Sample records for published genome sequence

  1. PCR Amplification Strategies towards full-length HIV-1 Genome sequencing.

    PubMed

    Liu, Chao Chun; Ji, Hezhao

    2018-06-26

    The advent of next generation sequencing has enabled greater resolution of viral diversity and improved feasibility of full viral genome sequencing allowing routine HIV-1 full genome sequencing in both research and diagnostic settings. Regardless of the sequencing platform selected, successful PCR amplification of the HIV-1 genome is essential for sequencing template preparation. As such, full HIV-1 genome amplification is a crucial step in dictating the successful and reliable sequencing downstream. Here we reviewed existing PCR protocols leading to HIV-1 full genome sequencing. In addition to the discussion on basic considerations on relevant PCR design, the advantages as well as the pitfalls of published protocols were reviewed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. From Conventional to Next Generation Sequencing of Epstein-Barr Virus Genomes.

    PubMed

    Kwok, Hin; Chiang, Alan Kwok Shing

    2016-02-24

    Genomic sequences of Epstein-Barr virus (EBV) have been of interest because the virus is associated with cancers, such as nasopharyngeal carcinoma, and conditions such as infectious mononucleosis. The progress of whole-genome EBV sequencing has been limited by the inefficiency and cost of the first-generation sequencing technology. With the advancement of next-generation sequencing (NGS) and target enrichment strategies, increasing number of EBV genomes has been published. These genomes were sequenced using different approaches, either with or without EBV DNA enrichment. This review provides an overview of the EBV genomes published to date, and a description of the sequencing technology and bioinformatic analyses employed in generating these sequences. We further explored ways through which the quality of sequencing data can be improved, such as using DNA oligos for capture hybridization, and longer insert size and read length in the sequencing runs. These advances will enable large-scale genomic sequencing of EBV which will facilitate a better understanding of the genetic variations of EBV in different geographic regions and discovery of potentially pathogenic variants in specific diseases.

  3. Draft Genome Sequence of a Rare Smut Relative, Tilletiaria anomala UBC 951

    DOE PAGES

    Toome, Merje; Kuo, Alan; Henrissat, Bernard; ...

    2014-06-12

    We present the draft genome sequence of the smut fungus Tilletiaria anomala UBC 951 (Basidiomycota, Ustilaginomycotina). The sequenced genome size is 18.7 Mb, consisting of 289 scaffolds and a total of 6,810 predicted genes. This is the first genome sequence published for a fungus in the order Georgefisheriales (Exobasidiomycetes).

  4. Overview of Next-generation Sequencing Platforms Used in Published Draft Plant Genomes in Light of Genotypization of Immortelle Plant (Helichrysium Arenarium)

    PubMed Central

    Hodzic, Jasin; Gurbeta, Lejla; Omanovic-Miklicanin, Enisa; Badnjevic, Almir

    2017-01-01

    Introduction: Major advancements in DNA sequencing methods introduced in the first decade of the new millennium initiated a rapid expansion of sequencing studies, which yielded a tremendous amount of DNA sequence data, including whole sequenced genomes of various species, including plants. A set of novel sequencing platforms, often collectively named as “next-generation sequencing” (NGS) completely transformed the life sciences, by allowing extensive throughput, while greatly reducing the necessary time, labor and cost of any sequencing endeavor. Purpose: of this paper is to present an overview NGS platforms used to produce the current compendium of published draft genomes of various plants, namely the Roche/454, ABI/SOLiD, and Solexa/Illumina, and to determine the most frequently used platform for the whole genome sequencing of plants in light of genotypization of immortelle plant. Materials and methods: 45 papers were selected (with 47 presented plant genome draft sequences), and utilized sequencing techniques and NGS platforms (Roche/454, ABI/SOLiD and Illumina/Solexa) in selected papers were determined. Subsequently, frequency of usage of each platform or combination of platforms was calculated. Results: Illumina/Solexa platforms are by used either as sole sequencing tool in 40.42% of published genomes, or in combination with other platforms - additional 48.94% of published genomes, followed by Roche/454 platforms, used in combination with traditional Sanger sequencing method (10.64%), and never as a sole tool. ABI/SOLiD was only used in combination with Illumina/Solexa and Roche/454 in 4.25% of publications. Conclusions: Illumina/Solexa platforms are by far most preferred by researchers, most probably due to most affordable sequencing costs. Taking into consideration the current economic situation in the Balkans region, Illumina Solexa is the best (if not the only) platform choice if the sequencing of immortelle plant (Helichrysium arenarium) is to be performed by the researchers in this region. PMID:28974852

  5. Coding Complete Genome for the Mogiana Tick Virus, a Jingmenvirus Isolated from Ticks in Brazil

    DTIC Science & Technology

    2017-05-04

    sequences for all four genome segments. We downloaded the raw Illumina sequence reads from the NCBI Short Read Archive (GenBank...MGTV genome segments through sequence similarity (BLASTN) to the published genome of Jingmen tick virus (JMTV) isolate SY84 (GenBank: KJ001579-KJ001582...2014. Standards for sequencing viral genomes in the era of high-throughput sequencing . MBio 5:e01360–14. 8. Bankevich A, Nurk S, Antipov

  6. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads.

    PubMed

    Wang, Zhiwen; Hobson, Neil; Galindo, Leonardo; Zhu, Shilin; Shi, Daihu; McDill, Joshua; Yang, Linfeng; Hawkins, Simon; Neutelings, Godfrey; Datla, Raju; Lambert, Georgina; Galbraith, David W; Grassa, Christopher J; Geraldes, Armando; Cronk, Quentin C; Cullis, Christopher; Dash, Prasanta K; Kumar, Polumetla A; Cloutier, Sylvie; Sharpe, Andrew G; Wong, Gane K-S; Wang, Jun; Deyholos, Michael K

    2012-11-01

    Flax (Linum usitatissimum) is an ancient crop that is widely cultivated as a source of fiber, oil and medicinally relevant compounds. To accelerate crop improvement, we performed whole-genome shotgun sequencing of the nuclear genome of flax. Seven paired-end libraries ranging in size from 300 bp to 10 kb were sequenced using an Illumina genome analyzer. A de novo assembly, comprised exclusively of deep-coverage (approximately 94× raw, approximately 69× filtered) short-sequence reads (44-100 bp), produced a set of scaffolds with N(50) =694 kb, including contigs with N(50)=20.1 kb. The contig assembly contained 302 Mb of non-redundant sequence representing an estimated 81% genome coverage. Up to 96% of published flax ESTs aligned to the whole-genome shotgun scaffolds. However, comparisons with independently sequenced BACs and fosmids showed some mis-assembly of regions at the genome scale. A total of 43384 protein-coding genes were predicted in the whole-genome shotgun assembly, and up to 93% of published flax ESTs, and 86% of A. thaliana genes aligned to these predicted genes, indicating excellent coverage and accuracy at the gene level. Analysis of the synonymous substitution rates (K(s) ) observed within duplicate gene pairs was consistent with a recent (5-9 MYA) whole-genome duplication in flax. Within the predicted proteome, we observed enrichment of many conserved domains (Pfam-A) that may contribute to the unique properties of this crop, including agglutinin proteins. Together these results show that de novo assembly, based solely on whole-genome shotgun short-sequence reads, is an efficient means of obtaining nearly complete genome sequence information for some plant species. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  7. The global catalogue of microorganisms 10K type strain sequencing project: closing the genomic gaps for the validly published prokaryotic and fungi species.

    PubMed

    Wu, Linhuan; McCluskey, Kevin; Desmeth, Philippe; Liu, Shuangjiang; Hideaki, Sugawara; Yin, Ye; Moriya, Ohkuma; Itoh, Takashi; Kim, Cha Young; Lee, Jung-Sook; Zhou, Yuguang; Kawasaki, Hiroko; Hazbón, Manzour Hernando; Robert, Vincent; Boekhout, Teun; Lima, Nelson; Evtushenko, Lyudmila; Boundy-Mills, Kyria; Bunk, Boyke; Moore, Edward R B; Eurwilaichitr, Lily; Ingsriswang, Supawadee; Shah, Heena; Yao, Su; Jin, Tao; Huang, Jinqun; Shi, Wenyu; Sun, Qinglan; Fan, Guomei; Li, Wei; Li, Xian; Kurtböke, Ipek; Ma, Juncai

    2018-05-01

    Genomic information is essential for taxonomic, phylogenetic, and functional studies to comprehensively decipher the characteristics of microorganisms, to explore microbiomes through metagenomics, and to answer fundamental questions of nature and human life. However, large gaps remain in the available genomic sequencing information published for bacterial and archaeal species, and the gaps are even larger for fungal type strains. The Global Catalogue of Microorganisms (GCM) leads an internationally coordinated effort to sequence type strains and close gaps in the genomic maps of microorganisms. Hence, the GCM aims to promote research by deep-mining genomic data.

  8. The past, present and future of mitochondrial genomics: have we sequenced enough mtDNAs?

    PubMed

    Smith, David Roy

    2016-01-01

    The year 2014 saw more than a thousand new mitochondrial genome sequences deposited in GenBank-an almost 15% increase from the previous year. Hundreds of peer-reviewed articles accompanied these genomes, making mitochondrial DNAs (mtDNAs) the most sequenced and reported type of eukaryotic chromosome. These mtDNA data have advanced a wide range of scientific fields, from forensics to anthropology to medicine to molecular evolution. But for many biological lineages, mtDNAs are so well sampled that newly published genomes are arguably no longer contributing significantly to the progression of science, and in some cases they are tying up valuable resources, particularly journal editors and referees. Is it time to acknowledge that as a research community we have published enough mitochondrial genome papers? Here, I address this question, exploring the history, milestones and impacts of mitochondrial genomics, the benefits and drawbacks of continuing to publish mtDNAs at a high rate and what the future may hold for such an important and popular genetic marker. I highlight groups for which mtDNAs are still poorly sampled, thus meriting further investigation, and recommend that more energy be spent characterizing aspects of mitochondrial genomes apart from the DNA sequence, such as their chromosomal and transcriptional architectures. Ultimately, one should be mindful before writing a mitochondrial genome paper. Consider perhaps sending the sequence directly to GenBank instead, and be sure to annotate it correctly before submission. © The Author 2015. Published by Oxford University Press.

  9. Comparative genomic survey, exon-intron annotation and phylogenetic analysis of NAT-homologous sequences in archaea, protists, fungi, viruses, and invertebrates

    USDA-ARS?s Scientific Manuscript database

    We have previously published extensive genomic surveys [1-3], reporting NAT-homologous sequences in hundreds of sequenced bacterial, fungal and vertebrate genomes. We present here the results of our latest search of 2445 genomes, representing 1532 (70 archaeal, 1210 bacterial, 43 protist, 97 fungal,...

  10. Genome Sequencing of Steroid Producing Bacteria Using Ion Torrent Technology and a Reference Genome.

    PubMed

    Sola-Landa, Alberto; Rodríguez-García, Antonio; Barreiro, Carlos; Pérez-Redondo, Rosario

    2017-01-01

    The Next-Generation Sequencing technology has enormously eased the bacterial genome sequencing and several tens of thousands of genomes have been sequenced during the last 10 years. Most of the genome projects are published as draft version, however, for certain applications the complete genome sequence is required.In this chapter, we describe the strategy that allowed the complete genome sequencing of Mycobacterium neoaurum NRRL B-3805, an industrial strain exploited for steroid production, using Ion Torrent sequencing reads and the genome of a close strain as the reference. This protocol can be applied to analyze the genetic variations between closely related strains; for example, to elucidate the point mutations between a parental strain and a random mutagenesis-derived mutant.

  11. Complete genome sequence of an attenuated Sparfloxacin-resistant Streptococcus agalactiae strain 138spar

    USDA-ARS?s Scientific Manuscript database

    The complete genome of a sparfloxacin-resistant Streptococcus agalactiae vaccine strain 138spar is 1,838,126 bp in size. The genome has 1892 coding sequences and 82 RNAs. The annotation of the genome is added by the NCBI Prokaryotic Genome Annotation Pipeline. The publishing of this genome will allo...

  12. Use of low-coverage, large-insert, short-read data for rapid and accurate generation of enhanced-quality draft Pseudomonas genome sequences.

    PubMed

    O'Brien, Heath E; Gong, Yunchen; Fung, Pauline; Wang, Pauline W; Guttman, David S

    2011-01-01

    Next-generation genomic technology has both greatly accelerated the pace of genome research as well as increased our reliance on draft genome sequences. While groups such as the Genomics Standards Consortium have made strong efforts to promote genome standards there is a still a general lack of uniformity among published draft genomes, leading to challenges for downstream comparative analyses. This lack of uniformity is a particular problem when using standard draft genomes that frequently have large numbers of low-quality sequencing tracts. Here we present a proposal for an "enhanced-quality draft" genome that identifies at least 95% of the coding sequences, thereby effectively providing a full accounting of the genic component of the genome. Enhanced-quality draft genomes are easily attainable through a combination of small- and large-insert next-generation, paired-end sequencing. We illustrate the generation of an enhanced-quality draft genome by re-sequencing the plant pathogenic bacterium Pseudomonas syringae pv. phaseolicola 1448A (Pph 1448A), which has a published, closed genome sequence of 5.93 Mbp. We use a combination of Illumina paired-end and mate-pair sequencing, and surprisingly find that de novo assemblies with 100x paired-end coverage and mate-pair sequencing with as low as low as 2-5x coverage are substantially better than assemblies based on higher coverage. The rapid and low-cost generation of large numbers of enhanced-quality draft genome sequences will be of particular value for microbial diagnostics and biosecurity, which rely on precise discrimination of potentially dangerous clones from closely related benign strains.

  13. Reefgenomics.Org - a repository for marine genomics data.

    PubMed

    Liew, Yi Jin; Aranda, Manuel; Voolstra, Christian R

    2016-01-01

    Over the last decade, technological advancements have substantially decreased the cost and time of obtaining large amounts of sequencing data. Paired with the exponentially increased computing power, individual labs are now able to sequence genomes or transcriptomes to investigate biological questions of interest. This has led to a significant increase in available sequence data. Although the bulk of data published in articles are stored in public sequence databases, very often, only raw sequencing data are available; miscellaneous data such as assembled transcriptomes, genome annotations etc. are not easily obtainable through the same means. Here, we introduce our website (http://reefgenomics.org) that aims to centralize genomic and transcriptomic data from marine organisms. Besides providing convenient means to download sequences, we provide (where applicable) a genome browser to explore available genomic features, and a BLAST interface to search through the hosted sequences. Through the interface, multiple datasets can be queried simultaneously, allowing for the retrieval of matching sequences from organisms of interest. The minimalistic, no-frills interface reduces visual clutter, making it convenient for end-users to search and explore processed sequence data. DATABASE URL: http://reefgenomics.org. © The Author(s) 2016. Published by Oxford University Press.

  14. Draft Genome Sequence of Streptococcus orisasini SH06, Isolated from a Healthy Thoroughbred Gastrointestinal Tract.

    PubMed

    Takagi, Misako; Nakano, Akiyo; Toh, Hidehiro; Oshima, Kenshiro; Arakawa, Kensuke; Nakajima, Fumihiko; Tashiro, Kosuke; Kikusui, Tekefumi; Yanagida, Fujitoshi; Morita, Hidetoshi

    2016-01-14

    Streptococcus orisasini SH06 was isolated from a healthy thoroughbred gastrointestinal tract. Here, we report the draft genome sequence of this organism. This paper is the first published report of the genomic sequence of S. orisasini. Copyright © 2016 Takagi et al.

  15. Permanent draft genome sequence of the gliding predator Saprospira grandis strain Sa g1 (= HR1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mavromatis, K; Chertkov, Olga; Lapidus, Alla L.

    2012-01-01

    Saprospira grandis Gross et al. 1911 is a member of the Saprospiraceae, a family in the class 'Sphingobacteria' that remains poorly characterized at the genomic level. The species is known for preying on other marine bacteria via 'ixotrophy'. S. grandis strain Sa g1 was isolated from decaying crab carapace in France and was selected for genome sequencing because of its isolated location in the tree of life. Only one type strain genome has been published so far from the Saprospiraceae, while the sequence of strain Sa g1 represents the second genome to be published from a non-type strain of S.more » grandis. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 4,495,250 bp long Improved-High-Quality draft of the genome with its 3,536 protein-coding and 62 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.« less

  16. Genome sequence of the mud-dwelling archaeon Methanoplanus limicola type strain (DSM 2279 T), reclassification of Methanoplanus petrolearius as Methanolacinia petrolearia and emended descriptions of the genera Methanoplanus and Methanolacinia

    DOE PAGES

    Goker, Markus; Lu, Megan; Fiebig, Anne; ...

    2014-06-15

    Methanoplanus limicola Wildgruber et al. 1984 is a mesophilic methanogen that was isolated from a swamp composed of drilling waste near Naples, Italy, shortly after the Archaea were recognized as a separate domain of life. Methanoplanus is the type genus in the family Methanoplanaceae, a taxon that felt into disuse since modern 16S rRNA gene sequences-based taxonomy was established. Methanoplanus is now placed within the Methanomicrobiaceae, a family that is so far poorly characterized at the genome level. The only other type strain of the genus with a sequenced genome, Methanoplanus petrolearius SEBR 4847 T, turned out to be misclassifiedmore » and required reclassification to Methanolacinia. Both, Methanoplanus and Methanolacinia, needed taxonomic emendations due to a significant deviation of the G+C content of their genomes from previously published (pregenome-sequence era) values. Until now genome sequences were published for only four of the 33 species with validly published names in the Methanomicrobiaceae. Here we describe the features of M. limicola, together with the improved-high-quality draft genome sequence and an notation of the type strain, M3 T. The 3,200,946 bp long chromosome (permanent draft sequence) with its 3,064 protein-coding and 65 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.« less

  17. Snake Genome Sequencing: Results and Future Prospects

    PubMed Central

    Kerkkamp, Harald M. I.; Kini, R. Manjunatha; Pospelov, Alexey S.; Vonk, Freek J.; Henkel, Christiaan V.; Richardson, Michael K.

    2016-01-01

    Snake genome sequencing is in its infancy—very much behind the progress made in sequencing the genomes of humans, model organisms and pathogens relevant to biomedical research, and agricultural species. We provide here an overview of some of the snake genome projects in progress, and discuss the biological findings, with special emphasis on toxinology, from the small number of draft snake genomes already published. We discuss the future of snake genomics, pointing out that new sequencing technologies will help overcome the problem of repetitive sequences in assembling snake genomes. Genome sequences are also likely to be valuable in examining the clustering of toxin genes on the chromosomes, in designing recombinant antivenoms and in studying the epigenetic regulation of toxin gene expression. PMID:27916957

  18. Snake Genome Sequencing: Results and Future Prospects.

    PubMed

    Kerkkamp, Harald M I; Kini, R Manjunatha; Pospelov, Alexey S; Vonk, Freek J; Henkel, Christiaan V; Richardson, Michael K

    2016-12-01

    Snake genome sequencing is in its infancy-very much behind the progress made in sequencing the genomes of humans, model organisms and pathogens relevant to biomedical research, and agricultural species. We provide here an overview of some of the snake genome projects in progress, and discuss the biological findings, with special emphasis on toxinology, from the small number of draft snake genomes already published. We discuss the future of snake genomics, pointing out that new sequencing technologies will help overcome the problem of repetitive sequences in assembling snake genomes. Genome sequences are also likely to be valuable in examining the clustering of toxin genes on the chromosomes, in designing recombinant antivenoms and in studying the epigenetic regulation of toxin gene expression.

  19. Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine.

    PubMed

    Elsik, Christine G; Tayal, Aditi; Diesh, Colin M; Unni, Deepak R; Emery, Marianne L; Nguyen, Hung N; Hagen, Darren E

    2016-01-04

    We report an update of the Hymenoptera Genome Database (HGD) (http://HymenopteraGenome.org), a model organism database for insect species of the order Hymenoptera (ants, bees and wasps). HGD maintains genomic data for 9 bee species, 10 ant species and 1 wasp, including the versions of genome and annotation data sets published by the genome sequencing consortiums and those provided by NCBI. A new data-mining warehouse, HymenopteraMine, based on the InterMine data warehousing system, integrates the genome data with data from external sources and facilitates cross-species analyses based on orthology. New genome browsers and annotation tools based on JBrowse/WebApollo provide easy genome navigation, and viewing of high throughput sequence data sets and can be used for collaborative genome annotation. All of the genomes and annotation data sets are combined into a single BLAST server that allows users to select and combine sequence data sets to search. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Whole genome sequencing of a begomovirus-resistant tomato inbred reveals introgressions from wild Solanum species

    USDA-ARS?s Scientific Manuscript database

    The low cost of next generation sequencing (NGS) technology and the availability of a large number of well annotated plant genomes has made sequencing technology useful to breeding programs. With the published high quality tomato reference genome of the processing cultivar Heinz 1706, we can now uti...

  1. From parasite genomes to one healthy world; are we having fun yet?

    USDA-ARS?s Scientific Manuscript database

    In 1990, the Human Genome Sequencing Project was established. This laid the ground work for an explosion of sequence data that has since followed. As a result of this effort, the first complete genome of an animal, Caenorhabditis elegans was published in 1998. The sequence of Drosophila melanogaster...

  2. Complete genome sequence and phylogenetic analyses of an aquabirnavirus isolated from a diseased marbled eel culture in Taiwan.

    PubMed

    Wen, Chiu-Ming

    2017-08-01

    An aquabirnavirus was isolated from diseased marbled eels (Anguilla marmorata; MEIPNV1310) with gill haemorrhages and associated mortality. Its genome segment sequences were obtained through next-generation sequencing and compared with published aquabirnavirus sequences. The results indicated that the genome sequence of MEIPNV1310 contains segment A (3099 nucleotides) and segment B (2789 nucleotides). Phylogenetic analysis showed that MEIPNV1310 is closely related to the infectious pancreatic necrosis Ab strain within genogroup II. This genome sequence is beneficial for studying the geographic distribution and evolution of aquabirnaviruses.

  3. Genome sequencing of the redbanded stink bug (Piezodorus guildinii)

    USDA-ARS?s Scientific Manuscript database

    We assembled a partial genome sequence from the redbanded stink bug, Piezodorus guildinii from Illumina MiSeq sequencing runs. The sequence has been submitted and published under NCBI GenBank Accession Number JTEQ01000000. The BioProject and BioSample Accession numbers are PRJNA263369 and SAMN030997...

  4. Comprehensive evaluation of non-hybrid genome assembly tools for third-generation PacBio long-read sequence data.

    PubMed

    Jayakumar, Vasanthan; Sakakibara, Yasubumi

    2017-11-03

    Long reads obtained from third-generation sequencing platforms can help overcome the long-standing challenge of the de novo assembly of sequences for the genomic analysis of non-model eukaryotic organisms. Numerous long-read-aided de novo assemblies have been published recently, which exhibited superior quality of the assembled genomes in comparison with those achieved using earlier second-generation sequencing technologies. Evaluating assemblies is important in guiding the appropriate choice for specific research needs. In this study, we evaluated 10 long-read assemblers using a variety of metrics on Pacific Biosciences (PacBio) data sets from different taxonomic categories with considerable differences in genome size. The results allowed us to narrow down the list to a few assemblers that can be effectively applied to eukaryotic assembly projects. Moreover, we highlight how best to use limited genomic resources for effectively evaluating the genome assemblies of non-model organisms. © The Author 2017. Published by Oxford University Press.

  5. RSAT 2015: Regulatory Sequence Analysis Tools.

    PubMed

    Medina-Rivera, Alejandra; Defrance, Matthieu; Sand, Olivier; Herrmann, Carl; Castro-Mondragon, Jaime A; Delerce, Jeremy; Jaeger, Sébastien; Blanchet, Christophe; Vincens, Pierre; Caron, Christophe; Staines, Daniel M; Contreras-Moreira, Bruno; Artufel, Marie; Charbonnier-Khamvongsa, Lucie; Hernandez, Céline; Thieffry, Denis; Thomas-Chollier, Morgane; van Helden, Jacques

    2015-07-01

    RSAT (Regulatory Sequence Analysis Tools) is a modular software suite for the analysis of cis-regulatory elements in genome sequences. Its main applications are (i) motif discovery, appropriate to genome-wide data sets like ChIP-seq, (ii) transcription factor binding motif analysis (quality assessment, comparisons and clustering), (iii) comparative genomics and (iv) analysis of regulatory variations. Nine new programs have been added to the 43 described in the 2011 NAR Web Software Issue, including a tool to extract sequences from a list of coordinates (fetch-sequences from UCSC), novel programs dedicated to the analysis of regulatory variants from GWAS or population genomics (retrieve-variation-seq and variation-scan), a program to cluster motifs and visualize the similarities as trees (matrix-clustering). To deal with the drastic increase of sequenced genomes, RSAT public sites have been reorganized into taxon-specific servers. The suite is well-documented with tutorials and published protocols. The software suite is available through Web sites, SOAP/WSDL Web services, virtual machines and stand-alone programs at http://www.rsat.eu/. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Genome-Wide Search Identifies 1.9 Mb from the Polar Bear Y Chromosome for Evolutionary Analyses.

    PubMed

    Bidon, Tobias; Schreck, Nancy; Hailer, Frank; Nilsson, Maria A; Janke, Axel

    2015-05-27

    The male-inherited Y chromosome is the major haploid fraction of the mammalian genome, rendering Y-linked sequences an indispensable resource for evolutionary research. However, despite recent large-scale genome sequencing approaches, only a handful of Y chromosome sequences have been characterized to date, mainly in model organisms. Using polar bear (Ursus maritimus) genomes, we compare two different in silico approaches to identify Y-linked sequences: 1) Similarity to known Y-linked genes and 2) difference in the average read depth of autosomal versus sex chromosomal scaffolds. Specifically, we mapped available genomic sequencing short reads from a male and a female polar bear against the reference genome and identify 112 Y-chromosomal scaffolds with a combined length of 1.9 Mb. We verified the in silico findings for the longer polar bear scaffolds by male-specific in vitro amplification, demonstrating the reliability of the average read depth approach. The obtained Y chromosome sequences contain protein-coding sequences, single nucleotide polymorphisms, microsatellites, and transposable elements that are useful for evolutionary studies. A high-resolution phylogeny of the polar bear patriline shows two highly divergent Y chromosome lineages, obtained from analysis of the identified Y scaffolds in 12 previously published male polar bear genomes. Moreover, we find evidence of gene conversion among ZFX and ZFY sequences in the giant panda lineage and in the ancestor of ursine and tremarctine bears. Thus, the identification of Y-linked scaffold sequences from unordered genome sequences yields valuable data to infer phylogenomic and population-genomic patterns in bears. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. A comprehensive list of cloned human DNA sequences

    PubMed Central

    Schmidtke, Jörg; Cooper, David N.

    1987-01-01

    A list of DNA sequences cloned from the human genome is presented. Intended as a guide to clone availability, this list includes published reports of cDNA, genomic and synthetic clones comprising gene and pseudogene sequences, uncharacterised DNA segments and repetitive DNA elements. PMID:3575113

  8. A comprehensive list of cloned human DNA sequences

    PubMed Central

    Schmidtke, Jörg; Cooper, David N.

    1990-01-01

    A list of DNA sequences cloned from the human genome is presented. Intended as a guide to clone availability, this list includes published reports of cDNA, genomic and synthetic clones comprising gene and pseudogene sequences, uncharacterised DNA segments and repetitive DNA elements. PMID:2333227

  9. A comprehensive list of cloned human DNA sequences

    PubMed Central

    Schmidtke, Jörg; Cooper, David N.

    1988-01-01

    A list of DNA sequences cloned from the human genome is presented. Intended as a guide to clone availability, this list includes published reports of cDNA, genomic and synthetic clones comprising gene and pseudogene sequences, uncharacterised DNA segments and repetitive DNA elements. PMID:3368330

  10. A comprehensive list of cloned human DNA sequences

    PubMed Central

    Schmidtke, Jörg; Cooper, David N.

    1989-01-01

    A list of DNA sequences cloned from the human genome is presented. Intended as a guide to clone availability, this list includes published reports of cDNA, genomic and synthetic clones comprising gene and pseudogene sequences, uncharacterised DNA segments and repetitive DNA elements. PMID:2654889

  11. Genome Sequence of Torulaspora delbrueckii NRRL Y-50541, Isolated from Mezcal Fermentation

    PubMed Central

    Gomez-Angulo, Jorge; Vega-Alvarado, Leticia; Escalante-García, Zazil; Grande, Ricardo; Gschaedler-Mathis, Anne; Amaya-Delgado, Lorena

    2015-01-01

    Torulaspora delbrueckii presents metabolic features interesting for biotechnological applications (in the dairy and wine industries). Recently, the T. delbrueckii CBS 1146 genome, which has been maintained under laboratory conditions since 1970, was published. Thus, a genome of a new mezcal yeast was sequenced and characterized and showed genetic differences and a higher genome assembly quality, offering a better reference genome. PMID:26205871

  12. Genome Sequences of Multidrug-Resistant Salmonella enterica subsp. enterica Serovar Infantis Strains from Broiler Chicks in Hungary

    PubMed Central

    Wilk, Tímea; Szabó, Móni; Szmolka, Ama; Kiss, János; Barta, Endre; Nagy, Tibor

    2016-01-01

    Three strains of Salmonella enterica serovar Infantis isolated from healthy broiler chickens from 2012 to 2013 have been sequenced. Comparison of these and previously published S. Infantis genome sequences of broiler origin in 1996 and 2004 will provide new insight into the genome evolution and recent spread of S. Infantis in poultry. PMID:27979950

  13. Genome assembly reborn: recent computational challenges

    PubMed Central

    2009-01-01

    Research into genome assembly algorithms has experienced a resurgence due to new challenges created by the development of next generation sequencing technologies. Several genome assemblers have been published in recent years specifically targeted at the new sequence data; however, the ever-changing technological landscape leads to the need for continued research. In addition, the low cost of next generation sequencing data has led to an increased use of sequencing in new settings. For example, the new field of metagenomics relies on large-scale sequencing of entire microbial communities instead of isolate genomes, leading to new computational challenges. In this article, we outline the major algorithmic approaches for genome assembly and describe recent developments in this domain. PMID:19482960

  14. Whole genome sequence analysis of BT-474 using complete Genomics' standard and long fragment read technologies.

    PubMed

    Ciotlos, Serban; Mao, Qing; Zhang, Rebecca Yu; Li, Zhenyu; Chin, Robert; Gulbahce, Natali; Liu, Sophie Jia; Drmanac, Radoje; Peters, Brock A

    2016-01-01

    The cell line BT-474 is a popular cell line for studying the biology of cancer and developing novel drugs. However, there is no complete, published genome sequence for this highly utilized scientific resource. In this study we sought to provide a comprehensive and useful data set for the scientific community by generating a whole genome sequence for BT-474. Five μg of genomic DNA, isolated from an early passage of the BT-474 cell line, was used to generate a whole genome sequence (114X coverage) using Complete Genomics' standard sequencing process. To provide additional variant phasing and structural variation data we also processed and analyzed two separate libraries of 5 and 6 individual cells to depths of 99X and 87X, respectively, using Complete Genomics' Long Fragment Read (LFR) technology. BT-474 is a highly aneuploid cell line with an extremely complex genome sequence. This ~300X total coverage genome sequence provides a more complete understanding of this highly utilized cell line at the genomic level.

  15. Similar Ratios of Introns to Intergenic Sequence across Animal Genomes.

    PubMed

    Francis, Warren R; Wörheide, Gert

    2017-06-01

    One central goal of genome biology is to understand how the usage of the genome differs between organisms. Our knowledge of genome composition, needed for downstream inferences, is critically dependent on gene annotations, yet problems associated with gene annotation and assembly errors are usually ignored in comparative genomics. Here, we analyze the genomes of 68 species across 12 animal phyla and some single-cell eukaryotes for general trends in genome composition and transcription, taking into account problems of gene annotation. We show that, regardless of genome size, the ratio of introns to intergenic sequence is comparable across essentially all animals, with nearly all deviations dominated by increased intergenic sequence. Genomes of model organisms have ratios much closer to 1:1, suggesting that the majority of published genomes of nonmodel organisms are underannotated and consequently omit substantial numbers of genes, with likely negative impact on evolutionary interpretations. Finally, our results also indicate that most animals transcribe half or more of their genomes arguing against differences in genome usage between animal groups, and also suggesting that the transcribed portion is more dependent on genome size than previously thought. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Genome-wide comparative analysis of four Indian Drosophila species.

    PubMed

    Mohanty, Sujata; Khanna, Radhika

    2017-12-01

    Comparative analysis of multiple genomes of closely or distantly related Drosophila species undoubtedly creates excitement among evolutionary biologists in exploring the genomic changes with an ecology and evolutionary perspective. We present herewith the de novo assembled whole genome sequences of four Drosophila species, D. bipectinata, D. takahashii, D. biarmipes and D. nasuta of Indian origin using Next Generation Sequencing technology on an Illumina platform along with their detailed assembly statistics. The comparative genomics analysis, e.g. gene predictions and annotations, functional and orthogroup analysis of coding sequences and genome wide SNP distribution were performed. The whole genome of Zaprionus indianus of Indian origin published earlier by us and the genome sequences of previously sequenced 12 Drosophila species available in the NCBI database were included in the analysis. The present work is a part of our ongoing genomics project of Indian Drosophila species.

  17. Genome Sequence of Torulaspora delbrueckii NRRL Y-50541, Isolated from Mezcal Fermentation.

    PubMed

    Gomez-Angulo, Jorge; Vega-Alvarado, Leticia; Escalante-García, Zazil; Grande, Ricardo; Gschaedler-Mathis, Anne; Amaya-Delgado, Lorena; Arrizon, Javier; Sanchez-Flores, Alejandro

    2015-07-23

    Torulaspora delbrueckii presents metabolic features interesting for biotechnological applications (in the dairy and wine industries). Recently, the T. delbrueckii CBS 1146 genome, which has been maintained under laboratory conditions since 1970, was published. Thus, a genome of a new mezcal yeast was sequenced and characterized and showed genetic differences and a higher genome assembly quality, offering a better reference genome. Copyright © 2015 Gomez-Angulo et al.

  18. From rags to riches: insights from the first genomic sequence of a plant pathogenic bacterium

    PubMed Central

    Keen, Noel T; Korsi Dumenyo, C; Yang, Ching-Hong; Cooksey, Donald A

    2000-01-01

    The recently published genomic sequence of Xylella fastidiosa is the first for a free-living plant pathogen and provides clues to mechanisms of pathogenesis and survival in insect vectors. The sequence data should lead to improved control of this pathogen. PMID:11178244

  19. Goodbye genome paper, hello genome report: the increasing popularity of 'genome announcements' and their impact on science.

    PubMed

    Smith, David Roy

    2017-05-01

    Next-generation sequencing technologies have revolutionized genomics and altered the scientific publication landscape. Life-science journals abound with genome papers-peer-reviewed descriptions of newly sequenced chromosomes. Although they once filled the pages of Nature and Science, genome papers are now mostly relegated to journals with low-impact factors. Some have forecast the death of the genome paper and argued that they are using up valuable resources and not advancing science. However, the publication rate of genome papers is on the rise. This increase is largely because some journals have created a new category of manuscript called genome reports, which are short, fast-tracked papers describing a chromosome sequence(s), its GenBank accession number and little else. In 2015, for example, more than 2000 genome reports were published, and 2016 is poised to bring even more. Here, I highlight the growing popularity of genome reports and discuss their merits, drawbacks and impact on science and the academic publication infrastructure. Genome reports can be excellent assets for the research community, but they are also being used as quick and easy routes to a publication, and in some instances they are not peer reviewed. One of the best arguments for genome reports is that they are a citable, user-generated genomic resource providing essential methodological and biological information, which may not be present in the sequence database. But they are expensive and time-consuming avenues for achieving such a goal. © The Author 2016. Published by Oxford University Press.

  20. Gene discovery by chemical mutagenesis and whole-genome sequencing in Dictyostelium.

    PubMed

    Li, Cheng-Lin Frank; Santhanam, Balaji; Webb, Amanda Nicole; Zupan, Blaž; Shaulsky, Gad

    2016-09-01

    Whole-genome sequencing is a useful approach for identification of chemical-induced lesions, but previous applications involved tedious genetic mapping to pinpoint the causative mutations. We propose that saturation mutagenesis under low mutagenic loads, followed by whole-genome sequencing, should allow direct implication of genes by identifying multiple independent alleles of each relevant gene. We tested the hypothesis by performing three genetic screens with chemical mutagenesis in the social soil amoeba Dictyostelium discoideum Through genome sequencing, we successfully identified mutant genes with multiple alleles in near-saturation screens, including resistance to intense illumination and strong suppressors of defects in an allorecognition pathway. We tested the causality of the mutations by comparison to published data and by direct complementation tests, finding both dominant and recessive causative mutations. Therefore, our strategy provides a cost- and time-efficient approach to gene discovery by integrating chemical mutagenesis and whole-genome sequencing. The method should be applicable to many microbial systems, and it is expected to revolutionize the field of functional genomics in Dictyostelium by greatly expanding the mutation spectrum relative to other common mutagenesis methods. © 2016 Li et al.; Published by Cold Spring Harbor Laboratory Press.

  1. Fungal genome sequencing: basic biology to biotechnology.

    PubMed

    Sharma, Krishna Kant

    2016-08-01

    The genome sequences provide a first glimpse into the genomic basis of the biological diversity of filamentous fungi and yeast. The genome sequence of the budding yeast, Saccharomyces cerevisiae, with a small genome size, unicellular growth, and rich history of genetic and molecular analyses was a milestone of early genomics in the 1990s. The subsequent completion of fission yeast, Schizosaccharomyces pombe and genetic model, Neurospora crassa initiated a revolution in the genomics of the fungal kingdom. In due course of time, a substantial number of fungal genomes have been sequenced and publicly released, representing the widest sampling of genomes from any eukaryotic kingdom. An ambitious genome-sequencing program provides a wealth of data on metabolic diversity within the fungal kingdom, thereby enhancing research into medical science, agriculture science, ecology, bioremediation, bioenergy, and the biotechnology industry. Fungal genomics have higher potential to positively affect human health, environmental health, and the planet's stored energy. With a significant increase in sequenced fungal genomes, the known diversity of genes encoding organic acids, antibiotics, enzymes, and their pathways has increased exponentially. Currently, over a hundred fungal genome sequences are publicly available; however, no inclusive review has been published. This review is an initiative to address the significance of the fungal genome-sequencing program and provides the road map for basic and applied research.

  2. Indexcov: fast coverage quality control for whole-genome sequencing.

    PubMed

    Pedersen, Brent S; Collins, Ryan L; Talkowski, Michael E; Quinlan, Aaron R

    2017-11-01

    The BAM and CRAM formats provide a supplementary linear index that facilitates rapid access to sequence alignments in arbitrary genomic regions. Comparing consecutive entries in a BAM or CRAM index allows one to infer the number of alignment records per genomic region for use as an effective proxy of sequence depth in each genomic region. Based on these properties, we have developed indexcov, an efficient estimator of whole-genome sequencing coverage to rapidly identify samples with aberrant coverage profiles, reveal large-scale chromosomal anomalies, recognize potential batch effects, and infer the sex of a sample. Indexcov is available at https://github.com/brentp/goleft under the MIT license. © The Authors 2017. Published by Oxford University Press.

  3. Translational genomics for plant breeding with the genome sequence explosion.

    PubMed

    Kang, Yang Jae; Lee, Taeyoung; Lee, Jayern; Shim, Sangrea; Jeong, Haneul; Satyawan, Dani; Kim, Moon Young; Lee, Suk-Ha

    2016-04-01

    The use of next-generation sequencers and advanced genotyping technologies has propelled the field of plant genomics in model crops and plants and enhanced the discovery of hidden bridges between genotypes and phenotypes. The newly generated reference sequences of unstudied minor plants can be annotated by the knowledge of model plants via translational genomics approaches. Here, we reviewed the strategies of translational genomics and suggested perspectives on the current databases of genomic resources and the database structures of translated information on the new genome. As a draft picture of phenotypic annotation, translational genomics on newly sequenced plants will provide valuable assistance for breeders and researchers who are interested in genetic studies. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  4. CGCI Investigators Reveal Comprehensive Landscape of Diffuse Large B-Cell Lymphoma (DLBCL) Genomes | Office of Cancer Genomics

    Cancer.gov

    Researchers from British Columbia Cancer Agency used whole genome sequencing to analyze 40 DLBCL cases and 13 cell lines in order to fill in the gaps of the complex landscape of DLBCL genomes. Their analysis, “Mutational and structural analysis of diffuse large B-cell lymphoma using whole genome sequencing,” was published online in Blood on May 22. The authors are Ryan Morin, Marco Marra, and colleagues.  

  5. Novel Insights into Tree Biology and Genome Evolution as Revealed Through Genomics.

    PubMed

    Neale, David B; Martínez-García, Pedro J; De La Torre, Amanda R; Montanari, Sara; Wei, Xiao-Xin

    2017-04-28

    Reference genome sequences are the key to the discovery of genes and gene families that determine traits of interest. Recent progress in sequencing technologies has enabled a rapid increase in genome sequencing of tree species, allowing the dissection of complex characters of economic importance, such as fruit and wood quality and resistance to biotic and abiotic stresses. Although the number of reference genome sequences for trees lags behind those for other plant species, it is not too early to gain insight into the unique features that distinguish trees from nontree plants. Our review of the published data suggests that, although many gene families are conserved among herbaceous and tree species, some gene families, such as those involved in resistance to biotic and abiotic stresses and in the synthesis and transport of sugars, are often expanded in tree genomes. As the genomes of more tree species are sequenced, comparative genomics will further elucidate the complexity of tree genomes and how this relates to traits unique to trees.

  6. Complete genome sequence of Hirschia baltica type strain (IFAM 1418T)

    PubMed Central

    Chertkov, Olga; Brown, Pamela J.B.; Kysela, David T.; de Pedro, Miguel A.; Lucas, Susan; Copeland, Alex; Lapidus, Alla; Del Rio, Tijana Glavina; Tice, Hope; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Detter, John C.; Han, Cliff; Larimer, Frank; Chang, Yun-juan; Jeffries, Cynthia D.; Land, Miriam; Hauser, Loren; Kyrpides, Nikos C.; Ivanova, Natalia; Ovchinnikova, Galina; Tindall, Brian J.; Göker, Markus; Klenk, Hans-Peter; Brun, Yves V.

    2011-01-01

    The family Hyphomonadaceae within the Alphaproteobacteria is largely comprised of bacteria isolated from marine environments with striking morphologies and an unusual mode of cell growth. Here, we report the complete genome sequence Hirschia baltica, which is only the second a member of the Hyphomonadaceae with a published genome sequence. H. baltica is of special interest because it has a dimorphic life cycle and is a stalked, budding bacterium. The 3,455,622 bp long chromosome and 84,492 bp plasmid with a total of 3,222 protein-coding and 44 RNA genes were sequenced as part of the DOE Joint Genome Institute Program CSP 2008. PMID:22675580

  7. Re-Assembly and Analysis of an Ancient Variola Virus Genome.

    PubMed

    Smithson, Chad; Imbery, Jacob; Upton, Chris

    2017-09-08

    We report a major improvement to the assembly of published short read sequencing data from an ancient variola virus (VARV) genome by the removal of contig-capping sequencing tags and manual searches for gap-spanning reads. The new assembly, together with camelpox and taterapox genomes, permitted new dates to be calculated for the last common ancestor of all VARV genomes. The analysis of recently sequenced VARV-like cowpox virus genomes showed that single nucleotide polymorphisms (SNPs) and amino acid changes in the vaccinia virus (VACV)-Cop-O1L ortholog, predicted to be associated with VARV host specificity and virulence, were introduced into the lineage before the divergence of these viruses. A comparison of the ancient and modern VARV genome sequences also revealed a measurable drift towards adenine + thymine (A + T) richness.

  8. Arthropod phylogenetics in light of three novel millipede (myriapoda: diplopoda) mitochondrial genomes with comments on the appropriateness of mitochondrial genome sequence data for inferring deep level relationships.

    PubMed

    Brewer, Michael S; Swafford, Lynn; Spruill, Chad L; Bond, Jason E

    2013-01-01

    Arthropods are the most diverse group of eukaryotic organisms, but their phylogenetic relationships are poorly understood. Herein, we describe three mitochondrial genomes representing orders of millipedes for which complete genomes had not been characterized. Newly sequenced genomes are combined with existing data to characterize the protein coding regions of myriapods and to attempt to reconstruct the evolutionary relationships within the Myriapoda and Arthropoda. The newly sequenced genomes are similar to previously characterized millipede sequences in terms of synteny and length. Unique translocations occurred within the newly sequenced taxa, including one half of the Appalachioria falcifera genome, which is inverted with respect to other millipede genomes. Across myriapods, amino acid conservation levels are highly dependent on the gene region. Additionally, individual loci varied in the level of amino acid conservation. Overall, most gene regions showed low levels of conservation at many sites. Attempts to reconstruct the evolutionary relationships suffered from questionable relationships and low support values. Analyses of phylogenetic informativeness show the lack of signal deep in the trees (i.e., genes evolve too quickly). As a result, the myriapod tree resembles previously published results but lacks convincing support, and, within the arthropod tree, well established groups were recovered as polyphyletic. The novel genome sequences described herein provide useful genomic information concerning millipede groups that had not been investigated. Taken together with existing sequences, the variety of compositions and evolution of myriapod mitochondrial genomes are shown to be more complex than previously thought. Unfortunately, the use of mitochondrial protein-coding regions in deep arthropod phylogenetics appears problematic, a result consistent with previously published studies. Lack of phylogenetic signal renders the resulting tree topologies as suspect. As such, these data are likely inappropriate for investigating such ancient relationships.

  9. Resequencing of the common marmoset genome improves genome assemblies and gene-coding sequence analysis.

    PubMed

    Sato, Kengo; Kuroki, Yoko; Kumita, Wakako; Fujiyama, Asao; Toyoda, Atsushi; Kawai, Jun; Iriki, Atsushi; Sasaki, Erika; Okano, Hideyuki; Sakakibara, Yasubumi

    2015-11-20

    The first draft of the common marmoset (Callithrix jacchus) genome was published by the Marmoset Genome Sequencing and Analysis Consortium. The draft was based on whole-genome shotgun sequencing, and the current assembly version is Callithrix_jacches-3.2.1, but there still exist 187,214 undetermined gap regions and supercontigs and relatively short contigs that are unmapped to chromosomes in the draft genome. We performed resequencing and assembly of the genome of common marmoset by deep sequencing with high-throughput sequencing technology. Several different sequence runs using Illumina sequencing platforms were executed, and 181 Gbp of high-quality bases including mate-pairs with long insert lengths of 3, 8, 20, and 40 Kbp were obtained, that is, approximately 60× coverage. The resequencing significantly improved the MGSAC draft genome sequence. The N50 of the contigs, which is a statistical measure used to evaluate assembly quality, doubled. As a result, 51% of the contigs (total length: 299 Mbp) that were unmapped to chromosomes in the MGSAC draft were merged with chromosomal contigs, and the improved genome sequence helped to detect 5,288 new genes that are homologous to human cDNAs and the gaps in 5,187 transcripts of the Ensembl gene annotations were completely filled.

  10. BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes.

    PubMed

    Staňková, Helena; Hastie, Alex R; Chan, Saki; Vrána, Jan; Tulpová, Zuzana; Kubaláková, Marie; Visendi, Paul; Hayashi, Satomi; Luo, Mingcheng; Batley, Jacqueline; Edwards, David; Doležel, Jaroslav; Šimková, Hana

    2016-07-01

    The assembly of a reference genome sequence of bread wheat is challenging due to its specific features such as the genome size of 17 Gbp, polyploid nature and prevalence of repetitive sequences. BAC-by-BAC sequencing based on chromosomal physical maps, adopted by the International Wheat Genome Sequencing Consortium as the key strategy, reduces problems caused by the genome complexity and polyploidy, but the repeat content still hampers the sequence assembly. Availability of a high-resolution genomic map to guide sequence scaffolding and validate physical map and sequence assemblies would be highly beneficial to obtaining an accurate and complete genome sequence. Here, we chose the short arm of chromosome 7D (7DS) as a model to demonstrate for the first time that it is possible to couple chromosome flow sorting with genome mapping in nanochannel arrays and create a de novo genome map of a wheat chromosome. We constructed a high-resolution chromosome map composed of 371 contigs with an N50 of 1.3 Mb. Long DNA molecules achieved by our approach facilitated chromosome-scale analysis of repetitive sequences and revealed a ~800-kb array of tandem repeats intractable to current DNA sequencing technologies. Anchoring 7DS sequence assemblies obtained by clone-by-clone sequencing to the 7DS genome map provided a valuable tool to improve the BAC-contig physical map and validate sequence assembly on a chromosome-arm scale. Our results indicate that creating genome maps for the whole wheat genome in a chromosome-by-chromosome manner is feasible and that they will be an affordable tool to support the production of improved pseudomolecules. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Genome-derived vaccines.

    PubMed

    De Groot, Anne S; Rappuoli, Rino

    2004-02-01

    Vaccine research entered a new era when the complete genome of a pathogenic bacterium was published in 1995. Since then, more than 97 bacterial pathogens have been sequenced and at least 110 additional projects are now in progress. Genome sequencing has also dramatically accelerated: high-throughput facilities can draft the sequence of an entire microbe (two to four megabases) in 1 to 2 days. Vaccine developers are using microarrays, immunoinformatics, proteomics and high-throughput immunology assays to reduce the truly unmanageable volume of information available in genome databases to a manageable size. Vaccines composed by novel antigens discovered from genome mining are already in clinical trials. Within 5 years we can expect to see a novel class of vaccines composed by genome-predicted, assembled and engineered T- and Bcell epitopes. This article addresses the convergence of three forces--microbial genome sequencing, computational immunology and new vaccine technologies--that are shifting genome mining for vaccines onto the forefront of immunology research.

  12. Correlation between genome reduction and bacterial growth.

    PubMed

    Kurokawa, Masaomi; Seno, Shigeto; Matsuda, Hideo; Ying, Bei-Wen

    2016-12-01

    Genome reduction by removing dispensable genomic sequences in bacteria is commonly used in both fundamental and applied studies to determine the minimal genetic requirements for a living system or to develop highly efficient bioreactors. Nevertheless, whether and how the accumulative loss of dispensable genomic sequences disturbs bacterial growth remains unclear. To investigate the relationship between genome reduction and growth, a series of Escherichia coli strains carrying genomes reduced in a stepwise manner were used. Intensive growth analyses revealed that the accumulation of multiple genomic deletions caused decreases in the exponential growth rate and the saturated cell density in a deletion-length-dependent manner as well as gradual changes in the patterns of growth dynamics, regardless of the growth media. Accordingly, a perspective growth model linking genome evolution to genome engineering was proposed. This study provides the first demonstration of a quantitative connection between genomic sequence and bacterial growth, indicating that growth rate is potentially associated with dispensable genomic sequences. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  13. A high-coverage draft genome of the mycalesine butterfly Bicyclus anynana.

    PubMed

    Nowell, Reuben W; Elsworth, Ben; Oostra, Vicencio; Zwaan, Bas J; Wheat, Christopher W; Saastamoinen, Marjo; Saccheri, Ilik J; Van't Hof, Arjen E; Wasik, Bethany R; Connahs, Heidi; Aslam, Muhammad L; Kumar, Sujai; Challis, Richard J; Monteiro, Antónia; Brakefield, Paul M; Blaxter, Mark

    2017-07-01

    The mycalesine butterfly Bicyclus anynana, the "Squinting bush brown," is a model organism in the study of lepidopteran ecology, development, and evolution. Here, we present a draft genome sequence for B. anynana to serve as a genomics resource for current and future studies of this important model species. Seven libraries with insert sizes ranging from 350 bp to 20 kb were constructed using DNA from an inbred female and sequenced using both Illumina and PacBio technology; 128 Gb of raw Illumina data was filtered to 124 Gb and assembled to a final size of 475 Mb (∼×260 assembly coverage). Contigs were scaffolded using mate-pair, transcriptome, and PacBio data into 10 800 sequences with an N50 of 638 kb (longest scaffold 5 Mb). The genome is comprised of 26% repetitive elements and encodes a total of 22 642 predicted protein-coding genes. Recovery of a BUSCO set of core metazoan genes was almost complete (98%). Overall, these metrics compare well with other recently published lepidopteran genomes. We report a high-quality draft genome sequence for Bicyclus anynana. The genome assembly and annotated gene models are available at LepBase (http://ensembl.lepbase.org/index.html). © The Authors 2017. Published by Oxford University Press.

  14. Dissection of the Octoploid Strawberry Genome by Deep Sequencing of the Genomes of Fragaria Species

    PubMed Central

    Hirakawa, Hideki; Shirasawa, Kenta; Kosugi, Shunichi; Tashiro, Kosuke; Nakayama, Shinobu; Yamada, Manabu; Kohara, Mistuyo; Watanabe, Akiko; Kishida, Yoshie; Fujishiro, Tsunakazu; Tsuruoka, Hisano; Minami, Chiharu; Sasamoto, Shigemi; Kato, Midori; Nanri, Keiko; Komaki, Akiko; Yanagi, Tomohiro; Guoxin, Qin; Maeda, Fumi; Ishikawa, Masami; Kuhara, Satoru; Sato, Shusei; Tabata, Satoshi; Isobe, Sachiko N.

    2014-01-01

    Cultivated strawberry (Fragaria x ananassa) is octoploid and shows allogamous behaviour. The present study aims at dissecting this octoploid genome through comparison with its wild relatives, F. iinumae, F. nipponica, F. nubicola, and F. orientalis by de novo whole-genome sequencing on an Illumina and Roche 454 platforms. The total length of the assembled Illumina genome sequences obtained was 698 Mb for F. x ananassa, and ∼200 Mb each for the four wild species. Subsequently, a virtual reference genome termed FANhybrid_r1.2 was constructed by integrating the sequences of the four homoeologous subgenomes of F. x ananassa, from which heterozygous regions in the Roche 454 and Illumina genome sequences were eliminated. The total length of FANhybrid_r1.2 thus created was 173.2 Mb with the N50 length of 5137 bp. The Illumina-assembled genome sequences of F. x ananassa and the four wild species were then mapped onto the reference genome, along with the previously published F. vesca genome sequence to establish the subgenomic structure of F. x ananassa. The strategy adopted in this study has turned out to be successful in dissecting the genome of octoploid F. x ananassa and appears promising when applied to the analysis of other polyploid plant species. PMID:24282021

  15. Reduced representation approaches to interrogate genome diversity in large repetitive plant genomes.

    PubMed

    Hirsch, Cory D; Evans, Joseph; Buell, C Robin; Hirsch, Candice N

    2014-07-01

    Technology and software improvements in the last decade now provide methodologies to access the genome sequence of not only a single accession, but also multiple accessions of plant species. This provides a means to interrogate species diversity at the genome level. Ample diversity among accessions in a collection of species can be found, including single-nucleotide polymorphisms, insertions and deletions, copy number variation and presence/absence variation. For species with small, non-repetitive rich genomes, re-sequencing of query accessions is robust, highly informative, and economically feasible. However, for species with moderate to large sized repetitive-rich genomes, technical and economic barriers prevent en masse genome re-sequencing of accessions. Multiple approaches to access a focused subset of loci in species with larger genomes have been developed, including reduced representation sequencing, exome capture and transcriptome sequencing. Collectively, these approaches have enabled interrogation of diversity on a genome scale for large plant genomes, including crop species important to worldwide food security. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Fungal Genomics Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigoriev, Igor

    The JGI Fungal Genomics Program aims to scale up sequencing and analysis of fungal genomes to explore the diversity of fungi important for energy and the environment, and to promote functional studies on a system level. Combining new sequencing technologies and comparative genomics tools, JGI is now leading the world in fungal genome sequencing and analysis. Over 120 sequenced fungal genomes with analytical tools are available via MycoCosm (www.jgi.doe.gov/fungi), a web-portal for fungal biologists. Our model of interacting with user communities, unique among other sequencing centers, helps organize these communities, improves genome annotation and analysis work, and facilitates new larger-scalemore » genomic projects. This resulted in 20 high-profile papers published in 2011 alone and contributing to the Genomics Encyclopedia of Fungi, which targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts). Our next grand challenges include larger scale exploration of fungal diversity (1000 fungal genomes), developing molecular tools for DOE-relevant model organisms, and analysis of complex systems and metagenomes.« less

  17. Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine

    PubMed Central

    Elsik, Christine G.; Tayal, Aditi; Diesh, Colin M.; Unni, Deepak R.; Emery, Marianne L.; Nguyen, Hung N.; Hagen, Darren E.

    2016-01-01

    We report an update of the Hymenoptera Genome Database (HGD) (http://HymenopteraGenome.org), a model organism database for insect species of the order Hymenoptera (ants, bees and wasps). HGD maintains genomic data for 9 bee species, 10 ant species and 1 wasp, including the versions of genome and annotation data sets published by the genome sequencing consortiums and those provided by NCBI. A new data-mining warehouse, HymenopteraMine, based on the InterMine data warehousing system, integrates the genome data with data from external sources and facilitates cross-species analyses based on orthology. New genome browsers and annotation tools based on JBrowse/WebApollo provide easy genome navigation, and viewing of high throughput sequence data sets and can be used for collaborative genome annotation. All of the genomes and annotation data sets are combined into a single BLAST server that allows users to select and combine sequence data sets to search. PMID:26578564

  18. Ebolavirus comparative genomics

    PubMed Central

    Jun, Se-Ran; Leuze, Michael R.; Nookaew, Intawat; Uberbacher, Edward C.; Land, Miriam; Zhang, Qian; Wanchai, Visanu; Chai, Juanjuan; Nielsen, Morten; Trolle, Thomas; Lund, Ole; Buzard, Gregory S.; Pedersen, Thomas D.; Wassenaar, Trudy M.; Ussery, David W.

    2015-01-01

    The 2014 Ebola outbreak in West Africa is the largest documented for this virus. To examine the dynamics of this genome, we compare more than 100 currently available ebolavirus genomes to each other and to other viral genomes. Based on oligomer frequency analysis, the family Filoviridae forms a distinct group from all other sequenced viral genomes. All filovirus genomes sequenced to date encode proteins with similar functions and gene order, although there is considerable divergence in sequences between the three genera Ebolavirus, Cuevavirus and Marburgvirus within the family Filoviridae. Whereas all ebolavirus genomes are quite similar (multiple sequences of the same strain are often identical), variation is most common in the intergenic regions and within specific areas of the genes encoding the glycoprotein (GP), nucleoprotein (NP) and polymerase (L). We predict regions that could contain epitope-binding sites, which might be good vaccine targets. This information, combined with glycosylation sites and experimentally determined epitopes, can identify the most promising regions for the development of therapeutic strategies. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). PMID:26175035

  19. Draft genome analysis of Dietzia sp. 111N12-1, isolated from the South China Sea with bioremediation activity.

    PubMed

    Yang, Shanjun; Yu, Mingjia; Chen, Jianming

    Dietzia sp. 111N12-1, isolated from the seawater of South China Sea, shows strong petroleum hydrocarbons degradation activity. Here, we report the draft sequence of approximately 3.7-Mbp genome of this strain. To the best of our knowledge, this is the first genome sequence of Dietzia strain isolated from the sea. The genome sequence may provide fundamental molecular information on elucidating the metabolic pathway of hydrocarbons degradation in this strain. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  20. One chromosome, one contig: complete microbial genomes from long-read sequencing and assembly.

    PubMed

    Koren, Sergey; Phillippy, Adam M

    2015-02-01

    Like a jigsaw puzzle with large pieces, a genome sequenced with long reads is easier to assemble. However, recent sequencing technologies have favored lowering per-base cost at the expense of read length. This has dramatically reduced sequencing cost, but resulted in fragmented assemblies, which negatively affect downstream analyses and hinder the creation of finished (gapless, high-quality) genomes. In contrast, emerging long-read sequencing technologies can now produce reads tens of kilobases in length, enabling the automated finishing of microbial genomes for under $1000. This promises to improve the quality of reference databases and facilitate new studies of chromosomal structure and variation. We present an overview of these new technologies and the methods used to assemble long reads into complete genomes. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Phylogenomics from Whole Genome Sequences Using aTRAM.

    PubMed

    Allen, Julie M; Boyd, Bret; Nguyen, Nam-Phuong; Vachaspati, Pranjal; Warnow, Tandy; Huang, Daisie I; Grady, Patrick G S; Bell, Kayce C; Cronk, Quentin C B; Mugisha, Lawrence; Pittendrigh, Barry R; Leonardi, M Soledad; Reed, David L; Johnson, Kevin P

    2017-09-01

    Novel sequencing technologies are rapidly expanding the size of data sets that can be applied to phylogenetic studies. Currently the most commonly used phylogenomic approaches involve some form of genome reduction. While these approaches make assembling phylogenomic data sets more economical for organisms with large genomes, they reduce the genomic coverage and thereby the long-term utility of the data. Currently, for organisms with moderate to small genomes ($<$1000 Mbp) it is feasible to sequence the entire genome at modest coverage ($10-30\\times$). Computational challenges for handling these large data sets can be alleviated by assembling targeted reads, rather than assembling the entire genome, to produce a phylogenomic data matrix. Here we demonstrate the use of automated Target Restricted Assembly Method (aTRAM) to assemble 1107 single-copy ortholog genes from whole genome sequencing of sucking lice (Anoplura) and out-groups. We developed a pipeline to extract exon sequences from the aTRAM assemblies by annotating them with respect to the original target protein. We aligned these protein sequences with the inferred amino acids and then performed phylogenetic analyses on both the concatenated matrix of genes and on each gene separately in a coalescent analysis. Finally, we tested the limits of successful assembly in aTRAM by assembling 100 genes from close- to distantly related taxa at high to low levels of coverage.Both the concatenated analysis and the coalescent-based analysis produced the same tree topology, which was consistent with previously published results and resolved weakly supported nodes. These results demonstrate that this approach is successful at developing phylogenomic data sets from raw genome sequencing reads. Further, we found that with coverages above $5-10\\times$, aTRAM was successful at assembling 80-90% of the contigs for both close and distantly related taxa. As sequencing costs continue to decline, we expect full genome sequencing will become more feasible for a wider array of organisms, and aTRAM will enable mining of these genomic data sets for an extensive variety of applications, including phylogenomics. [aTRAM; gene assembly; genome sequencing; phylogenomics.]. © The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Large-scale contamination of microbial isolate genomes by Illumina PhiX control.

    PubMed

    Mukherjee, Supratim; Huntemann, Marcel; Ivanova, Natalia; Kyrpides, Nikos C; Pati, Amrita

    2015-01-01

    With the rapid growth and development of sequencing technologies, genomes have become the new go-to for exploring solutions to some of the world's biggest challenges such as searching for alternative energy sources and exploration of genomic dark matter. However, progress in sequencing has been accompanied by its share of errors that can occur during template or library preparation, sequencing, imaging or data analysis. In this study we screened over 18,000 publicly available microbial isolate genome sequences in the Integrated Microbial Genomes database and identified more than 1000 genomes that are contaminated with PhiX, a control frequently used during Illumina sequencing runs. Approximately 10% of these genomes have been published in literature and 129 contaminated genomes were sequenced under the Human Microbiome Project. Raw sequence reads are prone to contamination from various sources and are usually eliminated during downstream quality control steps. Detection of PhiX contaminated genomes indicates a lapse in either the application or effectiveness of proper quality control measures. The presence of PhiX contamination in several publicly available isolate genomes can result in additional errors when such data are used in comparative genomics analyses. Such contamination of public databases have far-reaching consequences in the form of erroneous data interpretation and analyses, and necessitates better measures to proofread raw sequences before releasing them to the broader scientific community.

  3. Helicos BioSciences.

    PubMed

    Milos, Patrice

    2008-04-01

    Helicos BioSciences Corporation is a life sciences company developing revolutionary new single molecule sequencing technology to provide the path to the US$1000 genome. True Single Molecule Sequencing (tSMS) will drive advancements in pharmacogenomics that can enable a better understanding of an individual's susceptibility to disease, develop more effective disease diagnoses and differentiate response to disease therapies. During 2007, genome-wide disease-association studies, the encylopedia of DNA elements (ENCODE) and the published genome sequence of two individuals have revealed human genome variation far more extensive than originally believed. These also demonstrated that common variations explain only a fraction of the genetic basis of disease. Therefore, the capability to understand an individual genome is critical in setting the foundation for the next great revolution in healthcare. Helicos is committed to this vision and will provide cost-effective genome sequencing and comprehensive analysis of the transcribed genome that can unlock the era of personalized healthcare.

  4. The Saccharomyces Genome Database Variant Viewer.

    PubMed

    Sheppard, Travis K; Hitz, Benjamin C; Engel, Stacia R; Song, Giltae; Balakrishnan, Rama; Binkley, Gail; Costanzo, Maria C; Dalusag, Kyla S; Demeter, Janos; Hellerstedt, Sage T; Karra, Kalpana; Nash, Robert S; Paskov, Kelley M; Skrzypek, Marek S; Weng, Shuai; Wong, Edith D; Cherry, J Michael

    2016-01-04

    The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is the authoritative community resource for the Saccharomyces cerevisiae reference genome sequence and its annotation. In recent years, we have moved toward increased representation of sequence variation and allelic differences within S. cerevisiae. The publication of numerous additional genomes has motivated the creation of new tools for their annotation and analysis. Here we present the Variant Viewer: a dynamic open-source web application for the visualization of genomic and proteomic differences. Multiple sequence alignments have been constructed across high quality genome sequences from 11 different S. cerevisiae strains and stored in the SGD. The alignments and summaries are encoded in JSON and used to create a two-tiered dynamic view of the budding yeast pan-genome, available at http://www.yeastgenome.org/variant-viewer. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. The whole genome sequence assembly of the soybean aphid, Aphis glycines

    USDA-ARS?s Scientific Manuscript database

    Aphids are emerging as model organisms for both basic and applied research. Of the 5,000 estimated species, only two aphids have published whole genome sequences: the pea aphid Acyrthosiphon pisum, and the Russian wheat aphid, Diuraphis noxia. The soybean aphid (Aphis glycines) is an extreme special...

  6. Tips and tricks for the assembly of a Corynebacterium pseudotuberculosis genome using a semiconductor sequencer.

    PubMed

    Ramos, Rommel Thiago Jucá; Carneiro, Adriana Ribeiro; Soares, Siomar de Castro; dos Santos, Anderson Rodrigues; Almeida, Sintia; Guimarães, Luis; Figueira, Flávia; Barbosa, Eudes; Tauch, Andreas; Azevedo, Vasco; Silva, Artur

    2013-03-01

    New sequencing platforms have enabled rapid decoding of complete prokaryotic genomes at relatively low cost. The Ion Torrent platform is an example of these technologies, characterized by lower coverage, generating challenges for the genome assembly. One particular problem is the lack of genomes that enable reference-based assembly, such as the one used in the present study, Corynebacterium pseudotuberculosis biovar equi, which causes high economic losses in the US equine industry. The quality treatment strategy incorporated into the assembly pipeline enabled a 16-fold greater use of the sequencing data obtained compared with traditional quality filter approaches. Data preprocessing prior to the de novo assembly enabled the use of known methodologies in the next-generation sequencing data assembly. Moreover, manual curation was proved to be essential for ensuring a quality assembly, which was validated by comparative genomics with other species of the genus Corynebacterium. The present study presents a modus operandi that enables a greater and better use of data obtained from semiconductor sequencing for obtaining the complete genome from a prokaryotic microorganism, C. pseudotuberculosis, which is not a traditional biological model such as Escherichia coli. © 2012 The Authors. Published by Society for Applied Microbiology and Blackwell Publishing Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  7. Lineage-Specific Biology Revealed by a Finished Genome Assembly of the Mouse

    PubMed Central

    Hillier, LaDeana W.; Zody, Michael C.; Goldstein, Steve; She, Xinwe; Bult, Carol J.; Agarwala, Richa; Cherry, Joshua L.; DiCuccio, Michael; Hlavina, Wratko; Kapustin, Yuri; Meric, Peter; Maglott, Donna; Birtle, Zoë; Marques, Ana C.; Graves, Tina; Zhou, Shiguo; Teague, Brian; Potamousis, Konstantinos; Churas, Christopher; Place, Michael; Herschleb, Jill; Runnheim, Ron; Forrest, Daniel; Amos-Landgraf, James; Schwartz, David C.; Cheng, Ze; Lindblad-Toh, Kerstin; Eichler, Evan E.; Ponting, Chris P.

    2009-01-01

    The mouse (Mus musculus) is the premier animal model for understanding human disease and development. Here we show that a comprehensive understanding of mouse biology is only possible with the availability of a finished, high-quality genome assembly. The finished clone-based assembly of the mouse strain C57BL/6J reported here has over 175,000 fewer gaps and over 139 Mb more of novel sequence, compared with the earlier MGSCv3 draft genome assembly. In a comprehensive analysis of this revised genome sequence, we are now able to define 20,210 protein-coding genes, over a thousand more than predicted in the human genome (19,042 genes). In addition, we identified 439 long, non–protein-coding RNAs with evidence for transcribed orthologs in human. We analyzed the complex and repetitive landscape of 267 Mb of sequence that was missing or misassembled in the previously published assembly, and we provide insights into the reasons for its resistance to sequencing and assembly by whole-genome shotgun approaches. Duplicated regions within newly assembled sequence tend to be of more recent ancestry than duplicates in the published draft, correcting our initial understanding of recent evolution on the mouse lineage. These duplicates appear to be largely composed of sequence regions containing transposable elements and duplicated protein-coding genes; of these, some may be fixed in the mouse population, but at least 40% of segmentally duplicated sequences are copy number variable even among laboratory mouse strains. Mouse lineage-specific regions contain 3,767 genes drawn mainly from rapidly-changing gene families associated with reproductive functions. The finished mouse genome assembly, therefore, greatly improves our understanding of rodent-specific biology and allows the delineation of ancestral biological functions that are shared with human from derived functions that are not. PMID:19468303

  8. Non-contiguous finished genome sequence of the opportunistic oral pathogen Prevotella multisaccharivorax type strain (PPPA20T)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pati, Amrita; Gronow, Sabine; Lu, Megan

    2011-01-01

    Prevotella multisaccharivorax Sakamoto et al. 2005 is a species of the large genus Prevotella, which belongs to the family Prevotellaceae. The species is of medical interest because its members are able to cause diseases in the human oral cavity such as periodontitis, root caries and others. Although 77 Prevotella genomes have already been sequenced or are targeted for sequencing, this is only the second completed genome sequence of a type strain of a species within the genus Prevotella to be published. The 3,388,644 bp long genome is assembled in three non-contiguous contigs, harbors 2,876 protein-coding and 75 RNA genes andmore » is a part of the Genomic Encyclopedia of Bacteria and Archaea project.« less

  9. Complete genome sequence of Lactobacillus paracasei CAUH35, a new strain isolated from traditional fermented dairy product koumiss in China.

    PubMed

    Wang, Guohong; Xiong, Yao; Xu, Qi; Yin, Jia; Hao, Yanling

    2015-11-20

    Lactobacillus paracasei CAUH35 was isolated from homemade koumiss, a traditional fermented dairy product with beneficial effects on human health. The genome consists of a circular 2,770,411 bp chromosome and four plasmids. Genome analysis revealed the presence of gene clusters involved in the production of exopolysaccharides and bacteriocin. The complete genome sequence of L. paracasei CAUH35 will provide genetic basis for further comparative and functional genomic analyses. Copyright © 2015. Published by Elsevier B.V.

  10. Haemonchus contortus: Genome Structure, Organization and Comparative Genomics.

    PubMed

    Laing, R; Martinelli, A; Tracey, A; Holroyd, N; Gilleard, J S; Cotton, J A

    2016-01-01

    One of the first genome sequencing projects for a parasitic nematode was that for Haemonchus contortus. The open access data from the Wellcome Trust Sanger Institute provided a valuable early resource for the research community, particularly for the identification of specific genes and genetic markers. Later, a second sequencing project was initiated by the University of Melbourne, and the two draft genome sequences for H. contortus were published back-to-back in 2013. There is a pressing need for long-range genomic information for genetic mapping, population genetics and functional genomic studies, so we are continuing to improve the Wellcome Trust Sanger Institute assembly to provide a finished reference genome for H. contortus. This review describes this process, compares the H. contortus genome assemblies with draft genomes from other members of the strongylid group and discusses future directions for parasite genomics using the H. contortus model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The genome sequence of ectromelia virus Naval and Cornell isolates from outbreaks in North America.

    PubMed

    Mavian, Carla; López-Bueno, Alberto; Bryant, Neil A; Seeger, Kathy; Quail, Michael A; Harris, David; Barrell, Bart; Alcami, Antonio

    2014-08-01

    Ectromelia virus (ECTV) is the causative agent of mousepox, a disease of laboratory mouse colonies and an excellent model for human smallpox. We report the genome sequence of two isolates from outbreaks in laboratory mouse colonies in the USA in 1995 and 1999: ECTV-Naval and ECTV-Cornell, respectively. The genome of ECTV-Naval and ECTV-Cornell was sequenced by the 454-Roche technology. The ECTV-Naval genome was also sequenced by the Sanger and Illumina technologies in order to evaluate these technologies for poxvirus genome sequencing. Genomic comparisons revealed that ECTV-Naval and ECTV-Cornell correspond to the same virus isolated from independent outbreaks. Both ECTV-Naval and ECTV-Cornell are extremely virulent in susceptible BALB/c mice, similar to ECTV-Moscow. This is consistent with the ECTV-Naval genome sharing 98.2% DNA sequence identity with that of ECTV-Moscow, and indicates that the genetic differences with ECTV-Moscow do not affect the virulence of ECTV-Naval in the mousepox model of footpad infection. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  12. The genome sequence of sweet cherry (Prunus avium) for use in genomics-assisted breeding.

    PubMed

    Shirasawa, Kenta; Isuzugawa, Kanji; Ikenaga, Mitsunobu; Saito, Yutaro; Yamamoto, Toshiya; Hirakawa, Hideki; Isobe, Sachiko

    2017-10-01

    We determined the genome sequence of sweet cherry (Prunus avium) using next-generation sequencing technology. The total length of the assembled sequences was 272.4 Mb, consisting of 10,148 scaffold sequences with an N50 length of 219.6 kb. The sequences covered 77.8% of the 352.9 Mb sweet cherry genome, as estimated by k-mer analysis, and included >96.0% of the core eukaryotic genes. We predicted 43,349 complete and partial protein-encoding genes. A high-density consensus map with 2,382 loci was constructed using double-digest restriction site-associated DNA sequencing. Comparing the genetic maps of sweet cherry and peach revealed high synteny between the two genomes; thus the scaffolds were integrated into pseudomolecules using map- and synteny-based strategies. Whole-genome resequencing of six modern cultivars found 1,016,866 SNPs and 162,402 insertions/deletions, out of which 0.7% were deleterious. The sequence variants, as well as simple sequence repeats, can be used as DNA markers. The genomic information helps us to identify agronomically important genes and will accelerate genetic studies and breeding programs for sweet cherries. Further information on the genomic sequences and DNA markers is available in DBcherry (http://cherry.kazusa.or.jp (8 May 2017, date last accessed)). © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  13. An Exploration into Fern Genome Space.

    PubMed

    Wolf, Paul G; Sessa, Emily B; Marchant, Daniel Blaine; Li, Fay-Wei; Rothfels, Carl J; Sigel, Erin M; Gitzendanner, Matthew A; Visger, Clayton J; Banks, Jo Ann; Soltis, Douglas E; Soltis, Pamela S; Pryer, Kathleen M; Der, Joshua P

    2015-08-26

    Ferns are one of the few remaining major clades of land plants for which a complete genome sequence is lacking. Knowledge of genome space in ferns will enable broad-scale comparative analyses of land plant genes and genomes, provide insights into genome evolution across green plants, and shed light on genetic and genomic features that characterize ferns, such as their high chromosome numbers and large genome sizes. As part of an initial exploration into fern genome space, we used a whole genome shotgun sequencing approach to obtain low-density coverage (∼0.4X to 2X) for six fern species from the Polypodiales (Ceratopteris, Pteridium, Polypodium, Cystopteris), Cyatheales (Plagiogyria), and Gleicheniales (Dipteris). We explore these data to characterize the proportion of the nuclear genome represented by repetitive sequences (including DNA transposons, retrotransposons, ribosomal DNA, and simple repeats) and protein-coding genes, and to extract chloroplast and mitochondrial genome sequences. Such initial sweeps of fern genomes can provide information useful for selecting a promising candidate fern species for whole genome sequencing. We also describe variation of genomic traits across our sample and highlight some differences and similarities in repeat structure between ferns and seed plants. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. Development and validation of an rDNA operon based primer walking strategy applicable to de novo bacterial genome finishing

    PubMed Central

    Eastman, Alexander W.; Yuan, Ze-Chun

    2015-01-01

    Advances in sequencing technology have drastically increased the depth and feasibility of bacterial genome sequencing. However, little information is available that details the specific techniques and procedures employed during genome sequencing despite the large numbers of published genomes. Shotgun approaches employed by second-generation sequencing platforms has necessitated the development of robust bioinformatics tools for in silico assembly, and complete assembly is limited by the presence of repetitive DNA sequences and multi-copy operons. Typically, re-sequencing with multiple platforms and laborious, targeted Sanger sequencing are employed to finish a draft bacterial genome. Here we describe a novel strategy based on the identification and targeted sequencing of repetitive rDNA operons to expedite bacterial genome assembly and finishing. Our strategy was validated by finishing the genome of Paenibacillus polymyxa strain CR1, a bacterium with potential in sustainable agriculture and bio-based processes. An analysis of the 38 contigs contained in the P. polymyxa strain CR1 draft genome revealed 12 repetitive rDNA operons with varied intragenic and flanking regions of variable length, unanimously located at contig boundaries and within contig gaps. These highly similar but not identical rDNA operons were experimentally verified and sequenced simultaneously with multiple, specially designed primer sets. This approach also identified and corrected significant sequence rearrangement generated during the initial in silico assembly of sequencing reads. Our approach reduces the required effort associated with blind primer walking for contig assembly, increasing both the speed and feasibility of genome finishing. Our study further reinforces the notion that repetitive DNA elements are major limiting factors for genome finishing. Moreover, we provided a step-by-step workflow for genome finishing, which may guide future bacterial genome finishing projects. PMID:25653642

  15. Review of general algorithmic features for genome assemblers for next generation sequencers.

    PubMed

    Wajid, Bilal; Serpedin, Erchin

    2012-04-01

    In the realm of bioinformatics and computational biology, the most rudimentary data upon which all the analysis is built is the sequence data of genes, proteins and RNA. The sequence data of the entire genome is the solution to the genome assembly problem. The scope of this contribution is to provide an overview on the art of problem-solving applied within the domain of genome assembly in the next-generation sequencing (NGS) platforms. This article discusses the major genome assemblers that were proposed in the literature during the past decade by outlining their basic working principles. It is intended to act as a qualitative, not a quantitative, tutorial to all working on genome assemblers pertaining to the next generation of sequencers. We discuss the theoretical aspects of various genome assemblers, identifying their working schemes. We also discuss briefly the direction in which the area is headed towards along with discussing core issues on software simplicity. Copyright © 2012 Beijing Institute of Genomics, Chinese Academy of Sciences. Published by Elsevier Ltd. All rights reserved.

  16. An overview on genome organization of marine organisms.

    PubMed

    Costantini, Maria

    2015-12-01

    In this review we will concentrate on some general genome features of marine organisms and their evolution, ranging from vertebrate to invertebrates until unicellular organisms. Before genome sequencing, the ultracentrifugation in CsCl led to high resolution of mammalian DNA (without seeing at the sequence). The analytical profile of human DNA showed that the vertebrate genome is a mosaic of isochores, typically megabase-size DNA segments that belong in a small number of families characterized by different GC levels. The recent availability of a number of fully sequenced genomes allowed mapping very precisely the isochores, based on DNA sequences. Since isochores are tightly linked to biological properties such as gene density, replication timing and recombination, the new level of detail provided by the isochore map helped the understanding of genome structure, function and evolution. This led the current level of knowledge and to further insights. Copyright © 2015. Published by Elsevier B.V.

  17. Complete genome sequence of the first human parechovirus type 3 isolated in Taiwan.

    PubMed

    Chang, Jenn-Tzong; Yang, Chih-Shiang; Chen, Bao-Chen; Chen, Yao-Shen; Chang, Tsung-Hsien

    2017-11-01

    The first human parechovirus 3 (HPeV3 VGHKS-2007) in Taiwan was identified from a clinical specimen from a male infant. The entire genome of the HPeV3 isolate was sequenced and compared to known HPeV3 sequences. Genome alignment data showed that HPeV3 VGHKS-2007 shares the highest nucleotide identity, 99%, with the Japanese strain of HPeV3 1361K-162589-Yamagata-2008. All HPeV3 isolates possess at least 97% amino acid identity. The analysis of the genome sequence of HPeV3 VGHKS-2007 will facilitate future investigations of the epidemiology and pathogenicity of HPeV3 infection. Copyright © 2017. Published by Elsevier Taiwan LLC.

  18. Single-molecule sequencing and optical mapping yields an improved genome of woodland strawberry (Fragaria vesca) with chromosome-scale contiguity.

    PubMed

    Edger, Patrick P; VanBuren, Robert; Colle, Marivi; Poorten, Thomas J; Wai, Ching Man; Niederhuth, Chad E; Alger, Elizabeth I; Ou, Shujun; Acharya, Charlotte B; Wang, Jie; Callow, Pete; McKain, Michael R; Shi, Jinghua; Collier, Chad; Xiong, Zhiyong; Mower, Jeffrey P; Slovin, Janet P; Hytönen, Timo; Jiang, Ning; Childs, Kevin L; Knapp, Steven J

    2018-02-01

    Although draft genomes are available for most agronomically important plant species, the majority are incomplete, highly fragmented, and often riddled with assembly and scaffolding errors. These assembly issues hinder advances in tool development for functional genomics and systems biology. Here we utilized a robust, cost-effective approach to produce high-quality reference genomes. We report a near-complete genome of diploid woodland strawberry (Fragaria vesca) using single-molecule real-time sequencing from Pacific Biosciences (PacBio). This assembly has a contig N50 length of ∼7.9 million base pairs (Mb), representing a ∼300-fold improvement of the previous version. The vast majority (>99.8%) of the assembly was anchored to 7 pseudomolecules using 2 sets of optical maps from Bionano Genomics. We obtained ∼24.96 Mb of sequence not present in the previous version of the F. vesca genome and produced an improved annotation that includes 1496 new genes. Comparative syntenic analyses uncovered numerous, large-scale scaffolding errors present in each chromosome in the previously published version of the F. vesca genome. Our results highlight the need to improve existing short-read based reference genomes. Furthermore, we demonstrate how genome quality impacts commonly used analyses for addressing both fundamental and applied biological questions. © The Authors 2017. Published by Oxford University Press.

  19. The contribution of the DNA microarray technology to gene expression profiling in Leishmania spp.: a retrospective.

    PubMed

    Alonso, Ana; Larraga, Vicente; Alcolea, Pedro J

    2018-05-07

    The first genome project of any living organism excluding viruses, the gammaproteobacteria Haemophilus influenzae, was completed in 1995. Until the last decade, genome sequencing was very tedious because genome survey sequences (GSS) and/or expressed sequence tags (ESTs) belonging to plasmid, cosmid and artificial chromosome genome libraries had to be sequenced and assembled in silico. Nowadays, no genome is completely assembled actually, because gaps and unassembled contigs are always remaining. However, most represent the whole genome of the organism of origin from a practical point of view. The first genome sequencing projects of trypanosomatid parasites were completed in 2005 following those strategies, and belong to Leishmania major, Trypanosoma cruzi and T. brucei. The functional genomics era rapidly developed on the basis of the microarray technology and has been evolving. In the case of the genus Leishmania, substantial biological information about differentiation in the digenetic life cycle of the parasite has been obtained. Later on, next generation sequencing has revolutionized genome sequencing and functional genomics, leading to more sensitive, accurate results by using much less resources. This new technology is more advantageous, but does not invalidate microarray results. In fact, promising vaccine candidates and drug targets have been found on the basis of microarray-based screening and preliminary proof-of-concept tests. Copyright © 2018. Published by Elsevier B.V.

  20. RSAT 2015: Regulatory Sequence Analysis Tools

    PubMed Central

    Medina-Rivera, Alejandra; Defrance, Matthieu; Sand, Olivier; Herrmann, Carl; Castro-Mondragon, Jaime A.; Delerce, Jeremy; Jaeger, Sébastien; Blanchet, Christophe; Vincens, Pierre; Caron, Christophe; Staines, Daniel M.; Contreras-Moreira, Bruno; Artufel, Marie; Charbonnier-Khamvongsa, Lucie; Hernandez, Céline; Thieffry, Denis; Thomas-Chollier, Morgane; van Helden, Jacques

    2015-01-01

    RSAT (Regulatory Sequence Analysis Tools) is a modular software suite for the analysis of cis-regulatory elements in genome sequences. Its main applications are (i) motif discovery, appropriate to genome-wide data sets like ChIP-seq, (ii) transcription factor binding motif analysis (quality assessment, comparisons and clustering), (iii) comparative genomics and (iv) analysis of regulatory variations. Nine new programs have been added to the 43 described in the 2011 NAR Web Software Issue, including a tool to extract sequences from a list of coordinates (fetch-sequences from UCSC), novel programs dedicated to the analysis of regulatory variants from GWAS or population genomics (retrieve-variation-seq and variation-scan), a program to cluster motifs and visualize the similarities as trees (matrix-clustering). To deal with the drastic increase of sequenced genomes, RSAT public sites have been reorganized into taxon-specific servers. The suite is well-documented with tutorials and published protocols. The software suite is available through Web sites, SOAP/WSDL Web services, virtual machines and stand-alone programs at http://www.rsat.eu/. PMID:25904632

  1. Xylella genomics and bacterial pathogenicity to plants.

    PubMed

    Dow, J M; Daniels, M J

    2000-12-01

    Xylella fastidiosa, a pathogen of citrus, is the first plant pathogenic bacterium for which the complete genome sequence has been published. Inspection of the sequence reveals high relatedness to many genes of other pathogens, notably Xanthomonas campestris. Based on this, we suggest that Xylella possesses certain easily testable properties that contribute to pathogenicity. We also present some general considerations for deriving information on pathogenicity from bacterial genomics. Copyright 2000 John Wiley & Sons, Ltd.

