Geologic map of the Calamity Mesa quadrangle, Colorado
Cater, Fred W.
1955-01-01
The series of Geologic Quadrangle Maps of the United States continues the series of quadrangle maps begun with the folios of the Geologic Atlas of the United States, which were published from 1894 to 1945. The present series consists of geologic maps, supplemented where possible by structure sections, columnar sections, and other graphic means of presenting geologic data, and accompanied by a brief explanatory text to make the maps useful for general scientific and economic purposes. Full description and interpretation of the geology of the areas shown on these maps are reserved for publication in other channels, such as the Bulletins and Professional Papers of the Geological Survey. Separate maps of the same areas, covering bedrock, surficial, engineering, and other phases of geology, may be published in the geologic quadrangle map series.
Geologic Map of the Utukok River Quadrangle, Alaska
Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.
2006-01-01
This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically.
Application of remote sensor data to geologic analysis of the Bonanza Test Site Colorado
NASA Technical Reports Server (NTRS)
Lee, K. (Compiler)
1973-01-01
A geologic map of the Bonanza Test Site is nearing completion. Using published large scale geologic maps from various sources, the geology of the area is being compiled on a base scaled at 1:250,000. Sources of previously published geologic mapping include: (1) USGS Bulletins; (2) professional papers and geologic quadrangle maps; (3) Bureau of Mines reports; (4) Colorado School of Mines quarterlies; and (5) Rocky Mountain Association of Geologist Guidebooks. This compilation will be used to evaluate ERTS, Skylab, and remote sensing underflight data.
Geologic Map of the Point Lay Quadrangle, Alaska
Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.
2008-01-01
This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically. The paper version of this map is available for purchase from the USGS Store.
Geologic Map of the Ikpikpuk River Quadrangle, Alaska
Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.
2005-01-01
This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically. The paper version of this map is available for purchase from the USGS Store.
Geologic Map of the Lookout Ridge Quadrangle, Alaska
Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.
2006-01-01
This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically. The paper version of this map is available for purchase from the USGS Store.
Maldonado, Florian; Menga, Jan Mohammad; Khan, Shabid Hasan; Thomas, Jean-Claude
2011-01-01
This generalized digital geologic map of west-central Pakistan is a product of the Balochistan Coal-Basin Synthesis Study, which was part of a cooperative program of the Geological Survey of Pakistan and the United States Geological Survey. The original nondigital map was published by Maldonado and others (1998). Funding was provided by the Government of Pakistan and the United States Agency for International Development. The sources of geologic map data are primarily 1:253,440-scale geologic maps obtained from Hunting Survey Corporation (1961) and the geologic map of the Muslim Bagh Ophiolite Complex and Bagh Complex area. The geology was modified based on reconnaissance field work and photo interpretation of 1:250,000-scale Landsat Thematic Mapper photo image. The descriptions and thicknesses of map units were based on published and unpublished reports and converted to U.S. Geological Survey format. In the nomenclature of the Geological Survey of Pakistan, there is both an Urak Group and an Urak Formation.
Edwin James' and John Hinton's revisions of Maclure's geologic map of the United States
NASA Astrophysics Data System (ADS)
Aalto, K. R.
2012-03-01
William Maclure's pioneering geologic map of the eastern United States, published first in 1809 with Observations on the Geology of the United States, provided a foundation for many later maps - a template from which geologists could extend their mapping westward from the Appalachians. Edwin James, botanist, geologist and surgeon for the 1819/1820 United States Army western exploring expedition under Major Stephen H. Long, published a full account of this expedition with map and geologic sections in 1822-1823. In this he extended Maclure's geology across the Mississippi Valley to the Colorado Rockies. John Howard Hinton (1791-1873) published his widely read text: The History and Topography of the United States in 1832, which included a compilations of Maclure's and James' work in a colored geologic map and vertical sections. All three men were to some degree confounded in their attempts to employ Wernerian rock classification in their mapping and interpretations of geologic history, a common problem in the early 19th Century prior to the demise of Neptunist theory and advent of biostratigraphic techniques of correlation. However, they provided a foundation for the later, more refined mapping and geologic interpretation of the eastern United States.
Schruben, Paul G.; Wynn, J.C.; Gray, Floyd; Cox, D.P.; Sterwart, J.H.; Brooks, W.E.
1997-01-01
This CD-ROM contains vector-based digital maps of the geology and resource assessment of the Venezuela Guayana Shield originally published as paper maps in 1993 in U. S. Geological Survey Bulletin 2062, at a scale of 1:1 million and revised in 1993-95 as separate maps at a scale of 1:500,000. Although the maps on this disc can be displayed at different scales, they are not intended to be used at any scale more detailed than 1:500,000.
Geologic map of the Priest Rapids 1:100,000 quadrangle, Washington
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reidel, S.P.; Fecht, K.R.
1993-09-01
This map of the Priest Rapids 1:100,000-scale quadrangle, Washington, shows the geology of one of fifteen complete or partial 1:100,000-scale quadrangles that cover the southeast quadrant of Washington. Geologic maps of these quadrangles have been compiled by geologists with the Washington Division of Geology and Earth Resources (DGER) and Washington State University and are the principal data sources for a 1:250,000scale geologic map of the southeast quadrant of Washington, which is in preparation. Eleven of those quadrangles are being released as DGER open-file reports (listed below). The map of the Wenatchee quadrangle has been published by the US Geological Surveymore » (Tabor and others, 1982), and the Moses Lake (Gulick, 1990a), Ritzville (Gulick, 1990b), and Rosalia (Waggoner, 1990) quadrangles have already been released. The geology of the Priest Rapids quadrangle has not previously been compiled at 1:100,000 scale. Furthermore, this is the first 1:100,000 or smaller scale geologic map of the area to incorporate both bedrock and surficial geology. This map was compiled in 1992, using published and unpublished geologic maps as sources of data.« less
Walsh, Gregory J.; Scott, Robert B.; Aleinikoff, John N.; Armstrong, Thomas R.
2006-01-01
This report presents a preliminary map of the bedrock geology of the Old Lyme quadrangle, New London and Middlesex Counties, Connecticut. The map depicts contacts of bedrock geologic units, faults, outcrops, and structural geologic information. The map was published as part of a study of fractured bedrock aquifers and regional tectonics.
Trimble, Donald E.; Machette, Michael N.; Brandt, Theodore R.; Moore, David W.; Murray, Kyle E.
2003-01-01
This digital map shows bedding attitude symbols display over the geographic extent of surficial deposits and rock stratigraphic units (formations) as compiled by Trimble and Machette 1973-1977 and published in 1979 (U.S. Geological Survey Map I-856-H) under the Front Range Urban Corridor Geology Program. Trimble and Machette compiled their geologic map from published geologic maps and unpublished geologic mapping having varied map unit schemes. A convenient feature of the compiled map is its uniform classification of geologic units that mostly matches those of companion maps to the north (USGS I-855-G) and to the south (USGS I-857-F). Published as a color paper map, the Trimble and Machette map was intended for land-use planning in the Front Range Urban Corridor. This map recently (1997-1999), was digitized under the USGS Front Range Infrastructure Resources Project (see cross-reference). In general, the mountainous areas in the west part of the map exhibit various igneous and metamorphic bedrock units of Precambrian age, major faults, and fault brecciation zones at the east margin (5-20 km wide) of the Front Range. The eastern and central parts of the map (Colorado Piedmont) depict a mantle of unconsolidated deposits of Quaternary age and interspersed outcroppings of Cretaceous or Tertiary-Cretaceous sedimentary bedrock. The Quaternary mantle is comprised of eolian deposits (quartz sand and silt), alluvium (gravel, sand, and silt of variable composition), colluvium, and few landslides. At the mountain front, north-trending, dipping Paleozoic and Mesozoic sandstone, shale, and limestone bedrock formations form hogbacks and intervening valleys.
Geologic map of the greater Denver area, Front Range urban corridor, Colorado
Trimble, Donald E.; Machette, Michael N.
1979-01-01
This digital map shows the areal extent of surficial deposits and rock stratigraphic units (formations) as compiled by Trimble and Machette from 1973 to 1977 and published in 1979 under the Front Range Urban Corridor Geology Program. Trimble and Machette compiled their geologic map from published geologic maps and unpublished geologic mapping having varied map unit schemes. A convenient feature of the compiled map is its uniform classification of geologic units that mostly matches those of companion maps to the north (USGS I-855-G) and to the south (USGS I-857-F). Published as a color paper map, the Trimble and Machette map was intended for land-use planning in the Front Range Urban Corridor. This map recently (1997-1999) was digitized under the USGS Front Range Infrastructure Resources Project. In general, the mountainous areas in the western part of the map exhibit various igneous and metamorphic bedrock units of Precambrian age, major faults, and fault brecciation zones at the east margin (5-20 km wide) of the Front Range. The eastern and central parts of the map (Colorado Piedmont) depict a mantle of unconsolidated deposits of Quaternary age and interspersed outcroppings of Cretaceous or Tertiary-Cretaceous sedimentary bedrock. The Quaternary mantle comprises eolian deposits (quartz sand and silt), alluvium (gravel, sand, and silt of variable composition), colluvium, and a few landslides. At the mountain front, north-trending, dipping Paleozoic and Mesozoic sandstone, shale, and limestone bedrock formations form hogbacks and intervening valleys.
Geologic map of the Gbanka Quadrangle, Liberia
Force, E.R.; Dunbar, J.D.N.
1974-01-01
As part of a program undertaken cooperatively by the Liberian Geological Survey (LGS) and the U. S. Geological Survey (USGS), under the sponsorship of the Government of Liberia and the Agency for International Development, U. S. Department of State, Liberia was mapped by geologic and geophysical methods during the period 1965 to 1972. The resulting geologic and geophysical maps are published in ten folios, each covering one quadrangle (see index map).
Planetary Geologic Mapping Handbook - 2010. Appendix
NASA Technical Reports Server (NTRS)
Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.
2010-01-01
Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces. Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962. Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by the USGS now are primarily digital products using geographic information system (GIS) software and file formats. GIS mapping tools permit easy spatial comparison, generation, importation, manipulation, and analysis of multiple raster image, gridded, and vector data sets. GIS software has also permitted the development of projectspecific tools and the sharing of geospatial products among researchers. GIS approaches are now being used in planetary geologic mapping as well. Guidelines or handbooks on techniques in planetary geologic mapping have been developed periodically. As records of the heritage of mapping methods and data, these remain extremely useful guides. However, many of the fundamental aspects of earlier mapping handbooks have evolved significantly, and a comprehensive review of currently accepted mapping methodologies is now warranted. As documented in this handbook, such a review incorporates additional guidelines developed in recent years for planetary geologic mapping by the NASA Planetary Geology and Geophysics (PGG) Program's Planetary Cartography and Geologic Mapping Working Group's (PCGMWG) Geologic Mapping Subcommittee (GEMS) on the selection and use of map bases as well as map preparation, review, publication, and distribution. In light of the current boom in planetary exploration and the ongoing rapid evolution of available data for planetary mapping, this handbook is especially timely.
Geologic Map of the Umiat Quadrangle, Alaska
Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.
2004-01-01
This geologic map of the Umiat quadrangle is a compilation of previously published USGS geologic maps and unpublished mapping done for the Richfield Oil Corporation. Geologic mapping from these three primary sources was augmented with additional unpublished map data from British Petroleum Company. This report incorporates recent revisions in stratigraphic nomenclature. Stratigraphic and structural interpretations were revised with the aid of modern high-resolution color infrared aerial photographs. The revised geologic map was checked in the field during the summers of 2001 and 2002. The geologic unit descriptions on this map give detailed information on thicknesses, regional distributions, age determinations, and depositional environments. The paper version of this map is available for purchase from the USGS Store.
Porphyry copper deposit tract definition - A global analysis comparing geologic map scales
Raines, G.L.; Connors, K.A.; Chorlton, L.B.
2007-01-01
Geologic maps are a fundamental data source used to define mineral-resource potential tracts for the first step of a mineral resource assessment. Further, it is generally believed that the scale of the geologic map is a critical consideration. Previously published research has demonstrated that the U.S. Geological Survey porphyry tracts identified for the United States, which are based on 1:500,000-scale geology and larger scale data and published at 1:1,000,000 scale, can be approximated using a more generalized 1:2,500,000-scale geologic map. Comparison of the USGS porphyry tracts for the United States with weights-of-evidence models made using a 1:10,000,000-scale geologic map, which was made for petroleum applications, and a 1:35,000,000-scale geologic map, which was created as context for the distribution of porphyry deposits, demonstrates that, again, the USGS US porphyry tracts identified are similar to tracts defined on features from these small scale maps. In fact, the results using the 1:35,000,000-scale map show a slightly higher correlation with the USGS US tract definition, probably because the conceptual context for this small-scale map is more appropriate for porphyry tract definition than either of the other maps. This finding demonstrates that geologic maps are conceptual maps. The map information shown in each map is selected and generalized for the map to display the concepts deemed important for the map maker's purpose. Some geologic maps of small scale prove to be useful for regional mineral-resource tract definition, despite the decrease in spatial accuracy with decreasing scale. The utility of a particular geologic map for a particular application is critically dependent on the alignment of the intention of the map maker with the application. ?? International Association for Mathematical Geology 2007.
Haacke, Jon E.; Barclay, C. S. Venable; Hettinger, Robert D.
2016-09-30
In the 1970s and 1980s, C.S. Venable Barclay conducted geologic mapping of areas primarily underlain by Cretaceous coals in the eastern part of the Little Snake River coal field (LSR) in Carbon County, southwest Wyoming. With some exceptions, most of the mapping data were never published. Subsequently, after his retirement from the U.S. Geological Survey (USGS), his field maps and field notebooks were archived in the USGS Field Records. Due to a pending USGS coal assessment of the Little Snake River coal field area and planned geological mapping to be conducted by the Wyoming State Geological Survey, Barclay’s mapping data needed to be published to support these efforts. Subsequently, geologic maps were scanned and georeferenced into a geographic information system, and project and field notes were scanned into Portable Document Format (PDF) files. Data for seventeen 7½-minute quadrangles are presented in this report. This publication is solely intended to compile the mapping data as it was last worked on by Barclay and provides no interpretation or modification of his work.
Surficial geologic map of the Gates of the Arctic National Park and Preserve, Alaska
Hamilton, Thomas D.; Labay, Keith A.
2011-01-01
The surfical geologic map incorporates parts of ten surficial geologic maps previously published at 1:250,000 scale. In addition, a small part of the buffer zone mapped in the southwest corner of the map area was compiled from unpublished surficial geologic mapping of the Shungnak 1:250,000-scale quadrangle. Each of those individual maps was developed from (1) aerial and surface observations of morphology and composition of unconsolidated deposits, (2) tracing the distribution and interrelation of terraces, abandoned meltwater channels, moraines, abandoned lake beds, and other landforms, (3) stratigraphic study of exposures along lake shores and river bluffs, (4) examination of sediments and soil profiles in auger borings and test pits, and exposed in roadcuts and placer workings, and (5) analysis of previously published geologic maps and reports. The map units used for those maps and employed in the present compilation are defined on the basis of their physical character, genesis, and age. Relative and absolute ages of the map units were determined from their geographic locations and from their stratigraphic positions and radiocarbon ages.
A method for vreating a three dimensional model from published geologic maps and cross sections
Walsh, Gregory J.
2009-01-01
This brief report presents a relatively inexpensive and rapid method for creating a 3D model of geology from published quadrangle-scale maps and cross sections using Google Earth and Google SketchUp software. An example from the Green Mountains of Vermont, USA, is used to illustrate the step by step methods used to create such a model. A second example is provided from the Jebel Saghro region of the Anti-Atlas Mountains of Morocco. The report was published to help enhance the public?s ability to use and visualize geologic map data.
Nimz, Kathryn; Ramsey, David W.; Sherrod, David R.; Smith, James G.
2008-01-01
Since 1979, Earth scientists of the Geothermal Research Program of the U.S. Geological Survey have carried out multidisciplinary research in the Cascade Range. The goal of this research is to understand the geology, tectonics, and hydrology of the Cascades in order to characterize and quantify geothermal resource potential. A major goal of the program is compilation of a comprehensive geologic map of the entire Cascade Range that incorporates modern field studies and that has a unified and internally consistent explanation. This map is one of three in a series that shows Cascade Range geology by fitting published and unpublished mapping into a province-wide scheme of rock units distinguished by composition and age; map sheets of the Cascade Range in Washington (Smith, 1993) and California will complete the series. The complete series forms a guide to exploration and evaluation of the geothermal resources of the Cascade Range and will be useful for studies of volcano hazards, volcanology, and tectonics. This digital release contains all the information used to produce the geologic map published as U.S. Geological Survey Geologic Investigations Series I-2569 (Sherrod and Smith, 2000). The main component of this digital release is a geologic map database prepared using ArcInfo GIS. This release also contains files to view or print the geologic map and accompanying descriptive pamphlet from I-2569.
Geology of the Palo Alto 30 x 60 minute quadrangle, California: A digital database
Brabb, Earl E.; Graymer, R.W.; Jones, David Lawrence
1998-01-01
This map database represents the integration of previously published and unpublished maps by several workers (see Sources of Data index map on Sheet 2 and the corresponding table below) and new geologic mapping and field checking by the authors with the previously published geologic map of San Mateo County (Brabb and Pampeyan, 1983) and Santa Cruz County (Brabb, 1989, Brabb and others, 1997), and various sources in a small part of Santa Clara County. These new data are released in digital form to provide an opportunity for regional planners, local, state, and federal agencies, teachers, consultants, and others interested in geologic data to have the new data long before a traditional paper map is published. The new data include a new depiction of Quaternary units in the San Francisco Bay plain emphasizing depositional environment, important new observations between the San Andreas and Pilarcitos faults, and a new interpretation of structural and stratigraphic relationships of rock packages (Assemblages).
Planetary Geologic Mapping Handbook - 2009
NASA Technical Reports Server (NTRS)
Tanaka, K. L.; Skinner, J. A.; Hare, T. M.
2009-01-01
Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces (e.g., Varnes, 1974). Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962 (Hackman, 1962). Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by the USGS now are primarily digital products using geographic information system (GIS) software and file formats. GIS mapping tools permit easy spatial comparison, generation, importation, manipulation, and analysis of multiple raster image, gridded, and vector data sets. GIS software has also permitted the development of project-specific tools and the sharing of geospatial products among researchers. GIS approaches are now being used in planetary geologic mapping as well (e.g., Hare and others, 2009). Guidelines or handbooks on techniques in planetary geologic mapping have been developed periodically (e.g., Wilhelms, 1972, 1990; Tanaka and others, 1994). As records of the heritage of mapping methods and data, these remain extremely useful guides. However, many of the fundamental aspects of earlier mapping handbooks have evolved significantly, and a comprehensive review of currently accepted mapping methodologies is now warranted. As documented in this handbook, such a review incorporates additional guidelines developed in recent years for planetary geologic mapping by the NASA Planetary Geology and Geophysics (PGG) Program s Planetary Cartography and Geologic Mapping Working Group s (PCGMWG) Geologic Mapping Subcommittee (GEMS) on the selection and use of map bases as well as map preparation, review, publication, and distribution. In light of the current boom in planetary exploration and the ongoing rapid evolution of available data for planetary mapping, this handbook is especially timely.
Preliminary geologic map of the Piru 7.5' quadrangle, southern California: a digital database
Yerkes, R.F.; Campbell, Russell H.
1995-01-01
This Open-File report is a digital geologic map database. This pamphlet serves to introduce and describe the digital data. There is no paper map included in the Open-File report. This digital map database is compiled from previously published sources combined with some new mapping and modifications in nomenclature. The geologic map database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U. S. Geological Survey. For detailed descriptions of the units, their stratigraphic relations and sources of geologic mapping consult Yerkes and Campbell (1995). More specific information about the units may be available in the original sources.
Lithology and aggregate quality attributes for the digital geologic map of Colorado
Knepper, Daniel H.; Green, Gregory N.; Langer, William H.
1999-01-01
This geologic map was prepared as a part of a study of digital methods and techniques as applied to complex geologic maps. The geologic map was digitized from the original scribe sheets used to prepare the published Geologic Map of Colorado (Tweto 1979). Consequently the digital version is at 1:500,000 scale using the Lambert Conformal Conic map projection parameters of the state base map. Stable base contact prints of the scribe sheets were scanned on a Tektronix 4991 digital scanner. The scanner automatically converts the scanned image to an ASCII vector format. These vectors were transferred to a VAX minicomputer, where they were then loaded into ARC/INFO. Each vector and polygon was given attributes derived from the original 1979 geologic map.
Reconnaissance geologic map of part of the San Isidro Quadrangle, Baja California Sur, Mexico
McLean, Hugh; Hausback, B.P.; Knapp, J.H.
1985-01-01
Mapping was done on aerial photographs and transferred, where possible, to 1:50,000-scale topographic base maps. Areas with roads were field checked; however, in the northeast part of the map area, lack of roads prevented field checks. Previous geologic surveys of parts of the map area were made by horseback in the early 1920's; reports were published by Darton (1921), Heim (1922), and Beal (1948). Subsurface data from petroleum exploration and a geologic map were incorporated in a regional study by Mina (1957). The first radiometric ages of rocks from the map area were published by Gastil and others (1979). Recently determined radiometric ages and chemical analysis of volcanic rocks were reported by Hausback (1984) and by Sawlan and Smith (1984). Our study incorporates geologic mapping with age control based on new radiometric ages as well as paleontology, Flows and tuffs were dated by the K-Ar method. Fossil ages are based on diatom and mollusk assemblages.
Digital Mapping Techniques '07 - Workshop Proceedings
Soller, David R.
2008-01-01
The Digital Mapping Techniques '07 (DMT'07) workshop was attended by 85 technical experts from 49 agencies, universities, and private companies, including representatives from 27 state geological surveys. This year's meeting, the tenth in the annual series, was hosted by the South Carolina Geological Survey, from May 20-23, 2007, on the University of South Carolina campus in Columbia, South Carolina. Each DMT workshop has been coordinated by the U.S. Geological Survey's National Geologic Map Database Project and the Association of American State Geologists (AASG). As in previous year's meetings, the objective was to foster informal discussion and exchange of technical information, principally in order to develop more efficient methods for digital mapping, cartography, GIS analysis, and information management. At this meeting, oral and poster presentations and special discussion sessions emphasized: 1) methods for creating and publishing map products (here, 'publishing' includes Web-based release); 2) field data capture software and techniques, including the use of LIDAR; 3) digital cartographic techniques; 4) migration of digital maps into ArcGIS Geodatabase format; 5) analytical GIS techniques; and 6) continued development of the National Geologic Map Database.
Cressman, Earle Rupert; Noger, Martin C.
1981-01-01
In 1960, the U.S. Geological Survey and the Kentucky Geological Survey began a program to map the State geologically at a scale of 1:24,000 and to publish the maps as 707 U.S. Geological Survey Geologic Quadrangle Maps. Fieldwork was completed by the spring of 1977, and all maps were published by December 1978. Geologic mapping of the State was proposed by the Kentucky Society of Professional Engineers in 1959. Wallace W. Hagan, Director and State Geologist of the Kentucky Geological Survey, and Preston McGrain, Assistant State Geologist, promoted support for the proposal among organizations such as Chambers of Commerce, industrial associations, professional societies, and among members of the State government. It was also arranged for the U.S. Geological Survey to supply mapping personnel and to publish the maps; the cost would be shared equally by the two organizations. Members of the U.S. Geological Survey assigned to the program were organized as the Branch of Kentucky Geology. Branch headquarters, including an editorial staff, was at Lexington, Ky., but actual mapping was conducted from 18 field offices distributed throughout the State. The Publications Division of the U.S. Geological Survey established a cartographic office at Lexington to prepare the maps for publication. About 260 people, including more than 200 professionals, were assigned to the Branch of Kentucky Geology by the U.S. Geological Survey at one time or another. The most geologists assigned any one year was 61. To complete the mapping and ancillary studies, 661 professional man-years were required, compared with an original estimate of 600 man-years. A wide variety of field methods were used, but most geologists relied on the surveying altimeter to obtain elevations. Surface data were supplemented by drill-hole records, and several dozen shallow diamond-drill holes were drilled to aid the mapping. Geologists generally scribed their own maps, with a consequent saving of publication costs. Paleontologists and stratigraphers of the U.S. Geological Survey cooperated closely with the program. Paleontologic studies were concentrated in the Ordovician of central Kentucky, the Pennsylvanian of eastern and western Kentucky, and the Mesozoic and Cenozoic of westernmost Kentucky. In addition to financial support, the Kentucky Geological Survey provided economic data, stratigraphic support, and drillhole records to the field offices. Geologists of the State Survey made subsurface structural interpretations, constructed bedrock topography maps, and mapped several quadrangles. Some of the problems encountered were the inadequacy of much of the existing stratigraphic nomenclature, the uneven quality of some of the mapping, and the effects of relative isolation on the professional development of some of the geologists. The program cost a total of $20,927,500. In terms of 1960 dollars, it cost $16,035,000; this compares with an original estimate of $12,000,000. Although it is difficult to place a monetary value on the geologic mapping, the program has contributed to newly discovered mineral wealth, jobs, and money saved by government and industry. The maps are used widely in the exploration for coal, oil and gas, fluorspar, limestone, and clay. The maps are also used in planning highways and locations of dams, in evaluating foundation and excavation conditions, in preparing environmental impact statements, and in land-use planning.
McLaughlin, Robert J.; Ellen, S.D.; Blake, M.C.; Jayko, Angela S.; Irwin, W.P.; Aalto, K.R.; Carver, G.A.; Clarke, S.H.; Barnes, J.B.; Cecil, J.D.; Cyr, K.A.
2000-01-01
Introduction These geologic maps and accompanying structure sections depict the geology and structure of much of northwestern California and the adjacent continental margin. The map area includes the Mendocino triple junction, which is the juncture of the North American continental plate with two plates of the Pacific ocean basin. The map area also encompasses major geographic and geologic provinces of northwestern California. The maps incorporate much previously unpublished geologic mapping done between 1980 and 1995, as well as published mapping done between about 1950 and 1978. To construct structure sections to mid-crustal depths, we integrate the surface geology with interpretations of crustal structure based on seismicity, gravity and aeromagnetic data, offshore structure, and seismic reflection and refraction data. In addition to describing major geologic and structural features of northwestern California, the geologic maps have the potential to address a number of societally relevant issues, including hazards from earthquakes, landslides, and floods and problems related to timber harvest, wildlife habitat, and changing land use. All of these topics will continue to be of interest in the region, as changing land uses and population density interact with natural conditions. In these interactions, it is critical that the policies and practices affecting man and the environment integrate an adequate understanding of the geology. This digital map database, compiled from previously published and unpublished data, and new mapping by the authors, represents the general distribution of bedrock and surficial deposits in the mapped area. Together with the accompanying text file (ceghmf.ps, ceghmf.pdf, ceghmf.txt), it provides current information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:100,000 or smaller.
Wells, Ray E.; Sawlan, Michael G.
2014-01-01
This digital map database and the PDF derived from the database were created from the analog geologic map: Wells, R.E. (1981), “Geologic map of the eastern Willapa Hills, Cowlitz, Lewis, and Wahkiakum Counties, Washington.” The geodatabase replicates the geologic mapping of the 1981 report with minor exceptions along water boundaries and also along the north and south map boundaries. Slight adjustments to contacts along water boundaries were made to correct differences between the topographic base map used in the 1981 compilation (analog USGS 15-minute series quadrangle maps at 1:62,500 scale) and the base map used for this digital compilation (scanned USGS 7.5-minute series quadrangle maps at 1:24,000 scale). These minor adjustments, however, did not materially alter the geologic map. No new field mapping was performed to create this digital map database, and no attempt was made to fit geologic contacts to the new 1:24,000 topographic base, except as noted above. We corrected typographical errors, formatting errors, and attribution errors (for example, the name change of Goble Volcanics to Grays River Volcanics following current State of Washington usage; Walsh and others, 1987). We also updated selected references, substituted published papers for abstracts, and cited published radiometric ages for the volcanic and plutonic rocks. The reader is referred to Magill and others (1982), Wells and Coe (1985), Walsh and others (1987), Moothart (1993), Payne (1998), Kleibacker (2001), McCutcheon (2003), Wells and others (2009), Chan and others (2012), and Wells and others (in press) for subsequent interpretations of the Willapa Hills geology.
Geologic Map of Central (Interior) Alaska
Wilson, Frederic H.; Dover, James H.; Bradley, Dwight C.; Weber, Florence R.; Bundtzen, Thomas K.; Haeussler, Peter J.
1998-01-01
Introduction: This map and associated digital databases are the result of a compilation and reinterpretation of published and unpublished 1:250,000- and limited 1:125,000- and 1:63,360-scale mapping. The map area covers approximately 416,000 sq km (134,000 sq mi) and encompasses 25 1:250,000-scale quadrangles in central Alaska. The compilation was done as part of the U.S. Geological Survey National Surveys and Analysis project, whose goal is nationwide assemble geologic, geochemical, geophysical, and other data. This map is an early product of an effort that will eventually encompass all of Alaska, and is the result of an agreement with the Alaska Department of Natural Resources, Division of Oil And Gas, to provide data on interior basins in Alaska. A paper version of the three map sheets has been published as USGS Open-File Report 98-133. Two geophysical maps that cover the identical area have been published earlier: 'Bouguer gravity map of Interior Alaska' (Meyer and others, 1996); and 'Merged aeromagnetic map of Interior Alaska' (Meyer and Saltus, 1995). These two publications are supplied in the 'geophys' directory of this report.
Geologic Map of the Yukon-Koyukuk Basin, Alaska
Patton, William W.; Wilson, Frederic H.; Labay, Keith A.; Shew, Nora B.
2009-01-01
This map and accompanying digital files represent part of a systematic effort to release geologic data for the United States in a uniform manner. All the geologic data in this series will be published as parts of the U.S. Geological Survey Data Series. The geologic data in this series have been compiled from a wide variety of sources, ranging from state and regional geologic maps to large-scale field mapping. The data are presented for use at a nominal scale of 1:500,000, although individual datasets may contain data suitable for use at larger scales. The metadata associated with each release will provide more detailed information on sources and appropriate scales for use. Associated attribute databases accompany the spatial database of the geology and are uniformly structured for ease in developing regional- and national-scale maps. The 1:500,000-scale geologic map of the Yukon-Koyukuk Basin, Alaska, covers more than 200,000 square kilometers of western Alaska or nearly 15 percent of the total land area of the state. It stretches from the Brooks Range on the north to the Kuskokwim River and lower reaches of the Yukon River on the south and from Kotzebue Sound, Seward Peninsula, and Norton Sound on the west to the Yukon-Tanana Uplands and Tanana-Kuskokwim Lowlands on the east. It includes not only the northern and central part of the basin, but also the lands that border the basin. The area is characterized by isolated clusters of hills and low mountain ranges separated by broad alluviated interior and coastal lowlands. Most of the lowlands, except those bordering Kotzebue Sound and Norton Sound, support a heavy vegetation cover. Exposures of bedrock are generally limited to rubble-strewn ridgetops and to cutbanks along the rivers. The map of the Yukon-Koyukuk Basin was prepared largely from geologic field data collected between 1953 and 1988 by the U.S. Geological Survey and published as 1:250,000-scale geologic quadrangle maps. Additional data for parts of the Wiseman, Ruby, Medfra, and Ophir quadrangles came from 1:63,360-scale quadrangle maps published by the Alaska Division of Geological and Geophysical Surveys. The map also incorporates some unpublished field data for the Ruby quadrangle collected by R.M. Chapman between 1944 and 1977 and for parts of the Tanana, Bettles, Norton Bay, and Candle quadrangles collected by W.W. Patton, Jr. and others between 1954 and 1985. Sources of geologic map data for each of the eighteen 1:250,000-scale quadrangles used in compiling this 1:500,000-scale map of the Yukon-Koyukuk Basin as well as sources of general geologic information pertaining to the entire map area are provided in the 'Sources of Information' section.
California State Waters Map Series Data Catalog
Golden, Nadine E.
2013-01-01
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California's State Waters. The CSMP approach is to create highly detailed seafloor maps and associated data layers through the collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. CSMP has divided coastal California into 110 map blocks (fig. 1), each to be published individually as USGS Scientific Investigations Maps (SIMs) at a scale of 1:24,000. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. This CSMP data catalog contains much of the data used to prepare the SIMs in the California State Waters Map Series. Other data that were used to prepare the maps were compiled from previously published sources (for example, onshore geology) and, thus, are not included herein.
Geologic map of the Richland 1:100,000 quadrangle, Washington
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reidel, S.P.; Fecht, K.R.
1993-09-01
This map of the Richland 1:100,000-scale quadrangle, Washington, shows the geology of one of fifteen complete or partial 1:100,000-scale quadrangles that cover the southeast quadrant of Washington. Geologic maps of these quadrangles have been compiled by geologists with the Washington Division of Geology and Earth Resources (DGER) and Washington State University and are the principal data sources for a 1:250,000-scale geologic map of the southeast quadrant of Washington, which is in preparation. Eleven of these quadrangles are being released as DGER open-file reports. The map of the Wenatchee quadrangle has been published by the US Geological Survey, and the Mosesmore » Lake, Ritzville quadrangles have already been released.« less
Graymer, R.W.
2000-01-01
Introduction This report contains a new geologic map at 1:50,000 scale, derived from a set of geologic map databases containing information at a resolution associated with 1:24,000 scale, and a new description of geologic map units and structural relationships in the mapped area. The map database represents the integration of previously published reports and new geologic mapping and field checking by the author (see Sources of Data index map on the map sheet or the Arc-Info coverage pi-so and the textfile pi-so.txt). The descriptive text (below) contains new ideas about the Hayward fault and other faults in the East Bay fault system, as well as new ideas about the geologic units and their relations. These new data are released in digital form in conjunction with the Federal Emergency Management Agency Project Impact in Oakland. The goal of Project Impact is to use geologic information in land-use and emergency services planning to reduce the losses occurring during earthquakes, landslides, and other hazardous geologic events. The USGS, California Division of Mines and Geology, FEMA, California Office of Emergency Services, and City of Oakland participated in the cooperative project. The geologic data in this report were provided in pre-release form to other Project Impact scientists, and served as one of the basic data layers for the analysis of hazard related to earthquake shaking, liquifaction, earthquake induced landsliding, and rainfall induced landsliding. The publication of these data provides an opportunity for regional planners, local, state, and federal agencies, teachers, consultants, and others outside Project Impact who are interested in geologic data to have the new data long before a traditional paper map could be published. Because the database contains information about both the bedrock and surficial deposits, it has practical applications in the study of groundwater and engineering of hillside materials, as well as the study of geologic hazards and the academic research on the geologic history and development of the region.
Geologic Communications | Alaska Division of Geological & Geophysical
improves a database for the Division's digital and map-based geological, geophysical, and geochemical data interfaces DGGS metadata and digital data distribution - Geospatial datasets published by DGGS are designed to be compatible with a broad variety of digital mapping software, to present DGGS's geospatial data
Digital Mapping Techniques '08—Workshop Proceedings, Moscow, Idaho, May 18–21, 2008
Soller, David R.
2009-01-01
The Digital Mapping Techniques '08 (DMT'08) workshop was attended by more than 100 technical experts from 40 agencies, universities, and private companies, including representatives from 24 State geological surveys. This year's meeting, the twelfth in the annual series, was hosted by the Idaho Geological Survey, from May 18-21, 2008, on the University of Idaho campus in Moscow, Idaho. Each DMT workshop has been coordinated by the U.S. Geological Survey's National Geologic Map Database Project and the Association of American State Geologists (AASG). As in previous years' meetings, the objective was to foster informal discussion and exchange of technical information, principally in order to develop more efficient methods for digital mapping, cartography, GIS analysis, and information management. At this meeting, oral and poster presentations and special discussion sessions emphasized (1) methods for creating and publishing map products (here, "publishing" includes Web-based release); (2) field data capture software and techniques, including the use of LiDAR; (3) digital cartographic techniques; (4) migration of digital maps into ArcGIS Geodatabase format; (5) analytical GIS techniques; and (6) continued development of the National Geologic Map Database.
Geologic Map of the Katmai Volcanic Cluster, Katmai National Park, Alaska
Hildreth, Wes; Fierstein, Judy
2002-01-01
This digital publication contains all the geologic map information used to publish U.S. Geological Survey Geologic Investigations Map Series I-2778 (Hildreth and Fierstein, 2003). This is a geologic map of the Katmai volcanic cluster on the Alaska Peninsula (including Mount Katmai, Trident Volcano, Mount Mageik, Mount Martin, Mount Griggs, Snowy Mountain, Alagogshak volcano, and Novarupta volcano), and shows the distribution of ejecta from the great eruption of June, 1912 at Novarupta. Widely scattered erosional remnants of volcanic rocks, unrelated to but in the vicinity of the Katmai cluster, are also mapped. Distribution of glacial deposits, large landslides, debris avalanches, and surficial deposits are a snapshot of an ever-changing landscape.
The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States
Horton, John D.; San Juan, Carma A.; Stoeser, Douglas B.
2017-06-30
The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States (https://doi. org/10.5066/F7WH2N65) represents a seamless, spatial database of 48 State geologic maps that range from 1:50,000 to 1:1,000,000 scale. A national digital geologic map database is essential in interpreting other datasets that support numerous types of national-scale studies and assessments, such as those that provide geochemistry, remote sensing, or geophysical data. The SGMC is a compilation of the individual U.S. Geological Survey releases of the Preliminary Integrated Geologic Map Databases for the United States. The SGMC geodatabase also contains updated data for seven States and seven entirely new State geologic maps that have been added since the preliminary databases were published. Numerous errors have been corrected and enhancements added to the preliminary datasets using thorough quality assurance/quality control procedures. The SGMC is not a truly integrated geologic map database because geologic units have not been reconciled across State boundaries. However, the geologic data contained in each State geologic map have been standardized to allow spatial analyses of lithology, age, and stratigraphy at a national scale.
,
1992-01-01
An important goal of the USGS planetary mapping program is to systematically map the geology of the Moon, Mars, Venus, and Mercury, and the satellites of the outer planets. These geologic maps are published in the USGS Miscellaneous Investigations (I) Series. Planetary maps on sale at the USGS include shaded-relief maps, topographic maps, geologic maps, and controlled photomosaics. Controlled photomosaics are assembled from two or more photographs or images using a network of points of known latitude and longitude. The images used for most of these planetary maps are electronic images, obtained from orbiting television cameras, various optical-mechanical systems. Photographic film was only used to map Earth's Moon.
Wilson, Frederic H.; Hults, Chad P.; Schmoll, Henry R.; Haeussler, Peter J.; Schmidt, Jeanine M.; Yehle, Lynn A.; Labay, Keith A.
