed in working document. Published to foster advancement of instrumentation and control technology by making equipment suppliers and others aware of specifications, needs, and potential markets.

  3. Footprints reveal direct evidence of group behavior and locomotion in Homo erectus

    PubMed Central

    Hatala, Kevin G.; Roach, Neil T.; Ostrofsky, Kelly R.; Wunderlich, Roshna E.; Dingwall, Heather L.; Villmoare, Brian A.; Green, David J.; Harris, John W. K.; Braun, David R.; Richmond, Brian G.

    2016-01-01

    Bipedalism is a defining feature of the human lineage. Despite evidence that walking on two feet dates back 6–7 Ma, reconstructing hominin gait evolution is complicated by a sparse fossil record and challenges in inferring biomechanical patterns from isolated and fragmentary bones. Similarly, patterns of social behavior that distinguish modern humans from other living primates likely played significant roles in our evolution, but it is exceedingly difficult to understand the social behaviors of fossil hominins directly from fossil data. Footprints preserve direct records of gait biomechanics and behavior but they have been rare in the early human fossil record. Here we present analyses of an unprecedented discovery of 1.5-million-year-old footprint assemblages, produced by 20+ Homo erectus individuals. These footprints provide the oldest direct evidence for modern human-like weight transfer and confirm the presence of an energy-saving longitudinally arched foot in H. erectus. Further, print size analyses suggest that these H. erectus individuals lived and moved in cooperative multi-male groups, offering direct evidence consistent with human-like social behaviors in H. erectus. PMID:27403790

  4. First records of Canis dirus and Smilodon fatalis from the late Pleistocene Tule Springs local fauna, upper Las Vegas Wash, Nevada

    PubMed Central

    Springer, Kathleen B.

    2016-01-01

    Late Pleistocene groundwater discharge deposits (paleowetlands) in the upper Las Vegas Wash north of Las Vegas, Nevada, have yielded an abundant and diverse vertebrate fossil assemblage, the Tule Springs local fauna (TSLF). The TSLF is the largest open-site vertebrate fossil assemblage dating to the Rancholabrean North American Land Mammal Age in the southern Great Basin and Mojave Desert. Over 600 discrete body fossil localities have been recorded from the wash, including an area that now encompasses Tule Springs Fossil Beds National Monument (TUSK). Paleowetland sediments exposed in TUSK named the Las Vegas Formation span the last 250 ka, with fossiliferous sediments spanning ∼100–13 ka. The recovered fauna is dominated by remains of Camelopsand Mammuthus, and also includes relatively common remains of extinct Equusand Bisonas well as abundant vertebrate microfaunal fossils. Large carnivorans are rare, with only Puma concolor and Panthera atrox documented previously. Postcranial remains assigned to the species Canis dirus (dire wolf) and Smilodon fatalis (sabre-toothed cat) represent the first confirmed records of these species from the TSLF, as well as the first documentation of Canis dirus in Nevada and the only known occurrence of Smilodonin southern Nevada. The size of the recovered canid fossil precludes assignment to other Pleistocene species of Canis. The morphology of the felid elements differentiates them from other large predators such as Panthera, Homotherium, and Xenosmilus, and the size of the fossils prevents assignment to other species of Smilodon. The confirmed presence of S. fatalis in the TSLF is of particular interest, indicating that this species inhabited open habitats. In turn, this suggests that the presumed preference of S. fatalis for closed-habitat environments hunting requires further elucidation. PMID:27366649

  5. First records of Canis dirus and Smilodon fatalis from the late Pleistocene Tule Springs local fauna, upper Las Vegas Wash, Nevada

    USGS Publications Warehouse

    Scott, Eric; Springer, Kathleen

    2016-01-01

    Late Pleistocene groundwater discharge deposits (paleowetlands) in the upper Las Vegas Wash north of Las Vegas, Nevada, have yielded an abundant and diverse vertebrate fossil assemblage, the Tule Springs local fauna (TSLF). The TSLF is the largest open-site vertebrate fossil assemblage dating to the Rancholabrean North American Land Mammal Age in the southern Great Basin and Mojave Desert. Over 600 discrete body fossil localities have been recorded from the wash, including an area that now encompasses Tule Springs Fossil Beds National Monument (TUSK). Paleowetland sediments exposed in TUSK named the Las Vegas Formation span the last 250 ka, with fossiliferous sediments spanning ∼100–13 ka. The recovered fauna is dominated by remains of Camelopsand Mammuthus, and also includes relatively common remains of extinct Equusand Bisonas well as abundant vertebrate microfaunal fossils. Large carnivorans are rare, with only Puma concolor and Panthera atrox documented previously. Postcranial remains assigned to the species Canis dirus (dire wolf) and Smilodon fatalis(sabre-toothed cat) represent the first confirmed records of these species from the TSLF, as well as the first documentation of Canis dirus in Nevada and the only known occurrence of Smilodonin southern Nevada. The size of the recovered canid fossil precludes assignment to other Pleistocene species of Canis. The morphology of the felid elements differentiates them from other large predators such as Panthera, Homotherium, and Xenosmilus, and the size of the fossils prevents assignment to other species of Smilodon. The confirmed presence of S. fatalis in the TSLF is of particular interest, indicating that this species inhabited open habitats. In turn, this suggests that the presumed preference of S. fatalis for closed-habitat environments hunting requires further elucidation.

  6. Evolution of Lower Brachyceran Flies (Diptera) and Their Adaptive Radiation with Angiosperms

    PubMed Central

    Zhang, Qingqing; Wang, Bo

    2017-01-01

    The Diptera (true flies) is one of the most species-abundant orders of Insecta, and it is also among the most important flower-visiting insects. Dipteran fossils are abundant in the Mesozoic, especially in the Late Jurassic and Early Cretaceous. Here, we review the fossil record and early evolution of some Mesozoic lower brachyceran flies together with new records in Burmese amber, including Tabanidae, Nemestrinidae, Bombyliidae, Eremochaetidae, and Zhangsolvidae. The fossil records reveal that some flower-visiting groups had diversified during the mid-Cretaceous, consistent with the rise of angiosperms to widespread floristic dominance. These brachyceran groups played an important role in the origin of co-evolutionary relationships with basal angiosperms. Moreover, the rise of angiosperms not only improved the diversity of flower-visiting flies, but also advanced the turnover and evolution of other specialized flies. PMID:28484485

  7. Evolution of Lower Brachyceran Flies (Diptera) and Their Adaptive Radiation with Angiosperms.

    PubMed

    Zhang, Qingqing; Wang, Bo

    2017-01-01

    The Diptera (true flies) is one of the most species-abundant orders of Insecta, and it is also among the most important flower-visiting insects. Dipteran fossils are abundant in the Mesozoic, especially in the Late Jurassic and Early Cretaceous. Here, we review the fossil record and early evolution of some Mesozoic lower brachyceran flies together with new records in Burmese amber, including Tabanidae, Nemestrinidae, Bombyliidae, Eremochaetidae, and Zhangsolvidae. The fossil records reveal that some flower-visiting groups had diversified during the mid-Cretaceous, consistent with the rise of angiosperms to widespread floristic dominance. These brachyceran groups played an important role in the origin of co-evolutionary relationships with basal angiosperms. Moreover, the rise of angiosperms not only improved the diversity of flower-visiting flies, but also advanced the turnover and evolution of other specialized flies.

  8. Replication in plastic of three-dimensional fossils preserved in indurated clastic sedimentary rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zapasink, H.T.; Johnston, P.A.

    A new technique for replicating in plastic the fossils preserved in clastic rocks should now make available reliable morphologic and frequency data, comparable in quality to those derived from acid-prepared silicified faunas, for a major segment of the fossil record. The technique involves 3 steps: the dissolution of carbonate in fossiliferous rocks with hydrochloric acid, impregnation of resulting voids with liquid plastic, and dissolution of the rock matrix with hydrofluoric acid, leaving a concentrate of plastic-replaced fossils.

  9. 40 CFR 80.1151 - What are the recordkeeping requirements under the RFS program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... records of the following: (1) The amount and type of fossil fuel and waste material-derived fuel used in... biomass ethanol through the displacement of 90 percent or more of the fossil fuel normally used in the... producing cellulosic biomass ethanol as defined in § 80.1101(a)(1). (3) The equivalent amount of fossil fuel...

  10. 40 CFR 80.1151 - What are the recordkeeping requirements under the RFS program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... records of the following: (1) The amount and type of fossil fuel and waste material-derived fuel used in... biomass ethanol through the displacement of 90 percent or more of the fossil fuel normally used in the... producing cellulosic biomass ethanol as defined in § 80.1101(a)(1). (3) The equivalent amount of fossil fuel...

  11. 40 CFR 80.1151 - What are the recordkeeping requirements under the RFS program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... records of the following: (1) The amount and type of fossil fuel and waste material-derived fuel used in... biomass ethanol through the displacement of 90 percent or more of the fossil fuel normally used in the... producing cellulosic biomass ethanol as defined in § 80.1101(a)(1). (3) The equivalent amount of fossil fuel...

  12. 40 CFR 80.1151 - What are the recordkeeping requirements under the RFS program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... records of the following: (1) The amount and type of fossil fuel and waste material-derived fuel used in... biomass ethanol through the displacement of 90 percent or more of the fossil fuel normally used in the... producing cellulosic biomass ethanol as defined in § 80.1101(a)(1). (3) The equivalent amount of fossil fuel...

  13. 40 CFR 80.1151 - What are the recordkeeping requirements under the RFS program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... records of the following: (1) The amount and type of fossil fuel and waste material-derived fuel used in... biomass ethanol through the displacement of 90 percent or more of the fossil fuel normally used in the... producing cellulosic biomass ethanol as defined in § 80.1101(a)(1). (3) The equivalent amount of fossil fuel...

  14. Review of the fossil matamata turtles: earliest well-dated record and hypotheses on the origin of their present geographical distribution

    NASA Astrophysics Data System (ADS)

    Ferreira, Gabriel S.; Rincón, Ascanio D.; Solórzano, Andrés; Langer, Max C.

    2016-04-01

    The matamata ( Chelus fimbriatus) is a highly aquatic chelid turtle known exclusively from northern South America. Due to its extremely modified morphology, it is well circumscribed among living taxa, but that is not the case of the two extinct species ascribed to the taxon, Chelus colombianus and Chelus lewisi. These were originally described for the Miocene of Colombia and Venezuela, respectively, and are known mostly from post-cranial material. Few traits have been considered diagnostic for these fossil taxa, and their shared geographic and temporal distributions raise doubts about their distinctiveness. Here, we describe new turtle remains from the early Miocene Castillo Formation, at Cerro la Cruz, northwestern Venezuela, assigning them to C. colombianus. We also review the taxonomy and diagnostic features of the fossil species of Chelus, comparing them with the variation recognized within C. fimbriatus. All alleged differences between the fossil Chelus species were found in our sample of the extant species, and may represent intraspecific variation of a single fossil species. Further, we reviewed the fossil record of Chelus spp. and proposed a paleobiogeographic hypothesis to explain its present geographic range.

  15. An early Oligocene fossil demonstrates treeshrews are slowly evolving “living fossils”

    PubMed Central

    Li, Qiang; Ni, Xijun

    2016-01-01

    Treeshrews are widely considered a “living model” of an ancestral primate, and have long been called “living fossils”. Actual fossils of treeshrews, however, are extremely rare. We report a new fossil species of Ptilocercus treeshrew recovered from the early Oligocene (~34 Ma) of China that represents the oldest definitive fossil record of the crown group of treeshrews and nearly doubles the temporal length of their fossil record. The fossil species is strikingly similar to the living Ptilocercus lowii, a species generally recognized as the most plesiomorphic extant treeshrew. It demonstrates that Ptilocercus treeshrews have undergone little evolutionary change in their morphology since the early Oligocene. Morphological comparisons and phylogenetic analysis support the long-standing idea that Ptilocercus treeshrews are morphologically conservative and have probably retained many characters present in the common stock that gave rise to archontans, which include primates, flying lemurs, plesiadapiforms and treeshrews. This discovery provides an exceptional example of slow morphological evolution in a mammalian group over a period of 34 million years. The persistent and stable tropical environment in Southeast Asia through the Cenozoic likely played a critical role in the survival of such a morphologically conservative lineage. PMID:26766238

  16. Unlocking the early fossil record of the arthropod central nervous system

    PubMed Central

    Edgecombe, Gregory D.; Ma, Xiaoya; Strausfeld, Nicholas J.

    2015-01-01

    Extant panarthropods (euarthropods, onychophorans and tardigrades) are hallmarked by stunning morphological and taxonomic diversity, but their central nervous systems (CNS) are relatively conserved. The timing of divergences of the ground pattern CNS organization of the major panarthropod clades has been poorly constrained because of a scarcity of data from their early fossil record. Although the CNS has been documented in three-dimensional detail in insects from Cenozoic ambers, it is widely assumed that these tissues are too prone to decay to withstand other styles of fossilization or geologically older preservation. However, Cambrian Burgess Shale-type compressions have emerged as sources of fossilized brains and nerve cords. CNS in these Cambrian fossils are preserved as carbon films or as iron oxides/hydroxides after pyrite in association with carbon. Experiments with carcasses compacted in fine-grained sediment depict preservation of neural tissue for a more prolonged temporal window than anticipated by decay experiments in other media. CNS and compound eye characters in exceptionally preserved Cambrian fossils predict divergences of the mandibulate and chelicerate ground patterns by Cambrian Stage 3 (ca 518 Ma), a dating that is compatible with molecular estimates for these splits. PMID:26554038

  17. The current state of korean paleoanthropology.

    PubMed

    Norton, C J

    2000-06-01

    The hominid fossil and Paleolithic archaeology records from the Korean Peninsula are extensive, but relatively little is known about the Korean human evolutionary record outside this region. The Korean paleoanthropological record is reviewed here in light of major research issues, including the hominid fossil record, relative and chronometric dating, lithic analysis, hominid subsistence, and the presence of bone tools, art and symbolism. Some of the major conclusions drawn from this review include: (1) hominid fossils have been found in nine separate sites on the Korean Peninsula; (2) possible Homo erectus fossils are present in North Korea; (3) Ryonggok Cave, in North Korea, has exposed the remains of at least five archaic Homo sapiens individuals; (4) a possible burial of an anatomically modern Homo sapiens child, discovered in Hungsu Cave in South Korea, has been tentatively dated to roughly 40,000 years ago; (5) handaxes and cleavers have been found at a number of sites near Chongokni and they appear to date to at least 100,000 years ago; and (6) taphonomic studies are necessary for addressing issues related to determining the nature of hominid-carnivore interaction over similar resources (e.g. carcasses and shelter); and the presence/absence of Early Paleolithic bone tools, art, and symbolism in Korea. Copyright 2000 Academic Press.

  18. Evaluation of the fossil fish-specific diversity in a chadian continental assemblage: Exploration of morphological continuous variation in Synodontis (Ostariophysi, Siluriformes).

    PubMed

    Pinton, Aurélie; Le Fur, Soizic; Otero, Olga

    2016-11-01

    In the fossil record, the quantification of continuous morphological variation has become a central issue when dealing with species identification and speciation. In this context, fossil taxa with living representatives hold great promise, because of the potential to characterise patterns of intraspecific morphological variation in extant species prior to any interpretation in the fossil record. The vast majority of catfish families fulfil this prerequisite, as most of them are represented by extant genera. However, although they constitute a major fish group in terms of distribution, and ecological and taxonomic diversity, the quantitative study of their past morphological variation has been neglected, as fossil specimens are generally identified based on the scarcest remains, that is, complete neurocrania that bear discrete characters. Consequently, a part of freshwater catfish history is unprospected and unknown. In this study, we explored the morphological continuous variation of the humeral plate shape in Synodontis catfishes using Elliptic Fourier Analysis (EFA), and compared extant members and fossil counterparts. We analysed 153 extant specimens of 11 Synodontis species present in the Chad basin, in addition to 23 fossil specimens from the Chadian fossiliferous area of Toros Menalla which is dated around 7 Ma. This highly speciose genus, which is one of the most diversified in Africa, exhibits a rich fossil record with several hundred remains mostly identified as Synodontis sp. The analysis of the outline of the humeral plate reveals that some living morphological types were already represented in the Chad Basin 7 My ago, and allows for the discovery of extinct species. Beside illuminating the complex Neogene evolutionary history of Synodontis, these results underline the interest in the ability of isolated remains to reconstruct a past dynamic history and to validate the relevance of EFA as a tool to explore specific diversity through time. J. Morphol. 277:1486-1496, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Giving the early fossil record of sponges a squeeze.

    PubMed

    Antcliffe, Jonathan B; Callow, Richard H T; Brasier, Martin D

    2014-11-01

    Twenty candidate fossils with claim to be the oldest representative of the Phylum Porifera have been re-analysed. Three criteria are used to assess each candidate: (i) the diagnostic criteria needed to categorize sponges in the fossil record; (ii) the presence, or absence, of such diagnostic features in the putative poriferan fossils; and (iii) the age constraints for the candidate fossils. All three criteria are critical to the correct interpretation of any fossil and its placement within an evolutionary context. Our analysis shows that no Precambrian fossil candidate yet satisfies all three of these criteria to be a reliable sponge fossil. The oldest widely accepted candidate, Mongolian silica hexacts from c. 545 million years ago (Ma), are here shown to be cruciform arsenopyrite crystals. The oldest reliable sponge remains are siliceous spicules from the basal Cambrian (Protohertzina anabarica Zone) Soltanieh Formation, Iran, which are described and analysed here in detail for the first time. Extensive archaeocyathan sponge reefs emerge and radiate as late as the middle of the Fortunian Stage of the Cambrian and demonstrate a gradual assembly of their skeletal structure through this time coincident with the evolution of other metazoan groups. Since the Porifera are basal in the Metazoa, their presence within the late Proterozoic has been widely anticipated. Molecular clock calibration for the earliest Porifera and Metazoa should now be based on the Iranian hexactinellid material dated to c. 535 Ma. The earliest convincing fossil sponge remains appeared at around the time of the Precambrian-Cambrian boundary, associated with the great radiation events of that interval. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  20. A total-evidence approach to dating with fossils, applied to the early radiation of the hymenoptera.

    PubMed

    Ronquist, Fredrik; Klopfstein, Seraina; Vilhelmsen, Lars; Schulmeister, Susanne; Murray, Debra L; Rasnitsyn, Alexandr P

    2012-12-01

    Phylogenies are usually dated by calibrating interior nodes against the fossil record. This relies on indirect methods that, in the worst case, misrepresent the fossil information. Here, we contrast such node dating with an approach that includes fossils along with the extant taxa in a Bayesian total-evidence analysis. As a test case, we focus on the early radiation of the Hymenoptera, mostly documented by poorly preserved impression fossils that are difficult to place phylogenetically. Specifically, we compare node dating using nine calibration points derived from the fossil record with total-evidence dating based on 343 morphological characters scored for 45 fossil (4--20 complete) and 68 extant taxa. In both cases we use molecular data from seven markers (∼5 kb) for the extant taxa. Because it is difficult to model speciation, extinction, sampling, and fossil preservation realistically, we develop a simple uniform prior for clock trees with fossils, and we use relaxed clock models to accommodate rate variation across the tree. Despite considerable uncertainty in the placement of most fossils, we find that they contribute significantly to the estimation of divergence times in the total-evidence analysis. In particular, the posterior distributions on divergence times are less sensitive to prior assumptions and tend to be more precise than in node dating. The total-evidence analysis also shows that four of the seven Hymenoptera calibration points used in node dating are likely to be based on erroneous or doubtful assumptions about the fossil placement. With respect to the early radiation of Hymenoptera, our results suggest that the crown group dates back to the Carboniferous, ∼309 Ma (95% interval: 291--347 Ma), and diversified into major extant lineages much earlier than previously thought, well before the Triassic. [Bayesian inference; fossil dating; morphological evolution; relaxed clock; statistical phylogenetics.].

  1. A Total-Evidence Approach to Dating with Fossils, Applied to the Early Radiation of the Hymenoptera

    PubMed Central

    Ronquist, Fredrik; Klopfstein, Seraina; Vilhelmsen, Lars; Schulmeister, Susanne; Murray, Debra L.; Rasnitsyn, Alexandr P.

    2012-01-01

    Abstract Phylogenies are usually dated by calibrating interior nodes against the fossil record. This relies on indirect methods that, in the worst case, misrepresent the fossil information. Here, we contrast such node dating with an approach that includes fossils along with the extant taxa in a Bayesian total-evidence analysis. As a test case, we focus on the early radiation of the Hymenoptera, mostly documented by poorly preserved impression fossils that are difficult to place phylogenetically. Specifically, we compare node dating using nine calibration points derived from the fossil record with total-evidence dating based on 343 morphological characters scored for 45 fossil (4--20 complete) and 68 extant taxa. In both cases we use molecular data from seven markers (∼5 kb) for the extant taxa. Because it is difficult to model speciation, extinction, sampling, and fossil preservation realistically, we develop a simple uniform prior for clock trees with fossils, and we use relaxed clock models to accommodate rate variation across the tree. Despite considerable uncertainty in the placement of most fossils, we find that they contribute significantly to the estimation of divergence times in the total-evidence analysis. In particular, the posterior distributions on divergence times are less sensitive to prior assumptions and tend to be more precise than in node dating. The total-evidence analysis also shows that four of the seven Hymenoptera calibration points used in node dating are likely to be based on erroneous or doubtful assumptions about the fossil placement. With respect to the early radiation of Hymenoptera, our results suggest that the crown group dates back to the Carboniferous, ∼309 Ma (95% interval: 291--347 Ma), and diversified into major extant lineages much earlier than previously thought, well before the Triassic. [Bayesian inference; fossil dating; morphological evolution; relaxed clock; statistical phylogenetics.] PMID:22723471

  2. Eumetazoan fossils in terminal Proterozoic phosphorites?

    PubMed Central

    Xiao, Shuhai; Yuan, Xunlai; Knoll, Andrew H.

    2000-01-01

    Phosphatic sedimentary rocks preserve a record of early animal life different from and complementary to that provided by Ediacaran fossils in terminal Proterozoic sandstones and shales. Phosphorites of the Doushantuo Formation, South China, contain eggs, egg cases, and stereoblastulae that document animals of unspecified phylogenetic position; small fossils containing putative spicules may specifically record the presence of sponges. Microfossils recently interpreted as the preserved gastrulae of cnidarian and bilaterian metazoans can alternatively be interpreted as conventional algal cysts and/or egg cases modified by diagenetic processes known to have had a pervasive influence on Doushantuo phosphorites. Regardless of this interpretation, evidence for Doushantuo eumetazoans is provided by millimeter-scale tubes that display tabulation and apical budding characteristic of some Cnidaria, especially the extinct tabulates. Like some Ediacaran remains, these small, benthic, colonial fossils may represent stem-group eumetazoans or stem-group cnidarians that lived in the late Proterozoic ocean. PMID:11095754

  3. Mineralized rods and cones suggest colour vision in a 300 Myr-old fossil fish.

    PubMed

    Tanaka, Gengo; Parker, Andrew R; Hasegawa, Yoshikazu; Siveter, David J; Yamamoto, Ryoichi; Miyashita, Kiyoshi; Takahashi, Yuichi; Ito, Shosuke; Wakamatsu, Kazumasa; Mukuda, Takao; Matsuura, Marie; Tomikawa, Ko; Furutani, Masumi; Suzuki, Kayo; Maeda, Haruyoshi

    2014-12-23

    Vision, which consists of an optical system, receptors and image-processing capacity, has existed for at least 520 Myr. Except for the optical system, as in the calcified lenses of trilobite and ostracod arthropods, other parts of the visual system are not usually preserved in the fossil record, because the soft tissue of the eye and the brain decay rapidly after death, such as within 64 days and 11 days, respectively. The Upper Carboniferous Hamilton Formation (300 Myr) in Kansas, USA, yields exceptionally well-preserved animal fossils in an estuarine depositional setting. Here we show that the original colour, shape and putative presence of eumelanin have been preserved in the acanthodii fish Acanthodes bridgei. We also report on the tissues of its eye, which provides the first record of mineralized rods and cones in a fossil and indicates that this 300 Myr-old fish likely possessed colour vision.

  4. Leaf fossils of the ancient Tasmanian relict Microcachrys (Podocarpaceae) from New Zealand.

    PubMed

    Carpenter, Raymond J; Jordan, Gregory J; Mildenhall, Dallas C; Lee, Daphne E

    2011-07-01

    Microcachrys tetragona (Podocarpaceae), endemic to the mountains of Tasmania, represents the only remaining taxon of one of the world's most ancient and widely distributed conifer lineages. Remarkably, however, despite its ∼150 Myr heritage, our understanding of the fossil history of this lineage is based almost entirely on the pollen record. Fossils of Microcachrys are especially important in light of recent molecular phylogenetic and dating evidence. This evidence dates the Microcachrys lineage to the Mesozoic and does not support the traditional placement of Microcachrys as sister to the southeastern Australian genus Pherosphaera. We undertook comparative studies of the foliage architecture, cuticle, and paleoecology of newly discovered fossils from the Oligo-Miocene of New Zealand and M. tetragona and discussed the importance of Microcachrys in the context of Podocarpaceae phylogeny. The fossils represent the oldest and first extra-Australian macrofossils of Microcachrys and are described as the new foliage species M. novae-zelandiae. These fossils confirm that the distinctive opposite decussate phyllotaxy of the genus is at least as old as the Oligo-Miocene and contribute to evidence that Microcachrys plants were sometimes important components of oligotrophic swampy habitats. Leaf fossils of Microcachrys closely comparable with the only extant species confirm that this lineage had a much wider past distribution. The fossil record and recent molecular phylogenetic studies, including that of Microcachrys, also serve to emphasize the important status of Tasmania as a refugium for seed plant lineages.

  5. New Mesozoic and Cenozoic fossils from Ecuador: Invertebrates, vertebrates, plants, and microfossils

    NASA Astrophysics Data System (ADS)

    Cadena, Edwin A.; Mejia-Molina, Alejandra; Brito, Carla M.; Peñafiel, Sofia; Sanmartin, Kleber J.; Sarmiento, Luis B.

    2018-04-01

    Ecuador is well known for its extensive extant biodiversity, however, its paleobiodiversity is still poorly explored. Here we report seven new Mesozoic and Cenozoic fossil localities from the Pacific coast, inter-Andean depression and Napo basin of Ecuador, including vertebrates, invertebrates, plants, and microfossils. The first of these localities is called El Refugio, located near the small town of Chota, Imbabura Province, from where we report several morphotypes of fossil leaves and a mycetopodid freshwater mussel of the Upper Miocene Chota Formation. A second site is also located near the town of Chota, corresponding to potentially Pleistocene to Holocene lake deposits from which we report the occurrence of leaves and fossil diatoms. A third locality is at the Pacific coast of the country, near Rocafuerte, a town in Esmeraldas Province, from which we report a late Miocene palm leaf. We also report the first partially articulated skull with teeth from a Miocene scombridid (Mackerels) fish from El Cruce locality, and completely preserved seeds from La Pila locality, both sites from Manabí Province. Two late Cretaceous fossil sites from the Napo Province, one near Puerto Napo showing a good record of fossil shrimps and a second near the town of Loreto shows the occurrence of granular amber and small gymnosperms seeds and cuticles. All these new sites and fossils show the high potential of the sedimentary sequences and basins of Ecuador for paleontological studies and for a better understanding of the fossil record of the country and northern South America.

  6. Evolution of the Insects

    NASA Astrophysics Data System (ADS)

    Grimaldi, David; Engel, Michael S.

    2005-05-01

    This book chronicles the complete evolutionary history of insects--their living diversity and relationships as well as 400 million years of fossils. Introductory sections cover the living species diversity of insects, methods of reconstructing evolutionary relationships, basic insect structure, and the diverse modes of insect fossilization and major fossil deposits. Major sections then explore the relationships and evolution of each order of hexapods. The volume also chronicles major episodes in the evolutionary history of insects from their modest beginnings in the Devonian and the origin of wings hundreds of millions of years before pterosaurs and birds to the impact of mass extinctions and the explosive radiation of angiosperms on insects, and how they evolved into the most complex societies in nature. Whereas other volumes focus on either living species or fossils, this is the first comprehensive synthesis of all aspects of insect evolution. Illustrated with 955 photo- and electron- micrographs, drawings, diagrams, and field photos, many in full color and virtually all of them original, this reference will appeal to anyone engaged with insect diversity--professional entomologists and students, insect and fossil collectors, and naturalists. David Grimaldi and Michael S. Engel have collectively published over 200 scientific articles and monographs on the relationships and fossil record of insects, including 10 articles in the journals Science, Nature, and Proceedings of the National Academy of Sciences. David Grimaldi is curator in the Division of Invertebrate Zoology, American Museum of Natural History and adjunct professor at Cornell University, Columbia University, and the City University of New York. David Grimaldi has traveled in 40 countries on 6 continents, collecting and studying recent species of insects and conducting fossil excavations. He is the author of Amber: Window to the Past (Abrams, 2003). Michael S. Engel is an assistant professor in the Division of Entomology at the University of Kansas; assistant curator at the Natural History Museum, University of Kansas; research associate of the American Museum of Natural History; and fellow of the Linnean Society of London. Engel has visited numerous countries for entomological and paleontological studies, doing most of his fieldwork in Central Asia, Asia Minor, and the Western Hemisphere.

  7. Melanosomes or Microbes: Testing an Alternative Hypothesis for the Origin of Microbodies in Fossil Feathers

    NASA Astrophysics Data System (ADS)

    Moyer, Alison E.; Zheng, Wenxia; Johnson, Elizabeth A.; Lamanna, Matthew C.; Li, Da-Qing; Lacovara, Kenneth J.; Schweitzer, Mary H.

    2014-03-01

    Microbodies associated with fossil feathers, originally attributed to microbial biofilm, have been reinterpreted as melanosomes: pigment-containing, eukaryotic organelles. This interpretation generated hypotheses regarding coloration in non-avian and avian dinosaurs. Because melanosomes and microbes overlap in size, distribution and morphology, we re-evaluate both hypotheses. We compare melanosomes within feathers of extant chickens with patterns induced by microbial overgrowth on the same feathers, using scanning (SEM), field emission (FESEM) and transmission (TEM) electron microscopy. Melanosomes are always internal, embedded in a morphologically distinct keratinous matrix. Conversely, microbes grow across the surface of feathers in continuous layers, more consistent with published images from fossil feathers. We compare our results to both published literature and new data from a fossil feather ascribed to Gansus yumenensis (ANSP 23403). `Mouldic impressions' were observed in association with both the feather and sediment grains, supporting a microbial origin. We propose criteria for distinguishing between these two microbodies.

  8. An evaluation of fossil tip-dating versus node-age calibrations in tetraodontiform fishes (Teleostei: Percomorphaceae).

    PubMed

    Arcila, Dahiana; Alexander Pyron, R; Tyler, James C; Ortí, Guillermo; Betancur-R, Ricardo

    2015-01-01

    Time-calibrated phylogenies based on molecular data provide a framework for comparative studies. Calibration methods to combine fossil information with molecular phylogenies are, however, under active development, often generating disagreement about the best way to incorporate paleontological data into these analyses. This study provides an empirical comparison of the most widely used approach based on node-dating priors for relaxed clocks implemented in the programs BEAST and MrBayes, with two recently proposed improvements: one using a new fossilized birth-death process model for node dating (implemented in the program DPPDiv), and the other using a total-evidence or tip-dating method (implemented in MrBayes and BEAST). These methods are applied herein to tetraodontiform fishes, a diverse group of living and extinct taxa that features one of the most extensive fossil records among teleosts. Previous estimates of time-calibrated phylogenies of tetraodontiforms using node-dating methods reported disparate estimates for their age of origin, ranging from the late Jurassic to the early Paleocene (ca. 150-59Ma). We analyzed a comprehensive dataset with 16 loci and 210 morphological characters, including 131 taxa (95 extant and 36 fossil species) representing all families of fossil and extant tetraodontiforms, under different molecular clock calibration approaches. Results from node-dating methods produced consistently younger ages than the tip-dating approaches. The older ages inferred by tip dating imply an unlikely early-late Jurassic (ca. 185-119Ma) origin for this order and the existence of extended ghost lineages in their fossil record. Node-based methods, by contrast, produce time estimates that are more consistent with the stratigraphic record, suggesting a late Cretaceous (ca. 86-96Ma) origin. We show that the precision of clade age estimates using tip dating increases with the number of fossils analyzed and with the proximity of fossil taxa to the node under assessment. This study suggests that current implementations of tip dating may overestimate ages of divergence in calibrated phylogenies. It also provides a comprehensive phylogenetic framework for tetraodontiform systematics and future comparative studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Potential for bias and low precision in molecular divergence time estimation of the Canopy of Life: an example from aquatic bird families

    PubMed Central

    van Tuinen, Marcel; Torres, Christopher R.

    2015-01-01

    Uncertainty in divergence time estimation is frequently studied from many angles but rarely from the perspective of phylogenetic node age. If appropriate molecular models and fossil priors are used, a multi-locus, partitioned analysis is expected to equally minimize error in accuracy and precision across all nodes of a given phylogeny. In contrast, if available models fail to completely account for rate heterogeneity, substitution saturation and incompleteness of the fossil record, uncertainty in divergence time estimation may increase with node age. While many studies have stressed this concern with regard to deep nodes in the Tree of Life, the inference that molecular divergence time estimation of shallow nodes is less sensitive to erroneous model choice has not been tested explicitly in a Bayesian framework. Because of available divergence time estimation methods that permit fossil priors across any phylogenetic node and the present increase in efficient, cheap collection of species-level genomic data, insight is needed into the performance of divergence time estimation of shallow (<10 MY) nodes. Here, we performed multiple sensitivity analyses in a multi-locus data set of aquatic birds with six fossil constraints. Comparison across divergence time analyses that varied taxon and locus sampling, number and position of fossil constraint and shape of prior distribution showed various insights. Deviation from node ages obtained from a reference analysis was generally highest for the shallowest nodes but determined more by temporal placement than number of fossil constraints. Calibration with only the shallowest nodes significantly underestimated the aquatic bird fossil record, indicating the presence of saturation. Although joint calibration with all six priors yielded ages most consistent with the fossil record, ages of shallow nodes were overestimated. This bias was found in both mtDNA and nDNA regions. Thus, divergence time estimation of shallow nodes may suffer from bias and low precision, even when appropriate fossil priors and best available substitution models are chosen. Much care must be taken to address the possible ramifications of substitution saturation across the entire Tree of Life. PMID:26106406

  10. Shallow and marginal marine Triassic trace fossils and ichnofabric from northwest Australia (ocean drilling program leg 122)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Droser, M.L.; O'Connell, S.

    The ichnofabric index method of ranking amount of bioturbation was used for the first time in conjunction with discrete trace fossils to examine shallow-water marine cores. Previous ichnological studies on cores have focused primarily on outer shelf and deep-sea discrete trace fossils. Upper Triassic cores examined in this study were recovered off northwest Australia during ODP Leg 122. These sediments were deposited in a shallow-water and continental shelf setting, which included swamp and prodelta environments. The most common lithology is siltstone with interbedded mudstone and sandstone. Sediments deposited in a swamp setting have rootlets and coal beds with an ichnologicalmore » record consisting primarily of mottled bedding rather than discrete trace fossils. Ichnofabric indices 1 through 5 were recorded. Marginal marine/lagoonal facies have a low trace fossil diversity with common Chondrites, Planolites, and Teichichnus. Recorded ichnofabric indices include 1, 2, and 3. Laminated mudstones and siltstones (ii1) are most common. Fully marine open shelf strata are thoroughly bioturbated (ii5 and ii6) with Thalassinoides, Zoophycos, Teichichnus, and Planolites. Wackestone and packstone occur in discrete uppermost Triassic intervals and have ii1 through ii6 represented. In part due to the drilling process, sandstones and reefal limestones were poorly recovered and ichnofabric is not well preserved. Physical sedimentary structures and lateral facies relationships can be difficult to discern in core. In shallow marine deposits, the distribution of ichnofabric indices and discrete trace fossils within these strata provide an additional important data base to evaluate depositional environments.« less

  11. Piscivory in a Miocene Cetotheriidae of Peru: first record of fossilized stomach content for an extinct baleen-bearing whale

    NASA Astrophysics Data System (ADS)

    Collareta, Alberto; Landini, Walter; Lambert, Olivier; Post, Klaas; Tinelli, Chiara; Di Celma, Claudio; Panetta, Daniele; Tripodi, Maria; Salvadori, Piero A.; Caramella, Davide; Marchi, Damiano; Urbina, Mario; Bianucci, Giovanni

    2015-12-01

    Instead of teeth, modern mysticetes bear hair-fringed keratinous baleen plates that permit various bulk-filtering predation techniques (from subsurface skimming to lateral benthic suction and engulfment) devoted to various target prey (from small invertebrates to schooling fish). Current knowledge about the feeding ecology of extant cetaceans is revealed by stomach content analyses and observations of behavior. Unfortunately, no fossil stomach contents of ancient mysticetes have been described so far; the investigation of the diet of fossil baleen whales, including the Neogene family Cetotheriidae, remains thus largely speculative. We report on an aggregate of fossil fish remains found within a mysticete skeleton belonging to an undescribed late Miocene (Tortonian) cetotheriid from the Pisco Formation (Peru). Micro-computed tomography allowed us to interpret it as the fossilized content of the forestomach of the host whale and to identify the prey as belonging to the extant clupeiform genus Sardinops. Our discovery represents the first direct evidence of piscivory in an ancient edentulous mysticete. Since among modern mysticetes only Balaenopteridae are known to ordinarily consume fish, this fossil record may indicate that part of the cetotheriids experimented some degree of balaenopterid-like engulfment feeding. Moreover, this report corresponds to one of the geologically oldest records of Sardinops worldwide, occurring near the Tortonian peak of oceanic primary productivity and cooling phase. Therefore, our discovery evokes a link between the rise of Cetotheriidae; the setup of modern coastal upwelling systems; and the radiation of epipelagic, small-sized, schooling clupeiform fish in such highly productive environments.

  12. †Kenyaichthyidae fam. nov. and †Kenyaichthys gen. nov. – First Record of a Fossil Aplocheiloid Killifish (Teleostei, Cyprinodontiformes)

    PubMed Central

    Altner, Melanie; Reichenbacher, Bettina

    2015-01-01

    The extant Cyprinodontiformes (killifishes) with their two suborders Cyprinodontoidei and Aplocheiloidei represent a diverse and well-studied group of fishes. However, their fossil record is comparatively sparse and has so far yielded members of the Cyprinodontoidei only. Here we report on cyprinodontiform fossils from the upper Miocene Lukeino Formation in the Tugen Hills of the Central Rift Valley of Kenya, which represent the first fossil record of an aplocheiloid killifish. A total of 169 specimens - mostly extraordinarily well preserved - and a sample of ten extant cyprinodontiform species were studied on the basis of morphometrics, meristics and osteology. A phylogenetic analysis using PAUP was also conducted for the fossils. Both the osteological data and the phylogenetic analysis provide strong evidence for the assignment of the fossils to the Aplocheiloidei, and justify the definition of the new family †Kenyaichthyidae, the new genus †Kenyaichthys and the new species †K. kipkechi sp. nov. The phylogenetic analysis unexpectedly places †Kenyaichthys gen. nov. in a sister relationship to the Rivulidae (a purely Neotropical group), a probable explanation might be lack of available synapomorphies for the Rivulidae, Nothobranchiidae and Aplocheilidae. The specimens of †K. kipkechi sp. nov. show several polymorphic characters and large overlap in meristic traits, which justifies their interpretation as a species flock in statu nascendi. Patterns of variation in neural and haemal spine dimensions in the caudal vertebrae of †Kenyaichthys gen. nov. and the extant species studied indicate that some previously suggested synapomorphies of the Cyprinodontoidei and Aplocheiloidei need to be revised. PMID:25923654

  13. Piscivory in a Miocene Cetotheriidae of Peru: first record of fossilized stomach content for an extinct baleen-bearing whale.

    PubMed

    Collareta, Alberto; Landini, Walter; Lambert, Olivier; Post, Klaas; Tinelli, Chiara; Di Celma, Claudio; Panetta, Daniele; Tripodi, Maria; Salvadori, Piero A; Caramella, Davide; Marchi, Damiano; Urbina, Mario; Bianucci, Giovanni

    2015-12-01

    Instead of teeth, modern mysticetes bear hair-fringed keratinous baleen plates that permit various bulk-filtering predation techniques (from subsurface skimming to lateral benthic suction and engulfment) devoted to various target prey (from small invertebrates to schooling fish). Current knowledge about the feeding ecology of extant cetaceans is revealed by stomach content analyses and observations of behavior. Unfortunately, no fossil stomach contents of ancient mysticetes have been described so far; the investigation of the diet of fossil baleen whales, including the Neogene family Cetotheriidae, remains thus largely speculative. We report on an aggregate of fossil fish remains found within a mysticete skeleton belonging to an undescribed late Miocene (Tortonian) cetotheriid from the Pisco Formation (Peru). Micro-computed tomography allowed us to interpret it as the fossilized content of the forestomach of the host whale and to identify the prey as belonging to the extant clupeiform genus Sardinops. Our discovery represents the first direct evidence of piscivory in an ancient edentulous mysticete. Since among modern mysticetes only Balaenopteridae are known to ordinarily consume fish, this fossil record may indicate that part of the cetotheriids experimented some degree of balaenopterid-like engulfment feeding. Moreover, this report corresponds to one of the geologically oldest records of Sardinops worldwide, occurring near the Tortonian peak of oceanic primary productivity and cooling phase. Therefore, our discovery evokes a link between the rise of Cetotheriidae; the setup of modern coastal upwelling systems; and the radiation of epipelagic, small-sized, schooling clupeiform fish in such highly productive environments.

  14. Geologic constraints on the macroevolutionary history of marine animals

    PubMed Central

    Peters, Shanan E.

    2005-01-01

    The causes of mass extinctions and the nature of taxonomic radiations are central questions in paleobiology. Several episodes of taxonomic turnover in the fossil record, particularly the major mass extinctions, are generally thought to transcend known biases in the geologic record and are widely interpreted as distinct macroevolutionary phenomena that require unique forcing mechanisms. Here, by using a previously undescribed compilation of the durations of sedimentary rock sequences, I compare the rates of expansion and truncation of preserved marine sedimentary basins to rates of origination and extinction among Phanerozoic marine animal genera. Many features of the highly variable record of taxonomic first and last occurrences in the marine animal fossil record, including the major mass extinctions, the frequency distribution of genus longevities, and short- and long-term patterns of genus diversity, can be predicted on the basis of the temporal continuity and quantity of preserved sedimentary rock. Although these results suggest that geologically mediated sampling biases have distorted macroevolutionary patterns in the fossil record, preservation biases alone cannot easily explain the extent to which the sedimentary record duplicates paleobiological patterns. Instead, these results suggest that the processes responsible for producing variability in the sedimentary rock record, such as plate tectonics and sea-level change, may have been dominant and consistent macroevolutionary forces throughout the Phanerozoic. PMID:16105949

  15. A minute fossil phoretic mite recovered by phase-contrast X-ray computed tomography.

    PubMed

    Dunlop, Jason A; Wirth, Stefan; Penney, David; McNeil, Andrew; Bradley, Robert S; Withers, Philip J; Preziosi, Richard F

    2012-06-23

    High-resolution phase-contrast X-ray computed tomography (CT) reveals the phoretic deutonymph of a fossil astigmatid mite (Acariformes: Astigmata) attached to a spider's carapace (Araneae: Dysderidae) in Eocene (44-49 Myr ago) Baltic amber. Details of appendages and a sucker plate were resolved, and the resulting three-dimensional model demonstrates the potential of tomography to recover morphological characters of systematic significance from even the tiniest amber inclusions without the need for a synchrotron. Astigmatids have an extremely sparse palaeontological record. We confirm one of the few convincing fossils, potentially the oldest record of Histiostomatidae. At 176 µm long, we believe this to be the smallest arthropod in amber to be CT-scanned as a complete body fossil, extending the boundaries for what can be recovered using this technique. We also demonstrate a minimum age for the evolution of phoretic behaviour among their deutonymphs, an ecological trait used by extant species to disperse into favourable environments. The occurrence of the fossil on a spider is noteworthy, as modern histiostomatids tend to favour other arthropods as carriers.

  16. Eocene Loranthaceae pollen pushes back divergence ages for major splits in the family.

    PubMed

    Grímsson, Friðgeir; Kapli, Paschalia; Hofmann, Christa-Charlotte; Zetter, Reinhard; Grimm, Guido W

    2017-01-01

    We revisit the palaeopalynological record of Loranthaceae, using pollen ornamentation to discriminate lineages and to test molecular dating estimates for the diversification of major lineages. Fossil Loranthaceae pollen from the Eocene and Oligocene are analysed and documented using scanning-electron microscopy. These fossils were associated with molecular-defined clades and used as minimum age constraints for Bayesian node dating using different topological scenarios. The fossil Loranthaceae pollen document the presence of at least one extant root-parasitic lineage (Nuytsieae) and two currently aerial parasitic lineages (Psittacanthinae and Loranthinae) by the end of the Eocene in the Northern Hemisphere. Phases of increased lineage diversification (late Eocene, middle Miocene) coincide with global warm phases. With the generation of molecular data becoming easier and less expensive every day, neontological research should re-focus on conserved morphologies that can be traced through the fossil record. The pollen, representing the male gametophytic generation of plants and often a taxonomic indicator, can be such a tracer. Analogously, palaeontological research should put more effort into diagnosing Cenozoic fossils with the aim of including them into modern systematic frameworks.

  17. Fossil Crustaceans as Parasites and Hosts.

    PubMed

    Klompmaker, Adiël A; Boxshall, Geoff A

    2015-01-01

    Numerous crustacean lineages have independently moved into parasitism as a mode of life. In modern marine ecosystems, parasitic crustaceans use representatives from many metazoan phyla as hosts. Crustaceans also serve as hosts to a rich diversity of parasites, including other crustaceans. Here, we show that the fossil record of such parasitic interactions is sparse, with only 11 examples, one dating back to the Cambrian. This may be due to the limited preservation potential and small size of parasites, as well as to problems with ascribing traces to parasitism with certainty, and to a lack of targeted research. Although the confirmed stratigraphic ranges are limited for nearly every example, evidence of parasitism related to crustaceans has become increasingly more complete for isopod-induced swellings in decapods so that quantitative analyses can be carried out. Little attention has yet been paid to the origin of parasitism in deep time, but insight can be generated by integrating data on fossils with molecular studies on modern parasites. In addition, there are other traces left by parasites that could fossilize, but have not yet been recognized in the fossil record. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Honeggeriella complexa gen. et sp. nov., a heteromerous lichen from the Lower Cretaceous of Vancouver Island (British Columbia, Canada).

    PubMed

    Matsunaga, Kelly K S; Stockey, Ruth A; Tomescu, Alexandru M F

    2013-02-01

    Colonists of even the most inhospitable environments, lichens are present in all terrestrial ecosystems. Because of their ecological versatility and ubiquity, they have been considered excellent candidates for early colonizers of terrestrial environments. Despite such predictions, good preservation potential, and the extant diversity of lichenized fungi, the fossil record of lichen associations is sparse. Unequivocal lichen fossils are rare due, in part, to difficulties in ascertaining the presence of both symbionts and in characterizing their interactions. This study describes an exceptionally well-preserved heteromerous lichen from the Lower Cretaceous of Vancouver Island. The fossil occurs in a marine carbonate concretion collected from the Apple Bay locality on Vancouver Island, British Columbia, and was prepared for light microscopy and SEM using the cellulose acetate peel technique. The lichen, Honeggeriella complexa gen. et sp. nov., is formed by an ascomycete mycobiont and a chlorophyte photobiont, and exhibits heteromerous thallus organization. This is paired with a mycobiont-photobiont interface characterized by intracellular haustoria, previously not documented in the fossil record. Honeggeriella adds a lichen component to one of the richest and best characterized Early Cretaceous floras and provides a significant addition to the sparse fossil record of lichens. As a heteromerous chlorolichen, it bridges the >350 million-year gap between previously documented Early Devonian and Eocene occurrences.

  19. Molecules and fossils reveal punctuated diversification in Caribbean “faviid” corals

    PubMed Central

    2012-01-01

    Background Even with well-known sampling biases, the fossil record is key to understanding macro-evolutionary patterns. During the Miocene to Pleistocene in the Caribbean Sea, the fossil record of scleractinian corals shows a remarkable period of rapid diversification followed by massive extinction. Here we combine a time-calibrated molecular phylogeny based on three nuclear introns with an updated fossil stratigraphy to examine patterns of radiation and extinction in Caribbean corals within the traditional family Faviidae. Results Concatenated phylogenetic analysis showed most species of Caribbean faviids were monophyletic, with the exception of two Manicina species. The time-calibrated tree revealed the stem group originated around the closure of the Tethys Sea (17.0 Ma), while the genus Manicina diversified during the Late Miocene (8.20 Ma), when increased sedimentation and productivity may have favored free-living, heterotrophic species. Reef and shallow water specialists, represented by Diploria and Favia, originate at the beginning of the Pliocene (5 – 6 Ma) as the Isthmus of Panama shoaled and regional productivity declined. Conclusions Later origination of the stem group than predicted from the fossil record corroborates the hypothesis of morphological convergence in Diploria and Favia genera. Our data support the rapid evolution of morphological and life-history traits among faviid corals that can be linked to Mio-Pliocene environmental changes. PMID:22831179

  20. Synthesizing and databasing fossil calibrations: divergence dating and beyond

    PubMed Central

    Ksepka, Daniel T.; Benton, Michael J.; Carrano, Matthew T.; Gandolfo, Maria A.; Head, Jason J.; Hermsen, Elizabeth J.; Joyce, Walter G.; Lamm, Kristin S.; Patané, José S. L.; Phillips, Matthew J.; Polly, P. David; Van Tuinen, Marcel; Ware, Jessica L.; Warnock, Rachel C. M.; Parham, James F.

    2011-01-01

    Divergence dating studies, which combine temporal data from the fossil record with branch length data from molecular phylogenetic trees, represent a rapidly expanding approach to understanding the history of life. National Evolutionary Synthesis Center hosted the first Fossil Calibrations Working Group (3–6 March, 2011, Durham, NC, USA), bringing together palaeontologists, molecular evolutionists and bioinformatics experts to present perspectives from disciplines that generate, model and use fossil calibration data. Presentations and discussions focused on channels for interdisciplinary collaboration, best practices for justifying, reporting and using fossil calibrations and roadblocks to synthesis of palaeontological and molecular data. Bioinformatics solutions were proposed, with the primary objective being a new database for vetted fossil calibrations with linkages to existing resources, targeted for a 2012 launch. PMID:21525049

  1. Groundwater-fed Iron-rich Microbial Mats in a Freshwater Creek: Growth Cycles and Fossilization Potential of Microbial Features

    NASA Astrophysics Data System (ADS)

    Schieber, J.

    2004-03-01

    Study of modern microbial mats produced by iron precipitating microbes. Aging and compaction experiments to evaluate fossilization potential and likelihood to recognize these deposits in the rock record.

  2. Wildfire Activity Across the Triassic-Jurassic Boundary in the Polish Basin: Evidence from New Fossil Charcoal & Carbon-isotope Data

    NASA Astrophysics Data System (ADS)

    Pointer, R.; Belcher, C.; Hesselbo, S. P.; Hodbod, M.; Pieńkowski, G.

    2017-12-01

    New fossil charcoal abundance and carbon-isotope data from two sedimentary cores provide new evidence of extreme environmental conditions in the Polish Basin during the Latest Triassic to Earliest Jurassic. Sedimentary cores from the Polish Basin provide an excellent record of terrestrial environmental conditions across the Triassic-Jurassic Boundary, a time of climatic extremes. Previous work has shown that the marine realm was affected by a large perturbation to the carbon cycle across the Triassic-Jurassic Boundary (manifested by large negative and positive carbon-isotope excursions) and limited records of charcoal abundance and organic geochemistry have indicated important changes in fire regime in the coeval ecosystems. Here we present two new carbon-isotope records generated from fossil plant matter across the Triassic-Jurassic boundary, and present new charcoal records. The charcoal abundance data confirm that there was variation in wildfire activity during the Late Triassic-Early Jurassic in the Polish Basin. Peaks in the number of fossil charcoal fragments present occur in both sedimentary cores, and increases in fossil charcoal abundance are linked to wildfires, signalling a short-lived rise in wildfire activity. Fossil charcoal abundance does not appear to be fully controlled by total organic matter content, depositional environment or bioturbation. We argue that increased wildfire activity is likely caused by an increase in ignition of plant material as a result of an elevated number of lightning strikes. Global warming (caused by a massive input of carbon into the atmosphere, as indicated by carbon-isotope data) can increase storm activity, leading to increased numbers of lightning strikes. Previous Triassic-Jurassic Boundary wildfire studies have found fossil charcoal abundance peaks at other northern hemisphere sites (Denmark & Greenland), and concluded that they represent increases in wildfire activity in the earliest Jurassic. Our new charcoal and carbon-isotope data confirm that there was a peak in wildfire activity in the Polish Basin in the earliest Jurassic, and support previous suggestions of widespread increased wildfire activity at the Triassic-Jurassic Boundary.

  3. Soft-Bodied Fossils Are Not Simply Rotten Carcasses - Toward a Holistic Understanding of Exceptional Fossil Preservation: Exceptional Fossil Preservation Is Complex and Involves the Interplay of Numerous Biological and Geological Processes.

    PubMed

    Parry, Luke A; Smithwick, Fiann; Nordén, Klara K; Saitta, Evan T; Lozano-Fernandez, Jesus; Tanner, Alastair R; Caron, Jean-Bernard; Edgecombe, Gregory D; Briggs, Derek E G; Vinther, Jakob

    2018-01-01

    Exceptionally preserved fossils are the product of complex interplays of biological and geological processes including burial, autolysis and microbial decay, authigenic mineralization, diagenesis, metamorphism, and finally weathering and exhumation. Determining which tissues are preserved and how biases affect their preservation pathways is important for interpreting fossils in phylogenetic, ecological, and evolutionary frameworks. Although laboratory decay experiments reveal important aspects of fossilization, applying the results directly to the interpretation of exceptionally preserved fossils may overlook the impact of other key processes that remove or preserve morphological information. Investigations of fossils preserving non-biomineralized tissues suggest that certain structures that are decay resistant (e.g., the notochord) are rarely preserved (even where carbonaceous components survive), and decay-prone structures (e.g., nervous systems) can fossilize, albeit rarely. As we review here, decay resistance is an imperfect indicator of fossilization potential, and a suite of biological and geological processes account for the features preserved in exceptional fossils. © 2017 The Authors. BioEssays Published by WILEY Periodicals, Inc.

  4. Fossils of hydrothermal vent worms from Cretaceous sulfide ores of the Samail ophiolite, Oman

    USGS Publications Warehouse

    Haymon, R.M.; Koski, R.A.; Sinclair, C.

    1984-01-01

    Fossil worm tubes of Cretaceous age preserved in the Bayda massive sulfide deposit of the Samail ophiolite, Oman, are apparently the first documented examples of fossils embedded in massive sulfide deposits from the geologic record. The geologic setting of the Bayda deposit and the distinctive mineralogic and textural features of the fossiliferous samples suggest that the Bayda sulfide deposit and fossil fauna are remnants of a Cretaceous sea-floor hydrothermal vent similar to modern hot springs on the East Pacific Rise and the Juan de Fuca Ridge.

  5. Recent advances in Chinese palaeontology.

    PubMed

    Xu, Xing; Luo, Zhe-Xi; Rong, Jia-Yu

    2010-01-22

    Discoveries are a driving force for progress in palaeontology. Palaeontology as a discipline of scientific inquiry has gained many fresh insights into the history of life, from the discoveries of many new fossils in China in the last 20 years, and from the new ideas derived from these fossils. This special issue of Proceedings of Royal Society B entitled Recent Advances in Chinese Palaeontology selects some of the very latest studies aimed at resolving the current problems of palaeontology and evolutionary biology based on new fossils from China. These fossils and their studies help to clarify some historical debates about a particular fossil group, or to raise new questions about history of life, or to pose a new challenge in our pursuit of science. These works on new Chinese fossils have covered the whole range of the diversity through the entire Phanerozoic fossil record.

  6. Global patterns of insect diversification: towards a reconciliation of fossil and molecular evidence?

    PubMed

    Condamine, Fabien L; Clapham, Matthew E; Kergoat, Gael J

    2016-01-18

    Macroevolutionary studies of insects at diverse taxonomic scales often reveal dynamic evolutionary patterns, with multiple inferred diversification rate shifts. Responses to major past environmental changes, such as the Cretaceous Terrestrial Revolution, or the development of major key innovations, such as wings or complete metamorphosis are usually invoked as potential evolutionary triggers. However this view is partially contradicted by studies on the family-level fossil record showing that insect diversification was relatively constant through time. In an attempt to reconcile both views, we investigate large-scale insect diversification dynamics at family level using two distinct types of diversification analyses on a molecular timetree representing ca. 82% of the extant families, and reassess the insect fossil diversity using up-to-date records. Analyses focusing on the fossil record recovered an early burst of diversification, declining to low and steady rates through time, interrupted by extinction events. Phylogenetic analyses showed that major shifts of diversification rates only occurred in the four richest holometabolous orders. Both suggest that neither the development of flight or complete metamorphosis nor the Cretaceous Terrestrial Revolution environmental changes induced immediate changes in diversification regimes; instead clade-specific innovations likely promoted the diversification of major insect orders.

  7. Global patterns of insect diversification: towards a reconciliation of fossil and molecular evidence?

    PubMed Central

    Condamine, Fabien L.; Clapham, Matthew E.; Kergoat, Gael J.