  2. Recent advances in genomic profiling of adenosquamous carcinoma of the pancreas.

    PubMed

    Marcus, Rebecca; Maitra, Anirban; Roszik, Jason

    2017-11-01

    Adenosquamous carcinoma of the pancreas (ASCP) is a mixed tumor type which contains squamous cell carcinoma and also ductal adenocarcinoma components. Due to the rarity of this malignancy, only very limited genomic profiling has been performed. A recent paper by Fang et al. published in The Journal of Pathology contributed to our knowledge of genomic alterations by performing whole-genome and -exome sequencing of 17 ASCP tumors. They found major genomic similarities to pancreatic ductal adenocarcinoma; however, the p53 pathway was altered in a greater proportion of cases, while a high frequency of 3p loss was a distinct copy number alteration pattern observed in ASCP. Laser capture microdissection revealed that adenocarcinoma and squamous carcinoma components of ASCP harbor similar genomic variations, indicating that the origin of tumor components is the same or similar. Although the study published by Fang et al. increases our knowledge of this rare mixed tumor type, further investigation, including RNA sequencing, will be needed to fully characterize this malignancy and to aid the development of novel treatment approaches. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  3. Whole genome sequencing in the prevention and control of Staphylococcus aureus infection.

    PubMed

    Price, J R; Didelot, X; Crook, D W; Llewelyn, M J; Paul, J

    2013-01-01

    Staphylococcus aureus remains a leading cause of hospital-acquired infection but weaknesses inherent in currently available typing methods impede effective infection prevention and control. The high resolution offered by whole genome sequencing has the potential to revolutionise our understanding and management of S. aureus infection. To outline the practicalities of whole genome sequencing and discuss how it might shape future infection control practice. We review conventional typing methods and compare these with the potential offered by whole genome sequencing. In contrast with conventional methods, whole genome sequencing discriminates down to single nucleotide differences and allows accurate characterisation of transmission events and outbreaks and additionally provides information about the genetic basis of phenotypic characteristics, including antibiotic susceptibility and virulence. However, translating its potential into routine practice will depend on affordability, acceptable turnaround times and on creating a reliable standardised bioinformatic infrastructure. Whole genome sequencing has the potential to provide a universal test that facilitates outbreak investigation, enables the detection of emerging strains and predicts their clinical importance. Copyright © 2012 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  4. Cancer systems biology in the genome sequencing era: part 1, dissecting and modeling of tumor clones and their networks.

    PubMed

    Wang, Edwin; Zou, Jinfeng; Zaman, Naif; Beitel, Lenore K; Trifiro, Mark; Paliouras, Miltiadis

    2013-08-01

    Recent tumor genome sequencing confirmed that one tumor often consists of multiple cell subpopulations (clones) which bear different, but related, genetic profiles such as mutation and copy number variation profiles. Thus far, one tumor has been viewed as a whole entity in cancer functional studies. With the advances of genome sequencing and computational analysis, we are able to quantify and computationally dissect clones from tumors, and then conduct clone-based analysis. Emerging technologies such as single-cell genome sequencing and RNA-Seq could profile tumor clones. Thus, we should reconsider how to conduct cancer systems biology studies in the genome sequencing era. We will outline new directions for conducting cancer systems biology by considering that genome sequencing technology can be used for dissecting, quantifying and genetically characterizing clones from tumors. Topics discussed in Part 1 of this review include computationally quantifying of tumor subpopulations; clone-based network modeling, cancer hallmark-based networks and their high-order rewiring principles and the principles of cell survival networks of fast-growing clones. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  5. Complete genome sequence of the bile-resistant pigment-producing anaerobe Alistipes finegoldii type strain (AHN2437T)

    PubMed Central

    Mavromatis, Konstantinos; Stackebrandt, Erko; Munk, Christine; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Tapia, Roxanne; Goodwin, Lynne A.; Pitluck, Sam; Liolios, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mikhailova, Natalia; Huntemann, Marcel; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Rohde, Manfred; Gronow, Sabine; Göker, Markus; Detter, John C.; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter; Woyke, Tanja

    2013-01-01

    Alistipes finegoldii Rautio et al. 2003 is one of five species of Alistipes with a validly published name: family Rikenellaceae, order Bacteroidetes, class Bacteroidia, phylum Bacteroidetes. This rod-shaped and strictly anaerobic organism has been isolated mostly from human tissues. Here we describe the features of the type strain of this species, together with the complete genome sequence, and annotation. A. finegoldii is the first member of the genus Alistipes for which the complete genome sequence of its type strain is now available. The 3,734,239 bp long single replicon genome with its 3,302 protein-coding and 68 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:23961309

  6. Draft genome sequence of multidrug-resistant Staphylococcus haemolyticus IPK_TSA25 harbouring a Staphylococcus aureus plasmid, pS0385-1.

    PubMed

    Kim, Hyung Jun; Jang, Soojin

    2017-12-01

    Staphylococcus haemolyticus is the second most frequently isolated coagulase-negative staphylococci from blood cultures. Moreover, multidrug resistance associated with the genome flexibility of S. haemolyticus has been increasingly reported worldwide. Here we report the draft genome sequence of multidrug-resistant S. haemolyticus IPK_TSA25 isolated from a building surface in South Korea. Genomic DNA of S. haemolyticus IPK_TSA25 was sequenced using the PacBio RS II sequencing platform. Generated reads were assembled using PacBio SMRT Analysis 2.3.0. The draft genome was annotated and antibiotic resistance genes were identified. The genome of 2517398bp contains various antibiotic resistance genes associated with resistance to β-lactams, aminoglycosides and macrolides. Genome analysis also revealed chromosomal integration of the full-length Staphylococcus aureus plasmid pS0385-1 containing a tetracycline resistance gene. The genome sequence reported in this study will provide valuable information to understand the flexibility of the S. haemolyticus genome, which facilitates acquisition of antibiotic resistance genes and contributes to the dissemination of antibiotic resistance by this emerging pathogen. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  7. Using genic sequence capture in combination with a syntenic pseudo genome to map a deletion mutant in a wheat species.

    PubMed

    Gardiner, Laura-Jayne; Gawroński, Piotr; Olohan, Lisa; Schnurbusch, Thorsten; Hall, Neil; Hall, Anthony

    2014-12-01

    Mapping-by-sequencing analyses have largely required a complete reference sequence and employed whole genome re-sequencing. In species such as wheat, no finished genome reference sequence is available. Additionally, because of its large genome size (17 Gb), re-sequencing at sufficient depth of coverage is not practical. Here, we extend the utility of mapping by sequencing, developing a bespoke pipeline and algorithm to map an early-flowering locus in einkorn wheat (Triticum monococcum L.) that is closely related to the bread wheat genome A progenitor. We have developed a genomic enrichment approach using the gene-rich regions of hexaploid bread wheat to design a 110-Mbp NimbleGen SeqCap EZ in solution capture probe set, representing the majority of genes in wheat. Here, we use the capture probe set to enrich and sequence an F2 mapping population of the mutant. The mutant locus was identified in T. monococcum, which lacks a complete genome reference sequence, by mapping the enriched data set onto pseudo-chromosomes derived from the capture probe target sequence, with a long-range order of genes based on synteny of wheat with Brachypodium distachyon. Using this approach we are able to map the region and identify a set of deleted genes within the interval. © 2014 The Authors.The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  8. An Integrated Physical, Genetic and Cytogenetic Map of Brachypodium distachyon, a Model System for Grass Research

    PubMed Central

    Febrer, Melanie; Goicoechea, Jose Luis; Wright, Jonathan; McKenzie, Neil; Song, Xiang; Lin, Jinke; Collura, Kristi; Wissotski, Marina; Yu, Yeisoo; Ammiraju, Jetty S. S.; Wolny, Elzbieta; Idziak, Dominika; Betekhtin, Alexander; Kudrna, Dave; Hasterok, Robert; Wing, Rod A.; Bevan, Michael W.

    2010-01-01

    The pooid subfamily of grasses includes some of the most important crop, forage and turf species, such as wheat, barley and Lolium. Developing genomic resources, such as whole-genome physical maps, for analysing the large and complex genomes of these crops and for facilitating biological research in grasses is an important goal in plant biology. We describe a bacterial artificial chromosome (BAC)-based physical map of the wild pooid grass Brachypodium distachyon and integrate this with whole genome shotgun sequence (WGS) assemblies using BAC end sequences (BES). The resulting physical map contains 26 contigs spanning the 272 Mb genome. BES from the physical map were also used to integrate a genetic map. This provides an independent vaildation and confirmation of the published WGS assembly. Mapped BACs were used in Fluorescence In Situ Hybridisation (FISH) experiments to align the integrated physical map and sequence assemblies to chromosomes with high resolution. The physical, genetic and cytogenetic maps, integrated with whole genome shotgun sequence assemblies, enhance the accuracy and durability of this important genome sequence and will directly facilitate gene isolation. PMID:20976139

  9. Draft genome sequence of Enterobacter cloacae HBY, a ST128 clinical strain co-producing KPC-2 and NDM-1 carbapenemases.

    PubMed

    Li, Xi; Zhu, Yongze; Shen, Mengyuan; Du, Jing; Zhang, Lei; Wang, Dairong

    2018-03-01

    Enterobacter cloacae is one of the major pathogens responsible for a variety of human infections. Here we report the draft genome sequence of multidrug-resistant E. cloacae strain HBY isolated from a female patient in China. Whole genomic DNA of E. cloacae strain HBY was extracted and was sequenced using an Illumina HiSeq™ 2000 platform. The generated sequence reads were assembled using CLC Genomics Workbench. The draft genome was annotated using Rapid Annotations using Subsystems Technology (RAST), and the presence of antimicrobial resistance genes was identified. The 5799439-bp genome contains various antimicrobial resistance genes conferring resistance to aminoglycosides, β-lactams, fosfomycin, macrolides, sulphonamides and fluoroquinolones. Notably, the strain was identified to carry two main carbapenemase genes (bla KPC-2 and bla NDM-1 ). The genome sequence reported in this study will provide valuable information to understand antibiotic resistance mechanisms in this strain. It is important to monitor the spread strains of Enterobacter sp. encoding both of these carbapenemase genes. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  10. Virtual Genome Walking across the 32 Gb Ambystoma mexicanum genome; assembling gene models and intronic sequence.

    PubMed

    Evans, Teri; Johnson, Andrew D; Loose, Matthew

    2018-01-12

    Large repeat rich genomes present challenges for assembly using short read technologies. The 32 Gb axolotl genome is estimated to contain ~19 Gb of repetitive DNA making an assembly from short reads alone effectively impossible. Indeed, this model species has been sequenced to 20× coverage but the reads could not be conventionally assembled. Using an alternative strategy, we have assembled subsets of these reads into scaffolds describing over 19,000 gene models. We call this method Virtual Genome Walking as it locally assembles whole genome reads based on a reference transcriptome, identifying exons and iteratively extending them into surrounding genomic sequence. These assemblies are then linked and refined to generate gene models including upstream and downstream genomic, and intronic, sequence. Our assemblies are validated by comparison with previously published axolotl bacterial artificial chromosome (BAC) sequences. Our analyses of axolotl intron length, intron-exon structure, repeat content and synteny provide novel insights into the genic structure of this model species. This resource will enable new experimental approaches in axolotl, such as ChIP-Seq and CRISPR and aid in future whole genome sequencing efforts. The assembled sequences and annotations presented here are freely available for download from https://tinyurl.com/y8gydc6n . The software pipeline is available from https://github.com/LooseLab/iterassemble .

  11. Development of Mycoplasma synoviae (MS) core genome multilocus sequence typing (cgMLST) scheme.

    PubMed

    Ghanem, Mostafa; El-Gazzar, Mohamed

    2018-05-01

    Mycoplasma synoviae (MS) is a poultry pathogen with reported increased prevalence and virulence in recent years. MS strain identification is essential for prevention, control efforts and epidemiological outbreak investigations. Multiple multilocus based sequence typing schemes have been developed for MS, yet the resolution of these schemes could be limited for outbreak investigation. The cost of whole genome sequencing became close to that of sequencing the seven MLST targets; however, there is no standardized method for typing MS strains based on whole genome sequences. In this paper, we propose a core genome multilocus sequence typing (cgMLST) scheme as a standardized and reproducible method for typing MS based whole genome sequences. A diverse set of 25 MS whole genome sequences were used to identify 302 core genome genes as cgMLST targets (35.5% of MS genome) and 44 whole genome sequences of MS isolates from six countries in four continents were used for typing applying this scheme. cgMLST based phylogenetic trees displayed a high degree of agreement with core genome SNP based analysis and available epidemiological information. cgMLST allowed evaluation of two conventional MLST schemes of MS. The high discriminatory power of cgMLST allowed differentiation between samples of the same conventional MLST type. cgMLST represents a standardized, accurate, highly discriminatory, and reproducible method for differentiation between MS isolates. Like conventional MLST, it provides stable and expandable nomenclature, allowing for comparing and sharing the typing results between different laboratories worldwide. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Genome-Wide Search Identifies 1.9 Mb from the Polar Bear Y Chromosome for Evolutionary Analyses

    PubMed Central

    Bidon, Tobias; Schreck, Nancy; Hailer, Frank; Nilsson, Maria A.; Janke, Axel

    2015-01-01

    The male-inherited Y chromosome is the major haploid fraction of the mammalian genome, rendering Y-linked sequences an indispensable resource for evolutionary research. However, despite recent large-scale genome sequencing approaches, only a handful of Y chromosome sequences have been characterized to date, mainly in model organisms. Using polar bear (Ursus maritimus) genomes, we compare two different in silico approaches to identify Y-linked sequences: 1) Similarity to known Y-linked genes and 2) difference in the average read depth of autosomal versus sex chromosomal scaffolds. Specifically, we mapped available genomic sequencing short reads from a male and a female polar bear against the reference genome and identify 112 Y-chromosomal scaffolds with a combined length of 1.9 Mb. We verified the in silico findings for the longer polar bear scaffolds by male-specific in vitro amplification, demonstrating the reliability of the average read depth approach. The obtained Y chromosome sequences contain protein-coding sequences, single nucleotide polymorphisms, microsatellites, and transposable elements that are useful for evolutionary studies. A high-resolution phylogeny of the polar bear patriline shows two highly divergent Y chromosome lineages, obtained from analysis of the identified Y scaffolds in 12 previously published male polar bear genomes. Moreover, we find evidence of gene conversion among ZFX and ZFY sequences in the giant panda lineage and in the ancestor of ursine and tremarctine bears. Thus, the identification of Y-linked scaffold sequences from unordered genome sequences yields valuable data to infer phylogenomic and population-genomic patterns in bears. PMID:26019166

  13. The complete mitochondrial genome of the stonefly Dinocras cephalotes (Plecoptera, Perlidae).

    PubMed

    Elbrecht, Vasco; Poettker, Lisa; John, Uwe; Leese, Florian

    2015-06-01

    The complete mitochondrial genome of the perlid stonefly Dinocras cephalotes (Curtis, 1827) was sequenced using a combined 454 and Sanger sequencing approach using the known sequence of Pteronarcys princeps Banks, 1907 (Pteronarcyidae), to identify homologous 454 reads. The genome is 15,666 bp in length and includes 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and a control region. Gene order resembles that of basal arthropods. The base composition of the genome is A (33.5%), T (29.0%), C (24.4%) and G (13.1%). This is the second published mitogenome for the order Plecoptera and will be useful in future phylogenetic analysis.

  14. Genomic suppression subtractive hybridization as a tool to identify differences in mycorrhizal fungal genomes.

    PubMed

    Murat, Claude; Zampieri, Elisa; Vallino, Marta; Daghino, Stefania; Perotto, Silvia; Bonfante, Paola

    2011-05-01

    Characterization of genomic variation among different microbial species, or different strains of the same species, is a field of significant interest with a wide range of potential applications. We have investigated the genomic variation in mycorrhizal fungal genomes through genomic suppressive subtractive hybridization. The comparison was between phylogenetically distant and close truffle species (Tuber spp.), and between isolates of the ericoid mycorrhizal fungus Oidiodendron maius featuring different degrees of metal tolerance. In the interspecies experiment, almost all the sequences that were identified in the Tuber melanosporum genome and absent in Tuber borchii and Tuber indicum corresponded to transposable elements. In the intraspecies comparison, some specific sequences corresponded to regions coding for enzymes, among them a glutathione synthetase known to be involved in metal tolerance. This approach is a quick and rather inexpensive tool to develop molecular markers for mycorrhizal fungi tracking and barcoding, to identify functional genes and to investigate the genome plasticity, adaptation and evolution. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  15. The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum.

    PubMed

    Zimin, Aleksey V; Puiu, Daniela; Hall, Richard; Kingan, Sarah; Clavijo, Bernardo J; Salzberg, Steven L

    2017-11-01

    Common bread wheat, Triticum aestivum, has one of the most complex genomes known to science, with 6 copies of each chromosome, enormous numbers of near-identical sequences scattered throughout, and an overall haploid size of more than 15 billion bases. Multiple past attempts to assemble the genome have produced assemblies that were well short of the estimated genome size. Here we report the first near-complete assembly of T. aestivum, using deep sequencing coverage from a combination of short Illumina reads and very long Pacific Biosciences reads. The final assembly contains 15 344 693 583 bases and has a weighted average (N50) contig size of 232 659 bases. This represents by far the most complete and contiguous assembly of the wheat genome to date, providing a strong foundation for future genetic studies of this important food crop. We also report how we used the recently published genome of Aegilops tauschii, the diploid ancestor of the wheat D genome, to identify 4 179 762 575 bp of T. aestivum that correspond to its D genome components. © The Author 2017. Published by Oxford University Press.

  16. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast.

    PubMed

    Oud, Bart; van Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T

    2012-03-01

    Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  17. Exploration of the Drosophila buzzatii transposable element content suggests underestimation of repeats in Drosophila genomes.

    PubMed

    Rius, Nuria; Guillén, Yolanda; Delprat, Alejandra; Kapusta, Aurélie; Feschotte, Cédric; Ruiz, Alfredo

    2016-05-10

    Many new Drosophila genomes have been sequenced in recent years using new-generation sequencing platforms and assembly methods. Transposable elements (TEs), being repetitive sequences, are often misassembled, especially in the genomes sequenced with short reads. Consequently, the mobile fraction of many of the new genomes has not been analyzed in detail or compared with that of other genomes sequenced with different methods, which could shed light into the understanding of genome and TE evolution. Here we compare the TE content of three genomes: D. buzzatii st-1, j-19, and D. mojavensis. We have sequenced a new D. buzzatii genome (j-19) that complements the D. buzzatii reference genome (st-1) already published, and compared their TE contents with that of D. mojavensis. We found an underestimation of TE sequences in Drosophila genus NGS-genomes when compared to Sanger-genomes. To be able to compare genomes sequenced with different technologies, we developed a coverage-based method and applied it to the D. buzzatii st-1 and j-19 genome. Between 10.85 and 11.16 % of the D. buzzatii st-1 genome is made up of TEs, between 7 and 7,5 % of D. buzzatii j-19 genome, while TEs represent 15.35 % of the D. mojavensis genome. Helitrons are the most abundant order in the three genomes. TEs in D. buzzatii are less abundant than in D. mojavensis, as expected according to the genome size and TE content positive correlation. However, TEs alone do not explain the genome size difference. TEs accumulate in the dot chromosomes and proximal regions of D. buzzatii and D. mojavensis chromosomes. We also report a significantly higher TE density in D. buzzatii and D. mojavensis X chromosomes, which is not expected under the current models. Our easy-to-use correction method allowed us to identify recently active families in D. buzzatii st-1 belonging to the LTR-retrotransposon superfamily Gypsy.

  18. MIPS Arabidopsis thaliana Database (MAtDB): an integrated biological knowledge resource based on the first complete plant genome

    PubMed Central

    Schoof, Heiko; Zaccaria, Paolo; Gundlach, Heidrun; Lemcke, Kai; Rudd, Stephen; Kolesov, Grigory; Arnold, Roland; Mewes, H. W.; Mayer, Klaus F. X.

    2002-01-01

    Arabidopsis thaliana is the first plant for which the complete genome has been sequenced and published. Annotation of complex eukaryotic genomes requires more than the assignment of genetic elements to the sequence. Besides completing the list of genes, we need to discover their cellular roles, their regulation and their interactions in order to understand the workings of the whole plant. The MIPS Arabidopsis thaliana Database (MAtDB; http://mips.gsf.de/proj/thal/db) started out as a repository for genome sequence data in the European Scientists Sequencing Arabidopsis (ESSA) project and the Arabidopsis Genome Initiative. Our aim is to transform MAtDB into an integrated biological knowledge resource by integrating diverse data, tools, query and visualization capabilities and by creating a comprehensive resource for Arabidopsis as a reference model for other species, including crop plants. PMID:11752263

  19. Draft genome sequence of a CTX-M-8, CTX-M-55 and FosA3 co-producing Escherichia coli ST117/B2 isolated from an asymptomatic carrier.

    PubMed

    Fernandes, Miriam R; Sellera, Fábio P; Moura, Quézia; Souza, Tiago A; Lincopan, Nilton

    2018-03-01

    Asymptomatic carriers can act as reservoirs of multidrug-resistant (MDR) bacteria. The aim of this study was to describe the draft genome sequence of a MDR Escherichia coli lineage recovered from a faecal sample of a healthy carrier. Genomic DNA was sequenced on an Illumina NextSeq platform. Sequence reads were de novo assembled using CLC Genomics Workbench and the whole genome sequence was evaluated through bioinformatics tools available from the Center of Genomic Epidemiology as well as additional in silico analysis. The genome size was calculated as 5178340 bp, with 5442 protein-coding sequences and 5492 total genes. Presence of the bla CTX-M-8 , bla CTX-M-55 and fosA3 genes was detected in addition to other antimicrobial resistance genes. Interestingly, the strain was assigned to serotype O8:H4-fimH97 and was classified within the highly virulent phylogroup B2. This draft genome can provide helpful information to elucidate genetic features that contribute to colonisation and adaptation of MDR and virulent pathogens in asymptomatic carriers. Copyright © 2018 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  20. Mitochondrial genome sequences and comparative genomics ofPhytophthora ramorum and P. sojae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Frank N.; Douda, Bensasson; Tyler, Brett M.

    The complete sequences of the mitochondrial genomes of theoomycetes of Phytophthora ramorum and P. sojae were determined during thecourse of their complete nuclear genome sequencing (Tyler, et al. 2006).Both are circular, with sizes of 39,314 bp for P. ramorum and 42,975 bpfor P. sojae. Each contains a total of 37 identifiable protein-encodinggenes, 25 or 26 tRNAs (P. sojae and P. ramorum, respectively)specifying19 amino acids, and a variable number of ORFs (7 for P. ramorum and 12for P. sojae) which are potentially additional functional genes.Non-coding regions comprise approximately 11.5 percent and 18.4 percentof the genomes of P. ramorum and P. sojae,more » respectively. Relative to P.sojae, there is an inverted repeat of 1,150 bp in P. ramorum thatincludes an unassigned unique ORF, a tRNA gene, and adjacent non-codingsequences, but otherwise the gene order in both species is identical.Comparisons of these genomes with published sequences of the P. infestansmitochondrial genome reveals a number of similarities, but the gene orderin P. infestans differs in two adjacent locations due to inversions.Sequence alignments of the three genomes indicated sequence conservationranging from 75 to 85 percent and that specific regions were morevariable than others.« less

  1. Insights from 20 years of bacterial genome sequencing

    DOE PAGES

    Land, Miriam L.; Hauser, Loren; Jun, Se-Ran; ...

    2015-02-27

    Since the first two complete bacterial genome sequences were published in 1995, the science of bacteria has dramatically changed. Using third-generation DNA sequencing, it is possible to completely sequence a bacterial genome in a few hours and identify some types of methylation sites along the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative genomics has produced. To date,more » there are genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. However, the distribution is quite skewed towards a few phyla that contain model organisms. But the breadth is continuing to improve, with projects dedicated to filling in less characterized taxonomic groups. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system provides bacteria with immunity against viruses, which outnumber bacteria by tenfold. How fast can we go? Second-generation sequencing has produced a large number of draft genomes (close to 90 % of bacterial genomes in GenBank are currently not complete); third-generation sequencing can potentially produce a finished genome in a few hours, and at the same time provide methlylation sites along the entire chromosome. The diversity of bacterial communities is extensive as is evident from the genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. Genome sequencing can help in classifying an organism, and in the case where multiple genomes of the same species are available, it is possible to calculate the pan- and core genomes; comparison of more than 2000 Escherichia coli genomes finds an E. coli core genome of about 3100 gene families and a total of about 89,000 different gene families. Why do we care about bacterial genome sequencing? There are many practical applications, such as genome-scale metabolic modeling, biosurveillance, bioforensics, and infectious disease epidemiology. In the near future, high-throughput sequencing of patient metagenomic samples could revolutionize medicine in terms of speed and accuracy of finding pathogens and knowing how to treat them.« less

  2. Insights from 20 years of bacterial genome sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Land, Miriam L.; Hauser, Loren; Jun, Se-Ran

    Since the first two complete bacterial genome sequences were published in 1995, the science of bacteria has dramatically changed. Using third-generation DNA sequencing, it is possible to completely sequence a bacterial genome in a few hours and identify some types of methylation sites along the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative genomics has produced. To date,more » there are genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. However, the distribution is quite skewed towards a few phyla that contain model organisms. But the breadth is continuing to improve, with projects dedicated to filling in less characterized taxonomic groups. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system provides bacteria with immunity against viruses, which outnumber bacteria by tenfold. How fast can we go? Second-generation sequencing has produced a large number of draft genomes (close to 90 % of bacterial genomes in GenBank are currently not complete); third-generation sequencing can potentially produce a finished genome in a few hours, and at the same time provide methlylation sites along the entire chromosome. The diversity of bacterial communities is extensive as is evident from the genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. Genome sequencing can help in classifying an organism, and in the case where multiple genomes of the same species are available, it is possible to calculate the pan- and core genomes; comparison of more than 2000 Escherichia coli genomes finds an E. coli core genome of about 3100 gene families and a total of about 89,000 different gene families. Why do we care about bacterial genome sequencing? There are many practical applications, such as genome-scale metabolic modeling, biosurveillance, bioforensics, and infectious disease epidemiology. In the near future, high-throughput sequencing of patient metagenomic samples could revolutionize medicine in terms of speed and accuracy of finding pathogens and knowing how to treat them.« less

  3. First genome report on novel sequence types of Neisseria meningitidis: ST12777 and ST12778.

    PubMed

    Veeraraghavan, Balaji; Lal, Binesh; Devanga Ragupathi, Naveen Kumar; Neeravi, Iyyan Raj; Jeyaraman, Ranjith; Varghese, Rosemol; Paul, Miracle Magdalene; Baskaran, Ashtawarthani; Ranjan, Ranjini

    2018-03-01

    Neisseria meningitidis is an important causative agent of meningitis and/or sepsis with high morbidity and mortality. Baseline genome data on N. meningitidis, especially from developing countries such as India, are lacking. This study aimed to investigate the whole genome sequences of N. meningitidis isolates from a tertiary care centre in India. Whole-genome sequencing was performed using an Ion Torrent™ Personal Genome Machine™ (PGM) with 400-bp chemistry. Data were assembled de novo using SPAdes Genome Assembler v.5.0.0.0. Sequence annotation was performed through PATRIC, RAST and the NCBI PGAAP server. Downstream analysis of the isolates was performed using the Center for Genomic Epidemiology databases for antimicrobial resistance genes and sequence types. Virulence factors and CRISPR were analysed using the PubMLST database and CRISPRFinder, respectively. This study reports the whole genome shotgun sequences of eight N. meningitidis isolates from bloodstream infections. The genome data revealed two novel sequence types (ST12777 and ST12778), along with ST11, ST437 and ST6928. The virulence profile of the isolates matched their sequence types. All isolates were negative for plasmid-mediated resistance genes. To the best of our knowledge, this is the first report of ST11 and ST437 N. meningitidis isolates in India along with two novel sequence types (ST12777 and ST12778). These results indicate that the sequence types circulating in India are diverse and require continuous monitoring. Further studies strengthening the genome data on N. meningitidis are required to understand the prevalence, spread, exact resistance and virulence mechanisms along with serotypes. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  4. de novo assembly and population genomic survey of natural yeast isolates with the Oxford Nanopore MinION sequencer.

    PubMed

    Istace, Benjamin; Friedrich, Anne; d'Agata, Léo; Faye, Sébastien; Payen, Emilie; Beluche, Odette; Caradec, Claudia; Davidas, Sabrina; Cruaud, Corinne; Liti, Gianni; Lemainque, Arnaud; Engelen, Stefan; Wincker, Patrick; Schacherer, Joseph; Aury, Jean-Marc

    2017-02-01

    Oxford Nanopore Technologies Ltd (Oxford, UK) have recently commercialized MinION, a small single-molecule nanopore sequencer, that offers the possibility of sequencing long DNA fragments from small genomes in a matter of seconds. The Oxford Nanopore technology is truly disruptive; it has the potential to revolutionize genomic applications due to its portability, low cost, and ease of use compared with existing long reads sequencing technologies. The MinION sequencer enables the rapid sequencing of small eukaryotic genomes, such as the yeast genome. Combined with existing assembler algorithms, near complete genome assemblies can be generated and comprehensive population genomic analyses can be performed. Here, we resequenced the genome of the Saccharomyces cerevisiae S288C strain to evaluate the performance of nanopore-only assemblers. Then we de novo sequenced and assembled the genomes of 21 isolates representative of the S. cerevisiae genetic diversity using the MinION platform. The contiguity of our assemblies was 14 times higher than the Illumina-only assemblies and we obtained one or two long contigs for 65 % of the chromosomes. This high contiguity allowed us to accurately detect large structural variations across the 21 studied genomes. Because of the high completeness of the nanopore assemblies, we were able to produce a complete cartography of transposable elements insertions and inspect structural variants that are generally missed using a short-read sequencing strategy. Our analyses show that the Oxford Nanopore technology is already usable for de novo sequencing and assembly; however, non-random errors in homopolymers require polishing the consensus using an alternate sequencing technology. © The Author 2017. Published by Oxford University Press.

  5. The first complete mitochondrial genome of Bactrocera tsuneonis (Miyake) (Diptera: Tephritidae) by next-generation sequencing and its phylogenetic implications.

    PubMed

    Zhang, Yue; Feng, Shiqian; Zeng, Yiying; Ning, Hong; Liu, Lijun; Zhao, Zihua; Jiang, Fan; Li, Zhihong

    2018-06-23

    Bactrocera tsuneonis (Miyake), generally known as the Japanese orange fly, is considered to be a major pest of commercial citrus crops. It has a limited distribution in China, Japan and Vietnam, but it has the potential to invade areas outside of Asia. More genetic information of B. tsuneonis should be obtained in order to develop effective methodologies for rapid and accurate molecular identification due to the difficulty of distinguishing it from Bactrocera minax based on morphological features. We report here the whole mitochondrial genome of B. tsuneonis sequenced by next-generation sequencing. This mitogenome sequence had a total length of 15,865 bp, a typical circular molecule comprising 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and a non-coding region (A + T-rich control region). The structure and organization of the molecule were typical and similar compared with the published homologous sequences of other fruit flies in Tephritidae. The phylogenetic analyses based on the mitochondrial genome data presented a close genetic relationship between B. tsuneonis and B. minax. This is the first report of the complete mitochondrial genome of B. tsuneonis, and it can be used in further studies of species diagnosis, evolutionary biology, prevention and control. Copyright © 2018. Published by Elsevier B.V.

  6. Museum genomics: low-cost and high-accuracy genetic data from historical specimens.

    PubMed

    Rowe, Kevin C; Singhal, Sonal; Macmanes, Matthew D; Ayroles, Julien F; Morelli, Toni Lyn; Rubidge, Emily M; Bi, Ke; Moritz, Craig C

    2011-11-01

    Natural history collections are unparalleled repositories of geographical and temporal variation in faunal conditions. Molecular studies offer an opportunity to uncover much of this variation; however, genetic studies of historical museum specimens typically rely on extracting highly degraded and chemically modified DNA samples from skins, skulls or other dried samples. Despite this limitation, obtaining short fragments of DNA sequences using traditional PCR amplification of DNA has been the primary method for genetic study of historical specimens. Few laboratories have succeeded in obtaining genome-scale sequences from historical specimens and then only with considerable effort and cost. Here, we describe a low-cost approach using high-throughput next-generation sequencing to obtain reliable genome-scale sequence data from a traditionally preserved mammal skin and skull using a simple extraction protocol. We show that single-nucleotide polymorphisms (SNPs) from the genome sequences obtained independently from the skin and from the skull are highly repeatable compared to a reference genome. © 2011 Blackwell Publishing Ltd.

  7. WikiGenomes: an open web application for community consumption and curation of gene annotation data in Wikidata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putman, Tim E.; Lelong, Sebastien; Burgstaller-Muehlbacher, Sebastian

    With the advancement of genome-sequencing technologies, new genomes are being sequenced daily. Although these sequences are deposited in publicly available data warehouses, their functional and genomic annotations (beyond genes which are predicted automatically) mostly reside in the text of primary publications. Professional curators are hard at work extracting those annotations from the literature for the most studied organisms and depositing them in structured databases. However, the resources don’t exist to fund the comprehensive curation of the thousands of newly sequenced organisms in this manner. Here, we describe WikiGenomes (wikigenomes.org), a web application that facilitates the consumption and curation of genomicmore » data by the entire scientific community. WikiGenomes is based on Wikidata, an openly editable knowledge graph with the goal of aggregating published knowledge into a free and open database. WikiGenomes empowers the individual genomic researcher to contribute their expertise to the curation effort and integrates the knowledge into Wikidata, enabling it to be accessed by anyone without restriction.« less

  8. The value of new genome references.

    PubMed

    Worley, Kim C; Richards, Stephen; Rogers, Jeffrey

    2017-09-15

    Genomic information has become a ubiquitous and almost essential aspect of biological research. Over the last 10-15 years, the cost of generating sequence data from DNA or RNA samples has dramatically declined and our ability to interpret those data increased just as remarkably. Although it is still possible for biologists to conduct interesting and valuable research on species for which genomic data are not available, the impact of having access to a high quality whole genome reference assembly for a given species is nothing short of transformational. Research on a species for which we have no DNA or RNA sequence data is restricted in fundamental ways. In contrast, even access to an initial draft quality genome (see below for definitions) opens a wide range of opportunities that are simply not available without that reference genome assembly. Although a complete discussion of the impact of genome sequencing and assembly is beyond the scope of this short paper, the goal of this review is to summarize the most common and highest impact contributions that whole genome sequencing and assembly has had on comparative and evolutionary biology. Copyright © 2016. Published by Elsevier Inc.

  9. WikiGenomes: an open web application for community consumption and curation of gene annotation data in Wikidata

    DOE PAGES

    Putman, Tim E.; Lelong, Sebastien; Burgstaller-Muehlbacher, Sebastian; ...

    2017-03-06

    With the advancement of genome-sequencing technologies, new genomes are being sequenced daily. Although these sequences are deposited in publicly available data warehouses, their functional and genomic annotations (beyond genes which are predicted automatically) mostly reside in the text of primary publications. Professional curators are hard at work extracting those annotations from the literature for the most studied organisms and depositing them in structured databases. However, the resources don’t exist to fund the comprehensive curation of the thousands of newly sequenced organisms in this manner. Here, we describe WikiGenomes (wikigenomes.org), a web application that facilitates the consumption and curation of genomicmore » data by the entire scientific community. WikiGenomes is based on Wikidata, an openly editable knowledge graph with the goal of aggregating published knowledge into a free and open database. WikiGenomes empowers the individual genomic researcher to contribute their expertise to the curation effort and integrates the knowledge into Wikidata, enabling it to be accessed by anyone without restriction.« less

  10. Genome Sequence of the Pea Aphid Acyrthosiphon pisum

    PubMed Central

    2010-01-01

    Aphids are important agricultural pests and also biological models for studies of insect-plant interactions, symbiosis, virus vectoring, and the developmental causes of extreme phenotypic plasticity. Here we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple published genomes of holometabolous insects. Pea aphids are host-plant specialists, they can reproduce both sexually and asexually, and they have coevolved with an obligate bacterial symbiont. Here we highlight findings from whole genome analysis that may be related to these unusual biological features. These findings include discovery of extensive gene duplication in more than 2000 gene families as well as loss of evolutionarily conserved genes. Gene family expansions relative to other published genomes include genes involved in chromatin modification, miRNA synthesis, and sugar transport. Gene losses include genes central to the IMD immune pathway, selenoprotein utilization, purine salvage, and the entire urea cycle. The pea aphid genome reveals that only a limited number of genes have been acquired from bacteria; thus the reduced gene count of Buchnera does not reflect gene transfer to the host genome. The inventory of metabolic genes in the pea aphid genome suggests that there is extensive metabolite exchange between the aphid and Buchnera, including sharing of amino acid biosynthesis between the aphid and Buchnera. The pea aphid genome provides a foundation for post-genomic studies of fundamental biological questions and applied agricultural problems. PMID:20186266

  11. Similar Ratios of Introns to Intergenic Sequence across Animal Genomes

    PubMed Central

    Wörheide, Gert

    2017-01-01

    Abstract One central goal of genome biology is to understand how the usage of the genome differs between organisms. Our knowledge of genome composition, needed for downstream inferences, is critically dependent on gene annotations, yet problems associated with gene annotation and assembly errors are usually ignored in comparative genomics. Here, we analyze the genomes of 68 species across 12 animal phyla and some single-cell eukaryotes for general trends in genome composition and transcription, taking into account problems of gene annotation. We show that, regardless of genome size, the ratio of introns to intergenic sequence is comparable across essentially all animals, with nearly all deviations dominated by increased intergenic sequence. Genomes of model organisms have ratios much closer to 1:1, suggesting that the majority of published genomes of nonmodel organisms are underannotated and consequently omit substantial numbers of genes, with likely negative impact on evolutionary interpretations. Finally, our results also indicate that most animals transcribe half or more of their genomes arguing against differences in genome usage between animal groups, and also suggesting that the transcribed portion is more dependent on genome size than previously thought. PMID:28633296

  12. First complete genome sequence of vanilla mosaic strain of Dasheen mosaic virus isolated from the Cook Islands.

    PubMed

    Puli'uvea, Christopher; Khan, Subuhi; Chang, Wee-Leong; Valmonte, Gardette; Pearson, Michael N; Higgins, Colleen M

    2017-02-01

    We present the first complete genome of vanilla mosaic virus (VanMV). The VanMV genomic structure is consistent with that of a potyvirus, containing a single open reading frame (ORF) encoding a polyprotein of 3139 amino acids. Motif analyses indicate the polyprotein can be cleaved into the expected ten individual proteins; other recognised potyvirus motifs are also present. As expected, the VanMV genome shows high sequence similarity to the published Dasheen mosaic virus (DsMV) genome sequences; comparisons with DsMV continue to support VanMV as a vanilla infecting strain of DsMV. Phylogenetic analyses indicate that VanMV and DsMV share a common ancestor, with VanMV having the closest relationship with DsMV strains from the South Pacific.

  13. Ultraaccurate genome sequencing and haplotyping of single human cells.

    PubMed

    Chu, Wai Keung; Edge, Peter; Lee, Ho Suk; Bansal, Vikas; Bafna, Vineet; Huang, Xiaohua; Zhang, Kun

    2017-11-21

    Accurate detection of variants and long-range haplotypes in genomes of single human cells remains very challenging. Common approaches require extensive in vitro amplification of genomes of individual cells using DNA polymerases and high-throughput short-read DNA sequencing. These approaches have two notable drawbacks. First, polymerase replication errors could generate tens of thousands of false-positive calls per genome. Second, relatively short sequence reads contain little to no haplotype information. Here we report a method, which is dubbed SISSOR (single-stranded sequencing using microfluidic reactors), for accurate single-cell genome sequencing and haplotyping. A microfluidic processor is used to separate the Watson and Crick strands of the double-stranded chromosomal DNA in a single cell and to randomly partition megabase-size DNA strands into multiple nanoliter compartments for amplification and construction of barcoded libraries for sequencing. The separation and partitioning of large single-stranded DNA fragments of the homologous chromosome pairs allows for the independent sequencing of each of the complementary and homologous strands. This enables the assembly of long haplotypes and reduction of sequence errors by using the redundant sequence information and haplotype-based error removal. We demonstrated the ability to sequence single-cell genomes with error rates as low as 10 -8 and average 500-kb-long DNA fragments that can be assembled into haplotype contigs with N50 greater than 7 Mb. The performance could be further improved with more uniform amplification and more accurate sequence alignment. The ability to obtain accurate genome sequences and haplotype information from single cells will enable applications of genome sequencing for diverse clinical needs. Copyright © 2017 the Author(s). Published by PNAS.

  14. NCBI-compliant genome submissions: tips and tricks to save time and money.

    PubMed

    Pirovano, Walter; Boetzer, Marten; Derks, Martijn F L; Smit, Sandra

    2017-03-01

    Genome sequences nowadays play a central role in molecular biology and bioinformatics. These sequences are shared with the scientific community through sequence databases. The sequence repositories of the International Nucleotide Sequence Database Collaboration (INSDC, comprising GenBank, ENA and DDBJ) are the largest in the world. Preparing an annotated sequence in such a way that it will be accepted by the database is challenging because many validation criteria apply. In our opinion, it is an undesirable situation that researchers who want to submit their sequence need either a lot of experience or help from partners to get the job done. To save valuable time and money, we list a number of recommendations for people who want to submit an annotated genome to a sequence database, as well as for tool developers, who could help to ease the process. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  15. AD-LIBS: inferring ancestry across hybrid genomes using low-coverage sequence data.

    PubMed

    Schaefer, Nathan K; Shapiro, Beth; Green, Richard E

    2017-04-04

    Inferring the ancestry of each region of admixed individuals' genomes is useful in studies ranging from disease gene mapping to speciation genetics. Current methods require high-coverage genotype data and phased reference panels, and are therefore inappropriate for many data sets. We present a software application, AD-LIBS, that uses a hidden Markov model to infer ancestry across hybrid genomes without requiring variant calling or phasing. This approach is useful for non-model organisms and in cases of low-coverage data, such as ancient DNA. We demonstrate the utility of AD-LIBS with synthetic data. We then use AD-LIBS to infer ancestry in two published data sets: European human genomes with Neanderthal ancestry and brown bear genomes with polar bear ancestry. AD-LIBS correctly infers 87-91% of ancestry in simulations and produces ancestry maps that agree with published results and global ancestry estimates in humans. In brown bears, we find more polar bear ancestry than has been published previously, using both AD-LIBS and an existing software application for local ancestry inference, HAPMIX. We validate AD-LIBS polar bear ancestry maps by recovering a geographic signal within bears that mirrors what is seen in SNP data. Finally, we demonstrate that AD-LIBS is more effective than HAPMIX at inferring ancestry when preexisting phased reference data are unavailable and genomes are sequenced to low coverage. AD-LIBS is an effective tool for ancestry inference that can be used even when few individuals are available for comparison or when genomes are sequenced to low coverage. AD-LIBS is therefore likely to be useful in studies of non-model or ancient organisms that lack large amounts of genomic DNA. AD-LIBS can therefore expand the range of studies in which admixture mapping is a viable tool.

  16. Complete genome sequence of cyanobacterium Nostoc sp. NIES-3756, a potentially useful strain for phytochrome-based bioengineering.

    PubMed

    Hirose, Yuu; Fujisawa, Takatomo; Ohtsubo, Yoshiyuki; Katayama, Mitsunori; Misawa, Naomi; Wakazuki, Sachiko; Shimura, Yohei; Nakamura, Yasukazu; Kawachi, Masanobu; Yoshikawa, Hirofumi; Eki, Toshihiko; Kanesaki, Yu

    2016-01-20

    To explore the diverse photoreceptors of cyanobacteria, we isolated Nostoc sp. strain NIES-3756 from soil at Mimomi-Park, Chiba, Japan, and determined its complete genome sequence. The Genome consists of one chromosome and two plasmids (total 6,987,571 bp containing no gaps). The NIES-3756 strain carries 7 phytochrome and 12 cyanobacteriochrome genes, which will facilitate the studies of phytochrome-based bioengineering. Copyright © 2015. Published by Elsevier B.V.

  17. kmer-SVM: a web server for identifying predictive regulatory sequence features in genomic data sets

    PubMed Central

    Fletez-Brant, Christopher; Lee, Dongwon; McCallion, Andrew S.; Beer, Michael A.

    2013-01-01

    Massively parallel sequencing technologies have made the generation of genomic data sets a routine component of many biological investigations. For example, Chromatin immunoprecipitation followed by sequence assays detect genomic regions bound (directly or indirectly) by specific factors, and DNase-seq identifies regions of open chromatin. A major bottleneck in the interpretation of these data is the identification of the underlying DNA sequence code that defines, and ultimately facilitates prediction of, these transcription factor (TF) bound or open chromatin regions. We have recently developed a novel computational methodology, which uses a support vector machine (SVM) with kmer sequence features (kmer-SVM) to identify predictive combinations of short transcription factor-binding sites, which determine the tissue specificity of these genomic assays (Lee, Karchin and Beer, Discriminative prediction of mammalian enhancers from DNA sequence. Genome Res. 2011; 21:2167–80). This regulatory information can (i) give confidence in genomic experiments by recovering previously known binding sites, and (ii) reveal novel sequence features for subsequent experimental testing of cooperative mechanisms. Here, we describe the development and implementation of a web server to allow the broader research community to independently apply our kmer-SVM to analyze and interpret their genomic datasets. We analyze five recently published data sets and demonstrate how this tool identifies accessory factors and repressive sequence elements. kmer-SVM is available at http://kmersvm.beerlab.org. PMID:23771147

  18. kmer-SVM: a web server for identifying predictive regulatory sequence features in genomic data sets.

    PubMed

    Fletez-Brant, Christopher; Lee, Dongwon; McCallion, Andrew S; Beer, Michael A

    2013-07-01

    Massively parallel sequencing technologies have made the generation of genomic data sets a routine component of many biological investigations. For example, Chromatin immunoprecipitation followed by sequence assays detect genomic regions bound (directly or indirectly) by specific factors, and DNase-seq identifies regions of open chromatin. A major bottleneck in the interpretation of these data is the identification of the underlying DNA sequence code that defines, and ultimately facilitates prediction of, these transcription factor (TF) bound or open chromatin regions. We have recently developed a novel computational methodology, which uses a support vector machine (SVM) with kmer sequence features (kmer-SVM) to identify predictive combinations of short transcription factor-binding sites, which determine the tissue specificity of these genomic assays (Lee, Karchin and Beer, Discriminative prediction of mammalian enhancers from DNA sequence. Genome Res. 2011; 21:2167-80). This regulatory information can (i) give confidence in genomic experiments by recovering previously known binding sites, and (ii) reveal novel sequence features for subsequent experimental testing of cooperative mechanisms. Here, we describe the development and implementation of a web server to allow the broader research community to independently apply our kmer-SVM to analyze and interpret their genomic datasets. We analyze five recently published data sets and demonstrate how this tool identifies accessory factors and repressive sequence elements. kmer-SVM is available at http://kmersvm.beerlab.org.

  19. Random Amplification and Pyrosequencing for Identification of Novel Viral Genome Sequences

    PubMed Central

    Hang, Jun; Forshey, Brett M.; Kochel, Tadeusz J.; Li, Tao; Solórzano, Víctor Fiestas; Halsey, Eric S.; Kuschner, Robert A.

    2012-01-01

    ssRNA viruses have high levels of genomic divergence, which can lead to difficulty in genomic characterization of new viruses using traditional PCR amplification and sequencing methods. In this study, random reverse transcription, anchored random PCR amplification, and high-throughput pyrosequencing were used to identify orthobunyavirus sequences from total RNA extracted from viral cultures of acute febrile illness specimens. Draft genome sequence for the orthobunyavirus L segment was assembled and sequentially extended using de novo assembly contigs from pyrosequencing reads and orthobunyavirus sequences in GenBank as guidance. Accuracy and continuous coverage were achieved by mapping all reads to the L segment draft sequence. Subsequently, RT-PCR and Sanger sequencing were used to complete the genome sequence. The complete L segment was found to be 6936 bases in length, encoding a 2248-aa putative RNA polymerase. The identified L segment was distinct from previously published South American orthobunyaviruses, sharing 63% and 54% identity at the nucleotide and amino acid level, respectively, with the complete Oropouche virus L segment and 73% and 81% identity at the nucleotide and amino acid level, respectively, with a partial Caraparu virus L segment. The result demonstrated the effectiveness of a sequence-independent amplification and next-generation sequencing approach for obtaining complete viral genomes from total nucleic acid extracts and its use in pathogen discovery. PMID:22468136

  20. Complete genome sequences of two divergent isolates of strawberry crinkle virus coinfecting a single strawberry plant.

    PubMed

    Koloniuk, Igor; Fránová, Jana; Sarkisova, Tatiana; Přibylová, Jaroslava

    2018-05-04

    Strawberry crinkle disease is one of the major diseases that threatens strawberry production. Although the biological properties of the agent, strawberry crinkle virus (SCV), have been thoroughly investigated, its complete genome sequence has never been published. Existing RT-PCR-based detection relies on a partial sequence of the L protein gene, presumably the least expressed viral gene. Here, we present complete sequences of two divergent SCV isolates co-infecting a single plant, Fragaria x ananassa cv. Čačanská raná.

  1. Ancient bacterial endosymbionts of insects: Genomes as sources of insight and springboards for inquiry.

    PubMed

    Wernegreen, Jennifer J

    2017-09-15

    Ancient associations between insects and bacteria provide models to study intimate host-microbe interactions. Currently, a wealth of genome sequence data for long-term, obligately intracellular (primary) endosymbionts of insects reveals profound genomic consequences of this specialized bacterial lifestyle. Those consequences include severe genome reduction and extreme base compositions. This minireview highlights the utility of genome sequence data to understand how, and why, endosymbionts have been pushed to such extremes, and to illuminate the functional consequences of such extensive genome change. While the static snapshots provided by individual endosymbiont genomes are valuable, comparative analyses of multiple genomes have shed light on evolutionary mechanisms. Namely, genome comparisons have told us that selection is important in fine-tuning gene content, but at the same time, mutational pressure and genetic drift contribute to genome degradation. Examples from Blochmannia, the primary endosymbiont of the ant tribe Camponotini, illustrate the value and constraints of genome sequence data, and exemplify how genomes can serve as a springboard for further comparative and experimental inquiry. Copyright © 2017. Published by Elsevier Inc.

  2. VCGDB: a dynamic genome database of the Chinese population

    PubMed Central

    2014-01-01

    Background The data released by the 1000 Genomes Project contain an increasing number of genome sequences from different nations and populations with a large number of genetic variations. As a result, the focus of human genome studies is changing from single and static to complex and dynamic. The currently available human reference genome (GRCh37) is based on sequencing data from 13 anonymous Caucasian volunteers, which might limit the scope of genomics, transcriptomics, epigenetics, and genome wide association studies. Description We used the massive amount of sequencing data published by the 1000 Genomes Project Consortium to construct the Virtual Chinese Genome Database (VCGDB), a dynamic genome database of the Chinese population based on the whole genome sequencing data of 194 individuals. VCGDB provides dynamic genomic information, which contains 35 million single nucleotide variations (SNVs), 0.5 million insertions/deletions (indels), and 29 million rare variations, together with genomic annotation information. VCGDB also provides a highly interactive user-friendly virtual Chinese genome browser (VCGBrowser) with functions like seamless zooming and real-time searching. In addition, we have established three population-specific consensus Chinese reference genomes that are compatible with mainstream alignment software. Conclusions VCGDB offers a feasible strategy for processing big data to keep pace with the biological data explosion by providing a robust resource for genomics studies; in particular, studies aimed at finding regions of the genome associated with diseases. PMID:24708222

  3. Economic evaluation of genomic sequencing in the paediatric population: a critical review.

    PubMed

    Alam, Khurshid; Schofield, Deborah

    2018-05-24

    Systematic evidence is critical to the formulation of national health policy to provide public funding for the integration of genomic sequencing into routine clinical care. The purpose of this review is to present systematic evidence on the economic evaluation of genomic sequencing conducted for paediatric patients in clinical care, and to identify any gaps in the methodology of economic evaluations. We undertook a critical review of the empirical evidence from economic evaluations of genomic sequencing among paediatric patients searching five electronic databases. Our inclusion criteria were limited to literature published in the English language between 2010 and 2017 in OECD countries. Articles that met our inclusion criteria were assessed using a recognised checklist for a well-designed economic evaluation. We found 11 full-text articles that met our inclusion criteria. Our analysis found that genomic sequencing markedly increased the diagnostic rate to 16-79%, but lowered the cost by 11-64% compared to the standard diagnostic pathway. Only five recent studies in paediatric clinical cohorts met most of the criteria for a well-designed economic evaluation and demonstrated cost-effectiveness of genomic sequencing in paediatric clinical cohorts of patients. Our review identified the need for improvement in the rigour of the methodologies used to provide robust evidence for the formulation of health policy on public funding to integrate genomic sequencing into routine clinical care. Nonetheless, there is emerging evidence of the cost-effectiveness of genomic sequencing over usual care for paediatric patients.

  4. The (in)complete organelle genome: exploring the use and nonuse of available technologies for characterizing mitochondrial and plastid chromosomes.

    PubMed

    Sanitá Lima, Matheus; Woods, Laura C; Cartwright, Matthew W; Smith, David Roy

    2016-11-01

    Not long ago, scientists paid dearly in time, money and skill for every nucleotide that they sequenced. Today, DNA sequencing technologies epitomize the slogan 'faster, easier, cheaper and more', and in many ways, sequencing an entire genome has become routine, even for the smallest laboratory groups. This is especially true for mitochondrial and plastid genomes. Given their relatively small sizes and high copy numbers per cell, organelle DNAs are currently among the most highly sequenced kind of chromosome. But accurately characterizing an organelle genome and the information it encodes can require much more than DNA sequencing and bioinformatics analyses. Organelle genomes can be surprisingly complex and can exhibit convoluted and unconventional modes of gene expression. Unravelling this complexity can demand a wide assortment of experiments, from pulsed-field gel electrophoresis to Southern and Northern blots to RNA analyses. Here, we show that it is exactly these types of 'complementary' analyses that are often lacking from contemporary organelle genome papers, particularly short 'genome announcement' articles. Consequently, crucial and interesting features of organelle chromosomes are going undescribed, which could ultimately lead to a poor understanding and even a misrepresentation of these genomes and the genes they express. High-throughput sequencing and bioinformatics have made it easy to sequence and assemble entire chromosomes, but they should not be used as a substitute for or at the expense of other types of genomic characterization methods. © 2016 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  5. Single-Cell Sequencing for Drug Discovery and Drug Development.

    PubMed

    Wu, Hongjin; Wang, Charles; Wu, Shixiu

    2017-01-01

    Next-generation sequencing (NGS), particularly single-cell sequencing, has revolutionized the scale and scope of genomic and biomedical research. Recent technological advances in NGS and singlecell studies have made the deep whole-genome (DNA-seq), whole epigenome and whole-transcriptome sequencing (RNA-seq) at single-cell level feasible. NGS at the single-cell level expands our view of genome, epigenome and transcriptome and allows the genome, epigenome and transcriptome of any organism to be explored without a priori assumptions and with unprecedented throughput. And it does so with single-nucleotide resolution. NGS is also a very powerful tool for drug discovery and drug development. In this review, we describe the current state of single-cell sequencing techniques, which can provide a new, more powerful and precise approach for analyzing effects of drugs on treated cells and tissues. Our review discusses single-cell whole genome/exome sequencing (scWGS/scWES), single-cell transcriptome sequencing (scRNA-seq), single-cell bisulfite sequencing (scBS), and multiple omics of single-cell sequencing. We also highlight the advantages and challenges of each of these approaches. Finally, we describe, elaborate and speculate the potential applications of single-cell sequencing for drug discovery and drug development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Current challenges in genome annotation through structural biology and bioinformatics.

    PubMed

    Furnham, Nicholas; de Beer, Tjaart A P; Thornton, Janet M

    2012-10-01

    With the huge volume in genomic sequences being generated from high-throughout sequencing projects the requirement for providing accurate and detailed annotations of gene products has never been greater. It is proving to be a huge challenge for computational biologists to use as much information as possible from experimental data to provide annotations for genome data of unknown function. A central component to this process is to use experimentally determined structures, which provide a means to detect homology that is not discernable from just the sequence and permit the consequences of genomic variation to be realized at the molecular level. In particular, structures also form the basis of many bioinformatics methods for improving the detailed functional annotations of enzymes in combination with similarities in sequence and chemistry. Copyright © 2012. Published by Elsevier Ltd.

  7. The Large Mitochondrial Genome of Symbiodinium minutum Reveals Conserved Noncoding Sequences between Dinoflagellates and Apicomplexans.

    PubMed

    Shoguchi, Eiichi; Shinzato, Chuya; Hisata, Kanako; Satoh, Nori; Mungpakdee, Sutada

    2015-07-20

    Even though mitochondrial genomes, which characterize eukaryotic cells, were first discovered more than 50 years ago, mitochondrial genomics remains an important topic in molecular biology and genome sciences. The Phylum Alveolata comprises three major groups (ciliates, apicomplexans, and dinoflagellates), the mitochondrial genomes of which have diverged widely. Even though the gene content of dinoflagellate mitochondrial genomes is reportedly comparable to that of apicomplexans, the highly fragmented and rearranged genome structures of dinoflagellates have frustrated whole genomic analysis. Consequently, noncoding sequences and gene arrangements of dinoflagellate mitochondrial genomes have not been well characterized. Here we report that the continuous assembled genome (∼326 kb) of the dinoflagellate, Symbiodinium minutum, is AT-rich (∼64.3%) and that it contains three protein-coding genes. Based upon in silico analysis, the remaining 99% of the genome comprises transcriptomic noncoding sequences. RNA edited sites and unique, possible start and stop codons clarify conserved regions among dinoflagellates. Our massive transcriptome analysis shows that almost all regions of the genome are transcribed, including 27 possible fragmented ribosomal RNA genes and 12 uncharacterized small RNAs that are similar to mitochondrial RNA genes of the malarial parasite, Plasmodium falciparum. Gene map comparisons show that gene order is only slightly conserved between S. minutum and P. falciparum. However, small RNAs and intergenic sequences share sequence similarities with P. falciparum, suggesting that the function of noncoding sequences has been preserved despite development of very different genome structures. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Mycobacterium tuberculosis and whole-genome sequencing: how close are we to unleashing its full potential?

    PubMed

    Satta, G; Lipman, M; Smith, G P; Arnold, C; Kon, O M; McHugh, T D

    2018-06-01

    Nearly two decades after completion of the genome sequence of Mycobacterium tuberculosis (MTB), and with the advent of next generation sequencing technologies (NGS), whole-genome sequencing (WGS) has been applied to a wide range of clinical scenarios. Starting in 2017, England is the first country in the world to pioneer its use on a national scale for the diagnosis of tuberculosis, detection of drug resistance, and typing of MTB. This narrative review critically analyses the current applications of WGS for MTB and explains how close we are to realizing its full potential as a diagnostic, epidemiologic, and research tool. We searched for reports (both original articles and reviews) published in English up to 31 May 2017, with combinations of the following keywords: whole-genome sequencing, Mycobacterium, and tuberculosis. MEDLINE, Embase, and Scopus were used as search engines. We included articles that covered different aspects of whole-genome sequencing in relation to MTB. This review focuses on three main themes: the role of WGS for the prediction of drug susceptibility, MTB outbreak investigation and genetic diversity, and research applications of NGS. Many of the original expectations have been accomplished, and we believe that with its unprecedented sensitivity and power, WGS has the potential to address many unanswered questions in the near future. However, caution is still needed when interpreting WGS data as there are some important limitations to be aware of, from correct interpretation of drug susceptibilities to the bioinformatic support needed. Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  9. Draft genome sequence of Escherichia coli ST977: A clinical multidrug-resistant strain harbouring blaNDM-3 isolated from a bloodstream infection.

    PubMed

    Li, Xi; Sun, Long; Zhu, Yongze; Shen, Mengyuan; Tu, Yuexing

    2018-04-14

    The emergence of carbapenem-resistant Escherichia coli has become a serious challenge to manage in the clinic because of multidrug resistance. Here we report the draft genome sequence of NDM-3-producing E. coli strain NT1 isolated from a bloodstream infection in China. Whole genomic DNA of E. coli strain NT1 was extracted and was sequenced using an Illumina HiSeq™ X Ten platform. The generated sequence reads were assembled using CLC Genomics Workbench. The draft genome was annotated using Rapid Annotation using Subsystem Technology (RAST). Bioinformatics analysis was further performed. The genome size was calculated at 5,353 620bp, with 5297 protein-coding sequences and the presence of genes conferring resistance to aminoglycosides, β-lactams, quinolones, macrolides, phenicols, sulphonamides, tetracycline and trimethoprim. In addition, genes encoding virulence factors were also identified. To our knowledge, this is the first report of an E. coli strain producing NDM-3 isolated from a human bloodstream infection. The genome sequence will provide valuable information to understand antibiotic resistance mechanisms and pathogenic mechanisms in this strain. Close surveillance is urgently needed to monitor the spread of NDM-3-producing isolates. Copyright © 2018 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  10. The American cranberry mitochondrial genome reveals the presence of selenocysteine (tRNA-Sec and SECIS) insertion machinery in land plants.

    PubMed

    Fajardo, Diego; Schlautman, Brandon; Steffan, Shawn; Polashock, James; Vorsa, Nicholi; Zalapa, Juan

    2014-02-25

    This is the first de novo assembly and annotation of a complete mitochondrial genome in the Ericales order from the American cranberry (Vaccinium macrocarpon Ait.). Moreover, only four complete Asterid mitochondrial genomes have been made publicly available. The cranberry mitochondrial genome was assembled and reconstructed from whole genome 454 Roche GS-FLX and Illumina shotgun sequences. Compared with other Asterids, the reconstruction of the genome revealed an average size mitochondrion (459,678 nt) with relatively little repetitive sequences and DNA of plastid origin. The complete mitochondrial genome of cranberry was annotated obtaining a total of 34 genes classified based on their putative function, plus three ribosomal RNAs, and 17 transfer RNAs. Maternal organellar cranberry inheritance was inferred by analyzing gene variation in the cranberry mitochondria and plastid genomes. The annotation of cranberry mitochondrial genome revealed the presence of two copies of tRNA-Sec and a selenocysteine insertion sequence (SECIS) element which were lost in plants during evolution. This is the first report of a land plant possessing selenocysteine insertion machinery at the sequence level. Published by Elsevier B.V.

  11. Diagnostics for Yaws Eradication: Insights From Direct Next-Generation Sequencing of Cutaneous Strains of Treponema pallidum.

    PubMed

    Marks, Michael; Fookes, Maria; Wagner, Josef; Butcher, Robert; Ghinai, Rosanna; Sokana, Oliver; Sarkodie, Yaw-Adu; Lukehart, Sheila A; Solomon, Anthony W; Mabey, David C W; Thomson, Nicholas

    2018-03-05

    Yaws-like chronic ulcers can be caused by Treponema pallidum subspecies pertenue, Haemophilus ducreyi, or other, still-undefined bacteria. To permit accurate evaluation of yaws elimination efforts, programmatic use of molecular diagnostics is required. The accuracy and sensitivity of current tools remain unclear because our understanding of T. pallidum diversity is limited by the low number of sequenced genomes. We tested samples from patients with suspected yaws collected in the Solomon Islands and Ghana. All samples were from patients whose lesions had previously tested negative using the Centers for Disease Control and Prevention (CDC) diagnostic assay in widespread use. However, some of these patients had positive serological assays for yaws on blood. We used direct whole-genome sequencing to identify T. pallidum subsp pertenue strains missed by the current assay. From 45 Solomon Islands and 27 Ghanaian samples, 11 were positive for T. pallidum DNA using the species-wide quantitative polymerase chain reaction (PCR) assay, from which we obtained 6 previously undetected T. pallidum subsp pertenue whole-genome sequences. These show that Solomon Islands sequences represent distinct T. pallidum subsp pertenue clades. These isolates were invisible to the CDC diagnostic PCR assay, due to sequence variation in the primer binding site. Our data double the number of published T. pallidum subsp pertenue genomes. We show that Solomon Islands strains are undetectable by the PCR used in many studies and by health ministries. This assay is therefore not adequate for the eradication program. Next-generation genome sequence data are essential for these efforts. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  12. The Awesome Power of Yeast Evolutionary Genetics: New Genome Sequences and Strain Resources for the Saccharomyces sensu stricto Genus

    PubMed Central

    Scannell, Devin R.; Zill, Oliver A.; Rokas, Antonis; Payen, Celia; Dunham, Maitreya J.; Eisen, Michael B.; Rine, Jasper; Johnston, Mark; Hittinger, Chris Todd

    2011-01-01

    High-quality, well-annotated genome sequences and standardized laboratory strains fuel experimental and evolutionary research. We present improved genome sequences of three species of Saccharomyces sensu stricto yeasts: S. bayanus var. uvarum (CBS 7001), S. kudriavzevii (IFO 1802T and ZP 591), and S. mikatae (IFO 1815T), and describe their comparison to the genomes of S. cerevisiae and S. paradoxus. The new sequences, derived by assembling millions of short DNA sequence reads together with previously published Sanger shotgun reads, have vastly greater long-range continuity and far fewer gaps than the previously available genome sequences. New gene predictions defined a set of 5261 protein-coding orthologs across the five most commonly studied Saccharomyces yeasts, enabling a re-examination of the tempo and mode of yeast gene evolution and improved inferences of species-specific gains and losses. To facilitate experimental investigations, we generated genetically marked, stable haploid strains for all three of these Saccharomyces species. These nearly complete genome sequences and the collection of genetically marked strains provide a valuable toolset for comparative studies of gene function, metabolism, and evolution, and render Saccharomyces sensu stricto the most experimentally tractable model genus. These resources are freely available and accessible through www.SaccharomycesSensuStricto.org. PMID:22384314

  13. An improved genome assembly uncovers prolific tandem repeats in Atlantic cod.

    PubMed

    Tørresen, Ole K; Star, Bastiaan; Jentoft, Sissel; Reinar, William B; Grove, Harald; Miller, Jason R; Walenz, Brian P; Knight, James; Ekholm, Jenny M; Peluso, Paul; Edvardsen, Rolf B; Tooming-Klunderud, Ave; Skage, Morten; Lien, Sigbjørn; Jakobsen, Kjetill S; Nederbragt, Alexander J

    2017-01-18

    The first Atlantic cod (Gadus morhua) genome assembly published in 2011 was one of the early genome assemblies exclusively based on high-throughput 454 pyrosequencing. Since then, rapid advances in sequencing technologies have led to a multitude of assemblies generated for complex genomes, although many of these are of a fragmented nature with a significant fraction of bases in gaps. The development of long-read sequencing and improved software now enable the generation of more contiguous genome assemblies. By combining data from Illumina, 454 and the longer PacBio sequencing technologies, as well as integrating the results of multiple assembly programs, we have created a substantially improved version of the Atlantic cod genome assembly. The sequence contiguity of this assembly is increased fifty-fold and the proportion of gap-bases has been reduced fifteen-fold. Compared to other vertebrates, the assembly contains an unusual high density of tandem repeats (TRs). Indeed, retrospective analyses reveal that gaps in the first genome assembly were largely associated with these TRs. We show that 21% of the TRs across the assembly, 19% in the promoter regions and 12% in the coding sequences are heterozygous in the sequenced individual. The inclusion of PacBio reads combined with the use of multiple assembly programs drastically improved the Atlantic cod genome assembly by successfully resolving long TRs. The high frequency of heterozygous TRs within or in the vicinity of genes in the genome indicate a considerable standing genomic variation in Atlantic cod populations, which is likely of evolutionary importance.

  14. Draft genome sequence of an extensively drug-resistant Pseudomonas aeruginosa isolate belonging to ST644 isolated from a footpad infection in a Magellanic penguin (Spheniscus magellanicus).

    PubMed

    Sellera, Fábio P; Fernandes, Miriam R; Moura, Quézia; Souza, Tiago A; Nascimento, Cristiane L; Cerdeira, Louise; Lincopan, Nilton

    2018-03-01

    The incidence of multidrug-resistant bacteria in wildlife animals has been investigated to improve our knowledge of the spread of clinically relevant antimicrobial resistance genes. The aim of this study was to report the first draft genome sequence of an extensively drug-resistant (XDR) Pseudomonas aeruginosa ST644 isolate recovered from a Magellanic penguin with a footpad infection (bumblefoot) undergoing rehabilitation process. The genome was sequenced on an Illumina NextSeq ® platform using 150-bp paired-end reads. De novo genome assembly was performed using Velvet v.1.2.10, and the whole genome sequence was evaluated using bioinformatics approaches from the Center of Genomic Epidemiology, whereas an in-house method (mapping of raw whole genome sequence reads) was used to identify chromosomal point mutations. The genome size was calculated at 6436450bp, with 6357 protein-coding sequences and the presence of genes conferring resistance to aminoglycosides, β-lactams, phenicols, sulphonamides, tetracyclines, quinolones and fosfomycin; in addition, mutations in the genes gyrA (Thr83Ile), parC (Ser87Leu), phoQ (Arg61His) and pmrB (Tyr345His), conferring resistance to quinolones and polymyxins, respectively, were confirmed. This draft genome sequence can provide useful information for comparative genomic analysis regarding the dissemination of clinically significant antibiotic resistance genes and XDR bacterial species at the human-animal interface. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  15. Comparative Analysis of the Peanut Witches'-Broom Phytoplasma Genome Reveals Horizontal Transfer of Potential Mobile Units and Effectors

    PubMed Central

    Lo, Wen-Sui; Lin, Chan-Pin; Kuo, Chih-Horng

    2013-01-01

    Phytoplasmas are a group of bacteria that are associated with hundreds of plant diseases. Due to their economical importance and the difficulties involved in the experimental study of these obligate pathogens, genome sequencing and comparative analysis have been utilized as powerful tools to understand phytoplasma biology. To date four complete phytoplasma genome sequences have been published. However, these four strains represent limited phylogenetic diversity. In this study, we report the shotgun sequencing and evolutionary analysis of a peanut witches'-broom (PnWB) phytoplasma genome. The availability of this genome provides the first representative of the 16SrII group and substantially improves the taxon sampling to investigate genome evolution. The draft genome assembly contains 13 chromosomal contigs with a total size of 562,473 bp, covering ∼90% of the chromosome. Additionally, a complete plasmid sequence is included. Comparisons among the five available phytoplasma genomes reveal the differentiations in gene content and metabolic capacity. Notably, phylogenetic inferences of the potential mobile units (PMUs) in these genomes indicate that horizontal transfer may have occurred between divergent phytoplasma lineages. Because many effectors are associated with PMUs, the horizontal transfer of these transposon-like elements can contribute to the adaptation and diversification of these pathogens. In summary, the findings from this study highlight the importance of improving taxon sampling when investigating genome evolution. Moreover, the currently available sequences are inadequate to fully characterize the pan-genome of phytoplasmas. Future genome sequencing efforts to expand phylogenetic diversity are essential in improving our understanding of phytoplasma evolution. PMID:23626855

  16. Reanalysis and revision of the complete mitochondrial genome of Rachycentron canadum (Teleostei, Perciformes, Rachycentridae).

    PubMed

    Musika, Jidapa; Khongchatee, Adison; Phinchongsakuldit, Jaros

    2014-08-01

    The complete mitochondrial genome of cobia, Rachycentron canadum, was reanalyzed and revised. The genome is 18,008 bp in length, containing 13 protein-coding genes, 2 ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and a control region or displacement loop (D-loop). The gene arrangement is identical to that observed in most vertebrates. Base composition on the heavy strand is 30.14% A, 25.22% C, 15.80% G and 28.84% T. The D-loop region exhibits an A + T rich pattern, containing short tandem repeats of TATATACATGG, TATATGCACAA and TATATGCACGG. The mitochondrial genome studied differs from the previously published genome in two segments; the control region to 12S and ND5 to tRNA(Glu). The 12S sequence also differs from those published in the databases. Phylogeny analyses revealed that the differences could be due to errors in sequence assembly and/or sample misidentification of the previous studies.

  17. The complete mitochondrial genome of the deep-sea sponge Poecillastra laminaris (Astrophorida, Vulcanellidae).

    PubMed

    Zeng, Cong; Thomas, Leighton J; Kelly, Michelle; Gardner, Jonathan P A

    2016-05-01

    The complete mitochondrial genome of a New Zealand specimen of the deep-sea sponge Poecillastra laminaris (Sollas, 1886) (Astrophorida, Vulcanellidae), from the Colville Ridge, New Zealand, was sequenced using the 454 Life Science pyrosequencing system. To identify homologous mitochondrial sequences, the 454 reads were mapped to the complete mitochondrial genome sequence of Geodia neptuni (GeneBank No. NC_006990). The P. laminaris genome is 18,413 bp in length and includes 14 protein-coding genes, 24 transfer RNA genes and 2 ribosomal RNA genes. Gene order resembled that of other demosponges. The base composition of the genome is A (29.1%), T (35.2%), C (14.0%) and G (21.7%). This is the second published mitogenome for a sponge of the order Astrophorida and will be useful in future phylogenetic analysis of deep-sea sponges.

  18. ACTG: novel peptide mapping onto gene models.

    PubMed

    Choi, Seunghyuk; Kim, Hyunwoo; Paek, Eunok

    2017-04-15

    In many proteogenomic applications, mapping peptide sequences onto genome sequences can be very useful, because it allows us to understand origins of the gene products. Existing software tools either take the genomic position of a peptide start site as an input or assume that the peptide sequence exactly matches the coding sequence of a given gene model. In case of novel peptides resulting from genomic variations, especially structural variations such as alternative splicing, these existing tools cannot be directly applied unless users supply information about the variant, either its genomic position or its transcription model. Mapping potentially novel peptides to genome sequences, while allowing certain genomic variations, requires introducing novel gene models when aligning peptide sequences to gene structures. We have developed a new tool called ACTG (Amino aCids To Genome), which maps peptides to genome, assuming all possible single exon skipping, junction variation allowing three edit distances from the original splice sites, exon extension and frame shift. In addition, it can also consider SNVs (single nucleotide variations) during mapping phase if a user provides the VCF (variant call format) file as an input. Available at http://prix.hanyang.ac.kr/ACTG/search.jsp . eunokpaek@hanyang.ac.kr. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  19. A genomic landscape of mitochondrial DNA insertions in the pig nuclear genome provides evolutionary signatures of interspecies admixture.

    PubMed

    Schiavo, Giuseppina; Hoffmann, Orsolya Ivett; Ribani, Anisa; Utzeri, Valerio Joe; Ghionda, Marco Ciro; Bertolini, Francesca; Geraci, Claudia; Bovo, Samuele; Fontanesi, Luca

    2017-10-01

    Nuclear DNA sequences of mitochondrial origin (numts) are derived by insertion of mitochondrial DNA (mtDNA), into the nuclear genome. In this study, we provide, for the first time, a genome picture of numts inserted in the pig nuclear genome. The Sus scrofa reference nuclear genome (Sscrofa10.2) was aligned with circularized and consensus mtDNA sequences using LAST software. A total of 430 numt sequences that may represent 246 different numt integration events (57 numt regions determined by at least two numt sequences and 189 singletons) were identified, covering about 0.0078% of the nuclear genome. Numt integration events were correlated (0.99) to the chromosome length. The longest numt sequence (about 11 kbp) was located on SSC2. Six numts were sequenced and PCR amplified in pigs of European commercial and local pig breeds, of the Chinese Meishan breed and in European wild boars. Three of them were polymorphic for the presence or absence of the insertion. Surprisingly, the estimated age of insertion of two of the three polymorphic numts was more ancient than that of the speciation time of the Sus scrofa, supporting that these polymorphic sites were originated from interspecies admixture that contributed to shape the pig genome. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  20. Ensembl Genomes 2016: more genomes, more complexity.

    PubMed

    Kersey, Paul Julian; Allen, James E; Armean, Irina; Boddu, Sanjay; Bolt, Bruce J; Carvalho-Silva, Denise; Christensen, Mikkel; Davis, Paul; Falin, Lee J; Grabmueller, Christoph; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Aranganathan, Naveen K; Langridge, Nicholas; Lowy, Ernesto; McDowall, Mark D; Maheswari, Uma; Nuhn, Michael; Ong, Chuang Kee; Overduin, Bert; Paulini, Michael; Pedro, Helder; Perry, Emily; Spudich, Giulietta; Tapanari, Electra; Walts, Brandon; Williams, Gareth; Tello-Ruiz, Marcela; Stein, Joshua; Wei, Sharon; Ware, Doreen; Bolser, Daniel M; Howe, Kevin L; Kulesha, Eugene; Lawson, Daniel; Maslen, Gareth; Staines, Daniel M

    2016-01-04

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including reference sequence, gene models, transcriptional data, genetic variation and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments. These include the development of new analyses and views to represent polyploid genomes (of which bread wheat is the primary exemplar); and the continued up-scaling of the resource, which now includes over 23 000 bacterial genomes, 400 fungal genomes and 100 protist genomes, in addition to 55 genomes from invertebrate metazoa and 39 genomes from plants. This dramatic increase in the number of included genomes is one part of a broader effort to automate the integration of archival data (genome sequence, but also associated RNA sequence data and variant calls) within the context of reference genomes and make it available through the Ensembl user interfaces. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Genome sequence and analysis of a stress-tolerant, wild-derived strain of Saccharomyces cerevisiae used in biofuels research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIlwain, Sean J.; Peris, Davis; Sardi, Maria

    The genome sequences of more than 100 strains of the yeast Saccharomyces cerevisiae have been published. Unfortunately, most of these genome assemblies contain dozens to hundreds of gaps at repetitive sequences, including transposable elements, tRNAs, and subtelomeric regions, which is where novel genes generally reside. Relatively few strains have been chosen for genome sequencing based on their biofuel production potential, leaving an additional knowledge gap. Here, we describe the nearly complete genome sequence of GLBRCY22-3 (Y22-3), a strain of S. cerevisiae derived from the stress-tolerant wild strain NRRL YB-210 and subsequently engineered for xylose metabolism. After benchmarking several genome assemblymore » approaches, we developed a pipeline to integrate Pacific Biosciences (PacBio) and Illumina sequencing data and achieved one of the highest quality genome assemblies for any S. cerevisiae strain. Specifically, the contig N50 is 693 kbp, and the sequences of most chromosomes, the mitochondrial genome, and the 2-micron plasmid are complete. Our annotation predicts 92 genes that are not present in the reference genome of the laboratory strain S288c, over 70% of which were expressed. We predicted functions for 43 of these genes, 28 of which were previously uncharacterized and unnamed. Remarkably, many of these genes are predicted to be involved in stress tolerance and carbon metabolism and are shared with a Brazilian bioethanol production strain, even though the strains differ dramatically at most genetic loci. Lastly, the Y22-3 genome sequence provides an exceptionally high-quality resource for basic and applied research in bioenergy and genetics.« less

  2. Genome sequence and analysis of a stress-tolerant, wild-derived strain of Saccharomyces cerevisiae used in biofuels research

    DOE PAGES

    McIlwain, Sean J.; Peris, Davis; Sardi, Maria; ...

    2016-04-20

    The genome sequences of more than 100 strains of the yeast Saccharomyces cerevisiae have been published. Unfortunately, most of these genome assemblies contain dozens to hundreds of gaps at repetitive sequences, including transposable elements, tRNAs, and subtelomeric regions, which is where novel genes generally reside. Relatively few strains have been chosen for genome sequencing based on their biofuel production potential, leaving an additional knowledge gap. Here, we describe the nearly complete genome sequence of GLBRCY22-3 (Y22-3), a strain of S. cerevisiae derived from the stress-tolerant wild strain NRRL YB-210 and subsequently engineered for xylose metabolism. After benchmarking several genome assemblymore » approaches, we developed a pipeline to integrate Pacific Biosciences (PacBio) and Illumina sequencing data and achieved one of the highest quality genome assemblies for any S. cerevisiae strain. Specifically, the contig N50 is 693 kbp, and the sequences of most chromosomes, the mitochondrial genome, and the 2-micron plasmid are complete. Our annotation predicts 92 genes that are not present in the reference genome of the laboratory strain S288c, over 70% of which were expressed. We predicted functions for 43 of these genes, 28 of which were previously uncharacterized and unnamed. Remarkably, many of these genes are predicted to be involved in stress tolerance and carbon metabolism and are shared with a Brazilian bioethanol production strain, even though the strains differ dramatically at most genetic loci. Lastly, the Y22-3 genome sequence provides an exceptionally high-quality resource for basic and applied research in bioenergy and genetics.« less

  3. Evolutionary force of AT-rich repeats to trap genomic and episomal DNAs into the rice genome: lessons from endogenous pararetrovirus.

    PubMed

    Liu, Ruifang; Koyanagi, Kanako O; Chen, Sunlu; Kishima, Yuji

    2012-12-01

    In plant genomes, the incorporation of DNA segments is not a common method of artificial gene transfer. Nevertheless, various segments of pararetroviruses have been found in plant genomes in recent decades. The rice genome contains a number of segments of endogenous rice tungro bacilliform virus-like sequences (ERTBVs), many of which are present between AT dinucleotide repeats (ATrs). Comparison of genomic sequences between two closely related rice subspecies, japonica and indica, allowed us to verify the preferential insertion of ERTBVs into ATrs. In addition to ERTBVs, the comparative analyses showed that ATrs occasionally incorporate repeat sequences including transposable elements, and a wide range of other sequences. Besides the known genomic sequences, the insertion sequences also represented DNAs of unclear origins together with ERTBVs, suggesting that ATrs have integrated episomal DNAs that would have been suspended in the nucleus. Such insertion DNAs might be trapped by ATrs in the genome in a host-dependent manner. Conversely, other simple mono- and dinucleotide sequence repeats (SSR) were less frequently involved in insertion events relative to ATrs. Therefore, ATrs could be regarded as hot spots of double-strand breaks that induce non-homologous end joining. The insertions within ATrs occasionally generated new gene-related sequences or involved structural modifications of existing genes. Likewise, in a comparison between Arabidopsis thaliana and Arabidopsis lyrata, the insertions preferred ATrs to other SSRs. Therefore ATrs in plant genomes could be considered as genomic dumping sites that have trapped various DNA molecules and may have exerted a powerful evolutionary force. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  4. Complete mitochondrial genome of the aluminum-tolerant fungus Rhodotorula taiwanensis RS1 and comparative analysis of Basidiomycota mitochondrial genomes.

    PubMed

    Zhao, Xue Qiang; Aizawa, Tomoko; Schneider, Jessica; Wang, Chao; Shen, Ren Fang; Sunairi, Michio

    2013-04-01

    The complete mitochondrial genome of Rhodotorula taiwanensis RS1, an aluminum-tolerant Basidiomycota fungus, was determined and compared with the known mitochondrial genomes of 12 Basidiomycota species. The mitochondrial genome of R. taiwanensis RS1 is a circular DNA molecule of 40,392 bp and encodes the typical 15 mitochondrial proteins, 23 tRNAs, and small and large rRNAs as well as 10 intronic open reading frames. These genes are apparently transcribed in two directions and do not show syntenies in gene order with other investigated Basidiomycota species. The average G+C content (41%) of the mitochondrial genome of R. taiwanensis RS1 is the highest among the Basidiomycota species. Two introns were detected in the sequence of the atp9 gene of R. taiwanensis RS1, but not in that of other Basidiomycota species. Rhodotorula taiwanensis is the first species of the genus Rhodotorula whose full mitochondrial genome has been sequenced; and the data presented here supply valuable information for understanding the evolution of fungal mitochondrial genomes and researching the mechanism of aluminum tolerance in microorganisms. © 2013 The Authors. Published by Blackwell Publishing Ltd.

  5. Assembly of highly repetitive genomes using short reads: the genome of discrete typing unit III Trypanosoma cruzi strain 231.

    PubMed

    Baptista, Rodrigo P; Reis-Cunha, Joao Luis; DeBarry, Jeremy D; Chiari, Egler; Kissinger, Jessica C; Bartholomeu, Daniella C; Macedo, Andrea M

    2018-02-14

    Next-generation sequencing (NGS) methods are low-cost high-throughput technologies that produce thousands to millions of sequence reads. Despite the high number of raw sequence reads, their short length, relative to Sanger, PacBio or Nanopore reads, complicates the assembly of genomic repeats. Many genome tools are available, but the assembly of highly repetitive genome sequences using only NGS short reads remains challenging. Genome assembly of organisms responsible for important neglected diseases such as Trypanosoma cruzi, the aetiological agent of Chagas disease, is known to be challenging because of their repetitive nature. Only three of six recognized discrete typing units (DTUs) of the parasite have their draft genomes published and therefore genome evolution analyses in the taxon are limited. In this study, we developed a computational workflow to assemble highly repetitive genomes via a combination of de novo and reference-based assembly strategies to better overcome the intrinsic limitations of each, based on Illumina reads. The highly repetitive genome of the human-infecting parasite T. cruzi 231 strain was used as a test subject. The combined-assembly approach shown in this study benefits from the reference-based assembly ability to resolve highly repetitive sequences and from the de novo capacity to assemble genome-specific regions, improving the quality of the assembly. The acceptable confidence obtained by analyzing our results showed that our combined approach is an attractive option to assemble highly repetitive genomes with NGS short reads. Phylogenomic analysis including the 231 strain, the first representative of DTU III whose genome was sequenced, was also performed and provides new insights into T. cruzi genome evolution.