2012-01-01
In 1976, L.B. Magoon, W.L. Adkinson, and R.M. Egbert published a major geologic map of the Cook Inlet region, which has served well as a compilation of existing information and a guide for future research and mapping. The map in this report updates Magoon and others (1976) and incorporates new and additional mapping and interpretation. This map is also a revision of areas of overlap with the geologic map completed for central Alaska (Wilson and others, 1998). Text from that compilation remains appropriate and is summarized here; many compromises have been made in strongly held beliefs to allow construction of this compilation. Yet our willingness to make interpretations and compromises does not allow resolution of all mapping conflicts. Nonetheless, we hope that geologists who have mapped in this region will recognize that, in incorporating their work, our regional correlations may have required some generalization or lumping of map units. Many sources were used to produce this geologic map and, in most cases, data from available maps were combined, without generalization, and new data were added where available. A preliminary version of this map was published as U.S. Geological Survey Open-File Report 2009–1108. The main differences between the versions concern revised mapping of surfical deposits in the northern and eastern parts of the map area. Minor error corrections have been made also.
Barron, Andrew D.; Ramsey, David W.; Smith, James G.
2014-01-01
This digital database contains information used to produce the geologic map published as Sheet 1 in U.S. Geological Survey Miscellaneous Investigations Series Map I-2005. (Sheet 2 of Map I-2005 shows sources of geologic data used in the compilation and is available separately). Sheet 1 of Map I-2005 shows the distribution and relations of volcanic and related rock units in the Cascade Range of Washington at a scale of 1:500,000. This digital release is produced from stable materials originally compiled at 1:250,000 scale that were used to publish Sheet 1. The database therefore contains more detailed geologic information than is portrayed on Sheet 1. This is most noticeable in the database as expanded polygons of surficial units and the presence of additional strands of concealed faults. No stable compilation materials exist for Sheet 1 at 1:500,000 scale. The main component of this digital release is a spatial database prepared using geographic information systems (GIS) applications. This release also contains links to files to view or print the map sheet, main report text, and accompanying mapping reference sheet from Map I-2005. For more information on volcanoes in the Cascade Range in Washington, Oregon, or California, please refer to the U.S. Geological Survey Volcano Hazards Program website.
Geologic map of the Reyes Peak quadrangle, Ventura County, California
Minor, Scott A.
2004-01-01
New 1:24,000-scale geologic mapping in the Cuyama 30' x 60' quadrangle, in support of the USGS Southern California Areal Mapping Project (SCAMP), is contributing to a more complete understanding of the stratigraphy, structure, and tectonic evolution of the complex junction area between the NW-trending Coast Ranges and EW-trending western Transverse Ranges. The 1:24,000-scale geologic map of the Reyes Peak quadrangle, located in the eastern part of the Cuyama map area, is the final of six contiguous 7 ?' quadrangle geologic maps compiled for a more detailed portrayal and reevaluation of geologic structures and rock units shown on previous maps of the region (Carman, 1964; Dibblee, 1972; Vedder and others, 1973). SCAMP digital geologic maps of the five other contiguous quadrangles have recently been published (Minor, 1999; Kellogg, 1999, 2003; Stone and Cossette, 2000; Kellogg and Miggins, 2002). This digital compilation presents a new geologic map database for the Reyes Peak 7?' quadrangle, which is located in southern California about 75 km northwest of Los Angeles. The map database is at 1:24,000-scale resolution.
Geologic Map of the Central Marysvale Volcanic Field, Southwestern Utah
Rowley, Peter D.; Cunningham, Charles G.; Steven, Thomas A.; Workman, Jeremiah B.; Anderson, John J.; Theissen, Kevin M.
2002-01-01
The geologic map of the central Marysvale volcanic field, southwestern Utah, shows the geology at 1:100,000 scale of the heart of one of the largest Cenozoic volcanic fields in the Western United States. The map shows the area of 38 degrees 15' to 38 degrees 42'30' N., and 112 degrees to 112 degrees 37'30' W. The Marysvale field occurs mostly in the High Plateaus, a subprovince of the Colorado Plateau and structurally a transition zone between the complexly deformed Great Basin to the west and the stable, little-deformed main part of the Colorado Plateau to the east. The western part of the field is in the Great Basin proper. The volcanic rocks and their source intrusions in the volcanic field range in age from about 31 Ma (Oligocene) to about 0.5 Ma (Pleistocene). These rocks overlie sedimentary rocks exposed in the mapped area that range in age from Ordovician to early Cenozoic. The area has been deformed by thrust faults and folds formed during the late Mesozoic to early Cenozoic Sevier deformational event, and later by mostly normal faults and folds of the Miocene to Quaternary basin-range episode. The map revises and updates knowledge gained during a long-term U.S. Geological Survey investigation of the volcanic field, done in part because of its extensive history of mining. The investigation also was done to provide framework geologic knowledge suitable for defining geologic and hydrologic hazards, for locating hydrologic and mineral resources, and for an understanding of geologic processes in the area. A previous geologic map (Cunningham and others, 1983, U.S. Geological Survey Miscellaneous Investigations Series I-1430-A) covered the same area as this map but was published at 1:50,000 scale and is obsolete due to new data. This new geologic map of the central Marysvale field, here published as U.S. Geological Survey Geologic Investigations Series I-2645-A, is accompanied by gravity and aeromagnetic maps of the same area and the same scale (Campbell and others, 1999, U.S. Geological Survey Geologic Investigations Series I-2645-B).
Publications - RI 2000-1C | Alaska Division of Geological & Geophysical
Sagavanirktok B-1 Quadrangle, eastern North Slope, Alaska Authors: Pinney, D.S. Publication Date: 2000 Publisher Bibliographic Reference Pinney, D.S., 2000, Reconnaissance surficial-geologic map of the Sagavanirktok B-1 Sheets Sheet 1 Reconnaissance surficial-geologic map of the Sagavanirktok B-1 Quadrangle, eastern North
Digital Mapping Techniques '10-Workshop Proceedings, Sacramento, California, May 16-19, 2010
Soller, David R.; Soller, David R.
2012-01-01
The Digital Mapping Techniques '10 (DMT'10) workshop was attended by 110 technical experts from 40 agencies, universities, and private companies, including representatives from 19 State geological surveys (see Appendix A). This workshop, hosted by the California Geological Survey, May 16-19, 2010, in Sacramento, California, was similar in nature to the previous 13 meetings (see Appendix B). The meeting was coordinated by the U.S. Geological Survey's (USGS) National Geologic Map Database project. As in the previous meetings, the objective was to foster informal discussion and exchange of technical information. It is with great pleasure that I note that the objective was again successfully met, as attendees continued to share and exchange knowledge and information, and renew friendships and collegial work begun at past DMT workshops. At this meeting, oral and poster presentations and special discussion sessions emphasized (1) methods for creating and publishing map products ("publishing" includes Web-based release); (2) field data capture software and techniques, including the use of LiDAR; (3) digital cartographic techniques; (4) migration of digital maps into ArcGIS Geodatabase format; (5) analytical GIS techniques; and (6) continued development of the National Geologic Map Database.
Lina Ma,; Sherrod, David R.; Scott, William E.
2014-01-01
This geodatabase contains information derived from legacy mapping that was published in 1995 as U.S. Geological Survey Open-File Report 95-219. The main component of this publication is a geologic map database prepared using geographic information system (GIS) applications. Included are pdf files to view or print the map sheet, the accompanying pamphlet from Open-File Report 95-219, and links to the original publication, which is available as scanned files in pdf format.
Geologic Map and Map Database of Eastern Sonoma and Western Napa Counties, California
Graymer, R.W.; Brabb, E.E.; Jones, D.L.; Barnes, J.; Nicholson, R.S.; Stamski, R.E.
2007-01-01
Introduction This report contains a new 1:100,000-scale geologic map, derived from a set of geologic map databases (Arc-Info coverages) containing information at 1:62,500-scale resolution, and a new description of the geologic map units and structural relations in the map area. Prepared as part of the San Francisco Bay Region Mapping Project, the study area includes the north-central part of the San Francisco Bay region, and forms the final piece of the effort to generate new, digital geologic maps and map databases for an area which includes Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, Santa Clara, Santa Cruz, Solano, and Sonoma Counties. Geologic mapping in Lake County in the north-central part of the map extent was not within the scope of the Project. The map and map database integrates both previously published reports and new geologic mapping and field checking by the authors (see Sources of Data index map on the map sheet or the Arc-Info coverage eswn-so and the textfile eswn-so.txt). This report contains new ideas about the geologic structures in the map area, including the active San Andreas Fault system, as well as the geologic units and their relations. Together, the map (or map database) and the unit descriptions in this report describe the composition, distribution, and orientation of geologic materials and structures within the study area at regional scale. Regional geologic information is important for analysis of earthquake shaking, liquifaction susceptibility, landslide susceptibility, engineering materials properties, mineral resources and hazards, as well as groundwater resources and hazards. These data also assist in answering questions about the geologic history and development of the California Coast Ranges.
Billingsley, G.H.
2000-01-01
This digital map database, compiled from previously published and unpublished data as well as new mapping by the author, represents the general distribution of bedrock and surficial deposits in the map area. Together with the accompanying pamphlet, it provides current information on the geologic structure and stratigraphy of the Grand Canyon area. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:100,000 or smaller.
Geologic map of the Middletown quadrangle, Frederick, Shenandoah, and Warren Counties, Virginia
Orndorff, Randall C.; Epstein, Jack Burton; McDowell, Robert C.
1999-01-01
The Middletown 1:24,000-scale quadrangle is one of several quadrangles in Frederick County, Virginia mapped or being mapped by geologists from the U.S. Geological Survey in Reston, VA with funding from the National Cooperative Geologic Mapping Program. This map was originally published as a paper product in 1999. It has been converted to GIS-based digital form. This work is part of a project being lead by the U.S. Geological Survey Water Resources Discipline, Virginia District, to investigate the geologic framework and groundwater resources of Frederick County as well as other areas in the northern Shenandoah Valley of Virginia and West Virginia. For more information about the Project see: http://geology.er.usgs.gov/eespteam/Karst/index.html for Geologic Discipline efforts and http://va.water.usgs.gov/va134/index.htm for Water Resources Discipline efforts.
Geologic map of the Boulder-Fort Collins-Greeley Area, Colorado
Colton, Roger B.
1978-01-01
This digital map shows the geographic extent of rock stratigraphic units (formations) as compiled by Colton in 1976 under the Front Range Urban Corridor Geology Program. Colton used his own geologic mapping and previously published geologic maps to compile one map having a single classification of geologic units. The resulting published color paper map (USGS Map I-855-G, Colton, 1978) was intended for land-use planning and to depict the regional geology. In 1997-1999, another USGS project designed to address urban growth issues was undertaken. This project, the USGS Front Range Infrastructure Resources Project, undertook to digitize Colton's map at 1:100,000 scale, making it useable in Geographical Information Systems (GIS). That product is described here. In general, the digitized map depicts in its western part Precambrian igneous and metamorphic rocks, Pennsylvanian and younger sedimentary rock units, major faults, and brecciated zones along an eastern strip (5-20 km wide) of the Front Range. The central and eastern parts of the map (Colorado Piedmont) show a mantle of Quaternary unconsolidated deposits and interspersed outcrops of sedimentary rock of Cretaceous or Tertiary age. A surficial mantle of unconsolidated deposits of Quaternary age is differentiated and depicted as eolium (wind-blown sand and silt), alluvium (river gravel, sand, and silt of variable composition), colluvium, and a few landslide deposits. At the mountain front, north-trending, Paleozoic and Mesozoic formations of sandstone, shale, and minor limestone dip mostly eastward and form folds, fault blocks, hogbacks and intervening valleys. Local dikes and sills of Tertiary rhyodacite and basalt intrude rocks near the range front, mostly in the Boulder area.
Updated symbol catalogue for geologic and geomorphologic mapping in Planetary Scinces
NASA Astrophysics Data System (ADS)
Nass, Andrea; Fortezzo, Corey; Skinner, James, Jr.; Hunter, Marc; Hare, Trent
2017-04-01
Maps are one of the most powerful communication tools for spatial data. This is true for terrestrial data, as well as the many types of planetary data. Geologic and/or geomorphologic maps of planetary surfaces, in particular those of the Moon, Mars, and Venus, are standardized products and often prepared as a part of hypothesis-driven science investigations. The NASA-funded Planetary Geologic Mapping program, coordinated by the USGS Astrogeology Science Center (ASC), produces high-quality, standardized, and refereed geologic maps and digital databases of planetary bodies. In this context, 242 geologic, geomorphologic, and thematic map sheets and map series have been published since the 1962. However, outside of this program, numerous non-USGS published maps are created as result of scientific investigations and published, e.g. as figures or supplemental materials within a peer-reviewed journal article. Due to the complexity of planetary surfaces, diversity between different planet surfaces, and the varied resolution of the data, geomorphologic and geologic mapping is a challenging task. Because of these limiting conditions, the mapping process is a highly interpretative work and is mostly limited to remotely sensed satellite data - with a few expetions from rover data. Uniform and an unambiguous data are fundamental to make quality observations that lead to unbiased and supported interpretations, especially when there is no current groundtruthing. To allow for correlation between different map products (digital or analog), the most commonly used spatial objects are predefined cartographic symbols. The Federal Geographic Data Committee (FGDC) Digital Cartographic Standard for Geologic Map Symbolization (DCSGMS) defines the most commonly used symbols, colors, and hatch patterns in one comprehensive document. Chapter 25 of the DCSGMS defines the Planetary Geology Features based on the symbols defined in the Venus Mapper's Handbook. After reviewing the 242 planetary geological maps, we propose to 1) review standardized symbols for planetary maps, and 2) recommend an updated symbol collection for adoption by the planetary mapping community. Within these points, the focus is on the changing of symbology with respect to time and how it effects communication within and between the maps. Two key questions to address are 1) does chapter 25 provides enough variability within the subcategories (e.g., faults) to represent the data within the maps? 2) How recommendations to the mapping community and their steering committees could be delivered to enhance a map's communicability, and convey information succinctly but thoroughly. For determining the most representative symbol collection of existing maps to support future map results (within or outside of USGS mapping program) we defined a stepwise task list: 1) Statistical review of existing symbol sets and collections, 2) Establish a representative symbol set for planetary mapping, 3) Update cartographic symbols, 4) Implementation into GIS-based mapping software (this implementation will mimic the 2010 application of the planetary symbol set into ArcGIS (more information https://planetarymapping.wr.usgs.gov/Project). 6) Platform to provide the symbol set to the mapping community. This project was initiated within an ongoing cooperation work between the USGS ASC and the German Aerospace Center (DLR), Dept. of Planetary Geology.
Geologic map and map database of the Palo Alto 30' x 60' quadrangle, California
Brabb, E.E.; Jones, D.L.; Graymer, R.W.
2000-01-01
This digital map database, compiled from previously published and unpublished data, and new mapping by the authors, represents the general distribution of bedrock and surficial deposits in the mapped area. Together with the accompanying text file (pamf.ps, pamf.pdf, pamf.txt), it provides current information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:62,500 or smaller.
Blake, M.C.; Graymer, R.W.; Stamski, R.E.
2002-01-01
This digital map database, compiled from previously published and unpublished data, and new mapping by the authors, represents the general distribution of bedrock and surficial deposits in the mapped area. Together with the accompanying text file (wsomf.ps, wsomf.pdf, wsomf.txt), it provides current information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:62,500 or smaller.
Database for volcanic processes and geology of Augustine Volcano, Alaska
McIntire, Jacqueline; Ramsey, David W.; Thoms, Evan; Waitt, Richard B.; Beget, James E.
2012-01-01
This digital release contains information used to produce the geologic map published as Plate 1 in U.S. Geological Survey Professional Paper 1762 (Waitt and Begét, 2009). The main component of this digital release is a geologic map database prepared using geographic information systems (GIS) applications. This release also contains links to files to view or print the map plate, accompanying measured sections, and main report text from Professional Paper 1762. It should be noted that Augustine Volcano erupted in 2006, after the completion of the geologic mapping shown in Professional Paper 1762 and presented in this database. Information on the 2006 eruption can be found in U.S. Geological Survey Professional Paper 1769. For the most up to date information on the status of Alaska volcanoes, please refer to the U.S. Geological Survey Volcano Hazards Program website.
FGDC Digital Cartographic Standard for Geologic Map Symbolization (PostScript Implementation)
,
2006-01-01
PLEASE NOTE: This now-approved 'FGDC Digital Cartographic Standard for Geologic Map Symbolization (PostScript Implementation)' officially supercedes its earlier (2000) Public Review Draft version (see 'Earlier Versions of the Standard' below). In August 2006, the Digital Cartographic Standard for Geologic Map Symbolization was officially endorsed by the Federal Geographic Data Committee (FGDC) as the national standard for the digital cartographic representation of geologic map features (FGDC Document Number FGDC-STD-013-2006). Presented herein is the PostScript Implementation of the standard, which will enable users to directly apply the symbols in the standard to geologic maps and illustrations prepared in desktop illustration and (or) publishing software. The FGDC Digital Cartographic Standard for Geologic Map Symbolization contains descriptions, examples, cartographic specifications, and notes on usage for a wide variety of symbols that may be used on typical, general-purpose geologic maps and related products such as cross sections. The standard also can be used for different kinds of special-purpose or derivative map products and databases that may be focused on a specific geoscience topic (for example, slope stability) or class of features (for example, a fault map). The standard is scale-independent, meaning that the symbols are appropriate for use with geologic mapping compiled or published at any scale. It will be useful to anyone who either produces or uses geologic map information, whether in analog or digital form. Please be aware that this standard is not intended to be used inflexibly or in a manner that will limit one's ability to communicate the observations and interpretations gained from geologic mapping. In certain situations, a symbol or its usage might need to be modified in order to better represent a particular feature on a geologic map or cross section. This standard allows the use of any symbol that doesn't conflict with others in the standard, provided that it is clearly explained on the map and in the database. In addition, modifying the size, color, and (or) lineweight of an existing symbol to suit the needs of a particular map or output device also is permitted, provided that the modified symbol's appearance is not too similar to another symbol on the map. Be aware, however, that reducing lineweights below .125 mm (.005 inch) may cause symbols to plot incorrectly if output at higher resolutions (1800 dpi or higher). For guidelines on symbol usage, as well as on color design and map labeling, please refer to the standard's introductory text. Also found there are informational sections covering concepts of geologic mapping and some definitions of geologic map features, as well as sections on the newly defined concepts and terminology for the scientific confidence and locational accuracy of geologic map features. More information on both the past development and the future maintenance of the FGDC Digital Cartographic Standard for Geologic Map Symbolization can be found at the FGDC Geologic Data Subcommittee website (http://ngmdb.usgs.gov/fgdc_gds/). Earlier Versions of the Standard
Geology of the Bopolu Quadrangle, Liberia
Wallace, Roberts Manning
1974-01-01
As part of a program undertaken cooperatively by the Liberian Geological Survey (LGS) and the U. S. Geological Survey (USGS), under the sponsorship of the Government of Liberia and the Agency for International Development, U. S. Department of State, Liberia was mapped by geologic and geophysical methods during the period 1965 to 1972. The resulting:geologic and geophysical maps are published in ten folios, each covering one quadrangle (see index map). The Bopolu quadrangle was systematically mapped by the author in late 1970. Field data provided by private companies and other members of the LGS-USGS project were used in map compilation, and are hereby acknowledged. Limited gravity data (Behrendt and Wotorson, in press ), and total-intensity aeromagnetic and total-count gamma radiation surveys (Behrendt and Wotorson, 1974, a and b) were also used in compilation, as were other unpublished geophysical data (near-surface, regional magnetic component, and geologic correlations based on aeromagnetic and radiometric characteristics) furnished by Behrendt and Wotorson.
NASA Astrophysics Data System (ADS)
Arulbalaji, Palanisamy; Balasubramanian, Gurugnanam
2017-07-01
This study uses advanced spaceborne thermal emission and reflection radiometer (ASTER) hyperspectral remote sensing techniques to discriminate rock types composing Kanjamalai hill located in the Salem district of Tamil Nadu, India. Kanjamalai hill is of particular interest because it contains economically viable iron ore deposits. ASTER hyperspectral data were subjected to principal component analysis (PCA), independent component analysis (ICA), and minimum noise fraction (MNF) to improve identification of lithologies remotely and to compare these digital data results with published geologic maps. Hyperspectral remote sensing analysis indicates that PCA (R∶G∶B=2∶1∶3), MNF (R∶G∶B=3∶2∶1), and ICA (R∶G∶B=1∶3∶2) provide the best band combination for effective discrimination of lithological rock types composing Kanjamalai hill. The remote sensing-derived lithological map compares favorably with a published geological map from Geological Survey of India and has been verified with ground truth field investigations. Therefore, ASTER data-based lithological mapping provides fast, cost-effective, and accurate geologic data useful for lithological discrimination and identification of ore deposits.
Colton, Roger B.; Brandt, Theodore R.; Moore, David W.; Murray, Kyle E.
2003-01-01
This digital map shows bedding attitude data displayed over the geographic extent of rock stratigraphic units (formations) as compiled by Colton in 1976 (U.S.Geological Survey Map I-855-G) under the Front Range Urban Corridor Geology Program. Colton used his own mapping and published geologic maps having varied map unit schemes to compile one map with a uniform classification of geologic units. The resulting published color paper map was intended for planning for use of land in the Front Range Urban Corridor. In 1997-1999, under the USGS Front Range Infrastructure Resources Project, Colton's map was digitized to provide data at 1:100,000 scale to address urban growth issues(see cross-reference). In general, the west part of the map shows a variety of Precambrian igneous and metamorphic rocks, major faults and brecciated zones along an eastern strip (5-20 km wide) of the Front Range. The eastern and central part of the map (Colorado Piedmont) depicts a mantle of Quaternary unconsolidated deposits and interspersed Cretaceous or Tertiary-Cretaceous sedimentary rock outcrops. The Quaternary mantle is comprised of eolian deposits (quartz sand and silt), alluvium (gravel, sand, and silt of variable composition), colluvium, and few landslides. At the mountain front, north-trending, dipping Paleozoic and Mesozoic sandstone and shale formations (and sparse limestone) form hogbacks, intervening valleys, and in range-front folds, anticlines, and fault blocks. Localized dikes and sills of Tertiary rhyodacite and basalt intrude rocks near the range front, mostly in the Boulder area.
Geologic map of the Monrovia Quadrangle, Liberia
Thorman, Charles H.
1974-01-01
As part of a program undertaken cooperatively by the Liberian Geological Survey and the U. S. Geological Survey, under the sponsorship of the Government of Liberia and the Agency for International Development, U. S. Department of State, Liberia was mapped by geologic and geophysical methods during the period 1965 to 1972.- The resulting geologic and geophysical maps are published in ten folios, each covering one quadrangle (see index map). The Monrovia quadrangle was systematically mapped by the author from June 1971 to July 1972. Field data provided by private companies and other members of the LGS-USGS project were used in map compilation, and are hereby acknowledged. Interpretation of gravity data (Behrendt and Wotorson, 1974, c), and total-intensity aeromagnetic and total count gamma radiation surveys (Behrendt and Wotorson, 1974, a, and b) were also used in the compilation, as were other unpublished geophysical data furnished by Behrendt and Wotorson (near-surface, regional magnetic component, and geologic correlations based on aeromagnetic and radiometric characteristics).
Geologic map of the Lassen Peak, Chaos Crags, and Upper Hat Creek area, California
Christiansen, Robert L.; Clynne, Michael A.; Muffler, L.J. Patrick
2002-01-01
This digital publication contains all the information used to publish U.S. Geological Survey Geologic Investigations Series I-2723 (Christiansen and others, 2002). The map shows the distribution and relationships of volcanic and surficial-sedimentary deposits in an area of Lassen Volcanic National Park and vicinity. Emphasis is on products of the 1914-1917 eruptions of Lassen Peak and the approximately 1000-year-old eruptions of Chaos Crags. ArcInfo grids were prepared from scanned composite images of four U.S. Geological Survey 7.5' topographic quadrangle maps and were georeferenced and reprojected.
Chase, Katherine J.; Bock, Andrew R.; Sando, Roy
2017-01-05
This report provides an overview of current (2016) U.S. Geological Survey policies and practices related to publishing data on ScienceBase, and an example interactive mapping application to display those data. ScienceBase is an integrated data sharing platform managed by the U.S. Geological Survey. This report describes resources that U.S. Geological Survey Scientists can use for writing data management plans, formatting data, and creating metadata, as well as for data and metadata review, uploading data and metadata to ScienceBase, and sharing metadata through the U.S. Geological Survey Science Data Catalog. Because data publishing policies and practices are evolving, scientists should consult the resources cited in this paper for definitive policy information.An example is provided where, using the content of a published ScienceBase data release that is associated with an interpretive product, a simple user interface is constructed to demonstrate how the open source capabilities of the R programming language and environment can interact with the properties and objects of the ScienceBase item and be used to generate interactive maps.
Geologic map and guide of the island of Oahu, Hawaii
Stearns, Harold T.
1939-01-01
This bulletin, although designated Bulletin 2, is actually the fourth of a series published by the Division of Hydrography of the Territory of Hawaii. All four of the bulletins thus far published relate to the geology and ground-water resources of the island of Oahu.1 Together they present the results obtained on this island in the program of ground-water investigation of the Territory that has been conducted in cooperation with the Geological Survey, of the United States Department of the Interior. Bulletin 5 which is in preparation will describe the progress made in developing the ground-water resources of Oahu since Bulletin 1 was issued. In Bulletin 2 is presented the detailed geologic map of Oahu that has resulted from this investigation. The base for this map is the new topographic map of Oahu prepared by the Topographic Branch of the Geological Survey. This bulletin also contains a guide to the geology along the main highways, which can be used advantageously in connection with the geologic map. For 18 years the writer has had the great privilege of working under the technical direction of Mr. 0. E. Meinzer, geologist in charge of the Division of Ground Water, U. S. Geological Survey. Nearly two decades ago Mr. Meinzer envisioned the great benefits that the people of Hawaii would derive from a thorough study of the groundwater resources of these islands. He also recognized that a full knowledge of these resources could be obtained only by a complete understanding of the geology of the islands and the processes which formed them. This bulletin is one of a series that has been made possible largely as a result of his broad vision. Credit is due Mr. W. 0 . Clark for the location of all the dikes shown on plate 2 in the headwaters of Kamananui Stream near the north end of the Koolau Range, and to Dr. C. K. Wentworth for about a dozen dikes north of Kaimuki. Messrs. 0. E. Meinzer, G. R. Mansfield, M. H. Carson, G. A. Macdonald, and S. H. Elbert kindly criticized the manuscript. Mr. Harry L. Taeuber designed the cover and with James Y. Nitta prepared the illustrations. Their work has greatly enriched this bulletin. The topographic maps of 15-minute quadrangles, on a scale of 1 to 20,000 (approximately 3 inches to the mile), were used in the field as a base for the geologic mapping. The data were then transferred to the new topographic map of Oahu, which is on a scale of 1 to 62,500. The resulting geologic map is reproduced as plate 2 (in pocket) of this report. Some of the outcrops are too small to be shown on this smaller map. Plate 2 of this report was listed as plate 2 in Bulletin 1, which was, however, published without the map because of the time required to prepare and engrave the topographic base and the geologic map. The geologic structure sections at the bottom of plate 2 were not described in Bulletin 1, but are discussed below.
Blake, M.C.; Jones, D.L.; Graymer, R.W.; digital database by Soule, Adam
2000-01-01
This digital map database, compiled from previously published and unpublished data, and new mapping by the authors, represents the general distribution of bedrock and surficial deposits in the mapped area. Together with the accompanying text file (mageo.txt, mageo.pdf, or mageo.ps), it provides current information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:62,500 or smaller general distribution of bedrock and surficial deposits in the mapped area. Together with the accompanying text file (mageo.txt, mageo.pdf, or mageo.ps), it provides current information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:62,500 or smaller.
Spatial Digital Database for the Geologic Map of Oregon
Walker, George W.; MacLeod, Norman S.; Miller, Robert J.; Raines, Gary L.; Connors, Katherine A.
2003-01-01
Introduction This report describes and makes available a geologic digital spatial database (orgeo) representing the geologic map of Oregon (Walker and MacLeod, 1991). The original paper publication was printed as a single map sheet at a scale of 1:500,000, accompanied by a second sheet containing map unit descriptions and ancillary data. A digital version of the Walker and MacLeod (1991) map was included in Raines and others (1996). The dataset provided by this open-file report supersedes the earlier published digital version (Raines and others, 1996). This digital spatial database is one of many being created by the U.S. Geological Survey as an ongoing effort to provide geologic information for use in spatial analysis in a geographic information system (GIS). This database can be queried in many ways to produce a variety of geologic maps. This database is not meant to be used or displayed at any scale larger than 1:500,000 (for example, 1:100,000). This report describes the methods used to convert the geologic map data into a digital format, describes the ArcInfo GIS file structures and relationships, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet. Scanned images of the printed map (Walker and MacLeod, 1991), their correlation of map units, and their explanation of map symbols are also available for download.
Specification for the U.S. Geological Survey Historical Topographic Map Collection
Allord, Gregory J.; Walter, Jennifer L.; Fishburn, Kristin A.; Shea, Gale A.
2014-01-01
This document provides the detailed requirements for producing, archiving, and disseminating a comprehensive digital collection of topographic maps for the U.S. Geological Survey (USGS) Historical Topographic Map Collection (HTMC). The HTMC is a digital archive of about 190,000 printed topographic maps published by the USGS from the inception of the topographic mapping program in 1884 until the last paper topographic map using lithographic printing technology was published in 2006. The HTMC provides a comprehensive digital repository of all scales and all editions of USGS printed topographic maps that is easily discovered, browsed, and downloaded by the public at no cost. The HTMC provides ready access to maps that are no longer available for distribution in print. A digital file representing the original paper historical topographic map is produced for each historical map in the HTMC in georeferenced PDF (GeoPDF) format (a portable document format [PDF] with a geospatial extension).
Yerkes, R.F.; Campbell, Russell H.
1995-01-01
This database, identified as "Preliminary Geologic Map of the Oat Mountain 7.5' Quadrangle, southern California: A Digital Database," has been approved for release and publication by the Director of the USGS. Although this database has been reviewed and is substantially complete, the USGS reserves the right to revise the data pursuant to further analysis and review. This database is released on condition that neither the USGS nor the U. S. Government may be held liable for any damages resulting from its use. This digital map database is compiled from previously published sources combined with some new mapping and modifications in nomenclature. The geologic map database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U. S. Geological Survey. For detailed descriptions of the units, their stratigraphic relations and sources of geologic mapping consult Yerkes and Campbell (1993). More specific information about the units may be available in the original sources.
Beard, L.S.; Anderson, R.E.; Block, D.L.; Bohannon, R.G.; Brady, R.J.; Castor, S.B.; Duebendorfer, E.M.; Faulds, J.E.; Felger, T.J.; Howard, K.A.; Kuntz, M.A.; Williams, V.S.
2007-01-01
Introduction The geologic map of the Lake Mead 30' x 60' quadrangle was completed for the U.S. Geological Survey's Las Vegas Urban Corridor Project and the National Parks Project, National Cooperative Geologic Mapping Program. Lake Mead, which occupies the northern part of the Lake Mead National Recreation Area (LAME), mostly lies within the Lake Mead quadrangle and provides recreation for about nine million visitors annually. The lake was formed by damming of the Colorado River by Hoover Dam in 1939. The recreation area and surrounding Bureau of Land Management lands face increasing public pressure from rapid urban growth in the Las Vegas area to the west. This report provides baseline earth science information that can be used in future studies of hazards, groundwater resources, mineral and aggregate resources, and of soils and vegetation distribution. The preliminary report presents a geologic map and GIS database of the Lake Mead quadrangle and a description and correlation of map units. The final report will include cross-sections and interpretive text. The geology was compiled from many sources, both published and unpublished, including significant new mapping that was conducted specifically for this compilation. Geochronologic data from published sources, as well as preliminary unpublished 40Ar/39Ar ages that were obtained for this report, have been used to refine the ages of formal Tertiary stratigraphic units and define new informal Tertiary sedimentary and volcanic units.
Staff - Kenneth R. Papp | Alaska Division of Geological & Geophysical
Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates STATEMAP Program information Alaska Energy Authority, and the Curator of the Geologic Materials Center (2009-2015). Position: Division survey-wide interface for geologists to publish digital map data (DGGS) Established the Alaska Energy
Digital database of the geologic map of the island of Hawai'i [Hawaii
Trusdell, Frank A.; Wolfe, Edward W.; Morris, Jean
2006-01-01
This online publication (DS 144) provides the digital database for the printed map by Edward W. Wolfe and Jean Morris (I-2524-A; 1996). This digital database contains all the information used to publish U.S. Geological Survey Geologic Investigations Series I-2524-A (available only in paper form; see http://pubs.er.usgs.gov/pubs/i/i2524A). The database contains the distribution and relationships of volcanic and surficial-sedimentary deposits on the island of Hawai‘i. This dataset represents the geologic history for the five volcanoes that comprise the Island of Hawai'i. The volcanoes are Kohala, Mauna Kea, Hualalai, Mauna Loa and Kīlauea.This database of the geologic map contributes to understanding the geologic history of the Island of Hawai‘i and provides the basis for understanding long-term volcanic processes in an intra-plate ocean island volcanic system. In addition the database also serves as a basis for producing volcanic hazards assessment for the island of Hawai‘i. Furthermore it serves as a base layer to be used for interdisciplinary research.This online publication consists of a digital database of the geologic map, an explanatory pamphlet, description of map units, correlation of map units diagram, and images for plotting. Geologic mapping was compiled at a scale of 1:100,000 for the entire mapping area. The geologic mapping was compiled as a digital geologic database in ArcInfo GIS format.
Graymer, Russell Walter; Jones, David Lawrence; Brabb, Earl E.
2002-01-01
This digital map database, compiled from previously published and unpublished data, and new mapping by the authors, represents the general distribution of bedrock and surficial deposits in the mapped area. Together with the accompanying text file (nesfmf.ps, nesfmf.pdf, nesfmf.txt), it provides current information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:62,500 or smaller.
Preliminary Geologic Map of the Buxton 7.5' Quadrangle, Washington County, Oregon
Dinterman, Philip A.; Duvall, Alison R.
2009-01-01
This map, compiled from previously published and unpublished data, and new mapping by the authors, represents the general distribution of bedrock and surficial deposits of the Buxton 7.5-minute quadrangle. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:24,000 or smaller. This plot file and accompanying database depict the distribution of geologic materials and structures at a regional (1:24,000) scale. The report is intended to provide geologic information for the regional study of materials properties, earthquake shaking, landslide potential, mineral hazards, seismic velocity, and earthquake faults. In addition, the report contains new information and interpretations about the regional geologic history and framework. However, the regional scale of this report does not provide sufficient detail for site development purposes.
Database for the geologic map of the Mount Baker 30- by 60-minute quadrangle, Washington (I-2660)
Tabor, R.W.; Haugerud, R.A.; Hildreth, Wes; Brown, E.H.
2006-01-01
This digital map database has been prepared by R.W. Tabor from the published Geologic map of the Mount Baker 30- by 60-Minute Quadrangle, Washington. Together with the accompanying text files as PDF, it provides information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The authors mapped most of the geology at 1:100,000. The Quaternary contacts and structural data have been much simplified for the 1:100,000-scale map and database. The spatial resolution (scale) of the database is 1:100,000 or smaller. This database depicts the distribution of geologic materials and structures at a regional (1:100,000) scale. The report is intended to provide geologic information for the regional study of materials properties, earthquake shaking, landslide potential, mineral hazards, seismic velocity, and earthquake faults. In addition, the report contains information and interpretations about the regional geologic history and framework. However, the regional scale of this report does not provide sufficient detail for site development purposes.
Database for the geologic map of the Chelan 30-minute by 60-minute quadrangle, Washington (I-1661)
Tabor, R.W.; Frizzell, V.A.; Whetten, J.T.; Waitt, R.B.; Swanson, D.A.; Byerly, G.R.; Booth, D.B.; Hetherington, M.J.; Zartman, R.E.
2006-01-01
This digital map database has been prepared by R. W. Tabor from the published Geologic map of the Chelan 30-Minute Quadrangle, Washington. Together with the accompanying text files as PDF, it provides information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The authors mapped most of the bedrock geology at 1:100,000 scale, but compiled Quaternary units at 1:24,000 scale. The Quaternary contacts and structural data have been much simplified for the 1:100,000-scale map and database. The spatial resolution (scale) of the database is 1:100,000 or smaller. This database depicts the distribution of geologic materials and structures at a regional (1:100,000) scale. The report is intended to provide geologic information for the regional study of materials properties, earthquake shaking, landslide potential, mineral hazards, seismic velocity, and earthquake faults. In addition, the report contains information and interpretations about the regional geologic history and framework. However, the regional scale of this report does not provide sufficient detail for site development purposes.
Tabor, R.W.; Frizzell, V.A.; Booth, D.B.; Waitt, R.B.
2006-01-01
This digital map database has been prepared by R.W. Tabor from the published Geologic map of the Snoqualmie Pass 30' X 60' Quadrangle, Washington. Together with the accompanying text files as PDF, it provides information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The authors mapped most of the bedrock geology at 1:100,000 scale, but compiled Quaternary units at 1:24,000 scale. The Quaternary contacts and structural data have been much simplified for the 1:100,000-scale map and database. The spatial resolution (scale) of the database is 1:100,000 or smaller. This database depicts the distribution of geologic materials and structures at a regional (1:100,000) scale. The report is intended to provide geologic information for the regional study of materials properties, earthquake shaking, landslide potential, mineral hazards, seismic velocity, and earthquake faults. In addition, the report contains information and interpretations about the regional geologic history and framework. However, the regional scale of this report does not provide sufficient detail for site development purposes.
Geologic Map of the Wenatchee 1:100,000 Quadrangle, Central Washington: A Digital Database
Tabor, R.W.; Waitt, R.B.; Frizzell, V.A.; Swanson, D.A.; Byerly, G.R.; Bentley, R.D.
2005-01-01
This digital map database has been prepared by R.W. Tabor from the published Geologic map of the Wenatchee 1:100,000 Quadrangle, Central Washington. Together with the accompanying text files as PDF, it provides information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The authors mapped most of the bedrock geology at 1:100,000 scale, but compiled Quaternary units at 1:24,000 scale. The Quaternary contacts and structural data have been much simplified for the 1:100,000-scale map and database. The spatial resolution (scale) of the database is 1:100,000 or smaller. This database depicts the distribution of geologic materials and structures at a regional (1:100,000) scale. The report is intended to provide geologic information for the regional study of materials properties, earthquake shaking, landslide potential, mineral hazards, seismic velocity, and earthquake faults. In addition, the report contains information and interpretations about the regional geologic history and framework. However, the regional scale of this report does not provide sufficient detail for site development purposes.