    2016-01-01

    Macroevolutionary studies of insects at diverse taxonomic scales often reveal dynamic evolutionary patterns, with multiple inferred diversification rate shifts. Responses to major past environmental changes, such as the Cretaceous Terrestrial Revolution, or the development of major key innovations, such as wings or complete metamorphosis are usually invoked as potential evolutionary triggers. However this view is partially contradicted by studies on the family-level fossil record showing that insect diversification was relatively constant through time. In an attempt to reconcile both views, we investigate large-scale insect diversification dynamics at family level using two distinct types of diversification analyses on a molecular timetree representing ca. 82% of the extant families, and reassess the insect fossil diversity using up-to-date records. Analyses focusing on the fossil record recovered an early burst of diversification, declining to low and steady rates through time, interrupted by extinction events. Phylogenetic analyses showed that major shifts of diversification rates only occurred in the four richest holometabolous orders. Both suggest that neither the development of flight or complete metamorphosis nor the Cretaceous Terrestrial Revolution environmental changes induced immediate changes in diversification regimes; instead clade-specific innovations likely promoted the diversification of major insect orders. PMID:26778170

  8. 40 CFR 98.167 - Records that must be retained.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CEMS is not used to measure GHG emissions. (2) Fossil fuel consumption, when, pursuant to § 98.33(e), the owner or operator of a unit that uses CEMS to quantify CO2 emissions and that combusts both fossil...

  9. Trace fossil evidence of coral-inhabiting crabs (Cryptochiridae) and its implications for growth and paleobiogeography

    NASA Astrophysics Data System (ADS)

    Klompmaker, Adiël A.; Portell, Roger W.; van der Meij, Sancia E. T.

    2016-03-01

    Members of the Cryptochiridae are small, fragile, symbiotic crabs that live in domiciles in modern corals. Despite their worldwide occurrence with over 50 species known today, their fossil record is unknown. We provide the first unambiguous evidence of cryptochirids in the fossil record through their crescentic pits, typical for certain cryptochirids, in Western Atlantic fossil corals, while the Eocene genus Montemagrechirus is excluded from the Cryptochiridae and referred to Montemagrechiridae fam. nov. Nine Pleistocene corals with crescentic pits originate from Florida (USA), and single specimens with pits come from the late Pleistocene of Cuba and the late Pliocene of Florida, all of which are measured for growth analyses. These pits represent trace fossils named Galacticus duerri igen. nov., isp. nov. A study of modern cryptochirid domicile shape (crescentic pit, circular-oval pit, or a true gall) shows that species within crab genera tend to inhabit the same pit shape. Crescentic pits in corals occur not only in the Western Atlantic today, but also in the Indo-West Pacific and in the Eastern Pacific. Thus, examination of Cenozoic fossil coral collections from these regions should yield further examples of cryptochirid pits, which would help to constrain the antiquity of this cryptic crab family.

  10. Coryphoid Palm Leaf Fossils from the Maastrichtian–Danian of Central India with Remarks on Phytogeography of the Coryphoideae (Arecaceae)

    PubMed Central

    Srivastava, Rashmi; Srivastava, Gaurav; Dilcher, David L.

    2014-01-01

    Premise of research A large number of fossil coryphoid palm wood and fruits have been reported from the Deccan Intertrappean beds of India. We document the oldest well-preserved and very rare costapalmate palm leaves and inflorescence like structures from the same horizon. Methodology A number of specimens were collected from Maastrichtian–Danian sediments of the Deccan Intertrappean beds, Ghughua, near Umaria, Dindori District, Madhya Pradesh, India. The specimens are compared with modern and fossil taxa of the family Arecaceae. Pivotal results Sabalites dindoriensis sp. nov. is described based on fossil leaf specimens including basal to apical parts. These are the oldest coryphoid fossil palm leaves from India as well as, at the time of deposition, from the Gondwana- derived continents. Conclusions The fossil record of coryphoid palm leaves presented here and reported from the Eurasian localities suggests that this is the oldest record of coryphoid palm leaves from India and also from the Gondwana- derived continents suggesting that the coryphoid palms were well established and wide spread on both northern and southern hemispheres by the Maastrichtian–Danian. The coryphoid palms probably dispersed into India from Europe via Africa during the latest Cretaceous long before the Indian Plate collided with the Eurasian Plate. PMID:25394208

  11. Extinction and the fossil record

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J. Jr; Sepkoski JJ, ,. J. r. (Principal Investigator)

    1994-01-01

    The author examines evidence of mass extinctions in the fossil record and searches for reasons for such large extinctions. Five major mass extinctions eliminated at least 40 percent of animal genera in the oceans and from 65 to 95 percent of ocean species. Questions include the occurrence of gradual or catastrophic extinctions, causes, environment, the capacity of a perturbation to cause extinctions each time it happens, and the possibility and identification of complex events leading to a mass extinction.

  12. Neandertal demise: an archaeological analysis of the modern human superiority complex.

    PubMed

    Villa, Paola; Roebroeks, Wil

    2014-01-01

    Neandertals are the best-studied of all extinct hominins, with a rich fossil record sampling hundreds of individuals, roughly dating from between 350,000 and 40,000 years ago. Their distinct fossil remains have been retrieved from Portugal in the west to the Altai area in central Asia in the east and from below the waters of the North Sea in the north to a series of caves in Israel in the south. Having thrived in Eurasia for more than 300,000 years, Neandertals vanished from the record around 40,000 years ago, when modern humans entered Europe. Modern humans are usually seen as superior in a wide range of domains, including weaponry and subsistence strategies, which would have led to the demise of Neandertals. This systematic review of the archaeological records of Neandertals and their modern human contemporaries finds no support for such interpretations, as the Neandertal archaeological record is not different enough to explain the demise in terms of inferiority in archaeologically visible domains. Instead, current genetic data suggest that complex processes of interbreeding and assimilation may have been responsible for the disappearance of the specific Neandertal morphology from the fossil record.

  13. Neandertal Demise: An Archaeological Analysis of the Modern Human Superiority Complex

    PubMed Central

    Villa, Paola; Roebroeks, Wil

    2014-01-01

    Neandertals are the best-studied of all extinct hominins, with a rich fossil record sampling hundreds of individuals, roughly dating from between 350,000 and 40,000 years ago. Their distinct fossil remains have been retrieved from Portugal in the west to the Altai area in central Asia in the east and from below the waters of the North Sea in the north to a series of caves in Israel in the south. Having thrived in Eurasia for more than 300,000 years, Neandertals vanished from the record around 40,000 years ago, when modern humans entered Europe. Modern humans are usually seen as superior in a wide range of domains, including weaponry and subsistence strategies, which would have led to the demise of Neandertals. This systematic review of the archaeological records of Neandertals and their modern human contemporaries finds no support for such interpretations, as the Neandertal archaeological record is not different enough to explain the demise in terms of inferiority in archaeologically visible domains. Instead, current genetic data suggest that complex processes of interbreeding and assimilation may have been responsible for the disappearance of the specific Neandertal morphology from the fossil record. PMID:24789039

  14. The Origin and Early Radiation of Archosauriforms: Integrating the Skeletal and Footprint Record.

    PubMed

    Bernardi, Massimo; Klein, Hendrik; Petti, Fabio Massimo; Ezcurra, Martín D

    2015-01-01

    We present a holistic approach to the study of early archosauriform evolution by integrating body and track records. The ichnological record supports a Late Permian-Early Triassic radiation of archosauriforms not well documented by skeletal material, and new footprints from the Upper Permian of the southern Alps (Italy) provide evidence for a diversity not yet sampled by body fossils. The integrative study of body fossil and footprint data supports the hypothesis that archosauriforms had already undergone substantial taxonomic diversification by the Late Permian and that by the Early Triassic archosauromorphs attained a broad geographical distribution over most parts of Pangea. Analysis of body size, as deduced from track size, suggests that archosauriform average body size did not change significantly from the Late Permian to the Early Triassic. A survey of facies yielding both skeletal and track record indicate an ecological preference for inland fluvial (lacustrine) environments for early archosauromorphs. Finally, although more data is needed, Late Permian chirotheriid imprints suggest a shift from sprawling to erect posture in archosauriforms before the end-Permian mass extinction event. We highlight the importance of approaching palaeobiological questions by using all available sources of data, specifically through integrating the body and track fossil record.

  15. The Origin and Early Radiation of Archosauriforms: Integrating the Skeletal and Footprint Record

    PubMed Central

    Bernardi, Massimo; Klein, Hendrik; Petti, Fabio Massimo; Ezcurra, Martín D.

    2015-01-01

    We present a holistic approach to the study of early archosauriform evolution by integrating body and track records. The ichnological record supports a Late Permian–Early Triassic radiation of archosauriforms not well documented by skeletal material, and new footprints from the Upper Permian of the southern Alps (Italy) provide evidence for a diversity not yet sampled by body fossils. The integrative study of body fossil and footprint data supports the hypothesis that archosauriforms had already undergone substantial taxonomic diversification by the Late Permian and that by the Early Triassic archosauromorphs attained a broad geographical distribution over most parts of Pangea. Analysis of body size, as deduced from track size, suggests that archosauriform average body size did not change significantly from the Late Permian to the Early Triassic. A survey of facies yielding both skeletal and track record indicate an ecological preference for inland fluvial (lacustrine) environments for early archosauromorphs. Finally, although more data is needed, Late Permian chirotheriid imprints suggest a shift from sprawling to erect posture in archosauriforms before the end-Permian mass extinction event. We highlight the importance of approaching palaeobiological questions by using all available sources of data, specifically through integrating the body and track fossil record. PMID:26083612

  16. The role of behaviour in adaptive morphological evolution of African proboscideans.

    PubMed

    Lister, Adrian M

    2013-08-15

    The fossil record richly illustrates the origin of morphological adaptation through time. However, our understanding of the selective forces responsible in a given case, and the role of behaviour in the process, is hindered by assumptions of synchrony between environmental change, behavioural innovation and morphological response. Here I show, from independent proxy data through a 20-million-year sequence of fossil proboscideans in East Africa, that changes in environment, diet and morphology are often significantly offset chronologically, allowing dissection of the roles of behaviour and different selective drivers. These findings point the way to hypothesis-driven testing of the interplay between habitat change, behaviour and morphological adaptation with the use of independent proxies in the fossil record.

  17. Protein molecular data from ancient (>1 million years old) fossil material: pitfalls, possibilities and grand challenges.

    PubMed

    Schweitzer, Mary Higby; Schroeter, Elena R; Goshe, Michael B

    2014-07-15

    Advances in resolution and sensitivity of analytical techniques have provided novel applications, including the analyses of fossil material. However, the recovery of original proteinaceous components from very old fossil samples (defined as >1 million years (1 Ma) from previously named limits in the literature) is far from trivial. Here, we discuss the challenges to recovery of proteinaceous components from fossils, and the need for new sample preparation techniques, analytical methods, and bioinformatics to optimize and fully utilize the great potential of information locked in the fossil record. We present evidence for survival of original components across geological time, and discuss the potential benefits of recovery, analyses, and interpretation of fossil materials older than 1 Ma, both within and outside of the fields of evolutionary biology.

  18. Late Pleistocene-Holocene paleobiogeography of the genus Apodemus in Central Europe

    PubMed Central

    Knitlová, Markéta; Horáček, Ivan

    2017-01-01

    Wood mice of the genus Apodemus are an essential component of small mammal communities throughout Europe. Molecular data suggest the postglacial colonization of current ranges from south European glacial refugia, different in particular species. Yet, details on the course of colonization and Holocene history of particular species are not available, partly because of a lack of reliable criteria for species identification in the fossil record. Using a sample of extant species, we analyzed variation patterns and between-species overlaps for a large set of metric and non-metric dental variables and established the criteria enabling the reliable species identification of fragmentary fossil material. The corresponding biometrical analyses were undertaken with fossil material of the genus (2528 items, 747 MNI) from 22 continuous sedimentary series in the Czech Republic and Slovakia, from LGM to Recent. In Central Europe, the genus is invariantly absent in LGM assemblages but regularly appears during the Late Vistulian. All the earliest records belong to A. flavicollis, the species clearly predominating in the fossil record until the Late Holocene. A. uralensis accompanied it in all regions until the late Boreal when disappeared from the fossil record (except for Pannonia). A few items identified as A. sylvaticus had already appeared in the early Holocene assemblages, first in the western part of the region, yet the regular appearance of the species is mostly in the post-Neolithic age. A. agrarius appeared sparsely from the Boreal with a maximum frequency during the post-Neolithic period. The results conform well to the picture suggested by molecular phylogeography but demonstrate considerable differences among particular species in dynamic of the range colonization. Further details concerning Holocene paleobiogeography of individual species in the medium latitude Europe are discussed. PMID:28282422

  19. Late Paleocene fossils from the Cerrejón Formation, Colombia, are the earliest record of Neotropical rainforest

    PubMed Central

    Wing, Scott L.; Herrera, Fabiany; Jaramillo, Carlos A.; Gómez-Navarro, Carolina; Wilf, Peter; Labandeira, Conrad C.

    2009-01-01

    Neotropical rainforests have a very poor fossil record, making hypotheses concerning their origins difficult to evaluate. Nevertheless, some of their most important characteristics can be preserved in the fossil record: high plant diversity, dominance by a distinctive combination of angiosperm families, a preponderance of plant species with large, smooth-margined leaves, and evidence for a high diversity of herbivorous insects. Here, we report on an ≈58-my-old flora from the Cerrejón Formation of Colombia (paleolatitude ≈5 °N) that is the earliest megafossil record of Neotropical rainforest. The flora has abundant, diverse palms and legumes and similar family composition to extant Neotropical rainforest. Three-quarters of the leaf types are large and entire-margined, indicating rainfall >2,500 mm/year and mean annual temperature >25 °C. Despite modern family composition and tropical paleoclimate, the diversity of fossil pollen and leaf samples is 60–80% that of comparable samples from extant and Quaternary Neotropical rainforest from similar climates. Insect feeding damage on Cerrejón fossil leaves, representing primary consumers, is abundant, but also of low diversity, and overwhelmingly made by generalist feeders rather than specialized herbivores. Cerrejón megafossils provide strong evidence that the same Neotropical rainforest families have characterized the biome since the Paleocene, maintaining their importance through climatic phases warmer and cooler than present. The low diversity of both plants and herbivorous insects in this Paleocene Neotropical rainforest may reflect an early stage in the diversification of the lineages that inhabit this biome, and/or a long recovery period from the terminal Cretaceous extinction. PMID:19833876

  20. A second Eocene species of death-watch beetle belonging to the genus Microbregma Seidlitz (Coleoptera: Bostrichoidea) with a checklist of fossil Ptinidae.

    PubMed

    Bukejs, Andris; Alekseev, Vitalii I

    2015-04-17

    Based on a well-preserved specimen from Upper Eocene Baltic amber (Kaliningrad region, Russia), Microbregma waldwico sp. nov., the second fossil species of this genus, is described. The new species is similar to the extant Holarctic M. emarginatum (Duftschmid), 1825, and fossil M. sucinoemarginatum (Kuśka), 1992, but differs in its shorter abdominal ventrite 1 (about 0.43 length of ventrite 2) and larger body (5.1 mm). A key to species of the genus Microbregma is given, and a check-list of described fossil Ptinidae is provided. The fossil record of Ptinidae now includes 48 species in 27 genera and 8 subfamilies.

  1. Caught in the act: the first record of copulating fossil vertebrates.

    PubMed

    Joyce, Walter G; Micklich, Norbert; Schaal, Stephan F K; Scheyer, Torsten M

    2012-10-23

    The behaviour of fossil organisms can typically be inferred only indirectly, but rare fossil finds can provide surprising insights. Here, we report from the Eocene Messel Pit Fossil Site between Darmstadt and Frankfurt, Germany numerous pairs of the fossil carettochelyid turtle Allaeochelys crassesculpta that represent for the first time among fossil vertebrates couples that perished during copulation. Females of this taxon can be distinguished from males by their relatively shorter tails and development of plastral kinesis. The preservation of mating pairs has important taphonomic implications for the Messel Pit Fossil Site, as it is unlikely that the turtles would mate in poisonous surface waters. Instead, the turtles initiated copulation in habitable surface waters, but perished when their skin absorbed poisons while sinking into toxic layers. The mating pairs from Messel are therefore more consistent with a stratified, volcanic maar lake with inhabitable surface waters and a deadly abyss.

  2. Ancient nursery area for the extinct giant shark megalodon from the Miocene of Panama.

    PubMed

    Pimiento, Catalina; Ehret, Dana J; Macfadden, Bruce J; Hubbell, Gordon

    2010-05-10

    As we know from modern species, nursery areas are essential shark habitats for vulnerable young. Nurseries are typically highly productive, shallow-water habitats that are characterized by the presence of juveniles and neonates. It has been suggested that in these areas, sharks can find ample food resources and protection from predators. Based on the fossil record, we know that the extinct Carcharocles megalodon was the biggest shark that ever lived. Previous proposed paleo-nursery areas for this species were based on the anecdotal presence of juvenile fossil teeth accompanied by fossil marine mammals. We now present the first definitive evidence of ancient nurseries for C. megalodon from the late Miocene of Panama, about 10 million years ago. We collected and measured fossil shark teeth of C. megalodon, within the highly productive, shallow marine Gatun Formation from the Miocene of Panama. Surprisingly, and in contrast to other fossil accumulations, the majority of the teeth from Gatun are very small. Here we compare the tooth sizes from the Gatun with specimens from different, but analogous localities. In addition we calculate the total length of the individuals found in Gatun. These comparisons and estimates suggest that the small size of Gatun's C. megalodon is neither related to a small population of this species nor the tooth position within the jaw. Thus, the individuals from Gatun were mostly juveniles and neonates, with estimated body lengths between 2 and 10.5 meters. We propose that the Miocene Gatun Formation represents the first documented paleo-nursery area for C. megalodon from the Neotropics, and one of the few recorded in the fossil record for an extinct selachian. We therefore show that sharks have used nursery areas at least for 10 millions of years as an adaptive strategy during their life histories.

  3. Measuring Stratigraphic Congruence Across Trees, Higher Taxa, and Time

    PubMed Central

    O'Connor, Anne; Wills, Matthew A.

    2016-01-01

    The congruence between the order of cladistic branching and the first appearance dates of fossil lineages can be quantified using a variety of indices. Good matching is a prerequisite for the accurate time calibration of trees, while the distribution of congruence indices across large samples of cladograms has underpinned claims about temporal and taxonomic patterns of completeness in the fossil record. The most widely used stratigraphic congruence indices are the stratigraphic consistency index (SCI), the modified Manhattan stratigraphic measure (MSM*), and the gap excess ratio (GER) (plus its derivatives; the topological GER and the modified GER). Many factors are believed to variously bias these indices, with several empirical and simulation studies addressing some subset of the putative interactions. This study combines both approaches to quantify the effects (on all five indices) of eight variables reasoned to constrain the distribution of possible values (the number of taxa, tree balance, tree resolution, range of first occurrence (FO) dates, center of gravity of FO dates, the variability of FO dates, percentage of extant taxa, and percentage of taxa with no fossil record). Our empirical data set comprised 647 published animal and plant cladograms spanning the entire Phanerozoic, and for these data we also modeled the effects of mean age of FOs (as a proxy for clade age), the taxonomic rank of the clade, and the higher taxonomic group to which it belonged. The center of gravity of FO dates had not been investigated hitherto, and this was found to correlate most strongly with some measures of stratigraphic congruence in our empirical study (top-heavy clades had better congruence). The modified GER was the index least susceptible to bias. We found significant differences across higher taxa for all indices; arthropods had lower congruence and tetrapods higher congruence. Stratigraphic congruence—however measured—also varied throughout the Phanerozoic, reflecting the taxonomic composition of our sample. Notably, periods containing a high proportion of arthropods had poorer congruence overall than those with higher proportions of tetrapods. [Fossil calibration; gap excess ratio; manhattan stratigraphic metric; molecular clocks; stratigraphic congruence.] PMID:27155010

  4. Phytogeographical implication of Bridelia Will. (Phyllanthaceae) fossil leaf from the late Oligocene of India.

    PubMed

    Srivastava, Gaurav; Mehrotra, R C

    2014-01-01

    The family Phyllanthaceae has a predominantly pantropical distribution. Of its several genera, Bridelia Willd. is of a special interest because it has disjunct equally distributed species in Africa and tropical Asia i.e. 18-20 species in Africa-Madagascar (all endemic) and 18 species in tropical Asia (some shared with Australia). On the basis of molecular phylogenetic study on Bridelia, it has been suggested that the genus evolved in Southeast Asia around 33±5 Ma, while speciation and migration to other parts of the world occurred at 10±2 Ma. Fossil records of Bridelia are equally important to support the molecular phylogenetic studies and plate tectonic models. We describe a new fossil leaf of Bridelia from the late Oligocene (Chattian, 28.4-23 Ma) sediments of Assam, India. The detailed venation pattern of the fossil suggests its affinities with the extant B. ovata, B. retusa and B. stipularis. Based on the present fossil evidence and the known fossil records of Bridelia from the Tertiary sediments of Nepal and India, we infer that the genus evolved in India during the late Oligocene (Chattian, 28.4-23 Ma) and speciation occurred during the Miocene. The stem lineage of the genus migrated to Africa via "Iranian route" and again speciosed in Africa-Madagascar during the late Neogene resulting in the emergence of African endemic clades. Similarly, the genus also migrated to Southeast Asia via Myanmar after the complete suturing of Indian and Eurasian plates. The emergence and speciation of the genus in Asia and Africa is the result of climate change during the Cenozoic. On the basis of present and known fossil records of Bridelia, we have concluded that the genus evolved during the late Oligocene in northeast India. During the Neogene, the genus diversified and migrated to Southeast Asia via Myanmar and Africa via "Iranian Route".

  5. Mass extinction in tetraodontiform fishes linked to the Palaeocene-Eocene thermal maximum.

    PubMed

    Arcila, Dahiana; Tyler, James C

    2017-11-15

    Integrative evolutionary analyses based upon fossil and extant species provide a powerful approach for understanding past diversification events and for assessing the tempo of evolution across the Tree of Life. Herein, we demonstrate the importance of integrating fossil and extant species for inferring patterns of lineage diversification that would otherwise be masked in analyses that examine only one source of evidence. We infer the phylogeny and macroevolutionary history of the Tetraodontiformes (triggerfishes, pufferfishes and allies), a group with one of the most extensive fossil records among fishes. Our analyses combine molecular and morphological data, based on an expanded matrix that adds newly coded fossil species and character states. Beyond confidently resolving the relationships and divergence times of tetraodontiforms, our diversification analyses detect a major mass-extinction event during the Palaeocene-Eocene Thermal Maximum (PETM), followed by a marked increase in speciation rates. This pattern is consistently obtained when fossil and extant species are integrated, whereas examination of the fossil occurrences alone failed to detect major diversification changes during the PETM. When taking into account non-homogeneous models, our analyses also detect a rapid lineage diversification increase in one of the groups (tetraodontoids) during the middle Miocene, which is considered a key period in the evolution of reef fishes associated with trophic changes and ecological opportunity. In summary, our analyses show distinct diversification dynamics estimated from phylogenies and the fossil record, suggesting that different episodes shaped the evolution of tetraodontiforms during the Cenozoic. © 2017 The Author(s).

  6. Fossil evidence for key innovations in the evolution of insect diversity.

    PubMed

    Nicholson, David B; Ross, Andrew J; Mayhew, Peter J

    2014-10-22

    Explaining the taxonomic richness of the insects, comprising over half of all described species, is a major challenge in evolutionary biology. Previously, several evolutionary novelties (key innovations) have been posited to contribute to that richness, including the insect bauplan, wings, wing folding and complete metamorphosis, but evidence over their relative importance and modes of action is sparse and equivocal. Here, a new dataset on the first and last occurrences of fossil hexapod (insects and close relatives) families is used to show that basal families of winged insects (Palaeoptera, e.g. dragonflies) show higher origination and extinction rates in the fossil record than basal wingless groups (Apterygota, e.g. silverfish). Origination and extinction rates were maintained at levels similar to Palaeoptera in the more derived Polyneoptera (e.g. cockroaches) and Paraneoptera (e.g. true bugs), but extinction rates subsequently reduced in the very rich group of insects with complete metamorphosis (Holometabola, e.g. beetles). Holometabola show evidence of a recent slow-down in their high net diversification rate, whereas other winged taxa continue to diversify at constant but low rates. These data suggest that wings and complete metamorphosis have had the most effect on family-level insect macroevolution, and point to specific mechanisms by which they have influenced insect diversity through time. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  7. Cryptic iridescence in a fossil weevil generated by single diamond photonic crystals

    PubMed Central

    McNamara, Maria E.; Saranathan, Vinod; Locatelli, Emma R.; Noh, Heeso; Briggs, Derek E. G.; Orr, Patrick J.; Cao, Hui

    2014-01-01

    Nature's most spectacular colours originate in integumentary tissue architectures that scatter light via nanoscale modulations of the refractive index. The most intricate biophotonic nanostructures are three-dimensional crystals with opal, single diamond or single gyroid lattices. Despite intense interest in their optical and structural properties, the evolution of such nanostructures is poorly understood, due in part to a lack of data from the fossil record. Here, we report preservation of single diamond (Fd-3m) three-dimensional photonic crystals in scales of a 735 000 year old specimen of the brown Nearctic weevil Hypera diversipunctata from Gold Run, Canada, and in extant conspecifics. The preserved red to green structural colours exhibit near-field brilliancy yet are inconspicuous from afar; they most likely had cryptic functions in substrate matching. The discovery of pristine fossil examples indicates that the fossil record is likely to yield further data on the evolution of three-dimensional photonic nanostructures and their biological functions. PMID:25185581

  8. Mummified fossil woods of Fagaceae from the upper Oligocene of Guangxi, South China

    NASA Astrophysics Data System (ADS)

    Huang, Luliang; Jin, Jianhua; Quan, Cheng; Oskolski, Alexei A.

    2018-02-01

    Three new fossil species, two attributed to the genus Castanopsis (C. nanningensis and C. guangxiensis) and one to the organ genus Lithocarpoxylon (L. nanningensis) are described on the basis of well-preserved mummified wood from the upper Oligocene of Yongning Formation in the Nanning Basin, Guangxi Province, South China. The two species of Castanopsis represent the most ancient reliable wood record of this genus in China and also southeastern Asia, which is the center of diversity of extant species. The fossil leaf records of Castanopsis indicated this genus has migrated to South China in the late Eocene. This fossil wood evidence confirms the presence and persistence of Castanopsis in this region in the late Oligocene. In the Yongning Formation, the presence of numerous Fagaceae woods with faint or absent growth ring boundaries (in C. nanningensis) occasionally associated with prominent ring-porous patterns, suggests that Guangxi (South China) had a seasonal (probably monsoonal) tropical climate during the late Oligocene.

  9. Continuously growing rodent molars result from a predictable quantitative evolutionary change over 50 million years

    PubMed Central

    Mushegyan, Vagan; Eronen, Jussi T.; Lawing, A. Michelle; Sharir, Amnon; Janis, Christine; Jernvall, Jukka; Klein, Ophir D.

    2015-01-01

    Summary The fossil record is widely informative about evolution, but fossils are not systematically used to study the evolution of stem cell-driven renewal. Here, we examined evolution of the continuous growth (hypselodonty) of rodent molar teeth, which is fuelled by the presence of dental stem cells. We studied occurrences of 3500 North American rodent fossils, ranging from 50 million years ago (mya) to 2 mya. We examined changes in molar height to determine if evolution of hypselodonty shows distinct patterns in the fossil record, and we found that hypselodont taxa emerged through intermediate forms of increasing crown height. Next, we designed a Markov simulation model, which replicated molar height increases throughout the Cenozoic, and, moreover, evolution of hypselodonty. Thus, by extension, the retention of the adult stem-cell niche appears to be a predictable quantitative rather than a stochastic qualitative process. Our analyses predict that hypselodonty will eventually become the dominant phenotype. PMID:25921530

  10. A review and phylogeny of Scarabaeine dung beetle fossils (Coleoptera: Scarabaeidae: Scarabaeinae), with the description of two Canthochilum species from Dominican amber

    PubMed Central

    Krell, Frank-Thorsten; Dimitrov, Dimitar

    2016-01-01

    Despite the increasing rate of systematic research on scarabaeine dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae), their fossil record has remained largely unrevised. In this paper, we review all 33 named scarabaeine fossils and describe two new species from Dominican amber (Canthochilum alleni sp.n., Canthochilum philipsivieorum sp.n.). We provide a catalogue of all fossil Scarabaeinae and evaluate their assignment to this subfamily, based primarily on the original descriptions but also, where possible, by examining the type specimens. We suggest that only 21 fossil taxa can be reliably assigned to the Scarabaeinae, while the remaining 14 should be treated as doubtful Scarabaeinae. The doubtful scarabaeines include the two oldest dung beetle fossils known from the Cretaceous and we suggest excluding them from any assessments of the minimum age of scarabaeine dung beetles. The earliest reliably described scarabaeine fossil appears to be Lobateuchus parisii, known from Oise amber (France), which shifts the minimum age of the Scarabaeinae to the Eocene (53 Ma). We scored the best-preserved fossils, namely Lobateuchus and the two Canthochilum species described herein, into the character matrix used in a recent morphology-based study of dung beetles, and then inferred their phylogenetic relationships with Bayesian and parsimony methods. All analyses yielded consistent phylogenies where the two fossil Canthochilum are placed in a clade with the extant species of Canthochilum, and Lobateuchus is recovered in a clade with the extant genera Ateuchus and Aphengium. Additionally, we evaluated the distribution of dung beetle fossils in the light of current global dung beetle phylogenetic hypotheses, geological time and biogeography. The presence of only extant genera in the late Oligocene and all later records suggests that the main present-day dung beetle lineages had already been established by the late Oligocene–mid Miocene. PMID:27547512

  11. Carnivorous leaves from Baltic amber.

    PubMed

    Sadowski, Eva-Maria; Seyfullah, Leyla J; Sadowski, Friederike; Fleischmann, Andreas; Behling, Hermann; Schmidt, Alexander R

    2015-01-06

    The fossil record of carnivorous plants is very scarce and macrofossil evidence has been restricted to seeds of the extant aquatic genus Aldrovanda of the Droseraceae family. No case of carnivorous plant traps has so far been reported from the fossil record. Here, we present two angiosperm leaves enclosed in a piece of Eocene Baltic amber that share relevant morphological features with extant Roridulaceae, a carnivorous plant family that is today endemic to the Cape flora of South Africa. Modern Roridula species are unique among carnivorous plants as they digest prey in a complex mutualistic association in which the prey-derived nutrient uptake depends on heteropteran insects. As in extant Roridula, the fossil leaves possess two types of plant trichomes, including unicellular hairs and five size classes of multicellular stalked glands (or tentacles) with an apical pore. The apices of the narrow and perfectly tapered fossil leaves end in a single tentacle, as in both modern Roridula species. The glandular hairs of the fossils are restricted to the leaf margins and to the abaxial lamina, as in extant Roridula gorgonias. Our discovery supports current molecular age estimates for Roridulaceae and suggests a wide Eocene distribution of roridulid plants.

  12. Carnivorous leaves from Baltic amber

    PubMed Central

    Sadowski, Eva-Maria; Seyfullah, Leyla J.; Sadowski, Friederike; Fleischmann, Andreas; Behling, Hermann; Schmidt, Alexander R.

    2015-01-01

    The fossil record of carnivorous plants is very scarce and macrofossil evidence has been restricted to seeds of the extant aquatic genus Aldrovanda of the Droseraceae family. No case of carnivorous plant traps has so far been reported from the fossil record. Here, we present two angiosperm leaves enclosed in a piece of Eocene Baltic amber that share relevant morphological features with extant Roridulaceae, a carnivorous plant family that is today endemic to the Cape flora of South Africa. Modern Roridula species are unique among carnivorous plants as they digest prey in a complex mutualistic association in which the prey-derived nutrient uptake depends on heteropteran insects. As in extant Roridula, the fossil leaves possess two types of plant trichomes, including unicellular hairs and five size classes of multicellular stalked glands (or tentacles) with an apical pore. The apices of the narrow and perfectly tapered fossil leaves end in a single tentacle, as in both modern Roridula species. The glandular hairs of the fossils are restricted to the leaf margins and to the abaxial lamina, as in extant Roridula gorgonias. Our discovery supports current molecular age estimates for Roridulaceae and suggests a wide Eocene distribution of roridulid plants. PMID:25453067

  13. Eocene Loranthaceae pollen pushes back divergence ages for major splits in the family

    PubMed Central

    Kapli, Paschalia; Hofmann, Christa-Charlotte

    2017-01-01

    Background We revisit the palaeopalynological record of Loranthaceae, using pollen ornamentation to discriminate lineages and to test molecular dating estimates for the diversification of major lineages. Methods Fossil Loranthaceae pollen from the Eocene and Oligocene are analysed and documented using scanning-electron microscopy. These fossils were associated with molecular-defined clades and used as minimum age constraints for Bayesian node dating using different topological scenarios. Results The fossil Loranthaceae pollen document the presence of at least one extant root-parasitic lineage (Nuytsieae) and two currently aerial parasitic lineages (Psittacanthinae and Loranthinae) by the end of the Eocene in the Northern Hemisphere. Phases of increased lineage diversification (late Eocene, middle Miocene) coincide with global warm phases. Discussion With the generation of molecular data becoming easier and less expensive every day, neontological research should re-focus on conserved morphologies that can be traced through the fossil record. The pollen, representing the male gametophytic generation of plants and often a taxonomic indicator, can be such a tracer. Analogously, palaeontological research should put more effort into diagnosing Cenozoic fossils with the aim of including them into modern systematic frameworks. PMID:28607837

  14. Melanosomes or Microbes: Testing an Alternative Hypothesis for the Origin of Microbodies in Fossil Feathers

    PubMed Central

    Moyer, Alison E.; Zheng, Wenxia; Johnson, Elizabeth A.; Lamanna, Matthew C.; Li, Da-qing; Lacovara, Kenneth J.; Schweitzer, Mary H.

    2014-01-01

    Microbodies associated with fossil feathers, originally attributed to microbial biofilm, have been reinterpreted as melanosomes: pigment-containing, eukaryotic organelles. This interpretation generated hypotheses regarding coloration in non-avian and avian dinosaurs. Because melanosomes and microbes overlap in size, distribution and morphology, we re-evaluate both hypotheses. We compare melanosomes within feathers of extant chickens with patterns induced by microbial overgrowth on the same feathers, using scanning (SEM), field emission (FESEM) and transmission (TEM) electron microscopy. Melanosomes are always internal, embedded in a morphologically distinct keratinous matrix. Conversely, microbes grow across the surface of feathers in continuous layers, more consistent with published images from fossil feathers. We compare our results to both published literature and new data from a fossil feather ascribed to Gansus yumenensis (ANSP 23403). ‘Mouldic impressions’ were observed in association with both the feather and sediment grains, supporting a microbial origin. We propose criteria for distinguishing between these two microbodies. PMID:24595214

  15. Using extant taxa to inform studies of fossil footprints

    NASA Astrophysics Data System (ADS)

    Falkingham, Peter; Gatesy, Stephen

    2016-04-01

    Attempting to use the fossilized footprints of extinct animals to study their palaeobiology and palaeoecology is notoriously difficult. The inconvenient extinction of the trackmaker makes direct correlation between footprints and foot far from straightforward. However, footprints are the only direct evidence of vertebrate motion recorded in the fossil record, and are potentially a source of data on palaeobiology that cannot be obtained from osteological remains alone. Our interests lie in recovering information about the movements of dinosaurs from their tracks. In particular, the Hitchcock collection of early Jurassic tracks held at the Beneski Museum of Natural History, Amherst, provide a rare look into the 3D form of tracks at and below the surface the animal walked on. Breaking naturally along laminations into 'track books', the specimens present sediment deformation at multiple levels, and in doing so record more of the foot's motion than a single surface might. In order to utilize this rich information source to study the now extinct trackmakers, the process of track formation must be understood at a fundamental level; the interaction of the moving foot and compliant substrate. We used bi-planar X-ray techniques (X-ray Reconstruction of Moving Morphology) to record the limb and foot motions of a Guineafowl traversing both granular and cohesive substrates. This data was supplemented with photogrammetric records of the resultant track surfaces, as well as the motion of metal beads within the sediment, to provide a full experimental dataset of foot and footprint formation. The physical experimental data was used to generate computer simulations of the process using high performance computing and the Discrete Element Method. The resultant simulations showed excellent congruence with reality, and enabled visualization within the sediment volume, and throughout the track-forming process. This physical and virtual experimental set-up has provided major insight into how to interpret the track-books within the Amherst Collection, and as such begin to understand how these early Jurassic dinosaurs moved. More broadly, this complete view of track formation afforded by experimental techniques will aid in interpretation of fossil vertebrate tracks throughout the fossil record.

  16. High-resolution leaf-fossil record spanning the Cretaceous/Tertiary boundary

    USGS Publications Warehouse

    Johnson, K.R.; Nichols, D.J.; Attrep, M.; Orth, C.J.

    1989-01-01

    THEORIES that explain the extinctions characterizing the Cretaceous/Tertiary (K/T) boundary1-3 need to be tested by analyses of thoroughly sampled biotas. Palynological studies are the primary means for stratigraphic placement of the terrestrial boundary and for estimates of plant extinction4-12, but have not been combined with quantitative analyses of fossil leaves (megaflora). Megafloral studies complement palynology by representing local floras with assemblages capable of high taxonomic resolution13, but have previously lacked the sample size and stratigraphic spacing needed to resolve latest Cretaceous floral history5,14-18. We have now combined megafloral data from a 100-m-thick composite K/T boundary section in North Dakota with detailed palynological analysis. Here the boundary is marked by a 30% palynofloral extinction coincident with iridium and shocked-mineral anomalies and lies ???2 m above the highest dinosaur remains. The megaflora undergoes a 79% turnover across the boundary, and smaller changes 17- and 25-m below it. This pattern is consistent with latest Cretaceous climatic warming preceding a bolide impact. ?? 1989 Nature Publishing Group.

  17. Xenopus in Space and Time: Fossils, Node Calibrations, Tip-Dating, and Paleobiogeography.

    PubMed

    Cannatella, David

    2015-01-01

    Published data from DNA sequences, morphology of 11 extant and 15 extinct frog taxa, and stratigraphic ranges of fossils were integrated to open a window into the deep-time evolution of Xenopus. The ages and morphological characters of fossils were used as independent datasets to calibrate a chronogram. We found that DNA sequences, either alone or in combination with morphological data and fossils, tended to support a close relationship between Xenopus and Hymenochirus, although in some analyses this topology was not significantly better than the Pipa + Hymenochirus topology. Analyses that excluded DNA data found strong support for the Pipa + Hymenochirus tree. The criterion for selecting the maximum age of the calibration prior influenced the age estimates, and our age estimates of early divergences in the tree of frogs are substantially younger than those of published studies. Node-dating and tip-dating calibrations, either alone or in combination, yielded older dates for nodes than did a root calibration alone. Our estimates of divergence times indicate that overwater dispersal, rather than vicariance due to the splitting of Africa and South America, may explain the presence of Xenopus in Africa and its closest fossil relatives in South America.

  18. Fossil Crinoids

    NASA Astrophysics Data System (ADS)

    Hess, Hans; Ausich, William I.; Brett, Carlton E.; Simms, Michael J.

    1999-10-01

    Crinoids have graced the oceans for more than 500 million years. Among the most attractive fossils, crinoids had a key role in the ecology of marine communities through much of the fossil record, and their remains are prominent rock forming constituents of many limestones. This is the first comprehensive volume to bring together their form and function, classification, evolutionary history, occurrence, preservation and ecology. The main part of the book is devoted to assemblages of intact fossil crinoids, which are described in their geological setting in twenty-three chapters ranging from the Ordovician to the Tertiary. The final chapter deals with living sea lilies and feather stars. The volume is exquisitely illustrated with abundant photographs and line drawings of crinoids from sites around the world. This authoritative account recreates a fascinating picture of fossil crinoids for paleontologists, geologists, evolutionary and marine biologists, ecologists and amateur fossil collectors.

  19. Fossil Crinoids

    NASA Astrophysics Data System (ADS)

    Hess, Hans; Ausich, William I.; Brett, Carlton E.; Simms, Michael J.

    2003-01-01

    Crinoids have graced the oceans for more than 500 million years. Among the most attractive fossils, crinoids had a key role in the ecology of marine communities through much of the fossil record, and their remains are prominent rock forming constituents of many limestones. This is the first comprehensive volume to bring together their form and function, classification, evolutionary history, occurrence, preservation and ecology. The main part of the book is devoted to assemblages of intact fossil crinoids, which are described in their geological setting in twenty-three chapters ranging from the Ordovician to the Tertiary. The final chapter deals with living sea lilies and feather stars. The volume is exquisitely illustrated with abundant photographs and line drawings of crinoids from sites around the world. This authoritative account recreates a fascinating picture of fossil crinoids for paleontologists, geologists, evolutionary and marine biologists, ecologists and amateur fossil collectors.

  20. Discovery of the fossil otter Enhydritherium terraenovae (Carnivora, Mammalia) in Mexico reconciles a palaeozoogeographic mystery.

    PubMed

    Tseng, Z Jack; Pacheco-Castro, Adolfo; Carranza-Castañeda, Oscar; Aranda-Gómez, José Jorge; Wang, Xiaoming; Troncoso, Hilda

    2017-06-01

    The North American fossil otter Enhydritherium terraenovae is thought to be partially convergent in ecological niche with the living sea otter Enhydra lutris , both having low-crowned crushing teeth and a close association with marine environments. Fossil records of Enhydritherium are found in mostly marginal marine deposits in California and Florida; despite presence of very rich records of fossil terrestrial mammals in contemporaneous localities inland, no Enhydritherium fossils are hitherto known in interior North America. Here we report the first occurrence of Enhydritherium outside of Florida and California, in a land-locked terrestrial mammal fauna of the upper Miocene deposits of Juchipila Basin, Zacatecas State, Mexico. This new occurrence of Enhydritherium is at least 200 km from the modern Pacific coastline, and nearly 600 km from the Gulf of Mexico. Besides providing further evidence that Enhydritherium was not dependent on coastal marine environments as originally interpreted, this discovery leads us to propose a new east-to-west dispersal route between the Florida and California Enhydritherium populations through central Mexico. The proximity of the fossil locality to nearby populations of modern neotropical otters Lontra longicaudis suggests that trans-Mexican freshwater corridors for vertebrate species in riparian habitats may have persisted for a prolonged period of time, pre-dating the Great American Biotic Interchange. © 2017 The Author(s).

  1. Microbial Fossilization in Mineralizing Environments: Relevance for Mars "EXOPALEONTOLOGY"

    NASA Technical Reports Server (NTRS)

    Farmer, Jack D.; DesMarais, David J.; Morrison, David (Technical Monitor)

    1994-01-01

    The goals of post-Viking exobiology include the search for a Martian fossil record. How can we optimize future exploration efforts to search for fossils on Mars? The Precambrian fossil record indicates that key factors for the long-term preservation of microbial fossils include: 1) the rapid entombment and/or replacement of organisms and organic matter by fine-grained, stable mineral phases (e.g. silica, phosphate, and to a lesser extent, carbonate), 2) low-permeability host sediments (maintaining a closed chemical system during early diagenesis), and 3) shallow burial (maintaining post-depositional temperatures and pressures within the stability range for complex organic molecules). Modem terrestrial environments where early mineralization commonly occurs in association with microbial organisms include: subaerial thermal springs and shallow hydrothermal systems, sub-lacustrine springs and evaporites of alkaline lakes, and subsoil environments where hardpans (e.g. calcretes, silcretes) and duricrusts form. Studies of microbial fossilization in such environments provide important insights preservation patterns in Precambrian rocks, while also playing a role in the development of strategies for Mars exopaleontology. The refinement of site priorities for Mars exopaleontology is expected to benefit greatly from high resolution imaging and altimetry acquired during upcoming orbital missions, and especially infrared and gamma ray spectral data needed for determining surface composition. In anticipation of future orbital missions, constraints for identifying high priority mineral deposits on Mars are being developed through analog remote sensing studies of key mineralizing environments on Earth.

  2. Exceptionally preserved insect fossils in the Late Jurassic lagoon of Orbagnoux (Rhône Valley, France)

    PubMed Central

    Nel, Patricia; Krieg-Jacquier, Régis; Pouillon, Jean-Marc

    2014-01-01

    The Late Kimmeridgian marine limestones of the area around Orbagnoux (Rhône, France) are well known for their fish fauna and terrestrial flora. Here we record the first insects and their activities (mines on leaves and trails in sediments) from these layers, including the oldest record of the gerromorphan bugs, as a new genus and species Gallomesovelia grioti, attributed to the most basal family Mesoveliidae and subfamily Madeoveliinae. These new fossils suggest the presence of a complex terrestrial palaeoecosystem on emerged lands near the lagoon where the limestones were deposited. The exquisite state of preservation of these fossils also suggests that these outcrops can potentially become an important Konservat-Lagerstätte for the Late Jurassic of Western Europe. PMID:25210652

  3. Nanometer-scale characterization of exceptionally preserved bacterial fossils in Paleocene phosphorites from Ouled Abdoun (Morocco).

    PubMed

    Cosmidis, J; Benzerara, K; Gheerbrant, E; Estève, I; Bouya, B; Amaghzaz, M

    2013-03-01

    Micrometer-sized spherical and rod-shaped forms have been reported in many phosphorites and often interpreted as microbes fossilized by apatite, based on their morphologic resemblance with modern bacteria inferred by scanning electron microscopy (SEM) observations. This interpretation supports models involving bacteria in the formation of phosphorites. Here, we studied a phosphatic coprolite of Paleocene age originating from the Ouled Abdoun phosphate basin (Morocco) down to the nanometer-scale using focused ion beam milling, transmission electron microscopy (TEM), and scanning transmission x-ray microscopy (STXM) coupled with x-ray absorption near-edge structure spectroscopy (XANES). The coprolite, exclusively composed of francolite (a carbonate-fluroapatite), is formed by the accumulation of spherical objects, delimited by a thin envelope, and whose apparent diameters are between 0.5 and 3 μm. The envelope of the spheres is composed of a continuous crown dense to electrons, which measures 20-40 nm in thickness. It is surrounded by two thinner layers that are more porous and transparent to electrons and enriched in organic carbon. The observed spherical objects are very similar with bacteria encrusting in hydroxyapatite as observed in laboratory experiments. We suggest that they are Gram-negative bacteria fossilized by francolite, the precipitation of which started within the periplasm of the cells. We discuss the role of bacteria in the fossilization mechanism and propose that they could have played an active role in the formation of francolite. This study shows that ancient phosphorites can contain fossil biological subcellular structures as fine as a bacterial periplasm. Moreover, we demonstrate that while morphological information provided by SEM analyses is valuable, the use of additional nanoscale analyses is a powerful approach to help inferring the biogenicity of biomorphs found in phosphorites. A more systematic use of this approach could considerably improve our knowledge and understanding of the microfossils present in the geological record. © 2012 Blackwell Publishing Ltd.

  4. The fossil record and macroevolutionary history of the beetles

    PubMed Central

    Smith, Dena M.; Marcot, Jonathan D.

    2015-01-01

    Coleoptera (beetles) is the most species-rich metazoan order, with approximately 380 000 species. To understand how they came to be such a diverse group, we compile a database of global fossil beetle occurrences to study their macroevolutionary history. Our database includes 5553 beetle occurrences from 221 fossil localities. Amber and lacustrine deposits preserve most of the beetle diversity and abundance. All four extant suborders are found in the fossil record, with 69% of all beetle families and 63% of extant beetle families preserved. Considerable focus has been placed on beetle diversification overall, however, for much of their evolutionary history it is the clade Polyphaga that is most responsible for their taxonomic richness. Polyphaga had an increase in diversification rate in the Early Cretaceous, but instead of being due to the radiation of the angiosperms, this was probably due to the first occurrences of beetle-bearing amber deposits in the record. Perhaps, most significant is that polyphagan beetles had a family-level extinction rate of zero for most of their evolutionary history, including across the Cretaceous–Palaeogene boundary. Therefore, focusing on the factors that have inhibited beetle extinction, as opposed to solely studying mechanisms that may promote speciation, should be examined as important determinants of their great diversity today. PMID:25788597

  5. Trace Fossil Evidence of Trematode-Bivalve Parasite-Host Interactions in Deep Time.

    PubMed

    Huntley, John Warren; De Baets, Kenneth

    2015-01-01

    Parasitism is one of the most pervasive phenomena amongst modern eukaryotic life and yet, relative to other biotic interactions, almost nothing is known about its history in deep time. Digenean trematodes (Platyhelminthes) are complex life cycle parasites, which have practically no body fossil record, but induce the growth of characteristic malformations in the shells of their bivalve hosts. These malformations are readily preserved in the fossil record, but, until recently, have largely been overlooked by students of the fossil record. In this review, we present the various malformations induced by trematodes in bivalves, evaluate their distribution through deep time in the phylogenetic and ecological contexts of their bivalve hosts and explore how various taphonomic processes have likely biased our understanding of trematodes in deep time. Trematodes are known to negatively affect their bivalve hosts in a number of ways including castration, modifying growth rates, causing immobilization and, in some cases, altering host behaviour making the host more susceptible to their own predators. Digeneans are expected to be significant agents of natural selection. To that end, we discuss how bivalves may have adapted to their parasites via heterochrony and suggest a practical methodology for testing such hypotheses in deep time. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. The pipid root.

    PubMed

    Bewick, Adam J; Chain, Frédéric J J; Heled, Joseph; Evans, Ben J

    2012-12-01

    The estimation of phylogenetic relationships is an essential component of understanding evolution. Accurate phylogenetic estimation is difficult, however, when internodes are short and old, when genealogical discordance is common due to large ancestral effective population sizes or ancestral population structure, and when homoplasy is prevalent. Inference of divergence times is also hampered by unknown and uneven rates of evolution, the incomplete fossil record, uncertainty in relationships between fossil and extant lineages, and uncertainty in the age of fossils. Ideally, these challenges can be overcome by developing large "phylogenomic" data sets and by analyzing them with methods that accommodate features of the evolutionary process, such as genealogical discordance, recurrent substitution, recombination, ancestral population structure, gene flow after speciation among sampled and unsampled taxa, and variation in evolutionary rates. In some phylogenetic problems, it is possible to use information that is independent of fossils, such as the geological record, to identify putative triggers for diversification whose associated estimated divergence times can then be compared a posteriori with estimated relationships and ages of fossils. The history of diversification of pipid frog genera Pipa, Hymenochirus, Silurana, and Xenopus, for instance, is characterized by many of these evolutionary and analytical challenges. These frogs diversified dozens of millions of years ago, they have a relatively rich fossil record, their distributions span continental plates with a well characterized geological record of ancient connectivity, and there is considerable disagreement across studies in estimated evolutionary relationships. We used high throughput sequencing and public databases to generate a large phylogenomic data set with which we estimated evolutionary relationships using multilocus coalescence methods. We collected sequence data from Pipa, Hymenochirus, Silurana, and Xenopus and the outgroup taxon Rhinophrynus dorsalis from coding sequence of 113 autosomal regions, averaging ∼300 bp in length (range: 102-1695 bp) and also a portion of the mitochondrial genome. Analysis of these data using multiple approaches recovers strong support for the ((Xenopus, Silurana)(Pipa, Hymenochirus)) topology, and geologically calibrated divergence time estimates that are consistent with estimated ages and phylogenetic affinities of many fossils. These results provide new insights into the biogeography and chronology of pipid diversification during the breakup of Gondwanaland and illustrate how phylogenomic data may be necessary to tackle tough problems in molecular systematics. [Coalescence; gene tree; high-throughout sequencing; lineage sorting; pipid; species tree; Xenopus.].

  7. Quantifying long-term human impact in contrasting environments: Statistical analysis of modern and fossil pollen records

    NASA Astrophysics Data System (ADS)

    Broothaerts, Nils; López-Sáez, José Antonio; Verstraeten, Gert

    2017-04-01

    Reconstructing and quantifying human impact is an important step to understand human-environment interactions in the past. Quantitative measures of human impact on the landscape are needed to fully understand long-term influence of anthropogenic land cover changes on the global climate, ecosystems and geomorphic processes. Nevertheless, quantifying past human impact is not straightforward. Recently, multivariate statistical analysis of fossil pollen records have been proposed to characterize vegetation changes and to get insights in past human impact. Although statistical analysis of fossil pollen data can provide useful insights in anthropogenic driven vegetation changes, still it cannot be used as an absolute quantification of past human impact. To overcome this shortcoming, in this study fossil pollen records were included in a multivariate statistical analysis (cluster analysis and non-metric multidimensional scaling (NMDS)) together with modern pollen data and modern vegetation data. The information on the modern pollen and vegetation dataset can be used to get a better interpretation of the representativeness of the fossil pollen records, and can result in a full quantification of human impact in the past. This methodology was applied in two contrasting environments: SW Turkey and Central Spain. For each region, fossil pollen data from different study sites were integrated, together with modern pollen data and information on modern vegetation. In this way, arboreal cover, grazing pressure and agricultural activities in the past were reconstructed and quantified. The data from SW Turkey provides new integrated information on changing human impact through time in the Sagalassos territory, and shows that human impact was most intense during the Hellenistic and Roman Period (ca. 2200-1750 cal a BP) and decreased and changed in nature afterwards. The data from central Spain shows for several sites that arboreal cover decreases bellow 5% from the Feudal period onwards (ca. 850 cal a BP) related to increasing human impact in the landscape. At other study sites arboreal cover remained above 25% beside significant human impact. Overall, the presented examples from two contrasting environments shows how cluster analysis and NMDS of modern and fossil pollen data can help to provide quantitative insights in anthropogenic land cover changes. Our study extensively discuss and illustrate the possibilities and limitations of statistical analysis of pollen data to quantify human induced land use changes.

  8. The oldest African bat from the early Eocene of El Kohol (Algeria).

    PubMed

    Ravel, Anthony; Marivaux, Laurent; Tabuce, Rodolphe; Adaci, Mohammed; Mahboubi, Mohammed; Mebrouk, Fateh; Bensalah, Mustapha

    2011-05-01

    The Afro-Arabian Paleogene fossil record of Chiroptera is very poor. In North Africa and Arabia, this record is limited, thus far, to a few localities mainly in Tunisia (Chambi, late early Eocene), Egypt (Fayum, late Eocene to early Oligocene), and Sultanate of Oman (Taqah, early Oligocene). It consists primarily of isolated teeth or mandible fragments. Interestingly, these African fossil bats document two modern groups (Vespertilionoidea and Rhinolophoidea) from the early Eocene, while the bat fossil record of the same epoch of North America, Eurasia, and Australia principally includes members of the "Eochiroptera." This paraphyletic group contains all primitive microbats excluding modern families. In Algeria, the region of Brezina, southeast of the Atlas Mountains, is famous for the early Eocene El Kohol Formation, which has yielded one of the earliest mammalian faunas of the African landmass. Recent fieldwork in the same area has led to the discovery of a new vertebrate locality, including isolated teeth of Chiroptera. These fossils represent the oldest occurrence of Chiroptera in Africa, thus extending back the record of the group to the middle early Eocene (Ypresian) on that continent. The material consists of an upper molar and two fragments of lower molars. The dental character association matches that of "Eochiroptera." As such, although very fragmentary, the material testifies to the first occurrence of "Eochiroptera" in Algeria, and by extension in Africa. This discovery demonstrates that this basal group of Chiroptera had a worldwide distribution during the early Paleogene.

  9. The oldest African bat from the early Eocene of El Kohol (Algeria)

    NASA Astrophysics Data System (ADS)

    Ravel, Anthony; Marivaux, Laurent; Tabuce, Rodolphe; Adaci, Mohammed; Mahboubi, Mohammed; Mebrouk, Fateh; Bensalah, Mustapha

    2011-05-01

    The Afro-Arabian Paleogene fossil record of Chiroptera is very poor. In North Africa and Arabia, this record is limited, thus far, to a few localities mainly in Tunisia (Chambi, late early Eocene), Egypt (Fayum, late Eocene to early Oligocene), and Sultanate of Oman (Taqah, early Oligocene). It consists primarily of isolated teeth or mandible fragments. Interestingly, these African fossil bats document two modern groups (Vespertilionoidea and Rhinolophoidea) from the early Eocene, while the bat fossil record of the same epoch of North America, Eurasia, and Australia principally includes members of the "Eochiroptera." This paraphyletic group contains all primitive microbats excluding modern families. In Algeria, the region of Brezina, southeast of the Atlas Mountains, is famous for the early Eocene El Kohol Formation, which has yielded one of the earliest mammalian faunas of the African landmass. Recent fieldwork in the same area has led to the discovery of a new vertebrate locality, including isolated teeth of Chiroptera. These fossils represent the oldest occurrence of Chiroptera in Africa, thus extending back the record of the group to the middle early Eocene (Ypresian) on that continent. The material consists of an upper molar and two fragments of lower molars. The dental character association matches that of "Eochiroptera." As such, although very fragmentary, the material testifies to the first occurrence of "Eochiroptera" in Algeria, and by extension in Africa. This discovery demonstrates that this basal group of Chiroptera had a worldwide distribution during the early Paleogene.

  10. Morphological preservation of carbonaceous plant fossils in blueschist metamorphic rocks from New Zealand.

    PubMed

    Galvez, M E; Beyssac, O; Benzerara, K; Bernard, S; Menguy, N; Cox, S C; Martinez, I; Johnston, M R; Brown, G E

    2012-03-01

    Morphological and chemical evidence of ancient life is widespread in sedimentary rocks retrieved from shallow depths in the Earth's crust. Metamorphism is highly detrimental to the preservation of biological information in rocks, thus limiting the geological record in which traces of life might be found. Deformation and increasing pressure/temperature during deep burial may alter the morphology as well as the composition and structure of both the organic and mineral constituents of fossils. However, microspore fossils have been previously observed in intensely metamorphosed rocks. It has been suggested that their small size, and/or the nature of the polymer composing their wall, and/or the mineralogy of their surrounding matrix were key parameters explaining their exceptional preservation. Here, we describe the remarkable morphological preservation of plant macrofossils in blueschist metamorphic rocks from New Zealand containing lawsonite. Leaves and stems can be easily identified at the macroscale. At the microscale, polygonal structures with walls mineralized by micas within the leaf midribs and blades may derive from the original cellular ultrastructure or, alternatively, from the shrinkage during burial of the gelified remnants of the leaves in an abiotic process. Processes and important parameters involved in the remarkable preservation of these fossils during metamorphism are discussed. Despite the excellent morphological preservation, the initial biological polymers have been completely transformed to graphitic carbonaceous matter down to the nanometer scale. This occurrence demonstrates that plant macrofossils may experience major geodynamic processes such as metamorphism and exhumation involving deep changes and homogenization of their carbon chemistry and structure but still retain their morphology with remarkable integrity even if they are not shielded by any hard-mineralized concretion. © 2012 Blackwell Publishing Ltd.