  6. DArT Markers Effectively Target Gene Space in the Rye Genome

    PubMed Central

    Gawroński, Piotr; Pawełkowicz, Magdalena; Tofil, Katarzyna; Uszyński, Grzegorz; Sharifova, Saida; Ahluwalia, Shivaksh; Tyrka, Mirosław; Wędzony, Maria; Kilian, Andrzej; Bolibok-Brągoszewska, Hanna

    2016-01-01

    Large genome size and complexity hamper considerably the genomics research in relevant species. Rye (Secale cereale L.) has one of the largest genomes among cereal crops and repetitive sequences account for over 90% of its length. Diversity Arrays Technology is a high-throughput genotyping method, in which a preferential sampling of gene-rich regions is achieved through the use of methylation sensitive restriction enzymes. We obtained sequences of 6,177 rye DArT markers and following a redundancy analysis assembled them into 3,737 non-redundant sequences, which were then used in homology searches against five Pooideae sequence sets. In total 515 DArT sequences could be incorporated into publicly available rye genome zippers providing a starting point for the integration of DArT- and transcript-based genomics resources in rye. Using Blast2Go pipeline we attributed putative gene functions to 1101 (29.4%) of the non-redundant DArT marker sequences, including 132 sequences with putative disease resistance-related functions, which were found to be preferentially located in the 4RL and 6RL chromosomes. Comparative analysis based on the DArT sequences revealed obvious inconsistencies between two recently published high density consensus maps of rye. Furthermore we demonstrated that DArT marker sequences can be a source of SSR polymorphisms. Obtained data demonstrate that DArT markers effectively target gene space in the large, complex, and repetitive rye genome. Through the annotation of putative gene functions and the alignment of DArT sequences relative to reference genomes we obtained information, that will complement the results of the studies, where DArT genotyping was deployed, by simplifying the gene ontology and microcolinearity based identification of candidate genes. PMID:27833625

  7. DArT Markers Effectively Target Gene Space in the Rye Genome.

    PubMed

    Gawroński, Piotr; Pawełkowicz, Magdalena; Tofil, Katarzyna; Uszyński, Grzegorz; Sharifova, Saida; Ahluwalia, Shivaksh; Tyrka, Mirosław; Wędzony, Maria; Kilian, Andrzej; Bolibok-Brągoszewska, Hanna

    2016-01-01

    Large genome size and complexity hamper considerably the genomics research in relevant species. Rye ( Secale cereale L.) has one of the largest genomes among cereal crops and repetitive sequences account for over 90% of its length. Diversity Arrays Technology is a high-throughput genotyping method, in which a preferential sampling of gene-rich regions is achieved through the use of methylation sensitive restriction enzymes. We obtained sequences of 6,177 rye DArT markers and following a redundancy analysis assembled them into 3,737 non-redundant sequences, which were then used in homology searches against five Pooideae sequence sets. In total 515 DArT sequences could be incorporated into publicly available rye genome zippers providing a starting point for the integration of DArT- and transcript-based genomics resources in rye. Using Blast2Go pipeline we attributed putative gene functions to 1101 (29.4%) of the non-redundant DArT marker sequences, including 132 sequences with putative disease resistance-related functions, which were found to be preferentially located in the 4RL and 6RL chromosomes. Comparative analysis based on the DArT sequences revealed obvious inconsistencies between two recently published high density consensus maps of rye. Furthermore we demonstrated that DArT marker sequences can be a source of SSR polymorphisms. Obtained data demonstrate that DArT markers effectively target gene space in the large, complex, and repetitive rye genome. Through the annotation of putative gene functions and the alignment of DArT sequences relative to reference genomes we obtained information, that will complement the results of the studies, where DArT genotyping was deployed, by simplifying the gene ontology and microcolinearity based identification of candidate genes.

  8. Draft genome sequence of Streptomyces sp. strain F1, a potential source for glycoside hydrolases isolated from Brazilian soil.

    PubMed

    Melo, Ricardo Rodrigues de; Persinoti, Gabriela Felix; Paixão, Douglas Antonio Alvaredo; Squina, Fábio Márcio; Ruller, Roberto; Sato, Helia Harumi

    Here, we show the draft genome sequence of Streptomyces sp. F1, a strain isolated from soil with great potential for secretion of hydrolytic enzymes used to deconstruct cellulosic biomass. The draft genome assembly of Streptomyces sp. strain F1 has 69 contigs with a total genome size of 8,142,296bp and G+C 72.65%. Preliminary genome analysis identified 175 proteins as Carbohydrate-Active Enzymes, being 85 glycoside hydrolases organized in 33 distinct families. This draft genome information provides new insights on the key genes encoding hydrolytic enzymes involved in biomass deconstruction employed by soil bacteria. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  9. Limited Genetic Diversity Preceded Extinction of the Tasmanian Tiger

    PubMed Central

    Menzies, Brandon R.; Renfree, Marilyn B.; Heider, Thomas; Mayer, Frieder; Hildebrandt, Thomas B.; Pask, Andrew J.

    2012-01-01

    The Tasmanian tiger or thylacine was the largest carnivorous marsupial when Europeans first reached Australia. Sadly, the last known thylacine died in captivity in 1936. A recent analysis of the genome of the closely related and extant Tasmanian devil demonstrated limited genetic diversity between individuals. While a similar lack of diversity has been reported for the thylacine, this analysis was based on just two individuals. Here we report the sequencing of an additional 12 museum-archived specimens collected between 102 and 159 years ago. We examined a portion of the mitochondrial DNA hyper-variable control region and determined that all sequences were on average 99.5% identical at the nucleotide level. As a measure of accuracy we also sequenced mitochondrial DNA from a mother and two offspring. As expected, these samples were found to be 100% identical, validating our methods. We also used 454 sequencing to reconstruct 2.1 kilobases of the mitochondrial genome, which shared 99.91% identity with the two complete thylacine mitochondrial genomes published previously. Our thylacine genomic data also contained three highly divergent putative nuclear mitochondrial sequences, which grouped phylogenetically with the published thylacine mitochondrial homologs but contained 100-fold more polymorphisms than the conserved fragments. Together, our data suggest that the thylacine population in Tasmania had limited genetic diversity prior to its extinction, possibly as a result of their geographic isolation from mainland Australia approximately 10,000 years ago. PMID:22530022

  10. Complete genome sequence of the moderately thermophilic mineral-sulfide-oxidizing firmicute Sulfobacillus acidophilus type strain (NAL(T)).

    PubMed

    Anderson, Iain; Chertkov, Olga; Chen, Amy; Saunders, Elizabeth; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Han, Cliff; Tapia, Roxanne; Goodwin, Lynne A; Pitluck, Sam; Liolios, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mikhailova, Natalia; Pati, Amrita; Palaniappan, Krishna; Land, Miriam; Pan, Chongle; Rohde, Manfred; Pukall, Rüdiger; Göker, Markus; Detter, John C; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Mavromatis, Konstantinos

    2012-07-30

    Sulfobacillus acidophilus Norris et al. 1996 is a member of the genus Sulfobacillus which comprises five species of the order Clostridiales. Sulfobacillus species are of interest for comparison to other sulfur and iron oxidizers and also have biomining applications. This is the first completed genome sequence of a type strain of the genus Sulfobacillus, and the second published genome of a member of the species S. acidophilus. The genome, which consists of one chromosome and one plasmid with a total size of 3,557,831 bp harbors 3,626 protein-coding and 69 RNA genes, and is a part of the GenomicEncyclopedia ofBacteria andArchaea project.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klenk, Hans-Peter; Held, Brittany; Lucas, Susan

    Saccharomonospora azurea Runmao et al. 1987 is a member to the genomically so far poorly characterized genus Saccharomonospora in the family Pseudonocardiaceae. Members of the genus Sacharomonosoras are of interest because they originate from diverse habitats, such as leaf litter, manure, compost, surface of peat, moist and over-heated grain, where they might play a role in the primary degradation of plant material by attacking hemicellulose. They are Gram-negative staining organisms classified among the usually Gram-positive actinomycetes. Next to S. viridis, S. azurea is only the second member in the genus Saccharomonospora for with a completely sequenced type strain genome willmore » be published. Here we describe the features of this organism, together with the complete genome sequence with project status 'permanent draft', and annotation. The 4,763,832 bp long chromosome with its 4,472 protein-coding and 58 RNA genes was sequenced as part of the DOE funded Community Sequencing Program (CSP) 2010 at the Joint Genome Institute (JGI).« less

  12. Noninvasive genome sampling in chimpanzees.

    PubMed

    Kohn, Michael H

    2010-12-01

    The inevitable has happened: genomic technologies have been added to our noninvasive genetic sampling repertoire. In this issue of Molecular Ecology, Perry et al. (2010) demonstrate how DNA extraction from chimpanzee faeces, followed by a series of steps to enrich for target loci, can be coupled with next-generation sequencing. These authors collected sequence and single-nucleotide polymorphism (SNP) data at more than 600 genomic loci (chromosome 21 and the X) and the complete mitochondrial DNA. By design, each locus was 'deep sequenced' to enable SNP identification. To demonstrate the reliability of their data, the work included samples from six captive chimps, which allowed for a comparison between presumably genuine SNPs obtained from blood and potentially flawed SNPs deduced from faeces. Thus, with this method, anyone with the resources, skills and ambition to do genome sequencing of wild, elusive, or protected mammals can enjoy all of the benefits of noninvasive sampling. © 2010 Blackwell Publishing Ltd.

  13. Draft genome sequence of Bradyrhizobium sp. strain BR 3262, an effective microsymbiont recommended for cowpea inoculation in Brazil.

    PubMed

    Simões-Araújo, Jean Luiz; Leite, Jakson; Marie Rouws, Luc Felicianus; Passos, Samuel Ribeiro; Xavier, Gustavo Ribeiro; Rumjanek, Norma Gouvêa; Zilli, Jerri Édson

    The strain BR 3262 was isolated from nodule of cowpea (Vigna unguiculata L. Walp) growing in soil of the Atlantic Forest area in Brazil and it is reported as an efficient nitrogen fixing bacterium associated to cowpea. Firstly, this strain was assigned as Bradyrhizobium elkanii, however, recently a more detailed genetic and molecular characterization has indicated it could be a Bradyrhizobium pachyrhizi species. We report here the draft genome sequence of B. pachyrhizi strain BR 3262, an elite bacterium used as inoculant for cowpea. The whole genome with 116 scaffolds, 8,965,178bp and 63.8% of C+G content for BR 3262 was obtained using Illumina MiSeq sequencing technology. Annotation was added by the RAST prokaryotic genome annotation service and shown 8369 coding sequences, 52 RNAs genes, classified in 504 subsystems. Published by Elsevier Editora Ltda.

  14. Characterization of complete genome sequence of the spring viremia of carp virus isolated from common carp (Cyprinus carpio) in China.

    PubMed

    Teng, Y; Liu, H; Lv, J Q; Fan, W H; Zhang, Q Y; Qin, Q W

    2007-01-01

    The complete genome of spring viraemia of carp virus (SVCV) strain A-1 isolated from cultured common carp (Cyprinus carpio) in China was sequenced and characterized. Reverse transcription-polymerase chain reaction (RT-PCR) derived clones were constructed and the DNA was sequenced. It showed that the entire genome of SVCV A-1 consists of 11,100 nucleotide base pairs, the predicted size of the viral RNA of rhabdoviruses. However, the additional insertions in bp 4633-4676 and bp 4684-4724 of SVCV A-1 were different from the other two published SVCV complete genomes. Five open reading frames (ORFs) of SVCV A-1 were identified and further confirmed by RT-PCR and DNA sequencing of their respective RT-PCR products. The 5 structural proteins encoded by the viral RNA were ordered 3'-N-P-M-G-L-5'. This is the first report of a complete genome sequence of SVCV isolated from cultured carp in China. Phylogenetic analysis indicates that SVCV A-1 is closely related to the members of the genus Vesiculovirus, family Rhabdoviridae.

  15. Genomewide Function Conservation and Phylogeny in the Herpesviridae

    PubMed Central

    Albà, M. Mar; Das, Rhiju; Orengo, Christine A.; Kellam, Paul

    2001-01-01

    The Herpesviridae are a large group of well-characterized double-stranded DNA viruses for which many complete genome sequences have been determined. We have extracted protein sequences from all predicted open reading frames of 19 herpesvirus genomes. Sequence comparison and protein sequence clustering methods have been used to construct herpesvirus protein homologous families. This resulted in 1692 proteins being clustered into 243 multiprotein families and 196 singleton proteins. Predicted functions were assigned to each homologous family based on genome annotation and published data and each family classified into seven broad functional groups. Phylogenetic profiles were constructed for each herpesvirus from the homologous protein families and used to determine conserved functions and genomewide phylogenetic trees. These trees agreed with molecular-sequence-derived trees and allowed greater insight into the phylogeny of ungulate and murine gammaherpesviruses. PMID:11156614

  16. gEVE: a genome-based endogenous viral element database provides comprehensive viral protein-coding sequences in mammalian genomes.

    PubMed

    Nakagawa, So; Takahashi, Mahoko Ueda

    2016-01-01

    In mammals, approximately 10% of genome sequences correspond to endogenous viral elements (EVEs), which are derived from ancient viral infections of germ cells. Although most EVEs have been inactivated, some open reading frames (ORFs) of EVEs obtained functions in the hosts. However, EVE ORFs usually remain unannotated in the genomes, and no databases are available for EVE ORFs. To investigate the function and evolution of EVEs in mammalian genomes, we developed EVE ORF databases for 20 genomes of 19 mammalian species. A total of 736,771 non-overlapping EVE ORFs were identified and archived in a database named gEVE (http://geve.med.u-tokai.ac.jp). The gEVE database provides nucleotide and amino acid sequences, genomic loci and functional annotations of EVE ORFs for all 20 genomes. In analyzing RNA-seq data with the gEVE database, we successfully identified the expressed EVE genes, suggesting that the gEVE database facilitates studies of the genomic analyses of various mammalian species.Database URL: http://geve.med.u-tokai.ac.jp. © The Author(s) 2016. Published by Oxford University Press.

  17. Draft genome sequence of a multidrug-resistant Aeromonas hydrophila ST508 strain carrying rmtD and blaCTX-M-131 isolated from a bloodstream infection.

    PubMed

    Moura, Quézia; Fernandes, Miriam R; Cerdeira, Louise; Santos, Ana Carolina M; de Souza, Tiago A; Ienne, Susan; Pignatari, Antonio Carlos C; Gales, Ana C; Silva, Rosa M; Lincopan, Nilton

    2017-09-01

    Here we report the draft genome sequence of a multidrug-resistant (MDR) Aeromonas hydrophila strain belonging to sequence type 508 (ST508) isolated from a human bloodstream infection. Assembly and annotation of this draft genome resulted in 5028498bp and revealed the presence of 16S rRNA methylase rmtD and bla CTX-M-131 genes encoding high-level resistance to aminoglycosides and cephalosporins, respectively, as well as multiple virulence genes. This draft genome can provide significant information for understanding mechanisms on the establishment and treatment of infections caused by this pathogen. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  18. Establishing gene models from the Pinus pinaster genome using gene capture and BAC sequencing.

    PubMed

    Seoane-Zonjic, Pedro; Cañas, Rafael A; Bautista, Rocío; Gómez-Maldonado, Josefa; Arrillaga, Isabel; Fernández-Pozo, Noé; Claros, M Gonzalo; Cánovas, Francisco M; Ávila, Concepción

    2016-02-27

    In the era of DNA throughput sequencing, assembling and understanding gymnosperm mega-genomes remains a challenge. Although drafts of three conifer genomes have recently been published, this number is too low to understand the full complexity of conifer genomes. Using techniques focused on specific genes, gene models can be established that can aid in the assembly of gene-rich regions, and this information can be used to compare genomes and understand functional evolution. In this study, gene capture technology combined with BAC isolation and sequencing was used as an experimental approach to establish de novo gene structures without a reference genome. Probes were designed for 866 maritime pine transcripts to sequence genes captured from genomic DNA. The gene models were constructed using GeneAssembler, a new bioinformatic pipeline, which reconstructed over 82% of the gene structures, and a high proportion (85%) of the captured gene models contained sequences from the promoter regulatory region. In a parallel experiment, the P. pinaster BAC library was screened to isolate clones containing genes whose cDNA sequence were already available. BAC clones containing the asparagine synthetase, sucrose synthase and xyloglucan endotransglycosylase gene sequences were isolated and used in this study. The gene models derived from the gene capture approach were compared with the genomic sequences derived from the BAC clones. This combined approach is a particularly efficient way to capture the genomic structures of gene families with a small number of members. The experimental approach used in this study is a valuable combined technique to study genomic gene structures in species for which a reference genome is unavailable. It can be used to establish exon/intron boundaries in unknown gene structures, to reconstruct incomplete genes and to obtain promoter sequences that can be used for transcriptional studies. A bioinformatics algorithm (GeneAssembler) is also provided as a Ruby gem for this class of analyses.

  19. Genome-Wide Identification of Regulatory Sequences Undergoing Accelerated Evolution in the Human Genome.

    PubMed

    Dong, Xinran; Wang, Xiao; Zhang, Feng; Tian, Weidong

    2016-10-01

    Accelerated evolution of regulatory sequence can alter the expression pattern of target genes, and cause phenotypic changes. In this study, we used DNase I hypersensitive sites (DHSs) to annotate putative regulatory sequences in the human genome, and conducted a genome-wide analysis of the effects of accelerated evolution on regulatory sequences. Working under the assumption that local ancient repeat elements of DHSs are under neutral evolution, we discovered that ∼0.44% of DHSs are under accelerated evolution (ace-DHSs). We found that ace-DHSs tend to be more active than background DHSs, and are strongly associated with epigenetic marks of active transcription. The target genes of ace-DHSs are significantly enriched in neuron-related functions, and their expression levels are positively selected in the human brain. Thus, these lines of evidences strongly suggest that accelerated evolution on regulatory sequences plays important role in the evolution of human-specific phenotypes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Complete genome sequence of the haloalkaliphilic, obligately chemolithoautotrophic thiosulfate and sulfide-oxidizing γ-proteobacterium Thioalkalimicrobium cyclicum type strain ALM 1 (DSM 14477 T)

    DOE PAGES

    Kappler, Ulrike; Davenport, Karen W.; Beatson, Scott; ...

    2016-06-03

    Thioalkalimicrobium cyclicum (Sorokin et al. 2002) is a member of the family Piscirickettsiaceae in the order Thiotrichales. The -proteobacterium belongs to the colourless sulfur-oxidizing bacteria isolated from saline soda lakes with stable alkaline pH, such as Lake Mono (California) and Soap Lake (Washington State). Strain ALM 1 T is characterized by its adaptation to life in the oxic/anoxic interface towards the less saline aerobic waters (mixolimnion) of the stable stratified alkaline salt lakes. Strain ALM 1 T is the first representative of the genus Thioalkalimicrobium whose genome sequence has been deciphered and the fourth genome sequence of a type strainmore » of the Piscirickettsiaceae to be published. As a result, the 1,932,455 bp long chromosome with its 1,684 protein-coding and 50 RNA genes was sequenced as part of the DOE Joint Genome Institute Community Sequencing Program (CSP) 2008.« less

  1. Complete genome sequence of the haloalkaliphilic, obligately chemolithoautotrophic thiosulfate and sulfide-oxidizing γ-proteobacterium Thioalkalimicrobium cyclicum type strain ALM 1 (DSM 14477 T)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kappler, Ulrike; Davenport, Karen W.; Beatson, Scott

    Thioalkalimicrobium cyclicum (Sorokin et al. 2002) is a member of the family Piscirickettsiaceae in the order Thiotrichales. The -proteobacterium belongs to the colourless sulfur-oxidizing bacteria isolated from saline soda lakes with stable alkaline pH, such as Lake Mono (California) and Soap Lake (Washington State). Strain ALM 1 T is characterized by its adaptation to life in the oxic/anoxic interface towards the less saline aerobic waters (mixolimnion) of the stable stratified alkaline salt lakes. Strain ALM 1 T is the first representative of the genus Thioalkalimicrobium whose genome sequence has been deciphered and the fourth genome sequence of a type strainmore » of the Piscirickettsiaceae to be published. As a result, the 1,932,455 bp long chromosome with its 1,684 protein-coding and 50 RNA genes was sequenced as part of the DOE Joint Genome Institute Community Sequencing Program (CSP) 2008.« less

  2. Radiation hybrid maps of the D-genome of Aegilops tauschii and their application in sequence assembly of large and complex plant genomes.

    PubMed

    Kumar, Ajay; Seetan, Raed; Mergoum, Mohamed; Tiwari, Vijay K; Iqbal, Muhammad J; Wang, Yi; Al-Azzam, Omar; Šimková, Hana; Luo, Ming-Cheng; Dvorak, Jan; Gu, Yong Q; Denton, Anne; Kilian, Andrzej; Lazo, Gerard R; Kianian, Shahryar F

    2015-10-16

    The large and complex genome of bread wheat (Triticum aestivum L., ~17 Gb) requires high resolution genome maps with saturated marker scaffolds to anchor and orient BAC contigs/ sequence scaffolds for whole genome assembly. Radiation hybrid (RH) mapping has proven to be an excellent tool for the development of such maps for it offers much higher and more uniform marker resolution across the length of the chromosome compared to genetic mapping and does not require marker polymorphism per se, as it is based on presence (retention) vs. absence (deletion) marker assay. In this study, a 178 line RH panel was genotyped with SSRs and DArT markers to develop the first high resolution RH maps of the entire D-genome of Ae. tauschii accession AL8/78. To confirm map order accuracy, the AL8/78-RH maps were compared with:1) a DArT consensus genetic map constructed using more than 100 bi-parental populations, 2) a RH map of the D-genome of reference hexaploid wheat 'Chinese Spring', and 3) two SNP-based genetic maps, one with anchored D-genome BAC contigs and another with anchored D-genome sequence scaffolds. Using marker sequences, the RH maps were also anchored with a BAC contig based physical map and draft sequence of the D-genome of Ae. tauschii. A total of 609 markers were mapped to 503 unique positions on the seven D-genome chromosomes, with a total map length of 14,706.7 cR. The average distance between any two marker loci was 29.2 cR which corresponds to 2.1 cM or 9.8 Mb. The average mapping resolution across the D-genome was estimated to be 0.34 Mb (Mb/cR) or 0.07 cM (cM/cR). The RH maps showed almost perfect agreement with several published maps with regard to chromosome assignments of markers. The mean rank correlations between the position of markers on AL8/78 maps and the four published maps, ranged from 0.75 to 0.92, suggesting a good agreement in marker order. With 609 mapped markers, a total of 2481 deletions for the whole D-genome were detected with an average deletion size of 42.0 Mb. A total of 520 markers were anchored to 216 Ae. tauschii sequence scaffolds, 116 of which were not anchored earlier to the D-genome. This study reports the development of first high resolution RH maps for the D-genome of Ae. tauschii accession AL8/78, which were then used for the anchoring of unassigned sequence scaffolds. This study demonstrates how RH mapping, which offered high and uniform resolution across the length of the chromosome, can facilitate the complete sequence assembly of the large and complex plant genomes.

  3. Draft genome sequence of a multidrug-resistant KPC-2-producing Enterobacter aerogenes isolated from a hospitalised patient in Brazil.

    PubMed

    Moura, Quézia; Fernandes, Miriam R; Cerdeira, Louise; Nhambe, Lúcia F; Ienne, Susan; Souza, Tiago A; Lincopan, Nilton

    2017-09-01

    Multidrug-resistant (MDR) Enterobacter aerogenes strains are frequently associated with nosocomial infections and high mortality rates, representing a serious public health problem. The aim of this study was to present the draft genome sequence of a MDR KPC-2-producing E. aerogenes isolated from a perineal swab of a hospitalised patient in Brazil. Genomic DNA was sequenced using an Illumina MiSeq platform. De novo genome assembly was carried out using the A5-Miseq pipeline, and whole-genome sequence analysis was performed using tools from the Center for Genomic Epidemiology. The strain harboured resistance genes to β-lactams, aminoglycosides, sulphonamides and trimethoprim in addition to genes encoding multidrug efflux system proteins, a quaternary ammonium transporter and heavy metal efflux system proteins. In addition, the strain harboured genes encoding diverse virulence factors. These data might allow a better understanding of the genetic basis of antimicrobial resistance and virulence in E. aerogenes strains. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  4. Genome Sequencing and Analysis of Yersina pestis KIM D27, an Avirulent Strain Exempt from Select Agent Regulation

    PubMed Central

    Losada, Liliana; Varga, John J.; Hostetler, Jessica; Radune, Diana; Kim, Maria; Durkin, Scott; Schneewind, Olaf; Nierman, William C.

    2011-01-01

    Yersinia pestis is the causative agent of the plague. Y. pestis KIM 10+ strain was passaged and selected for loss of the 102 kb pgm locus, resulting in an attenuated strain, KIM D27. In this study, whole genome sequencing was performed on KIM D27 in order to identify any additional differences. Initial assemblies of 454 data were highly fragmented, and various bioinformatic tools detected between 15 and 465 SNPs and INDELs when comparing both strains, the vast majority associated with A or T homopolymer sequences. Consequently, Illumina sequencing was performed to improve the quality of the assembly. Hybrid sequence assemblies were performed and a total of 56 validated SNP/INDELs and 5 repeat differences were identified in the D27 strain relative to published KIM 10+ sequence. However, further analysis showed that 55 of these SNP/INDELs and 3 repeats were errors in the KIM 10+ reference sequence. We conclude that both 454 and Illumina sequencing were required to obtain the most accurate and rapid sequence results for Y. pestis KIMD27. SNP and INDELS calls were most accurate when both Newbler and CLC Genomics Workbench were employed. For purposes of obtaining high quality genome sequence differences between strains, any identified differences should be verified in both the new and reference genomes. PMID:21559501

  5. Genome sequencing and analysis of Yersina pestis KIM D27, an avirulent strain exempt from select agent regulation.

    PubMed

    Losada, Liliana; Varga, John J; Hostetler, Jessica; Radune, Diana; Kim, Maria; Durkin, Scott; Schneewind, Olaf; Nierman, William C

    2011-04-29

    Yersinia pestis is the causative agent of the plague. Y. pestis KIM 10+ strain was passaged and selected for loss of the 102 kb pgm locus, resulting in an attenuated strain, KIM D27. In this study, whole genome sequencing was performed on KIM D27 in order to identify any additional differences. Initial assemblies of 454 data were highly fragmented, and various bioinformatic tools detected between 15 and 465 SNPs and INDELs when comparing both strains, the vast majority associated with A or T homopolymer sequences. Consequently, Illumina sequencing was performed to improve the quality of the assembly. Hybrid sequence assemblies were performed and a total of 56 validated SNP/INDELs and 5 repeat differences were identified in the D27 strain relative to published KIM 10+ sequence. However, further analysis showed that 55 of these SNP/INDELs and 3 repeats were errors in the KIM 10+ reference sequence. We conclude that both 454 and Illumina sequencing were required to obtain the most accurate and rapid sequence results for Y. pestis KIMD27. SNP and INDELS calls were most accurate when both Newbler and CLC Genomics Workbench were employed. For purposes of obtaining high quality genome sequence differences between strains, any identified differences should be verified in both the new and reference genomes.

  6. Deep whole-genome sequencing of 90 Han Chinese genomes.

    PubMed

    Lan, Tianming; Lin, Haoxiang; Zhu, Wenjuan; Laurent, Tellier Christian Asker Melchior; Yang, Mengcheng; Liu, Xin; Wang, Jun; Wang, Jian; Yang, Huanming; Xu, Xun; Guo, Xiaosen

    2017-09-01

    Next-generation sequencing provides a high-resolution insight into human genetic information. However, the focus of previous studies has primarily been on low-coverage data due to the high cost of sequencing. Although the 1000 Genomes Project and the Haplotype Reference Consortium have both provided powerful reference panels for imputation, low-frequency and novel variants remain difficult to discover and call with accuracy on the basis of low-coverage data. Deep sequencing provides an optimal solution for the problem of these low-frequency and novel variants. Although whole-exome sequencing is also a viable choice for exome regions, it cannot account for noncoding regions, sometimes resulting in the absence of important, causal variants. For Han Chinese populations, the majority of variants have been discovered based upon low-coverage data from the 1000 Genomes Project. However, high-coverage, whole-genome sequencing data are limited for any population, and a large amount of low-frequency, population-specific variants remain uncharacterized. We have performed whole-genome sequencing at a high depth (∼×80) of 90 unrelated individuals of Chinese ancestry, collected from the 1000 Genomes Project samples, including 45 Northern Han Chinese and 45 Southern Han Chinese samples. Eighty-three of these 90 have been sequenced by the 1000 Genomes Project. We have identified 12 568 804 single nucleotide polymorphisms, 2 074 210 short InDels, and 26 142 structural variations from these 90 samples. Compared to the Han Chinese data from the 1000 Genomes Project, we have found 7 000 629 novel variants with low frequency (defined as minor allele frequency < 5%), including 5 813 503 single nucleotide polymorphisms, 1 169 199 InDels, and 17 927 structural variants. Using deep sequencing data, we have built a greatly expanded spectrum of genetic variation for the Han Chinese genome. Compared to the 1000 Genomes Project, these Han Chinese deep sequencing data enhance the characterization of a large number of low-frequency, novel variants. This will be a valuable resource for promoting Chinese genetics research and medical development. Additionally, it will provide a valuable supplement to the 1000 Genomes Project, as well as to other human genome projects. © The Authors 2017. Published by Oxford University Press.

  7. Extraction of High Molecular Weight DNA from Fungal Rust Spores for Long Read Sequencing.

    PubMed

    Schwessinger, Benjamin; Rathjen, John P

    2017-01-01

    Wheat rust fungi are complex organisms with a complete life cycle that involves two different host plants and five different spore types. During the asexual infection cycle on wheat, rusts produce massive amounts of dikaryotic urediniospores. These spores are dikaryotic (two nuclei) with each nucleus containing one haploid genome. This dikaryotic state is likely to contribute to their evolutionary success, making them some of the major wheat pathogens globally. Despite this, most published wheat rust genomes are highly fragmented and contain very little haplotype-specific sequence information. Current long-read sequencing technologies hold great promise to provide more contiguous and haplotype-phased genome assemblies. Long reads are able to span repetitive regions and phase structural differences between the haplomes. This increased genome resolution enables the identification of complex loci and the study of genome evolution beyond simple nucleotide polymorphisms. Long-read technologies require pure high molecular weight DNA as an input for sequencing. Here, we describe a DNA extraction protocol for rust spores that yields pure double-stranded DNA molecules with molecular weight of >50 kilo-base pairs (kbp). The isolated DNA is of sufficient purity for PacBio long-read sequencing, but may require additional purification for other sequencing technologies such as Nanopore and 10× Genomics.

  8. Rapid and Accurate Sequencing of Enterovirus Genomes Using MinION Nanopore Sequencer.

    PubMed

    Wang, Ji; Ke, Yue Hua; Zhang, Yong; Huang, Ke Qiang; Wang, Lei; Shen, Xin Xin; Dong, Xiao Ping; Xu, Wen Bo; Ma, Xue Jun

    2017-10-01

    Knowledge of an enterovirus genome sequence is very important in epidemiological investigation to identify transmission patterns and ascertain the extent of an outbreak. The MinION sequencer is increasingly used to sequence various viral pathogens in many clinical situations because of its long reads, portability, real-time accessibility of sequenced data, and very low initial costs. However, information is lacking on MinION sequencing of enterovirus genomes. In this proof-of-concept study using Enterovirus 71 (EV71) and Coxsackievirus A16 (CA16) strains as examples, we established an amplicon-based whole genome sequencing method using MinION. We explored the accuracy, minimum sequencing time, discrimination and high-throughput sequencing ability of MinION, and compared its performance with Sanger sequencing. Within the first minute (min) of sequencing, the accuracy of MinION was 98.5% for the single EV71 strain and 94.12%-97.33% for 10 genetically-related CA16 strains. In as little as 14 min, 99% identity was reached for the single EV71 strain, and in 17 min (on average), 99% identity was achieved for 10 CA16 strains in a single run. MinION is suitable for whole genome sequencing of enteroviruses with sufficient accuracy and fine discrimination and has the potential as a fast, reliable and convenient method for routine use. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  9. mySyntenyPortal: an application package to construct websites for synteny block analysis.

    PubMed

    Lee, Jongin; Lee, Daehwan; Sim, Mikang; Kwon, Daehong; Kim, Juyeon; Ko, Younhee; Kim, Jaebum

    2018-06-05

    Advances in sequencing technologies have facilitated large-scale comparative genomics based on whole genome sequencing. Constructing and investigating conserved genomic regions among multiple species (called synteny blocks) are essential in the comparative genomics. However, they require significant amounts of computational resources and time in addition to bioinformatics skills. Many web interfaces have been developed to make such tasks easier. However, these web interfaces cannot be customized for users who want to use their own set of genome sequences or definition of synteny blocks. To resolve this limitation, we present mySyntenyPortal, a stand-alone application package to construct websites for synteny block analyses by using users' own genome data. mySyntenyPortal provides both command line and web-based interfaces to build and manage websites for large-scale comparative genomic analyses. The websites can be also easily published and accessed by other users. To demonstrate the usability of mySyntenyPortal, we present an example study for building websites to compare genomes of three mammalian species (human, mouse, and cow) and show how they can be easily utilized to identify potential genes affected by genome rearrangements. mySyntenyPortal will contribute for extended comparative genomic analyses based on large-scale whole genome sequences by providing unique functionality to support the easy creation of interactive websites for synteny block analyses from user's own genome data.

  10. Paging through history: parchment as a reservoir of ancient DNA for next generation sequencing

    PubMed Central

    Teasdale, M. D.; van Doorn, N. L.; Fiddyment, S.; Webb, C. C.; O'Connor, T.; Hofreiter, M.; Collins, M. J.; Bradley, D. G.

    2015-01-01

    Parchment represents an invaluable cultural reservoir. Retrieving an additional layer of information from these abundant, dated livestock-skins via the use of ancient DNA (aDNA) sequencing has been mooted by a number of researchers. However, prior PCR-based work has indicated that this may be challenged by cross-individual and cross-species contamination, perhaps from the bulk parchment preparation process. Here we apply next generation sequencing to two parchments of seventeenth and eighteenth century northern English provenance. Following alignment to the published sheep, goat, cow and human genomes, it is clear that the only genome displaying substantial unique homology is sheep and this species identification is confirmed by collagen peptide mass spectrometry. Only 4% of sequence reads align preferentially to a different species indicating low contamination across species. Moreover, mitochondrial DNA sequences suggest an upper bound of contamination at 5%. Over 45% of reads aligned to the sheep genome, and even this limited sequencing exercise yield 9 and 7% of each sampled sheep genome post filtering, allowing the mapping of genetic affinity to modern British sheep breeds. We conclude that parchment represents an excellent substrate for genomic analyses of historical livestock. PMID:25487331

  11. Identification of the genomic locus for the human Rieske Fe-S Protein gene on Chromosome 19q12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pennacchio, L.A.

    1994-05-06

    We have identified the chromosomal location of the human Rieske Iron-Sulfur Protein (UQCRFS1) gene. Mapping by hybridization to a panel of monochromosomal hybrid cell lines indicated that the gene was either on chromosome 19 or 22. By screening a human chromosome 19 specific genomic cosmid library with an oligonucleotide probe made from the published Rieske cDNA sequence, we identified a corresponding cosmid. Portions of this cosmid were sequenced directly. The exon, exon:intron junction, and flanking sequences verified that this cosmid contains the genomic locus. Fluorescent in situ hybridization (FISH) was performed to localize this cosmid to chromosome band 19q12.

  12. Draft genome sequence of bitter gourd (Momordica charantia), a vegetable and medicinal plant in tropical and subtropical regions.

    PubMed

    Urasaki, Naoya; Takagi, Hiroki; Natsume, Satoshi; Uemura, Aiko; Taniai, Naoki; Miyagi, Norimichi; Fukushima, Mai; Suzuki, Shouta; Tarora, Kazuhiko; Tamaki, Moritoshi; Sakamoto, Moriaki; Terauchi, Ryohei; Matsumura, Hideo

    2017-02-01

    Bitter gourd (Momordica charantia) is an important vegetable and medicinal plant in tropical and subtropical regions globally. In this study, the draft genome sequence of a monoecious bitter gourd inbred line, OHB3-1, was analyzed. Through Illumina sequencing and de novo assembly, scaffolds of 285.5 Mb in length were generated, corresponding to ∼84% of the estimated genome size of bitter gourd (339 Mb). In this draft genome sequence, 45,859 protein-coding gene loci were identified, and transposable elements accounted for 15.3% of the whole genome. According to synteny mapping and phylogenetic analysis of conserved genes, bitter gourd was more related to watermelon (Citrullus lanatus) than to cucumber (Cucumis sativus) or melon (C. melo). Using RAD-seq analysis, 1507 marker loci were genotyped in an F2 progeny of two bitter gourd lines, resulting in an improved linkage map, comprising 11 linkage groups. By anchoring RAD tag markers, 255 scaffolds were assigned to the linkage map. Comparative analysis of genome sequences and predicted genes determined that putative trypsin-inhibitor and ribosome-inactivating genes were distinctive in the bitter gourd genome. These genes could characterize the bitter gourd as a medicinal plant. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  13. Living laboratory: whole-genome sequencing as a learning healthcare enterprise.

    PubMed

    Angrist, M; Jamal, L

    2015-04-01

    With the proliferation of affordable large-scale human genomic data come profound and vexing questions about management of such data and their clinical uncertainty. These issues challenge the view that genomic research on human beings can (or should) be fully segregated from clinical genomics, either conceptually or practically. Here, we argue that the sharp distinction between clinical care and research is especially problematic in the context of large-scale genomic sequencing of people with suspected genetic conditions. Core goals of both enterprises (e.g. understanding genotype-phenotype relationships; generating an evidence base for genomic medicine) are more likely to be realized at a population scale if both those ordering and those undergoing sequencing for diagnostic reasons are routinely and longitudinally studied. Rather than relying on expensive and lengthy randomized clinical trials and meta-analyses, we propose leveraging nascent clinical-research hybrid frameworks into a broader, more permanent instantiation of exploratory medical sequencing. Such an investment could enlighten stakeholders about the real-life challenges posed by whole-genome sequencing, such as establishing the clinical actionability of genetic variants, returning 'off-target' results to families, developing effective service delivery models and monitoring long-term outcomes. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Recovering complete mitochondrial genome sequences from RNA-Seq: A case study of Polytomella non-photosynthetic green algae.

    PubMed

    Tian, Yao; Smith, David Roy

    2016-05-01

    Thousands of mitochondrial genomes have been sequenced, but there are comparatively few available mitochondrial transcriptomes. This might soon be changing. High-throughput RNA sequencing (RNA-Seq) techniques have made it fast and cheap to generate massive amounts of mitochondrial transcriptomic data. Here, we explore the utility of RNA-Seq for assembling mitochondrial genomes and studying their expression patterns. Specifically, we investigate the mitochondrial transcriptomes from Polytomella non-photosynthetic green algae, which have among the smallest, most reduced mitochondrial genomes from the Archaeplastida as well as fragmented rRNA-coding regions, palindromic genes, and linear chromosomes with telomeres. Isolation of whole genomic RNA from the four known Polytomella species followed by Illumina paired-end sequencing generated enough mitochondrial-derived reads to easily recover almost-entire mitochondrial genome sequences. Read-mapping and coverage statistics also gave insights into Polytomella mitochondrial transcriptional architecture, revealing polycistronic transcripts and the expression of telomeres and palindromic genes. Ultimately, RNA-Seq is a promising, cost-effective technique for studying mitochondrial genetics, but it does have drawbacks, which are discussed. One of its greatest potentials, as shown here, is that it can be used to generate near-complete mitochondrial genome sequences, which could be particularly useful in situations where there is a lack of available mtDNA data. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Sequencing and comparative analyses of the genomes of zoysiagrasses.

    PubMed

    Tanaka, Hidenori; Hirakawa, Hideki; Kosugi, Shunichi; Nakayama, Shinobu; Ono, Akiko; Watanabe, Akiko; Hashiguchi, Masatsugu; Gondo, Takahiro; Ishigaki, Genki; Muguerza, Melody; Shimizu, Katsuya; Sawamura, Noriko; Inoue, Takayasu; Shigeki, Yuichi; Ohno, Naoki; Tabata, Satoshi; Akashi, Ryo; Sato, Shusei

    2016-04-01

    Zoysiais a warm-season turfgrass, which comprises 11 allotetraploid species (2n= 4x= 40), each possessing different morphological and physiological traits. To characterize the genetic systems of Zoysia plants and to analyse their structural and functional differences in individual species and accessions, we sequenced the genomes of Zoysia species using HiSeq and MiSeq platforms. As a reference sequence of Zoysia species, we generated a high-quality draft sequence of the genome of Z. japonica accession 'Nagirizaki' (334 Mb) in which 59,271 protein-coding genes were predicted. In parallel, draft genome sequences of Z. matrella 'Wakaba' and Z. pacifica 'Zanpa' were also generated for comparative analyses. To investigate the genetic diversity among the Zoysia species, genome sequence reads of three additional accessions, Z. japonica'Kyoto', Z. japonica'Miyagi' and Z. matrella'Chiba Fair Green', were accumulated, and aligned against the reference genome of 'Nagirizaki' along with those from 'Wakaba' and 'Zanpa'. As a result, we detected 7,424,163 single-nucleotide polymorphisms and 852,488 short indels among these species. The information obtained in this study will be valuable for basic studies on zoysiagrass evolution and genetics as well as for the breeding of zoysiagrasses, and is made available in the 'Zoysia Genome Database' at http://zoysia.kazusa.or.jp. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  16. RPAN: rice pan-genome browser for ∼3000 rice genomes.

    PubMed

    Sun, Chen; Hu, Zhiqiang; Zheng, Tianqing; Lu, Kuangchen; Zhao, Yue; Wang, Wensheng; Shi, Jianxin; Wang, Chunchao; Lu, Jinyuan; Zhang, Dabing; Li, Zhikang; Wei, Chaochun

    2017-01-25

    A pan-genome is the union of the gene sets of all the individuals of a clade or a species and it provides a new dimension of genome complexity with the presence/absence variations (PAVs) of genes among these genomes. With the progress of sequencing technologies, pan-genome study is becoming affordable for eukaryotes with large-sized genomes. The Asian cultivated rice, Oryza sativa L., is one of the major food sources for the world and a model organism in plant biology. Recently, the 3000 Rice Genome Project (3K RGP) sequenced more than 3000 rice genomes with a mean sequencing depth of 14.3×, which provided a tremendous resource for rice research. In this paper, we present a genome browser, Rice Pan-genome Browser (RPAN), as a tool to search and visualize the rice pan-genome derived from 3K RGP. RPAN contains a database of the basic information of 3010 rice accessions, including genomic sequences, gene annotations, PAV information and gene expression data of the rice pan-genome. At least 12 000 novel genes absent in the reference genome were included. RPAN also provides multiple search and visualization functions. RPAN can be a rich resource for rice biology and rice breeding. It is available at http://cgm.sjtu.edu.cn/3kricedb/ or http://www.rmbreeding.cn/pan3k. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Genome sequence determination and metagenomic characterization of a Dehalococcoides mixed culture grown on cis-1,2-dichloroethene.

    PubMed

    Yohda, Masafumi; Yagi, Osami; Takechi, Ayane; Kitajima, Mizuki; Matsuda, Hisashi; Miyamura, Naoaki; Aizawa, Tomoko; Nakajima, Mutsuyasu; Sunairi, Michio; Daiba, Akito; Miyajima, Takashi; Teruya, Morimi; Teruya, Kuniko; Shiroma, Akino; Shimoji, Makiko; Tamotsu, Hinako; Juan, Ayaka; Nakano, Kazuma; Aoyama, Misako; Terabayashi, Yasunobu; Satou, Kazuhito; Hirano, Takashi

    2015-07-01

    A Dehalococcoides-containing bacterial consortium that performed dechlorination of 0.20 mM cis-1,2-dichloroethene to ethene in 14 days was obtained from the sediment mud of the lotus field. To obtain detailed information of the consortium, the metagenome was analyzed using the short-read next-generation sequencer SOLiD 3. Matching the obtained sequence tags with the reference genome sequences indicated that the Dehalococcoides sp. in the consortium was highly homologous to Dehalococcoides mccartyi CBDB1 and BAV1. Sequence comparison with the reference sequence constructed from 16S rRNA gene sequences in a public database showed the presence of Sedimentibacter, Sulfurospirillum, Clostridium, Desulfovibrio, Parabacteroides, Alistipes, Eubacterium, Peptostreptococcus and Proteocatella in addition to Dehalococcoides sp. After further enrichment, the members of the consortium were narrowed down to almost three species. Finally, the full-length circular genome sequence of the Dehalococcoides sp. in the consortium, D. mccartyi IBARAKI, was determined by analyzing the metagenome with the single-molecule DNA sequencer PacBio RS. The accuracy of the sequence was confirmed by matching it to the tag sequences obtained by SOLiD 3. The genome is 1,451,062 nt and the number of CDS is 1566, which includes 3 rRNA genes and 47 tRNA genes. There exist twenty-eight RDase genes that are accompanied by the genes for anchor proteins. The genome exhibits significant sequence identity with other Dehalococcoides spp. throughout the genome, but there exists significant difference in the distribution RDase genes. The combination of a short-read next-generation DNA sequencer and a long-read single-molecule DNA sequencer gives detailed information of a bacterial consortium. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. AmphiBase: A new genomic resource for non-model amphibian species.

    PubMed

    Kwon, Taejoon

    2017-01-01

    More than five thousand genes annotated in the recently published Xenopus laevis and Xenopus tropicalis genomes do not have a candidate orthologous counterpart in other vertebrate species. To determine whether these sequences represent genuine amphibian-specific genes or annotation errors, it is necessary to analyze them alongside sequences from other amphibian species. However, due to large genome sizes and an abundance of repeat sequences, there are limited numbers of gene sequences available from amphibian species other than Xenopus. AmphiBase is a new genomic resource covering non-model amphibian species, based on public domain transcriptome data and computational methods developed during the X. laevis genome project. Here, I review the current status of AmphiBase, including amphibian species with available transcriptome data or biological samples, and describe the challenges of building a comprehensive amphibian genomic resource in the absence of genomes. This mini-review will be informative for researchers interested in functional genomic experiments using amphibian model organisms, such as Xenopus and axolotl, and will assist in interpretation of results implicating "orphan genes." Additionally, this study highlights an opportunity for researchers working on non-model amphibian species to collaborate in their future efforts and develop amphibian genomic resources as a community. © 2017 Wiley Periodicals, Inc.

  19. Sequence analysis of the genome of carnation (Dianthus caryophyllus L.).

    PubMed

    Yagi, Masafumi; Kosugi, Shunichi; Hirakawa, Hideki; Ohmiya, Akemi; Tanase, Koji; Harada, Taro; Kishimoto, Kyutaro; Nakayama, Masayoshi; Ichimura, Kazuo; Onozaki, Takashi; Yamaguchi, Hiroyasu; Sasaki, Nobuhiro; Miyahara, Taira; Nishizaki, Yuzo; Ozeki, Yoshihiro; Nakamura, Noriko; Suzuki, Takamasa; Tanaka, Yoshikazu; Sato, Shusei; Shirasawa, Kenta; Isobe, Sachiko; Miyamura, Yoshinori; Watanabe, Akiko; Nakayama, Shinobu; Kishida, Yoshie; Kohara, Mitsuyo; Tabata, Satoshi

    2014-06-01

    The whole-genome sequence of carnation (Dianthus caryophyllus L.) cv. 'Francesco' was determined using a combination of different new-generation multiplex sequencing platforms. The total length of the non-redundant sequences was 568,887,315 bp, consisting of 45,088 scaffolds, which covered 91% of the 622 Mb carnation genome estimated by k-mer analysis. The N50 values of contigs and scaffolds were 16,644 bp and 60,737 bp, respectively, and the longest scaffold was 1,287,144 bp. The average GC content of the contig sequences was 36%. A total of 1050, 13, 92 and 143 genes for tRNAs, rRNAs, snoRNA and miRNA, respectively, were identified in the assembled genomic sequences. For protein-encoding genes, 43 266 complete and partial gene structures excluding those in transposable elements were deduced. Gene coverage was ∼ 98%, as deduced from the coverage of the core eukaryotic genes. Intensive characterization of the assigned carnation genes and comparison with those of other plant species revealed characteristic features of the carnation genome. The results of this study will serve as a valuable resource for fundamental and applied research of carnation, especially for breeding new carnation varieties. Further information on the genomic sequences is available at http://carnation.kazusa.or.jp. © The Author 2013. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  20. Sensitivity to sequencing depth in single-cell cancer genomics.

    PubMed

    Alves, João M; Posada, David

    2018-04-16

    Querying cancer genomes at single-cell resolution is expected to provide a powerful framework to understand in detail the dynamics of cancer evolution. However, given the high costs currently associated with single-cell sequencing, together with the inevitable technical noise arising from single-cell genome amplification, cost-effective strategies that maximize the quality of single-cell data are critically needed. Taking advantage of previously published single-cell whole-genome and whole-exome cancer datasets, we studied the impact of sequencing depth and sampling effort towards single-cell variant detection. Five single-cell whole-genome and whole-exome cancer datasets were independently downscaled to 25, 10, 5, and 1× sequencing depth. For each depth level, ten technical replicates were generated, resulting in a total of 6280 single-cell BAM files. The sensitivity of variant detection, including structural and driver mutations, genotyping, clonal inference, and phylogenetic reconstruction to sequencing depth was evaluated using recent tools specifically designed for single-cell data. Altogether, our results suggest that for relatively large sample sizes (25 or more cells) sequencing single tumor cells at depths > 5× does not drastically improve somatic variant discovery, characterization of clonal genotypes, or estimation of single-cell phylogenies. We suggest that sequencing multiple individual tumor cells at a modest depth represents an effective alternative to explore the mutational landscape and clonal evolutionary patterns of cancer genomes.

  1. Toward an Integrated BAC Library Resource for Genome Sequencing and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, M. I.; Kim, U.-J.

    We developed a great deal of expertise in building large BAC libraries from a variety of DNA sources including humans, mice, corn, microorganisms, worms, and Arabidopsis. We greatly improved the technology for screening these libraries rapidly and for selecting appropriate BACs and mapping BACs to develop large overlapping contigs. We became involved in supplying BACs and BAC contigs to a variety of sequencing and mapping projects and we began to collaborate with Drs. Adams and Venter at TIGR and with Dr. Leroy Hood and his group at University of Washington to provide BACs for end sequencing and for mapping andmore » sequencing of large fragments of chromosome 16. Together with Dr. Ian Dunham and his co-workers at the Sanger Center we completed the mapping and they completed the sequencing of the first human chromosome, chromosome 22. This was published in Nature in 1999 and our BAC contigs made a major contribution to this sequencing effort. Drs. Shizuya and Ding invented an automated highly accurate BAC mapping technique. We also developed long-term collaborations with Dr. Uli Weier at UCSF in the design of BAC probes for characterization of human tumors and specific chromosome deletions and breakpoints. Finally the contribution of our work to the human genome project has been recognized in the publication both by the international consortium and the NIH of a draft sequence of the human genome in Nature last year. Dr. Shizuya was acknowledged in the authorship of that landmark paper. Dr. Simon was also an author on the Venter/Adams Celera project sequencing the human genome that was published in Science last year.« less

  2. ERGC: an efficient referential genome compression algorithm.

    PubMed

    Saha, Subrata; Rajasekaran, Sanguthevar

    2015-11-01

    Genome sequencing has become faster and more affordable. Consequently, the number of available complete genomic sequences is increasing rapidly. As a result, the cost to store, process, analyze and transmit the data is becoming a bottleneck for research and future medical applications. So, the need for devising efficient data compression and data reduction techniques for biological sequencing data is growing by the day. Although there exists a number of standard data compression algorithms, they are not efficient in compressing biological data. These generic algorithms do not exploit some inherent properties of the sequencing data while compressing. To exploit statistical and information-theoretic properties of genomic sequences, we need specialized compression algorithms. Five different next-generation sequencing data compression problems have been identified and studied in the literature. We propose a novel algorithm for one of these problems known as reference-based genome compression. We have done extensive experiments using five real sequencing datasets. The results on real genomes show that our proposed algorithm is indeed competitive and performs better than the best known algorithms for this problem. It achieves compression ratios that are better than those of the currently best performing algorithms. The time to compress and decompress the whole genome is also very promising. The implementations are freely available for non-commercial purposes. They can be downloaded from http://engr.uconn.edu/∼rajasek/ERGC.zip. rajasek@engr.uconn.edu. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Sequencing of Australian wild rice genomes reveals ancestral relationships with domesticated rice.

    PubMed

    Brozynska, Marta; Copetti, Dario; Furtado, Agnelo; Wing, Rod A; Crayn, Darren; Fox, Glen; Ishikawa, Ryuji; Henry, Robert J

    2017-06-01

    The related A genome species of the Oryza genus are the effective gene pool for rice. Here, we report draft genomes for two Australian wild A genome taxa: O. rufipogon-like population, referred to as Taxon A, and O. meridionalis-like population, referred to as Taxon B. These two taxa were sequenced and assembled by integration of short- and long-read next-generation sequencing (NGS) data to create a genomic platform for a wider rice gene pool. Here, we report that, despite the distinct chloroplast genome, the nuclear genome of the Australian Taxon A has a sequence that is much closer to that of domesticated rice (O. sativa) than to the other Australian wild populations. Analysis of 4643 genes in the A genome clade showed that the Australian annual, O. meridionalis, and related perennial taxa have the most divergent (around 3 million years) genome sequences relative to domesticated rice. A test for admixture showed possible introgression into the Australian Taxon A (diverged around 1.6 million years ago) especially from the wild indica/O. nivara clade in Asia. These results demonstrate that northern Australia may be the centre of diversity of the A genome Oryza and suggest the possibility that this might also be the centre of origin of this group and represent an important resource for rice improvement. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  4. Exploiting proteomic data for genome annotation and gene model validation in Aspergillus niger.

    PubMed

    Wright, James C; Sugden, Deana; Francis-McIntyre, Sue; Riba-Garcia, Isabel; Gaskell, Simon J; Grigoriev, Igor V; Baker, Scott E; Beynon, Robert J; Hubbard, Simon J

    2009-02-04

    Proteomic data is a potentially rich, but arguably unexploited, data source for genome annotation. Peptide identifications from tandem mass spectrometry provide prima facie evidence for gene predictions and can discriminate over a set of candidate gene models. Here we apply this to the recently sequenced Aspergillus niger fungal genome from the Joint Genome Institutes (JGI) and another predicted protein set from another A.niger sequence. Tandem mass spectra (MS/MS) were acquired from 1d gel electrophoresis bands and searched against all available gene models using Average Peptide Scoring (APS) and reverse database searching to produce confident identifications at an acceptable false discovery rate (FDR). 405 identified peptide sequences were mapped to 214 different A.niger genomic loci to which 4093 predicted gene models clustered, 2872 of which contained the mapped peptides. Interestingly, 13 (6%) of these loci either had no preferred predicted gene model or the genome annotators' chosen "best" model for that genomic locus was not found to be the most parsimonious match to the identified peptides. The peptides identified also boosted confidence in predicted gene structures spanning 54 introns from different gene models. This work highlights the potential of integrating experimental proteomics data into genomic annotation pipelines much as expressed sequence tag (EST) data has been. A comparison of the published genome from another strain of A.niger sequenced by DSM showed that a number of the gene models or proteins with proteomics evidence did not occur in both genomes, further highlighting the utility of the method.

  5. TITAN: inference of copy number architectures in clonal cell populations from tumor whole-genome sequence data.

    PubMed

    Ha, Gavin; Roth, Andrew; Khattra, Jaswinder; Ho, Julie; Yap, Damian; Prentice, Leah M; Melnyk, Nataliya; McPherson, Andrew; Bashashati, Ali; Laks, Emma; Biele, Justina; Ding, Jiarui; Le, Alan; Rosner, Jamie; Shumansky, Karey; Marra, Marco A; Gilks, C Blake; Huntsman, David G; McAlpine, Jessica N; Aparicio, Samuel; Shah, Sohrab P

    2014-11-01

    The evolution of cancer genomes within a single tumor creates mixed cell populations with divergent somatic mutational landscapes. Inference of tumor subpopulations has been disproportionately focused on the assessment of somatic point mutations, whereas computational methods targeting evolutionary dynamics of copy number alterations (CNA) and loss of heterozygosity (LOH) in whole-genome sequencing data remain underdeveloped. We present a novel probabilistic model, TITAN, to infer CNA and LOH events while accounting for mixtures of cell populations, thereby estimating the proportion of cells harboring each event. We evaluate TITAN on idealized mixtures, simulating clonal populations from whole-genome sequences taken from genomically heterogeneous ovarian tumor sites collected from the same patient. In addition, we show in 23 whole genomes of breast tumors that the inference of CNA and LOH using TITAN critically informs population structure and the nature of the evolving cancer genome. Finally, we experimentally validated subclonal predictions using fluorescence in situ hybridization (FISH) and single-cell sequencing from an ovarian cancer patient sample, thereby recapitulating the key modeling assumptions of TITAN. © 2014 Ha et al.; Published by Cold Spring Harbor Laboratory Press.

  6. Draft genome sequence of CTX-M-type β-lactamase-producing Klebsiella quasipneumoniae subsp. similipneumoniae isolated from a Box turtle.

    PubMed

    Li, Chien-Feng; Tang, Hui-Ling; Chiou, Chien-Shun; Tung, Kwong-Chung; Lu, Min-Chi; Lai, Yi-Chyi

    2018-03-01

    Klebsiella spp. are regarded as major pathogens causing infections in humans and various animals. Here we report the draft genome sequence of a CTX-M-type β-lactamase-producing Klebsiella quasipneumoniae subsp. similipneumoniae strain CHKP0062 isolated from a Yellow-margined Box turtle. An Illumina-Solexa platform was used to sequence the genome of CHKP0062. Qualified reads were assembled de novo using Velvet. The draft genome was annotated by the NCBI Prokaryotic Genome Annotation Pipeline (PGAP). The resistome and virulome of the strain were investigated. A total of 5423 protein-coding sequences, 87 tRNAs, 24 rRNAs and 12 ncRNAs were identified in the 5 699 275-bp genome. CHKP0062 was assigned to sequence type ST2131 with the K-loci type as KL67. No virulence-associated genes were identified. However, numerous antimicrobial resistance genes were present in this strain. Plasmid contigs were assembled and revealed homology to the multidrug resistance plasmids pC15-K, pCTX-M3 and pKF3-94, with the carriage of the class A β-lactamase genes bla TEM-1b and bla CTX-M-3 . The genome sequence reported in this study will be useful for comparative genomic analysis regarding the dissemination of clinically important antibiotic resistance genes among Klebsiella spp. isolated from humans and animals. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  7. MBGD update 2015: microbial genome database for flexible ortholog analysis utilizing a diverse set of genomic data.

    PubMed

    Uchiyama, Ikuo; Mihara, Motohiro; Nishide, Hiroyo; Chiba, Hirokazu

    2015-01-01

    The microbial genome database for comparative analysis (MBGD) (available at http://mbgd.genome.ad.jp/) is a comprehensive ortholog database for flexible comparative analysis of microbial genomes, where the users are allowed to create an ortholog table among any specified set of organisms. Because of the rapid increase in microbial genome data owing to the next-generation sequencing technology, it becomes increasingly challenging to maintain high-quality orthology relationships while allowing the users to incorporate the latest genomic data available into an analysis. Because many of the recently accumulating genomic data are draft genome sequences for which some complete genome sequences of the same or closely related species are available, MBGD now stores draft genome data and allows the users to incorporate them into a user-specific ortholog database using the MyMBGD functionality. In this function, draft genome data are incorporated into an existing ortholog table created only from the complete genome data in an incremental manner to prevent low-quality draft data from affecting clustering results. In addition, to provide high-quality orthology relationships, the standard ortholog table containing all the representative genomes, which is first created by the rapid classification program DomClust, is now refined using DomRefine, a recently developed program for improving domain-level clustering using multiple sequence alignment information. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Discovery of common sequences absent in the human reference genome using pooled samples from next generation sequencing.

    PubMed

    Liu, Yu; Koyutürk, Mehmet; Maxwell, Sean; Xiang, Min; Veigl, Martina; Cooper, Richard S; Tayo, Bamidele O; Li, Li; LaFramboise, Thomas; Wang, Zhenghe; Zhu, Xiaofeng; Chance, Mark R

    2014-08-16

    Sequences up to several megabases in length have been found to be present in individual genomes but absent in the human reference genome. These sequences may be common in populations, and their absence in the reference genome may indicate rare variants in the genomes of individuals who served as donors for the human genome project. As the reference genome is used in probe design for microarray technology and mapping short reads in next generation sequencing (NGS), this missing sequence could be a source of bias in functional genomic studies and variant analysis. One End Anchor (OEA) and/or orphan reads from paired-end sequencing have been used to identify novel sequences that are absent in reference genome. However, there is no study to investigate the distribution, evolution and functionality of those sequences in human populations. To systematically identify and study the missing common sequences (micSeqs), we extended the previous method by pooling OEA reads from large number of individuals and applying strict filtering methods to remove false sequences. The pipeline was applied to data from phase 1 of the 1000 Genomes Project. We identified 309 micSeqs that are present in at least 1% of the human population, but absent in the reference genome. We confirmed 76% of these 309 micSeqs by comparison to other primate genomes, individual human genomes, and gene expression data. Furthermore, we randomly selected fifteen micSeqs and confirmed their presence using PCR validation in 38 additional individuals. Functional analysis using published RNA-seq and ChIP-seq data showed that eleven micSeqs are highly expressed in human brain and three micSeqs contain transcription factor (TF) binding regions, suggesting they are functional elements. In addition, the identified micSeqs are absent in non-primates and show dynamic acquisition during primate evolution culminating with most micSeqs being present in Africans, suggesting some micSeqs may be important sources of human diversity. 76% of micSeqs were confirmed by a comparative genomics approach. Fourteen micSeqs are expressed in human brain or contain TF binding regions. Some micSeqs are primate-specific, conserved and may play a role in the evolution of primates.

  9. The solution space of sorting by DCJ.

    PubMed

    Braga, Marília D V; Stoye, Jens

    2010-09-01

    In genome rearrangements, the double cut and join (DCJ) operation, introduced by Yancopoulos et al. in 2005, allows one to represent most rearrangement events that could happen in multichromosomal genomes, such as inversions, translocations, fusions, and fissions. No restriction on the genome structure considering linear and circular chromosomes is imposed. An advantage of this general model is that it leads to considerable algorithmic simplifications compared to other genome rearrangement models. Recently, several works concerning the DCJ operation have been published, and in particular, an algorithm was proposed to find an optimal DCJ sequence for sorting one genome into another one. Here we study the solution space of this problem and give an easy-to-compute formula that corresponds to the exact number of optimal DCJ sorting sequences for a particular subset of instances of the problem. We also give an algorithm to count the number of optimal sorting sequences for any instance of the problem. Another interesting result is the demonstration of the possibility of obtaining one optimal sorting sequence by properly replacing any pair of consecutive operations in another optimal sequence. As a consequence, any optimal sorting sequence can be obtained from one other by applying such replacements successively, but the problem of finding the shortest number of replacements between two sorting sequences is still open.

  10. The complete mitochondrial genome sequence of the western flower thrips Frankliniella occidentalis (Thysanoptera: Thripidae) contains triplicate putative control regions.

    PubMed

    Yan, Dankan; Tang, Yunxia; Xue, Xiaofeng; Wang, Minghua; Liu, Fengquan; Fan, Jiaqin

    2012-09-10

    To investigate the features of the control region (CR) and the gene rearrangement in the mitochondrial (mt) genome of Thysanoptera insects, we sequenced the whole mt genome of the western flower thrips Frankliniella occidentalis (Thysanoptera: Thripidae). The mt genome is a circular molecule with 14,889 nucleotides and an A+T content of 76.6%, and it has triplicate putative CRs. We propose that tandem duplication and deletion account for the evolution of the CR and the gene translocations. Intramitochondrial recombination is a plausible model for the gene inversions. We discuss the excessive duplicate CR sequences and the transcription of the rRNA genes, which are distant from one another and from the CR. Finally, we address the significance of the complicated mt genomes in Thysanoptera for the evolution of the CR and the gene arrangement of the mt genome. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  11. The mitochondrial genome of Pocillopora (Cnidaria: Scleractinia) contains two variable regions: the putative D-loop and a novel ORF of unknown function.

    PubMed

    Flot, Jean-François; Tillier, Simon

    2007-10-15

    The complete mitochondrial genomes of two individuals attributed to different morphospecies of the scleractinian coral genus Pocillopora have been sequenced. Both genomes, respectively 17,415 and 17,422 nt long, share the presence of a previously undescribed ORF encoding a putative protein made up of 302 amino acids and of unknown function. Surprisingly, this ORF turns out to be the second most variable region of the mitochondrial genome (1% nucleotide sequence difference between the two individuals) after the putative control region (1.5% sequence difference). Except for the presence of this ORF and for the location of the putative control region, the mitochondrial genome of Pocillopora is organized in a fashion similar to the other scleractinian coral genomes published to date. For the first time in a cnidarian, a putative second origin of replication is described based on its secondary structure similar to the stem-loop structure of O(L), the origin of L-strand replication in vertebrates.

  12. Transcriptome-wide investigation of genomic imprinting in chicken.

    PubMed

    Frésard, Laure; Leroux, Sophie; Servin, Bertrand; Gourichon, David; Dehais, Patrice; Cristobal, Magali San; Marsaud, Nathalie; Vignoles, Florence; Bed'hom, Bertrand; Coville, Jean-Luc; Hormozdiari, Farhad; Beaumont, Catherine; Zerjal, Tatiana; Vignal, Alain; Morisson, Mireille; Lagarrigue, Sandrine; Pitel, Frédérique

    2014-04-01

    Genomic imprinting is an epigenetic mechanism by which alleles of some specific genes are expressed in a parent-of-origin manner. It has been observed in mammals and marsupials, but not in birds. Until now, only a few genes orthologous to mammalian imprinted ones have been analyzed in chicken and did not demonstrate any evidence of imprinting in this species. However, several published observations such as imprinted-like QTL in poultry or reciprocal effects keep the question open. Our main objective was thus to screen the entire chicken genome for parental-allele-specific differential expression on whole embryonic transcriptomes, using high-throughput sequencing. To identify the parental origin of each observed haplotype, two chicken experimental populations were used, as inbred and as genetically distant as possible. Two families were produced from two reciprocal crosses. Transcripts from 20 embryos were sequenced using NGS technology, producing ∼200 Gb of sequences. This allowed the detection of 79 potentially imprinted SNPs, through an analysis method that we validated by detecting imprinting from mouse data already published. However, out of 23 candidates tested by pyrosequencing, none could be confirmed. These results come together, without a priori, with previous statements and phylogenetic considerations assessing the absence of genomic imprinting in chicken.

  13. Complete genome sequence of the moderately thermophilic mineral-sulfide-oxidizing firmicute Sulfobacillus acidophilus type strain (NALT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Iain; Chertkov, Olga; Chen, Amy

    2012-01-01

    Sulfobacillus acidophilus Norris et al. 1996 is a member of the genus Sulfobacillus which comprises five species of the order Clostridiales. Sulfobacillus species are of interest for comparison to other sulfur and iron oxidizers and also have biomining applications. This is the first completed genome sequence of a type strain of the genus Sulfobacillus, and the second published genome of a member of the species S. acidophilus. The genome, which consists of one chromosome and one plasmid with a total size of 3,557,831 bp, harbors 3,626 protein-coding and 69 RNA genes, and is a part of the Genomic Encyclopedia ofmore » Bacteria and Archaea project.« less

  14. Construction of random sheared fosmid library from Chinese cabbage and its use for Brassica rapa genome sequencing project.

    PubMed

    Park, Tae-Ho; Park, Beom-Seok; Kim, Jin-A; Hong, Joon Ki; Jin, Mina; Seol, Young-Joo; Mun, Jeong-Hwan

    2011-01-01

    As a part of the Multinational Genome Sequencing Project of Brassica rapa, linkage group R9 and R3 were sequenced using a bacterial artificial chromosome (BAC) by BAC strategy. The current physical contigs are expected to cover approximately 90% euchromatins of both chromosomes. As the project progresses, BAC selection for sequence extension becomes more limited because BAC libraries are restriction enzyme-specific. To support the project, a random sheared fosmid library was constructed. The library consists of 97536 clones with average insert size of approximately 40 kb corresponding to seven genome equivalents, assuming a Chinese cabbage genome size of 550 Mb. The library was screened with primers designed at the end of sequences of nine points of scaffold gaps where BAC clones cannot be selected to extend the physical contigs. The selected positive clones were end-sequenced to check the overlap between the fosmid clones and the adjacent BAC clones. Nine fosmid clones were selected and fully sequenced. The sequences revealed two completed gap filling and seven sequence extensions, which can be used for further selection of BAC clones confirming that the fosmid library will facilitate the sequence completion of B. rapa. Copyright © 2011. Published by Elsevier Ltd.

  15. Single haplotype assembly of the human genome from a hydatidiform mole.

    PubMed

    Steinberg, Karyn Meltz; Schneider, Valerie A; Graves-Lindsay, Tina A; Fulton, Robert S; Agarwala, Richa; Huddleston, John; Shiryev, Sergey A; Morgulis, Aleksandr; Surti, Urvashi; Warren, Wesley C; Church, Deanna M; Eichler, Evan E; Wilson, Richard K

    2014-12-01

    A complete reference assembly is essential for accurately interpreting individual genomes and associating variation with phenotypes. While the current human reference genome sequence is of very high quality, gaps and misassemblies remain due to biological and technical complexities. Large repetitive sequences and complex allelic diversity are the two main drivers of assembly error. Although increasing the length of sequence reads and library fragments can improve assembly, even the longest available reads do not resolve all regions. In order to overcome the issue of allelic diversity, we used genomic DNA from an essentially haploid hydatidiform mole, CHM1. We utilized several resources from this DNA including a set of end-sequenced and indexed BAC clones and 100× Illumina whole-genome shotgun (WGS) sequence coverage. We used the WGS sequence and the GRCh37 reference assembly to create an assembly of the CHM1 genome. We subsequently incorporated 382 finished BAC clone sequences to generate a draft assembly, CHM1_1.1 (NCBI AssemblyDB GCA_000306695.2). Analysis of gene, repetitive element, and segmental duplication content show this assembly to be of excellent quality and contiguity. However, comparison to assembly-independent resources, such as BAC clone end sequences and PacBio long reads, indicate misassembled regions. Most of these regions are enriched for structural variation and segmental duplication, and can be resolved in the future. This publicly available assembly will be integrated into the Genome Reference Consortium curation framework for further improvement, with the ultimate goal being a completely finished gap-free assembly. © 2014 Steinberg et al.; Published by Cold Spring Harbor Laboratory Press.

  16. Effective de novo assembly of fish genome using haploid larvae.

    PubMed

    Iwasaki, Yuki; Nishiki, Issei; Nakamura, Yoji; Yasuike, Motoshige; Kai, Wataru; Nomura, Kazuharu; Yoshida, Kazunori; Nomura, Yousuke; Fujiwara, Atushi; Kobayashi, Takanori; Ototake, Mitsuru

    2016-02-01

    Recent improvements in next-generation sequencing technology have made it possible to do whole genome sequencing, on even non-model eukaryote species with no available reference genomes. However, de novo assembly of diploid genomes is still a big challenge because of allelic variation. The aim of this study was to determine the feasibility of utilizing the genome of haploid fish larvae for de novo assembly of whole-genome sequences. We compared the efficiency of assembly using the haploid genome of yellowtail (Seriola quinqueradiata) with that using the diploid genome obtained from the dam. De novo assembly from the haploid and the diploid sequence reads (100 million reads per each datasets) generated by the Ion Proton sequencer (200 bp) was done under two different assembly algorithms, namely overlap-layout-consensus (OLC) and de Bruijn graph (DBG). This revealed that the assembly of the haploid genome significantly reduced (approximately 22% for OLC, 9% for DBG) the total number of contigs (with longer average and N50 contig lengths) when compared to the diploid genome assembly. The haploid assembly also improved the quality of the scaffolds by reducing the number of regions with unassigned nucleotides (Ns) (total length of Ns; 45,331,916 bp for haploids and 67,724,360 bp for diploids) in OLC-based assemblies. It appears clear that the haploid genome assembly is better because the allelic variation in the diploid genome disrupts the extension of contigs during the assembly process. Our results indicate that utilizing the genome of haploid larvae leads to a significant improvement in the de novo assembly process, thus providing a novel strategy for the construction of reference genomes from non-model diploid organisms such as fish. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Introduction to the fathead minnow genome browser and ...

    EPA Pesticide Factsheets

    Ab initio gene prediction and evidence alignment were used to produce the first annotations for the fathead minnow SOAPdenovo genome assembly. Additionally, a genome browser hosted at genome.setac.org provides simplified access to the annotation data in context with fathead minnow genomic sequence. This work is meant to extend the utility of fathead minnow genome as a resource and enable the continued development of this species as a model organism. The fathead minnow (Pimephales promelas) is a laboratory model organism widely used in regulatory toxicity testing and ecotoxicology research. Despite, the wealth of toxicological data for this organism, until recently genome scale information was lacking for the species, which limited the utility of the species for pathway-based toxicity testing and research. As part of a EPA Pathfinder Innovation Project, next generation sequencing was applied to generate a draft genome assembly, which was published in 2016. However, application of those genome-scale sequencing resources was still limited by the lack of available gene annotations for fathead minnow. Here we report on development of a first generation genome annotation for fathead minnow and the dissemination of that information through a web-based browser that makes it easy to search for genes of interest, extract the corresponding sequence, identify intron and exon boundaries and regulatory regions, and align the computationally predicted genes with other supporti

  18. Whole genome sequencing of Chinese clearhead icefish, Protosalanx hyalocranius.

    PubMed

    Liu, Kai; Xu, Dongpo; Li, Jia; Bian, Chao; Duan, Jinrong; Zhou, Yanfeng; Zhang, Minying; You, Xinxin; You, Yang; Chen, Jieming; Yu, Hui; Xu, Gangchun; Fang, Di-An; Qiang, Jun; Jiang, Shulun; He, Jie; Xu, Junmin; Shi, Qiong; Zhang, Zhiyong; Xu, Pao

    2017-04-01

    Chinese clearhead icefish, Protosalanx hyalocranius , is a representative icefish species with economic importance and special appearance. Due to its great economic value in China, the fish was introduced into Lake Dianchi and several other lakes from the Lake Taihu half a century ago. Similar to the Sinocyclocheilus cavefish, the clearhead icefish has certain cavefish-like traits, such as transparent body and nearly scaleless skin. Here, we provide the whole genome sequence of this surface-dwelling fish and generated a draft genome assembly, aiming at exploring molecular mechanisms for the biological interests. A total of 252.1 Gb of raw reads were sequenced. Subsequently, a novel draft genome assembly was generated, with the scaffold N50 reaching 1.163 Mb. The genome completeness was estimated to be 98.39 % by using the CEGMA evaluation. Finally, we annotated 19 884 protein-coding genes and observed that repeat sequences account for 24.43 % of the genome assembly. We report the first draft genome of the Chinese clearhead icefish. The genome assembly will provide a solid foundation for further molecular breeding and germplasm resource protection in Chinese clearhead icefish, as well as other icefishes. It is also a valuable genetic resource for revealing the molecular mechanisms for the cavefish-like characters. © The Authors 2017. Published by Oxford University Press.

  19. Comparative Genomics of the Balsaminaceae Sister Genera Hydrocera triflora and Impatiens pinfanensis

    PubMed Central

    Li, Zhi-Zhong; Saina, Josphat K.; Gichira, Andrew W.; Kyalo, Cornelius M.; Wang, Qing-Feng

    2018-01-01

    The family Balsaminaceae, which consists of the economically important genus Impatiens and the monotypic genus Hydrocera, lacks a reported or published complete chloroplast genome sequence. Therefore, chloroplast genome sequences of the two sister genera are significant to give insight into the phylogenetic position and understanding the evolution of the Balsaminaceae family among the Ericales. In this study, complete chloroplast (cp) genomes of Impatiens pinfanensis and Hydrocera triflora were characterized and assembled using a high-throughput sequencing method. The complete cp genomes were found to possess the typical quadripartite structure of land plants chloroplast genomes with double-stranded molecules of 154,189 bp (Impatiens pinfanensis) and 152,238 bp (Hydrocera triflora) in length. A total of 115 unique genes were identified in both genomes, of which 80 are protein-coding genes, 31 are distinct transfer RNA (tRNA) and four distinct ribosomal RNA (rRNA). Thirty codons, of which 29 had A/T ending codons, revealed relative synonymous codon usage values of >1, whereas those with G/C ending codons displayed values of <1. The simple sequence repeats comprise mostly the mononucleotide repeats A/T in all examined cp genomes. Phylogenetic analysis based on 51 common protein-coding genes indicated that the Balsaminaceae family formed a lineage with Ebenaceae together with all the other Ericales. PMID:29360746

  20. Draft genome sequence of carbapenem-resistant Shewanella algae strain AC isolated from small abalone (Haliotis diversicolor).

    PubMed

    Huang, Yao-Ting; Cheng, Jan-Fang; Chen, Shi-Yu; Hong, Yu-Kai; Wu, Zong-Yen; Liu, Po-Yu

    2018-06-19

    Shewanella algae is an environmental marine bacteria and an emerging opportunistic human pathogen. Moreover, there are increasing reports of strains showing multi-drug resistance, particularly carbapenem-resistant isolates. Although S. algae have been found in bivalve shellfish aquaculture, there is very little genome-wide data on resistant determinants in S. algae from shellfish. In the study, we aimed to determine the whole genome sequence of carbapenem-resistant S. algae strain AC isolated from small abalone in Taiwan. Genome DNA was sequenced using an Illumina MiSeq platform using 250bp paired-end reads. De novo genome assembly was performed using Velvet v1.2.07. The whole genome was annotated and several candidate genes for antimicrobial resistance were identified. The genome size was calculated at 4,751,156bp, with a mean G+C content of 53.09%. A total of 4,164 protein-coding sequences, 7 rRNAs, 85 tRNAs, and 5 non-coding RNAs were identified. The genome contains genes associated with resistance to β-lactams, trimethoprim, tetracycline, colistin, and quinolone resistance. Multiple efflux pump genes were also detected. Small abalone is a potential source of foodborne drug resistant S. algae. The genome sequence of a carbapenem-resistant S. algae strain AC isolated from small abalone will provide valuable information for further study of the dissemination of resistance genes at the human-animal interface. Copyright © 2018. Published by Elsevier Ltd.

  1. Genome sequences of Bacteria and Archaea published outside of Standards in Genomic Sciences, June – September 2011

    PubMed Central

    Nelson, Oranmiyan W.; Garrity, George M.

    2011-01-01

    The purpose of this table is to provide the community with a citable record of publications of ongoing genome sequencing projects that have led to a publication in the scientific literature. While our goal is to make the list complete, there is no guarantee that we may have omitted one or more publications appearing in this time frame. Readers and authors who wish to have publications added to this subsequent versions of this list are invited to provide the bibliometric data for such references to the SIGS editorial office.

  2. Evolutionary genetics of insect innate immunity.

    PubMed

    Viljakainen, Lumi

    2015-11-01

    Patterns of evolution in immune defense genes help to understand the evolutionary dynamics between hosts and pathogens. Multiple insect genomes have been sequenced, with many of them having annotated immune genes, which paves the way for a comparative genomic analysis of insect immunity. In this review, I summarize the current state of comparative and evolutionary genomics of insect innate immune defense. The focus is on the conserved and divergent components of immunity with an emphasis on gene family evolution and evolution at the sequence level; both population genetics and molecular evolution frameworks are considered. © The Author 2015. Published by Oxford University Press.

  3. Complete genome sequence of the aerobically denitrifying thermophilic bacterium Chelatococcus daeguensis TAD1.

    PubMed

    Yang, Yunlong; Lin, Ershu; Huang, Shaobin

    Chelatococcus daeguensis TAD1 is a themophilic bacterium isolated from a biotrickling filter used to treat NOx in Ruiming Power Plant, located in Guangzhou, China, which shows an excellent aerobic denitrification activity at high temperature. The complete genome sequence of this strain was reported in the present study. Genes related to the aerobic denitrification were identified through whole genome analysis. This work will facilitate the mechanism of aerobic denitrification and provide evidence for its potential application in the nitrogen removal. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  4. Leveraging long read sequencing from a single individual to provide a comprehensive resource for benchmarking variant calling methods

    PubMed Central

    Mu, John C.; Tootoonchi Afshar, Pegah; Mohiyuddin, Marghoob; Chen, Xi; Li, Jian; Bani Asadi, Narges; Gerstein, Mark B.; Wong, Wing H.; Lam, Hugo Y. K.

    2015-01-01

    A high-confidence, comprehensive human variant set is critical in assessing accuracy of sequencing algorithms, which are crucial in precision medicine based on high-throughput sequencing. Although recent works have attempted to provide such a resource, they still do not encompass all major types of variants including structural variants (SVs). Thus, we leveraged the massive high-quality Sanger sequences from the HuRef genome to construct by far the most comprehensive gold set of a single individual, which was cross validated with deep Illumina sequencing, population datasets, and well-established algorithms. It was a necessary effort to completely reanalyze the HuRef genome as its previously published variants were mostly reported five years ago, suffering from compatibility, organization, and accuracy issues that prevent their direct use in benchmarking. Our extensive analysis and validation resulted in a gold set with high specificity and sensitivity. In contrast to the current gold sets of the NA12878 or HS1011 genomes, our gold set is the first that includes small variants, deletion SVs and insertion SVs up to a hundred thousand base-pairs. We demonstrate the utility of our HuRef gold set to benchmark several published SV detection tools. PMID:26412485

  5. NRGC: a novel referential genome compression algorithm.

    PubMed

    Saha, Subrata; Rajasekaran, Sanguthevar

    2016-11-15

    Next-generation sequencing techniques produce millions to billions of short reads. The procedure is not only very cost effective but also can be done in laboratory environment. The state-of-the-art sequence assemblers then construct the whole genomic sequence from these reads. Current cutting edge computing technology makes it possible to build genomic sequences from the billions of reads within a minimal cost and time. As a consequence, we see an explosion of biological sequences in recent times. In turn, the cost of storing the sequences in physical memory or transmitting them over the internet is becoming a major bottleneck for research and future medical applications. Data compression techniques are one of the most important remedies in this context. We are in need of suitable data compression algorithms that can exploit the inherent structure of biological sequences. Although standard data compression algorithms are prevalent, they are not suitable to compress biological sequencing data effectively. In this article, we propose a novel referential genome compression algorithm (NRGC) to effectively and efficiently compress the genomic sequences. We have done rigorous experiments to evaluate NRGC by taking a set of real human genomes. The simulation results show that our algorithm is indeed an effective genome compression algorithm that performs better than the best-known algorithms in most of the cases. Compression and decompression times are also very impressive. The implementations are freely available for non-commercial purposes. They can be downloaded from: http://www.engr.uconn.edu/~rajasek/NRGC.zip CONTACT: rajasek@engr.uconn.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. A simplified Sanger sequencing method for full genome sequencing of multiple subtypes of human influenza A viruses.

    PubMed

    Deng, Yi-Mo; Spirason, Natalie; Iannello, Pina; Jelley, Lauren; Lau, Hilda; Barr, Ian G

    2015-07-01

    Full genome sequencing of influenza A viruses (IAV), including those that arise from annual influenza epidemics, is undertaken to determine if reassorting has occurred or if other pathogenic traits are present. Traditionally IAV sequencing has been biased toward the major surface glycoproteins haemagglutinin and neuraminidase, while the internal genes are often ignored. Despite the development of next generation sequencing (NGS), many laboratories are still reliant on conventional Sanger sequencing to sequence IAV. To develop a minimal and robust set of primers for Sanger sequencing of the full genome of IAV currently circulating in humans. A set of 13 primer pairs was designed that enabled amplification of the six internal genes of multiple human IAV subtypes including the recent avian influenza A(H7N9) virus from China. Specific primers were designed to amplify the HA and NA genes of each IAV subtype of interest. Each of the primers also incorporated a binding site at its 5'-end for either a forward or reverse M13 primer, such that only two M13 primers were required for all subsequent sequencing reactions. This minimal set of primers was suitable for sequencing the six internal genes of all currently circulating human seasonal influenza A subtypes as well as the avian A(H7N9) viruses that have infected humans in China. This streamlined Sanger sequencing protocol could be used to generate full genome sequence data more rapidly and easily than existing influenza genome sequencing protocols. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Beatrice Hill Virus Represents a Novel Species in the Genus Tibrovirus (Mononegavirales: Rhabdoviridae)

    DTIC Science & Technology

    2017-01-26

    Huang et al. published a 5,734 nt-long contig of the Beatrice Hill virus genome, 48 which indicated that this virus most likely falls into the... Desktop sequencer. Illumina and SISPA-RACE adapter sequences were trimmed from 56 the sequencing reads using Cutadapt-1.2.1 (14), quality filtering

  8. Applications of the 1000 Genomes Project resources.

    PubMed

    Zheng-Bradley, Xiangqun; Flicek, Paul

    2017-05-01

    The 1000 Genomes Project created a valuable, worldwide reference for human genetic variation. Common uses of the 1000 Genomes dataset include genotype imputation supporting Genome-wide Association Studies, mapping expression Quantitative Trait Loci, filtering non-pathogenic variants from exome, whole genome and cancer genome sequencing projects, and genetic analysis of population structure and molecular evolution. In this article, we will highlight some of the multiple ways that the 1000 Genomes data can be and has been utilized for genetic studies. © The Author 2016. Published by Oxford University Press.