Raines, Gary L.; Bretz, R.F.; Shurr, George W.
1979-01-01
From analysis of a color-coded Landsat 5/6 ratio, image, a map of the vegetation density distribution has been produced by Raines of 25,000 sq km of western South Dakota. This 5/6 ratio image is produced digitally calculating the ratios of the bands 5 and 6 of the Landsat data and then color coding these ratios in an image. Bretz and Shurr compared this vegetation density map with published and unpublished data primarily of the U.S. Geological Survey and the South Dakota Geological Survey; good correspondence is seen between this map and existing geologic maps, especially with the soils map. We believe that this Landsat ratio image can be used as a tool to refine existing maps of surficial geology and bedrock, where bedrock is exposed, and to improve mapping accuracy in areas of poor exposure common in South Dakota. In addition, this type of image could be a useful, additional tool in mapping areas that are unmapped.
Preliminary geologic map of the northeast Dillingham quadrangle (D-1, D-2, C-1, and C-2), Alaska
Wilson, Frederic H.; Hudson, Travis L.; Grybeck, Donald; Stoeser, Douglas B.; Preller, Cindi C.; Bickerstaff, Damon; Labay, Keith A.; Miller, Martha L.
2003-01-01
The Correlation of Map Units and Description of Map Units are in a format similar to that of the USGS Geologic Investigations Series (I-series) maps but have not been edited to comply with I-map standards. Even though this is an Open-File Report and includes the standard USGS Open-File disclaimer, the report closely adheres to the Stratigraphic Nomenclature of the U.S. Geological Survey. ARC/INFO symbolsets (shade and line) as used for these maps have been made available elsewhere as part of Geologic map of Central (Interior) Alaska, published as a USGS Open-File Report (Wilson and others, 1998, http://geopubs.wr.usgs.gov/open-file/of98-133-a/). This product does not include the digital topographic base or land-grid files used to produce the map, nor does it include the AML and related ancillary key and other files used to assemble the components of the map.
Wells, Ray E.; Haugerud, Ralph A.; Niem, Alan; Niem, Wendy; Ma, Lina; Madin, Ian; Evarts, Russell C.
2018-04-10
A geologic map of the greater Portland, Oregon, metropolitan area is planned that will document the region’s complex geology (currently in review: “Geologic map of the greater Portland metropolitan area and surrounding region, Oregon and Washington,” by Wells, R.E., Haugerud, R.A., Niem, A., Niem, W., Ma, L., Evarts, R., Madin, I., and others). The map, which is planned to be published as a U.S. Geological Survey Scientific Investigations Map, will consist of 51 7.5′ quadrangles covering more than 2,500 square miles, and it will represent more than 100 person-years of geologic mapping and studies. The region was mapped at the relatively detailed scale of 1:24,000 to improve understanding of its geology and its earthquake hazards. More than 100 geologic map units will record the 50-million-year history of volcanism, sedimentation, folding, and faulting above the Cascadia Subduction Zone. The geology contributes to the varied terroir of four American Viticultural Areas (AVAs) in the northwestern Willamette Valley: the Yamhill-Carlton, Dundee Hills, Chehalem Mountains, and Ribbon Ridge AVAs. Terroir is defined as the environmental conditions, especially climate and soils, that influence the quality and character of a region’s crops—in this case, grapes for wine.On this new poster (“New geologic mapping of the northwestern Willamette Valley, Oregon, and its American Viticultural Areas (AVAs)—A foundation for understanding their terroir”), we present the geologic map at a reduced scale (about 1:175,000) to show the general distribution of geologic map units, and we highlight, discuss, and illustrate six major geologic events that helped shape the region and form its terrior. We also discuss the geologic elements that contribute to the character of each of the four AVAs in the northwestern Willamette Valley.
Maps for America: cartographic products of the U.S. Geological Survey and others
Thompson, Morris M.
1988-01-01
"Maps for America" was originally published in 1979 as a Centennial Volume commemorating the Geological Survey's hundred years of service (1879 - 1979) in the earth sciences. It was an eminently fitting Centennial Year publication, for, since its establishment, the Geological Survey has continuously carried on an extensive program of mapping to provide knowledge of the topography, geology, hydrology, and natural resources of our nation.This volume contains an organized presentation of information about the map produced by the Geological Survey and other American organizations, public and private. Such maps are important tools for those in government and in private endeavors who are working to assure the wisest choices in managing the Nation's resources. They are particularly supportive of the Department of the Interior's role as the Nation's principal conservation agency.The third edition of "Maps for America," like the second edition, is intended primarily to replenish the supply of copies of the book, but it also contains a number of changes to correct or update the text.
Geology of Point Reyes National Seashore and vicinity, California: a digital database
Clark, Jospeh C.; Brabb, Earl E.
1997-01-01
This Open-File report is a digital geologic map database. This pamphlet serves to introduce and describe the digital data. There is no paper map included in the Open-File report. The report does include, however, a PostScript plot file containing an image of the geologic map sheet with explanation, as well as the accompanying text describing the geology of the area. For those interested in a paper plot of information contained in the database or in obtaining the PostScript plot files, please see the section entitled 'For Those Who Aren't Familiar With Digital Geologic Map Databases' below. This digital map database, compiled from previously published and unpublished data and new mapping by the authors, represents the general distribution of surficial deposits and rock units in Point Reyes and surrounding areas. Together with the accompanying text file (pr-geo.txt or pr-geo.ps), it provides current information on the stratigraphy and structural geology of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:48,000 or smaller.
Fullerton, David S.; Bush, Charles A.; Pennell, Jean N.
2003-01-01
This data set contains surficial geologic units in the Eastern and Central United States, as well as a glacial limit line showing the position of maximum glacial advance during various geologic time periods. The geologic units represent surficial deposits and other surface materials that accumulated or formed during the past 2+ million years, such as soils, alluvium, and glacial deposits. These surface materials are referred to collectively by many geologists as regolith, the mantle of fragmented and generally unconsolidated material that overlies the bedrock foundation of a continent. This data set and the printed map produced from it, U.S. Geological Survey (USGS) Geologic Investigation Series I-2789, were based on 31 published maps in the USGS's Quaternary Geologic Atlas of the United States map series (USGS Miscellaneous Investigations Series I-1420). The data were compiled at 1:1,000,000 scale, to be viewed as a digital map at 1:2,000,000 nominal scale and to be printed as a conventional paper map at 1:2,500,000 scale.
Tectonic evaluation of the Nubian shield of Northeastern Sudan using thematic mapper imagery
NASA Technical Reports Server (NTRS)
1986-01-01
Bechtel is nearing completion of a one-year program that uses digitally enhanced LANDSAT Thematic Mapper (TM) data to compile the first comprehensive regional tectonic map of the Proterozoic Nubian Shield exposed in the northern Red Sea Hills of northeastern Sudan. The status of significant objectives of this study are given. Pertinent published and unpublished geologic literature and maps of the northern Red Sea Hills to establish the geologic framework of the region were reviewed. Thematic mapper imagery for optimal base-map enhancements was processed. Photo mosaics of enhanced images to serve as base maps for compilation of geologic information were completed. Interpretation of TM imagery to define and delineate structural and lithogologic provinces was completed. Geologic information (petrologic, and radiometric data) was compiled from the literature review onto base-map overlays. Evaluation of the tectonic evolution of the Nubian Shield based on the image interpretation and the compiled tectonic maps is continuing.
NASA Astrophysics Data System (ADS)
Watkins, Hannah; Bond, Clare; Butler, Rob
2016-04-01
Geological mapping techniques have advanced significantly in recent years from paper fieldslips to Toughbook, smartphone and tablet mapping; but how do the methods used to create a geological map affect the thought processes that result in the final map interpretation? Geological maps have many key roles in the field of geosciences including understanding geological processes and geometries in 3D, interpreting geological histories and understanding stratigraphic relationships in 2D and 3D. Here we consider the impact of the methods used to create a map on the thought processes that result in the final geological map interpretation. As mapping technology has advanced in recent years, the way in which we produce geological maps has also changed. Traditional geological mapping is undertaken using paper fieldslips, pencils and compass clinometers. The map interpretation evolves through time as data is collected. This interpretive process that results in the final geological map is often supported by recording in a field notebook, observations, ideas and alternative geological models explored with the use of sketches and evolutionary diagrams. In combination the field map and notebook can be used to challenge the map interpretation and consider its uncertainties. These uncertainties and the balance of data to interpretation are often lost in the creation of published 'fair' copy geological maps. The advent of Toughbooks, smartphones and tablets in the production of geological maps has changed the process of map creation. Digital data collection, particularly through the use of inbuilt gyrometers in phones and tablets, has changed smartphones into geological mapping tools that can be used to collect lots of geological data quickly. With GPS functionality this data is also geospatially located, assuming good GPS connectivity, and can be linked to georeferenced infield photography. In contrast line drawing, for example for lithological boundary interpretation and sketching, is yet to find the digital flow that is achieved with pencil on notebook page or map. Free-form integrated sketching and notebook functionality in geological mapping software packages is in its nascence. Hence, the result is a tendency for digital geological mapping to focus on the ease of data collection rather than on the thoughts and careful observations that come from notebook sketching and interpreting boundaries on a map in the field. The final digital geological map can be assessed for when and where data was recorded, but the thought processes of the mapper are less easily assessed, and the use of observations and sketching to generate ideas and interpretations maybe inhibited by reliance on digital mapping methods. All mapping methods used have their own distinct advantages and disadvantages and with more recent technologies both hardware and software issues have arisen. We present field examples of using conventional fieldslip mapping, and compare these with more advanced technologies to highlight some of the main advantages and disadvantages of each method and discuss where geological mapping may be going in the future.
Geologic Mapping of the Martian Impact Crater Tooting
NASA Technical Reports Server (NTRS)
Mouginis-Mark, Peter; Boyce, Joseph M.
2008-01-01
Tooting crater is approximately 29 km in diameters, is located at 23.4 deg N, 207.5 deg E and is classified as a multi-layered ejecta crater. Tooting crater is a very young crater, with an estimated age of 700,000 to 2M years. The crater formed on virtually flat lava flows within Amazonis Planitia where there appears to have been no major topographic features prior to the impact, so that we can measure ejecta thickness and cavity volume. In the past 12 months, the authors have: published their first detailed analysis of the geometry of the crater cavity and the distribution of the ejecta layers; refined the geologic map of the interior of Tooting crater through mapping of the cavity at a scale of 1:1100K; and continued the analysis of an increasing number of high resolution images obtained by the CTX and HiRISE instruments. Currently the authors seek to resolve several science issues that have been identified during this mapping, including: what is the origin of the lobate flows on the NW and SW rims of the crater?; how did the ejecta curtain break apart during the formation of the crater, and how uniform was the emplacement process for the ejecta layers; and, can we infer physical characteristics about the ejecta? Future study plans include the completion of a draft geologic map of Tooting crater and submission of it to the U.S. Geological survey for a preliminary review, publishing a second research paper on the detailed geology of the crater cavity and the distribution of the flows on the crater rim, and completing the map text for the 1:100K geologic map description of units at Tooting crater.
Digital Mapping Techniques '11–12 workshop proceedings
Soller, David R.
2014-01-01
At these meetings, oral and poster presentations and special discussion sessions emphasized: (1) methods for creating and publishing map products (here, "publishing" includes Web-based release); (2) field data capture software and techniques, including the use of LiDAR; (3) digital cartographic techniques; (4) migration of digital maps into ArcGIS Geodatabase formats; (5) analytical GIS techniques; and (6) continued development of the National Geologic Map Database.
Tabor, R.W.; Booth, D.B.; Vance, J.A.; Ford, A.B.
2006-01-01
This digital map database has been prepared by R.W. Tabor from the published Geologic map of the Sauk River 30- by 60 Minute Quadrangle, Washington. Together with the accompanying text files as PDF, it provides information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The authors mapped most of the bedrock geology at 1:100,000 scale, but compiled most Quaternary units at 1:24,000 scale. The Quaternary contacts and structural data have been much simplified for the 1:100,000-scale map and database. The spatial resolution (scale) of the database is 1:100,000 or smaller. This database depicts the distribution of geologic materials and structures at a regional (1:100,000) scale. The report is intended to provide geologic information for the regional study of materials properties, earthquake shaking, landslide potential, mineral hazards, seismic velocity, and earthquake faults. In addition, the report contains information and interpretations about the regional geologic history and framework. However, the regional scale of this report does not provide sufficient detail for site development purposes.
Schruben, Paul G.
1997-01-01
This CD-ROM contains digital versions of the geology and resource assessment maps of Costa Rica originally published in USGS Folio I-1865 (U.S. Geological Survey, the Direccion General de Geologia, Minas e Hidrocarburos, and the Universidad de Costa Rica, 1987) at a scale of 1:500,000. The following layers are available on the CD-ROM: geology and faults; favorable domains for selected deposit types; Bouguer gravity data; isostatic gravity contours; mineral deposits, prospects, and occurrences; and rock geochemistry sample points. For DOS users, the CD-ROM contains MAPPER, a user-friendly map display program. Some of the maps are also provided in the following additional formats on the CD-ROM: (1) ArcView 1 and 3, (2) ARC/INFO 6.1.2 Export, (3) Digital Line Graph (DLG) Optional, and (4) Drawing Exchange File (DXF.)
Great Basin NP and USGS cooperate on a geologic mapping program
Brown, Janet L.; Davila, Vidal
1993-01-01
The GRBA draft General Management Plan proposes development in several locations in Kious Spring and Lehman Caves 1:24,000 topographic quadrangles, and these proposed developments need geologic evaluation before construction. Brown will act as project manager to coordinate the IA with time frames, budget constraints, and the timely preparation of required maps, reports, and GIS data sets. In addition to having been an interpretive Ranger-Naturalist in two National Parks, Brown has published USGS interpretive geologic maps and USGS bulletins. Her research includes sedimentologic, stratigraphic, and structural analyses of Laramide intermontane basins in the Westem Interior.
Reiser, H.N.; Brosge, W.P.; DeYoung, J.H.; Marsh, S.P.; Hamilton, T.D.; Cady, J.W.; Albert, N.R.D.
1979-01-01
The Chandalar quadrangle in east-central Alaska was investigated by a multidisciplinary research group to assess the mineral resource potential of the quadrangle. This circular serves as a guide to and integrates with a folio of 10 miscellaneous field study (MF) maps and 2 open-file (OF) reports (table 1) concerned with the geology, geophysics, geochemistry, Landsat imagery, and mineral resources of the area. Revisions to the previously published Chandalar quadrangle geologic map, a new radiometric age determination, and a bibliography are also included.
Geologic Map of the State of Hawai`i
Sherrod, David R.; Sinton, John M.; Watkins, Sarah E.; Brunt, Kelly M.
2007-01-01
About This Map The State's geology is presented on eight full-color map sheets, one for each of the major islands. These map sheets, the illustrative meat of the publication, can be downloaded in pdf format, ready to print. Map scale is 1:100,000 for most of the islands, so that each map is about 27 inches by 36 inches. The Island of Hawai`i, largest of the islands, is depicted at a smaller scale, 1:250,000, so that it, too, can be shown on 36-inch-wide paper. The new publication isn't limited strictly to its map depictions. Twenty years have passed since David Clague and Brent Dalrymple published a comprehensive report that summarized the geology of all the islands, and it has been even longer since the last edition of Gordon Macdonald's book, Islands in the Sea, was revised. Therefore the new statewide geologic map includes an 83-page explanatory pamphlet that revisits many of the concepts that have evolved in our geologic understanding of the eight main islands. The pamphlet includes simplified page-size geologic maps for each island, summaries of all the radiometric ages that have been gathered since about 1960, generalized depictions of geochemical analyses for each volcano's eruptive stages, and discussion of some outstanding topics that remain controversial or deserving of additional research. The pamphlet also contains a complete description of map units, which enumerates the characteristics for each of the state's many stratigraphic formations shown on the map sheets. Since the late 1980s, the audience for geologic maps has grown as desktop computers and map-based software have become increasingly powerful. Those who prefer the convenience and access offered by Geographic Information Systems (GIS) can also feast on this publication. An electronic database, suitable for most GIS software applications, is available for downloading. The GIS database is in an Earth projection widely employed throughout the State of Hawai`i, using the North American datum of 1983 and the Universal Transverse Mercator system projection to zone 4. 'This digital statewide map allows engineers, consultants, and scientists from many different fields to take advantage of the geologic database,' said John Sinton, a geology professor at the University of Hawai`i, whose new mapping of the Wai`anae Range (West O`ahu) appears on the map. Indeed, when a testing version was first made available, most requests came from biologists, archaeologists, and soil scientists interested in applying the map's GIS database to their ongoing investigations. Another area newly depicted on the map, in addition to the Wai`anae Range, is Haleakala volcano, East Maui. So too for the active lava flows of Kilauea volcano, Island of Hawai`i, where the landscape has continued to evolve in the ten years since publication of the Big Island's revised geologic map. For the other islands, much of the map is compiled from mapping published in the 1930-1960s. This reliance stems partly from shortage of funding to undertake entirely new mapping but is warranted by the exemplary mapping of those early experts. The boundaries of all map units are digitized to show correctly on modern topographic maps.
Blair, Kevin P.; Berendsen, Pieter; Seeger, Cheryl M.
1992-01-01
This publication is a part of the folio of maps of the Joplin 1° X 2° quadrangle, Kansas and Missouri, which was prepared under the Conterminuous United States Mineral Assessment Program. Other publications in this folio to date include the U.S. Geological Survey Miscellaneous Field Studies Maps MF-2125-A and B (Erickson and others, 1990; Grisafe and Rueff, 1992). Additional maps showing other geologic aspects of the Joplin quadrangle will be published as U.S. Geological Survey maps bearing this same serial number with different letter suffixes (MF-2125-D, -E, and so forth).
Pratt, Walden P.; Hayes, Timothy S.; Erickson, Ralph L.; Kisvarsanyi, Eva B.
1993-01-01
This map is a part of the folio of maps of the Joplin 1° X 2° quadrangle, Kansas and Missouri, which was prepared under the Conterminuous United States Mineral Assessment Program. Other publications in this folio to date include the U.S. Geological Survey Miscellaneous Field Studies Maps MF-2125-A through D (Erickson and others, 1990; Grisafe and Rueff, 1992; Blair and others, 1992; McCafferty and Cordell, 1992). Additional maps showing other geologic aspects of the Joplin quadrangle will be published as U.S. Geological Survey maps bearing this same serial number with different letter suffixes (MF-2125-F, -G, and so on).
Page, W.R.; Harris, A.G.; Poole, F.G.; Repetski, J.E.
2003-01-01
New geologic mapping and fossil data in the vicinity of Rancho Las Norias, 30 km east of Hermosillo, Sonora, Mexico, show that rocks previously mapped as Precambrian instead are Paleozoic. Previous geologic maps of the Rancho Las Norias area show northeast-directed, southwest-dipping reverse or thrust faults deforming both Precambrian and Paleozoic rocks. The revised stratigraphy requires reinterpretation of some of these faults as high-angle normal or oblique-slip faults and the elimination of other faults. We agree with earlier geologic map interpretations that compressional structures have affected the Paleozoic rocks in the area, but our mapping suggests that the direction of compression is from southeast to northwest. Published by Elsevier Ltd.
Mapping NEHRP VS30 site classes
Holzer, T.L.; Padovani, A.C.; Bennett, M.J.; Noce, T.E.; Tinsley, J. C.
2005-01-01
Site-amplification potential in a 140-km2 area on the eastern shore of San Francisco Bay, California, was mapped with data from 210 seismic cone penetration test (SCPT) soundings. NEHRP VS30 values were computed on a 50-m grid by both taking into account the thickness and using mean values of locally measured shear-wave velocities of shallow geologic units. The resulting map of NEHRP VS30 site classes differs from other published maps that (1) do not include unit thickness and (2) are based on regional compilations of velocity. Although much of the area in the new map is now classified as NEHRP Site Class D, the velocities of the geologic deposits within this area are either near the upper or lower VS30 boundary of Class D. If maps of NEHRP site classes are to be based on geologic maps, velocity distributions of geologic units may need to be considered in the definition of VS30 boundaries of NEHRP site classes. ?? 2005, Earthquake Engineering Research Institute.
Maps showing geology, oil and gas fields and geological provinces of Africa
Persits, Feliks M.; Ahlbrandt, T.S.; Tuttle, Michele L.W.; Charpentier, R.R.; Brownfield, M.E.; Takahashi, Kenneth
1997-01-01
The CD-ROM was compiled according to the methodology developed by the U.S. Geological Survey's World Energy Project . The goal of the project was to assess the undiscovered, technically recoverable oil and gas resources of the world and report these results by the year 2000. A worldwide series of geologic maps, published on CD-ROMs, was released by the U.S. Geological Survey's World Energy Project during 1997 - 2000. Specific details of the data sources and map compilation are given in the metadata files on this CD-ROM. These maps were compiled using Environmental Systems Research Institute Inc. (ESRI) ARC/INFO software. Political boundaries and cartographic representations on this map are shown (with permission) from ESRI's ArcWorld 1:3M digital coverage: they have no political significance and are displayed as general reference only. Portions of this database covering the coastline and country boundaries contain proprietary property of ESRI. (Copyright 1992 and 1996, Environmental Systems Research Institute Inc. All rights reserved.)
Digital mapping techniques '00, workshop proceedings - May 17-20, 2000, Lexington, Kentucky
Soller, David R.
2000-01-01
Introduction: The Digital Mapping Techniques '00 (DMT'00) workshop was attended by 99 technical experts from 42 agencies, universities, and private companies, including representatives from 28 state geological surveys (see Appendix A). This workshop was similar in nature to the first three meetings, held in June, 1997, in Lawrence, Kansas (Soller, 1997), in May, 1998, in Champaign, Illinois (Soller, 1998a), and in May, 1999, in Madison, Wisconsin (Soller, 1999). This year's meeting was hosted by the Kentucky Geological Survey, from May 17 to 20, 2000, on the University of Kentucky campus in Lexington. As in the previous meetings, the objective was to foster informal discussion and exchange of technical information. When, based on discussions at the workshop, an attendee adopts or modifies a newly learned technique, the workshop clearly has met that objective. Evidence of learning and cooperation among participating agencies continued to be a highlight of the DMT workshops (see example in Soller, 1998b, and various papers in this volume). The meeting's general goal was to help move the state geological surveys and the USGS toward development of more cost-effective, flexible, and useful systems for digital mapping and geographic information systems (GIS) analysis. Through oral and poster presentations and special discussion sessions, emphasis was given to: 1) methods for creating and publishing map products (here, 'publishing' includes Web-based release); 2) continued development of the National Geologic Map Database; 3) progress toward building a standard geologic map data model; 4) field data-collection systems; and 5) map citation and authorship guidelines. Four representatives of the GIS hardware and software vendor community were invited to participate. The four annual DMT workshops were coordinated by the AASG/USGS Data Capture Working Group, which was formed in August, 1996, to support the Association of American State Geologists and the USGS in their effort to build a National Geologic Map Database (see Soller and Berg, this volume, and http://ncgmp.usgs.gov/ngmdbproject/standards/datacapt/). The Working Group was formed because increased production efficiencies, standardization, and quality of digital map products were needed to help the Database, and the State and Federal geological surveys, provide more high-quality digital maps to the public.
Gehrels, George E.; Berg, Henry C.
2006-01-01
The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set of 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.
Elliott, James E.; Trautwein, C.M.; Wallace, C.A.; Lee, G.K.; Rowan, L.C.; Hanna, W.F.
1993-01-01
The Butte 1?x2 ? quadrangle in west-central Montana was investigated as part of the U.S. Geological Survey's Conterminous United States Mineral Assessment Program (CUSMAP). These investigations included geologic mapping, geochemical surveys, gravity and aeromagnetic surveys, examinations of mineral deposits, and specialized geochronologic and remote-sensing studies. The data collected during these studies were compiled, combined with available published and unpublished data, analyzed, and used in a mineral-resource assessment of the quadrangle. The results, including data, interpretations, and mineral-resource assessments for nine types of mineral deposits, are published separately as a folio of maps. These maps are accompanied by figures, tables, and explanatory text. This circular provides background information on the Butte quadrangle, summarizes the studies and published maps, and lists a selected bibliography of references pertinent to the geology, geochemistry, geophysics, and mineral resources of the quadrangle. The Butte quadrangle, which includes the world-famous Butte mining district, has a long history of mineral production. Many mining districts within the quadrangle have produced large quantities of many commodities; the most important in dollar value of production were copper, gold, silver, lead, zinc, manganese, molybdenum, and phosphate. At present, mines at several locations produce copper, molybdenum, gold, silver, lead, zinc, and phosphate. Exploration, mainly for gold, has indicated the presence of other mineral deposits that may be exploited in the future. The results of the investigations by the U.S. Geological Survey indicate that many areas of the quadrangle are highly favorable for the occurrence of additional undiscovered resources of gold, silver, copper, molybdenum, tungsten, and other metals in several deposit types.
Derkey, Pamela D.; Johnson, Bruce R.; Lackaff, Beatrice B.; Derkey, Robert E.
1998-01-01
The geologic map of the Rosalia 1:100,000-scale quadrangle was compiled in 1990 by S.Z. Waggoner of the Washington state Division of Geology and Earth Resources. This data was entered into a geographic information system (GIS) as part of a larger effort to create regional digital geology for the Pacific Northwest. The intent was to provide a digital geospatial database for a previously published black and white paper geologic map. This database can be queried in many ways to produce a variety of geologic maps. Digital base map data files are not included: they may be obtained from a variety of commercial and government sources. This database is not meant to be used or displayed at any scale larger than 1:100,000 (e.g., 1:62,500 or 1:24,000) as it has been somewhat generalized to fit the 1:100,000 scale map. The map area is located in eastern Washington and extends across the state border into western Idaho. This open-file report describes the methods used to convert the geologic map data into a digital format, documents the file structures, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet. We wish to thank J. Eric Schuster of the Washington Division of Geology and Earth Resources for providing the original stable-base mylar and the funding for it to be scanned. We also thank Dick Blank and Barry Moring of the U.S. Geological Survey for reviewing the manuscript and digital files, respectively.
Quaternary geologic map of the Blue Ridge 4 degrees x 6 degrees quadrangle, United States
Howard, Alan D.; Behling, Robert E.; Wheeler, Walter H.; Daniels, Raymond B.; Swadley, W.C.; Richmond, Gerald M.; Goldthwait, Richard P.; Fullerton, David S.; Sevon, William D.; Miller, Robert A.; Bush, Charles A.; Richmond, Gerald M.; Fullerton, David S.; Christiansen, Ann Coe
1991-01-01
This map is part of the Quaternary Geologic Atlas of the United States (I-1420). It was first published as a printed edition in 1986. The geologic data have now been captured digitally and are presented here along with images of the printed map sheet and component parts as PDF files. The Quaternary Geologic Map of the Blue Ridge 4° x 6° Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the earth. They make up the "ground" on which we walk, the "dirt" in which we dig foundations, and the "soil" in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale.
Quaternary geologic map of the Hatteras 4° x 6° quadrangle, United States
State compilations by Johnson, Gerald H.; Richmond, Gerald Martin; edited and integrated by Richmond, G. M.; Fullerton, D.S.; Weide, D.L.; Bush, Charles A.
1986-01-01
This map is part of the Quaternary Geologic Atlas of the United States (I-1420). It was first published as a printed edition in 1986. The geologic data have now been captured digitally and are presented here along with images of the printed map sheet and component parts as PDF files. The Quaternary Geologic Map of the Hatteras 4° x 6° Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the Earth. They make up the "ground" on which we walk, the "dirt" in which we dig foundations, and the "soil" in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale.
Maps for America: cartographic products of the U.S. Geological Survey and others
Thompson, Morris M.
1981-01-01
"Maps for America" was originally published in 1979 as a Centennial Volume commemorating the Geological Survey's hundred years of service (1879-1979) in the earth sciences. It was an eminently fitting Centennial Year publication, for, since its establishment, the Geological Survey has continuously carried on an extensive program of mapping to provide knowledge of the topography, geology, hydrology, and natural resources of our Nation. This volume contains an organized presentation of information about the maps produced by the Geological Survey and other American organizations, public and private. Such maps are important tools for those in government and in private endeavors who are working to assure the wisest choices in managing the Nation's resources. They are particularly supportive of the Department of the Interior's role as the Nation's principal conservation agency. The second edition of "Maps for America" is intended primarily to replenish the dwindling supply of copies of the book, but it also contains a number of changes to correct or update the text and to provide more suitable illustrations in certain instances.
Standard for the U.S. Geological Survey Historical Topographic Map Collection
Allord, Gregory J.; Fishburn, Kristin A.; Walter, Jennifer L.
2014-01-01
This document defines the digital map product of the U.S. Geological Survey (USGS) Historical Topographic Map Collection (HTMC). The HTMC is a digital archive of about 190,000 printed topographic quadrangle maps published by the USGS from the inception of the topographic mapping program in 1884 until the last paper topographic map using lithographic printing technology was published in 2006. The HTMC provides a comprehensive digital repository of all scales and all editions of USGS printed topographic maps that is easily discovered, browsed, and downloaded by the public at no cost. Each printed topographic map is scanned “as is” and captures the content and condition of each map. The HTMC provides ready access to maps that are no longer available for distribution in print. A new generation of topographic maps called “US Topo” was defined in 2009. US Topo maps, though modeled on the legacy 7.5-minute topographic maps, conform to different standards. For more information on the HTMC, see the project Web site at: http://nationalmap.gov/historical/.
Bernknopf, R.L.; Wein, A.M.; St-Onge, M. R.; Lucas, S.B.
2007-01-01
This bulletin/professional paper focuses on the value of geoscientific information and knowledge, as provided in published government bedrock geological maps, to the mineral exploration sector. An economic model is developed that uses an attribute- ranking approach to convert geological maps into domains of mineral favourability. Information about known deposits in these (or analogous) favourability domains allow the calculation of exploration search statistics that provide input into measures of exploration efficiency, productivity, effectiveness, risk, and cost stemming from the use of the published geological maps. Two case studies, the Flin Flon Belt (Manitoba and Saskatchewan) and the south Baffin Island area (Nunavut), demonstrate that updated, finer resolution maps can be used to identify more exploration campaign options, and campaigns thats are more efficient, more effective, and less risky than old, coarser resolution maps when used as a guide for mineral exploration. The Flin Flon Belt study illustrates that an updated, coarser resolution bedrock map enables improved mineral exploration efficiency, productivity, and effectiveness by locating 60% more targets and supporting an exploration campaign that is 44% more efficient. Refining the map resolution provides an additional 17% reduction in search effort across all favourable domains and a 55% reduction in search effort in the most favourable domain. The south Baffin Island case study projects a 40% increase in expected targets and a 27% reduction in search effort when the updated, finer resolution map is used in lieu of the old, coarser resolution map. On southern Baffin Island, the economic value of the up dated map ranges from CAN$2.28 million to CAN$15.21 million, which can be compared to the CAN$1.86 million that it cost to produce the map (a multiplier effect of up to eight).
Digital Mapping Techniques '05--Workshop Proceedings, Baton Rouge, Louisiana, April 24-27, 2005
Soller, David R.
2005-01-01
Intorduction: The Digital Mapping Techniques '05 (DMT'05) workshop was attended by more than 100 technical experts from 47 agencies, universities, and private companies, including representatives from 25 state geological surveys (see Appendix A). This workshop was similar in nature to the previous eight meetings, held in Lawrence, Kansas (Soller, 1997), in Champaign, Illinois (Soller, 1998), in Madison, Wisconsin (Soller, 1999), in Lexington, Kentucky (Soller, 2000), in Tuscaloosa, Alabama (Soller, 2001), in Salt Lake City, Utah (Soller, 2002), in Millersville, Pennsylvania (Soller, 2003), and in Portland, Oregon (Soller, 2004). This year's meeting was hosted by the Louisiana Geological Survey, from April 24-27, 2005, on the Louisiana State University campus in Baton Rouge, Louisiana. As in the previous meetings, the objective was to foster informal discussion and exchange of technical information. It is with great pleasure I note that the objective was successfully met, as attendees continued to share and exchange knowledge and information, and to renew friendships and collegial work begun at past DMT workshops. Each DMT workshop has been coordinated by the Association of American State Geologists (AASG) and U.S. Geological Survey (USGS) Data Capture Working Group, which was formed in August 1996, to support the AASG and the USGS in their effort to build a National Geologic Map Database (see Soller and Berg, this volume, and http://ngmdb.usgs.gov/info/standards/datacapt/). The Working Group was formed because increased production efficiencies, standardization, and quality of digital map products were needed for the database?and for the State and Federal geological surveys?to provide more high-quality digital maps to the public. At the 2005 meeting, oral and poster presentations and special discussion sessions emphasized: 1) methods for creating and publishing map products (here, 'publishing' includes Web-based release); 2) field data capture software and techniques, including the use of LIDAR; 3) digital cartographic techniques; 4) migration of digital maps into ArcGIS Geodatabase format; 5) analytical GIS techniques; 6) continued development of the National Geologic Map Database; and 7) progress toward building and implementing a standard geologic map data model and standard science language for the U.S. and for North America.
Energy map of southwestern Wyoming, Part A - Coal and wind
Biewick, Laura; Jones, Nicholas R.
2012-01-01
To further advance the objectives of the Wyoming Landscape Conservation Initiative (WLCI) the U.S. Geological Survey (USGS) and the Wyoming State Geological Survey (WSGS) have compiled Part A of the Energy Map of Southwestern Wyoming. Focusing primarily on electrical power sources, Part A of the energy map is a compilation of both published and previously unpublished coal (including coalbed gas) and wind energy resources data, presented in a Geographic Information System (GIS) data package. Energy maps, data, documentation and spatial data processing capabilities are available in a geodatabase, published map file (pmf), ArcMap document (mxd), Adobe Acrobat PDF map (plate 1) and other digital formats that can be downloaded at the USGS website. Accompanying the map (plate 1) and the geospatial data are four additional plates that describe the geology, energy resources, and related infrastructure. These tabular plates include coal mine (plate 2), coal field (plate 3), coalbed gas assessment unit (plate 4), and wind farm (plate 5) information with hyperlinks to source publications and data on the internet. The plates can be printed and examined in hardcopy, or accessed digitally. The data represent decades of research by the USGS, WSGS, BLM and others, and can facilitate landscape-level science assessments, and resource management decisionmaking.
Bradley, Dwight C.; Wilson, Frederic H.
2000-01-01
We present a new reconnaissance geologic map of the southeastern part of the Kenai quadrangle that improves on previously published maps. Melange of the McHugh Complex is now known to form a continuous strike belt that can be traced from the Seldovia to the Valdez quadrangle; a problematic 75-km-long gap in the McHugh Complex in the Kenai and Seldovia quadrangles does not exist. An Eocene near-trench pluton underlies a range of nunataks in Harding Icefield.
Digital mapping techniques '06 - Workshop proceedings
Soller, David R.
2007-01-01
The Digital Mapping Techniques `06 (DMT`06) workshop was attended by more than 110 technical experts from 51 agencies, universities, and private companies, including representatives from 27 state geological surveys (see Appendix A of these Proceedings). This workshop was similar in nature to the previous nine meetings, which were held in Lawrence, Kansas (Soller, 1997), Champaign, Illinois (Soller, 1998), Madison, Wisconsin (Soller, 1999), Lexington, Kentucky (Soller, 2000), Tuscaloosa, Alabama (Soller, 2001), Salt Lake City, Utah (Soller, 2002), Millersville, Pennsylvania (Soller, 2003), Portland, Oregon (Soller, 2004), and Baton Rouge, Louisiana (Soller, 2005). This year?s meeting was hosted by the Ohio Geological Survey, from June 11-14, 2006, on the Ohio State University campus in Columbus, Ohio. As in the previous meetings, the objective was to foster informal discussion and exchange of technical information. It is with great pleasure that I note that the objective was successfully met, as attendees continued to share and exchange knowledge and information, and renew friendships and collegial work begun at past DMT workshops.Each DMT workshop has been coordinated by the Association of American State Geologists (AASG) and U.S. Geological Survey (USGS) Data Capture Working Group, the latter of which was formed in August 1996 to support the AASG and the USGS in their effort to build a National Geologic Map Database (see Soller, this volume, and http://ngmdb.usgs.gov/info/standards/datacapt/). The Working Group was formed because increased production efficiencies, standardization, and quality of digital map products were needed for the database - and for the State and Federal geological surveys - to provide more high-quality digital maps to the public.At the 2006 meeting, oral and poster presentations and special discussion sessions emphasized: 1) methods for creating and publishing map products (here, "publishing" includes Web-based release); 2) field data capture software and techniques, including the use of LIDAR; 3) digital cartographic techniques; 4) migration of digital maps into ArcGIS Geodatabase format; 5) analytical GIS techniques; and 6) continued development of the National Geologic Map Database.
Digital Geologic Map of the Wallace 1:100,000 Quadrangle, Idaho
Lewis, Reed S.; Burmester, Russell F.; McFaddan, Mark D.; Derkey, Pamela D.; Oblad, Jon R.
1999-01-01
The geology of the Wallace 1:100,000 quadrangle, Idaho was compiled by Reed S. Lewis in 1997 primarily from published materials including 1983 data from Foster, Harrison's unpublished mapping done from 1975 to 1985, Hietenan's 1963, 1967, 1968, and 1984 mapping, Hobbs and others 1965 mapping, and Vance's 1981 mapping, supplemented by eight weeks of field mapping by Reed S. Lewis, Russell F. Burmester, and Mark D. McFaddan in 1997 and 1998. This geologic map information was inked onto a 1:100,000-scale greenline mylar of the topographic base map for input into a geographic information system (GIS). The resulting digital geologic map GIS can be queried in many ways to produce a variety of geologic maps. Digital base map data files (topography, roads, towns, rivers and lakes, etc.) are not included: they may be obtained from a variety of commercial and government sources. This database is not meant to be used or displayed at any scale larger than 1:100,000 (e.g., 1:62,500 or 1:24,000). The map area is located in north Idaho. The primary sources of map data are shown in figure 2 and additional sources are shown in figure 3. This open-file report describes the geologic map units, the methods used to convert the geologic map data into a digital format, the Arc/Info GIS file structures and relationships, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet. Mapping and compilation was completed by the Idaho Geological Survey under contract with the U.S. Geological Survey (USGS) office in Spokane, Washington. The authors would like to acknowledge the help of the following field assistants: Josh Goodman, Yvonne Issak, Jeremy Johnson and Kevin Myer. Don Winston provided help with our ongoing study of Belt stratigraphy, and Tom Frost assisted with logistical problems and sample collection. Manuscript reviews by Steve Box, Tom Frost, and Brian White are greatly appreciated. We wish to thank Karen S. Bolm of the USGS for reviewing the digital files.