  11. Early primate evolution in Afro-Arabia.

    PubMed

    Seiffert, Erik R

    2012-11-01

    The peculiar mammalian fauna that inhabited Afro-Arabia during the Paleogene first came to the attention of the scientific community in the early part of the twentieth century, when Andrews1 and Schlosser2 published their landmark descriptions of fossil mammals from the Fayum Depression in northern Egypt. Their studies revealed a highly endemic assemblage of land mammals that included the first known Paleogene records of hyraxes, proboscideans, and anthropoid primates, but which lacked ancestors of many iconic mammalian lineages that are found in Africa today, such as rhinos, zebras, bovids, giraffes, and cats. Over the course of the last century, the Afro-Arabian Paleogene has yielded fossil remains of several other endemic mammalian lineages,3 as well as a diversity of prosimian primates,4 but we are only just beginning to understand how the continent's faunal composition came to be, through ancient processes such as the movement of tectonic plates, changes in climate and sea level, and early phylogenetic splits among the major groups of placental mammals. These processes, in turn, made possible chance dispersal events that were critical in determining the competitive landscape--and, indeed, the survival--of our earliest anthropoid ancestors. Newly discovered fossils indicate that the persistence and later diversification of Anthropoidea was not an inevitable result of the clade's competitive isolation or adaptive superiority, as has often been assumed, but rather was as much due to the combined influences of serendipitous geographic conditions, global cooling, and competition with a group of distantly related extinct strepsirrhines with anthropoid-like adaptations known as adapiforms. Many of the important details of this story would not be known, and could never have been predicted, without the fossil evidence that has recently been unearthed by field paleontologists. Copyright © 2012 Wiley Periodicals, Inc.

  12. We're Going on a Fossil Hunt!

    ERIC Educational Resources Information Center

    Powell, Deborah A.; Aram, Richard B.; Aram, Roberta J.; Chase, Terry L.

    2007-01-01

    Scientists understand that scientific ideas are subject to change and improvement. Fourth- through eighth- graders develop this understanding about the nature of science as they gather and examine fossil evidence from the Paleozoic era, record their findings, and read and write about science for authentic purposes as scientists do. Students…

  13. 7 CFR 4288.5 - Oversight, monitoring, and reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... terms of Form RD 4288-5, “Repowering Assistance Program—Agreement,” along with any potential refunds... with the fossil fuel reduction and energy production requirements of this subpart, each biorefinery... displace fossil fuel loads with renewable biomass. These records must be held in one place and be available...

  14. 7 CFR 4288.5 - Oversight, monitoring, and reporting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... terms of Form RD 4288-5, “Repowering Assistance Program—Agreement,” along with any potential refunds... with the fossil fuel reduction and energy production requirements of this subpart, each biorefinery... displace fossil fuel loads with renewable biomass. These records must be held in one place and be available...

  15. 7 CFR 4288.5 - Oversight, monitoring, and reporting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... terms of Form RD 4288-5, “Repowering Assistance Program—Agreement,” along with any potential refunds... with the fossil fuel reduction and energy production requirements of this subpart, each biorefinery... displace fossil fuel loads with renewable biomass. These records must be held in one place and be available...

  16. The oldest gibbon fossil (Hylobatidae) from insular Southeast Asia: evidence from Trinil, (East Java, Indonesia), Lower/Middle Pleistocene.

    PubMed

    Ingicco, Thomas; de Vos, John; Huffman, O Frank

    2014-01-01

    A fossil femur excavated by Eugène Dubois between 1891-1900 in the Lower/Middle Pleistocene bonebed of the Trinil site (Java, Indonesia) was recognised by us as that of a Hylobatidae. The specimen, Trinil 5703 of the Dubois Collection (Leiden, The Netherlands), has the same distinctive form of fossilization that is seen in many of the bonebed fossils from Trinil in the collection. Anatomical comparison of Trinil 5703 to a sample of carnivore and primate femora, supported by morphometric analyses, lead to the attribution of the fossil to gibbon. Trinil 5703 therefore provides the oldest insular record of this clade, one of the oldest known Hylobatidae fossils from Southeast Asia. Because living Hylobatidae only inhabit evergreen rain forests, the paleoenvironment within the river drainage in the greater Trinil area evidently included forests of this kind during the Lower/Middle Pleistocene as revealed here.

  17. Dating Tips for Divergence-Time Estimation.

    PubMed

    O'Reilly, Joseph E; Dos Reis, Mario; Donoghue, Philip C J

    2015-11-01

    The molecular clock is the only viable means of establishing an accurate timescale for Life on Earth, but it remains reliant on a capricious fossil record for calibration. 'Tip-dating' promises a conceptual advance, integrating fossil species among their living relatives using molecular/morphological datasets and evolutionary models. Fossil species of known age establish calibration directly, and their phylogenetic uncertainty is accommodated through the co-estimation of time and topology. However, challenges remain, including a dearth of effective models of morphological evolution, rate correlation, the non-random nature of missing characters in fossil data, and, most importantly, accommodating uncertainty in fossil age. We show uncertainty in fossil-dating propagates to divergence-time estimates, yielding estimates that are older and less precise than those based on traditional node calibration. Ultimately, node and tip calibrations are not mutually incompatible and may be integrated to achieve more accurate and precise evolutionary timescales. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The Oldest Gibbon Fossil (Hylobatidae) from Insular Southeast Asia: Evidence from Trinil, (East Java, Indonesia), Lower/Middle Pleistocene

    PubMed Central

    Ingicco, Thomas; de Vos, John; Huffman, O. Frank

    2014-01-01

    A fossil femur excavated by Eugène Dubois between 1891–1900 in the Lower/Middle Pleistocene bonebed of the Trinil site (Java, Indonesia) was recognised by us as that of a Hylobatidae. The specimen, Trinil 5703 of the Dubois Collection (Leiden, The Netherlands), has the same distinctive form of fossilization that is seen in many of the bonebed fossils from Trinil in the collection. Anatomical comparison of Trinil 5703 to a sample of carnivore and primate femora, supported by morphometric analyses, lead to the attribution of the fossil to gibbon. Trinil 5703 therefore provides the oldest insular record of this clade, one of the oldest known Hylobatidae fossils from Southeast Asia. Because living Hylobatidae only inhabit evergreen rain forests, the paleoenvironment within the river drainage in the greater Trinil area evidently included forests of this kind during the Lower/Middle Pleistocene as revealed here. PMID:24914951

  19. Spider crabs of the Western Atlantic with special reference to fossil and some modern Mithracidae

    PubMed Central

    Portell, Roger W.; Klier, Aaron T.; Prueter, Vanessa; Tucker, Alyssa L.

    2015-01-01

    Spider crabs (Majoidea) are well-known from modern oceans and are also common in the western part of the Atlantic Ocean. When spider crabs appeared in the Western Atlantic in deep time, and when they became diverse, hinges on their fossil record. By reviewing their fossil record, we show that (1) spider crabs first appeared in the Western Atlantic in the Late Cretaceous, (2) they became common since the Miocene, and (3) most species and genera are found in the Caribbean region from the Miocene onwards. Furthermore, taxonomic work on some modern and fossil Mithracidae, a family that might have originated in the Western Atlantic, was conducted. Specifically, Maguimithrax gen. nov. is erected to accommodate the extant species Damithrax spinosissimus, while Damithrax cf. pleuracanthus is recognized for the first time from the fossil record (late Pliocene–early Pleistocene, Florida, USA). Furthermore, two new species are described from the lower Miocene coral-associated limestones of Jamaica (Mithrax arawakum sp. nov. and Nemausa windsorae sp. nov.). Spurred by a recent revision of the subfamily, two known species from the same deposits are refigured and transferred to new genera: Mithrax donovani to Nemausa, and Mithrax unguis to Damithrax. The diverse assemblage of decapods from these coral-associated limestones underlines the importance of reefs for the abundance and diversity of decapods in deep time. Finally, we quantitatively show that these crabs possess allometric growth in that length/width ratios drop as specimens grow, a factor that is not always taken into account while describing and comparing among taxa. PMID:26557432

  20. Keratin Durability Has Implications for the Fossil Record: Results from a 10 Year Feather Degradation Experiment

    PubMed Central

    Moyer, Alison E.; Zheng, Wenxia; Schweitzer, Mary H.

    2016-01-01

    Keratinous ‘soft tissue’ structures (i.e. epidermally derived and originally non-biomineralized), include feathers, skin, claws, beaks, and hair. Despite their relatively common occurrence in the fossil record (second only to bone and teeth), few studies have addressed natural degradation processes that must occur in all organic material, including those keratinous structures that are incorporated into the rock record as fossils. Because feathers have high preservation potential and strong phylogenetic signal, in the current study we examine feathers subjected to different burial environments for a duration of ~10 years, using transmission electron microscopy (TEM) and in situ immunofluorescence (IF). We use morphology and persistence of specific immunoreactivity as indicators of preservation at the molecular and microstructural levels. We show that feather keratin is durable, demonstrates structural and microstructural integrity, and retains epitopes suitable for specific antibody recognition in even the harshest conditions. These data support the hypothesis that keratin antibody reactivity can be used to identify the nature and composition of epidermal structures in the rock record, and to address evolutionary questions by distinguishing between alpha- (widely distributed) and beta- (limited to sauropsids) keratin. PMID:27384819

  1. New Luminescence Ages for the Galería Complex Archaeological Site: Resolving Chronological Uncertainties on the Acheulean Record of the Sierra de Atapuerca, Northern Spain

    PubMed Central

    Demuro, Martina; Arnold, Lee J.; Parés, Josep M.; Pérez-González, Alfredo; Ortega, Ana I.; Arsuaga, Juan L.; Bermúdez de Castro, José M.; Carbonell, Eudald

    2014-01-01

    The archaeological karstic infill site of Galería Complex, located within the Atapuerca system (Spain), has produced a large faunal and archaeological record (Homo sp. aff. heidelbergensis fossils and Mode II lithic artefacts) belonging to the Middle Pleistocene. Extended-range luminescence dating techniques, namely post-infrared infrared stimulated luminescence (pIR-IR) dating of K-feldspars and thermally transferred optically stimulated luminescence (TT-OSL) dating of individual quartz grains, were applied to fossil-bearing sediments at Galería. The luminescence dating results are in good agreement with published chronologies derived using alternative radiometric dating methods (i.e., ESR and U-series dating of bracketing speleothems and combined ESR/U-series dating of herbivore teeth), as well as biochronology and palaeoenvironmental reconstructions inferred from proxy records (e.g., pollen data). For the majority of samples dated, however, the new luminescence ages are significantly (∼50%) younger than previously published polymineral thermoluminescence (TL) chronologies, suggesting that the latter may have overestimated the true burial age of the Galería deposits. The luminescence ages obtained indicate that the top of the basal sterile sands (GIb) at Galería have an age of up to ∼370 thousand years (ka), while the lowermost sub-unit containing Mode II Acheulean lithics (base of unit GIIa) was deposited during MIS 9 (mean age = 313±14 ka; n = 4). The overlying units GIIb-GIV, which contain the richest archaeopalaeontological remains, were deposited during late MIS 8 or early MIS 7 (∼240 ka). Galería Complex may be correlative with other Middle Pleistocene sites from Atapuerca, such as Gran Dolina level TD10 and unit TE19 from Sima del Elefante, but the lowermost archaeological horizons are ∼100 ka younger than the hominin-bearing clay breccias at the Sima de los Huesos site. Our results suggest that both pIR-IR and single-grain TT-OSL dating are suitable for resolving Middle Pleistocene chronologies for the Sierra de Atapuerca karstic infill sequences. PMID:25338076

  2. New luminescence ages for the Galería Complex archaeological site: resolving chronological uncertainties on the acheulean record of the Sierra de Atapuerca, northern Spain.

    PubMed

    Demuro, Martina; Arnold, Lee J; Parés, Josep M; Pérez-González, Alfredo; Ortega, Ana I; Arsuaga, Juan L; Bermúdez de Castro, José M; Carbonell, Eudald

    2014-01-01

    The archaeological karstic infill site of Galería Complex, located within the Atapuerca system (Spain), has produced a large faunal and archaeological record (Homo sp. aff. heidelbergensis fossils and Mode II lithic artefacts) belonging to the Middle Pleistocene. Extended-range luminescence dating techniques, namely post-infrared infrared stimulated luminescence (pIR-IR) dating of K-feldspars and thermally transferred optically stimulated luminescence (TT-OSL) dating of individual quartz grains, were applied to fossil-bearing sediments at Galería. The luminescence dating results are in good agreement with published chronologies derived using alternative radiometric dating methods (i.e., ESR and U-series dating of bracketing speleothems and combined ESR/U-series dating of herbivore teeth), as well as biochronology and palaeoenvironmental reconstructions inferred from proxy records (e.g., pollen data). For the majority of samples dated, however, the new luminescence ages are significantly (∼50%) younger than previously published polymineral thermoluminescence (TL) chronologies, suggesting that the latter may have overestimated the true burial age of the Galería deposits. The luminescence ages obtained indicate that the top of the basal sterile sands (GIb) at Galería have an age of up to ∼370 thousand years (ka), while the lowermost sub-unit containing Mode II Acheulean lithics (base of unit GIIa) was deposited during MIS 9 (mean age = 313±14 ka; n = 4). The overlying units GIIb-GIV, which contain the richest archaeopalaeontological remains, were deposited during late MIS 8 or early MIS 7 (∼240 ka). Galería Complex may be correlative with other Middle Pleistocene sites from Atapuerca, such as Gran Dolina level TD10 and unit TE19 from Sima del Elefante, but the lowermost archaeological horizons are ∼100 ka younger than the hominin-bearing clay breccias at the Sima de los Huesos site. Our results suggest that both pIR-IR and single-grain TT-OSL dating are suitable for resolving Middle Pleistocene chronologies for the Sierra de Atapuerca karstic infill sequences.

  3. Bichordites from the early Eocene of Cuba: significance in the evolutionary history of the spatangoids

    NASA Astrophysics Data System (ADS)

    Villegas-Martín, Jorge; Netto, Renata Guimarães

    2017-12-01

    The trace fossil Bichordites monastiriensis is found in early Eocene turbiditic sandstones of the upper-slope deposits from the Capdevila Formation in Los Palacios Basin, Pinar del Río region, western Cuba. The potential tracemakers of B. monastiriensis include fossil spatangoids from the family Eupatagidae. The record of Bichordites in the deposits from Cuba allows to suppose that Eupatagidae echinoids were the oldest potential tracemakers of Bichordites isp. and reinforce the hypothesis that the ichnological record are relevant in envisaging the evolutionary history of the spatangoids.

  4. Discovery of an endogenous Deltaretrovirus in the genome of long-fingered bats (Chiroptera: Miniopteridae).

    PubMed

    Farkašová, Helena; Hron, Tomáš; Pačes, Jan; Hulva, Pavel; Benda, Petr; Gifford, Robert James; Elleder, Daniel

    2017-03-21

    Retroviruses can create endogenous forms on infiltration into the germline cells of their hosts. These forms are then vertically transmitted and can be considered as genetic fossils of ancient viruses. All retrovirus genera, with the exception of deltaretroviruses, have had their representation identified in the host genome as a virus fossil record. Here we describe an endogenous Deltaretrovirus, identified in the germline of long-fingered bats (Miniopteridae). A single, heavily deleted copy of this retrovirus has been found in the genome of miniopterid species, but not in the genomes of the phylogenetically closest bat families, Vespertilionidae and Cistugonidae. Therefore, the endogenization occurred in a time interval between 20 and 45 million years ago. This discovery closes the last major gap in the retroviral fossil record and provides important insights into the history of deltaretroviruses in mammals.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and U.S. levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIAmore » publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant.« less

  6. Implications of a fossil stickleback assemblage for Darwinian gradualism.

    PubMed

    Bell, M A

    2009-11-01

    Darwin postulated that a complete fossil record would contain numerous gradual transitions between ancestral and descendant species, but 150 years after publication of The Origin of Species, few such transitions have materialized. The fossil stickleback Gasterosteus doryssus and the deposit in which it occurs provide excellent conditions to detect such transitions. Abundant, well-preserved fossils occur in a stratigraphic setting with fine temporal resolution. The paleoecology of G. doryssus resembles the ecology of modern lakes that harbour the phenotypically similar three-spined stickleback Gasterosteus aculeatus. Gasterosteus aculeatus are primitively highly armoured, but G. doryssus comprised two contemporaneous biological species with relatively weak armour, including a near-shore, benthic feeder (benthic) and an offshore planktivore (limnetic). The benthic species expanded its range into the limnetic zone of the lake, where it apparently switched to planktivory and evolved reduced armour within c. 5000 years in response to directional selection. Although gradual evolution of mean phenotypes occurred, a single major gene caused much of evolutionary change of the pelvic skeleton. Thus, Darwin's expectation that transitions between species in the fossil record would be gradual was met at a fine time scale, but for pelvic structure, a well-studied trait, his expectation that gradual change would depend entirely on numerous, small, heritable differences among individuals was incorrect.

  7. Exopaleontology and the search for a fossil record on Mars

    NASA Technical Reports Server (NTRS)

    Farmer, Jack D.; Desmarais, D. J.

    1994-01-01

    Although present Martian surface conditions appear unfavorable for life as we know it, there is compelling geological evidence that the climate of early Mars was much more Earth-like, with a denser atmosphere and abundant surface water. The fact that life developed on the Earth within the first billion years of its history makes it quite plausible that life may have also developed on Mars. If life did develop on Mars, it is likely to have left behind a fossil record. This has led to the development of a new subdiscipline of paleontology, herein termed 'exopaleontology', which deals with the exploration for fossils on other planets. The most important factor enhancing microbial fossilization is the rapid entombment of microorganisms by fine-grained, stable mineral phases, such as silica, phosphate, or carbonate. The oldest body fossils on Earth are preserved in this way, occurring as permineralized cells in fine-grained siliceous sediments (cherts) associated with ancient volcanic terranes in Australia and South Africa. Modern terrestrial environments where minerals may precipitate in the presence of microorganisms include subaerial thermal springs and shallow hydrothermal systems, sub-lacustrine springs and evaporitic alkaline lakes, zones of mineralization within soils where 'hardpans' (e.g. calcretes, silcretes) form, and high latitude frozen soils or ground ice.

  8. Fossil endocarps of Aralia (Araliaceae) from the upper Pliocene of Yunnan in southwest China, and their biogeographical implications

    DOE PAGES

    Zhu, Hai; Jacques, Frederic M. B.; Wang, Li; ...

    2015-10-09

    Aralia stratosa H. Zhu, Y.J. Huang et Z.K. Zhou sp. nov. is described based on fossil endocarps from the upper Pliocene of northwest Yunnan in southwest China. The endocarps are characterized by a semicircular to elliptic outline in the lateral view, an apical beak-like structure bending towards the ventral side, and a transversely wrinkled surface, collectively indicating taxonomical inclusion in the genus Aralia (Araliaceae). The new fossil taxon is compared with nine extant species of Aralia based on endocarp morphology and anatomy, showing the carpological resemblance to A. echinocaulis. Aralia stratosa sp. nov. represents the first confirmed fossil record frommore » lower latitudes in the Northern Hemisphere. This implies a southerly biogeographical range for this genus than was previously interpreted. The fossil record of Aralia suggests a Cretaceous origin in North America and an Eocene dispersal to eastern Asia, likely via the Bering land bridge, followed by Miocene establishment in Europe. The genus likely began to inhabit lower latitudes in eastern Asia no later than the late Pliocene, which is in line with results from molecular analyses. As a result, all these may suggest a southward distributional change probably associated with the global cooling and northern acidification.« less

  9. Fossil endocarps of Aralia (Araliaceae) from the upper Pliocene of Yunnan in southwest China, and their biogeographical implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Hai; Jacques, Frederic M. B.; Wang, Li

    Aralia stratosa H. Zhu, Y.J. Huang et Z.K. Zhou sp. nov. is described based on fossil endocarps from the upper Pliocene of northwest Yunnan in southwest China. The endocarps are characterized by a semicircular to elliptic outline in the lateral view, an apical beak-like structure bending towards the ventral side, and a transversely wrinkled surface, collectively indicating taxonomical inclusion in the genus Aralia (Araliaceae). The new fossil taxon is compared with nine extant species of Aralia based on endocarp morphology and anatomy, showing the carpological resemblance to A. echinocaulis. Aralia stratosa sp. nov. represents the first confirmed fossil record frommore » lower latitudes in the Northern Hemisphere. This implies a southerly biogeographical range for this genus than was previously interpreted. The fossil record of Aralia suggests a Cretaceous origin in North America and an Eocene dispersal to eastern Asia, likely via the Bering land bridge, followed by Miocene establishment in Europe. The genus likely began to inhabit lower latitudes in eastern Asia no later than the late Pliocene, which is in line with results from molecular analyses. As a result, all these may suggest a southward distributional change probably associated with the global cooling and northern acidification.« less

  10. Developmental palaeontology in synapsids: the fossil record of ontogeny in mammals and their closest relatives

    PubMed Central

    Sánchez-Villagra, Marcelo R.

    2010-01-01

    The study of fossilized ontogenies in mammals is mostly restricted to postnatal and late stages of growth, but nevertheless can deliver great insights into life history and evolutionary mechanisms affecting all aspects of development. Fossils provide evidence of developmental plasticity determined by ecological factors, as when allometric relations are modified in species which invaded a new space with a very different selection regime. This is the case of dwarfing and gigantism evolution in islands. Skeletochronological studies are restricted to the examination of growth marks mostly in the cement and dentine of teeth and can provide absolute age estimates. These, together with dental replacement data considered in a phylogenetic context, provide life-history information such as maturation time and longevity. Palaeohistology and dental replacement data document the more or less gradual but also convergent evolution of mammalian growth features during early synapsid evolution. Adult phenotypes of extinct mammals can inform developmental processes by showing a combination of features or levels of integration unrecorded in living species. Some adult features such as vertebral number, easily recorded in fossils, provide indirect information about somitogenesis and hox-gene expression boundaries. Developmental palaeontology is relevant for the discourse of ecological developmental biology, an area of research where features of growth and variation are fundamental and accessible among fossil mammals. PMID:20071389

  11. 40 CFR 60.105 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... liquid or solid fossil-fuels and the hours of operation during which liquid or solid fossil-fuels are... the atmosphere. The instrument shall be spanned at 60, 70, or 80 percent opacity. (2) For fluid... monitoring and recording the concentration by volume (dry basis) of CO emissions into the atmosphere, except...

  12. 40 CFR 60.105 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... liquid or solid fossil-fuels and the hours of operation during which liquid or solid fossil-fuels are... the atmosphere. The instrument shall be spanned at 60, 70, or 80 percent opacity. (2) For fluid... monitoring and recording the concentration by volume (dry basis) of CO emissions into the atmosphere, except...

  13. 40 CFR 60.105 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... liquid or solid fossil-fuels and the hours of operation during which liquid or solid fossil-fuels are... the atmosphere. The instrument shall be spanned at 60, 70, or 80 percent opacity. (2) For fluid... monitoring and recording the concentration by volume (dry basis) of CO emissions into the atmosphere, except...

  14. 40 CFR 60.105 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... liquid or solid fossil-fuels and the hours of operation during which liquid or solid fossil-fuels are... the atmosphere. The instrument shall be spanned at 60, 70, or 80 percent opacity. (2) For fluid... monitoring and recording the concentration by volume (dry basis) of CO emissions into the atmosphere, except...

  15. 40 CFR 60.105 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... liquid or solid fossil-fuels and the hours of operation during which liquid or solid fossil-fuels are... the atmosphere. The instrument shall be spanned at 60, 70, or 80 percent opacity. (2) For fluid... monitoring and recording the concentration by volume (dry basis) of CO emissions into the atmosphere, except...

  16. A golden orb-weaver spider (Araneae: Nephilidae: Nephila) from the Middle Jurassic of China.

    PubMed

    Selden, Paul A; Shih, ChungKun; Ren, Dong

    2011-10-23

    Nephila are large, conspicuous weavers of orb webs composed of golden silk, in tropical and subtropical regions. Nephilids have a sparse fossil record, the oldest described hitherto being Cretaraneus vilaltae from the Cretaceous of Spain. Five species from Neogene Dominican amber and one from the Eocene of Florissant, CO, USA, have been referred to the extant genus Nephila. Here, we report the largest known fossil spider, Nephila jurassica sp. nov., from Middle Jurassic (approx. 165 Ma) strata of Daohugou, Inner Mongolia, China. The new species extends the fossil record of the family by approximately 35 Ma and of the genus Nephila by approximately 130 Ma, making it the longest ranging spider genus known. Nephilidae originated somewhere on Pangaea, possibly the North China block, followed by dispersal almost worldwide before the break-up of the supercontinent later in the Mesozoic. The find suggests that the palaeoclimate was warm and humid at this time. This giant fossil orb-weaver provides evidence of predation on medium to large insects, well known from the Daohugou beds, and would have played an important role in the evolution of these insects.

  17. Tectonic Reversal of the New Hebrides Forearc Recorded by Fossil Coral Terraces on Araki, Solomon Islands

    NASA Astrophysics Data System (ADS)

    Gallup, C. D.; Taylor, F. W.; Edwards, R. L.

    2016-12-01

    Araki is a small island in the New Hebrides forearc that exhibits a series of coral terraces. High precision 230Th ages of the corals and their elevations reveal a complicated tectonic history. Prior to the collision of the Bouganville Guyot on the subducting Australian plate with the forearc, the forearc was subsiding (Taylor et al., 2005). The highest elevation terrace on Araki has both last interglacial age (128 ka) corals and corals that grew between 103 and 107 ka present, when sea level was certainly lower than during the last interglacial period. However, the last interglacial corals occur in a cliff somewhat below the summit of Araki. We suggest this juxtaposition was produced by subsidence of the island during and after the last interglacial corals, potentially through the deposition of the 103 and 107 ka corals. At some point before or after their deposition, the island started to uplift, producing a series of terraces. Many of the corals on the lower terraces were deposited during periods of low sea level, between 33 and 62 ka. The lowest terrace is composed of Holocene corals. The mean uplift rate of Araki produced by using published sea level records for the corals deposited between 33 and 62 ka is approximately 2.4 mm/y. The uplift rate calculated based on the Holocene corals is much faster at approximately 4.7 mm/yr. A similar pattern of subsidence, to uplift, to faster uplift is found on Espiritu Santo and Malekula, encompassing 250 km of the forearc. The fossil corals thus record the changing tectonic conditions on the forearc associated with the subduction of the Bougainville Guyot. F.W. Taylor et al. (2005) TECTONICS, VOL. 24, TC6005, doi:10.1029/2004TC001650.

  18. Seasonal variability of δ18O and δ13C of planktic foraminifera in the Bering Sea and central subarctic Pacific during 1990-2000

    NASA Astrophysics Data System (ADS)

    Asahi, Hirofumi; Okazaki, Yusuke; Ikehara, Minoru; Khim, Boo-Keum; Nam, Seung-Il; Takahashi, Kozo

    2015-10-01

    We evaluated a 10 year time series of δ18O and δ13C records from three planktic foraminifers (Neogloboquadrina pachyderma, Globigerina umbilicata, and Globigerinita glutinata) in the Bering Sea and central subarctic Pacific with a focus on their responses to environmental changes. Foraminiferal δ18O followed the equilibrium equation for inorganic calcite, with species-specific equilibrium offsets ranging from nearly zero (-0.02‰ for N. pachyderma and -0.01‰ for G. umbilicata) to -0.16‰ (G. glutinata). Equilibrium offsets in our sediment trap samples were smaller than those from plankton tow studies, implying that foraminiferal δ18O was modified by encrustation during settling. Habitat/calcification depths varied from 35-55 m (N. pachyderma and G. umbilicata) or 25-45 m (G. glutinata) during warm, stratified seasons to around 100 m during winter, when the mixed layer depth increases. Unlike δ18O, foraminiferal δ13C showed species-specific responses to environmental changes. We found a dependency of δ13C in G. umbilicata on CO32- concentrations in ambient seawater that agreed reasonably well with published laboratory results, suggesting that δ13C of G. umbilicata is subject to vital effects. In contrast, δ13C of N. pachyderma and G. glutinata are likely affected by other species-specific biological activities. Seasonal flux patterns reveal that fossil records of N. pachyderma and G. glutinata represent annual mean conditions, whereas that of G. umbilicata most likely indicates those of a specific season. Because none of these three taxa was abundant from December to February, their fossil records likely do not reflect isotope signals from cold seasons.

  19. The first fossil salmonfly (Insecta: Plecoptera: Pteronarcyidae), back to the Middle Jurassic.

    PubMed

    Cui, Yingying; Béthoux, Olivier; Kondratieff, Boris; Shih, Chungkun; Ren, Dong

    2016-10-18

    The fossil record of Plecoptera (stoneflies) is considered relatively complete, with stem-groups of each of the three major lineages, viz. Antarctoperlaria, Euholognatha and Systellognatha (and some of their families) represented in the Mesozoic. However, the family Pteronarcyidae (the salmonflies; including two genera, Pteronarcys and Pteronarcella) has no fossil record to date, and the family has been suggested to have diverged recently. In this paper, we report on a set of specimens belonging to a new fossil species of stonefly, discovered from the Middle Jurassic Daohugou locality (China). Our comparative analysis of wing venation and body characters demonstrates that the new species belongs to the Pteronarcyidae, and is more closely related to Pteronarcys than to Pteronarcella. However, it differs from all known species of the former genus. It is therefore assigned to a new genus and named Pteroliriope sinitshenkovae gen. et sp. nov. under the traditional nomenclatural procedure. The cladotypic nomenclatural procedure is also employed, with the resulting combination Pteroliriope nec Pteronarcys sinitshenkovae sp. nov. The first discovery of a fossil member of the Pteronarcyidae demonstrates that the corresponding lineage is not a very recent offshoot but was already present ca. 165 million years ago. This discovery concurs with the view that divergence of most stonefly families took place very early, probably in the Triassic, or even in the Permian. This contribution demonstrates the need for (re-)investigations of the systematics of fossil stoneflies to refine divergence date estimates for Plecoptera lineages.

  20. Toward an accurate taxonomic interpretation of Carex fossil fruits (Cyperaceae): a case study in section Phacocystis in the Western Palearctic.

    PubMed

    Jiménez-Mejías, Pedro; Martinetto, Edoardo

    2013-08-01

    Despite growing interest in the systematics and evolution of the hyperdiverse genus Carex, few studies have focused on its evolution using an absolute time framework. This is partly due to the limited knowledge of the fossil record. However, Carex fruits are not rare in certain sediments. We analyzed carpological features of modern materials from Carex sect. Phacocystis to characterize the fossil record taxonomically. We studied 374 achenes from modern materials (18 extant species), as well as representatives from related groups, to establish the main traits within and among species. We also studied 99 achenes from sediments of living populations to assess their modification process after decay. Additionally, we characterized 145 fossil achenes from 10 different locations (from 4-0.02 mya), whose taxonomic assignment we discuss. Five main characters were identified for establishing morphological groups of species (epidermis morphology, achene-utricle attachment, achene base, style robustness, and pericarp section). Eleven additional characters allowed the discrimination at species level of most of the taxa. Fossil samples were assigned to two extant species and one unknown, possibly extinct species. The analysis of fruit characters allows the distinction of groups, even up to species level. Carpology is revealed as an accurate tool in Carex paleotaxonomy, which could allow the characterization of Carex fossil fruits and assign them to subgeneric or sectional categories, or to certain species. Our conclusions could be crucial for including a temporal framework in the study of the evolution of Carex.

  1. Phylogenetic modeling of lateral gene transfer reconstructs the pattern and relative timing of speciations

    PubMed Central

    Szöllősi, Gergely J.; Boussau, Bastien; Abby, Sophie S.; Tannier, Eric; Daubin, Vincent

    2012-01-01

    The timing of the evolution of microbial life has largely remained elusive due to the scarcity of prokaryotic fossil record and the confounding effects of the exchange of genes among possibly distant species. The history of gene transfer events, however, is not a series of individual oddities; it records which lineages were concurrent and thus provides information on the timing of species diversification. Here, we use a probabilistic model of genome evolution that accounts for differences between gene phylogenies and the species tree as series of duplication, transfer, and loss events to reconstruct chronologically ordered species phylogenies. Using simulations we show that we can robustly recover accurate chronologically ordered species phylogenies in the presence of gene tree reconstruction errors and realistic rates of duplication, transfer, and loss. Using genomic data we demonstrate that we can infer rooted species phylogenies using homologous gene families from complete genomes of 10 bacterial and archaeal groups. Focusing on cyanobacteria, distinguished among prokaryotes by a relative abundance of fossils, we infer the maximum likelihood chronologically ordered species phylogeny based on 36 genomes with 8,332 homologous gene families. We find the order of speciation events to be in full agreement with the fossil record and the inferred phylogeny of cyanobacteria to be consistent with the phylogeny recovered from established phylogenomics methods. Our results demonstrate that lateral gene transfers, detected by probabilistic models of genome evolution, can be used as a source of information on the timing of evolution, providing a valuable complement to the limited prokaryotic fossil record. PMID:23043116

  2. A 6900-year history of landscape modification by humans in lowland Amazonia

    NASA Astrophysics Data System (ADS)

    Bush, M. B.; Correa-Metrio, A.; McMichael, C. H.; Sully, S.; Shadik, C. R.; Valencia, B. G.; Guilderson, T.; Steinitz-Kannan, M.; Overpeck, J. T.

    2016-06-01

    A sedimentary record from the Peruvian Amazon provided evidence of climate and vegetation change for the last 6900 years. Piston cores collected from the center of Lake Sauce, a 20 m deep lake at 600 m elevation, were 19.7 m in length. The fossil pollen record showed a continuously forested catchment within the period of the record, although substantial changes in forest composition were apparent. Fossil charcoal, found throughout the record, was probably associated with humans setting fires. Two fires, at c. 6700 cal BP and 4270 cal BP, appear to have been stand-replacing events possibly associated with megadroughts. The fire event at 4270 cal BP followed a drought that caused lowered lake levels for several centuries. The successional trajectories of forest recovery following these large fires were prolonged by smaller fire events. Fossil pollen of Zea mays (cultivated maize) provided evidence of agricultural activity at the site since c. 6320 cal BP. About 5150 years ago, the lake deepened and started to deposit laminated sediments. Maize agriculture reached a peak of intensity between c. 3380 and 700 cal BP. Fossil diatom data provided a proxy for lake nutrient status and productivity, both of which peaked during the period of maize cultivation. A marked change in land use was evident after c. 700 cal BP when maize agriculture was apparently abandoned at this site. Iriartea, a hyperdominant of riparian settings in western Amazonia, increased in abundance within the last 1100 years, but declined markedly at c. 1070 cal BP and again between c. 80 and -10 cal BP.

  3. Livers, guts and gills: mapping the decay profiles of soft tissues to understand authigenic mineral replacement.

    NASA Astrophysics Data System (ADS)

    Clements, Thomas; Purnell, Mark; Gabbott, Sarah

    2016-04-01

    The hard mineralised parts of organisms such as shells, teeth and bones dominate the fossil record. There are, however, sites around the world where soft-tissues are preserved often through rapid replacement of original tissue by rapidly-precipitating authigenic minerals. These exceptionally well-preserved soft-bodied fossils are much more informative about the anatomy, physiology, ecology and behaviour of ancient organisms as well as providing a more inclusive picture of ecosystems and evolution throughout geological time. However, despite the wealth of information that soft-bodied fossils can provide they must first be correctly interpreted as the processes of both decay and preservation act to modify the carcass from its in vivo condition. Decay leads to alteration of the appearance and topology of anatomy, and ultimately to loss. Preservation is selective with some anatomical features being more likely to be captured than others. These problems are especially germane to the interpretation of deep-time and/or enigmatic fossils where no modern analogue exist for comparative anatomical analysis. It is therefore of vital importance to understand the processes carcasses undergo during the fossilisation process, , in order to interpret the anatomical remains of fossils and thus extract true evolutionary presence or absence of anatomy from absence due to taphonomic biases. We have designed a series of novel experiments to investigate, in real time, how decay processes affect the fossilisation potential of soft-tissues - especially of internal anatomy. Our data allow us to unravel both the timing and sequence of anatomical decay of different organs. At the same time through measuring Eh and pH in selected organs we can predict when anatomical features will fall in to the window of authigenic mineralization and thus potentially become preserved. We can also place constraints on which minerals will operate to capture tissues. Our findings are applied to the fossil record allowing greater accuracy in reading the record of exceptionally preserved organisms.

  4. Ancient Nursery Area for the Extinct Giant Shark Megalodon from the Miocene of Panama

    PubMed Central

    Pimiento, Catalina; Ehret, Dana J.; MacFadden, Bruce J.; Hubbell, Gordon

    2010-01-01

    Background As we know from modern species, nursery areas are essential shark habitats for vulnerable young. Nurseries are typically highly productive, shallow-water habitats that are characterized by the presence of juveniles and neonates. It has been suggested that in these areas, sharks can find ample food resources and protection from predators. Based on the fossil record, we know that the extinct Carcharocles megalodon was the biggest shark that ever lived. Previous proposed paleo-nursery areas for this species were based on the anecdotal presence of juvenile fossil teeth accompanied by fossil marine mammals. We now present the first definitive evidence of ancient nurseries for C. megalodon from the late Miocene of Panama, about 10 million years ago. Methodology/Principal Findings We collected and measured fossil shark teeth of C. megalodon, within the highly productive, shallow marine Gatun Formation from the Miocene of Panama. Surprisingly, and in contrast to other fossil accumulations, the majority of the teeth from Gatun are very small. Here we compare the tooth sizes from the Gatun with specimens from different, but analogous localities. In addition we calculate the total length of the individuals found in Gatun. These comparisons and estimates suggest that the small size of Gatun's C. megalodon is neither related to a small population of this species nor the tooth position within the jaw. Thus, the individuals from Gatun were mostly juveniles and neonates, with estimated body lengths between 2 and 10.5 meters. Conclusions/Significance We propose that the Miocene Gatun Formation represents the first documented paleo-nursery area for C. megalodon from the Neotropics, and one of the few recorded in the fossil record for an extinct selachian. We therefore show that sharks have used nursery areas at least for 10 millions of years as an adaptive strategy during their life histories. PMID:20479893

  5. A new species of Gulo from the Early Pliocene Gray Fossil Site (Eastern United States); rethinking the evolution of wolverines

    PubMed Central

    Bredehoeft, Keila E.; Wallace, Steven C.

    2018-01-01

    The wolverine (Gulo gulo) is the largest living terrestrial member of the Mustelidae; a versatile predator formerly distributed throughout boreal regions of North America and Eurasia. Though commonly recovered from Pleistocene sites across their range, pre-Pleistocene records of the genus are exceedingly rare. Here, we describe a new species of Gulo from the Gray Fossil Site in Tennessee. Based on biostratigraphy, a revised estimate of the age of the Gray Fossil Site is Early Pliocene, near the Hemphillian—Blancan transition, between 4.9 and 4.5 Ma. This represents the earliest known occurrence of a wolverine, more than one million years earlier than any other record. The new species of wolverine described here shares similarities with previously described species of Gulo, and with early fishers (Pekania). As the earliest records of both Gulo and Pekania are known from North America, this suggests the genus may have evolved in North America and dispersed to Eurasia later in the Pliocene. Both fauna and flora at the Gray Fossil Site are characteristic of warm/humid climates, which suggests wolverines may have become ‘cold-adapted’ relatively recently. Finally, detailed comparison indicates Plesiogulo, which has often been suggested to be ancestral to Gulo, is not likely closely related to gulonines, and instead may represent convergence on a similar niche. PMID:29682423

  6. The hominin fossil record: taxa, grades and clades

    PubMed Central

    Wood, Bernard; Lonergan, Nicholas

    2008-01-01

    This paper begins by reviewing the fossil evidence for human evolution. It presents summaries of each of the taxa recognized in a relatively speciose hominin taxonomy. These taxa are grouped in grades, namely possible and probable hominins, archaic hominins, megadont archaic hominins, transitional hominins, pre-modern Homo and anatomically modern Homo. The second part of this contribution considers some of the controversies that surround hominin taxonomy and systematics. The first is the vexed question of how you tell an early hominin from an early panin, or from taxa belonging to an extinct clade closely related to the Pan-Homo clade. Secondly, we consider how many species should be recognized within the hominin fossil record, and review the philosophies and methods used to identify taxa within the hominin fossil record. Thirdly, we examine how relationships within the hominin clade are investigated, including descriptions of the methods used to break down an integrated structure into tractable analytical units, and then how cladograms are generated and compared. We then review the internal structure of the hominin clade, including the problem of how many subclades should be recognized within the hominin clade, and we examine the reliability of hominin cladistic hypotheses. The last part of the paper reviews the concepts of a genus, including the criteria that should be used for recognizing genera within the hominin clade. PMID:18380861

  7. Patterns of metal distribution in hypersaline microbialites during early diagenesis: Implications for the fossil record.

    PubMed

    Sforna, M C; Daye, M; Philippot, P; Somogyi, A; van Zuilen, M A; Medjoubi, K; Gérard, E; Jamme, F; Dupraz, C; Braissant, O; Glunk, C; Visscher, P T

    2017-03-01

    The use of metals as biosignatures in the fossil stromatolite record requires understanding of the processes controlling the initial metal(loid) incorporation and diagenetic preservation in living microbialites. Here, we report the distribution of metals and the organic fraction within the lithifying microbialite of the hypersaline Big Pond Lake (Bahamas). Using synchrotron-based X-ray microfluorescence, confocal, and biphoton microscopies at different scales (cm-μm) in combination with traditional geochemical analyses, we show that the initial cation sorption at the surface of an active microbialite is governed by passive binding to the organic matrix, resulting in a homogeneous metal distribution. During early diagenesis, the metabolic activity in deeper microbialite layers slows down and the distribution of the metals becomes progressively heterogeneous, resulting from remobilization and concentration as metal(loid)-enriched sulfides, which are aligned with the lamination of the microbialite. In addition, we were able to identify globules containing significant Mn, Cu, Zn, and As enrichments potentially produced through microbial activity. The similarity of the metal(loid) distributions observed in the Big Pond microbialite to those observed in the Archean stromatolites of Tumbiana provides the foundation for a conceptual model of the evolution of the metal distribution through initial growth, early diagenesis, and fossilization of a microbialite, with a potential application to the fossil record. © 2016 John Wiley & Sons Ltd.

  8. How do geological sampling biases affect studies of morphological evolution in deep time? A case study of pterosaur (Reptilia: Archosauria) disparity.

    PubMed

    Butler, Richard J; Brusatte, Stephen L; Andres, Brian; Benson, Roger B J

    2012-01-01

    A fundamental contribution of paleobiology to macroevolutionary theory has been the illumination of deep time patterns of diversification. However, recent work has suggested that taxonomic diversity counts taken from the fossil record may be strongly biased by uneven spatiotemporal sampling. Although morphological diversity (disparity) is also frequently used to examine evolutionary radiations, no empirical work has yet addressed how disparity might be affected by uneven fossil record sampling. Here, we use pterosaurs (Mesozoic flying reptiles) as an exemplar group to address this problem. We calculate multiple disparity metrics based upon a comprehensive anatomical dataset including a novel phylogenetic correction for missing data, statistically compare these metrics to four geological sampling proxies, and use multiple regression modeling to assess the importance of uneven sampling and exceptional fossil deposits (Lagerstätten). We find that range-based disparity metrics are strongly affected by uneven fossil record sampling, and should therefore be interpreted cautiously. The robustness of variance-based metrics to sample size and geological sampling suggests that they can be more confidently interpreted as reflecting true biological signals. In addition, our results highlight the problem of high levels of missing data for disparity analyses, indicating a pressing need for more theoretical and empirical work. © 2011 The Author(s). Evolution © 2011 The Society for the Study of Evolution.

  9. Annual Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (NDP-058.2010)

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Boden, T. A. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Marland, G. [Appalachian State University, Boone, NC (USA)

    2010-01-01

    The 2010 version of this database presents a time series recording 1° latitude by 1° longitude CO2 emissions in units of million metric tons of carbon per year from anthropogenic sources for 1751-2007. Detailed geographic information on CO2 emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions. Global, regional, and national annual estimates for 1751 through 2007 were published earlier (Boden et al. 2010). Those national, annual CO2 emission estimates were based on statistics about fossil-fuel burning, cement manufacturing and gas flaring in oil fields as well as energy production, consumption, and trade data, using the methods of Marland and Rotty (1984). The national annual estimates were combined with gridded 1° data on political units and 1984 human populations to create the new gridded CO2 emission time series. The same population distribution was used for each of the years as proxy for the emission distribution within each country. The implied assumption for that procedure was that per capita energy use and fuel mixes are uniform over a political unit. The consequence of this first-order procedure is that the spatial changes observed over time are solely due to changes in national energy consumption and nation-based fuel mix. Increases in fossil-fuel CO2 emissions over time are apparent for most areas.

  10. Annual Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (NDP-058.2013)

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Boden, T. A. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Marland, G. [Appalachian State University, Boone, NC (USA)

    2013-01-01

    The 2013 version of this database presents a time series recording 1° latitude by 1° longitude CO2 emissions in units of million metric tons of carbon per year from anthropogenic sources for 1751-2010. Detailed geographic information on CO2 emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions. Global, regional, and national annual estimates for 1751 through 2010 were published earlier (Boden et al. 2013). Those national, annual CO2 emission estimates were based on statistics about fossil-fuel burning, cement manufacturing and gas flaring in oil fields as well as energy production, consumption, and trade data, using the methods of Marland and Rotty (1984). The national annual estimates were combined with gridded 1° data on political units and 1984 human populations to create the new gridded CO2 emission time series. The same population distribution was used for each of the years as proxy for the emission distribution within each country. The implied assumption for that procedure was that per capita energy use and fuel mixes are uniform over a political unit. The consequence of this first-order procedure is that the spatial changes observed over time are solely due to changes in national energy consumption and nation-based fuel mix. Increases in fossil-fuel CO2 emissions over time are apparent for most areas.

  11. Annual Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (NDP-058.2015)

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Boden, T. A. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Marland, G. [Appalachian State University, Boone, NC (USA)

    2015-01-01

    The 2015 version of this database presents a time series recording 1° latitude by 1° longitude CO2 emissions in units of million metric tons of carbon per year from anthropogenic sources for 1751-2011. Detailed geographic information on CO2 emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions. Global, regional, and national annual estimates for 1751 through 2011 were published earlier (Boden et al. 2015). Those national, annual CO2 emission estimates were based on statistics about fossil-fuel burning, cement manufacturing and gas flaring in oil fields as well as energy production, consumption, and trade data, using the methods of Marland and Rotty (1984). The national annual estimates were combined with gridded 1° data on political units and 1984 human populations to create the new gridded CO2 emission time series. The same population distribution was used for each of the years as proxy for the emission distribution within each country. The implied assumption for that procedure was that per capita energy use and fuel mixes are uniform over a political unit. The consequence of this first-order procedure is that the spatial changes observed over time are solely due to changes in national energy consumption and nation-based fuel mix. Increases in fossil-fuel CO2 emissions over time are apparent for most areas.

  12. Annual Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (NDP-058.2011)

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Boden, T. A. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Marland, G. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA)

    2011-01-01

    The 2011 version of this database presents a time series recording 1° latitude by 1° longitude CO2 emissions in units of million metric tons of carbon per year from anthropogenic sources for 1751-2008. Detailed geographic information on CO2 emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions. Global, regional, and national annual estimates for 1751 through 2008 were published earlier (Boden et al. 2011). Those national, annual CO2 emission estimates were based on statistics about fossil-fuel burning, cement manufacturing and gas flaring in oil fields as well as energy production, consumption, and trade data, using the methods of Marland and Rotty (1984). The national annual estimates were combined with gridded 1° data on political units and 1984 human populations to create the new gridded CO2 emission time series. The same population distribution was used for each of the years as proxy for the emission distribution within each country. The implied assumption for that procedure was that per capita energy use and fuel mixes are uniform over a political unit. The consequence of this first-order procedure is that the spatial changes observed over time are solely due to changes in national energy consumption and nation-based fuel mix. Increases in fossil-fuel CO2 emissions over time are apparent for most areas.

  13. Annual Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (NDP-058.2012)

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Boden, T. A. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Marland, G. [Appalachian State University, Boone, NC (USA)

    2012-01-01

    The 2012 version of this database presents a time series recording 1° latitude by 1° longitude CO2 emissions in units of million metric tons of carbon per year from anthropogenic sources for 1751-2009. Detailed geographic information on CO2 emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions. Global, regional, and national annual estimates for 1751 through 2009 were published earlier (Boden et al. 2012). Those national, annual CO2 emission estimates were based on statistics about fossil-fuel burning, cement manufacturing and gas flaring in oil fields as well as energy production, consumption, and trade data, using the methods of Marland and Rotty (1984). The national annual estimates were combined with gridded 1° data on political units and 1984 human populations to create the new gridded CO2 emission time series. The same population distribution was used for each of the years as proxy for the emission distribution within each country. The implied assumption for that procedure was that per capita energy use and fuel mixes are uniform over a political unit. The consequence of this first-order procedure is that the spatial changes observed over time are solely due to changes in national energy consumption and nation-based fuel mix. Increases in fossil-fuel CO2 emissions over time are apparent for most areas.

  14. Annual Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (1751-2006) (NDP-058.2009)

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Boden, T. A. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Marland, G. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA)

    2009-01-01

    The 2009 version of this database presents a time series recording 1° latitude by 1° longitude CO2 emissions in units of million metric tons of carbon per year from anthropogenic sources for 1751-2006. Detailed geographic information on CO2 emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions. Global, regional, and national annual estimates for 1751 through 2006 were published earlier (Boden et al. 2009). Those national, annual CO2 emission estimates were based on statistics about fossil-fuel burning, cement manufacturing and gas flaring in oil fields as well as energy production, consumption, and trade data, using the methods of Marland and Rotty (1984). The national annual estimates were combined with gridded 1° data on political units and 1984 human populations to create the new gridded CO2 emission time series. The same population distribution was used for each of the years as proxy for the emission distribution within each country. The implied assumption for that procedure was that per capita energy use and fuel mixes are uniform over a political unit. The consequence of this first-order procedure is that the spatial changes observed over time are solely due to changes in national energy consumption and nation-based fuel mix. Increases in fossil-fuel CO2 emissions over time are apparent for most areas.

  15. Annual Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (NDP-058.2016)

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Boden, T. A. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA)

    2016-01-01

    The 2016 version of this database presents a time series recording 1° latitude by 1° longitude CO2 emissions in units of million metric tons of carbon per year from anthropogenic sources for 1751-2013. Detailed geographic information on CO2 emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions. Global, regional, and national annual estimates for 1751 through 2013 were published earlier (Boden et al. 2016). Those national, annual CO2 emission estimates were based on statistics about fossil-fuel burning, cement manufacturing and gas flaring in oil fields as well as energy production, consumption, and trade data, using the methods of Marland and Rotty (1984). The national annual estimates were combined with gridded 1° data on political units and 1984 human populations to create the new gridded CO2 emission time series. The same population distribution was used for each of the years as proxy for the emission distribution within each country. The implied assumption for that procedure was that per capita energy use and fuel mixes are uniform over a political unit. The consequence of this first-order procedure is that the spatial changes observed over time are solely due to changes in national energy consumption and nation-based fuel mix. Increases in fossil-fuel CO2 emissions over time are apparent for most areas.

  16. Mitogenomic perspectives on the origin and phylogeny of living amphibians.

    PubMed

    Zhang, Peng; Zhou, Hui; Chen, Yue-Qin; Liu, Yi-Fei; Qu, Liang-Hu

    2005-06-01

    Establishing the relationships among modern amphibians (lissamphibians) and their ancient relatives is necessary for our understanding of early tetrapod evolution. However, the phylogeny is still intractable because of the highly specialized anatomy and poor fossil record of lissamphibians. Paleobiologists are still not sure whether lissamphibians are monophyletic or polyphyletic, and which ancient group (temnospondyls or lepospondyls) is most closely related to them. In an attempt to address these problems, eight mitochondrial genomes of living amphibians were determined and compared with previously published amphibian sequences. A comprehensive molecular phylogenetic analysis of nucleotide sequences yields a highly resolved tree congruent with the traditional hypotheses (Batrachia). By using a molecular clock-independent approach for inferring dating information from molecular phylogenies, we present here the first molecular timescale for lissamphibian evolution, which suggests that lissamphibians first emerged about 330 million years ago. By observing the fit between molecular and fossil times, we suggest that the temnospondyl-origin hypothesis for lissamphibians is more credible than other hypotheses. Moreover, under this timescale, the potential geographic origins of the main living amphibian groups are discussed: (i) advanced frogs (neobatrachians) may possess an Africa-India origin; (ii) salamanders may have originated in east Asia; (iii) the tropic forest of the Triassic Pangaea may be the place of origin for the ancient caecilians. An accurate phylogeny with divergence times can be also helpful to direct the search for "missing" fossils, and can benefit comparative studies of amphibian evolution.

  17. Conidae and Terebridae (Gastropoda: Neogastropoda) from the Plio-Pleistocene of the Philippines.

    PubMed

    Helwerda, Enate A

    2017-01-20

    Six species of Conidae and seven species of Terebridae are reported from the Plio-Pleistocene "Cabarruyan" fauna of Pangasinan, the Philippines. Eleven species are identified; these species all occur in the Recent Indo-Pacific fauna and seven of these are previously known from the fossil record as well. The species composition of this fauna shows little overlap with other fossil assemblages, except with the Fijian fossil assemblage. This is attributed to a lack of knowledge on Indo-pacific fossil faunas as well as to the relatively deep water setting (200-300 m) of this fauna. More research is needed to determine why the Fijian assemblage is relatively similar.

  18. Ferns diversified in the shadow of angiosperms.

    PubMed

    Schneider, Harald; Schuettpelz, Eric; Pryer, Kathleen M; Cranfill, Raymond; Magallón, Susana; Lupia, Richard

    2004-04-01

    The rise of angiosperms during the Cretaceous period is often portrayed as coincident with a dramatic drop in the diversity and abundance of many seed-free vascular plant lineages, including ferns. This has led to the widespread belief that ferns, once a principal component of terrestrial ecosystems, succumbed to the ecological predominance of angiosperms and are mostly evolutionary holdovers from the late Palaeozoic/early Mesozoic era. The first appearance of many modern fern genera in the early Tertiary fossil record implies another evolutionary scenario; that is, that the majority of living ferns resulted from a more recent diversification. But a full understanding of trends in fern diversification and evolution using only palaeobotanical evidence is hindered by the poor taxonomic resolution of the fern fossil record in the Cretaceous. Here we report divergence time estimates for ferns and angiosperms based on molecular data, with constraints from a reassessment of the fossil record. We show that polypod ferns (> 80% of living fern species) diversified in the Cretaceous, after angiosperms, suggesting perhaps an ecological opportunistic response to the diversification of angiosperms, as angiosperms came to dominate terrestrial ecosystems.

  19. The semi-aquatic pondweed bugs of a Cretaceous swamp

    PubMed Central

    Sánchez-García, Alba; Nel, André; Arillo, Antonio

    2017-01-01

    Pondweed bugs (Hemiptera: Mesoveliidae), considered a sister group to all other Gerromorpha, are exceedingly rare as fossils. Therefore, each new discovery of a fossil mesoveliid is of high interest, giving new insight into their early evolutionary history and diversity and enabling the testing of their proposed relationships. Here, we report the discovery of new mesoveliid material from Spanish Lower Cretaceous (Albian) amber, which is the first such find in Spanish amber. To date, fossil records of this family only include one species from French Kimmeridgian as compression fossils, two species in French amber (Albian-Cenomanian boundary), and one in Dominican amber (Miocene). The discovery of two males and one female described and figured as Glaesivelia pulcherrima Sánchez-García & Solórzano Kraemer gen. et sp. n., and a single female described and figured as Iberovelia quisquilia Sánchez-García & Nel, gen. et sp. n., reveals novel combinations of traits related to some genera currently in the subfamily Mesoveliinae. Brief comments about challenges facing the study of fossil mesoveliids are provided, showing the necessity for a revision of the existing phylogenetic hypotheses. Some of the specimens were studied using infrared microscopy, a promising alternative to the systematic study of organisms preserved in amber that cannot be clearly visualised. The new taxa significantly expand the fossil record of the family and shed new light on its palaeoecology. The fossils indicate that Mesoveliidae were certainly diverse by the Cretaceous and that numerous tiny cryptic species living in humid terrestrial to marginal aquatic habitats remain to be discovered. Furthermore, the finding of several specimens as syninclusions suggests aggregative behaviour, thereby representing the earliest documented evidence of such ethology. PMID:28890856

  20. The semi-aquatic pondweed bugs of a Cretaceous swamp.

    PubMed

    Sánchez-García, Alba; Nel, André; Arillo, Antonio; Solórzano Kraemer, Mónica M

    2017-01-01

    Pondweed bugs (Hemiptera: Mesoveliidae), considered a sister group to all other Gerromorpha, are exceedingly rare as fossils. Therefore, each new discovery of a fossil mesoveliid is of high interest, giving new insight into their early evolutionary history and diversity and enabling the testing of their proposed relationships. Here, we report the discovery of new mesoveliid material from Spanish Lower Cretaceous (Albian) amber, which is the first such find in Spanish amber. To date, fossil records of this family only include one species from French Kimmeridgian as compression fossils, two species in French amber (Albian-Cenomanian boundary), and one in Dominican amber (Miocene). The discovery of two males and one female described and figured as Glaesivelia pulcherrima Sánchez-García & Solórzano Kraemer gen. et sp. n., and a single female described and figured as Iberovelia quisquilia Sánchez-García & Nel, gen. et sp. n., reveals novel combinations of traits related to some genera currently in the subfamily Mesoveliinae. Brief comments about challenges facing the study of fossil mesoveliids are provided, showing the necessity for a revision of the existing phylogenetic hypotheses. Some of the specimens were studied using infrared microscopy, a promising alternative to the systematic study of organisms preserved in amber that cannot be clearly visualised. The new taxa significantly expand the fossil record of the family and shed new light on its palaeoecology. The fossils indicate that Mesoveliidae were certainly diverse by the Cretaceous and that numerous tiny cryptic species living in humid terrestrial to marginal aquatic habitats remain to be discovered. Furthermore, the finding of several specimens as syninclusions suggests aggregative behaviour, thereby representing the earliest documented evidence of such ethology.