  9. Draft genome sequence of Bradyrhizobium manausense strain BR 3351T, an effective symbiont isolated from Amazon rainforest.

    PubMed

    Simões-Araújo, Jean Luiz; Rumjanek, Norma Gouvêa; Xavier, Gustavo Ribeiro; Zilli, Jerri Édson

    The strain BR 3351 T (Bradyrhizobium manausense) was obtained from nodules of cowpea (Vigna unguiculata L. Walp) growing in soil collected from Amazon rainforest. Furthermore, it was observed that the strain has high capacity to fix nitrogen symbiotically in symbioses with cowpea. We report here the draft genome sequence of strain BR 3351 T . The information presented will be important for comparative analysis of nodulation and nitrogen fixation for diazotrophic bacteria. A draft genome with 9,145,311bp and 62.9% of GC content was assembled in 127 scaffolds using 100bp pair-end Illumina MiSeq system. The RAST annotation identified 8603 coding sequences, 51 RNAs genes, classified in 504 subsystems. Published by Elsevier Editora Ltda.

  10. Genome sequence of Prevotella intermedia SUNY aB G8-9K-3, a biofilm forming strain with drug-resistance.

    PubMed

    Moon, Ji-Hoi; Kim, Minjung; Lee, Jae-Hyung

    Prevotella intermedia has long been known to be as the principal etiologic agent of periodontal diseases and associated with various systemic diseases. Previous studies showed that the intra-species difference exists in capacity of biofilm formation, antibiotic resistance, and serological reaction among P. intermedia strains. Here we report the genome sequence of P. intermedia SUNY aB G8-9K-3 (designated ATCC49046) that displays a relatively high antimicrobial resistant and biofilm-forming capacity. Genome sequencing information provides important clues in understanding the genetic bases of phenotypic differences among P. intermedia strains. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  11. “A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids”

    PubMed Central

    2013-01-01

    Background Modern banana cultivars are primarily interspecific triploid hybrids of two species, Musa acuminata and Musa balbisiana, which respectively contribute the A- and B-genomes. The M. balbisiana genome has been associated with improved vigour and tolerance to biotic and abiotic stresses and is thus a target for Musa breeding programs. However, while a reference M. acuminata genome has recently been released (Nature 488:213–217, 2012), little sequence data is available for the corresponding B-genome. To address these problems we carried out Next Generation gDNA sequencing of the wild diploid M. balbisiana variety ‘Pisang Klutuk Wulung’ (PKW). Our strategy was to align PKW gDNA reads against the published A-genome and to extract the mapped consensus sequences for subsequent rounds of evaluation and gene annotation. Results The resulting B-genome is 79% the size of the A-genome, and contains 36,638 predicted functional gene sequences which is nearly identical to the 36,542 of the A-genome. There is substantial sequence divergence from the A-genome at a frequency of 1 homozygous SNP per 23.1 bp, and a high degree of heterozygosity corresponding to one heterozygous SNP per 55.9 bp. Using expressed small RNA data, a similar number of microRNA sequences were predicted in both A- and B-genomes, but additional novel miRNAs were detected, including some that are unique to each genome. The usefulness of this B-genome sequence was evaluated by mapping RNA-seq data from a set of triploid AAA and AAB hybrids simultaneously to both genomes. Results for the plantains demonstrated the expected 2:1 distribution of reads across the A- and B-genomes, but for the AAA genomes, results show they contain regions of significant homology to the B-genome supporting proposals that there has been a history of interspecific recombination between homeologous A and B chromosomes in Musa hybrids. Conclusions We have generated and annotated a draft reference Musa B-genome and demonstrate that this can be used for molecular genetic mapping of gene transcripts and small RNA expression data from several allopolyploid banana cultivars. This draft therefore represents a valuable resource to support the study of metabolism in inter- and intraspecific triploid Musa hybrids and to help direct breeding programs. PMID:24094114

  12. Lineage-specific genomics: Frequent birth and death in the human genome: The human genome contains many lineage-specific elements created by both sequence and functional turnover.

    PubMed

    Young, Robert S

    2016-07-01

    Frequent evolutionary birth and death events have created a large quantity of biologically important, lineage-specific DNA within mammalian genomes. The birth and death of DNA sequences is so frequent that the total number of these insertions and deletions in the human population remains unknown, although there are differences between these groups, e.g. transposable elements contribute predominantly to sequence insertion. Functional turnover - where the activity of a locus is specific to one lineage, but the underlying DNA remains conserved - can also drive birth and death. However, this does not appear to be a major driver of divergent transcriptional regulation. Both sequence and functional turnover have contributed to the birth and death of thousands of functional promoters in the human and mouse genomes. These findings reveal the pervasive nature of evolutionary birth and death and suggest that lineage-specific regions may play an important but previously underappreciated role in human biology and disease. © 2016 The Authors BioEssays Published by WILEY Periodicals, Inc.

  13. Influenza Virus Database (IVDB): an integrated information resource and analysis platform for influenza virus research.

    PubMed

    Chang, Suhua; Zhang, Jiajie; Liao, Xiaoyun; Zhu, Xinxing; Wang, Dahai; Zhu, Jiang; Feng, Tao; Zhu, Baoli; Gao, George F; Wang, Jian; Yang, Huanming; Yu, Jun; Wang, Jing

    2007-01-01

    Frequent outbreaks of highly pathogenic avian influenza and the increasing data available for comparative analysis require a central database specialized in influenza viruses (IVs). We have established the Influenza Virus Database (IVDB) to integrate information and create an analysis platform for genetic, genomic, and phylogenetic studies of the virus. IVDB hosts complete genome sequences of influenza A virus generated by Beijing Institute of Genomics (BIG) and curates all other published IV sequences after expert annotation. Our Q-Filter system classifies and ranks all nucleotide sequences into seven categories according to sequence content and integrity. IVDB provides a series of tools and viewers for comparative analysis of the viral genomes, genes, genetic polymorphisms and phylogenetic relationships. A search system has been developed for users to retrieve a combination of different data types by setting search options. To facilitate analysis of global viral transmission and evolution, the IV Sequence Distribution Tool (IVDT) has been developed to display the worldwide geographic distribution of chosen viral genotypes and to couple genomic data with epidemiological data. The BLAST, multiple sequence alignment and phylogenetic analysis tools were integrated for online data analysis. Furthermore, IVDB offers instant access to pre-computed alignments and polymorphisms of IV genes and proteins, and presents the results as SNP distribution plots and minor allele distributions. IVDB is publicly available at http://influenza.genomics.org.cn.

  14. Two new miniature inverted-repeat transposable elements in the genome of the clam Donax trunculus.

    PubMed

    Šatović, Eva; Plohl, Miroslav

    2017-10-01

    Repetitive sequences are important components of eukaryotic genomes that drive their evolution. Among them are different types of mobile elements that share the ability to spread throughout the genome and form interspersed repeats. To broaden the generally scarce knowledge on bivalves at the genome level, in the clam Donax trunculus we described two new non-autonomous DNA transposons, miniature inverted-repeat transposable elements (MITEs), named DTC M1 and DTC M2. Like other MITEs, they are characterized by their small size, their A + T richness, and the presence of terminal inverted repeats (TIRs). DTC M1 and DTC M2 are 261 and 286 bp long, respectively, and in addition to TIRs, both of them contain a long imperfect palindrome sequence in their central parts. These elements are present in complete and truncated versions within the genome of the clam D. trunculus. The two new MITEs share only structural similarity, but lack any nucleotide sequence similarity to each other. In a search for related elements in databases, blast search revealed within the Crassostrea gigas genome a larger element sharing sequence similarity only to DTC M1 in its TIR sequences. The lack of sequence similarity with any previously published mobile elements indicates that DTC M1 and DTC M2 elements may be unique to D. trunculus.

  15. Construction of an Integrated High Density Simple Sequence Repeat Linkage Map in Cultivated Strawberry (Fragaria × ananassa) and its Applicability

    PubMed Central

    Isobe, Sachiko N.; Hirakawa, Hideki; Sato, Shusei; Maeda, Fumi; Ishikawa, Masami; Mori, Toshiki; Yamamoto, Yuko; Shirasawa, Kenta; Kimura, Mitsuhiro; Fukami, Masanobu; Hashizume, Fujio; Tsuji, Tomoko; Sasamoto, Shigemi; Kato, Midori; Nanri, Keiko; Tsuruoka, Hisano; Minami, Chiharu; Takahashi, Chika; Wada, Tsuyuko; Ono, Akiko; Kawashima, Kumiko; Nakazaki, Naomi; Kishida, Yoshie; Kohara, Mitsuyo; Nakayama, Shinobu; Yamada, Manabu; Fujishiro, Tsunakazu; Watanabe, Akiko; Tabata, Satoshi

    2013-01-01

    The cultivated strawberry (Fragaria× ananassa) is an octoploid (2n = 8x = 56) of the Rosaceae family whose genomic architecture is still controversial. Several recent studies support the AAA′A′BBB′B′ model, but its complexity has hindered genetic and genomic analysis of this important crop. To overcome this difficulty and to assist genome-wide analysis of F. × ananassa, we constructed an integrated linkage map by organizing a total of 4474 of simple sequence repeat (SSR) markers collected from published Fragaria sequences, including 3746 SSR markers [Fragaria vesca expressed sequence tag (EST)-derived SSR markers] derived from F. vesca ESTs, 603 markers (F. × ananassa EST-derived SSR markers) from F. × ananassa ESTs, and 125 markers (F. × ananassa transcriptome-derived SSR markers) from F. × ananassa transcripts. Along with the previously published SSR markers, these markers were mapped onto five parent-specific linkage maps derived from three mapping populations, which were then assembled into an integrated linkage map. The constructed map consists of 1856 loci in 28 linkage groups (LGs) that total 2364.1 cM in length. Macrosynteny at the chromosome level was observed between the LGs of F. × ananassa and the genome of F. vesca. Variety distinction on 129 F. × ananassa lines was demonstrated using 45 selected SSR markers. PMID:23248204

  16. Comparative primate genomics: emerging patterns of genome content and dynamics

    PubMed Central

    Rogers, Jeffrey; Gibbs, Richard A.

    2014-01-01

    Preface Advances in genome sequencing technologies have created new opportunities for comparative primate genomics. Genome assemblies have been published for several primates, with analyses of several others underway. Whole genome assemblies for the great apes provide remarkable new information about the evolutionary origins of the human genome and the processes involved. Genomic data for macaques and other nonhuman primates provide valuable insight into genetic similarities and differences among species used as models for disease-related research. This review summarizes current knowledge regarding primate genome content and dynamics and offers a series of goals for the near future. PMID:24709753

  17. Comparative primate genomics: emerging patterns of genome content and dynamics.

    PubMed

    Rogers, Jeffrey; Gibbs, Richard A

    2014-05-01

    Advances in genome sequencing technologies have created new opportunities for comparative primate genomics. Genome assemblies have been published for various primate species, and analyses of several others are underway. Whole-genome assemblies for the great apes provide remarkable new information about the evolutionary origins of the human genome and the processes involved. Genomic data for macaques and other non-human primates offer valuable insights into genetic similarities and differences among species that are used as models for disease-related research. This Review summarizes current knowledge regarding primate genome content and dynamics, and proposes a series of goals for the near future.

  18. Translocation and deletion breakpoints in cancer genomes are associated with potential non-B DNA-forming sequences.

    PubMed

    Bacolla, Albino; Tainer, John A; Vasquez, Karen M; Cooper, David N

    2016-07-08

    Gross chromosomal rearrangements (including translocations, deletions, insertions and duplications) are a hallmark of cancer genomes and often create oncogenic fusion genes. An obligate step in the generation of such gross rearrangements is the formation of DNA double-strand breaks (DSBs). Since the genomic distribution of rearrangement breakpoints is non-random, intrinsic cellular factors may predispose certain genomic regions to breakage. Notably, certain DNA sequences with the potential to fold into secondary structures [potential non-B DNA structures (PONDS); e.g. triplexes, quadruplexes, hairpin/cruciforms, Z-DNA and single-stranded looped-out structures with implications in DNA replication and transcription] can stimulate the formation of DNA DSBs. Here, we tested the postulate that these DNA sequences might be found at, or in close proximity to, rearrangement breakpoints. By analyzing the distribution of PONDS-forming sequences within ±500 bases of 19 947 translocation and 46 365 sequence-characterized deletion breakpoints in cancer genomes, we find significant association between PONDS-forming repeats and cancer breakpoints. Specifically, (AT)n, (GAA)n and (GAAA)n constitute the most frequent repeats at translocation breakpoints, whereas A-tracts occur preferentially at deletion breakpoints. Translocation breakpoints near PONDS-forming repeats also recur in different individuals and patient tumor samples. Hence, PONDS-forming sequences represent an intrinsic risk factor for genomic rearrangements in cancer genomes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Implementing genomic medicine in pathology.

    PubMed

    Williams, Eli S; Hegde, Madhuri

    2013-07-01

    The finished sequence of the Human Genome Project, published 50 years after Watson and Crick's seminal paper on the structure of DNA, pushed human genetics into the public eye and ushered in the genomic era. A significant, if overlooked, aspect of the race to complete the genome was the technology that propelled scientists to the finish line. DNA sequencing technologies have become more standardized, automated, and capable of higher throughput. This technology has continued to grow at an astounding rate in the decade since the Human Genome Project was completed. Today, massively parallel sequencing, or next-generation sequencing (NGS), allows the detection of genetic variants across the entire genome. This ability has led to the identification of new causes of disease and is changing the way we categorize, treat, and manage disease. NGS approaches such as whole-exome sequencing and whole-genome sequencing are rapidly becoming an affordable genetic testing strategy for the clinical laboratory. One test can now provide vast amounts of health information pertaining not only to the disease of interest, but information that may also predict adult-onset disease, reveal carrier status for a rare disease and predict drug responsiveness. The issue of what to do with these incidental findings, along with questions pertaining to NGS testing strategies, data interpretation and storage, and applying genetic testing results into patient care, remains without a clear answer. This review will explore these issues and others relevant to the implementation of NGS in the clinical laboratory.

  20. Rhabdovirus-like endogenous viral elements in the genome of Spodoptera frugiperda insect cells are actively transcribed: Implications for adventitious virus detection.

    PubMed

    Geisler, Christoph; Jarvis, Donald L

    2016-07-01

    Spodoptera frugiperda (Sf) cell lines are used to produce several biologicals for human and veterinary use. Recently, it was discovered that all tested Sf cell lines are persistently infected with Sf-rhabdovirus, a novel rhabdovirus. As part of an effort to search for other adventitious viruses, we searched the Sf cell genome and transcriptome for sequences related to Sf-rhabdovirus. To our surprise, we found intact Sf-rhabdovirus N- and P-like ORFs, and partial Sf-rhabdovirus G- and L-like ORFs. The transcribed and genomic sequences matched, indicating the transcripts were derived from the genomic sequences. These appear to be endogenous viral elements (EVEs), which result from the integration of partial viral genetic material into the host cell genome. It is theoretically impossible for the Sf-rhabdovirus-like EVEs to produce infectious virus particles as 1) they are disseminated across 4 genomic loci, 2) the G and L ORFs are incomplete, and 3) the M ORF is missing. Our finding of transcribed virus-like sequences in Sf cells underscores that MPS-based searches for adventitious viruses in cell substrates used to manufacture biologics should take into account both genomic and transcribed sequences to facilitate the identification of transcribed EVE's, and to avoid false positive detection of replication-competent adventitious viruses. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  1. dbWGFP: a database and web server of human whole-genome single nucleotide variants and their functional predictions.

    PubMed

    Wu, Jiaxin; Wu, Mengmeng; Li, Lianshuo; Liu, Zhuo; Zeng, Wanwen; Jiang, Rui

    2016-01-01

    The recent advancement of the next generation sequencing technology has enabled the fast and low-cost detection of all genetic variants spreading across the entire human genome, making the application of whole-genome sequencing a tendency in the study of disease-causing genetic variants. Nevertheless, there still lacks a repository that collects predictions of functionally damaging effects of human genetic variants, though it has been well recognized that such predictions play a central role in the analysis of whole-genome sequencing data. To fill this gap, we developed a database named dbWGFP (a database and web server of human whole-genome single nucleotide variants and their functional predictions) that contains functional predictions and annotations of nearly 8.58 billion possible human whole-genome single nucleotide variants. Specifically, this database integrates 48 functional predictions calculated by 17 popular computational methods and 44 valuable annotations obtained from various data sources. Standalone software, user-friendly query services and free downloads of this database are available at http://bioinfo.au.tsinghua.edu.cn/dbwgfp. dbWGFP provides a valuable resource for the analysis of whole-genome sequencing, exome sequencing and SNP array data, thereby complementing existing data sources and computational resources in deciphering genetic bases of human inherited diseases. © The Author(s) 2016. Published by Oxford University Press.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klenk, Hans-Peter; Lu, Megan; Lucas, Susan

    Saccharomonospora marina Liu et al. 2010 is a member to the genomically so far poorly characterized genus Saccharomonospora in the family Pseudonocardiaceae. Members of the genus Sacharomonospora are of interest because they originate from diverse habitats, such as leaf litter, manure, compost, surface of peat, moist, over-heated grain, and ocean sediment, where they might play a role in the primary degradation of plant material by attacking hemicellulose. Organisms belonging to the genus are usually Gram-positive staining, non-acid fast, and classify among the actinomycetes. Next to S. viridis and S. azurea, S. marina is the third member in the genus Saccharomonosporamore » for with a completely sequenced (permanent draft status) type strain genome will be published. Here we describe the features of this organism, together with the complete genome sequence, and annotation. The 5,965,593 bp long chromosome with its 5,727 protein-coding and 57 RNA genes was sequenced as part of the DOE funded Community Sequencing Program (CSP) 2010 at the Joint Genome Institute (JGI).« less

  3. Complete plastid genome sequence of goosegrass (Eleusine indica) and comparison with other Poaceae.

    PubMed

    Zhang, Hui; Hall, Nathan; McElroy, J Scott; Lowe, Elijah K; Goertzen, Leslie R

    2017-02-05

    Eleusine indica, also known as goosegrass, is a serious weed in at least 42 countries. In this paper we report the complete plastid genome sequence of goosegrass obtained by de novo assembly of paired-end and mate-paired reads generated by Illumina sequencing of total genomic DNA. The goosegrass plastome is a circular molecule of 135,151bp in length, consisting of two single-copy regions separated by a pair of inverted repeats (IRs) of 20,919 bases. The large (LSC) and the small (SSC) single-copy regions span 80,667 bases and 12,646 bases, respectively. The plastome of goosegrass has 38.19% GC content and includes 108 unique genes, of which 76 are protein-coding, 28 are transfer RNA, and 4 are ribosomal RNA. The goosegrass plastome sequence was compared to eight other species of Poaceae. Although generally conserved with respect to Poaceae, this genomic resource will be useful for evolutionary studies within this weed species and the genus Eleusine. Copyright © 2016. Published by Elsevier B.V.

  4. Targeted sequencing for high-resolution evolutionary analyses following genome duplication in salmonid fish: Proof of concept for key components of the insulin-like growth factor axis.

    PubMed

    Lappin, Fiona M; Shaw, Rebecca L; Macqueen, Daniel J

    2016-12-01

    High-throughput sequencing has revolutionised comparative and evolutionary genome biology. It has now become relatively commonplace to generate multiple genomes and/or transcriptomes to characterize the evolution of large taxonomic groups of interest. Nevertheless, such efforts may be unsuited to some research questions or remain beyond the scope of some research groups. Here we show that targeted high-throughput sequencing offers a viable alternative to study genome evolution across a vertebrate family of great scientific interest. Specifically, we exploited sequence capture and Illumina sequencing to characterize the evolution of key components from the insulin-like growth (IGF) signalling axis of salmonid fish at unprecedented phylogenetic resolution. The IGF axis represents a central governor of vertebrate growth and its core components were expanded by whole genome duplication in the salmonid ancestor ~95Ma. Using RNA baits synthesised to genes encoding the complete family of IGF binding proteins (IGFBP) and an IGF hormone (IGF2), we captured, sequenced and assembled orthologous and paralogous exons from species representing all ten salmonid genera. This approach generated 299 novel sequences, most as complete or near-complete protein-coding sequences. Phylogenetic analyses confirmed congruent evolutionary histories for all nineteen recognized salmonid IGFBP family members and identified novel salmonid-specific IGF2 paralogues. Moreover, we reconstructed the evolution of duplicated IGF axis paralogues across a replete salmonid phylogeny, revealing complex historic selection regimes - both ancestral to salmonids and lineage-restricted - that frequently involved asymmetric paralogue divergence under positive and/or relaxed purifying selection. Our findings add to an emerging literature highlighting diverse applications for targeted sequencing in comparative-evolutionary genomics. We also set out a viable approach to obtain large sets of nuclear genes for any member of the salmonid family, which should enable insights into the evolutionary role of whole genome duplication before additional nuclear genome sequences become available. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. The Papillomavirus Episteme: a major update to the papillomavirus sequence database.

    PubMed

    Van Doorslaer, Koenraad; Li, Zhiwen; Xirasagar, Sandhya; Maes, Piet; Kaminsky, David; Liou, David; Sun, Qiang; Kaur, Ramandeep; Huyen, Yentram; McBride, Alison A

    2017-01-04

    The Papillomavirus Episteme (PaVE) is a database of curated papillomavirus genomic sequences, accompanied by web-based sequence analysis tools. This update describes the addition of major new features. The papillomavirus genomes within PaVE have been further annotated, and now includes the major spliced mRNA transcripts. Viral genes and transcripts can be visualized on both linear and circular genome browsers. Evolutionary relationships among PaVE reference protein sequences can be analysed using multiple sequence alignments and phylogenetic trees. To assist in viral discovery, PaVE offers a typing tool; a simplified algorithm to determine whether a newly sequenced virus is novel. PaVE also now contains an image library containing gross clinical and histopathological images of papillomavirus infected lesions. Database URL: https://pave.niaid.nih.gov/. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  6. Exploiting proteomic data for genome annotation and gene model validation in Aspergillus niger

    PubMed Central

    Wright, James C; Sugden, Deana; Francis-McIntyre, Sue; Riba-Garcia, Isabel; Gaskell, Simon J; Grigoriev, Igor V; Baker, Scott E; Beynon, Robert J; Hubbard, Simon J

    2009-01-01

    Background Proteomic data is a potentially rich, but arguably unexploited, data source for genome annotation. Peptide identifications from tandem mass spectrometry provide prima facie evidence for gene predictions and can discriminate over a set of candidate gene models. Here we apply this to the recently sequenced Aspergillus niger fungal genome from the Joint Genome Institutes (JGI) and another predicted protein set from another A.niger sequence. Tandem mass spectra (MS/MS) were acquired from 1d gel electrophoresis bands and searched against all available gene models using Average Peptide Scoring (APS) and reverse database searching to produce confident identifications at an acceptable false discovery rate (FDR). Results 405 identified peptide sequences were mapped to 214 different A.niger genomic loci to which 4093 predicted gene models clustered, 2872 of which contained the mapped peptides. Interestingly, 13 (6%) of these loci either had no preferred predicted gene model or the genome annotators' chosen "best" model for that genomic locus was not found to be the most parsimonious match to the identified peptides. The peptides identified also boosted confidence in predicted gene structures spanning 54 introns from different gene models. Conclusion This work highlights the potential of integrating experimental proteomics data into genomic annotation pipelines much as expressed sequence tag (EST) data has been. A comparison of the published genome from another strain of A.niger sequenced by DSM showed that a number of the gene models or proteins with proteomics evidence did not occur in both genomes, further highlighting the utility of the method. PMID:19193216

  7. Draft sequencing and analysis of the genome of pufferfish Takifugu flavidus.

    PubMed

    Gao, Yang; Gao, Qiang; Zhang, Huan; Wang, Lingling; Zhang, Fuchong; Yang, Chuanyan; Song, Linsheng

    2014-12-01

    The pufferfish Takifugu flavidus is an important economic species due to its outstanding flavour and high market value. It has been regarded as an excellent model of genetic study for decades as well. In the present study, three mate-pair libraries of T. flavidus genome were sequenced by the SOLiD 4 next-generation sequencing platform, and the draft genome was constructed with the short reads using an assisted assembly strategy. The draft consists of 50,947 scaffolds with an N50 value of 305.7 kb, and the average GC content was 45.2%. The combined length of repetitive sequences was 26.5 Mb, which accounted for 6.87% of the genome, indicating that the compactness of T. flavidus genome was approximative with that of T. rubripes genome. A total of 1,253 non-coding RNA genes and 30,285 protein-encoding genes were assigned to the genome. There were 132,775 and 394 presumptive genes playing roles in the colour pattern variation, the relatively slow growth and the lipid metabolism, respectively. Among them, genes involved in the microtubule-dependent transport system, angiogenesis, decapentaplegic pathway and lipid mobilization were significantly expanded in the T. flavidus genome. This draft genome provides a valuable resource for understanding and improving both fundamental and applied research with pufferfish in the future. © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  8. Human CST Facilitates Genome-wide RAD51 Recruitment to GC-Rich Repetitive Sequences in Response to Replication Stress.

    PubMed

    Chastain, Megan; Zhou, Qing; Shiva, Olga; Fadri-Moskwik, Maria; Whitmore, Leanne; Jia, Pingping; Dai, Xueyu; Huang, Chenhui; Ye, Ping; Chai, Weihang

    2016-08-02

    The telomeric CTC1/STN1/TEN1 (CST) complex has been implicated in promoting replication recovery under replication stress at genomic regions, yet its precise role is unclear. Here, we report that STN1 is enriched at GC-rich repetitive sequences genome-wide in response to hydroxyurea (HU)-induced replication stress. STN1 deficiency exacerbates the fragility of these sequences under replication stress, resulting in chromosome fragmentation. We find that upon fork stalling, CST proteins form distinct nuclear foci that colocalize with RAD51. Furthermore, replication stress induces physical association of CST with RAD51 in an ATR-dependent manner. Strikingly, CST deficiency diminishes HU-induced RAD51 foci formation and reduces RAD51 recruitment to telomeres and non-telomeric GC-rich fragile sequences. Collectively, our findings establish that CST promotes RAD51 recruitment to GC-rich repetitive sequences in response to replication stress to facilitate replication restart, thereby providing insights into the mechanism underlying genome stability maintenance. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Comparative genomic analysis reveals occurrence of genetic recombination in virulent Cryptosporidium hominis subtypes and telomeric gene duplications in Cryptosporidium parvum.

    PubMed

    Guo, Yaqiong; Tang, Kevin; Rowe, Lori A; Li, Na; Roellig, Dawn M; Knipe, Kristine; Frace, Michael; Yang, Chunfu; Feng, Yaoyu; Xiao, Lihua

    2015-04-18

    Cryptosporidium hominis is a dominant species for human cryptosporidiosis. Within the species, IbA10G2 is the most virulent subtype responsible for all C. hominis-associated outbreaks in Europe and Australia, and is a dominant outbreak subtype in the United States. In recent yearsIaA28R4 is becoming a major new subtype in the United States. In this study, we sequenced the genomes of two field specimens from each of the two subtypes and conducted a comparative genomic analysis of the obtained sequences with those from the only fully sequenced Cryptosporidium parvum genome. Altogether, 8.59-9.05 Mb of Cryptosporidium sequences in 45-767 assembled contigs were obtained from the four specimens, representing 94.36-99.47% coverage of the expected genome. These genomes had complete synteny in gene organization and 96.86-97.0% and 99.72-99.83% nucleotide sequence similarities to the published genomes of C. parvum and C. hominis, respectively. Several major insertions and deletions were seen between C. hominis and C. parvum genomes, involving mostly members of multicopy gene families near telomeres. The four C. hominis genomes were highly similar to each other and divergent from the reference IaA25R3 genome in some highly polymorphic regions. Major sequence differences among the four specimens sequenced in this study were in the 5' and 3' ends of chromosome 6 and the gp60 region, largely the result of genetic recombination. The sequence similarity among specimens of the two dominant outbreak subtypes and genetic recombination in chromosome 6, especially around the putative virulence determinant gp60 region, suggest that genetic recombination plays a potential role in the emergence of hyper-transmissible C. hominis subtypes. The high sequence conservation between C. parvum and C. hominis genomes and significant differences in copy numbers of MEDLE family secreted proteins and insulinase-like proteases indicate that telomeric gene duplications could potentially contribute to host expansion in C. parvum.

  10. An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data.

    PubMed

    Jun, Goo; Wing, Mary Kate; Abecasis, Gonçalo R; Kang, Hyun Min

    2015-06-01

    The analysis of next-generation sequencing data is computationally and statistically challenging because of the massive volume of data and imperfect data quality. We present GotCloud, a pipeline for efficiently detecting and genotyping high-quality variants from large-scale sequencing data. GotCloud automates sequence alignment, sample-level quality control, variant calling, filtering of likely artifacts using machine-learning techniques, and genotype refinement using haplotype information. The pipeline can process thousands of samples in parallel and requires less computational resources than current alternatives. Experiments with whole-genome and exome-targeted sequence data generated by the 1000 Genomes Project show that the pipeline provides effective filtering against false positive variants and high power to detect true variants. Our pipeline has already contributed to variant detection and genotyping in several large-scale sequencing projects, including the 1000 Genomes Project and the NHLBI Exome Sequencing Project. We hope it will now prove useful to many medical sequencing studies. © 2015 Jun et al.; Published by Cold Spring Harbor Laboratory Press.

  11. Comparative pathogenomics of Clostridium tetani.

    PubMed

    Cohen, Jonathan E; Wang, Rong; Shen, Rong-Fong; Wu, Wells W; Keller, James E

    2017-01-01

    Clostridium tetani and Clostridium botulinum produce two of the most potent neurotoxins known, tetanus neurotoxin and botulinum neurotoxin, respectively. Extensive biochemical and genetic investigation has been devoted to identifying and characterizing various C. botulinum strains. Less effort has been focused on studying C. tetani likely because recently sequenced strains of C. tetani show much less genetic diversity than C. botulinum strains and because widespread vaccination efforts have reduced the public health threat from tetanus. Our aim was to acquire genomic data on the U.S. vaccine strain of C. tetani to better understand its genetic relationship to previously published genomic data from European vaccine strains. We performed high throughput genomic sequence analysis on two wild-type and two vaccine C. tetani strains. Comparative genomic analysis was performed using these and previously published genomic data for seven other C. tetani strains. Our analysis focused on single nucleotide polymorphisms (SNP) and four distinct constituents of the mobile genome (mobilome): a hypervariable flagellar glycosylation island region, five conserved bacteriophage insertion regions, variations in three CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems, and a single plasmid. Intact type IA and IB CRISPR/Cas systems were within 10 of 11 strains. A type IIIA CRISPR/Cas system was present in two strains. Phage infection histories derived from CRISPR-Cas sequences indicate C. tetani encounters phages common among commensal gut bacteria and soil-borne organisms consistent with C. tetani distribution in nature. All vaccine strains form a clade distinct from currently sequenced wild type strains when considering variations in these mobile elements. SNP, flagellar glycosylation island, prophage content and CRISPR/Cas phylogenic histories provide tentative evidence suggesting vaccine and wild type strains share a common ancestor.

  12. Genomics and integrated systems biology in Plasmodium falciparum: a path to malaria control and eradication.

    PubMed

    Le Roch, K G; Chung, D-W D; Ponts, N

    2012-01-01

    The first draft of the human malaria parasite's genome was released in 2002. Since then, the malaria scientific community has witnessed a steady embrace of new and powerful functional genomic studies. Over the years, these approaches have slowly revolutionized malaria research and enabled the comprehensive, unbiased investigation of various aspects of the parasite's biology. These genome-wide analyses delivered a refined annotation of the parasite's genome, delivered a better knowledge of its RNA, proteins and metabolite derivatives, and fostered the discovery of new vaccine and drug targets. Despite the positive impacts of these genomic studies, most research and investment still focus on protein targets, drugs and vaccine candidates that were known before the publication of the parasite genome sequence. However, recent access to next-generation sequencing technologies, along with an increased number of genome-wide applications, is expanding the impact of the parasite genome on biomedical research, contributing to a paradigm shift in research activities that may possibly lead to new optimized diagnosis and treatments. This review provides an update of Plasmodium falciparum genome sequences and an overview of the rapid development of genomics and system biology applications that have an immense potential of creating powerful tools for a successful malaria eradication campaign. © 2011 Blackwell Publishing Ltd.

  13. Genomic comparison of the endophyte Herbaspirillum seropedicae SmR1 and the phytopathogen Herbaspirillum rubrisubalbicans M1 by suppressive subtractive hybridization and partial genome sequencing.

    PubMed

    Monteiro, Rose A; Balsanelli, Eduardo; Tuleski, Thalita; Faoro, Helison; Cruz, Leonardo M; Wassem, Roseli; de Baura, Valter A; Tadra-Sfeir, Michelle Z; Weiss, Vinícius; DaRocha, Wanderson D; Muller-Santos, Marcelo; Chubatsu, Leda S; Huergo, Luciano F; Pedrosa, Fábio O; de Souza, Emanuel M

    2012-05-01

    Herbaspirillum rubrisubalbicans M1 causes the mottled stripe disease in sugarcane cv. B-4362. Inoculation of this cultivar with Herbaspirillum seropedicae SmR1 does not produce disease symptoms. A comparison of the genomic sequences of these closely related species may permit a better understanding of contrasting phenotype such as endophytic association and pathogenic life style. To achieve this goal, we constructed suppressive subtractive hybridization (SSH) libraries to identify DNA fragments present in one species and absent in the other. In a parallel approach, partial genomic sequence from H. rubrisubalbicans M1 was directly compared in silico with the H. seropedicae SmR1 genome. The genomic differences between the two organisms revealed by SSH suggested that lipopolysaccharide and adhesins are potential molecular factors involved in the different phenotypic behavior. The cluster wss probably involved in cellulose biosynthesis was found in H. rubrisubalbicans M1. Expression of this gene cluster was increased in H. rubrisubalbicans M1 cells attached to the surface of maize root, and knockout of wssD gene led to decrease in maize root surface attachment and endophytic colonization. The production of cellulose could be responsible for the maize attachment pattern of H. rubrisubalbicans M1 that is capable of outcompeting H. seropedicae SmR1. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  14. Plastid primers for angiosperm phylogenetics and phylogeography.

    PubMed

    Prince, Linda M

    2015-06-01

    PCR primers are available for virtually every region of the plastid genome. Selection of which primer pairs to use is second only to selection of the genic region. This is particularly true for research at the species/population interface. Primer pairs for 130 regions of the chloroplast genome were evaluated in 12 species distributed across the angiosperms. Likelihood of amplification success was inferred based upon number and location of mismatches to target sequence. Intraspecific sequence variability was evaluated under three different criteria in four species. Many published primer pairs should work across all taxa sampled, with the exception of failure due to genomic reorganization events. Universal barcoding primers were the least likely to work (65% success). The list of most variable regions for use within species has little in common with the lists identified in prior studies. Published primer sequences should amplify a diversity of flowering plant DNAs, even those designed for specific taxonomic groups. "Universal" primers may have extremely limited utility. There was little consistency in likelihood of amplification success for any given publication across lineages or within lineage across publications.

  15. A high-coverage draft genome of the mycalesine butterfly Bicyclus anynana

    PubMed Central

    Elsworth, Ben; Oostra, Vicencio; Zwaan, Bas J.; Wheat, Christopher W.; Saastamoinen, Marjo; Saccheri, Ilik J.; van’t Hof, Arjen E.; Wasik, Bethany R.; Connahs, Heidi; Aslam, Muhammad L.; Kumar, Sujai; Challis, Richard J.; Monteiro, Antónia; Brakefield, Paul M.

    2017-01-01

    Abstract The mycalesine butterfly Bicyclus anynana, the “Squinting bush brown,” is a model organism in the study of lepidopteran ecology, development, and evolution. Here, we present a draft genome sequence for B. anynana to serve as a genomics resource for current and future studies of this important model species. Seven libraries with insert sizes ranging from 350 bp to 20 kb were constructed using DNA from an inbred female and sequenced using both Illumina and PacBio technology; 128 Gb of raw Illumina data was filtered to 124 Gb and assembled to a final size of 475 Mb (∼×260 assembly coverage). Contigs were scaffolded using mate-pair, transcriptome, and PacBio data into 10 800 sequences with an N50 of 638 kb (longest scaffold 5 Mb). The genome is comprised of 26% repetitive elements and encodes a total of 22 642 predicted protein-coding genes. Recovery of a BUSCO set of core metazoan genes was almost complete (98%). Overall, these metrics compare well with other recently published lepidopteran genomes. We report a high-quality draft genome sequence for Bicyclus anynana. The genome assembly and annotated gene models are available at LepBase (http://ensembl.lepbase.org/index.html). PMID:28486658

  16. SvABA: genome-wide detection of structural variants and indels by local assembly.

    PubMed

    Wala, Jeremiah A; Bandopadhayay, Pratiti; Greenwald, Noah F; O'Rourke, Ryan; Sharpe, Ted; Stewart, Chip; Schumacher, Steve; Li, Yilong; Weischenfeldt, Joachim; Yao, Xiaotong; Nusbaum, Chad; Campbell, Peter; Getz, Gad; Meyerson, Matthew; Zhang, Cheng-Zhong; Imielinski, Marcin; Beroukhim, Rameen

    2018-04-01

    Structural variants (SVs), including small insertion and deletion variants (indels), are challenging to detect through standard alignment-based variant calling methods. Sequence assembly offers a powerful approach to identifying SVs, but is difficult to apply at scale genome-wide for SV detection due to its computational complexity and the difficulty of extracting SVs from assembly contigs. We describe SvABA, an efficient and accurate method for detecting SVs from short-read sequencing data using genome-wide local assembly with low memory and computing requirements. We evaluated SvABA's performance on the NA12878 human genome and in simulated and real cancer genomes. SvABA demonstrates superior sensitivity and specificity across a large spectrum of SVs and substantially improves detection performance for variants in the 20-300 bp range, compared with existing methods. SvABA also identifies complex somatic rearrangements with chains of short (<1000 bp) templated-sequence insertions copied from distant genomic regions. We applied SvABA to 344 cancer genomes from 11 cancer types and found that short templated-sequence insertions occur in ∼4% of all somatic rearrangements. Finally, we demonstrate that SvABA can identify sites of viral integration and cancer driver alterations containing medium-sized (50-300 bp) SVs. © 2018 Wala et al.; Published by Cold Spring Harbor Laboratory Press.

  17. Complete mitochondrial genome and taxonomic revision of Cardiodactylus muiri Otte, 2007 (Gryllidae: Eneopterinae: Lebinthini).

    PubMed

    Dong, Jiajia; Vicente, Natallia; Chintauan-Marquier, Ioana C; Ramadi, Cahyo; Dettai, Agnès; Robillard, Tony

    2017-05-15

    In the present study, we report the high-coverage complete mitochondrial genome (mitogenome) of the cricket Cardiodactylus muiri Otte, 2007. The mitogenome was sequenced using a long-PCR approach on an Ion Torrent Personal Genome Machine (PGM) for next generation sequencing technology. The total length of the amplified mitogenome is 16,328 bp, representing 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and one noncoding region (D-loop region). The new sets of long-PCR primers reported here are invaluable resources for future comparative evolutionary genomic studies in Orthopteran insects. The new mitogenome sequence is compared with published cricket mitogenomes. In the taxonomic part, we present new records for the species and describe life-history traits, habitat and male calling song of the species; based on observation of new material, the species Cardiodactylus buru Gorochov & Robillard, 2014 is synonymized under C. muiri.

  18. Whole-Genome Sequencing of Measles Virus Genotypes H1 and D8 During Outbreaks of Infection Following the 2010 Olympic Winter Games Reveals Viral Transmission Routes.

    PubMed

    Gardy, Jennifer L; Naus, Monika; Amlani, Ashraf; Chung, Walter; Kim, Hochan; Tan, Malcolm; Severini, Alberto; Krajden, Mel; Puddicombe, David; Sahni, Vanita; Hayden, Althea S; Gustafson, Reka; Henry, Bonnie; Tang, Patrick

    2015-11-15

    We used whole-genome sequencing to investigate a dual-genotype outbreak of measles occurring after the XXI Olympic Winter Games in Vancouver, Canada. By sequencing 27 complete genomes from H1 and D8 genotype measles viruses isolated from outbreak cases, we estimated the virus mutation rate, determined that person-to-person transmission is typically associated with 0 mutations between isolates, and established that a single introduction of H1 virus led to the expansion of the outbreak beyond Vancouver. This is the largest measles genomics project to date, revealing novel aspects of measles virus genetics and providing new insights into transmission of this reemerging viral pathogen. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Are commercial providers a viable option for clinical bacterial sequencing?

    PubMed

    Raven, Kathy; Blane, Beth; Churcher, Carol; Parkhill, Julian; Peacock, Sharon J

    2018-04-05

    Bacterial whole-genome sequencing in the clinical setting has the potential to bring major improvements to infection control and clinical practice. Sequencing instruments are not currently available in the majority of routine microbiology laboratories worldwide, but an alternative is to use external sequencing providers. To foster discussion around this we investigated whether send-out services were a viable option. Four providers offering MiSeq sequencing were selected based on cost and evaluated based on the service provided and sequence data quality. DNA was prepared from five methicillin-resistant Staphylococcus aureus (MRSA) isolates, four of which were investigated during a previously published outbreak in the UK together with a reference MRSA isolate (ST22 HO 5096 0412). Cost of sequencing per isolate ranged from £155 to £342 and turnaround times from DNA postage to arrival of sequence data ranged from 12 to 63 days. Comparison of commercially generated genomes against the original sequence data demonstrated very high concordance, with no more than one single nucleotide polymorphism (SNP) difference on core genome mapping between the original sequences and the new sequence for all four providers. Multilocus sequence type could not be assigned based on assembly for the two cheapest sequence providers due to fragmented assemblies probably caused by a lower output of sequence data per isolate. Our results indicate that external providers returned highly accurate genome data, but that improvements are required in turnaround time to make this a viable option for use in clinical practice.

  20. Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates.

    PubMed

    Weng, Mao-Lun; Blazier, John C; Govindu, Madhumita; Jansen, Robert K

    2014-03-01

    Geraniaceae plastid genomes are highly rearranged, and each of the four genera already sequenced in the family has a distinct genome organization. This study reports plastid genome sequences of six additional species, Francoa sonchifolia, Melianthus villosus, and Viviania marifolia from Geraniales, and Pelargonium alternans, California macrophylla, and Hypseocharis bilobata from Geraniaceae. These genome sequences, combined with previously published species, provide sufficient taxon sampling to reconstruct the ancestral plastid genome organization of Geraniaceae and the rearrangements unique to each genus. The ancestral plastid genome of Geraniaceae has a 4 kb inversion and a reduced, Pelargonium-like small single copy region. Our ancestral genome reconstruction suggests that a few minor rearrangements occurred in the stem branch of Geraniaceae followed by independent rearrangements in each genus. The genomic comparison demonstrates that a series of inverted repeat boundary shifts and inversions played a major role in shaping genome organization in the family. The distribution of repeats is strongly associated with breakpoints in the rearranged genomes, and the proportion and the number of large repeats (>20 bp and >60 bp) are significantly correlated with the degree of genome rearrangements. Increases in the degree of plastid genome rearrangements are correlated with the acceleration in nonsynonymous substitution rates (dN) but not with synonymous substitution rates (dS). Possible mechanisms that might contribute to this correlation, including DNA repair system and selection, are discussed.

  1. Tumor Genomic Profiling in Breast Cancer Patients Using Targeted Massively Parallel Sequencing

    DTIC Science & Technology

    2015-04-30

    recently, we identified several novel alterations in in ER+ breast tumors, including translocations in ESR1 , the gene that encodes the estrogen receptor...modified our bait design to include genomic coordinates across select introns in ESR1 . In addition, two recent papers from the Broad Institute published

  2. Comparative Genetic Analyses of Human Rhinovirus C (HRV-C) Complete Genome from Malaysia.

    PubMed

    Khaw, Yam Sim; Chan, Yoke Fun; Jafar, Faizatul Lela; Othman, Norlijah; Chee, Hui Yee

    2016-01-01

    Human rhinovirus-C (HRV-C) has been implicated in more severe illnesses than HRV-A and HRV-B, however, the limited number of HRV-C complete genomes (complete 5' and 3' non-coding region and open reading frame sequences) has hindered the in-depth genetic study of this virus. This study aimed to sequence seven complete HRV-C genomes from Malaysia and compare their genetic characteristics with the 18 published HRV-Cs. Seven Malaysian HRV-C complete genomes were obtained with newly redesigned primers. The seven genomes were classified as HRV-C6, C12, C22, C23, C26, C42, and pat16 based on the VP4/VP2 and VP1 pairwise distance threshold classification. Five of the seven Malaysian isolates, namely, 3430-MY-10/C22, 8713-MY-10/C23, 8097-MY-11/C26, 1570-MY-10/C42, and 7383-MY-10/pat16 are the first newly sequenced complete HRV-C genomes. All seven Malaysian isolates genomes displayed nucleotide similarity of 63-81% among themselves and 63-96% with other HRV-Cs. Malaysian HRV-Cs had similar putative immunogenic sites, putative receptor utilization and potential antiviral sites as other HRV-Cs. The genomic features of Malaysian isolates were similar to those of other HRV-Cs. Negative selections were frequently detected in HRV-Cs complete coding sequences indicating that these sequences were under functional constraint. The present study showed that HRV-Cs from Malaysia have diverse genetic sequences but share conserved genomic features with other HRV-Cs. This genetic information could provide further aid in the understanding of HRV-C infection.

  3. Comparative Genetic Analyses of Human Rhinovirus C (HRV-C) Complete Genome from Malaysia

    PubMed Central

    Khaw, Yam Sim; Chan, Yoke Fun; Jafar, Faizatul Lela; Othman, Norlijah; Chee, Hui Yee

    2016-01-01

    Human rhinovirus-C (HRV-C) has been implicated in more severe illnesses than HRV-A and HRV-B, however, the limited number of HRV-C complete genomes (complete 5′ and 3′ non-coding region and open reading frame sequences) has hindered the in-depth genetic study of this virus. This study aimed to sequence seven complete HRV-C genomes from Malaysia and compare their genetic characteristics with the 18 published HRV-Cs. Seven Malaysian HRV-C complete genomes were obtained with newly redesigned primers. The seven genomes were classified as HRV-C6, C12, C22, C23, C26, C42, and pat16 based on the VP4/VP2 and VP1 pairwise distance threshold classification. Five of the seven Malaysian isolates, namely, 3430-MY-10/C22, 8713-MY-10/C23, 8097-MY-11/C26, 1570-MY-10/C42, and 7383-MY-10/pat16 are the first newly sequenced complete HRV-C genomes. All seven Malaysian isolates genomes displayed nucleotide similarity of 63–81% among themselves and 63–96% with other HRV-Cs. Malaysian HRV-Cs had similar putative immunogenic sites, putative receptor utilization and potential antiviral sites as other HRV-Cs. The genomic features of Malaysian isolates were similar to those of other HRV-Cs. Negative selections were frequently detected in HRV-Cs complete coding sequences indicating that these sequences were under functional constraint. The present study showed that HRV-Cs from Malaysia have diverse genetic sequences but share conserved genomic features with other HRV-Cs. This genetic information could provide further aid in the understanding of HRV-C infection. PMID:27199901

  4. Building a genome analysis pipeline to predict disease risk and prevent disease.

    PubMed

    Bromberg, Y

    2013-11-01

    Reduced costs and increased speed and accuracy of sequencing can bring the genome-based evaluation of individual disease risk to the bedside. While past efforts have identified a number of actionable mutations, the bulk of genetic risk remains hidden in sequence data. The biggest challenge facing genomic medicine today is the development of new techniques to predict the specifics of a given human phenome (set of all expressed phenotypes) encoded by each individual variome (full set of genome variants) in the context of the given environment. Numerous tools exist for the computational identification of the functional effects of a single variant. However, the pipelines taking advantage of full genomic, exomic, transcriptomic (and other) sequences have only recently become a reality. This review looks at the building of methodologies for predicting "variome"-defined disease risk. It also discusses some of the challenges for incorporating such a pipeline into everyday medical practice. © 2013. Published by Elsevier Ltd. All rights reserved.

  5. The Génolevures database.

    PubMed

    Martin, Tiphaine; Sherman, David J; Durrens, Pascal

    2011-01-01

    The Génolevures online database (URL: http://www.genolevures.org) stores and provides the data and results obtained by the Génolevures Consortium through several campaigns of genome annotation of the yeasts in the Saccharomycotina subphylum (hemiascomycetes). This database is dedicated to large-scale comparison of these genomes, storing not only the different chromosomal elements detected in the sequences, but also the logical relations between them. The database is divided into a public part, accessible to anyone through Internet, and a private part where the Consortium members make genome annotations with our Magus annotation system; this system is used to annotate several related genomes in parallel. The public database is widely consulted and offers structured data, organized using a REST web site architecture that allows for automated requests. The implementation of the database, as well as its associated tools and methods, is evolving to cope with the influx of genome sequences produced by Next Generation Sequencing (NGS). Copyright © 2011 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  6. Finding the missing honey bee genes: lessons learned from a genome upgrade.

    PubMed

    Elsik, Christine G; Worley, Kim C; Bennett, Anna K; Beye, Martin; Camara, Francisco; Childers, Christopher P; de Graaf, Dirk C; Debyser, Griet; Deng, Jixin; Devreese, Bart; Elhaik, Eran; Evans, Jay D; Foster, Leonard J; Graur, Dan; Guigo, Roderic; Hoff, Katharina Jasmin; Holder, Michael E; Hudson, Matthew E; Hunt, Greg J; Jiang, Huaiyang; Joshi, Vandita; Khetani, Radhika S; Kosarev, Peter; Kovar, Christie L; Ma, Jian; Maleszka, Ryszard; Moritz, Robin F A; Munoz-Torres, Monica C; Murphy, Terence D; Muzny, Donna M; Newsham, Irene F; Reese, Justin T; Robertson, Hugh M; Robinson, Gene E; Rueppell, Olav; Solovyev, Victor; Stanke, Mario; Stolle, Eckart; Tsuruda, Jennifer M; Vaerenbergh, Matthias Van; Waterhouse, Robert M; Weaver, Daniel B; Whitfield, Charles W; Wu, Yuanqing; Zdobnov, Evgeny M; Zhang, Lan; Zhu, Dianhui; Gibbs, Richard A

    2014-01-30

    The first generation of genome sequence assemblies and annotations have had a significant impact upon our understanding of the biology of the sequenced species, the phylogenetic relationships among species, the study of populations within and across species, and have informed the biology of humans. As only a few Metazoan genomes are approaching finished quality (human, mouse, fly and worm), there is room for improvement of most genome assemblies. The honey bee (Apis mellifera) genome, published in 2006, was noted for its bimodal GC content distribution that affected the quality of the assembly in some regions and for fewer genes in the initial gene set (OGSv1.0) compared to what would be expected based on other sequenced insect genomes. Here, we report an improved honey bee genome assembly (Amel_4.5) with a new gene annotation set (OGSv3.2), and show that the honey bee genome contains a number of genes similar to that of other insect genomes, contrary to what was suggested in OGSv1.0. The new genome assembly is more contiguous and complete and the new gene set includes ~5000 more protein-coding genes, 50% more than previously reported. About 1/6 of the additional genes were due to improvements to the assembly, and the remaining were inferred based on new RNAseq and protein data. Lessons learned from this genome upgrade have important implications for future genome sequencing projects. Furthermore, the improvements significantly enhance genomic resources for the honey bee, a key model for social behavior and essential to global ecology through pollination.

  7. Finding the missing honey bee genes: lessons learned from a genome upgrade

    PubMed Central

    2014-01-01

    Background The first generation of genome sequence assemblies and annotations have had a significant impact upon our understanding of the biology of the sequenced species, the phylogenetic relationships among species, the study of populations within and across species, and have informed the biology of humans. As only a few Metazoan genomes are approaching finished quality (human, mouse, fly and worm), there is room for improvement of most genome assemblies. The honey bee (Apis mellifera) genome, published in 2006, was noted for its bimodal GC content distribution that affected the quality of the assembly in some regions and for fewer genes in the initial gene set (OGSv1.0) compared to what would be expected based on other sequenced insect genomes. Results Here, we report an improved honey bee genome assembly (Amel_4.5) with a new gene annotation set (OGSv3.2), and show that the honey bee genome contains a number of genes similar to that of other insect genomes, contrary to what was suggested in OGSv1.0. The new genome assembly is more contiguous and complete and the new gene set includes ~5000 more protein-coding genes, 50% more than previously reported. About 1/6 of the additional genes were due to improvements to the assembly, and the remaining were inferred based on new RNAseq and protein data. Conclusions Lessons learned from this genome upgrade have important implications for future genome sequencing projects. Furthermore, the improvements significantly enhance genomic resources for the honey bee, a key model for social behavior and essential to global ecology through pollination. PMID:24479613

  8. Comprehensive Rare Variant Analysis via Whole-Genome Sequencing to Determine the Molecular Pathology of Inherited Retinal Disease.

    PubMed

    Carss, Keren J; Arno, Gavin; Erwood, Marie; Stephens, Jonathan; Sanchis-Juan, Alba; Hull, Sarah; Megy, Karyn; Grozeva, Detelina; Dewhurst, Eleanor; Malka, Samantha; Plagnol, Vincent; Penkett, Christopher; Stirrups, Kathleen; Rizzo, Roberta; Wright, Genevieve; Josifova, Dragana; Bitner-Glindzicz, Maria; Scott, Richard H; Clement, Emma; Allen, Louise; Armstrong, Ruth; Brady, Angela F; Carmichael, Jenny; Chitre, Manali; Henderson, Robert H H; Hurst, Jane; MacLaren, Robert E; Murphy, Elaine; Paterson, Joan; Rosser, Elisabeth; Thompson, Dorothy A; Wakeling, Emma; Ouwehand, Willem H; Michaelides, Michel; Moore, Anthony T; Webster, Andrew R; Raymond, F Lucy

    2017-01-05

    Inherited retinal disease is a common cause of visual impairment and represents a highly heterogeneous group of conditions. Here, we present findings from a cohort of 722 individuals with inherited retinal disease, who have had whole-genome sequencing (n = 605), whole-exome sequencing (n = 72), or both (n = 45) performed, as part of the NIHR-BioResource Rare Diseases research study. We identified pathogenic variants (single-nucleotide variants, indels, or structural variants) for 404/722 (56%) individuals. Whole-genome sequencing gives unprecedented power to detect three categories of pathogenic variants in particular: structural variants, variants in GC-rich regions, which have significantly improved coverage compared to whole-exome sequencing, and variants in non-coding regulatory regions. In addition to previously reported pathogenic regulatory variants, we have identified a previously unreported pathogenic intronic variant in CHM in two males with choroideremia. We have also identified 19 genes not previously known to be associated with inherited retinal disease, which harbor biallelic predicted protein-truncating variants in unsolved cases. Whole-genome sequencing is an increasingly important comprehensive method with which to investigate the genetic causes of inherited retinal disease. Copyright © 2017. Published by Elsevier Inc.

  9. Analysis for complete genomic sequence of HLA-B and HLA-C alleles in the Chinese Han population.

    PubMed

    Zhu, F; He, Y; Zhang, W; He, J; He, J; Xu, X; Lv, H; Yan, L

    2011-08-01

    In the present study, we have determined the complete genomic sequence and analysed the intron polymorphism of partial HLA-B and HLA-C alleles in the Chinese Han population. Over 3.0 kb DNA fragments of HLA-B and HLA-C loci were amplified by polymerase chain reaction from partial 5' untranslated region to 3' noncoding region respectively, and then the amplified products were sequenced. Full-length nucleotide sequences of 14 HLA-B alleles and 10 HLA-C alleles were obtained and have been submitted to GenBank and IMGT/HLA database. Two novel alleles of HLA-B*52:01:01:02 and HLA-B*59:01:01:02 were identified, and the complete genomic sequence of HLA-B*52:01:01:01 was firstly reported. Totally 157 and 167 polymorphism positions were found in the full-length genomic sequence of HLA-B and HLA-C loci respectively. Our results suggested that many single nucleotide polymorphisms existed in the exon and intron regions, and the data can provide useful information for understanding the evolution of HLA-B and HLA-C alleles. © 2011 Blackwell Publishing Ltd.

  10. Whole genome sequencing and bioinformatics analysis of two Egyptian genomes.

    PubMed

    ElHefnawi, Mahmoud; Jeon, Sungwon; Bhak, Youngjune; ElFiky, Asmaa; Horaiz, Ahmed; Jun, JeHoon; Kim, Hyunho; Bhak, Jong

    2018-05-15

    We report two Egyptian male genomes (EGP1 and EGP2) sequenced at ~ 30× sequencing depths. EGP1 had 4.7 million variants, where 198,877 were novel variants while EGP2 had 209,109 novel variants out of 4.8 million variants. The mitochondrial haplogroup of the two individuals were identified to be H7b1 and L2a1c, respectively. We also identified the Y haplogroup of EGP1 (R1b) and EGP2 (J1a2a1a2 > P58 > FGC11). EGP1 had a mutation in the NADH gene of the mitochondrial genome ND4 (m.11778 G > A) that causes Leber's hereditary optic neuropathy. Some SNPs shared by the two genomes were associated with an increased level of cholesterol and triglycerides, probably related with Egyptians obesity. Comparison of these genomes with African and Western-Asian genomes can provide insights on Egyptian ancestry and genetic history. This resource can be used to further understand genomic diversity and functional classification of variants as well as human migration and evolution across Africa and Western-Asia. Copyright © 2017. Published by Elsevier B.V.

  11. ISEScan: automated identification of insertion sequence elements in prokaryotic genomes.

    PubMed

    Xie, Zhiqun; Tang, Haixu

    2017-11-01

    The insertion sequence (IS) elements are the smallest but most abundant autonomous transposable elements in prokaryotic genomes, which play a key role in prokaryotic genome organization and evolution. With the fast growing genomic data, it is becoming increasingly critical for biology researchers to be able to accurately and automatically annotate ISs in prokaryotic genome sequences. The available automatic IS annotation systems are either providing only incomplete IS annotation or relying on the availability of existing genome annotations. Here, we present a new IS elements annotation pipeline to address these issues. ISEScan is a highly sensitive software pipeline based on profile hidden Markov models constructed from manually curated IS elements. ISEScan performs better than existing IS annotation systems when tested on prokaryotic genomes with curated annotations of IS elements. Applying it to 2784 prokaryotic genomes, we report the global distribution of IS families across taxonomic clades in Archaea and Bacteria. ISEScan is implemented in Python and released as an open source software at https://github.com/xiezhq/ISEScan. hatang@indiana.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  12. Primer on Molecular Genetics; DOE Human Genome Program

    DOE R&D Accomplishments Database

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  13. Genome-Wide Structural Variation Detection by Genome Mapping on Nanochannel Arrays.

    PubMed

    Mak, Angel C Y; Lai, Yvonne Y Y; Lam, Ernest T; Kwok, Tsz-Piu; Leung, Alden K Y; Poon, Annie; Mostovoy, Yulia; Hastie, Alex R; Stedman, William; Anantharaman, Thomas; Andrews, Warren; Zhou, Xiang; Pang, Andy W C; Dai, Heng; Chu, Catherine; Lin, Chin; Wu, Jacob J K; Li, Catherine M L; Li, Jing-Woei; Yim, Aldrin K Y; Chan, Saki; Sibert, Justin; Džakula, Željko; Cao, Han; Yiu, Siu-Ming; Chan, Ting-Fung; Yip, Kevin Y; Xiao, Ming; Kwok, Pui-Yan

    2016-01-01

    Comprehensive whole-genome structural variation detection is challenging with current approaches. With diploid cells as DNA source and the presence of numerous repetitive elements, short-read DNA sequencing cannot be used to detect structural variation efficiently. In this report, we show that genome mapping with long, fluorescently labeled DNA molecules imaged on nanochannel arrays can be used for whole-genome structural variation detection without sequencing. While whole-genome haplotyping is not achieved, local phasing (across >150-kb regions) is routine, as molecules from the parental chromosomes are examined separately. In one experiment, we generated genome maps from a trio from the 1000 Genomes Project, compared the maps against that derived from the reference human genome, and identified structural variations that are >5 kb in size. We find that these individuals have many more structural variants than those published, including some with the potential of disrupting gene function or regulation. Copyright © 2016 by the Genetics Society of America.

  14. The Arab genome: Health and wealth.

    PubMed

    Zayed, Hatem

    2016-11-05

    The 22 Arab nations have a unique genetic structure, which reflects both conserved and diverse gene pools due to the prevalent endogamous and consanguineous marriage culture and the long history of admixture among different ethnic subcultures descended from the Asian, European, and African continents. Human genome sequencing has enabled large-scale genomic studies of different populations and has become a powerful tool for studying disease predictions and diagnosis. Despite the importance of the Arab genome for better understanding the dynamics of the human genome, discovering rare genetic variations, and studying early human migration out of Africa, it is poorly represented in human genome databases, such as HapMap and the 1000 Genomes Project. In this review, I demonstrate the significance of sequencing the Arab genome and setting an Arab genome reference(s) for better understanding the molecular pathogenesis of genetic diseases, discovering novel/rare variants, and identifying a meaningful genotype-phenotype correlation for complex diseases. Copyright © 2016. Published by Elsevier B.V.

  15. Evolution and Diversity of Transposable Elements in Vertebrate Genomes.

    PubMed

    Sotero-Caio, Cibele G; Platt, Roy N; Suh, Alexander; Ray, David A

    2017-01-01

    Transposable elements (TEs) are selfish genetic elements that mobilize in genomes via transposition or retrotransposition and often make up large fractions of vertebrate genomes. Here, we review the current understanding of vertebrate TE diversity and evolution in the context of recent advances in genome sequencing and assembly techniques. TEs make up 4-60% of assembled vertebrate genomes, and deeply branching lineages such as ray-finned fishes and amphibians generally exhibit a higher TE diversity than the more recent radiations of birds and mammals. Furthermore, the list of taxa with exceptional TE landscapes is growing. We emphasize that the current bottleneck in genome analyses lies in the proper annotation of TEs and provide examples where superficial analyses led to misleading conclusions about genome evolution. Finally, recent advances in long-read sequencing will soon permit access to TE-rich genomic regions that previously resisted assembly including the gigantic, TE-rich genomes of salamanders and lungfishes. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Quality scores for 32,000 genomes

    DOE PAGES

    Land, Miriam L.; Hyatt, Doug; Jun, Se-Ran; ...

    2014-12-08

    More than 80% of the microbial genomes in GenBank are of ‘draft’ quality (12,553 draft vs. 2,679 finished, as of October, 2013). In this study, we have examined all the microbial DNA sequences available for complete, draft, and Sequence Read Archive genomes in GenBank as well as three other major public databases, and assigned quality scores for more than 30,000 prokaryotic genome sequences. Scores were assigned using four categories: the completeness of the assembly, the presence of full-length rRNA genes, tRNA composition and the presence of a set of 102 conserved genes in prokaryotes. Most (~88%) of the genomes hadmore » quality scores of 0.8 or better and can be safely used for standard comparative genomics analysis. We compared genomes across factors that may influence the score. We found that although sequencing depth coverage of over 100x did not ensure a better score, sequencing read length was a better indicator of sequencing quality. With few exceptions, most of the 30,000 genomes have nearly all the 102 essential genes. The score can be used to set thresholds for screening data when analyzing “all published genomes” and reference data is either not available or not applicable. The scores highlighted organisms for which commonly used tools do not perform well. This information can be used to improve tools and to serve a broad group of users as more diverse organisms are sequenced. Finally and unexpectedly, the comparison of predicted tRNAs across 15,000 high quality genomes showed that anticodons beginning with an ‘A’ (codons ending with a ‘U’) are almost non-existent, with the exception of one arginine codon (CGU); this has been noted previously in the literature for a few genomes, but not with the depth found here.« less

  17. Quality scores for 32,000 genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Land, Miriam L.; Hyatt, Doug; Jun, Se-Ran

    More than 80% of the microbial genomes in GenBank are of ‘draft’ quality (12,553 draft vs. 2,679 finished, as of October, 2013). In this study, we have examined all the microbial DNA sequences available for complete, draft, and Sequence Read Archive genomes in GenBank as well as three other major public databases, and assigned quality scores for more than 30,000 prokaryotic genome sequences. Scores were assigned using four categories: the completeness of the assembly, the presence of full-length rRNA genes, tRNA composition and the presence of a set of 102 conserved genes in prokaryotes. Most (~88%) of the genomes hadmore » quality scores of 0.8 or better and can be safely used for standard comparative genomics analysis. We compared genomes across factors that may influence the score. We found that although sequencing depth coverage of over 100x did not ensure a better score, sequencing read length was a better indicator of sequencing quality. With few exceptions, most of the 30,000 genomes have nearly all the 102 essential genes. The score can be used to set thresholds for screening data when analyzing “all published genomes” and reference data is either not available or not applicable. The scores highlighted organisms for which commonly used tools do not perform well. This information can be used to improve tools and to serve a broad group of users as more diverse organisms are sequenced. Finally and unexpectedly, the comparison of predicted tRNAs across 15,000 high quality genomes showed that anticodons beginning with an ‘A’ (codons ending with a ‘U’) are almost non-existent, with the exception of one arginine codon (CGU); this has been noted previously in the literature for a few genomes, but not with the depth found here.« less

  18. Eimeria genomics: Where are we now and where are we going?

    PubMed

    Blake, Damer P

    2015-08-15

    The evolution of sequencing technologies, from Sanger to next generation (NGS) and now the emerging third generation, has prompted a radical frameshift moving genomics from the specialist to the mainstream. For parasitology, genomics has moved fastest for the protozoa with sequence assemblies becoming available for multiple genera including Babesia, Cryptosporidium, Eimeria, Giardia, Leishmania, Neospora, Plasmodium, Theileria, Toxoplasma and Trypanosoma. Progress has commonly been slower for parasites of animals which lack zoonotic potential, but the deficit is now being redressed with impact likely in the areas of drug and vaccine development, molecular diagnostics and population biology. Genomics studies with the apicomplexan Eimeria species clearly illustrate the approaches and opportunities available. Specifically, more than ten years after initiation of a genome sequencing project a sequence assembly was published for Eimeria tenella in 2014, complemented by assemblies for all other Eimeria species which infect the chicken and Eimeria falciformis, a parasite of the mouse. Public access to these and other coccidian genome assemblies through resources such as GeneDB and ToxoDB now promotes comparative analysis, encouraging better use of shared resources and enhancing opportunities for development of novel diagnostic and control strategies. In the short term genomics resources support development of targeted and genome-wide genetic markers such as single nucleotide polymorphisms (SNPs), with whole genome re-sequencing becoming viable in the near future. Experimental power will develop rapidly as additional species, strains and isolates are sampled with particular emphasis on population structure and allelic diversity. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Genomic Sequence and Experimental Tractability of a New Decapod Shrimp Model, Neocaridina denticulata

    PubMed Central

    Kenny, Nathan J.; Sin, Yung Wa; Shen, Xin; Zhe, Qu; Wang, Wei; Chan, Ting Fung; Tobe, Stephen S.; Shimeld, Sebastian M.; Chu, Ka Hou; Hui, Jerome H. L.

    2014-01-01

    The speciose Crustacea is the largest subphylum of arthropods on the planet after the Insecta. To date, however, the only publically available sequenced crustacean genome is that of the water flea, Daphnia pulex, a member of the Branchiopoda. While Daphnia is a well-established ecotoxicological model, previous study showed that one-third of genes contained in its genome are lineage-specific and could not be identified in any other metazoan genomes. To better understand the genomic evolution of crustaceans and arthropods, we have sequenced the genome of a novel shrimp model, Neocaridina denticulata, and tested its experimental malleability. A library of 170-bp nominal fragment size was constructed from DNA of a starved single adult and sequenced using the Illumina HiSeq2000 platform. Core eukaryotic genes, the mitochondrial genome, developmental patterning genes (such as Hox) and microRNA processing pathway genes are all present in this animal, suggesting it has not undergone massive genomic loss. Comparison with the published genome of Daphnia pulex has allowed us to reveal 3750 genes that are indeed specific to the lineage containing malacostracans and branchiopods, rather than Daphnia-specific (E-value: 10−6). We also show the experimental tractability of N. denticulata, which, together with the genomic resources presented here, make it an ideal model for a wide range of further aquacultural, developmental, ecotoxicological, food safety, genetic, hormonal, physiological and reproductive research, allowing better understanding of the evolution of crustaceans and other arthropods. PMID:24619275

  20. Self-Assembly of Measles Virus Nucleocapsid-like Particles: Kinetics and RNA Sequence Dependence.

    PubMed

    Milles, Sigrid; Jensen, Malene Ringkjøbing; Communie, Guillaume; Maurin, Damien; Schoehn, Guy; Ruigrok, Rob W H; Blackledge, Martin

    2016-08-01

    Measles virus RNA genomes are packaged into helical nucleocapsids (NCs), comprising thousands of nucleo-proteins (N) that bind the entire genome. N-RNA provides the template for replication and transcription by the viral polymerase and is a promising target for viral inhibition. Elucidation of mechanisms regulating this process has been severely hampered by the inability to controllably assemble NCs. Here, we demonstrate self-organization of N into NC-like particles in vitro upon addition of RNA, providing a simple and versatile tool for investigating assembly. Real-time NMR and fluorescence spectroscopy reveals biphasic assembly kinetics. Remarkably, assembly depends strongly on the RNA-sequence, with the genomic 5' end and poly-Adenine sequences assembling efficiently, while sequences such as poly-Uracil are incompetent for NC formation. This observation has important consequences for understanding the assembly process. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  1. Best practices for mapping replication origins in eukaryotic chromosomes.

    PubMed

    Besnard, Emilie; Desprat, Romain; Ryan, Michael; Kahli, Malik; Aladjem, Mirit I; Lemaitre, Jean-Marc

    2014-09-02

    Understanding the regulatory principles ensuring complete DNA replication in each cell division is critical for deciphering the mechanisms that maintain genomic stability. Recent advances in genome sequencing technology facilitated complete mapping of DNA replication sites and helped move the field from observing replication patterns at a handful of single loci to analyzing replication patterns genome-wide. These advances address issues, such as the relationship between replication initiation events, transcription, and chromatin modifications, and identify potential replication origin consensus sequences. This unit summarizes the technological and fundamental aspects of replication profiling and briefly discusses novel insights emerging from mining large datasets, published in the last 3 years, and also describes DNA replication dynamics on a whole-genome scale. Copyright © 2014 John Wiley & Sons, Inc.

  2. Transcriptome-wide investigation of genomic imprinting in chicken

    PubMed Central

    Frésard, Laure; Leroux, Sophie; Servin, Bertrand; Gourichon, David; Dehais, Patrice; Cristobal, Magali San; Marsaud, Nathalie; Vignoles, Florence; Bed'hom, Bertrand; Coville, Jean-Luc; Hormozdiari, Farhad; Beaumont, Catherine; Zerjal, Tatiana; Vignal, Alain; Morisson, Mireille; Lagarrigue, Sandrine; Pitel, Frédérique

    2014-01-01

    Genomic imprinting is an epigenetic mechanism by which alleles of some specific genes are expressed in a parent-of-origin manner. It has been observed in mammals and marsupials, but not in birds. Until now, only a few genes orthologous to mammalian imprinted ones have been analyzed in chicken and did not demonstrate any evidence of imprinting in this species. However, several published observations such as imprinted-like QTL in poultry or reciprocal effects keep the question open. Our main objective was thus to screen the entire chicken genome for parental-allele-specific differential expression on whole embryonic transcriptomes, using high-throughput sequencing. To identify the parental origin of each observed haplotype, two chicken experimental populations were used, as inbred and as genetically distant as possible. Two families were produced from two reciprocal crosses. Transcripts from 20 embryos were sequenced using NGS technology, producing ∼200 Gb of sequences. This allowed the detection of 79 potentially imprinted SNPs, through an analysis method that we validated by detecting imprinting from mouse data already published. However, out of 23 candidates tested by pyrosequencing, none could be confirmed. These results come together, without a priori, with previous statements and phylogenetic considerations assessing the absence of genomic imprinting in chicken. PMID:24452801

  3. Read clouds uncover variation in complex regions of the human genome.

    PubMed

    Bishara, Alex; Liu, Yuling; Weng, Ziming; Kashef-Haghighi, Dorna; Newburger, Daniel E; West, Robert; Sidow, Arend; Batzoglou, Serafim

    2015-10-01

    Although an increasing amount of human genetic variation is being identified and recorded, determining variants within repeated sequences of the human genome remains a challenge. Most population and genome-wide association studies have therefore been unable to consider variation in these regions. Core to the problem is the lack of a sequencing technology that produces reads with sufficient length and accuracy to enable unique mapping. Here, we present a novel methodology of using read clouds, obtained by accurate short-read sequencing of DNA derived from long fragment libraries, to confidently align short reads within repeat regions and enable accurate variant discovery. Our novel algorithm, Random Field Aligner (RFA), captures the relationships among the short reads governed by the long read process via a Markov Random Field. We utilized a modified version of the Illumina TruSeq synthetic long-read protocol, which yielded shallow-sequenced read clouds. We test RFA through extensive simulations and apply it to discover variants on the NA12878 human sample, for which shallow TruSeq read cloud sequencing data are available, and on an invasive breast carcinoma genome that we sequenced using the same method. We demonstrate that RFA facilitates accurate recovery of variation in 155 Mb of the human genome, including 94% of 67 Mb of segmental duplication sequence and 96% of 11 Mb of transcribed sequence, that are currently hidden from short-read technologies. © 2015 Bishara et al.; Published by Cold Spring Harbor Laboratory Press.

  4. Comprehensive Annotation of the Parastagonospora nodorum Reference Genome Using Next-Generation Genomics, Transcriptomics and Proteogenomics

    PubMed Central

    Dodhia, Kejal; Stoll, Thomas; Hastie, Marcus; Furuki, Eiko; Ellwood, Simon R.; Williams, Angela H.; Tan, Yew-Foon; Testa, Alison C.; Gorman, Jeffrey J.; Oliver, Richard P.

    2016-01-01

    Parastagonospora nodorum, the causal agent of Septoria nodorum blotch (SNB), is an economically important pathogen of wheat (Triticum spp.), and a model for the study of necrotrophic pathology and genome evolution. The reference P. nodorum strain SN15 was the first Dothideomycete with a published genome sequence, and has been used as the basis for comparison within and between species. Here we present an updated reference genome assembly with corrections of SNP and indel errors in the underlying genome assembly from deep resequencing data as well as extensive manual annotation of gene models using transcriptomic and proteomic sources of evidence (https://github.com/robsyme/Parastagonospora_nodorum_SN15). The updated assembly and annotation includes 8,366 genes with modified protein sequence and 866 new genes. This study shows the benefits of using a wide variety of experimental methods allied to expert curation to generate a reliable set of gene models. PMID:26840125

  5. Complete genome sequence and analysis of the industrial Saccharomyces cerevisiae strain N85 used in Chinese rice wine production.

    PubMed

    Zhang, Weiping; Li, Yudong; Chen, Yiwang; Xu, Sha; Du, Guocheng; Shi, Huidong; Zhou, Jingwen; Chen, Jian

    2018-02-05

    Chinese rice wine is a popular traditional alcoholic beverage in China, while its brewing processes have rarely been explored. We herein report the first gapless, near-finished genome sequence of the yeast strain Saccharomyces cerevisiae N85 for Chinese rice wine production. Several assembly methods were used to integrate Pacific Bioscience (PacBio) and Illumina sequencing data to achieve high-quality genome sequencing of the strain. The genome encodes more than 6,000 predicted proteins, and 238 long non-coding RNAs, which are validated by RNA-sequencing data. Moreover, our annotation predicts 171 novel genes that are not present in the reference S288c genome. We also identified 65,902 single nucleotide polymorphisms and small indels, many of which are located within genic regions. Dozens of larger copy-number variations and translocations were detected, mainly enriched in the subtelomeres, suggesting these regions may be related to genomic evolution. This study will serve as a milestone in studying of Chinese rice wine and related beverages in China and in other countries. It will help to develop more scientific and modern fermentation processes of Chinese rice wine, and explore metabolism pathways of desired and harmful components in Chinese rice wine to improve its taste and nutritional value. © The Author(s) 2018. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  6. Low-coverage, whole-genome sequencing of Artocarpus camansi (Moraceae) for phylogenetic marker development and gene discovery1

    PubMed Central

    Gardner, Elliot M.; Johnson, Matthew G.; Ragone, Diane; Wickett, Norman J.; Zerega, Nyree J. C.

    2016-01-01

    Premise of the study: We used moderately low-coverage (17×) whole-genome sequencing of Artocarpus camansi (Moraceae) to develop genomic resources for Artocarpus and Moraceae. Methods and Results: A de novo assembly of Illumina short reads (251,378,536 pairs, 2 × 100 bp) accounted for 93% of the predicted genome size. Predicted coding regions were used in a three-way orthology search with published genomes of Morus notabilis and Cannabis sativa. Phylogenetic markers for Moraceae were developed from 333 inferred single-copy exons. Ninety-eight putative MADS-box genes were identified. Analysis of all predicted coding regions resulted in preliminary annotation of 49,089 genes. An analysis of synonymous substitutions for pairs of orthologs (Ks analysis) in M. notabilis and A. camansi strongly suggested a lineage-specific whole-genome duplication in Artocarpus. Conclusions: This study substantially increases the genomic resources available for Artocarpus and Moraceae and demonstrates the value of low-coverage de novo assemblies for nonmodel organisms with moderately large genomes. PMID:27437173

  7. Genome assembly and transcriptome resource for river buffalo, Bubalus bubalis (2n = 50).

    PubMed

    Williams, John L; Iamartino, Daniela; Pruitt, Kim D; Sonstegard, Tad; Smith, Timothy P L; Low, Wai Yee; Biagini, Tommaso; Bomba, Lorenzo; Capomaccio, Stefano; Castiglioni, Bianca; Coletta, Angelo; Corrado, Federica; Ferré, Fabrizio; Iannuzzi, Leopoldo; Lawley, Cynthia; Macciotta, Nicolò; McClure, Matthew; Mancini, Giordano; Matassino, Donato; Mazza, Raffaele; Milanesi, Marco; Moioli, Bianca; Morandi, Nicola; Ramunno, Luigi; Peretti, Vincenzo; Pilla, Fabio; Ramelli, Paola; Schroeder, Steven; Strozzi, Francesco; Thibaud-Nissen, Francoise; Zicarelli, Luigi; Ajmone-Marsan, Paolo; Valentini, Alessio; Chillemi, Giovanni; Zimin, Aleksey

    2017-10-01

    Water buffalo is a globally important species for agriculture and local economies. A de novo assembled, well-annotated reference sequence for the water buffalo is an important prerequisite for studying the biology of this species, and is necessary to manage genetic diversity and to use modern breeding and genomic selection techniques. However, no such genome assembly has been previously reported. There are 2 species of domestic water buffalo, the river (2 n = 50) and the swamp (2 n = 48) buffalo. Here we describe a draft quality reference sequence for the river buffalo created from Illumina GA and Roche 454 short read sequences using the MaSuRCA assembler. The assembled sequence is 2.83 Gb, consisting of 366 983 scaffolds with a scaffold N50 of 1.41 Mb and contig N50 of 21 398 bp. Annotation of the genome was supported by transcriptome data from 30 tissues and identified 21 711 predicted protein coding genes. Searches for complete mammalian BUSCO gene groups found 98.6% of curated single copy orthologs present among predicted genes, which suggests a high level of completeness of the genome. The annotated sequence is available from NCBI at accession GCA_000471725.1. © The Author 2017. Published by Oxford University Press.

  8. A genome sequence resource for the aye-aye (Daubentonia madagascariensis), a nocturnal lemur from Madagascar.

    PubMed

    Perry, George H; Reeves, Darryl; Melsted, Páll; Ratan, Aakrosh; Miller, Webb; Michelini, Katelyn; Louis, Edward E; Pritchard, Jonathan K; Mason, Christopher E; Gilad, Yoav

    2012-01-01

    We present a high-coverage draft genome assembly of the aye-aye (Daubentonia madagascariensis), a highly unusual nocturnal primate from Madagascar. Our assembly totals ~3.0 billion bp (3.0 Gb), roughly the size of the human genome, comprised of ~2.6 million scaffolds (N50 scaffold size = 13,597 bp) based on short paired-end sequencing reads. We compared the aye-aye genome sequence data with four other published primate genomes (human, chimpanzee, orangutan, and rhesus macaque) as well as with the mouse and dog genomes as nonprimate outgroups. Unexpectedly, we observed strong evidence for a relatively slow substitution rate in the aye-aye lineage compared with these and other primates. In fact, the aye-aye branch length is estimated to be ~10% shorter than that of the human lineage, which is known for its low substitution rate. This finding may be explained, in part, by the protracted aye-aye life-history pattern, including late weaning and age of first reproduction relative to other lemurs. Additionally, the availability of this draft lemur genome sequence allowed us to polarize nucleotide and protein sequence changes to the ancestral primate lineage-a critical period in primate evolution, for which the relevant fossil record is sparse. Finally, we identified 293,800 high-confidence single nucleotide polymorphisms in the donor individual for our aye-aye genome sequence, a captive-born individual from two wild-born parents. The resulting heterozygosity estimate of 0.051% is the lowest of any primate studied to date, which is understandable considering the aye-aye's extensive home-range size and relatively low population densities. Yet this level of genetic diversity also suggests that conservation efforts benefiting this unusual species should be prioritized, especially in the face of the accelerating degradation and fragmentation of Madagascar's forests.

  9. Sequencing of the variable region of rpsB to discriminate between Streptococcus pneumoniae and other streptococcal species.

    PubMed

    Wyllie, Anne L; Pannekoek, Yvonne; Bovenkerk, Sandra; van Engelsdorp Gastelaars, Jody; Ferwerda, Bart; van de Beek, Diederik; Sanders, Elisabeth A M; Trzciński, Krzysztof; van der Ende, Arie

    2017-09-01

    The vast majority of streptococci colonizing the human upper respiratory tract are commensals, only sporadically implicated in disease. Of these, the most pathogenic is Mitis group member, Streptococcus pneumoniae Phenotypic and genetic similarities between streptococci can cause difficulties in species identification. Using ribosomal S2-gene sequences extracted from whole-genome sequences published from 501 streptococci, we developed a method to identify streptococcal species. We validated this method on non-pneumococcal isolates cultured from cases of severe streptococcal disease ( n = 101) and from carriage ( n = 103), and on non-typeable pneumococci from asymptomatic individuals ( n = 17) and on whole-genome sequences of 1157 pneumococcal isolates from meningitis in the Netherlands. Following this, we tested 221 streptococcal isolates in molecular assays originally assumed specific for S. pneumoniae , targeting cpsA , lytA , piaB , ply , Spn9802, zmpC and capsule-type-specific genes. Cluster analysis of S2-sequences showed grouping according to species in line with published phylogenies of streptococcal core genomes. S2-typing convincingly distinguished pneumococci from non-pneumococcal species (99.2% sensitivity, 100% specificity). Molecular assays targeting regions of lytA and piaB were 100% specific for S. pneumoniae , whereas assays targeting cpsA , ply , Spn9802, zmpC and selected serotype-specific assays (but not capsular sequence typing) showed a lack of specificity. False positive results were over-represented in species associated with carriage, although no particular confounding signal was unique for carriage isolates. © 2017 The Authors.

  10. Sequencing of the variable region of rpsB to discriminate between Streptococcus pneumoniae and other streptococcal species

    PubMed Central

    Pannekoek, Yvonne; Bovenkerk, Sandra; van Engelsdorp Gastelaars, Jody; Ferwerda, Bart; van de Beek, Diederik; Sanders, Elisabeth A. M.; Trzciński, Krzysztof; van der Ende, Arie

    2017-01-01

    The vast majority of streptococci colonizing the human upper respiratory tract are commensals, only sporadically implicated in disease. Of these, the most pathogenic is Mitis group member, Streptococcus pneumoniae. Phenotypic and genetic similarities between streptococci can cause difficulties in species identification. Using ribosomal S2-gene sequences extracted from whole-genome sequences published from 501 streptococci, we developed a method to identify streptococcal species. We validated this method on non-pneumococcal isolates cultured from cases of severe streptococcal disease (n = 101) and from carriage (n = 103), and on non-typeable pneumococci from asymptomatic individuals (n = 17) and on whole-genome sequences of 1157 pneumococcal isolates from meningitis in the Netherlands. Following this, we tested 221 streptococcal isolates in molecular assays originally assumed specific for S. pneumoniae, targeting cpsA, lytA, piaB, ply, Spn9802, zmpC and capsule-type-specific genes. Cluster analysis of S2-sequences showed grouping according to species in line with published phylogenies of streptococcal core genomes. S2-typing convincingly distinguished pneumococci from non-pneumococcal species (99.2% sensitivity, 100% specificity). Molecular assays targeting regions of lytA and piaB were 100% specific for S. pneumoniae, whereas assays targeting cpsA, ply, Spn9802, zmpC and selected serotype-specific assays (but not capsular sequence typing) showed a lack of specificity. False positive results were over-represented in species associated with carriage, although no particular confounding signal was unique for carriage isolates. PMID:28931649

  11. Complete genome sequence of the gliding, heparinolytic Pedobacter saltans type strain (113T)

    PubMed Central

    Liolios, Konstantinos; Sikorski, Johannes; Lu, Meagan; Nolan, Matt; Lapidus, Alla; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Tapia, Roxanne; Han, Cliff; Goodwin, Lynne; Pitluck, Sam; Huntemann, Marcel; Ivanova, Natalia; Pagani, Ioanna; Mavromatis, Konstantinos; Ovchinikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Brambilla, Evelyne-Marie; Kotsyurbenko, Oleg; Rohde, Manfred; Tindall, Brian J.; Abt, Birte; Göker, Markus; Detter, John C.; Woyke, Tanja; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Klenk, Hans-Peter; Kyrpides, Nikos C.