Reports and maps of the Military Geology Unit, 1942-1975
Leith, William; Bonham, Selma
1997-01-01
Included here are reports and maps which were prepared in the Military Geology Unit of the U. S. Geological Survey from 1942 through 1975. In addition to the references prepared primarily for military use and listed here, more than 200 reports of more general geologic interest were prepared for publication as Survey bulletins and professional papers and in outside journals. These reports are listed in "Publications of the Geological Survey" and other bibliographies. Military Geology reports generally include basic subjects such as rock types, soils, water resources, landforms and vegetation, as well as interpretive subjects such as suitability of terrain for cross-country movement and for construction of roads and airfields in areas throughout the world. Reports on specific areas range from generalized texts with small scab maps derived from published sources to detailed texts with large-scale maps commonly based on photo-interpretation and, especially for Alaska and western Pacific islands, involving field mapping. Other reports treat topics of interest in military geology without reference to specific areas. A number of reports covering the moon include the first photogeologic map of the near side.Authors are cited for some kinds of reports; however, many intelligence reports were published anonymously. Most of the reports were prepared by teams made up mainly of geologists but commonly including soils scientists, botanists, climatologists and geographers. Nearly all the soil scientists and climatologists were members of the World Soil Geography Unit, Soil Survey, Soil Conservation Service, U. S. Department of Agriculture. Manuscripts from this Unit were passed through a common review and other processing, as were the manuscripts originating in the Military Geology office, to be issued under the aegis of the latter. In some instances where it has not been possible to list all authors, names of project supervisors are given.File copies of many of the Military Geology reports prepared since 1975 are kept in the Special Geologic Studies Group, U.S. Geological Survey, National Center, Reston, and may be examined there by appropriately cleared persons. Additionally, copies of many of the unclassified studies are in the U.S. Geological Survey Library. Some of the older reports are in the files of the Terrain Analysis Center, Fort Belvoir, Virginia, and other offices within the Corps of Engineers. Most of the reports are out of print and many of the other studies are no longer available.
Database for the geologic map of the Bend 30- x 60-minute quadrangle, central Oregon
Koch, Richard D.; Ramsey, David W.; Sherrod, David R.; Taylor, Edward M.; Ferns, Mark L.; Scott, William E.; Conrey, Richard M.; Smith, Gary A.
2010-01-01
The Bend 30- x 60-minute quadrangle has been the locus of volcanism, faulting, and sedimentation for the past 35 million years. It encompasses parts of the Cascade Range and Blue Mountain geomorphic provinces, stretching from snowclad Quaternary stratovolcanoes on the west to bare rocky hills and sparsely forested juniper plains on the east. The Deschutes River and its large tributaries, the Metolius and Crooked Rivers, drain the area. Topographic relief ranges from 3,157 m (10,358 ft) at the top of South Sister to 590 m (1,940 ft) at the floor of the Deschutes and Crooked Rivers where they exit the area at the north-central edge of the map area. The map encompasses a part of rapidly growing Deschutes County. The city of Bend, which has over 70,000 people living in its urban growth boundary, lies at the south-central edge of the map. Redmond, Sisters, and a few smaller villages lie scattered along the major transportation routes of U.S. Highways 97 and 20. This geologic map depicts the geologic setting as a basis for structural and stratigraphic analysis of the Deschutes basin, a major hydrologic discharge area on the east flank of the Cascade Range. The map also provides a framework for studying potentially active faults of the Sisters fault zone, which trends northwest across the map area from Bend to beyond Sisters. This digital release contains all of the information used to produce the geologic map published as U.S. Geological Survey Geologic Investigations Series I-2683 (Sherrod and others, 2004). The main component of this digital release is a geologic map database prepared using ArcInfo GIS. This release also contains files to view or print the geologic map and accompanying descriptive pamphlet from I-2683.
Digital Data for the reconnaissance geologic map for the Kuskokwim Bay Region of Southwest Alaska
Wilson, Frederic H.; Hults, Chad P.; Mohadjer, Solmaz; Coonrad, Warren L.; Shew, Nora B.; Labay, Keith A.
2008-01-01
INTRODUCTION The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.
Map showing geology, oil and gas fields, and geologic provinces of the Gulf of Mexico region
French, Christopher D.; Schenk, Christopher J.
2006-01-01
This map was created as part of a worldwide series of geologic maps for the U.S. Geological Survey's World Energy Project. These products are available on CD-ROM and the Internet. The goal of the project is to assess the undiscovered, technically recoverable oil and gas resources of the world. Two previously published digital geologic data sets (U.S. and Caribbean) were clipped to the map extent, while the dataset for Mexico was digitized for this project. Original attributes for all data layers were maintained, and in some cases, graphically merged with common symbology for presentation purposes. The world has been divided into geologic provinces that are used for allocation and prioritization of oil and gas assessments. For the World Energy Project, a subset of those provinces is shown on this map. Each province has a set of geologic characteristics that distinguish it from surrounding provinces. These characteristics may include dominant lithologies, the age of the strata, and/or structural type. The World Geographic Coordinate System of 1984 is used for data storage, and the data are presented in a Lambert Conformal Conic Projection on the OFR 97-470-L map product. Other details about the map compilation and data sources are provided in metadata documents in the data section on this CD-ROM. Several software packages were used to create this map including: Environmental Systems Research Institute, Inc. (ESRI) ArcGIS 8.3, ArcInfo software, Adobe Photoshop CS, Illustrator CS, and Acrobat 6.0.
NASA Astrophysics Data System (ADS)
Siddoway, C. S.; White, T.; Elkind, S.; Cox, S. C.; Lyttle, B. S.; Morin, P. J.
2016-12-01
Bedrock exposures are relatively sparse in Marie Byrd Land (MBL), where rock is concealed by the West Antarctic ice sheet, but they provide direct insight into the geological evolution and glacial history of West Antarctica. MBL is tectonically active, as evidenced by Late Pleistocene to Holocene volcanism and 2012 seismicity (3 events, M4.4 to M5.5) at sites beside Ross Sea. There are geological influences upon the ice sheet, namely, subglacial volcanism and associated geothermal flux, fault zone alteration/mineralization, and bedrock roughess. The former may influence the position and velocity of outlet glaciers and the latter may anchor or accelerate sectors of the ice sheet. To make MBL's geological framework accessible to investigators with diverse research priorities, we are preparing the first digital geological map of MBL by compiling ground-based geological data, incorporating firsthand observations, published geological maps and literature. The map covers an on-continent coastal area of 900 000 km2 between 090°E to 160°E, from 72°S to 80°S, at 1:250 000 scale or better. Exposed rock is delimited by 1976 polygons, occupying 410 km2. Supraglacial features and glacial till, seasonal water and blue ice, are also mapped, as a baseline for past and future glaciological change. Rendered in the ArcMap GIS software by Esri©, the database employs international GeoSciML data protocols for feature classification and description of rock and moraine polygons from the Antarctic Digital Database (www.add.scar.org), with shape and location adjusted to align with features in Landsat Image Mosaic of Antarctica imagery (lima.usgs.gov), where necessary. The GIS database is attribute-rich and queriable; including links to bibliographic source files for primary literature and published maps. It will soon be available as GoogleEarth kmz files and an ArcGIS online map service. An initial application is to the interpretation of sub-ice geology for a subglacial geotectonic map of this active region. This is undertaken as part of ROSETTA-Ice, an integrated systems science investigation of the Ross Ice Shelf that commenced in 2015. The next phases of MBL database development will assess icesheet-ocean interactions near grounding line, environmental domain analysis and ecological research.
The First Global Geological Map of Mercury
NASA Astrophysics Data System (ADS)
Prockter, L. M.; Head, J. W., III; Byrne, P. K.; Denevi, B. W.; Kinczyk, M. J.; Fassett, C.; Whitten, J. L.; Thomas, R.; Ernst, C. M.
2015-12-01
Geological maps are tools with which to understand the distribution and age relationships of surface geological units and structural features on planetary surfaces. Regional and limited global mapping of Mercury has already yielded valuable science results, elucidating the history and distribution of several types of units and features, such as regional plains, tectonic structures, and pyroclastic deposits. To date, however, no global geological map of Mercury exists, and there is currently no commonly accepted set of standardized unit descriptions and nomenclature. With MESSENGER monochrome image data, we are undertaking the global geological mapping of Mercury at the 1:15M scale applying standard U.S. Geological Survey mapping guidelines. This map will enable the development of the first global stratigraphic column of Mercury, will facilitate comparisons among surface units distributed discontinuously across the planet, and will provide guidelines for mappers so that future mapping efforts will be consistent and broadly interpretable by the scientific community. To date we have incorporated three major datasets into the global geological map: smooth plains units, tectonic structures, and impact craters and basins >20 km in diameter. We have classified most of these craters by relative age on the basis of the state of preservation of morphological features and standard classification schemes first applied to Mercury by the Mariner 10 imaging team. Additional datasets to be incorporated include intercrater plains units and crater ejecta deposits. In some regions MESSENGER color data is used to supplement the monochrome data, to help elucidate different plains units. The final map will be published online, together with a peer-reviewed publication. Further, a digital version of the map, containing individual map layers, will be made publicly available for use within geographic information systems (GISs).
Geology of the Harper Quadrangle, Liberia
Brock, M.R.; Chidester, A.H.; Baker, M.G.W.
1974-01-01
As part of a program undertaken cooperatively by the Liberian Geological Survey (LGS) and the U. S. Geological Survey (USGS), under the sponsorship of the Government of Liberia and the Agency for International Development, U. S. Department of State, Liberia was mapped by geologic and geophysical methods during the period 1965 to 1972. The resulting geologic and geophysical maps are published in ten folios, each covering one quadrangle (see index map). The first systematic mapping in the Harper quadrangle was by Baker, S. P. Srivastava, and W. E. Stewart (LGS) at a scale of 1:500,000 in the vicinity of Harper in the southeastern, and of Karloke in the northeastern part of the quadrangle in 1960-61. Brock and Chidester carried out systematic mapping of the quadrangle at a scale of 1:250,000 in the period September 1971-May 1972; the geologic map was compiled from field data gathered by project geologists and private companies as indicated in the source diagram, photogeologic maps, interpretation of airborne magnetic and radiometric surveys, field mapping, and ground-based radiometric surveys in which hand-held scintillators were used. R. W. Bromery, C. S. Wotorson, and J. C. Behrendt contributed to the interpretation of geophysical data. Total-intensity aeromagnetic and total-count gamma radiation maps (Behrendt and Wotorson, in press a, b), and unpublished data derived from those maps, including the near-surface and the regional magnetic components and aeromagnetic/radiometric correlations, were used in the interpretation.
Global geologic map of Ganymede
Collins, Geoffrey C.; Patterson, G. Wesley; Head, James W.; Pappalardo, Robert T.; Prockter, Louise M.; Lucchitta, Baerbel K.; Kay, Johnathan P.
2014-01-01
Ganymede is the largest satellite of Jupiter, and its icy surface has been formed through a variety of impact cratering, tectonic, and possibly cryovolcanic processes. The history of Ganymede can be divided into three distinct phases: an early phase dominated by impact cratering and mixing of non-ice materials in the icy crust, a phase in the middle of its history marked by great tectonic upheaval, and a late quiescent phase characterized by a gradual drop in heat flow and further impact cratering. Images of Ganymede suitable for geologic mapping were collected during the flybys of Voyager 1 and Voyager 2 (1979), as well as during the Galileo Mission in orbit around Jupiter (1995–2003). This map represents a synthesis of our understanding of Ganymede geology after the conclusion of the Galileo Mission. We summarize the properties of the imaging dataset used to construct the map, previously published maps of Ganymede, our own mapping rationale, and the geologic history of Ganymede. Additional details on these topics, along with detailed descriptions of the type localities for the material units, may be found in the companion paper to this map (Patterson and others, 2010).
NASA Astrophysics Data System (ADS)
Pal, S. K.; Majumdar, T. J.; Bhattacharya, Amit K.
Fusion of optical and synthetic aperture radar data has been attempted in the present study for mapping of various lithologic units over a part of the Singhbhum Shear Zone (SSZ) and its surroundings. ERS-2 SAR data over the study area has been enhanced using Fast Fourier Transformation (FFT) based filtering approach, and also using Frost filtering technique. Both the enhanced SAR imagery have been then separately fused with histogram equalized IRS-1C LISS III image using Principal Component Analysis (PCA) technique. Later, Feature-oriented Principal Components Selection (FPCS) technique has been applied to generate False Color Composite (FCC) images, from which corresponding geological maps have been prepared. Finally, GIS techniques have been successfully used for change detection analysis in the lithological interpretation between the published geological map and the fusion based geological maps. In general, there is good agreement between these maps over a large portion of the study area. Based on the change detection studies, few areas could be identified which need attention for further detailed ground-based geological studies.
,
2006-01-01
he growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.
,
2006-01-01
The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO Exportfiles/ and as ArcView shape files. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.
Till, Alison B.; Dumoulin, Julie A.; Phillips, Jeffrey D.; Stanley, Richard G.; Crews, Jessie
2006-01-01
The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.
,
2006-01-01
The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.
Wilson, Frederic H.; Hults, Chad P.; Labay, Keith A.; Shew, Nora B.
2007-01-01
The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. The files named __geol contain geologic polygons and line (contact) attributes; files named __fold contain fold axes; files named __lin contain lineaments; and files named __dike contain dikes as lines. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.
Quaternary Geologic Map of the Des Moines 4 Degrees x 6 Degrees Quadrangle, United States
Hallberg, George R.; Lineback, Jerry A.; Mickelson, David M.; Knox, James C.; Goebel, Joseph E.; Hobbs, Howard C.; Whitfield, John W.; Ward, Ronald A.; Boellstorff, John D.; Swinehart, James B.; Dreeszen, Vincent H.; edited and integrated by Richmond, Gerald Martin; Fullerton, David S.; Christiansen, Ann Coe
1994-01-01
The Quaternary Geologic Map of the Des Moines 4 degree x 6 degree Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the earth. They make up the 'ground' on which we walk, the 'dirt' in which we dig foundations, and the 'soil' in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. This map is part of the Quaternary Geologic Atlas of the United States (I-1420). It was first published as a printed edition in 1994. The geologic data have now been captured digitally and are presented here along with images of the printed map sheet and component parts as PDF files.
Quaternary Geologic Map of the Platte River 4 Degrees x 6 Degrees Quadrangle, United States
Swinehart, James B.; Dreeszen, Vincent H.; Richmond, Gerald Martin; Tipton, Merlin J.; Bretz, Richard F.; Steece, Fred V.; Hallberg, George R.; Goebel, Joseph E.; edited and integrated by Richmond, Gerald Martin
1994-01-01
The Quaternary Geologic Map of the Platte River 4 degree x 6 degree Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the earth. They make up the 'ground' on which we walk, the 'dirt' in which we dig foundations, and the 'soil' in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. This map is part of the Quaternary Geologic Atlas of the United States (I-1420). It was first published as a printed edition in 1994. The geologic data have now been captured digitally and are presented here along with images of the printed map sheet and component parts as PDF files.
Nicholson, Suzanne W.; Stoeser, Douglas B.; Wilson, Frederic H.; Dicken, Connie L.; Ludington, Steve
2007-01-01
The growth in the use of Geographic nformation Systems (GS) has highlighted the need for regional and national digital geologic maps attributed with age and rock type information. Such spatial data can be conveniently used to generate derivative maps for purposes that include mineral-resource assessment, metallogenic studies, tectonic studies, human health and environmental research. n 1997, the United States Geological Survey’s Mineral Resources Program initiated an effort to develop national digital databases for use in mineral resource and environmental assessments. One primary activity of this effort was to compile a national digital geologic map database, utilizing state geologic maps, to support mineral resource studies in the range of 1:250,000- to 1:1,000,000-scale. Over the course of the past decade, state databases were prepared using a common standard for the database structure, fields, attributes, and data dictionaries. As of late 2006, standardized geological map databases for all conterminous (CONUS) states have been available on-line as USGS Open-File Reports. For Alaska and Hawaii, new state maps are being prepared, and the preliminary work for Alaska is being released as a series of 1:500,000-scale regional compilations. See below for a list of all published databases.
Elevations and distances in the United States
,
1991-01-01
The information in this booklet was compiled to answer inquiries received by the U.S. Geological Survey from students; teachers; writers; editors; publishers of encyclopedias, almanacs, and other reference books; and people in many other fields of work. The elevations of features and distances between points in the United States were determined from surveys and topographic maps of the U.S. Geological Survey or obtained from other sources. In most cases, the elevations were determined from surveys and from 1:24,000- and 1:25,000-scale, 7.5-minute topographic quadrangle maps. In Alaska, information was taken from 1:63,360-scale, 15-minute topographic quadrangle maps. In a few cases, data were obtained from older, 1:62,500-scale, 15-minute maps; these maps are being replaced with larger-scale 7.5-minute coverage. Further information about U.S. Geological Survey products can be obtained from: U.S. Geological Survey, Earth Science Information Center, 507 National Center, Reston, VA 22092 or phone 703-860-6045.
Toward digital geologic map standards: a progress report
Ulrech, George E.; Reynolds, Mitchell W.; Taylor, Richard B.
1992-01-01
Establishing modern scientific and technical standards for geologic maps and their derivative map products is vital to both producers and users of such maps as we move into an age of digital cartography. Application of earth-science data in complex geographic information systems, acceleration of geologic map production, and reduction of population costs require that national standards be developed for digital geologic cartography and computer analysis. Since December 1988, under commission of the Chief Geologic of the U.S. Geological Survey and the mandate of the National Geologic Mapping Program (with added representation from the Association of American State Geologists), a committee has been designing a comprehensive set of scientific map standards. Three primary issues were: (1) selecting scientific symbology and its digital representation; (2) creating an appropriate digital coding system that characterizes geologic features with respect to their physical properties, stratigraphic and structural relations, spatial orientation, and interpreted mode of origin; and (3) developing mechanisms for reporting levels of certainty for descriptive as well as measured properties. Approximately 650 symbols for geoscience maps, including present usage of the U.S Geological Survey, state geological surveys, industry, and academia have been identified and tentatively adopted. A proposed coding system comprises four-character groupings of major and minor codes that can identify all attributes of a geologic feature. Such a coding system allows unique identification of as many as 105 geologic names and values on a given map. The new standard will track closely the latest developments of the Proposed Standard for Digital Cartographic Data soon to be submitted to the National Institute of Standards and Technology by the Federal Interagency Coordinating Committee on Digital Cartography. This standard will adhere generally to the accepted definitions and specifications for spatial data transfer. It will require separate specifications of digital cartographic quality relating to positional accuracy and ranges of measured and interpreted values such as geologic age and rock composition. Provisional digital geologic map standards will be published for trial implementation. After approximately two years, when comments on the proposed standards have been solicited and modifications made, formal adoption of the standards will be recommended. Widespread acceptance of the new standards will depend on their applicability to the broadest range of earth-science map products and their adaptability to changing cartographic technology.
Digital data for the geology of the Southern Brooks Range, Alaska
Till, Alison B.; Dumoulin, Julie A.; Harris, Anita G.; Moore, Thomas E.; Bleick, Heather A.; Siwiec, Benjamin; Labay, Keith A.; Wilson, Frederic H.; Shew, Nora B.
2008-01-01
The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. The files named __geol contain geologic polygons and line (contact) attributes; files named __fold contain fold axes; files named __lin contain lineaments; and files named __dike contain dikes as lines. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.
Schruben, Paul G.
1996-01-01
This CD-ROM contains digital versions of the geology and resource assessment maps of Costa Rica originally published by the U.S. Geological Survey (USGS), the Direccion General de Geologia, Minas e Hidrocarburos, and the Universidad de Costa Rica in 1987 at a scale of 1:500,000 in USGS Folio I-1865. The following layers of the map are available on the CD-ROM: geology, favorable domains for selected deposit types, Bouguer gravity, isostatic gravity, mineral deposits, and rock geochemistry sample points. Some of the layers are provided in the following formats: ArcView 1 for Windows and UNIX, ARC/INFO 6.1.2 Export, Digital Line Graph (DLG) Optional, and Drawing Exchange File (DXF). This CD-ROM was produced in accordance with the ISO 9660 and Apple Computer's HFS standards.
Geology, structure, and statistics of multi-ring basins on Mars
NASA Technical Reports Server (NTRS)
Schultz, Richard A.; Frey, Herbert V.
1990-01-01
Available data on Martian multi-ring basins were compiled and evaluated using the new 1:15 million scale geologic maps of Mars and global topography was revised as base maps. Published center coordinates and ring diameters of Martian basins were plotted by computer and superimposed onto the base maps. In many cases basin centers or ring diameters or both had to be adjusted to achieve a better fit to the revised maps. It was also found that additional basins can explain subcircular topographic lows as well as map patterns of old Noachian materials, volcanic plains units, and channels in the Tharsis region.
The value of ERTS-1 imagery in resource inventorization on a national scale in South Africa
NASA Technical Reports Server (NTRS)
Malan, O. G.; Macvicar, C. N.; Edwards, D.; Temperley, B. N.; Claassen, L.
1974-01-01
It has been shown that ERTS imagery, particularly in the form of 1:500,000 scale false color photolithographic prints, can contribute very significantly towards facilitating and accelerating (dramatically, in some cases) resource surveys and geologic mapping. Fire mapping on a national scale becomes a feasability; numerous new geologic features, particularly lineaments, have been discovered, land use can be mapped efficiently on a regional scale and degraded areas identified. The first detailed tectonic and geomorphological maps of the Republic of South Africa will be published mainly owing to the availability of ERTS images.
Geologic Map of the Atlin Quadrangle, Southeastern Alaska
Brew, David A.; Himmelberg, Glen R.; Ford, Arthur B.
2009-01-01
This map presents the results of U.S. Geological Survey (USGS) geologic bedrock mapping studies in the mostly glacier covered Atlin 1:250,000-scale quadrangle, northern southeastern Alaska. These studies are part of a long-term systematic effort by the USGS to provide bedrock geologic and mineral-resource information for all of southeastern Alaska, covering all of the Tongass National Forest (including Wilderness Areas) and Glacier Bay National Park and Preserve. Some contributions to this effort are those concerned with southwesternmost part of the region, the Craig and Dixon Entrance quadrangles (Brew, 1994; 1996) and with the Wrangell-Petersburg area (Brew, 1997a-m; Brew and Grybeck, 1997; Brew and Koch, 1997). As shown on the index map (fig. 1), the study area is almost entirely in the northern Coast Mountains adjacent to British Columbia, Canada. No previous geologic map has been published for the area, although Brew and Ford (1985) included a small part of it in a preliminary compilation of the adjoining Juneau quadrangle; and Brew and others (1991a) showed the geology at 1:500,000 scale. Areas mapped nearby in British Columbia and the United States are also shown on figure 1. All of the map area is in the Coast Mountains Complex as defined by Brew and others (1995a). A comprehensive bibliography is available for this and adjacent areas (Brew, 1997n).
Geologic Map of the San Luis Hills Area, Conejos and Costilla Counties, Colorado
Thompson, Ren A.; Machette, Michael N.
1989-01-01
This report is a digital image of the U.S. Geological Survey Miscellaneous Investigations Series Map I-1906, 'Geologic map of the San Luis Hills area, Conejos and Costilla Counties, Colorado,' which was published in 1989 by Thompson and Machette, scale 1:50,000 but has been unavailable in a digital version. The map area represents the southwestern portion of the Alamosa 30' x 60' quadrangle, which is currently being remapped by the U.S. Geological Survey. The northern and eastern margins of the San Luis Hills area have been remapped at greater detail and thus small portions of the map area have been updated. The northern margin is shown on U.S. Geological Survey Open-File Report 2005-1392, the northeastern portion is shown on U.S. Geological Survey Open-File Report 2008-1124, and the eastern margin is shown on U.S. Geological Survey Open-File Report 2007-1074. The most significant changes to the 1989 map area are recognition of Lake Alamosa and its deposits (Alamosa Formation), remapping of bedrock in the northeastern San Luis Hills, and redating of volcanic units in the San Luis Hills. Although unpublished, new 40Ar/39Ar ages for volcanic units in the Conejos and Hinsdale Formations add precision to the previous K/Ar-dated rocks, but do not change the basic chronology of the units. The digital version of this map was prepared by Theodore R. Brandt by scanning the original map at 300 pixels per inch, prior to creating the press-quality (96 Mb) and standard (5 Mb) .pdf files.
Geologic map of the Basque-Cantabrian Basin and a new tectonic interpretation of the Basque Arc
NASA Astrophysics Data System (ADS)
Ábalos, B.
2016-11-01
A new printable 1/200.000 bedrock geological map of the onshore Basque-Cantabrian Basin is presented, aimed to contribute to future geologic developments in the central segment of the Pyrenean-Cantabrian Alpine orogenic system. It is accompanied in separate appendixes by a historic report on the precedent geological maps and by a compilation above 350 bibliographic citations of maps and academic reports (usually overlooked or ignored) that are central to this contribution. Structural scrutiny of the map permits to propose a new tectonic interpretation of the Basque Arc, implementing previously published partial reconstructions. It is presented as a printable 1/400.000 tectonic map. The Basque Arc consists of various thrust slices that can expose at the surface basement rocks (Palaeozoic to Lower Triassic) and their sedimentary cover (uppermost Triassic to Tertiary), from which they are detached by intervening (Upper Triassic) evaporites and associated rocks. The slice-bounding thrusts are in most cases reactivated normal faults active during Meso-Cenozoic sedimentation that can be readily related to basement discontinuities generated during the Hercynian orogeny.
Turner, Kenzie J.; Hudson, Mark R.; Murray, Kyle E.; Mott, David N.
2007-01-01
Understanding ground-water flow in a karst aquifer benefits from a detailed conception of the three-dimensional (3D) geologic framework. Traditional two-dimensional products, such as geologic maps, cross-sections, and structure contour maps, convey a mental picture of the area but a stronger conceptualization can be achieved by constructing a digital 3D representation of the stratigraphic and structural geologic features. In this study, a 3D geologic model was created to better understand a karst aquifer system in the Buffalo National River watershed in northern Arkansas. The model was constructed based on data obtained from recent, detailed geologic mapping for the Hasty and Western Grove 7.5-minute quadrangles. The resulting model represents 11 stratigraphic zones of Ordovician, Mississippian, and Pennsylvanian age. As a result of the highly dissected topography, stratigraphic and structural control from geologic contacts and interpreted structure contours were sufficient for effectively modeling the faults and folds in the model area. Combined with recent dye-tracing studies, the 3D framework model is useful for visualizing the various geologic features and for analyzing the potential control they exert on the ground-water flow regime. Evaluation of the model, by comparison to published maps and cross-sections, indicates that the model accurately reproduces both the surface geology and subsurface geologic features of the area.
NORTH AMERICAN DATUM 1983 IMPLEMENTATION IMPACTS ON THE USGS NATIONAL MAPPING PROGRAM.
Jones, William J.; Needham, Paul E.
1985-01-01
The U. S. Geological Survey has previously experienced the impacts on the National Mapping Program that are associated with implementing a readjustment of the horizontal datum. The impacts of these past readjustments were minimal compared to those of the current readjustment. The Geological Survey currently has produced and published over 60,000 different map products. The 7. 5-minute mapping program is nearing completion with over 85 percent of the conterminous States mapped. The intermediate-scale mapping program of the conterminous United States is scheduled for completion of planimetric editions by the end of 1986. It is apparent that until digital cartographic data are available, implementation of the North American Datum 1983 will primarily consist of cartographic adjustment of existing map products.
RECENT DEVELOPMENTS IN THE U. S. GEOLOGICAL SURVEY'S LANDSAT IMAGE MAPPING PROGRAM.
Brownworth, Frederick S.; Rohde, Wayne G.
1986-01-01
At the 1984 ASPRS-ACSM Convention in Washington, D. C. a paper on 'The Emerging U. S. Geological Survey Image Mapping Program' was presented that discussed recent satellite image mapping advancements and published products. Since then Landsat image mapping has become an integral part of the National Mapping Program. The Survey currently produces about 20 Landsat multispectral scanner (MSS) and Thematic Mapper (TM) image map products annually at 1:250,000 and 1:100,000 scales, respectively. These Landsat image maps provide users with a regional or synoptic view of an area. The resultant geographical presentation of the terrain and cultural features will help planners and managers make better decisions regarding the use of our national resources.
GIS Representation of Coal-Bearing Areas in North, Central, and South America
Tewalt, Susan J.; Kinney, Scott A.; Merrill, Matthew D.
2008-01-01
Worldwide coal consumption and international coal trade are projected to increase in the next several decades (Energy Information Administration, 2007). A search of existing literature indicates that in the Western Hemisphere, coal resources are known to occur in about 30 countries. The need exists to be able to depict these areas in a digital format for use in Geographic Information System (GIS) applications at small scales (large areas) and in visual presentations. Existing surficial geology GIS layers of the appropriate geologic age have been used as an approximation to depict the extent of coal-bearing areas in North, Central, and South America, as well as Greenland (fig. 1). Global surficial geology GIS data were created by the U.S. Geological Survey (USGS) for use in world petroleum assessments (Hearn and others, 2003). These USGS publications served as the major sources for the selection and creation of polygons to represent coal-bearing areas. Additional publications and maps by various countries and agencies were also used as sources of coal locations. GIS geologic polygons were truncated where literature or hardcopy maps did not indicate the presence of coal. The depicted areas are not adequate for use in coal resource calculations, as they were not adjusted for geologic structure and do not include coal at depth. Additionally, some coal areas in Central America could not be represented by the mapped surficial geology and are shown only as points based on descriptions or depictions from scientific publications or available maps. The provided GIS files are intended to serve as a backdrop for display of coal information. Three attributes of the coal that are represented by the polygons or points include geologic age (or range of ages), published rank (or range of ranks), and information source (published sources for age, rank, or physical location, or GIS geology base).
The digital geologic map of Colorado in ARC/INFO format, Part A. Documentation
Green, Gregory N.
1992-01-01
This geologic map was prepared as a part of a study of digital methods and techniques as applied to complex geologic maps. The geologic map was digitized from the original scribe sheets used to prepare the published Geologic Map of Colorado (Tweto 1979). Consequently the digital version is at 1:500,000 scale using the Lambert Conformal Conic map projection parameters of the state base map. Stable base contact prints of the scribe sheets were scanned on a Tektronix 4991 digital scanner. The scanner automatically converts the scanned image to an ASCII vector format. These vectors were transferred to a VAX minicomputer, where they were then loaded into ARC/INFO. Each vector and polygon was given attributes derived from the original 1979 geologic map. This database was developed on a MicroVAX computer system using VAX V 5.4 nd ARC/INFO 5.0 software. UPDATE: April 1995, The update was done solely for the purpose of adding the abilitly to plot to an HP650c plotter. Two new ARC/INFO plot AMLs along with a lineset and shadeset for the HP650C design jet printer have been included. These new files are COLORADO.650, INDEX.650, TWETOLIN.E00 and TWETOSHD.E00. These files were created on a UNIX platform with ARC/INFO 6.1.2. Updated versions of INDEX.E00, CONTACT.E00, LINE.E00, DECO.E00 and BORDER.E00 files that included the newly defined HP650c items are also included. * Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Descriptors: The Digital Geologic Map of Colorado in ARC/INFO Format Open-File Report 92-050
The digital geologic map of Colorado in ARC/INFO format, Part B. Common files
Green, Gregory N.
1992-01-01
This geologic map was prepared as a part of a study of digital methods and techniques as applied to complex geologic maps. The geologic map was digitized from the original scribe sheets used to prepare the published Geologic Map of Colorado (Tweto 1979). Consequently the digital version is at 1:500,000 scale using the Lambert Conformal Conic map projection parameters of the state base map. Stable base contact prints of the scribe sheets were scanned on a Tektronix 4991 digital scanner. The scanner automatically converts the scanned image to an ASCII vector format. These vectors were transferred to a VAX minicomputer, where they were then loaded into ARC/INFO. Each vector and polygon was given attributes derived from the original 1979 geologic map. This database was developed on a MicroVAX computer system using VAX V 5.4 nd ARC/INFO 5.0 software. UPDATE: April 1995, The update was done solely for the purpose of adding the abilitly to plot to an HP650c plotter. Two new ARC/INFO plot AMLs along with a lineset and shadeset for the HP650C design jet printer have been included. These new files are COLORADO.650, INDEX.650, TWETOLIN.E00 and TWETOSHD.E00. These files were created on a UNIX platform with ARC/INFO 6.1.2. Updated versions of INDEX.E00, CONTACT.E00, LINE.E00, DECO.E00 and BORDER.E00 files that included the newly defined HP650c items are also included. * Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Descriptors: The Digital Geologic Map of Colorado in ARC/INFO Format Open-File Report 92-050
Johnson, Ronald C.
2012-01-01
During the 1960s, 1970s, and 1980s, the U.S. Geological Survey mapped the entire area underlain by oil shale of the Eocene Green River Formation in the Piceance Basin of western Colorado. The Piceance Basin contains the largest known oil shale deposit in the world, with an estimated 1.53 trillion barrels of oil in place and as much as 400,000 barrels of oil per acre. This report places the sixty-nine 7½-minute geologic quadrangle maps and one 15-minute quadrangle map published during this period into a comprehensive time-stratigraphic framework based on the alternating rich and lean oil shale zones. The quadrangles are placed in their respective regional positions on one large stratigraphic chart so that tracking the various stratigraphic unit names that have been applied can be followed between adjacent quadrangles. Members of the Green River Formation were defined prior to the detailed mapping, and many inconsistencies and correlation problems had to be addressed as mapping progressed. As a result, some of the geologic units that were defined prior to mapping were modified or discarded. The extensive body of geologic data provided by the detailed quadrangle maps contributes to a better understanding of the distribution and characteristics of the oil shale-bearing rocks across the Piceance Basin.
NASA Astrophysics Data System (ADS)
Miller, J. D.; Hudak, G. J.; Peterson, D.
2011-12-01
Since 2007, the central program of the Precambrian Research Center (PRC) at the University of Minnesota Duluth has been a six-week geology field camp focused on the Precambrian geology of the Canadian Shield. This field camp has two main purposes. First and foremost is to teach students specialized field skills and field mapping techniques that can be utilized to map and interpret Precambrian shield terranes characterized by sparse outcrop and abundant glacial cover. In addition to teaching basic outcrop mapping technique , students are introduced to geophysical surveying (gravity, magnetics), glacial drift prospecting, and drill core logging techniques in several of our geological mapping exercises. These mapping methodologies are particularly applicable to minerals exploration in shield terranes. The second and equally important goal of the PRC field camp is to teach students modern map-making and map production skills. During the fifth and sixth weeks of field camp, students conduct "capstone" mapping projects. These projects encompass one week of detailed bedrock mapping in remote regions of northern Minnesota that have not been mapped in detail (e.g. scales greater than 1:24,000) and a second week of map-making and map generation utilizing geographic information systems (currently ArcGIS10), graphics software packages (Adobe Illustrator CS4), and various imaging software for geophysical and topographic data. Over the past five years, PRC students and faculty have collaboratively published 21 geologic maps through the Precambrian Research Center Map Series. These maps are currently being utilized in a variety of ways by industry, academia, and government for mineral exploration programs, development of undergraduate, graduate, and faculty research projects, and for planning, archeological studies, and public education programs in Minnesota's state parks. Acquisition of specialized Precambrian geological mapping skills and geologic map-making proficiencies has enabled our students to be highly sought after for employment and/or subsequent graduate studies.
National Atlas of the United States Maps
,
2001-01-01
The "National Atlas of the United States of America®", published by the U.S. Geological Survey (USGS) in 1970, is out of print, but many of its maps can be purchased separately. Maps that span facing pages in the atlas are printed on one sheet. Maps dated after 1970 and before 1997 are either revisions of original atlas maps or new maps published in the original atlas format. The USGS and its partners in government and industry began work on a new "National Atlas" in 1997. Though most new atlas products are designed for the World Wide Web, we are continuing our tradition of printing high-quality maps of America. In 1998, the first completely redesigned maps of the "National Atlas of the United States®" were published.
Wilson, Frederic H.; Hults, Chad P.; Schmoll, Henry R.; Haeussler, Peter J.; Schmidt, Jeanine M.; Yehle, Lynn A.; Labay, Keith A.; Shew, Nora B.
2009-01-01
The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. The files named __geol contain geologic polygons and line (contact) attributes; files named __fold contain fold axes; files named __lin contain lineaments; and files named __dike contain dikes as lines. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.
DeWitt, Ed; Buscher, David; Wilson, A.B.; Johnson, Thomas
1988-01-01
This map is one in a set of 26 maps (see index map) at 1:24,000 scale of the Black Hills region of South Dakota and Wyoming om which are shown a geologic classification of mines, a bibliography of mineral deposits, and locations of active and inactive mines, prospects, and patented mining claims. Some of these maps are published as U. S. Geological Survey Miscellaneous Field Studies Maps (MF series) and some as U.S. Geological Survey Open-File Reports (QF series); see index map. An earlier unpublished version of this set of maps was the data base from which plate 4 (scale 1:250,000) of DeWitt and others (1986) was compiled. Subsequent to that publication, the set has been revised and updated, and prospects and patented claims have been added. These revised and more detailed 1:24,000-scale maps should be used for the equivalent areas of plate 4 of DeWitt and others (1986).
Publications - RI 2015-6 | Alaska Division of Geological & Geophysical
., Schwab, C.E., Silva, S.R., Smith, T.E., and Zehner, R.E. Publication Date: Sep 2015 Publisher: Alaska , C.E., Silva, S.R., Smith, T.E., and Zehner, R.E., 2015, Geologic maps of the eastern Alaska Range
All Are Worthy to Know the Earth: Henry De la Beche and the Origin of Geological Literacy
ERIC Educational Resources Information Center
Clary, Renee M.; Wandersee, James H.
2009-01-01
Henry T. De la Beche (1796-1855) began his geological career within an elite circle (Geological Society of London, 1817; FRS, 1819), collaborating with influential gentlemen geologists and publishing original research. When his independent income dwindled, De la Beche managed to secure governmental funding for his mapping projects. This led to…
Schruben, Paul G.; Arndt, Raymond E.; Bawiec, Walter J.
1998-01-01
This CD-ROM contains a digital version of the Geologic Map of the United States, originally published at a scale of 1:2,500,000 (King and Beikman, 1974b). It excludes Alaska and Hawaii. In addition to the graphical formats, the map key is included in ASCII text. A geographic information system (GIS) allows combining and overlaying of layers for analysis of spatial relations not readily apparent in the standard paper publication. This disc contains only geology. However, digital data on geology, geophysics, and geochemistry can be combined to create useful derivative products-- for example, see Phillips and others (1993). This CD-ROM contains a copy of the text and figures from Professional Paper 901 by King and Beikman (1974a). This text describes the historical background of the map, details of the compilation process, and limitations to interpretation. The digital version of the text can be searched for keywords or phrases.