  1. Microbial trace-fossil formation, biogenous, and abiotic weathering in the Antarctic cold desert

    NASA Technical Reports Server (NTRS)

    Friedmann, E. Imre; Weed, Rebecca

    1987-01-01

    In the Antarctic cold desert (Ross Desert), the survival of the cryptoendolithic microorganisms that colonize the near-surface layer of porous sandstone rocks depends on a precarious equilibrium of biological and geological factors. An unfavorable shift of this equilibrium results in death, and this may be followed by formation of trace fossils that preserve the characteristic iron-leaching pattern caused by microbial activity. Similar microbial trace fossils may exist in the geological record. If life ever arose on early Mars, similar processes may have occurred there and left recognizable traces.

  2. Mantophasmatodea now in the Jurassic

    NASA Astrophysics Data System (ADS)

    Huang, Di-Ying; Nel, André; Zompro, Oliver; Waller, Alain

    2008-10-01

    The Mantophasmatodea is the most recently discovered insect order. The fossil records of all other ‘polyneopteran’ orders extend far in the past, but the current absence of pre-Cenozoic fossils of the Mantophasmatodea contradicts a long evolutionary history, which has to be assumed from the morphological distinctness of the group. In this paper, we report the first Mesozoic evidence of a mantophasmatodean from the Middle Jurassic of Daohugou, Inner Mongolia, China. Furthermore, the new fossil shares apomorphic characters with Cenozoic and recent Mantophasmatodea, suggesting a longer evolutionary history of this order.

  3. Early organisms in the fossil record: paleontological aspects, evolutionary and ecological impacts

    NASA Astrophysics Data System (ADS)

    Sabbatini, Anna; Negri, Alessandra; Morigi, Caterina; Bartolini, Annachiara; Lipps, Jere

    2017-04-01

    With this abstract we introduce our session whose aim is twofold: 1) to gather information on the earliest foraminifera (single- organic and agglutinated taxa) which so far are sparse and uncoordinated in order to understand their evolution and their relationship with modern single-chambered taxa, contextualizing scientific current results in the geo-biological field. 2) to explore also every other early organism trace fossils or so far overlooked organisms coated with fine sediment (i.e., bacteria, testate amoebae) to understand how and if this coating might help these creatures to fossilize. For this reason, this session will integrate many disciplines, from genomics to palaeo-environmental modelling to palaeontology and geochemistry. Our experience starts from Foraminifera which are an ecologically important group of modern heterotrophic amoeboid eukaryotes whose naked and testate ancestors are thought to have evolved 1 Ga ago. However, the single-chambered agglutinated test of these protists is hypothesized to appear in the fossil record in the Neoproterozoic, before the rise of complex animals. In addition, the difficulty of recognizing unambiguously ancestral monothalamous foraminifera in the fossil record represents the main challenge and might be related to a combination of factors, such as preservation in the sediments, adverse palaeo-environmental conditions and the absence of clear morphological characters distinguishing them from other morphologically simple testate organisms. However, recent publications have evidenced the finding of such organisms in several sedimentary successions tracing back to the Neoproterozoic. An integrate approach will result in profound insights about life—past, present, future— representing a new frontier in the palaeobiological studies. Therefore, aim of this session is to bring together specialists across all these disciplines to provide a uniquely rich and fertile intellectual environment for the pursuit of this intrinsically interdisciplinary topic.

  4. Maturation experiments reveal bias in the fossil record of feathers

    NASA Astrophysics Data System (ADS)

    McNamara, Maria; Field, Daniel

    2016-04-01

    The evolutionary history of birds and feathers is a major focus in palaeobiology and evolutionary biology. Diverse exceptionally preserved birds and feathered dinosaurs from Jurassic and Cretaceous biotas in China have provided pivotal evidence of early feathers and feather-like integumentary features, but the true nature of many of these fossil soft tissues is still debated. Interpretations of feathers at intermediate developmental stages (i.e. Stages II, III and IV) and of simple quill-like (Stage I) feathers are particularly controversial. This reflects key uncertainties relating to the preservation potential of feathers at different evolutionary-developmental stages, and to the relative preservation potential of diagnostic features of Stage I feathers and hair. To resolve these issues, we used high pressure-high temperature autoclave experiments to simulate the effects of burial on modern feathers from the Black Coucal (Centropus grilii) and Common Starling (Sturnus vulgaris), and on human hair. Our results reveal profound differences in the recalcitrance of feathers of different types during maturation: Stage I and Stage V feathers retain diagnostic morphological and ultrastructural details following maturation, whereas other feather types do not. Further, the morphology and arrangement of certain ultrastructural features diagnostic of Stages III and IV, e.g. barbules, are preferentially lost during maturation. These results indicate a pervasive bias in the fossil record of feathers, whereby preservation of feathers at Stages I and V is favored. Critical stages in the evolution of feathers, i.e. Stages II, III and IV, are less likely to be preserved and more likely to be misinterpreted as feathers at earlier developmental stages. Our discovery has major implications for our understanding of the fidelity of the fossil record of feathers and provides a framework for testing the significance of putative examples of fossil feathers at different developmental stages.

  5. A palaeoequatorial ornithischian and new constraints on early dinosaur diversification.

    PubMed

    Barrett, Paul M; Butler, Richard J; Mundil, Roland; Scheyer, Torsten M; Irmis, Randall B; Sánchez-Villagra, Marcelo R

    2014-09-22

    Current characterizations of early dinosaur evolution are incomplete: existing palaeobiological and phylogenetic scenarios are based on a fossil record dominated by saurischians and the implications of the early ornithischian record are often overlooked. Moreover, the timings of deep phylogenetic divergences within Dinosauria are poorly constrained owing to the absence of a rigorous chronostratigraphical framework for key Late Triassic-Early Jurassic localities. A new dinosaur from the earliest Jurassic of the Venezuelan Andes is the first basal ornithischian recovered from terrestrial deposits directly associated with a precise radioisotopic date and the first-named dinosaur from northern South America. It expands the early palaeogeographical range of Ornithischia to palaeoequatorial regions, an area sometimes thought to be devoid of early dinosaur taxa, and offers insights into early dinosaur growth rates, the evolution of sociality and the rapid tempo of the global dinosaur radiation following the end-Triassic mass extinction, helping to underscore the importance of the ornithischian record in broad-scale discussions of early dinosaur history. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  6. Patterns of generic extinction in the fossil record

    NASA Technical Reports Server (NTRS)

    Raup, D. M.; Boyajian, G. E.

    1988-01-01

    Analysis of the stratigraphic records of 19,897 fossil genera indicates that most classes and orders show largely congruent rises and falls in extinction intensity throughout the Phanerozoic. Even an ecologically homogeneous sample of reef genera shows the same basic extinction profile. The most likely explanation for the congruence is that extinction is physically rather than biologically driven and that it is dominated by the effects of geographically widespread environmental perturbations influencing most habitats. Significant departures from the congruence are uncommon but important because they indicate physiological or habitat selectivity. The similarity of the extinction records of reef organisms and the marine biota as a whole confirms that reefs and other faunas are responding to the same history of environmental stress.

  7. Oligocene terrestrial strata of northwestern Ethiopia : a preliminary report on paleoenvironments and paleontology

    Treesearch

    Bonnie F. Jacobs; Neil Tabor; Mulugeta Feseha; Aaron Pan; John Kappelman; Tab Rasmussen; William Sanders; Michael Wiemann; Jeff Crabaugh; Juan Leandro Garcia Massini

    2005-01-01

    The Paleogene record of Afro-Arabia is represented by few fossil localities, most of which are coastal. Here we report sedimentological and paleontological data from continental Oligocene strata in northwestern Ethiopia. These have produced abundant plant fossils and unique assemblages of vertebrates, thus filling a gap in what is known of Paleogene interior Afro-...

  8. Thermal impacts of a fossil-fueled electric power plant discharge on seagrass bed communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemeth, J.C.; Garrett, R.A.; Imbur, W.E.

    1979-01-01

    This paper deals with a 316a demonstration for an older fossil-fueled electric power plant which is often overlooked but nevertheless a regultory compliance. In this report, the Lansing Smith coal-fired steam electric power plant went under a 316a demonstration and the results are recorded and tabulated.

  9. A roller-like bird (Coracii) from the Early Eocene of Denmark.

    PubMed

    Bourdon, Estelle; Kristoffersen, Anette V; Bonde, Niels

    2016-09-27

    The fossil record of crown group birds (Neornithes) prior to the Cretaceous-Paleogene boundary is scarce and fragmentary. Early Cenozoic bird fossils are more abundant, but are typically disarticulated and/or flattened. Here we report the oldest roller (Coracii), Septencoracias morsensis gen. et sp. nov. (Primobucconidae), based on a new specimen from the Early Eocene (about 54 million years ago) Fur Formation of Denmark. The new fossil is a nearly complete, three-dimensionally preserved and articulated skeleton. It lies at the lower end of the size range for extant rollers. Salient diagnostic features of Septencoracias relative to other Coracii include the proportionally larger skull and the small, ovoid and dorsally positioned narial openings. Our discovery adds to the evidence that the Coracii had a widespread northern hemisphere distribution in the Eocene. Septencoracias is the oldest substantial record of the Picocoraciae and provides a reliable calibration point for molecular phylogenetic studies.

  10. Mastritherium (Artiodactyla, Anthracotheriidae) from Wadi Sabya, southwestern Saudi Arabia; an earliest Miocene age for continental rift-valley volcanic deposits of the Red Sea margin

    USGS Publications Warehouse

    Madden, Gary T.; Schmidt, Dwight Lyman; Whitmore, Frank C.

    1983-01-01

    A lower jaw fragment with its last molar (M/3) from the Baid formation in Wadi Sabya, southwestern Saudi Arabia, represents the first recorded occurrence in the Arabian Peninsula of an anthracotheriid artiodactyl (hippo-like, even-toed ungulate). This fossil is identified as a primitive species of Masritherium, a North and East African genus restricted, previously to the later early Miocene. This identification indicates that the age of the Baid formation, long problematical, is early Miocene and, moreover, shows that the age of the fossil site is earliest Miocene (from 25 to 21Ma). The Wadi Sabya anthracothere is the first species of fossil mammal recorded from western Saudi Arabia, and more important, it indicates an early Miocene age for the volcanic deposits of a continental rift-valley that preceded the initial sea-floor spreading of the Red Sea.

  11. A roller-like bird (Coracii) from the Early Eocene of Denmark

    PubMed Central

    Bourdon, Estelle; Kristoffersen, Anette V.; Bonde, Niels

    2016-01-01

    The fossil record of crown group birds (Neornithes) prior to the Cretaceous-Paleogene boundary is scarce and fragmentary. Early Cenozoic bird fossils are more abundant, but are typically disarticulated and/or flattened. Here we report the oldest roller (Coracii), Septencoracias morsensis gen. et sp. nov. (Primobucconidae), based on a new specimen from the Early Eocene (about 54 million years ago) Fur Formation of Denmark. The new fossil is a nearly complete, three-dimensionally preserved and articulated skeleton. It lies at the lower end of the size range for extant rollers. Salient diagnostic features of Septencoracias relative to other Coracii include the proportionally larger skull and the small, ovoid and dorsally positioned narial openings. Our discovery adds to the evidence that the Coracii had a widespread northern hemisphere distribution in the Eocene. Septencoracias is the oldest substantial record of the Picocoraciae and provides a reliable calibration point for molecular phylogenetic studies. PMID:27670387

  12. Constraining the Deep Origin of Parasitic Flatworms and Host-Interactions with Fossil Evidence.

    PubMed

    De Baets, Kenneth; Dentzien-Dias, Paula; Upeniece, Ieva; Verneau, Olivier; Donoghue, Philip C J

    2015-01-01

    Novel fossil discoveries have contributed to our understanding of the evolutionary appearance of parasitism in flatworms. Furthermore, genetic analyses with greater coverage have shifted our views on the coevolution of parasitic flatworms and their hosts. The putative record of parasitic flatworms is consistent with extant host associations and so can be used to put constraints on the evolutionary origin of the parasites themselves. The future lies in new molecular clock analyses combined with additional discoveries of exceptionally preserved flatworms associated with hosts and coprolites. Besides direct evidence, the host fossil record and biogeography have the potential to constrain their evolutionary history, albeit with caution needed to avoid circularity, and a need for calibrations to be implemented in the most conservative way. This might result in imprecise, but accurate divergence estimates for the evolution of parasitic flatworms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. How can we reliably identify a taxon based on humeral morphology? Comparative morphology of desmostylian humeri

    PubMed Central

    2017-01-01

    Desmostylia is a clade of marine mammals belonging to either Tethytheria or Perissodactyla. Rich fossil records of Desmostylia were found in the Oligocene to Miocene strata of the Northern Pacific Rim, especially in the northwestern region, which includes the Japanese archipelago. Fossils in many shapes and forms, including whole or partial skeletons, skulls, teeth, and fragmentary bones have been discovered from this region. Despite the prevalent availability of fossil records, detailed taxonomic identification based on fragmentary postcranial materials has been difficult owing to to our limited knowledge of the postcranial diagnostic features of many desmostylian taxa. In this study, I propose the utilization of diagnostic characters found in the humerus to identify desmostylian genus. These characters can be used to identify isolated desmostylian humeri at the genus level, contributing to a better understanding of the stratigraphic and geographic distributions of each genus. PMID:29134151

  14. Mars Life? - Microscopic Egg-shaped Structures

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This electron microscope image shows egg-shaped structures, some of which may be possible microscopic fossils of Martian origin as discussed by NASA research published in the Aug. 16, 1996, issue of the journal Science. A two-year investigation found organic molecules, mineral features characteristic of biological activity and possible microscopic fossils such as these inside of an ancient Martian rock that fell to Earth as a meteorite. The largest possible fossils are less than 1/100th the diameter of a human hair in size while most are ten times smaller.

  15. A long-living species of the hydrophiloid beetles: Helophorus sibiricus from the early Miocene deposits of Kartashevo (Siberia, Russia)

    PubMed Central

    Fikáček, Martin; Prokin, Alexander; Angus, Robert B.

    2011-01-01

    Abstract The recent hydrophiloid species Helophorus (Gephelophorus) sibiricus (Motschulsky, 1860) is recorded from the early Miocene deposits of Kartashevo assigned to the Ombinsk Formation. A detailed comparison with recent specimens allowed a confident identification of the fossil specimen, which is therefore the oldest record of a recent species for the Hydrophiloidea. The paleodistribution as well as recent distribution of the species is summarized, and the relevance of the fossil is discussed. In addition, the complex geological settings of the Kartashevo area are briefly summarized. PMID:22259280

  16. Testing New Proxies for Photosymbiosis in the Fossil Record

    NASA Astrophysics Data System (ADS)

    Tornabene, C.; Martindale, R. C.; Schaller, M. F.

    2015-12-01

    Photosymbiosis is a mutualistic relationship that many corals have developed with dinoflagellates called zooxanthellae. The dinoflagellates, of the genus Symbiodinium, photosynthesize and provide corals with most of their energy, while in turn coral hosts live in waters where zooxanthellae have optimal exposure to sunlight. Thanks to this relationship, symbiotic corals calcify faster than non-symbiotic corals. Photosymbiosis is therefore considered the evolutionary innovation that allowed corals to become major reef-builders through geological time.This relationship is extremely difficult to study. Zooxanthellae, which are housed in the coral tissue, are not preserved in fossil coral skeletons, thus determining whether corals had symbionts requires a robust proxy. In order to address this critical question, the goal of this research is to test new proxies for ancient photosymbiosis. Currently the project is focused on assessing the nitrogen (δ15N) isotopes of corals' organic matrices, sensu Muscatine et al. (2005), as well as carbon and oxygen (δ13C, δ18O) isotopes of fossil coral skeletons. Samples from Modern, Pleistocene, Oligocene and Triassic coral skeletons were analyzed to test the validity of these proxies. Coral samples comprise both (interpreted) symbiotic and non-symbiotic fossil corals from the Oligocene and Triassic as well as symbiotic fossil corals from the Modern and Pleistocene to corroborate our findings with the results of Muscatine et al. (2005). Samples were tested for diagenesis through petrographic and scanning electron microscope (SEM) analyses to avoid contamination. Additionally, a novel technique that has not yet been applied to the fossil record was tested. The technique aims to recognize dinosterol, a dinoflagellate biomarker, in both modern and fossil coral samples. The premise of this proxy is that symbiotic corals should contain the dinoflagellate biomarker, whereas those lacking symbionts should lack dinosterol. Results from this research will ideally lead to the development of a definitive, quantitative test for whether fossil corals had symbionts.

  17. Fossil wood flora from the Siwalik Group of Arunachal Pradesh, India and its climatic and phytogeographic significance

    NASA Astrophysics Data System (ADS)

    Srivastava, Gaurav; Mehrotra, R. C.; Srikarni, C.

    2018-02-01

    The plant fossil records from the Siwalik Group of Arunachal Pradesh, India are far from satisfactory due to remoteness and dense vegetation of the area. We report seven fossil woods of which three belong to the Middle Siwalik (Subansiri Formation), while the rest are from the Upper Siwalik (Kimin Formation). The modern analogues of the fossils from the Middle Siwalik are Lophopetalum littorale (Celastraceae), Afzelia-Intsia and Sindora siamensis (Fabaceae) and from the Upper Siwalik are Miliusa velutina (Annonaceae), Calophyllum tomentosum and Kayea (Calophyllaceae) and Diospyros melanoxylon (Ebenaceae). The dominance of diffuse porosity in the fossil woods indicates a tropical climate with low seasonality (little variation) in temperature, while a high proportion of large vessels and simple perforation plates in the assemblage infer high precipitation during the deposition of the sediments. The aforesaid inference is in strong agreement with the previous quantitative reconstruction based on fossil leaves. Several modern analogues of the fossil taxa are now growing in low latitudes possibly due to an increase in seasonality (increased variation) in temperature caused by the rising Himalaya.

  18. Stable carbon isotope ratios and intrinsic water-use efficiency of Miocene fossil leaves compared to modern congeners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, J.D.; Zhang, J.; Rember, W.C.

    Miocene fossil leaves of forest trees were extracted from the Clarkia, Idaho fossil beds and their stable carbon isotope ratios were analyzed. Fossils had higher lignin concentrations and lower cellulose concentrations that modern leaves due to diagenesis and the HF used to extract the fossils. Therefore, [delta][sup 13]C of extracted fossil lignin was compared to that of modern lignin. Fossil lignin [delta][sup 13]C was significantly different from that of congeneric modern leaves (paired t-test, P<0.0001), but was 1.9% less negative. Gymnosperms (Metasequoia, Taxodium) were less negative than angiosperms (e.g., Magnolia, Quercus, Acer, Persea), but no difference between evergreen and deciduousmore » species was detected. Using published estimates of the concentration and [delta][sup 13]C of atmospheric CO[sub 2] during the Miocene was estimated the CO[sub 2] partial pressure gradient across the stomata (intrinsic water-use efficiency). Intrinsic water-use efficiency was at least 70% higher during this past [open quotes]greenhouse[close quotes] period than at present.« less

  19. Crown Group Lejeuneaceae and Pleurocarpous Mosses in Early Eocene (Ypresian) Indian Amber.

    PubMed

    Heinrichs, Jochen; Scheben, Armin; Bechteler, Julia; Lee, Gaik Ee; Schäfer-Verwimp, Alfons; Hedenäs, Lars; Singh, Hukam; Pócs, Tamás; Nascimbene, Paul C; Peralta, Denilson F; Renner, Matt; Schmidt, Alexander R

    2016-01-01

    Cambay amber originates from the warmest period of the Eocene, which is also well known for the appearance of early angiosperm-dominated megathermal forests. The humid climate of these forests may have triggered the evolution of epiphytic lineages of bryophytes; however, early Eocene fossils of bryophytes are rare. Here, we present evidence for lejeuneoid liverworts and pleurocarpous mosses in Cambay amber. The preserved morphology of the moss fossil is inconclusive for a detailed taxonomic treatment. The liverwort fossil is, however, distinctive; its zig-zagged stems, suberect complicate-bilobed leaves, large leaf lobules, and small, deeply bifid underleaves suggest a member of Lejeuneaceae subtribe Lejeuneinae (Harpalejeunea, Lejeunea, Microlejeunea). We tested alternative classification possibilities by conducting divergence time estimates based on DNA sequence variation of Lejeuneinae using the age of the fossil for corresponding age constraints. Consideration of the fossil as a stem group member of Microlejeunea or Lejeunea resulted in an Eocene to Late Cretaceous age of the Lejeuneinae crown group. This reconstruction is in good accordance with published divergence time estimates generated without the newly presented fossil evidence. Balancing available evidence, we describe the liverwort fossil as the extinct species Microlejeunea nyiahae, representing the oldest crown group fossil of Lejeuneaceae.

  20. Getting the measure of extinction.

    PubMed

    Mace, G

    1998-01-01

    Like all species, plants, mammals, and birds have been subject to extinction as a fundamental part of evolution. Indeed, only about 2-4% of all the species that have ever lived during the 600 million years of the fossil record still survive today. Looking at the fossil record, it can be said that invertebrate species and mammals have had an average life span of 5-10 and 1-2 million years, respectively. More recent extinction records for birds and mammals lost over the last half of the century indicate that 1 out of 14,000 species becomes extinct each year, giving each species an average life span of 10,000 years--100 to 1000 times shorter than the lifetime of species in the fossil record. Drawing on the World's Conservation Union Red List of threatened animals (1996), species lifetimes of birds, mammals and reptiles are estimated at 300-500 years and 100-1000 years across broader groups. In general, these estimates show that extinction rates today are 1000 to 10,000 times higher than in the past, making current rates of species loss at least equivalent to the mass extinctions in the past. A major difference, however, is the fact that almost all extinctions that have transpired today are due to the impact of human activities.

  1. Earth’s oldest ‘Bobbit worm’ – gigantism in a Devonian eunicidan polychaete

    PubMed Central

    Eriksson, Mats E.; Parry, Luke A.; Rudkin, David M.

    2017-01-01

    Whilst the fossil record of polychaete worms extends to the early Cambrian, much data on this group derive from microfossils known as scolecodonts. These are sclerotized jaw elements, which generally range from 0.1–2 mm in size, and which, in contrast to the soft-body anatomy, have good preservation potential and a continuous fossil record. Here we describe a new eunicidan polychaete, Websteroprion armstrongi gen. et sp. nov., based primarily on monospecific bedding plane assemblages from the Lower-Middle Devonian Kwataboahegan Formation of Ontario, Canada. The specimens are preserved mainly as three-dimensional moulds in the calcareous host rock, with only parts of the original sclerotized jaw walls occasionally present. This new taxon has a unique morphology and is characterized by an unexpected combination of features seen in several different Palaeozoic polychaete families. Websteroprion armstrongi was a raptorial feeder and possessed the largest jaws recorded in polychaetes from the fossil record, with maxillae reaching over one centimetre in length. Total body length of the species is estimated to have reached over one metre, which is comparable to that of extant ‘giant eunicid’ species colloquially referred to as ‘Bobbit worms’. This demonstrates that polychaete gigantism was already a phenomenon in the Palaeozoic, some 400 million years ago. PMID:28220886

  2. Fossils and living taxa agree on patterns of body mass evolution: a case study with Afrotheria.

    PubMed

    Puttick, Mark N; Thomas, Gavin H

    2015-12-22

    Most of life is extinct, so incorporating some fossil evidence into analyses of macroevolution is typically seen as necessary to understand the diversification of life and patterns of morphological evolution. Here we test the effects of inclusion of fossils in a study of the body size evolution of afrotherian mammals, a clade that includes the elephants, sea cows and elephant shrews. We find that the inclusion of fossil tips has little impact on analyses of body mass evolution; from a small ancestral size (approx. 100 g), there is a shift in rate and an increase in mass leading to the larger-bodied Paenungulata and Tubulidentata, regardless of whether fossils are included or excluded from analyses. For Afrotheria, the inclusion of fossils and morphological character data affect phylogenetic topology, but these differences have little impact upon patterns of body mass evolution and these body mass evolutionary patterns are consistent with the fossil record. The largest differences between our analyses result from the evolutionary model, not the addition of fossils. For some clades, extant-only analyses may be reliable to reconstruct body mass evolution, but the addition of fossils and careful model selection is likely to increase confidence and accuracy of reconstructed macroevolutionary patterns. © 2015 The Authors.

  3. Fossils and living taxa agree on patterns of body mass evolution: a case study with Afrotheria

    PubMed Central

    Puttick, Mark N.; Thomas, Gavin H.

    2015-01-01

    Most of life is extinct, so incorporating some fossil evidence into analyses of macroevolution is typically seen as necessary to understand the diversification of life and patterns of morphological evolution. Here we test the effects of inclusion of fossils in a study of the body size evolution of afrotherian mammals, a clade that includes the elephants, sea cows and elephant shrews. We find that the inclusion of fossil tips has little impact on analyses of body mass evolution; from a small ancestral size (approx. 100 g), there is a shift in rate and an increase in mass leading to the larger-bodied Paenungulata and Tubulidentata, regardless of whether fossils are included or excluded from analyses. For Afrotheria, the inclusion of fossils and morphological character data affect phylogenetic topology, but these differences have little impact upon patterns of body mass evolution and these body mass evolutionary patterns are consistent with the fossil record. The largest differences between our analyses result from the evolutionary model, not the addition of fossils. For some clades, extant-only analyses may be reliable to reconstruct body mass evolution, but the addition of fossils and careful model selection is likely to increase confidence and accuracy of reconstructed macroevolutionary patterns. PMID:26674947

  4. Macroevolutionary developmental biology: Embryos, fossils, and phylogenies.

    PubMed

    Organ, Chris L; Cooper, Lisa Noelle; Hieronymus, Tobin L

    2015-10-01

    The field of evolutionary developmental biology is broadly focused on identifying the genetic and developmental mechanisms underlying morphological diversity. Connecting the genotype with the phenotype means that evo-devo research often considers a wide range of evidence, from genetics and morphology to fossils. In this commentary, we provide an overview and framework for integrating fossil ontogenetic data with developmental data using phylogenetic comparative methods to test macroevolutionary hypotheses. We survey the vertebrate fossil record of preserved embryos and discuss how phylogenetic comparative methods can integrate data from developmental genetics and paleontology. Fossil embryos provide limited, yet critical, developmental data from deep time. They help constrain when developmental innovations first appeared during the history of life and also reveal the order in which related morphologies evolved. Phylogenetic comparative methods provide a powerful statistical approach that allows evo-devo researchers to infer the presence of nonpreserved developmental traits in fossil species and to detect discordant evolutionary patterns and processes across levels of biological organization. © 2015 Wiley Periodicals, Inc.

  5. The bat community of Haiti and evidence for its long-term persistence at high elevations

    PubMed Central

    Simmons, Nancy B.; Steadman, David W.

    2017-01-01

    Accurate accounts of both living and fossil mammal communities are critical for creating biodiversity inventories and understanding patterns of changing species diversity through time. We combined data from from14 new fossil localities with literature accounts and museum records to document the bat biodiversity of Haiti through time. We also report an assemblage of late-Holocene (1600–600 Cal BP) bat fossils from a montane cave (Trouing Jean Paul, ~1825m) in southern Haiti. The nearly 3000 chiropteran fossils from Trouing Jean Paul represent 15 species of bats including nine species endemic to the Caribbean islands. The fossil bat assemblage from Trouing Jean Paul is dominated by species still found on Hispaniola (15 of 15 species), much as with the fossil bird assemblage from the same locality (22 of 23 species). Thus, both groups of volant vertebrates demonstrate long-term resilience, at least at high elevations, to the past 16 centuries of human presence on the island. PMID:28574990

  6. Evaluating the use of amber in palaeoatmospheric reconstructions: The carbon-isotope variability of modern and Cretaceous conifer resins

    NASA Astrophysics Data System (ADS)

    Dal Corso, Jacopo; Schmidt, Alexander R.; Seyfullah, Leyla J.; Preto, Nereo; Ragazzi, Eugenio; Jenkyns, Hugh C.; Delclòs, Xavier; Néraudeau, Didier; Roghi, Guido

    2017-02-01

    Stable carbon-isotope geochemistry of fossilized tree resin (amber) potentially could be a very useful tool to infer the composition of past atmospheres. To test the reliability of amber as a proxy for the atmosphere, we studied the variability of modern resin δ13C at both local and global scales. An amber δ13C curve was then built for the Cretaceous, a period of abundant resin production, and interpreted in light of data from modern resins. Our data show that hardening changes the pristine δ13C value by causing a 13C-depletion in solid resin when compared to fresh liquid-viscous resin, probably due to the loss of 13C-enriched volatiles. Modern resin δ13C values vary as a function of physiological and environmental parameters in ways that are similar to those described for leaves and wood. Resin δ13C varies between plant species and localities, within the same tree and between different plant tissues by up to 6‰, and in general increases with increasing altitudes of the plant-growing site. We show that, as is the case with modern resin, Cretaceous amber δ13C has a high variability, generally higher than that of other fossil material. Despite the high natural variability, amber shows a negative 2.5-3‰ δ13C trend from the middle Early Cretaceous to the Maastrichtian that parallels published terrestrial δ13C records. This trend mirrors changes in the atmospheric δ13C calculated from the δ13C and δ18O of benthic foraminiferal tests, although the magnitude of the shift is larger in plant material than in the atmosphere. Increasing mean annual precipitation and pO2 could have enhanced plant carbon-isotope fractionation during the Late Cretaceous, whereas changing pCO2 levels seem to have had no effect on plant carbon-isotope fractionation. The results of this study suggest that amber is a powerful fossil plant material for palaeoenvironmental and palaeoclimatic reconstructions. Improvement of the resolution of the existing data coupled with more detailed information about botanical source and environmental growing conditions of the fossil plant material will probably allow a more faithful interpretation of amber δ13C records and a wider understanding of the composition of the past atmosphere.

  7. The development of floristic provinciality during the Middle and Late Paleozoic

    USGS Publications Warehouse

    Wnuk, C.

    1996-01-01

    Phytogeographic reconstructions have been published for most Paleozoic series since the Pr??i??doli??, but there have been few attempts to synthesize this data into a comprehensive review of the characteristics and causes of the changing phytogeographic patterns for the whole Paleozoic history of the vascular flora. Existing floristic analyses have been compiled in this manuscript and the resulting data are used to reconstruct the evolution of floristic provinces since the Silurian. The earliest plant fossil records indicate that provinciality was characteristic of terrestrial vascular plant distributions right from the beginning of terrestrial colonization by vascular plants. This interpretation differs markedly from the views of many workers who still maintain that pre-Upper Carboniferous floras were uniform and cosmopolitan in distribution. Three of the four major phytogeographic units, i.e. Angara, Euramerica, and Gondwana, can be recognized in the earliest fossil floras. The fourth unit, Cathaysia, differentiated from Euramerica during the late Upper Carboniferous. Phytogeographic differentiation occurs in direct response to climatic gradients and physiographic barriers. As these gradients and barriers change, provincial boundaries expand and contract, fragment, reassemble and reassort. Phytogeographic units are dynamic through time. ?? 1996 Elsevier Science B.V. All rights reserved.

  8. Biagio Bartalini's "Catalogo dei corpi marini fossili che se trovano intorno a Siena" (1776).

    PubMed

    Manganelli, Giuseppe; Benocci, Andrea; Spadini, Valeriano

    2011-01-01

    In 1776, the Sienese botanist Biagio Bartalini (1750-1822) published a catalogue of wild plants growing around Siena, adding an appendix on fossils found in the same area, that is the first monograph on Sienese fossils and one of the first works of its kind in Italy. This paper provides tentative identifications of the species and an analysis of the value and meaning of Bartalini's work. The catalogue reports 72 species, each denoted by a list of names applied to analogous living taxa. Identification of single entities is extremely problematical because it can only be attempted through analysis of the literature, since the original material cannot be traced. The most interesting report is the first record of a Euro-Mediterranean Pliocene species of Sthenorytis (Gastropoda, Epitoniidae). Though important, the catalogue is incomplete, with oversights and mistakes, suggesting little familiarity with the subject. Shortcomings include some inconsistencies in the species sequence, the report of giant clams and the absence of molluscs ubiquitous in the Sienese Pliocene and sharks. Nor is it true that it is the first Italian palaeontological work in which binomial nomenclature was used, as sometimes claimed.

  9. A cosmopolitan late Ediacaran biotic assemblage: new fossils from Nevada and Namibia support a global biostratigraphic link.

    PubMed

    Smith, E F; Nelson, L L; Tweedt, S M; Zeng, H; Workman, J B

    2017-07-12

    Owing to the lack of temporally well-constrained Ediacaran fossil localities containing overlapping biotic assemblages, it has remained uncertain if the latest Ediacaran ( ca 550-541 Ma) assemblages reflect systematic biological turnover or environmental, taphonomic or biogeographic biases. Here, we report new latest Ediacaran fossil discoveries from the lower member of the Wood Canyon Formation in Nye County, Nevada, including the first figured reports of erniettomorphs, Gaojiashania , Conotubus and other problematic fossils. The fossils are spectacularly preserved in three taphonomic windows and occur in greater than 11 stratigraphic horizons, all of which are below the first appearance of Treptichnus pedum and the nadir of a large negative δ 13 C excursion that is a chemostratigraphic marker of the Ediacaran-Cambrian boundary. The co-occurrence of morphologically diverse tubular fossils and erniettomorphs in Nevada provides a biostratigraphic link among latest Ediacaran fossil localities globally. Integrated with a new report of Gaojiashania from Namibia, previous fossil reports and existing age constraints, these finds demonstrate a distinctive late Ediacaran fossil assemblage comprising at least two groups of macroscopic organisms with dissimilar body plans that ecologically and temporally overlapped for at least 6 Myr at the close of the Ediacaran Period. This cosmopolitan biotic assemblage disappeared from the fossil record at the end of the Ediacaran Period, prior to the Cambrian radiation. © 2017 The Author(s).

  10. A cosmopolitan late Ediacaran biotic assemblage: new fossils from Nevada and Namibia support a global biostratigraphic link

    USGS Publications Warehouse

    Smith, E. F.; Nelson, L. L.; Tweedt, S. M.; Zeng, H.; Workman, Jeremiah B.

    2017-01-01

    Owing to the lack of temporally well-constrained Ediacaran fossil localities containing overlapping biotic assemblages, it has remained uncertain if the latest Ediacaran (ca 550–541 Ma) assemblages reflect systematic biological turnover or environmental, taphonomic or biogeographic biases. Here, we report new latest Ediacaran fossil discoveries from the lower member of the Wood Canyon Formation in Nye County, Nevada, including the first figured reports of erniettomorphs, Gaojiashania, Conotubus and other problematic fossils. The fossils are spectacularly preserved in three taphonomic windows and occur in greater than 11 stratigraphic horizons, all of which are below the first appearance of Treptichnus pedum and the nadir of a large negative δ13C excursion that is a chemostratigraphic marker of the Ediacaran–Cambrian boundary. The co-occurrence of morphologically diverse tubular fossils and erniettomorphs in Nevada provides a biostratigraphic link among latest Ediacaran fossil localities globally. Integrated with a new report of Gaojiashania from Namibia, previous fossil reports and existing age constraints, these finds demonstrate a distinctive late Ediacaran fossil assemblage comprising at least two groups of macroscopic organisms with dissimilar body plans that ecologically and temporally overlapped for at least 6 Myr at the close of the Ediacaran Period. This cosmopolitan biotic assemblage disappeared from the fossil record at the end of the Ediacaran Period, prior to the Cambrian radiation.

  11. Reconstructing Carotenoid-Based and Structural Coloration in Fossil Skin.

    PubMed

    McNamara, Maria E; Orr, Patrick J; Kearns, Stuart L; Alcalá, Luis; Anadón, Pere; Peñalver, Enrique

    2016-04-25

    Evidence of original coloration in fossils provides insights into the visual communication strategies used by ancient animals and the functional evolution of coloration over time [1-7]. Hitherto, all reconstructions of the colors of reptile integument and the plumage of fossil birds and feathered dinosaurs have been of melanin-based coloration [1-6]. Extant animals also use other mechanisms for producing color [8], but these have not been identified in fossils. Here we report the first examples of carotenoid-based coloration in the fossil record, and of structural coloration in fossil integument. The fossil skin, from a 10 million-year-old colubrid snake from the Late Miocene Libros Lagerstätte (Teruel, Spain) [9, 10], preserves dermal pigment cells (chromatophores)-xanthophores, iridophores, and melanophores-in calcium phosphate. Comparison with chromatophore abundance and position in extant reptiles [11-15] indicates that the fossil snake was pale-colored in ventral regions; dorsal and lateral regions were green with brown-black and yellow-green transverse blotches. Such coloration most likely functioned in substrate matching and intraspecific signaling. Skin replicated in authigenic minerals is not uncommon in exceptionally preserved fossils [16, 17], and dermal pigment cells generate coloration in numerous reptile, amphibian, and fish taxa today [18]. Our discovery thus represents a new means by which to reconstruct the original coloration of exceptionally preserved fossil vertebrates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Eocene Podocarpium (Leguminosae) from South China and its biogeographic implications.

    PubMed

    Xu, Qingqing; Qiu, Jue; Zhou, Zhekun; Jin, Jianhua

    2015-01-01

    Podocarpium A. Braun ex Stizenberger is one of the most common legumes in the Neogene of Eurasia, including fossil fruits, seeds, leaves, and possible flower and pollen grains. This genus is not completely consistent with any extant genera according to gross morphological characters and poorly preserved cuticular structures reported in previous studies. The fossil pods collected from the coal-bearing series of the Changchang Basin of Hainan Island and Maoming Basin of Guangdong, South China, are examined by morphologically comparative work, with special reference to venation patterns and placental position. These distinctive features, as well as the ovule development of pods from different developmental stages and the epidermal structure of the pods, as distinguished from previous records lead to the conclusion that these fossils can be recognized as a new species of Podocarpium, P. eocenicum sp. nov. This new discovery indicates that Podocarpium had arrived in South China by the Eocene. Investigation on the fossil records of this extinct genus shows that P. eocenicum is the earliest and lowest latitude fossil data. The possible occurrence pattern of this genus is revealed as follows: Podocarpium had distributed in the South China at least in the middle Eocene, and then migrated to Europe during the Oligocene; in the Miocene this genus reached its peak in Eurasia, spreading extensively across subtropical areas to warm temperate areas; finally, Podocarpium shrank rapidly and became extinct in Eurasia during the Pliocene.

  13. Brief communication: Paleobiological inferences on the locomotor repertoire of extinct hominoids based on femoral neck cortical thickness: The fossil great ape hispanopithecus laietanus as a test-case study.

    PubMed

    Pina, Marta; Alba, David M; Almécija, Sergio; Fortuny, Josep; Moyà-Solà, Salvador

    2012-09-01

    The relationship between femoral neck superior and inferior cortical thickness in primates is related to locomotor behavior. This relationship has been employed to infer bipedalism in fossil hominins, although bipeds share the same pattern of generalized quadrupeds, where the superior cortex is thinner than the inferior one. In contrast, knuckle-walkers and specialized suspensory taxa display a more homogeneous distribution of cortical bone. These different patterns, probably related to the range of movement at the hip joint and concomitant differences in the load stresses at the femoral neck, are very promising for making locomotor inferences in extinct primates. To evaluate the utility of this feature in the fossil record, we relied on computed tomography applied to the femur of the Late Miocene hominoid Hispanopithecus laietanus as a test-case study. Both an orthograde body plan and orang-like suspensory adaptations had been previously documented for this taxon on different anatomical grounds, leading to the hypothesis that this fossil ape should display a modern ape-like distribution of femoral neck cortical thickness. This is confirmed by the results of this study, leading to the conclusion that Hispanopithecus represents the oldest evidence of a homogeneous cortical bone distribution in the hominoid fossil record. Our results therefore strengthen the utility of femoral neck cortical thickness for making paleobiological inferences on the locomotor repertoire of fossil primates. This feature would be particularly useful for assessing the degree of orthograde arboreal locomotor behaviors vs. terrestrial bipedalism in putative early hominins. Copyright © 2012 Wiley Periodicals, Inc.

  14. Paleo-Antarctic rainforest into the modern Old World tropics: the rich past and threatened future of the "southern wet forest survivors".

    PubMed

    Kooyman, Robert M; Wilf, Peter; Barreda, Viviana D; Carpenter, Raymond J; Jordan, Gregory J; Sniderman, J M Kale; Allen, Andrew; Brodribb, Timothy J; Crayn, Darren; Feild, Taylor S; Laffan, Shawn W; Lusk, Christopher H; Rossetto, Maurizio; Weston, Peter H

    2014-12-01

    • Have Gondwanan rainforest floral associations survived? Where do they occur today? Have they survived continuously in particular locations? How significant is their living floristic signal? We revisit these classic questions in light of significant recent increases in relevant paleobotanical data.• We traced the extinction and persistence of lineages and associations through the past across four now separated regions-Australia, New Zealand, Patagonia, and Antarctica-using fossil occurrence data from 63 well-dated Gondwanan rainforest sites and 396 constituent taxa. Fossil sites were allocated to four age groups: Cretaceous, Paleocene-Eocene, Neogene plus Oligocene, and Pleistocene. We compared the modern and ancient distributions of lineages represented in the fossil record to see if dissimilarity increased with time. We quantified similarity-dissimilarity of composition and taxonomic structure among fossil assemblages, and between fossil and modern assemblages.• Strong similarities between ancient Patagonia and Australia confirmed shared Gondwanan rainforest history, but more of the lineages persisted in Australia. Samples of ancient Australia grouped with the extant floras of Australia, New Guinea, New Caledonia, Fiji, and Mt. Kinabalu. Decreasing similarity through time among the regional floras of Antarctica, Patagonia, New Zealand, and southern Australia reflects multiple extinction events.• Gondwanan rainforest lineages contribute significantly to modern rainforest community assembly and often co-occur in widely separated assemblages far from their early fossil records. Understanding how and where lineages from ancient Gondwanan assemblages co-occur today has implications for the conservation of global rainforest vegetation, including in the Old World tropics. © 2014 Botanical Society of America, Inc.

  15. Functional Morphology in Paleobiology: Origins of the Method of 'Paradigms'.

    PubMed

    Rudwick, Martin J S

    2018-03-01

    From the early nineteenth century, the successful use of fossils in stratigraphy oriented paleontology (and particularly the study of fossil invertebrates) towards geology. The consequent marginalising of biological objectives was countered in the twentieth century by the rise of 'Paläobiologie', first in the German cultural area and only later, as 'paleobiology', in the anglophone world. Several kinds of paleobiological research flourished internationally after the Second World War, among them the novel field of 'paleoecology'. Within this field there were attempts to apply functional morphology to the problematical cases of fossil organisms, for which functions cannot be observed directly. This article describes the origins of the kind of functional inference for fossils that I proposed in 1961 as the method of 'paradigms' (a year before Thomas Kuhn made that word more widely familiar with a quite different meaning). Here I summarize some of my 'worked exemplars', which were intended to show the paradigm method in action. These case-studies were all taken from the paleontologically important phylum of the Brachiopoda, but the method was claimed to have much wider implications for the interpretation of the fossil record in terms of adaptive evolution. This article takes the history of the paradigm method as far as the late 1960s. I hope to trace, in a sequel, its ambivalent fate during the 1970s and beyond, when for example Gould's critique of 'the adaptationist programme' and the rise of computer-based quantitative methods for the evolutionary interpretation of the fossil record led to the relative eclipse of functional morphology in paleontology.

  16. Uncertainty in the Timing of Origin of Animals and the Limits of Precision in Molecular Timescales

    PubMed Central

    dos Reis, Mario; Thawornwattana, Yuttapong; Angelis, Konstantinos; Telford, Maximilian J.; Donoghue, Philip C.J.; Yang, Ziheng

    2015-01-01

    Summary The timing of divergences among metazoan lineages is integral to understanding the processes of animal evolution, placing the biological events of species divergences into the correct geological timeframe. Recent fossil discoveries and molecular clock dating studies have suggested a divergence of bilaterian phyla >100 million years before the Cambrian, when the first definite crown-bilaterian fossils occur. Most previous molecular clock dating studies, however, have suffered from limited data and biases in methodologies, and virtually all have failed to acknowledge the large uncertainties associated with the fossil record of early animals, leading to inconsistent estimates among studies. Here we use an unprecedented amount of molecular data, combined with four fossil calibration strategies (reflecting disparate and controversial interpretations of the metazoan fossil record) to obtain Bayesian estimates of metazoan divergence times. Our results indicate that the uncertain nature of ancient fossils and violations of the molecular clock impose a limit on the precision that can be achieved in estimates of ancient molecular timescales. For example, although we can assert that crown Metazoa originated during the Cryogenian (with most crown-bilaterian phyla diversifying during the Ediacaran), it is not possible with current data to pinpoint the divergence events with sufficient accuracy to test for correlations between geological and biological events in the history of animals. Although a Cryogenian origin of crown Metazoa agrees with current geological interpretations, the divergence dates of the bilaterians remain controversial. Thus, attempts to build evolutionary narratives of early animal evolution based on molecular clock timescales appear to be premature. PMID:26603774

  17. Fossilization of feathers

    NASA Astrophysics Data System (ADS)

    Davis, Paul G.; Briggs, Derek E. G.

    1995-09-01

    Scanning electron microscopy of feathers has revealed evidence that a bacterial glycocalyx (a network of exocellular polysaccharide fibers) played a role in promoting their fossilization in some cases. This mode of preservation has not been reported in other soft tissues. The majority of fossil feathers are preserved as carbonized traces. More rarely, bacteria on the surface are replicated by authigenic minerals (bacterial autolithification). The feathers of Archaeopteryx are preserved mainly by imprintation following early lithification of the substrate and decay of the feather. Lacustrine settings provide the most important taphonomic window for feather preservation. Preservation in terrestrial and normal-marine settings involves very different processes (in amber and in authigenically mineralized coprolites, respectively). Therefore, there may be a significant bias in the avian fossil record in favor of inland water habitats.

  18. Compression fossil Mymaridae (Hymenoptera) from Kishenehn oil shales, with description of two new genera and review of Tertiary amber genera

    PubMed Central

    Huber, John T.; Greenwalt, Dale

    2011-01-01

    Abstract Compression fossils of three genera and six species of Mymaridae (Hymenoptera: Chalcidoidea) are described from 46 million year old Kishenehn oil shales in Montana, USA. Two new genera are described: Eoeustochus Huber, gen. n., with two included species, Eoeustochus kishenehn Huber (type species) and Eoeustochus borchersi Huber, sp. n., and Eoanaphes, gen. n., with Eoanaphes stethynioides Huber, sp. n. Three new species of Gonatocerus are also described, Gonatocerus greenwalti Huber, sp. n. , Gonatocerus kootenai Huber, sp. n., and Gonatocerus rasnitsyni Huber, sp. n. Previously described amber fossil genera are discussed and five genera in Baltic amber are tentatively recorded as fossils: Anagroidea, Camptoptera, Dorya, Eustochus, and Mimalaptus. PMID:22259294

  19. First description of a fossil chamaeleonid from Greece and its relevance for the European biogeographic history of the group

    NASA Astrophysics Data System (ADS)

    Georgalis, Georgios L.; Villa, Andrea; Delfino, Massimo

    2016-02-01

    The fossil record of Chamaeleonidae is very scarce and any new specimen is therefore considered important for our understanding of the evolutionary and biogeographic history of the group. New specimens from the early Miocene of Aliveri (Evia Island), Greece constitute the only fossils of these lizards from southeastern Europe. Skull roofing material is tentatively attributed to the Czech species Chamaeleo cf. andrusovi, revealing a range extension for this taxon, whereas tooth-bearing elements are described as indeterminate chamaeleonids. The Aliveri fossils rank well among the oldest known reptiles from Greece, provide evidence for the dispersal routes of chameleons out of Africa towards the European continent and, additionally, imply strong affinities with coeval chamaeleonids from Central Europe.

  20. An ensemble approach to reconstructing 20th century climate trends in data-sparse regions of the tropical Pacific using young fossil corals

    NASA Astrophysics Data System (ADS)

    Hitt, N. T.; Cobb, K. M.; Sayani, H. R.; Grothe, P. R.; Atwood, A. R.; O'Connor, G.; Chen, T.; Hagos, M. M.; Deocampo, D.; Edwards, R. L.; Cheng, H.; Lu, Y.; Thompson, D. M.

    2016-12-01

    Sea-surface temperature (SST) variability in the central tropical Pacific drives global-scale responses through atmospheric teleconnections, so the response of this region to anthropogenic forcing has important implications for regional climate responses in many areas. However, quantification of anthropogenic SST trends in the central tropical Pacific is complicated by the fact that instrumental SST observations in this region are extremely limited prior to 1950, with trends of opposite sign observed across the various gridded instrumental datasets (Deser et al., 2010). Researchers have turned to multi-century coral records to reconstruct ocean temperatures through time, but the paucity of such records prohibits the generation of uncertainty estimates. In this study, we use a large collection of U/Th-dated fossil corals that to investigate a new ensemble approach to reconstructing temperature from the Central Pacific over the late 20th century. Here we combine monthly-resolved d18O and Sr/Ca from 8 5-14 year long coral records from Christmas Island (2°N, 157°W) to quantify temperature and hydrological trends in this region from 1930 to present. We compare our fossil coral ensemble reconstruction to a long modern coral core from this site that extends back to 1940, as well as to gridded SST datasets. We also provide the first well-replicated coral d18O and Sr/Ca records across both the 1997/98 and 2015/2016 El Nino events, comparing the strength of these two events in the context of long-term temperature trends observed in our longer reconstruction. We conclude that the fossil coral ensemble approach provides a robust means of reconstructing 20th century climate trends. Deser et al., 2010, GRL, doi: 10.1029/2010GL043321

  1. Sequences, stratigraphy and scenarios: what can we say about the fossil record of the earliest tetrapods?

    PubMed

    Friedman, Matt; Brazeau, Martin D

    2011-02-07

    Past research on the emergence of digit-bearing tetrapods has led to the widely accepted premise that this important evolutionary event occurred during the Late Devonian. The discovery of convincing digit-bearing tetrapod trackways of early Middle Devonian age in Poland has upset this orthodoxy, indicating that current scenarios which link the timing of the origin of digited tetrapods to specific events in Earth history are likely to be in error. Inspired by this find, we examine the fossil record of early digit-bearing tetrapods and their closest fish-like relatives from a statistical standpoint. We find that the Polish trackways force a substantial reconsideration of the nature of the early tetrapod record when only body fossils are considered. However, the effect is less drastic (and often not statistically significant) when other reliably dated trackways that were previously considered anachronistic are taken into account. Using two approaches, we find that 95 per cent credible and confidence intervals for the origin of digit-bearing tetrapods extend into the Early Devonian and beyond, spanning late Emsian to mid Ludlow. For biologically realistic diversity models, estimated genus-level preservation rates for Devonian digited tetrapods and their relatives range from 0.025 to 0.073 per lineage-million years, an order of magnitude lower than species-level rates for groups typically considered to have dense records. Available fossils of early digited tetrapods and their immediate relatives are adequate for documenting large-scale patterns of character acquisition associated with the origin of terrestriality, but low preservation rates coupled with clear geographical and stratigraphic sampling biases caution against building scenarios for the origin of digits and terrestrialization tied to the provenance of particular specimens or faunas.

  2. The evolution and distribution of life in the Precambrian eon-global perspective and the Indian record.

    PubMed

    Sharma, M; Shukla, Y

    2009-11-01

    The discovery of Precambrian microfossils in 1954 opened a new vista of investigations in the field of evolution of life. Although the Precambrian encompasses 87% of the earth's history, the pace of organismal evolution was quite slow. The life forms as categorised today in the three principal domains viz. the Bacteria, the Archaea and the Eucarya evolved during this period. In this paper, we review the advancements made in the Precambrian palaeontology and its contribution in understanding the evolution of life forms on earth. These studies have enriched the data base on the Precambrian life. Most of the direct evidence includes fossil prokaryotes, protists, advanced algal fossils, acritarchs, and the indirect evidence is represented by the stromatolites, trace fossils and geochemical fossils signatures. The Precambrian fossils are preserved in the form of compressions, impressions, and permineralized and biomineralized remains.

  3. Nitrogen-fixing symbiosis inferred from stable isotope analysis of fossil tree rings from the Oligocene of Ethiopia

    Treesearch

    Erik L. Gulbranson; Bonnie F. Jacobs; William C. Hockaday; Michael C. Wiemann; Lauren A. Michel; Kaylee Richards; John W. Kappelman

    2017-01-01

    The acquisition of reduced nitrogen (N) is essential for plant life, and plants have developed numerous strategies and symbioses with soil microorganisms to acquire this form of N. The evolutionary history of specific symbiotic relationships of plants with soil bacteria, however, lacks evidence from the fossil record confirming these mutualistic relationships. Here we...

  4. Estimation of divergence times in cnidarian evolution based on mitochondrial protein-coding genes and the fossil record.

    PubMed

    Park, Eunji; Hwang, Dae-Sik; Lee, Jae-Seong; Song, Jun-Im; Seo, Tae-Kun; Won, Yong-Jin

    2012-01-01

    The phylum Cnidaria is comprised of remarkably diverse and ecologically significant taxa, such as the reef-forming corals, and occupies a basal position in metazoan evolution. The origin of this phylum and the most recent common ancestors (MRCAs) of its modern classes remain mostly unknown, although scattered fossil evidence provides some insights on this topic. Here, we investigate the molecular divergence times of the major taxonomic groups of Cnidaria (27 Hexacorallia, 16 Octocorallia, and 5 Medusozoa) on the basis of mitochondrial DNA sequences of 13 protein-coding genes. For this analysis, the complete mitochondrial genomes of seven octocoral and two scyphozoan species were newly sequenced and combined with all available mitogenomic data from GenBank. Five reliable fossil dates were used to calibrate the Bayesian estimates of divergence times. The molecular evidence suggests that cnidarians originated 741 million years ago (Ma) (95% credible region of 686-819), and the major taxa diversified prior to the Cambrian (543 Ma). The Octocorallia and Scleractinia may have originated from radiations of survivors of the Permian-Triassic mass extinction, which matches their fossil record well. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Soils, time, and primate paleoenvironments

    USGS Publications Warehouse

    Bown, T.M.; Kraus, M.J.

    1993-01-01

    Soils are the skin of the earth. From both poles to the equator, wherever rocks or sediment are exposed at the surface, soils are forming through the physical and chemical action of climate and living organisms. The physical attributes (color, texture, thickness) and chemical makeup of soils vary considerably, depending on the composition of the parent material and other variables: temperature, rainfall and soil moisture, vegetation, soil fauna, and the length of time that soil-forming processes have been at work. United States soil scientists1 have classified modern soils into ten major groups and numerous subgroups, each reflecting the composition and architecture of the soils and, to some extent, the processes that led to their formation. The physical and chemical processes of soil formation have been active throughout geologic time; the organic processes have been active at least since the Ordovician.2 Consequently, nearly all sedimentary rocks that were deposited in nonmarine settings and exposed to the elements contain a record of ancient, buried soils or paleosols. A sequence of these rocks, such as most ancient fluvial (stream) deposits, provides a record of soil paleoenvironments through time. Paleosols are also repositories of the fossils of organisms (body fossils) and the traces of those organisms burrowing, food-seeking, and dwelling activities (ichnofossils). Indeed, most fossil primates are found in paleosols. Careful study of ancient soils gives new, valuable insights into the correct temporal reconstruction of the primate fossil record and the nature of primate paleoenvironments. ?? 1993 Wiley-Liss, Inc.

  6. Direct and indirect fossil records of megachilid bees from the Paleogene of Central Europe (Hymenoptera: Megachilidae)

    NASA Astrophysics Data System (ADS)

    Wedmann, Sonja; Wappler, Torsten; Engel, Michael S.

    2009-06-01

    Aside from pollen and nectar, bees of the subfamily Megachilinae are closely associated with plants as a source of materials for nest construction. Megachilines use resins, masticated leaves, trichomes and other plant materials sometimes along with mud to construct nests in cavities or in soil. Among these, the leafcutter bees ( Megachile s.l.) are the most famous for their behaviour to line their brood cells with discs cut from various plants. We report on fossil records of one body fossil of a new non-leafcutting megachiline and of 12 leafcuttings from three European sites—Eckfeld and Messel, both in Germany (Eocene), and Menat, France (Paleocene). The excisions include the currently earliest record of probable Megachile activity and suggest the presence of such bees in the Paleocene European fauna. Comparison with extant leafcuttings permits the interpretation of a minimal number of species that produced these excisions. The wide range of size for the leafcuttings indirectly might suggest at least two species of Megachile for the fauna of Messel in addition to the other megachiline bee described here. The presence of several cuttings on most leaves from Eckfeld implies that the preferential foraging behaviour of extant Megachile arose early in megachiline evolution. These results demonstrate that combined investigation of body and trace fossils complement each other in understanding past biodiversity, the latter permitting the detection of taxa not otherwise directly sampled and inferences on behavioural evolution.

  7. The origin and early evolution of Sauria: reassessing the permian Saurian fossil record and the timing of the crocodile-lizard divergence.