    2011-01-01

    Pedobacter saltans Steyn et al. 1998 is one of currently 32 species in the genus Pedobacter within the family Sphingobacteriaceae. The species is of interest for its isolated location in the tree of life. Like other members of the genus P. saltans is heparinolytic. Cells of P. saltans show a peculiar gliding, dancing motility and can be distinguished from other Pedobacter strains by their ability to utilize glycerol and the inability to assimilate D-cellobiose. The genome presented here is only the second completed genome sequence of a type strain from a member of the family Sphingobacteriaceae to be published. The 4,635,236 bp long genome with its 3,854 protein-coding and 67 RNA genes consists of one chromosome, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:22180808

  12. Complete genome sequence of the gliding, heparinolytic Pedobacter saltans type strain (113).

    PubMed

    Liolios, Konstantinos; Sikorski, Johannes; Lu, Meagan; Nolan, Matt; Lapidus, Alla; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Tapia, Roxanne; Han, Cliff; Goodwin, Lynne; Pitluck, Sam; Huntemann, Marcel; Ivanova, Natalia; Pagani, Ioanna; Mavromatis, Konstantinos; Ovchinikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Brambilla, Evelyne-Marie; Kotsyurbenko, Oleg; Rohde, Manfred; Tindall, Brian J; Abt, Birte; Göker, Markus; Detter, John C; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Klenk, Hans-Peter; Kyrpides, Nikos C

    2011-10-15

    Pedobacter saltans Steyn et al. 1998 is one of currently 32 species in the genus Pedobacter within the family Sphingobacteriaceae. The species is of interest for its isolated location in the tree of life. Like other members of the genus P. saltans is heparinolytic. Cells of P. saltans show a peculiar gliding, dancing motility and can be distinguished from other Pedobacter strains by their ability to utilize glycerol and the inability to assimilate D-cellobiose. The genome presented here is only the second completed genome sequence of a type strain from a member of the family Sphingobacteriaceae to be published. The 4,635,236 bp long genome with its 3,854 protein-coding and 67 RNA genes consists of one chromosome, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  13. The complete genome sequencing of Prevotella intermedia strain OMA14 and a subsequent fine-scale, intra-species genomic comparison reveal an unusual amplification of conjugative and mobile transposons and identify a novel Prevotella-lineage-specific repeat.

    PubMed

    Naito, Mariko; Ogura, Yoshitoshi; Itoh, Takehiko; Shoji, Mikio; Okamoto, Masaaki; Hayashi, Tetsuya; Nakayama, Koji

    2016-02-01

    Prevotella intermedia is a pathogenic bacterium involved in periodontal diseases. Here, we present the complete genome sequence of a clinical strain, OMA14, of this bacterium along with the results of comparative genome analysis with strain 17 of the same species whose genome has also been sequenced, but not fully analysed yet. The genomes of both strains consist of two circular chromosomes: the larger chromosomes are similar in size and exhibit a high overall linearity of gene organizations, whereas the smaller chromosomes show a significant size variation and have undergone remarkable genome rearrangements. Unique features of the Pre. intermedia genomes are the presence of a remarkable number of essential genes on the second chromosomes and the abundance of conjugative and mobilizable transposons (CTns and MTns). The CTns/MTns are particularly abundant in the second chromosomes, involved in its extensive genome rearrangement, and have introduced a number of strain-specific genes into each strain. We also found a novel 188-bp repeat sequence that has been highly amplified in Pre. intermedia and are specifically distributed among the Pre. intermedia-related species. These findings expand our understanding of the genetic features of Pre. intermedia and the roles of CTns and MTns in the evolution of bacteria. © The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  14. SINE_scan: an efficient tool to discover short interspersed nuclear elements (SINEs) in large-scale genomic datasets.

    PubMed

    Mao, Hongliang; Wang, Hao

    2017-03-01

    Short Interspersed Nuclear Elements (SINEs) are transposable elements (TEs) that amplify through a copy-and-paste mode via RNA intermediates. The computational identification of new SINEs are challenging because of their weak structural signals and rapid diversification in sequences. Here we report SINE_Scan, a highly efficient program to predict SINE elements in genomic DNA sequences. SINE_Scan integrates hallmark of SINE transposition, copy number and structural signals to identify a SINE element. SINE_Scan outperforms the previously published de novo SINE discovery program. It shows high sensitivity and specificity in 19 plant and animal genome assemblies, of which sizes vary from 120 Mb to 3.5 Gb. It identifies numerous new families and substantially increases the estimation of the abundance of SINEs in these genomes. The code of SINE_Scan is freely available at http://github.com/maohlzj/SINE_Scan , implemented in PERL and supported on Linux. wangh8@fudan.edu.cn. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  15. Systematic comparison of variant calling pipelines using gold standard personal exome variants

    PubMed Central

    Hwang, Sohyun; Kim, Eiru; Lee, Insuk; Marcotte, Edward M.

    2015-01-01

    The success of clinical genomics using next generation sequencing (NGS) requires the accurate and consistent identification of personal genome variants. Assorted variant calling methods have been developed, which show low concordance between their calls. Hence, a systematic comparison of the variant callers could give important guidance to NGS-based clinical genomics. Recently, a set of high-confident variant calls for one individual (NA12878) has been published by the Genome in a Bottle (GIAB) consortium, enabling performance benchmarking of different variant calling pipelines. Based on the gold standard reference variant calls from GIAB, we compared the performance of thirteen variant calling pipelines, testing combinations of three read aligners—BWA-MEM, Bowtie2, and Novoalign—and four variant callers—Genome Analysis Tool Kit HaplotypeCaller (GATK-HC), Samtools mpileup, Freebayes and Ion Proton Variant Caller (TVC), for twelve data sets for the NA12878 genome sequenced by different platforms including Illumina2000, Illumina2500, and Ion Proton, with various exome capture systems and exome coverage. We observed different biases toward specific types of SNP genotyping errors by the different variant callers. The results of our study provide useful guidelines for reliable variant identification from deep sequencing of personal genomes. PMID:26639839

  16. GenomeRNAi: a database for cell-based RNAi phenotypes.

    PubMed

    Horn, Thomas; Arziman, Zeynep; Berger, Juerg; Boutros, Michael

    2007-01-01

    RNA interference (RNAi) has emerged as a powerful tool to generate loss-of-function phenotypes in a variety of organisms. Combined with the sequence information of almost completely annotated genomes, RNAi technologies have opened new avenues to conduct systematic genetic screens for every annotated gene in the genome. As increasing large datasets of RNAi-induced phenotypes become available, an important challenge remains the systematic integration and annotation of functional information. Genome-wide RNAi screens have been performed both in Caenorhabditis elegans and Drosophila for a variety of phenotypes and several RNAi libraries have become available to assess phenotypes for almost every gene in the genome. These screens were performed using different types of assays from visible phenotypes to focused transcriptional readouts and provide a rich data source for functional annotation across different species. The GenomeRNAi database provides access to published RNAi phenotypes obtained from cell-based screens and maps them to their genomic locus, including possible non-specific regions. The database also gives access to sequence information of RNAi probes used in various screens. It can be searched by phenotype, by gene, by RNAi probe or by sequence and is accessible at http://rnai.dkfz.de.

  17. GenomeRNAi: a database for cell-based RNAi phenotypes

    PubMed Central

    Horn, Thomas; Arziman, Zeynep; Berger, Juerg; Boutros, Michael

    2007-01-01

    RNA interference (RNAi) has emerged as a powerful tool to generate loss-of-function phenotypes in a variety of organisms. Combined with the sequence information of almost completely annotated genomes, RNAi technologies have opened new avenues to conduct systematic genetic screens for every annotated gene in the genome. As increasing large datasets of RNAi-induced phenotypes become available, an important challenge remains the systematic integration and annotation of functional information. Genome-wide RNAi screens have been performed both in Caenorhabditis elegans and Drosophila for a variety of phenotypes and several RNAi libraries have become available to assess phenotypes for almost every gene in the genome. These screens were performed using different types of assays from visible phenotypes to focused transcriptional readouts and provide a rich data source for functional annotation across different species. The GenomeRNAi database provides access to published RNAi phenotypes obtained from cell-based screens and maps them to their genomic locus, including possible non-specific regions. The database also gives access to sequence information of RNAi probes used in various screens. It can be searched by phenotype, by gene, by RNAi probe or by sequence and is accessible at PMID:17135194

  18. A new genome of Acidithiobacillus thiooxidans provides insights into adaptation to a bioleaching environment.

    PubMed

    Travisany, Dante; Cortés, María Paz; Latorre, Mauricio; Di Genova, Alex; Budinich, Marko; Bobadilla-Fazzini, Roberto A; Parada, Pilar; González, Mauricio; Maass, Alejandro

    2014-11-01

    Acidithiobacillus thiooxidans is a sulfur oxidizing acidophilic bacterium found in many sulfur-rich environments. It is particularly interesting due to its role in bioleaching of sulphide minerals. In this work, we report the genome sequence of At. thiooxidans Licanantay, the first strain from a copper mine to be sequenced and currently used in bioleaching industrial processes. Through comparative genomic analysis with two other At. thiooxidans non-metal mining strains (ATCC 19377 and A01) we determined that these strains share a large core genome of 2109 coding sequences and a high average nucleotide identity over 98%. Nevertheless, the presence of 841 strain-specific genes (absent in other At. thiooxidans strains) suggests a particular adaptation of Licanantay to its specific biomining environment. Among this group, we highlight genes encoding for proteins involved in heavy metal tolerance, mineral cell attachment and cysteine biosynthesis. Several of these genes were located near genetic motility genes (e.g. transposases and integrases) in genomic regions of over 10 kbp absent in the other strains, suggesting the presence of genomic islands in the Licanantay genome probably produced by horizontal gene transfer in mining environments. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  19. Architecture of a Species: Phylogenomics of Staphylococcus aureus.

    PubMed

    Planet, Paul J; Narechania, Apurva; Chen, Liang; Mathema, Barun; Boundy, Sam; Archer, Gordon; Kreiswirth, Barry

    2017-02-01

    A deluge of whole-genome sequencing has begun to give insights into the patterns and processes of microbial evolution, but genome sequences have accrued in a haphazard manner, with biased sampling of natural variation that is driven largely by medical and epidemiological priorities. For instance, there is a strong bias for sequencing epidemic lineages of methicillin-resistant Staphylococcus aureus (MRSA) over sensitive isolates (methicillin-sensitive S. aureus: MSSA). As more diverse genomes are sequenced the emerging picture is of a highly subdivided species with a handful of relatively clonal groups (complexes) that, at any given moment, dominate in particular geographical regions. The establishment of hegemony of particular clones appears to be a dynamic process of successive waves of replacement of the previously dominant clone. Here we review the phylogenomic structure of a diverse range of S. aureus, including both MRSA and MSSA. We consider the utility of the concept of the 'core' genome and the impact of recombination and horizontal transfer. We argue that whole-genome surveillance of S. aureus populations could lead to better forecasting of antibiotic resistance and virulence of emerging clones, and a better understanding of the elusive biological factors that determine repeated strain replacement. Copyright © 2016. Published by Elsevier Ltd.

  20. Sequence capture by hybridization to explore modern and ancient genomic diversity in model and nonmodel organisms.

    PubMed

    Gasc, Cyrielle; Peyretaillade, Eric; Peyret, Pierre

    2016-06-02

    The recent expansion of next-generation sequencing has significantly improved biological research. Nevertheless, deep exploration of genomes or metagenomic samples remains difficult because of the sequencing depth and the associated costs required. Therefore, different partitioning strategies have been developed to sequence informative subsets of studied genomes. Among these strategies, hybridization capture has proven to be an innovative and efficient tool for targeting and enriching specific biomarkers in complex DNA mixtures. It has been successfully applied in numerous areas of biology, such as exome resequencing for the identification of mutations underlying Mendelian or complex diseases and cancers, and its usefulness has been demonstrated in the agronomic field through the linking of genetic variants to agricultural phenotypic traits of interest. Moreover, hybridization capture has provided access to underexplored, but relevant fractions of genomes through its ability to enrich defined targets and their flanking regions. Finally, on the basis of restricted genomic information, this method has also allowed the expansion of knowledge of nonreference species and ancient genomes and provided a better understanding of metagenomic samples. In this review, we present the major advances and discoveries permitted by hybridization capture and highlight the potency of this approach in all areas of biology. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality.

    PubMed

    Wei, Chaoling; Yang, Hua; Wang, Songbo; Zhao, Jian; Liu, Chun; Gao, Liping; Xia, Enhua; Lu, Ying; Tai, Yuling; She, Guangbiao; Sun, Jun; Cao, Haisheng; Tong, Wei; Gao, Qiang; Li, Yeyun; Deng, Weiwei; Jiang, Xiaolan; Wang, Wenzhao; Chen, Qi; Zhang, Shihua; Li, Haijing; Wu, Junlan; Wang, Ping; Li, Penghui; Shi, Chengying; Zheng, Fengya; Jian, Jianbo; Huang, Bei; Shan, Dai; Shi, Mingming; Fang, Congbing; Yue, Yi; Li, Fangdong; Li, Daxiang; Wei, Shu; Han, Bin; Jiang, Changjun; Yin, Ye; Xia, Tao; Zhang, Zhengzhu; Bennetzen, Jeffrey L; Zhao, Shancen; Wan, Xiaochun

    2018-05-01

    Tea, one of the world's most important beverage crops, provides numerous secondary metabolites that account for its rich taste and health benefits. Here we present a high-quality sequence of the genome of tea, Camellia sinensis var. sinensis (CSS), using both Illumina and PacBio sequencing technologies. At least 64% of the 3.1-Gb genome assembly consists of repetitive sequences, and the rest yields 33,932 high-confidence predictions of encoded proteins. Divergence between two major lineages, CSS and Camellia sinensis var. assamica (CSA), is calculated to ∼0.38 to 1.54 million years ago (Mya). Analysis of genic collinearity reveals that the tea genome is the product of two rounds of whole-genome duplications (WGDs) that occurred ∼30 to 40 and ∼90 to 100 Mya. We provide evidence that these WGD events, and subsequent paralogous duplications, had major impacts on the copy numbers of secondary metabolite genes, particularly genes critical to producing three key quality compounds: catechins, theanine, and caffeine. Analyses of transcriptome and phytochemistry data show that amplification and transcriptional divergence of genes encoding a large acyltransferase family and leucoanthocyanidin reductases are associated with the characteristic young leaf accumulation of monomeric galloylated catechins in tea, while functional divergence of a single member of the glutamine synthetase gene family yielded theanine synthetase. This genome sequence will facilitate understanding of tea genome evolution and tea metabolite pathways, and will promote germplasm utilization for breeding improved tea varieties. Copyright © 2018 the Author(s). Published by PNAS.

  2. Ribosomal RNA Genes Contribute to the Formation of Pseudogenes and Junk DNA in the Human Genome.

    PubMed

    Robicheau, Brent M; Susko, Edward; Harrigan, Amye M; Snyder, Marlene

    2017-02-01

    Approximately 35% of the human genome can be identified as sequence devoid of a selected-effect function, and not derived from transposable elements or repeated sequences. We provide evidence supporting a known origin for a fraction of this sequence. We show that: 1) highly degraded, but near full length, ribosomal DNA (rDNA) units, including both 45S and Intergenic Spacer (IGS), can be found at multiple sites in the human genome on chromosomes without rDNA arrays, 2) that these rDNA sequences have a propensity for being centromere proximal, and 3) that sequence at all human functional rDNA array ends is divergent from canonical rDNA to the point that it is pseudogenic. We also show that small sequence strings of rDNA (from 45S + IGS) can be found distributed throughout the genome and are identifiable as an "rDNA-like signal", representing 0.26% of the q-arm of HSA21 and ∼2% of the total sequence of other regions tested. The size of sequence strings found in the rDNA-like signal intergrade into the size of sequence strings that make up the full-length degrading rDNA units found scattered throughout the genome. We conclude that the displaced and degrading rDNA sequences are likely of a similar origin but represent different stages in their evolution towards random sequence. Collectively, our data suggests that over vast evolutionary time, rDNA arrays contribute to the production of junk DNA. The concept that the production of rDNA pseudogenes is a by-product of concerted evolution represents a previously under-appreciated process; we demonstrate here its importance. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. Genome scaffolding and annotation for the pathogen vector Ixodes ricinus by ultra-long single molecule sequencing.

    PubMed

    Cramaro, Wibke J; Hunewald, Oliver E; Bell-Sakyi, Lesley; Muller, Claude P

    2017-02-08

    Global warming and other ecological changes have facilitated the expansion of Ixodes ricinus tick populations. Ixodes ricinus is the most important carrier of vector-borne pathogens in Europe, transmitting viruses, protozoa and bacteria, in particular Borrelia burgdorferi (sensu lato), the causative agent of Lyme borreliosis, the most prevalent vector-borne disease in humans in the Northern hemisphere. To faster control this disease vector, a better understanding of the I. ricinus tick is necessary. To facilitate such studies, we recently published the first reference genome of this highly prevalent pathogen vector. Here, we further extend these studies by scaffolding and annotating the first reference genome by using ultra-long sequencing reads from third generation single molecule sequencing. In addition, we present the first genome size estimation for I. ricinus ticks and the embryo-derived cell line IRE/CTVM19. 235,953 contigs were integrated into 204,904 scaffolds, extending the currently known genome lengths by more than 30% from 393 to 516 Mb and the N50 contig value by 87% from 1643 bp to a N50 scaffold value of 3067 bp. In addition, 25,263 sequences were annotated by comparison to the tick's North American relative Ixodes scapularis. After (conserved) hypothetical proteins, zinc finger proteins, secreted proteins and P450 coding proteins were the most prevalent protein categories annotated. Interestingly, more than 50% of the amino acid sequences matching the homology threshold had 95-100% identity to the corresponding I. scapularis gene models. The sequence information was complemented by the first genome size estimation for this species. Flow cytometry-based genome size analysis revealed a haploid genome size of 2.65Gb for I. ricinus ticks and 3.80 Gb for the cell line. We present a first draft sequence map of the I. ricinus genome based on a PacBio-Illumina assembly. The I. ricinus genome was shown to be 26% (500 Mb) larger than the genome of its American relative I. scapularis. Based on the genome size of 2.65 Gb we estimated that we covered about 67% of the non-repetitive sequences. Genome annotation will facilitate screening for specific molecular pathways in I. ricinus cells and provides an overview of characteristics and functions.

  4. A world of opportunities with nanopore sequencing.

    PubMed

    Leggett, Richard M; Clark, Matthew D

    2017-11-28

    Oxford Nanopore Technologies' MinION sequencer was launched in pre-release form in 2014 and represents an exciting new sequencing paradigm. The device offers multi-kilobase reads and a streamed mode of operation that allows processing of reads as they are generated. Crucially, it is an extremely compact device that is powered from the USB port of a laptop computer, enabling it to be taken out of the lab and facilitating previously impossible in-field sequencing experiments to be undertaken. Many of the initial publications concerning the platform focused on provision of tools to access and analyse the new sequence formats and then demonstrating the assembly of microbial genomes. More recently, as throughput and accuracy have increased, it has been possible to begin work involving more complex genomes and metagenomes. With the release of the high-throughput GridION X5 and PromethION platforms, the sequencing of large genomes will become more cost efficient, and enable the leveraging of extremely long (>100 kb) reads for resolution of complex genomic structures. This review provides a brief overview of nanopore sequencing technology, describes the growing range of nanopore bioinformatics tools, and highlights some of the most influential publications that have emerged over the last 2 years. Finally, we look to the future and the potential the platform has to disrupt work in human, microbiome, and plant genomics. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Estimating genotype error rates from high-coverage next-generation sequence data.

    PubMed

    Wall, Jeffrey D; Tang, Ling Fung; Zerbe, Brandon; Kvale, Mark N; Kwok, Pui-Yan; Schaefer, Catherine; Risch, Neil

    2014-11-01

    Exome and whole-genome sequencing studies are becoming increasingly common, but little is known about the accuracy of the genotype calls made by the commonly used platforms. Here we use replicate high-coverage sequencing of blood and saliva DNA samples from four European-American individuals to estimate lower bounds on the error rates of Complete Genomics and Illumina HiSeq whole-genome and whole-exome sequencing. Error rates for nonreference genotype calls range from 0.1% to 0.6%, depending on the platform and the depth of coverage. Additionally, we found (1) no difference in the error profiles or rates between blood and saliva samples; (2) Complete Genomics sequences had substantially higher error rates than Illumina sequences had; (3) error rates were higher (up to 6%) for rare or unique variants; (4) error rates generally declined with genotype quality (GQ) score, but in a nonlinear fashion for the Illumina data, likely due to loss of specificity of GQ scores greater than 60; and (5) error rates increased with increasing depth of coverage for the Illumina data. These findings, especially (3)-(5), suggest that caution should be taken in interpreting the results of next-generation sequencing-based association studies, and even more so in clinical application of this technology in the absence of validation by other more robust sequencing or genotyping methods. © 2014 Wall et al.; Published by Cold Spring Harbor Laboratory Press.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier-Kolthoff, Jan P.; Lu, Megan; Huntemann, Marcel

    Saccharomonospora cyanea Runmao et al. 1988 is a member of the genus Saccharomonospora in the family Pseudonocardiaceae that is moderately well characterized at the genome level thus far. Members of the genus Saccharomonospora are of interest because they originate from diverse habitats, such as soil, leaf litter, manure, compost, surface of peat, moist, over-heated grain, and ocean sediment, where they probably play a role in the primary degradation of plant material by attacking hemicellulose. Species of the genus Saccharomonospora are usually Gram-positive, non-acid fast, and are classified among the actinomycetes. S. cyanea is characterized by a dark blue (= cyanmore » blue) aerial mycelium. After S. viridis, S. azurea, and S. marina, S. cyanea is only the fourth member in the genus for which a completely sequenced (non-contiguous finished draft status) type strain genome will be published. Here we describe the features of this organism, together with the draft genome sequence, and annotation. The 5,408,301 bp long chromosome with its 5,139 protein-coding and 57 RNA genes was sequenced as part of the DOE funded Community Sequencing Program (CSP) 2010 at the Joint Genome Institute (JGI).« less

  7. Very low-depth sequencing in a founder population identifies a cardioprotective APOC3 signal missed by genome-wide imputation.

    PubMed

    Gilly, Arthur; Ritchie, Graham Rs; Southam, Lorraine; Farmaki, Aliki-Eleni; Tsafantakis, Emmanouil; Dedoussis, George; Zeggini, Eleftheria

    2016-06-01

    Cohort-wide very low-depth whole-genome sequencing (WGS) can comprehensively capture low-frequency sequence variation for the cost of a dense genome-wide genotyping array. Here, we analyse 1x sequence data across the APOC3 gene in a founder population from the island of Crete in Greece (n = 1239) and find significant evidence for association with blood triglyceride levels with the previously reported R19X cardioprotective null mutation (β = -1.09,σ = 0.163, P = 8.2 × 10 -11 ) and a second loss of function mutation, rs138326449 (β = -1.17,σ = 0.188, P = 1.14 × 10 -9 ). The signal cannot be recapitulated by imputing genome-wide genotype data on a large reference panel of 5122 individuals including 249 with 4x WGS data from the same population. Gene-level meta-analysis with other studies reporting burden signals at APOC3 provides robust evidence for a replicable cardioprotective rare variant aggregation (P = 3.2 × 10 -31 , n = 13 480). © The Author 2016. Published by Oxford University Press.

  8. RSAT: regulatory sequence analysis tools.

    PubMed

    Thomas-Chollier, Morgane; Sand, Olivier; Turatsinze, Jean-Valéry; Janky, Rekin's; Defrance, Matthieu; Vervisch, Eric; Brohée, Sylvain; van Helden, Jacques

    2008-07-01

    The regulatory sequence analysis tools (RSAT, http://rsat.ulb.ac.be/rsat/) is a software suite that integrates a wide collection of modular tools for the detection of cis-regulatory elements in genome sequences. The suite includes programs for sequence retrieval, pattern discovery, phylogenetic footprint detection, pattern matching, genome scanning and feature map drawing. Random controls can be performed with random gene selections or by generating random sequences according to a variety of background models (Bernoulli, Markov). Beyond the original word-based pattern-discovery tools (oligo-analysis and dyad-analysis), we recently added a battery of tools for matrix-based detection of cis-acting elements, with some original features (adaptive background models, Markov-chain estimation of P-values) that do not exist in other matrix-based scanning tools. The web server offers an intuitive interface, where each program can be accessed either separately or connected to the other tools. In addition, the tools are now available as web services, enabling their integration in programmatic workflows. Genomes are regularly updated from various genome repositories (NCBI and EnsEMBL) and 682 organisms are currently supported. Since 1998, the tools have been used by several hundreds of researchers from all over the world. Several predictions made with RSAT were validated experimentally and published.

  9. Non-invasive prenatal testing using massively parallel sequencing of maternal plasma DNA: from molecular karyotyping to fetal whole-genome sequencing.

    PubMed

    Lo, Y M Dennis

    2013-12-01

    The discovery of cell-free fetal DNA in maternal plasma in 1997 has stimulated a rapid development of non-invasive prenatal testing. The recent advent of massively parallel sequencing has allowed the analysis of circulating cell-free fetal DNA to be performed with unprecedented sensitivity and precision. Fetal trisomies 21, 18 and 13 are now robustly detectable in maternal plasma and such analyses have been available clinically since 2011. Fetal genome-wide molecular karyotyping and whole-genome sequencing have now been demonstrated in a number of proof-of-concept studies. Genome-wide and targeted sequencing of maternal plasma has been shown to allow the non-invasive prenatal testing of β-thalassaemia and can potentially be generalized to other monogenic diseases. It is thus expected that plasma DNA-based non-invasive prenatal testing will play an increasingly important role in future obstetric care. It is thus timely and important that the ethical, social and legal issues of non-invasive prenatal testing be discussed actively by all parties involved in prenatal care. Copyright © 2013 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  10. Genomic analyses of the CAM plant pineapple.

    PubMed

    Zhang, Jisen; Liu, Juan; Ming, Ray

    2014-07-01

    The innovation of crassulacean acid metabolism (CAM) photosynthesis in arid and/or low CO2 conditions is a remarkable case of adaptation in flowering plants. As the most important crop that utilizes CAM photosynthesis, the genetic and genomic resources of pineapple have been developed over many years. Genetic diversity studies using various types of DNA markers led to the reclassification of the two genera Ananas and Pseudananas and nine species into one genus Ananas and two species, A. comosus and A. macrodontes with five botanical varieties in A. comosus. Five genetic maps have been constructed using F1 or F2 populations, and high-density genetic maps generated by genotype sequencing are essential resources for sequencing and assembling the pineapple genome and for marker-assisted selection. There are abundant expression sequence tag resources but limited genomic sequences in pineapple. Genes involved in the CAM pathway has been analysed in several CAM plants but only a few of them are from pineapple. A reference genome of pineapple is being generated and will accelerate genetic and genomic research in this major CAM crop. This reference genome of pineapple provides the foundation for studying the origin and regulatory mechanism of CAM photosynthesis, and the opportunity to evaluate the classification of Ananas species and botanical cultivars. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Widespread occurrence of organelle genome-encoded 5S rRNAs including permuted molecules.

    PubMed

    Valach, Matus; Burger, Gertraud; Gray, Michael W; Lang, B Franz

    2014-12-16

    5S Ribosomal RNA (5S rRNA) is a universal component of ribosomes, and the corresponding gene is easily identified in archaeal, bacterial and nuclear genome sequences. However, organelle gene homologs (rrn5) appear to be absent from most mitochondrial and several chloroplast genomes. Here, we re-examine the distribution of organelle rrn5 by building mitochondrion- and plastid-specific covariance models (CMs) with which we screened organelle genome sequences. We not only recover all organelle rrn5 genes annotated in GenBank records, but also identify more than 50 previously unrecognized homologs in mitochondrial genomes of various stramenopiles, red algae, cryptomonads, malawimonads and apusozoans, and surprisingly, in the apicoplast (highly derived plastid) genomes of the coccidian pathogens Toxoplasma gondii and Eimeria tenella. Comparative modeling of RNA secondary structure reveals that mitochondrial 5S rRNAs from brown algae adopt a permuted triskelion shape that has not been seen elsewhere. Expression of the newly predicted rrn5 genes is confirmed experimentally in 10 instances, based on our own and published RNA-Seq data. This study establishes that particularly mitochondrial 5S rRNA has a much broader taxonomic distribution and a much larger structural variability than previously thought. The newly developed CMs will be made available via the Rfam database and the MFannot organelle genome annotator. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. The Vigna Genome Server, 'VigGS': A Genomic Knowledge Base of the Genus Vigna Based on High-Quality, Annotated Genome Sequence of the Azuki Bean, Vigna angularis (Willd.) Ohwi & Ohashi.

    PubMed

    Sakai, Hiroaki; Naito, Ken; Takahashi, Yu; Sato, Toshiyuki; Yamamoto, Toshiya; Muto, Isamu; Itoh, Takeshi; Tomooka, Norihiko

    2016-01-01

    The genus Vigna includes legume crops such as cowpea, mungbean and azuki bean, as well as >100 wild species. A number of the wild species are highly tolerant to severe environmental conditions including high-salinity, acid or alkaline soil; drought; flooding; and pests and diseases. These features of the genus Vigna make it a good target for investigation of genetic diversity in adaptation to stressful environments; however, a lack of genomic information has hindered such research in this genus. Here, we present a genome database of the genus Vigna, Vigna Genome Server ('VigGS', http://viggs.dna.affrc.go.jp), based on the recently sequenced azuki bean genome, which incorporates annotated exon-intron structures, along with evidence for transcripts and proteins, visualized in GBrowse. VigGS also facilitates user construction of multiple alignments between azuki bean genes and those of six related dicot species. In addition, the database displays sequence polymorphisms between azuki bean and its wild relatives and enables users to design primer sequences targeting any variant site. VigGS offers a simple keyword search in addition to sequence similarity searches using BLAST and BLAT. To incorporate up to date genomic information, VigGS automatically receives newly deposited mRNA sequences of pre-set species from the public database once a week. Users can refer to not only gene structures mapped on the azuki bean genome on GBrowse but also relevant literature of the genes. VigGS will contribute to genomic research into plant biotic and abiotic stresses and to the future development of new stress-tolerant crops. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Population Genomics of Paramecium Species.

    PubMed

    Johri, Parul; Krenek, Sascha; Marinov, Georgi K; Doak, Thomas G; Berendonk, Thomas U; Lynch, Michael

    2017-05-01

    Population-genomic analyses are essential to understanding factors shaping genomic variation and lineage-specific sequence constraints. The dearth of such analyses for unicellular eukaryotes prompted us to assess genomic variation in Paramecium, one of the most well-studied ciliate genera. The Paramecium aurelia complex consists of ∼15 morphologically indistinguishable species that diverged subsequent to two rounds of whole-genome duplications (WGDs, as long as 320 MYA) and possess extremely streamlined genomes. We examine patterns of both nuclear and mitochondrial polymorphism, by sequencing whole genomes of 10-13 worldwide isolates of each of three species belonging to the P. aurelia complex: P. tetraurelia, P. biaurelia, P. sexaurelia, as well as two outgroup species that do not share the WGDs: P. caudatum and P. multimicronucleatum. An apparent absence of global geographic population structure suggests continuous or recent dispersal of Paramecium over long distances. Intergenic regions are highly constrained relative to coding sequences, especially in P. caudatum and P. multimicronucleatum that have shorter intergenic distances. Sequence diversity and divergence are reduced up to ∼100-150 bp both upstream and downstream of genes, suggesting strong constraints imposed by the presence of densely packed regulatory modules. In addition, comparison of sequence variation at non-synonymous and synonymous sites suggests similar recent selective pressures on paralogs within and orthologs across the deeply diverging species. This study presents the first genome-wide population-genomic analysis in ciliates and provides a valuable resource for future studies in evolutionary and functional genetics in Paramecium. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Ultrafast DNA sequencing on a microchip by a hybrid separation mechanism that gives 600 bases in 6.5 minutes.

    PubMed

    Fredlake, Christopher P; Hert, Daniel G; Kan, Cheuk-Wai; Chiesl, Thomas N; Root, Brian E; Forster, Ryan E; Barron, Annelise E

    2008-01-15

    To realize the immense potential of large-scale genomic sequencing after the completion of the second human genome (Venter's), the costs for the complete sequencing of additional genomes must be dramatically reduced. Among the technologies being developed to reduce sequencing costs, microchip electrophoresis is the only new technology ready to produce the long reads most suitable for the de novo sequencing and assembly of large and complex genomes. Compared with the current paradigm of capillary electrophoresis, microchip systems promise to reduce sequencing costs dramatically by increasing throughput, reducing reagent consumption, and integrating the many steps of the sequencing pipeline onto a single platform. Although capillary-based systems require approximately 70 min to deliver approximately 650 bases of contiguous sequence, we report sequencing up to 600 bases in just 6.5 min by microchip electrophoresis with a unique polymer matrix/adsorbed polymer wall coating combination. This represents a two-thirds reduction in sequencing time over any previously published chip sequencing result, with comparable read length and sequence quality. We hypothesize that these ultrafast long reads on chips can be achieved because the combined polymer system engenders a recently discovered "hybrid" mechanism of DNA electromigration, in which DNA molecules alternate rapidly between repeating through the intact polymer network and disrupting network entanglements to drag polymers through the solution, similar to dsDNA dynamics we observe in single-molecule DNA imaging studies. Most importantly, these results reveal the surprisingly powerful ability of microchip electrophoresis to provide ultrafast Sanger sequencing, which will translate to increased system throughput and reduced costs.

  15. Ultrafast DNA sequencing on a microchip by a hybrid separation mechanism that gives 600 bases in 6.5 minutes

    PubMed Central

    Fredlake, Christopher P.; Hert, Daniel G.; Kan, Cheuk-Wai; Chiesl, Thomas N.; Root, Brian E.; Forster, Ryan E.; Barron, Annelise E.

    2008-01-01

    To realize the immense potential of large-scale genomic sequencing after the completion of the second human genome (Venter's), the costs for the complete sequencing of additional genomes must be dramatically reduced. Among the technologies being developed to reduce sequencing costs, microchip electrophoresis is the only new technology ready to produce the long reads most suitable for the de novo sequencing and assembly of large and complex genomes. Compared with the current paradigm of capillary electrophoresis, microchip systems promise to reduce sequencing costs dramatically by increasing throughput, reducing reagent consumption, and integrating the many steps of the sequencing pipeline onto a single platform. Although capillary-based systems require ≈70 min to deliver ≈650 bases of contiguous sequence, we report sequencing up to 600 bases in just 6.5 min by microchip electrophoresis with a unique polymer matrix/adsorbed polymer wall coating combination. This represents a two-thirds reduction in sequencing time over any previously published chip sequencing result, with comparable read length and sequence quality. We hypothesize that these ultrafast long reads on chips can be achieved because the combined polymer system engenders a recently discovered “hybrid” mechanism of DNA electromigration, in which DNA molecules alternate rapidly between reptating through the intact polymer network and disrupting network entanglements to drag polymers through the solution, similar to dsDNA dynamics we observe in single-molecule DNA imaging studies. Most importantly, these results reveal the surprisingly powerful ability of microchip electrophoresis to provide ultrafast Sanger sequencing, which will translate to increased system throughput and reduced costs. PMID:18184818

  16. Progressive genomic convergence of two Helicobacter pylori strains during mixed infection of a patient with chronic gastritis.

    PubMed

    Cao, Qizhi; Didelot, Xavier; Wu, Zhongbiao; Li, Zongwei; He, Lihua; Li, Yunsheng; Ni, Ming; You, Yuanhai; Lin, Xi; Li, Zhen; Gong, Yanan; Zheng, Minqiao; Zhang, Minli; Liu, Jie; Wang, Weijun; Bo, Xiaochen; Falush, Daniel; Wang, Shengqi; Zhang, Jianzhong

    2015-04-01

    To study the detailed nature of genomic microevolution during mixed infection with multiple Helicobacter pylori strains in an individual. We sampled 18 isolates from a single biopsy from a patient with chronic gastritis and nephritis. Whole-genome sequencing was applied to these isolates, and statistical genetic tools were used to investigate their evolutionary history. The genomes fall into two clades, reflecting colonisation of the stomach by two distinct strains, and these lineages have accumulated diversity during an estimated 2.8 and 4.2 years of evolution. We detected about 150 clear recombination events between the two clades. Recombination between the lineages is a continuous ongoing process and was detected on both clades, but the effect of recombination in one clade was nearly an order of magnitude higher than in the other. Imputed ancestral sequences also showed evidence of recombination between the two strains prior to their diversification, and we estimate that they have both been infecting the same host for at least 12 years. Recombination tracts between the lineages were, on average, 895 bp in length, and showed evidence for the interspersion of recipient sequences that has been observed in in vitro experiments. The complex evolutionary history of a phage-related protein provided evidence for frequent reinfection of both clades by a single phage lineage during the past 4 years. Whole genome sequencing can be used to make detailed conclusions about the mechanisms of genetic change of H. pylori based on sampling bacteria from a single gastric biopsy. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  17. SIDR: simultaneous isolation and parallel sequencing of genomic DNA and total RNA from single cells.

    PubMed

    Han, Kyung Yeon; Kim, Kyu-Tae; Joung, Je-Gun; Son, Dae-Soon; Kim, Yeon Jeong; Jo, Areum; Jeon, Hyo-Jeong; Moon, Hui-Sung; Yoo, Chang Eun; Chung, Woosung; Eum, Hye Hyeon; Kim, Sangmin; Kim, Hong Kwan; Lee, Jeong Eon; Ahn, Myung-Ju; Lee, Hae-Ock; Park, Donghyun; Park, Woong-Yang

    2018-01-01

    Simultaneous sequencing of the genome and transcriptome at the single-cell level is a powerful tool for characterizing genomic and transcriptomic variation and revealing correlative relationships. However, it remains technically challenging to analyze both the genome and transcriptome in the same cell. Here, we report a novel method for simultaneous isolation of genomic DNA and total RNA (SIDR) from single cells, achieving high recovery rates with minimal cross-contamination, as is crucial for accurate description and integration of the single-cell genome and transcriptome. For reliable and efficient separation of genomic DNA and total RNA from single cells, the method uses hypotonic lysis to preserve nuclear lamina integrity and subsequently captures the cell lysate using antibody-conjugated magnetic microbeads. Evaluating the performance of this method using real-time PCR demonstrated that it efficiently recovered genomic DNA and total RNA. Thorough data quality assessments showed that DNA and RNA simultaneously fractionated by the SIDR method were suitable for genome and transcriptome sequencing analysis at the single-cell level. The integration of single-cell genome and transcriptome sequencing by SIDR (SIDR-seq) showed that genetic alterations, such as copy-number and single-nucleotide variations, were more accurately captured by single-cell SIDR-seq compared with conventional single-cell RNA-seq, although copy-number variations positively correlated with the corresponding gene expression levels. These results suggest that SIDR-seq is potentially a powerful tool to reveal genetic heterogeneity and phenotypic information inferred from gene expression patterns at the single-cell level. © 2018 Han et al.; Published by Cold Spring Harbor Laboratory Press.

  18. Comparative genomic analysis of three Leishmania species that cause diverse human disease

    PubMed Central

    Peacock, Christopher S; Seeger, Kathy; Harris, David; Murphy, Lee; Ruiz, Jeronimo C; Quail, Michael A; Peters, Nick; Adlem, Ellen; Tivey, Adrian; Aslett, Martin; Kerhornou, Arnaud; Ivens, Alasdair; Fraser, Audrey; Rajandream, Marie-Adele; Carver, Tim; Norbertczak, Halina; Chillingworth, Tracey; Hance, Zahra; Jagels, Kay; Moule, Sharon; Ormond, Doug; Rutter, Simon; Squares, Rob; Whitehead, Sally; Rabbinowitsch, Ester; Arrowsmith, Claire; White, Brian; Thurston, Scott; Bringaud, Frédéric; Baldauf, Sandra L; Faulconbridge, Adam; Jeffares, Daniel; Depledge, Daniel P; Oyola, Samuel O; Hilley, James D; Brito, Loislene O; Tosi, Luiz R O; Barrell, Barclay; Cruz, Angela K; Mottram, Jeremy C; Smith, Deborah F; Berriman, Matthew

    2008-01-01

    Leishmania parasites cause a broad spectrum of clinical disease. Here we report the sequencing of the genomes of two species of Leishmania: Leishmania infantum and Leishmania braziliensis. The comparison of these sequences with the published genome of Leishmania major reveals marked conservation of synteny and identifies only ∼200 genes with a differential distribution between the three species. L. braziliensis, contrary to Leishmania species examined so far, possesses components of a putative RNA-mediated interference pathway, telomere-associated transposable elements and spliced leader–associated SLACS retrotransposons. We show that pseudogene formation and gene loss are the principal forces shaping the different genomes. Genes that are differentially distributed between the species encode proteins implicated in host-pathogen interactions and parasite survival in the macrophage. PMID:17572675

  19. Description of the mitochondrial genome of the tree coral Dendrophyllia arbuscula (Anthozoa, Scleractinia).

    PubMed

    Luz, Bruna Louise Pereira; Capel, Kátia Cristina Cruz; Stampar, Sérgio Nascimento; Kitahara, Marcelo Visentini

    2016-07-01

    Dendrophylliidae is one of the few monophyletic families within the Scleractinia that embraces zooxanthellate and azooxanthellate species represented by both solitary and colonial forms. Among the exclusively azooxanthellate genera, Dendrophyllia is reported worldwide from 1 to 1200 m deep. To date, although three complete mitochondrial (mt) genomes from representatives of the family are available, only that from Turbinaria peltata has been formally published. Here we describe the complete nucleotide sequence of the mt genome from Dendrophyllia arbuscula that is 19 069 bp in length and comprises two rDNAs, two tRNAs, and 13 protein-coding genes arranged in the canonical scleractinian mt gene order. No genes overlap, resulting in the presence of 18 intergenic spacers and one of the longest scleractinian mt genome sequenced to date.

  20. Opportunities and challenges associated with clinical diagnostic genome sequencing: a report of the Association for Molecular Pathology.

    PubMed

    Schrijver, Iris; Aziz, Nazneen; Farkas, Daniel H; Furtado, Manohar; Gonzalez, Andrea Ferreira; Greiner, Timothy C; Grody, Wayne W; Hambuch, Tina; Kalman, Lisa; Kant, Jeffrey A; Klein, Roger D; Leonard, Debra G B; Lubin, Ira M; Mao, Rong; Nagan, Narasimhan; Pratt, Victoria M; Sobel, Mark E; Voelkerding, Karl V; Gibson, Jane S

    2012-11-01

    This report of the Whole Genome Analysis group of the Association for Molecular Pathology illuminates the opportunities and challenges associated with clinical diagnostic genome sequencing. With the reality of clinical application of next-generation sequencing, technical aspects of molecular testing can be accomplished at greater speed and with higher volume, while much information is obtained. Although this testing is a next logical step for molecular pathology laboratories, the potential impact on the diagnostic process and clinical correlations is extraordinary and clinical interpretation will be challenging. We review the rapidly evolving technologies; provide application examples; discuss aspects of clinical utility, ethics, and consent; and address the analytic, postanalytic, and professional implications. Copyright © 2012 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  1. Deep whole-genome sequencing of 100 southeast Asian Malays.

    PubMed

    Wong, Lai-Ping; Ong, Rick Twee-Hee; Poh, Wan-Ting; Liu, Xuanyao; Chen, Peng; Li, Ruoying; Lam, Kevin Koi-Yau; Pillai, Nisha Esakimuthu; Sim, Kar-Seng; Xu, Haiyan; Sim, Ngak-Leng; Teo, Shu-Mei; Foo, Jia-Nee; Tan, Linda Wei-Lin; Lim, Yenly; Koo, Seok-Hwee; Gan, Linda Seo-Hwee; Cheng, Ching-Yu; Wee, Sharon; Yap, Eric Peng-Huat; Ng, Pauline Crystal; Lim, Wei-Yen; Soong, Richie; Wenk, Markus Rene; Aung, Tin; Wong, Tien-Yin; Khor, Chiea-Chuen; Little, Peter; Chia, Kee-Seng; Teo, Yik-Ying

    2013-01-10

    Whole-genome sequencing across multiple samples in a population provides an unprecedented opportunity for comprehensively characterizing the polymorphic variants in the population. Although the 1000 Genomes Project (1KGP) has offered brief insights into the value of population-level sequencing, the low coverage has compromised the ability to confidently detect rare and low-frequency variants. In addition, the composition of populations in the 1KGP is not complete, despite the fact that the study design has been extended to more than 2,500 samples from more than 20 population groups. The Malays are one of the Austronesian groups predominantly present in Southeast Asia and Oceania, and the Singapore Sequencing Malay Project (SSMP) aims to perform deep whole-genome sequencing of 100 healthy Malays. By sequencing at a minimum of 30× coverage, we have illustrated the higher sensitivity at detecting low-frequency and rare variants and the ability to investigate the presence of hotspots of functional mutations. Compared to the low-pass sequencing in the 1KGP, the deeper coverage allows more functional variants to be identified for each person. A comparison of the fidelity of genotype imputation of Malays indicated that a population-specific reference panel, such as the SSMP, outperforms a cosmopolitan panel with larger number of individuals for common SNPs. For lower-frequency (<5%) markers, a larger number of individuals might have to be whole-genome sequenced so that the accuracy currently afforded by the 1KGP can be achieved. The SSMP data are expected to be the benchmark for evaluating the value of deep population-level sequencing versus low-pass sequencing, especially in populations that are poorly represented in population-genetics studies. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  2. Mapping-by-sequencing in complex polyploid genomes using genic sequence capture: a case study to map yellow rust resistance in hexaploid wheat.

    PubMed

    Gardiner, Laura-Jayne; Bansept-Basler, Pauline; Olohan, Lisa; Joynson, Ryan; Brenchley, Rachel; Hall, Neil; O'Sullivan, Donal M; Hall, Anthony

    2016-08-01

    Previously we extended the utility of mapping-by-sequencing by combining it with sequence capture and mapping sequence data to pseudo-chromosomes that were organized using wheat-Brachypodium synteny. This, with a bespoke haplotyping algorithm, enabled us to map the flowering time locus in the diploid wheat Triticum monococcum L. identifying a set of deleted genes (Gardiner et al., 2014). Here, we develop this combination of gene enrichment and sliding window mapping-by-synteny analysis to map the Yr6 locus for yellow stripe rust resistance in hexaploid wheat. A 110 MB NimbleGen capture probe set was used to enrich and sequence a doubled haploid mapping population of hexaploid wheat derived from an Avalon and Cadenza cross. The Yr6 locus was identified by mapping to the POPSEQ chromosomal pseudomolecules using a bespoke pipeline and algorithm (Chapman et al., 2015). Furthermore the same locus was identified using newly developed pseudo-chromosome sequences as a mapping reference that are based on the genic sequence used for sequence enrichment. The pseudo-chromosomes allow us to demonstrate the application of mapping-by-sequencing to even poorly defined polyploidy genomes where chromosomes are incomplete and sub-genome assemblies are collapsed. This analysis uniquely enabled us to: compare wheat genome annotations; identify the Yr6 locus - defining a smaller genic region than was previously possible; associate the interval with one wheat sub-genome and increase the density of SNP markers associated. Finally, we built the pipeline in iPlant, making it a user-friendly community resource for phenotype mapping. © 2016 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  3. The international Genome sample resource (IGSR): A worldwide collection of genome variation incorporating the 1000 Genomes Project data.

    PubMed

    Clarke, Laura; Fairley, Susan; Zheng-Bradley, Xiangqun; Streeter, Ian; Perry, Emily; Lowy, Ernesto; Tassé, Anne-Marie; Flicek, Paul

    2017-01-04

    The International Genome Sample Resource (IGSR; http://www.internationalgenome.org) expands in data type and population diversity the resources from the 1000 Genomes Project. IGSR represents the largest open collection of human variation data and provides easy access to these resources. IGSR was established in 2015 to maintain and extend the 1000 Genomes Project data, which has been widely used as a reference set of human variation and by researchers developing analysis methods. IGSR has mapped all of the 1000 Genomes sequence to the newest human reference (GRCh38), and will release updated variant calls to ensure maximal usefulness of the existing data. IGSR is collecting new structural variation data on the 1000 Genomes samples from long read sequencing and other technologies, and will collect relevant functional data into a single comprehensive resource. IGSR is extending coverage with new populations sequenced by collaborating groups. Here, we present the new data and analysis that IGSR has made available. We have also introduced a new data portal that increases discoverability of our data-previously only browseable through our FTP site-by focusing on particular samples, populations or data sets of interest. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Draft genome sequence of a GES-5-producing Serratia marcescens isolated in southern Brazil.

    PubMed

    Nodari, Carolina Silva; Siebert, Marina; Matte, Ursula da Silveira; Barth, Afonso Luís

    Serratia marcescens is a Gram-negative rod intrinsically resistant to polymyxins and usually associated with wound, respiratory and urinary tract infections. The whole genome of the first GES-5-producing S. marcescens isolated from a Brazilian patient was sequenced using Ion Torrent PGM System. Besides bla GES-5 , we were able to identify genes encoding for other β-lactamases, for aminoglycoside modifying enzymes and for an efflux pump to tetracyclines. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  5. Sequencing of mitochondrial genomes of nine Aspergillus and Penicillium species identifies mobile introns and accessory genes as main sources of genome size variability.

    PubMed

    Joardar, Vinita; Abrams, Natalie F; Hostetler, Jessica; Paukstelis, Paul J; Pakala, Suchitra; Pakala, Suman B; Zafar, Nikhat; Abolude, Olukemi O; Payne, Gary; Andrianopoulos, Alex; Denning, David W; Nierman, William C

    2012-12-12

    The genera Aspergillus and Penicillium include some of the most beneficial as well as the most harmful fungal species such as the penicillin-producer Penicillium chrysogenum and the human pathogen Aspergillus fumigatus, respectively. Their mitochondrial genomic sequences may hold vital clues into the mechanisms of their evolution, population genetics, and biology, yet only a handful of these genomes have been fully sequenced and annotated. Here we report the complete sequence and annotation of the mitochondrial genomes of six Aspergillus and three Penicillium species: A. fumigatus, A. clavatus, A. oryzae, A. flavus, Neosartorya fischeri (A. fischerianus), A. terreus, P. chrysogenum, P. marneffei, and Talaromyces stipitatus (P. stipitatum). The accompanying comparative analysis of these and related publicly available mitochondrial genomes reveals wide variation in size (25-36 Kb) among these closely related fungi. The sources of genome expansion include group I introns and accessory genes encoding putative homing endonucleases, DNA and RNA polymerases (presumed to be of plasmid origin) and hypothetical proteins. The two smallest sequenced genomes (A. terreus and P. chrysogenum) do not contain introns in protein-coding genes, whereas the largest genome (T. stipitatus), contains a total of eleven introns. All of the sequenced genomes have a group I intron in the large ribosomal subunit RNA gene, suggesting that this intron is fixed in these species. Subsequent analysis of several A. fumigatus strains showed low intraspecies variation. This study also includes a phylogenetic analysis based on 14 concatenated core mitochondrial proteins. The phylogenetic tree has a different topology from published multilocus trees, highlighting the challenges still facing the Aspergillus systematics. The study expands the genomic resources available to fungal biologists by providing mitochondrial genomes with consistent annotations for future genetic, evolutionary and population studies. Despite the conservation of the core genes, the mitochondrial genomes of Aspergillus and Penicillium species examined here exhibit significant amount of interspecies variation. Most of this variation can be attributed to accessory genes and mobile introns, presumably acquired by horizontal gene transfer of mitochondrial plasmids and intron homing.

  6. Evolution of the Largest Mammalian Genome.

    PubMed

    Evans, Ben J; Upham, Nathan S; Golding, Goeffrey B; Ojeda, Ricardo A; Ojeda, Agustina A

    2017-06-01

    The genome of the red vizcacha rat (Rodentia, Octodontidae, Tympanoctomys barrerae) is the largest of all mammals, and about double the size of their close relative, the mountain vizcacha rat Octomys mimax, even though the lineages that gave rise to these species diverged from each other only about 5 Ma. The mechanism for this rapid genome expansion is controversial, and hypothesized to be a consequence of whole genome duplication or accumulation of repetitive elements. To test these alternative but nonexclusive hypotheses, we gathered and evaluated evidence from whole transcriptome and whole genome sequences of T. barrerae and O. mimax. We recovered support for genome expansion due to accumulation of a diverse assemblage of repetitive elements, which represent about one half and one fifth of the genomes of T. barrerae and O. mimax, respectively, but we found no strong signal of whole genome duplication. In both species, repetitive sequences were rare in transcribed regions as compared with the rest of the genome, and mostly had no close match to annotated repetitive sequences from other rodents. These findings raise new questions about the genomic dynamics of these repetitive elements, their connection to widespread chromosomal fissions that occurred in the T. barrerae ancestor, and their fitness effects-including during the evolution of hypersaline dietary tolerance in T. barrerae. ©The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes

    PubMed Central

    Saski, Christopher; Lee, Seung-Bum; Fjellheim, Siri; Guda, Chittibabu; Jansen, Robert K.; Luo, Hong; Tomkins, Jeffrey; Rognli, Odd Arne; Clarke, Jihong Liu

    2009-01-01

    Comparisons of complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera to six published grass chloroplast genomes reveal that gene content and order are similar but two microstructural changes have occurred. First, the expansion of the IR at the SSC/IRa boundary that duplicates a portion of the 5′ end of ndhH is restricted to the three genera of the subfamily Pooideae (Agrostis, Hordeum and Triticum). Second, a 6 bp deletion in ndhK is shared by Agrostis, Hordeum, Oryza and Triticum, and this event supports the sister relationship between the subfamilies Erhartoideae and Pooideae. Repeat analysis identified 19–37 direct and inverted repeats 30 bp or longer with a sequence identity of at least 90%. Seventeen of the 26 shared repeats are found in all the grass chloroplast genomes examined and are located in the same genes or intergenic spacer (IGS) regions. Examination of simple sequence repeats (SSRs) identified 16–21 potential polymorphic SSRs. Five IGS regions have 100% sequence identity among Zea mays, Saccharum officinarum and Sorghum bicolor, whereas no spacer regions were identical among Oryza sativa, Triticum aestivum, H. vulgare and A. stolonifera despite their close phylogenetic relationship. Alignment of EST sequences and DNA coding sequences identified six C–U conversions in both Sorghum bicolor and H. vulgare but only one in A. stolonifera. Phylogenetic trees based on DNA sequences of 61 protein-coding genes of 38 taxa using both maximum parsimony and likelihood methods provide moderate support for a sister relationship between the subfamilies Erhartoideae and Pooideae. PMID:17534593

  8. Whole mitochondrial and plastid genome SNP analysis of nine date palm cultivars reveals plastid heteroplasmy and close phylogenetic relationships among cultivars.

    PubMed

    Sabir, Jamal S M; Arasappan, Dhivya; Bahieldin, Ahmed; Abo-Aba, Salah; Bafeel, Sameera; Zari, Talal A; Edris, Sherif; Shokry, Ahmed M; Gadalla, Nour O; Ramadan, Ahmed M; Atef, Ahmed; Al-Kordy, Magdy A; El-Domyati, Fotoh M; Jansen, Robert K

    2014-01-01

    Date palm is a very important crop in western Asia and northern Africa, and it is the oldest domesticated fruit tree with archaeological records dating back 5000 years. The huge economic value of this crop has generated considerable interest in breeding programs to enhance production of dates. One of the major limitations of these efforts is the uncertainty regarding the number of date palm cultivars, which are currently based on fruit shape, size, color, and taste. Whole mitochondrial and plastid genome sequences were utilized to examine single nucleotide polymorphisms (SNPs) of date palms to evaluate the efficacy of this approach for molecular characterization of cultivars. Mitochondrial and plastid genomes of nine Saudi Arabian cultivars were sequenced. For each species about 60 million 100 bp paired-end reads were generated from total genomic DNA using the Illumina HiSeq 2000 platform. For each cultivar, sequences were aligned separately to the published date palm plastid and mitochondrial reference genomes, and SNPs were identified. The results identified cultivar-specific SNPs for eight of the nine cultivars. Two previous SNP analyses of mitochondrial and plastid genomes identified substantial intra-cultivar ( = intra-varietal) polymorphisms in organellar genomes but these studies did not properly take into account the fact that nearly half of the plastid genome has been integrated into the mitochondrial genome. Filtering all sequencing reads that mapped to both organellar genomes nearly eliminated mitochondrial heteroplasmy but all plastid SNPs remained heteroplasmic. This investigation provides valuable insights into how to deal with interorganellar DNA transfer in performing SNP analyses from total genomic DNA. The results confirm recent suggestions that plastid heteroplasmy is much more common than previously thought. Finally, low levels of sequence variation in plastid and mitochondrial genomes argue for using nuclear SNPs for molecular characterization of date palm cultivars.

  9. Complete genome sequence of Rhodospirillum rubrum type strain (S1).

    PubMed

    Munk, A Christine; Copeland, Alex; Lucas, Susan; Lapidus, Alla; Del Rio, Tijana Glavina; Barry, Kerrie; Detter, John C; Hammon, Nancy; Israni, Sanjay; Pitluck, Sam; Brettin, Thomas; Bruce, David; Han, Cliff; Tapia, Roxanne; Gilna, Paul; Schmutz, Jeremy; Larimer, Frank; Land, Miriam; Kyrpides, Nikos C; Mavromatis, Konstantinos; Richardson, Paul; Rohde, Manfred; Göker, Markus; Klenk, Hans-Peter; Zhang, Yaoping; Roberts, Gary P; Reslewic, Susan; Schwartz, David C

    2011-07-01

    Rhodospirillum rubrum (Esmarch 1887) Molisch 1907 is the type species of the genus Rhodospirillum, which is the type genus of the family Rhodospirillaceae in the class Alphaproteobacteria. The species is of special interest because it is an anoxygenic phototroph that produces extracellular elemental sulfur (instead of oxygen) while harvesting light. It contains one of the most simple photosynthetic systems currently known, lacking light harvesting complex 2. Strain S1(T) can grow on carbon monoxide as sole energy source. With currently over 1,750 PubMed entries, R. rubrum is one of the most intensively studied microbial species, in particular for physiological and genetic studies. Next to R. centenum strain SW, the genome sequence of strain S1(T) is only the second genome of a member of the genus Rhodospirillum to be published, but the first type strain genome from the genus. The 4,352,825 bp long chromosome and 53,732 bp plasmid with a total of 3,850 protein-coding and 83 RNA genes were sequenced as part of the DOE Joint Genome Institute Program DOEM 2002.

  10. Draft genome sequence of field isolate Brucella melitensis strain 2007BM/1 from India.

    PubMed

    Singh, D K; Kumar, Bablu; Shrinet, Garima; Singh, R P; Das, Aparajita; Mantur, B G; Abhishek; Pandey, Aruna; Mondal, Piyali; Sajjanar, B K; Doimari, Soni; Singh, Vijayata; Kumari, Reena; Tiwari, A K; Gandham, Ravi Kumar

    2018-04-21

    Brucellosis is among one of the most widespread important global zoonotic diseases that is endemic in many parts of India. Brucella melitensis is supposed to be the most pathogenic species for humans. Here we report the draft genome sequence of B. melitensis strain 2007BM/1 isolated from a human in India. Genomic DNA was extracted from Brucella culture and was sequenced using an Illumina MiSeq platform. The generated reads were assembled using three de novo assemblers and the draft genome was annotated. This monoisolate, with a genome length of 3268756bp, was found to be resistant to azithromycin and trimethoprim/sulfamethoxazole but susceptible to tetracycline, ofloxacin, rifampicin, ciprofloxacin and doxycycline. The presence of virulence genes in the strain was identified. The results obtained will help in understanding drug resistance mechanisms and virulence factors in highly zoonotic B. melitensis and suggest the need for judicious use of antibiotics in livestock health and management practices. Copyright © 2018 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  11. Integrated genome browser: visual analytics platform for genomics.

    PubMed

    Freese, Nowlan H; Norris, David C; Loraine, Ann E

    2016-07-15

    Genome browsers that support fast navigation through vast datasets and provide interactive visual analytics functions can help scientists achieve deeper insight into biological systems. Toward this end, we developed Integrated Genome Browser (IGB), a highly configurable, interactive and fast open source desktop genome browser. Here we describe multiple updates to IGB, including all-new capabilities to display and interact with data from high-throughput sequencing experiments. To demonstrate, we describe example visualizations and analyses of datasets from RNA-Seq, ChIP-Seq and bisulfite sequencing experiments. Understanding results from genome-scale experiments requires viewing the data in the context of reference genome annotations and other related datasets. To facilitate this, we enhanced IGB's ability to consume data from diverse sources, including Galaxy, Distributed Annotation and IGB-specific Quickload servers. To support future visualization needs as new genome-scale assays enter wide use, we transformed the IGB codebase into a modular, extensible platform for developers to create and deploy all-new visualizations of genomic data. IGB is open source and is freely available from http://bioviz.org/igb aloraine@uncc.edu. © The Author 2016. Published by Oxford University Press.

  12. UCbase 2.0: ultraconserved sequences database (2014 update).

    PubMed

    Lomonaco, Vincenzo; Martoglia, Riccardo; Mandreoli, Federica; Anderlucci, Laura; Emmett, Warren; Bicciato, Silvio; Taccioli, Cristian

    2014-01-01

    UCbase 2.0 (http://ucbase.unimore.it) is an update, extension and evolution of UCbase, a Web tool dedicated to the analysis of ultraconserved sequences (UCRs). UCRs are 481 sequences >200 bases sharing 100% identity among human, mouse and rat genomes. They are frequently located in genomic regions known to be involved in cancer or differentially expressed in human leukemias and carcinomas. UCbase 2.0 is a platform-independent Web resource that includes the updated version of the human genome annotation (hg19), information linking disorders to chromosomal coordinates based on the Systematized Nomenclature of Medicine classification, a query tool to search for Single Nucleotide Polymorphisms (SNPs) and a new text box to directly interrogate the database using a MySQL interface. To facilitate the interactive visual interpretation of UCR chromosomal positioning, UCbase 2.0 now includes a graph visualization interface directly linked to UCSC genome browser. Database URL: http://ucbase.unimore.it. © The Author(s) 2014. Published by Oxford University Press.

  13. CRISPR/Cas9 for genome editing: progress, implications and challenges.

    PubMed

    Zhang, Feng; Wen, Yan; Guo, Xiong

    2014-09-15

    Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) protein 9 system provides a robust and multiplexable genome editing tool, enabling researchers to precisely manipulate specific genomic elements, and facilitating the elucidation of target gene function in biology and diseases. CRISPR/Cas9 comprises of a nonspecific Cas9 nuclease and a set of programmable sequence-specific CRISPR RNA (crRNA), which can guide Cas9 to cleave DNA and generate double-strand breaks at target sites. Subsequent cellular DNA repair process leads to desired insertions, deletions or substitutions at target sites. The specificity of CRISPR/Cas9-mediated DNA cleavage requires target sequences matching crRNA and a protospacer adjacent motif locating at downstream of target sequences. Here, we review the molecular mechanism, applications and challenges of CRISPR/Cas9-mediated genome editing and clinical therapeutic potential of CRISPR/Cas9 in future. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Genome Analysis of Streptococcus pyogenes Associated with Pharyngitis and Skin Infections

    PubMed Central

    Ibrahim, Joe; Eisen, Jonathan A.; Jospin, Guillaume; Coil, David A.; Khazen, Georges

    2016-01-01

    Streptococcus pyogenes is a very important human pathogen, commonly associated with skin or throat infections but can also cause life-threatening situations including sepsis, streptococcal toxic shock syndrome, and necrotizing fasciitis. Various studies involving typing and molecular characterization of S. pyogenes have been published to date; however next-generation sequencing (NGS) studies provide a comprehensive collection of an organism’s genetic variation. In this study, the genomes of nine S. pyogenes isolates associated with pharyngitis and skin infection were sequenced and studied for the presence of virulence genes, resistance elements, prophages, genomic recombination, and other genomic features. Additionally, a comparative phylogenetic analysis of the isolates with global clones highlighted their possible evolutionary lineage and their site of infection. The genomes were found to also house a multitude of features including gene regulation systems, virulence factors and antimicrobial resistance mechanisms. PMID:27977735

  15. Draft genome sequence of a Kluyvera intermedia isolate from a patient with a pancreatic abscess.

    PubMed

    Thele, Roland; Gumpert, Heidi; Christensen, Louise B; Worning, Peder; Schønning, Kristian; Westh, Henrik; Hansen, Thomas A

    2017-09-01

    The genus Kluyvera comprises potential pathogens that can cause many infections. This study reports a Kluyvera intermedia strain (FOSA7093) from a pancreatic cyst specimen from a long-term hospitalised patient. Whole-genome sequencing (WGS) of the K. intermedia isolate was performed and the strain was reported as sensitive to Danish-registered antibiotics although it had a fosA-like gene in the genome. There were nine contigs that aligned to a plasmid, and these contigs contained several heavy metal resistance gene homologues. Furthermore, a prophage was discovered in the genome. WGS represents an efficient tool for monitoring Kluyvera spp. and its role as a reservoir of multidrug resistance. Therefore, this susceptible K. intermedia genome has many characteristics that allow comparison of resistant K. intermedia that might be discovered in the future. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  16. Transcriptome analysis and related databases of Lactococcus lactis.

    PubMed

    Kuipers, Oscar P; de Jong, Anne; Baerends, Richard J S; van Hijum, Sacha A F T; Zomer, Aldert L; Karsens, Harma A; den Hengst, Chris D; Kramer, Naomi E; Buist, Girbe; Kok, Jan

    2002-08-01

    Several complete genome sequences of Lactococcus lactis and their annotations will become available in the near future, next to the already published genome sequence of L. lactis ssp. lactis IL 1403. This will allow intraspecies comparative genomics studies as well as functional genomics studies aimed at a better understanding of physiological processes and regulatory networks operating in lactococci. This paper describes the initial set-up of a DNA-microarray facility in our group, to enable transcriptome analysis of various Gram-positive bacteria, including a ssp. lactis and a ssp. cremoris strain of Lactococcus lactis. Moreover a global description will be given of the hardware and software requirements for such a set-up, highlighting the crucial integration of relevant bioinformatics tools and methods. This includes the development of MolGenIS, an information system for transcriptome data storage and retrieval, and LactococCye, a metabolic pathway/genome database of Lactococcus lactis.

  17. A Bacterial Analysis Platform: An Integrated System for Analysing Bacterial Whole Genome Sequencing Data for Clinical Diagnostics and Surveillance.

    PubMed

    Thomsen, Martin Christen Frølund; Ahrenfeldt, Johanne; Cisneros, Jose Luis Bellod; Jurtz, Vanessa; Larsen, Mette Voldby; Hasman, Henrik; Aarestrup, Frank Møller; Lund, Ole

    2016-01-01

    Recent advances in whole genome sequencing have made the technology available for routine use in microbiological laboratories. However, a major obstacle for using this technology is the availability of simple and automatic bioinformatics tools. Based on previously published and already available web-based tools we developed a single pipeline for batch uploading of whole genome sequencing data from multiple bacterial isolates. The pipeline will automatically identify the bacterial species and, if applicable, assemble the genome, identify the multilocus sequence type, plasmids, virulence genes and antimicrobial resistance genes. A short printable report for each sample will be provided and an Excel spreadsheet containing all the metadata and a summary of the results for all submitted samples can be downloaded. The pipeline was benchmarked using datasets previously used to test the individual services. The reported results enable a rapid overview of the major results, and comparing that to the previously found results showed that the platform is reliable and able to correctly predict the species and find most of the expected genes automatically. In conclusion, a combined bioinformatics platform was developed and made publicly available, providing easy-to-use automated analysis of bacterial whole genome sequencing data. The platform may be of immediate relevance as a guide for investigators using whole genome sequencing for clinical diagnostics and surveillance. The platform is freely available at: https://cge.cbs.dtu.dk/services/CGEpipeline-1.1 and it is the intention that it will continue to be expanded with new features as these become available.

  18. The complete genome sequence of the acarbose producer Actinoplanes sp. SE50/110

    PubMed Central

    2012-01-01

    Background Actinoplanes sp. SE50/110 is known as the wild type producer of the alpha-glucosidase inhibitor acarbose, a potent drug used worldwide in the treatment of type-2 diabetes mellitus. As the incidence of diabetes is rapidly rising worldwide, an ever increasing demand for diabetes drugs, such as acarbose, needs to be anticipated. Consequently, derived Actinoplanes strains with increased acarbose yields are being used in large scale industrial batch fermentation since 1990 and were continuously optimized by conventional mutagenesis and screening experiments. This strategy reached its limits and is generally superseded by modern genetic engineering approaches. As a prerequisite for targeted genetic modifications, the complete genome sequence of the organism has to be known. Results Here, we present the complete genome sequence of Actinoplanes sp. SE50/110 [GenBank:CP003170], the first publicly available genome of the genus Actinoplanes, comprising various producers of pharmaceutically and economically important secondary metabolites. The genome features a high mean G + C content of 71.32% and consists of one circular chromosome with a size of 9,239,851 bp hosting 8,270 predicted protein coding sequences. Phylogenetic analysis of the core genome revealed a rather distant relation to other sequenced species of the family Micromonosporaceae whereas Actinoplanes utahensis was found to be the closest species based on 16S rRNA gene sequence comparison. Besides the already published acarbose biosynthetic gene cluster sequence, several new non-ribosomal peptide synthetase-, polyketide synthase- and hybrid-clusters were identified on the Actinoplanes genome. Another key feature of the genome represents the discovery of a functional actinomycete integrative and conjugative element. Conclusions The complete genome sequence of Actinoplanes sp. SE50/110 marks an important step towards the rational genetic optimization of the acarbose production. In this regard, the identified actinomycete integrative and conjugative element could play a central role by providing the basis for the development of a genetic transformation system for Actinoplanes sp. SE50/110 and other Actinoplanes spp. Furthermore, the identified non-ribosomal peptide synthetase- and polyketide synthase-clusters potentially encode new antibiotics and/or other bioactive compounds, which might be of pharmacologic interest. PMID:22443545

  19. The complete genome sequence of the acarbose producer Actinoplanes sp. SE50/110.

    PubMed

    Schwientek, Patrick; Szczepanowski, Rafael; Rückert, Christian; Kalinowski, Jörn; Klein, Andreas; Selber, Klaus; Wehmeier, Udo F; Stoye, Jens; Pühler, Alfred

    2012-03-23

    Actinoplanes sp. SE50/110 is known as the wild type producer of the alpha-glucosidase inhibitor acarbose, a potent drug used worldwide in the treatment of type-2 diabetes mellitus. As the incidence of diabetes is rapidly rising worldwide, an ever increasing demand for diabetes drugs, such as acarbose, needs to be anticipated. Consequently, derived Actinoplanes strains with increased acarbose yields are being used in large scale industrial batch fermentation since 1990 and were continuously optimized by conventional mutagenesis and screening experiments. This strategy reached its limits and is generally superseded by modern genetic engineering approaches. As a prerequisite for targeted genetic modifications, the complete genome sequence of the organism has to be known. Here, we present the complete genome sequence of Actinoplanes sp. SE50/110 [GenBank:CP003170], the first publicly available genome of the genus Actinoplanes, comprising various producers of pharmaceutically and economically important secondary metabolites. The genome features a high mean G + C content of 71.32% and consists of one circular chromosome with a size of 9,239,851 bp hosting 8,270 predicted protein coding sequences. Phylogenetic analysis of the core genome revealed a rather distant relation to other sequenced species of the family Micromonosporaceae whereas Actinoplanes utahensis was found to be the closest species based on 16S rRNA gene sequence comparison. Besides the already published acarbose biosynthetic gene cluster sequence, several new non-ribosomal peptide synthetase-, polyketide synthase- and hybrid-clusters were identified on the Actinoplanes genome. Another key feature of the genome represents the discovery of a functional actinomycete integrative and conjugative element. The complete genome sequence of Actinoplanes sp. SE50/110 marks an important step towards the rational genetic optimization of the acarbose production. In this regard, the identified actinomycete integrative and conjugative element could play a central role by providing the basis for the development of a genetic transformation system for Actinoplanes sp. SE50/110 and other Actinoplanes spp. Furthermore, the identified non-ribosomal peptide synthetase- and polyketide synthase-clusters potentially encode new antibiotics and/or other bioactive compounds, which might be of pharmacologic interest.

  20. Complete plastid genome sequence of Daucus carota: implications for biotechnology and phylogeny of angiosperms.

    PubMed

    Ruhlman, Tracey; Lee, Seung-Bum; Jansen, Robert K; Hostetler, Jessica B; Tallon, Luke J; Town, Christopher D; Daniell, Henry

    2006-08-31

    Carrot (Daucus carota) is a major food crop in the US and worldwide. Its capacity for storage and its lifecycle as a biennial make it an attractive species for the introduction of foreign genes, especially for oral delivery of vaccines and other therapeutic proteins. Until recently efforts to express recombinant proteins in carrot have had limited success in terms of protein accumulation in the edible tap roots. Plastid genetic engineering offers the potential to overcome this limitation, as demonstrated by the accumulation of BADH in chromoplasts of carrot taproots to confer exceedingly high levels of salt resistance. The complete plastid genome of carrot provides essential information required for genetic engineering. Additionally, the sequence data add to the rapidly growing database of plastid genomes for assessing phylogenetic relationships among angiosperms. The complete carrot plastid genome is 155,911 bp in length, with 115 unique genes and 21 duplicated genes within the IR. There are four ribosomal RNAs, 30 distinct tRNA genes and 18 intron-containing genes. Repeat analysis reveals 12 direct and 2 inverted repeats > or = 30 bp with a sequence identity > or = 90%. Phylogenetic analysis of nucleotide sequences for 61 protein-coding genes using both maximum parsimony (MP) and maximum likelihood (ML) were performed for 29 angiosperms. Phylogenies from both methods provide strong support for the monophyly of several major angiosperm clades, including monocots, eudicots, rosids, asterids, eurosids II, euasterids I, and euasterids II. The carrot plastid genome contains a number of dispersed direct and inverted repeats scattered throughout coding and non-coding regions. This is the first sequenced plastid genome of the family Apiaceae and only the second published genome sequence of the species-rich euasterid II clade. Both MP and ML trees provide very strong support (100% bootstrap) for the sister relationship of Daucus with Panax in the euasterid II clade. These results provide the best taxon sampling of complete chloroplast genomes and the strongest support yet for the sister relationship of Caryophyllales to the asterids. The availability of the complete plastid genome sequence should facilitate improved transformation efficiency and foreign gene expression in carrot through utilization of endogenous flanking sequences and regulatory elements.

  1. Assembly of the draft genome of buckwheat and its applications in identifying agronomically useful genes.

    PubMed

    Yasui, Yasuo; Hirakawa, Hideki; Ueno, Mariko; Matsui, Katsuhiro; Katsube-Tanaka, Tomoyuki; Yang, Soo Jung; Aii, Jotaro; Sato, Shingo; Mori, Masashi

    2016-06-01

    Buckwheat (Fagopyrum esculentum Moench; 2n = 2x = 16) is a nutritionally dense annual crop widely grown in temperate zones. To accelerate molecular breeding programmes of this important crop, we generated a draft assembly of the buckwheat genome using short reads obtained by next-generation sequencing (NGS), and constructed the Buckwheat Genome DataBase. After assembling short reads, we determined 387,594 scaffolds as the draft genome sequence (FES_r1.0). The total length of FES_r1.0 was 1,177,687,305 bp, and the N50 of the scaffolds was 25,109 bp. Gene prediction analysis revealed 286,768 coding sequences (CDSs; FES_r1.0_cds) including those related to transposable elements. The total length of FES_r1.0_cds was 212,917,911 bp, and the N50 was 1,101 bp. Of these, the functions of 35,816 CDSs excluding those for transposable elements were annotated by BLAST analysis. To demonstrate the utility of the database, we conducted several test analyses using BLAST and keyword searches. Furthermore, we used the draft genome as a reference sequence for NGS-based markers, and successfully identified novel candidate genes controlling heteromorphic self-incompatibility of buckwheat. The database and draft genome sequence provide a valuable resource that can be used in efforts to develop buckwheat cultivars with superior agronomic traits. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  2. Draft genome sequence of Cicer reticulatum L., the wild progenitor of chickpea provides a resource for agronomic trait improvement.

    PubMed

    Gupta, Sonal; Nawaz, Kashif; Parween, Sabiha; Roy, Riti; Sahu, Kamlesh; Kumar Pole, Anil; Khandal, Hitaishi; Srivastava, Rishi; Kumar Parida, Swarup; Chattopadhyay, Debasis

    2017-02-01

    Cicer reticulatum L. is the wild progenitor of the fourth most important legume crop chickpea (C. arietinum L.). We assembled short-read sequences into 416 Mb draft genome of C. reticulatum and anchored 78% (327 Mb) of this assembly to eight linkage groups. Genome annotation predicted 25,680 protein-coding genes covering more than 90% of predicted gene space. The genome assembly shared a substantial synteny and conservation of gene orders with the genome of the model legume Medicago truncatula. Resistance gene homologs of wild and domesticated chickpeas showed high sequence homology and conserved synteny. Comparison of gene sequences and nucleotide diversity using 66 wild and domesticated chickpea accessions suggested that the desi type chickpea was genetically closer to the wild species than the kabuli type. Comparative analyses predicted gene flow between the wild and the cultivated species during domestication. Molecular diversity and population genetic structure determination using 15,096 genome-wide single nucleotide polymorphisms revealed an admixed domestication pattern among cultivated (desi and kabuli) and wild chickpea accessions belonging to three population groups reflecting significant influence of parentage or geographical origin for their cultivar-specific population classification. The assembly and the polymorphic sequence resources presented here would facilitate the study of chickpea domestication and targeted use of wild Cicer germplasms for agronomic trait improvement in chickpea. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  3. SCRaMbLE generates designed combinatorial stochastic diversity in synthetic chromosomes.

    PubMed

    Shen, Yue; Stracquadanio, Giovanni; Wang, Yun; Yang, Kun; Mitchell, Leslie A; Xue, Yaxin; Cai, Yizhi; Chen, Tai; Dymond, Jessica S; Kang, Kang; Gong, Jianhui; Zeng, Xiaofan; Zhang, Yongfen; Li, Yingrui; Feng, Qiang; Xu, Xun; Wang, Jun; Wang, Jian; Yang, Huanming; Boeke, Jef D; Bader, Joel S

    2016-01-01

    Synthetic chromosome rearrangement and modification by loxP-mediated evolution (SCRaMbLE) generates combinatorial genomic diversity through rearrangements at designed recombinase sites. We applied SCRaMbLE to yeast synthetic chromosome arm synIXR (43 recombinase sites) and then used a computational pipeline to infer or unscramble the sequence of recombinations that created the observed genomes. Deep sequencing of 64 synIXR SCRaMbLE strains revealed 156 deletions, 89 inversions, 94 duplications, and 55 additional complex rearrangements; several duplications are consistent with a double rolling circle mechanism. Every SCRaMbLE strain was unique, validating the capability of SCRaMbLE to explore a diverse space of genomes. Rearrangements occurred exclusively at designed loxPsym sites, with no significant evidence for ectopic rearrangements or mutations involving synthetic regions, the 99% nonsynthetic nuclear genome, or the mitochondrial genome. Deletion frequencies identified genes required for viability or fast growth. Replacement of 3' UTR by non-UTR sequence had surprisingly little effect on fitness. SCRaMbLE generates genome diversity in designated regions, reveals fitness constraints, and should scale to simultaneous evolution of multiple synthetic chromosomes. © 2016 Shen et al.; Published by Cold Spring Harbor Laboratory Press.

  4. Variation in the genomic locations and sequence conservation of STAR elements among staphylococcal species provides insight into DNA repeat evolution

    PubMed Central

    2012-01-01

    Background Staphylococcus aureus Repeat (STAR) elements are a type of interspersed intergenic direct repeat. In this study the conservation and variation in these elements was explored by bioinformatic analyses of published staphylococcal genome sequences and through sequencing of specific STAR element loci from a large set of S. aureus isolates. Results Using bioinformatic analyses, we found that the STAR elements were located in different genomic loci within each staphylococcal species. There was no correlation between the number of STAR elements in each genome and the evolutionary relatedness of staphylococcal species, however higher levels of repeats were observed in both S. aureus and S. lugdunensis compared to other staphylococcal species. Unexpectedly, sequencing of the internal spacer sequences of individual repeat elements from multiple isolates showed conservation at the sequence level within deep evolutionary lineages of S. aureus. Whilst individual STAR element loci were demonstrated to expand and contract, the sequences associated with each locus were stable and distinct from one another. Conclusions The high degree of lineage and locus-specific conservation of these intergenic repeat regions suggests that STAR elements are maintained due to selective or molecular forces with some of these elements having an important role in cell physiology. The high prevalence in two of the more virulent staphylococcal species is indicative of a potential role for STAR elements in pathogenesis. PMID:23020678

  5. Entire nucleotide sequences of Gossypium raimondii and G. arboreum mitochondrial genomes revealed A-genome species as cytoplasmic donor of the allotetraploid species.

    PubMed

    Chen, Z; Nie, H; Grover, C E; Wang, Y; Li, P; Wang, M; Pei, H; Zhao, Y; Li, S; Wendel, J F; Hua, J

    2017-05-01

    Cotton (Gossypium spp.) is commonly grouped into eight diploid genomic groups, designated A-G and K, and an allotetraploid genomic group, AD. Gossypium raimondii (D 5 ) and G. arboreum (A 2 ) are the putative contributors to the progenitor of G. hirsutum (AD 1 ), the economically important fibre-producing cotton species. Mitochondrial DNA from week-old etiolated seedlings was extracted from isolated organelles using discontinuous sucrose density gradient method. Mitochondrial genomes were sequenced, assembled, annotated and analysed in orderly. Gossypium raimondii (D 5 ) and G. arboreum (A 2 ) mitochondrial genomes were provided in this study. The mitochondrial genomes of two diploid species harboured circular genome of 643,914 bp (D 5 ) and 687,482 bp (A 2 ), respectively. They differ in size and number of repeat sequences, both contain illuminating triplicate sequences with 7317 and 10,246 bp, respectively, demonstrating dynamic difference and rearranged genome organisations. Comparing the D 5 and A 2 mitogenomes with mitogenomes of tetraploid Gossypium species (AD 1 , G. hirsutum; AD 2 , G. barbadense), a shared 11 kbp fragment loss was detected in allotetraploid species, three regions shared by G. arboreum (A 2 ), G. hirsutum (AD 1 ) and G. barbadense (AD 2 ), while eight regions were specific to G. raimondii (D 5 ). The presence/absence variations and gene-based phylogeny supported that A-genome is a cytoplasmic donor to the progenitor of allotetraploid species G. hirsutum and G. barbadense. The results present structure variations and phylogeny of Gossypium mitochondrial genome evolution. © 2017 The Authors. Plant Biology published by John Wiley & Sons Ltd on behalf of German Botanical Society, Royal Dutch Botanical Society.

  6. Application of whole genome shotgun sequencing for detection and characterization of genetically modified organisms and derived products.

    PubMed

    Holst-Jensen, Arne; Spilsberg, Bjørn; Arulandhu, Alfred J; Kok, Esther; Shi, Jianxin; Zel, Jana

    2016-07-01

    The emergence of high-throughput, massive or next-generation sequencing technologies has created a completely new foundation for molecular analyses. Various selective enrichment processes are commonly applied to facilitate detection of predefined (known) targets. Such approaches, however, inevitably introduce a bias and are prone to miss unknown targets. Here we review the application of high-throughput sequencing technologies and the preparation of fit-for-purpose whole genome shotgun sequencing libraries for the detection and characterization of genetically modified and derived products. The potential impact of these new sequencing technologies for the characterization, breeding selection, risk assessment, and traceability of genetically modified organisms and genetically modified products is yet to be fully acknowledged. The published literature is reviewed, and the prospects for future developments and use of the new sequencing technologies for these purposes are discussed.