NASA Astrophysics Data System (ADS)
Pihlaja, Jouni; Johansson, Peter; Lauri, Laura S.
2014-05-01
Nature tourism has been a growing business sector in the Barents area during the recent decades. With the purpose to develop nature tourism in a sustainable way, a cooperation project ABCGheritage - Arctic Biological, Cultural and Geological Heritage has been carried out. Project has received partial funding from the EU Kolarctic ENPI program. In the geoheritage part of the project the main activities were aimed to develop pro-environmental ways of geotourism in the area. The three main participants in the geoheritage part of the project are the Geological Survey of Finland, Northern Finland Office, the Geological Institute of the Kola Science Centre of the Russian Academy of Sciences and Bioforsk Soil and Environment from northeastern Norway. The duration of the project is 2012-2014 and most of the work has already been completed even if most of the results are not published yet. Totally ten different tasks have been implemented in the geological part of the project. The largest task has been the preparation of a geological outdoor map and guide book of the Khibiny Tundra locating in the central part of the Kola Peninsula. In Finland already 11 such maps have been published, and the experiences gained during their production have been used in this project, too. Geological heritage trails to the Khibiny Tundra have also been created and they will be drawn on the map. The second concrete result is the Barents Tour for Geotourist -guide, which will be published as a guide book, web pages and an exhibition. The route comprises ca 35 best geological demonstration sites along the circle route from northern Finland to northeastern Norway, from there to Kola Peninsula and then back to Finland. Information of the route will be available for all interested travelers. In addition to the geological outdoor map of the Khibiny Tundra and "Barents Tour for Geotourists"-guide, the primary outputs of the project are the geological nature trails on the field, geological demonstration sites with uniform signposts and educational data packages on geological heritage. The main target groups are pupils and teachers at schools, especially on elementary stage. Tourists and locals visiting protected and recreational areas and other heritage sites will also benefit from the results. Personnel working in education and tourism will get new targets and background data for their clients. Final beneficiaries are local inhabitants, entrepreneurs and companies through positive impact to local economy and communities.
Map of assessed tight-gas resources in the United States
Biewick, Laura R. H.; ,
2014-01-01
This report presents a digital map of tight-gas resource assessments in the United States as part of the U.S. Geological Survey’s (USGS) National Assessment of Oil and Gas Project. Using a geology-based assessment methodology, the USGS quantitatively estimated potential volumes of undiscovered, technically recoverable natural gas resources within tight-gas assessment units (AUs). This is the second digital map product in a series of USGS unconventional oil and gas resource maps. The map plate included in this report can be printed in hard-copy form or downloaded in a Geographic Information System (GIS) data package, including an ArcGIS ArcMap document (.mxd), geodatabase (.gdb), and published map file (.pmf). In addition, the publication access table contains hyperlinks to current USGS tight-gas assessment publications and web pages.
Map of assessed coalbed-gas resources in the United States, 2014
,; Biewick, Laura R. H.
2014-01-01
This report presents a digital map of coalbed-gas resource assessments in the United States as part of the U.S. Geological Survey’s (USGS) National Assessment of Oil and Gas Project. Using a geology-based assessment methodology, the USGS quantitatively estimated potential volumes of undiscovered, technically recoverable natural gas resources within coalbed-gas assessment units (AUs). This is the third digital map product in a series of USGS unconventional oil and gas resource maps. The map plate included in this report can be printed in hardcopy form or downloaded in a Geographic Information System (GIS) data package, including an ArcGIS ArcMap document (.mxd), geodatabase (.gdb), and published map file (.pmf). In addition, the publication access table contains hyperlinks to current USGS coalbed-gas assessment publications and web pages.
Gazetteer of planetary nomenclature 1994
Batson, Raymond M.; Russell, Joel F.
1995-01-01
Planetary nomenclature, like terrestrial nomenclature, is used to uniquely identify a feature on the surface of a planet or satellite so that the feature can be easily located, described, and discussed. This volume contains detailed information about all names of topographic and albedo features on planets and satellites (and some planetary ring and ring-gap systems) that the International Astronomical Union has named and approved from its founding in 1919 through its triennial meeting in 1994.This edition of the Gazetteer of Planetary Nomenclature supersedes an earlier informal volume distributed by the U.S. Geological Survey in 1986 as Open-File Report 84-692 (Masursky and others, 1986). Named features are depicted on maps of the Moon published first by the U.S. Defense Mapping Agency or the Aeronautical Chart and Information Center and more recently by the U.S. Geological Survey; on maps of Mercury, Venus, Mars, and the satellites of Jupiter, Saturn, and Uranus published by the U.S. Geological Survey; and on maps of the Moon, Venus, and Mars produced by the U.S.S.R.Although we have attempted to check the accuracy of all data in this volume, we realize that some errors will remain in a work of this size. Readers noting errors or omissions are urged to communicate them to the U.S. Geological Survey, Branch of Astrogeology, Rm. 409, 2255 N. Gemini Drive, Flagstaff, AZ 86001.
Thamke, Joanna N.; Reynolds, Mitchell W.
2000-01-01
The Generalized Bedrock Geologic Map of the Helena Area, West-Central Montana (plate 1 in the report) provides an intermediate-scale overview of bedrock in the Helena area. The geologic map has been compiled at a scale of 1:100,000 from the most widely available sources of geologic map information (see index to geologic mapping on pl. 1). That information has been updated by M.W. Reynolds for this report with more recent geologic mapping and field revision of published maps. All well locations and all bedrock units penetrated during drilling have been confirmed on geologic maps at the largest scale available. Source geologic maps are all at scales larger than 1:100,000 scale. Care has been taken to ensure accurate representation of the original geology at the compilation scale. However, positional accuracy of some features might be somewhat diminished at the smaller scale of the base map when compared with the original data source. Also, line thicknesses for contacts and faults necessarily assume a greater width, relative to the real geologic feature, at the scale of the generalized map than on any original map. The map is not intended for large-scale, site-specific detailed planning. Bedrock units throughout the Helena area are generally covered by young surficial deposits such as alluvium, colluvium, glacial debris, or windblown sediment. Thickness of such deposits varies from veneers through which the underlying bedrock is clearly discernible to major thicknesses that conceal all underlying bedrock and structure. Boundaries of major accumulations of surficial deposits are attributed separately from bedrock contacts. These boundaries should not be considered precise at the map scale or at larger scales. Boundaries shown may be less accurate positionally than bedrock contacts and faults because (1) surficial deposits commonly thin to a knife edge; (2) different mappers will interpret the edge differently when drawing a boundary; or (3) the original geologic map maker was concerned principally with bedrock units and structure and thus overlooked, or did not originally map as consistently, some surficial deposits. Veneers of surficial sediment, when saturated, can be local sources of recharge to underlying bedrock. Use of the generalized map to define their distribution does not substitute for site specific mapping of such deposits. Specific knowledge is needed to determine the water-bearing properties of the geologic units at and surrounding a site because the units, including the igneous and metamorphic rocks, have internal differences in stratigraphy, composition, mineralogy and grain size or crystallinity. These differences, together with structural imprints such as faults, folds, and the spacing, orientation, degree of openness of fractures, and extent and type of mineral filling in fractures and faults, all affect the ability of rocks to store and transmit water.
How semantics can inform the geological mapping process and support intelligent queries
NASA Astrophysics Data System (ADS)
Lombardo, Vincenzo; Piana, Fabrizio; Mimmo, Dario
2017-04-01
The geologic mapping process requires the organization of data according to the general knowledge about the objects, namely the geologic units, and to the objectives of a graphic representation of such objects in a map, following an established model of geotectonic evolution. Semantics can greatly help such a process in two concerns: the provision of a terminological base to name and classify the objects of the map; on the other, the implementation of a machine-readable encoding of the geologic knowledge base supports the application of reasoning mechanisms and the derivation of novel properties and relations about the objects of the map. The OntoGeonous initiative has built a terminological base of geological knowledge in a machine-readable format, following the Semantic Web tenets and the Linked Data paradigm. The major knowledge sources of the OntoGeonous initiative are GeoScience Markup Language schemata and vocabularies (through its last version, GeoSciML 4, 2015, published by the IUGS CGI Commission) and the INSPIRE "Data Specification on Geology" directives (an operative simplification of GeoSciML, published by INSPIRE Thematic Working Group Geology of the European Commission). The Linked Data paradigm has been exploited by linking (without replicating, to avoid inconsistencies) the already existing machine-readable encoding for some specific domains, such as the lithology domain (vocabulary Simple Lithology) and the geochronologic time scale (ontology "gts"). Finally, for the upper level knowledge, shared across several geologic domains, we have resorted to NASA SWEET ontology. The OntoGeonous initiative has also produced a wiki that explains how the geologic knowledge has been encoded from shared geoscience vocabularies (https://www.di.unito.it/wikigeo/). In particular, the sections dedicated to axiomatization will support the construction of an appropriate data base schema that can be then filled with the objects of the map. This contribution will discuss how the formal encoding of the geological knowledge opens new perspectives for the analysis and representation of the geological systems. In fact, once that the major concepts are defined, the resulting formal conceptual model of the geologic system can hold across different technical and scientific communities. Furthermore, this would allow for a semi-automatic or automatic classification of the cartographic database, where a significant number of properties (attributes) of the recorded instances could be inferred through computational reasoning. So, for example, the system can be queried for showing the instances that satisfy some property (e.g., "Retrieve all the lithostratigraphic units composed of clastic sedimentary rock") or for classifying some unit according to the properties holding for that unit (e.g., "What is the class of the geologic unit composed of siltstone material?").
Geologic map of the Fredonia 30' x 60' quadrangle, Mohave and Coconino counties, northern Arizona
Billingsley, George H.; Priest, Susan S.; Felger, Tracey J.
2008-01-01
This geologic map is the result of a cooperative effort of the U.S. Geological Survey, the National Park Service, the U.S. Forest Service, and the Bureau of Land Management (BLM) and the Kaibab-Paiute Tribe to provide a regional geologic database for resource management officials of all government and agencies, city municipalities, private enterprises, and individuals of this part of the Arizona Strip. The Arizona Strip is part of northwestern Arizona north of the Colorado River and bounded by the States of Nevada and Utah. Field work on the Kaibab-Paiute Indian Reservation was conducted from 2002 to 2005 with permission from the Kaibab-Paiute Tribal Government of that administration and permission was granted to publish a geologic map of 4 quadrangles online (Billingsley and others, 2004). The Kaibab-Paiute Tribal government of 2006 to 2008 requested that all geologic information within the Kaibab-Paiute Indian Reservation not be published as part of the Fredonia 30' x 60' quadrangle (this publication). For further information, contact the Kaibab-Paiute Tribal government at HC 65 Box 2, Fredonia, Arizona, 86022, telephone # (928) 643-7245. Visitors to the Kaibab-Paiute Indian Reservation are required to obtain a permit and permission for access from the Tribal Offices at the junction of State Highway 389 and the paved road leading to Pipe Spring National Monument. The Fredonia 30' x 60' quadrangle encompasses approximately 5,018 km2 (1,960 mi2) within Mohave and Coconino Counties, northern Arizona and is bounded by longitude 112 deg to 113 deg W., and latitude 36 deg 30' to 37 deg N. The map area lies within the southern Colorado Plateaus geologic province (herein Colorado Plateau). The map area is locally subdivided into seven physiographic parts: the Grand Canyon (Kanab Canyon and its tributaries), Kanab Plateau, Uinkaret Plateau, Kaibab Plateau, Paria Plateau, House Rock Valley, and Moccasin Mountains as defined by Billingsley and others, 1997, (fig. 1). Elevations range from 2,737 m (8,980 ft) just west of State Highway 67 on the Kaibab Plateau, southeast corner of the map area to about 927 m (3,040 ft) in Kanab Canyon, south-central edge of the map area.
Semantic Web-based digital, field and virtual geological
NASA Astrophysics Data System (ADS)
Babaie, H. A.
2012-12-01
Digital, field and virtual Semantic Web-based education (SWBE) of geological mapping requires the construction of a set of searchable, reusable, and interoperable digital learning objects (LO) for learners, teachers, and authors. These self-contained units of learning may be text, image, or audio, describing, for example, how to calculate the true dip of a layer from two structural contours or find the apparent dip along a line of section. A collection of multi-media LOs can be integrated, through domain and task ontologies, with mapping-related learning activities and Web services, for example, to search for the description of lithostratigraphic units in an area, or plotting orientation data on stereonet. Domain ontologies (e.g., GeologicStructure, Lithostratigraphy, Rock) represent knowledge in formal languages (RDF, OWL) by explicitly specifying concepts, relations, and theories involved in geological mapping. These ontologies are used by task ontologies that formalize the semantics of computational tasks (e.g., measuring the true thickness of a formation) and activities (e.g., construction of cross section) for all actors to solve specific problems (making map, instruction, learning support, authoring). A SWBE system for geological mapping should also involve ontologies to formalize teaching strategy (pedagogical styles), learner model (e.g., for student performance, personalization of learning), interface (entry points for activities of all actors), communication (exchange of messages among different components and actors), and educational Web services (for interoperability). In this ontology-based environment, actors interact with the LOs through educational servers, that manage (reuse, edit, delete, store) ontologies, and through tools which communicate with Web services to collect resources and links to other tools. Digital geological mapping involves a location-based, spatial organization of geological elements in a set of GIS thematic layers. Each layer in the stack assembles a set of polygonal (e.g., formation, member, intrusion), linear (e.g., fault, contact), and/or point (e.g., sample or measurement site) geological elements. These feature classes, represented in domain ontologies by classes, have their own sets of property (attribute, association relation) and topological (e.g., overlap, adjacency, containment), and network (cross-cuttings; connectivity) relationships. Since geological mapping involves describing and depicting different aspects of each feature class (e.g., contact, formation, structure), the same geographic region may be investigated by different communities, for example, for its stratigraphy, rock type, structure, soil type, and isotopic and paleontological age, using sets of ontologies. These data can become interconnected applying the Semantic Web technologies, on the Linked Open Data Cloud, based on their underlying common geographic coordinates. Sets of geological data published on the Cloud will include multiple RDF links to Cloud's geospatial nodes such as GeoNames and Linked GeoData. During mapping, a device such as smartphone, laptop, or iPad, with GPS and GIS capability and a DBpedia Mobile client, can use the current position to discover and query all the geological linked data, and add new data to the thematic layers and publish them to the Cloud.
Quaternary geologic map of the Florida Keys 4 degrees x 6 degrees quadrangle, United States
Compilations: Scott, Thomas M.; Knapp, Michael S.; Weide, David L.; Edited and integrated by Richmond, Gerald M.; Fullerton, David S.; Bush, Charles A.
2010-01-01
This map is part of the Quaternary Geologic Atlas of the United States (I-1420). It was first published as a printed edition in 1986. The geologic data have now been captured digitally and are presented here along with images of the printed map sheet and component parts as PDF files. The Quaternary Geologic Map of the Florida Keys 4 degrees x 6 degrees Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the Earth. They make up the ground on which we walk, the dirt in which we dig foundations, and the soil in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. In recent years, surficial deposits and materials have become the focus of much interest by scientists, environmentalists, governmental agencies, and the general public. They are the foundations of ecosystems, the materials that support plant growth and animal habitat, and the materials through which travels much of the water required for our agriculture, our industry, and our general well being. They also are materials that easily can become contaminated by pesticides, fertilizers, and toxic wastes. In this context, the value of the surficial geologic map is evident.
Quaternary geologic map of the Mobile 4 degrees x 6 degrees quadrangle, United States
State compilations by Copeland, Charles W.; Rheams, K.F.; Neathery, T.L.; Gilliland, W.A.; Schmidt, Walter; Clark, W.C.; Pope, D.E.; edited and integrated by Richmond, Gerald Martin; Fullerton, David S.; Weide, David L.; Digital database by Bush, Charles A.
1988-01-01
This map is part of the Quaternary Geologic Atlas of the United States (I-1420). It was first published as a printed edition in 1988. The geologic data have now been captured digitally and are presented here along with images of the printed map sheet and component parts as PDF files. The Quaternary Geologic Map of the Mobile 4 degrees x 6 degrees Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the Earth. They make up the ground on which we walk, the dirt in which we dig foundations, and the soil in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. In recent years, surficial deposits and materials have become the focus of much interest by scientists, environmentalists, governmental agencies, and the general public. They are the foundations of ecosystems, the materials that support plant growth and animal habitat, and the materials through which travels much of the water required for our agriculture, our industry, and our general well being. They also are materials that easily can become contaminated by pesticides, fertilizers, and toxic wastes. In this context, the value of the surficial geologic map
Quaternary geologic map of the Lookout Mountain 4° x 6° quadrangle, United States
State compilations by Miller, Robert A.; Maher, Stuart W.; Copeland, Charles W.; Rheams, Katherine F.; Neathery, Thorton L.; Gilliland, William A.; Friddell, Michael S.; Van Nostrand, Arnie K.; Wheeler, Walter H.; Holbrook, Drew F.; Bush, William V.; Edited and integrated by Richmond, Gerald M.; Fullerton, David S.; Bush, Charles A.
1988-01-01
This map is part of the Quaternary Geologic Atlas of the United States (I–1420). It was first published as a printed edition in 1988. The geologic data have now been captured digitally and are presented here along with images of the printed map sheet and component parts as PDF files. The Quaternary Geologic Map of the Lookout Mountain 4° x 6° Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the Earth. They make up the "ground" on which we walk, the "dirt" in which we dig foundations, and the "soil" in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. In recent years, surficial deposits and materials have become the focus of much interest by scientists, environmentalists, governmental agencies, and the general public. They are the foundations of ecosystems, the materials that support plant growth and animal habitat, and the materials through which travels much of the water required for our agriculture, our industry, and our general well being. They also are materials that easily can become contaminated by pesticides, fertilizers, and toxic wastes. In this context, the value of the surficial geologic map is evident.
Quaternary geologic map of the Vicksburg 4° x 6° quadrangle, United States
State compilations by Holbrook, Drew F.; Gilliland, W.A.; Luza, K.V.; Pope, D.E.; Wermund, E.G.; Miller, R.A.; Bush, W.V.; Jensen, K.N.; Fishman, W.D.; edited and integrated by Richmond, Gerald Martin; Fullerton, David S.; Weide, David L.; Bush, Charles A.
1990-01-01
This map is part of the Quaternary Geologic Atlas of the United States (I-1420). It was first published as a printed edition in 1990. The geologic data have now been captured digitally and are presented here along with images of the printed map sheet and component parts as PDF files. The Quaternary Geologic Map of the Vicksburg 4° x 6° Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the Earth. They make up the ground on which we walk, the dirt in which we dig foundations, and the soil in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. In recent years, surficial deposits and materials have become the focus of much interest by scientists, environmentalists, governmental agencies, and the general public. They are the foundations of ecosystems, the materials that support plant growth and animal habitat, and the materials through which travels much of the water required for our agriculture, our industry, and our general well being. They also are materials that easily can become contaminated by pesticides, fertilizers, and toxic wastes. In this context, the value of the surficial geologic map is evident.
Quaternary geologic map of the White Lake 4° x 6° quadrangle, United States
State compilations by Pope, David E.; Gilliland, William A.; Wermund, E.G.; edited and integrated by Richmond, Gerald Martin; Weide, David L.; Moore, David W.; Bush, Charles A.
1990-01-01
This map is part of the Quaternary Geologic Atlas of the United States (I-1420). It was first published as a printed edition in 1990. The geologic data have now been captured digitally and are presented here along with images of the printed map sheet and component parts as PDF files. The Quaternary Geologic Map of the White Lake 4° x 6° Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the Earth. They make up the ground on which we walk, the dirt in which we dig foundations, and the soil in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. In recent years, surficial deposits and materials have become the focus of much interest by scientists, environmentalists, governmental agencies, and the general public. They are the foundations of ecosystems, the materials that support plant growth and animal habitat, and the materials through which travels much of the water required for our agriculture, our industry, and our general well being. They also are materials that easily can become contaminated by pesticides, fertilizers, and toxic wastes. In this context, the value of the surficial geologic map is evident.
Quaternary geologic map of the Monterrey 4 degrees x 6 degrees quadrangle, United States
Moore, David W.; Wermund, E.G.; edited and integrated by Moore, David W.; Richmond, Gerald Martin
1993-01-01
This map is part of the Quaternary Geologic Atlas of the United States (I-1420). It was first published as a printed edition in 1993. The geologic data have now been captured digitally and are presented here along with images of the printed map sheet and component parts as PDF files. The Quaternary Geologic Map of the Monterrey 4 degrees x 6 degrees Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the Earth. They make up the ground on which we walk, the dirt in which we dig foundations, and the soil in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. In recent years, surficial deposits and materials have become the focus of much interest by scientists, environmentalists, governmental agencies, and the general public. They are the foundations of ecosystems, the materials that support plant growth and animal habitat, and the materials through which travels much of the water required for our agriculture, our industry, and our general well being. They also are materials that easily can become contaminated by pesticides, fertilizers, and toxic wastes. In this context, the value of the surficial geologic map is evident.
Quaternary geologic map of the Austin 4° x 6° quadrangle, United States
State compilations by Moore, David W.; Wermund, E.G.; edited and integrated by Moore, David W.; Richmond, Gerald Martin; Christiansen, Ann Coe; Bush, Charles A.
1993-01-01
This map is part of the Quaternary Geologic Atlas of the United States (I-1420). It was first published as a printed edition in 1993. The geologic data have now been captured digitally and are presented here along with images of the printed map sheet and component parts as PDF files. The Quaternary Geologic Map of the Austin 4° x 6° Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the Earth. They make up the ground on which we walk, the dirt in which we dig foundations, and the soil in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. In recent years, surficial deposits and materials have become the focus of much interest by scientists, environmentalists, governmental agencies, and the general public. They are the foundations of ecosystems, the materials that support plant growth and animal habitat, and the materials through which travels much of the water required for our agriculture, our industry, and our general well being. They also are materials that easily can become contaminated by pesticides, fertilizers, and toxic wastes. In this context, the value of the surficial geologic map is evident.
Quaternary geologic map of the Wichita 4 degrees x 6 degrees quadrangle, United States
State compilations by Denne, Jane E.; Luza, V.; Richmond, Gerald Martin; Jensen, Kathleen M.; Fishman, W.D.; Wermund, E.G.; Richmond, Gerald Martin; Christiansen, Ann Coe; Bush, Charles A.
1993-01-01
This map is part of the Quaternary Geologic Atlas of the United States (I-1420). It was first published as a printed edition in 1993. The geologic data have now been captured digitally and are presented here along with images of the printed map sheet and component parts as PDF files. The Quaternary Geologic Map of the Wichita 4° x 6° Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the earth. They make up the "ground" on which we walk, the "dirt" in which we dig foundations, and the "soil" in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. In recent years, surficial deposits and materials have become the focus of much interest by scientists, environmentalists, governmental agencies, and the general public. They are the foundations of ecosystems, the materials that support plant growth and animal habitat, and the materials through which travels much of the water required for our agriculture, our industry, and our general well being. They also are materials that easily can become contaminated by pesticides, fertilizers, and toxic wastes. In this context, the value of the surficial geologic map is evident.
Quaternary geologic map of the Jacksonville 4 degrees x 6 degrees quadrangle, United States
State compilations by Scott, Thomas M.; Knapp, M.S.; Friddell, M.S.; Weide, David L.; edited and integrated by Richmond, Gerald Martin; Fullerton, David S.
1986-01-01
This map is part of the Quaternary Geologic Atlas of the United States (I-1420). It was first published as a printed edition in 1986. The geologic data have now been captured digitally and are presented here along with images of the printed map sheet and component parts as PDF files. The Quaternary Geologic Map of the Jacksonville 4 degrees x 6 degrees Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the Earth. They make up the ground on which we walk, the dirt in which we dig foundations, and the soil in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. In recent years, surficial deposits and materials have become the focus of much interest by scientists, environmentalists, governmental agencies, and the general public. They are the foundations of ecosystems, the materials that support plant growth and animal habitat, and the materials through which travels much of the water required for our agriculture, our industry, and our general well being. They also are materials that easily can become contaminated by pesticides, fertilizers, and toxic wastes. In this context, the value of the surficial geologic map is evident.
John, David A.; Nash, J.T.; Plouff, Donald; Whitebread, D.H.
1991-01-01
The Tonopah 1 ? by 2 ? quadrangle in south-central Nevada was studied by an interdisciplinary research team to appraise its mineral resources. The appraisal is based on geological, geochemical, and geophysical field and laboratory investigations, the results of which are published as a folio of maps, figures, and tables, with accompanying discussions. This circular provides background information on the investigations and integrates the information presented in the folio. The selected bibliography lists references to the geology, geochemistry, geophysics, and mineral deposits of the Tonopah 1 ? by 2 ? quadrangle.
Moench, R.H.; Lane, M.E.
1988-01-01
This map is based on geologic and geochemical studies and mine and prospect investigations that were done principally in 1977 and 1979-80 (U.S. Geological Survey, U.S. Bureau of Mines, and New Mexico Bureau of Mines and Mineral Resources, 1980; Lane, 1980; Moench and Robertson, 1980; Moench, Robertson, and Sutley, 1980; Moench and Erickson, 1980; Moench, Grambling, and Robertson, 1988; Moench, Sutley, and Erickson, 1988; Erickson, Sutley, and Moench, 1986). An aeromagnetic survey covering almost all of the Pecos Wilderness was flown in 1970. The resulting aeromagnetic map was published by Moench and others (1980) and interpreted in that report by Lindreth Cordell. Cordell found no correlation between magnetic features and geologic terraines having mineral resource potential.
NASA Technical Reports Server (NTRS)
Batson, R. M.; Morgan, H. F.; Sucharski, Robert
1991-01-01
Semicontrolled image mosaics of Venus, based on Magellan data, are being compiled at 1:50,000,000, 1:10,000,000, 1:5,000,000, and 1:1,000,000 scales to support the Magellan Radar Investigator (RADIG) team. The mosaics are semicontrolled in the sense that data gaps were not filled and significant cosmetic inconsistencies exist. Contours are based on preliminary radar altimetry data that is subjected to revision and improvement. Final maps to support geologic mapping and other scientific investigations, to be compiled as the dataset becomes complete, will be sponsored by the Planetary Geology and Geophysics Program and/or the Venus Data Analysis Program. All maps, both semicontrolled and final, will be published as I-maps by the United States Geological Survey. All of the mapping is based on existing knowledge of the spacecraft orbit; photogrammetric triangulation, a traditional basis for geodetic control on planets where framing cameras were used, is not feasible with the radar images of Venus, although an eventual shift of coordinate system to a revised spin-axis location is anticipated. This is expected to be small enough that it will affect only large-scale maps.
To assess the value of satellite imagery in resource evaluation on a national scale. [South Africa
NASA Technical Reports Server (NTRS)
Malan, O. G. (Principal Investigator)
1973-01-01
The author has identified the following significant results. It has been shown that ERTS imagery, particularly in the form of 1:500,000 scale false color photolithographic prints, can contribute very significantly towards facilitating and accelerating (dramatically, in the case of vegetation) resource surveys and geologic mapping. Fire mapping on a national scale becomes a feasibility, numerous new geologic features, particularly lineaments, have been discovered, land use can be mapped efficiently on a regional scale and degraded areas identified. The first detailed tectonic and geomorphological maps of the Republic of South Africa will be published in the near future mainly owing to the availability of ERTS-1 imagery.
Map of assessed continuous (unconventional) oil resources in the United States, 2014
,; Biewick, Laura R. H.
2015-01-01
The U.S. Geological Survey (USGS) conducts quantitative assessments of potential oil and gas resources of the onshore United States and associated coastal State waters. Since 2000, the USGS has completed assessments of continuous (unconventional) resources in the United States based on geologic studies and analysis of well-production data and has compiled digital maps of the assessment units classified into four categories: shale gas, tight gas, coalbed gas, and shale oil or tight oil (continuous oil). This is the fourth digital map product in a series of USGS unconventional oil and gas resource maps; its focus being shale-oil or tight-oil (continuous-oil) assessments. The map plate included in this report can be printed in hardcopy form or downloaded in a Geographic Information System (GIS) data package, which includes an ArcGIS ArcMap document (.mxd), geodatabase (.gdb), and a published map file (.pmf). Supporting geologic studies of total petroleum systems and assessment units, as well as studies of the methodology used in the assessment of continuous-oil resources in the United States, are listed with hyperlinks in table 1. Assessment results and geologic reports are available at the USGS websitehttp://energy.usgs.gov/OilGas/AssessmentsData/NationalOilGasAssessment.aspx.
Map of assessed shale gas in the United States, 2012
,; Biewick, Laura R. H.
2013-01-01
The U.S. Geological Survey has compiled a map of shale-gas assessments in the United States that were completed by 2012 as part of the National Assessment of Oil and Gas Project. Using a geology-based assessment methodology, the U.S. Geological Survey quantitatively estimated potential volumes of undiscovered gas within shale-gas assessment units. These shale-gas assessment units are mapped, and square-mile cells are shown to represent proprietary shale-gas wells. The square-mile cells include gas-producing wells from shale intervals. In some cases, shale-gas formations contain gas in deeper parts of a basin and oil at shallower depths (for example, the Woodford Shale and the Eagle Ford Shale). Because a discussion of shale oil is beyond the scope of this report, only shale-gas assessment units and cells are shown. The map can be printed as a hardcopy map or downloaded for interactive analysis in a Geographic Information System data package using the ArcGIS map document (file extension MXD) and published map file (file extension PMF). Also available is a publications access table with hyperlinks to current U.S. Geological Survey shale gas assessment publications and web pages. Assessment results and geologic reports are available as completed at the U.S. Geological Survey Energy Resources Program Web Site, http://energy.usgs.gov/OilGas/AssessmentsData/NationalOilGasAssessment.aspx. A historical perspective of shale gas activity in the United States is documented and presented in a video clip included as a PowerPoint slideshow.
Stone, Byron D.; Stone, Janet R.; DiGiacomo-Cohen, Mary L.
2008-01-01
The surficial geologic map layer shows the distribution of nonlithified earth materials at land surface in an area of nine 7.5-minute quadrangles (417 mi2 total) in south-central Massachusetts (fig. 1). Across Massachusetts, these materials range from a few feet to more than 500 ft in thickness. They overlie bedrock, which crops out in upland hills and in resistant ledges in valley areas. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics (such as grain size and sedimentary structures), constructional geomorphic features, stratigraphic relationships, and age. Surficial materials also are known in engineering classifications as unconsolidated soils, which include coarse-grained soils, fine-grained soils, or organic fine-grained soils. Surficial materials underlie and are the parent materials of modern pedogenic soils, which have developed in them at the land surface. Surficial earth materials significantly affect human use of the land, and an accurate description of their distribution is particularly important for water resources, construction aggregate resources, earth-surface hazards assessments, and land-use decisions. The mapped distribution of surficial materials that lie between the land surface and the bedrock surface is based on detailed geologic mapping of 7.5-minute topographic quadrangles, produced as part of an earlier (1938-1982) cooperative statewide mapping program between the U.S. Geological Survey and the Massachusetts Department of Public Works (now Massachusetts Highway Department) (Page, 1967; Stone, 1982). Each published geologic map presents a detailed description of local geologic map units, the genesis of the deposits, and age correlations among units. Previously unpublished field compilation maps exist on paper or mylar sheets and these have been digitally rendered for the present map compilation. Regional summaries based on the Massachusetts surficial geologic mapping studies discuss the ages of multiple glaciations, the nature of glaciofluvial, glaciolacustrine, and glaciomarine deposits, and the processes of ice advance and retreat across Massachusetts (Koteff and Pessl, 1981; papers in Larson and Stone, 1982; Oldale and Barlow, 1986; Stone and Borns, 1986; Warren and Stone, 1986). This compilation of surficial geologic materials is an interim product that defines the areas of exposed bedrock and the boundaries between glacial till, glacial stratified deposits, and overlying postglacial deposits. This work is part of a comprehensive study to produce a statewide digital map of the surficial geology at a 1:24,000-scale level of accuracy. This surficial geologic map layer covering nine quadrangles revises previous digital surficial geologic maps (Stone and others, 1993; MassGIS, 1999) that were compiled on base maps at regional scales of 1:125,000 and 1:250,000. The purpose of this study is to provide fundamental geologic data for the evaluation of natural resources, hazards, and land information within the Commonwealth of Massachusetts.
The United States Geological Survey in Alaska: Accomplishments during 1976
Blean, Kathleen M.
1977-01-01
United States Geological Survey projects in Alaska include a wide range of topics of economic and scientific interest. Studies in 1976 include economic geology, regional geology, stratigraphy, environmental geology, engineering geology, hydrology, and marine geology. Discussions of the findings or, in some instances, narratives of the course of the investigations are grouped in eight subdivisions corresponding to the six major onshore geographic regions, the offshore projects, and projects that are statewide in scope. Locations of the study areas are shown. In addition, many reports and maps covering various aspects of the geology and mineral and water resources of the State were published. These publications are listed. (Woodard-USGS)
Geologic and Mineral Resource Map of Afghanistan
Doebrich, Jeff L.; Wahl, Ronald R.; With Contributions by Ludington, Stephen D.; Chirico, Peter G.; Wandrey, Craig J.; Bohannon, Robert G.; Orris, Greta J.; Bliss, James D.; Wasy, Abdul; Younusi, Mohammad O.
2006-01-01
Data Summary The geologic and mineral resource information shown on this map is derived from digitization of the original data from Abdullah and Chmyriov (1977) and Abdullah and others (1977). The U.S. Geological Survey (USGS) has made no attempt to modify original geologic map-unit boundaries and faults as presented in Abdullah and Chmyriov (1977); however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. Labeling of map units has not been attempted where they are small or narrow, in order to maintain legibility and to preserve the map's utility in illustrating regional geologic and structural relations. Users are encouraged to refer to the series of USGS/AGS (Afghan Geological Survey) 1:250,000-scale geologic quadrangle maps of Afghanistan that are being released concurrently as open-file reports. The classification of mineral deposit types is based on the authors' interpretation of existing descriptive information (Abdullah and others, 1977; Bowersox and Chamberlin, 1995; Orris and Bliss, 2002) and on limited field investigations by the authors. Deposit-type nomenclature used for nonfuel minerals is modified from published USGS deposit-model classifications, as compiled in Stoeser and Heran (2000). New petroleum localities are based on research of archival data by the authors. The shaded-relief base is derived from Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) data having 85-meter resolution. Gaps in the original SRTM DEM dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). The marginal extent of geologic units corresponds to the position of the international boundary as defined by Abdullah and Chmyriov (1977), and the international boundary as shown on this map was acquired from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af) in September 2005. Non-coincidence of these boundaries is due to differences in the respective data sources and to inexact registration of the geologic data to the DEM base. Province boundaries, province capital locations, and political names were also acquired from the AIMS Web site in September 2005. The AIMS data were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Version 2 differs from Version 1 in that (1) map units are colored according to the color scheme of the Commission for the Geological Map of the World (CGMW) (http://www.ccgm.org), (2) the minerals database has been updated, and (3) all data presented on the map are also available in GIS format.
Multispectral Landsat images of Antartica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucchitta, B.K.; Bowell, J.A.; Edwards, K.L.
1988-01-01
The U.S. Geological Survey has a program to map Antarctica by using colored, digitally enhanced Landsat multispectral scanner images to increase existing map coverage and to improve upon previously published Landsat maps. This report is a compilation of images and image mosaic that covers four complete and two partial 1:250,000-scale quadrangles of the McMurdo Sound region.
Digital Mapping Techniques '09-Workshop Proceedings, Morgantown, West Virginia, May 10-13, 2009
Soller, David R.
2011-01-01
As in the previous years' meetings, the objective was to foster informal discussion and exchange of technical information, principally in order to develop more efficient methods for digital mapping, cartography, GIS analysis, and information management. At this meeting, oral and poster presentations and special discussion sessions emphasized (1) methods for creating and publishing map products (here, "publishing" includes Web-based release); (2) field data capture software and techniques, including the use of LiDAR; (3) digital cartographic techniques; (4) migration of digital maps into ArcGIS Geodatabase format; (5) analytical GIS techniques; and (6) continued development of the National Geologic Map Database.
Digital Bedrock Compilation: A Geodatabase Covering Forest Service Lands in California
NASA Astrophysics Data System (ADS)
Elder, D.; de La Fuente, J. A.; Reichert, M.
2010-12-01
This digital database contains bedrock geologic mapping for Forest Service lands within California. This compilation began in 2004 and the first version was completed in 2005. Second publication of this geodatabase was completed in 2010 and filled major gaps in the southern Sierra Nevada and Modoc/Medicine Lake/Warner Mountains areas. This digital map database was compiled from previously published and unpublished geologic mapping, with source mapping and review from California Geological Survey, the U.S. Geological Survey and others. Much of the source data was itself compilation mapping. This geodatabase is huge, containing ~107,000 polygons and ~ 280,000 arcs. Mapping was compiled from more than one thousand individual sources and covers over 41,000,000 acres (~166,000 km2). It was compiled from source maps at various scales - from ~ 1:4,000 to 1:250,000 and represents the best available geologic mapping at largest scale possible. An estimated 70-80% of the source information was digitized from geologic mapping at 1:62,500 scale or better. Forest Service ACT2 Enterprise Team compiled the bedrock mapping and developed a geodatabase to store this information. This geodatabase supports feature classes for polygons (e.g, map units), lines (e.g., contacts, boundaries, faults and structural lines) and points (e.g., orientation data, structural symbology). Lookup tables provide detailed information for feature class items. Lookup/type tables contain legal values and hierarchical groupings for geologic ages and lithologies. Type tables link coded values with descriptions for line and point attributes, such as line type, line location and point type. This digital mapping is at the core of many quantitative analyses and derivative map products. Queries of the database are used to produce maps and to quantify rock types of interest. These include the following: (1) ultramafic rocks - where hazards from naturally occurring asbestos are high, (2) granitic rocks - increased erosion hazards, (3) limestone, chert, sedimentary rocks - paleontological resources (Potential Fossil Yield Classification maps), (4) calcareous rocks (cave resources, water chemistry), and (5) lava flows - lava tubes (more caves). Map unit groupings (e.g., belts, terranes, tectonic & geomorphic provinces) can also be derived from the geodatabase. Digital geologic mapping was used in ground water modeling to predict effects of tunneling through the San Bernardino Mountains. Bedrock mapping is used in models that characterize watershed sediment regimes and quantify anthropogenic influences. When combined with digital geomorphology mapping, this geodatabase helps to assess landslide hazards.
Quaternary geologic map of the Wolf Point 1° × 2° quadrangle, Montana and North Dakota
Fullerton, David S.; Colton, Roger B.; Bush, Charles A.