    PubMed

    Ezcurra, Martín D; Scheyer, Torsten M; Butler, Richard J

    2014-01-01

    Sauria is the crown-group of Diapsida and is subdivided into Lepidosauromorpha and Archosauromorpha, comprising a high percentage of the diversity of living and fossil tetrapods. The split between lepidosauromorphs and archosauromorphs (the crocodile-lizard, or bird-lizard, divergence) is considered one of the key calibration points for molecular analyses of tetrapod phylogeny. Saurians have a very rich Mesozoic and Cenozoic fossil record, but their late Paleozoic (Permian) record is problematic. Several Permian specimens have been referred to Sauria, but the phylogenetic affinity of some of these records remains questionable. We reexamine and review all of these specimens here, providing new data on early saurian evolution including osteohistology, and present a new morphological phylogenetic dataset. We support previous studies that find that no valid Permian record for Lepidosauromorpha, and we also reject some of the previous referrals of Permian specimens to Archosauromorpha. The most informative Permian archosauromorph is Protorosaurus speneri from the middle Late Permian of Western Europe. A historically problematic specimen from the Late Permian of Tanzania is redescribed and reidentified as a new genus and species of basal archosauromorph: Aenigmastropheus parringtoni. The supposed protorosaur Eorasaurus olsoni from the Late Permian of Russia is recovered among Archosauriformes and may be the oldest known member of the group but the phylogenetic support for this position is low. The assignment of Archosaurus rossicus from the latest Permian of Russia to the archosauromorph clade Proterosuchidae is supported. Our revision suggests a minimum fossil calibration date for the crocodile-lizard split of 254.7 Ma. The occurrences of basal archosauromorphs in the northern (30°N) and southern (55°S) parts of Pangea imply a wider paleobiogeographic distribution for the group during the Late Permian than previously appreciated. Early archosauromorph growth strategies appear to be more diverse than previously suggested based on new data on the osteohistology of Aenigmastropheus.

  8. The Origin and Early Evolution of Sauria: Reassessing the Permian Saurian Fossil Record and the Timing of the Crocodile-Lizard Divergence

    PubMed Central

    Ezcurra, Martín D.; Scheyer, Torsten M.; Butler, Richard J.

    2014-01-01

    Sauria is the crown-group of Diapsida and is subdivided into Lepidosauromorpha and Archosauromorpha, comprising a high percentage of the diversity of living and fossil tetrapods. The split between lepidosauromorphs and archosauromorphs (the crocodile-lizard, or bird-lizard, divergence) is considered one of the key calibration points for molecular analyses of tetrapod phylogeny. Saurians have a very rich Mesozoic and Cenozoic fossil record, but their late Paleozoic (Permian) record is problematic. Several Permian specimens have been referred to Sauria, but the phylogenetic affinity of some of these records remains questionable. We reexamine and review all of these specimens here, providing new data on early saurian evolution including osteohistology, and present a new morphological phylogenetic dataset. We support previous studies that find that no valid Permian record for Lepidosauromorpha, and we also reject some of the previous referrals of Permian specimens to Archosauromorpha. The most informative Permian archosauromorph is Protorosaurus speneri from the middle Late Permian of Western Europe. A historically problematic specimen from the Late Permian of Tanzania is redescribed and reidentified as a new genus and species of basal archosauromorph: Aenigmastropheus parringtoni. The supposed protorosaur Eorasaurus olsoni from the Late Permian of Russia is recovered among Archosauriformes and may be the oldest known member of the group but the phylogenetic support for this position is low. The assignment of Archosaurus rossicus from the latest Permian of Russia to the archosauromorph clade Proterosuchidae is supported. Our revision suggests a minimum fossil calibration date for the crocodile-lizard split of 254.7 Ma. The occurrences of basal archosauromorphs in the northern (30°N) and southern (55°S) parts of Pangea imply a wider paleobiogeographic distribution for the group during the Late Permian than previously appreciated. Early archosauromorph growth strategies appear to be more diverse than previously suggested based on new data on the osteohistology of Aenigmastropheus. PMID:24586565

  9. Global Climate Change and Sedimentation Patterns in the Neogene Baringo Basin, Central Kenya Rift

    NASA Astrophysics Data System (ADS)

    Deino, A. L.; Kingston, J. D.; Wilson, K. E.; Hill, A.

    2010-12-01

    The Tugen Hills are part of a ~100 km N-S tilted fault block, just west of Lake Baringo within the Central Kenyan Rift Valley. Sediments exposed in this block span the last 16 Ma and have yielded abundant and diverse fossil assemblages including a number of hominoid and hominid specimens. Much research has also focused on documenting the paleoecology of the succession through analyses of fossil floral, faunal, and biogeochemical proxies. Data from the Tugen Hills have revealed a complex evolutionary history of ecosystems characterized by spatial and temporal heterogeneity with no clear evidence of any long-term trends. While these studies suggest that the patterns of heterogeneity may be shifting at short time-scales (104-105 ka), limited temporal resolution has until now generally precluded assessments of environmental change at these scales. Recently published investigations in the Baringo Basin have provided evidence of orbitally mediated environmental change over periods which include hominid fossil localities (Deino et al., 2006; Kingston et al., 2007). The Baringo data represent the only empirical evidence for significant local environmental shifts that can directly be correlated with insolation patterns in equatorial Africa. Sedimentation patterns in the Baringo Basin between ca. 2.70 and 2.55 Ma, controlled by climatic factors, provide a detailed paleoenvironmental record including a sequence of diatomites that record rhythmic cycling of major freshwater lake systems consistent with ~23 kyr Milankovitch precessional periodicity modulated by eccentricity. The timing of the paleolakes most closely approximates insolation maximum for the June/July 30○N insolation curve, suggesting that precipitation patterns in the region are controlled by the African monsoon system. More recent fieldwork has identified older sequences that similarly demonstrate rhythmic cycling of freshwater lake systems. Preliminary 40Ar/39Ar dating of intercalated tephra reveals that these deposits occur at ~3.7-3.8 Ma, ~4.8-4.9 Ma, and ~5.7-5.8 Ma, though each occurrence is unique in terms of the number of cycles recorded, the thickness of diatomites, and the nature of the non-lacustrine sediments. The oldest of these packages is characterized by very thick (>50 m), continuous diatomite accumulation interrupted only by deposition of pyroclastic deposits. This unit is laterally quite extensive, with exposures extending over 150 km2, indicating the establishment of a large, deep, and persistent paleolake. The development of this major water body, possibly the largest recorded in the Baringo Basin, may be in part a consequence of hemisphere-wide climate disruptions accompanying dessication events in the Mediterranean during the Messinian.

  10. Upper Cretaceous molluscan record along a transect from Virden, New Mexico, to Del Rio, Texas

    USGS Publications Warehouse

    Cobban, W.A.; Hook, S.C.; McKinney, K.C.

    2008-01-01

    Updated age assignments and new collections of molluscan fossils from lower Cenomanian through upper Campanian strata in Texas permit a much refined biostratigraphic correlation with the rocks of New Mexico and the Western Interior. Generic names of many Late Cretaceous ammonites and inoceramid bivalves from Texas are updated to permit this correlation. Strata correlated in the west-to-east transect include the lower Cenomanian Beartooth Quartzite and Sarten Sandstone of southwest New Mexico, and the Eagle Mountains Formation, Del Rio Clay, Buda Limestone, and. basal beds of the Chispa Summit, Ojinaga, and Boquillas Formations of the Texas-Mexico border area. Middle Cenomanian strata are lacking in southwestern New Mexico but are present in the lower parts of the Chispa Summit and Boquillas Formations in southwest Texas. Upper Cenomanian and lower Turonian rocks are present at many localities in New Mexico and Texas in the Mancos Shale and Chispa Summit, Ojinaga, and Boquillas Formations. Middle Turonian and younger rocks seem to be entirely nonmarine in southwestern New Mexico, but they are marine in the Rio Grande area in the Chispa. Summit, Ojinaga, and Boquillas Formations. The upper part of the Chispa Summit and Boquillas contain late Turonian fossils. Rocks of Coniacian and Santonian age are present high in the Chispa Summit, Ojinaga, and Boquillas Formations, and in the lower part of the Austin. The San Carlos, Aguja, Pen, and Austin Formations contain fossils of Campanian age. Fossils representing at least 38 Upper Cretaceous ammonite zones are present along the transect. Collections made in recent years in southwestern New Mexico and at Sierra de Cristo Rey just west of downtown El Paso, Texas, have been well treated and do not need revision. Taxonomic names and zonations published in the pre-1970 literature on the Rio Grande area of Texas have been updated. New fossil collections from the Big Bend National Park, Texas, allow for a much refined correlation in the central part of the transect in Texas. Middle Turonian-Campanian zonation in southwest Texas is based mainly on ammonites of the Family Collignoniceratidae, as opposed to the scaphitid and baculitid ammonites that are especially abundant farther north in the Western Interior.

  11. Missing saiga on the taiga.

    PubMed

    Kuhn, Tyler S; Mooers, Arne Ø

    2010-11-01

    Conservation biologists understand that linking demographic histories of species at risk with causal biotic and abiotic events should help us predict the effects of ongoing biotic and abiotic change. In parallel, researchers have started to use ancient genetic information (aDNA) to explore the demographic histories of a number of species present in the Pleistocene fossil record (see, e.g. Shapiro et al. 2004). However, aDNA studies have primarily focused on identifying long-term population trends, linked to climate variability and the role of early human activity. Population trends over more recent time, e.g. during the Holocene, have been poorly explored, partly owing to analytical limitations. In this issue, Campos et al. (2010a) highlight the potential of aDNA to investigate demographic patterns over such recent time periods for the compelling and endangered saiga antelope Saiga tatarica (Fig. 1). The time may come when past and current demography can be combined to produce a seamless record. [Figure: see text]. © 2010 Blackwell Publishing Ltd.

  12. Neogene amphibians and reptiles (Caudata, Anura, Gekkota, Lacertilia, and Testudines) from the south of Western Siberia, Russia, and Northeastern Kazakhstan

    PubMed Central

    Zazhigin, Vladimir S.

    2017-01-01

    Background The present-day amphibian and reptile fauna of Western Siberia are the least diverse of the Palaearctic Realm, as a consequence of the unfavourable climatic conditions that predominate in this region. The origin and emergence of these herpetofaunal groups are poorly understood. Aside from the better-explored European Neogene localities yielding amphibian and reptile fossil remains, the Neogene herpetofauna of Western Asia is understudied. The few available data need critical reviews and new interpretations, taking into account the more recent records of the European herpetofauna. The comparison of this previous data with that of European fossil records would provide data on palaeobiogeographic affiliations of the region as well as on the origin and emergence of the present-day fauna of Western Siberia. An overview of the earliest occurrences of certain amphibian lineages is still needed. In addition, studies that address such knowledge gaps can be useful for molecular biologists in their calibration of molecular clocks. Methods and Results In this study, we considered critically reviewed available data from amphibian and reptile fauna from over 40 Western Siberian, Russian and Northeastern Kazakhstan localities, ranging from the Middle Miocene to Early Pleistocene. Herein, we provided new interpretations that arose from our assessment of the previously published and new data. More than 50 amphibians and reptile taxa were identified belonging to families Hynobiidae, Cryptobranchidae, Salamandridae, Palaeobatrachidae, Bombinatoridae, Pelobatidae, Hylidae, Bufonidae, Ranidae, Gekkonidae, Lacertidae, and Emydidae. Palaeobiogeographic analyses were performed for these groups and palaeoprecipitation values were estimated for 12 localities, using the bioclimatic analysis of herpetofaunal assemblages. Conclusion The Neogene assemblage of Western Siberia was found to be dominated by groups of European affinities, such as Palaeobatrachidae, Bombina, Hyla, Bufo bufo, and a small part of this assemblage included Eastern Palaearctic taxa (e.g. Salamandrella, Tylototriton, Bufotes viridis). For several taxa (e.g. Mioproteus, Hyla, Bombina, Rana temporaria), the Western Siberian occurrences represented their most eastern Eurasian records. The most diverse collection of fossil remains was found in the Middle Miocene. Less diversity has been registered towards the Early Pleistocene, potentially due to the progressive cooling of the climate in the Northern Hemisphere. The results of our study showed higher-amplitude changes of precipitation development in Western Siberia from the Early Miocene to the Pliocene, than previously assumed. PMID:28348925

  13. Neogene amphibians and reptiles (Caudata, Anura, Gekkota, Lacertilia, and Testudines) from the south of Western Siberia, Russia, and Northeastern Kazakhstan.

    PubMed

    Vasilyan, Davit; Zazhigin, Vladimir S; Böhme, Madelaine

    2017-01-01

    The present-day amphibian and reptile fauna of Western Siberia are the least diverse of the Palaearctic Realm, as a consequence of the unfavourable climatic conditions that predominate in this region. The origin and emergence of these herpetofaunal groups are poorly understood. Aside from the better-explored European Neogene localities yielding amphibian and reptile fossil remains, the Neogene herpetofauna of Western Asia is understudied. The few available data need critical reviews and new interpretations, taking into account the more recent records of the European herpetofauna. The comparison of this previous data with that of European fossil records would provide data on palaeobiogeographic affiliations of the region as well as on the origin and emergence of the present-day fauna of Western Siberia. An overview of the earliest occurrences of certain amphibian lineages is still needed. In addition, studies that address such knowledge gaps can be useful for molecular biologists in their calibration of molecular clocks. In this study, we considered critically reviewed available data from amphibian and reptile fauna from over 40 Western Siberian, Russian and Northeastern Kazakhstan localities, ranging from the Middle Miocene to Early Pleistocene. Herein, we provided new interpretations that arose from our assessment of the previously published and new data. More than 50 amphibians and reptile taxa were identified belonging to families Hynobiidae, Cryptobranchidae, Salamandridae, Palaeobatrachidae, Bombinatoridae, Pelobatidae, Hylidae, Bufonidae, Ranidae, Gekkonidae, Lacertidae, and Emydidae. Palaeobiogeographic analyses were performed for these groups and palaeoprecipitation values were estimated for 12 localities, using the bioclimatic analysis of herpetofaunal assemblages. The Neogene assemblage of Western Siberia was found to be dominated by groups of European affinities, such as Palaeobatrachidae, Bombina, Hyla , Bufo bufo , and a small part of this assemblage included Eastern Palaearctic taxa (e.g. Salamandrella , Tylototriton , Bufotes viridis ). For several taxa (e.g. Mioproteus, Hyla, Bombina , Rana temporaria ), the Western Siberian occurrences represented their most eastern Eurasian records. The most diverse collection of fossil remains was found in the Middle Miocene. Less diversity has been registered towards the Early Pleistocene, potentially due to the progressive cooling of the climate in the Northern Hemisphere. The results of our study showed higher-amplitude changes of precipitation development in Western Siberia from the Early Miocene to the Pliocene, than previously assumed.

  14. Palynologically calibrated vertebrate record from North Dakota consistent with abrupt dinosaur extinction at the Cretaceous-Tertiary boundary

    USGS Publications Warehouse

    Pearson, D.A.; Schaefer, T.; Johnson, K.R.; Nichols, D.J.

    2001-01-01

    New data from 17 Cretaceous-Tertiary (K-T) boundary sections and 53 vertebrate sites in the Hell Creek and Fort Union Formations in southwestern North Dakota document a 1.76 m barren interval between the highest Cretaceous vertebrate fossils and the palynologically recognized K-T boundary. The boundary is above the formational contact at 15 localities and coincident with it at two, demonstrating that the formational contact is diachronous. Dinosaurs are common in the highest Cretaceous vertebrate samples and a partial dinosaur skeleton in the Fort Union Formation is the highest recorded Cretaceous vertebrate fossil in this area.

  15. Eocene primates of South America and the African origins of New World monkeys

    NASA Astrophysics Data System (ADS)

    Bond, Mariano; Tejedor, Marcelo F.; Campbell, Kenneth E.; Chornogubsky, Laura; Novo, Nelson; Goin, Francisco

    2015-04-01

    The platyrrhine primates, or New World monkeys, are immigrant mammals whose fossil record comes from Tertiary and Quaternary sediments of South America and the Caribbean Greater Antilles. The time and place of platyrrhine origins are some of the most controversial issues in primate palaeontology, although an African Palaeogene ancestry has been presumed by most primatologists. Until now, the oldest fossil records of New World monkeys have come from Salla, Bolivia, and date to approximately 26 million years ago, or the Late Oligocene epoch. Here we report the discovery of new primates from the ?Late Eocene epoch of Amazonian Peru, which extends the fossil record of primates in South America back approximately 10 million years. The new specimens are important for understanding the origin and early evolution of modern platyrrhine primates because they bear little resemblance to any extinct or living South American primate, but they do bear striking resemblances to Eocene African anthropoids, and our phylogenetic analysis suggests a relationship with African taxa. The discovery of these new primates brings the first appearance datum of caviomorph rodents and primates in South America back into close correspondence, but raises new questions about the timing and means of arrival of these two mammalian groups.

  16. Taphonomic bias in pollen and spore record: a review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisk, L.H.

    The high dispersibility and ease of pollen and spore transport have led researchers to conclude erroneously that fossil pollen and spore floras are relatively complete and record unbiased representations of the regional vegetation extant at the time of sediment deposition. That such conclusions are unjustified is obvious when the authors remember that polynomorphs are merely organic sedimentary particles and undergo hydraulic sorting not unlike clastic sedimentary particles. Prior to deposition in the fossil record, pollen and spores can be hydraulically sorted by size, shape, and weight, subtly biasing relative frequencies in fossil assemblages. Sorting during transport results in palynofloras whosemore » composition is environmentally dependent. Therefore, depositional environment is an important consideration to make correct inferences on the source vegetation. Sediment particle size of original rock samples may contain important information on the probability of a taphonomically biased pollen and spore assemblage. In addition, a reasonable test of hydraulic sorting is the distribution of pollen grain sizes and shapes in each assemblage. Any assemblage containing a wide spectrum of grain sizes and shapes has obviously not undergone significant sorting. If unrecognized, taphonomic bias can lead to paleoecologic, paleoclimatic, and even biostratigraphic misinterpretations.« less

  17. Identification of Preferential Paths of Fossil Carbon within Water Resource Recovery Facilities via Radiocarbon Analysis.

    PubMed

    Tseng, Linda Y; Robinson, Alice K; Zhang, Xiaying; Xu, Xiaomei; Southon, John; Hamilton, Andrew J; Sobhani, Reza; Stenstrom, Michael K; Rosso, Diego

    2016-11-15

    The Intergovernmental Panel on Climate Change (IPCC) reported that all carbon dioxide (CO 2 ) emissions generated by water resource recovery facilities (WRRFs) during treatment are modern, based on available literature. Therefore, such emissions were omitted from IPCC's greenhouse gas (GHG) accounting procedures. However, a fraction of wastewater's carbon is fossil in origin. We hypothesized that since the fossil carbon entering municipal WRRFs is mostly from soaps and detergents as dissolved organic matter, its fate can be selectively determined during the universally applied separation treatment processes. Analyzing radiocarbon at different treatment points within municipal WRRFs, we verified that the fossil content could amount to 28% in primary influent and showed varying distribution leaving different unit operations. We recorded the highest proportion of fossil carbon leaving the secondary treatment as off-gas and as solid sludge (averaged 2.08 kg fossil-CO 2 -emission-potential m -3 wastewater treated). By including fossil CO 2 , total GHG emission in municipal WRRFs increased 13%, and 23% if an on-site energy recovery system exists although much of the postdigestion fossil carbon remained in biosolids rather than in biogas, offering yet another carbon sequestration opportunity during biosolids handling. In comparison, fossil carbon contribution to GHG emission can span from negligible to substantial in different types of industrial WRRFs. With such a considerable impact, CO 2 should be analyzed for each WRRF and not omitted from GHG accounting.

  18. Bilobate leaves of Bauhinia (Leguminosae, Caesalpinioideae, Cercideae) from the middle Miocene of Fujian Province, southeastern China and their biogeographic implications.

    PubMed

    Lin, Yanxiang; Wong, William Oki; Shi, Gongle; Shen, Si; Li, Zhenyu

    2015-11-16

    Morphological and molecular phylogenetic studies suggest that the pantropical genus Bauhinia L. s.l. (Bauhiniinae, Cercideae, Leguminosae) is paraphyletic and may as well be subdivided into nine genera, including Bauhinia L. s.s. and its allies. Their leaves are usually characteristic bilobate and are thus easily recognized in the fossil record. This provides the opportunity to understand the early evolution, diversification, and biogeographic history of orchid trees from an historical perspective under the framework of morphological and molecular studies. The taxonomy, distribution, and leaf architecture of Bauhinia and its allies across the world are summarized in detail, which formed the basis for classifying the bilobate leaf fossils and evaluating the fossil record and biogeography of Bauhinia. Two species of Bauhinia are described from the middle Miocene Fotan Group of Fujian Province, southeastern China. Bauhinia ungulatoides sp. nov. is characterized by shallowly to moderately bilobate, pulvinate leaves with shallowly cordate bases and acute apices on each lobe, as well as paracytic stomatal complexes. Bauhinia fotana F.M.B. Jacques et al. emend. possesses moderately bilobate, pulvinate leaves with moderately to deeply cordate bases and acute or slightly obtuse apices on each lobe. Bilobate leaf fossils Bauhinia ungulatoides and B. fotana together with other late Paleogene - early Neogene Chinese record of the genus suggest that Bauhinia had been diverse in South China by the late Paleogene. Their great similarities to some species from South America and South Asia respectively imply that Bauhinia might have undergone extensive dispersals and diversification during or before the Miocene. The fossil record, extant species diversity, as well as molecular phylogenetic analyses demonstrate that the Bauhiniinae might have originated in the Paleogene of low-latitudes along the eastern Tethys Seaway. They dispersed southwards into Africa, migrated from Eurasia to North America via the North Atlantic Land Bridge or floating islands during the Oligocene. Then the genus spread into South America probably via the Isthmus of Panama since the Miocene onward, and underwent regional extinctions in the Boreotropics of mid-high-latitudes during the Neogene climatic cooling. Hence, Bauhinia presently exhibits a pantropical intercontinental disjunct distribution.

  19. Two fossil species of Metrosideros (Myrtaceae) from the Oligo-Miocene Golden Fleece locality in Tasmania, Australia.

    PubMed

    Tarran, Myall; Wilson, Peter G; Macphail, Michael K; Jordan, Greg J; Hill, Robert S

    2017-06-01

    The capsular-fruited genus Metrosideros (Myrtaceae) is one of the most widely distributed flowering plant genera in the Pacific but is extinct in Australia today. The center of geographic origin for the genus and the reason for and timing of its extinction in Australia remain uncertain. We identify fossil Metrosideros fruits from the newly discovered Golden Fleece fossil flora in the Oligo-Miocene of Tasmania, Australia, shedding further light on these problems. Standard paleopalynological techniques were used to date the fossil-bearing sediments. Scanning electron microscopy and an auto-montage camera system were used to take high-resolution images of fossil and extant fruits taken from herbarium specimens. Fossils are identified using a nearest-living-relative approach. The fossil-bearing sediments are palynostratigraphically dated as being Proteacidites tuberculatus Zone Equivalent (ca. 33-16 Ma) in age and provide a confident Oligo-Miocene age for the macrofossils. Two new fossil species of Metrosideros are described and are here named Metrosideros dawsonii sp. nov. and Metrosideros wrightii sp. nov. These newly described fossil species of Metrosideros provide a second record of the genus in the Cenozoic of Australia, placing them in the late Early Oligocene to late Early Miocene. It is now apparent not only that Metrosideros was present in Australia, where the genus is now extinct, but that at least several Metrosideros species were present during the Cenozoic. These fossils further strengthen the case for an Australian origin of the genus. © 2017 Botanical Society of America.

  20. Distributions of fossil fuel originated CO2 in five metropolitan areas of Korea (Seoul, Busan, Daegu, Daejeon, and Gwangju) according to the Δ14C in ginkgo leaves

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Hong, W.; Park, G.; Sung, K. S.; Lee, K. H.; Kim, Y. E.; Kim, J. K.; Choi, H. W.; Kim, G. D.; Woo, H. J.

    2013-01-01

    We collected a batch of ginkgo (Ginkgo biloba Linnaeus) leaf samples at five metropolitan areas of Korea (Seoul, Busan, Daegu, Daejeon, and Gwangju) in 2009 to obtain the regional distribution of fossil fuel originated CO2 (fossil fuel CO2) in the atmosphere. Regions assumed to be free of fossil fuel CO2 were also selected, namely Mt. Chiak, Mt. Kyeryong, Mt. Jiri, Anmyeon Island, and Jeju Island and ginkgo leaf samples were collected in those areas during the same period. The Δ14C values of the samples were measured using Accelerator Mass Spectrometry (AMS) and the fossil fuel CO2 ratios in the atmosphere were obtained in the five metropolitan areas. The average ratio of fossil fuel CO2 in Seoul was higher than that in the other four cities. The leaves from the Sajik Tunnel in Seoul recorded the highest FFCTC (fossil fuel CO2 over total CO2 in atmosphere), 13.9 ± 0.5%, as the air flow of the surrounding neighborhood of the Sajik Tunnel was blocked.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baird, G.C.

    The Mazon Creek biota (Westphalian D) is composed of plants and animals from terrestrial fresh water and marginal marine habitats. Fossil animals, including jellyfish, worms, crustaceans, holothurians, insects, chordates, and problematica occur in sideritic concretions on spoilpiles of more than 100 abandoned coal mines in a five county region (Mazon Creek area) of northeast Illinois. These fossils record rapid burial and early diagenesis in a muddy, delta-influenced coastal setting submerged during marine transgression.

  2. Integrating Fossils, Phylogenies, and Niche Models into Biogeography to Reveal Ancient Evolutionary History: The Case of Hypericum (Hypericaceae)

    PubMed Central

    Meseguer, Andrea S.; Lobo, Jorge M.; Ree, Richard; Beerling, David J.; Sanmartín, Isabel

    2015-01-01

    In disciplines such as macroevolution that are not amenable to experimentation, scientists usually rely on current observations to test hypotheses about historical events, assuming that “the present is the key to the past.” Biogeographers, for example, used this assumption to reconstruct ancestral ranges from the distribution of extant species. Yet, under scenarios of high extinction rates, the biodiversity we observe today might not be representative of the historical diversity and this could result in incorrect biogeographic reconstructions. Here, we introduce a new approach to incorporate into biogeographic inference the temporal, spatial, and environmental information provided by the fossil record, as a direct evidence of the extinct biodiversity fraction. First, inferences of ancestral ranges for those nodes in the phylogeny calibrated with the fossil record are constrained to include the geographic distribution of the fossil. Second, we use fossil distribution and past climate data to reconstruct the climatic preferences and potential distribution of ancestral lineages over time, and use this information to build a biogeographic model that takes into account “ecological connectivity” through time. To show the power of this approach, we reconstruct the biogeographic history of the large angiosperm genus Hypericum, which has a fossil record extending back to the Early Cenozoic. Unlike previous reconstructions based on extant species distributions, our results reveal that Hypericum stem lineages were already distributed in the Holarctic before diversification of its crown-group, and that the geographic distribution of the genus has been relatively stable throughout the climatic oscillations of the Cenozoic. Geographical movement was mediated by the existence of climatic corridors, like Beringia, whereas the equatorial tropical belt acted as a climatic barrier, preventing Hypericum lineages to reach the southern temperate regions. Our study shows that an integrative approach to historical biogeography—that combines sources of evidence as diverse as paleontology, ecology, and phylogenetics—could help us obtain more accurate reconstructions of ancient evolutionary history. It also reveals the confounding effect different rates of extinction across regions have in biogeography, sometimes leading to ancestral areas being erroneously inferred as recent colonization events. PMID:25398444

  3. Search for the Evolution of Steroid Biosynthesis in the Geological Record

    NASA Astrophysics Data System (ADS)

    Brocks, J. J.

    2004-12-01

    To study the evolution of the structure of organisms we can directly examine fossilized shells, skeletons and petrified cells. In contrast, for the tentative reconstruction of the phylogeny of biosynthetic pathways, such as steroid anabolism, we rely entirely on the comparative molecular biology of living organisms. Thus, without fossil evidence, the times in geological history when successive steps of a metabolic pathway evolved remain particularly elusive. Molecular clocks of genes coding for the enzymes involved in a biosynthetic pathway might provide a rough guess when a natural product first appeared in geological time, but they are intrinsically unreliable without calibration points in the distant past. However, it might be possible to trace the evolutionary history of some biosynthetic pathways directly in the geological record by searching for hydrocarbon biomarkers of anabolic intermediates. Biomarkers are molecular fossils of natural products. They often retain the diagnostic carbon skeleton of their biological precursor and remain stable over hundreds of millions of years enclosed in organic-rich sedimentary rocks. Sterane hydrocarbons are particularly abundant biomarkers and potentially suitable for the search of biosynthetic intermediates. Steranes are the fossil equivalents of functionalized steroids found in eukaryotes and certain bacteria. The biosynthesis of typical eukaryotic steroids such as cholesterol (C27), ergosterol (C28) and sitosterol (C29) from the acyclic precursor squalene (C30) involves more than 20 enzymatic steps. The most crucial steps include modification of the carbon skeleton by removal of several methyl groups from the ring system and addition of alkyl groups to the steroid side chain. The evolution of this complex pathway must have occurred over geologically significant periods of time and likely involved several preadaptive intermediates that represented structurally less derived but fully functional lipids. Thus, if a molecular corollary of `ontogeny recapitulates phylogeny' applies, it might be possible to detect a sequence of increasingly modified fossil steroids in the geological record and to create a time frame for the evolution of this fundamental biosynthetic pathway. Here we present first results of an extensive search for the fossil remains of evolutionary intermediate steroids in sedimentary successions of Precambrian age.

  4. The Westphalian D fossil lepidodendrid forest at Table Head, Sydney Basin, Nova Scotia: Sedimentology, paleoecology and floral response to changing edaphic conditions

    USGS Publications Warehouse

    Calder, J.H.; Gibling, M.R.; Eble, C.F.; Scott, A.C.; MacNeil, D.J.

    1996-01-01

    Strata of Westphalian D age on the western coast of the Sydney Basin expose a fossil forest of approximately 30 lepidodendrid trees within one of several clastic splits of the Harbour Seam. A mutidisciplinary approach was employed to interpret the origins of the coal bed, the depositional history of the site and the response of the fossil forest to changing edaphic conditions. The megaspore and miospore records indicate that the mire vegetation was dominated by arboreous lycopsids, especially Paralycopodites, with subdominant tree ferns. Petrographic, palynological and geochemical evidence suggest that the Harbour coal bed at Table Head originated as a rheotrophic (cf. planar) mire (eutric histosol). The mire forest is interpreted to have been engulfed by prograding distributary-channel sediments; sparse protist assemblages are suggestive of a freshwater delta-plain lake environment occasionally in contact with brackish waters. Lepidodendrids persisted as site colonizers of clastic substrates even after burial of the rheotrophic peatland and influenced the morphology of deposited sediment, but apparently were unable to colonize distributary channels. Equivocal taxonomic data (compression fossils) show the fossil forest to have been composed of both monocarpic (Lepidodendron) and polycarpic (Diaphorodendron, Paralycopodites, ?Sigillaria) lycopsids, genera recorded in the palynology of the uppermost ply of the underlying coal bed. Comparatively rare within the clastic beds of the fossil forest, however, is the stem compression of Paralycopodites, whose dispersed megapores and miospores dominate the underlying coal bed. Tree diameter data recorded equivalent to breast height indicate a forest of mixed age. These data would appear to suggest that some lepidodendrids employing a polycarpic reproductive strategy were better able to cross the ecological barrier imposed between peat and clastic substrates. Foliar compressions indicate that an understory or stand of Psaronius type tree ferns co-existed with the lepidodendrids on clastic substrates, which developed as incipient gleysol soils. The entombment of the forest can be ascribed to its distributary coastal setting, local subsidence and a seasonal climate that fostered wildfire and increased sedimentation.

  5. Cell differentiation and germ-soma separation in Ediacaran animal embryo-like fossils

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Xiao, Shuhai; Pang, Ke; Zhou, Chuanming; Yuan, Xunlai

    2014-12-01

    Phosphorites of the Ediacaran Doushantuo Formation (~600 million years old) yield spheroidal microfossils with a palintomic cell cleavage pattern. These fossils have been variously interpreted as sulphur-oxidizing bacteria, unicellular protists, mesomycetozoean-like holozoans, green algae akin to Volvox, and blastula embryos of early metazoans or bilaterian animals. However, their complete life cycle is unknown and it is uncertain whether they had a cellularly differentiated ontogenetic stage, making it difficult to test their various phylogenetic interpretations. Here we describe new spheroidal fossils from black phosphorites of the Doushantuo Formation that have been overlooked in previous studies. These fossils represent later developmental stages of previously published blastula-like fossils, and they show evidence for cell differentiation, germ-soma separation, and programmed cell death. Their complex multicellularity is inconsistent with a phylogenetic affinity with bacteria, unicellular protists, or mesomycetozoean-like holozoans. Available evidence also indicates that the Doushantuo fossils are unlikely crown-group animals or volvocine green algae. We conclude that an affinity with cellularly differentiated multicellular eukaryotes, including stem-group animals or algae, is likely but more data are needed to constrain further the exact phylogenetic affinity of the Doushantuo fossils.

  6. Cell differentiation and germ-soma separation in Ediacaran animal embryo-like fossils.

    PubMed

    Chen, Lei; Xiao, Shuhai; Pang, Ke; Zhou, Chuanming; Yuan, Xunlai

    2014-12-11

    Phosphorites of the Ediacaran Doushantuo Formation (∼600 million years old) yield spheroidal microfossils with a palintomic cell cleavage pattern. These fossils have been variously interpreted as sulphur-oxidizing bacteria, unicellular protists, mesomycetozoean-like holozoans, green algae akin to Volvox, and blastula embryos of early metazoans or bilaterian animals. However, their complete life cycle is unknown and it is uncertain whether they had a cellularly differentiated ontogenetic stage, making it difficult to test their various phylogenetic interpretations. Here we describe new spheroidal fossils from black phosphorites of the Doushantuo Formation that have been overlooked in previous studies. These fossils represent later developmental stages of previously published blastula-like fossils, and they show evidence for cell differentiation, germ-soma separation, and programmed cell death. Their complex multicellularity is inconsistent with a phylogenetic affinity with bacteria, unicellular protists, or mesomycetozoean-like holozoans. Available evidence also indicates that the Doushantuo fossils are unlikely crown-group animals or volvocine green algae. We conclude that an affinity with cellularly differentiated multicellular eukaryotes, including stem-group animals or algae, is likely but more data are needed to constrain further the exact phylogenetic affinity of the Doushantuo fossils.

  7. The late Quaternary decline and extinction of palms on oceanic Pacific islands

    NASA Astrophysics Data System (ADS)

    Prebble, M.; Dowe, J. L.

    2008-12-01

    Late Quaternary palaeoecological records of palm decline, extirpation and extinction are explored from the oceanic islands of the Pacific Ocean. Despite the severe reduction of faunal diversity coincidental with human colonisation of these previously uninhabited oceanic islands, relatively few plant extinctions have been recorded. At low taxonomic levels, recent faunal extinctions on oceanic islands are concentrated in larger bodied representatives of certain genera and families. Fossil and historic records of plant extinction show a similar trend with high representation of the palm family, Arecaceae. Late Holocene decline of palm pollen types is demonstrated from most islands where there are palaeoecological records including the Cook Islands, Fiji, French Polynesia, the Hawaiian Islands, the Juan Fernandez Islands and Rapanui. A strong correspondence between human impact and palm decline is measured from palynological proxies including increased concentrations of charcoal particles and pollen from cultivated plants and invasive weeds. Late Holocene extinctions or extirpations are recorded across all five of the Arecaceae subfamilies of the oceanic Pacific islands. These are most common for the genus Pritchardia but also many sedis fossil palm types were recorded representing groups lacking diagnostic morphological characters.

  8. Quantifying ecological impacts of mass extinctions with network analysis of fossil communities.

    PubMed

    Muscente, A D; Prabhu, Anirudh; Zhong, Hao; Eleish, Ahmed; Meyer, Michael B; Fox, Peter; Hazen, Robert M; Knoll, Andrew H

    2018-05-15

    Mass extinctions documented by the fossil record provide critical benchmarks for assessing changes through time in biodiversity and ecology. Efforts to compare biotic crises of the past and present, however, encounter difficulty because taxonomic and ecological changes are decoupled, and although various metrics exist for describing taxonomic turnover, no methods have yet been proposed to quantify the ecological impacts of extinction events. To address this issue, we apply a network-based approach to exploring the evolution of marine animal communities over the Phanerozoic Eon. Network analysis of fossil co-occurrence data enables us to identify nonrandom associations of interrelated paleocommunities. These associations, or evolutionary paleocommunities, dominated total diversity during successive intervals of relative community stasis. Community turnover occurred largely during mass extinctions and radiations, when ecological reorganization resulted in the decline of one association and the rise of another. Altogether, we identify five evolutionary paleocommunities at the generic and familial levels in addition to three ordinal associations that correspond to Sepkoski's Cambrian, Paleozoic, and Modern evolutionary faunas. In this context, we quantify magnitudes of ecological change by measuring shifts in the representation of evolutionary paleocommunities over geologic time. Our work shows that the Great Ordovician Biodiversification Event had the largest effect on ecology, followed in descending order by the Permian-Triassic, Cretaceous-Paleogene, Devonian, and Triassic-Jurassic mass extinctions. Despite its taxonomic severity, the Ordovician extinction did not strongly affect co-occurrences of taxa, affirming its limited ecological impact. Network paleoecology offers promising approaches to exploring ecological consequences of extinctions and radiations. Copyright © 2018 the Author(s). Published by PNAS.

  9. 33 million year old Myotis (Chiroptera, Vespertilionidae) and the rapid global radiation of modern bats.

    PubMed

    Gunnell, Gregg F; Smith, Richard; Smith, Thierry

    2017-01-01

    The bat genus Myotis is represented by 120+ living species and 40+ extinct species and is found on every continent except Antarctica. The time of divergence of Myotis has been contentious as has the time and place of origin of its encompassing group the Vespertilionidae, the most diverse (450+ species) and widely distributed extant bat family. Fossil Myotis species are common, especially in Europe, beginning in the Miocene but earlier records are poor. Recent study of new specimens from the Belgian early Oligocene locality of Boutersem reveals the presence of a relatively large vespertilionid. Morphological comparison and phylogenetic analysis confirms that the new, large form can be confidently assigned to the genus Myotis, making this record the earliest known for that taxon and extending the temporal range of this extant genus to over 33 million years. This suggests that previously published molecular divergence dates for crown myotines (Myotis) are too young by at least 7 million years. Additionally, examination of first fossil appearance data of 1,011 extant placental mammal genera indicates that only 13 first occurred in the middle to late Paleogene (48 to 33 million years ago) and of these, six represent bats, including Myotis. Paleogene members of both major suborders of Chiroptera (Yangochiroptera and Yinpterochiroptera) include extant genera indicating early establishment of successful and long-term adaptive strategies as bats underwent an explosive radiation near the beginning of the Early Eocene Climatic Optimum in the Old World. A second bat adaptive radiation in the New World began coincident with the Mid-Miocene Climatic Optimum.

  10. 33 million year old Myotis (Chiroptera, Vespertilionidae) and the rapid global radiation of modern bats

    PubMed Central

    2017-01-01

    The bat genus Myotis is represented by 120+ living species and 40+ extinct species and is found on every continent except Antarctica. The time of divergence of Myotis has been contentious as has the time and place of origin of its encompassing group the Vespertilionidae, the most diverse (450+ species) and widely distributed extant bat family. Fossil Myotis species are common, especially in Europe, beginning in the Miocene but earlier records are poor. Recent study of new specimens from the Belgian early Oligocene locality of Boutersem reveals the presence of a relatively large vespertilionid. Morphological comparison and phylogenetic analysis confirms that the new, large form can be confidently assigned to the genus Myotis, making this record the earliest known for that taxon and extending the temporal range of this extant genus to over 33 million years. This suggests that previously published molecular divergence dates for crown myotines (Myotis) are too young by at least 7 million years. Additionally, examination of first fossil appearance data of 1,011 extant placental mammal genera indicates that only 13 first occurred in the middle to late Paleogene (48 to 33 million years ago) and of these, six represent bats, including Myotis. Paleogene members of both major suborders of Chiroptera (Yangochiroptera and Yinpterochiroptera) include extant genera indicating early establishment of successful and long-term adaptive strategies as bats underwent an explosive radiation near the beginning of the Early Eocene Climatic Optimum in the Old World. A second bat adaptive radiation in the New World began coincident with the Mid-Miocene Climatic Optimum. PMID:28273112

  11. Bayesian relaxed clock estimation of divergence times in foraminifera.

    PubMed

    Groussin, Mathieu; Pawlowski, Jan; Yang, Ziheng

    2011-10-01

    Accurate and precise estimation of divergence times during the Neo-Proterozoic is necessary to understand the speciation dynamic of early Eukaryotes. However such deep divergences are difficult to date, as the molecular clock is seriously violated. Recent improvements in Bayesian molecular dating techniques allow the relaxation of the molecular clock hypothesis as well as incorporation of multiple and flexible fossil calibrations. Divergence times can then be estimated even when the evolutionary rate varies among lineages and even when the fossil calibrations involve substantial uncertainties. In this paper, we used a Bayesian method to estimate divergence times in Foraminifera, a group of unicellular eukaryotes, known for their excellent fossil record but also for the high evolutionary rates of their genomes. Based on multigene data we reconstructed the phylogeny of Foraminifera and dated their origin and the major radiation events. Our estimates suggest that Foraminifera emerged during the Cryogenian (650-920 Ma, Neo-Proterozoic), with a mean time around 770 Ma, about 220 Myr before the first appearance of reliable foraminiferal fossils in sediments (545 Ma). Most dates are in agreement with the fossil record, but in general our results suggest earlier origins of foraminiferal orders. We found that the posterior time estimates were robust to specifications of the prior. Our results highlight inter-species variations of evolutionary rates in Foraminifera. Their effect was partially overcome by using the partitioned Bayesian analysis to accommodate rate heterogeneity among data partitions and using the relaxed molecular clock to account for changing evolutionary rates. However, more coding genes appear necessary to obtain more precise estimates of divergence times and to resolve the conflicts between fossil and molecular date estimates. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Fossil biogeography: a new model to infer dispersal, extinction and sampling from palaeontological data.

    PubMed

    Silvestro, Daniele; Zizka, Alexander; Bacon, Christine D; Cascales-Miñana, Borja; Salamin, Nicolas; Antonelli, Alexandre

    2016-04-05

    Methods in historical biogeography have revolutionized our ability to infer the evolution of ancestral geographical ranges from phylogenies of extant taxa, the rates of dispersals, and biotic connectivity among areas. However, extant taxa are likely to provide limited and potentially biased information about past biogeographic processes, due to extinction, asymmetrical dispersals and variable connectivity among areas. Fossil data hold considerable information about past distribution of lineages, but suffer from largely incomplete sampling. Here we present a new dispersal-extinction-sampling (DES) model, which estimates biogeographic parameters using fossil occurrences instead of phylogenetic trees. The model estimates dispersal and extinction rates while explicitly accounting for the incompleteness of the fossil record. Rates can vary between areas and through time, thus providing the opportunity to assess complex scenarios of biogeographic evolution. We implement the DES model in a Bayesian framework and demonstrate through simulations that it can accurately infer all the relevant parameters. We demonstrate the use of our model by analysing the Cenozoic fossil record of land plants and inferring dispersal and extinction rates across Eurasia and North America. Our results show that biogeographic range evolution is not a time-homogeneous process, as assumed in most phylogenetic analyses, but varies through time and between areas. In our empirical assessment, this is shown by the striking predominance of plant dispersals from Eurasia into North America during the Eocene climatic cooling, followed by a shift in the opposite direction, and finally, a balance in biotic interchange since the middle Miocene. We conclude by discussing the potential of fossil-based analyses to test biogeographic hypotheses and improve phylogenetic methods in historical biogeography. © 2016 The Author(s).

  13. The origin and evolution of Homo sapiens

    PubMed Central

    Stringer, Chris

    2016-01-01

    If we restrict the use of Homo sapiens in the fossil record to specimens which share a significant number of derived features in the skeleton with extant H. sapiens, the origin of our species would be placed in the African late middle Pleistocene, based on fossils such as Omo Kibish 1, Herto 1 and 2, and the Levantine material from Skhul and Qafzeh. However, genetic data suggest that we and our sister species Homo neanderthalensis shared a last common ancestor in the middle Pleistocene approximately 400–700 ka, which is at least 200 000 years earlier than the species origin indicated from the fossils already mentioned. Thus, it is likely that the African fossil record will document early members of the sapiens lineage showing only some of the derived features of late members of the lineage. On that basis, I argue that human fossils such as those from Jebel Irhoud, Florisbad, Eliye Springs and Omo Kibish 2 do represent early members of the species, but variation across the African later middle Pleistocene/early Middle Stone Age fossils shows that there was not a simple linear progression towards later sapiens morphology, and there was chronological overlap between different ‘archaic’ and ‘modern’ morphs. Even in the late Pleistocene within and outside Africa, we find H. sapiens specimens which are clearly outside the range of Holocene members of the species, showing the complexity of recent human evolution. The impact on species recognition of late Pleistocene gene flow between the lineages of modern humans, Neanderthals and Denisovans is also discussed, and finally, I reconsider the nature of the middle Pleistocene ancestor of these lineages, based on recent morphological and genetic data. This article is part of the themed issue ‘Major transitions in human evolution’. PMID:27298468

  14. Sequoia maguanensis, a new Miocene relative of the coast redwood, Sequoia sempervirens, from China: implications for paleogeography and paleoclimate.

    PubMed

    Zhang, Jian-Wei; D'Rozario, Ashalata; Adams, Jonathan M; Li, Ya; Liang, Xiao-Qing; Jacques, Frédéric M; Su, Tao; Zhou, Zhe-Kun

    2015-01-01

    • The paleogeographical origin of the relict North American Sequoia sempervirens is controversial. Fossil records indicate a Neogene origin for its foliage characteristics. Although several fossils from the Miocene sediments in eastern Asia have been considered to have close affinities with the modern S. sempervirens, they lack the typical features of a leafy twig bearing linear as well as scale leaves, and the fertile shoots terminating by a cone. The taxonomic status of these fossils has remained unclear.• New better-preserved fossils from the upper Miocene of China indicate a new species of Sequoia. This finding not only confirms the former presence of this genus in eastern Asia, but it also confirms the affinity of this Asian form to the modern relict S. sempervirens.• The principal foliage characteristics of S. sempervirens had already originated by the late Miocene. The eastern Asian records probably imply a Beringian biogeographic track of the ancestor of S. sempervirens in the early Neogene, at a time when the land bridge was not too cool for this thermophilic conifer to spread between Asia and North America.• The climatic context of the new fossil Sequoia in Southeast Yunnan, based on other floristic elements of the fossil assemblage in which it is found, is presumed to be warm and humid. Following the uplift of the Qinghai-Tibet Plateau, this warm, humid climate was replaced by the present monsoonal climate with dry winter and spring. This change may have led to the disappearance of this hygrophilous conifer from eastern Asia. © 2015 Botanical Society of America, Inc.

  15. The origin and evolution of Homo sapiens.

    PubMed

    Stringer, Chris

    2016-07-05

    If we restrict the use of Homo sapiens in the fossil record to specimens which share a significant number of derived features in the skeleton with extant H. sapiens, the origin of our species would be placed in the African late middle Pleistocene, based on fossils such as Omo Kibish 1, Herto 1 and 2, and the Levantine material from Skhul and Qafzeh. However, genetic data suggest that we and our sister species Homo neanderthalensis shared a last common ancestor in the middle Pleistocene approximately 400-700 ka, which is at least 200 000 years earlier than the species origin indicated from the fossils already mentioned. Thus, it is likely that the African fossil record will document early members of the sapiens lineage showing only some of the derived features of late members of the lineage. On that basis, I argue that human fossils such as those from Jebel Irhoud, Florisbad, Eliye Springs and Omo Kibish 2 do represent early members of the species, but variation across the African later middle Pleistocene/early Middle Stone Age fossils shows that there was not a simple linear progression towards later sapiens morphology, and there was chronological overlap between different 'archaic' and 'modern' morphs. Even in the late Pleistocene within and outside Africa, we find H. sapiens specimens which are clearly outside the range of Holocene members of the species, showing the complexity of recent human evolution. The impact on species recognition of late Pleistocene gene flow between the lineages of modern humans, Neanderthals and Denisovans is also discussed, and finally, I reconsider the nature of the middle Pleistocene ancestor of these lineages, based on recent morphological and genetic data.This article is part of the themed issue 'Major transitions in human evolution'. © 2016 The Author(s).

  16. Paleobiology, community ecology, and scales of ecological pattern.

    PubMed

    Jablonski, D; Sepkoski, J J

    1996-07-01

    The fossil record provides a wealth of data on the role of regional processes and historical events in shaping biological communities over a variety of time scales. The Quaternary record with its evidence of repeated climatic change shows that both terrestrial and marine species shifted independently rather than as cohesive assemblages over scales of thousands of years. Larger scale patterns also show a strong individualistic component to taxon dynamics; assemblage stability, when it occurs, is difficult to separate from shared responses to low rates of environmental change. Nevertheless, the fossil record does suggest that some biotic interactions influence large-scale ecological and evolutionary patterns, albeit in more diffuse and protracted fashions than those generally studied by community ecologists. These include: (1) the resistance by incumbents to the establishment of new or invading taxa, with episodes of explosive diversification often appearing contingent on the removal of incumbents at extinction events; (2) steady states of within-habitat and global diversity at longer time scales (10(7)-l0(8) yr), despite enormous turnover of taxa; and (3) morphological and biogeographic responses to increased intensities of predation and substratum disturbance over similarly long time scales. The behavior of species and communities over the array of temporal and spatial scales in the fossil record takes on additional significance for framing conservation strategies, and for understanding recovery of species, lineages, and communities from environmental changes.

  17. Paleobiology, community ecology, and scales of ecological pattern

    NASA Technical Reports Server (NTRS)

    Jablonski, D.; Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1996-01-01

    The fossil record provides a wealth of data on the role of regional processes and historical events in shaping biological communities over a variety of time scales. The Quaternary record with its evidence of repeated climatic change shows that both terrestrial and marine species shifted independently rather than as cohesive assemblages over scales of thousands of years. Larger scale patterns also show a strong individualistic component to taxon dynamics; assemblage stability, when it occurs, is difficult to separate from shared responses to low rates of environmental change. Nevertheless, the fossil record does suggest that some biotic interactions influence large-scale ecological and evolutionary patterns, albeit in more diffuse and protracted fashions than those generally studied by community ecologists. These include: (1) the resistance by incumbents to the establishment of new or invading taxa, with episodes of explosive diversification often appearing contingent on the removal of incumbents at extinction events; (2) steady states of within-habitat and global diversity at longer time scales (10(7)-l0(8) yr), despite enormous turnover of taxa; and (3) morphological and biogeographic responses to increased intensities of predation and substratum disturbance over similarly long time scales. The behavior of species and communities over the array of temporal and spatial scales in the fossil record takes on additional significance for framing conservation strategies, and for understanding recovery of species, lineages, and communities from environmental changes.

  18. Inference of pCO2 Levels during the Late Cretaceous Using Fossil Lauraceae

    NASA Astrophysics Data System (ADS)

    Richey, J. D.; Upchurch, G. R.

    2011-12-01

    Botanical estimates of pCO2 for the Late Cretaceous have most commonly used Stomatal Index (SI) in fossil Ginkgo. Recently, SI in fossil Lauraceae has been used to infer changes in pCO2 across the Cenomanian-Turonian boundary, based on the relation between SI and pCO2 in extant Laurus and Hypodaphnis. To provide a broad-scale picture of pCO2 based on fossil Lauraceae, we examined dispersed cuticle of the leaf macrofossil genus Pandemophyllum from: 1) the early to middle Cenomanian of the Potomac Group of Maryland (Mauldin Mountain locality, lower Zone III) and 2) the Maastrichtian of southern Colorado (Raton Basin, Starkville South and Berwind Canyon localities). These samples fall within the Late Cretaceous decline in pCO2 inferred from geochemical modeling and other proxies. SI was calculated from fossil cuticle fragments using ImageJ and counts of up to 56,000 cells per sample, a far greater number of cells than are counted in most studies. CO2 levels were estimated using the relation between SI and CO2 published for Laurus nobilis and Hypodaphnis zenkeri. Early to middle Cenomanian atmospheric pCO2 is estimated at 362-536 parts per million (ppm). This represents the absolute minimum and maximum estimated CO2 levels from the ±95% confidence intervals (CI) of the relation between SI and CO2 for the modern equivalents, and SI ± 1 Standard Deviation (SD) in the fossil genus Pandemophyllum. Late Maastrichtian atmospheric pCO2 is estimated at 358-534 ppm. The Maastrichtian estimates falls within the range of published estimates from other proxies. The Cenomanian estimate, in contrast, is low relative to most other estimates. The 95% confidence intervals of our pCO2 estimates overlap each other and many of the assemblages published by Barclay et al. (2010) for Lauraceae across the Cenomanian-Turonian boundary. This could indicate that 1) pCO2 did not undergo a major long-term decline during the Late Cretaceous, 2) Lauraceae show low sensitivity to high pCO2, or 3) additional sampling is necessary to find the mid-Cretaceous pCO2 maximum inferred by other proxy methods.

  19. A fossil brain from the Cretaceous of European Russia and avian sensory evolution.

    PubMed

    Kurochkin, Evgeny N; Dyke, Gareth J; Saveliev, Sergei V; Pervushov, Evgeny M; Popov, Evgeny V

    2007-06-22

    Fossils preserving traces of soft anatomy are rare in the fossil record; even rarer is evidence bearing on the size and shape of sense organs that provide us with insights into mode of life. Here, we describe unique fossil preservation of an avian brain from the Volgograd region of European Russia. The brain of this Melovatka bird is similar in shape and morphology to those of known fossil ornithurines (the lineage that includes living birds), such as the marine diving birds Hesperornis and Enaliornis, but documents a new stage in avian sensory evolution: acute nocturnal vision coupled with well-developed hearing and smell, developed by the Late Cretaceous (ca 90Myr ago). This fossil also provides insights into previous 'bird-like' brain reconstructions for the most basal avian Archaeopteryx--reduction of olfactory lobes (sense of smell) and enlargement of the hindbrain (cerebellum) occurred subsequent to Archaeopteryx in avian evolution, closer to the ornithurine lineage that comprises living birds. The Melovatka bird also suggests that brain enlargement in early avians was not correlated with the evolution of powered flight.

  20. The impact of the rate prior on Bayesian estimation of divergence times with multiple Loci.

    PubMed

    Dos Reis, Mario; Zhu, Tianqi; Yang, Ziheng

    2014-07-01

    Bayesian methods provide a powerful way to estimate species divergence times by combining information from molecular sequences with information from the fossil record. With the explosive increase of genomic data, divergence time estimation increasingly uses data of multiple loci (genes or site partitions). Widely used computer programs to estimate divergence times use independent and identically distributed (i.i.d.) priors on the substitution rates for different loci. The i.i.d. prior is problematic. As the number of loci (L) increases, the prior variance of the average rate across all loci goes to zero at the rate 1/L. As a consequence, the rate prior dominates posterior time estimates when many loci are analyzed, and if the rate prior is misspecified, the estimated divergence times will converge to wrong values with very narrow credibility intervals. Here we develop a new prior on the locus rates based on the Dirichlet distribution that corrects the problematic behavior of the i.i.d. prior. We use computer simulation and real data analysis to highlight the differences between the old and new priors. For a dataset for six primate species, we show that with the old i.i.d. prior, if the prior rate is too high (or too low), the estimated divergence times are too young (or too old), outside the bounds imposed by the fossil calibrations. In contrast, with the new Dirichlet prior, posterior time estimates are insensitive to the rate prior and are compatible with the fossil calibrations. We re-analyzed a phylogenomic data set of 36 mammal species and show that using many fossil calibrations can alleviate the adverse impact of a misspecified rate prior to some extent. We recommend the use of the new Dirichlet prior in Bayesian divergence time estimation. [Bayesian inference, divergence time, relaxed clock, rate prior, partition analysis.]. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.

  1. The evolution of the platyrrhine talus: A comparative analysis of the phenetic affinities of the Miocene platyrrhines with their modern relatives.

    PubMed

    Püschel, Thomas A; Gladman, Justin T; Bobe, René; Sellers, William I

    2017-10-01

    Platyrrhines are a diverse group of primates that presently occupy a broad range of tropical-equatorial environments in the Americas. However, most of the fossil platyrrhine species of the early Miocene have been found at middle and high latitudes. Although the fossil record of New World monkeys has improved considerably over the past several years, it is still difficult to trace the origin of major modern clades. One of the most commonly preserved anatomical structures of early platyrrhines is the talus. This work provides an analysis of the phenetic affinities of extant platyrrhine tali and their Miocene counterparts through geometric morphometrics and a series of phylogenetic comparative analyses. Geometric morphometrics was used to quantify talar shape affinities, while locomotor mode percentages (LMPs) were used to test if talar shape is associated with locomotion. Comparative analyses were used to test if there was convergence in talar morphology, as well as different models that could explain the evolution of talar shape and size in platyrrhines. Body mass predictions for the fossil sample were also computed using the available articular surfaces. The results showed that most analyzed fossils exhibit a generalized morphology that is similar to some 'generalist' modern species. It was found that talar shape covaries with LMPs, thus allowing the inference of locomotion from talar morphology. The results further suggest that talar shape diversification can be explained by invoking a model of shifts in adaptive peak to three optima representing a phylogenetic hypothesis in which each platyrrhine family occupied a separate adaptive peak. The analyses indicate that platyrrhine talar centroid size diversification was characterized by an early differentiation related to a multidimensional niche model. Finally, the ancestral platyrrhine condition was reconstructed as a medium-sized, generalized, arboreal, quadruped. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Reconstructed Homo habilis type OH 7 suggests deep-rooted species diversity in early Homo.