  7. Improving the annotation of the Heterorhabditis bacteriophora genome.

    PubMed

    McLean, Florence; Berger, Duncan; Laetsch, Dominik R; Schwartz, Hillel T; Blaxter, Mark

    2018-04-01

    Genome assembly and annotation remain exacting tasks. As the tools available for these tasks improve, it is useful to return to data produced with earlier techniques to assess their credibility and correctness. The entomopathogenic nematode Heterorhabditis bacteriophora is widely used to control insect pests in horticulture. The genome sequence for this species was reported to encode an unusually high proportion of unique proteins and a paucity of secreted proteins compared to other related nematodes. We revisited the H. bacteriophora genome assembly and gene predictions to determine whether these unusual characteristics were biological or methodological in origin. We mapped an independent resequencing dataset to the genome and used the blobtools pipeline to identify potential contaminants. While present (0.2% of the genome span, 0.4% of predicted proteins), assembly contamination was not significant. Re-prediction of the gene set using BRAKER1 and published transcriptome data generated a predicted proteome that was very different from the published one. The new gene set had a much reduced complement of unique proteins, better completeness values that were in line with other related species' genomes, and an increased number of proteins predicted to be secreted. It is thus likely that methodological issues drove the apparent uniqueness of the initial H. bacteriophora genome annotation and that similar contamination and misannotation issues affect other published genome assemblies.

  8. Genome puzzle master (GPM): an integrated pipeline for building and editing pseudomolecules from fragmented sequences.

    PubMed

    Zhang, Jianwei; Kudrna, Dave; Mu, Ting; Li, Weiming; Copetti, Dario; Yu, Yeisoo; Goicoechea, Jose Luis; Lei, Yang; Wing, Rod A

    2016-10-15

    Next generation sequencing technologies have revolutionized our ability to rapidly and affordably generate vast quantities of sequence data. Once generated, raw sequences are assembled into contigs or scaffolds. However, these assemblies are mostly fragmented and inaccurate at the whole genome scale, largely due to the inability to integrate additional informative datasets (e.g. physical, optical and genetic maps). To address this problem, we developed a semi-automated software tool-Genome Puzzle Master (GPM)-that enables the integration of additional genomic signposts to edit and build 'new-gen-assemblies' that result in high-quality 'annotation-ready' pseudomolecules. With GPM, loaded datasets can be connected to each other via their logical relationships which accomplishes tasks to 'group,' 'merge,' 'order and orient' sequences in a draft assembly. Manual editing can also be performed with a user-friendly graphical interface. Final pseudomolecules reflect a user's total data package and are available for long-term project management. GPM is a web-based pipeline and an important part of a Laboratory Information Management System (LIMS) which can be easily deployed on local servers for any genome research laboratory. The GPM (with LIMS) package is available at https://github.com/Jianwei-Zhang/LIMS CONTACTS: jzhang@mail.hzau.edu.cn or rwing@mail.arizona.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  9. Isolation and Whole-genome Sequence Analysis of the Imipenem Heteroresistant Acinetobacter baumannii Clinical Isolate HRAB-85.

    PubMed

    Li, Puyuan; Huang, Yong; Yu, Lan; Liu, Yannan; Niu, Wenkai; Zou, Dayang; Liu, Huiying; Zheng, Jing; Yin, Xiuyun; Yuan, Jing; Yuan, Xin; Bai, Changqing

    2017-09-01

    Heteroresistance is a phenomenon in which there are various responses to antibiotics from bacterial cells within the same population. Here, we isolated and characterised an imipenem heteroresistant Acinetobacter baumannii strain (HRAB-85). The genome of strain HRAB-85 was completely sequenced and analysed to understand its antibiotic resistance mechanisms. Population analysis and multilocus sequence typing were performed. Subpopulations grew in the presence of imipenem at concentrations of up to 64μg/mL, and the strain was found to belong to ST208. The total length of strain HRAB-85 was 4,098,585bp with a GC content of 39.98%. The genome harboured at least four insertion sequences: the common ISAba1, ISAba22, ISAba24, and newly reported ISAba26. Additionally, 19 antibiotic-resistance genes against eight classes of antimicrobial agents were found, and 11 genomic islands (GIs) were identified. Among them, GI3, GI10, and GI11 contained many ISs and antibiotic-resistance determinants. The existence of imipenem heteroresistant phenotypes in A. baumannii was substantiated in this hospital, and imipenem pressure, which could induce imipenem-heteroresistant subpopulations, may select for highly resistant strains. The complete genome sequencing and bioinformatics analysis of HRAB-85 could improve our understanding of the epidemiology and resistance mechanisms of carbapenem-heteroresistant A. baumannii. Copyright © 2017. Published by Elsevier Ltd.

  10. High-coverage sequencing and annotated assembly of the genome of the Australian dragon lizard Pogona vitticeps.

    PubMed

    Georges, Arthur; Li, Qiye; Lian, Jinmin; O'Meally, Denis; Deakin, Janine; Wang, Zongji; Zhang, Pei; Fujita, Matthew; Patel, Hardip R; Holleley, Clare E; Zhou, Yang; Zhang, Xiuwen; Matsubara, Kazumi; Waters, Paul; Graves, Jennifer A Marshall; Sarre, Stephen D; Zhang, Guojie

    2015-01-01

    The lizards of the family Agamidae are one of the most prominent elements of the Australian reptile fauna. Here, we present a genomic resource built on the basis of a wild-caught male ZZ central bearded dragon Pogona vitticeps. The genomic sequence for P. vitticeps, generated on the Illumina HiSeq 2000 platform, comprised 317 Gbp (179X raw read depth) from 13 insert libraries ranging from 250 bp to 40 kbp. After filtering for low-quality and duplicated reads, 146 Gbp of data (83X) was available for assembly. Exceptionally high levels of heterozygosity (0.85 % of single nucleotide polymorphisms plus sequence insertions or deletions) complicated assembly; nevertheless, 96.4 % of reads mapped back to the assembled scaffolds, indicating that the assembly included most of the sequenced genome. Length of the assembly was 1.8 Gbp in 545,310 scaffolds (69,852 longer than 300 bp), the longest being 14.68 Mbp. N50 was 2.29 Mbp. Genes were annotated on the basis of de novo prediction, similarity to the green anole Anolis carolinensis, Gallus gallus and Homo sapiens proteins, and P. vitticeps transcriptome sequence assemblies, to yield 19,406 protein-coding genes in the assembly, 63 % of which had intact open reading frames. Our assembly captured 99 % (246 of 248) of core CEGMA genes, with 93 % (231) being complete. The quality of the P. vitticeps assembly is comparable or superior to that of other published squamate genomes, and the annotated P. vitticeps genome can be accessed through a genome browser available at https://genomics.canberra.edu.au.

  11. The clinical application of genome-wide sequencing for monogenic diseases in Canada: Position Statement of the Canadian College of Medical Geneticists.

    PubMed

    Boycott, Kym; Hartley, Taila; Adam, Shelin; Bernier, Francois; Chong, Karen; Fernandez, Bridget A; Friedman, Jan M; Geraghty, Michael T; Hume, Stacey; Knoppers, Bartha M; Laberge, Anne-Marie; Majewski, Jacek; Mendoza-Londono, Roberto; Meyn, M Stephen; Michaud, Jacques L; Nelson, Tanya N; Richer, Julie; Sadikovic, Bekim; Skidmore, David L; Stockley, Tracy; Taylor, Sherry; van Karnebeek, Clara; Zawati, Ma'n H; Lauzon, Julie; Armour, Christine M

    2015-07-01

    The aim of this Position Statement is to provide recommendations for Canadian medical geneticists, clinical laboratory geneticists, genetic counsellors and other physicians regarding the use of genome-wide sequencing of germline DNA in the context of clinical genetic diagnosis. This statement has been developed to facilitate the clinical translation and development of best practices for clinical genome-wide sequencing for genetic diagnosis of monogenic diseases in Canada; it does not address the clinical application of this technology in other fields such as molecular investigation of cancer or for population screening of healthy individuals. Two multidisciplinary groups consisting of medical geneticists, clinical laboratory geneticists, genetic counsellors, ethicists, lawyers and genetic researchers were assembled to review existing literature and guidelines on genome-wide sequencing for clinical genetic diagnosis in the context of monogenic diseases, and to make recommendations relevant to the Canadian context. The statement was circulated for comment to the Canadian College of Medical Geneticists (CCMG) membership-at-large and, following incorporation of feedback, approved by the CCMG Board of Directors. The CCMG is a Canadian organisation responsible for certifying medical geneticists and clinical laboratory geneticists, and for establishing professional and ethical standards for clinical genetics services in Canada. Recommendations include (1) clinical genome-wide sequencing is an appropriate approach in the diagnostic assessment of a patient for whom there is suspicion of a significant monogenic disease that is associated with a high degree of genetic heterogeneity, or where specific genetic tests have failed to provide a diagnosis; (2) until the benefits of reporting incidental findings are established, we do not endorse the intentional clinical analysis of disease-associated genes other than those linked to the primary indication; and (3) clinicians should provide genetic counselling and obtain informed consent prior to undertaking clinical genome-wide sequencing. Counselling should include discussion of the limitations of testing, likelihood and implications of diagnosis and incidental findings, and the potential need for further analysis to facilitate clinical interpretation, including studies performed in a research setting. These recommendations will be routinely re-evaluated as knowledge of diagnostic and clinical utility of clinical genome-wide sequencing improves. While the document was developed to direct practice in Canada, the applicability of the statement is broader and will be of interest to clinicians and health jurisdictions internationally. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  12. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation.

    PubMed

    O'Leary, Nuala A; Wright, Mathew W; Brister, J Rodney; Ciufo, Stacy; Haddad, Diana; McVeigh, Rich; Rajput, Bhanu; Robbertse, Barbara; Smith-White, Brian; Ako-Adjei, Danso; Astashyn, Alexander; Badretdin, Azat; Bao, Yiming; Blinkova, Olga; Brover, Vyacheslav; Chetvernin, Vyacheslav; Choi, Jinna; Cox, Eric; Ermolaeva, Olga; Farrell, Catherine M; Goldfarb, Tamara; Gupta, Tripti; Haft, Daniel; Hatcher, Eneida; Hlavina, Wratko; Joardar, Vinita S; Kodali, Vamsi K; Li, Wenjun; Maglott, Donna; Masterson, Patrick; McGarvey, Kelly M; Murphy, Michael R; O'Neill, Kathleen; Pujar, Shashikant; Rangwala, Sanjida H; Rausch, Daniel; Riddick, Lillian D; Schoch, Conrad; Shkeda, Andrei; Storz, Susan S; Sun, Hanzhen; Thibaud-Nissen, Francoise; Tolstoy, Igor; Tully, Raymond E; Vatsan, Anjana R; Wallin, Craig; Webb, David; Wu, Wendy; Landrum, Melissa J; Kimchi, Avi; Tatusova, Tatiana; DiCuccio, Michael; Kitts, Paul; Murphy, Terence D; Pruitt, Kim D

    2016-01-04

    The RefSeq project at the National Center for Biotechnology Information (NCBI) maintains and curates a publicly available database of annotated genomic, transcript, and protein sequence records (http://www.ncbi.nlm.nih.gov/refseq/). The RefSeq project leverages the data submitted to the International Nucleotide Sequence Database Collaboration (INSDC) against a combination of computation, manual curation, and collaboration to produce a standard set of stable, non-redundant reference sequences. The RefSeq project augments these reference sequences with current knowledge including publications, functional features and informative nomenclature. The database currently represents sequences from more than 55,000 organisms (>4800 viruses, >40,000 prokaryotes and >10,000 eukaryotes; RefSeq release 71), ranging from a single record to complete genomes. This paper summarizes the current status of the viral, prokaryotic, and eukaryotic branches of the RefSeq project, reports on improvements to data access and details efforts to further expand the taxonomic representation of the collection. We also highlight diverse functional curation initiatives that support multiple uses of RefSeq data including taxonomic validation, genome annotation, comparative genomics, and clinical testing. We summarize our approach to utilizing available RNA-Seq and other data types in our manual curation process for vertebrate, plant, and other species, and describe a new direction for prokaryotic genomes and protein name management. Published by Oxford University Press on behalf of Nucleic Acids Research 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  13. Integrated shotgun sequencing and bioinformatics pipeline allows ultra-fast mitogenome recovery and confirms substantial gene rearrangements in Australian freshwater crayfishes

    PubMed Central

    2014-01-01

    Background Although it is possible to recover the complete mitogenome directly from shotgun sequencing data, currently reported methods and pipelines are still relatively time consuming and costly. Using a sample of the Australian freshwater crayfish Engaeus lengana, we demonstrate that it is possible to achieve three-day turnaround time (four hours hands-on time) from tissue sample to NCBI-ready submission file through the integration of MiSeq sequencing platform, Nextera sample preparation protocol, MITObim assembly algorithm and MITOS annotation pipeline. Results The complete mitochondrial genome of the parastacid freshwater crayfish, Engaeus lengana, was recovered by modest shotgun sequencing (1.2 giga bases) using the Illumina MiSeq benchtop sequencing platform. Genome assembly using the MITObim mitogenome assembler recovered the mitochondrial genome as a single contig with a 97-fold mean coverage (min. = 17; max. = 138). The mitogenome consists of 15,934 base pairs and contains the typical 37 mitochondrial genes and a non-coding AT-rich region. The genome arrangement is similar to the only other published parastacid mitogenome from the Australian genus Cherax. Conclusions We infer that the gene order arrangement found in Cherax destructor is common to Australian crayfish and may be a derived feature of the southern hemisphere family Parastacidae. Further, we report to our knowledge, the simplest and fastest protocol for the recovery and assembly of complete mitochondrial genomes using the MiSeq benchtop sequencer. PMID:24484414

  14. Evolution of Sphingomonad Gene Clusters Related to Pesticide Catabolism Revealed by Genome Sequence and Mobilomics of Sphingobium herbicidovorans MH.

    PubMed

    Nielsen, Tue Kjærgaard; Rasmussen, Morten; Demanèche, Sandrine; Cecillon, Sébastien; Vogel, Timothy M; Hansen, Lars Hestbjerg

    2017-09-01

    Bacterial degraders of chlorophenoxy herbicides have been isolated from various ecosystems, including pristine environments. Among these degraders, the sphingomonads constitute a prominent group that displays versatile xenobiotic-degradation capabilities. Four separate sequencing strategies were required to provide the complete sequence of the complex and plastic genome of the canonical chlorophenoxy herbicide-degrading Sphingobium herbicidovorans MH. The genome has an intricate organization of the chlorophenoxy-herbicide catabolic genes sdpA, rdpA, and cadABCD that encode the (R)- and (S)-enantiomer-specific 2,4-dichlorophenoxypropionate dioxygenases and four subunits of a Rieske non-heme iron oxygenase involved in 2-methyl-chlorophenoxyacetic acid degradation, respectively. Several major genomic rearrangements are proposed to help understand the evolution and mobility of these important genes and their genetic context. Single-strain mobilomic sequence analysis uncovered plasmids and insertion sequence-associated circular intermediates in this environmentally important bacterium and enabled the description of evolutionary models for pesticide degradation in strain MH and related organisms. The mobilome presented a complex mosaic of mobile genetic elements including four plasmids and several circular intermediate DNA molecules of insertion-sequence elements and transposons that are central to the evolution of xenobiotics degradation. Furthermore, two individual chromosomally integrated prophages were shown to excise and form free circular DNA molecules. This approach holds great potential for improving the understanding of genome plasticity, evolution, and microbial ecology. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Application of whole genome and RNA sequencing to investigate the genomic landscape of common variable immunodeficiency disorders.

    PubMed

    van Schouwenburg, Pauline A; Davenport, Emma E; Kienzler, Anne-Kathrin; Marwah, Ishita; Wright, Benjamin; Lucas, Mary; Malinauskas, Tomas; Martin, Hilary C; Lockstone, Helen E; Cazier, Jean-Baptiste; Chapel, Helen M; Knight, Julian C; Patel, Smita Y

    2015-10-01

    Common Variable Immunodeficiency Disorders (CVIDs) are the most prevalent cause of primary antibody failure. CVIDs are highly variable and a genetic causes have been identified in <5% of patients. Here, we performed whole genome sequencing (WGS) of 34 CVID patients (94% sporadic) and combined them with transcriptomic profiling (RNA-sequencing of B cells) from three patients and three healthy controls. We identified variants in CVID disease genes TNFRSF13B, TNFRSF13C, LRBA and NLRP12 and enrichment of variants in known and novel disease pathways. The pathways identified include B-cell receptor signalling, non-homologous end-joining, regulation of apoptosis, T cell regulation and ICOS signalling. Our data confirm the polygenic nature of CVID and suggest individual-specific aetiologies in many cases. Together our data show that WGS in combination with RNA-sequencing allows for a better understanding of CVIDs and the identification of novel disease associated pathways. Copyright © 2015. Published by Elsevier Inc.

  16. CAFE: aCcelerated Alignment-FrEe sequence analysis.

    PubMed

    Lu, Yang Young; Tang, Kujin; Ren, Jie; Fuhrman, Jed A; Waterman, Michael S; Sun, Fengzhu

    2017-07-03

    Alignment-free genome and metagenome comparisons are increasingly important with the development of next generation sequencing (NGS) technologies. Recently developed state-of-the-art k-mer based alignment-free dissimilarity measures including CVTree, $d_2^*$ and $d_2^S$ are more computationally expensive than measures based solely on the k-mer frequencies. Here, we report a standalone software, aCcelerated Alignment-FrEe sequence analysis (CAFE), for efficient calculation of 28 alignment-free dissimilarity measures. CAFE allows for both assembled genome sequences and unassembled NGS shotgun reads as input, and wraps the output in a standard PHYLIP format. In downstream analyses, CAFE can also be used to visualize the pairwise dissimilarity measures, including dendrograms, heatmap, principal coordinate analysis and network display. CAFE serves as a general k-mer based alignment-free analysis platform for studying the relationships among genomes and metagenomes, and is freely available at https://github.com/younglululu/CAFE. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. IMG/M: integrated genome and metagenome comparative data analysis system

    DOE PAGES

    Chen, I-Min A.; Markowitz, Victor M.; Chu, Ken; ...

    2016-10-13

    The Integrated Microbial Genomes with Microbiome Samples (IMG/M: https://img.jgi.doe.gov/m/) system contains annotated DNA and RNA sequence data of (i) archaeal, bacterial, eukaryotic and viral genomes from cultured organisms, (ii) single cell genomes (SCG) and genomes from metagenomes (GFM) from uncultured archaea, bacteria and viruses and (iii) metagenomes from environmental, host associated and engineered microbiome samples. Sequence data are generated by DOE's Joint Genome Institute (JGI), submitted by individual scientists, or collected from public sequence data archives. Structural and functional annotation is carried out by JGI's genome and metagenome annotation pipelines. A variety of analytical and visualization tools provide support formore » examining and comparing IMG/M's datasets. IMG/M allows open access interactive analysis of publicly available datasets, while manual curation, submission and access to private datasets and computationally intensive workspace-based analysis require login/password access to its expert review(ER) companion system (IMG/M ER: https://img.jgi.doe.gov/ mer/). Since the last report published in the 2014 NAR Database Issue, IMG/M's dataset content has tripled in terms of number of datasets and overall protein coding genes, while its analysis tools have been extended to cope with the rapid growth in the number and size of datasets handled by the system.« less

  18. IMG/M: integrated genome and metagenome comparative data analysis system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, I-Min A.; Markowitz, Victor M.; Chu, Ken

    The Integrated Microbial Genomes with Microbiome Samples (IMG/M: https://img.jgi.doe.gov/m/) system contains annotated DNA and RNA sequence data of (i) archaeal, bacterial, eukaryotic and viral genomes from cultured organisms, (ii) single cell genomes (SCG) and genomes from metagenomes (GFM) from uncultured archaea, bacteria and viruses and (iii) metagenomes from environmental, host associated and engineered microbiome samples. Sequence data are generated by DOE's Joint Genome Institute (JGI), submitted by individual scientists, or collected from public sequence data archives. Structural and functional annotation is carried out by JGI's genome and metagenome annotation pipelines. A variety of analytical and visualization tools provide support formore » examining and comparing IMG/M's datasets. IMG/M allows open access interactive analysis of publicly available datasets, while manual curation, submission and access to private datasets and computationally intensive workspace-based analysis require login/password access to its expert review(ER) companion system (IMG/M ER: https://img.jgi.doe.gov/ mer/). Since the last report published in the 2014 NAR Database Issue, IMG/M's dataset content has tripled in terms of number of datasets and overall protein coding genes, while its analysis tools have been extended to cope with the rapid growth in the number and size of datasets handled by the system.« less

  19. IMG/M: integrated genome and metagenome comparative data analysis system

    PubMed Central

    Chen, I-Min A.; Markowitz, Victor M.; Chu, Ken; Palaniappan, Krishna; Szeto, Ernest; Pillay, Manoj; Ratner, Anna; Huang, Jinghua; Andersen, Evan; Huntemann, Marcel; Varghese, Neha; Hadjithomas, Michalis; Tennessen, Kristin; Nielsen, Torben; Ivanova, Natalia N.; Kyrpides, Nikos C.

    2017-01-01

    The Integrated Microbial Genomes with Microbiome Samples (IMG/M: https://img.jgi.doe.gov/m/) system contains annotated DNA and RNA sequence data of (i) archaeal, bacterial, eukaryotic and viral genomes from cultured organisms, (ii) single cell genomes (SCG) and genomes from metagenomes (GFM) from uncultured archaea, bacteria and viruses and (iii) metagenomes from environmental, host associated and engineered microbiome samples. Sequence data are generated by DOE's Joint Genome Institute (JGI), submitted by individual scientists, or collected from public sequence data archives. Structural and functional annotation is carried out by JGI's genome and metagenome annotation pipelines. A variety of analytical and visualization tools provide support for examining and comparing IMG/M's datasets. IMG/M allows open access interactive analysis of publicly available datasets, while manual curation, submission and access to private datasets and computationally intensive workspace-based analysis require login/password access to its expert review (ER) companion system (IMG/M ER: https://img.jgi.doe.gov/mer/). Since the last report published in the 2014 NAR Database Issue, IMG/M's dataset content has tripled in terms of number of datasets and overall protein coding genes, while its analysis tools have been extended to cope with the rapid growth in the number and size of datasets handled by the system. PMID:27738135

  20. Ecological and evolutionary genomics of marine photosynthetic organisms.

    PubMed

    Coelho, Susana M; Simon, Nathalie; Ahmed, Sophia; Cock, J Mark; Partensky, Frédéric

    2013-02-01

    Environmental (ecological) genomics aims to understand the genetic basis of relationships between organisms and their abiotic and biotic environments. It is a rapidly progressing field of research largely due to recent advances in the speed and volume of genomic data being produced by next generation sequencing (NGS) technologies. Building on information generated by NGS-based approaches, functional genomic methodologies are being applied to identify and characterize genes and gene systems of both environmental and evolutionary relevance. Marine photosynthetic organisms (MPOs) were poorly represented amongst the early genomic models, but this situation is changing rapidly. Here we provide an overview of the recent advances in the application of ecological genomic approaches to both prokaryotic and eukaryotic MPOs. We describe how these approaches are being used to explore the biology and ecology of marine cyanobacteria and algae, particularly with regard to their functions in a broad range of marine ecosystems. Specifically, we review the ecological and evolutionary insights gained from whole genome and transcriptome sequencing projects applied to MPOs and illustrate how their genomes are yielding information on the specific features of these organisms. © 2012 Blackwell Publishing Ltd.

  1. An improved assembly of the loblolly pine mega-genome using long-read single-molecule sequencing.

    PubMed

    Zimin, Aleksey V; Stevens, Kristian A; Crepeau, Marc W; Puiu, Daniela; Wegrzyn, Jill L; Yorke, James A; Langley, Charles H; Neale, David B; Salzberg, Steven L

    2017-01-01

    The 22-gigabase genome of loblolly pine (Pinus taeda) is one of the largest ever sequenced. The draft assembly published in 2014 was built entirely from short Illumina reads, with lengths ranging from 100 to 250 base pairs (bp). The assembly was quite fragmented, containing over 11 million contigs whose weighted average (N50) size was 8206 bp. To improve this result, we generated approximately 12-fold coverage in long reads using the Single Molecule Real Time sequencing technology developed at Pacific Biosciences. We assembled the long and short reads together using the MaSuRCA mega-reads assembly algorithm, which produced a substantially better assembly, P. taeda version 2.0. The new assembly has an N50 contig size of 25 361, more than three times as large as achieved in the original assembly, and an N50 scaffold size of 107 821, 61% larger than the previous assembly. © The Author 2017. Published by Oxford University Press.

  2. Erratum to: An improved assembly of the loblolly pine mega-genome using long-read single-molecule sequencing.

    PubMed

    Zimin, Aleksey V; Stevens, Kristian A; Crepeau, Marc W; Puiu, Daniela; Wegrzyn, Jill L; Yorke, James A; Langley, Charles H; Neale, David B; Salzberg, Steven L

    2017-10-01

    The 22-gigabase genome of loblolly pine (Pinus taeda) is one of the largest ever sequenced. The draft assembly published in 2014 was built entirely from short Illumina reads, with lengths ranging from 100 to 250 base pairs (bp). The assembly was quite fragmented, containing over 11 million contigs whose weighted average (N50) size was 8206 bp. To improve this result, we generated approximately 12-fold coverage in long reads using the Single Molecule Real Time sequencing technology developed at Pacific Biosciences. We assembled the long and short reads together using the MaSuRCA mega-reads assembly algorithm, which produced a substantially better assembly, P. taeda version 2.0. The new assembly has an N50 contig size of 25 361, more than three times as large as achieved in the original assembly, and an N50 scaffold size of 107 821, 61% larger than the previous assembly. © The Authors 2017. Published by Oxford University Press.

  3. proGenomes: a resource for consistent functional and taxonomic annotations of prokaryotic genomes.

    PubMed

    Mende, Daniel R; Letunic, Ivica; Huerta-Cepas, Jaime; Li, Simone S; Forslund, Kristoffer; Sunagawa, Shinichi; Bork, Peer

    2017-01-04

    The availability of microbial genomes has opened many new avenues of research within microbiology. This has been driven primarily by comparative genomics approaches, which rely on accurate and consistent characterization of genomic sequences. It is nevertheless difficult to obtain consistent taxonomic and integrated functional annotations for defined prokaryotic clades. Thus, we developed proGenomes, a resource that provides user-friendly access to currently 25 038 high-quality genomes whose sequences and consistent annotations can be retrieved individually or by taxonomic clade. These genomes are assigned to 5306 consistent and accurate taxonomic species clusters based on previously established methodology. proGenomes also contains functional information for almost 80 million protein-coding genes, including a comprehensive set of general annotations and more focused annotations for carbohydrate-active enzymes and antibiotic resistance genes. Additionally, broad habitat information is provided for many genomes. All genomes and associated information can be downloaded by user-selected clade or multiple habitat-specific sets of representative genomes. We expect that the availability of high-quality genomes with comprehensive functional annotations will promote advances in clinical microbial genomics, functional evolution and other subfields of microbiology. proGenomes is available at http://progenomes.embl.de. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Draft genome sequence of an inbred line of Chenopodium quinoa, an allotetraploid crop with great environmental adaptability and outstanding nutritional properties.

    PubMed

    Yasui, Yasuo; Hirakawa, Hideki; Oikawa, Tetsuo; Toyoshima, Masami; Matsuzaki, Chiaki; Ueno, Mariko; Mizuno, Nobuyuki; Nagatoshi, Yukari; Imamura, Tomohiro; Miyago, Manami; Tanaka, Kojiro; Mise, Kazuyuki; Tanaka, Tsutomu; Mizukoshi, Hiroharu; Mori, Masashi; Fujita, Yasunari

    2016-12-01

    Chenopodium quinoa Willd. (quinoa) originated from the Andean region of South America, and is a pseudocereal crop of the Amaranthaceae family. Quinoa is emerging as an important crop with the potential to contribute to food security worldwide and is considered to be an optimal food source for astronauts, due to its outstanding nutritional profile and ability to tolerate stressful environments. Furthermore, plant pathologists use quinoa as a representative diagnostic host to identify virus species. However, molecular analysis of quinoa is limited by its genetic heterogeneity due to outcrossing and its genome complexity derived from allotetraploidy. To overcome these obstacles, we established the inbred and standard quinoa accession Kd that enables rigorous molecular analysis, and presented the draft genome sequence of Kd, using an optimized combination of high-throughput next generation sequencing on the Illumina Hiseq 2500 and PacBio RS II sequencers. The de novo genome assembly contained 25 k scaffolds consisting of 1 Gbp with N50 length of 86 kbp. Based on these data, we constructed the free-access Quinoa Genome DataBase (QGDB). Thus, these findings provide insights into the mechanisms underlying agronomically important traits of quinoa and the effect of allotetraploidy on genome evolution. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  5. Genome sequencing of the sweetpotato whitefly Bemisia tabaci MED/Q.

    PubMed

    Xie, Wen; Chen, Chunhai; Yang, Zezhong; Guo, Litao; Yang, Xin; Wang, Dan; Chen, Ming; Huang, Jinqun; Wen, Yanan; Zeng, Yang; Liu, Yating; Xia, Jixing; Tian, Lixia; Cui, Hongying; Wu, Qingjun; Wang, Shaoli; Xu, Baoyun; Li, Xianchun; Tan, Xinqiu; Ghanim, Murad; Qiu, Baoli; Pan, Huipeng; Chu, Dong; Delatte, Helene; Maruthi, M N; Ge, Feng; Zhou, Xueping; Wang, Xiaowei; Wan, Fanghao; Du, Yuzhou; Luo, Chen; Yan, Fengming; Preisser, Evan L; Jiao, Xiaoguo; Coates, Brad S; Zhao, Jinyang; Gao, Qiang; Xia, Jinquan; Yin, Ye; Liu, Yong; Brown, Judith K; Zhou, Xuguo Joe; Zhang, Youjun

    2017-05-01

    The sweetpotato whitefly Bemisia tabaci is a highly destructive agricultural and ornamental crop pest. It damages host plants through both phloem feeding and vectoring plant pathogens. Introductions of B. tabaci are difficult to quarantine and eradicate because of its high reproductive rates, broad host plant range, and insecticide resistance. A total of 791 Gb of raw DNA sequence from whole genome shotgun sequencing, and 13 BAC pooling libraries were generated by Illumina sequencing using different combinations of mate-pair and pair-end libraries. Assembly gave a final genome with a scaffold N50 of 437 kb, and a total length of 658 Mb. Annotation of repetitive elements and coding regions resulted in 265.0 Mb TEs (40.3%) and 20 786 protein-coding genes with putative gene family expansions, respectively. Phylogenetic analysis based on orthologs across 14 arthropod taxa suggested that MED/Q is clustered into a hemipteran clade containing A. pisum and is a sister lineage to a clade containing both R. prolixus and N. lugens. Genome completeness, as estimated using the CEGMA and Benchmarking Universal Single-Copy Orthologs pipelines, reached 96% and 79%. These MED/Q genomic resources lay a foundation for future 'pan-genomic' comparisons of invasive vs. noninvasive, invasive vs. invasive, and native vs. exotic Bemisia, which, in return, will open up new avenues of investigation into whitefly biology, evolution, and management. © The Author 2017. Published by Oxford University Press.

  6. GrTEdb: the first web-based database of transposable elements in cotton (Gossypium raimondii).

    PubMed

    Xu, Zhenzhen; Liu, Jing; Ni, Wanchao; Peng, Zhen; Guo, Yue; Ye, Wuwei; Huang, Fang; Zhang, Xianggui; Xu, Peng; Guo, Qi; Shen, Xinlian; Du, Jianchang

    2017-01-01

    Although several diploid and tetroploid Gossypium species genomes have been sequenced, the well annotated web-based transposable elements (TEs) database is lacking. To better understand the roles of TEs in structural, functional and evolutionary dynamics of the cotton genome, a comprehensive, specific, and user-friendly web-based database, Gossypium raimondii transposable elements database (GrTEdb), was constructed. A total of 14 332 TEs were structurally annotated and clearly categorized in G. raimondii genome, and these elements have been classified into seven distinct superfamilies based on the order of protein-coding domains, structures and/or sequence similarity, including 2929 Copia-like elements, 10 368 Gypsy-like elements, 299 L1 , 12 Mutators , 435 PIF-Harbingers , 275 CACTAs and 14 Helitrons . Meanwhile, the web-based sequence browsing, searching, downloading and blast tool were implemented to help users easily and effectively to annotate the TEs or TE fragments in genomic sequences from G. raimondii and other closely related Gossypium species. GrTEdb provides resources and information related with TEs in G. raimondii , and will facilitate gene and genome analyses within or across Gossypium species, evaluating the impact of TEs on their host genomes, and investigating the potential interaction between TEs and protein-coding genes in Gossypium species. http://www.grtedb.org/. © The Author(s) 2017. Published by Oxford University Press.

  7. Next-generation sequencing strategies enable routine detection of balanced chromosome rearrangements for clinical diagnostics and genetic research.

    PubMed

    Talkowski, Michael E; Ernst, Carl; Heilbut, Adrian; Chiang, Colby; Hanscom, Carrie; Lindgren, Amelia; Kirby, Andrew; Liu, Shangtao; Muddukrishna, Bhavana; Ohsumi, Toshiro K; Shen, Yiping; Borowsky, Mark; Daly, Mark J; Morton, Cynthia C; Gusella, James F

    2011-04-08

    The contribution of balanced chromosomal rearrangements to complex disorders remains unclear because they are not detected routinely by genome-wide microarrays and clinical localization is imprecise. Failure to consider these events bypasses a potentially powerful complement to single nucleotide polymorphism and copy-number association approaches to complex disorders, where much of the heritability remains unexplained. To capitalize on this genetic resource, we have applied optimized sequencing and analysis strategies to test whether these potentially high-impact variants can be mapped at reasonable cost and throughput. By using a whole-genome multiplexing strategy, rearrangement breakpoints could be delineated at a fraction of the cost of standard sequencing. For rearrangements already mapped regionally by karyotyping and fluorescence in situ hybridization, a targeted approach enabled capture and sequencing of multiple breakpoints simultaneously. Importantly, this strategy permitted capture and unique alignment of up to 97% of repeat-masked sequences in the targeted regions. Genome-wide analyses estimate that only 3.7% of bases should be routinely omitted from genomic DNA capture experiments. Illustrating the power of these approaches, the rearrangement breakpoints were rapidly defined to base pair resolution and revealed unexpected sequence complexity, such as co-occurrence of inversion and translocation as an underlying feature of karyotypically balanced alterations. These findings have implications ranging from genome annotation to de novo assemblies and could enable sequencing screens for structural variations at a cost comparable to that of microarrays in standard clinical practice. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  8. Diagnostics for Yaws Eradication: Insights From Direct Next-Generation Sequencing of Cutaneous Strains of Treponema pallidum

    PubMed Central

    Marks, Michael; Fookes, Maria; Wagner, Josef; Butcher, Robert; Ghinai, Rosanna; Sokana, Oliver; Sarkodie, Yaw-Adu; Lukehart, Sheila A; Solomon, Anthony W; Mabey, David C W; Thomson, Nicholas

    2018-01-01

    Abstract Background Yaws-like chronic ulcers can be caused by Treponema pallidum subspecies pertenue, Haemophilus ducreyi, or other, still-undefined bacteria. To permit accurate evaluation of yaws elimination efforts, programmatic use of molecular diagnostics is required. The accuracy and sensitivity of current tools remain unclear because our understanding of T. pallidum diversity is limited by the low number of sequenced genomes. Methods We tested samples from patients with suspected yaws collected in the Solomon Islands and Ghana. All samples were from patients whose lesions had previously tested negative using the Centers for Disease Control and Prevention (CDC) diagnostic assay in widespread use. However, some of these patients had positive serological assays for yaws on blood. We used direct whole-genome sequencing to identify T. pallidum subsp pertenue strains missed by the current assay. Results From 45 Solomon Islands and 27 Ghanaian samples, 11 were positive for T. pallidum DNA using the species-wide quantitative polymerase chain reaction (PCR) assay, from which we obtained 6 previously undetected T. pallidum subsp pertenue whole-genome sequences. These show that Solomon Islands sequences represent distinct T. pallidum subsp pertenue clades. These isolates were invisible to the CDC diagnostic PCR assay, due to sequence variation in the primer binding site. Conclusions Our data double the number of published T. pallidum subsp pertenue genomes. We show that Solomon Islands strains are undetectable by the PCR used in many studies and by health ministries. This assay is therefore not adequate for the eradication program. Next-generation genome sequence data are essential for these efforts. PMID:29045605

  9. Human genome. 1993 Program report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-03-01

    The purpose of this report is to update the Human Genome 1991-92 Program Report and provide new information on the DOE genome program to researchers, program managers, other government agencies, and the interested public. This FY 1993 supplement includes abstracts of 60 new or renewed projects and listings of 112 continuing and 28 completed projects. These two reports, taken together, present the most complete published view of the DOE Human Genome Program through FY 1993. Research is progressing rapidly toward 15-year goals of mapping and sequencing the DNA of each of the 24 different human chromosomes.

  10. An Annotated Draft Genome for Radix auricularia (Gastropoda, Mollusca)

    PubMed Central

    Feldmeyer, Barbara; Schmidt, Hanno; Greshake, Bastian; Tills, Oliver; Truebano, Manuela; Rundle, Simon D.; Paule, Juraj; Ebersberger, Ingo; Pfenninger, Markus

    2017-01-01

    Molluscs are the second most species-rich phylum in the animal kingdom, yet only 11 genomes of this group have been published so far. Here, we present the draft genome sequence of the pulmonate freshwater snail Radix auricularia. Six whole genome shotgun libraries with different layouts were sequenced. The resulting assembly comprises 4,823 scaffolds with a cumulative length of 910 Mb and an overall read coverage of 72×. The assembly contains 94.6% of a metazoan core gene collection, indicating an almost complete coverage of the coding fraction. The discrepancy of ∼690 Mb compared with the estimated genome size of R. auricularia (1.6 Gb) results from a high repeat content of 70% mainly comprising DNA transposons. The annotation of 17,338 protein coding genes was supported by the use of publicly available transcriptome data. This draft will serve as starting point for further genomic and population genetic research in this scientifically important phylum. PMID:28204581

  11. BPP: a sequence-based algorithm for branch point prediction.

    PubMed

    Zhang, Qing; Fan, Xiaodan; Wang, Yejun; Sun, Ming-An; Shao, Jianlin; Guo, Dianjing

    2017-10-15

    Although high-throughput sequencing methods have been proposed to identify splicing branch points in the human genome, these methods can only detect a small fraction of the branch points subject to the sequencing depth, experimental cost and the expression level of the mRNA. An accurate computational model for branch point prediction is therefore an ongoing objective in human genome research. We here propose a novel branch point prediction algorithm that utilizes information on the branch point sequence and the polypyrimidine tract. Using experimentally validated data, we demonstrate that our proposed method outperforms existing methods. Availability and implementation: https://github.com/zhqingit/BPP. djguo@cuhk.edu.hk. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  12. Complete genome sequence of Pelosinus sp. strain UFO1 assembled using single-molecule real-time DNA sequencing technology

    DOE PAGES

    Brown, Steven D.; Utturkar, Sagar M.; Magnuson, Timothy S.; ...

    2014-09-04

    Pelosinus fermentans strain R7 was isolated from Russian kaolin clays as the type strain and it can reduce Fe(III) during fermentative growth (1). Draft genome sequences for P. fermentans R7 and four strains from Hanford, Washington, USA, have been published (2–4). The P. fermentans 16S rRNA sequence dominated the lactate-based enrichment cultures from three geochemically contrasting soils from the Melton Branch Watershed, Oak Ridge, Tennessee, USA (5) and also at another stimulated, uraniumcontaminated field site near Oak Ridge (6). For the current work, strain UFO1 was isolated from pristine sediments at a background field site in Oak Ridge and characterizedmore » as facilitating U(VI) reduction and precipitation with phosphate (7).« less

  13. Cyber infrastructure for Fusarium: three integrated platforms supporting strain identification, phylogenetics, comparative genomics and knowledge sharing.

    PubMed

    Park, Bongsoo; Park, Jongsun; Cheong, Kyeong-Chae; Choi, Jaeyoung; Jung, Kyongyong; Kim, Donghan; Lee, Yong-Hwan; Ward, Todd J; O'Donnell, Kerry; Geiser, David M; Kang, Seogchan

    2011-01-01

    The fungal genus Fusarium includes many plant and/or animal pathogenic species and produces diverse toxins. Although accurate species identification is critical for managing such threats, it is difficult to identify Fusarium morphologically. Fortunately, extensive molecular phylogenetic studies, founded on well-preserved culture collections, have established a robust foundation for Fusarium classification. Genomes of four Fusarium species have been published with more being currently sequenced. The Cyber infrastructure for Fusarium (CiF; http://www.fusariumdb.org/) was built to support archiving and utilization of rapidly increasing data and knowledge and consists of Fusarium-ID, Fusarium Comparative Genomics Platform (FCGP) and Fusarium Community Platform (FCP). The Fusarium-ID archives phylogenetic marker sequences from most known species along with information associated with characterized isolates and supports strain identification and phylogenetic analyses. The FCGP currently archives five genomes from four species. Besides supporting genome browsing and analysis, the FCGP presents computed characteristics of multiple gene families and functional groups. The Cart/Favorite function allows users to collect sequences from Fusarium-ID and the FCGP and analyze them later using multiple tools without requiring repeated copying-and-pasting of sequences. The FCP is designed to serve as an online community forum for sharing and preserving accumulated experience and knowledge to support future research and education.

  14. Identification of ecotype-specific marker genes for categorization of beer-spoiling Lactobacillus brevis.

    PubMed

    Behr, Jürgen; Geissler, Andreas J; Preissler, Patrick; Ehrenreich, Armin; Angelov, Angel; Vogel, Rudi F

    2015-10-01

    The tolerance to hop compounds, which is mainly associated with inhibition of bacterial growth in beer, is a multi-factorial trait. Any approaches to predict the physiological differences between beer-spoiling and non-spoiling strains on the basis of a single marker gene are limited. We identified ecotype-specific genes related to the ability to grow in Pilsner beer via comparative genome sequencing. The genome sequences of four different strains of Lactobacillus brevis were compared, including newly established genomes of two highly hop tolerant beer isolates, one strain isolated from faeces and one published genome of a silage isolate. Gene fragments exclusively occurring in beer-spoiling strains as well as sequences only occurring in non-spoiling strains were identified. Comparative genomic arrays were established and hybridized with a set of L. brevis strains, which are characterized by their ability to spoil beer. As result, a set of 33 and 4 oligonucleotide probes could be established specifically detecting beer-spoilers and non-spoilers, respectively. The detection of more than one of these marker sequences according to a genetic barcode enables scoring of L. brevis for their beer-spoiling potential and can thus assist in risk evaluation in brewing industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Cyber infrastructure for Fusarium: three integrated platforms supporting strain identification, phylogenetics, comparative genomics and knowledge sharing

    PubMed Central

    Park, Bongsoo; Park, Jongsun; Cheong, Kyeong-Chae; Choi, Jaeyoung; Jung, Kyongyong; Kim, Donghan; Lee, Yong-Hwan; Ward, Todd J.; O'Donnell, Kerry; Geiser, David M.; Kang, Seogchan

    2011-01-01

    The fungal genus Fusarium includes many plant and/or animal pathogenic species and produces diverse toxins. Although accurate species identification is critical for managing such threats, it is difficult to identify Fusarium morphologically. Fortunately, extensive molecular phylogenetic studies, founded on well-preserved culture collections, have established a robust foundation for Fusarium classification. Genomes of four Fusarium species have been published with more being currently sequenced. The Cyber infrastructure for Fusarium (CiF; http://www.fusariumdb.org/) was built to support archiving and utilization of rapidly increasing data and knowledge and consists of Fusarium-ID, Fusarium Comparative Genomics Platform (FCGP) and Fusarium Community Platform (FCP). The Fusarium-ID archives phylogenetic marker sequences from most known species along with information associated with characterized isolates and supports strain identification and phylogenetic analyses. The FCGP currently archives five genomes from four species. Besides supporting genome browsing and analysis, the FCGP presents computed characteristics of multiple gene families and functional groups. The Cart/Favorite function allows users to collect sequences from Fusarium-ID and the FCGP and analyze them later using multiple tools without requiring repeated copying-and-pasting of sequences. The FCP is designed to serve as an online community forum for sharing and preserving accumulated experience and knowledge to support future research and education. PMID:21087991

  16. The genome sequence of Agrotis segetum granulovirus, isolate AgseGV-DA, reveals a new Betabaculovirus species of a slow killing granulovirus.

    PubMed

    Gueli Alletti, Gianpiero; Eigenbrod, Marina; Carstens, Eric B; Kleespies, Regina G; Jehle, Johannes A

    2017-06-01

    The European isolate Agrotis segetum granulovirus DA (AgseGV-DA) is a slow killing, type I granulovirus due to low dose-mortality responses within seven days post infection and a tissue tropism of infection restricted solely to the fat body of infected Agrotis segetum host larvae. The genome of AgseGV-DA was completely sequenced and compared to the whole genome sequences of the Chinese isolates AgseGV-XJ and AgseGV-L1. All three isolates share highly conserved genomes. The AgseGV-DA genome is 131,557bp in length and encodes for 149 putative open reading frames, including 37 baculovirus core genes and the per os infectivity factor ac110. Comprehensive investigations of repeat regions identified one putative non-hr like origin of replication in AgseGV-DA. Phylogenetic analysis based on concatenated amino acid alignments of 37 baculovirus core genes as well as pairwise distances based on the nucleotide alignments of partial granulin, lef-8 and lef-9 sequences with deposited betabaculoviruses confirmed AgseGV-DA, AgseGV-XJ and AgseGV-L1 as representative isolates of the same Betabaculovirus species. AgseGV encodes for a distinct putative enhancin, distantly related to enhancins from other granuloviruses. Copyright © 2017. Published by Elsevier Inc.

  17. Genome sequence of the moderately thermophilic sulfur-reducing bacterium Thermanaerovibrio velox type strain (Z-9701 T) and emended description of the genus Thermanaerovibrio

    DOE PAGES

    Palaniappan, Krishna; Meier-Kolthoff, Jan P.; Teshima, Hazuki; ...

    2013-10-16

    Thermanaerovibrio velox Zavarzina et al. 2000 is a member of the Synergistaceae, a family in the phylum Synergistetes that is already well-characterized at the genome level. Members of this phylum were described as Gram-negative staining anaerobic bacteria with a rod/vibrioid cell shape and possessing an atypical outer cell envelope. They inhabit a large variety of anaerobic environments including soil, oil wells, wastewater treatment plants and animal gastrointestinal tracts. They are also found to be linked to sites of human diseases such as cysts, abscesses, and areas of periodontal disease. The moderately thermophilic and organotrophic T. velox shares most of itsmore » morphologic and physiologic features with the closely related species, T. acidaminovorans. In addition to Su883 T, the type strain of T. acidaminovorans, stain Z-9701 T is the second type strain in the genus Thermanaerovibrio to have its genome sequence published. Here we describe the features of this organism, together with the non-contiguous genome sequence and annotation. The 1,880,838 bp long chromosome (non-contiguous finished sequence) with its 1,751 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.« less

  18. Genome sequence of the moderately thermophilic sulfur-reducing bacterium Thermanaerovibrio velox type strain (Z-9701 T) and emended description of the genus Thermanaerovibrio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palaniappan, Krishna; Meier-Kolthoff, Jan P.; Teshima, Hazuki

    Thermanaerovibrio velox Zavarzina et al. 2000 is a member of the Synergistaceae, a family in the phylum Synergistetes that is already well-characterized at the genome level. Members of this phylum were described as Gram-negative staining anaerobic bacteria with a rod/vibrioid cell shape and possessing an atypical outer cell envelope. They inhabit a large variety of anaerobic environments including soil, oil wells, wastewater treatment plants and animal gastrointestinal tracts. They are also found to be linked to sites of human diseases such as cysts, abscesses, and areas of periodontal disease. The moderately thermophilic and organotrophic T. velox shares most of itsmore » morphologic and physiologic features with the closely related species, T. acidaminovorans. In addition to Su883 T, the type strain of T. acidaminovorans, stain Z-9701 T is the second type strain in the genus Thermanaerovibrio to have its genome sequence published. Here we describe the features of this organism, together with the non-contiguous genome sequence and annotation. The 1,880,838 bp long chromosome (non-contiguous finished sequence) with its 1,751 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.« less

  19. Genome sequence of the moderately thermophilic sulfur-reducing bacterium Thermanaerovibrio velox type strain (Z-9701T) and emended description of the genus Thermanaerovibrio

    PubMed Central

    Palaniappan, Krishna; Meier-Kolthoff, Jan P.; Teshima, Hazuki; Nolan, Matt; Lapidus, Alla; Tice, Hope; Del Rio, Tijana Glavina; Cheng, Jan-Fang; Han, Cliff; Tapia, Roxanne; Goodwin, Lynne A.; Pitluck, Sam; Liolios, Konstantinos; Mavromatis, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Rohde, Manfred; Mayilraj, Shanmugam; Spring, Stefan; Detter, John C.; Göker, Markus; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter; Woyke, Tanja

    2013-01-01

    Thermanaerovibrio velox Zavarzina et al. 2000 is a member of the Synergistaceae, a family in the phylum Synergistetes that is already well-characterized at the genome level. Members of this phylum were described as Gram-negative staining anaerobic bacteria with a rod/vibrioid cell shape and possessing an atypical outer cell envelope. They inhabit a large variety of anaerobic environments including soil, oil wells, wastewater treatment plants and animal gastrointestinal tracts. They are also found to be linked to sites of human diseases such as cysts, abscesses, and areas of periodontal disease. The moderately thermophilic and organotrophic T. velox shares most of its morphologic and physiologic features with the closely related species, T. acidaminovorans. In addition to Su883T, the type strain of T. acidaminovorans, stain Z-9701T is the second type strain in the genus Thermanaerovibrio to have its genome sequence published. Here we describe the features of this organism, together with the non-contiguous genome sequence and annotation. The 1,880,838 bp long chromosome (non-contiguous finished sequence) with its 1,751 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:24501645

  20. Methods, Tools and Current Perspectives in Proteogenomics *

    PubMed Central

    Ruggles, Kelly V.; Krug, Karsten; Wang, Xiaojing; Clauser, Karl R.; Wang, Jing; Payne, Samuel H.; Fenyö, David; Zhang, Bing; Mani, D. R.

    2017-01-01

    With combined technological advancements in high-throughput next-generation sequencing and deep mass spectrometry-based proteomics, proteogenomics, i.e. the integrative analysis of proteomic and genomic data, has emerged as a new research field. Early efforts in the field were focused on improving protein identification using sample-specific genomic and transcriptomic sequencing data. More recently, integrative analysis of quantitative measurements from genomic and proteomic studies have identified novel insights into gene expression regulation, cell signaling, and disease. Many methods and tools have been developed or adapted to enable an array of integrative proteogenomic approaches and in this article, we systematically classify published methods and tools into four major categories, (1) Sequence-centric proteogenomics; (2) Analysis of proteogenomic relationships; (3) Integrative modeling of proteogenomic data; and (4) Data sharing and visualization. We provide a comprehensive review of methods and available tools in each category and highlight their typical applications. PMID:28456751

  1. RiboDB Database: A Comprehensive Resource for Prokaryotic Systematics.

    PubMed

    Jauffrit, Frédéric; Penel, Simon; Delmotte, Stéphane; Rey, Carine; de Vienne, Damien M; Gouy, Manolo; Charrier, Jean-Philippe; Flandrois, Jean-Pierre; Brochier-Armanet, Céline

    2016-08-01

    Ribosomal proteins (r-proteins) are increasingly used as an alternative to ribosomal rRNA for prokaryotic systematics. However, their routine use is difficult because r-proteins are often not or wrongly annotated in complete genome sequences, and there is currently no dedicated exhaustive database of r-proteins. RiboDB aims at fulfilling this gap. This weekly updated comprehensive database allows the fast and easy retrieval of r-protein sequences from publicly available complete prokaryotic genome sequences. The current version of RiboDB contains 90 r-proteins from 3,750 prokaryotic complete genomes encompassing 38 phyla/major classes and 1,759 different species. RiboDB is accessible at http://ribodb.univ-lyon1.fr and through ACNUC interfaces. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Development of single-copy nuclear intron markers for species-level phylogenetics: Case study with Paullinieae (Sapindaceae).

    PubMed

    Chery, Joyce G; Sass, Chodon; Specht, Chelsea D

    2017-09-01

    We developed a bioinformatic pipeline that leverages a publicly available genome and published transcriptomes to design primers in conserved coding sequences flanking targeted introns of single-copy nuclear loci. Paullinieae (Sapindaceae) is used to demonstrate the pipeline. Transcriptome reads phylogenetically closer to the lineage of interest are aligned to the closest genome. Single-nucleotide polymorphisms are called, generating a "pseudoreference" closer to the lineage of interest. Several filters are applied to meet the criteria of single-copy nuclear loci with introns of a desired size. Primers are designed in conserved coding sequences flanking introns. Using this pipeline, we developed nine single-copy nuclear intron markers for Paullinieae. This pipeline is highly flexible and can be used for any group with available genomic and transcriptomic resources. This pipeline led to the development of nine variable markers for phylogenetic study without generating sequence data de novo.

  3. Sequence and Characterization of the Ig Heavy Chain Constant and Partial Variable Region of the Mouse Strain 129S11

    PubMed Central

    Retter, Ida; Chevillard, Christophe; Scharfe, Maren; Conrad, Ansgar; Hafner, Martin; Im, Tschong-Hun; Ludewig, Monika; Nordsiek, Gabriele; Severitt, Simone; Thies, Stephanie; Mauhar, America; Blöcker, Helmut; Müller, Werner; Riblet, Roy

    2009-01-01

    Although the entire mouse genome has been sequenced, there remain challenges concerning the elucidation of particular complex and polymorphic genomic loci. In the murine Igh locus, different haplotypes exist in different inbred mouse strains. For example, the Ighb haplotype sequence of the Mouse Genome Project strain C57BL/6 differs considerably from the Igha haplotype of BALB/c, which has been widely used in the analyses of Ab responses. We have sequenced and annotated the 3′ half of the Igha locus of 129S1/SvImJ, covering the CH region and approximately half of the VH region. This sequence comprises 128 VH genes, of which 49 are judged to be functional. The comparison of the Igha sequence with the homologous Ighb region from C57BL/6 revealed two major expansions in the germline repertoire of Igha. In addition, we found smaller haplotype-specific differences like the duplication of five VH genes in the Igha locus. We generated a VH allele table by comparing the individual VH genes of both haplotypes. Surprisingly, the number and position of DH genes in the 129S1 strain differs not only from the sequence of C57BL/6 but also from the map published for BALB/c. Taken together, the contiguous genomic sequence of the 3′ part of the Igha locus allows a detailed view of the recent evolution of this highly dynamic locus in the mouse. PMID:17675503

  4. Bedside Back to Bench: Building Bridges between Basic and Clinical Genomic Research.

    PubMed

    Manolio, Teri A; Fowler, Douglas M; Starita, Lea M; Haendel, Melissa A; MacArthur, Daniel G; Biesecker, Leslie G; Worthey, Elizabeth; Chisholm, Rex L; Green, Eric D; Jacob, Howard J; McLeod, Howard L; Roden, Dan; Rodriguez, Laura Lyman; Williams, Marc S; Cooper, Gregory M; Cox, Nancy J; Herman, Gail E; Kingsmore, Stephen; Lo, Cecilia; Lutz, Cathleen; MacRae, Calum A; Nussbaum, Robert L; Ordovas, Jose M; Ramos, Erin M; Robinson, Peter N; Rubinstein, Wendy S; Seidman, Christine; Stranger, Barbara E; Wang, Haoyi; Westerfield, Monte; Bult, Carol

    2017-03-23

    Genome sequencing has revolutionized the diagnosis of genetic diseases. Close collaborations between basic scientists and clinical genomicists are now needed to link genetic variants with disease causation. To facilitate such collaborations, we recommend prioritizing clinically relevant genes for functional studies, developing reference variant-phenotype databases, adopting phenotype description standards, and promoting data sharing. Published by Elsevier Inc.

  5. Toward allotetraploid cotton genome assembly: integration of a high-density molecular genetic linkage map with DNA sequence information

    PubMed Central

    2012-01-01

    Background Cotton is the world’s most important natural textile fiber and a significant oilseed crop. Decoding cotton genomes will provide the ultimate reference and resource for research and utilization of the species. Integration of high-density genetic maps with genomic sequence information will largely accelerate the process of whole-genome assembly in cotton. Results In this paper, we update a high-density interspecific genetic linkage map of allotetraploid cultivated cotton. An additional 1,167 marker loci have been added to our previously published map of 2,247 loci. Three new marker types, InDel (insertion-deletion) and SNP (single nucleotide polymorphism) developed from gene information, and REMAP (retrotransposon-microsatellite amplified polymorphism), were used to increase map density. The updated map consists of 3,414 loci in 26 linkage groups covering 3,667.62 cM with an average inter-locus distance of 1.08 cM. Furthermore, genome-wide sequence analysis was finished using 3,324 informative sequence-based markers and publicly-available Gossypium DNA sequence information. A total of 413,113 EST and 195 BAC sequences were physically anchored and clustered by 3,324 sequence-based markers. Of these, 14,243 ESTs and 188 BACs from different species of Gossypium were clustered and specifically anchored to the high-density genetic map. A total of 2,748 candidate unigenes from 2,111 ESTs clusters and 63 BACs were mined for functional annotation and classification. The 337 ESTs/genes related to fiber quality traits were integrated with 132 previously reported cotton fiber quality quantitative trait loci, which demonstrated the important roles in fiber quality of these genes. Higher-level sequence conservation between different cotton species and between the A- and D-subgenomes in tetraploid cotton was found, indicating a common evolutionary origin for orthologous and paralogous loci in Gossypium. Conclusion This study will serve as a valuable genomic resource for tetraploid cotton genome assembly, for cloning genes related to superior agronomic traits, and for further comparative genomic analyses in Gossypium. PMID:23046547

  6. A Comparison of the First Two Sequenced Chloroplast Genomes in Asteraceae: Lettuce and Sunflower

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timme, Ruth E.; Kuehl, Jennifer V.; Boore, Jeffrey L.

    2006-01-20

    Asteraceae is the second largest family of plants, with over 20,000 species. For the past few decades, numerous phylogenetic studies have contributed to our understanding of the evolutionary relationships within this family, including comparisons of the fast evolving chloroplast gene, ndhF, rbcL, as well as non-coding DNA from the trnL intron plus the trnLtrnF intergenic spacer, matK, and, with lesser resolution, psbA-trnH. This culminated in a study by Panero and Funk in 2002 that used over 13,000 bp per taxon for the largest taxonomic revision of Asteraceae in over a hundred years. Still, some uncertainties remain, and it would bemore » very useful to have more information on the relative rates of sequence evolution among various genes and on genome structure as a potential set of phylogenetic characters to help guide future phylogenetic structures. By way of contributing to this, we report the first two complete chloroplast genome sequences from members of the Asteraceae, those of Helianthus annuus and Lactuca sativa. These plants belong to two distantly related subfamilies, Asteroideae and Cichorioideae, respectively. In addition to these, there is only one other published chloroplast genome sequence for any plant within the larger group called Eusterids II, that of Panax ginseng (Araliaceae, 156,318 bps, AY582139). Early chloroplast genome mapping studies demonstrated that H. annuus and L. sativa share a 22 kb inversion relative to members of the subfamily Barnadesioideae. By comparison to outgroups, this inversion was shown to be derived, indicating that the Asteroideae and Cichorioideae are more closely related than either is to the Barnadesioideae. Later sequencing study found that taxa that share this 22 kb inversion also contain within this region a second, smaller, 3.3 kb inversion. These sequences also enable an analysis of patterns of shared repeats in the genomes at fine level and of RNA editing by comparison to available EST sequences. In addition, since both of these genomes are crop plants, their complete genome sequence will facilitate development of chloroplast genetic engineering technology, as in recent studies from Daniell's lab. Knowing the exact sequence from spacer regions is crucial for introducing transgenes into the chloroplast genome.« less

  7. Common position of indels that cause deviations from canonical genome organization in different measles virus strains.

    PubMed

    Ivancic-Jelecki, Jelena; Slovic, Anamarija; Šantak, Maja; Tešović, Goran; Forcic, Dubravko

    2016-07-29

    The canonical genome organization of measles virus (MV) is characterized by total size of 15 894 nucleotides (nts) and defined length of every genomic region, both coding and non-coding. Only rarely have reports of strains possessing non-canonical genomic properties (possessing indels, with or without the change of total genome length) been published. The observed mutations are mutually compensatory in a sense that the total genome length remains polyhexameric. Although programmed and highly precise pseudo-templated nucleotide additions during transcription are inherent to polymerases of all viruses belonging to family Paramyxoviridae, a similar mechanism that would serve to non-randomly correct genome length, if an indel has occurred during replication, has so far not been described in the context of a complete virus genome. We compiled all complete MV genomic sequences (64 in total) available in open access sequence databases. Multiple sequence comparisons and phylogenetic analyses were performed with the aim of exploring whether non-recombinant and non-evolutionary linked measles strains that show deviations from canonical genome organization possess a common genetic characteristic. In 11 MV sequences we detected deviations from canonical genome organization due to short indels located within homopolymeric stretches or next to them. In nine out of 11 identified non-canonical MV sequences, a common feature was observed: one mutation, either an insertion or a deletion, was located in a 28 nts long region in F gene 5' untranslated region (positions 5051-5078 in genomic cDNA of canonical strains). This segment is composed of five tandemly linked homopolymeric stretches, its consensus sequence is G6-7C7-8A6-7G1-3C5-6. Although none of the mononucleotide repeats within this segment has fixed length, the total number of nts in canonical strains is always 28. These nine non-canonical strains, as well as the tenth (not mutated in 5051-5078 segment), can be grouped in three clusters, based on their passage histories/epidemiological data/genetic similarities. There are no indications that the 3 clusters are evolutionary linked, other than the fact that they all belong to clade D. A common narrow genomic region was found to be mutated in different, non-related, wild type strains suggesting that this region might have a function in non-random genome length corrections occurring during MV replication.

  8. Quantifying the Number of Independent Organelle DNA Insertions in Genome Evolution and Human Health.

    PubMed

    Hazkani-Covo, Einat; Martin, William F

    2017-05-01

    Fragments of organelle genomes are often found as insertions in nuclear DNA. These fragments of mitochondrial DNA (numts) and plastid DNA (nupts) are ubiquitous components of eukaryotic genomes. They are, however, often edited out during the genome assembly process, leading to systematic underestimation of their frequency. Numts and nupts, once inserted, can become further fragmented through subsequent insertion of mobile elements or other recombinational events that disrupt the continuity of the inserted sequence relative to the genuine organelle DNA copy. Because numts and nupts are typically identified through sequence comparison tools such as BLAST, disruption of insertions into smaller fragments can lead to systematic overestimation of numt and nupt frequencies. Accurate identification of numts and nupts is important, however, both for better understanding of their role during evolution, and for monitoring their increasingly evident role in human disease. Human populations are polymorphic for 141 numt loci, five numts are causal to genetic disease, and cancer genomic studies are revealing an abundance of numts associated with tumor progression. Here, we report investigation of salient parameters involved in obtaining accurate estimates of numt and nupt numbers in genome sequence data. Numts and nupts from 44 sequenced eukaryotic genomes reveal lineage-specific differences in the number, relative age and frequency of insertional events as well as lineage-specific dynamics of their postinsertional fragmentation. Our findings outline the main technical parameters influencing accurate identification and frequency estimation of numts in genomic studies pertinent to both evolution and human health. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Using populations of human and microbial genomes for organism detection in metagenomes.

    PubMed

    Ames, Sasha K; Gardner, Shea N; Marti, Jose Manuel; Slezak, Tom R; Gokhale, Maya B; Allen, Jonathan E

    2015-07-01

    Identifying causative disease agents in human patients from shotgun metagenomic sequencing (SMS) presents a powerful tool to apply when other targeted diagnostics fail. Numerous technical challenges remain, however, before SMS can move beyond the role of research tool. Accurately separating the known and unknown organism content remains difficult, particularly when SMS is applied as a last resort. The true amount of human DNA that remains in a sample after screening against the human reference genome and filtering nonbiological components left from library preparation has previously been underreported. In this study, we create the most comprehensive collection of microbial and reference-free human genetic variation available in a database optimized for efficient metagenomic search by extracting sequences from GenBank and the 1000 Genomes Project. The results reveal new human sequences found in individual Human Microbiome Project (HMP) samples. Individual samples contain up to 95% human sequence, and 4% of the individual HMP samples contain 10% or more human reads. Left unidentified, human reads can complicate and slow down further analysis and lead to inaccurately labeled microbial taxa and ultimately lead to privacy concerns as more human genome data is collected. © 2015 Ames et al.; Published by Cold Spring Harbor Laboratory Press.

  10. DMINDA: an integrated web server for DNA motif identification and analyses.

    PubMed

    Ma, Qin; Zhang, Hanyuan; Mao, Xizeng; Zhou, Chuan; Liu, Bingqiang; Chen, Xin; Xu, Ying

    2014-07-01

    DMINDA (DNA motif identification and analyses) is an integrated web server for DNA motif identification and analyses, which is accessible at http://csbl.bmb.uga.edu/DMINDA/. This web site is freely available to all users and there is no login requirement. This server provides a suite of cis-regulatory motif analysis functions on DNA sequences, which are important to elucidation of the mechanisms of transcriptional regulation: (i) de novo motif finding for a given set of promoter sequences along with statistical scores for the predicted motifs derived based on information extracted from a control set, (ii) scanning motif instances of a query motif in provided genomic sequences, (iii) motif comparison and clustering of identified motifs, and (iv) co-occurrence analyses of query motifs in given promoter sequences. The server is powered by a backend computer cluster with over 150 computing nodes, and is particularly useful for motif prediction and analyses in prokaryotic genomes. We believe that DMINDA, as a new and comprehensive web server for cis-regulatory motif finding and analyses, will benefit the genomic research community in general and prokaryotic genome researchers in particular. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Resolving the tips of the tree of life: How much mitochondrialdata doe we need?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonett, Ronald M.; Macey, J. Robert; Boore, Jeffrey L.

    2005-04-29

    Mitochondrial (mt) DNA sequences are used extensively to reconstruct evolutionary relationships among recently diverged animals,and have constituted the most widely used markers for species- and generic-level relationships for the last decade or more. However, most studies to date have employed relatively small portions of the mt-genome. In contrast, complete mt-genomes primarily have been used to investigate deep divergences, including several studies of the amount of mt sequence necessary to recover ancient relationships. We sequenced and analyzed 24 complete mt-genomes from a group of salamander species exhibiting divergences typical of those in many species-level studies. We present the first comprehensive investigationmore » of the amount of mt sequence data necessary to consistently recover the mt-genome tree at this level, using parsimony and Bayesian methods. Both methods of phylogenetic analysis revealed extremely similar results. A surprising number of well supported, yet conflicting, relationships were found in trees based on fragments less than {approx}2000 nucleotides (nt), typical of the vast majority of the thousands of mt-based studies published to date. Large amounts of data (11,500+ nt) were necessary to consistently recover the whole mt-genome tree. Some relationships consistently were recovered with fragments of all sizes, but many nodes required the majority of the mt-genome to stabilize, particularly those associated with short internal branches. Although moderate amounts of data (2000-3000 nt) were adequate to recover mt-based relationships for which most nodes were congruent with the whole mt-genome tree, many thousands of nucleotides were necessary to resolve rapid bursts of evolution. Recent advances in genomics are making collection of large amounts of sequence data highly feasible, and our results provide the basis for comparative studies of other closely related groups to optimize mt sequence sampling and phylogenetic resolution at the ''tips'' of the Tree of Life.« less

  12. A survey of single nucleotide polymorphisms identified from whole-genome sequencing and their functional effect in the porcine genome.

    PubMed

    Keel, B N; Nonneman, D J; Rohrer, G A

    2017-08-01

    Genetic variants detected from sequence have been used to successfully identify causal variants and map complex traits in several organisms. High and moderate impact variants, those expected to alter or disrupt the protein coded by a gene and those that regulate protein production, likely have a more significant effect on phenotypic variation than do other types of genetic variants. Hence, a comprehensive list of these functional variants would be of considerable interest in swine genomic studies, particularly those targeting fertility and production traits. Whole-genome sequence was obtained from 72 of the founders of an intensely phenotyped experimental swine herd at the U.S. Meat Animal Research Center (USMARC). These animals included all 24 of the founding boars (12 Duroc and 12 Landrace) and 48 Yorkshire-Landrace composite sows. Sequence reads were mapped to the Sscrofa10.2 genome build, resulting in a mean of 6.1 fold (×) coverage per genome. A total of 22 342 915 high confidence SNPs were identified from the sequenced genomes. These included 21 million previously reported SNPs and 79% of the 62 163 SNPs on the PorcineSNP60 BeadChip assay. Variation was detected in the coding sequence or untranslated regions (UTRs) of 87.8% of the genes in the porcine genome: loss-of-function variants were predicted in 504 genes, 10 202 genes contained nonsynonymous variants, 10 773 had variation in UTRs and 13 010 genes contained synonymous variants. Approximately 139 000 SNPs were classified as loss-of-function, nonsynonymous or regulatory, which suggests that over 99% of the variation detected in our pigs could potentially be ignored, allowing us to focus on a much smaller number of functional SNPs during future analyses. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  13. A Genome Sequence Resource for the Aye-Aye (Daubentonia madagascariensis), a Nocturnal Lemur from Madagascar

    PubMed Central

    Perry, George H.; Reeves, Darryl; Melsted, Páll; Ratan, Aakrosh; Miller, Webb; Michelini, Katelyn; Louis, Edward E.; Pritchard, Jonathan K.; Mason, Christopher E.; Gilad, Yoav

    2012-01-01

    We present a high-coverage draft genome assembly of the aye-aye (Daubentonia madagascariensis), a highly unusual nocturnal primate from Madagascar. Our assembly totals ∼3.0 billion bp (3.0 Gb), roughly the size of the human genome, comprised of ∼2.6 million scaffolds (N50 scaffold size = 13,597 bp) based on short paired-end sequencing reads. We compared the aye-aye genome sequence data with four other published primate genomes (human, chimpanzee, orangutan, and rhesus macaque) as well as with the mouse and dog genomes as nonprimate outgroups. Unexpectedly, we observed strong evidence for a relatively slow substitution rate in the aye-aye lineage compared with these and other primates. In fact, the aye-aye branch length is estimated to be ∼10% shorter than that of the human lineage, which is known for its low substitution rate. This finding may be explained, in part, by the protracted aye-aye life-history pattern, including late weaning and age of first reproduction relative to other lemurs. Additionally, the availability of this draft lemur genome sequence allowed us to polarize nucleotide and protein sequence changes to the ancestral primate lineage—a critical period in primate evolution, for which the relevant fossil record is sparse. Finally, we identified 293,800 high-confidence single nucleotide polymorphisms in the donor individual for our aye-aye genome sequence, a captive-born individual from two wild-born parents. The resulting heterozygosity estimate of 0.051% is the lowest of any primate studied to date, which is understandable considering the aye-aye's extensive home-range size and relatively low population densities. Yet this level of genetic diversity also suggests that conservation efforts benefiting this unusual species should be prioritized, especially in the face of the accelerating degradation and fragmentation of Madagascar's forests. PMID:22155688

  14. Characterization of Urtica dioica agglutinin isolectins and the encoding gene family.

    PubMed

    Does, M P; Ng, D K; Dekker, H L; Peumans, W J; Houterman, P M; Van Damme, E J; Cornelissen, B J

    1999-01-01

    Urtica dioica agglutinin (UDA) has previously been found in roots and rhizomes of stinging nettles as a mixture of UDA-isolectins. Protein and cDNA sequencing have shown that mature UDA is composed of two hevein domains and is processed from a precursor protein. The precursor contains a signal peptide, two in-tandem hevein domains, a hinge region and a carboxyl-terminal chitinase domain. Genomic fragments encoding precursors for UDA-isolectins have been amplified by five independent polymerase chain reactions on genomic DNA from stinging nettle ecotype Weerselo. One amplified gene was completely sequenced. As compared to the published cDNA sequence, the genomic sequence contains, besides two basepair substitutions, two introns located at the same positions as in other plant chitinases. By partial sequence analysis of 40 amplified genes, 16 different genes were identified which encode seven putative UDA-isolectins. The deduced amino acid sequences share 78.9-98.9% identity. In extracts of roots and rhizomes of stinging nettle ecotype Weerselo six out of these seven isolectins were detected by mass spectrometry. One of them is an acidic form, which has not been identified before. Our results demonstrate that UDA is encoded by a large gene family.

  15. Draft genome of the Northern snakehead, Channa argus.

    PubMed

    Xu, Jian; Bian, Chao; Chen, Kunci; Liu, Guiming; Jiang, Yanliang; Luo, Qing; You, Xinxin; Peng, Wenzhu; Li, Jia; Huang, Yu; Yi, Yunhai; Dong, Chuanju; Deng, Hua; Zhang, Songhao; Zhang, Hanyuan; Shi, Qiong; Xu, Peng

    2017-04-01

    The Northern snakehead (Channa argus), a member of the Channidae family of the Perciformes, is an economically important freshwater fish native to East Asia. In North America, it has become notorious as an intentionally released invasive species. Its ability to breathe air with gills and migrate short distances over land makes it a good model for bimodal breath research. Therefore, recent research has focused on the identification of relevant candidate genes. Here, we performed whole genome sequencing of C. argus to construct its draft genome, aiming to offer useful information for further functional studies and identification of target genes related to its unusual facultative air breathing. Findings: We assembled the C. argus genome with a total of 140.3 Gb of raw reads, which were sequenced using the Illumina HiSeq2000 platform. The final draft genome assembly was approximately 615.3 Mb, with a contig N50 of 81.4 kb and scaffold N50 of 4.5 Mb. The identified repeat sequences account for 18.9% of the whole genome. The 19 877 protein-coding genes were predicted from the genome assembly, with an average of 10.5 exons per gene. Conclusion: We generated a high-quality draft genome of C. argus, which will provide a valuable genetic resource for further biomedical investigations of this economically important teleost fish. © The Author 2017. Published by Oxford University Press.

  16. Draft genome analysis provides insights into the fiber yield, crude protein biosynthesis, and vegetative growth of domesticated ramie (Boehmeria nivea L. Gaud).

    PubMed

    Liu, Chan; Zeng, Liangbin; Zhu, Siyuan; Wu, Lingqing; Wang, Yanzhou; Tang, Shouwei; Wang, Hongwu; Zheng, Xia; Zhao, Jian; Chen, Xiaorong; Dai, Qiuzhong; Liu, Touming

    2017-11-15

    Plentiful bast fiber, a high crude protein content, and vigorous vegetative growth make ramie a popular fiber and forage crop. Here, we report the draft genome of ramie, along with a genomic comparison and evolutionary analysis. The draft genome contained a sequence of approximately 335.6 Mb with 42,463 predicted genes. A high-density genetic map with 4,338 single nucleotide polymorphisms (SNPs) was developed and used to anchor the genome sequence, thus, creating an integrated genetic and physical map containing a 58.2-Mb genome sequence and 4,304 molecular markers. A genomic comparison identified 1,075 unique gene families in ramie, containing 4,082 genes. Among these unique genes, five were cellulose synthase genes that were specifically expressed in stem bark, and 3 encoded a WAT1-related protein, suggesting that they are probably related to high bast fiber yield. An evolutionary analysis detected 106 positively selected genes, 22 of which were related to nitrogen metabolism, indicating that they are probably responsible for the crude protein content and vegetative growth of domesticated varieties. This study is the first to characterize the genome and develop a high-density genetic map of ramie and provides a basis for the genetic and molecular study of this crop. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  17. Multiple hybrid de novo genome assembly of finger millet, an orphan allotetraploid crop.

    PubMed

    Hatakeyama, Masaomi; Aluri, Sirisha; Balachadran, Mathi Thumilan; Sivarajan, Sajeevan Radha; Patrignani, Andrea; Grüter, Simon; Poveda, Lucy; Shimizu-Inatsugi, Rie; Baeten, John; Francoijs, Kees-Jan; Nataraja, Karaba N; Reddy, Yellodu A Nanja; Phadnis, Shamprasad; Ravikumar, Ramapura L; Schlapbach, Ralph; Sreeman, Sheshshayee M; Shimizu, Kentaro K

    2017-09-05

    Finger millet (Eleusine coracana (L.) Gaertn) is an important crop for food security because of its tolerance to drought, which is expected to be exacerbated by global climate changes. Nevertheless, it is often classified as an orphan/underutilized crop because of the paucity of scientific attention. Among several small millets, finger millet is considered as an excellent source of essential nutrient elements, such as iron and zinc; hence, it has potential as an alternate coarse cereal. However, high-quality genome sequence data of finger millet are currently not available. One of the major problems encountered in the genome assembly of this species was its polyploidy, which hampers genome assembly compared with a diploid genome. To overcome this problem, we sequenced its genome using diverse technologies with sufficient coverage and assembled it via a novel multiple hybrid assembly workflow that combines next-generation with single-molecule sequencing, followed by whole-genome optical mapping using the Bionano Irys® system. The total number of scaffolds was 1,897 with an N50 length >2.6 Mb and detection of 96% of the universal single-copy orthologs. The majority of the homeologs were assembled separately. This indicates that the proposed workflow is applicable to the assembly of other allotetraploid genomes. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  18. Extensive Mobilome-Driven Genome Diversification in Mouse Gut-Associated Bacteroides vulgatus mpk.

    PubMed

    Lange, Anna; Beier, Sina; Steimle, Alex; Autenrieth, Ingo B; Huson, Daniel H; Frick, Julia-Stefanie

    2016-04-25

    Like many other Bacteroides species, Bacteroides vulgatus strain mpk, a mouse fecal isolate which was shown to promote intestinal homeostasis, utilizes a variety of mobile elements for genome evolution. Based on sequences collected by Pacific Biosciences SMRT sequencing technology, we discuss the challenges of assembling and studying a bacterial genome of high plasticity. Additionally, we conducted comparative genomics comparing this commensal strain with the B. vulgatus type strain ATCC 8482 as well as multiple other Bacteroides and Parabacteroides strains to reveal the most important differences and identify the unique features of B. vulgatus mpk. The genome of B. vulgatus mpk harbors a large and diverse set of mobile element proteins compared with other sequenced Bacteroides strains. We found evidence of a number of different horizontal gene transfer events and a genome landscape that has been extensively altered by different mobilization events. A CRISPR/Cas system could be identified that provides a possible mechanism for preventing the integration of invading external DNA. We propose that the high genome plasticity and the introduced genome instabilities of B. vulgatus mpk arising from the various mobilization events might play an important role not only in its adaptation to the challenging intestinal environment in general, but also in its ability to interact with the gut microbiota. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. Complete chloroplast genome sequences of Drimys, Liriodendron, andPiper: Implications for the phylogeny of magnoliids and the evolution ofGC content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhengqiu, C.; Penaflor, C.; Kuehl, J.V.

    2006-06-01

    The magnoliids represent the largest basal angiosperm clade with four orders, 19 families and 8,500 species. Although several recent angiosperm molecular phylogenies have supported the monophyly of magnoliids and suggested relationships among the orders, the limited number of genes examined resulted in only weak support, and these issues remain controversial. Furthermore, considerable incongruence has resulted in phylogenies supporting three different sets of relationships among magnoliids and the two large angiosperm clades, monocots and eudicots. This is one of the most important remaining issues concerning relationships among basal angiosperms. We sequenced the chloroplast genomes of three magnoliids, Drimys (Canellales), Liriodendron (Magnoliales),more » and Piper (Piperales), and used these data in combination with 32 other completed angiosperm chloroplast genomes to assess phylogenetic relationships among magnoliids. The Drimys and Piper chloroplast genomes are nearly identical in size at 160,606 and 160,624 bp, respectively. The genomes include a pair of inverted repeats of 26,649 bp (Drimys) and 27,039 (Piper), separated by a small single copy region of 18,621 (Drimys) and 18,878 (Piper) and a large single copy region of 88,685 bp (Drimys) and 87,666 bp (Piper). The gene order of both taxa is nearly identical to many other unrearranged angiosperm chloroplast genomes, including Calycanthus, the other published magnoliid genome. Comparisons of angiosperm chloroplast genomes indicate that GC content is not uniformly distributed across the genome. Overall GC content ranges from 34-39%, and coding regions have a substantially higher GC content than non-coding regions (both intergenic spacers and introns). Among protein-coding genes, GC content varies by codon position with 1st codon > 2nd codon > 3rd codon, and it varies by functional group with photosynthetic genes having the highest percentage and NADH genes the lowest. Across the genome, GC content is highest in the inverted repeat due to the presence of rRNA genes and lowest in the small single copy region where most NADH genes are located. Phylogenetic analyses using maximum parsimony and maximum likelihood methods were performed on DNA sequences of 61 protein-coding genes. Trees from both analyses provided strong support for the monophyly of magnoliids and two strongly supported groups were identified, the Canellales/Piperales and the Laurales/Magnoliales. The phylogenies also provided moderate to strong support for the basal position of Amborella, and a sister relationship of magnoliids to a clade that includes monocots and eudicots. The complete sequences of three magnoliid chloroplast genomes provide new data from the largest basal angiosperm clade. Evolutionary comparisons of these new genome sequences, combined with other published angiosperm genome, confirm that GC content is unevenly distributed across the genome by location, codon position, and functional group. Furthermore, phylogenetic analyses provide the strongest support so far for the hypothesis that the magnoliids are sister to a large clade that includes both monocots and eudicots.« less

  20. Towards a standards-compliant genomic and metagenomic publication record

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fenner, Marsha W; Garrity, George M.; Field, Dawn

    2008-04-01

    Increasingly we are aware as a community of the growing need to manage the avalanche of genomic and metagenomic data, in addition to related data types like ribosomal RNA and barcode sequences, in a way that tightly integrates contextual data with traditional literature in a machine-readable way. It is for this reason that the Genomic Standards Consortium (GSC) formed in 2005. Here we suggest that we move beyond the development of standards and tackle standards-compliance and improved data capture at the level of the scientific publication. We are supported in this goal by the fact that the scientific community ismore » in the midst of a publishing revolution. This revolution is marked by a growing shift away from a traditional dichotomy between 'journal articles' and 'database entries' and an increasing adoption of hybrid models of collecting and disseminating scientific information. With respect to genomes and metagenomes and related data types, we feel the scientific community would be best served by the immediate launch of a central repository of short, highly structured 'Genome Notes' that must be standards-compliant. This could be done in the context of an existing journal, but we also suggest the more radical solution of launching a new journal. Such a journal could be designed to cater to a wide range of standards-related content types that are not currently centralized in the published literature. It could also support the demand for centralizing aspects of the 'gray literature' (documents developed by institutions or communities) such as the call by the GSCl for a central repository of Standard Operating Procedures describing the genomic annotation pipelines of the major sequencing centers. We argue that such an 'eJournal', published under the Open Access paradigm by the GSC, could be an attractive publishing forum for a broader range of standardization initiatives within, and beyond, the GSC and thereby fill an unoccupied yet increasingly important niche within the current research landscape.« less

  1. GTRAC: fast retrieval from compressed collections of genomic variants.

    PubMed

    Tatwawadi, Kedar; Hernaez, Mikel; Ochoa, Idoia; Weissman, Tsachy

    2016-09-01

    The dramatic decrease in the cost of sequencing has resulted in the generation of huge amounts of genomic data, as evidenced by projects such as the UK10K and the Million Veteran Project, with the number of sequenced genomes ranging in the order of 10 K to 1 M. Due to the large redundancies among genomic sequences of individuals from the same species, most of the medical research deals with the variants in the sequences as compared with a reference sequence, rather than with the complete genomic sequences. Consequently, millions of genomes represented as variants are stored in databases. These databases are constantly updated and queried to extract information such as the common variants among individuals or groups of individuals. Previous algorithms for compression of this type of databases lack efficient random access capabilities, rendering querying the database for particular variants and/or individuals extremely inefficient, to the point where compression is often relinquished altogether. We present a new algorithm for this task, called GTRAC, that achieves significant compression ratios while allowing fast random access over the compressed database. For example, GTRAC is able to compress a Homo sapiens dataset containing 1092 samples in 1.1 GB (compression ratio of 160), while allowing for decompression of specific samples in less than a second and decompression of specific variants in 17 ms. GTRAC uses and adapts techniques from information theory, such as a specialized Lempel-Ziv compressor, and tailored succinct data structures. The GTRAC algorithm is available for download at: https://github.com/kedartatwawadi/GTRAC CONTACT: : kedart@stanford.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Uncovering the novel characteristics of Asian honey bee, Apis cerana, by whole genome sequencing.

    PubMed

    Park, Doori; Jung, Je Won; Choi, Beom-Soon; Jayakodi, Murukarthick; Lee, Jeongsoo; Lim, Jongsung; Yu, Yeisoo; Choi, Yong-Soo; Lee, Myeong-Lyeol; Park, Yoonseong; Choi, Ik-Young; Yang, Tae-Jin; Edwards, Owain R; Nah, Gyoungju; Kwon, Hyung Wook

    2015-01-02

    The honey bee is an important model system for increasing understanding of molecular and neural mechanisms underlying social behaviors relevant to the agricultural industry and basic science. The western honey bee, Apis mellifera, has served as a model species, and its genome sequence has been published. In contrast, the genome of the Asian honey bee, Apis cerana, has not yet been sequenced. A. cerana has been raised in Asian countries for thousands of years and has brought considerable economic benefits to the apicultural industry. A cerana has divergent biological traits compared to A. mellifera and it has played a key role in maintaining biodiversity in eastern and southern Asia. Here we report the first whole genome sequence of A. cerana. Using de novo assembly methods, we produced a 238 Mbp draft of the A. cerana genome and generated 10,651 genes. A.cerana-specific genes were analyzed to better understand the novel characteristics of this honey bee species. Seventy-two percent of the A. cerana-specific genes had more than one GO term, and 1,696 enzymes were categorized into 125 pathways. Genes involved in chemoreception and immunity were carefully identified and compared to those from other sequenced insect models. These included 10 gustatory receptors, 119 odorant receptors, 10 ionotropic receptors, and 160 immune-related genes. This first report of the whole genome sequence of A. cerana provides resources for comparative sociogenomics, especially in the field of social insect communication. These important tools will contribute to a better understanding of the complex behaviors and natural biology of the Asian honey bee and to anticipate its future evolutionary trajectory.