2016-09-08
The Wolf Point quadrangle encompasses approximately 16,084 km2 (6,210 mi2). The northern boundary is the Montana/Saskatchewan (U.S.-Canada) boundary. The quadrangle is in the Northern Plains physiographic province and it includes the Peerless Plateau and Flaxville Plain. The primary river is the Missouri River.The map units are surficial deposits and materials, not landforms. Deposits that comprise some constructional landforms (for example, ground-moraine deposits, end-moraine deposits, and stagnation-moraine deposits, all composed of till) are distinguished for purposes of reconstruction of glacial history. Surficial deposits and materials are assigned to 23 map units on the basis of genesis, age, lithology or composition, texture or particle size, and other physical, chemical, and engineering characteristics. It is not a map of soils that are recognized in pedology or agronomy. Rather, it is a generalized map of soils recognized in engineering geology, or of substrata or parent materials in which pedologic or agronomic soils are formed. Glaciotectonic (ice-thrust) structures and deposits are mapped separately, represented by a symbol. The surficial deposits are glacial, ice-contact, glaciofluvial, alluvial, lacustrine, eolian, colluvial, and mass-movement deposits.Till of late Wisconsin age is represented by three map units. Till of Illinoian age also is mapped. Till deposited during pre-Illinoian glaciations is not mapped, but is widespread in the subsurface. Linear ice-molded landforms (primarily drumlins), shown by symbol, indicate directions of ice flow during late Wisconsin and Illinoian glaciations. The Quaternary geologic map of the Wolf Point quadrangle, northeastern Montana and North Dakota, was prepared to provide a database for compilation of a Quaternary geologic map of the Regina 4° × 6° quadrangle, United States and Canada, at scale 1:1,000,000, for the U.S. Geological Survey Quaternary Geologic Atlas of the United States map series. This map was compiled from data from many sources, at several different map scales. That information was generalized and simplified, and then transferred to a base map at 1:250,000 scale to serve as the base for final reduction to 1:1,000,000, the nominal reading scale of maps in the Quaternary Geologic Atlas of the United States map series. This map is the generalized and simplified 1:250,000 scale compilation. Letter symbols for the map units are those used for the same units in the Quaternary Geologic Atlas of the United States map series. The map summarizes new, and selected published and unpublished, geologic information for public use and for use by Federal, State, and local governmental agencies for land use planning, including assessment of natural resources, natural hazards, recreation potential, and land use management. It also is a base from which a variety of maps relating to earth surface processes and Quaternary geologic history can be derived.
Sweetkind, D.S.; Du Bray, E.A.
2008-01-01
The U.S. Geological Survey (USGS), the Desert Research Institute (DRI), and a designee from the State of Utah are currently conducting a water-resources study of aquifers in White Pine County, Nevada, and adjacent areas in Nevada and Utah, in response to concerns about water availability and limited geohydrologic information relevant to ground-water flow in the region. Production of ground water in this region could impact water accumulations in three general types of aquifer materials: consolidated Paleozoic carbonate bedrock, and basin-filling Cenozoic volcanic rocks and unconsolidated Quaternary sediments. At present, the full impact of extracting ground water from any or all of these potential valley-graben reservoirs is not fully understood. A thorough understanding of intermontane basin stratigraphy, mostly concealed by the youngest unconsolidated deposits that blanket the surface in these valleys, is critical to an understanding of the regional hydrology in this area. This report presents a literature-based compilation of geologic data, especially thicknesses and lithologic characteristics, for Tertiary volcanic rocks that are presumably present in the subsurface of the intermontane valleys, which are prominent features of this area. Two methods are used to estimate volcanic-rock thickness beneath valleys: (1) published geologic maps and accompanying descriptions of map units were used to compile the aggregate thicknesses of Tertiary stratigraphic units present in each mountain range within the study areas, and then interpolated to infer volcanic-rock thickness in the intervening valley, and (2) published isopach maps for individual out-flow ash-flow tuff were converted to digital spatial data and thickness was added together to produce a regional thickness map that aggregates thickness of the individual units. The two methods yield generally similar results and are similar to volcanic-rock thickness observed in a limited number of oil and gas exploration drill holes in the region, although local geologic complexity and the inherent assumptions in both methods allow only general comparison. These methods serve the needs of regional ground-water studies that require a three-dimensional depiction of the extent and thickness of subsurface geologic units. The compilation of geologic data from published maps and reports provides a general understanding of the distribution and thickness of tuffs that are presumably present in the subsurface of the intermontane valleys and are critical to understanding the ground-water hydrology of this area.
World distribution of uranium deposits
Fairclough, M. C.; Irvine, J. A.; Katona, L. F.; Simmon, W. L.; Bruneton, P.; Mihalasky, Mark J.; Cuney, M.; Aranha, M.; Pylypenko, O.; Poliakovska, K.
2018-01-01
Deposit data derived from IAEA UDEPO (http://infcis.iaea.org/UDEPO/About.cshtml) database with assistance from P. Bruneton (France) and M. Mihalasky (U.S.A.). The map is an updated companion to "World Distribution of Uranium Deposits (UDEPO) with Uranium Deposit Classification, IAEA Tech-Doc-1629". Geology was derived from L.B. Chorlton, Generalized Geology of the World, Geological Survey of Canada, Open File 5529 , 2007. Map production by M.C. Fairclough (IAEA), J.A. Irvine (Austrailia), L.F. Katona (Australia) and W.L. Slimmon (Canada). World Distribution of Uranium Deposits, International Atomic Energy Agency, Vienna, Austria. Cartographic Assistance was supplied by the Geological Survey of South Australia, the Saskatchewan Geological Survey and United States Geological Survey to the IAEA. Coastlines, drainage, and country boundaries were obtained from ArcMap, 1:25 000 000 scale, and are copyrighted data containing the intellectual property of Environmental Systems Research Institute (ESRI). The use of particular designations of countries or territories does not imply any judgment by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. Any revisions or additional geological information known to the user would be welcomed by the International Atomic Energy Agency and the Geological Survey of Canada.
Tanaka, K.L.; Skinner, J.A.; Crumpler, L.S.; Dohm, J.M.
2009-01-01
We photogeologically mapped the SP Mountain region of the San Francisco Volcanic Field in northern Arizona, USA to evaluate and improve the fidelity of approaches used in geologic mapping of Mars. This test site, which was previously mapped in the field, is chiefly composed of Late Cenozoic cinder cones, lava flows, and alluvium perched on Permian limestone of the Kaibab Formation. Faulting and folding has deformed the older rocks and some of the volcanic materials, and fluvial erosion has carved drainage systems and deposited alluvium. These geologic materials and their formational and modificational histories are similar to those for regions of the Martian surface. We independently prepared four geologic maps using topographic and image data at resolutions that mimic those that are commonly used to map the geology of Mars (where consideration was included for the fact that Martian features such as lava flows are commonly much larger than their terrestrial counterparts). We primarily based our map units and stratigraphic relations on geomorphology, color contrasts, and cross-cutting relationships. Afterward, we compared our results with previously published field-based mapping results, including detailed analyses of the stratigraphy and of the spatial overlap and proximity of the field-based vs. remote-based (photogeologic) map units, contacts, and structures. Results of these analyses provide insights into how to optimize the photogeologic mapping of Mars (and, by extension, other remotely observed planetary surfaces). We recommend the following: (1) photogeologic mapping as an excellent approach to recovering the general geology of a region, along with examination of local, high-resolution datasets to gain insights into the complexity of the geology at outcrop scales; (2) delineating volcanic vents and lava-flow sequences conservatively and understanding that flow abutment and flow overlap are difficult to distinguish in remote data sets; (3) taking care to understand that surficial materials (such as alluvium and volcanic ash deposits) are likely to be under-mapped yet are important because they obscure underlying units and contacts; (4) where possible, mapping multiple contact and structure types based on their varying certainty and exposure that reflect the perceived accuracy of the linework; (5) reviewing the regional context and searching for evidence of geologic activity that may have affected the map area yet for which evidence within the map area may be absent; and (6) for multi-authored maps, collectively analyzing the mapping relations, approaches, and methods throughout the duration of the mapping project with the objective of achieving a solid, harmonious product.
Internet-based information system of digital geological data providing
NASA Astrophysics Data System (ADS)
Yuon, Egor; Soukhanov, Mikhail; Markov, Kirill
2015-04-01
One of the Russian Federal аgency of mineral resources problems is to provide the geological information which was delivered during the field operation for the means of federal budget. This information should be present in the current, conditional form. Before, the leading way of presenting geological information were paper geological maps, slices, borehole diagrams reports etc. Technologies of database construction, including distributed databases, technologies of construction of distributed information-analytical systems and Internet-technologies are intensively developing nowadays. Most of geological organizations create their own information systems without any possibility of integration into other systems of the same orientation. In 2012, specialists of VNIIgeosystem together with specialists of VSEGEI started the large project - creating the system of providing digital geological materials with using modern and perspective internet-technologies. The system is based on the web-server and the set of special programs, which allows users to efficiently get rasterized and vectorised geological materials. These materials are: geological maps of scale 1:1M, geological maps of scale 1:200 000 and 1:2 500 000, the fragments of seamless geological 1:1M maps, structural zoning maps inside the seamless fragments, the legends for State geological maps 1:200 000 and 1:1 000 000, full author's set of maps and also current materials for international projects «Atlas of geological maps for Circumpolar Arctic scale 1:5 000 000» and «Atlas of Geologic maps of central Asia and adjacent areas scale 1:2 500 000». The most interesting and functional block of the system - is the block of providing structured and well-formalized geological vector materials, based on Gosgeolkart database (NGKIS), managed by Oracle and the Internet-access is supported by web-subsystem NGKIS, which is currently based on MGS-Framework platform, developed by VNIIgeosystem. One of the leading elements is the web-service, which realizes the interaction of all parts of the system and controls whole the way of the request from the user to the database and back, adopted to the GeoSciML and EarthResourceML view. The experience of creation the Internet-based information system of digital geological data providing, and also previous works, including the developing of web-service of NGKIS-system, allows to tell, that technological realization of presenting Russian geological-cartographical data with using of international standards is possible. While realizing, it could be some difficulties, associated with geological material depth. Russian informational geological model is more deep and wide, than foreign. This means the main problem of using international standards and formats: Russian geological data presentation is possible only with decreasing the data detalisation. But, such a problem becomes not very important, if the service publishes also Russian vocabularies, not associated with international vocabularies. In this case, the international format could be the interchange format to change data between Russian users. The integration into the international projects reaches developing of the correlation schemes between Russian and foreign classificators and vocabularies.
Planetary Geology and Geophysics Program
NASA Technical Reports Server (NTRS)
McGill, George E.
2004-01-01
Geological mapping and topical studies, primarily in the southern Acidalia Planitia/Cydonia Mensae region of Mars is presented. The overall objective was to understand geologic processes and crustal history in the northern lowland in order to assess the probability that an ocean once existed in this region. The major deliverable is a block of 6 1:500,000 scale geologic maps that will be published in 2004 as a single map at 1:1,000,000 scale along with extensive descriptive and interpretive text. A major issue addressed by the mapping was the relative ages of the extensive plains of Acidalia Planitia and the knobs and mesas of Cydonia Mensae. The mapping results clearly favor a younger age for the plains. Topical studies included a preliminary analysis of the very abundant small domes and cones to assess the possibility that their origins could be determined by detailed mapping and remote-sensing analysis. We also tested the validity of putative shorelines by using GIs to co-register full-resolution MOLA altimetry data and Viking images with these shorelines plotted on them. Of the 3 proposed shorelines in this area, one is probably valid, one is definitely not valid, and the third is apparently 2 shorelines closely spaced in elevation. Publications supported entirely or in part by this grant are included.
Dibblee, T. W.; Digital database compiled by Graham, S. E.; Mahony, T.M.; Blissenbach, J.L.; Mariant, J.J.; Wentworth, C.M.
1999-01-01
This Open-File Report is a digital geologic map database. The report serves to introduce and describe the digital data. There is no paper map included in the Open-File Report. The report includes PostScript and PDF plot files that can be used to plot images of the geologic map sheet and explanation sheet. This digital map database is prepared from a previously published map by Dibblee (1973). The geologic map database delineates map units that are identified by general age, lithology, and clast size following the stratigraphic nomenclature of the U.S. Geological Survey. For descriptions of the units, their stratigraphic relations, and sources of geologic mapping, consult the explanation sheet (of99-14_4b.ps or of99-14_4d.pdf), or the original published paper map (Dibblee, 1973). The scale of the source map limits the spatial resolution (scale) of the database to 1:125,000 or smaller. For those interested in the geology of Carrizo Plain and vicinity who do not use an ARC/INFO compatible Geographic Information System (GIS), but would like to obtain a paper map and explanation, PDF and PostScript plot files containing map images of the data in the digital database, as well as PostScript and PDF plot files of the explanation sheet and explanatory text, have been included in the database package (please see the section 'Digital Plot Files', page 5). The PostScript plot files require a gzip utility to access them. For those without computer capability, we can provide users with the PostScript or PDF files on tape that can be taken to a vendor for plotting. Paper plots can also be ordered directly from the USGS (please see the section 'Obtaining Plots from USGS Open-File Services', page 5). The content and character of the database, methods of obtaining it, and processes of extracting the map database from the tar (tape archive) file are described herein. The map database itself, consisting of six ARC/INFO coverages, can be obtained over the Internet or by magnetic tape copy as described below. The database was compiled using ARC/INFO, a commercial Geographic Information System (Environmental Systems Research Institute, Redlands, California), with version 3.0 of the menu interface ALACARTE (Fitzgibbon and Wentworth, 1991, Fitzgibbon, 1991, Wentworth and Fitzgibbon, 1991). The ARC/INFO coverages are stored in uncompressed ARC export format (ARC/INFO version 7.x). All data files have been compressed, and may be uncompressed with gzip, which is available free of charge over the Internet via links from the USGS Public Domain Software page (http://edcwww.cr.usgs.gov/doc/edchome/ndcdb/public.html). ARC/INFO export files (files with the .e00 extension) can be converted into ARC/INFO coverages in ARC/INFO (see below) and can be read by some other Geographic Information Systems, such as MapInfo via ArcLink and ESRI's ArcView.
The first large geological map of Central and Eastern Europe (1815)
NASA Astrophysics Data System (ADS)
Grigelis, Algimantas; Wójcik, Zbigniew; Narębski, Wojciech; Gelumbauskaitė, Leonora Živilė; Kozák, Jan; Czarniecki, Stanisław
2008-01-01
The first large geological map of Central and Eastern Europe was compiled by Stanisław Staszic in the early 19th century. The map is based on the geological survey that Staszic performed in different parts of Poland and adjacent areas. In 1814, Staszic presented his ideas on the geology and mineral sources of Poland and Lithuania. In 1815, he completed the book-length descriptive analysis O ziemorodztwie Karpatów i innych gór i równin Polski przez Stanisława Staszica, which was published in Warsaw and complemented by a large geological map of Central and Eastern Europe. His later studies were compiled in a historico-philosophical treatise titled Ród ludzki (1819-1820). The complete edition of Staszic's works, Dzieła, which also included these publications, appeared over 1816-1820. The geological field survey that he performed over several years, and his study of social-economic problems enabled Staszic to draw in great detail a geological map of the Carpathians, the Central Polish Highlands, Volhynia (modern Ukraine) and the Eastern Alps, as well as the areas of the Polish-Lithuanian Lowlands, the southern coast of the Baltic Sea, Polesye (modern Belarus), Moldova, Transylvania, and Hungary. Staszic was interested in the exploration of mineral deposits, particularly in Poland, which had rock salt, copper and iron ores, and coal. In his monograph and map, he adopted a stratigraphic subdivision based on types of rock contents and organic fossils, which was a slightly modified version of Werner's classification system. The lithological legend sets five classes and 135 different types of rock, and 15 types of ore deposits, using the French names for these. In general, Staszic was an advocate of Werner's paradigm; however, he did not follow exactly the ideas of the German geologist. Staszic's fundamental work recapitulates his views on geological history of Central and Eastern Europe, and brings to an end the Enlightment period in the geology of that part of Europe.
Stewart, John Harris; Chaffee, M.A.; Dohrenwend, J.C.; John, D.A.; Kistler, R.W.; Kleinhampl, F.J.; Menzie, W.D.; Plouff, Donald; Rowan, L.C.; Silberling, Norman J.
1984-01-01
The Walker Lake 1? by 2? quadrangle in eastern California and western Nevada was studied by an interdisciplinary research team to appraise its mineral resources. The appraisal is based on geological, geochemical, and geophysical field and laboratory investigations, the results of which are published as a folio of maps, figures, and tables, with accompanying discussions. This circular provides background information on the investigations and integrates the information presented in the folio. The selected bibliography lists selected references to the geology, geochemistry, geophysics, and mineral deposits of the Walker Lake 1? by 2? quadrangle.
Smith, James G.; Blakely, R.J.; Johnson, M.G.; Page, N.J.; Peterson, J.A.; Singer, D.A.; Whittington, C.L.
1986-01-01
The Medford 1 ? by 2 ? quadrangle in southern Oregon and northern California was studied by an interdisciplinary research team to appraise its mineral resources. The appraisal is based on geological, geochemical, and geophysical field and laboratory investigations, the results of which are published as a folio of maps, figures, and tables, with accompanying discussions. This circular provides background information on the investigations and integrates the information presented in the folio. The bibliography lists selected references to the geology, geochemistry, geophysics, and mineral deposits of the Medford 1 ? by 2 ? quadrangle.
Kent, Lois S.; Keroher, R.P.
1945-01-01
This pamphlet contains a complete list of all maps and reports issued by the Geologic Branch and Alaskan Branch of the Geological Survey whose release was announced by press notice during the period between January 1, 1938 and January 1, 1945. The Geologic Branch material was compiled by Lois S. Kent, and the Alaskan Branch material by R. P. Kerocher. It is expected that similar lists will be published annually hereafter. These reports and maps are the results of work carried out by Survey geologists on mineral deposits in the United States, Alaska, and Cuba during the war and the years immediately preceding the war. They were released in preliminary form as rapidly as possible in this period to avoid the delays necessarily attendant upon formal publication and to make the information contained in them promptly available to property owners and mine operators concerned with the production of strategic and critical mineral commodities.
Assessing Seismic Hazards - Algorithms, Maps, and Emergency Scenarios
NASA Astrophysics Data System (ADS)
Ferriz, H.
2007-05-01
Public officials in charge of building codes, land use planning, and emergency response need sound estimates of seismic hazards. Sources may be well defined (e.g., active faults that have a surface trace) or diffuse (e.g., a subduction zone or a blind-thrust belt), but in both cases one can use a deterministic or worst-case scenario approach. For each scenario, a design earthquake is selected based on historic data or the known length of Holocene ruptures (as determined by geologic mapping). Horizontal ground accelerations (HGAs) can then be estimated at different distances from the earthquake epicenter using published attenuation relations (e.g., Seismological Res. Letters, v. 68, 1997) and estimates of the elastic properties of the substrate materials. No good algorithms are available to take into account reflection of elastic waves across other fault planes (e.g., a common effect in California, where there are many strands of the San Andreas fault), or amplification of waves in water-saturated alluvial and lacustrine basins (e.g., the Mexico City basin), but empirical relations can be developed by correlating historic damage patterns with predicted HGAs. The ultimate result is a map of HGAs. With this map, and with additional data on depth to groundwater and geotechnical properties of local soils, a liquefaction susceptibility map can be prepared, using published algorithms (e.g., J. of Geotech. Geoenv. Eng., v. 127, p. 817-833, 2001; Eng. Geology Practice in N. California, p. 579-594, 2001). Finally, the HGA estimates, digital elevation models, geologic structural data, and geotechnical properties of local geologic units can be used to prepare a slope failure susceptibility map (e.g., Eng. Geology Practice in N. California, p. 77-94, 2001). Seismic hazard maps are used by: (1) Building officials to determine areas of the city where special construction codes have to be implemented, and where existing buildings may need to be retrofitted. (2) Planning officials to evaluate plans for new growth (though in most cities land use patterns are historically established). (3) Emergency response officials to plan emergency operations. (4) Insurance commissioners to estimate losses and insurance claims (e.g., with FEMA's software HAZUS).
Riehle, James R.; Wilson, Frederic H.; Shew, Nora B.; White, Willis H.
1999-01-01
The first geologic map of Unga Island was published by Atwood (1911; scale 1:250,000), who correctly inferred the middle Tertiary age of the volcanic rocks and made the important distinction between the lava flows and the intrusive domes. Although Burk's (1964) reconnaissance map of the Alaska Peninsula (scale 1:250,000) has been modified in some respects, it does correct Atwood's map by replacing the Kenai Formation on northwestern Unga Island with the Unga Conglomerate and by recognizing the older Stepovak Formation elsewhere on Unga and Popof Islands.U.S. Geological Survey (USGS) field studies that were focused on the mineral-resource potential of the Alaska Peninsula began in the late 1970's. These studies led to a geologic map of the Port Moller quadrangle--including Unga Island--at 1:250,000 scale (Wilson and others, 1995), as well as summaries of mineral occurrences and geochronological studies (Wilson and others, 1988, 1994) and a formal revision of the stratigraphic units of the Alaska Peninsula (Detterman and others, 1996). As follow-up to the regional studies, a detailed study of the vein systems on Unga Island was undertaken as a collaborative effort between USGS and private industry (White and Queen, 1989). The fieldwork leading to the present report and geologic map was started in 1978 (Riehle and others, 1982) and was completed as part of the vein study. The objective was a better understanding of the geologic setting of the vein systems: the geologic history of the host rocks, the structural controls on the veins, and the types of processes that likely caused the mineralization.
Geodatabase model for global geologic mapping: concept and implementation in planetary sciences
NASA Astrophysics Data System (ADS)
Nass, Andrea
2017-04-01
One aim of the NASA Dawn mission is to generate global geologic maps of the asteroid Vesta and the dwarf planet Ceres. To accomplish this, the Dawn Science Team followed the technical recommendations for cartographic basemap production. The geological mapping campaign of Vesta was completed and published, but mapping of the dwarf planet Ceres is still ongoing. The tiling schema for the geological mapping is the same for both planetary bodies and for Ceres it is divided into two parts: four overview quadrangles (Survey Orbit, 415 m/pixel) and 15 more detailed quadrangles (High Altitude Mapping HAMO, 140 m/pixel). The first global geologic map was based on survey images (415 m/pixel). The combine 4 Survey quadrangles completed by HAMO data served as basis for generating a more detailed view of the geologic history and also for defining the chronostratigraphy and time scale of the dwarf planet. The most detailed view can be expected within the 15 mapping quadrangles based on HAMO resolution and completed by the Low Altitude Mapping (LAMO) data with 35 m/pixel. For the interpretative mapping process of each quadrangle one responsible mapper was assigned. Unifying the geological mapping of each quadrangle and bringing this together to regional and global valid statements is already a very time intensive task. However, another challenge that has to be accomplished is to consider how the 15 individual mappers can generate one homogenous GIS-based project (w.r.t. geometrical and visual character) thus produce a geologically-consistent final map. Our approach this challenge was already discussed for mapping of Vesta. To accommodate the map requirements regarding rules for data storage and database management, the computer-based GIS environment used for the interpretative mapping process must be designed in a way that it can be adjusted to the unique features of the individual investigation areas. Within this contribution the template will be presented that uses standards for digitizing, visualization, data merging and synchronization in the processes of interpretative mapping project. Following the new technological innovations within GIS software and the individual requirements for mapping Ceres, a template was developed based on the symbology and framework. The template for (GIS-base) mapping presented here directly links the generically descriptive attributes of planetary objects to the predefined and standardized symbology in one data structure. Using this template the map results are more comparable and better controllable. Furthermore, merging and synchronization of the individual maps, map projects and sheets will be far more efficient. The template can be adapted to any other planetary body and or within future discovery missions (e.g., Lucy and Psyche which was selected to explore the early solar system by NASA) for generating reusable map results.
The United States Geological Survey in Alaska: Organization and status of programs in 1977
Blean, Kathleen M.
1977-01-01
United States Geological Survey projects in Alaska include a wide range of topics of economic and scientific interest. Studies in 1976 include economic geology, regional geology, stratigraphy, environmental geology, engineering geology, hydrology, and marine geology. Discussions of the findings or, in some instances, narratives of the course of the investigations are grouped in eight subdivisions corresponding to the six major onshore geographic regions, the offshore projects, and projects that are statewide in scope. Locations of the study areas are shown. In addition, many reports and maps covering various aspects of the geology and mineral and water resources of the State were published. These publications are listed. (Woodard-USGS)
NASA Astrophysics Data System (ADS)
House, P. K.
2008-12-01
The combination of traditional methods of geologic mapping with rapidly developing web-based geospatial applications ('the geoweb') and the various collaborative opportunities of web 2.0 have the potential to change the nature, value, and relevance of geologic maps and related field studies. Parallel advances in basic GPS technology, digital photography, and related integrative applications provide practicing geologic mappers with greatly enhanced methods for collecting, visualizing, interpreting, and disseminating geologic information. Even a cursory application of available tools can make field and office work more enriching and efficient; whereas more advanced and systematic applications provide new avenues for collaboration, outreach, and public education. Moreover, they ensure a much broader audience among an immense number of internet savvy end-users with very specific expectations for geospatial data availability. Perplexingly, the geologic community as a whole is not fully exploring this opportunity despite the inevitable revolution in portends. The slow acceptance follows a broad generational trend wherein seasoned professionals are lagging behind geology students and recent graduates in their grasp of and interest in the capabilities of the geoweb and web 2.0 types of applications. Possible explanations for this include: fear of the unknown, fear of learning curve, lack of interest, lack of academic/professional incentive, and (hopefully not) reluctance toward open collaboration. Although some aspects of the expanding geoweb are cloaked in arcane computer code, others are extremely simple to understand and use. A particularly obvious and simple application to enhance any field study is photo geotagging, the digital documentation of the locations of key outcrops, illustrative vistas, and particularly complicated geologic field relations. Viewing geotagged photos in their appropriate context on a virtual globe with high-resolution imagery can be an extremely useful accompaniment to compilation of field mapping efforts. It can also complement published geologic maps by vastly improving their comprehensibility when field photos, and specific notes can be viewed interactively with them. Other useful applications include GPS tracking/documentation of field traverses; invoking multiple geologic layers; 3-D visualizations of terrain and structure; and online collaboration with colleagues via blogs or wikis. Additional steps towards collaborative geologic mapping on the web may also enhance efficient and open sharing of data and ideas. Geologists are well aware that paper geologic maps can convey tremendous amounts of information. Digital geologic maps linked via a virtual globe with field data, diverse imagery, historical photographs, explanatory diagrams, and 3-D models convey a much greater amount of information and can provide a much richer context for comprehension and interpretation. They can also serve as an efficient, entertaining, and potentially compelling mechanism for fostering inspiration in the minds of budding (and aging) geologists.
NASA Astrophysics Data System (ADS)
Sisson, T. W.; Moore, J. G.
2012-12-01
From the late 1940s to the early 1990s, scientists of the U.S. Geological Survey (USGS) mapped the geology of most of Sequoia and Kings Canyon National Parks, California, and published the results as a series of 15-minute (1:62,500 scale) Geologic Quadrangles. The southwest corner of Sequoia National Park, encompassing the Mineral King and eastern edge of the Kaweah 15-minute topographic quadrangles, however, remained unfinished. At the request of the National Park Service's Geologic Resources Division (NPS-GRD), the USGS has mapped the geology of that area using 7.5-minute (1:24,000 scale) topographic bases and high-resolution ortho-imagery. With partial support from NPS-GRD, the major plutons in the map area were dated by the U-Pb zircon method with the Stanford-USGS SHRIMP-RG ion microprobe. Highlights include: (1) Identification of the Early Cretaceous volcano-plutonic suite of Mineral King (informally named), consisting of three deformed granodiorite plutons and the major metarhyolite tuffs of the Mineral King metamorphic pendant. Members of the suite erupted or intruded at 130-140 Ma (pluton ages: this study; rhyolite ages: lower-intercept concordia from zircon results of Busby-Spera, 1983, Princeton Ph.D. thesis, and from Klemetti et al., 2011, AGU abstract) during the pause of igneous activity between emplacement of the Jurassic and Cretaceous Sierran batholiths. (2) Some of the deformation of the Mineral King metamorphic pendant is demonstrably Cretaceous, with evidence including map-scale folding of Early Cretaceous metarhyolite tuff, and an isoclinally folded aplite dike dated at 98 Ma, concurrent with the large 98-Ma granodiorite of Castle Creek that intruded the Mineral King pendant on the west. (3) A 21-km-long magmatic synform within the 99-100 Ma granite of Coyote Pass that is defined both by inward-dipping mafic inclusions (enclaves) and by sporadic, cm-thick, sharply defined mineral layering. The west margin of the granite of Coyote Pass overlies parts of the adjacent Mineral King pendant, and the pluton probably had an upward-flaring shape, with synformal layering and foliation resulting from compaction and mineral deposition (or flow sorting) at the floor of an elongate, melt-rich magma lens. The NPS-GRD has digitized the published USGS geologic quadrangles for Sequoia and Kings Canyon National Parks, and a goal is to jointly release a geologic map of the combined Parks region.
O'Hara, Charles J.; Oldale, Robert N.
1980-01-01
This report presents results of marine studies conducted by the U.S. Geological Survey (USGS) during the summers of 1975 and 1976 in eastern Rhode Island Sound and Vineyard Sound (fig. 1) located off the southeastern coast of Massachusetts. The study was made in cooperation with the Massachusetts Department of Public Works and the New England Division of the U.S. Army Corps of Engineers. It covered an area of the Atlantic Inner Continental Shelf between latitude 41 deg 12' and 41 deg 33'N, and between longitude 70 deg 37' and 71 deg 15'W (see index map). Major objectives included assessment of sand and gravel resources, environmental impact evaluation both of offshore mining of these resources and of offshore disposal of solid waste and dredge spoil material, identification and mapping of the offshore geology, and determination of the geologic history of this part of the Inner Shelf. A total of 670 kilometers (km) of closely spaced high-resolution seismic-reflection profiles, 224 km of side-scan sonar data, and 16 cores totaling 90 meters (m) of recovered sediment, were collected during the investigation. This report is companion to geologic maps published for Cape Cod Bay (Oldale and O'Hara, 1975) and Buzzards Bay, Mass. (Robb and Oldale, 1977).
Abstracts of the Annual Meeting of Planetary Geologic Mappers, San Antonio, TX, 2009
NASA Technical Reports Server (NTRS)
Bleamaster, Leslie F., III (Editor); Tanaka, Kenneth L.; Kelley, Michael S.
2009-01-01
Topics covered include: Geologic Mapping of the Beta-Atla-Themis (BAT) Region of Venus: A Progress Report; Geologic Map of the Snegurochka Planitia Quadrangle (V-1): Implications for Tectonic and Volcanic History of the North Polar Region of Venus; Preliminary Geological Map of the Fortuna Tessera (V-2) Quadrangle, Venus; Geological Map of the Fredegonde (V-57) Quadrangle, Venus; Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus; Geologic Mapping of V-19; Lunar Geologic Mapping: A Preliminary Map of a Portion of the LQ-10 ("Marius") Quadrangle; Geologic Mapping of the Lunar South Pole, Quadrangle LQ-30: Volcanic History and Stratigraphy of Schr dinger Basin; Geologic Mapping along the Arabia Terra Dichotomy Boundary: Mawrth Vallis and Nili Fossae, Mars; Geologic Mapping Investigations of the Northwest Rim of Hellas Basin, Mars; Geologic Mapping of the Meridiani Region of Mars; Geology of a Portion of the Martian Highlands: MTMs -20002, -20007, -25002 and -25007; Geologic Mapping of Holden Crater and the Uzboi-Ladon-Morava Outflow System; Mapping Tyrrhena Patera and Hesperia Planum, Mars; Geologic Mapping of Athabaca Valles; Geologic Mapping of MTM -30247, -35247 and -40247 Quadrangles, Reull Vallis Region, Mars Topography of the Martian Impact Crater Tooting; Mars Structural and Stratigraphic Mapping along the Coprates Rise; Geology of Libya Montes and the Interbasin Plains of Northern Tyrrhena Terra, Mars: Project Introduction and First Year Work Plan; Geology of the Southern Utopia Planitia Highland-Lowland Boundary Plain: Second Year Results and Third Year Plan; Mars Global Geologic Mapping: About Half Way Done; New Geologic Map of the Scandia Region of Mars; Geologic Mapping of the Medusae Fossae Formation on Mars and the Northern Lowland Plains of Venus; Volcanism on Io: Insights from Global Geologic Mapping; and Planetary Geologic Mapping Handbook - 2009.
Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ, 2008
NASA Technical Reports Server (NTRS)
Bleamaster, Leslie F., III (Editor); Tanaka, Kenneth L. (Editor); Kelley, Michael S. (Editor)
2008-01-01
Topics discussed include: Merging of the USGS Atlas of Mercury 1:5,000,000 Geologic Series; Geologic Mapping of the V-36 Thetis Regio Quadrangle: 2008 Progress Report; Structural Maps of the V-17 Beta Regio Quadrangle, Venus; Geologic Mapping of Isabella Quadrangle (V-50) and Helen Planitia, Venus; Renewed Mapping of the Nepthys Mons Quadrangle (V-54), Venus; Mapping the Sedna-Lavinia Region of Venus; Geologic Mapping of the Guinevere Planitia Quadrangle of Venus; Geological Mapping of Fortuna Tessera (V-2): Venus and Earth's Archean Process Comparisons; Geological Mapping of the North Polar Region of Venus (V-1 Snegurochka Planitia): Significant Problems and Comparisons to the Earth's Archean; Venus Quadrangle Geological Mapping: Use of Geoscience Data Visualization Systems in Mapping and Training; Geologic Map of the V-1 Snegurochka Planitia Quadrangle: Progress Report; The Fredegonde (V-57) Quadrangle, Venus: Characterization of the Venus Midlands; Formation and Evolution of Lakshmi Planum (V-7), Venus: Assessment of Models using Observations from Geological Mapping; Geologic Map of the Meskhent Tessera Quadrangle (V-3), Venus: Evidence for Early Formation and Preservation of Regional Topography; Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus: A Progress Report; Geology of the Lachesis Tessera Quadrangle (V-18), Venus; Geologic Mapping of the Juno Chasma Quadrangle, Venus: Establishing the Relation Between Rifting and Volcanism; Geologic Mapping of V-19, V-28, and V-53; Lunar Geologic Mapping Program: 2008 Update; Geologic Mapping of the Marius Quadrangle, the Moon; Geologic Mapping along the Arabia Terra Dichotomy Boundary: Mawrth Vallis and Nili Fossae, Mars: Introductory Report; New Geologic Map of the Argyre Region of Mars; Geologic Evolution of the Martian Highlands: MTMs -20002, -20007, -25002, and -25007; Mapping Hesperia Planum, Mars; Geologic Mapping of the Meridiani Region, Mars; Geology of Holden Crater and the Holden and Ladon Multi-Ring Impact Basins, Margaritifer Terra, Mars; Geologic Mapping of Athabasca Valles; Geologic Mapping of MTM -30247, -35247 and -40247 Quadrangles, Reull Vallis Region of Mars; Geologic Mapping of the Martian Impact Crater Tooting; Geology of the Southern Utopia Planitia Highland-Lowland Boundary Plain: First Year Results and Second Year Plan; Mars Global Geologic Mapping: Amazonian Results; Recent Geologic Mapping Results for the Polar Regions of Mars; Geologic Mapping of the Medusae Fossae Formation on Mars (MC-8 SE and MC-23 NW) and the Northern Lowlands of Venus (V-16 and V-15); Geologic Mapping of the Zal, Hi'iaka, and Shamshu Regions of Io; Global Geologic Map of Europa; Material Units, Structures/Landforms, and Stratigraphy for the Global Geologic Map of Ganymede (1:15M); and Global Geologic Mapping of Io: Preliminary Results.
Land use statistics for West Virginia, Part I
Erwin, Robert B.; ,; ,
1979-01-01
The West Virginia Geological and Economic Survey and the United States Geological Survey have completed a cooperative program to provide land-use and land-cover maps and data for the State. This program begins to satisfy a longstanding need for a consistent level of detail, standardization in categorization, and scale of compilation for land-use and land-cover maps and data. The statistical information contained in this Bulletin provides land-use acreage tabulations for the first 20 counties that have been completed. Statistics are being compiled for the remaining counties and will be published shortly. This information has been derived from the recently completed Land-Use Map of West Virginia (on open file at the West Virginia Geological and Economic Survey - Environmental Section). In addition to land-use acreage, we have also included land-use percent. All statistics throughout this Bulletin are in the same format for ease of comparison.
The Geologic Story of Colorado National Monument
Lohman, Stanley William
1981-01-01
From 1946 until about 1956 I carried out fieldwork intermittently on the geology and artesian water supply of the Grand Junction area, Colorado, the results of which have been published. The area mapped geologically contains about 332 square miles in the west-central part of Mesa County and includes all of Colorado National Monument. During the field work several successive custodians or superintendents and several park naturalists urged that upon completion of my professional paper I prepare a brief account of the geology of the Monument in terms understandable by laymen, and which could be sold at the Visitor Center. This I was happy to do and there resulted 'The geologic story of Colorado National Monument', published by the Colorado and Black Canyon Natural History Association in cooperation with the National Park Service. This report contained colored sketches by John R. Stacy and a colored cover, but the photographs and many of the drawings were reproduced in black and white.
Preliminary geologic map of the Chugach National Forest Special Study Area, Alaska
Nelson, Steven W.; Miller, Marti L.; Haeussler, Peter J.; Snee, Lawrence W.; Philips, Patti J.; Huber, Carol
1999-01-01
In 1990, both the U.S. Geological Survey and U.S. Bureau of Mines were contacted by the Chugach National Forest (CNF) for the purpose of providing mineral resource information for the CNF Master Plan during the planning period fiscal years 1991-1994. This information is to address the terms and requirements of the 1986 Settlement Agreement and to provide mineral and geologic information useful to the CNF for making land-use decisions. In early 1992 an Interagency Agreement between the U.S. Geological Survey, the U.S. Bureau of Mines and the Chugach National Forest was signed. In this agreement the U.S. Geological Survey is to provide a report which estimates the undiscovered mineral endowments of the 'special' study area and to identify the potential for mineral discovery and development. The U.S. Bureau of Mines was to prepare a report updating the discovered mineral endowment of the Special Study Area. These reports are now published (Roe and Balen, 1994; Nelson and others, 1994). This geologic map is a component of the U.S. Geological Survey contribution to the overall project.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Natural-Color-Image Map of Quadrangle 3266, Ourzgan (519) and Moqur (520) Quadrangles, Afghanistan
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Natural-Color-Image Map of Quadrangle 3464, Shahrak (411) and Kasi (412) Quadrangles, Afghanistan
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Natural-Color-Image Map of Quadrangle 3362, Shin-Dand (415) and Tulak (416) Quadrangles, Afghanistan
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Natural-Color-Image Map of Quadrangle 3366, Gizab (513) and Nawer (514) Quadrangles, Afghanistan
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Karst mapping in the United States: Past, present and future
Weary, David J.; Doctor, Daniel H.