    PubMed

    Spoor, Fred; Gunz, Philipp; Neubauer, Simon; Stelzer, Stefanie; Scott, Nadia; Kwekason, Amandus; Dean, M Christopher

    2015-03-05

    Besides Homo erectus (sensu lato), the eastern African fossil record of early Homo has been interpreted as representing either a single variable species, Homo habilis, or two species. In the latter case, however, there is no consensus over the respective groupings, and which of the two includes OH 7, the 1.8-million-year-old H. habilis holotype. This partial skull and hand from Olduvai Gorge remains pivotal to evaluating the early evolution of the Homo lineage, and by priority names one or other of the two taxa. However, the distorted preservation of the diagnostically important OH 7 mandible has hindered attempts to compare this specimen with other fossils. Here we present a virtual reconstruction of the OH 7 mandible, and compare it to other early Homo fossils. The reconstructed mandible is remarkably primitive, with a long and narrow dental arcade more similar to Australopithecus afarensis than to the derived parabolic arcades of Homo sapiens or H. erectus. We find that this shape variability is not consistent with a single species of early Homo. Importantly, the jaw morphology of OH 7 is incompatible with fossils assigned to Homo rudolfensis and with the A.L. 666-1 Homo maxilla. The latter is morphologically more derived than OH 7 but 500,000 years older, suggesting that the H. habilis lineage originated before 2.3 million years ago, thus marking deep-rooted species diversity in the genus Homo. We also reconstructed the parietal bones of OH 7 and estimated its endocranial volume. At between 729 and 824 ml it is larger than any previously published value, and emphasizes the near-complete overlap in brain size among species of early Homo. Our results clarify the H. habilis hypodigm, but raise questions about its phylogenetic relationships. Differences between species of early Homo appear to be characterized more by gnathic diversity than by differences in brain size, which was highly variable within all taxa.

  3. Diagenetically altered fossil micrometeorites suggest cosmic dust is common in the geological record

    NASA Astrophysics Data System (ADS)

    Suttle, Martin D.; Genge, Matthew J.

    2017-10-01

    We report the discovery of fossil micrometeorites from Late Cretaceous chalk. Seventy-six cosmic spherules were recovered from Coniacian (87 ± 1 Ma) sediments of the White Chalk Supergroup. Particles vary from pristine silicate and iron-type spherules to pseudomorphic spherules consisting of either single-phase recrystallized magnetite or Fe-silicide. Pristine spherules are readily identified as micrometeorites on the basis of their characteristic mineralogies, textures and compositions. Both magnetite and silicide spherules contain dendritic crystals and spherical morphologies, testifying to rapid crystallisation of high temperature iron-rich metallic and oxide liquids. These particles also contain spherical cavities, representing weathering and removal of metal beads and irregular cavities, representing vesicles formed by trapped gas during crystallization; both features commonly found among modern Antarctic Iron-type (I-type) cosmic spherules. On the basis of textural analysis, the magnetite and Fe-silicide spherules are shown to be I-type cosmic spherules that have experienced complete secondary replacement during diagenesis (fossilization). Our results demonstrate that micrometeorites, preserved in sedimentary rocks, are affected by a suite of complex diagenetic processes, which can result in disparate replacement minerals, even within the same sequence of sedimentary beds. As a result, the identification of fossil micrometeorites requires careful observation of particle textures and comparisons with modern Antarctic collections. Replaced micrometeorites imply that geochemical signatures the extraterrestrial dust are subject to diagenetic remobilisation that limits their stratigraphic resolution. However, this study demonstrates that fossil, pseudomorphic micrometeorites can be recognised and are likely common within the geological record.

  4. Late Middle Eocene primate from Myanmar and the initial anthropoid colonization of Africa.

    PubMed

    Chaimanee, Yaowalak; Chavasseau, Olivier; Beard, K Christopher; Kyaw, Aung Aung; Soe, Aung Naing; Sein, Chit; Lazzari, Vincent; Marivaux, Laurent; Marandat, Bernard; Swe, Myat; Rugbumrung, Mana; Lwin, Thit; Valentin, Xavier; Zin-Maung-Maung-Thein; Jaeger, Jean-Jacques

    2012-06-26

    Reconstructing the origin and early evolutionary history of anthropoid primates (monkeys, apes, and humans) is a current focus of paleoprimatology. Although earlier hypotheses frequently supported an African origin for anthropoids, recent discoveries of older and phylogenetically more basal fossils in China and Myanmar indicate that the group originated in Asia. Given the Oligocene-Recent history of African anthropoids, the colonization of Africa by early anthropoids hailing from Asia was a decisive event in primate evolution. However, the fossil record has so far failed to constrain the nature and timing of this pivotal event. Here we describe a fossil primate from the late middle Eocene Pondaung Formation of Myanmar, Afrasia djijidae gen. et sp. nov., that is remarkably similar to, yet dentally more primitive than, the roughly contemporaneous North African anthropoid Afrotarsius. Phylogenetic analysis suggests that Afrasia and Afrotarsius are sister taxa within a basal anthropoid clade designated as the infraorder Eosimiiformes. Current knowledge of eosimiiform relationships and their distribution through space and time suggests that members of this clade dispersed from Asia to Africa sometime during the middle Eocene, shortly before their first appearance in the African fossil record. Crown anthropoids and their nearest fossil relatives do not appear to be specially related to Afrotarsius, suggesting one or more additional episodes of dispersal from Asia to Africa. Hystricognathous rodents, anthracotheres, and possibly other Asian mammal groups seem to have colonized Africa at roughly the same time or shortly after anthropoids gained their first toehold there.

  5. The Best Modern Analog for Eocene Arctic Forests is within Today's Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Schubert, B.; Jahren, H.; Eberle, J.; Sternberg, L. O.; Ellsworth, P.; Eberth, D.; Sweet, A.

    2011-12-01

    In the 25 years that have passed since the first extensive descriptions of the Fossil Forests that persisted above the Arctic Circle during the Eocene (~45-54 Ma), no less than four locations have been suggested as modern analogs. These locations represent a diverse collection of biomes and temperature/precipitation environments, and include the southeastern Unites States and southeastern Asia (based on flora and fauna assemblages), southern Chile and the U.S. Pacific Northwest (based on biomass and productivity estimates), and Pacific Northwestern U.S. and Canada (based on mean annual temperature and mean annual precipitation). Here we report on new isotope datasets that allow for a prediction of best modern analog based on a quantitative characterization of paleoseasonality. First, we report high-resolution carbon isotope data from fossil tree rings that record the ratio of summer to winter precipitation. Second, we report analyses of the oxygen isotope composition of phenylglucosazone, a compound isolated from fossil cellulose that straightforwardly records the oxygen isotope composition of meteoric water available to the tree. Together, our analyses indicate that the fossil forests of the Eocene Arctic thrived under a summer-dominated, high-intensity, seasonal precipitation regime, with at least 279 mm of rainfall during the wettest month. A quantitative comparison of mean-annual temperature and precipitation, fossil and modern plant communities, and the seasonality indices, highlights the Korean peninsula as the most appropriate modern analog for the Arctic Eocene forests, in preference to the North and South American analogs previously proposed.

  6. The fossil Osmundales (Royal Ferns)—a phylogenetic network analysis, revised taxonomy, and evolutionary classification of anatomically preserved trunks and rhizomes

    PubMed Central

    2017-01-01

    The Osmundales (Royal Fern order) originated in the late Paleozoic and is the most ancient surviving lineage of leptosporangiate ferns. In contrast to its low diversity today (less than 20 species in six genera), it has the richest fossil record of any extant group of ferns. The structurally preserved trunks and rhizomes alone are referable to more than 100 fossil species that are classified in up to 20 genera, four subfamilies, and two families. This diverse fossil record constitutes an exceptional source of information on the evolutionary history of the group from the Permian to the present. However, inconsistent terminology, varying formats of description, and the general lack of a uniform taxonomic concept renders this wealth of information poorly accessible. To this end, we provide a comprehensive review of the diversity of structural features of osmundalean axes under a standardized, descriptive terminology. A novel morphological character matrix with 45 anatomical characters scored for 15 extant species and for 114 fossil operational units (species or specimens) is analysed using networks in order to establish systematic relationships among fossil and extant Osmundales rooted in axis anatomy. The results lead us to propose an evolutionary classification for fossil Osmundales and a revised, standardized taxonomy for all taxa down to the rank of (sub)genus. We introduce several nomenclatural novelties: (1) a new subfamily Itopsidemoideae (Guaireaceae) is established to contain Itopsidema, Donwelliacaulis, and Tiania; (2) the thamnopteroid genera Zalesskya, Iegosigopteris, and Petcheropteris are all considered synonymous with Thamnopteris; (3) 12 species of Millerocaulis and Ashicaulis are assigned to modern genera (tribe Osmundeae); (4) the hitherto enigmatic Aurealcaulis is identified as an extinct subgenus of Plenasium; and (5) the poorly known Osmundites tuhajkulensis is assigned to Millerocaulis. In addition, we consider Millerocaulis stipabonettiorum a possible member of Palaeosmunda and Millerocaulis estipularis as probably constituting the earliest representative of the (Todea-)Leptopteris lineage (subtribe Todeinae) of modern Osmundoideae. PMID:28713650

  7. The fossil Osmundales (Royal Ferns)-a phylogenetic network analysis, revised taxonomy, and evolutionary classification of anatomically preserved trunks and rhizomes.

    PubMed

    Bomfleur, Benjamin; Grimm, Guido W; McLoughlin, Stephen

    2017-01-01

    The Osmundales (Royal Fern order) originated in the late Paleozoic and is the most ancient surviving lineage of leptosporangiate ferns. In contrast to its low diversity today (less than 20 species in six genera), it has the richest fossil record of any extant group of ferns. The structurally preserved trunks and rhizomes alone are referable to more than 100 fossil species that are classified in up to 20 genera, four subfamilies, and two families. This diverse fossil record constitutes an exceptional source of information on the evolutionary history of the group from the Permian to the present. However, inconsistent terminology, varying formats of description, and the general lack of a uniform taxonomic concept renders this wealth of information poorly accessible. To this end, we provide a comprehensive review of the diversity of structural features of osmundalean axes under a standardized, descriptive terminology. A novel morphological character matrix with 45 anatomical characters scored for 15 extant species and for 114 fossil operational units (species or specimens) is analysed using networks in order to establish systematic relationships among fossil and extant Osmundales rooted in axis anatomy. The results lead us to propose an evolutionary classification for fossil Osmundales and a revised, standardized taxonomy for all taxa down to the rank of (sub)genus. We introduce several nomenclatural novelties: (1) a new subfamily Itopsidemoideae (Guaireaceae) is established to contain Itopsidema , Donwelliacaulis , and Tiania ; (2) the thamnopteroid genera Zalesskya , Iegosigopteris , and Petcheropteris are all considered synonymous with Thamnopteris ; (3) 12 species of Millerocaulis and Ashicaulis are assigned to modern genera (tribe Osmundeae); (4) the hitherto enigmatic Aurealcaulis is identified as an extinct subgenus of Plenasium ; and (5) the poorly known Osmundites tuhajkulensis is assigned to Millerocaulis . In addition, we consider Millerocaulis stipabonettiorum a possible member of Palaeosmunda and Millerocaulis estipularis as probably constituting the earliest representative of the ( Todea -) Leptopteris lineage (subtribe Todeinae) of modern Osmundoideae.

  8. The Evolution of Reproduction within Testudinata as Evidenced by the Fossil Record

    NASA Astrophysics Data System (ADS)

    Lawver, Daniel Ryan

    Although known from every continent except Antarctica and having a fossil record ranging from the Middle Jurassic to the Pleistocene, fossil turtle eggs are relatively understudied. In this dissertation I describe four fossil specimens, interpret paleoecology and conduct cladistic analyses in order to investigate the evolution of turtle reproduction. Fossil eggshell descriptions primarily involve analysis by scanning electron and polarized light microscopy, as well as cathodoluminescence to determine the degree of diagenetic alteration. Carapace lengths and gas conductance are estimated in order to investigate the ecology of the adults that produced fossil turtle eggs and clutches, as well as their incubation environments, respectively. Cladistic analyses of turtle egg and reproductive characters permit assessment of the usefulness of these characters for determining phylogenetic relationships of fossil specimens and the evolution of reproduction in turtles. Specimens described here include 1) Testudoolithus oosp. from the Late Cretaceous of Madagascar, 2) a clutch of eggs (some containing late stage embryos and at least one exhibiting multilayer eggshell) from the Late Cretaceous Judith River Formation of Montana and named Testudoolithus zelenitskyae oosp. nov., 3) an egg contained within an adult Basilemys nobilis from the Late Cretaceous Kaiparowits Formation of Utah, and 4) a clutch of Meiolania platyceps eggs from the Pleistocene of Lord Howe Island, Australia. Meiolania platyceps eggs are named Testudoolithus lordhowensis oosp. nov. and provide valuable information on the origin of aragonite eggshell composition and nesting behaviors. Cladistic analyses utilizing egg and reproductive characters are rarely performed on taxa outside of Dinosauria. My analyses demonstrate that morphological data produces poorly resolved trees in which only the clades Adocia and Trionychia are resolved and all other turtles form a large polytomy. However, when combined with molecular data, egg and reproductive characters have more resolving potential towards the top of trees. This poor resolution is likely due to homoplasy in the form of character reversals, convergent evolution, and/or from the limited number of informative characters.

  9. Increased Atmospheric SO2 Detected from Changes in Leaf Physiognomy across the Triassic–Jurassic Boundary Interval of East Greenland

    PubMed Central

    Bacon, Karen L.; Belcher, Claire M.; Haworth, Matthew; McElwain, Jennifer C.

    2013-01-01

    The Triassic–Jurassic boundary (Tr–J; ∼201 Ma) is marked by a doubling in the concentration of atmospheric CO2, rising temperatures, and ecosystem instability. This appears to have been driven by a major perturbation in the global carbon cycle due to massive volcanism in the Central Atlantic Magmatic Province. It is hypothesized that this volcanism also likely delivered sulphur dioxide (SO2) to the atmosphere. The role that SO2 may have played in leading to ecosystem instability at the time has not received much attention. To date, little direct evidence has been presented from the fossil record capable of implicating SO2 as a cause of plant extinctions at this time. In order to address this, we performed a physiognomic leaf analysis on well-preserved fossil leaves, including Ginkgoales, bennettites, and conifers from nine plant beds that span the Tr–J boundary at Astartekløft, East Greenland. The physiognomic responses of fossil taxa were compared to the leaf size and shape variations observed in nearest living equivalent taxa exposed to simulated palaeoatmospheric treatments in controlled environment chambers. The modern taxa showed a statistically significant increase in leaf roundness when fumigated with SO2. A similar increase in leaf roundness was also observed in the Tr–J fossil taxa immediately prior to a sudden decrease in their relative abundances at Astartekløft. This research reveals that increases in atmospheric SO2 can likely be traced in the fossil record by analyzing physiognomic changes in fossil leaves. A pattern of relative abundance decline following increased leaf roundness for all six fossil taxa investigated supports the hypothesis that SO2 had a significant role in Tr–J plant extinctions. This finding highlights that the role of SO2 in plant biodiversity declines across other major geological boundaries coinciding with global scale volcanism should be further explored using leaf physiognomy. PMID:23593262

  10. Reconstructing Tropical Southwest Pacific Climate Variability and Mean State Changes at Vanuatu during the Medieval Climate Anomaly using Geochemical Proxies from Corals

    NASA Astrophysics Data System (ADS)

    Lawman, A. E.; Quinn, T. M.; Partin, J. W.; Taylor, F. W.; Thirumalai, K.; WU, C. C.; Shen, C. C.

    2017-12-01

    The Medieval Climate Anomaly (MCA: 950-1250 CE) is identified as a period during the last 2 millennia with Northern Hemisphere surface temperatures similar to the present. However, our understanding of tropical climate variability during the MCA is poorly constrained due to a lack of sub-annually resolved proxy records. We investigate seasonal and interannual variability during the MCA using geochemical records developed from two well preserved Porites lutea fossilized corals from the tropical southwest Pacific (Tasmaloum, Vanuatu; 15.6°S, 166.9°E). Absolute U/Th dates of 1127.1 ± 2.7 CE and 1105.1 ± 3.0 CE indicate that the selected fossil corals lived during the MCA. We use paired coral Sr/Ca and δ18O measurements to reconstruct sea surface temperature (SST) and the δ18O of seawater (a proxy for salinity). To provide context for the fossil coral records and test whether the mean state and climate variability at Vanuatu during the MCA is similar to the modern climate, our analysis also incorporates two modern coral records from Sabine Bank (15.9°S, 166.0°E) and Malo Channel (15.7°S, 167.2°E), Vanuatu for comparison. We quantify the uncertainty in our modern and fossil coral SST estimates via replication with multiple, overlapping coral records. Both the modern and fossil corals reproduce their respective mean SST value over their common period of overlap, which is 25 years in both cases. Based on over 100 years of monthly Sr/Ca data from each time period, we find that SSTs at Vanuatu during the MCA are 1.3 ± 0.7°C cooler relative to the modern. We also find that the median amplitude of the annual cycle is 0.8 ± 0.3°C larger during the MCA relative to the modern. Multiple data analysis techniques, including the standard deviation and the difference between the 95th and 5th percentiles of the annual SST cycle estimates, also show that the MCA has greater annual SST variability relative to the modern. Stable isotope data acquisition is ongoing, and when complete we will have a suite of records of paired coral Sr/Ca and δ18O measurements. We will apply similar statistical techniques developed for the Sr/Ca-SST record to also investigate variability in the δ18O of seawater (salinity). Modern salinity variability at Vanuatu arises due to hydrological anomalies associated with the El Niño-Southern Oscillation in the tropical Pacific.

  11. DNA evidence of bowhead whale exploitation by Greenlandic Paleo-Inuit 4,000 years ago

    NASA Astrophysics Data System (ADS)

    Seersholm, Frederik Valeur; Pedersen, Mikkel Winther; Søe, Martin Jensen; Shokry, Hussein; Mak, Sarah Siu Tze; Ruter, Anthony; Raghavan, Maanasa; Fitzhugh, William; Kjær, Kurt H.; Willerslev, Eske; Meldgaard, Morten; Kapel, Christian M. O.; Hansen, Anders Johannes

    2016-11-01

    The demographic history of Greenland is characterized by recurrent migrations and extinctions since the first humans arrived 4,500 years ago. Our current understanding of these extinct cultures relies primarily on preserved fossils found in their archaeological deposits, which hold valuable information on past subsistence practices. However, some exploited taxa, though economically important, comprise only a small fraction of these sub-fossil assemblages. Here we reconstruct a comprehensive record of past subsistence economies in Greenland by sequencing ancient DNA from four well-described midden deposits. Our results confirm that the species found in the fossil record, like harp seal and ringed seal, were a vital part of Inuit subsistence, but also add a new dimension with evidence that caribou, walrus and whale species played a more prominent role for the survival of Paleo-Inuit cultures than previously reported. Most notably, we report evidence of bowhead whale exploitation by the Saqqaq culture 4,000 years ago.

  12. DNA evidence of bowhead whale exploitation by Greenlandic Paleo-Inuit 4,000 years ago

    PubMed Central

    Seersholm, Frederik Valeur; Pedersen, Mikkel Winther; Søe, Martin Jensen; Shokry, Hussein; Mak, Sarah Siu Tze; Ruter, Anthony; Raghavan, Maanasa; Fitzhugh, William; Kjær, Kurt H.; Willerslev, Eske; Meldgaard, Morten; Kapel, Christian M.O.; Hansen, Anders Johannes

    2016-01-01

    The demographic history of Greenland is characterized by recurrent migrations and extinctions since the first humans arrived 4,500 years ago. Our current understanding of these extinct cultures relies primarily on preserved fossils found in their archaeological deposits, which hold valuable information on past subsistence practices. However, some exploited taxa, though economically important, comprise only a small fraction of these sub-fossil assemblages. Here we reconstruct a comprehensive record of past subsistence economies in Greenland by sequencing ancient DNA from four well-described midden deposits. Our results confirm that the species found in the fossil record, like harp seal and ringed seal, were a vital part of Inuit subsistence, but also add a new dimension with evidence that caribou, walrus and whale species played a more prominent role for the survival of Paleo-Inuit cultures than previously reported. Most notably, we report evidence of bowhead whale exploitation by the Saqqaq culture 4,000 years ago. PMID:27824339

  13. Live coral cover in the fossil record: an example from Holocene reefs of the Dominican Republic

    NASA Astrophysics Data System (ADS)

    Lescinsky, H.; Titus, B.; Hubbard, D.

    2012-06-01

    Fossil reefs hold important ecological information that can provide a prehuman baseline for understanding recent anthropogenic changes in reefs systems. The most widely used proxy for reef "health," however, is live coral cover, and this has not been quantified in the fossil record because it is difficult to establish that even adjacent corals were alive at the same time. This study uses microboring and taphonomic proxies to differentiate between live and dead corals along well-defined time surfaces in Holocene reefs of the Enriquillo Valley, Dominican Republic. At Cañada Honda, live coral cover ranged from 59 to 80% along a contemporaneous surface buried by a storm layer, and the reef, as a whole had 33-80% live cover within the branching, mixed, massive and platy zones. These values equal or exceed those in the Dominican Republic and Caribbean today or reported decades ago. The values from the western Dominican Republic provide a geologic baseline against which modern anthropogenic changes in Caribbean reefs can be considered.

  14. The earliest known reptile

    NASA Astrophysics Data System (ADS)

    Smithson, T. R.

    1989-12-01

    AMNIOTES (reptiles, birds and mammals) are distinguished from non-amniote tetrapods (amphibians) by the presence of complex embryonic membranes. One of these, the amnion, gives its name to the group. Very few skeletal characters distinguish amniotes from amphibians1, making it difficult to recognize early amniotes in the fossil record. The earliest amniote fossil identified so far is Hylonomus from the Westphalian (Upper Carboniferous) of Joggins, Nova Scotia2,3, (~300 Myr). I report here the discovery of a much earlier amniote skeleton from the Brigantian (Lower Carboniferous) of Scotland (~338 Myr) 4, which thus represents the earliest occurrence of amniotes in the fossil record. The specimen was collected from the East Kirkton Limestone, near Bathgate, West Lothian4-8, and is part of a unique terrestrial fauna that includes eurypterids, myriapods, scorpions and the earliest-known harvestman spider7,9, together with the earliest known temno-spondyls, a group that may include the ancestors of all living amphibians10. It will make an important contribution to our knowledge of early amniote morphology and the interrelationships of tetrapods.

  15. Paleovegetation changes recorded by n-alkyl lipids bound in macromolecules of plant fossils and kerogens from the Cretaceous sediments in Japan

    NASA Astrophysics Data System (ADS)

    Miyata, Y.; Sawada, K.; Nakamura, H.; Takashima, R.; Takahashi, M.

    2014-12-01

    Resistant macromolecules composing living plant tissues tend to be preserved through degradation and diagenesis, hence constituate major parts of sedimentary plant-derived organic matter (kerogen), and their monomer compositions vary widely among different plant taxa, organs and growth stages. Thus, analysis of such macromolecule may serve as new technique for paleobotanical evaluation distinctive from classical paleobotnical studies depends on morphological preservation of fossils. In the present study, we analyzed plant fossils and kerogens in sediments from the Cretaceous strata in Japan to examine chemotaxonomic characteristics of fossil macromolecules and to reconstruct paleovegetation change by kerogen analysis. The kerogens were separated from the powdered sediments of Cretaceous Yezo Group, Hokkaido, Japan. All kerogens have been confirmed to be mostly originated from land plant tissues by microscopic observation. Mummified angiosperm and gymnosperm fossil leaves were separated from carbonaceous sandstone of the Cretaceous Ashizawa Formation, Futaba Group. The kerogens and plant fossils were extracted with methanol and dichloromethane, and were subsequently refluxed under 110°C to remove free compounds completely. The residues are hydrolyzed by KOH/methanol under 110°C. These released compounds are analyzed by GC-MS. As main hydrolyzed products (ester-bound molecular units) from all kerogens, C10-C28 n-alkanoic acids and C10-C30 n-alkanols were detected. Recent studies on the hydrolysis products of plant tissues suggested the long chain (>C20) n-alkanols were predominantly abundant in deciduous broadleaved angiosperms. Correspondingly, the stratigraphic variation of the ratios of long chain (>C20) n-alkanols to fatty acids was concordant with the variation of angiosperm/gymnosperm ratios recorded by land plant-derived terpenoid biomarkers. In addition, we found that the long chain n-alkanols/fatty acids ratio in the angiosperm fossil leaf was significantly higher than that of conifer fossil leaf from Ashizawa coal bed. From these results, we propose that the proportions of long chain n-alkanols released from terrigenous kerogens are applicable for paleovegetation reconstruction.

  16. Paleoserranus lakamhae gen. et sp. nov., a Paleocene seabass (Perciformes: Serranidae) from Palenque, Chiapas, southeastern Mexico

    NASA Astrophysics Data System (ADS)

    Cantalice, Kleyton M.; Alvarado-Ortega, Jesús; Alaniz-Galvan, Abril

    2018-04-01

    Paleoserranus lakamhae gen. et sp. nov. is here described based on well-preserved fossils from the Paleocene marine sediments of the Tenejapa-Lacandón geological unit, belonging to both Division del Norte and Belisario Domínguez quarries, near Palenque, Chiapas, southeastern Mexico. This species exhibits distinctive characters of the order Perciformes, such as the presence of spines in the dorsal, pelvic, and anal fins, as well as the pelvic and pectoral girdles in contact between them. This fish also has neither procurrent spur nor posterior uroneural, characters that support its place within the family Serranidae. It also has a distinctive combination of characters, including a serrated lacrimal and a toothed ectopterygoid, never recorded before among serranids. Additionally, this fossil fish shares some characters with different species nested within the subfamilies Serraninae, Anthiinae, and Ephinephelinae; these include a predorsal formula of 0/0/0 + 2/1 + 1/1; a preopercle with its ventral edge sinuous and showing a strong antrorse spine; its dorsal fin consists of nine spines and eight to ten soft rays; 13 rays in its pectoral fin; and its rounded caudal fin structured with formula I+8-7+I. Paleoserranus lakamhae gen. et sp. nov. is a Serranidae incertae sedis because it does not fit into any subgroup; however, this Paleocene fish is the earliest fossil record of the family Serranidae. The place of occurrence of this new fossil record suggests that the origin and of the seabasses took place in the Caribbean region of North America.

  17. Short- and Long-term Evolutionary Dynamics of Bacterial Insertion Sequences: Insights from Wolbachia Endosymbionts

    PubMed Central

    Cerveau, Nicolas; Leclercq, Sébastien; Leroy, Elodie; Bouchon, Didier; Cordaux, Richard

    2011-01-01

    Transposable elements (TE) are one of the major driving forces of genome evolution, raising the question of the long-term dynamics underlying their evolutionary success. Long-term TE evolution can readily be reconstructed in eukaryotes, thanks to many degraded copies constituting genomic fossil records of past TE proliferations. By contrast, bacterial genomes usually experience high sequence turnover and short TE retention times, thereby obscuring ancient TE evolutionary patterns. We found that Wolbachia bacterial genomes contain 52–171 insertion sequence (IS) TEs. IS account for 11% of Wolbachia wRi, which is one of the highest IS genomic coverage reported in prokaryotes to date. We show that many IS groups are currently expanding in various Wolbachia genomes and that IS horizontal transfers are frequent among strains, which can explain the apparent synchronicity of these IS proliferations. Remarkably, >70% of Wolbachia IS are nonfunctional. They constitute an unusual bacterial IS genomic fossil record providing direct empirical evidence for a long-term IS evolutionary dynamics following successive periods of intense transpositional activity. Our results show that comprehensive IS annotations have the potential to provide new insights into prokaryote TE evolution and, more generally, prokaryote genome evolution. Indeed, the identification of an important IS genomic fossil record in Wolbachia demonstrates that IS elements are not always of recent origin, contrary to the conventional view of TE evolution in prokaryote genomes. Our results also raise the question whether the abundance of IS fossils is specific to Wolbachia or it may be a general, albeit overlooked, feature of prokaryote genomes. PMID:21940637

  18. Short- and long-term evolutionary dynamics of bacterial insertion sequences: insights from Wolbachia endosymbionts.

    PubMed

    Cerveau, Nicolas; Leclercq, Sébastien; Leroy, Elodie; Bouchon, Didier; Cordaux, Richard

    2011-01-01

    Transposable elements (TE) are one of the major driving forces of genome evolution, raising the question of the long-term dynamics underlying their evolutionary success. Long-term TE evolution can readily be reconstructed in eukaryotes, thanks to many degraded copies constituting genomic fossil records of past TE proliferations. By contrast, bacterial genomes usually experience high sequence turnover and short TE retention times, thereby obscuring ancient TE evolutionary patterns. We found that Wolbachia bacterial genomes contain 52-171 insertion sequence (IS) TEs. IS account for 11% of Wolbachia wRi, which is one of the highest IS genomic coverage reported in prokaryotes to date. We show that many IS groups are currently expanding in various Wolbachia genomes and that IS horizontal transfers are frequent among strains, which can explain the apparent synchronicity of these IS proliferations. Remarkably, >70% of Wolbachia IS are nonfunctional. They constitute an unusual bacterial IS genomic fossil record providing direct empirical evidence for a long-term IS evolutionary dynamics following successive periods of intense transpositional activity. Our results show that comprehensive IS annotations have the potential to provide new insights into prokaryote TE evolution and, more generally, prokaryote genome evolution. Indeed, the identification of an important IS genomic fossil record in Wolbachia demonstrates that IS elements are not always of recent origin, contrary to the conventional view of TE evolution in prokaryote genomes. Our results also raise the question whether the abundance of IS fossils is specific to Wolbachia or it may be a general, albeit overlooked, feature of prokaryote genomes.

  19. From Cells to Species - How do Coccolithophore Communities Respond to Climate Change?

    NASA Astrophysics Data System (ADS)

    Gibbs, S.; Bown, P. R.; Poulton, A. J.

    2014-12-01

    The geological record contains a rich archive of the exported remains of plankton skeletons that can inform our predictions of their response to current and near-future environmental change. However, these fossilised remains represent integrated populations of millions of individuals recording reproductive success over daily timescales, with each cell responding to its own microenvironment. How then do whole species and communities show 'response' to changes in climate occurring on timescales far longer than that of the individual? And what exactly does 'response' mean in this context? Here, we utilize remarkably well-preserved assemblages of calcareous nannoplankton in order to interrogate fossil populations uniquely at an individual cellular-level, exploring the link between individuals and the success of the species, thereby tackling these questions from the bottom up. By studying individual fossilized cells we can draw direct comparisons with modern coccolithophore cells and as such we have combined observations from living coccolithophore cultures, naturally occurring populations in the ocean and exquisitely preserved fossil records. The fossils provide us with case studies of community variability alongside environmental change, over both long timescales of greenhouse to icehouse climate states and also more abrupt events such as the Paleogene hyperthermals. Finding these exquisitely preserved fossils is challenging, but there are exceptional situations where preservation bias is greatly reduced and we find complete coccospheres and therefore the intact biomineralised coverings of long-dead cells. These coccospheres preserve invaluable information about the original living cell including its size, levels of particulate organic carbon and inorganic carbon, ontogeny, and growth phase - information that tells us about their reproductive success and their potential role in local biogeochemical cycling. By better understanding these individual cells, we can start to think about the cumulative outcome of seasonal reproductive cycles that results in what we traditionally view as species-level 'responses'.

  20. Molecules, morphometrics and new fossils provide an integrated view of the evolutionary history of Rhinopomatidae (Mammalia: Chiroptera).

    PubMed

    Hulva, Pavel; Horácek, Ivan; Benda, Petr

    2007-09-14

    The Rhinopomatidae, traditionally considered to be one of the most ancient chiropteran clades, remains one of the least known groups of Rhinolophoidea. No relevant fossil record is available for this family. Whereas there have been extensive radiations in related families Rhinolophidae and Hipposideridae, there are only a few species in the Rhinopomatidae and their phylogenetic relationship and status are not fully understood. Here we present (a) a phylogenetic analysis based on a partial cytochrome b sequence, (b) new fossils from the Upper Miocene site Elaiochoria 2 (Chalkidiki, Greece), which represents the first appearance datum of the family based on the fossil record, and (c) discussion of the phylogeographic patterns in both molecular and morphological traits. We found deep divergences in the Rhinopoma hardwickii lineage, suggesting that the allopatric populations in (i) Iran and (ii) North Africa and the Middle East should have separate species status. The latter species (R. cystops) exhibits a shallow pattern of isolation by distance (separating the Middle East and the African populations) that contrasts with the pattern of geographic variation in the morphometrical traits. A deep genetic gap was also found in Rhinopoma muscatellum (Iran vs. Yemen). We found only minute genetic distance between R. microphyllum from the Levant and India, which fails to support the sub/species distinctness of the Indian form (R. microphyllum kinneari). The mtDNA survey provided phylogenetic tree of the family Rhinopomatidae for the first time and revealed an unexpected diversification of the group both within R. hardwickii and R. muscatellum morphospecies. The paleobiogeographic scenario compiled in respect to molecular clock data suggests that the family originated in the region south of the Eocene Western Tethyan seaway or in India, and extended its range during the Early Miocene. The fossil record suggests a Miocene spread into the Mediterranean region, followed by a post-Miocene retreat. Morphological analysis compared with genetic data indicates considerable phenotypic plasticity in this group.

  1. The largest fossil rodent

    PubMed Central

    Rinderknecht, Andrés; Blanco, R. Ernesto

    2008-01-01

    The discovery of an exceptionally well-preserved skull permits the description of the new South American fossil species of the rodent, Josephoartigasia monesi sp. nov. (family: Dinomyidae; Rodentia: Hystricognathi: Caviomorpha). This species with estimated body mass of nearly 1000 kg is the largest yet recorded. The skull sheds new light on the anatomy of the extinct giant rodents of the Dinomyidae, which are known mostly from isolated teeth and incomplete mandible remains. The fossil derives from San José Formation, Uruguay, usually assigned to the Pliocene–Pleistocene (4–2 Myr ago), and the proposed palaeoenvironment where this rodent lived was characterized as an estuarine or deltaic system with forest communities. PMID:18198140

  2. Cranial Remain from Tunisia Provides New Clues for the Origin and Evolution of Sirenia (Mammalia, Afrotheria) in Africa

    PubMed Central

    Benoit, Julien; Adnet, Sylvain; El Mabrouk, Essid; Khayati, Hayet; Ben Haj Ali, Mustapha; Marivaux, Laurent; Merzeraud, Gilles; Merigeaud, Samuel; Vianey-Liaud, Monique; Tabuce, Rodolphe

    2013-01-01

    Sea cows (manatees, dugongs) are the only living marine mammals to feed solely on aquatic plants. Unlike whales or dolphins (Cetacea), the earliest evolutionary history of sirenians is poorly documented, and limited to a few fossils including skulls and skeletons of two genera composing the stem family of Prorastomidae (Prorastomus and Pezosiren). Surprisingly, these fossils come from the Eocene of Jamaica, while stem Hyracoidea and Proboscidea - the putative sister-groups to Sirenia - are recorded in Africa as early as the Late Paleocene. So far, the historical biogeography of early Sirenia has remained obscure given this paradox between phylogeny and fossil record. Here we use X-ray microtomography to investigate a newly discovered sirenian petrosal from the Eocene of Tunisia. This fossil represents the oldest occurrence of sirenians in Africa. The morphology of this petrosal is more primitive than the Jamaican prorastomids’ one, which emphasizes the basal position of this new African taxon within the Sirenia clade. This discovery testifies to the great antiquity of Sirenia in Africa, and therefore supports their African origin. While isotopic analyses previously suggested sirenians had adapted directly to the marine environment, new paleoenvironmental evidence suggests that basal-most sea cows were likely restricted to fresh waters. PMID:23342128

  3. The influence of leaf morphology on litter flammability and its utility for interpreting palaeofire

    PubMed Central

    2016-01-01

    Studies of palaeofire rely on quantifying the abundance of fossil charcoals in sediments to estimate changes in fire activity. However, gaining an understanding of the behaviour of palaeofires is also essential if we are to determine the palaeoecological impact of wildfires. Here, I use experimental approaches to explore relationships between litter fire behaviour and leaf traits that are observable in the fossil record. Fire calorimetry was used to assess the flammability of 15 species of conifer litter and indicated that leaf morphology related to litter bulk density and fuel load that determined the duration of burning and the total energy released. These data were applied to a fossil case study that couples estimates of palaeolitter fire behaviour to charcoal-based estimates of fire activity and observations of palaeoecological changes. The case study reveals that significant changes in fire activity and behaviour likely fed back to determine ecosystem composition. This work highlights that we can recognize and measure plant traits in the fossil record that relate to fire behaviour and therefore that further research is warranted towards estimating palaeofire behaviour as it can enhance our ability to interpret the palaeoecological impact of palaeofires throughout Earth's long evolutionary history. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216520

  4. The influence of leaf morphology on litter flammability and its utility for interpreting palaeofire.

    PubMed

    Belcher, Claire M

    2016-06-05

    Studies of palaeofire rely on quantifying the abundance of fossil charcoals in sediments to estimate changes in fire activity. However, gaining an understanding of the behaviour of palaeofires is also essential if we are to determine the palaeoecological impact of wildfires. Here, I use experimental approaches to explore relationships between litter fire behaviour and leaf traits that are observable in the fossil record. Fire calorimetry was used to assess the flammability of 15 species of conifer litter and indicated that leaf morphology related to litter bulk density and fuel load that determined the duration of burning and the total energy released. These data were applied to a fossil case study that couples estimates of palaeolitter fire behaviour to charcoal-based estimates of fire activity and observations of palaeoecological changes. The case study reveals that significant changes in fire activity and behaviour likely fed back to determine ecosystem composition. This work highlights that we can recognize and measure plant traits in the fossil record that relate to fire behaviour and therefore that further research is warranted towards estimating palaeofire behaviour as it can enhance our ability to interpret the palaeoecological impact of palaeofires throughout Earth's long evolutionary history.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  5. Ichnological evidence for meiofaunal bilaterians from the terminal Ediacaran and earliest Cambrian of Brazil.

    PubMed

    Parry, Luke A; Boggiani, Paulo C; Condon, Daniel J; Garwood, Russell J; Leme, Juliana de M; McIlroy, Duncan; Brasier, Martin D; Trindade, Ricardo; Campanha, Ginaldo A C; Pacheco, Mírian L A F; Diniz, Cleber Q C; Liu, Alexander G

    2017-10-01

    The evolutionary events during the Ediacaran-Cambrian transition (~541 Myr ago) are unparalleled in Earth history. The fossil record suggests that most extant animal phyla appeared in a geologically brief interval, with the oldest unequivocal bilaterian body fossils found in the Early Cambrian. Molecular clocks and biomarkers provide independent estimates for the timing of animal origins, and both suggest a cryptic Neoproterozoic history for Metazoa that extends considerably beyond the Cambrian fossil record. We report an assemblage of ichnofossils from Ediacaran-Cambrian siltstones in Brazil, alongside U-Pb radioisotopic dates that constrain the age of the oldest specimens to 555-542 Myr. X-ray microtomography reveals three-dimensionally preserved traces ranging from 50 to 600 μm in diameter, indicative of small-bodied, meiofaunal tracemakers. Burrow morphologies suggest they were created by a nematoid-like organism that used undulating locomotion to move through the sediment. This assemblage demonstrates animal-sediment interactions in the latest Ediacaran period, and provides the oldest known fossil evidence for meiofaunal bilaterians. Our discovery highlights meiofaunal ichnofossils as a hitherto unexplored window for tracking animal evolution in deep time, and reveals that both meiofaunal and macrofaunal bilaterians began to explore infaunal niches during the late Ediacaran.

  6. Early Paleogene evolution of terrestrial climate in the SW Pacific, Southern New Zealand

    NASA Astrophysics Data System (ADS)

    Pancost, Richard D.; Taylor, Kyle W. R.; Inglis, Gordon N.; Kennedy, Elizabeth M.; Handley, Luke; Hollis, Christopher J.; Crouch, Erica M.; Pross, Jörg; Huber, Matthew; Schouten, Stefan; Pearson, Paul N.; Morgans, Hugh E. G.; Raine, J. Ian

    2013-12-01

    We present a long-term record of terrestrial climate change for the Early Paleogene of the Southern Hemisphere that complements previously reported marine temperature records. Using the MBT'-CBT proxy, based on the distribution of soil bacterial glycerol dialkyl glycerol tetraether lipids, we reconstructed mean annual air temperature (MAT) from the Middle Paleocene to Middle Eocene (62-42 Ma) for southern New Zealand. This record is consistent with temperature estimates derived from leaf fossils and palynology, as well as previously published MBT'-CBT records, which provides confidence in absolute temperature estimates. Our record indicates that through this interval, temperatures were typically 5°C warmer than those of today at such latitudes, with more pronounced warming during the Early Eocene Climate Optimum (EECO; ˜50 Ma) when MAT was ˜20°C. Moreover, the EECO MATs are similar to those determined for Antarctica, with a weak high-latitude terrestrial temperature gradient (˜5°C) developing by the Middle Eocene. We also document a short-lived cooling episode in the early Late Paleocene when MAT was comparable to present. This record corroborates the trends documented by sea surface temperature (SST) proxies, although absolute SSTs are up to 6°C warmer than MATs. Although the high-calibration error of the MBT'-CBT proxy dictates caution, the good match between our MAT results and modeled temperatures supports the suggestion that SST records suffer from a warm (summer?) bias, particularly during times of peak warming.

  7. Hemoglobin-derived porphyrins preserved in a Middle Eocene blood-engorged mosquito

    PubMed Central

    Greenwalt, Dale E.; Goreva, Yulia S.; Siljeström, Sandra M.; Rose, Tim; Harbach, Ralph E.

    2013-01-01

    Although hematophagy is found in ∼14,000 species of extant insects, the fossil record of blood-feeding insects is extremely poor and largely confined to specimens identified as hematophagic based on their taxonomic affinities with extant hematophagic insects; direct evidence of hematophagy is limited to four insect fossils in which trypanosomes and the malarial protozoan Plasmodium have been found. Here, we describe a blood-engorged mosquito from the Middle Eocene Kishenehn Formation in Montana. This unique specimen provided the opportunity to ask whether or not hemoglobin, or biomolecules derived from hemoglobin, were preserved in the fossilized blood meal. The abdomen of the fossil mosquito was shown to contain very high levels of iron, and mass spectrometry data provided a convincing identification of porphyrin molecules derived from the oxygen-carrying heme moiety of hemoglobin. These data confirm the existence of taphonomic conditions conducive to the preservation of biomolecules through deep time and support previous reports of the existence of heme-derived porphyrins in terrestrial fossils. PMID:24127577

  8. Decimetre-scale multicellular eukaryotes from the 1.56-billion-year-old Gaoyuzhuang Formation in North China

    PubMed Central

    Zhu, Shixing; Zhu, Maoyan; Knoll, Andrew H.; Yin, Zongjun; Zhao, Fangchen; Sun, Shufen; Qu, Yuangao; Shi, Min; Liu, Huan

    2016-01-01

    Fossils of macroscopic eukaryotes are rarely older than the Ediacaran Period (635–541 million years (Myr)), and their interpretation remains controversial. Here, we report the discovery of macroscopic fossils from the 1,560-Myr-old Gaoyuzhuang Formation, Yanshan area, North China, that exhibit both large size and regular morphology. Preserved as carbonaceous compressions, the Gaoyuzhuang fossils have statistically regular linear to lanceolate shapes up to 30 cm long and nearly 8 cm wide, suggesting that the Gaoyuzhuang fossils record benthic multicellular eukaryotes of unprecedentedly large size. Syngenetic fragments showing closely packed ∼10 μm cells arranged in a thick sheet further reinforce the interpretation. Comparisons with living thalloid organisms suggest that these organisms were photosynthetic, although their phylogenetic placement within the Eukarya remains uncertain. The new fossils provide the strongest evidence yet that multicellular eukaryotes with decimetric dimensions and a regular developmental program populated the marine biosphere at least a billion years before the Cambrian Explosion. PMID:27186667

  9. Historical atmospheric pollution trends in Southeast Asia inferred from lake sediment records.

    PubMed

    Engels, S; Fong, L S R Z; Chen, Q; Leng, M J; McGowan, S; Idris, M; Rose, N L; Ruslan, M S; Taylor, D; Yang, H

    2018-04-01

    Fossil fuel combustion leads to increased levels of air pollution, which negatively affects human health as well as the environment. Documented data for Southeast Asia (SEA) show a strong increase in fossil fuel consumption since 1980, but information on coal and oil combustion before 1980 is not widely available. Spheroidal carbonaceous particles (SCPs) and heavy metals, such as mercury (Hg), are emitted as by-products of fossil fuel combustion and may accumulate in sediments following atmospheric fallout. Here we use sediment SCP and Hg records from several freshwater lentic ecosystems in SEA (Malaysia, Philippines, Singapore) to reconstruct long-term, region-wide variations in levels of these two key atmospheric pollution indicators. The age-depth models of Philippine sediment cores do not reach back far enough to date first SCP presence, but single SCP occurrences are first observed between 1925 and 1950 for a Malaysian site. Increasing SCP flux is observed at our sites from 1960 onward, although individual sites show minor differences in trends. SCP fluxes show a general decline after 2000 at each of our study sites. While the records show broadly similar temporal trends across SEA, absolute SCP fluxes differ between sites, with a record from Malaysia showing SCP fluxes that are two orders of magnitude lower than records from the Philippines. Similar trends in records from China and Japan represent the emergence of atmospheric pollution as a broadly-based inter-region environmental problem during the 20th century. Hg fluxes were relatively stable from the second half of the 20th century onward. As catchment soils are also contaminated with atmospheric Hg, future soil erosion can be expected to lead to enhanced Hg flux into surface waters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Individual to Community-Level Faunal Responses to Environmental Change from a Marine Fossil Record of Early Miocene Global Warming

    PubMed Central

    Belanger, Christina L.

    2012-01-01

    Modern climate change has a strong potential to shift earth systems and biological communities into novel states that have no present-day analog, leaving ecologists with no observational basis to predict the likely biotic effects. Fossil records contain long time-series of past environmental changes outside the range of modern observation, which are vital for predicting future ecological responses, and are capable of (a) providing detailed information on rates of ecological change, (b) illuminating the environmental drivers of those changes, and (c) recording the effects of environmental change on individual physiological rates. Outcrops of Early Miocene Newport Member of the Astoria Formation (Oregon) provide one such time series. This record of benthic foraminiferal and molluscan community change from continental shelf depths spans a past interval environmental change (∼20.3-16.7 mya) during which the region warmed 2.1–4.5°C, surface productivity and benthic organic carbon flux increased, and benthic oxygenation decreased, perhaps driven by intensified upwelling as on the modern Oregon coast. The Newport Member record shows that (a) ecological responses to natural environmental change can be abrupt, (b) productivity can be the primary driver of faunal change during global warming, (c) molluscs had a threshold response to productivity change while foraminifera changed gradually, and (d) changes in bivalve body size and growth rates parallel changes in taxonomic composition at the community level, indicating that, either directly or indirectly through some other biological parameter, the physiological tolerances of species do influence community change. Ecological studies in modern and fossil records that consider multiple ecological levels, environmental parameters, and taxonomic groups can provide critical information for predicting future ecological change and evaluating species vulnerability. PMID:22558424

  11. Is the geological past a key to the (near) future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culotta, E.

    1993-02-12

    Ever since Leonardo da Vinci unearthed beds of fossil marine shells in the Tuscan hills, the record of the past has been challenging conventional theories of climate. Sages of da Vinci's day had a proper explanation for the shells. The clams and snails had drifted into the hills with the waters of the Biblical Flood. But da Vinci didn't think the climatic event chronicled in Genesis could explain the evidence. How, he wondered, could these largely sedentary mollusks have traveled so far in merely 40 days He concluded that the received wisdom was wrong: The marine organisms had lived andmore » died in a vanished sea, just where he found them. But, perhaps fearing papal displeasure, he never published his conclusions.« less

  12. Adélie penguins and temperature changes in Antarctica: a long-term view.

    PubMed

    Millar, Craig D; Subramanian, Sankar; Heupink, Tim H; Swaminathan, Siva; Baroni, Carlo; Lambert, David M

    2012-06-01

    During the summer months, Adélie penguins represent the dominant biomass of terrestrial Antarctica. Literally millions of individuals nest in ice-free areas around the coast of the continent. Hence, these modern populations of Adélie penguins have often been championed as an ideal biological indicator of ecological and environmental changes that we currently face. In addition, Adélie penguins show an extraordinary record of sub-fossil remains, dating back to the late Pleistocene. At this time, temperatures were much lower than now. Hence, this species offers unique long-term information, at both the genomic and ecological levels, about how a species has responded to climate change over more than 40 000 years. © 2012 ISZS, Blackwell Publishing and IOZ/CAS.

  13. Drawings of fossils by Robert Hooke and Richard Waller

    PubMed Central

    Kusukawa, Sachiko

    2013-01-01

    The drawings of fossils by Robert Hooke and Richard Waller that were the basis of the engravings in Hooke's Posthumous works (1705) are published here for the first time. The drawings show that both Hooke and Waller were proficient draftsmen with a keen eye for the details of petrified objects. These drawings provided Hooke with a polemic edge in making the case for the organic origins of ‘figured stones’.

  14. Evidence of Archaean life - A brief appraisal

    NASA Technical Reports Server (NTRS)

    Schopf, J. W.

    1976-01-01

    Attention is called to the question of whether the meagerness of the Archaean fossil record is a function of a sparsity of preserved, cratonal, fossiliferous facies, or whether the abrupt break in the known fossil record near the Archaean-Proterozoic boundary reflects a major event in biological evolution. The paper then reviews the currently available geochemical and paleobiological data on Archaean biota. The occurrence of stromatolites in the Archaean, and the carbon isotopic composition of Archaean organic matter, both suggest strongly the existence of an Archaean biota. The presence of relatively abundant and morphologically complex microorganisms in deposits of early Proterozoic age seems to be certain evidence for a prior episode of Archaean evolution.

  15. A fossil unicorn crestfish (Teleostei, Lampridiformes, Lophotidae) from the Eocene of Iran.

    PubMed

    Davesne, Donald

    2017-01-01

    Lophotidae, or crestfishes, is a family of rare deep-sea teleosts characterised by an enlarged horn-like crest on the forehead. They are poorly represented in the fossil record, by only three described taxa. One specimen attributed to Lophotidae has been described from the pelagic fauna of the middle-late Eocene Zagros Basin, Iran. Originally considered as a specimen of the fossil lophotid † Protolophotus , it is proposed hereby as a new genus and species † Babelichthys olneyi , gen. et sp. nov., differs from the other fossil lophotids by its relatively long and strongly projecting crest, suggesting a close relationship with the modern unicorn crestfish, Eumecichthys . This new taxon increases the diversity of the deep-sea teleost fauna to which it belongs, improving our understanding of the taxonomic composition of the early Cenozoic mesopelagic ecosystems.

  16. A fossil unicorn crestfish (Teleostei, Lampridiformes, Lophotidae) from the Eocene of Iran

    PubMed Central

    2017-01-01

    Lophotidae, or crestfishes, is a family of rare deep-sea teleosts characterised by an enlarged horn-like crest on the forehead. They are poorly represented in the fossil record, by only three described taxa. One specimen attributed to Lophotidae has been described from the pelagic fauna of the middle-late Eocene Zagros Basin, Iran. Originally considered as a specimen of the fossil lophotid †Protolophotus, it is proposed hereby as a new genus and species †Babelichthys olneyi, gen. et sp. nov., differs from the other fossil lophotids by its relatively long and strongly projecting crest, suggesting a close relationship with the modern unicorn crestfish, Eumecichthys. This new taxon increases the diversity of the deep-sea teleost fauna to which it belongs, improving our understanding of the taxonomic composition of the early Cenozoic mesopelagic ecosystems. PMID:28674642

  17. Study of fossil wood from the Middle-Late Miocene sediments of Dhemaji and Lakhimpur districts of Assam, India and its palaeoecological and palaeophytogeographical implications

    NASA Astrophysics Data System (ADS)

    Mehrotra, R. C.; Bera, S. K.; Basumatary, S. K.; Srivastava, G.

    2011-08-01

    In order to reconstruct the palaeoclimate, a number of fossil wood pieces were collected and investigated from two new fossil localities situated in the Dhemaji and Lakhimpur districts of Assam. They belong to the Tipam Group considered to be of Middle-Late Miocene in age and show affinities with Gluta (Anacardiaceae), Bischofia (Euphorbiaceae), Bauhinia, Cynometra, Copaifera-Detarium-Sindora, Millettia-Pongamia, and Afzelia-Intsia (Fabaceae). The flora also records a new species of Bauhinia named Bauhinia miocenica sp. nov. The assemblage indicates a warm and humid climate in the region during the deposition of the sediments. The occurrence of some southeast Asian elements in the fossil flora indicates that an exchange of floral elements took place between India and southeast Asia during the Miocene.

  18. Are pollen fossils useful for calibrating relaxed molecular clock dating of phylogenies? A comparative study using Myrtaceae.

    PubMed

    Thornhill, Andrew H; Popple, Lindsay W; Carter, Richard J; Ho, Simon Y W; Crisp, Michael D

    2012-04-01

    The identification and application of reliable fossil calibrations represents a key component of many molecular studies of evolutionary timescales. In studies of plants, most paleontological calibrations are associated with macrofossils. However, the pollen record can also inform age calibrations if fossils matching extant pollen groups are found. Recent work has shown that pollen of the myrtle family, Myrtaceae, can be classified into a number of morphological groups that are synapomorphic with molecular groups. By assembling a data matrix of pollen morphological characters from extant and fossil Myrtaceae, we were able to measure the fit of 26 pollen fossils to a molecular phylogenetic tree using parsimony optimisation of characters. We identified eight Myrtaceidites fossils as appropriate for calibration based on the most parsimonious placements of these fossils on the tree. These fossils were used to inform age constraints in a Bayesian phylogenetic analysis of a sequence alignment comprising two sequences from the chloroplast genome (matK and ndhF) and one nuclear locus (ITS), sampled from 106 taxa representing 80 genera. Three additional analyses were calibrated by placing pollen fossils using geographic and morphological information (eight calibrations), macrofossils (five calibrations), and macrofossils and pollen fossils in combination (12 calibrations). The addition of new fossil pollen calibrations led to older crown ages than have previously been found for tribes such as Eucalypteae and Myrteae. Estimates of rate variation among lineages were affected by the choice of calibrations, suggesting that the use of multiple calibrations can improve estimates of rate heterogeneity among lineages. This study illustrates the potential of including pollen-based calibrations in molecular studies of divergence times. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Biogeographic Dating of Speciation Times Using Paleogeographically Informed Processes

    PubMed Central

    Landis, Michael J.

    2017-01-01

    Abstract Standard models of molecular evolution cannot estimate absolute speciation times alone, and require external calibrations to do so, such as fossils. Because fossil calibration methods rely on the incomplete fossil record, a great number of nodes in the tree of life cannot be dated precisely. However, many major paleogeographical events are dated, and since biogeographic processes depend on paleogeographical conditions, biogeographic dating may be used as an alternative or complementary method to fossil dating. I demonstrate how a time-stratified biogeographic stochastic process may be used to estimate absolute divergence times by conditioning on dated paleogeographical events. Informed by the current paleogeographical literature, I construct an empirical dispersal graph using 25 areas and 26 epochs for the past 540 Ma of Earth’s history. Simulations indicate biogeographic dating performs well so long as paleogeography imposes constraint on biogeographic character evolution. To gauge whether biogeographic dating may be of practical use, I analyzed the well-studied turtle clade (Testudines) to assess how well biogeographic dating fares when compared to fossil-calibrated dating estimates reported in the literature. Fossil-free biogeographic dating estimated the age of the most recent common ancestor of extant turtles to be from the Late Triassic, which is consistent with fossil-based estimates. Dating precision improves further when including a root node fossil calibration. The described model, paleogeographical dispersal graph, and analysis scripts are available for use with RevBayes. PMID:27155009

  20. Molecular and Morphological Evidence Challenges the Records of the Extant Liverwort Ptilidium pulcherrimum in Eocene Baltic Amber.

    PubMed

    Heinrichs, Jochen; Scheben, Armin; Lee, Gaik Ee; Váňa, Jiří; Schäfer-Verwimp, Alfons; Krings, Michael; Schmidt, Alexander R

    2015-01-01

    Preservation of liverworts in amber, a fossilized tree resin, is often exquisite. Twenty-three fossil species of liverworts have been described to date from Eocene (35-50 Ma) Baltic amber. In addition, two inclusions have been assigned to the extant species Ptilidium pulcherrimum (Ptilidiales or Porellales). However, the presence of the boreal P. pulcherrimum in the subtropical or warm-temperate Baltic amber forest challenges the phytogeographical interpretation of the Eocene flora. A re-investigation of one of the fossils believed to be P. pulcherrimum reveals that this specimen in fact represents the first fossil evidence of the genus Tetralophozia, and thus is re-described here as Tetralophozia groehnii sp. nov. A second fossil initially assigned to P. pulcherrimum is apparently lost, and can be reassessed only based on the original description and illustrations. This fossil is morphologically similar to the extant North Pacific endemic Ptilidium californicum, rather than P. pulcherrimum. Divergence time estimates based on chloroplast DNA sequences provide evidence of a Miocene origin of P. pulcherrimum, and thus also argue against the presence of this taxon in the Eocene. Ptilidium californicum originated 25-43 Ma ago. As a result, we cannot rule out that the Eocene fossil belongs to P. californicum. Alternatively, the fossil might represent a stem lineage element of Ptilidium or an early crown group species with morphological similarities to P. californicum.

  1. Fossil nutlets of Boraginaceae from the continental Eocene of Hamada of Méridja (southwestern Algeria): The first fossil of the Borage family in Africa.

    PubMed

    Hammouda, Sid Ahmed; Weigend, Maximilian; Mebrouk, Fateh; Chacón, Juliana; Bensalah, Mustapha; Ensikat, Hans-Jürgen; Adaci, Mohammed

    2015-12-01

    The Paleogene deposits of the Hamada of Méridja, southwestern Algeria, are currently dated as lower-to-middle Eocene in age based on fossil gastropods and charophytes. Here we report the presence of fruits that can be assigned to the Boraginaceae s.str., apparently representing the first fossil record for this family in Africa, shedding new light on the historical biogeography of this group. Microscopic studies of the fossil nutlets were carried out and compared to extant Boraginaceae nutlets, and to types reported in the literature for this family. The fossils are strikingly similar in general size and morphology, particularly in the finer details of the attachment scar and ornamentation, to nutlets of extant representatives of the Boraginaceae tribe Echiochileae, and especially the genus Ogastemma. We believe that these nutlets represent an extinct member of this lineage. The Ogastemma-like fossils indicate that the Echiochileae, which are most diverse in northern Africa and southwestern Asia, have a long history in this region, dating back to the Eocene. This tribe corresponds to the basal-most clade in Boraginaceae s.str., and the fossils described here agree well with an assumed African origin of the family and the Boraginales I, providing an important additional calibration point for dating the phylogenies of this clade. © 2015 Botanical Society of America.