  3. Parallel altitudinal clines reveal trends in adaptive evolution of genome size in Zea mays

    PubMed Central

    Berg, Jeremy J.; Birchler, James A.; Grote, Mark N.; Lorant, Anne; Quezada, Juvenal

    2018-01-01

    While the vast majority of genome size variation in plants is due to differences in repetitive sequence, we know little about how selection acts on repeat content in natural populations. Here we investigate parallel changes in intraspecific genome size and repeat content of domesticated maize (Zea mays) landraces and their wild relative teosinte across altitudinal gradients in Mesoamerica and South America. We combine genotyping, low coverage whole-genome sequence data, and flow cytometry to test for evidence of selection on genome size and individual repeat abundance. We find that population structure alone cannot explain the observed variation, implying that clinal patterns of genome size are maintained by natural selection. Our modeling additionally provides evidence of selection on individual heterochromatic knob repeats, likely due to their large individual contribution to genome size. To better understand the phenotypes driving selection on genome size, we conducted a growth chamber experiment using a population of highland teosinte exhibiting extensive variation in genome size. We find weak support for a positive correlation between genome size and cell size, but stronger support for a negative correlation between genome size and the rate of cell production. Reanalyzing published data of cell counts in maize shoot apical meristems, we then identify a negative correlation between cell production rate and flowering time. Together, our data suggest a model in which variation in genome size is driven by natural selection on flowering time across altitudinal clines, connecting intraspecific variation in repetitive sequence to important differences in adaptive phenotypes. PMID:29746459

  4. REBASE--a database for DNA restriction and modification: enzymes, genes and genomes.

    PubMed

    Roberts, Richard J; Vincze, Tamas; Posfai, Janos; Macelis, Dana

    2015-01-01

    REBASE is a comprehensive and fully curated database of information about the components of restriction-modification (RM) systems. It contains fully referenced information about recognition and cleavage sites for both restriction enzymes and methyltransferases as well as commercial availability, methylation sensitivity, crystal and sequence data. All genomes that are completely sequenced are analyzed for RM system components, and with the advent of PacBio sequencing, the recognition sequences of DNA methyltransferases (MTases) are appearing rapidly. Thus, Type I and Type III systems can now be characterized in terms of recognition specificity merely by DNA sequencing. The contents of REBASE may be browsed from the web http://rebase.neb.com and selected compilations can be downloaded by FTP (ftp.neb.com). Monthly updates are also available via email. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. AACR precision medicine series: Highlights of the integrating clinical genomics and cancer therapy meeting.

    PubMed

    Maggi, Elaine; Montagna, Cristina

    2015-12-01

    The American Association for Cancer Research (AACR) Precision Medicine Series "Integrating Clinical Genomics and Cancer Therapy" took place June 13-16, 2015 in Salt Lake City, Utah. The conference was co-chaired by Charles L. Sawyers form Memorial Sloan Kettering Cancer Center in New York, Elaine R. Mardis form Washington University School of Medicine in St. Louis, and Arul M. Chinnaiyan from University of Michigan in Ann Arbor. About 500 clinicians, basic science investigators, bioinformaticians, and postdoctoral fellows joined together to discuss the current state of Clinical Genomics and the advances and challenges of integrating Next Generation Sequencing (NGS) technologies into clinical practice. The plenary sessions and panel discussions covered current platforms and sequencing approaches adopted for NGS assays of cancer genome at several national and international institutions, different approaches used to map and classify targetable sequence variants, and how information acquired with the sequencing of the cancer genome is used to guide treatment options. While challenges still exist from a technological perspective, it emerged that there exists considerable need for the development of tools to aid the identification of the therapy most suitable based on the mutational profile of the somatic cancer genome. The process to match patients to ongoing clinical trials is still complex. In addition, the need for centralized data repositories, preferably linked to well annotated clinical records, that aid sharing of sequencing information is central to begin understanding the contribution of variants of unknown significance to tumor etiology and response to therapy. Here we summarize the highlights of this stimulating four-day conference with a major emphasis on the open problems that the clinical genomics community is currently facing and the tools most needed for advancing this field. Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  6. Defining and Evaluating a Core Genome Multilocus Sequence Typing Scheme for Genome-Wide Typing of Clostridium difficile.

    PubMed

    Bletz, Stefan; Janezic, Sandra; Harmsen, Dag; Rupnik, Maja; Mellmann, Alexander

    2018-06-01

    Clostridium difficile , recently renamed Clostridioides difficile , is the most common cause of antibiotic-associated nosocomial gastrointestinal infections worldwide. To differentiate endogenous infections and transmission events, highly discriminatory subtyping is necessary. Today, methods based on whole-genome sequencing data are increasingly used to subtype bacterial pathogens; however, frequently a standardized methodology and typing nomenclature are missing. Here we report a core genome multilocus sequence typing (cgMLST) approach developed for C. difficile Initially, we determined the breadth of the C. difficile population based on all available MLST sequence types with Bayesian inference (BAPS). The resulting BAPS partitions were used in combination with C. difficile clade information to select representative isolates that were subsequently used to define cgMLST target genes. Finally, we evaluated the novel cgMLST scheme with genomes from 3,025 isolates. BAPS grouping ( n = 6 groups) together with the clade information led to a total of 11 representative isolates that were included for cgMLST definition and resulted in 2,270 cgMLST genes that were present in all isolates. Overall, 2,184 to 2,268 cgMLST targets were detected in the genome sequences of 70 outbreak-associated and reference strains, and on average 99.3% cgMLST targets (1,116 to 2,270 targets) were present in 2,954 genomes downloaded from the NCBI database, underlining the representativeness of the cgMLST scheme. Moreover, reanalyzing different cluster scenarios with cgMLST were concordant to published single nucleotide variant analyses. In conclusion, the novel cgMLST is representative for the whole C. difficile population, is highly discriminatory in outbreak situations, and provides a unique nomenclature facilitating interlaboratory exchange. Copyright © 2018 American Society for Microbiology.

  7. Pan-genome multilocus sequence typing and outbreak-specific reference-based single nucleotide polymorphism analysis to resolve two concurrent Staphylococcus aureus outbreaks in neonatal services.

    PubMed

    Roisin, S; Gaudin, C; De Mendonça, R; Bellon, J; Van Vaerenbergh, K; De Bruyne, K; Byl, B; Pouseele, H; Denis, O; Supply, P

    2016-06-01

    We used a two-step whole genome sequencing analysis for resolving two concurrent outbreaks in two neonatal services in Belgium, caused by exfoliative toxin A-encoding-gene-positive (eta+) methicillin-susceptible Staphylococcus aureus with an otherwise sporadic spa-type t209 (ST-109). Outbreak A involved 19 neonates and one healthcare worker in a Brussels hospital from May 2011 to October 2013. After a first episode interrupted by decolonization procedures applied over 7 months, the outbreak resumed concomitantly with the onset of outbreak B in a hospital in Asse, comprising 11 neonates and one healthcare worker from mid-2012 to January 2013. Pan-genome multilocus sequence typing, defined on the basis of 42 core and accessory reference genomes, and single-nucleotide polymorphisms mapped on an outbreak-specific de novo assembly were used to compare 28 available outbreak isolates and 19 eta+/spa-type t209 isolates identified by routine or nationwide surveillance. Pan-genome multilocus sequence typing showed that the outbreaks were caused by independent clones not closely related to any of the surveillance isolates. Isolates from only ten cases with overlapping stays in outbreak A, including four pairs of twins, showed no or only a single nucleotide polymorphism variation, indicating limited sequential transmission. Detection of larger genomic variation, even from the start of the outbreak, pointed to sporadic seeding from a pre-existing exogenous source, which persisted throughout the whole course of outbreak A. Whole genome sequencing analysis can provide unique fine-tuned insights into transmission pathways of complex outbreaks even at their inception, which, with timely use, could valuably guide efforts for early source identification. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  8. Comparative whole genome analysis of six diagnostic brucellaphages.

    PubMed

    Farlow, Jason; Filippov, Andrey A; Sergueev, Kirill V; Hang, Jun; Kotorashvili, Adam; Nikolich, Mikeljon P

    2014-05-15

    Whole genome sequencing of six diagnostic brucellaphages, Tbilisi (Tb), Firenze (Fz), Weybridge (Wb), S708, Berkeley (Bk) and R/C, was followed with genomic comparisons including recently described genomes of the Tb phage from Mexico (TbM) and Pr phage to elucidate genomic diversity and candidate host range determinants. Comparative whole genome analysis revealed high sequence homogeneity among these brucellaphage genomes and resolved three genetic groups consistent with defined host range phenotypes. Group I was composed of Tb and Fz phages that are predominantly lytic for Brucella abortus and Brucella neotomae; Group II included Bk, R/C, and Pr phages that are lytic mainly for B. abortus, Brucella melitensis and Brucella suis; Group III was composed of Wb and S708 phages that are lytic for B. suis, B. abortus and B. neotomae. We found that the putative phage collar protein is a variable locus with features that may be contributing to the host specificities exhibited by different brucellaphage groups. The presence of several candidate host range determinants is illustrated herein for future dissection of the differential host specificity observed among these phages. Published by Elsevier B.V.

  9. Comparative genomics of 9 novel Paenibacillus larvae bacteriophages

    PubMed Central

    Stamereilers, Casey; LeBlanc, Lucy; Yost, Diane; Amy, Penny S.; Tsourkas, Philippos K.

    2016-01-01

    ABSTRACT American Foulbrood Disease, caused by the bacterium Paenibacillus larvae, is one of the most destructive diseases of the honeybee, Apis mellifera. Our group recently published the sequences of 9 new phages with the ability to infect and lyse P. larvae. Here, we characterize the genomes of these P. larvae phages, compare them to each other and to other sequenced P. larvae phages, and putatively identify protein function. The phage genomes are 38–45 kb in size and contain 68–86 genes, most of which appear to be unique to P. larvae phages. We classify P. larvae phages into 2 main clusters and one singleton based on nucleotide sequence identity. Three of the new phages show sequence similarity to other sequenced P. larvae phages, while the remaining 6 do not. We identified functions for roughly half of the P. larvae phage proteins, including structural, assembly, host lysis, DNA replication/metabolism, regulatory, and host-related functions. Structural and assembly proteins are highly conserved among our phages and are located at the start of the genome. DNA replication/metabolism, regulatory, and host-related proteins are located in the middle and end of the genome, and are not conserved, with many of these genes found in some of our phages but not others. All nine phages code for a conserved N-acetylmuramoyl-L-alanine amidase. Comparative analysis showed the phages use the “cohesive ends with 3′ overhang” DNA packaging strategy. This work is the first in-depth study of P. larvae phage genomics, and serves as a marker for future work in this area. PMID:27738559

  10. Genome-wide identification of aquaporin encoding genes in Brassica oleracea and their phylogenetic sequence comparison to Brassica crops and Arabidopsis

    PubMed Central

    Diehn, Till A.; Pommerrenig, Benjamin; Bernhardt, Nadine; Hartmann, Anja; Bienert, Gerd P.

    2015-01-01

    Aquaporins (AQPs) are essential channel proteins that regulate plant water homeostasis and the uptake and distribution of uncharged solutes such as metalloids, urea, ammonia, and carbon dioxide. Despite their importance as crop plants, little is known about AQP gene and protein function in cabbage (Brassica oleracea) and other Brassica species. The recent releases of the genome sequences of B. oleracea and Brassica rapa allow comparative genomic studies in these species to investigate the evolution and features of Brassica genes and proteins. In this study, we identified all AQP genes in B. oleracea by a genome-wide survey. In total, 67 genes of four plant AQP subfamilies were identified. Their full-length gene sequences and locations on chromosomes and scaffolds were manually curated. The identification of six additional full-length AQP sequences in the B. rapa genome added to the recently published AQP protein family of this species. A phylogenetic analysis of AQPs of Arabidopsis thaliana, B. oleracea, B. rapa allowed us to follow AQP evolution in closely related species and to systematically classify and (re-) name these isoforms. Thirty-three groups of AQP-orthologous genes were identified between B. oleracea and Arabidopsis and their expression was analyzed in different organs. The two selectivity filters, gene structure and coding sequences were highly conserved within each AQP subfamily while sequence variations in some introns and untranslated regions were frequent. These data suggest a similar substrate selectivity and function of Brassica AQPs compared to Arabidopsis orthologs. The comparative analyses of all AQP subfamilies in three Brassicaceae species give initial insights into AQP evolution in these taxa. Based on the genome-wide AQP identification in B. oleracea and the sequence analysis and reprocessing of Brassica AQP information, our dataset provides a sequence resource for further investigations of the physiological and molecular functions of Brassica crop AQPs. PMID:25904922

  11. Genome-wide identification and characterisation of human DNA replication origins by initiation site sequencing (ini-seq).

    PubMed

    Langley, Alexander R; Gräf, Stefan; Smith, James C; Krude, Torsten

    2016-12-01

    Next-generation sequencing has enabled the genome-wide identification of human DNA replication origins. However, different approaches to mapping replication origins, namely (i) sequencing isolated small nascent DNA strands (SNS-seq); (ii) sequencing replication bubbles (bubble-seq) and (iii) sequencing Okazaki fragments (OK-seq), show only limited concordance. To address this controversy, we describe here an independent high-resolution origin mapping technique that we call initiation site sequencing (ini-seq). In this approach, newly replicated DNA is directly labelled with digoxigenin-dUTP near the sites of its initiation in a cell-free system. The labelled DNA is then immunoprecipitated and genomic locations are determined by DNA sequencing. Using this technique we identify >25,000 discrete origin sites at sub-kilobase resolution on the human genome, with high concordance between biological replicates. Most activated origins identified by ini-seq are found at transcriptional start sites and contain G-quadruplex (G4) motifs. They tend to cluster in early-replicating domains, providing a correlation between early replication timing and local density of activated origins. Origins identified by ini-seq show highest concordance with sites identified by SNS-seq, followed by OK-seq and bubble-seq. Furthermore, germline origins identified by positive nucleotide distribution skew jumps overlap with origins identified by ini-seq and OK-seq more frequently and more specifically than do sites identified by either SNS-seq or bubble-seq. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. WhopGenome: high-speed access to whole-genome variation and sequence data in R.

    PubMed

    Wittelsbürger, Ulrich; Pfeifer, Bastian; Lercher, Martin J

    2015-02-01

    The statistical programming language R has become a de facto standard for the analysis of many types of biological data, and is well suited for the rapid development of new algorithms. However, variant call data from population-scale resequencing projects are typically too large to be read and processed efficiently with R's built-in I/O capabilities. WhopGenome can efficiently read whole-genome variation data stored in the widely used variant call format (VCF) file format into several R data types. VCF files can be accessed either on local hard drives or on remote servers. WhopGenome can associate variants with annotations such as those available from the UCSC genome browser, and can accelerate the reading process by filtering loci according to user-defined criteria. WhopGenome can also read other Tabix-indexed files and create indices to allow fast selective access to FASTA-formatted sequence files. The WhopGenome R package is available on CRAN at http://cran.r-project.org/web/packages/WhopGenome/. A Bioconductor package has been submitted. lercher@cs.uni-duesseldorf.de. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. CNVcaller: highly efficient and widely applicable software for detecting copy number variations in large populations.

    PubMed

    Wang, Xihong; Zheng, Zhuqing; Cai, Yudong; Chen, Ting; Li, Chao; Fu, Weiwei; Jiang, Yu

    2017-12-01

    The increasing amount of sequencing data available for a wide variety of species can be theoretically used for detecting copy number variations (CNVs) at the population level. However, the growing sample sizes and the divergent complexity of nonhuman genomes challenge the efficiency and robustness of current human-oriented CNV detection methods. Here, we present CNVcaller, a read-depth method for discovering CNVs in population sequencing data. The computational speed of CNVcaller was 1-2 orders of magnitude faster than CNVnator and Genome STRiP for complex genomes with thousands of unmapped scaffolds. CNV detection of 232 goats required only 1.4 days on a single compute node. Additionally, the Mendelian consistency of sheep trios indicated that CNVcaller mitigated the influence of high proportions of gaps and misassembled duplications in the nonhuman reference genome assembly. Furthermore, multiple evaluations using real sheep and human data indicated that CNVcaller achieved the best accuracy and sensitivity for detecting duplications. The fast generalized detection algorithms included in CNVcaller overcome prior computational barriers for detecting CNVs in large-scale sequencing data with complex genomic structures. Therefore, CNVcaller promotes population genetic analyses of functional CNVs in more species. © The Authors 2017. Published by Oxford University Press.

  14. De novo assembly of honey bee RNA viral genomes by tapping into the innate insect antiviral response pathway.

    PubMed

    Fung, Elisabeth; Hill, Kelly; Hogendoorn, Katja; Glatz, Richard V; Napier, Kathryn R; Bellgard, Matthew I; Barrero, Roberto A

    2018-02-01

    Bee pollination is critical for improving productivity of one third of all plants or plant products consumed by humans. The health of honey bees is in decline in many countries worldwide, and RNA viruses together with other biological, environmental and anthropogenic factors have been identified as the main causes. The rapid genetic variation of viruses represents a challenge for diagnosis. Thus, application of deep sequencing methods for detection and analysis of viruses has increased over the last years. In this study, we leverage from the innate Dicer-2 mediated antiviral response against viruses to reconstruct complete viral genomes using virus-derived small interfering RNAs (vsiRNAs). Symptomatic A. mellifera larvae collected from hives free of Colony Collapse Disorder (CCD) and the parasitic Varroa mite (Varroa destructor) were used to generate more than 107 million small RNA reads. We show that de novo assembly of insect viral sequences is less fragmented using only 22 nt long vsiRNAs rather than a combination of 21-22 nt small RNAs. Our results show that A. mellifera larvae activate the RNAi immune response in the presence of Sacbrood virus (SBV). We assembled three SBV genomes from three individual larvae from different hives in a single apiary, with 1-2% nucleotide sequence variability among them. We found 3-4% variability between SBV genomes generated in this study and earlier published Australian variants suggesting the presence of different SBV quasispecies within the country. Copyright © 2018. Published by Elsevier Inc.

  15. Efficient sequence-specific isolation of DNA fragments and chromatin by in vitro enChIP technology using recombinant CRISPR ribonucleoproteins.

    PubMed

    Fujita, Toshitsugu; Yuno, Miyuki; Fujii, Hodaka

    2016-04-01

    The clustered regularly interspaced short palindromic repeats (CRISPR) system is widely used for various biological applications, including genome editing. We developed engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR to isolate target genomic regions from cells for their biochemical characterization. In this study, we developed 'in vitro enChIP' using recombinant CRISPR ribonucleoproteins (RNPs) to isolate target genomic regions. in vitro enChIP has the great advantage over conventional enChIP of not requiring expression of CRISPR complexes in cells. We first showed that in vitro enChIP using recombinant CRISPR RNPs can be used to isolate target DNA from mixtures of purified DNA in a sequence-specific manner. In addition, we showed that this technology can be used to efficiently isolate target genomic regions, while retaining their intracellular molecular interactions, with negligible contamination from irrelevant genomic regions. Thus, in vitro enChIP technology is of potential use for sequence-specific isolation of DNA, as well as for identification of molecules interacting with genomic regions of interest in vivo in combination with downstream analysis. © 2016 The Authors. Genes to Cells published by Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  16. Complete mitochondrial genome of the Asian paddle crab Charybdis japonica (Crustacea: Decapoda: Portunidae): gene rearrangement of the marine brachyurans and phylogenetic considerations of the decapods.

    PubMed

    Liu, Yuan; Cui, Zhaoxia

    2010-06-01

    Given the commercial and ecological importance of the Asian paddle crab, Charybdis japonica, there is a clearly need for genetic and molecular research on this species. Here, we present the complete mitochondrial genome sequence of C. japonica, determined by the long-polymerase chain reaction and primer walking sequencing method. The entire genome is 15,738 bp in length, encoding a standard set of 13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes, plus the putative control region, which is typical for metazoans. The total A+T content of the genome is 69.2%, lower than the other brachyuran crabs except for Callinectes sapidus. The gene order is identical to the published marine brachyurans and differs from the ancestral pancrustacean order by only the position of the tRNA ( His ) gene. Phylogenetic analyses using the concatenated nucleotide and amino acid sequences of 13 protein-coding genes strongly support the monophyly of Dendrobranchiata and Pleocyemata, which is consistent with the previous taxonomic classification. However, the systematic status of Charybdis within subfamily Thalamitinae of family Portunidae is not supported. C. japonica, as the first species of Charybdis with complete mitochondrial genome available, will provide important information on both genomics and molecular ecology of the group.

  17. SeqHBase: a big data toolset for family based sequencing data analysis.

    PubMed

    He, Min; Person, Thomas N; Hebbring, Scott J; Heinzen, Ethan; Ye, Zhan; Schrodi, Steven J; McPherson, Elizabeth W; Lin, Simon M; Peissig, Peggy L; Brilliant, Murray H; O'Rawe, Jason; Robison, Reid J; Lyon, Gholson J; Wang, Kai

    2015-04-01

    Whole-genome sequencing (WGS) and whole-exome sequencing (WES) technologies are increasingly used to identify disease-contributing mutations in human genomic studies. It can be a significant challenge to process such data, especially when a large family or cohort is sequenced. Our objective was to develop a big data toolset to efficiently manipulate genome-wide variants, functional annotations and coverage, together with conducting family based sequencing data analysis. Hadoop is a framework for reliable, scalable, distributed processing of large data sets using MapReduce programming models. Based on Hadoop and HBase, we developed SeqHBase, a big data-based toolset for analysing family based sequencing data to detect de novo, inherited homozygous, or compound heterozygous mutations that may contribute to disease manifestations. SeqHBase takes as input BAM files (for coverage at every site), variant call format (VCF) files (for variant calls) and functional annotations (for variant prioritisation). We applied SeqHBase to a 5-member nuclear family and a 10-member 3-generation family with WGS data, as well as a 4-member nuclear family with WES data. Analysis times were almost linearly scalable with number of data nodes. With 20 data nodes, SeqHBase took about 5 secs to analyse WES familial data and approximately 1 min to analyse WGS familial data. These results demonstrate SeqHBase's high efficiency and scalability, which is necessary as WGS and WES are rapidly becoming standard methods to study the genetics of familial disorders. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  18. Concise classification of the genomic porcine endogenous retroviral gamma1 load to defined lineages.

    PubMed

    Klymiuk, Nikolai; Wolf, Eckhard; Aigner, Bernhard

    2008-02-05

    We investigated the infection history of porcine endogenous retroviruses (PERV) gamma1 by analyzing published env and LTR sequences. PERV sequences from various breeds, porcine cell lines and infected human primary cells were included in the study. We identified a considerable number of retroviral lineages indicating multiple independent colonization events of the porcine genome. A recent boost of the proviral load in an isolated pig herd and exclusive occurrence of distinct lineages in single studies indicated the ongoing colonization of the porcine genome with endogenous retroviruses. Retroviral recombination between co-packaged genomes was a general factor for PERV gamma1 diversity which indicated the simultaneous expression of different proviral loci over a period of time. In total, our detailed description of endogenous retroviral lineages is the prerequisite for breeding approaches to minimize the infectious potential of porcine tissues for the subsequent use in xenotransplantation.

  19. The Genome Sequence of Methanohalophilus mahii SLP T Reveals Differences in the Energy Metabolism among Members of the Methanosarcinaceae Inhabiting Freshwater and Saline Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spring, Stefan; Scheuner, Carmen; Lapidus, Alla

    Methanohalophilus mahii is the type species of the genus Methanohalophilus , which currently comprises three distinct species with validly published names. Mhp. mahii represents moderately halophilic methanogenic archaea with a strictly methylotrophic metabolism. The type strain SLP T was isolated from hypersaline sediments collected from the southern arm of Great Salt Lake, Utah. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,012,424 bp genome is a single replicon with 2032 protein-coding and 63 RNA genes and part of the Genomic Encyclopedia of Bacteria and Archaea project. A comparison of the reconstructedmore » energy metabolism in the halophilic species Mhp. mahii with other representatives of the Methanosarcinaceae reveals some interesting differences to freshwater species.« less

  20. The Genome Sequence of Methanohalophilus mahii SLP T Reveals Differences in the Energy Metabolism among Members of the Methanosarcinaceae Inhabiting Freshwater and Saline Environments

    DOE PAGES

    Spring, Stefan; Scheuner, Carmen; Lapidus, Alla; ...

    2010-01-01

    Methanohalophilus mahii is the type species of the genus Methanohalophilus , which currently comprises three distinct species with validly published names. Mhp. mahii represents moderately halophilic methanogenic archaea with a strictly methylotrophic metabolism. The type strain SLP T was isolated from hypersaline sediments collected from the southern arm of Great Salt Lake, Utah. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,012,424 bp genome is a single replicon with 2032 protein-coding and 63 RNA genes and part of the Genomic Encyclopedia of Bacteria and Archaea project. A comparison of the reconstructedmore » energy metabolism in the halophilic species Mhp. mahii with other representatives of the Methanosarcinaceae reveals some interesting differences to freshwater species.« less

  1. IonGAP: integrative bacterial genome analysis for Ion Torrent sequence data.

    PubMed

    Baez-Ortega, Adrian; Lorenzo-Diaz, Fabian; Hernandez, Mariano; Gonzalez-Vila, Carlos Ignacio; Roda-Garcia, Jose Luis; Colebrook, Marcos; Flores, Carlos

    2015-09-01

    We introduce IonGAP, a publicly available Web platform designed for the analysis of whole bacterial genomes using Ion Torrent sequence data. Besides assembly, it integrates a variety of comparative genomics, annotation and bacterial classification routines, based on the widely used FASTQ, BAM and SRA file formats. Benchmarking with different datasets evidenced that IonGAP is a fast, powerful and simple-to-use bioinformatics tool. By releasing this platform, we aim to translate low-cost bacterial genome analysis for microbiological prevention and control in healthcare, agroalimentary and pharmaceutical industry applications. IonGAP is hosted by the ITER's Teide-HPC supercomputer and is freely available on the Web for non-commercial use at http://iongap.hpc.iter.es. mcolesan@ull.edu.es or cflores@ull.edu.es Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Ancient Recombination Events between Human Herpes Simplex Viruses.

    PubMed

    Burrel, Sonia; Boutolleau, David; Ryu, Diane; Agut, Henri; Merkel, Kevin; Leendertz, Fabian H; Calvignac-Spencer, Sébastien

    2017-07-01

    Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) are seen as close relatives but also unambiguously considered as evolutionary independent units. Here, we sequenced the genomes of 18 HSV-2 isolates characterized by divergent UL30 gene sequences to further elucidate the evolutionary history of this virus. Surprisingly, genome-wide recombination analyses showed that all HSV-2 genomes sequenced to date contain HSV-1 fragments. Using phylogenomic analyses, we could also show that two main HSV-2 lineages exist. One lineage is mostly restricted to subSaharan Africa whereas the other has reached a global distribution. Interestingly, only the worldwide lineage is characterized by ancient recombination events with HSV-1. Our findings highlight the complexity of HSV-2 evolution, a virus of putative zoonotic origin which later recombined with its human-adapted relative. They also suggest that coinfections with HSV-1 and 2 may have genomic and potentially functional consequences and should therefore be monitored more closely. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. Haemagglutinin and neuraminidase sequencing delineate nosocomial influenza outbreaks with accuracy equivalent to whole genome sequencing.

    PubMed

    Houghton, Rebecca; Ellis, Joanna; Galiano, Monica; Clark, Tristan W; Wyllie, Sarah

    2017-04-01

    We describe haemagglutinin (HA) and neuraminidase (NA) sequencing in an apparent cross-site influenza A(H1N1) outbreak in renal transplant and haemodialysis patients, confirmed with whole genome sequencing (WGS). Isolates were sequenced from influenza positive individuals. Phylogenetic trees were constructed using HA and NA sequencing and subsequently WGS. Sequence data was analysed to determine genetic relatedness of viruses obtained from inpatient and outpatient cohorts and compared with epidemiological outbreak information. There were 6 patient cases of influenza in the inpatient renal ward cohort (associated with 3 deaths) and 9 patient cases in the outpatient haemodialysis unit cohort (no deaths). WGS confirmed clustered transmission of two genetically different influenza A(H1N1)pdm09 strains initially identified by analysis of HA and NA genes. WGS took longer, and in this case was not required to determine whether or not the two seemingly linked outbreaks were related. Rapid sequencing of HA and NA genes may be sufficient to aid early influenza outbreak investigation making it appealing for future outbreak investigation. However, as next generation sequencing becomes cheaper and more widely available and bioinformatics software is now freely accessible next generation whole genome analysis may increasingly become a valuable tool for real-time Influenza outbreak investigation. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  4. Complete plastid genome sequence of Daucus carota: Implications for biotechnology and phylogeny of angiosperms

    PubMed Central

    Ruhlman, Tracey; Lee, Seung-Bum; Jansen, Robert K; Hostetler, Jessica B; Tallon, Luke J; Town, Christopher D; Daniell, Henry

    2006-01-01

    Background Carrot (Daucus carota) is a major food crop in the US and worldwide. Its capacity for storage and its lifecycle as a biennial make it an attractive species for the introduction of foreign genes, especially for oral delivery of vaccines and other therapeutic proteins. Until recently efforts to express recombinant proteins in carrot have had limited success in terms of protein accumulation in the edible tap roots. Plastid genetic engineering offers the potential to overcome this limitation, as demonstrated by the accumulation of BADH in chromoplasts of carrot taproots to confer exceedingly high levels of salt resistance. The complete plastid genome of carrot provides essential information required for genetic engineering. Additionally, the sequence data add to the rapidly growing database of plastid genomes for assessing phylogenetic relationships among angiosperms. Results The complete carrot plastid genome is 155,911 bp in length, with 115 unique genes and 21 duplicated genes within the IR. There are four ribosomal RNAs, 30 distinct tRNA genes and 18 intron-containing genes. Repeat analysis reveals 12 direct and 2 inverted repeats ≥ 30 bp with a sequence identity ≥ 90%. Phylogenetic analysis of nucleotide sequences for 61 protein-coding genes using both maximum parsimony (MP) and maximum likelihood (ML) were performed for 29 angiosperms. Phylogenies from both methods provide strong support for the monophyly of several major angiosperm clades, including monocots, eudicots, rosids, asterids, eurosids II, euasterids I, and euasterids II. Conclusion The carrot plastid genome contains a number of dispersed direct and inverted repeats scattered throughout coding and non-coding regions. This is the first sequenced plastid genome of the family Apiaceae and only the second published genome sequence of the species-rich euasterid II clade. Both MP and ML trees provide very strong support (100% bootstrap) for the sister relationship of Daucus with Panax in the euasterid II clade. These results provide the best taxon sampling of complete chloroplast genomes and the strongest support yet for the sister relationship of Caryophyllales to the asterids. The availability of the complete plastid genome sequence should facilitate improved transformation efficiency and foreign gene expression in carrot through utilization of endogenous flanking sequences and regulatory elements. PMID:16945140

  5. CGAT: a model for immersive personalized training in computational genomics.

    PubMed

    Sims, David; Ponting, Chris P; Heger, Andreas

    2016-01-01

    How should the next generation of genomics scientists be trained while simultaneously pursuing high quality and diverse research? CGAT, the Computational Genomics Analysis and Training programme, was set up in 2010 by the UK Medical Research Council to complement its investment in next-generation sequencing capacity. CGAT was conceived around the twin goals of training future leaders in genome biology and medicine, and providing much needed capacity to UK science for analysing genome scale data sets. Here we outline the training programme employed by CGAT and describe how it dovetails with collaborative research projects to launch scientists on the road towards independent research careers in genomics. © The Author 2015. Published by Oxford University Press.

  6. Design and characterization of a 52K SNP chip for goats.

    PubMed

    Tosser-Klopp, Gwenola; Bardou, Philippe; Bouchez, Olivier; Cabau, Cédric; Crooijmans, Richard; Dong, Yang; Donnadieu-Tonon, Cécile; Eggen, André; Heuven, Henri C M; Jamli, Saadiah; Jiken, Abdullah Johari; Klopp, Christophe; Lawley, Cynthia T; McEwan, John; Martin, Patrice; Moreno, Carole R; Mulsant, Philippe; Nabihoudine, Ibouniyamine; Pailhoux, Eric; Palhière, Isabelle; Rupp, Rachel; Sarry, Julien; Sayre, Brian L; Tircazes, Aurélie; Jun Wang; Wang, Wen; Zhang, Wenguang

    2014-01-01

    The success of Genome Wide Association Studies in the discovery of sequence variation linked to complex traits in humans has increased interest in high throughput SNP genotyping assays in livestock species. Primary goals are QTL detection and genomic selection. The purpose here was design of a 50-60,000 SNP chip for goats. The success of a moderate density SNP assay depends on reliable bioinformatic SNP detection procedures, the technological success rate of the SNP design, even spacing of SNPs on the genome and selection of Minor Allele Frequencies (MAF) suitable to use in diverse breeds. Through the federation of three SNP discovery projects consolidated as the International Goat Genome Consortium, we have identified approximately twelve million high quality SNP variants in the goat genome stored in a database together with their biological and technical characteristics. These SNPs were identified within and between six breeds (meat, milk and mixed): Alpine, Boer, Creole, Katjang, Saanen and Savanna, comprising a total of 97 animals. Whole genome and Reduced Representation Library sequences were aligned on >10 kb scaffolds of the de novo goat genome assembly. The 60,000 selected SNPs, evenly spaced on the goat genome, were submitted for oligo manufacturing (Illumina, Inc) and published in dbSNP along with flanking sequences and map position on goat assemblies (i.e. scaffolds and pseudo-chromosomes), sheep genome V2 and cattle UMD3.1 assembly. Ten breeds were then used to validate the SNP content and 52,295 loci could be successfully genotyped and used to generate a final cluster file. The combined strategy of using mainly whole genome Next Generation Sequencing and mapping on a contig genome assembly, complemented with Illumina design tools proved to be efficient in producing this GoatSNP50 chip. Advances in use of molecular markers are expected to accelerate goat genomic studies in coming years.

  7. Design and Characterization of a 52K SNP Chip for Goats

    PubMed Central

    Tosser-Klopp, Gwenola; Bardou, Philippe; Bouchez, Olivier; Cabau, Cédric; Crooijmans, Richard; Dong, Yang; Donnadieu-Tonon, Cécile; Eggen, André; Heuven, Henri C. M.; Jamli, Saadiah; Jiken, Abdullah Johari; Klopp, Christophe; Lawley, Cynthia T.; McEwan, John; Martin, Patrice; Moreno, Carole R.; Mulsant, Philippe; Nabihoudine, Ibouniyamine; Pailhoux, Eric; Palhière, Isabelle; Rupp, Rachel; Sarry, Julien; Sayre, Brian L.; Tircazes, Aurélie; Jun Wang; Wang, Wen; Zhang, Wenguang

    2014-01-01

    The success of Genome Wide Association Studies in the discovery of sequence variation linked to complex traits in humans has increased interest in high throughput SNP genotyping assays in livestock species. Primary goals are QTL detection and genomic selection. The purpose here was design of a 50–60,000 SNP chip for goats. The success of a moderate density SNP assay depends on reliable bioinformatic SNP detection procedures, the technological success rate of the SNP design, even spacing of SNPs on the genome and selection of Minor Allele Frequencies (MAF) suitable to use in diverse breeds. Through the federation of three SNP discovery projects consolidated as the International Goat Genome Consortium, we have identified approximately twelve million high quality SNP variants in the goat genome stored in a database together with their biological and technical characteristics. These SNPs were identified within and between six breeds (meat, milk and mixed): Alpine, Boer, Creole, Katjang, Saanen and Savanna, comprising a total of 97 animals. Whole genome and Reduced Representation Library sequences were aligned on >10 kb scaffolds of the de novo goat genome assembly. The 60,000 selected SNPs, evenly spaced on the goat genome, were submitted for oligo manufacturing (Illumina, Inc) and published in dbSNP along with flanking sequences and map position on goat assemblies (i.e. scaffolds and pseudo-chromosomes), sheep genome V2 and cattle UMD3.1 assembly. Ten breeds were then used to validate the SNP content and 52,295 loci could be successfully genotyped and used to generate a final cluster file. The combined strategy of using mainly whole genome Next Generation Sequencing and mapping on a contig genome assembly, complemented with Illumina design tools proved to be efficient in producing this GoatSNP50 chip. Advances in use of molecular markers are expected to accelerate goat genomic studies in coming years. PMID:24465974

  8. Ribosomal DNA sequence heterogeneity reflects intraspecies phylogenies and predicts genome structure in two contrasting yeast species.

    PubMed

    West, Claire; James, Stephen A; Davey, Robert P; Dicks, Jo; Roberts, Ian N

    2014-07-01

    The ribosomal RNA encapsulates a wealth of evolutionary information, including genetic variation that can be used to discriminate between organisms at a wide range of taxonomic levels. For example, the prokaryotic 16S rDNA sequence is very widely used both in phylogenetic studies and as a marker in metagenomic surveys and the internal transcribed spacer region, frequently used in plant phylogenetics, is now recognized as a fungal DNA barcode. However, this widespread use does not escape criticism, principally due to issues such as difficulties in classification of paralogous versus orthologous rDNA units and intragenomic variation, both of which may be significant barriers to accurate phylogenetic inference. We recently analyzed data sets from the Saccharomyces Genome Resequencing Project, characterizing rDNA sequence variation within multiple strains of the baker's yeast Saccharomyces cerevisiae and its nearest wild relative Saccharomyces paradoxus in unprecedented detail. Notably, both species possess single locus rDNA systems. Here, we use these new variation datasets to assess whether a more detailed characterization of the rDNA locus can alleviate the second of these phylogenetic issues, sequence heterogeneity, while controlling for the first. We demonstrate that a strong phylogenetic signal exists within both datasets and illustrate how they can be used, with existing methodology, to estimate intraspecies phylogenies of yeast strains consistent with those derived from whole-genome approaches. We also describe the use of partial Single Nucleotide Polymorphisms, a type of sequence variation found only in repetitive genomic regions, in identifying key evolutionary features such as genome hybridization events and show their consistency with whole-genome Structure analyses. We conclude that our approach can transform rDNA sequence heterogeneity from a problem to a useful source of evolutionary information, enabling the estimation of highly accurate phylogenies of closely related organisms, and discuss how it could be extended to future studies of multilocus rDNA systems. [concerted evolution; genome hydridisation; phylogenetic analysis; ribosomal DNA; whole genome sequencing; yeast]. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.

  9. Elucidating the genomic architecture of Asian EGFR-mutant lung adenocarcinoma through multi-region exome sequencing.

    PubMed

    Nahar, Rahul; Zhai, Weiwei; Zhang, Tong; Takano, Angela; Khng, Alexis J; Lee, Yin Yeng; Liu, Xingliang; Lim, Chong Hee; Koh, Tina P T; Aung, Zaw Win; Lim, Tony Kiat Hon; Veeravalli, Lavanya; Yuan, Ju; Teo, Audrey S M; Chan, Cheryl X; Poh, Huay Mei; Chua, Ivan M L; Liew, Audrey Ann; Lau, Dawn Ping Xi; Kwang, Xue Lin; Toh, Chee Keong; Lim, Wan-Teck; Lim, Bing; Tam, Wai Leong; Tan, Eng-Huat; Hillmer, Axel M; Tan, Daniel S W

    2018-01-15

    EGFR-mutant lung adenocarcinomas (LUAD) display diverse clinical trajectories and are characterized by rapid but short-lived responses to EGFR tyrosine kinase inhibitors (TKIs). Through sequencing of 79 spatially distinct regions from 16 early stage tumors, we show that despite low mutation burdens, EGFR-mutant Asian LUADs unexpectedly exhibit a complex genomic landscape with frequent and early whole-genome doubling, aneuploidy, and high clonal diversity. Multiple truncal alterations, including TP53 mutations and loss of CDKN2A and RB1, converge on cell cycle dysregulation, with late sector-specific high-amplitude amplifications and deletions that potentially beget drug resistant clones. We highlight the association between genomic architecture and clinical phenotypes, such as co-occurring truncal drivers and primary TKI resistance. Through comparative analysis with published smoking-related LUAD, we postulate that the high intra-tumor heterogeneity observed in Asian EGFR-mutant LUAD may be contributed by an early dominant driver, genomic instability, and low background mutation rates.

  10. [Comparative analysis of variable regions in the genomes of variola virus].

    PubMed

    Babkin, I V; Nepomniashchikh, T S; Maksiutov, R A; Gutorov, V V; Babkina, I N; Shchelkunov, S N

    2008-01-01

    Nucleotide sequences of two extended segments of the terminal variable regions in variola virus genome were determined. The size of the left segment was 13.5 kbp and of the right, 10.5 kbp. Totally, over 540 kbp were sequenced for 22 variola virus strains. The conducted phylogenetic analysis and the data published earlier allowed us to find the interrelations between 70 variola virus isolates, the character of their clustering, and the degree of intergroup and intragroup variations of the clusters of variola virus strains. The most polymorphic loci of the genome segments studied were determined. It was demonstrated that that these loci are localized to either noncoding genome regions or to the regions of destroyed open reading frames, characteristic of the ancestor virus. These loci are promising for development of the strategy for genotyping variola virus strains. Analysis of recombination using various methods demonstrated that, with the only exception, no statistically significant recombinational events in the genomes of variola virus strains studied were detectable.

  11. Integration of Genomic and Other Epidemiologic Data to Investigate and Control a Cross-Institutional Outbreak of Streptococcus pyogenes.

    PubMed

    Chalker, Victoria J; Smith, Alyson; Al-Shahib, Ali; Botchway, Stella; Macdonald, Emily; Daniel, Roger; Phillips, Sarah; Platt, Steven; Doumith, Michel; Tewolde, Rediat; Coelho, Juliana; Jolley, Keith A; Underwood, Anthony; McCarthy, Noel D

    2016-06-01

    Single-strain outbreaks of Streptococcus pyogenes infections are common and often go undetected. In 2013, two clusters of invasive group A Streptococcus (iGAS) infection were identified in independent but closely located care homes in Oxfordshire, United Kingdom. Investigation included visits to each home, chart review, staff survey, microbiologic sampling, and genome sequencing. S. pyogenes emm type 1.0, the most common circulating type nationally, was identified from all cases yielding GAS isolates. A tailored whole-genome reference population comprising epidemiologically relevant contemporaneous isolates and published isolates was assembled. Data were analyzed independently using whole-genome multilocus sequencing and single-nucleotide polymorphism analyses. Six isolates from staff and residents of the homes formed a single cluster that was separated from the reference population by both analytical approaches. No further cases occurred after mass chemoprophylaxis and enhanced infection control. Our findings demonstrate the ability of 2 independent analytical approaches to enable robust conclusions from nonstandardized whole-genome analysis to support public health practice.

  12. DNA Breaks and End Resection Measured Genome-wide by End Sequencing.

    PubMed

    Canela, Andres; Sridharan, Sriram; Sciascia, Nicholas; Tubbs, Anthony; Meltzer, Paul; Sleckman, Barry P; Nussenzweig, André

    2016-09-01

    DNA double-strand breaks (DSBs) arise during physiological transcription, DNA replication, and antigen receptor diversification. Mistargeting or misprocessing of DSBs can result in pathological structural variation and mutation. Here we describe a sensitive method (END-seq) to monitor DNA end resection and DSBs genome-wide at base-pair resolution in vivo. We utilized END-seq to determine the frequency and spectrum of restriction-enzyme-, zinc-finger-nuclease-, and RAG-induced DSBs. Beyond sequence preference, chromatin features dictate the repertoire of these genome-modifying enzymes. END-seq can detect at least one DSB per cell among 10,000 cells not harboring DSBs, and we estimate that up to one out of 60 cells contains off-target RAG cleavage. In addition to site-specific cleavage, we detect DSBs distributed over extended regions during immunoglobulin class-switch recombination. Thus, END-seq provides a snapshot of DNA ends genome-wide, which can be utilized for understanding genome-editing specificities and the influence of chromatin on DSB pathway choice. Published by Elsevier Inc.

  13. The Metamorphosis of Amphibian Toxicogenomics

    PubMed Central

    Helbing, Caren C.

    2012-01-01

    Amphibians are important vertebrates in toxicology often representing both aquatic and terrestrial forms within the life history of the same species. Of the thousands of species, only two have substantial genomics resources: the recently published genome of the Pipid, Xenopus (Silurana) tropicalis, and transcript information (and ongoing genome sequencing project) of Xenopus laevis. However, many more species representative of regional ecological niches and life strategies are used in toxicology worldwide. Since Xenopus species diverged from the most populous frog family, the Ranidae, ~200 million years ago, there are notable differences between them and the even more distant Caudates (salamanders) and Caecilians. These differences include genome size, gene composition, and extent of polyploidization. Application of toxicogenomics to amphibians requires the mobilization of resources and expertise to develop de novo sequence assemblies and analysis strategies for a broader range of amphibian species. The present mini-review will present the advances in toxicogenomics as pertains to amphibians with particular emphasis upon the development and use of genomic techniques (inclusive of transcriptomics, proteomics, and metabolomics) and the challenges inherent therein. PMID:22435070

  14. Accurate typing of short tandem repeats from genome-wide sequencing data and its applications.

    PubMed

    Fungtammasan, Arkarachai; Ananda, Guruprasad; Hile, Suzanne E; Su, Marcia Shu-Wei; Sun, Chen; Harris, Robert; Medvedev, Paul; Eckert, Kristin; Makova, Kateryna D

    2015-05-01

    Short tandem repeats (STRs) are implicated in dozens of human genetic diseases and contribute significantly to genome variation and instability. Yet profiling STRs from short-read sequencing data is challenging because of their high sequencing error rates. Here, we developed STR-FM, short tandem repeat profiling using flank-based mapping, a computational pipeline that can detect the full spectrum of STR alleles from short-read data, can adapt to emerging read-mapping algorithms, and can be applied to heterogeneous genetic samples (e.g., tumors, viruses, and genomes of organelles). We used STR-FM to study STR error rates and patterns in publicly available human and in-house generated ultradeep plasmid sequencing data sets. We discovered that STRs sequenced with a PCR-free protocol have up to ninefold fewer errors than those sequenced with a PCR-containing protocol. We constructed an error correction model for genotyping STRs that can distinguish heterozygous alleles containing STRs with consecutive repeat numbers. Applying our model and pipeline to Illumina sequencing data with 100-bp reads, we could confidently genotype several disease-related long trinucleotide STRs. Utilizing this pipeline, for the first time we determined the genome-wide STR germline mutation rate from a deeply sequenced human pedigree. Additionally, we built a tool that recommends minimal sequencing depth for accurate STR genotyping, depending on repeat length and sequencing read length. The required read depth increases with STR length and is lower for a PCR-free protocol. This suite of tools addresses the pressing challenges surrounding STR genotyping, and thus is of wide interest to researchers investigating disease-related STRs and STR evolution. © 2015 Fungtammasan et al.; Published by Cold Spring Harbor Laboratory Press.

  15. Complete genome sequence of mumps viruses isolated from patients with parotitis, pancreatitis and encephalitis in India.

    PubMed

    Vaidya, Sunil R; Chowdhury, Deepika T; Jadhav, Santoshkumar M; Hamde, Venkat S

    2016-04-01

    Limited information is available regarding epidemiology of mumps in India. Mumps vaccine is not included in the Universal Immunization Program of India. The complete genome sequences of Indian mumps virus (MuV) isolates are not available, hence this study was performed. Five isolates from bilateral parotitis and pancreatitis patients from Maharashtra, a MuV isolate from unilateral parotitis patient from Tamil Nadu, and a MuV isolate from encephalitis patient from Uttar Pradesh were genotyped by the standard protocol of the World Health Organization and subsequently complete genomes were sequenced. Indian MuV genomes were compared with published MuV genomes, including reference genotypes and eight vaccine strains for the genetic differences. The SH gene analysis revealed that five MuV isolates belonged to genotype C and two belonged to genotype G strains. The percent nucleotide divergence (PND) was 1.1% amongst five MuV genotype C strains and 2.2% amongst two MuV genotype G strains. A comparison with widely used mumps Jeryl Lynn vaccine strain revealed that Indian mumps isolates had 54, 54, 53, 49, 49, 38, and 49 amino acid substitutions in Chennai-2012, Kushinagar-2013, Pune-2008, Osmanabad-2012a, Osmanabad-2012b, Pune-1986 and Pune-2012, respectively. This study reports the complete genome sequences of Indian MuV strains obtained in years 1986, 2008, 2012 and 2013 that may be useful for further studies in India and globally. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Low-Pass Genome-Wide Sequencing and Variant Inference Using Identity-by-Descent in an Isolated Human Population

    PubMed Central

    Gusev, A.; Shah, M. J.; Kenny, E. E.; Ramachandran, A.; Lowe, J. K.; Salit, J.; Lee, C. C.; Levandowsky, E. C.; Weaver, T. N.; Doan, Q. C.; Peckham, H. E.; McLaughlin, S. F.; Lyons, M. R.; Sheth, V. N.; Stoffel, M.; De La Vega, F. M.; Friedman, J. M.; Breslow, J. L.

    2012-01-01

    Whole-genome sequencing in an isolated population with few founders directly ascertains variants from the population bottleneck that may be rare elsewhere. In such populations, shared haplotypes allow imputation of variants in unsequenced samples without resorting to complex statistical methods as in studies of outbred cohorts. We focus on an isolated population cohort from the Pacific Island of Kosrae, Micronesia, where we previously collected SNP array and rich phenotype data for the majority of the population. We report identification of long regions with haplotypes co-inherited between pairs of individuals and methodology to leverage such shared genetic content for imputation. Our estimates show that sequencing as few as 40 personal genomes allows for inference in up to 60% of the 3000-person cohort at the average locus. We ascertained a pilot data set of whole-genome sequences from seven Kosraean individuals, with average 5× coverage. This assay identified 5,735,306 unique sites of which 1,212,831 were previously unknown. Additionally, these variants are unusually enriched for alleles that are rare in other populations when compared to geographic neighbors (published Korean genome SJK). We used the presence of shared haplotypes between the seven Kosraen individuals to estimate expected imputation accuracy of known and novel homozygous variants at 99.6% and 97.3%, respectively. This study presents whole-genome analysis of a homogenous isolate population with emphasis on optimal rare variant inference. PMID:22135348

  17. Hunting the Extinct Steppe Bison (Bison priscus) Mitochondrial Genome in the Trois-Frères Paleolithic Painted Cave

    PubMed Central

    Marsolier-Kergoat, Marie-Claude; Palacio, Pauline; Berthonaud, Véronique; Maksud, Frédéric; Stafford, Thomas; Bégouën, Robert; Elalouf, Jean-Marc

    2015-01-01

    Despite the abundance of fossil remains for the extinct steppe bison (Bison priscus), an animal that was painted and engraved in numerous European Paleolithic caves, a complete mitochondrial genome sequence has never been obtained for this species. In the present study we collected bone samples from a sector of the Trois-Frères Paleolithic cave (Ariège, France) that formerly functioned as a pitfall and was sealed before the end of the Pleistocene. Screening the DNA content of the samples collected from the ground surface revealed their contamination by Bos DNA. However, a 19,000-year-old rib collected on a rock apart the pathway delineated for modern visitors was devoid of such contaminants and reproducibly yielded Bison priscus DNA. High-throughput shotgun sequencing combined with conventional PCR analysis of the rib DNA extract enabled to reconstruct a complete mitochondrial genome sequence of 16,318 bp for the extinct steppe bison with a 10.4-fold coverage. Phylogenetic analyses robustly established the position of the Bison priscus mitochondrial genome as basal to the clade delineated by the genomes of the modern American Bison bison. The extinct steppe bison sequence, which exhibits 93 specific polymorphisms as compared to the published Bison bison mitochondrial genomes, provides an additional resource for the study of Bovinae specimens. Moreover this study of ancient DNA delineates a new research pathway for the analysis of the Magdalenian Trois-Frères cave. PMID:26083419

  18. Hunting the Extinct Steppe Bison (Bison priscus) Mitochondrial Genome in the Trois-Frères Paleolithic Painted Cave.

    PubMed

    Marsolier-Kergoat, Marie-Claude; Palacio, Pauline; Berthonaud, Véronique; Maksud, Frédéric; Stafford, Thomas; Bégouën, Robert; Elalouf, Jean-Marc

    2015-01-01

    Despite the abundance of fossil remains for the extinct steppe bison (Bison priscus), an animal that was painted and engraved in numerous European Paleolithic caves, a complete mitochondrial genome sequence has never been obtained for this species. In the present study we collected bone samples from a sector of the Trois-Frères Paleolithic cave (Ariège, France) that formerly functioned as a pitfall and was sealed before the end of the Pleistocene. Screening the DNA content of the samples collected from the ground surface revealed their contamination by Bos DNA. However, a 19,000-year-old rib collected on a rock apart the pathway delineated for modern visitors was devoid of such contaminants and reproducibly yielded Bison priscus DNA. High-throughput shotgun sequencing combined with conventional PCR analysis of the rib DNA extract enabled to reconstruct a complete mitochondrial genome sequence of 16,318 bp for the extinct steppe bison with a 10.4-fold coverage. Phylogenetic analyses robustly established the position of the Bison priscus mitochondrial genome as basal to the clade delineated by the genomes of the modern American Bison bison. The extinct steppe bison sequence, which exhibits 93 specific polymorphisms as compared to the published Bison bison mitochondrial genomes, provides an additional resource for the study of Bovinae specimens. Moreover this study of ancient DNA delineates a new research pathway for the analysis of the Magdalenian Trois-Frères cave.

  19. Simultaneous and complete genome sequencing of influenza A and B with high coverage by Illumina MiSeq Platform.

    PubMed

    Rutvisuttinunt, Wiriya; Chinnawirotpisan, Piyawan; Simasathien, Sriluck; Shrestha, Sanjaya K; Yoon, In-Kyu; Klungthong, Chonticha; Fernandez, Stefan

    2013-11-01

    Active global surveillance and characterization of influenza viruses are essential for better preparation against possible pandemic events. Obtaining comprehensive information about the influenza genome can improve our understanding of the evolution of influenza viruses and emergence of new strains, and improve the accuracy when designing preventive vaccines. This study investigated the use of deep sequencing by the next-generation sequencing (NGS) Illumina MiSeq Platform to obtain complete genome sequence information from influenza virus isolates. The influenza virus isolates were cultured from 6 respiratory acute clinical specimens collected in Thailand and Nepal. DNA libraries obtained from each viral isolate were mixed and all were sequenced simultaneously. Total information of 2.6 Gbases was obtained from a 455±14 K/mm2 density with 95.76% (8,571,655/8,950,724 clusters) of the clusters passing quality control (QC) filters. Approximately 93.7% of all sequences from Read1 and 83.5% from Read2 contained high quality sequences that were ≥Q30, a base calling QC score standard. Alignments analysis identified three seasonal influenza A H3N2 strains, one 2009 pandemic influenza A H1N1 strain and two influenza B strains. The nearly entire genomes of all six virus isolates yielded equal or greater than 600-fold sequence coverage depth. MiSeq Platform identified seasonal influenza A H3N2, 2009 pandemic influenza A H1N1and influenza B in the DNA library mixtures efficiently. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  20. A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants.

    PubMed

    Pilkington, Sarah M; Crowhurst, Ross; Hilario, Elena; Nardozza, Simona; Fraser, Lena; Peng, Yongyan; Gunaseelan, Kularajathevan; Simpson, Robert; Tahir, Jibran; Deroles, Simon C; Templeton, Kerry; Luo, Zhiwei; Davy, Marcus; Cheng, Canhong; McNeilage, Mark; Scaglione, Davide; Liu, Yifei; Zhang, Qiong; Datson, Paul; De Silva, Nihal; Gardiner, Susan E; Bassett, Heather; Chagné, David; McCallum, John; Dzierzon, Helge; Deng, Cecilia; Wang, Yen-Yi; Barron, Lorna; Manako, Kelvina; Bowen, Judith; Foster, Toshi M; Erridge, Zoe A; Tiffin, Heather; Waite, Chethi N; Davies, Kevin M; Grierson, Ella P; Laing, William A; Kirk, Rebecca; Chen, Xiuyin; Wood, Marion; Montefiori, Mirco; Brummell, David A; Schwinn, Kathy E; Catanach, Andrew; Fullerton, Christina; Li, Dawei; Meiyalaghan, Sathiyamoorthy; Nieuwenhuizen, Niels; Read, Nicola; Prakash, Roneel; Hunter, Don; Zhang, Huaibi; McKenzie, Marian; Knäbel, Mareike; Harris, Alastair; Allan, Andrew C; Gleave, Andrew; Chen, Angela; Janssen, Bart J; Plunkett, Blue; Ampomah-Dwamena, Charles; Voogd, Charlotte; Leif, Davin; Lafferty, Declan; Souleyre, Edwige J F; Varkonyi-Gasic, Erika; Gambi, Francesco; Hanley, Jenny; Yao, Jia-Long; Cheung, Joey; David, Karine M; Warren, Ben; Marsh, Ken; Snowden, Kimberley C; Lin-Wang, Kui; Brian, Lara; Martinez-Sanchez, Marcela; Wang, Mindy; Ileperuma, Nadeesha; Macnee, Nikolai; Campin, Robert; McAtee, Peter; Drummond, Revel S M; Espley, Richard V; Ireland, Hilary S; Wu, Rongmei; Atkinson, Ross G; Karunairetnam, Sakuntala; Bulley, Sean; Chunkath, Shayhan; Hanley, Zac; Storey, Roy; Thrimawithana, Amali H; Thomson, Susan; David, Charles; Testolin, Raffaele; Huang, Hongwen; Hellens, Roger P; Schaffer, Robert J

    2018-04-16

    Most published genome sequences are drafts, and most are dominated by computational gene prediction. Draft genomes typically incorporate considerable sequence data that are not assigned to chromosomes, and predicted genes without quality confidence measures. The current Actinidia chinensis (kiwifruit) 'Hongyang' draft genome has 164 Mb of sequences unassigned to pseudo-chromosomes, and omissions have been identified in the gene models. A second genome of an A. chinensis (genotype Red5) was fully sequenced. This new sequence resulted in a 554.0 Mb assembly with all but 6 Mb assigned to pseudo-chromosomes. Pseudo-chromosomal comparisons showed a considerable number of translocation events have occurred following a whole genome duplication (WGD) event some consistent with centromeric Robertsonian-like translocations. RNA sequencing data from 12 tissues and ab initio analysis informed a genome-wide manual annotation, using the WebApollo tool. In total, 33,044 gene loci represented by 33,123 isoforms were identified, named and tagged for quality of evidential support. Of these 3114 (9.4%) were identical to a protein within 'Hongyang' The Kiwifruit Information Resource (KIR v2). Some proportion of the differences will be varietal polymorphisms. However, as most computationally predicted Red5 models required manual re-annotation this proportion is expected to be small. The quality of the new gene models was tested by fully sequencing 550 cloned 'Hort16A' cDNAs and comparing with the predicted protein models for Red5 and both the original 'Hongyang' assembly and the revised annotation from KIR v2. Only 48.9% and 63.5% of the cDNAs had a match with 90% identity or better to the original and revised 'Hongyang' annotation, respectively, compared with 90.9% to the Red5 models. Our study highlights the need to take a cautious approach to draft genomes and computationally predicted genes. Our use of the manual annotation tool WebApollo facilitated manual checking and correction of gene models enabling improvement of computational prediction. This utility was especially relevant for certain types of gene families such as the EXPANSIN like genes. Finally, this high quality gene set will supply the kiwifruit and general plant community with a new tool for genomics and other comparative analysis.

  1. Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing

    PubMed Central

    2013-01-01

    Background Artificial selection played an important role in the origin of modern Glycine max cultivars from the wild soybean Glycine soja. To elucidate the consequences of artificial selection accompanying the domestication and modern improvement of soybean, 25 new and 30 published whole-genome re-sequencing accessions, which represent wild, domesticated landrace, and Chinese elite soybean populations were analyzed. Results A total of 5,102,244 single nucleotide polymorphisms (SNPs) and 707,969 insertion/deletions were identified. Among the SNPs detected, 25.5% were not described previously. We found that artificial selection during domestication led to more pronounced reduction in the genetic diversity of soybean than the switch from landraces to elite cultivars. Only a small proportion (2.99%) of the whole genomic regions appear to be affected by artificial selection for preferred agricultural traits. The selection regions were not distributed randomly or uniformly throughout the genome. Instead, clusters of selection hotspots in certain genomic regions were observed. Moreover, a set of candidate genes (4.38% of the total annotated genes) significantly affected by selection underlying soybean domestication and genetic improvement were identified. Conclusions Given the uniqueness of the soybean germplasm sequenced, this study drew a clear picture of human-mediated evolution of the soybean genomes. The genomic resources and information provided by this study would also facilitate the discovery of genes/loci underlying agronomically important traits. PMID:23984715

  2. Whole-genome sequencing reveals clonal expansion of multiresistant Staphylococcus haemolyticus in European hospitals.

    PubMed

    Cavanagh, Jorunn Pauline; Hjerde, Erik; Holden, Matthew T G; Kahlke, Tim; Klingenberg, Claus; Flægstad, Trond; Parkhill, Julian; Bentley, Stephen D; Sollid, Johanna U Ericson

    2014-11-01

    Staphylococcus haemolyticus is an emerging cause of nosocomial infections, primarily affecting immunocompromised patients. A comparative genomic analysis was performed on clinical S. haemolyticus isolates to investigate their genetic relationship and explore the coding sequences with respect to antimicrobial resistance determinants and putative hospital adaptation. Whole-genome sequencing was performed on 134 isolates of S. haemolyticus from geographically diverse origins (Belgium, 2; Germany, 10; Japan, 13; Norway, 54; Spain, 2; Switzerland, 43; UK, 9; USA, 1). Each genome was individually assembled. Protein coding sequences (CDSs) were predicted and homologous genes were categorized into three types: Type I, core genes, homologues present in all strains; Type II, unique core genes, homologues shared by only a subgroup of strains; and Type III, unique genes, strain-specific CDSs. The phylogenetic relationship between the isolates was built from variable sites in the form of single nucleotide polymorphisms (SNPs) in the core genome and used to construct a maximum likelihood phylogeny. SNPs in the genome core regions divided the isolates into one major group of 126 isolates and one minor group of isolates with highly diverse genomes. The major group was further subdivided into seven clades (A-G), of which four (A-D) encompassed isolates only from Europe. Antimicrobial multiresistance was observed in 77.7% of the collection. High levels of homologous recombination were detected in genes involved in adherence, staphylococcal host adaptation and bacterial cell communication. The presence of several successful and highly resistant clones underlines the adaptive potential of this opportunistic pathogen. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  3. Alignment of 1000 Genomes Project reads to reference assembly GRCh38.

    PubMed

    Zheng-Bradley, Xiangqun; Streeter, Ian; Fairley, Susan; Richardson, David; Clarke, Laura; Flicek, Paul

    2017-07-01

    The 1000 Genomes Project produced more than 100 trillion basepairs of short read sequence from more than 2600 samples in 26 populations over a period of five years. In its final phase, the project released over 85 million genotyped and phased variants on human reference genome assembly GRCh37. An updated reference assembly, GRCh38, was released in late 2013, but there was insufficient time for the final phase of the project analysis to change to the new assembly. Although it is possible to lift the coordinates of the 1000 Genomes Project variants to the new assembly, this is a potentially error-prone process as coordinate remapping is most appropriate only for non-repetitive regions of the genome and those that did not see significant change between the two assemblies. It will also miss variants in any region that was newly added to GRCh38. Thus, to produce the highest quality variants and genotypes on GRCh38, the best strategy is to realign the reads and recall the variants based on the new alignment. As the first step of variant calling for the 1000 Genomes Project data, we have finished remapping all of the 1000 Genomes sequence reads to GRCh38 with alternative scaffold-aware BWA-MEM. The resulting alignments are available as CRAM, a reference-based sequence compression format. The data have been released on our FTP site and are also available from European Nucleotide Archive to facilitate researchers discovering variants on the primary sequences and alternative contigs of GRCh38. © The Authors 2017. Published by Oxford University Press.

  4. Saturated linkage map construction in Rubus idaeus using genotyping by sequencing and genome-independent imputation

    PubMed Central

    2013-01-01

    Background Rapid development of highly saturated genetic maps aids molecular breeding, which can accelerate gain per breeding cycle in woody perennial plants such as Rubus idaeus (red raspberry). Recently, robust genotyping methods based on high-throughput sequencing were developed, which provide high marker density, but result in some genotype errors and a large number of missing genotype values. Imputation can reduce the number of missing values and can correct genotyping errors, but current methods of imputation require a reference genome and thus are not an option for most species. Results Genotyping by Sequencing (GBS) was used to produce highly saturated maps for a R. idaeus pseudo-testcross progeny. While low coverage and high variance in sequencing resulted in a large number of missing values for some individuals, a novel method of imputation based on maximum likelihood marker ordering from initial marker segregation overcame the challenge of missing values, and made map construction computationally tractable. The two resulting parental maps contained 4521 and 2391 molecular markers spanning 462.7 and 376.6 cM respectively over seven linkage groups. Detection of precise genomic regions with segregation distortion was possible because of map saturation. Microsatellites (SSRs) linked these results to published maps for cross-validation and map comparison. Conclusions GBS together with genome-independent imputation provides a rapid method for genetic map construction in any pseudo-testcross progeny. Our method of imputation estimates the correct genotype call of missing values and corrects genotyping errors that lead to inflated map size and reduced precision in marker placement. Comparison of SSRs to published R. idaeus maps showed that the linkage maps constructed with GBS and our method of imputation were robust, and marker positioning reliable. The high marker density allowed identification of genomic regions with segregation distortion in R. idaeus, which may help to identify deleterious alleles that are the basis of inbreeding depression in the species. PMID:23324311

  5. CanvasDB: a local database infrastructure for analysis of targeted- and whole genome re-sequencing projects.

    PubMed

    Ameur, Adam; Bunikis, Ignas; Enroth, Stefan; Gyllensten, Ulf

    2014-01-01

    CanvasDB is an infrastructure for management and analysis of genetic variants from massively parallel sequencing (MPS) projects. The system stores SNP and indel calls in a local database, designed to handle very large datasets, to allow for rapid analysis using simple commands in R. Functional annotations are included in the system, making it suitable for direct identification of disease-causing mutations in human exome- (WES) or whole-genome sequencing (WGS) projects. The system has a built-in filtering function implemented to simultaneously take into account variant calls from all individual samples. This enables advanced comparative analysis of variant distribution between groups of samples, including detection of candidate causative mutations within family structures and genome-wide association by sequencing. In most cases, these analyses are executed within just a matter of seconds, even when there are several hundreds of samples and millions of variants in the database. We demonstrate the scalability of canvasDB by importing the individual variant calls from all 1092 individuals present in the 1000 Genomes Project into the system, over 4.4 billion SNPs and indels in total. Our results show that canvasDB makes it possible to perform advanced analyses of large-scale WGS projects on a local server. Database URL: https://github.com/UppsalaGenomeCenter/CanvasDB. © The Author(s) 2014. Published by Oxford University Press.

  6. Comparative genomics provides new insights into the diversity, physiology, and sexuality of the only industrially exploited tremellomycete: Phaffia rhodozyma

    DOE PAGES

    Bellora, Nicolas; Moline, Martin; David-Palma, Marcia; ...

    2016-11-09

    The class Tremellomycete (Agaricomycotina) encompasses more than 380 fungi. Although there are a few edible Tremella spp., the only species with current biotechnological use is the astaxanthin-producing yeast Phaffia rhodozyma (Cystofilobasidiales). Besides astaxanthin, a carotenoid pigment with potent antioxidant activity and great value for aquaculture and pharmaceutical industries, P. rhodozyma possesses multiple exceptional traits of fundamental and applied interest. The aim of this study was to obtain, and analyze two new genome sequences of representative strains from the northern (CBS 7918 T, the type strain) and southern hemispheres (CRUB 1149) and compre them to a previously published genome sequence (strainmore » CBS 6938). Furthermore, photoprotection and antioxidant related genes, as well as genes involved in sexual reproduction were analyzed.« less

  7. Comparative genomics provides new insights into the diversity, physiology, and sexuality of the only industrially exploited tremellomycete: Phaffia rhodozyma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellora, Nicolas; Moline, Martin; David-Palma, Marcia

    The class Tremellomycete (Agaricomycotina) encompasses more than 380 fungi. Although there are a few edible Tremella spp., the only species with current biotechnological use is the astaxanthin-producing yeast Phaffia rhodozyma (Cystofilobasidiales). Besides astaxanthin, a carotenoid pigment with potent antioxidant activity and great value for aquaculture and pharmaceutical industries, P. rhodozyma possesses multiple exceptional traits of fundamental and applied interest. The aim of this study was to obtain, and analyze two new genome sequences of representative strains from the northern (CBS 7918 T, the type strain) and southern hemispheres (CRUB 1149) and compre them to a previously published genome sequence (strainmore » CBS 6938). Furthermore, photoprotection and antioxidant related genes, as well as genes involved in sexual reproduction were analyzed.« less

  8. From clinical sample to complete genome: Comparing methods for the extraction of HIV-1 RNA for high-throughput deep sequencing.

    PubMed

    Cornelissen, Marion; Gall, Astrid; Vink, Monique; Zorgdrager, Fokla; Binter, Špela; Edwards, Stephanie; Jurriaans, Suzanne; Bakker, Margreet; Ong, Swee Hoe; Gras, Luuk; van Sighem, Ard; Bezemer, Daniela; de Wolf, Frank; Reiss, Peter; Kellam, Paul; Berkhout, Ben; Fraser, Christophe; van der Kuyl, Antoinette C

    2017-07-15

    The BEEHIVE (Bridging the Evolution and Epidemiology of HIV in Europe) project aims to analyse nearly-complete viral genomes from >3000 HIV-1 infected Europeans using high-throughput deep sequencing techniques to investigate the virus genetic contribution to virulence. Following the development of a computational pipeline, including a new de novo assembler for RNA virus genomes, to generate larger contiguous sequences (contigs) from the abundance of short sequence reads that characterise the data, another area that determines genome sequencing success is the quality and quantity of the input RNA. A pilot experiment with 125 patient plasma samples was performed to investigate the optimal method for isolation of HIV-1 viral RNA for long amplicon genome sequencing. Manual isolation with the QIAamp Viral RNA Mini Kit (Qiagen) was superior over robotically extracted RNA using either the QIAcube robotic system, the mSample Preparation Systems RNA kit with automated extraction by the m2000sp system (Abbott Molecular), or the MagNA Pure 96 System in combination with the MagNA Pure 96 Instrument (Roche Diagnostics). We scored amplification of a set of four HIV-1 amplicons of ∼1.9, 3.6, 3.0 and 3.5kb, and subsequent recovery of near-complete viral genomes. Subsequently, 616 BEEHIVE patient samples were analysed to determine factors that influence successful amplification of the genome in four overlapping amplicons using the QIAamp Viral RNA Kit for viral RNA isolation. Both low plasma viral load and high sample age (stored before 1999) negatively influenced the amplification of viral amplicons >3kb. A plasma viral load of >100,000 copies/ml resulted in successful amplification of all four amplicons for 86% of the samples, this value dropped to only 46% for samples with viral loads of <20,000 copies/ml. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. A Single Multiplex crRNA Array for FnCpf1-Mediated Human Genome Editing.

    PubMed

    Sun, Huihui; Li, Fanfan; Liu, Jie; Yang, Fayu; Zeng, Zhenhai; Lv, Xiujuan; Tu, Mengjun; Liu, Yeqing; Ge, Xianglian; Liu, Changbao; Zhao, Junzhao; Zhang, Zongduan; Qu, Jia; Song, Zongming; Gu, Feng

    2018-06-15

    Cpf1 has been harnessed as a tool for genome manipulation in various species because of its simplicity and high efficiency. Our recent study demonstrated that FnCpf1 could be utilized for human genome editing with notable advantages for target sequence selection due to the flexibility of the protospacer adjacent motif (PAM) sequence. Multiplex genome editing provides a powerful tool for targeting members of multigene families, dissecting gene networks, modeling multigenic disorders in vivo, and applying gene therapy. However, there are no reports at present that show FnCpf1-mediated multiplex genome editing via a single customized CRISPR RNA (crRNA) array. In the present study, we utilize a single customized crRNA array to simultaneously target multiple genes in human cells. In addition, we also demonstrate that a single customized crRNA array to target multiple sites in one gene could be achieved. Collectively, FnCpf1, a powerful genome-editing tool for multiple genomic targets, can be harnessed for effective manipulation of the human genome. Copyright © 2018 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  10. Hepatitis E virus genotype 3 diversity: phylogenetic analysis and presence of subtype 3b in wild boar in Europe.

    PubMed

    Vina-Rodriguez, Ariel; Schlosser, Josephine; Becher, Dietmar; Kaden, Volker; Groschup, Martin H; Eiden, Martin

    2015-05-22

    An increasing number of indigenous cases of hepatitis E caused by genotype 3 viruses (HEV-3) have been diagnosed all around the word, particularly in industrialized countries. Hepatitis E is a zoonotic disease and accumulating evidence indicates that domestic pigs and wild boars are the main reservoirs of HEV-3. A detailed analysis of HEV-3 subtypes could help to determine the interplay of human activity, the role of animals as reservoirs and cross species transmission. Although complete genome sequences are most appropriate for HEV subtype determination, in most cases only partial genomic sequences are available. We therefore carried out a subtype classification analysis, which uses regions from all three open reading frames of the genome. Using this approach, more than 1000 published HEV-3 isolates were subtyped. Newly recovered HEV partial sequences from hunted German wild boars were also included in this study. These sequences were assigned to genotype 3 and clustered within subtype 3a, 3i and, unexpectedly, one of them within the subtype 3b, a first non-human report of this subtype in Europe.

  11. The first complete mitochondrial genome of Dacus longicornis (Diptera: Tephritidae) using next-generation sequencing and mitochondrial genome phylogeny of Dacini tribe

    PubMed Central

    Jiang, Fan; Pan, Xubin; Li, Xuankun; Yu, Yanxue; Zhang, Junhua; Jiang, Hongshan; Dou, Liduo; Zhu, Shuifang

    2016-01-01

    The genus Dacus is one of the most economically important tephritid fruit flies. The first complete mitochondrial genome (mitogenome) of Dacus species – D. longicornis was sequenced by next-generation sequencing in order to develop the mitogenome data for this genus. The circular 16,253 bp mitogenome is the typical set and arrangement of 37 genes present in the ancestral insect. The mitogenome data of D. longicornis was compared to all the published homologous sequences of other tephritid species. We discovered the subgenera Bactrocera, Daculus and Tetradacus differed from the subgenus Zeugodacus, the genera Dacus, Ceratitis and Procecidochares in the possession of TA instead of TAA stop codon for COI gene. There is a possibility that the TA stop codon in COI is the synapomorphy in Bactrocera group in the genus Bactrocera comparing with other Tephritidae species. Phylogenetic analyses based on the mitogenome data from Tephritidae were inferred by Bayesian and Maximum-likelihood methods, strongly supported the sister relationship between Zeugodacus and Dacus. PMID:27812024

  12. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana.

    PubMed

    Lin, X; Kaul, S; Rounsley, S; Shea, T P; Benito, M I; Town, C D; Fujii, C Y; Mason, T; Bowman, C L; Barnstead, M; Feldblyum, T V; Buell, C R; Ketchum, K A; Lee, J; Ronning, C M; Koo, H L; Moffat, K S; Cronin, L A; Shen, M; Pai, G; Van Aken, S; Umayam, L; Tallon, L J; Gill, J E; Adams, M D; Carrera, A J; Creasy, T H; Goodman, H M; Somerville, C R; Copenhaver, G P; Preuss, D; Nierman, W C; White, O; Eisen, J A; Salzberg, S L; Fraser, C M; Venter, J C

    1999-12-16

    Arabidopsis thaliana (Arabidopsis) is unique among plant model organisms in having a small genome (130-140 Mb), excellent physical and genetic maps, and little repetitive DNA. Here we report the sequence of chromosome 2 from the Columbia ecotype in two gap-free assemblies (contigs) of 3.6 and 16 megabases (Mb). The latter represents the longest published stretch of uninterrupted DNA sequence assembled from any organism to date. Chromosome 2 represents 15% of the genome and encodes 4,037 genes, 49% of which have no predicted function. Roughly 250 tandem gene duplications were found in addition to large-scale duplications of about 0.5 and 4.5 Mb between chromosomes 2 and 1 and between chromosomes 2 and 4, respectively. Sequencing of nearly 2 Mb within the genetically defined centromere revealed a low density of recognizable genes, and a high density and diverse range of vestigial and presumably inactive mobile elements. More unexpected is what appears to be a recent insertion of a continuous stretch of 75% of the mitochondrial genome into chromosome 2.

  13. Leishmania naiffi and Leishmania guyanensis reference genomes highlight genome structure and gene evolution in the Viannia subgenus

    PubMed Central

    Coughlan, Simone; Taylor, Ali Shirley; Feane, Eoghan; Sanders, Mandy; Schonian, Gabriele; Cotton, James A.

    2018-01-01

    The unicellular protozoan parasite Leishmania causes the neglected tropical disease leishmaniasis, affecting 12 million people in 98 countries. In South America, where the Viannia subgenus predominates, so far only L. (Viannia) braziliensis and L. (V.) panamensis have been sequenced, assembled and annotated as reference genomes. Addressing this deficit in molecular information can inform species typing, epidemiological monitoring and clinical treatment. Here, L. (V.) naiffi and L. (V.) guyanensis genomic DNA was sequenced to assemble these two genomes as draft references from short sequence reads. The methods used were tested using short sequence reads for L. braziliensis M2904 against its published reference as a comparison. This assembly and annotation pipeline identified 70 additional genes not annotated on the original M2904 reference. Phylogenetic and evolutionary comparisons of L. guyanensis and L. naiffi with 10 other Viannia genomes revealed four traits common to all Viannia: aneuploidy, 22 orthologous groups of genes absent in other Leishmania subgenera, elevated TATE transposon copies and a high NADH-dependent fumarate reductase gene copy number. Within the Viannia, there were limited structural changes in genome architecture specific to individual species: a 45 Kb amplification on chromosome 34 was present in all bar L. lainsoni, L. naiffi had a higher copy number of the virulence factor leishmanolysin, and laboratory isolate L. shawi M8408 had a possible minichromosome derived from the 3’ end of chromosome 34. This combination of genome assembly, phylogenetics and comparative analysis across an extended panel of diverse Viannia has uncovered new insights into the origin and evolution of this subgenus and can help improve diagnostics for leishmaniasis surveillance. PMID:29765675

  14. Efficient privacy-preserving string search and an application in genomics.

    PubMed

    Shimizu, Kana; Nuida, Koji; Rätsch, Gunnar

    2016-06-01

    Personal genomes carry inherent privacy risks and protecting privacy poses major social and technological challenges. We consider the case where a user searches for genetic information (e.g. an allele) on a server that stores a large genomic database and aims to receive allele-associated information. The user would like to keep the query and result private and the server the database. We propose a novel approach that combines efficient string data structures such as the Burrows-Wheeler transform with cryptographic techniques based on additive homomorphic encryption. We assume that the sequence data is searchable in efficient iterative query operations over a large indexed dictionary, for instance, from large genome collections and employing the (positional) Burrows-Wheeler transform. We use a technique called oblivious transfer that is based on additive homomorphic encryption to conceal the sequence query and the genomic region of interest in positional queries. We designed and implemented an efficient algorithm for searching sequences of SNPs in large genome databases. During search, the user can only identify the longest match while the server does not learn which sequence of SNPs the user queried. In an experiment based on 2184 aligned haploid genomes from the 1000 Genomes Project, our algorithm was able to perform typical queries within [Formula: see text] 4.6 s and [Formula: see text] 10.8 s for client and server side, respectively, on laptop computers. The presented algorithm is at least one order of magnitude faster than an exhaustive baseline algorithm. https://github.com/iskana/PBWT-sec and https://github.com/ratschlab/PBWT-sec shimizu-kana@aist.go.jp or Gunnar.Ratsch@ratschlab.org Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  15. Beyond an AFLP genome scan towards the identification of immune genes involved in plague resistance in Rattus rattus from Madagascar.

    PubMed

    Tollenaere, C; Jacquet, S; Ivanova, S; Loiseau, A; Duplantier, J-M; Streiff, R; Brouat, C

    2013-01-01

    Genome scans using amplified fragment length polymorphism (AFLP) markers became popular in nonmodel species within the last 10 years, but few studies have tried to characterize the anonymous outliers identified. This study follows on from an AFLP genome scan in the black rat (Rattus rattus), the reservoir of plague (Yersinia pestis infection) in Madagascar. We successfully sequenced 17 of the 22 markers previously shown to be potentially affected by plague-mediated selection and associated with a plague resistance phenotype. Searching these sequences in the genome of the closely related species Rattus norvegicus assigned them to 14 genomic regions, revealing a random distribution of outliers in the genome (no clustering). We compared these results with those of an in silico AFLP study of the R. norvegicus genome, which showed that outlier sequences could not have been inferred by this method in R. rattus (only four of the 15 sequences were predicted). However, in silico analysis allowed the prediction of AFLP markers distribution and the estimation of homoplasy rates, confirming its potential utility for designing AFLP studies in nonmodel species. The 14 genomic regions surrounding AFLP outliers (less than 300 kb from the marker) contained 75 genes encoding proteins of known function, including nine involved in immune function and pathogen defence. We identified the two interleukin 1 genes (Il1a and Il1b) that share homology with an antigen of Y. pestis, as the best candidates for genes subject to plague-mediated natural selection. At least six other genes known to be involved in proinflammatory pathways may also be affected by plague-mediated selection. © 2012 Blackwell Publishing Ltd.

  16. A privacy-preserving solution for compressed storage and selective retrieval of genomic data.

    PubMed

    Huang, Zhicong; Ayday, Erman; Lin, Huang; Aiyar, Raeka S; Molyneaux, Adam; Xu, Zhenyu; Fellay, Jacques; Steinmetz, Lars M; Hubaux, Jean-Pierre

    2016-12-01

    In clinical genomics, the continuous evolution of bioinformatic algorithms and sequencing platforms makes it beneficial to store patients' complete aligned genomic data in addition to variant calls relative to a reference sequence. Due to the large size of human genome sequence data files (varying from 30 GB to 200 GB depending on coverage), two major challenges facing genomics laboratories are the costs of storage and the efficiency of the initial data processing. In addition, privacy of genomic data is becoming an increasingly serious concern, yet no standard data storage solutions exist that enable compression, encryption, and selective retrieval. Here we present a privacy-preserving solution named SECRAM (Selective retrieval on Encrypted and Compressed Reference-oriented Alignment Map) for the secure storage of compressed aligned genomic data. Our solution enables selective retrieval of encrypted data and improves the efficiency of downstream analysis (e.g., variant calling). Compared with BAM, the de facto standard for storing aligned genomic data, SECRAM uses 18% less storage. Compared with CRAM, one of the most compressed nonencrypted formats (using 34% less storage than BAM), SECRAM maintains efficient compression and downstream data processing, while allowing for unprecedented levels of security in genomic data storage. Compared with previous work, the distinguishing features of SECRAM are that (1) it is position-based instead of read-based, and (2) it allows random querying of a subregion from a BAM-like file in an encrypted form. Our method thus offers a space-saving, privacy-preserving, and effective solution for the storage of clinical genomic data. © 2016 Huang et al.; Published by Cold Spring Harbor Laboratory Press.

  17. Annotation of differentially expressed genes in the somatic embryogenesis of musa and their location in the banana genome.

    PubMed

    Maldonado-Borges, Josefina Ines; Ku-Cauich, José Roberto; Escobedo-Graciamedrano, Rosa Maria

    2013-01-01

    Analysis of cDNA-AFLP was used to study the genes expressed in zygotic and somatic embryogenesis of Musa acuminata Colla ssp. malaccensis, and a comparison was made between their differential transcribed fragments (TDFs) and the sequenced genome of the double haploid- (DH-) Pahang of the malaccensis subspecies that is available in the network. A total of 253 transcript-derived fragments (TDFs) were detected with apparent size of 100-4000 bp using 5 pairs of AFLP primers, of which 21 were differentially expressed during the different stages of banana embryogenesis; 15 of the sequences have matched DH-Pahang chromosomes, with 7 of them being homologous to gene sequences encoding either known or putative protein domains of higher plants. Four TDF sequences were located in all Musa chromosomes, while the rest were located in one or two chromosomes. Their putative individual function is briefly reviewed based on published information, and the potential roles of these genes in embryo development are discussed. Thus the availability of the genome of Musa and the information of TDFs sequences presented here opens new possibilities for an in-depth study of the molecular and biochemical research of zygotic and somatic embryogenesis of Musa.