2015-01-01
The earliest known comprehensive karst map of the entire USA was published by Stringfield and LeGrand (1969), based on compilations of William E. Davies of the U.S. Geological Survey (USGS). Various versions of essentially the same map have been published since. The USGS recently published new digital maps and databases depicting the extent of known karst, potential karst, and pseudokarst areas of the United States of America including Puerto Rico and the U.S. Virgin Islands (Weary and Doctor, 2014). These maps are based primarily on the extent of potentially karstic soluble rock types, and rocks with physical properties conducive to the formation of pseudokarst features. These data were compiled and refined from multiple sources at various spatial resolutions, mostly as digital data supplied by state geological surveys. The database includes polygons delineating areas with potential for karst and that are tagged with attributes intended to facilitate classification of karst regions. Approximately 18% of the surface of the fifty United States is underlain by significantly soluble bedrock. In the eastern United States the extent of outcrop of soluble rocks provides a good first-approximation of the distribution of karst and potential karst areas. In the arid western states, the extent of soluble rock outcrop tends to overestimate the extent of regions that might be considered as karst under current climatic conditions, but the new dataset encompasses those regions nonetheless. This database will be revised as needed, and the present map will be updated as new information is incorporated.
A transect through the base of the Bronson Hill Terrane in western New Hampshire
Walsh, Gregory J.; Valley, Peter M.; Sicard, Karri R.; Thompson, Thelma Barton; Thompson, Peter J.
2012-01-01
This trip will present the preliminary results of ongoing bedrock mapping in the North Hartland and Claremont North 7.5-minute quadrangles in western New Hampshire. The trip will travel from the Lebanon pluton to just north of the Sugar River pluton (Fig. 1) with the aim of examining the lower structural levels of the Bronson Hill anticlinorium (BHA), and the nature of the boundary with the rocks of the Connecticut Valley trough (CVT). Spear and others (2002, 2003, 2008) proposed that western New Hampshire was characterized by five major faults bounding five structural levels including, from lowest to highest, the “chicken yard line”, Western New Hampshire Boundary Thrust, Skitchewaug nappe, Fall Mountain nappe, and Chesham Pond nappe. Lyons and others (1996, 1997) showed the lowest level cored by the Cornish nappe and floored by the Monroe fault. Thompson and others (1968) explained the geometry of units by folding without major thrust faults, and described the second level as the Skitchewaug nappe. This trip will focus on the two lowest levels which we have revised to call the Monroe and Skitchewaug Mountain thrust sheets. Despite decades of geologic mapping in the northeastern United States at various scales, little 1:24,000-scale (or larger scale) modern bedrock mapping has been published for the state of New Hampshire. In fact, of the New England states, New Hampshire contains the fewest published, modern bedrock geologic maps. Conversely, adjacent Vermont has a relatively high percentage of modern bedrock maps due to focused efforts to create a new state-wide bedrock geologic map over the last few decades. The new Vermont map (Ratcliffe and others, 2011) has identified considerable gaps in our knowledge of the bedrock geology in adjacent New Hampshire where published maps are, in places, more than 50 years old and at scales ranging from 1:62,500 to 1:250,000. Fundamental questions remain concerning the geology across the Connecticut River, especially in regards to the stratigraphy of the BHA and CVT, and the distribution, or even existence, of faults ranging in age from Devonian to Mesozoic (e.g., Spear and others, 2008; McWilliams and others, 2010; Walsh and others, 2010). Questions to ponder on this trip include, but are not limited to: 1) Is the Bronson Hill anticlinorium allochthonous? 2) What is the crust beneath the Bronson Hill anticlinorium? 3) Is there a “Big Staurolite nappe” as proposed by Spear and others (2002, 2003, 2008)? 4) What is the role of Taconic, Acadian, and Alleghanian orogenesis in the tectonic development of the region? Modern 1:24,000-scale mapping is the first step towards answering these questions. Mapping will be supplemented by modern geochronology and geochemistry as this project develops. We plan to share some of our provisional results during this field trip.
Historical Topographic Map Collection bookmark
Fishburn, Kristin A.; Allord, Gregory J.
2017-06-29
The U.S. Geological Survey (USGS) National Geospatial Program is scanning published USGS 1:250,000-scale and larger topographic maps printed between 1884, the inception of the topographic mapping program, and 2006. The goal of this project, which began publishing the historical scanned maps in 2011, is to provide a digital repository of USGS topographic maps, available to the public at no cost. For more than 125 years, USGS topographic maps have accurately portrayed the complex geography of the Nation. The USGS is the Nation’s largest producer of printed topographic maps, and prior to 2006, USGS topographic maps were created using traditional cartographic methods and printed using a lithographic printing process. As the USGS continues the release of a new generation of topographic maps (US Topo) in electronic form, the topographic map remains an indispensable tool for government, science, industry, land management planning, and leisure.
Bradley, Dwight C.; O'Sullivan, Paul; Cosca, Michael A.; Motts, Holly; Horton, John D.; Taylor, Cliff D.; Beaudoin, Georges; Lee, Gregory K.; Ramezani, Jahan; Bradley, Daniel N.; Jones, James V.; Bowring, Samuel
2015-01-01
This report is a companion to the new Geologic Map of Mauritania (Bradley and others, 2015; referred to herein as “Deliverable 51”) and the new Structural Geologic Map of Mauritania (Bradley and others, 2015a; referred to herein as “Deliverable 52”). Section 1 contains explanatory information for these two digital maps. Section 2 covers the analytical methods used in obtaining new U-Pb ages from 9 igneous rock samples, new detrital zircon ages from 40 sedimentary or metasedimentary rock samples, and new 40Ar/39Ar ages from 12 samples of metamorphic rocks and veins. Sections 3 through 6 present the new geochronological results, organized by region. In Section 7, we discuss implications of the new ages for the regional geology and discuss problematic results. Finally, in Section 8, we summarize the geology and tectonic evolution of Mauritania in narrative form, drawing on new and published information, in the context of global tectonics. The report is being released in both English and French. In both versions, we use the French-language names for formal stratigraphic units.
NASA Technical Reports Server (NTRS)
Abbott, Elsa
1986-01-01
In the three years since the first data were taken, it was well demonstrated that the Thermal Infrared Multispectral Scanner (TIMS), properly used, can be a most valuable tool for the geologist. Compilation of the TIMS data into a geological atlas was felt to be useful. Several data sets were extensively studied to establish TIMS as a geologic tool and to explore the optimum enhancement techniques. It was found that a decorrelation stretch of bands 1, 3, and 5 enhance the data to a form that is very useful and this enhancement will be used in the geologic atlas along with an accompanying geologic map and description. Many data sets are well published and familiar to TIMS users, but there are some sets that, for lack of time and funds, were not thoroughly studied or published. A short description of these least studied sets of data is presented. The images presented along with the many previously studied and published TIMS images constitute an enormously useful set of information for the geologist in the 8 to 10 micron range.
Provincial geology and the Industrial Revolution.
Veneer, Leucha
2006-06-01
In the early nineteenth century, geology was a new but rapidly growing science, in the provinces and among the gentlemen scientists of London, Oxford and Cambridge. Industry, particularly mining, often motivated local practical geologists, and the construction of canals and railways exposed the strata for all to see. The most notable of the early practical men of geology was the mineral surveyor William Smith; his geological map of England and Wales, published in 1815, was the first of its kind. He was not alone. The contributions of professional men, and the provincial societies with which they were connected, are sometimes underestimated in the history of geology.
Parker, John M.; West, William B.; Malmborg, William T.; Brabb, Earl E.
2003-01-01
Most geologic maps published for central California in the past century have been made without the benefit of microfossils. The age of Cretaceous and Tertiary rocks in the structurally complex sedimentary formations of the Coast Ranges is critical in determining stratigraphic succession and in determining whether the juxtapositon of similar appearing formations means that a fault is present. Since the 1930’s, at least, oil company geologists have used microfossils to assist them in geologic mapping and in determining the environments of deposition of sedimentary rocks. This information has been confidential, but in the past 20 years the attitude of petroleum companies about this information has changed, and much material is now available. We report here on approximately 4,700 samples, largely foraminifers, from surface localities in the San Francisco Bay region of California. The information contained here can be used to update geologic maps, to analyze the depth and temperature of ocean water covering parts of California during the Mesozoic and Cenozoic eras, and for solving other geologic problems.
Bennett, Derek S.; Lyons, John B.; Wittkop, Chad A.; Dicken, Connie L.
2006-01-01
The New Hampshire Geological Survey collects data and performs research on the land, mineral, and water resources of the State, and disseminates the findings of such research to the public through maps, reports, and other publications. The Bedrock Geologic Map of New Hampshire, by John B. Lyons, Wallace A. Bothner, Robert H. Moench, and James B. Thompson, was published in paper format by the U.S. Geological Survey (USGS) in 1997. The online version of this CD contains digital datasets of the State map that are intended to assist the professional geologist, land-use planners, water resource professionals, and engineers and to inform the interested layperson. In addition to the bedrock geology, the datasets include geopolitical and hydrologic information, such as political boundaries, quadrangle boundaries, hydrologic units, and water-well data. A more thorough explanation for each of these datasets may be found in the accompanying metadata files. The data are spatially referenced and may be used in a geographic information system (GIS). ArcExplorer, the Environmental Systems Research Institute's (ESRI) free GIS data viewer, is available at http://www.esri.com/software/arcexplorer. ArcExplorer provides basic functions that are needed to harness the power and versatility of the spatial datasets. Additional information on the viewer and other ESRI products may be found on the ArcExplorer website. Although extensive review and revisions of the data have been performed by the USGS and the New Hampshire Geological Survey, these data represent interpretations made by professional geologists using the best available data, and are intended to provide general geologic information. Use of these data at scales larger than 1:250,000 will not provide greater accuracy. The data are not intended to replace site-specific or specific-use investigations. The U.S. Geological Survey, New Hampshire Geological Survey, and State of New Hampshire make no representation or warranty, expressed or implied, regarding the use, accuracy, or completeness of the data presented herein, or from a map printed from these data; nor shall the act of distribution constitute any such warranty. The New Hampshire Geological Survey disclaims any legal responsibility or liability for interpretations made from the map, or decisions based thereon. For more information on New Hampshire Geological Survey programs please visit the State's website at http://des.nh.gov/Geology/. New Hampshire Geographically Referenced Analysis and Information Transfer System (NH GRANIT) provides access to statewide GIS (http://www.granit.unh.edu/). Questions about this CD or about other datasets should be directed to the New Hampshire Department of Environmental Services.
Scanning and georeferencing historical USGS quadrangles
Fishburn, Kristin A.; Davis, Larry R.; Allord, Gregory J.
2017-06-23
The U.S. Geological Survey (USGS) National Geospatial Program is scanning published USGS 1:250,000-scale and larger topographic maps printed between 1884, the inception of the topographic mapping program, and 2006. The goal of this project, which began publishing the Historical Topographic Map Collection in 2011, is to provide access to a digital repository of USGS topographic maps that is available to the public at no cost. For more than 125 years, USGS topographic maps have accurately portrayed the complex geography of the Nation. The USGS is the Nation’s largest producer of traditional topographic maps, and, prior to 2006, USGS topographic maps were created using traditional cartographic methods and printed using a lithographic process. The next generation of topographic maps, US Topo, is being released by the USGS in digital form, and newer technologies make it possible to also deliver historical maps in the same electronic format that is more publicly accessible.
Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ, 2010
NASA Technical Reports Server (NTRS)
Bleamaster, Leslie F., III (Editor); Tanaka, Kenneth L. (Editor); Kelley, Michael S. (Editor)
2010-01-01
Topics covered include: Detailed Analysis of the Intra-Ejecta Dark Plains of Caloris Basin, Mercury; The Formation and Evolution of Tessera and Insights into the Beginning of Recorded History on Venus: Geology of the Fortuna Tessera Quadrangle (V-2); Geologic Map of the Snegurochka Planitia Quadrangle (V-1): Implications for the Volcanic History of the North Polar Region of Venus; Geological Map of the Fredegonade (V-57) Quadrangle, Venus: Status Report; Geologic Mapping of V-19; Geology of the Lachesis Tessera Quadrangle (V-18), Venus; Comparison of Mapping Tessera Terrain in the Phoebe Regio (V-41) and Tellus Tessera (V-10) Quadrangles; Geologic Mapping of the Devana Chasma (V-29) Quadrangle, Venus; Geologic Mapping of the Aristarchus Plateau Region on the Moon; Geologic Mapping of the Lunar South Pole Quadrangle (LQ-30); The Pilot Lunar Geologic Mapping Project: Summary Results and Recommendations from the Copernicus Quadrangle; Geologic Mapping of the Nili Fossae Region of Mars: MTM Quadrangles 20287, 20282, 25287, 25282, 30287, and 30282; Geologic Mapping of the Mawrth Vallis Region, Mars: MTM Quadrangles 25022, 25017, 25012, 20022, 20017, and 20012; Evidence for an Ancient Buried Landscape on the NW Rim of Hellas Basin, Mars; New Geologic Map of the Argyre Region of Mars: Deciphering the Geologic History Through Mars Global Surveyor, Mars Odyssey, and Mars Express Data; Geologic Mapping in the Hesperia Planum Region of Mars; Geologic Mapping of the Meridiani Region of Mars; Geologic Mapping in Southern Margaritifer Terra; Geology of -30247, -35247, and -40247 Quadrangles, Southern Hesperia Planum, Mars; The Interaction of Impact Melt, Impact-Derived Sediment, and Volatiles at Crater Tooting, Mars; Geologic Map of the Olympia Cavi Region of Mars (MTM 85200): A Summary of Tactical Approaches; Geology of the Terra Cimmeria-Utopia Planitia Highland Lowland Transitional Zone: Final Technical Approach and Scientific Results; Geology of Libya Montes and the Interbasin Plains of Northern Tyrrhena Terra, Mars: First Year Results and Second Year Work Plan; Mars Global Geologic Mapping Progress and Suggested Geographic-Based Hierarchal Systems for Unit Grouping and Naming; Progress in the Scandia Region Geologic Map of Mars; Geomorphic Mapping of MTMS -20022 and -20017; Geologic Mapping of the Medusae Fossae Formation, Mars, and the Northern Lowland Plains, Venus; Volcanism on Io: Results from Global Geologic Mapping; Employing Geodatabases for Planetary Mapping Conduct - Requirements, Concepts and Solutions; and Planetary Geologic Mapping Handbook - 2010.
Geology of Massachusetts and Rhode Island
Emerson, Benjamin Kendall
1917-01-01
In preparing the present treatise and the accompanying geologic map of Massachusetts and Rhode Island (PI. X, in pocket) I have endeavored to use all the material available. The matter has been greatly condensed, for the detailed geology of a considerable part of the area will be described in a number of forthcoming folios of the Geologic Atlas of the United States. The Holyoke folio, published in 1898, covered the major part of the Triassic rocks in Massachusetts, but as those rocks have since been more thoroughly studied they are here treated in greater detail to bring their discussion up to date.
NASA Technical Reports Server (NTRS)
Wallace, R. E.
1969-01-01
Nine-frame multiband aerial photography of a sample area 4500 feet on a side was processed to enhance spectral contrasts. The area concerned is in the Carrizo Plain, 45 miles west of Bakersfield, California, in sec. 29, T 31 S., R. 21 E., as shown on the Panorama Hills quadrangle topographic map published by the U. S. Geological Survey. The accompany illustrations include an index map showing the location of the Carrizo Plain area; a geologic map of the area based on field studies and examination of black and white aerial photographs; an enhanced multiband aerial photograph; an Aero Ektachrome photograph; black and white aerial photographs; and infrared image in the 8-13 micron band.
Scanning and georeferencing historical USGS quadrangles
Davis, Larry R.; Allord, G.J.
2011-01-01
The USGS Historical Quadrangle Scanning Project (HQSP) is scanning all scales and all editions of approximately 250,000 topographic maps published by the U.S. Geological Survey (USGS) since the inception of the topographic mapping program in 1884. This scanning will provide a comprehensive digital repository of USGS topographic maps, available to the public at no cost. This project serves the dual purpose of creating a master catalog and digital archive copies of the irreplaceable collection of topographic maps in the USGS Reston Map Library as well as making the maps available for viewing and downloading from the USGS Store and The National Map Viewer.
Geologic map of the Oasis Valley basin and vicinity, Nye County, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fridrich, C.J.; Minor, S.A.; Ryder, P.L.
2000-01-13
This map and accompanying cross sections present an updated synthesis of the geologic framework of the Oasis Valley area, a major groundwater discharge site located about 15 km west of the Nevada Test Site. Most of the data presented in this compilation is new geologic map data, as discussed below. In addition, the cross sections incorporate new geophysical data that have become available in the last three years (Grauch and others, 1997; written comm., 1999; Hildenbrand and others, 1999; Mankinen and others, 1999). Geophysical data are used to estimate the thickness of the Tertiary volcanic and sedimentary rocks on themore » cross sections, and to identify major concealed structures. Large contiguous parts of the map area are covered either by alluvium or by volcanic units deposited after development of the major structures present at the depth of the water table and below. Hence, geophysical data provide critical constraints on our geologic interpretations. A companion paper by Fridrich and others (1999) and the above-cited reports by Hildenbrand and others (1999) and Mankinen and others (1999) provide explanations of the interpretations that are presented graphically on this map. This map covers nine 7.5-minute quadrangles in Nye County, Nevada, centered on the Thirsty Canyon SW quadrangle, and is a compilation of one published quadrangle map (O'Connor and others, 1966) and eight new quadrangle maps, two of which have been previously released (Minor and others, 1997; 1998). The cross sections that accompany this map were drawn to a depth of about 5 km below land surface at the request of hydrologists who are modeling the Death Valley groundwater system.« less
Tanaka, K.L.; Robbins, S.J.; Fortezzo, C.M.; Skinner, J.A.; Hare, T.M.
2014-01-01
A new global geologic map of Mars has been completed in a digital, geographic information system (GIS) format using geospatially controlled altimetry and image data sets. The map reconstructs the geologic history of Mars, which includes many new findings collated in the quarter century since the previous, Viking-based global maps were published, as well as other discoveries that were made during the course of the mapping using new data sets. The technical approach enabled consistent and regulated mapping that is appropriate not only for the map's 1:20,000,000 scale but also for its widespread use by diverse audiences. Each geologic unit outcrop includes basic attributes regarding identity, location, area, crater densities, and chronostratigraphic age. In turn, units are grouped by geographic and lithologic types, which provide synoptic global views of material ages and resurfacing character for the Noachian, Hesperian, and Amazonian periods. As a consequence of more precise and better quality topographic and morphologic data and more complete crater-density dating, our statistical comparisons identify significant refinements for how Martian geologic terrains are characterized. Unit groups show trends in mean elevation and slope that relate to geographic occurrence and geologic origin. In comparison with the previous global geologic map series based on Viking data, the new mapping consists of half the number of units due to simpler, more conservative and globally based approaches to discriminating units. In particular, Noachian highland surfaces overall have high percentages of their areas now dated as an epoch older than in the Viking mapping. Minimally eroded (i.e., pristine) impact craters ≥3 km in diameter occur in greater proportion on Hesperian surfaces. This observation contrasts with a deficit of similarly sized craters on heavily cratered and otherwise degraded Noachian terrain as well as on young Amazonian surfaces. We interpret these as reflecting the relatively stronger, lava-rich, yet less-impacted materials making up much of the younger units. Reconstructions of resurfacing of Mars by its eight geologic epochs using the Hartmann and Neukum chronology models indicate high rates of highland resurfacing during the Noachian (peaking at 0.3 km2/yr during the Middle Noachian), modest rates of volcanism and transition zone and lowland resurfacing during the Hesperian (∼0.1 km2/yr), and low rates of mainly volcanic and polar resurfacing (∼0.01 km2/yr) for most of the Amazonian. Apparent resurfacing increased in the Late Amazonian (∼0.03 km2/yr), perhaps due to better preservation of this latest record.
A Brief History of Soil Mapping and Classification in the USA
NASA Astrophysics Data System (ADS)
Brevik, Eric C.; Hartemink, Alfred E.
2014-05-01
Soil maps show the distribution of soils across an area but also depict soil science theory and ideas on soil formation and classification at the time the maps were created. The national soil mapping program in the USA was established in 1899. The first nation-wide soil map was published by M. Whitney in 1909 and showed soil provinces that were largely based on geology. In 1912, G.N. Coffey published the first country-wide map based on soil properties. The map showed 5 broad soil units that used parent material, color and drainage as diagnostic criteria. The 1913 national map was produced by C.F. Marbut, H.H. Bennett, J.E. Lapham, and M.H. Lapham and showed broad physiographic units that were further subdivided into soil series, soil classes and soil types. In 1935, Marbut drafted a series of maps based on soil properties, but these maps were replaced as official U.S. soil maps in 1938 with the work of M. Baldwin, C.E. Kellogg, and J. Thorp. A series of soil maps similar to modern USA maps appeared in the 1960s with the 7th Approximation followed by revisions with the 1975 and 1999 editions of Soil Taxonomy. This review has shown that soil maps in the United States produced since the early 1900s moved initially from a geologic-based concept to a pedologic concept of soils. Later changes were from property-based systems to process-based, and then back to property-based. The information in this presentation is based on Brevik and Hartemink (2013). Brevik, E.C., and A.E. Hartemink. 2013. Soil Maps of the United States of America. Soil Science Society of America Journal 77:1117-1132. doi:10.2136/sssaj2012.0390.
Geologic map of the Caetano caldera, Lander and Eureka counties, Nevada
Colgan, Joseph P.; Henry, Christopher D.; John, David A.
2011-01-01
The Eocene (34 Ma) Caetano caldera in north-central Nevada offers an exceptional opportunity to study the physical and petrogenetic evolution of a large (20 km by 10–18 km pre-extensional dimensions) silicic magma chamber, from precursor magmatism to caldera collapse and intrusion of resurgent plutons. Caldera-related rocks shown on this map include two units of crystal-rich intracaldera tuff totaling over 4 km thickness, caldera collapse breccias, tuff dikes that fed the eruption, hydrothermally altered post-eruption rocks, and two generations of resurgent granitic intrusions (John et al., 2008). The map also depicts middle Miocene (about 16–12 Ma) normal faults and synextensional basins that accommodated >100 percent extension and tilted the caldera into a series of ~40° east-dipping blocks, producing exceptional 3-D exposures of the caldera interior (Colgan et al., 2008). This 1:75,000-scale map is a compilation of published maps and extensive new mapping by the authors (fig. 1), and supersedes a preliminary 1:100,000-scale map published by Colgan et al. (2008) and John et al. (2008). New mapping focused on the margins of the Caetano caldera, the distribution and lithology of rocks within the caldera, and on the Miocene normal faults and sedimentary basins that record Neogene extensional faulting. The definition of geologic units and their distribution within the caldera is based entirely on new mapping, except in the northern Toiyabe Range, where mapping by Gilluly and Gates (1965) was modified with new field observations. The distribution of pre-Cenozoic rocks outside the caldera was largely compiled from existing sources with minor modifications, with the exception of the northeastern caldera margin (west of the Cortez Hills Mine), which was remapped in the course of this work and published as a stand-alone 1:6000-scale map (Moore and Henry, 2010).
Berg, Henry C.
1982-01-01
The Ketchikan and Prince Rupert 1-degree by 2-degree quadrangles, which encompass about 16,000 km2 at the south tip of southeastern Alaska, have been investigated by integrated field and laboratory studies in the disciplines of geology, geochemistry, geophysics, and Landsat data interpretation to determine their mineral-resource potential. Mineral deposits in the study area have been mined or prospected intermittently since about 1900, and production of small tonnages of ores containing gold, silver, copper, lead, zinc, and tungsten has been recorded. Extensive exploration and development currently (1981) is underway at a molybdenum prospect about 65 km east of Ketchikan. Our mineral-resource assessment indicates that the area contains potentially significant amounts of those metallic commodities, as well as of molybdenum, iron, antimony, and barite. The results of these studies have been published in a folio of maps accompanied by descriptive texts, diagrams, tables, and pertinent references. The present report serves as a guide to these investigations, provides relevant background information, and integrates the component maps and reports. It also describes revisions to the geology based on studies completed since the folio was published and includes a list of specific and general references on the geology and mineral deposits of the study area.
Geologic Map of Lassen Volcanic National Park and Vicinity, California
Clynne, Michael A.; Muffler, L.J. Patrick
2010-01-01
The geologic map of Lassen Volcanic National Park (LVNP) and vicinity encompasses 1,905 km2 at the south end of the Cascade Range in Shasta, Lassen, Tehama, and Plumas Counties, northeastern California (fig. 1, sheet 3). The park includes 430 km2 of scenic volcanic features, glacially sculpted terrain, and the most spectacular array of thermal features in the Cascade Range. Interest in preserving the scenic wonders of the Lassen area as a national park arose in the early 1900s to protect it from commercial development and led to the establishment in 1907 of two small national monuments centered on Lassen Peak and Cinder Cone. The eruptions of Lassen Peak in 1914-15 were the first in the Cascade Range since widespread settling of the West in the late 1800s. Through the printed media, the eruptions aroused considerable public interest and inspired renewed efforts, which had languished since 1907, to establish a national park. In 1916, Lassen Volcanic National Park was established by combining the areas of the previously established national monuments and adjacent lands. The southernmost Cascade Range is bounded on the west by the Sacramento Valley and the Klamath Mountains, on the south by the Sierra Nevada, and on the east by the Basin and Range geologic provinces. Most of the map area is underlain by middle to late Pleistocene volcanic rocks; Holocene, early Pleistocene, and late Pliocene volcanic rocks (<3.5 m.y.) are less common. Paleozoic and Mesozoic rocks are inferred to underlie the volcanic deposits (Jachens and Saltus, 1983), but the nearest exposures of pre-Tertiary rocks are 15 km to the south, 9 km to the southwest, and 12 km to the west. Diller (1895) recognized the young volcanic geology and produced the first geologic map of the Lassen area. The map (sheet 1) builds on and extends geologic mapping by Williams (1932), Macdonald (1963, 1964, 1965), and Wilson (1961). The Lassen Peak area mapped by Christiansen and others (2002) and published in greater detail (1:24,000) was modified for inclusion here. Figure 2 (sheet 3) shows the mapping credit for previous work; figure 3 (sheet 3) shows locations discussed throughout the text. A CD-ROM entitled Database for the Geologic Map of Lassen Volcanic National Park and Vicinity, California accompanies the printed map (Muffler and others, 2010). The CD-ROM contains ESRI compatible geographic information system data files used to create the 1:50,000-scale geologic map, both geologic and topographic data and their associated metadata files, and printable versions of the geologic map and pamphlet as PDF formatted files. The 1:50,000-scale geologic map was compiled from 1:24,000-scale geologic maps of individual quadrangles that are also included in the CD-ROM. It also contains ancillary data that support the map including locations of rock samples selected for chemical analysis (Clynne and others, 2008) and radiometric dating, photographs of geologic features, and links to related data or web sites. Data contained in the CD-ROM are also available on this Web site. The southernmost Cascade Range consists of a regional platform of basalt and basaltic andesite, with subordinate andesite and sparse dacite. Nested within these regional rocks are 'volcanic centers', defined as large, long-lived, composite, calc-alkaline edifices erupting the full range of compositions from basalt to rhyolite, but dominated by andesite and dacite. Volcanic centers are produced by the focusing of basaltic flux from the mantle and resultant enhanced interaction of mafic magma with the crust. Collectively, volcanic centers mark the axis of the southernmost Cascade Range. The map area includes the entire Lassen Volcanic Center, parts of three older volcanic centers (Maidu, Dittmar, and Latour), and the products of regional volcanism (fig. 4, sheet 3). Terminology used for subdivision of the Lassen Volcanic Center has been modified from Clynne (1984, 1990).
Williams, S.J.; Bliss, J.D.; Arsenault, M.A.; Jenkins, C.J.; Goff, J.A.
2007-01-01
Geologic maps depicting offshore sedimentary features serve many scientific and applied purposes. Such maps have been lacking, but recent computer technology and software offer promise in the capture and display of diverse marine data. Continental margins contain landforms which provide a variety of important functions and contain important sedimentary records. Some shelf areas also contain deposits regarded as potential aggregate resources. Because proper management of coastal and offshore areas is increasingly important, knowledge of the framework geology and marine processes is critical. Especially valuable are comprehensive and integrated digital databases based on high-quality information from original sources. Products of interest are GIS maps containing thematic information, such as sediment character and texture. These products are useful to scientists modeling nearshore and shelf processes as well as planners and managers. The U.S. Geological Survey is leading a national program to gather a variety of extant marine geologic data into the usSEABED database system. This provides centralized, integrated marine geologic data collected over the past 50 years. To date, over 340,000 sediment data points from the U.S. reside in usSEABED, which combines an array of physical data and analytical and descriptive information about the sea floor and are available to the marine community through three USGS data reports for the Atlantic, Gulf of Mexico, and Pacific published in 2006, and the project web sites: (http://woodshole.er.usg s.gov/project-pages/aggregates/ and http://walrus.wr.usgs.gov/usseabed/)
Publications of Volcano Hazards Program 2000
Nathenson, Manuel
2001-01-01
The Volcano Hazards Program of the U.S. Geological Survey (USGS) is part of the Geologic Hazards Assessments subactivity as funded by Congressional appropriation. Investigations are carried out in the Geology and Hydrology Disciplines of the USGS and with cooperators at the Alaska Division of Geological and Geophysical Surveys, University of Alaska Fairbanks Geophysical Institute, University of Utah, and University of Washington Geophysics Program. This report lists publications from all these institutions. This report contains only published papers and maps; numerous abstracts produced for presentations at scientific meetings have not been included. Publications are included based on date of publication with no attempt to assign them to Fiscal Year.
Publications of the Volcano Hazards Program 1997
Nathenson, Manuel
1998-01-01
The Volcano Hazards Program of the U.S. Geological Survey (USGS) is part of the Geologic Hazards Assessments subactivity as funded by Congressional appropriation. Investigations are carried out in the Geologic and Water Resources Divisions of the USGS and with cooperators at the Alaska Division of Geological and Geophysical Surveys, University of Alaska Fairbanks Geophysical Institute, University of Utah, and University of Washington Geophysics Program. This report lists publications from all these institutions. This report contains only published papers and maps; numerous abstracts produced for presentations at scientific meetings have not been included. Publications are included based on date of publication with no attempt to assign them to Fiscal Year.
Three-Dimensional Geologic Map of the Hayward Fault Zone, San Francisco Bay Region, California
Phelps, G.A.; Graymer, R.W.; Jachens, R.C.; Ponce, D.A.; Simpson, R.W.; Wentworth, C.M.
2008-01-01
A three-dimensional (3D) geologic map of the Hayward Fault zone was created by integrating the results from geologic mapping, potential field geophysics, and seismology investigations. The map volume is 100 km long, 20 km wide, and extends to a depth of 12 km below sea level. The map volume is oriented northwest and is approximately bisected by the Hayward Fault. The complex geologic structure of the region makes it difficult to trace many geologic units into the subsurface. Therefore, the map units are generalized from 1:24,000-scale geologic maps. Descriptions of geologic units and structures are offered, along with a discussion of the methods used to map them and incorporate them into the 3D geologic map. The map spatial database and associated viewing software are provided. Elements of the map, such as individual fault surfaces, are also provided in a non-proprietary format so that the user can access the map via open-source software. The sheet accompanying this manuscript shows views taken from the 3D geologic map for the user to access. The 3D geologic map is designed as a multi-purpose resource for further geologic investigations and process modeling.
Geologic map of the Bobs Flat Quadrangle, Eureka County, Nevada
Peters, Stephen G.
2003-01-01
Map Scale: 1:24,000 Map Type: colored geologic map A 1:24,000-scale, full-color geologic map of the Bobs Flat Quadrangle in Eureka County with one cross section and descriptions of 28 geologic units. Accompanying text describes the geologic history and structural geology of the quadrangle.
Database for the Geologic Map of the Summit Region of Kilauea Volcano, Hawaii
Dutton, Dillon R.; Ramsey, David W.; Bruggman, Peggy E.; Felger, Tracey J.; Lougee, Ellen; Margriter, Sandy; Showalter, Patrick; Neal, Christina A.; Lockwood, John P.
2007-01-01
INTRODUCTION The area covered by this map includes parts of four U.S. Geological Survey (USGS) 7.5' topographic quadrangles (Kilauea Crater, Volcano, Ka`u Desert, and Makaopuhi). It encompasses the summit, upper rift zones, and Koa`e Fault System of Kilauea Volcano and a part of the adjacent, southeast flank of Mauna Loa Volcano. The map is dominated by products of eruptions from Kilauea Volcano, the southernmost of the five volcanoes on the Island of Hawai`i and one of the world's most active volcanoes. At its summit (1,243 m) is Kilauea Crater, a 3 km-by-5 km collapse caldera that formed, possibly over several centuries, between about 200 and 500 years ago. Radiating away from the summit caldera are two linear zones of intrusion and eruption, the east and the southwest rift zones. Repeated subaerial eruptions from the summit and rift zones have built a gently sloping, elongate shield volcano covering approximately 1,500 km2. Much of the volcano lies under water: the east rift zone extends 110 km from the summit to a depth of more than 5,000 m below sea level; whereas, the southwest rift zone has a more limited submarine continuation. South of the summit caldera, mostly north-facing normal faults and open fractures of the Koa`e Fault System extend between the two rift zones. The Koa`e Fault System is interpreted as a tear-away structure that accommodates southward movement of Kilauea's flank in response to distension of the volcano perpendicular to the rift zones. This digital release contains all the information used to produce the geologic map published as USGS Geologic Investigations Series I-2759 (Neal and Lockwood, 2003). The main component of this digital release is a geologic map database prepared using ArcInfo GIS. This release also contains printable files for the geologic map and accompanying descriptive pamphlet from I-2759.
NASA Astrophysics Data System (ADS)
Chan, Y. C.; Shih, N. C.; Hsieh, Y. C.
2016-12-01
Geologic maps have provided fundamental information for many scientific and engineering applications in human societies. Geologic maps directly influence the reliability of research results or the robustness of engineering projects. In the past, geologic maps were mainly produced by field geologists through direct field investigations and 2D topographic maps. However, the quality of traditional geologic maps was significantly compromised by field conditions, particularly, when the map area is covered by heavy forest canopies. Recent developments in airborne LiDAR technology may virtually remove trees or buildings, thus, providing a useful data set for improving geological mapping. Because high-quality topographic information still needs to be interpreted in terms of geology, there are many fundamental questions regarding how to best apply the data set for high-resolution geological mapping. In this study, we aim to test the quality and reliability of high-resolution geologic maps produced by recent technological methods through an example from the fold-and-thrust belt in northern Taiwan. We performed the geological mapping by applying the LiDAR-derived DEM, self-developed program tools and many layers of relevant information at interactive 3D environments. Our mapping results indicate that the proposed methods will considerably improve the quality and consistency of the geologic maps. The study also shows that in order to gain consistent mapping results, future high-resolution geologic maps should be produced at interactive 3D environments on the basis of existing geologic maps.
Use of geographic information system to display water-quality data from San Juan basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thorn, C.R.; Dam, W.L.
1989-09-01
The ARC/INFO geographic information system is creating thematic maps of the San Juan basin as part of the USGS Regional Aquifer-System Analysis program. (Use of trade names is for descriptive purposes only and does not constitute endorsement by the US Geological Survey.) Maps created by a Prime version of ARC/INFO, to be published in a series of Hydrologic Investigations Atlas reports for selected geologic units, will include outcrop patters, water-well locations, and water-quality data. The San Juan basin study area, encompassing about 19,400 mi{sup 2}, can be displayed with ARC/INFO at various scales; on the same scale, generated water-quality mapsmore » can be compared and overlain with other maps such as potentiometric surface and depth to top of a geologic or hydrologic unit. Selected water-quality and well data (including latitude and longitude) are retrieved from the USGS National Water Information System data base for a specified geologic unit. Data are formatted by Fortran programs and read into an INFO data base. Two parallel files - an INFO file containing water-quality data and well data and an ARC file containing the site coordinates - are joined to form the ARC/INFO data base. A file containing a series of commands using Prime's Command Procedure language is used to select coverage, display, and position data on the map. Data interpretation is enhanced by displaying water-quality data throughout the basin in combination with other hydrologic and geologic data.« less
Overcoming the momentum of anachronism: American geologic mapping in a twenty-first-century world
House, P. Kyle; Clark, Ryan; Kopera, Joe
2013-01-01
The practice of geologic mapping is undergoing conceptual and methodological transformation. Profound changes in digital technology in the past 10 yr have potential to impact all aspects of geologic mapping. The future of geologic mapping as a relevant scientific enterprise depends on widespread adoption of new technology and ideas about the collection, meaning, and utility of geologic map data. It is critical that the geologic community redefine the primary elements of the traditional paper geologic map and improve the integration of the practice of making maps in the field and office with the new ways to record, manage, share, and visualize their underlying data. A modern digital geologic mapping model will enhance scientific discovery, meet elevated expectations of modern geologic map users, and accommodate inevitable future changes in technology.
Drost, B.W.; Whiteman, K.J.
1986-01-01
A 2-1/2 year study of the Columbia Plateau in Washington was begun in March 1982 to define spatial and temporal variations in dissolved sodium in the Columbia River Basalt Group aquifers and to relate these variations to the groundwater system and its geologic framework. This report describes the geologic framework , including the vertical and areal extent of the major basalt units, interbeds, and overlying materials. Thickness and structure of the Grande Ronde, Wanapum, and Saddle Mountains Basalts, thickness of the interbeds between the Grande Ronde and Wanapum, and Wanapum and Saddle Mountains Basalts, and thickness of the overburden were mapped at a scale of 1:500,000. Information was compiled from 2,500 well records using chemical analyses of core or drill chips, geophysical logs, and driller 's logs, in decreasing order of reliability. Surficial geology and surficial expression of structural features were simplified from published maps to provide maps with this information at the 1:500,000 scale. This report is intended to serve as a base for evaluating the distribution of dissolved sodium in basalt aquifers and as a base for future water resource studies. (USGS)
Geologic map of Detrital, Hualapai, and Sacramento Valleys and surrounding areas, northwest Arizona
Beard, L. Sue; Kennedy, Jeffrey; Truini, Margot; Felger, Tracey
2011-01-01
A 1:250,000-scale geologic map and report covering the Detrital, Hualapai, and Sacramento valleys in northwest Arizona is presented for the purpose of improving understanding of the geology and geohydrology of the basins beneath those valleys. The map was compiled from existing geologic mapping, augmented by digital photogeologic reconnaissance mapping. The most recent geologic map for the area, and the only digital one, is the 1:1,000,000-scale Geologic Map of Arizona. The larger scale map presented here includes significantly more detailed geology than the Geologic Map of Arizona in terms of accuracy of geologic unit contacts, number of faults, fault type, fault location, and details of Neogene and Quaternary deposits. Many sources were used to compile the geology; the accompanying geodatabase includes a source field in the polygon feature class that lists source references for polygon features. The citations for the source field are included in the reference section.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-12-01
Detailed investigations of geologic, geomorphic, and seismic conditions at the Bodo Canyon disposal site were conducted. The purpose of these investigations was basic site characterization and identification of potential geologic hazards that could affect long-term site stability. Subsequent engineering studies, such as analyses of hydrologic and liquefaction hazards, used the data developed in these studies. The geomorphic analysis was employed in the design of effective erosion protection. Studies of the regional and local seismotectonic setting, which included a detailed search for possible capable faults within a 65 kilometer radius of the site, provided the basis for seismic design parameters. Themore » scope of work performed included the following: Compilation and analysis of previous published and unpublished geologic literature and maps; Review of historical and instrumental earthquake data; Review of site-specific subsurface geologic data, including lithologic and geophysical logs of exploratory boreholes advanced in the site area; Photogeologic interpretations of existing conventional aerial photographs; and, Ground reconnaissance and mapping of the site region.« less
Geologic map of the northern plains of Mars
Tanaka, Kenneth L.; Skinner, James A.; Hare, Trent M.