  2. Delta13C values of grasses as a novel indicator of pollution by fossil-fuel-derived greenhouse gas CO2 in urban areas.

    PubMed

    Lichtfouse, Eric; Lichtfouse, Michel; Jaffrézic, Anne

    2003-01-01

    A novel fossil fuel pollution indicator based on the 13C/12C isotopic composition of plants has been designed. This bioindicator is a promising tool for future mapping of the sequestration of fossil fuel CO2 into urban vegetation. Theoretically, plants growing in fossil-fuel-CO2-contaminated areas, such as major cities, industrial centers, and highway borders, should assimilate a mixture of global atmospheric CO2 of delta13C value of -8.02 per thousand and of fossil fuel CO2 of average delta13C value of -27.28 per thousand. This isotopic difference should, thus, be recorded in plant carbon. Indeed, this study reveals that grasses growing near a major highway in Paris, France, have strikingly depleted delta13C values, averaging at -35.08 per thousand, versus rural grasses that show an average delta13C value of -30.59 per thousand. A simple mixing model was used to calculate the contributions of fossil-fuel-derived CO2 to the plant tissue. Calculation based on contaminated and noncontaminated isotopic end members shows that urban grasses assimilate up to 29.1% of fossil-fuel-CO2-derived carbon in their tissues. The 13C isotopic composition of grasses thus represents a promising new tool for the study of the impact of fossil fuel CO2 in major cities.

  3. How Good is the Fossil Record?

    ERIC Educational Resources Information Center

    Boucot, A. J.

    1983-01-01

    Suggests that earth scientists become active in the creationist debate by making sure that the religious concept creationism is not taught in schools and that well-based, informative material about organic evolution, earth's age, and nature of stratigraphic record are employed by science teachers. (Author/JN)

  4. Combining phylogenomics and fossils in higher-level squamate reptile phylogeny: molecular data change the placement of fossil taxa.

    PubMed

    Wiens, John J; Kuczynski, Caitlin A; Townsend, Ted; Reeder, Tod W; Mulcahy, Daniel G; Sites, Jack W

    2010-12-01

    Molecular data offer great potential to resolve the phylogeny of living taxa but can molecular data improve our understanding of relationships of fossil taxa? Simulations suggest that this is possible, but few empirical examples have demonstrated the ability of molecular data to change the placement of fossil taxa. We offer such an example here. We analyze the placement of snakes among squamate reptiles, combining published morphological data (363 characters) and new DNA sequence data (15,794 characters, 22 nuclear loci) for 45 living and 19 fossil taxa. We find several intriguing results. First, some fossil taxa undergo major changes in their phylogenetic position when molecular data are added. Second, most fossil taxa are placed with strong support in the expected clades by the combined data Bayesian analyses, despite each having >98% missing cells and despite recent suggestions that extensive missing data are problematic for Bayesian phylogenetics. Third, morphological data can change the placement of living taxa in combined analyses, even when there is an overwhelming majority of molecular characters. Finally, we find strong but apparently misleading signal in the morphological data, seemingly associated with a burrowing lifestyle in snakes, amphisbaenians, and dibamids. Overall, our results suggest promise for an integrated and comprehensive Tree of Life by combining molecular and morphological data for living and fossil taxa.

  5. The age for the fossil-bearing Tabbowa beds in Sri Lanka

    NASA Astrophysics Data System (ADS)

    Chang, S. C.; Dassanayake, S.; Wang, J.

    2014-12-01

    Well-preserved terrestrial fossils, mainly including conifers, cycads and ferns, were discovered from the Tabbowa beds in northwestern Sri Lanka. The high diversity and abundance of plants and insects from these Jurassic sediments provide a unique window to understand floral evolution and plant-insect co-evolution in the Mesozoic. For example, unearthed fossils from the Tabbowa beds indicate that leaf feeding and dwelling insects played a significant role in the Jurassic ecosystem. For another example, feeding and chewing marks on leaves allow studying insect behavior and paleo-ecology. Additionally, the recent discoveries of Otozamites latiphyllus and Otozamites tabbowensis from these sediments provide evidence that Bennettitales, an extinct order of seed plants, widely spread in the Gondwana during the Jurassic period. Although most fossils are yet to be well studied, and only few of the fossil occurrences have been published in western journals, plant fossils from the Tabbowa beds have great potential for substantially increasing our knowledge of Jurassic terrestrial ecosystems. The fossil-bearing Tabbowa beds are mainly composed of sandstone, siltstone, and mudstone with occasional thin bands of nodular limestone. Until now, radio-isotopic age determinations for the fossil-rich Tabbowa beds are lacking. In this study, we investigate the geological and geochronological setting of this area by dating detrital zircons from the Tabbowa beds. The age data will allow testing several hypotheses regarding the plant evolution, the basin development of this region.

  6. Early cave art and ancient DNA record the origin of European bison

    PubMed Central

    Soubrier, Julien; Gower, Graham; Chen, Kefei; Richards, Stephen M.; Llamas, Bastien; Mitchell, Kieren J.; Ho, Simon Y. W.; Kosintsev, Pavel; Lee, Michael S. Y.; Baryshnikov, Gennady; Bollongino, Ruth; Bover, Pere; Burger, Joachim; Chivall, David; Crégut-Bonnoure, Evelyne; Decker, Jared E.; Doronichev, Vladimir B.; Douka, Katerina; Fordham, Damien A.; Fontana, Federica; Fritz, Carole; Glimmerveen, Jan; Golovanova, Liubov V.; Groves, Colin; Guerreschi, Antonio; Haak, Wolfgang; Higham, Tom; Hofman-Kamińska, Emilia; Immel, Alexander; Julien, Marie-Anne; Krause, Johannes; Krotova, Oleksandra; Langbein, Frauke; Larson, Greger; Rohrlach, Adam; Scheu, Amelie; Schnabel, Robert D.; Taylor, Jeremy F.; Tokarska, Małgorzata; Tosello, Gilles; van der Plicht, Johannes; van Loenen, Ayla; Vigne, Jean-Denis; Wooley, Oliver; Orlando, Ludovic; Kowalczyk, Rafał; Shapiro, Beth; Cooper, Alan

    2016-01-01

    The two living species of bison (European and American) are among the few terrestrial megafauna to have survived the late Pleistocene extinctions. Despite the extensive bovid fossil record in Eurasia, the evolutionary history of the European bison (or wisent, Bison bonasus) before the Holocene (<11.7 thousand years ago (kya)) remains a mystery. We use complete ancient mitochondrial genomes and genome-wide nuclear DNA surveys to reveal that the wisent is the product of hybridization between the extinct steppe bison (Bison priscus) and ancestors of modern cattle (aurochs, Bos primigenius) before 120 kya, and contains up to 10% aurochs genomic ancestry. Although undetected within the fossil record, ancestors of the wisent have alternated ecological dominance with steppe bison in association with major environmental shifts since at least 55 kya. Early cave artists recorded distinct morphological forms consistent with these replacement events, around the Last Glacial Maximum (LGM, ∼21–18 kya). PMID:27754477

  7. Cooling and drying in northeast Africa across the Pliocene

    NASA Astrophysics Data System (ADS)

    Liddy, Hannah M.; Feakins, Sarah J.; Tierney, Jessica E.

    2016-09-01

    Terrestrial records suggest that Northeast Africa experienced drying during the Pliocene; however, these records are often incomplete in time and space, and questions about this shift in climate remain. Here, we use marine sediments from Deep Sea Drilling Project (DSDP) Site 231 in the Gulf of Aden to generate a multi-proxy organic geochemical record of northeast African climate spanning 5.3-2 Ma. This new record provides a regional perspective on climate and serves as context for the fossil record of early hominin evolution. We measured leaf wax carbon (δ13Cwax) and hydrogen (δDwax) isotopic composition and TEX86 (tetraether index of 86 carbons) to investigate past changes in vegetation, aridity, and ocean temperature, respectively. In the earliest Pliocene, we infer warm subsurface ocean temperatures from TEX86, semi-arid conditions on land and extensive C4 grasslands based on δDwax, δ13Cwax and previously published pollen. After 5 Ma, ocean temperatures gradually cooled, and at 4.3 Ma there was a transition to arid conditions on land based on δDwax and pollen. Grasslands yielded to a mid Pliocene landscape of dry shrublands. This drying appears to be an atmospheric response to cooling ocean temperatures, which may reflect changes in tropical ocean circulation, the intensification of Indian Monsoon winds or perhaps other changes associated with Pliocene cooling.

  8. Assessing Biological and Stratigraphic Determinants of Fossil Abundance: A Case Example from the Late Quaternary of Po Plain, Italy

    NASA Astrophysics Data System (ADS)

    Kowalewski, Michal; Azzarone, Michele; Kusnerik, Kristopher; Dexter, Troy; Wittmer, Jacalyn; Scarponi, Daniele

    2017-04-01

    Absolute fossil abundance [AFA] can be defined as a relative concentration of identifiable fossils per unit of sediment. AFA, or "sediment shelliness", is controlled by the interplay between the rate of input of skeletal remains (biological productivity), pace of shell destruction (taphonomy), rate of sedimentation, and sediment compaction. Understanding the relative importance of those drivers can augment both stratigraphic and biological interpretations of the fossil record. Using 336 samples from a network of late Quaternary cores drilled in Po Plain (Italy), we examined the importance of those factors in controlling the stratigraphic distribution of fossils. All samples were vertically and volumetrically equivalent, each representing a 10 cm long interval of a core with a diameter of 7 cm ( 0.375 dm3 sediment per sample). Sample-level estimates of AFA (1) varied over 4 orders of magnitudes (from <4 to 44200 specimens per dm3 of sediment); (2) appeared invariant to core depth (rho=-0.04, p=0.72); (3) were statistically indistinguishable (chi-square=1.53, p=0.46) across systems tracts; and (4) did not vary substantially across facies (chi-square=6.04, p=0.20) representing a wide range of depositional and taphonomic settings. These outcomes indicate that compaction (which should increase downcore), sedimentation rates (which vary predictably across systems tracts), and pace of shell destruction (expected to differ across depositional settings) are unlikely to have played important role in controlling fossils density in the sampled cores. In contrast, samples with very high shell density (AFA > 4000 specimens per dm3) were characterized by exceedingly low evenness reflecting dominance by one super-abundant species (Berger-Parker index > 0.8 in all cases). These super-abundant species were limited to small r-selective mollusks capable of an explosive population growth: the marine corbulid bivalve Lentidium mediterraneum and the brackish hyrdobiid gastropod Ecrobia ventrosa. Moreover, despite high mollusk diversity (534 species total), >80% of samples are dominated by one of the five mollusk species, which all represent small, r-selective, deposit and suspension feeders. Trends in absolute fossil abundance within late Quaternary deposits of the Po Plain appear to have been driven primarily by biological productivity of opportunistic shelly species from lowest trophic levels. In the studied system, biodiversity and shelliness of samples is unlikely to reflect stratigraphic or taphonomic overprints, but rather records the ecological importance of r-selective species that dominated the investigated area throughout the late Quaternary. The joint consideration of sequence stratigraphy, facies architecture, and paleontological data, can provide insights regarding both stratigraphic (the origin of sedimentary biofabrics) and biological (the drivers of bio-productivity and observed biodiversity) aspects of the fossil record.

  9. First fossil occurrence of a filefish (Tetraodontiformes; Monacanthidae) in Asia, from the Middle Miocene in Nagano Prefecture, central Japan.

    PubMed

    Miyajima, Yusuke; Koike, Hakuichi; Matsuoka, Hiroshige

    2014-04-10

    A new fossil filefish, Aluterus shigensis sp. nov., with a close resemblance to the extant Aluterus scriptus (Osbeck), is described from the Middle Miocene Bessho Formation in Nagano Prefecture, central Japan. It is characterized by: 21 total vertebrae; very slender and long first dorsal spine with tiny anterior barbs; thin and lancet-shaped basal pterygiophore of the spiny dorsal fin, with its ventral margin separated from the skull; proximal tip of moderately slender first pterygiophore of the soft dorsal fin not reaching far ventrally; soft dorsal-fin base longer than anal-fin base; caudal peduncle having nearly equal depth and length; and tiny, fine scales with slender, straight spinules. The occurrence of this fossil filefish from the Bessho Formation is consistent with the influence of warm water currents suggested by other fossils, but it is inconsistent with the deep-water sedimentary environment of this Formation. This is the first fossil occurrence of a filefish in Asia; previously described fossil filefishes are known from the Pliocene and Pleistocene of Italy, the Pliocene of Greece, and the Miocene and Pliocene of North America. These fossil records suggest that the genus Aluterus had already been derived and was widely distributed during the Middle Miocene with taxa closely resembling Recent species.

  10. Biogeographic distribution and metric dental variation of fossil and living orangutans (Pongo spp.).

    PubMed

    Tshen, Lim Tze

    2016-01-01

    The genus Pongo has a relatively richer Quaternary fossil record than those of the African great apes. Fossil materials are patchy in terms of anatomical parts represented, limited almost exclusively to isolated teeth, jaw and bone fragments. Fossil evidence indicates that the genus Pongo had a broadly continuous distribution across the southern part of the Indomalayan biogeographic region, ranging in time from Early Pleistocene to Holocene: southern China (77 fossil sites), Vietnam (15), Laos (6), Cambodia (2), Thailand (4), Peninsular Malaysia (6), Sumatra (4), Borneo (6) and Java (4). Within this distribution range, there are major geographical gaps with no known orangutan fossils, notably central and southern Indochina, central and southern Thailand, eastern Peninsular Malaysia, northern and southern Sumatra, and Kalimantan. The geological time and place of origin of the genus remain unresolved. Fossil orangutan assemblages usually show greater extent of dental metrical variation than those of modern-day populations. Such variability shown in prehistoric populations has partially contributed to confusion regarding past taxonomic diversity and systematic relationships among extinct and living forms. To date, no fewer than 14 distinct taxa have been identified and named for Pleistocene orangutans. Clear cases suggestive of predation by prehistoric human are few in number, and limited to terminal Pleistocene-Early Holocene sites in Borneo and a Late Pleistocene site in Vietnam.

  11. Record of C4 Photosynthesis Through the Late Neogene and Pleistocene

    NASA Astrophysics Data System (ADS)

    Cerling, T. E.

    2016-12-01

    C4 photosynthesis is an adaptation to the low atmospheric carbon dioxide concentrations experienced in the Neogene; it is found principally in tropical to sub-tropical/temperate regions where temperatures are high in the growing season. Although C4 photosynthesis makes up about 50% of Net Primary Productivity in tropical regions, its macroscopic fossil record is extremely sparse. Therefore, inferences to its significance in local ecosystems are based primarily on stable isotopes, with phytoliths become more important as phytolith morphology becomes better associated with plant structure and classification. Stable isotopes have been the principal recorder for understanding the history of C4 photosynthesis; however, different materials record different aspects of the C4 contribution to ecosystem structure and thus are telling different parts of the same story. With the fossil record so poorly known, we often assume similar ecosystem structures and functions as we observe in modern analogues. It is likely that large evolutionary changes have taken place within C4 plants as they went from < 1% tropical NPP to > 50% tropical NPP in the late Neogene.

  12. The modified gap excess ratio (GER*) and the stratigraphic congruence of dinosaur phylogenies.

    PubMed

    Wills, Matthew A; Barrett, Paul M; Heathcote, Julia F

    2008-12-01

    Palaeontologists routinely map their cladograms onto what is known of the fossil record. Where sister taxa first appear as fossils at different times, a ghost range is inferred to bridge the gap between these dates. Some measure of the total extent of ghost ranges across the tree underlies several indices of cladistic/stratigraphic congruence. We investigate this congruence for 19 independent, published cladograms of major dinosaur groups and report exceptional agreement between the phylogenetic and stratigraphic patterns, evidenced by sums of ghost ranges near the theoretical minima. This implies that both phylogenetic and stratigraphic data reflect faithfully the evolutionary history of dinosaurs, at least for the taxa included in this study. We formally propose modifications to an existing index of congruence (the gap excess ratio; GER), designed to remove a bias in the range of values possible with trees of different shapes. We also propose a more informative index of congruence--GER*--that takes account of the underlying distribution of sums of ghost ranges possible when permuting stratigraphic range data across the tree. Finally, we incorporate data on the range of possible first occurrence dates into our estimates of congruence, extending a procedure originally implemented with the modified Manhattan stratigraphic measure and GER to our new indices. Most dinosaur data sets maintain extremely high congruence despite such modifications.

  13. Revisiting the origin and diversification of vascular plants through a comprehensive Bayesian analysis of the fossil record.

    PubMed

    Silvestro, Daniele; Cascales-Miñana, Borja; Bacon, Christine D; Antonelli, Alexandre

    2015-07-01

    Plants have a long evolutionary history, during which mass extinction events dramatically affected Earth's ecosystems and its biodiversity. The fossil record can shed light on the diversification dynamics of plant life and reveal how changes in the origination-extinction balance have contributed to shaping the current flora. We use a novel Bayesian approach to estimate origination and extinction rates in plants throughout their history. We focus on the effect of the 'Big Five' mass extinctions and on estimating the timing of origin of vascular plants, seed plants and angiosperms. Our analyses show that plant diversification is characterized by several shifts in origination and extinction rates, often matching the most important geological boundaries. The estimated origin of major plant clades predates the oldest macrofossils when considering the uncertainties associated with the fossil record and the preservation process. Our findings show that the commonly recognized mass extinctions have affected each plant group differently and that phases of high extinction often coincided with major floral turnovers. For instance, after the Cretaceous-Paleogene boundary we infer negligible shifts in diversification of nonflowering seed plants, but find significantly decreased extinction in spore-bearing plants and increased origination rates in angiosperms, contributing to their current ecological and evolutionary dominance. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  14. Linking Fossil Fish Cyclicity and Paleoenvironmental Proxies in the mid-Devonian

    NASA Astrophysics Data System (ADS)

    Grogan, D.; Whiteside, J. H.; Trewin, N. H.; Johnson, J. E.

    2009-12-01

    The significant radiation of fishes throughout the Devonian, combined with the abundance of well-preserved fossil fish assemblages from this period, provides for a high-resolution record of prevalent fish taxa in the Orcadian basin of North Scotland. In addition to their ability to serve as a lake-level and lake-chemistry proxy, the waxing and waning of dominant fish taxa exhibit a pronounced cyclicity, suggesting they respond to broader climate rhythms. Recent studies of mid-Devonian lacustrine sedimentary sequences have quantitatively demonstrated the presence of Milankovitch cyclicity in geochemical and gamma ray proxy records. Spectral analysis of gamma ray data show a strong obliquity peak usually associated with ice-house conditions; this obliquity signal is unexpected as tropical latitudes in the mid-Devonian are traditionally thought to have been in a greenhouse climate. Geochemical data include the measurement of bulk carbon and nitrogen stable isotopes, molecule-specific carbon isotopes of plant biomarkers, and depth ranks from eight sections of the Caithness Flagstone Group of the Orcadian Basin. Evidence for orbital forcing of climate change paired with the fossil fish record provides a unique opportunity to establish an astronomically calibrated timescale for the mid-Devonian, as well as to make a quantitative assessment of the validity of a greenhouse climate existing in the mid-Devonian.

  15. The Earliest Evidence of Holometabolan Insect Pupation in Conifer Wood

    PubMed Central

    Tapanila, Leif; Roberts, Eric M.

    2012-01-01

    Background The pre-Jurassic record of terrestrial wood borings is poorly resolved, despite body fossil evidence of insect diversification among xylophilic clades starting in the late Paleozoic. Detailed analysis of borings in petrified wood provides direct evidence of wood utilization by invertebrate animals, which typically comprises feeding behaviors. Methodology/Principal Findings We describe a U-shaped boring in petrified wood from the Late Triassic Chinle Formation of southern Utah that demonstrates a strong linkage between insect ontogeny and conifer wood resources. Xylokrypta durossi new ichnogenus and ichnospecies is a large excavation in wood that is backfilled with partially digested xylem, creating a secluded chamber. The tracemaker exited the chamber by way of a small vertical shaft. This sequence of behaviors is most consistent with the entrance of a larva followed by pupal quiescence and adult emergence — hallmarks of holometabolous insect ontogeny. Among the known body fossil record of Triassic insects, cupedid beetles (Coleoptera: Archostemata) are deemed the most plausible tracemakers of Xylokrypta, based on their body size and modern xylobiotic lifestyle. Conclusions/Significance This oldest record of pupation in fossil wood provides an alternative interpretation to borings once regarded as evidence for Triassic bees. Instead Xylokrypta suggests that early archostematan beetles were leaders in exploiting wood substrates well before modern clades of xylophages arose in the late Mesozoic. PMID:22355387

  16. Eocene primates of South America and the African origins of New World monkeys.

    PubMed

    Bond, Mariano; Tejedor, Marcelo F; Campbell, Kenneth E; Chornogubsky, Laura; Novo, Nelson; Goin, Francisco

    2015-04-23

    The platyrrhine primates, or New World monkeys, are immigrant mammals whose fossil record comes from Tertiary and Quaternary sediments of South America and the Caribbean Greater Antilles. The time and place of platyrrhine origins are some of the most controversial issues in primate palaeontology, although an African Palaeogene ancestry has been presumed by most primatologists. Until now, the oldest fossil records of New World monkeys have come from Salla, Bolivia, and date to approximately 26 million years ago, or the Late Oligocene epoch. Here we report the discovery of new primates from the ?Late Eocene epoch of Amazonian Peru, which extends the fossil record of primates in South America back approximately 10 million years. The new specimens are important for understanding the origin and early evolution of modern platyrrhine primates because they bear little resemblance to any extinct or living South American primate, but they do bear striking resemblances to Eocene African anthropoids, and our phylogenetic analysis suggests a relationship with African taxa. The discovery of these new primates brings the first appearance datum of caviomorph rodents and primates in South America back into close correspondence, but raises new questions about the timing and means of arrival of these two mammalian groups.

  17. 'Citizen science' recording of fossils by adapting existing computer-based biodiversity recording tools

    NASA Astrophysics Data System (ADS)

    McGowan, Alistair

    2014-05-01

    Biodiversity recording activities have been greatly enhanced by the emergence of online schemes and smartphone applications for recording and sharing data about a wide variety of flora and fauna. As a palaeobiologist, one of the areas of research I have been heavily involved in is the question of whether the amount of rock available to sample acts as a bias on our estimates of biodiversity through time. Although great progress has been made on this question over the past ten years by a number of researchers, I still think palaeontology has not followed the lead offered by the 'citizen science' revolution in studies of extant biodiversity. By constructing clearly structured surveys with online data collection support, it should be possible to collect field data on the occurrence of fossils at the scale of individual exposures, which are needed to test competing hypotheses about these effects at relatively small spatial scales. Such data collection would be hard to justify for universities and museums with limited personnel but a co-ordinated citizen science programme would be capable of delivering such a programme. Data collection could be based on the MacKinnon's Lists method, used in rapid conservation assessment work. It relies on observers collecting lists of a fixed length (e.g. 10 species long) but what is important is that it focuses on getting observers to ignore sightings of the same species until that list is complete. This overcomes the problem of 'common taxa being commonly recorded' and encourages observers to seek out and identify the rarer taxa. This gives a targeted but finite task. Rather than removing fossils, participants would be encouraged to take photographs to share via a recording website. The success of iSpot, which allows users to upload photos of plants and animals for other users to help with identifications, offers a model for overcoming the problems of identifying fossils, which can often look nothing like the examples illustrated in guidebooks. The requirements for a web platform could be met by the use of the freely-available Indicia software developed by the UK Centre for Ecology and Hydrology for biodiversity recording. However, some trials with the software have found it would be suitable for recording fossil occurrences as well. The software allows users to plot collections on maps, upload and share photographs and make identifications of material. Within the UK, the British Geological Survey has made geological map data available via the iGeology smartphone app and the Geology of Britain website. Thus it is now possible for people with access to smartphones or the internet to know which geological units they are sampling from, which would previously have been difficult without access to paper copies of geological maps. Such a programme could make a significant contribution towards reviving palaeontology and geology as field-based natural history and create wider interest in basic geological and taxonomic skills and form the basis for work on geodiversity recording and exploring links between geodiversity and biodiversity.

  18. Charting taxonomic knowledge through ontologies and ranking algorithms

    NASA Astrophysics Data System (ADS)

    Huber, Robert; Klump, Jens

    2009-04-01

    Since the inception of geology as a modern science, paleontologists have described a large number of fossil species. This makes fossilized organisms an important tool in the study of stratigraphy and past environments. Since taxonomic classifications of organisms, and thereby their names, change frequently, the correct application of this tool requires taxonomic expertise in finding correct synonyms for a given species name. Much of this taxonomic information has already been published in journals and books where it is compiled in carefully prepared synonymy lists. Because this information is scattered throughout the paleontological literature, it is difficult to find and sometimes not accessible. Also, taxonomic information in the literature is often difficult to interpret for non-taxonomists looking for taxonomic synonymies as part of their research. The highly formalized structure makes Open Nomenclature synonymy lists ideally suited for computer aided identification of taxonomic synonyms. Because a synonymy list is a list of citations related to a taxon name, its bibliographic nature allows the application of bibliometric techniques to calculate the impact of synonymies and taxonomic concepts. TaxonRank is a ranking algorithm based on bibliometric analysis and Internet page ranking algorithms. TaxonRank uses published synonymy list data stored in TaxonConcept, a taxonomic information system. The basic ranking algorithm has been modified to include a measure of confidence on species identification based on the Open Nomenclature notation used in synonymy list, as well as other synonymy specific criteria. The results of our experiments show that the output of the proposed ranking algorithm gives a good estimate of the impact a published taxonomic concept has on the taxonomic opinions in the geological community. Also, our results show that treating taxonomic synonymies as part of on an ontology is a way to record and manage taxonomic knowledge, and thus contribute to the preservation our scientific heritage.

  19. Rainforest conifers of Eocene Patagonia: attached cones and foliage of the extant Southeast Asian and Australasian genus Dacrycarpus (Podocarpaceae).

    PubMed

    Wilf, Peter

    2012-03-01

    Eocene caldera-lake beds at Laguna del Hunco (LH, ca. 52.2 Ma) and Río Pichileufú (RP, ca. 47.7 Ma) in Argentine Patagonia provide copious information about the biological history of Gondwana. Several plant genera from these sites are known as fossils from southern Australia and New Zealand and survive only in Australasian rainforests. The potential presence of Dacrycarpus (Podocarpaceae) holds considerable interest due to its extensive foliage-fossil record in Gondwana, its remarkably broad modern distribution in Southeast Asian and Australasian rainforests, its high physiological moisture requirements, and its bird-dispersed seeds. However, the unique seed cones that firmly diagnose Dacrycarpus were not previously known from the fossil record. I describe and interpret fertile (LH) and vegetative (LH and RP) material of Dacrycarpus and present a nomenclatural revision for fossil Dacrycarpus from South America. Dacrycarpus puertae sp. nov. is the first fossil occurrence of the unusual seed cones that typify living Dacrycarpus, attached to characteristic foliage, and of attached Dacrycarpus pollen cones and foliage. Dacrycarpus puertae is indistinguishable from living D. imbricatus (montane, Burma to Fiji). Dacrycarpus chilensis (Engelhardt) comb. nov. is proposed for Eocene vegetative material from Chile. Modern-aspect Dacrycarpus was present in Eocene Patagonia, demonstrating an astonishingly wide-ranging paleogeographic history and implying a long evolutionary association with bird dispersers. Dacrycarpus puertae provides the first significant Asian link for Eocene Patagonian floras, strengthens the biogeographic connections from Patagonia to Australasia across Antarctica during the warm Eocene, and indicates high-rainfall paleoenvironments.

  20. Origin of an Assemblage Massively Dominated by Carnivorans from the Miocene of Spain

    PubMed Central

    Domingo, M. Soledad; Alberdi, M. Teresa; Azanza, Beatriz; Silva, Pablo G.; Morales, Jorge

    2013-01-01

    Carnivoran-dominated fossil sites provide precious insights into the diversity and ecology of species rarely recovered in the fossil record. The lower level assemblage of Batallones-1 fossil site (Late Miocene; Madrid Basin, Spain) has yielded one of the most abundant and diversified carnivoran assemblage ever known from the Cenozoic record of mammals. A comprehensive taphonomic study is carried out here in order to constrain the concentration mode of this remarkable assemblage. Another distinctive feature of Batallones-1 is that the accumulation of carnivoran remains took place in the context of a geomorphological landform (cavity formation through a piping process) practically unknown in the generation of fossil sites. Two characteristics of the assemblage highly restrict the probable causes for the accumulation of the remains: (1) the overwhelming number of carnivorans individuals; and (2) the mortality profiles estimated for the four most abundant taxa do not correspond to the classic mortality types but rather were the consequence of the behavior of the taxa. This evidence together with other taphonomic data supports the hypothesis that carnivoran individuals actively entered the cavity searching for resources (food or water) and were unable to exit. The scarcity of herbivores implies that the shaft was well visible and avoided by these taxa. Fossil bones exhibit a very good preservation state as a consequence of their deposition in the restricted and protective environment of the chamber. Batallones-1 had another assemblage (upper level assemblage) that was dominated by herbivore remains and that potentially corresponded to the final stages of the cavity filling. PMID:23650542

  1. The taphonomy of unmineralised Palaeozoic fossils preserved as siliciclastic moulds and casts, and their utility in assessing the interaction between environmental change and the fossil record

    NASA Astrophysics Data System (ADS)

    MacGabhann, Breandán; Schiffbauer, James; Hagadorn, James; Van Roy, Peter; Lynch, Edward; Morrsion, Liam; Murray, John

    2015-04-01

    The enhanced preservation potential of biomineralised tissues in fossil organisms is a key factor in their utility in the investigation of palaeoenvironmental change on fossil ecosystems. By contrast, the considerably lower preservation potential of entirely unmineralised organisms severely reduces the utility of their temporal and spatial distribution in such analyses. However, understanding the taphonomic processes which lead to the preservation of such soft-bodied fossils may be an under-appreciated source of information, particularly in the case of specimens preserved as moulds and casts in coarser siliciclastic sediments. This information potential is well demonstrated by fossil eldonids, a Cambrian to Devonian clade of unmineralised asymmetrical discoidal basal or stem deuterostomes, with an apparently conservative biology and no clear palaeoenvironmental or biogeographical controls on their distribution. We investigated the taphonomic processes involved in the preservation of fossil eldonids as moulds and casts on bedding surfaces and within event beds from sandstones of the Ordovician Tafilalt lagerstätte in south-eastern Morocco, and from siltstones of the Devonian West Falls Group of New York, USA. Laser Raman microspectroscopy, SEM BSE imaging and EDS elemental mapping of fossil specimens reveals that moulded biological surfaces are coated by a fossil surface veneer primarily consisting of mixed iron oxides and oxyhydroxides (including pseudomorphs after pyrite), and aluminosilicate clay minerals. Moreover, comparison to fossil eldonids preserved as carbonaceous compressions in the Burgess Shale reveals that the biological structures preserved in the Tafilalt and New York specimens - the dorsal surface and a coiled sac containing the digestive tract - represent only specific portions of the anatomy of the complete animal. We suggest that the preserved remains were the only parts of these eldonid organisms composed primarily of complex organic biopolymers, and that these tissues were preferentially fossilised by the formation of an early diagenic mould directly on the organic surfaces. Excess divalent iron ions, produced during decay of more labile tissues by means of bacterial iron reduction, would have adsorbed to anionic functional groups in the biopolymeric tissues. This would have provided a ready substrate for the formation and growth of such an early diagenic mineralised mould, including aluminosilicate minerals produced via reaction with seawater silica and metal ions, and iron sulphide minerals produced via reaction with hydrogen sulphide and free sulphur produced from seawater sulphate through bacterial sulphate reduction associated with further decay. Subsequent weathering would have oxidised such iron sulphides to oxides and oxyhydroxides. This taphonomic model supports the lack of utility of the eldonid palaeobiological record in analysing environmental influence on biological communities, due to the lack of preservation of key anatomical components. However, it also suggests that the very occurrence of fossils preserved in this style is dependent on extrinsic palaeoenvironmental factors - including pH, Eh, and the concentration of other ions in the contemporaneous seawater. Analyses of the distribution of fossils preserved in this style may therefore provide information on ambient conditions which may have affected the distribution of contemporaneous mineralised fossils, potentially allowing a more complete analysis of the effects of palaeoenvironmental change on fossil ecosystems.

  2. A geological history of reflecting optics.

    PubMed

    Parker, Andrew Richard

    2005-03-22

    Optical reflectors in animals are diverse and ancient. The first image-forming eye appeared around 543 million years ago. This introduced vision as a selection pressure in the evolution of animals, and consequently the evolution of adapted optical devices. The earliest known optical reflectors--diffraction gratings--are 515 Myr old. The subsequent fossil record preserves multilayer reflectors, including liquid crystals and mirrors, 'white' and 'blue' scattering structures, antireflective surfaces and the very latest addition to optical physics--photonic crystals. The aim of this article is to reveal the diversity of reflecting optics in nature, introducing the first appearance of some reflector types as they appear in the fossil record as it stands (which includes many new records) and backdating others in geological time through evolutionary analyses. This article also reveals the commercial potential for these optical devices, in terms of lessons from their nano-level designs and the possible emulation of their engineering processes--molecular self-assembly.

  3. Wormholes record species history in space and time.

    PubMed

    Hedges, S Blair

    2013-02-23

    Genetic and fossil data often lack the spatial and temporal precision for tracing the recent biogeographic history of species. Data with finer resolution are needed for studying distributional changes during modern human history. Here, I show that printed wormholes in rare books and artwork are trace fossils of wood-boring species with unusually accurate locations and dates. Analyses of wormholes printed in western Europe since the fifteenth century document the detailed biogeographic history of two putative species of invasive wood-boring beetles. Their distributions now overlap broadly, as an outcome of twentieth century globalization. However, the wormhole record revealed, unexpectedly, that their original ranges were contiguous and formed a stable line across central Europe, apparently a result of competition. Extension of the wormhole record, globally, will probably reveal other species and evolutionary insights. These data also provide evidence for historians in determining the place of origin or movement of a woodblock, book, document or art print.

  4. First direct evidence of a vertebrate three-level trophic chain in the fossil record

    PubMed Central

    Kriwet, Jürgen; Witzmann, Florian; Klug, Stefanie; Heidtke, Ulrich H.J

    2007-01-01

    We describe the first known occurrence of a Permian shark specimen preserving two temnospondyl amphibians in its digestive tract as well as the remains of an acanthodian fish, which was ingested by one of the temnospondyls. This exceptional find provides for the first time direct evidence of a vertebrate three-level food chain in the fossil record with the simultaneous preservation of three trophic levels. Our analysis shows that small-sized Lower Permian xenacanthid sharks of the genus Triodus preyed on larval piscivorous amphibians. The recorded trophic interaction can be explained by the adaptation of certain xenacanthids to fully freshwater environments and the fact that in these same environments, large temnospondyls occupied the niche of modern crocodiles. This unique faunal association has not been documented after the Permian and Triassic. Therefore, this Palaeozoic three-level food chain provides strong and independent support for changes in aquatic trophic chain structures through time. PMID:17971323

  5. First direct evidence of a vertebrate three-level trophic chain in the fossil record.

    PubMed

    Kriwet, Jürgen; Witzmann, Florian; Klug, Stefanie; Heidtke, Ulrich H J

    2008-01-22

    We describe the first known occurrence of a Permian shark specimen preserving two temnospondyl amphibians in its digestive tract as well as the remains of an acanthodian fish, which was ingested by one of the temnospondyls. This exceptional find provides for the first time direct evidence of a vertebrate three-level food chain in the fossil record with the simultaneous preservation of three trophic levels. Our analysis shows that small-sized Lower Permian xenacanthid sharks of the genus Triodus preyed on larval piscivorous amphibians. The recorded trophic interaction can be explained by the adaptation of certain xenacanthids to fully freshwater environments and the fact that in these same environments, large temnospondyls occupied the niche of modern crocodiles. This unique faunal association has not been documented after the Permian and Triassic. Therefore, this Palaeozoic three-level food chain provides strong and independent support for changes in aquatic trophic chain structures through time.

  6. Two new carnivores from an unusual late Tertiary forest biota in eastern North America.

    PubMed

    Wallace, Steven C; Wang, Xiaoming

    2004-09-30

    Late Cenozoic terrestrial fossil records of North America are biased by a predominance of mid-latitude deposits, mostly in the western half of the continent. Consequently, the biological history of eastern North America, including the eastern deciduous forest, remains largely hidden. Unfortunately, vertebrate fossil sites from this vast region are rare, and few pertain to the critically important late Tertiary period, during which intensified global climatic changes took place. Moreover, strong phylogenetic affinities between the flora of eastern North America and eastern Asia clearly demonstrate formerly contiguous connections, but disparity among shared genera (eastern Asia-eastern North America disjunction) implies significant periods of separation since at least the Miocene epoch. Lacustrine sediments deposited within a former sinkhole in the southern Appalachian Mountains provide a rare example of a late Miocene to early Pliocene terrestrial biota from a forested ecosystem. Here we show that the vertebrate remains contained within this deposit represent a unique combination of North American and Eurasian taxa. A new genus and species of the red (lesser) panda (Pristinailurus bristoli), the earliest and most primitive so far known, was recovered. Also among the fauna are a new species of Eurasian badger (Arctomeles dimolodontus) and the largest concentration of fossil tapirs ever recorded. Cladistical analyses of the two new carnivores strongly suggest immigration events that were earlier than and distinct from previous records, and that the close faunal affinities between eastern North America and eastern Asia in the late Tertiary period are consistent with the contemporaneous botanical record.

  7. Exceptionally preserved crustaceans from western Canada reveal a cryptic Cambrian radiation

    NASA Astrophysics Data System (ADS)

    Harvey, Thomas H. P.; Vélez, Maria I.; Butterfield, Nicholas J.

    2012-01-01

    The early history of crustaceans is obscured by strong biases in fossil preservation, but a previously overlooked taphonomic mode yields important complementary insights. Here we describe diverse crustacean appendages of Middle and Late Cambrian age from shallow-marine mudstones of the Deadwood Formation in western Canada. The fossils occur as flattened and fragmentary carbonaceous cuticles but provide a suite of phylogenetic and ecological data by virtue of their detailed preservation. In addition to an unprecedented range of complex, largely articulated filtering limbs, we identify at least four distinct types of mandible. Together, these fossils provide the earliest evidence for crown-group branchiopods and total-group copepods and ostracods, extending the respective ranges of these clades back from the Devonian, Pennsylvanian, and Ordovician. Detailed similarities with living forms demonstrate the early origins and subsequent conservation of various complex food-handling adaptations, including a directional mandibular asymmetry that has persisted through half a billion years of evolution. At the same time, the Deadwood fossils indicate profound secular changes in crustacean ecology in terms of body size and environmental distribution. The earliest radiation of crustaceans is largely cryptic in the fossil record, but "small carbonaceous fossils" reveal organisms of surprisingly modern aspect operating in an unfamiliar biosphere.

  8. Origin of spiders and their spinning organs illuminated by mid-Cretaceous amber fossils.

    PubMed

    Huang, Diying; Hormiga, Gustavo; Cai, Chenyang; Su, Yitong; Yin, Zongjun; Xia, Fangyuan; Giribet, Gonzalo

    2018-04-01

    Understanding the genealogical relationships among the arachnid orders is an onerous task, but fossils have aided in anchoring some branches of the arachnid tree of life. The discovery of Palaeozoic fossils with characters found in both extant spiders and other arachnids provided evidence for a series of extinctions of what was thought to be a grade, Uraraneida, that led to modern spiders. Here, we report two extraordinarily well-preserved Mesozoic members of Uraraneida with a segmented abdomen, multi-articulate spinnerets with well-defined spigots, modified male palps, spider-like chelicerae and a uropygid-like telson. The new fossils, belonging to the species Chimerarachne yingi, were analysed phylogenetically in a large data matrix of extant and extinct arachnids under a diverse regime of analytical conditions, most of which resulted in placing Uraraneida as the sister clade of Araneae (spiders). The phylogenetic placement of this arachnid fossil extends the presence of spinnerets and modified palps more basally in the arachnid tree than was previously thought. Ecologically, the new fossil extends the record of Uraraneida 170 million years towards the present, thus showing that uraraneids and spiders co-existed for a large fraction of their evolutionary history.

  9. Biofuel: an alternative to fossil fuel for alleviating world energy and economic crises.

    PubMed

    Bhattarai, Keshav; Stalick, Wayne M; McKay, Scott; Geme, Gija; Bhattarai, Nimisha

    2011-01-01

    The time has come when it is desirable to look for alternative energy resources to confront the global energy crisis. Consideration of the increasing environmental problems and the possible crisis of fossil fuel availability at record high prices dictate that some changes will need to occur sooner rather than later. The recent oil spill in the Gulf of Mexico is just another example of the environmental threats that fossil fuels pose. This paper is an attempt to explore various bio-resources such as corn, barley, oat, rice, wheat, sorghum, sugar, safflower, and coniferous and non-coniferous species for the production of biofuels (ethanol and biodiesel). In order to assess the potential production of biofuel, in this paper, countries are organized into three groups based on: (a) geographic areas; (b) economic development; and(c) lending types, as classified by the World Bank. First, the total fossil fuel energy consumption and supply and possible carbon emission from burning fossil fuel is projected for these three groups of countries. Second, the possibility of production of biofuel from grains and vegetative product is projected. Third, a comparison of fossil fuel and biofuel is done to examine energy sustainability issues.

  10. The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans.

    PubMed

    Hamilton, Trinity L; Bryant, Donald A; Macalady, Jennifer L

    2016-02-01

    Understanding the role of biology in planetary evolution remains an outstanding challenge to geobiologists. Progress towards unravelling this puzzle for Earth is hindered by the scarcity of well-preserved rocks from the Archean (4.0 to 2.5 Gyr ago) and Proterozoic (2.5 to 0.5 Gyr ago) Eons. In addition, the microscopic life that dominated Earth's biota for most of its history left a poor fossil record, consisting primarily of lithified microbial mats, rare microbial body fossils and membrane-derived hydrocarbon molecules that are still challenging to interpret. However, it is clear from the sulfur isotope record and other geochemical proxies that the production of oxygen or oxidizing power radically changed Earth's surface and atmosphere during the Proterozoic Eon, pushing it away from the more reducing conditions prevalent during the Archean. In addition to ancient rocks, our reconstruction of Earth's redox evolution is informed by our knowledge of biogeochemical cycles catalysed by extant biota. The emergence of oxygenic photosynthesis in ancient cyanobacteria represents one of the most impressive microbial innovations in Earth's history, and oxygenic photosynthesis is the largest source of O2 in the atmosphere today. Thus the study of microbial metabolisms and evolution provides an important link between extant biota and the clues from the geologic record. Here, we consider the physiology of cyanobacteria (the only microorganisms capable of oxygenic photosynthesis), their co-occurrence with anoxygenic phototrophs in a variety of environments and their persistence in low-oxygen environments, including in water columns as well as mats, throughout much of Earth's history. We examine insights gained from both the rock record and cyanobacteria presently living in early Earth analogue ecosystems and synthesize current knowledge of these ancient microbial mediators in planetary redox evolution. Our analysis supports the hypothesis that anoxygenic photosynthesis, including the activity of metabolically versatile cyanobacteria, played an important role in delaying the oxygenation of Earth's surface ocean during the Proterozoic Eon. © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. A Simple Method for Estimating Informative Node Age Priors for the Fossil Calibration of Molecular Divergence Time Analyses

    PubMed Central

    Nowak, Michael D.; Smith, Andrew B.; Simpson, Carl; Zwickl, Derrick J.

    2013-01-01

    Molecular divergence time analyses often rely on the age of fossil lineages to calibrate node age estimates. Most divergence time analyses are now performed in a Bayesian framework, where fossil calibrations are incorporated as parametric prior probabilities on node ages. It is widely accepted that an ideal parameterization of such node age prior probabilities should be based on a comprehensive analysis of the fossil record of the clade of interest, but there is currently no generally applicable approach for calculating such informative priors. We provide here a simple and easily implemented method that employs fossil data to estimate the likely amount of missing history prior to the oldest fossil occurrence of a clade, which can be used to fit an informative parametric prior probability distribution on a node age. Specifically, our method uses the extant diversity and the stratigraphic distribution of fossil lineages confidently assigned to a clade to fit a branching model of lineage diversification. Conditioning this on a simple model of fossil preservation, we estimate the likely amount of missing history prior to the oldest fossil occurrence of a clade. The likelihood surface of missing history can then be translated into a parametric prior probability distribution on the age of the clade of interest. We show that the method performs well with simulated fossil distribution data, but that the likelihood surface of missing history can at times be too complex for the distribution-fitting algorithm employed by our software tool. An empirical example of the application of our method is performed to estimate echinoid node ages. A simulation-based sensitivity analysis using the echinoid data set shows that node age prior distributions estimated under poor preservation rates are significantly less informative than those estimated under high preservation rates. PMID:23755303

  12. Response of infaunal organisms represented by trace fossils to sea-level changes in the Ordovician Black River and Trenton Group limestones, upstate New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tegan, J.R.; Curran, H.A.

    Small-scale fluctuations in sea level were revealed by detailed analysis of trace fossil assemblages formed by infaunal organisms within the Lowville (Black River Grp.), Napanee, and Kings Falls limestones (Trenton Grp.) at Ingham Mills. The paleodepositional environment of the Lowville Limestone (LL) is interpreted as peritidal, representing the high intertidal to shallow subtidal zones. The trace fossil assemblages define clearly several fluctuations within this environment. Large, well-formed specimens of the trace fossil Beaconites barretti occur within tidal channel and levee beds of the LL. In other regions this trace fossil has consistently been associated with channel and levee beds, mostmore » commonly in fluvial settings. The occurrence of Beaconites in the LL extends the age range of this ichnogenus to Ordovician time (oldest previous record is Silurian) and broadens its paleoenvironment range. The Napanee (Np) and lower Kings Falls (KF), limestones have most commonly been described as being deposited in a lagoonal setting. Both formations contain well-preserved trace fossils; the primary difference being that the Np exhibits much lower trace and body fossil diversities than the KF. The low diversity of trace fossils in the Np was most likely the result of limiting environmental conditions such as low oxygen and/or hypersalinity. The higher diversity of trace fossils in the KF indicates that the ancient lagoon became increasingly controlled by normal marine conditions, and, therefore, hospitable to a more diverse group of organisms. The trace fossil assemblages of the Black River and Trenton Group limestones indicate that the infaunal organisms of these Ordovician communities were highly sensitive to small-scale sea-level fluctuations.« less

  13. Early photosynthetic microorganisms and environmental evolution

    NASA Technical Reports Server (NTRS)

    Golubic, S.

    1980-01-01

    Microfossils which are preserved as shrivelled kerogenous residues provide little information about cellular organization and almost none about the metabolic properties of the organisms. The distinction between prokaryotic vs eukaryotic, and phototrophic vs chemo- and organotrophic fossil microorganisms rests entirely on morphological comparisons with recent counterparts. The residual nature of the microbial fossil record promotes the conclusion that it must be biased toward (a) most abundant organisms, (b) those most resistant to degradation, and (c) those inhabiting environments with high preservation potential e.g., stromatolites. These criteria support the cyanophyte identity of most Precambrian microbial fossils on the following grounds: (1) as primary producers they dominate prokaryotic communities in modern extreme environments, e.g., intertidal zone; (2) several morphological counterparts of modern cyanophytes and microbial fossils have been established based on structure, cell division patterns and degradation sequences. The impact of anaerobic and oxygenic microbial photosynthesis on the evolution of Precambrian environments is discussed.

  14. Exceptionally preserved Cambrian loriciferans and the early animal invasion of the meiobenthos.

    PubMed

    Harvey, Thomas H P; Butterfield, Nicholas J

    2017-01-30

    Microscopic animals that live among and between sediment grains (meiobenthic metazoans) are key constituents of modern aquatic ecosystems, but are effectively absent from the fossil record. We describe an assemblage of microscopic fossil loriciferans (Ecdysozoa, Loricifera) from the late Cambrian Deadwood Formation of western Canada. The fossils share a characteristic head structure and minute adult body size (~300 μm) with modern loriciferans, indicating the early evolution and subsequent conservation of an obligate, permanently meiobenthic lifestyle. The unsuspected fossilization potential of such small animals in marine mudstones offers a new search image for the earliest ecdysozoans and other animals, although the anatomical complexity of loriciferans points to their evolutionary miniaturization from a larger-bodied ancestor. The invasion of animals into ecospace that was previously monopolized by protists will have contributed considerably to the revolutionary geobiological feedbacks of the Proterozoic/Phanerozoic transition.

  15. Peaches Preceded Humans: Fossil Evidence from SW China

    PubMed Central

    Su, Tao; Wilf, Peter; Huang, Yongjiang; Zhang, Shitao; Zhou, Zhekun

    2015-01-01

    Peach (Prunus persica, Rosaceae) is an extremely popular tree fruit worldwide, with an annual production near 20 million tons. Peach is widely thought to have origins in China, but its evolutionary history is largely unknown. The oldest evidence for the peach has been Chinese archaeological records dating to 8000–7000 BP. Here, we report eight fossil peach endocarps from late Pliocene strata of Kunming City, Yunnan, southwestern China. The fossils are identical to modern peach endocarps, including size comparable to smaller modern varieties, a single seed, a deep dorsal groove, and presence of deep pits and furrows. These fossils show that China has been a critical region for peach evolution since long before human presence, much less agriculture. Peaches evolved their modern morphology under natural selection, presumably involving large, frugivorous mammals such as primates. Much later, peach size and variety increased through domestication and breeding. PMID:26610240

  16. Peaches Preceded Humans: Fossil Evidence from SW China

    NASA Astrophysics Data System (ADS)

    Su, Tao; Wilf, Peter; Huang, Yongjiang; Zhang, Shitao; Zhou, Zhekun

    2015-11-01

    Peach (Prunus persica, Rosaceae) is an extremely popular tree fruit worldwide, with an annual production near 20 million tons. Peach is widely thought to have origins in China, but its evolutionary history is largely unknown. The oldest evidence for the peach has been Chinese archaeological records dating to 8000-7000 BP. Here, we report eight fossil peach endocarps from late Pliocene strata of Kunming City, Yunnan, southwestern China. The fossils are identical to modern peach endocarps, including size comparable to smaller modern varieties, a single seed, a deep dorsal groove, and presence of deep pits and furrows. These fossils show that China has been a critical region for peach evolution since long before human presence, much less agriculture. Peaches evolved their modern morphology under natural selection, presumably involving large, frugivorous mammals such as primates. Much later, peach size and variety increased through domestication and breeding.

  17. Chimpanzee fauna isotopes provide new interpretations of fossil ape and hominin ecologies

    PubMed Central

    Nelson, Sherry V.

    2013-01-01

    Carbon and oxygen stable isotopes within modern and fossil tooth enamel record the aspects of an animal's diet and habitat use. This investigation reports the first isotopic analyses of enamel from a large chimpanzee community and associated fauna, thus providing a means of comparing fossil ape and early hominin palaeoecologies with those of a modern ape. Within Kibale National Park forest, oxygen isotopes differentiate primate niches, allowing for the first isotopic reconstructions of degree of frugivory versus folivory as well as use of arboreal versus terrestrial resources. In a comparison of modern and fossil community isotopic profiles, results indicate that Sivapithecus, a Miocene ape from Pakistan, fed in the forest canopy, as do chimpanzees, but inhabited a forest with less continuous canopy or fed more on leaves. Ardipithecus, an early hominin from Ethiopia, fed both arboreally and terrestrially in a more open habitat than inhabited by chimpanzees. PMID:24197413

  18. Oligocene Termite Nests with In Situ Fungus Gardens from the Rukwa Rift Basin, Tanzania, Support a Paleogene African Origin for Insect Agriculture

    PubMed Central

    Roberts, Eric M.; Todd, Christopher N.; Aanen, Duur K.; Nobre, Tânia; Hilbert-Wolf, Hannah L.; O’Connor, Patrick M.; Tapanila, Leif; Mtelela, Cassy; Stevens, Nancy J.

    2016-01-01

    Based on molecular dating, the origin of insect agriculture is hypothesized to have taken place independently in three clades of fungus-farming insects: the termites, ants or ambrosia beetles during the Paleogene (66–24 Ma). Yet, definitive fossil evidence of fungus-growing behavior has been elusive, with no unequivocal records prior to the late Miocene (7–10 Ma). Here we report fossil evidence of insect agriculture in the form of fossil fungus gardens, preserved within 25 Ma termite nests from southwestern Tanzania. Using these well-dated fossil fungus gardens, we have recalibrated molecular divergence estimates for the origins of termite agriculture to around 31 Ma, lending support to hypotheses suggesting an African Paleogene origin for termite-fungus symbiosis; perhaps coinciding with rift initiation and changes in the African landscape. PMID:27333288

  19. An exceptionally preserved myodocopid ostracod from the Silurian of Herefordshire, UK

    PubMed Central

    Siveter, David J.; Briggs, Derek E. G.; Siveter, Derek J.; Sutton, Mark D.

    2010-01-01

    An exceptionally preserved new ostracod crustacean from the Silurian of Herefordshire, UK, represents only the third fully documented Palaeozoic ostracod with soft-part preservation. Appendages, gills, gut system, lateral compound eyes and even a medial eye with a Bellonci organ are preserved, allowing assignment of the fossil to a new genus and species of cylindroleberidid myodocope (Myodocopida, Cylindroleberididae). The Bellonci organ is recorded for the first time in fossil ostracods. The find also represents a rare occurrence of gills in fossil ostracods and confirms the earliest direct evidence of a respiratory-cum-circulatory system in the group. The species demonstrates remarkably conserved morphology within myodocopes over a period of 425 Myr. Its shell morphology more closely resembles several families of myodocopes other than the Cylindroleberididae, especially the Cypridinidae and Sarsiellidae, thus questioning the utility of the carapace alone in establishing the affinity of fossil ostracods. PMID:20106847

  20. Developmental palaeontology of Reptilia as revealed by histological studies.

    PubMed

    Scheyer, Torsten M; Klein, Nicole; Sander, P Martin

    2010-06-01

    Among the fossilized ontogenetic series known for tetrapods, only more basal groups like temnospondyl amphibians have been used extensively in developmental studies, whereas reptilian and synapsid data have been largely neglected so far. However, before such ontogenetic series can be subject to study, the relative age and affiliation of putative specimens within a series has to be verified. Bone histology has a long-standing tradition as being a source of palaeobiological and growth history data in fossil amniotes and indeed, the analysis of bone microstructures still remains the most important and most reliable tool for determining the absolute ontogenetic age of fossil vertebrates. It is also the only direct way to reconstruct life histories and growth strategies for extinct animals. Herein the record of bone histology among Reptilia and its application to elucidate and expand fossilized ontogenies as a source of developmental data are reviewed. (c) 2009 Elsevier Ltd. All rights reserved.

  1. Scratching an ancient itch: an Eocene bird louse fossil.

    PubMed Central

    Wappler, Torsten; Smith, Vincent S; Dalgleish, Robert C

    2004-01-01

    Out of the 30 extant orders of insects, all but one, the parasitic lice (Insecta: Phthiraptera), have a confirmed fossil record. Here, we report the discovery of what appears to be the first bird louse fossil: an exceptionally well-preserved specimen collected from the crater of the Eckfeld maar near Manderscheid, Germany. The 44-million-year-old specimen shows close phylogenetic affinities with modern feather louse ectoparasites of aquatic birds. Preservation of feather remnants in the specimen's foregut confirms its association as a bird ectoparasite. Based on a phylogenetic analysis of the specimen and palaeoecological data, we suggest that this louse was the parasite of a large ancestor to modern Anseriformes (swans, geese and ducks) or Charadriiformes (shorebirds). The crown group position of this fossil in the phylogeny of lice confirms the group's long coevolutionary history with birds and points to an early origin for lice, perhaps inherited from early-feathered theropod dinosaurs. PMID:15503987

  2. Global increases in allergic respiratory disease: the possible role of diesel exhaust particles.

    PubMed

    Peterson, B; Saxon, A

    1996-10-01

    Reading this article will enable the readers to recognize and evaluate i e potential relationship between allergic respiratory disease and polyaromatic hydrocarbons as air pollutants from industrial and automotive fuel sources. In this article we review the long-term trends in the prevalence of allergic airway diseases (rhinitis and asthma). We then examine the epidemiologic and other research data relating to the role that hydrocarbon fuel emissions may have had on allergic respiratory disease. Published literature on the relationship between specific air pollutants and trends in allergic respiratory disease were reviewed. Reports of research on pollutant effects on allergic antibody (IgE) were also studied. In both cases, the Melvyl-Medline database since 1975 was used for literature searches. Older references were identified from the bibliographies of relevant articles and books and with the help of the rare books collection at UCLA's Louis M. Darling Biomedical library. Examination of the historical record indicates that allergic rhinitis and allergic asthma have significantly increased in prevalence over the past two centuries. Although the reasons for this increase are not fully elucidated, epidemiologic data suggest that certain pollutants such as those produced from the burning of fossil fuels may have played an important role in the prevalence changes. Also important are studies showing that diesel exhaust, a prototypical fossil fuel, is able to enhance in vitro and in vivo IgE production. Increased levels of the compounds resulting from fossil fuel combustion may be partly responsible for the increased prevalence of allergic respiratory disease. If the nature of these compounds and the mechanisms by which they exacerbate allergic disease can be identified, steps can be taken to reduce the production or the impact of these allergy producing compounds.

  3. Fossil preservation and the stratigraphic ranges of taxa

    NASA Technical Reports Server (NTRS)

    Foote, M.; Raup, D. M.