  18. Detection of PIWI and piRNAs in the mitochondria of mammalian cancer cells.

    PubMed

    Kwon, ChangHyuk; Tak, Hyosun; Rho, Mina; Chang, Hae Ryung; Kim, Yon Hui; Kim, Kyung Tae; Balch, Curt; Lee, Eun Kyung; Nam, Seungyoon

    2014-03-28

    Piwi-interacting RNAs (piRNAs) are 26-31 nt small noncoding RNAs that are processed from their longer precursor transcripts by Piwi proteins. Localization of Piwi and piRNA has been reported mostly in nucleus and cytoplasm of higher eukaryotes germ-line cells, where it is believed that known piRNA sequences are located in repeat regions of nuclear genome in germ-line cells. However, localization of PIWI and piRNA in mammalian somatic cell mitochondria yet remains largely unknown. We identified 29 piRNA sequence alignments from various regions of the human mitochondrial genome. Twelve out 29 piRNA sequences matched stem-loop fragment sequences of seven distinct tRNAs. We observed their actual expression in mitochondria subcellular fractions by inspecting mitochondrial-specific small RNA-Seq datasets. Of interest, the majority of the 29 piRNAs overlapped with multiple longer transcripts (expressed sequence tags) that are unique to the human mitochondrial genome. The presence of mature piRNAs in mitochondria was detected by qRT-PCR of mitochondrial subcellular RNAs. Further validation showed detection of Piwi by colocalization using anti-Piwil1 and mitochondria organelle-specific protein antibodies. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  19. An analysis of possible off target effects following CAS9/CRISPR targeted deletions of neuropeptide gene enhancers from the mouse genome.

    PubMed

    Hay, Elizabeth Anne; Khalaf, Abdulla Razak; Marini, Pietro; Brown, Andrew; Heath, Karyn; Sheppard, Darrin; MacKenzie, Alasdair

    2017-08-01

    We have successfully used comparative genomics to identify putative regulatory elements within the human genome that contribute to the tissue specific expression of neuropeptides such as galanin and receptors such as CB1. However, a previous inability to rapidly delete these elements from the mouse genome has prevented optimal assessment of their function in-vivo. This has been solved using CAS9/CRISPR genome editing technology which uses a bacterial endonuclease called CAS9 that, in combination with specifically designed guide RNA (gRNA) molecules, cuts specific regions of the mouse genome. However, reports of "off target" effects, whereby the CAS9 endonuclease is able to cut sites other than those targeted, limits the appeal of this technology. We used cytoplasmic microinjection of gRNA and CAS9 mRNA into 1-cell mouse embryos to rapidly generate enhancer knockout mouse lines. The current study describes our analysis of the genomes of these enhancer knockout lines to detect possible off-target effects. Bioinformatic analysis was used to identify the most likely putative off-target sites and to design PCR primers that would amplify these sequences from genomic DNA of founder enhancer deletion mouse lines. Amplified DNA was then sequenced and blasted against the mouse genome sequence to detect off-target effects. Using this approach we were unable to detect any evidence of off-target effects in the genomes of three founder lines using any of the four gRNAs used in the analysis. This study suggests that the problem of off-target effects in transgenic mice have been exaggerated and that CAS9/CRISPR represents a highly effective and accurate method of deleting putative neuropeptide gene enhancer sequences from the mouse genome. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. A review of bioinformatics platforms for comparative genomics. Recent developments of the EDGAR 2.0 platform and its utility for taxonomic and phylogenetic studies.

    PubMed

    Yu, J; Blom, J; Glaeser, S P; Jaenicke, S; Juhre, T; Rupp, O; Schwengers, O; Spänig, S; Goesmann, A

    2017-11-10

    The rapid development of next generation sequencing technology has greatly increased the amount of available microbial genomes. As a result of this development, there is a rising demand for fast and automated approaches in analyzing these genomes in a comparative way. Whole genome sequencing also bears a huge potential for obtaining a higher resolution in phylogenetic and taxonomic classification. During the last decade, several software tools and platforms have been developed in the field of comparative genomics. In this manuscript, we review the most commonly used platforms and approaches for ortholog group analyses with a focus on their potential for phylogenetic and taxonomic research. Furthermore, we describe the latest improvements of the EDGAR platform for comparative genome analyses and present recent examples of its application for the phylogenomic analysis of different taxa. Finally, we illustrate the role of the EDGAR platform as part of the BiGi Center for Microbial Bioinformatics within the German network on Bioinformatics Infrastructure (de.NBI). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Semi-Automatic In Silico Gap Closure Enabled De Novo Assembly of Two Dehalobacter Genomes from Metagenomic Data

    PubMed Central

    Tang, Shuiquan; Gong, Yunchen; Edwards, Elizabeth A.

    2012-01-01

    Typically, the assembly and closure of a complete bacterial genome requires substantial additional effort spent in a wet lab for gap resolution and genome polishing. Assembly is further confounded by subspecies polymorphism when starting from metagenome sequence data. In this paper, we describe an in silico gap-resolution strategy that can substantially improve assembly. This strategy resolves assembly gaps in scaffolds using pre-assembled contigs, followed by verification with read mapping. It is capable of resolving assembly gaps caused by repetitive elements and subspecies polymorphisms. Using this strategy, we realized the de novo assembly of the first two Dehalobacter genomes from the metagenomes of two anaerobic mixed microbial cultures capable of reductive dechlorination of chlorinated ethanes and chloroform. Only four additional PCR reactions were required even though the initial assembly with Newbler v. 2.5 produced 101 contigs within 9 scaffolds belonging to two Dehalobacter strains. By applying this strategy to the re-assembly of a recently published genome of Bacteroides, we demonstrate its potential utility for other sequencing projects, both metagenomic and genomic. PMID:23284863

  2. PhytoPath: an integrative resource for plant pathogen genomics.

    PubMed

    Pedro, Helder; Maheswari, Uma; Urban, Martin; Irvine, Alistair George; Cuzick, Alayne; McDowall, Mark D; Staines, Daniel M; Kulesha, Eugene; Hammond-Kosack, Kim Elizabeth; Kersey, Paul Julian

    2016-01-04

    PhytoPath (www.phytopathdb.org) is a resource for genomic and phenotypic data from plant pathogen species, that integrates phenotypic data for genes from PHI-base, an expertly curated catalog of genes with experimentally verified pathogenicity, with the Ensembl tools for data visualization and analysis. The resource is focused on fungi, protists (oomycetes) and bacterial plant pathogens that have genomes that have been sequenced and annotated. Genes with associated PHI-base data can be easily identified across all plant pathogen species using a BioMart-based query tool and visualized in their genomic context on the Ensembl genome browser. The PhytoPath resource contains data for 135 genomic sequences from 87 plant pathogen species, and 1364 genes curated for their role in pathogenicity and as targets for chemical intervention. Support for community annotation of gene models is provided using the WebApollo online gene editor, and we are working with interested communities to improve reference annotation for selected species. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. From cultured to uncultured genome sequences: metagenomics and modeling microbial ecosystems.

    PubMed

    Garza, Daniel R; Dutilh, Bas E

    2015-11-01

    Microorganisms and the viruses that infect them are the most numerous biological entities on Earth and enclose its greatest biodiversity and genetic reservoir. With strength in their numbers, these microscopic organisms are major players in the cycles of energy and matter that sustain all life. Scientists have only scratched the surface of this vast microbial world through culture-dependent methods. Recent developments in generating metagenomes, large random samples of nucleic acid sequences isolated directly from the environment, are providing comprehensive portraits of the composition, structure, and functioning of microbial communities. Moreover, advances in metagenomic analysis have created the possibility of obtaining complete or nearly complete genome sequences from uncultured microorganisms, providing important means to study their biology, ecology, and evolution. Here we review some of the recent developments in the field of metagenomics, focusing on the discovery of genetic novelty and on methods for obtaining uncultured genome sequences, including through the recycling of previously published datasets. Moreover we discuss how metagenomics has become a core scientific tool to characterize eco-evolutionary patterns of microbial ecosystems, thus allowing us to simultaneously discover new microbes and study their natural communities. We conclude by discussing general guidelines and challenges for modeling the interactions between uncultured microorganisms and viruses based on the information contained in their genome sequences. These models will significantly advance our understanding of the functioning of microbial ecosystems and the roles of microbes in the environment.

  4. EUPAN enables pan-genome studies of a large number of eukaryotic genomes.

    PubMed

    Hu, Zhiqiang; Sun, Chen; Lu, Kuang-Chen; Chu, Xixia; Zhao, Yue; Lu, Jinyuan; Shi, Jianxin; Wei, Chaochun

    2017-08-01

    Pan-genome analyses are routinely carried out for bacteria to interpret the within-species gene presence/absence variations (PAVs). However, pan-genome analyses are rare for eukaryotes due to the large sizes and higher complexities of their genomes. Here we proposed EUPAN, a eukaryotic pan-genome analysis toolkit, enabling automatic large-scale eukaryotic pan-genome analyses and detection of gene PAVs at a relatively low sequencing depth. In the previous studies, we demonstrated the effectiveness and high accuracy of EUPAN in the pan-genome analysis of 453 rice genomes, in which we also revealed widespread gene PAVs among individual rice genomes. Moreover, EUPAN can be directly applied to the current re-sequencing projects primarily focusing on single nucleotide polymorphisms. EUPAN is implemented in Perl, R and C ++. It is supported under Linux and preferred for a computer cluster with LSF and SLURM job scheduling system. EUPAN together with its standard operating procedure (SOP) is freely available for non-commercial use (CC BY-NC 4.0) at http://cgm.sjtu.edu.cn/eupan/index.html . ccwei@sjtu.edu.cn or jianxin.shi@sjtu.edu.cn. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  5. PGSB PlantsDB: updates to the database framework for comparative plant genome research.

    PubMed

    Spannagl, Manuel; Nussbaumer, Thomas; Bader, Kai C; Martis, Mihaela M; Seidel, Michael; Kugler, Karl G; Gundlach, Heidrun; Mayer, Klaus F X

    2016-01-04

    PGSB (Plant Genome and Systems Biology: formerly MIPS) PlantsDB (http://pgsb.helmholtz-muenchen.de/plant/index.jsp) is a database framework for the comparative analysis and visualization of plant genome data. The resource has been updated with new data sets and types as well as specialized tools and interfaces to address user demands for intuitive access to complex plant genome data. In its latest incarnation, we have re-worked both the layout and navigation structure and implemented new keyword search options and a new BLAST sequence search functionality. Actively involved in corresponding sequencing consortia, PlantsDB has dedicated special efforts to the integration and visualization of complex triticeae genome data, especially for barley, wheat and rye. We enhanced CrowsNest, a tool to visualize syntenic relationships between genomes, with data from the wheat sub-genome progenitor Aegilops tauschii and added functionality to the PGSB RNASeqExpressionBrowser. GenomeZipper results were integrated for the genomes of barley, rye, wheat and perennial ryegrass and interactive access is granted through PlantsDB interfaces. Data exchange and cross-linking between PlantsDB and other plant genome databases is stimulated by the transPLANT project (http://transplantdb.eu/). © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Big Data and Genome Editing Technology: A New Paradigm of Cardiovascular Genomics.

    PubMed

    Krittanawong, Chayakrit; Sun, Tao; Herzog, Eyal

    2017-01-01

    Opinion Statements: Cardiovascular diseases (CVDs) encompass a range of conditions extending from congenital heart disease to acute coronary syndrome most of which are heterogenous in nature and some of them are multiple genetic loci. However, the pathogenesis of most CVDs remains incompletely understood. The advance in genome-editing technologies, an engineering process of DNA sequences at precise genomic locations, has enabled a new paradigm that human genome can be precisely modified to achieve a therapeutic effect. Genome-editing includes the correction of genetic variants that cause disease, the addition of therapeutic genes to specific sites in the genomic locations, and the removal of deleterious genes or genome sequences. Site-specific genome engineering can be used as nucleases (known as molecular scissors) including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) systems to provide remarkable opportunities for developing novel therapies in cardiovascular clinical care. Here we discuss genetic polymorphisms and mechanistic insights in CVDs with an emphasis on the impact of genome-editing technologies. The current challenges and future prospects for genomeediting technologies in cardiovascular medicine are also discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Whole-genome sequence, SNP chips and pedigree structure: building demographic profiles in domestic dog breeds to optimize genetic-trait mapping.

    PubMed

    Dreger, Dayna L; Rimbault, Maud; Davis, Brian W; Bhatnagar, Adrienne; Parker, Heidi G; Ostrander, Elaine A

    2016-12-01

    In the decade following publication of the draft genome sequence of the domestic dog, extraordinary advances with application to several fields have been credited to the canine genetic system. Taking advantage of closed breeding populations and the subsequent selection for aesthetic and behavioral characteristics, researchers have leveraged the dog as an effective natural model for the study of complex traits, such as disease susceptibility, behavior and morphology, generating unique contributions to human health and biology. When designing genetic studies using purebred dogs, it is essential to consider the unique demography of each population, including estimation of effective population size and timing of population bottlenecks. The analytical design approach for genome-wide association studies (GWAS) and analysis of whole-genome sequence (WGS) experiments are inextricable from demographic data. We have performed a comprehensive study of genomic homozygosity, using high-depth WGS data for 90 individuals, and Illumina HD SNP data from 800 individuals representing 80 breeds. These data were coupled with extensive pedigree data analyses for 11 breeds that, together, allowed us to compute breed structure, demography, and molecular measures of genome diversity. Our comparative analyses characterize the extent, formation and implication of breed-specific diversity as it relates to population structure. These data demonstrate the relationship between breed-specific genome dynamics and population architecture, and provide important considerations influencing the technological and cohort design of association and other genomic studies. © 2016. Published by The Company of Biologists Ltd.

  8. Extensive Horizontal Transfer and Homologous Recombination Generate Highly Chimeric Mitochondrial Genomes in Yeast.

    PubMed

    Wu, Baojun; Buljic, Adnan; Hao, Weilong

    2015-10-01

    The frequency of horizontal gene transfer (HGT) in mitochondrial DNA varies substantially. In plants, HGT is relatively common, whereas in animals it appears to be quite rare. It is of considerable importance to understand mitochondrial HGT across the major groups of eukaryotes at a genome-wide level, but so far this has been well studied only in plants. In this study, we generated ten new mitochondrial genome sequences and analyzed 40 mitochondrial genomes from the Saccharomycetaceae to assess the magnitude and nature of mitochondrial HGT in yeasts. We provide evidence for extensive, homologous-recombination-mediated, mitochondrial-to-mitochondrial HGT occurring throughout yeast mitochondrial genomes, leading to genomes that are highly chimeric evolutionarily. This HGT has led to substantial intraspecific polymorphism in both sequence content and sequence divergence, which to our knowledge has not been previously documented in any mitochondrial genome. The unexpectedly high frequency of mitochondrial HGT in yeast may be driven by frequent mitochondrial fusion, relatively low mitochondrial substitution rates and pseudohyphal fusion to produce heterokaryons. These findings suggest that mitochondrial HGT may play an important role in genome evolution of a much broader spectrum of eukaryotes than previously appreciated and that there is a critical need to systematically study the frequency, extent, and importance of mitochondrial HGT across eukaryotes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. [Contribution and challenges of Big Data in oncology].

    PubMed

    Saintigny, Pierre; Foy, Jean-Philippe; Ferrari, Anthony; Cassier, Philippe; Viari, Alain; Puisieux, Alain

    2017-03-01

    Since the first draft of the human genome sequence published in 2001, the cost of sequencing has dramatically decreased. The development of new technologies such as next generation sequencing led to a comprehensive characterization of a large number of tumors of various types as well as to significant advances in precision medicine. Despite the valuable information this technological revolution has allowed to produce, the vast amount of data generated resulted in the emergence of new challenges for the biomedical community, such as data storage, processing and mining. Here, we describe the contribution and challenges of Big Data in oncology. Copyright © 2016 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  10. The Applied Development of a Tiered Multilocus Sequence Typing (MLST) Scheme for Dichelobacter nodosus.

    PubMed

    Blanchard, Adam M; Jolley, Keith A; Maiden, Martin C J; Coffey, Tracey J; Maboni, Grazieli; Staley, Ceri E; Bollard, Nicola J; Warry, Andrew; Emes, Richard D; Davies, Peers L; Tötemeyer, Sabine

    2018-01-01

    Dichelobacter nodosus ( D. nodosus ) is the causative pathogen of ovine footrot, a disease that has a significant welfare and financial impact on the global sheep industry. Previous studies into the phylogenetics of D. nodosus have focused on Australia and Scandinavia, meaning the current diversity in the United Kingdom (U.K.) population and its relationship globally, is poorly understood. Numerous epidemiological methods are available for bacterial typing; however, few account for whole genome diversity or provide the opportunity for future application of new computational techniques. Multilocus sequence typing (MLST) measures nucleotide variations within several loci with slow accumulation of variation to enable the designation of allele numbers to determine a sequence type. The usage of whole genome sequence data enables the application of MLST, but also core and whole genome MLST for higher levels of strain discrimination with a negligible increase in experimental cost. An MLST database was developed alongside a seven loci scheme using publically available whole genome data from the sequence read archive. Sequence type designation and strain discrimination was compared to previously published data to ensure reproducibility. Multiple D. nodosus isolates from U.K. farms were directly compared to populations from other countries. The U.K. isolates define new clades within the global population of D. nodosus and predominantly consist of serogroups A, B and H, however serogroups C, D, E, and I were also found. The scheme is publically available at https://pubmlst.org/dnodosus/.

  11. Genomic analyses of Clostridium perfringens isolates from five toxinotypes.

    PubMed

    Hassan, Karl A; Elbourne, Liam D H; Tetu, Sasha G; Melville, Stephen B; Rood, Julian I; Paulsen, Ian T

    2015-05-01

    Clostridium perfringens can be isolated from a range of environments, including soil, marine and fresh water sediments, and the gastrointestinal tracts of animals and humans. Some C. perfringens strains have attractive industrial applications, e.g., in the degradation of waste products or the production of useful chemicals. However, C. perfringens has been most studied as the causative agent of a range of enteric and soft tissue infections of varying severities in humans and animals. Host preference and disease type in C. perfringens are intimately linked to the production of key extracellular toxins and on this basis toxigenic C. perfringens strains have been classified into five toxinotypes (A-E). To date, twelve genome sequences have been generated for a diverse collection of C. perfringens isolates, including strains associated with human and animal infections, a human commensal strain, and a strain with potential industrial utility. Most of the sequenced strains are classified as toxinotype A. However, genome sequences of representative strains from each of the other four toxinotypes have also been determined. Analysis of this collection of sequences has highlighted a lack of features differentiating toxinotype A strains from the other isolates, indicating that the primary defining characteristic of toxinotype A strains is their lack of key plasmid-encoded extracellular toxin genes associated with toxinotype B to E strains. The representative B-E strains sequenced to date each harbour many unique genes. Additional genome sequences are needed to determine if these genes are characteristic of their respective toxinotypes. Copyright © 2014. Published by Elsevier Masson SAS.

  12. Genomic analysis of filoviruses associated with four viral hemorrhagic fever outbreaks in Uganda and the Democratic Republic of the Congo in 2012.

    PubMed

    Albariño, C G; Shoemaker, T; Khristova, M L; Wamala, J F; Muyembe, J J; Balinandi, S; Tumusiime, A; Campbell, S; Cannon, D; Gibbons, A; Bergeron, E; Bird, B; Dodd, K; Spiropoulou, C; Erickson, B R; Guerrero, L; Knust, B; Nichol, S T; Rollin, P E; Ströher, U

    2013-08-01

    In 2012, an unprecedented number of four distinct, partially overlapping filovirus-associated viral hemorrhagic fever outbreaks were detected in equatorial Africa. Analysis of complete virus genome sequences confirmed the reemergence of Sudan virus and Marburg virus in Uganda, and the first emergence of Bundibugyo virus in the Democratic Republic of the Congo. Published by Elsevier Inc.

  13. Complete Genome Sequence of Amycolicicoccus subflavusDQS3-9A1T, an Actinomycete Isolated from Crude Oil-Polluted Soil ▿

    PubMed Central

    Cai, Man; Chen, Wei-Min; Nie, Yong; Chi, Chang-Qiao; Wang, Ya-Nan; Tang, Yue-Qin; Li, Guo-Ying; Wu, Xiao-Lei

    2011-01-01

    Amycolicicoccus subflavusDQS3-9A1T, isolated from crude oil-polluted soil in the Daqing Oilfield in China, is a type strain of a newly published novel species in the novel genus Amycolicicoccus. Here we report the complete genome of DQS3-9A1Tand genes associated with oil-polluted environment. PMID:21725023

  14. De Novo Assembly of Candida sojae and Candida boidinii Genomes, Unexplored Xylose-Consuming Yeasts with Potential for Renewable Biochemical Production

    PubMed Central

    Borelli, Guilherme; José, Juliana; Teixeira, Paulo José Pereira Lima; dos Santos, Leandro Vieira

    2016-01-01

    Candida boidinii and Candida sojae yeasts were isolated from energy cane bagasse and plague-insects. Both have fast xylose uptake rate and produce great amounts of xylitol, which are interesting features for food and 2G ethanol industries. Because they lack published genomes, we have sequenced and assembled them, offering new possibilities for gene prospection. PMID:26769937

  15. Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins.

    PubMed

    Liang, Zhen; Chen, Kunling; Zhang, Yi; Liu, Jinxing; Yin, Kangquan; Qiu, Jin-Long; Gao, Caixia

    2018-03-01

    This protocol is an extension to: Nat. Protoc. 9, 2395-2410 (2014); doi:10.1038/nprot.2014.157; published online 18 September 2014In recent years, CRISPR/Cas9 has emerged as a powerful tool for improving crop traits. Conventional plant genome editing mainly relies on plasmid-carrying cassettes delivered by Agrobacterium or particle bombardment. Here, we describe DNA-free editing of bread wheat by delivering in vitro transcripts (IVTs) or ribonucleoprotein complexes (RNPs) of CRISPR/Cas9 by particle bombardment. This protocol serves as an extension of our previously published protocol on genome editing in bread wheat using CRISPR/Cas9 plasmids delivered by particle bombardment. The methods we describe not only eliminate random integration of CRISPR/Cas9 into genomic DNA, but also reduce off-target effects. In this protocol extension article, we present detailed protocols for preparation of IVTs and RNPs; validation by PCR/restriction enzyme (RE) and next-generation sequencing; delivery by biolistics; and recovery of mutants and identification of mutants by pooling methods and Sanger sequencing. To use these protocols, researchers should have basic skills and experience in molecular biology and biolistic transformation. By using these protocols, plants edited without the use of any foreign DNA can be generated and identified within 9-11 weeks.

  16. An optimized methodology for whole genome sequencing of RNA respiratory viruses from nasopharyngeal aspirates.

    PubMed

    Goya, Stephanie; Valinotto, Laura E; Tittarelli, Estefania; Rojo, Gabriel L; Nabaes Jodar, Mercedes S; Greninger, Alexander L; Zaiat, Jonathan J; Marti, Marcelo A; Mistchenko, Alicia S; Viegas, Mariana

    2018-01-01

    Over the last decade, the number of viral genome sequences deposited in available databases has grown exponentially. However, sequencing methodology vary widely and many published works have relied on viral enrichment by viral culture or nucleic acid amplification with specific primers rather than through unbiased techniques such as metagenomics. The genome of RNA viruses is highly variable and these enrichment methodologies may be difficult to achieve or may bias the results. In order to obtain genomic sequences of human respiratory syncytial virus (HRSV) from positive nasopharyngeal aspirates diverse methodologies were evaluated and compared. A total of 29 nearly complete and complete viral genomes were obtained. The best performance was achieved with a DNase I treatment to the RNA directly extracted from the nasopharyngeal aspirate (NPA), sequence-independent single-primer amplification (SISPA) and library preparation performed with Nextera XT DNA Library Prep Kit with manual normalization. An average of 633,789 and 1,674,845 filtered reads per library were obtained with MiSeq and NextSeq 500 platforms, respectively. The higher output of NextSeq 500 was accompanied by the increasing of duplicated reads percentage generated during SISPA (from an average of 1.5% duplicated viral reads in MiSeq to an average of 74% in NextSeq 500). HRSV genome recovery was not affected by the presence or absence of duplicated reads but the computational demand during the analysis was increased. Considering that only samples with viral load ≥ E+06 copies/ml NPA were tested, no correlation between sample viral loads and number of total filtered reads was observed, nor with the mapped viral reads. The HRSV genomes showed a mean coverage of 98.46% with the best methodology. In addition, genomes of human metapneumovirus (HMPV), human rhinovirus (HRV) and human parainfluenza virus types 1-3 (HPIV1-3) were also obtained with the selected optimal methodology.

  17. Evolutionary History of Ascomyceteous Yeasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haridas, Sajeet; Riley, Robert; Salamov, Asaf

    2014-06-06

    Yeasts are important for many industrial and biotechnological processes and show remarkable diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. A comparison of these with several other previously published yeast genomes have added increased confidence to the phylogenetic positions of previously poorly placed species including Saitoella complicata, Babjeviella inositovora and Metschnikowia bicuspidata. Phylogenetic analysis also showed that yeasts with alternative nuclear codon usage where CUG encodes serine instead of leucine are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with amore » large fraction of single exon genes with Lipomyces starkeyi and the previously published Pneumocystis jirovecii being notable exceptions. Intron analysis suggests that early diverging species have more introns. We also observed a large number of unclassified lineage specific non-simple repeats in these genomes.« less

  18. Outbreak investigation for toxigenic Corynebacterium diphtheriae wound infections in refugees from Northeast Africa and Syria in Switzerland and Germany by whole genome sequencing.

    PubMed

    Meinel, D M; Kuehl, R; Zbinden, R; Boskova, V; Garzoni, C; Fadini, D; Dolina, M; Blümel, B; Weibel, T; Tschudin-Sutter, S; Widmer, A F; Bielicki, J A; Dierig, A; Heininger, U; Konrad, R; Berger, A; Hinic, V; Goldenberger, D; Blaich, A; Stadler, T; Battegay, M; Sing, A; Egli, A

    2016-12-01

    Toxigenic Corynebacterium diphtheriae is an important and potentially fatal threat to patients and public health. During the current dramatic influx of refugees into Europe, our objective was to use whole genome sequencing for the characterization of a suspected outbreak of C. diphtheriae wound infections among refugees. After conventional culture, we identified C. diphtheriae using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and investigated toxigenicity by PCR. Whole genome sequencing was performed on a MiSeq Illumina with >70×coverage, 2×250 bp read length, and mapping against a reference genome. Twenty cases of cutaneous C. diphtheriae in refugees from East African countries and Syria identified between April and August 2015 were included. Patients presented with wound infections shortly after arrival in Switzerland and Germany. Toxin production was detected in 9/20 (45%) isolates. Whole genome sequencing-based typing revealed relatedness between isolates using neighbour-joining algorithms. We detected three separate clusters among epidemiologically related refugees. Although the isolates within a cluster showed strong relatedness, isolates differed by >50 nucleotide polymorphisms. Toxigenic C. diphtheriae associated wound infections are currently observed more frequently in Europe, due to refugees travelling under poor hygienic conditions. Close genetic relatedness of C. diphtheriae isolates from 20 refugees with wound infections indicates likely transmission between patients. However, the diversity within each cluster and phylogenetic time-tree analysis suggest that transmissions happened several months ago, most likely outside Europe. Whole genome sequencing offers the potential to describe outbreaks at very high resolution and is a helpful tool in infection tracking and identification of transmission routes. Copyright © 2016. Published by Elsevier Ltd.

  19. [Completed sequences analysis on the Chinese attenuated yellow fever 17D vaccine strain and the WHO standard yellow fever 17D vaccine strain].

    PubMed

    Li, Jing; Yu, Yong-Xin; Dong, Guan-Mu

    2009-04-01

    To compare the molecular characteristics of the Chinese attenuated yellow fever 17D vaccine strain and the WHO reference yellow fever 17D vaccine strain. The primers were designed according to the published nucleotide sequences of YFV 17D strains in GenBank. Total RNA of was extracted by the Trizol and reverse transcripted. The each fragments of the YFV genome were amplified by PCR and sequenced subsequently. The fragments of the 5' and 3' end of the two strains were cloned into the pGEM T-easy vector and then sequenced. The nucleotide acid and amino acid sequences of the homology to both strains were 99% with each other. No obvious nulceotide changes were found in the sequences of the entire genome of each 17D strains. Moreover, there was no obvious changes in the E protein genes. But the E173 of YF17D Tiantan, associted with the virulence, had mutantions. And the two live attenuated yellow fever 17D vaccine strains fell to the same lineage by the phylogenetic analysis. The results indicated that the two attenuated yellow fever 17D vaccine viruses accumulates mutations at a very low frequency and the genomes were relative stable.

  20. BreaKmer: detection of structural variation in targeted massively parallel sequencing data using kmers.

    PubMed

    Abo, Ryan P; Ducar, Matthew; Garcia, Elizabeth P; Thorner, Aaron R; Rojas-Rudilla, Vanesa; Lin, Ling; Sholl, Lynette M; Hahn, William C; Meyerson, Matthew; Lindeman, Neal I; Van Hummelen, Paul; MacConaill, Laura E

    2015-02-18

    Genomic structural variation (SV), a common hallmark of cancer, has important predictive and therapeutic implications. However, accurately detecting SV using high-throughput sequencing data remains challenging, especially for 'targeted' resequencing efforts. This is critically important in the clinical setting where targeted resequencing is frequently being applied to rapidly assess clinically actionable mutations in tumor biopsies in a cost-effective manner. We present BreaKmer, a novel approach that uses a 'kmer' strategy to assemble misaligned sequence reads for predicting insertions, deletions, inversions, tandem duplications and translocations at base-pair resolution in targeted resequencing data. Variants are predicted by realigning an assembled consensus sequence created from sequence reads that were abnormally aligned to the reference genome. Using targeted resequencing data from tumor specimens with orthogonally validated SV, non-tumor samples and whole-genome sequencing data, BreaKmer had a 97.4% overall sensitivity for known events and predicted 17 positively validated, novel variants. Relative to four publically available algorithms, BreaKmer detected SV with increased sensitivity and limited calls in non-tumor samples, key features for variant analysis of tumor specimens in both the clinical and research settings. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Paleovirology of bornaviruses: What can be learned from molecular fossils of bornaviruses.

    PubMed

    Horie, Masayuki; Tomonaga, Keizo

    2018-04-06

    Endogenous viral elements (EVEs) are virus-derived sequences embedded in eukaryotic genomes formed by germline integration of viral sequences. As many EVEs were integrated into eukaryotic genomes millions of years ago, EVEs are considered molecular fossils of viruses. EVEs can be valuable informational sources about ancient viruses, including their time scale, geographical distribution, genetic information, and hosts. Although integration of viral sequences is not required for replications of viruses other than retroviruses, many non-retroviral EVEs have been reported to exist in eukaryotes. Investigation of these EVEs has expanded our knowledge regarding virus-host interactions, as well as provided information on ancient viruses. Among them, EVEs derived from bornaviruses, non-retroviral RNA viruses, have been relatively well studied. Bornavirus-derived EVEs are widely distributed in animal genomes, including the human genome, and the history of bornaviruses can be dated back to more than 65 million years. Although there are several reports focusing on the biological significance of bornavirus-derived sequences in mammals, paleovirology of bornaviruses has not yet been well described and summarized. In this paper, we describe what can be learned about bornaviruses from endogenous bornavirus-like elements from the view of paleovirology using published results and our novel data. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Genome-wide identification of pathogenicity factors of the free-living amoeba Naegleria fowleri.

    PubMed

    Zysset-Burri, Denise C; Müller, Norbert; Beuret, Christian; Heller, Manfred; Schürch, Nadia; Gottstein, Bruno; Wittwer, Matthias

    2014-06-19

    The free-living amoeba Naegleria fowleri is the causative agent of the rapidly progressing and typically fatal primary amoebic meningoencephalitis (PAM) in humans. Despite the devastating nature of this disease, which results in > 97% mortality, knowledge of the pathogenic mechanisms of the amoeba is incomplete. This work presents a comparative proteomic approach based on an experimental model in which the pathogenic potential of N. fowleri trophozoites is influenced by the compositions of different media. As a scaffold for proteomic analysis, we sequenced the genome and transcriptome of N. fowleri. Since the sequence similarity of the recently published genome of Naegleria gruberi was far lower than the close taxonomic relationship of these species would suggest, a de novo sequencing approach was chosen. After excluding cell regulatory mechanisms originating from different media compositions, we identified 22 proteins with a potential role in the pathogenesis of PAM. Functional annotation of these proteins revealed, that the membrane is the major location where the amoeba exerts its pathogenic potential, possibly involving actin-dependent processes such as intracellular trafficking via vesicles. This study describes for the first time the 30 Mb-genome and the transcriptome sequence of N. fowleri and provides the basis for the further definition of effective intervention strategies against the rare but highly fatal form of amoebic meningoencephalitis.

  3. Assembly and analysis of a male sterile rubber tree mitochondrial genome reveals DNA rearrangement events and a novel transcript.

    PubMed

    Shearman, Jeremy R; Sangsrakru, Duangjai; Ruang-Areerate, Panthita; Sonthirod, Chutima; Uthaipaisanwong, Pichahpuk; Yoocha, Thippawan; Poopear, Supannee; Theerawattanasuk, Kanikar; Tragoonrung, Somvong; Tangphatsornruang, Sithichoke

    2014-02-10

    The rubber tree, Hevea brasiliensis, is an important plant species that is commercially grown to produce latex rubber in many countries. The rubber tree variety BPM 24 exhibits cytoplasmic male sterility, inherited from the variety GT 1. We constructed the rubber tree mitochondrial genome of a cytoplasmic male sterile variety, BPM 24, using 454 sequencing, including 8 kb paired-end libraries, plus Illumina paired-end sequencing. We annotated this mitochondrial genome with the aid of Illumina RNA-seq data and performed comparative analysis. We then compared the sequence of BPM 24 to the contigs of the published rubber tree, variety RRIM 600, and identified a rearrangement that is unique to BPM 24 resulting in a novel transcript containing a portion of atp9. The novel transcript is consistent with changes that cause cytoplasmic male sterility through a slight reduction to ATP production efficiency. The exhaustive nature of the search rules out alternative causes and supports previous findings of novel transcripts causing cytoplasmic male sterility.

  4. Complete genome sequence of Planctomyces brasiliensis type strain (DSM 5305 T), phylogenomic analysis and reclassification of Planctomycetes including the descriptions of Gimesia gen. nov., Planctopirus gen. nov. and Rubinisphaera gen. nov. and emended descriptions of the order Planctomycetales and the family Planctomycetaceae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheuner, Carmen; Tindall, Brian J.; Lu, Megan

    Planctomyces brasiliensis Schlesner 1990 belongs to the order Planctomycetales, which differs from other bacterial taxa by several distinctive features such as internal cell compartmentalization, multiplication by forming buds directly from the spherical, ovoid or pear-shaped mother cell and a cell wall consisting of a proteinaceous layer rather than a peptidoglycan layer. The first strains of P. brasiliensis, including the type strain IFAM 1448 T, were isolated from a water sample of Lagoa Vermelha, a salt pit near Rio de Janeiro, Brasil. This is the second completed genome sequence of a type strain of the genus Planctomyces to be published andmore » the sixth type strain genome sequence from the family Planctomycetaceae. The 6,006,602 bp long genome with its 4,811 protein-coding and 54 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project. We study phylogenomic analyses that indicate that the classification within the Planctomycetaceae is partially in conflict with its evolutionary history, as the positioning of Schlesneria renders the genus Planctomyces paraphyletic. A re-analysis of published fatty-acid measurements also does not support the current arrangement of the two genera. A quantitative comparison of phylogenetic and phenotypic aspects indicates that the three Planctomyces species with type strains available in public culture collections should be placed in separate genera. Thus the genera Gimesia, Planctopirus and Rubinisphaera are proposed to accommodate P. maris, P. limnophilus and P. brasiliensis, respectively. Pronounced differences between the reported G + C content of Gemmata obscuriglobus, Singulisphaera acidiphila and Zavarzinella formosa and G + C content calculated from their genome sequences call for emendation of their species descriptions. Lastly, in addition to other features, the range of G + C values reported for the genera within the Planctomycetaceae indicates that the descriptions of the family and the order should be emended.« less

  5. Complete genome sequence of Planctomyces brasiliensis type strain (DSM 5305 T), phylogenomic analysis and reclassification of Planctomycetes including the descriptions of Gimesia gen. nov., Planctopirus gen. nov. and Rubinisphaera gen. nov. and emended descriptions of the order Planctomycetales and the family Planctomycetaceae

    DOE PAGES

    Scheuner, Carmen; Tindall, Brian J.; Lu, Megan; ...

    2014-12-08

    Planctomyces brasiliensis Schlesner 1990 belongs to the order Planctomycetales, which differs from other bacterial taxa by several distinctive features such as internal cell compartmentalization, multiplication by forming buds directly from the spherical, ovoid or pear-shaped mother cell and a cell wall consisting of a proteinaceous layer rather than a peptidoglycan layer. The first strains of P. brasiliensis, including the type strain IFAM 1448 T, were isolated from a water sample of Lagoa Vermelha, a salt pit near Rio de Janeiro, Brasil. This is the second completed genome sequence of a type strain of the genus Planctomyces to be published andmore » the sixth type strain genome sequence from the family Planctomycetaceae. The 6,006,602 bp long genome with its 4,811 protein-coding and 54 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project. We study phylogenomic analyses that indicate that the classification within the Planctomycetaceae is partially in conflict with its evolutionary history, as the positioning of Schlesneria renders the genus Planctomyces paraphyletic. A re-analysis of published fatty-acid measurements also does not support the current arrangement of the two genera. A quantitative comparison of phylogenetic and phenotypic aspects indicates that the three Planctomyces species with type strains available in public culture collections should be placed in separate genera. Thus the genera Gimesia, Planctopirus and Rubinisphaera are proposed to accommodate P. maris, P. limnophilus and P. brasiliensis, respectively. Pronounced differences between the reported G + C content of Gemmata obscuriglobus, Singulisphaera acidiphila and Zavarzinella formosa and G + C content calculated from their genome sequences call for emendation of their species descriptions. Lastly, in addition to other features, the range of G + C values reported for the genera within the Planctomycetaceae indicates that the descriptions of the family and the order should be emended.« less

  6. The chloroplast genome hidden in plain sight, open access publishing and anti-fragile distributed data sources.

    PubMed

    McKernan, Kevin Judd

    2016-11-01

    We sequenced several cannabis genomes in 2011 of June and the first and the longest contigs to emerge were the chloroplast and mitochondrial genomes. Having been a contributor to the Human Genome Project and an eye-witness to the real benefits of immediate data release, I have first hand experience with the potential mal-investment of millions of dollars of tax payer money narrowly averted due to the adopted global rapid data release policy. The policy was vital in reducing duplication of effort and economic waste. As a result, we felt obligated to publish the Cannabis genome data in a similar spirit and placed them immediately on a cloud based Amazon server in August of 2011. While these rapid data release practices were heralded by many in the media, we still find some authors fail to find or reference said work and hope to compel the readership that this omission has more pervasive repercussions than bruised egos and is a regression for our community.

  7. In silico Analysis of 2085 Clones from a Normalized Rat Vestibular Periphery 3′ cDNA Library

    PubMed Central

    Roche, Joseph P.; Cioffi, Joseph A.; Kwitek, Anne E.; Erbe, Christy B.; Popper, Paul

    2005-01-01

    The inserts from 2400 cDNA clones isolated from a normalized Rattus norvegicus vestibular periphery cDNA library were sequenced and characterized. The Wackym-Soares vestibular 3′ cDNA library was constructed from the saccular and utricular maculae, the ampullae of all three semicircular canals and Scarpa's ganglia containing the somata of the primary afferent neurons, microdissected from 104 male and female rats. The inserts from 2400 randomly selected clones were sequenced from the 5′ end. Each sequence was analyzed using the BLAST algorithm compared to the Genbank nonredundant, rat genome, mouse genome and human genome databases to search for high homology alignments. Of the initial 2400 clones, 315 (13%) were found to be of poor quality and did not yield useful information, and therefore were eliminated from the analysis. Of the remaining 2085 sequences, 918 (44%) were found to represent 758 unique genes having useful annotations that were identified in databases within the public domain or in the published literature; these sequences were designated as known characterized sequences. 1141 sequences (55%) aligned with 1011 unique sequences had no useful annotations and were designated as known but uncharacterized sequences. Of the remaining 26 sequences (1%), 24 aligned with rat genomic sequences, but none matched previously described rat expressed sequence tags or mRNAs. No significant alignment to the rat or human genomic sequences could be found for the remaining 2 sequences. Of the 2085 sequences analyzed, 86% were singletons. The known, characterized sequences were analyzed with the FatiGO online data-mining tool (http://fatigo.bioinfo.cnio.es/) to identify level 5 biological process gene ontology (GO) terms for each alignment and to group alignments with similar or identical GO terms. Numerous genes were identified that have not been previously shown to be expressed in the vestibular system. Further characterization of the novel cDNA sequences may lead to the identification of genes with vestibular-specific functions. Continued analysis of the rat vestibular periphery transcriptome should provide new insights into vestibular function and generate new hypotheses. Physiological studies are necessary to further elucidate the roles of the identified genes and novel sequences in vestibular function. PMID:16103642

  8. Evolution and spread of Ebola virus in Liberia, 2014–2015

    PubMed Central

    Ladner, Jason T.; Wiley, Michael R.; Mate, Suzanne; Dudas, Gytis; Prieto, Karla; Lovett, Sean; Nagle, Elyse R.; Beitzel, Brett; Gilbert, Merle L.; Fakoli, Lawrence; Diclaro, Joseph W.; Schoepp, Randal J.; Fair, Joseph; Kuhn, Jens H.; Hensley, Lisa E.; Park, Daniel J.; Sabeti, Pardis C.; Rambaut, Andrew; Sanchez-Lockhart, Mariano; Bolay, Fatorma K.; Kugelman, Jeffrey R.; Palacios, Gustavo

    2015-01-01

    SUMMARY The 2013–present Western African Ebola virus disease (EVD) outbreak is the largest ever recorded with >28,000 reported cases. Ebola virus (EBOV) genome sequencing has played an important role throughout this outbreak; however, relatively few sequences have been determined from patients in Liberia, the second worst-affected country. Here, we report 140 EBOV genome sequences from the second wave of the Liberian outbreak and analyze them in combination with 782 previously published sequences from throughout the Western African outbreak. While multiple early introductions of EBOV to Liberia are evident, the majority of Liberian EVD cases are consistent with a single introduction, followed by spread and diversification within the country. Movement of the virus within Liberia was widespread and reintroductions from Liberia served as an important source for the continuation of the already ongoing EVD outbreak in Guinea. Overall, little evidence was found for incremental adaptation of EBOV to the human host. PMID:26651942

  9. Rapid protein alignment in the cloud: HAMOND combines fast DIAMOND alignments with Hadoop parallelism.

    PubMed

    Yu, Jia; Blom, Jochen; Sczyrba, Alexander; Goesmann, Alexander

    2017-09-10

    The introduction of next generation sequencing has caused a steady increase in the amounts of data that have to be processed in modern life science. Sequence alignment plays a key role in the analysis of sequencing data e.g. within whole genome sequencing or metagenome projects. BLAST is a commonly used alignment tool that was the standard approach for more than two decades, but in the last years faster alternatives have been proposed including RapSearch, GHOSTX, and DIAMOND. Here we introduce HAMOND, an application that uses Apache Hadoop to parallelize DIAMOND computation in order to scale-out the calculation of alignments. HAMOND is fault tolerant and scalable by utilizing large cloud computing infrastructures like Amazon Web Services. HAMOND has been tested in comparative genomics analyses and showed promising results both in efficiency and accuracy. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  10. Construction of a high-density genetic map for grape using next generation restriction-site associated DNA sequencing

    PubMed Central

    2012-01-01

    Background Genetic mapping and QTL detection are powerful methodologies in plant improvement and breeding. Construction of a high-density and high-quality genetic map would be of great benefit in the production of superior grapes to meet human demand. High throughput and low cost of the recently developed next generation sequencing (NGS) technology have resulted in its wide application in genome research. Sequencing restriction-site associated DNA (RAD) might be an efficient strategy to simplify genotyping. Combining NGS with RAD has proven to be powerful for single nucleotide polymorphism (SNP) marker development. Results An F1 population of 100 individual plants was developed. In-silico digestion-site prediction was used to select an appropriate restriction enzyme for construction of a RAD sequencing library. Next generation RAD sequencing was applied to genotype the F1 population and its parents. Applying a cluster strategy for SNP modulation, a total of 1,814 high-quality SNP markers were developed: 1,121 of these were mapped to the female genetic map, 759 to the male map, and 1,646 to the integrated map. A comparison of the genetic maps to the published Vitis vinifera genome revealed both conservation and variations. Conclusions The applicability of next generation RAD sequencing for genotyping a grape F1 population was demonstrated, leading to the successful development of a genetic map with high density and quality using our designed SNP markers. Detailed analysis revealed that this newly developed genetic map can be used for a variety of genome investigations, such as QTL detection, sequence assembly and genome comparison. PMID:22908993

  11. Brassica database (BRAD) version 2.0: integrating and mining Brassicaceae species genomic resources.

    PubMed

    Wang, Xiaobo; Wu, Jian; Liang, Jianli; Cheng, Feng; Wang, Xiaowu

    2015-01-01

    The Brassica database (BRAD) was built initially to assist users apply Brassica rapa and Arabidopsis thaliana genomic data efficiently to their research. However, many Brassicaceae genomes have been sequenced and released after its construction. These genomes are rich resources for comparative genomics, gene annotation and functional evolutionary studies of Brassica crops. Therefore, we have updated BRAD to version 2.0 (V2.0). In BRAD V2.0, 11 more Brassicaceae genomes have been integrated into the database, namely those of Arabidopsis lyrata, Aethionema arabicum, Brassica oleracea, Brassica napus, Camelina sativa, Capsella rubella, Leavenworthia alabamica, Sisymbrium irio and three extremophiles Schrenkiella parvula, Thellungiella halophila and Thellungiella salsuginea. BRAD V2.0 provides plots of syntenic genomic fragments between pairs of Brassicaceae species, from the level of chromosomes to genomic blocks. The Generic Synteny Browser (GBrowse_syn), a module of the Genome Browser (GBrowse), is used to show syntenic relationships between multiple genomes. Search functions for retrieving syntenic and non-syntenic orthologs, as well as their annotation and sequences are also provided. Furthermore, genome and annotation information have been imported into GBrowse so that all functional elements can be visualized in one frame. We plan to continually update BRAD by integrating more Brassicaceae genomes into the database. Database URL: http://brassicadb.org/brad/. © The Author(s) 2015. Published by Oxford University Press.

  12. Progress and Potential

    PubMed Central

    Haspel, Richard L.; Olsen, Randall J.; Berry, Anna; Hill, Charles E.; Pfeifer, John D.; Schrijver, Iris; Kaul, Karen L.

    2014-01-01

    Context Genomic medicine is revolutionizing patient care. Physicians in areas as diverse as oncology, obstetrics, and infectious disease have begun using next-generation sequencing assays as standard diagnostic tools. Objective To review the role of pathologists in genomic testing as well as current educational programs and future training needs in genomic pathology. Data Sources Published literature as well as personal experience based on committee membership and genomic pathology curricular design. Conclusion Pathologists, as the directors of the clinical laboratories, must be prepared to integrate genomic testing into their practice. The pathology community has made significant progress in genomics-related education. A continued coordinated and proactive effort will ensure a future vital role for pathologists in the evolving health care system and also the best possible patient care. PMID:24678680

  13. A Novel Genome-Information Content-Based Statistic for Genome-Wide Association Analysis Designed for Next-Generation Sequencing Data

    PubMed Central

    Luo, Li; Zhu, Yun

    2012-01-01

    Abstract The genome-wide association studies (GWAS) designed for next-generation sequencing data involve testing association of genomic variants, including common, low frequency, and rare variants. The current strategies for association studies are well developed for identifying association of common variants with the common diseases, but may be ill-suited when large amounts of allelic heterogeneity are present in sequence data. Recently, group tests that analyze their collective frequency differences between cases and controls shift the current variant-by-variant analysis paradigm for GWAS of common variants to the collective test of multiple variants in the association analysis of rare variants. However, group tests ignore differences in genetic effects among SNPs at different genomic locations. As an alternative to group tests, we developed a novel genome-information content-based statistics for testing association of the entire allele frequency spectrum of genomic variation with the diseases. To evaluate the performance of the proposed statistics, we use large-scale simulations based on whole genome low coverage pilot data in the 1000 Genomes Project to calculate the type 1 error rates and power of seven alternative statistics: a genome-information content-based statistic, the generalized T2, collapsing method, multivariate and collapsing (CMC) method, individual χ2 test, weighted-sum statistic, and variable threshold statistic. Finally, we apply the seven statistics to published resequencing dataset from ANGPTL3, ANGPTL4, ANGPTL5, and ANGPTL6 genes in the Dallas Heart Study. We report that the genome-information content-based statistic has significantly improved type 1 error rates and higher power than the other six statistics in both simulated and empirical datasets. PMID:22651812

  14. A novel genome-information content-based statistic for genome-wide association analysis designed for next-generation sequencing data.

    PubMed

    Luo, Li; Zhu, Yun; Xiong, Momiao

    2012-06-01

    The genome-wide association studies (GWAS) designed for next-generation sequencing data involve testing association of genomic variants, including common, low frequency, and rare variants. The current strategies for association studies are well developed for identifying association of common variants with the common diseases, but may be ill-suited when large amounts of allelic heterogeneity are present in sequence data. Recently, group tests that analyze their collective frequency differences between cases and controls shift the current variant-by-variant analysis paradigm for GWAS of common variants to the collective test of multiple variants in the association analysis of rare variants. However, group tests ignore differences in genetic effects among SNPs at different genomic locations. As an alternative to group tests, we developed a novel genome-information content-based statistics for testing association of the entire allele frequency spectrum of genomic variation with the diseases. To evaluate the performance of the proposed statistics, we use large-scale simulations based on whole genome low coverage pilot data in the 1000 Genomes Project to calculate the type 1 error rates and power of seven alternative statistics: a genome-information content-based statistic, the generalized T(2), collapsing method, multivariate and collapsing (CMC) method, individual χ(2) test, weighted-sum statistic, and variable threshold statistic. Finally, we apply the seven statistics to published resequencing dataset from ANGPTL3, ANGPTL4, ANGPTL5, and ANGPTL6 genes in the Dallas Heart Study. We report that the genome-information content-based statistic has significantly improved type 1 error rates and higher power than the other six statistics in both simulated and empirical datasets.

  15. Transcriptome analysis reveals the time of the fourth round of genome duplication in common carp (Cyprinus carpio)

    PubMed Central

    2012-01-01

    Background Common carp (Cyprinus carpio) is thought to have undergone one extra round of genome duplication compared to zebrafish. Transcriptome analysis has been used to study the existence and timing of genome duplication in species for which genome sequences are incomplete. Large-scale transcriptome data for the common carp genome should help reveal the timing of the additional duplication event. Results We have sequenced the transcriptome of common carp using 454 pyrosequencing. After assembling the 454 contigs and the published common carp sequences together, we obtained 49,669 contigs and identified genes using homology searches and an ab initio method. We identified 4,651 orthologous pairs between common carp and zebrafish and found 129,984 paralogous pairs within the common carp. An estimation of the synonymous substitution rate in the orthologous pairs indicated that common carp and zebrafish diverged 120 million years ago (MYA). We identified one round of genome duplication in common carp and estimated that it had occurred 5.6 to 11.3 MYA. In zebrafish, no genome duplication event after speciation was observed, suggesting that, compared to zebrafish, common carp had undergone an additional genome duplication event. We annotated the common carp contigs with Gene Ontology terms and KEGG pathways. Compared with zebrafish gene annotations, we found that a set of biological processes and pathways were enriched in common carp. Conclusions The assembled contigs helped us to estimate the time of the fourth-round of genome duplication in common carp. The resource that we have built as part of this study will help advance functional genomics and genome annotation studies in the future. PMID:22424280

  16. Genome sequence of the small brown planthopper, Laodelphax striatellus.

    PubMed

    Zhu, Junjie; Jiang, Feng; Wang, Xianhui; Yang, Pengcheng; Bao, Yanyuan; Zhao, Wan; Wang, Wei; Lu, Hong; Wang, Qianshuo; Cui, Na; Li, Jing; Chen, Xiaofang; Luo, Lan; Yu, Jinting; Kang, Le; Cui, Feng

    2017-12-01

    Laodelphax striatellus Fallén (Hemiptera: Delphacidae) is one of the most destructive rice pests. L. striatellus is different from 2 other rice planthoppers with a released genome sequence, Sogatella furcifera and Nilaparvata lugens, in many biological characteristics, such as host range, dispersal capacity, and vectoring plant viruses. Deciphering the genome of L. striatellus will further the understanding of the genetic basis of the biological differences among the 3 rice planthoppers. A total of 190 Gb of Illumina data and 32.4 Gb of Pacbio data were generated and used to assemble a high-quality L. striatellus genome sequence, which is 541 Mb in length and has a contig N50 of 118 Kb and a scaffold N50 of 1.08 Mb. Annotated repetitive elements account for 25.7% of the genome. A total of 17 736 protein-coding genes were annotated, capturing 97.6% and 98% of the BUSCO eukaryote and arthropoda genes, respectively. Compared with N. lugens and S. furcifera, L. striatellus has the smallest genome and the lowest gene number. Gene family expansion and transcriptomic analyses provided hints to the genomic basis of the differences in important traits such as host range, migratory habit, and plant virus transmission between L. striatellus and the other 2 planthoppers. We report a high-quality genome assembly of L. striatellus, which is an important genomic resource not only for the study of the biology of L. striatellus and its interactions with plant hosts and plant viruses, but also for comparison with other planthoppers. © The Authors 2017. Published by Oxford University Press.

  17. CBS Genome Atlas Database: a dynamic storage for bioinformatic results and sequence data.

    PubMed

    Hallin, Peter F; Ussery, David W

    2004-12-12

    Currently, new bacterial genomes are being published on a monthly basis. With the growing amount of genome sequence data, there is a demand for a flexible and easy-to-maintain structure for storing sequence data and results from bioinformatic analysis. More than 150 sequenced bacterial genomes are now available, and comparisons of properties for taxonomically similar organisms are not readily available to many biologists. In addition to the most basic information, such as AT content, chromosome length, tRNA count and rRNA count, a large number of more complex calculations are needed to perform detailed comparative genomics. DNA structural calculations like curvature and stacking energy, DNA compositions like base skews, oligo skews and repeats at the local and global level are just a few of the analysis that are presented on the CBS Genome Atlas Web page. Complex analysis, changing methods and frequent addition of new models are factors that require a dynamic database layout. Using basic tools like the GNU Make system, csh, Perl and MySQL, we have created a flexible database environment for storing and maintaining such results for a collection of complete microbial genomes. Currently, these results counts to more than 220 pieces of information. The backbone of this solution consists of a program package written in Perl, which enables administrators to synchronize and update the database content. The MySQL database has been connected to the CBS web-server via PHP4, to present a dynamic web content for users outside the center. This solution is tightly fitted to existing server infrastructure and the solutions proposed here can perhaps serve as a template for other research groups to solve database issues. A web based user interface which is dynamically linked to the Genome Atlas Database can be accessed via www.cbs.dtu.dk/services/GenomeAtlas/. This paper has a supplemental information page which links to the examples presented: www.cbs.dtu.dk/services/GenomeAtlas/suppl/bioinfdatabase.

  18. Whole genome sequencing of turbot (Scophthalmus maximus; Pleuronectiformes): a fish adapted to demersal life.

    PubMed

    Figueras, Antonio; Robledo, Diego; Corvelo, André; Hermida, Miguel; Pereiro, Patricia; Rubiolo, Juan A; Gómez-Garrido, Jèssica; Carreté, Laia; Bello, Xabier; Gut, Marta; Gut, Ivo Glynne; Marcet-Houben, Marina; Forn-Cuní, Gabriel; Galán, Beatriz; García, José Luis; Abal-Fabeiro, José Luis; Pardo, Belen G; Taboada, Xoana; Fernández, Carlos; Vlasova, Anna; Hermoso-Pulido, Antonio; Guigó, Roderic; Álvarez-Dios, José Antonio; Gómez-Tato, Antonio; Viñas, Ana; Maside, Xulio; Gabaldón, Toni; Novoa, Beatriz; Bouza, Carmen; Alioto, Tyler; Martínez, Paulino

    2016-06-01

    The turbot is a flatfish (Pleuronectiformes) with increasing commercial value, which has prompted active genomic research aimed at more efficient selection. Here we present the sequence and annotation of the turbot genome, which represents a milestone for both boosting breeding programmes and ascertaining the origin and diversification of flatfish. We compare the turbot genome with model fish genomes to investigate teleost chromosome evolution. We observe a conserved macrosyntenic pattern within Percomorpha and identify large syntenic blocks within the turbot genome related to the teleost genome duplication. We identify gene family expansions and positive selection of genes associated with vision and metabolism of membrane lipids, which suggests adaptation to demersal lifestyle and to cold temperatures, respectively. Our data indicate a quick evolution and diversification of flatfish to adapt to benthic life and provide clues for understanding their controversial origin. Moreover, we investigate the genomic architecture of growth, sex determination and disease resistance, key traits for understanding local adaptation and boosting turbot production, by mapping candidate genes and previously reported quantitative trait loci. The genomic architecture of these productive traits has allowed the identification of candidate genes and enriched pathways that may represent useful information for future marker-assisted selection in turbot. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  19. Cloud-based interactive analytics for terabytes of genomic variants data.

    PubMed

    Pan, Cuiping; McInnes, Gregory; Deflaux, Nicole; Snyder, Michael; Bingham, Jonathan; Datta, Somalee; Tsao, Philip S

    2017-12-01

    Large scale genomic sequencing is now widely used to decipher questions in diverse realms such as biological function, human diseases, evolution, ecosystems, and agriculture. With the quantity and diversity these data harbor, a robust and scalable data handling and analysis solution is desired. We present interactive analytics using a cloud-based columnar database built on Dremel to perform information compression, comprehensive quality controls, and biological information retrieval in large volumes of genomic data. We demonstrate such Big Data computing paradigms can provide orders of magnitude faster turnaround for common genomic analyses, transforming long-running batch jobs submitted via a Linux shell into questions that can be asked from a web browser in seconds. Using this method, we assessed a study population of 475 deeply sequenced human genomes for genomic call rate, genotype and allele frequency distribution, variant density across the genome, and pharmacogenomic information. Our analysis framework is implemented in Google Cloud Platform and BigQuery. Codes are available at https://github.com/StanfordBioinformatics/mvp_aaa_codelabs. cuiping@stanford.edu or ptsao@stanford.edu. Supplementary data are available at Bioinformatics online. Published by Oxford University Press 2017. This work is written by US Government employees and are in the public domain in the US.

  20. Extensive Error in the Number of Genes Inferred from Draft Genome Assemblies

    PubMed Central

    Denton, James F.; Lugo-Martinez, Jose; Tucker, Abraham E.; Schrider, Daniel R.; Warren, Wesley C.; Hahn, Matthew W.

    2014-01-01

    Current sequencing methods produce large amounts of data, but genome assemblies based on these data are often woefully incomplete. These incomplete and error-filled assemblies result in many annotation errors, especially in the number of genes present in a genome. In this paper we investigate the magnitude of the problem, both in terms of total gene number and the number of copies of genes in specific families. To do this, we compare multiple draft assemblies against higher-quality versions of the same genomes, using several new assemblies of the chicken genome based on both traditional and next-generation sequencing technologies, as well as published draft assemblies of chimpanzee. We find that upwards of 40% of all gene families are inferred to have the wrong number of genes in draft assemblies, and that these incorrect assemblies both add and subtract genes. Using simulated genome assemblies of Drosophila melanogaster, we find that the major cause of increased gene numbers in draft genomes is the fragmentation of genes onto multiple individual contigs. Finally, we demonstrate the usefulness of RNA-Seq in improving the gene annotation of draft assemblies, largely by connecting genes that have been fragmented in the assembly process. PMID:25474019

  1. Extensive error in the number of genes inferred from draft genome assemblies.

    PubMed

    Denton, James F; Lugo-Martinez, Jose; Tucker, Abraham E; Schrider, Daniel R; Warren, Wesley C; Hahn, Matthew W

    2014-12-01

    Current sequencing methods produce large amounts of data, but genome assemblies based on these data are often woefully incomplete. These incomplete and error-filled assemblies result in many annotation errors, especially in the number of genes present in a genome. In this paper we investigate the magnitude of the problem, both in terms of total gene number and the number of copies of genes in specific families. To do this, we compare multiple draft assemblies against higher-quality versions of the same genomes, using several new assemblies of the chicken genome based on both traditional and next-generation sequencing technologies, as well as published draft assemblies of chimpanzee. We find that upwards of 40% of all gene families are inferred to have the wrong number of genes in draft assemblies, and that these incorrect assemblies both add and subtract genes. Using simulated genome assemblies of Drosophila melanogaster, we find that the major cause of increased gene numbers in draft genomes is the fragmentation of genes onto multiple individual contigs. Finally, we demonstrate the usefulness of RNA-Seq in improving the gene annotation of draft assemblies, largely by connecting genes that have been fragmented in the assembly process.

  2. Rat Genome and Model Resources.

    PubMed

    Shimoyama, Mary; Smith, Jennifer R; Bryda, Elizabeth; Kuramoto, Takashi; Saba, Laura; Dwinell, Melinda

    2017-07-01

    Rats remain a major model for studying disease mechanisms and discovery, validation, and testing of new compounds to improve human health. The rat's value continues to grow as indicated by the more than 1.4 million publications (second to human) at PubMed documenting important discoveries using this model. Advanced sequencing technologies, genome modification techniques, and the development of embryonic stem cell protocols ensure the rat remains an important mammalian model for disease studies. The 2004 release of the reference genome has been followed by the production of complete genomes for more than two dozen individual strains utilizing NextGen sequencing technologies; their analyses have identified over 80 million variants. This explosion in genomic data has been accompanied by the ability to selectively edit the rat genome, leading to hundreds of new strains through multiple technologies. A number of resources have been developed to provide investigators with access to precision rat models, comprehensive datasets, and sophisticated software tools necessary for their research. Those profiled here include the Rat Genome Database, PhenoGen, Gene Editing Rat Resource Center, Rat Resource and Research Center, and the National BioResource Project for the Rat in Japan. © The Author 2017. Published by Oxford University Press.

  3. Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology.

    PubMed

    Karp, Peter D; Latendresse, Mario; Paley, Suzanne M; Krummenacker, Markus; Ong, Quang D; Billington, Richard; Kothari, Anamika; Weaver, Daniel; Lee, Thomas; Subhraveti, Pallavi; Spaulding, Aaron; Fulcher, Carol; Keseler, Ingrid M; Caspi, Ron

    2016-09-01

    Pathway Tools is a bioinformatics software environment with a broad set of capabilities. The software provides genome-informatics tools such as a genome browser, sequence alignments, a genome-variant analyzer and comparative-genomics operations. It offers metabolic-informatics tools, such as metabolic reconstruction, quantitative metabolic modeling, prediction of reaction atom mappings and metabolic route search. Pathway Tools also provides regulatory-informatics tools, such as the ability to represent and visualize a wide range of regulatory interactions. This article outlines the advances in Pathway Tools in the past 5 years. Major additions include components for metabolic modeling, metabolic route search, computation of atom mappings and estimation of compound Gibbs free energies of formation; addition of editors for signaling pathways, for genome sequences and for cellular architecture; storage of gene essentiality data and phenotype data; display of multiple alignments, and of signaling and electron-transport pathways; and development of Python and web-services application programming interfaces. Scientists around the world have created more than 9800 Pathway/Genome Databases by using Pathway Tools, many of which are curated databases for important model organisms. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  4. Median network analysis of defectively sequenced entire mitochondrial genomes from early and contemporary disease studies.

    PubMed

    Bandelt, Hans-Jürgen; Yao, Yong-Gang; Bravi, Claudio M; Salas, Antonio; Kivisild, Toomas

    2009-03-01

    Sequence analysis of the mitochondrial genome has become a routine method in the study of mitochondrial diseases. Quite often, the sequencing efforts in the search of pathogenic or disease-associated mutations are affected by technical and interpretive problems, caused by sample mix-up, contamination, biochemical problems, incomplete sequencing, misdocumentation and insufficient reference to previously published data. To assess data quality in case studies of mitochondrial diseases, it is recommended to compare any mtDNA sequence under consideration to their phylogenetically closest lineages available in the Web. The median network method has proven useful for visualizing potential problems with the data. We contrast some early reports of complete mtDNA sequences to more recent total mtDNA sequencing efforts in studies of various mitochondrial diseases. We conclude that the quality of complete mtDNA sequences generated in the medical field in the past few years is somewhat unsatisfactory and may even fall behind that of pioneer manual sequencing in the early nineties. Our study provides a paradigm for an a posteriori evaluation of sequence quality and for detection of potential problems with inferring a pathogenic status of a particular mutation.

  5. AFRESh: an adaptive framework for compression of reads and assembled sequences with random access functionality.

    PubMed

    Paridaens, Tom; Van Wallendael, Glenn; De Neve, Wesley; Lambert, Peter

    2017-05-15

    The past decade has seen the introduction of new technologies that lowered the cost of genomic sequencing increasingly. We can even observe that the cost of sequencing is dropping significantly faster than the cost of storage and transmission. The latter motivates a need for continuous improvements in the area of genomic data compression, not only at the level of effectiveness (compression rate), but also at the level of functionality (e.g. random access), configurability (effectiveness versus complexity, coding tool set …) and versatility (support for both sequenced reads and assembled sequences). In that regard, we can point out that current approaches mostly do not support random access, requiring full files to be transmitted, and that current approaches are restricted to either read or sequence compression. We propose AFRESh, an adaptive framework for no-reference compression of genomic data with random access functionality, targeting the effective representation of the raw genomic symbol streams of both reads and assembled sequences. AFRESh makes use of a configurable set of prediction and encoding tools, extended by a Context-Adaptive Binary Arithmetic Coding scheme (CABAC), to compress raw genetic codes. To the best of our knowledge, our paper is the first to describe an effective implementation CABAC outside of its' original application. By applying CABAC, the compression effectiveness improves by up to 19% for assembled sequences and up to 62% for reads. By applying AFRESh to the genomic symbols of the MPEG genomic compression test set for reads, a compression gain is achieved of up to 51% compared to SCALCE, 42% compared to LFQC and 44% compared to ORCOM. When comparing to generic compression approaches, a compression gain is achieved of up to 41% compared to GNU Gzip and 22% compared to 7-Zip at the Ultra setting. Additionaly, when compressing assembled sequences of the Human Genome, a compression gain is achieved up to 34% compared to GNU Gzip and 16% compared to 7-Zip at the Ultra setting. A Windows executable version can be downloaded at https://github.com/tparidae/AFresh . tom.paridaens@ugent.be. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  6. Hungarian tick-borne encephalitis viruses isolated from a 0.5-ha focus are closely related to Finnish strains.

    PubMed

    Egyed, László; Rónai, Zsuzsanna; Dán, Ádám

    2018-04-07

    Four tick-borne encephalitis virus strains were isolated from a small 0.5-ha focus over a six-year-long period (2011-2016) in Hungary. Two strains with identical genomes were isolated from Ixodes ricinus and Haemaphysalis concinna two months apart, which shows that the virus had not evolved separately in these tick species. Whole-genome sequencing of the virus revealed that the isolates differed from each other in 4 amino acids and 9 nucleotides. The calculated substitution rates indicated that the speed of genome evolution differs from habitat to habitat, and continuously changes even within the same focus. The amino acid changes affected the capsid, envelope, NS2a and NS5 genes, and one mutation each occurred in the 5' and 3' NCR as well as the premembrane, NS2a and NS5 genes. Phylogenetic analyses based on complete coding ORF sequences showed that the isolates belong to the European subtype of the virus and are closely related to the Finnish Kumlinge strains, the Bavarian isolate Leila and two isolates of Russian origin, but more distantly related to viruses from the neighbouring Central European countries. These isolates obviously have a common origin and are probably connected by migrating birds. These are the first published complete Hungarian TBEV sequences. Copyright © 2018. Published by Elsevier GmbH.

  7. The mitochondrial genome of the ethanol-metabolizing, wine cellar mold Zasmidium cellare is the smallest for a filamentous ascomycete.

    PubMed

    Goodwin, Stephen B; McCorison, Cassandra B; Cavaletto, Jessica R; Culley, David E; LaButti, Kurt; Baker, Scott E; Grigoriev, Igor V

    2016-08-01

    Fungi in the class Dothideomycetes often live in extreme environments or have unusual physiology. One of these, the wine cellar mold Zasmidium cellare, produces thick curtains of mycelia in cellars with high humidity, and its ability to metabolize volatile organic compounds is thought to improve air quality. Whether these abilities have affected its mitochondrial genome is not known. To fill this gap, the circular-mapping mitochondrial genome of Z. cellare was sequenced and, at only 23 743 bp, is the smallest reported for a filamentous fungus. Genes were encoded on both strands with a single change of direction, different from most other fungi but consistent with the Dothideomycetes. Other than its small size, the only unusual feature of the Z. cellare mitochondrial genome was two copies of a 110-bp sequence that were duplicated, inverted and separated by approximately 1 kb. This inverted-repeat sequence confused the assembly program but appears to have no functional significance. The small size of the Z. cellare mitochondrial genome was due to slightly smaller genes, lack of introns and non-essential genes, reduced intergenic spacers and very few ORFs relative to other fungi rather than a loss of essential genes. Whether this reduction facilitates its unusual biology remains unknown. Published by Elsevier Ltd.

  8. Privacy preserving protocol for detecting genetic relatives using rare variants.

    PubMed

    Hormozdiari, Farhad; Joo, Jong Wha J; Wadia, Akshay; Guan, Feng; Ostrosky, Rafail; Sahai, Amit; Eskin, Eleazar

    2014-06-15

    High-throughput sequencing technologies have impacted many areas of genetic research. One such area is the identification of relatives from genetic data. The standard approach for the identification of genetic relatives collects the genomic data of all individuals and stores it in a database. Then, each pair of individuals is compared to detect the set of genetic relatives, and the matched individuals are informed. The main drawback of this approach is the requirement of sharing your genetic data with a trusted third party to perform the relatedness test. In this work, we propose a secure protocol to detect the genetic relatives from sequencing data while not exposing any information about their genomes. We assume that individuals have access to their genome sequences but do not want to share their genomes with anyone else. Unlike previous approaches, our approach uses both common and rare variants which provide the ability to detect much more distant relationships securely. We use a simulated data generated from the 1000 genomes data and illustrate that we can easily detect up to fifth degree cousins which was not possible using the existing methods. We also show in the 1000 genomes data with cryptic relationships that our method can detect these individuals. The software is freely available for download at http://genetics.cs.ucla.edu/crypto/. © The Author 2014. Published by Oxford University Press.

  9. Microbial bioinformatics 2020.

    PubMed

    Pallen, Mark J

    2016-09-01

    Microbial bioinformatics in 2020 will remain a vibrant, creative discipline, adding value to the ever-growing flood of new sequence data, while embracing novel technologies and fresh approaches. Databases and search strategies will struggle to cope and manual curation will not be sustainable during the scale-up to the million-microbial-genome era. Microbial taxonomy will have to adapt to a situation in which most microorganisms are discovered and characterised through the analysis of sequences. Genome sequencing will become a routine approach in clinical and research laboratories, with fresh demands for interpretable user-friendly outputs. The "internet of things" will penetrate healthcare systems, so that even a piece of hospital plumbing might have its own IP address that can be integrated with pathogen genome sequences. Microbiome mania will continue, but the tide will turn from molecular barcoding towards metagenomics. Crowd-sourced analyses will collide with cloud computing, but eternal vigilance will be the price of preventing the misinterpretation and overselling of microbial sequence data. Output from hand-held sequencers will be analysed on mobile devices. Open-source training materials will address the need for the development of a skilled labour force. As we boldly go into the third decade of the twenty-first century, microbial sequence space will remain the final frontier! © 2016 The Author. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  10. Family genome browser: visualizing genomes with pedigree information.

    PubMed

    Juan, Liran; Liu, Yongzhuang; Wang, Yongtian; Teng, Mingxiang; Zang, Tianyi; Wang, Yadong

    2015-07-15

    Families with inherited diseases are widely used in Mendelian/complex disease studies. Owing to the advances in high-throughput sequencing technologies, family genome sequencing becomes more and more prevalent. Visualizing family genomes can greatly facilitate human genetics studies and personalized medicine. However, due to the complex genetic relationships and high similarities among genomes of consanguineous family members, family genomes are difficult to be visualized in traditional genome visualization framework. How to visualize the family genome variants and their functions with integrated pedigree information remains a critical challenge. We developed the Family Genome Browser (FGB) to provide comprehensive analysis and visualization for family genomes. The FGB can visualize family genomes in both individual level and variant level effectively, through integrating genome data with pedigree information. Family genome analysis, including determination of parental origin of the variants, detection of de novo mutations, identification of potential recombination events and identical-by-decent segments, etc., can be performed flexibly. Diverse annotations for the family genome variants, such as dbSNP memberships, linkage disequilibriums, genes, variant effects, potential phenotypes, etc., are illustrated as well. Moreover, the FGB can automatically search de novo mutations and compound heterozygous variants for a selected individual, and guide investigators to find high-risk genes with flexible navigation options. These features enable users to investigate and understand family genomes intuitively and systematically. The FGB is available at http://mlg.hit.edu.cn/FGB/. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. The intrinsic combinatorial organization and information theoretic content of a sequence are correlated to the DNA encoded nucleosome organization of eukaryotic genomes.

    PubMed

    Utro, Filippo; Di Benedetto, Valeria; Corona, Davide F V; Giancarlo, Raffaele

    2016-03-15

    Thanks to research spanning nearly 30 years, two major models have emerged that account for nucleosome organization in chromatin: statistical and sequence specific. The first is based on elegant, easy to compute, closed-form mathematical formulas that make no assumptions of the physical and chemical properties of the underlying DNA sequence. Moreover, they need no training on the data for their computation. The latter is based on some sequence regularities but, as opposed to the statistical model, it lacks the same type of closed-form formulas that, in this case, should be based on the DNA sequence only. We contribute to close this important methodological gap between the two models by providing three very simple formulas for the sequence specific one. They are all based on well-known formulas in Computer Science and Bioinformatics, and they give different quantifications of how complex a sequence is. In view of how remarkably well they perform, it is very surprising that measures of sequence complexity have not even been considered as candidates to close the mentioned gap. We provide experimental evidence that the intrinsic level of combinatorial organization and information-theoretic content of subsequences within a genome are strongly correlated to the level of DNA encoded nucleosome organization discovered by Kaplan et al Our results establish an important connection between the intrinsic complexity of subsequences in a genome and the intrinsic, i.e. DNA encoded, nucleosome organization of eukaryotic genomes. It is a first step towards a mathematical characterization of this latter 'encoding'. Supplementary data are available at Bioinformatics online. futro@us.ibm.com. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Inference of Markovian properties of molecular sequences from NGS data and applications to comparative genomics.

    PubMed

    Ren, Jie; Song, Kai; Deng, Minghua; Reinert, Gesine; Cannon, Charles H; Sun, Fengzhu

    2016-04-01

    Next-generation sequencing (NGS) technologies generate large amounts of short read data for many different organisms. The fact that NGS reads are generally short makes it challenging to assemble the reads and reconstruct the original genome sequence. For clustering genomes using such NGS data, word-count based alignment-free sequence comparison is a promising approach, but for this approach, the underlying expected word counts are essential.A plausible model for this underlying distribution of word counts is given through modeling the DNA sequence as a Markov chain (MC). For single long sequences, efficient statistics are available to estimate the order of MCs and the transition probability matrix for the sequences. As NGS data do not provide a single long sequence, inference methods on Markovian properties of sequences based on single long sequences cannot be directly used for NGS short read data. Here we derive a normal approximation for such word counts. We also show that the traditional Chi-square statistic has an approximate gamma distribution ,: using the Lander-Waterman model for physical mapping. We propose several methods to estimate the order of the MC based on NGS reads and evaluate those using simulations. We illustrate the applications of our results by clustering genomic sequences of several vertebrate and tree species based on NGS reads using alignment-free sequence dissimilarity measures. We find that the estimated order of the MC has a considerable effect on the clustering results ,: and that the clustering results that use a N: MC of the estimated order give a plausible clustering of the species. Our implementation of the statistics developed here is available as R package 'NGS.MC' at http://www-rcf.usc.edu/∼fsun/Programs/NGS-MC/NGS-MC.html fsun@usc.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Data characterizing the chloroplast genomes of extinct and endangered Hawaiian endemic mints (Lamiaceae) and their close relatives.

    PubMed

    Welch, Andreanna J; Collins, Katherine; Ratan, Aakrosh; Drautz-Moses, Daniela I; Schuster, Stephan C; Lindqvist, Charlotte

    2016-06-01

    These data are presented in support of a plastid phylogenomic analysis of the recent radiation of the Hawaiian endemic mints (Lamiaceae), and their close relatives in the genus Stachys, "The quest to resolve recent radiations: Plastid phylogenomics of extinct and endangered Hawaiian endemic mints (Lamiaceae)" [1]. Here we describe the chloroplast genome sequences for 12 mint taxa. Data presented include summaries of gene content and length for these taxa, structural comparison of the mint chloroplast genomes with published sequences from other species in the order Lamiales, and comparisons of variability among three Hawaiian taxa vs. three outgroup taxa. Finally, we provide a list of 108 primer pairs targeting the most variable regions within this group and designed specifically for amplification of DNA extracted from degraded herbarium material.

  14. Next-generation sequencing in the clinic: promises and challenges.

    PubMed

    Xuan, Jiekun; Yu, Ying; Qing, Tao; Guo, Lei; Shi, Leming

    2013-11-01

    The advent of next generation sequencing (NGS) technologies has revolutionized the field of genomics, enabling fast and cost-effective generation of genome-scale sequence data with exquisite resolution and accuracy. Over the past years, rapid technological advances led by academic institutions and companies have continued to broaden NGS applications from research to the clinic. A recent crop of discoveries have highlighted the medical impact of NGS technologies on Mendelian and complex diseases, particularly cancer. However, the ever-increasing pace of NGS adoption presents enormous challenges in terms of data processing, storage, management and interpretation as well as sequencing quality control, which hinder the translation from sequence data into clinical practice. In this review, we first summarize the technical characteristics and performance of current NGS platforms. We further highlight advances in the applications of NGS technologies towards the development of clinical diagnostics and therapeutics. Common issues in NGS workflows are also discussed to guide the selection of NGS platforms and pipelines for specific research purposes. Published by Elsevier Ireland Ltd.

  15. De Novo Assembly of Candida sojae and Candida boidinii Genomes, Unexplored Xylose-Consuming Yeasts with Potential for Renewable Biochemical Production.

    PubMed

    Borelli, Guilherme; José, Juliana; Teixeira, Paulo José Pereira Lima; Dos Santos, Leandro Vieira; Pereira, Gonçalo Amarante Guimarães

    2016-01-14

    Candida boidinii and Candida sojae yeasts were isolated from energy cane bagasse and plague-insects. Both have fast xylose uptake rate and produce great amounts of xylitol, which are interesting features for food and 2G ethanol industries. Because they lack published genomes, we have sequenced and assembled them, offering new possibilities for gene prospection. Copyright © 2016 Borelli et al.

  16. Obituary: John Sulston (1942-2018).

    PubMed

    White, John

    2018-05-08

    John Sulston, a pioneer in the developmental studies of the nematode C. elegans who went on to spearhead the sequencing of the genome of this organism and ultimately the human genome, died on 6th March 2018, shortly after being diagnosed with stomach cancer. Here, I reflect on John's life and work, with a particular focus on his time working on the developmental genetics and lineage of C. elegans . © 2018. Published by The Company of Biologists Ltd.

  17. The TTSMI database: a catalog of triplex target DNA sites associated with genes and regulatory elements in the human genome.

    PubMed

    Jenjaroenpun, Piroon; Chew, Chee Siang; Yong, Tai Pang; Choowongkomon, Kiattawee; Thammasorn, Wimada; Kuznetsov, Vladimir A

    2015-01-01

    A triplex target DNA site (TTS), a stretch of DNA that is composed of polypurines, is able to form a triple-helix (triplex) structure with triplex-forming oligonucleotides (TFOs) and is able to influence the site-specific modulation of gene expression and/or the modification of genomic DNA. The co-localization of a genomic TTS with gene regulatory signals and functional genome structures suggests that TFOs could potentially be exploited in antigene strategies for the therapy of cancers and other genetic diseases. Here, we present the TTS Mapping and Integration (TTSMI; http://ttsmi.bii.a-star.edu.sg) database, which provides a catalog of unique TTS locations in the human genome and tools for analyzing the co-localization of TTSs with genomic regulatory sequences and signals that were identified using next-generation sequencing techniques and/or predicted by computational models. TTSMI was designed as a user-friendly tool that facilitates (i) fast searching/filtering of TTSs using several search terms and criteria associated with sequence stability and specificity, (ii) interactive filtering of TTSs that co-localize with gene regulatory signals and non-B DNA structures, (iii) exploration of dynamic combinations of the biological signals of specific TTSs and (iv) visualization of a TTS simultaneously with diverse annotation tracks via the UCSC genome browser. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Sequencing of emerging canine distemper virus strain reveals new distinct genetic lineage in the United States associated with disease in wildlife and domestic canine populations.

    PubMed

    Riley, Matthew C; Wilkes, Rebecca P

    2015-12-18

    Recent outbreaks of canine distemper have prompted examination of strains from clinical samples submitted to the University of Tennessee College of Veterinary Medicine (UTCVM) Clinical Virology Lab. We previously described a new strain of CDV that significantly diverged from all genotypes reported to date including America 2, the genotype proposed to be the main lineage currently circulating in the US. The aim of this study was to determine when this new strain appeared and how widespread it is in animal populations, given that it has also been detected in fully vaccinated adult dogs. Additionally, we sequenced complete viral genomes to characterize the strain and determine if variation is confined to known variable regions of the genome or if the changes are also present in more conserved regions. Archived clinical samples were genotyped using real-time RT-PCR amplification and sequencing. The genomes of two unrelated viruses from a dog and fox each from a different state were sequenced and aligned with previously published genomes. Phylogenetic analysis was performed using coding, non-coding and genome-length sequences. Virus neutralization assays were used to evaluate potential antigenic differences between this strain and a vaccine strain and mixed ANOVA test was used to compare the titers. Genotyping revealed this strain first appeared in 2011 and was detected in dogs from multiple states in the Southeast region of the United States. It was the main strain detected among the clinical samples that were typed from 2011-2013, including wildlife submissions. Genome sequencing demonstrated that it is highly conserved within a new lineage and preliminary serologic testing showed significant differences in neutralizing antibody titers between this strain and the strain commonly used in vaccines. This new strain represents an emerging CDV in domestic dogs in the US, may be associated with a stable reservoir in the wildlife population, and could facilitate vaccine escape.

  19. Complete genome sequence of the fire blight pathogen Erwinia pyrifoliae DSM 12163T and comparative genomic insights into plant pathogenicity

    PubMed Central

    2010-01-01

    Background Erwinia pyrifoliae is a newly described necrotrophic pathogen, which causes fire blight on Asian (Nashi) pear and is geographically restricted to Eastern Asia. Relatively little is known about its genetics compared to the closely related main fire blight pathogen E. amylovora. Results The genome of the type strain of E. pyrifoliae strain DSM 12163T, was sequenced using both 454 and Solexa pyrosequencing and annotated. The genome contains a circular chromosome of 4.026 Mb and four small plasmids. Based on their respective role in virulence in E. amylovora or related organisms, we identified several putative virulence factors, including type III and type VI secretion systems and their effectors, flagellar genes, sorbitol metabolism, iron uptake determinants, and quorum-sensing components. A deletion in the rpoS gene covering the most conserved region of the protein was identified which may contribute to the difference in virulence/host-range compared to E. amylovora. Comparative genomics with the pome fruit epiphyte Erwinia tasmaniensis Et1/99 showed that both species are overall highly similar, although specific differences were identified, for example the presence of some phage gene-containing regions and a high number of putative genomic islands containing transposases in the E. pyrifoliae DSM 12163T genome. Conclusions The E. pyrifoliae genome is an important addition to the published genome of E. tasmaniensis and the unfinished genome of E. amylovora providing a foundation for re-sequencing additional strains that may shed light on the evolution of the host-range and virulence/pathogenicity of this important group of plant-associated bacteria. PMID:20047678

  20. RareVariantVis: new tool for visualization of causative variants in rare monogenic disorders using whole genome sequencing data.

    PubMed

    Stokowy, Tomasz; Garbulowski, Mateusz; Fiskerstrand, Torunn; Holdhus, Rita; Labun, Kornel; Sztromwasser, Pawel; Gilissen, Christian; Hoischen, Alexander; Houge, Gunnar; Petersen, Kjell; Jonassen, Inge; Steen, Vidar M

    2016-10-01

    The search for causative genetic variants in rare diseases of presumed monogenic inheritance has been boosted by the implementation of whole exome (WES) and whole genome (WGS) sequencing. In many cases, WGS seems to be superior to WES, but the analysis and visualization of the vast amounts of data is demanding. To aid this challenge, we have developed a new tool-RareVariantVis-for analysis of genome sequence data (including non-coding regions) for both germ line and somatic variants. It visualizes variants along their respective chromosomes, providing information about exact chromosomal position, zygosity and frequency, with point-and-click information regarding dbSNP IDs, gene association and variant inheritance. Rare variants as well as de novo variants can be flagged in different colors. We show the performance of the RareVariantVis tool in the Genome in a Bottle WGS data set. https://www.bioconductor.org/packages/3.3/bioc/html/RareVariantVis.html tomasz.stokowy@k2.uib.no Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

Top