    1996-01-01

    The incompleteness of the fossil record hinders the inference of evolutionary rates and patterns. Here, we derive relationships among true taxonomic durations, preservation probability, and observed taxonomic ranges. We use these relationships to estimate original distributions of taxonomic durations, preservation probability, and completeness (proportion of taxa preserved), given only the observed ranges. No data on occurrences within the ranges of taxa are required. When preservation is random and the original distribution of durations is exponential, the inference of durations, preservability, and completeness is exact. However, reasonable approximations are possible given non-exponential duration distributions and temporal and taxonomic variation in preservability. Thus, the approaches we describe have great potential in studies of taphonomy, evolutionary rates and patterns, and genealogy. Analyses of Upper Cambrian-Lower Ordovician trilobite species, Paleozoic crinoid genera, Jurassic bivalve species, and Cenozoic mammal species yield the following results: (1) The preservation probability inferred from stratigraphic ranges alone agrees with that inferred from the analysis of stratigraphic gaps when data on the latter are available. (2) Whereas median durations based on simple tabulations of observed ranges are biased by stratigraphic resolution, our estimates of median duration, extinction rate, and completeness are not biased.(3) The shorter geologic ranges of mammalian species relative to those of bivalves cannot be attributed to a difference in preservation potential. However, we cannot rule out the contribution of taxonomic practice to this difference. (4) In the groups studied, completeness (proportion of species [trilobites, bivalves, mammals] or genera [crinoids] preserved) ranges from 60% to 90%. The higher estimates of completeness at smaller geographic scales support previous suggestions that the incompleteness of the fossil record reflects loss of fossiliferous rock more than failure of species to enter the fossil record in the first place.

  4. The origin and paleoecologic significance of the trace fossil Asteriadtes in the Pennsylvanian of Kansas and Missouri

    USGS Publications Warehouse

    Mángano, M. Gabriela; Buatois, L.A.; West, R.R.; Maples, C.G.

    1999-01-01

    The trace fossil Asteriacites, recorded in Cambrian to Recent shallow- and deep-marine facie??s, is traditionally interpreted as the resting trace of asterozoans. Well-preserved specimens of A. lumbricalis are abundant in Pennsylvanian (Upper Carboniferous) shallow- and marginalmarine siliciclastic deposits of eastern Kansas and western Missouri. Detailed morphologic analysis of these specimens suggests that they record the activities of mobile epifaunal ophiuroids. Evidence of a brittle star (ophiuroid) producer rather than sea star (asteroid) is provided by (1) trace-fossil morphologic features reflecting the anatomy of the producer (e.g., well-differentiated central structure, slender vermiform arms) and ophiuroid burrowing technique (e.g., proximal arm expansion, arm branching), and (2) mode of occurrence (e.g., gregarious behavior, horizontal and vertical repetition). Vertical and horizontal repetition produces complex aggregates of A. lumbricalis that are interpreted either as escape structures (fugichnia) or as feeding structures, respectively. Ophiura texturata is proposed.as a modern analogue for the A. lumbricalis producer, based on inferred life habit and feeding behavior. Asteriacites lumbricalis is present in two different intertidal trace-fossil assemblages. The first assemblage is characterized by high diversity and records tidal flats developed outside of embayments under normal marine conditions. The second assemblage consists of A. lumbricalis together with a few other ichnotaxa and represents a depauperate association that developed in restricted tidal flats within an embayment or estuarine setting. This challenges the conventional view of Asteriacites as a normal-marine salinity indicator. Some echinoderms, and particularly asterozoans, penetrate and inhabit modern environments of depressed salinity. The presence of Asteriacites in Pennsylvanian marginal-marine facie??s of Kansas and Missouri provides evidence that ophiuroids had adapted to brackish-water conditions by the late Paleozoic.

  5. The rise of fire: Fossil charcoal in late Devonian marine shales as an indicator of expanding terrestrial ecosystems, fire, and atmospheric change

    USGS Publications Warehouse

    Rimmer, Susan M.; Hawkins, Sarah J.; Scott, Andrew C.; Cressler, Walter L.

    2015-01-01

    Fossil charcoal provides direct evidence for fire events that, in turn, have implications for the evolution of both terrestrial ecosystems and the atmosphere. Most of the ancient charcoal record is known from terrestrial or nearshore environments and indicates the earliest occurrences of fire in the Late Silurian. However, despite the rise in available fuel through the Devonian as vascular land plants became larger and trees and forests evolved, charcoal occurrences are very sparse until the Early Mississippian where extensive charcoal suggests well-established fire systems. We present data from the latest Devonian and Early Mississippian of North America from terrestrial and marine rocks indicating that fire became more widespread and significant at this time. This increase may be a function of rising O2 levels and the occurrence of fire itself may have contributed to this rise through positive feedback. Recent atmospheric modeling suggests an O2 low during the Middle Devonian (around 17.5%), with O2 rising steadily through the Late Devonian and Early Mississippian (to 21–22%) that allowed for widespread burning for the first time. In Devonian-Mississippian marine black shales, fossil charcoal (inertinite) steadily increases up-section suggesting the rise of widespread fire systems. There is a concomitant increase in the amount of vitrinite (preserved woody and other plant tissues) that also suggests increased sources of terrestrial organic matter. Even as end Devonian glaciation was experienced, fossil charcoal continued to be a source of organic matter being introduced into the Devonian oceans. Scanning electron and reflectance microscopy of charcoal from Late Devonian terrestrial sites indicate that the fires were moderately hot (typically 500–600 °C) and burnt mainly surface vegetation dominated by herbaceous zygopterid ferns and lycopsids, rather than being produced by forest crown fires. The occurrence and relative abundance of fossil charcoal in marine black shales are significant in that these shales may provide a more continuous record of fire than is preserved in terrestrial environments. Our data support the idea that major fires are not seen in the fossil record until there is both sufficient and connected fuel and a high enough atmospheric O2 content for it to burn.

  6. Introduction to selected references on fossil fuels of the central and southern Appalachian basin: Chapter H.1 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Ruppert, Leslie F.; Lentz, Erika E.; Tewalt, Susan J.; Román Colón, Yomayra A.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The Appalachian basin contains abundant coal and petroleum resources that have been studied and extracted for at least 150 years. In this volume, U.S. Geological Survey (USGS) scientists describe the geologic framework and geochemical character of the fossil-fuel resources of the central and southern Appalachian basin. Separate subchapters (some previously published) contain geologic cross sections; seismic profiles; burial history models; assessments of Carboniferous coalbed methane and Devonian shale gas; distribution information for oil, gas, and coal fields; data on the geochemistry of natural gas and oil; and the fossil-fuel production history of the basin. Although each chapter and subchapter includes references cited, many historical or other important references on Appalachian basin and global fossil-fuel science were omitted because they were not directly applicable to the chapters.

  7. 8000 yr of vegetation reconstruction from the Great Basin (Nevada, USA): the contribution of Non-Pollen Palynomorphs.

    NASA Astrophysics Data System (ADS)

    Tunno, I.; Mensing, S. A.

    2017-12-01

    Multiproxy records from the Great Basin showed that a severe drought occurred in the area between 3000-1850 BP (Mensing et al., 2013). The pollen analysis on a 7m sediment core from Stonehouse Meadow revealed that during this period arboreal pollen dropped abruptly, reaching the lowest percentage ( 10%) around 2500 BP. At the same time, grass and herbs increased significantly ( 60%) together with the total carbonate percentage (TC%). To better understand this dramatic event, the analysis of Non-Pollen Palynomorphs (NPPs) was conducted. NPPs are microfossils that survive the chemical treatment during pollen extraction and appear in pollen slides. They are valuable indicators of climate- and human-induced changes, and due to their different origin, NPPs can be integrated with pollen analysis to corroborate and improve the information provided by pollen records. To obtain more reliable information, fossil NPPs from the sediment core were compared to modern NPPs and the pollen records. Modern samples, represented by mineral soil and sediment specimens, were collected around the meadow in 2015. Fossil NPPs were counted from the same sediment core subsamples previously analyzed for pollen records. A total of 64 different NPPs were identified from both modern and fossil samples, 33 of which were identified as unknowns and given an identification code. While several of the known NPPs were consistent with the data provided by pollen record, the most crucial information was provided by some of the unknown NPPs, such as PLN-01, PLN-20 and PLN-11. The presence of PLN-01 and PLN-20 on the edge of the meadow in the modern samples and right before and after the driest period in the core, supports the evidence of a drought, when the meadow was likely shrinking during the transition from a wetter to a drier period and expanding once again after the drought. PLN-11 appears to be related to the drought as well, occurring exclusively during the driest period. However, this NPP was not found in the modern samples, suggesting that additional sampling from dry-grassy meadows is required to verify the presence of this NPP in this kind of environment. The comparison between fossil and modern records of pollen and NPPs provided crucial information in validating the interpretation of 8000 years of climate and vegetation history in the Great Basin.

  8. New acoustic techniques for leak detection in fossil fuel plant components

    NASA Astrophysics Data System (ADS)

    Parini, G.; Possa, G.

    Two on-line acoustic monitoring techniques for leak detection in feedwater preheaters and boilers of fossil fuel power plants are presented. The leak detection is based on the acoustic noise produced by the turbulent leak outflow. The primary sensors are piezoelectric pressure transducers, installed near the feedwater preheater inlets, in direct contact with the water, or mounted on boiler observation windows. The frequency band of the auscultation ranges from a few kHz, to 10 to 15 kHz. The signals are characterized by their rms value, continuously recorded by means of potentiometric strip chart recorders. The leak occurrence is signalled by the signal rms overcoming predetermined threshold levels. Sensitivity, reliability, acceptance in plant control practice, and costs-benefits balance are satisfactory.

  9. Precambrian paleobiology.

    NASA Technical Reports Server (NTRS)

    Schopf, J. W.

    1972-01-01

    Outline in broad terms of major events in Precambrian biological history. Limitations of the Precambrian fossil record, chemical fossils, and findings of the early, middle, and late Precambrian records are examined. Biological systems originated during the earliest third of geologic time, about four billion years ago. It is generally assumed that the primitive atmosphere was a highly reduced mixture, primarily composed of methane and ammonia, and that the earliest living systems were heterotrophic, using organic matter of abiotic origin as a carbon source. The development of the metazoan grade of organization apparently occurred near the close of the Precambrian. The picture of gradually accelerating early evolutionary development, beginning rather slowly but markedly quickening with the emergence of eucaryotic organization, seems consistent with the fragmentary evidence currently available.

  10. A timeline for terrestrialization: consequences for the carbon cycle in the Palaeozoic

    PubMed Central

    Kenrick, Paul; Wellman, Charles H.; Schneider, Harald; Edgecombe, Gregory D.

    2012-01-01

    The geochemical carbon cycle is strongly influenced by life on land, principally through the effects of carbon sequestration and the weathering of calcium and magnesium silicates in surface rocks and soils. Knowing the time of origin of land plants and animals and also of key organ systems (e.g. plant vasculature, roots, wood) is crucial to understand the development of the carbon cycle and its effects on other Earth systems. Here, we compare evidence from fossils with calibrated molecular phylogenetic trees (timetrees) of living plants and arthropods. We show that different perspectives conflict in terms of the relative timing of events, the organisms involved and the pattern of diversification of various groups. Focusing on the fossil record, we highlight a number of key biases that underpin some of these conflicts, the most pervasive and far-reaching being the extent and nature of major facies changes in the rock record. These effects probably mask an earlier origin of life on land than is evident from certain classes of fossil data. If correct, this would have major implications in understanding the carbon cycle during the Early Palaeozoic. PMID:22232764

  11. Paleobiology of a Neoproterozoic tidal flat/lagoonal complex: the Draken Conglomerate Formation, Spitsbergen.

    PubMed

    Knoll, A H; Swett, K; Mark, J

    1991-01-01

    Carbonates and rare shales of the ca 700-800 Ma old Draken Conglomerate Formation, northeastern Spitsbergen, preserve a record of environmental variation within a Neoproterozoic tidal flat/lagoon complex. Forty-two microfossil taxa have been recognized in Draken rocks, and of these, 39 can be characterized in terms of their paleoenvironmental distributions along a gradient from the supratidal zone to permanently submerged lagoons. Supratidal to subtidal trends include: increasing microbenthic diversity, increasing abundance and diversity of included allochthonous (presumably planktonic) elements, decreasing sheath thickness of mat-building organisms (with significant taphonomic consequences), and an increasing sediment/fossil ratio in fossiliferous rocks. Five principal and several minor biofacies can be distinguished. The paleoecological resolution obtainable in the Draken Conglomerate Formation rivals that achieved for most Phanerozoic fossil deposits. It documents the complexity and diversity of Proterozoic coastal ecosystems and indicates that both environment and taphonomy need to be taken into explicit consideration in attempts to understand evolutionary trends in early fossil record. Three species, Coniunctiophycus majorinum, Myxococcoides distola, and M. chlorelloidea, are described as new; Siphonophycus robustum, Siphonophycus septatum, and Gorgonisphaeridium maximum are proposed as new combinations.

  12. Paleobiology of a Neoproterozoic tidal flat/lagoonal complex: the Draken Conglomerate Formation, Spitsbergen

    NASA Technical Reports Server (NTRS)

    Knoll, A. H.; Swett, K.; Mark, J.

    1991-01-01

    Carbonates and rare shales of the ca 700-800 Ma old Draken Conglomerate Formation, northeastern Spitsbergen, preserve a record of environmental variation within a Neoproterozoic tidal flat/lagoon complex. Forty-two microfossil taxa have been recognized in Draken rocks, and of these, 39 can be characterized in terms of their paleoenvironmental distributions along a gradient from the supratidal zone to permanently submerged lagoons. Supratidal to subtidal trends include: increasing microbenthic diversity, increasing abundance and diversity of included allochthonous (presumably planktonic) elements, decreasing sheath thickness of mat-building organisms (with significant taphonomic consequences), and an increasing sediment/fossil ratio in fossiliferous rocks. Five principal and several minor biofacies can be distinguished. The paleoecological resolution obtainable in the Draken Conglomerate Formation rivals that achieved for most Phanerozoic fossil deposits. It documents the complexity and diversity of Proterozoic coastal ecosystems and indicates that both environment and taphonomy need to be taken into explicit consideration in attempts to understand evolutionary trends in early fossil record. Three species, Coniunctiophycus majorinum, Myxococcoides distola, and M. chlorelloidea, are described as new; Siphonophycus robustum, Siphonophycus septatum, and Gorgonisphaeridium maximum are proposed as new combinations.

  13. Discovering Physical Samples Through Identifiers, Metadata, and Brokering

    NASA Astrophysics Data System (ADS)

    Arctur, D. K.; Hills, D. J.; Jenkyns, R.

    2015-12-01

    Physical samples, particularly in the geosciences, are key to understanding the Earth system, its history, and its evolution. Our record of the Earth as captured by physical samples is difficult to explain and mine for understanding, due to incomplete, disconnected, and evolving metadata content. This is further complicated by differing ways of classifying, cataloguing, publishing, and searching the metadata, especially when specimens do not fit neatly into a single domain—for example, fossils cross disciplinary boundaries (mineral and biological). Sometimes even the fundamental classification systems evolve, such as the geological time scale, triggering daunting processes to update existing specimen databases. Increasingly, we need to consider ways of leveraging permanent, unique identifiers, as well as advancements in metadata publishing that link digital records with physical samples in a robust, adaptive way. An NSF EarthCube Research Coordination Network (RCN) called the Internet of Samples (iSamples) is now working to bridge the metadata schemas for biological and geological domains. We are leveraging the International Geo Sample Number (IGSN) that provides a versatile system of registering physical samples, and working to harmonize this with the DataCite schema for Digital Object Identifiers (DOI). A brokering approach for linking disparate catalogues and classification systems could help scale discovery and access to the many large collections now being managed (sometimes millions of specimens per collection). This presentation is about our community building efforts, research directions, and insights to date.

  14. The mandibular canal of the "old man" of Cro-Magnon: anatomical-radiological study.

    PubMed

    Goudot, Patrick

    2002-08-01

    The radiological study of the 'old man' of Cro-Magnon mandible complements the one published about the mandibular canal of the "Neanderthal Man" of La Chapelle-aux-Saints with which it is compared. The purpose of this study was to explore the internal structure of this famous fossil. The mandible of the "old man" of Cro-Magnon (22,000 BC) was studied with panoramic radiography and CT scanning. The mandibular canal is similar to that of modern man. The images obtained are of a good quality and can be used for analysis of the internal structures of bony fossils. The mandible of the "old man" of Cro-Magnon belongs to the species Homo sapiens sapiens. Copyright 2002 Published by Elsevier Science Ltd.

  15. Fossils, molecules and embryos: new perspectives on the Cambrian explosion

    NASA Technical Reports Server (NTRS)

    Valentine, J. W.; Jablonski, D.; Erwin, D. H.

    1999-01-01

    The Cambrian explosion is named for the geologically sudden appearance of numerous metazoan body plans (many of living phyla) between about 530 and 520 million years ago, only 1.7% of the duration of the fossil record of animals. Earlier indications of metazoans are found in the Neoproterozic; minute trails suggesting bilaterian activity date from about 600 million years ago. Larger and more elaborate fossil burrows appear near 543 million years ago, the beginning of the Cambrian Period. Evidence of metazoan activity in both trace and body fossils then increased during the 13 million years leading to the explosion. All living phyla may have originated by the end of the explosion. Molecular divergences among lineages leading to phyla record speciation events that have been earlier than the origins of the new body plans, which can arise many tens of millions of years after an initial branching. Various attempts to date those branchings by using molecular clocks have disagreed widely. While the timing of the evolution of the developmental systems of living metazoan body plans is still uncertain, the distribution of Hox and other developmental control genes among metazoans indicates that an extensive patterning system was in place prior to the Cambrian. However, it is likely that much genomic repatterning occurred during the Early Cambrian, involving both key control genes and regulators within their downstream cascades, as novel body plans evolved.

  16. Biting Midges (Diptera: Ceratopogonidae) from Cambay Amber Indicate that the Eocene Fauna of the Indian Subcontinent Was Not Isolated

    PubMed Central

    Stebner, Frauke; Szadziewski, Ryszard; Singh, Hukam; Gunkel, Simon; Rust, Jes

    2017-01-01

    India’s unique and highly diverse biota combined with its unique geodynamical history has generated significant interest in the patterns and processes that have shaped the current distribution of India’s flora and fauna and their biogeographical relationships. Fifty four million year old Cambay amber from northwestern India provides the opportunity to address questions relating to endemism and biogeographic history by studying fossil insects. Within the present study seven extant and three fossil genera of biting midges are recorded from Cambay amber and five new species are described: Eohelea indica Stebner & Szadziewski n. sp., Gedanohelea gerdesorum Stebner & Szadziewski n. sp., Meunierohelea cambayana Stebner & Szadziewski n. sp., Meunierohelea borkenti Stebner & Szadziewski n. sp., and Meunierohelea orientalis Stebner & Szadziewski n. sp. Fossils of species in the genera Leptoconops Skuse, 1889, Forcipomyia Meigen, 1818, Brachypogon Kieffer, 1899, Stilobezzia Kieffer, 1911, Serromyia Meigen, 1818, and Mantohelea Szadziewski, 1988 are recorded without formal description. Furthermore, one fossil belonging to the genus Camptopterohelea Wirth & Hubert, 1960 is included in the present study. Our study reveals faunal links among Ceratopogonidae from Cambay amber and contemporaneous amber from Fushun, China, Eocene Baltic amber from Europe, as well as the modern Australasian and the Oriental regions. These findings imply that faunal exchange between Europe, Asia and India took place before the formation of Cambay amber in the early Eocene. PMID:28076427

  17. Biting Midges (Diptera: Ceratopogonidae) from Cambay Amber Indicate that the Eocene Fauna of the Indian Subcontinent Was Not Isolated.

    PubMed

    Stebner, Frauke; Szadziewski, Ryszard; Singh, Hukam; Gunkel, Simon; Rust, Jes

    2017-01-01

    India's unique and highly diverse biota combined with its unique geodynamical history has generated significant interest in the patterns and processes that have shaped the current distribution of India's flora and fauna and their biogeographical relationships. Fifty four million year old Cambay amber from northwestern India provides the opportunity to address questions relating to endemism and biogeographic history by studying fossil insects. Within the present study seven extant and three fossil genera of biting midges are recorded from Cambay amber and five new species are described: Eohelea indica Stebner & Szadziewski n. sp., Gedanohelea gerdesorum Stebner & Szadziewski n. sp., Meunierohelea cambayana Stebner & Szadziewski n. sp., Meunierohelea borkenti Stebner & Szadziewski n. sp., and Meunierohelea orientalis Stebner & Szadziewski n. sp. Fossils of species in the genera Leptoconops Skuse, 1889, Forcipomyia Meigen, 1818, Brachypogon Kieffer, 1899, Stilobezzia Kieffer, 1911, Serromyia Meigen, 1818, and Mantohelea Szadziewski, 1988 are recorded without formal description. Furthermore, one fossil belonging to the genus Camptopterohelea Wirth & Hubert, 1960 is included in the present study. Our study reveals faunal links among Ceratopogonidae from Cambay amber and contemporaneous amber from Fushun, China, Eocene Baltic amber from Europe, as well as the modern Australasian and the Oriental regions. These findings imply that faunal exchange between Europe, Asia and India took place before the formation of Cambay amber in the early Eocene.

  18. Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica.

    PubMed

    Barreda, Viviana D; Palazzesi, Luis; Tellería, Maria C; Olivero, Eduardo B; Raine, J Ian; Forest, Félix

    2015-09-01

    The Asteraceae (sunflowers and daisies) are the most diverse family of flowering plants. Despite their prominent role in extant terrestrial ecosystems, the early evolutionary history of this family remains poorly understood. Here we report the discovery of a number of fossil pollen grains preserved in dinosaur-bearing deposits from the Late Cretaceous of Antarctica that drastically pushes back the timing of assumed origin of the family. Reliably dated to ∼76-66 Mya, these specimens are about 20 million years older than previously known records for the Asteraceae. Using a phylogenetic approach, we interpreted these fossil specimens as members of an extinct early diverging clade of the family, associated with subfamily Barnadesioideae. Based on a molecular phylogenetic tree calibrated using fossils, including the ones reported here, we estimated that the most recent common ancestor of the family lived at least 80 Mya in Gondwana, well before the thermal and biogeographical isolation of Antarctica. Most of the early diverging lineages of the family originated in a narrow time interval after the K/P boundary, 60-50 Mya, coinciding with a pronounced climatic warming during the Late Paleocene and Early Eocene, and the scene of a dramatic rise in flowering plant diversity. Our age estimates reduce earlier discrepancies between the age of the fossil record and previous molecular estimates for the origin of the family, bearing important implications in the evolution of flowering plants in general.

  19. Ancient DNA clarifies the evolutionary history of American Late Pleistocene equids.

    PubMed

    Orlando, Ludovic; Male, Dean; Alberdi, Maria Teresa; Prado, Jose Luis; Prieto, Alfredo; Cooper, Alan; Hänni, Catherine

    2008-05-01

    Hippidions are past members of the equid lineage which appeared in the South American fossil record around 2.5 Ma but then became extinct during the great late Pleistocene megafaunal extinction. According to fossil records and numerous dental, cranial, and postcranial characters, Hippidion and Equus lineages were expected to cluster in two distinct phylogenetic groups that diverged at least 10 MY, long before the emergence of the first Equus. However, the first DNA sequence information retrieved from Hippidion fossils supported a striking different phylogeny, with hippidions nesting inside a paraphyletic group of Equus. This result indicated either that the currently accepted phylogenetic tree of equids was incorrect regarding the timing of the evolutionary split between Hippidion and Equus or that the taxonomic identification of the hippidion fossils used for DNA analysis needed to be reexamined (and attributed to another extinct South American member of the equid lineage). The most likely candidate for the latter explanation is Equus (Amerhippus) neogeus. Here, we show by retrieving new ancient mtDNA sequences that hippidions and Equus (Amerhippus) neogeus were members of two distinct lineages. Furthermore, using a rigorous phylogenetic approach, we demonstrate that while formerly the largest equid from Southern America, Equus (Amerhippus) was just a member of the species Equus caballus. This new data increases the known phenotypic plasticity of horses and consequently casts doubt on the taxonomic validity of the subgenus Equus (Amerhippus).

  20. Preservation of Early Cambrian animals of the Chengjiang biota

    NASA Astrophysics Data System (ADS)

    Gabbott, Sarah E.; Xian-Guang, Hou; Norry, Michael J.; Siveter, David J.

    2004-10-01

    The Chengjiang biota of Yunnan, China, documents the earliest extensive radiation of the Metazoa recorded in the fossil record. Gauging preservational bias is crucial in providing an assessment of the completeness of this biota and thereby elucidating whether it represents a comprehensive depiction of Early Cambrian life. We here present a model to explain the nature of the exceptional preservation of the Chengjiang biota and details of the decay process. This study indicates that Chengjiang fossils were preserved through two taphonomic pathways that may have captured tissues of distinct compositions, and this finding should provide a foundation for the interpretation of Chengjiang fossils. Many Chengjiang fossils are preserved by pyrite (later pseudomorphed by iron oxides); the clay-rich host sediment was deficient in organic carbon but replete in available Fe, and this composition ensured that a decaying carcass acted as a local substrate for Fe- and S-reducing bacteria. Pyrite morphology probably reflects contrasts in the decay rate, and hence the H2S production rate, of different tissues in a carcass. Reactive, rapidly decaying tissues would have quickly supplied H2S, producing many pyrite nuclei, resulting in framboidal habits. More recalcitrant tissues would have produced H2S more slowly, so that crystal growth operated on fewer nuclei, resulting in larger euhedral pyrite crystals. Reflective films, especially common on Chengjiang arthropods, represent the remains of degraded carbon.

  1. A Record of Moisture History in Hawaii since the Arrival of Humans Inferred from Testate Amoebae and Cladocera Fossils Preserved in Bog Sediments

    NASA Astrophysics Data System (ADS)

    Barrett, K.; Kim, S. H.; Hotchkiss, S.

    2015-12-01

    Around AD 800, Polynesians arrived on the Hawaiian Islands where they expanded and intensified distinct agricultural practices in the islands' wet and dry regions. Dryland farming productivity in particular would have been sensitive to atmospheric rearrangements of the ENSO and PDO systems that affect rainfall in Hawaii. The few detailed terrestrial paleoclimate records in Hawaii are mainly derived from vegetation proxies (e.g. pollen, seeds, fruits, and plant biomarkers) which are heavily influenced by widespread landscape modification following human arrival. Here we present initial results of an independent paleomoisture proxy: fossil remains of moisture-sensitive testate amoebae (Protozoa: Rhizopoda) and cladocera (water fleas) preserved in continuous bog sediments on Kohala Volcano uplsope of the ancient Kohala agricultural field system, one of the largest dryland field systems in Hawaii. Hydrologic conditions inferred from testate amoebae and cladoceran fossil assemblages correlate with observed decadal moisture regimes in Hawaii and state changes of the PDO system during the last century. Testate ameoabe and cladoceran fossils in older sediments reveal an alternating history of very wet, lake-forming conditions on the bog surface to periods when bog soils were much drier than today's, demonstrating that this method can be paired with vegetation proxies to provide a better understanding of hydroclimate variability in prehistoric Hawaii.

  2. Boom and bust: ancient and recent diversification in bichirs (Polypteridae: Actinopterygii), a relictual lineage of ray-finned fishes.

    PubMed

    Near, Thomas J; Dornburg, Alex; Tokita, Masayoshi; Suzuki, Dai; Brandley, Matthew C; Friedman, Matt

    2014-04-01

    Understanding the history that underlies patterns of species richness across the Tree of Life requires an investigation of the mechanisms that not only generate young species-rich clades, but also those that maintain species-poor lineages over long stretches of evolutionary time. However, diversification dynamics that underlie ancient species-poor lineages are often hidden due to a lack of fossil evidence. Using information from the fossil record and time calibrated molecular phylogenies, we investigate the history of lineage diversification in Polypteridae, which is the sister lineage of all other ray-finned fishes (Actinopterygii). Despite originating at least 390 million years (Myr) ago, molecular timetrees support a Neogene origin for the living polypterid species. Our analyses demonstrate polypterids are exceptionally species depauperate with a stem lineage duration that exceeds 380 million years (Ma) and is significantly longer than the stem lineage durations observed in other ray-finned fish lineages. Analyses of the fossil record show an early Late Cretaceous (100.5-83.6 Ma) peak in polypterid genus richness, followed by 60 Ma of low richness. The Neogene species radiation and evidence for high-diversity intervals in the geological past suggest a "boom and bust" pattern of diversification that contrasts with common perceptions of relative evolutionary stasis in so-called "living fossils." © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  3. A new slider turtle (Testudines: Emydidae: Deirochelyinae: Trachemys) from the late Hemphillian (late Miocene/early Pliocene) of eastern Tennessee and the evolution of the deirochelyines

    PubMed Central

    2018-01-01

    Trachemys (Testudines: Emydidae) represents one of the most well-known turtle genera today. The evolution of Trachemys, while being heavily documented with fossil representatives, is not well understood. Numerous fossils from the late Hemphillian Gray Fossil Site (GFS) in northeastern Tennessee help to elucidate its evolution. The fossil Trachemys at the GFS represent a new species. The new taxon, Trachemys haugrudi, is described, and currently represents the most thoroughly described fossil emydid species known. A phylogenetic analysis, including 31 species, focusing on the subfamily Deirochelyinae is performed that includes the new fossil species, along with numerous other modern and fossil deirochelyine species, representing the first phylogenetic analysis published that includes several fossil deirochelyines. The phylogenetic analysis, utilizing morphological evidence, provides monophyletic clades of all modern deirochelyines, including Chrysemys, Deirochelys, Pseudemys, Malaclemys, Graptemys, and Trachemys. A strict consensus tree finds the recently described fossil species Graptemys kerneri to be part of a clade of Graptemys + Malaclemys. Three fossil taxa, including one previously referred to Pseudemys (Pseudemys caelata) and two to Deirochelys (Deirochelys carri and Deirochelys floridana) are found to form a clade with modern Deirochelys reticularia reticularia, with D. floridana sister to the other members of the clade. Chrysemys is found to be part of a basal polytomy with Deirochelys in relation to other deirochelyine taxa. Two fossil taxa previously referred to Chrysemys (Chrysemys timida and Chrysemys williamsi) form a paraphyly with the modern Chrysemys picta picta and Deirochelys, and may be referable to distinct genera. Additionally, fossil taxa previously attributed to Trachemys (Trachemys hillii, Trachemys idahoensis, Trachemys inflata, and Trachemys platymarginata) and T. haugrudi are found to form a clade separate from clades of northern and southern Trachemys species, potentially suggesting a distinct lineage of Trachemys with no modern survivors. Hypotheses of phylogenetic relationships mostly agree between the present study and previous ones, although the inclusion of fossil taxa provides further clues to the evolution of parts of the Deirochelyinae. The inclusion of more fossil taxa and characters may help resolve the placement of some taxa, and further elucidate the evolution of these New World turtles. PMID:29456887

  4. The eukaryotic fossil record in deep time

    NASA Astrophysics Data System (ADS)

    Butterfield, N.

    2011-12-01

    Eukaryotic organisms are defining constituents of the Phanerozoic biosphere, but they also extend well back into the Proterozoic record, primarily in the form of microscopic body fossils. Criteria for identifying pre-Ediacaran eukaryotes include large cell size, morphologically complex cell walls and/or the recognition of diagnostically eukaryotic cell division patterns. The oldest unambiguous eukaryote currently on record is an acanthomorphic acritarch (Tappania) from the Palaeoproterozoic Semri Group of central India. Older candidate eukaryotes are difficult to distinguish from giant bacteria, prokaryotic colonies or diagenetic artefacts. In younger Meso- and Neoproterozoic strata, the challenge is to recognize particular grades and clades of eukaryotes, and to document their macro-evolutionary expression. Distinctive unicellular forms include mid-Neoproterozoic testate amoebae and phosphate biomineralizing 'scale-microfossils' comparable to an extant green alga. There is also a significant record of seaweeds, possible fungi and problematica from this interval, documenting multiple independent experiments in eukaryotic multicellularity. Taxonomically resolved forms include a bangiacean red alga and probable vaucheriacean chromalveolate algae from the late Mesoproterozoic, and populations of hydrodictyacean and siphonocladalean green algae of mid Neoproterozoic age. Despite this phylogenetic breadth, however, or arguments from molecular clocks, there is no convincing evidence for pre-Ediacaran metazoans or metaphytes. The conspicuously incomplete nature of the Proterozoic record makes it difficult to resolve larger-scale ecological and evolutionary patterns. Even so, both body fossils and biomarker data point to a pre-Ediacaran biosphere dominated overwhelming by prokaryotes. Contemporaneous eukaryotes appear to be limited to conspicuously shallow water environments, and exhibit fundamentally lower levels of morphological diversity and evolutionary turnover than their Phanerozoic counterparts. I will argue here that this fundamental change of state was driven by the early Ediacaran appearance of Eumetazoa, a uniquely complex clade of heterotrophic eukaryotes that redefined how the planet worked.

  5. Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution

    PubMed Central

    Langergraber, Kevin E.; Prüfer, Kay; Rowney, Carolyn; Boesch, Christophe; Crockford, Catherine; Fawcett, Katie; Inoue, Eiji; Inoue-Muruyama, Miho; Mitani, John C.; Muller, Martin N.; Robbins, Martha M.; Schubert, Grit; Stoinski, Tara S.; Viola, Bence; Watts, David; Wittig, Roman M.; Wrangham, Richard W.; Zuberbühler, Klaus; Pääbo, Svante; Vigilant, Linda

    2012-01-01

    Fossils and molecular data are two independent sources of information that should in principle provide consistent inferences of when evolutionary lineages diverged. Here we use an alternative approach to genetic inference of species split times in recent human and ape evolution that is independent of the fossil record. We first use genetic parentage information on a large number of wild chimpanzees and mountain gorillas to directly infer their average generation times. We then compare these generation time estimates with those of humans and apply recent estimates of the human mutation rate per generation to derive estimates of split times of great apes and humans that are independent of fossil calibration. We date the human–chimpanzee split to at least 7–8 million years and the population split between Neanderthals and modern humans to 400,000–800,000 y ago. This suggests that molecular divergence dates may not be in conflict with the attribution of 6- to 7-million-y-old fossils to the human lineage and 400,000-y-old fossils to the Neanderthal lineage. PMID:22891323

  6. Estimating past precipitation and temperature from fossil ostracodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, A.J.; Forester, R.M.

    1994-12-31

    The fossil records of certain aquatic organisms provide a way of obtaining meaningful estimates of past temperature and precipitation. These estimates of past environmental conditions are derived from multivariate statistical methods that are in turn based on the modern biogeographic distributions and environmental tolerances of the biota of interest. These estimates are helpful in conducting slimate studies as part of the Yucca Mountain site characterization. Ostracodes are microscopic crustaceans that produce bivalved calcite shells which are easily fossilized in the sediments of the lakes and wetlands in which the animals lived. The modern biogeographic distribution and environmental conditions of livingmore » ostracodes are the basis for the interpretation of the past environmental conditions of the fossil ostracodes. The major assumption in this method of interpretation is that the environmental tolerances of ostracodes have not changed substantially over thousands of years. Two methods using these modern analogs to determine past environmental conditions are the modern analog method and the range method. The range method also considers the information provided by fossil ostracode assemblages that have no modern analog in today`s world.« less

  7. Flood on Big Fossil Creek at Haltom City near Fort Worth, Texas, in 1962

    USGS Publications Warehouse

    Montgomery, John H.; Ruggles, Frederick H.; Patterson, James Lee

    1965-01-01

    The approximate area inundated near Fort Worth, Texas, by Big Fossil Creek, during the flood of September 7, 1962, is shown on a topographic map to record the flood hazard in graphic form. Big Fossil Creek, which drains an area of 74.7 square miles, flows generally southeastward along the northeast edge of Fort Worth through Richland Hills and Haltom City, into West Fork Trinity River. The flood of September 7, 1962, the greatest in Richland Hills since at least 1900 was the result of a high rate of discharge from the area upstream from the confluence of Big Fossil Creek and Whites Branch. Greater floods are possible, but no attempt has been made to show their probable overflow limits. Future protective works may reduce the frequency of flooding in the area but will not necessarily eliminate flooding. Changes in culture such as new highways and bridges and changes in land use may influence the inundation pattern of future floods. Mapping of the West Fork Trinity River flood was beyond the scope of the Big Fossil Creek study, and is not shown.

  8. The thermal history of human fossils and the likelihood of successful DNA amplification.

    PubMed

    Smith, Colin I; Chamberlain, Andrew T; Riley, Michael S; Stringer, Chris; Collins, Matthew J

    2003-09-01

    Recent success in the amplification of ancient DNA (aDNA) from fossil humans has led to calls for further tests to be carried out on similar material. However, there has been little systematic research on the survival of DNA in the fossil record, even though the environment of the fossil is known to be of paramount importance for the survival of biomolecules over archaeological and geological timescales. A better understanding of aDNA survival would enable research to focus on material with greater chances of successful amplification, thus preventing the unnecessary loss of material and valuable researcher time. We argue that the thermal history of a fossil is a key parameter for the survival of biomolecules. The thermal history of a number of northwest European Neanderthal cave sites is reconstructed here and they are ranked in terms of the relative likelihood of aDNA survival at the sites, under the assumption that DNA depurination is the principal mechanism of degradation. The claims of aDNA amplification from material found at Lake Mungo, Australia, are also considered in the light of the thermal history of this site.

  9. A survey of the rock record of reptilian ontogeny.

    PubMed

    Delfino, Massimo; Sánchez-Villagra, Marcelo R

    2010-06-01

    Given the large diversity and long stratigraphical range of fossil reptiles, their development is a fundamental aspect of the evolution of ontogeny in vertebrates. Eggs, juveniles, embryos and growth series document different aspects of fossilized ontogenies. About three-fifths of the more than 850 available publications on these topics concern dinosaurs. Non-invasive imaging techniques have facilitated the study of embryos in ovo. Examination of ontogenetic trajectories is used to establish criteria to identify fossil growth series and solve taxonomic issues. Many morphological innovations in reptilian skeletal structures are associated with growth heterochronic changes, whereas sequence heterochronic changes remain largely unstudied but are a potential avenue of research. Relative age assessments via not only palaeohistology but also comparative anatomy have been used to reconstruct life history patterns in fossil archosaurs. Several fossil marine reptiles evolved viviparity convergently. Extinct adult phenotypes can reveal information on development, as in the discovery of polydactyly in diapsids, the examination of vertebral number evolution, and its relation to somitgenesis and Hox-gene boundaries, and signs of tissue regeneration provided by anatomical peculiarities following caudal autotomy. (c) 2009 Elsevier Ltd. All rights reserved.

  10. Systematics, phylogeny, and taphonomy of ghost shrimps (Decapoda): a perspective from the fossil record

    PubMed Central

    Klompmaker, Adiël A.

    2016-01-01

    Ghost shrimps of Callianassidae and Ctenochelidae are soft-bodied, usually heterochelous decapods representing major bioturbators of muddy and sandy (sub)marine substrates. Ghost shrimps have a robust fossil record spanning from the Early Cretaceous (~ 133 Ma) to the Holocene and their remains are present in most assemblages of Cenozoic decapod crustaceans. Their taxonomic interpretation is in flux, mainly because the generic assignment is hindered by their insufficient preservation and disagreement in the biological classification. Furthermore, numerous taxa are incorrectly classified within the catch-all taxon Callianassa. To show the historical patterns in describing fossil ghost shrimps and to evaluate taphonomic aspects influencing the attribution of ghost shrimp remains to higher level taxa, a database of all fossil species treated at some time as belonging to the group has been compiled: 250 / 274 species are considered valid ghost shrimp taxa herein. More than half of these taxa (160 species, 58.4%) are known only from distal cheliped elements, i.e., dactylus and / or propodus, due to the more calcified cuticle locally. Rarely, ghost shrimps are preserved in situ in burrows or in direct association with them, and several previously unpublished occurrences are reported herein. For generic assignment, fossil material should be compared to living species because many of them have modern relatives. Heterochely, intraspecific variation, ontogenetic changes and sexual dimorphism are all factors that have to be taken into account when working with fossil ghost shrimps. Distal elements are usually more variable than proximal ones. Preliminary results suggest that the ghost shrimp clade emerged not before the Hauterivian (~ 133 Ma). The divergence of Ctenochelidae and Paracalliacinae is estimated to occur within the interval of Hauterivian to Albian (133–100 Ma). Callichirinae and Eucalliacinae likely diverged later during the Late Cretaceous (100–66 Ma), whereas Callianassinae did not appear before the Eocene (56 Ma). PMID:27499814

  11. Quaternary Geochronology, Paleontology, and Archaeology of the Upper San Pedro River Valley, Sonora, Mexico

    NASA Astrophysics Data System (ADS)

    Gaines, E. P.

    2013-12-01

    This poster presents the results of multi-disciplinary investigations of the preservation and extent of Quaternary fossil-bearing strata in the San Pedro River Valley in Sonora, Mexico. Geologic deposits in the portions of the San Pedro Valley in southern Arizona contain one of the best late Cenozoic fossil records known in North America and the best record of early humans and extinct mammals on the continent. The basin in the U.S. is one of the type locations for the Blancan Land Mammal Age. Hemiphilian and Irvingtonian fossils are common. Rancholabrean remains are widespread. Strata in the valley adjacent to the international border with Mexico have yielded the densest concentration of archaeological mammoth-kill sites known in the western hemisphere. Despite more than 60 years of research in the U.S., however, and the fact that over one third of the San Pedro River lies south of the international boundary, little has been known about the late Cenozoic geology of the valley in Mexico. The study reported here utilized extensive field survey, archaeological documentation, paleontological excavations, stratigraphic mapping and alluvial geochronology to determine the nature and extent of Quaternary fossil-bearing deposits in the portions of the San Pedro Valley in Sonora, Mexico. The results demonstrate that the Plio-Pleistocene fossil -bearing formations known from the valley in Arizona extend into the uppermost reaches of the valley in Mexico. Several new fossil sites were discovered that yielded the remains of Camelids, Equus, Mammuthus, and other Proboscidean species. Late Pleistocene archaeological remains were found on the surface of the surrounding uplands. AMS radiocarbon dating demonstrates the widespread preservation of middle- to late- Holocene deposits. However, the late Pleistocene deposits that contain the archaeological mammoth-kill sites in Arizona are absent in the valley in Mexico, and are now known to be restricted to relatively small portions of the valley immediately north of the international border.

  12. Grimmiaceae in the Early Cretaceous: Tricarinella crassiphylla gen. et sp. nov. and the value of anatomically preserved bryophytes.

    PubMed

    Savoretti, Adolfina; Bippus, Alexander C; Stockey, Ruth A; Rothwell, Gar W; Tomescu, Alexandru M F

    2018-06-08

    Widespread and diverse in modern ecosystems, mosses are rare in the fossil record, especially in pre-Cenozoic rocks. Furthermore, most pre-Cenozoic mosses are known from compression fossils, which lack detailed anatomical information. When preserved, anatomy significantly improves resolution in the systematic placement of fossils. Lower Cretaceous (Valanginian) deposits on Vancouver Island (British Columbia, Canada) contain a diverse anatomically preserved flora including numerous bryophytes, many of which have yet to be characterized. Among them is the grimmiaceous moss described here. One fossil moss gametophyte preserved in a carbonate concretion was studied in serial sections prepared using the cellulose acetate peel technique. Tricarinella crassiphylla gen. et sp. nov. is a moss with tristichous phyllotaxis and strongly keeled leaves. The combination of an acrocarpous condition (inferred based on a series of morphological features), a central conducting strand, a homogeneous leaf costa and a lamina with bistratose portions and sinuous cells, and multicellular gemmae, supports placement of Tricarinella in family Grimmiaceae. Tricarinella is similar to Grimmia, a genus that exhibits broad morphological variability. However, tristichous phyllotaxis and especially the lamina, bistratose at the base but not in distal portions of the leaf, set Tricarinella apart as a distinct genus. Tricarinella crassiphylla marks the oldest record for both family Grimmiaceae and sub-class Dicranidae, providing a hard minimum age (136 million years) for these groups. The fact that this fossil could be placed in an extant family, despite a diminutive size, emphasizes the considerable resolving power of anatomically preserved bryophyte fossils, even when recovered from allochthonous assemblages of marine sediments, such as the Apple Bay flora. Discovery of Tricarinella re-emphasizes the importance of paleobotanical studies as the only approach allowing access to a significant segment of biodiversity, the extinct biodiversity, which is unattainable by other means of investigation.

  13. The First Occurrence in the Fossil Record of an Aquatic Avian Twig-Nest with Phoenicopteriformes Eggs: Evolutionary Implications

    PubMed Central

    Grellet-Tinner, Gerald; Murelaga, Xabier; Larrasoaña, Juan C.; Silveira, Luis F.; Olivares, Maitane; Ortega, Luis A.; Trimby, Patrick W.; Pascual, Ana

    2012-01-01

    Background We describe the first occurrence in the fossil record of an aquatic avian twig-nest with five eggs in situ (Early Miocene Tudela Formation, Ebro Basin, Spain). Extensive outcrops of this formation reveal autochthonous avian osteological and oological fossils that represent a single taxon identified as a basal phoenicopterid. Although the eggshell structure is definitively phoenicopterid, the characteristics of both the nest and the eggs are similar to those of modern grebes. These observations allow us to address the origin of the disparities between the sister taxa Podicipedidae and Phoenicopteridae crown clades, and traces the evolution of the nesting and reproductive environments for phoenicopteriforms. Methodology/Principal Findings Multi-disciplinary analyses performed on fossilized vegetation and eggshells from the eggs in the nest and its embedding sediments indicate that this new phoenicopterid thrived under a semi-arid climate in an oligohaline (seasonally mesohaline) shallow endorheic lacustine environment. High-end microcharacterizations including SEM, TEM, and EBSD techniques were pivotal to identifying these phoenicopterid eggshells. Anatomical comparisons of the fossil bones with those of Phoenicopteriformes and Podicipediformes crown clades and extinct palaelodids confirm that this avian fossil assemblage belongs to a new and basal phoenicopterid. Conclusions/Significance Although the Podicipediformes-Phoenicopteriformes sister group relationship is now well supported, flamingos and grebes exhibit feeding, reproductive, and nesting strategies that diverge significantly. Our multi-disciplinary study is the first to reveal that the phoenicopteriform reproductive behaviour, nesting ecology and nest characteristics derived from grebe-like type strategies to reach the extremely specialized conditions observed in modern flamingo crown groups. Furthermore, our study enables us to map ecological and reproductive characters on the Phoenicopteriformes evolutionary lineage. Our results demonstrate that the nesting paleoenvironments of flamingos were closely linked to the unique ecology of this locality, which is a direct result of special climatic (high evaporitic regime) and geological (fault system) conditions. PMID:23082136

  14. The fossilized birth–death process for coherent calibration of divergence-time estimates

    PubMed Central

    Heath, Tracy A.; Huelsenbeck, John P.; Stadler, Tanja

    2014-01-01

    Time-calibrated species phylogenies are critical for addressing a wide range of questions in evolutionary biology, such as those that elucidate historical biogeography or uncover patterns of coevolution and diversification. Because molecular sequence data are not informative on absolute time, external data—most commonly, fossil age estimates—are required to calibrate estimates of species divergence dates. For Bayesian divergence time methods, the common practice for calibration using fossil information involves placing arbitrarily chosen parametric distributions on internal nodes, often disregarding most of the information in the fossil record. We introduce the “fossilized birth–death” (FBD) process—a model for calibrating divergence time estimates in a Bayesian framework, explicitly acknowledging that extant species and fossils are part of the same macroevolutionary process. Under this model, absolute node age estimates are calibrated by a single diversification model and arbitrary calibration densities are not necessary. Moreover, the FBD model allows for inclusion of all available fossils. We performed analyses of simulated data and show that node age estimation under the FBD model results in robust and accurate estimates of species divergence times with realistic measures of statistical uncertainty, overcoming major limitations of standard divergence time estimation methods. We used this model to estimate the speciation times for a dataset composed of all living bears, indicating that the genus Ursus diversified in the Late Miocene to Middle Pliocene. PMID:25009181

  15. Early evolution and historical biogeography of fishflies (Megaloptera: Chauliodinae): implications from a phylogeny combining fossil and extant taxa.

    PubMed

    Liu, Xingyue; Wang, Yongjie; Shih, Chungkun; Ren, Dong; Yang, Ding

    2012-01-01

    Fishflies (Corydalidae: Chauliodinae) are one of the main groups of the basal holometabolous insect order Megaloptera, with ca. 130 species distributed worldwide. A number of genera from the Southern Hemisphere show remarkably disjunctive distributions and are considered to be the austral remnants or "living fossils" of Gondwana. Hitherto, the evolutionary history of fishflies remains largely unexplored due to limited fossil record and incomplete knowledge of phylogenetic relationships. Here we describe two significant fossil species of fishflies, namely Eochauliodes striolatus gen. et sp. nov. and Jurochauliodes ponomarenkoi Wang & Zhang, 2010 (original designation for fossil larvae only), from the Middle Jurassic of Inner Mongolia, China. These fossils represent the earliest fishfly adults. Furthermore, we reconstruct the first phylogenetic hypothesis including all fossil and extant genera worldwide. Three main clades within Chauliodinae are recognized, i.e. the Dysmicohermes clade, the Protochauliodes clade, and the Archichauliodes clade. The phylogenetic and dispersal-vicariance (DIVA) analyses suggest Pangaean origin and global distribution of fishflies before the Middle Jurassic. The generic diversification of fishflies might have happened before the initial split of Pangaea, while some Gondwanan-originated clades were likely to be affected by the sequential breakup of Pangaea. The modern fauna of Asian fishflies were probably derived from their Gondwanan ancestor but not the direct descendents of the Mesozoic genera in Asia.

  16. Fossil Leaves and Fossil Leaf n-Alkanes: Reconstructing the First Closed Canopied Rainforests

    NASA Astrophysics Data System (ADS)

    Graham, H. V.; Freeman, K. H.

    2013-12-01

    Although the age and location is disputed, the rise of the first closed-canopy forest is likely linked with the expansion of angiosperms in the late Cretacous or early Cenozoic. The carbon isotope 'canopy effect' reflects the extent of canopy closure, and is well documented in δ13C values of the leaves and leaf lipids in modern forests. To test the extent of canopy closure among the oldest documented angiosperm tropical forests, we analyzed isotopic characteristics of leaf fossils and leaf waxes from the Guaduas and Cerrejón Formations. The Guaduas Fm. (Maastrichtian) contains some of the earliest angiosperm fossils in the Neotropics, and both leaf morphology and pollen records at this site suggest an open-canopy structure. The Cerrejón Fm. (Paleocene) contains what are believed to be the first recorded fossil leaves from a closed-canopy forest. We analyzed the bulk carbon isotope content (δ13Cleaf) of 199 fossil leaves, as well as the n-alkane concentration and chain-length distribution, and δ13C of alkanes (δ13Clipid) of 73 fossil leaves and adjacent sediment samples. Fossil leaves are dominated by eudicots and include ten modern plant families (Apocynaceae, Bombaceae, Euphorbaceae, Fabaceae, Lauraceae, Malvaceae, Meliaceae, Menispermaceae, Moraceae, Sapotaceae). We interpreted extent of canopy coverage based on the range of δ13Cleaf values. The narrow range of δ13C values in leaves from the Guaduas Fm (2.7‰) is consistent with an open canopy. A significantly wider range in values (6.3‰) suggests a closed-canopy signature for site 0315 of the Cerrejón Fm,. In contrast, at Site 0318, a lacustrine deposit, leaves had a narrow range (3.3‰) in δ13C values, and this is not consistent with a closed-canopy, but is consistent with leaf assemblages from a forest edge. Leaves that accumulate in lake sediments tend to be biased toward plants living at the lake edge, which do not experience closed-canopy conditions, and do not express the isotopic characteristics associated with canopy effect. A biomass flux-weighted model of alkane chain-length distribution and δ13Cleaf indicate n-alkanes extracted from bulk rock are consistent with inputs integrated over time from plants represented by fossil leaves. In a modern rainforest, we found leaf lipid amounts markedly higher in the shaded and moist understory, consistent with studies that show alkanes proffer fungal protection. Shade tolerance is associated with higher plant orders and, consistent with this, literature data for modern plants from 30 plant orders shows alkane production in asterids and rosids is 2 to 3 times greater than in basal angiosperms or gymnosperms. The lower clades tend to contain greater amounts of terpenoids and novel benzylisoquinoline alkaloids, rather than alkanes. For our three fossil floras, alkane abundance is strongly influenced by depositional setting, with preservation best in the lacustrine setting. Within each site, abundance patterns are potentially influenced by both taxonomic affiliation and by canopy structure as measured by δ13Cleaf values, and such relationships shed light on the combined influences of plant evolution, canopy structure and the function of biochemical resources on the geochemical record of the first rainforests.

  17. Integrated Analyses Resolve Conflicts over Squamate Reptile Phylogeny and Reveal Unexpected Placements for Fossil Taxa

    PubMed Central

    Reeder, Tod W.; Townsend, Ted M.; Mulcahy, Daniel G.; Noonan, Brice P.; Wood, Perry L.; Sites, Jack W.; Wiens, John J.

    2015-01-01

    Squamate reptiles (lizards and snakes) are a pivotal group whose relationships have become increasingly controversial. Squamates include >9000 species, making them the second largest group of terrestrial vertebrates. They are important medicinally and as model systems for ecological and evolutionary research. However, studies of squamate biology are hindered by uncertainty over their relationships, and some consider squamate phylogeny unresolved, given recent conflicts between molecular and morphological results. To resolve these conflicts, we expand existing morphological and molecular datasets for squamates (691 morphological characters and 46 genes, for 161 living and 49 fossil taxa, including a new set of 81 morphological characters and adding two genes from published studies) and perform integrated analyses. Our results resolve higher-level relationships as indicated by molecular analyses, and reveal hidden morphological support for the molecular hypothesis (but not vice-versa). Furthermore, we find that integrating molecular, morphological, and paleontological data leads to surprising placements for two major fossil clades (Mosasauria and Polyglyphanodontia). These results further demonstrate the importance of combining fossil and molecular information, and the potential problems of estimating the placement of fossil taxa from morphological data alone. Thus, our results caution against estimating fossil relationships without considering relevant molecular data, and against placing fossils into molecular trees (e.g. for dating analyses) without considering the possible impact of molecular data on their placement. PMID:25803280

  18. Integrated analyses resolve conflicts over squamate reptile phylogeny and reveal unexpected placements for fossil taxa.

    PubMed

    Reeder, Tod W; Townsend, Ted M; Mulcahy, Daniel G; Noonan, Brice P; Wood, Perry L; Sites, Jack W; Wiens, John J

    2015-01-01

    Squamate reptiles (lizards and snakes) are a pivotal group whose relationships have become increasingly controversial. Squamates include >9000 species, making them the second largest group of terrestrial vertebrates. They are important medicinally and as model systems for ecological and evolutionary research. However, studies of squamate biology are hindered by uncertainty over their relationships, and some consider squamate phylogeny unresolved, given recent conflicts between molecular and morphological results. To resolve these conflicts, we expand existing morphological and molecular datasets for squamates (691 morphological characters and 46 genes, for 161 living and 49 fossil taxa, including a new set of 81 morphological characters and adding two genes from published studies) and perform integrated analyses. Our results resolve higher-level relationships as indicated by molecular analyses, and reveal hidden morphological support for the molecular hypothesis (but not vice-versa). Furthermore, we find that integrating molecular, morphological, and paleontological data leads to surprising placements for two major fossil clades (Mosasauria and Polyglyphanodontia). These results further demonstrate the importance of combining fossil and molecular information, and the potential problems of estimating the placement of fossil taxa from morphological data alone. Thus, our results caution against estimating fossil relationships without considering relevant molecular data, and against placing fossils into molecular trees (e.g. for dating analyses) without considering the possible impact of molecular data on their placement.

  19. Dental calculus: the calcified biofilm and its role in disease development.

    PubMed

    Akcalı, Aliye; Lang, Niklaus P

    2018-02-01

    Dental calculus represents the first fossilized record of bacterial communities as a testimony of evolutionary biology. The development of dental calculus is a dynamic process that starts with a nonmineralized biofilm which eventually calcifies. Nonmineralized dental biofilm entraps particles from the oral cavity, including large amounts of oral bacteria, human proteins, viruses and food remnants, and preserves their DNA. The process of mineralization involves metabolic activities of the bacterial colonies and strengthens the attachment of nonmineralized biofilms to the tooth surface. From a clinical point of view, dental calculus always harbors a living, nonmineralized biofilm, jeopardizing the integrity of the dento-gingival or implanto-mucosal unit. This narrative review presents a brief historical overview of dental calculus formation and its clinical relevance in modern periodontal practice. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. The Tule Springs local fauna: Rancholabrean vertebrates from the Las Vegas Formation, Nevada

    USGS Publications Warehouse

    Scott, Eric; Springer, Kathleen; Sagebiel, James C.

    2017-01-01

    A middle to late Pleistocene sedimentary sequence in the upper Las Vegas Wash, north of Las Vegas, Nevada, has yielded the largest open-site Rancholabrean vertebrate fossil assemblage in the southern Great Basin and Mojave Deserts. Recent paleontologic field studies have led to the discovery of hundreds of fossil localities and specimens, greatly extending the geographic and temporal footprint of original investigations in the early 1960s. The significance of the deposits and their entombed fossils led to the preservation of 22,650 acres of the upper Las Vegas Wash as Tule Springs Fossil Beds National Monument. These discoveries also warrant designation of the assemblage as a local fauna, named for the site of the original paleontologic studies at Tule Springs.The large mammal component of the Tule Springs local fauna is dominated by remains of Mammuthus columbi as well as Camelops hesternus, along with less common remains of Equus (including E. scotti) and Bison. Large carnivorans including Canis dirus, Smilodon fatalis, and Panthera atrox are also recorded. Micromammals, amphibians, lizards, snakes, birds, invertebrates, plant macrofossils, and pollen also occur in the deposits and provide important and complementary paleoenvironmental information. The fauna occurs within the Las Vegas Formation, an extensive and stratigraphically complex sequence of groundwater discharge deposits that represent a mosaic of desert wetland environments. Radiometric and luminescence dating indicates the sequence spans the last ∼570 ka, and records hydrologic changes in a dynamic and temporally congruent response to northern hemispheric abrupt climatic oscillations. The vertebrate fauna occurs in multiple stratigraphic horizons in this sequence, with ages of the fossils spanning from ∼100 to ∼12.5 ka.

Top