2005-01-01
The northern plains of Mars cover nearly a third of the planet and constitute the planet's broadest region of lowlands. Apparently formed early in Mars' history, the northern lowlands served as a repository both for sediments shed from the adjacent ancient highlands and for volcanic flows and deposits from sources within and near the lowlands. Geomorphic evidence for extensive tectonic deformation and reworking of surface materials through release of volatiles occurs throughout the northern plains. In the polar region, Planum Boreum contains evidence for the accumulation of ice and dust, and surrounding dune fields suggest widespread aeolian transport and erosion. The most recent regional- and global-scale maps describing the geology of the northern plains are largely based on Viking Orbiter image data (Dial, 1984; Witbeck and Underwood, 1984; Scott and Tanaka, 1986; Greeley and Guest, 1987; Tanaka and Scott, 1987; Tanaka and others, 1992a; Rotto and Tanaka, 1995; Crumpler and others, 2001; McGill, 2002). These maps reveal highland, plains, volcanic, and polar units based on morphologic character, albedo, and relative ages using local stratigraphic relations and crater counts. This geologic map of the northern plains is the first published map that covers a significant part of Mars using topography and image data from both the Mars Global Surveyor and Mars Odyssey missions. The new data provide a fresh perspective on the geology of the region that reveals many previously unrecognizable units, features, and temporal relations. In addition, we adapted and instituted terrestrial mapping methods and stratigraphic conventions that we think result in a clearer and more objective map. We focus on mapping with the intent of reconstructing the history of geologic activity within the northern plains, including deposition, volcanism, erosion, tectonism, impact cratering, and other processes with the aid of comprehensive crater-density determinations. Mapped areas include all plains regions within the northern hemisphere of Mars, as well as an approximately 300-km-wide strip of cratered highland and volcanic regions, which border the plains. Note that not all of the contiguous northern plains are mapped, because some minor parts of Elysium and Amazonis Planitiae lie south of the equator.
Map showing general availability of ground water in the Kaiparowits coal-basin area, Utah
Price, Don
1977-01-01
This is one of a series of maps that describe the geology and related natural resources in the Kaiparowits coal-basin area. This map is based partly on records of water wells, springs, and coal and petroleum exploration holes, partly on unpublished reports of field evaluations of prospective stock-water well sites by personnel of the U.S. Geological Survey, and partly on a 6-day field reconnaissance by the writer in parts of the mapped area.Most of the data used to compile this map were collected by the U.S. Geological Survey in cooperation with State, local, and other Federal agencies. Published sources of data included Phoenix (1963), Iorns, Hembree, and Phoenix (1964), Cooley (1965), Feltis (1966), Goode (1966, 1969), and the final environmental impact statement for the proposed Kaiparowits power project (U.S. Bureau of Land Management, 1976).Few data about the availability or depth of ground water could be obtained for large areas in the Kaiparowits coal basin. In those areas, expected yields of individual wells are inferred from the geology as compiled by Stokes (1964) and Hackman and Wyant (1973), and depths of ground water in wells are inferred largely from the local topography.El Paso Natural Gas Co., Resources Co., Kaiser Engineers, and Southern California Edison Co. provided specific information regarding the availability and depth of ground water in their exploratory holes on the Kaiparowits Plateau. The cooperation of those firms is gratefully acknowledged.
Mapping urban geology of the city of Girona, Catalonia
NASA Astrophysics Data System (ADS)
Vilà, Miquel; Torrades, Pau; Pi, Roser; Monleon, Ona
2016-04-01
A detailed and systematic geological characterization of the urban area of Girona has been conducted under the project '1:5000 scale Urban geological map of Catalonia' of the Catalan Geological Survey (Institut Cartogràfic i Geològic de Catalunya). The results of this characterization are organized into: i) a geological information system that includes all the information acquired; ii) a stratigraphic model focused on identification, characterization and correlation of the geological materials and structures present in the area and; iii) a detailed geological map that represents a synthesis of all the collected information. The mapping project integrates in a GIS environment pre-existing cartographic documentation (geological and topographical), core data from compiled boreholes, descriptions of geological outcrops within the urban network and neighbouring areas, physico-chemical characterisation of representative samples of geological materials, detailed geological mapping of Quaternary sediments, subsurface bedrock and artificial deposits and, 3D modelling of the main geological surfaces. The stratigraphic model is structured in a system of geological units that from a chronostratigrafic point of view are structured in Palaeozoic, Paleogene, Neogene, Quaternary and Anthropocene. The description of the geological units is guided by a systematic procedure. It includes the main lithological and structural features of the units that constitute the geological substratum and represents the conceptual base of the 1:5000 urban geological map of the Girona metropolitan area, which is organized into 6 map sheets. These map sheets are composed by a principal map, geological cross sections and, several complementary maps, charts and tables. Regardless of the geological map units, the principal map also represents the main artificial deposits, features related to geohistorical processes, contours of outcrop areas, information obtained in stations, borehole data, and contour lines of the top of the pre-Quaternary basement surface. The most representative complementary maps are the quaternary map, the subsurface bedrock map and the isopach map of thickness of superficial deposits (Quaternary and anthropogenic). The map sheets also include charts and tables of relevant physic-chemical parameters of the geological materials, harmonized downhole lithological columns from selected boreholes, stratigraphic columns, and, photographs and figures illustrating the geology of the mapped area and how urbanization has changed the natural environment. The development of systematic urban geological mapping projects, such as the example of Girona's case, which provides valuable resources to address targeted studies related to urban planning, geoengineering works, soil pollution and other important environmental issues that society should deal with in the future.
Geological evaluation of Gulf Coast salt domes: overall assessment of the Gulf Interior Region
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1981-10-01
The three major phases in site characterization and selection are regional studies, area studies, and location studies. This report characterizes regional geologic aspects of the Gulf Coast salt dome basins. It includes general information from published sources on the regional geology; the tectonic, domal, and hydrologic stability; and a brief description the salt domes to be investigated. After a screening exercise, eight domes were chosen for further characterization: Keechi, Oakwood, and Palestine Domes in Texas; Vacherie and Rayburn's domes in North Louisiana; and Cypress Creek and Richton domes in Mississippi. A general description of each, maps of the location, propertymore » ownership, and surface geology, and a geologic cross section were presented for each dome.« less
Tectonic map of the Circum-Pacific region, Pacific basin sheet
Scheibner, E.; Moore, G.W.; Drummond, K.J.; Dalziel, Corvalan Q.J.; Moritani, T.; Teraoka, Y.; Sato, T.; Craddock, C.
2013-01-01
Circum-Pacific Map Project: The Circum-Pacific Map Project was a cooperative international effort designed to show the relationship of known energy and mineral resources to the major geologic features of the Pacific basin and surrounding continental areas. Available geologic, mineral, and energy-resource data are being complemented by new, project-developed data sets such as magnetic lineations, seafloor mineral deposits, and seafloor sediment. Earth scientists representing some 180 organizations from more than 40 Pacific-region countries are involved in this work. Six overlapping equal-area regional maps at a scale of 1:10,000,000 form the cartographic base for the project: the four Circum-Pacific Quadrants (Northwest, Southwest, Southeast, and Northeast), and the Antarctic and Arctic Sheets. There is also a Pacific Basin Sheet at a scale of 1:17,000,000. The Base Map Series and the Geographic Series (published from 1977 to 1990), the Plate-Tectonic Series (published in 1981 and 1982), the Geodynamic Series (published in 1984 and 1985), and the Geologic Series (published from 1984 to 1989) all include six map sheets. Other thematic map series in preparation include Mineral-Resources, Energy-Resources and Tectonic Maps. Altogether, more than 50 map sheets are planned. The maps were prepared cooperatively by the Circum-Pacific Council for Energy and Mineral Resources and the U.S. Geological Survey and are available from the Branch of Distribution, U. S. Geological Survey, Box 25286, Federal Center, Denver, Colorado 80225, U.S.A. The Circum-Pacific Map Project is organized under six panels of geoscientists representing national earth-science organizations, universities, and natural-resource companies. The six panels correspond to the basic map areas. Current panel chairmen are Tomoyuki Moritani (Northwest Quadrant), R. Wally Johnson (Southwest Quadrant), Ian W.D. Dalziel (Antarctic Region), vacant. (Southeast Quadrant), Kenneth J. Drummond (Northeast Quadrant), and George W. Moore (Arctic Region). Project coordination and final cartography was being carried out through the cooperation of the Office of the Chief Geologist of the U.S. Geological Survey, under the direction of General Chairman, George Gryc of Menlo Park, California. Project headquarters were located at 345 Middlefield Road, MS 952, Menlo Park, California 94025, U.S.A. The framework for the Circum-Pacific Map Project was developed in 1973 by a specially convened group of 12 North American geoscientists meeting in California. The project was officially launched at the First Circum-Pacific Conference on Energy and Mineral Resources, which met in Honolulu, Hawaii, in August 1974. Sponsors of the conference were the AAPG, Pacific Science Association (PSA), and the Coordinating Committee for Offshore Prospecting for Mineral Resources in Offshore Asian Areas (CCOP). The Circum-Pacific Map Project operates as an activity of the Circum-Pacific Council for Energy and Mineral Resources, a nonprofit organization that promotes cooperation among Circum-Pacific countries in the study of energy and mineral resources of the Pacific basin. Founded by Michel T. Halbouty in 1972, the Council also sponsors conferences, topical symposia, workshops and the Earth Science Series books. Tectonic Map Series: The tectonic maps distinguish areas of oceanic and continental crust. Symbols in red mark active plate boundaries, and colored patterns show tectonic units (volcanic or magmatic arcs, arc-trench gaps, and interarc basins) associated with active plate margins. Well-documented inactive plate boundaries are shown by symbols in black. The tectonic development of oceanic crust is shown by episodes of seafloor spreading. These correlate with the rift and drift sequences at passive continental margins and episodes of tectonic activity at active plate margins. The recognized episodes of seafloor spreading seem to reflect major changes in plate kinematics. Oceanic plateaus and other prominences of greater than normal oceanic crustal thickness such as hotspot traces are also shown. Colored areas on the continents show the ages of deformation and metamorphism of basement rocks and the emplacement of igneous rocks. Transitional tectonic (molassic) and reactivation basins are shown by a colored boundary, and if they are deformed, a colored horizontal line pattern indicates the age of deformation. Colored bands along basin boundaries indicate age of inception, and isopachs indicate thickness of platform strata on continental crust and cover on oceanic crust. Colored patterns at separated continental margins show the age of inception of rift and drift (breakup) sequences. Symbols mark folds and faults, and special symbols show volcanoes and other structural features. Affiliations are as of compilation of the data. This map was created in quadrants and then compiled together. They are the Northwest land, Northwest Marine (different compilers), Northeast, Southwest and Southeast, and parts in plate-boundary sections.
King, Trude V.V.; Berger, Byron R.; Johnson, Michaela R.
2014-01-01
As part of the U.S. Geological Survey and Department of Defense Task Force for Business and Stability Operations natural resources revitalization activities in Afghanistan, four permissive areas for mineralization, Bamyan 1, Farah 1, Ghazni 1, and Ghazni 2, have been identified using imaging spectroscopy data. To support economic development, the areas of potential mineralization were selected on the occurrence of selected mineral assemblages mapped using the HyMap™ data (kaolinite, jarosite, hydrated silica, chlorite, epidote, iron-bearing carbonate, buddingtonite, dickite, and alunite) that may be indicative of past mineralization processes in areas with limited or no previous mineral resource studies. Approximately 30 sites were initially determined to be candidates for areas of potential mineralization. Additional criteria and material used to refine the selection and prioritization process included existing geologic maps, Landsat Thematic Mapper data, and published literature. The HyMapTM data were interpreted in the context of the regional geologic and tectonic setting and used the presence of alteration mineral assemblages to identify areas with the potential for undiscovered mineral resources. Further field-sampling, mapping, and supporting geochemical analyses are necessary to fully substantiate and verify the specific deposit types in the four areas of potential mineralization.
Pagano, Timothy S.; Terry, D.B.; Shaw, M.L.; Ingram, A.W.
1984-01-01
The Bath valley-fill aquifer, southern New York, composed of outwash, ice-contact, and ice-disintegration sand and gravel, is highly productive and is in many areas in hydraulic contact with the Cohocton River. Potential well yields range 50 to more than 1,000 gallons per minute. Most of the aquifer is under shallow water-table conditions and vulnerable to surface contamination. Thickness ranges from 20 to 40 feet. Buried aquifers are present locally. The aquifer system underlies an area containing only a few small communities and therefore is not heavily pumped. Geohydrologic data are compiled on six maps at 1:24,000 scale and on a sheet of geologic sections. The maps depict surficial geology, soil-infiltration capacity, potentiometric surface, aquifer thickness, well yields, and land use. This map report set is one in a series of four that depict selected aquifers in Wester New York. It supplements a series that is being done by the U.S. Geological Survey in cooperation with State agencies. The maps are based largely on published reports, data filled in several State agencies, and some additional field data collection. (USGS)
Probabilistic seismic hazard estimates incorporating site effects - An example from Indiana, U.S.A
Hasse, J.S.; Park, C.H.; Nowack, R.L.; Hill, J.R.
2010-01-01
The U.S. Geological Survey (USGS) has published probabilistic earthquake hazard maps for the United States based on current knowledge of past earthquake activity and geological constraints on earthquake potential. These maps for the central and eastern United States assume standard site conditions with Swave velocities of 760 m/s in the top 30 m. For urban and infrastructure planning and long-term budgeting, the public is interested in similar probabilistic seismic hazard maps that take into account near-surface geological materials. We have implemented a probabilistic method for incorporating site effects into the USGS seismic hazard analysis that takes into account the first-order effects of the surface geologic conditions. The thicknesses of sediments, which play a large role in amplification, were derived from a P-wave refraction database with over 13, 000 profiles, and a preliminary geology-based velocity model was constructed from available information on S-wave velocities. An interesting feature of the preliminary hazard maps incorporating site effects is the approximate factor of two increases in the 1-Hz spectral acceleration with 2 percent probability of exceedance in 50 years for parts of the greater Indianapolis metropolitan region and surrounding parts of central Indiana. This effect is primarily due to the relatively thick sequence of sediments infilling ancient bedrock topography that has been deposited since the Pleistocene Epoch. As expected, the Late Pleistocene and Holocene depositional systems of the Wabash and Ohio Rivers produce additional amplification in the southwestern part of Indiana. Ground motions decrease, as would be expected, toward the bedrock units in south-central Indiana, where motions are significantly lower than the values on the USGS maps.
An Interactive Map Viewer for the Urban Geology of Ottawa (Canada): an Example of Web Publishing
NASA Astrophysics Data System (ADS)
Giroux, D.; Bélanger, R.
2003-04-01
Developed by the Terrain Sciences Division (TSD) of the Geological Survey of Canada (GSC), an interactive map viewer, called GEOSERV (www.geoserv.org), is now available on the Internet. The purpose of this viewer is to provide engineers, planners, decision makers, and the general public with the geoscience information required for sound regional planning in densely populated areas, such as Canada's national capital, Ottawa (Ontario). Urban geology studies rely on diverse branches of earth sciences such as hydrology, engineering geology, geochemistry, stratigraphy, and geomorphology in order to build a three-dimensional model of the character of the land and to explain the geological processes involved in the dynamic equilibrium of the local environment. Over the past few years, TSD has compiled geoscientific information derived from various sources such as borehole logs, geological maps, hydrological reports and digital elevation models, compiled it in digital format and stored it in georeferenced databases in the form of point, linear, and polygonal data. This information constitutes the geoscience knowledge base which is then processed by Geographic Information Systems (GIS) to integrate the various sources of information and produce derived graphics, maps and models describing the geological infrastructure and response of the geological environment to human activities. Urban Geology of Canada's National Capital Area is a pilot project aiming at developing approaches, methodologies and standards that can be applied to other major urban centres of the country, while providing the geoscience knowledge required for sound regional planning and environmental protection of the National Capital Area. Based on an application developed by ESRI (Environmental System Research Institute), namely ArcIMS, the TSD has customized this web application to give free access to geoscience information of the Ottawa/Outaouais (Ontario/Québec) area including geological history, subsurface database, stratigraphy, bedrock, surficial and hydrogeology maps, and a few others. At present, each layer of geospatial information in TSD's interactive map viewer is connected to simple independent flat files (i.e. shapefiles), but it is also possible to connect GEOSERV to other types of (relational) databases (e.g. Microsoft SQL Server, Oracle). Frequent updating of shapefiles could be a cumbersome task, when new records are added, since we have to completely rebuild the updated shapefiles. However, new attributes can be added to existing shapefiles easily. At present, the updating process can not be done on-the-fly; we must stop and restart the updated MapService if one of its shapefiles is changed. The public can access seventeen MapServices that provide interactive tools that users can use to query, zoom, pan, select, and so on, or print the map displayed on their monitor. The map viewer is light-weight as it uses HTML and Javascript, so end users do not have to download and install any plug-ins. A free CD and a companion web site were also developed to give access to complementary information, like high resolution raster maps and reports. Some of the datasets are available free of charge, on-line.
Publications of the Volcano Hazards Program 2011
Nathenson, Manuel
2013-01-01
The Volcano Hazards Program of the U.S. Geological Survey (USGS) is part of the Geologic Hazards Assessments subactivity, as funded by Congressional appropriation. Investigations are carried out by the USGS and with cooperators at the Alaska Division of Geological and Geophysical Surveys, University of Alaska Fairbanks Geophysical Institute, University of Hawaii Manoa and Hilo, University of Utah, and University of Washington Geophysics Program. This report lists publications from all these institutions. Only published papers and maps are included here; abstracts presented at scientific meetings are omitted. Publication dates are based on year of issue, with no attempt to assign them to fiscal year.
Grisafe, David A.; Rueff, Ardel W.
1991-01-01
This map is part of a folio of maps of the Joplin 1° X 2° quadrangle, Kansas and Missouri prepared under the Conterminuous United States Mineral Assessment Program (CUSMAP). Other publications in this folio to date include U.S. Geological Survey Miscellaneous Field Studies Map MF-2125-A (Erickson and others, 1990). Additional maps showing various geologic aspects of the Joplin quadrangle will be published as U.S. Geological Survey Miscellaneous Field Studies Maps bearing this same serial number with different letter suffixes (MF-2125-C, -D, and so on). The industrial mineral resources of the Joplin 1° X 2° quadrangle are crushed stone, dimension stone, clay and shale, construction sand and gravel (including chat, or chert-rich tailings from metal mines), and asphaltic sandstone. At present only crushed stone, clay and shale, and construction sand and gravel are of economic importance; the remainder are considered hypothetical resources. The value of industrial mineral production during 1987, the most recent year of complete data as supplied by the U.S. Bureau of Mines, was nearly $25,600,000. In terms of finished products such as cement and brick, the value is several times that amount. Figure 1 shows the annual value of industrial mineral production within the quadrangle from 1960 through 1987.
Publications - Beikman, H.M., 1980 | Alaska Division of Geological &
main content USGS Beikman, H.M., 1980 Publication Details Title: Geologic map of Alaska Authors Warehouse Bibliographic Reference Beikman, H.M., 1980, Geologic map of Alaska: U.S. Geological Survey, 1 USGS website Maps & Other Oversized Sheets Maps & Other Oversized Sheets Sheet 1 Geologic Map
NASA Technical Reports Server (NTRS)
Skinner, J. A., Jr.; Gaddis, L. R.; Hagerty, J. J.
2010-01-01
The first systematic lunar geologic maps were completed at 1:1M scale for the lunar near side during the 1960s using telescopic and Lunar Orbiter (LO) photographs [1-3]. The program under which these maps were completed established precedents for map base, scale, projection, and boundaries in order to avoid widely discrepant products. A variety of geologic maps were subsequently produced for various purposes, including 1:5M scale global maps [4-9] and large scale maps of high scientific interest (including the Apollo landing sites) [10]. Since that time, lunar science has benefitted from an abundance of surface information, including high resolution images and diverse compositional data sets, which have yielded a host of topical planetary investigations. The existing suite of lunar geologic maps and topical studies provide exceptional context in which to unravel the geologic history of the Moon. However, there has been no systematic approach to lunar geologic mapping since the flight of post-Apollo scientific orbiters. Geologic maps provide a spatial and temporal framework wherein observations can be reliably benchmarked and compared. As such, a lack of a systematic mapping program means that modern (post- Apollo) data sets, their scientific ramifications, and the lunar scientists who investigate these data, are all marginalized in regard to geologic mapping. Marginalization weakens the overall understanding of the geologic evolution of the Moon and unnecessarily partitions lunar research. To bridge these deficiencies, we began a pilot geologic mapping project in 2005 as a means to assess the interest, relevance, and technical methods required for a renewed lunar geologic mapping program [11]. Herein, we provide a summary of the pilot geologic mapping project, which focused on the geologic materials and stratigraphic relationships within the Copernicus quadrangle (0-30degN, 0-45degW).
Publications of the Volcano Hazards Program 2005
Nathenson, Manuel
2007-01-01
The Volcano Hazards Program of the U.S. Geological Survey (USGS) is part of the Geologic Hazards Assessments subactivity as funded by Congressional appropriation. Investigations are carried out in the Geology and Hydrology Disciplines of the USGS and with cooperators at the Alaska Division of Geological and Geophysical Surveys, University of Alaska Fairbanks Geophysical Institute, University of Hawaii Hilo, University of Utah, and University of Washington Geophysics Program. This report lists publications from all these institutions. This report contains only published papers and maps; numerous abstracts produced for presentations at scientific meetings have not been included. Publications are included based on date of publication with no attempt to assign them to Fiscal Year.
Publications of the Volcano Hazards Program 2002
Nathenson, Manuel
2004-01-01
The Volcano Hazards Program of the U.S. Geological Survey (USGS) is part of the Geologic Hazards Assessments subactivity as funded by Congressional appropriation. Investigations are carried out in the Geology and Hydrology Disciplines of the USGS and with cooperators at the Alaska Division of Geological and Geophysical Surveys, University of Alaska Fairbanks Geophysical Institute, University of Hawaii Hilo, University of Utah, and University of Washington Geophysics Program. This report lists publications from all these institutions. This report contains only published papers and maps; numerous abstracts produced for presentations at scientific meetings have not been included. Publications are included based on date of publication with no attempt to assign them to Fiscal Year.
Publications of the Volcano Hazards Program 2006
Nathenson, Manuel
2008-01-01
The Volcano Hazards Program of the U.S. Geological Survey (USGS) is part of the Geologic Hazards Assessments subactivity as funded by Congressional appropriation. Investigations are carried out in the Geology and Hydrology Disciplines of the USGS and with cooperators at the Alaska Division of Geological and Geophysical Surveys, University of Alaska Fairbanks Geophysical Institute, University of Hawaii Hilo, University of Utah, and University of Washington Geophysics Program. This report lists publications from all these institutions. This report contains only published papers and maps; numerous abstracts produced for presentations at scientific meetings have not been included. Publications are included based on date of publication with no attempt to assign them to Fiscal Year.
Publications of the Volcano Hazards Program 2007
Nathenson, Manuel
2009-01-01
The Volcano Hazards Program of the U.S. Geological Survey (USGS) is part of the Geologic Hazards Assessments subactivity as funded by Congressional appropriation. Investigations are carried out in the Geology and Hydrology Disciplines of the USGS and with cooperators at the Alaska Division of Geological and Geophysical Surveys, University of Alaska Fairbanks Geophysical Institute, University of Hawaii Hilo, University of Utah, and University of Washington Geophysics Program. This report lists publications from all these institutions. This report contains only published papers and maps; numerous abstracts produced for presentations at scientific meetings have not been included. Publications are included based on date of publication with no attempt to assign them to Fiscal Year.
Publications of the Volcano Hazards Program 2004
Nathenson, Manuel
2006-01-01
The Volcano Hazards Program of the U.S. Geological Survey (USGS) is part of the Geologic Hazards Assessments subactivity as funded by Congressional appropriation. Investigations are carried out in the Geology and Hydrology Disciplines of the USGS and with cooperators at the Alaska Division of Geological and Geophysical Surveys, University of Alaska Fairbanks Geophysical Institute, University of Hawaii Hilo, University of Utah, and University of Washington Geophysics Program. This report lists publications from all these institutions. This bibliographic report contains only published papers and maps; numerous abstracts produced for presentations at scientific meetings have not been included. Publications are included based on date of publication with no attempt to assign them to Fiscal Year.
Publications of the Volcano Hazards Program 2001
Nathenson, Manuel
2002-01-01
The Volcano Hazards Program of the U.S. Geological Survey (USGS) is part of the Geologic Hazards Assessments subactivity as funded by Congressional appropriation. Investigations are carried out in the Geology and Hydrology Disciplines of the USGS and with cooperators at the Alaska Division of Geological and Geophysical Surveys, University of Alaska Fairbanks Geophysical Institute, University of Hawaii Hilo, University of Utah, and University of Washington Geophysics Program. This report lists publications from all these institutions. This report contains only published papers and maps; numerous abstracts produced for presentations at scientific meetings have not been included. Publications are included based on date of publication with no attempt to assign them to Fiscal Year.
Publications of the Volcano Hazards Program 2008
Nathenson, Manuel
2010-01-01
The Volcano Hazards Program of the U.S. Geological Survey (USGS) is part of the Geologic Hazards Assessments subactivity as funded by Congressional appropriation. Investigations are carried out in the Geology and Hydrology Disciplines of the USGS and with cooperators at the Alaska Division of Geological and Geophysical Surveys, University of Alaska Fairbanks Geophysical Institute, University of Hawaii Manoa and Hilo, University of Utah, and University of Washington Geophysics Program. This report lists publications from all these institutions. This report contains only published papers and maps; numerous abstracts produced for presentations at scientific meetings have not been included. Publications are included based on date of publication with no attempt to assign them to Fiscal Year.
NASA Technical Reports Server (NTRS)
Lang, Harold R.
1991-01-01
A new approach to stratigraphic analysis is described which uses photogeologic and spectral interpretation of multispectral remote sensing data combined with topographic information to determine the attitude, thickness, and lithology of strata exposed at the surface. The new stratigraphic procedure is illustrated by examples in the literature. The published results demonstrate the potential of spectral stratigraphy for mapping strata, determining dip and strike, measuring and correlating stratigraphic sequences, defining lithofacies, mapping biofacies, and interpreting geological structures.
Reconnaissance Geologic Map of the Duncan Canal-Zarembo Island Area, Southeastern Alaska
Karl, Susan M.; Haeussler, Peter J.; McCafferty, Anne E.
1999-01-01
The geologic map of the Duncan Canal-Zarembo Island area is the result of a multidisciplinary investigation of an area where an airborne geophysical survey was flown in the spring of 1997. The area was chosen for the geophysical survey because of its high mineral potential, a conclusion of the Petersburg Mineral Resource Assessment Project, conducted by the U.S. Geological Survey from 1978 to 1982. The City of Wrangell, in southeastern Alaska, the Bureau of Land Management, and the State of Alaska provided funding for the airborne geophysical survey. The geophysical data from the airborne survey were released in September 1997. The U.S. Geological Survey conducted field investigations in the spring and fall of 1998 to identify and understand the sources of the geophysical anomalies from the airborne survey. This geologic map updates the geologic maps of the same area published by David A. Brew at 1:63,360 (Brew, 1997a-m; Brew and Koch, 1997). This update is based on 3 weeks of field work, new fossil collections, and the geophysical maps released by the State of Alaska ( DGGS, Staff, and others, 1997a-o). Geologic data from outcrops, fossil ages, radiometric ages, and geochemical signatures were used to identify lithostratigraphic units. Where exposure is poor, geophysical characteristics were used to help control the boundaries of these units. No unit boundaries were drawn based on geophysics alone. The 7200 Hertz resistivity maps (DGGS, Staff, and others, 1997k-o) were particularly helpful for controlling unit boundaries, because different stratigraphic units have distinctive characteristic conductive signatures (Karl and others, 1998). Increased knowledge of unit ages, unit structure, and unit distribution, led to improved understanding of the nature of unit contacts. Northwest- to southwest-directed thrust faults, particularly on Kupreanof Island, are new discovery. Truncated faults and map patterns suggest there were at least 2 generations of thrusting, and that the thrust faults have been folded. Subsequent right-lateral strike-slip NW-SE faults, have offset thrust faults, and these in turn are offset by N-S right-lateral strike-slip faults. Our fieldwork raised as many questions as it answered, and we see this map as a progress report at a reconnaissance level. The main contributions of this map are 1) the greater distribution of Triassic rocks, 2) increased fossil age information, and 3) the identification of thrust faults within and between units.
NASA Astrophysics Data System (ADS)
Leonov, Y.; Petrov, O. V.; Dong, S.; Morozov, A.; Shokalsky, S.; Pospelov, I.; Erinchek, Y.; Milshteyn, E.
2011-12-01
This project is launched by geological surveys of Russia, China, Mongolia, Kazakhstan and the Republic of Korea with participation of National Academies of Sciences under the aegis of the Commission for the Geological Map of the World since 2004. The project goal is the compilation and subsequent monitoring of the set of digital geological maps for the large part of the Asian continent (20 million km2). Each country finances its own part of the project while all the issues concerning methods and technologies are discussed collectively during annual meetings and joint filed excursions. At the 33d IGC, were shown 4 digital maps of the Atlas at 1: 2,5M - geological, tectonic, metallogenic and energy resources. Geological and energy resources maps were compiled and published by the Chinese part while tectonic and metallogenic maps by Russian side (VSEGEI, Saint-Petersburg). The geological map was also used as the base for the compilation of the other maps of the Atlas. On the tectonic map colours indicate several stages of the continental crust consolidation within fold belts, their tectonic reworking and rifting. The map also shows rock complexes-indicators of geodynamic settings. In the platform areas, the colour reflects the time of beginning of the sedimentary cover formation while its shades reflect the thickness of the sediments. The metallogenic map of the Atlas depicts 1380 objects of metallogenic zoning (from super-provinces to ore clusters) and is accompanied with a database (more than 5000 ore deposits). The map of energy resources with the database contains information on the of coal- and oil-and-gas-bearing basins and main coal and hydrocarbon deposits. In 2009 the study area was extended to the North, East and South in order to embrace bigger territory with ore-bearing Mesozoic-Cenozoic volcanic belts of the Asian continent's Pacific margin. According to nearest plans, discussed with the head of Rosnedra Dr. Anatoliy Ledovskikh and the director of the geological survey of China Dr. Wang Min, in two last years we are going to put into practice the following directions: 1. Study of deep processes and metallogeny of the northern passive and eastern active continental margins of Asia with using of new isotopic data along geotransects and the reprocessing of 3-component seismic data and 3D modeling of the region deep structure. 2. Correlation of the tectonic evolution of the Tibetan Plateau and Baikal rift system in Cenozoic, which is of great importance for understanding the geodynamic evolution of the Central Asia and seismic predictions. 3. Comparison of Siberian and Emeishan major volcanic provinces, accompanied with unique ore deposits. Last VSEGEI isotopic studies revealed the significant role of assimilation of metasedimentary upper crust rocks by mantle magma in the formation of unique Norilsk copper-nickel deposits. The results of the next stage of joint studies under the project will be presented at the 34th IGC, at which a scientific symposium "Geological and Metallogenic Responses to Deep Processes in Eastern Asia and Continental Margins" is to be held.
Geologic map of Chickasaw National Recreation Area, Murray County, Oklahoma
Blome, Charles D.; Lidke, David J.; Wahl, Ronald R.; Golab, James A.
2013-01-01
This 1:24,000-scale geologic map is a compilation of previous geologic maps and new geologic mapping of areas in and around Chickasaw National Recreation Area. The geologic map includes revisions of numerous unit contacts and faults and a number of previously “undifferentiated” rock units were subdivided in some areas. Numerous circular-shaped hills in and around Chickasaw National Recreation Area are probably the result of karst-related collapse and may represent the erosional remnants of large, exhumed sinkholes. Geospatial registration of existing, smaller scale (1:72,000- and 1:100,000-scale) geologic maps of the area and construction of an accurate Geographic Information System (GIS) database preceded 2 years of fieldwork wherein previously mapped geology (unit contacts and faults) was verified and new geologic mapping was carried out. The geologic map of Chickasaw National Recreation Area and this pamphlet include information pertaining to how the geologic units and structural features in the map area relate to the formation of the northern Arbuckle Mountains and its Arbuckle-Simpson aquifer. The development of an accurate geospatial GIS database and the use of a handheld computer in the field greatly increased both the accuracy and efficiency in producing the 1:24,000-scale geologic map.
NADM Conceptual Model 1.0 -- A Conceptual Model for Geologic Map Information
,
2004-01-01
Executive Summary -- The NADM Data Model Design Team was established in 1999 by the North American Geologic Map Data Model Steering Committee (NADMSC) with the purpose of drafting a geologic map data model for consideration as a standard for developing interoperable geologic map-centered databases by state, provincial, and federal geological surveys. The model is designed to be a technology-neutral conceptual model that can form the basis for a web-based interchange format using evolving information technology (e.g., XML, RDF, OWL), and guide implementation of geoscience databases in a common conceptual framework. The intended purpose is to allow geologic information sharing between geologic map data providers and users, independent of local information system implementation. The model emphasizes geoscience concepts and relationships related to information presented on geologic maps. Design has been guided by an informal requirements analysis, documentation of existing databases, technology developments, and other standardization efforts in the geoscience and computer-science communities. A key aspect of the model is the notion that representation of the conceptual framework (ontology) that underlies geologic map data must be part of the model, because this framework changes with time and understanding, and varies between information providers. The top level of the model distinguishes geologic concepts, geologic representation concepts, and metadata. The geologic representation part of the model provides a framework for representing the ontology that underlies geologic map data through a controlled vocabulary, and for establishing the relationships between this vocabulary and a geologic map visualization or portrayal. Top-level geologic classes in the model are Earth material (substance), geologic unit (parts of the Earth), geologic age, geologic structure, fossil, geologic process, geologic relation, and geologic event.
Garrity, Christopher P.; Soller, David R.
2009-01-01
The Geological Society of America's (GSA) Geologic Map of North America (Reed and others, 2005; 1:5,000,000) shows the geology of a significantly large area of the Earth, centered on North and Central America and including the submarine geology of parts of the Atlantic and Pacific Oceans. This map is now converted to a Geographic Information System (GIS) database that contains all geologic and base-map information shown on the two printed map sheets and the accompanying explanation sheet. We anticipate this map database will be revised at some unspecified time in the future, likely through the actions of a steering committee managed by the Geological Society of America (GSA) and staffed by scientists from agencies including, but not limited to, those responsible for the original map compilation (U.S. Geological Survey, Geological Survey of Canada, and Woods Hole Oceanographic Institute). Regarding the use of this product, as noted by the map's compilers: 'The Geologic Map of North America is an essential educational tool for teaching the geology of North America to university students and for the continuing education of professional geologists in North America and elsewhere. In addition, simplified maps derived from the Geologic Map of North America are useful for enlightening younger students and the general public about the geology of the continent.' With publication of this database, the preparation of any type of simplified map is made significantly easier. More important perhaps, the database provides a more accessible means to explore the map information and to compare and analyze it in conjunction with other types of information (for example, land use, soils, biology) to better understand the complex interrelations among factors that affect Earth resources, hazards, ecosystems, and climate.
Griscom, Andrew
1983-01-01
Eleven magnetic interpretation maps (scale 1:250,000) have been prepared for the area .of. exposed crystalline rocks in the Southern Najd and part of the Southern Tuwayq quadrangles (scale 1:500,000) from available published data. Boundaries of a variety of rock units that produce distinctive magnetic anomalies .or anomaly patterns are delineated. In some cases these magnetic boundaries correspond with previously mapped geologic contacts, and in other cases they indicate the possibility of additional, as yet unmapped, geologic contacts. The magnetic boundaries also allow the extrapolation of geologic contacts across areas covered by Quaternary deposits. Many boundaries are identified as part of the Najd fault system, and offset magnetic anomalies may be correlated across certain fault zones. Approximate dips were calculated for a few boundaries that represent igneous contacts, faults, or unconformities. Some characteristic anomalies appear to be associated in a general way with areas of gold mineralization and thus provide a guide for further prospecting.
NASA Astrophysics Data System (ADS)
Lang, K. A.; Petrie, G.
2014-12-01
Extended field-based summer courses provide an invaluable field experience for undergraduate majors in the geosciences. These courses often utilize the construction of geological maps and structural cross sections as the primary pedagogical tool to teach basic map orientation, rock identification and structural interpretation. However, advances in the usability and ubiquity of Geographic Information Systems in these courses presents new opportunities to evaluate student work. In particular, computer-based quantification of systematic mapping errors elucidates the factors influencing student success in the field. We present a case example from a mapping exercise conducted in a summer Field Geology course at a popular field location near Dillon, Montana. We use a computer algorithm to automatically compare the placement and attribution of unit contacts with spatial variables including topographic slope, aspect, bedding attitude, ground cover and distance from starting location. We compliment analyses with anecdotal and survey data that suggest both physical factors (e.g. steep topographic slope) as well as structural nuance (e.g. low angle bedding) may dominate student frustration, particularly in courses with a high student to instructor ratio. We propose mechanisms to improve student experience by allowing students to practice skills with orientation games and broadening student background with tangential lessons (e.g. on colluvial transport processes). As well, we suggest low-cost ways to decrease the student to instructor ratio by supporting returning undergraduates from previous years or staging mapping over smaller areas. Future applications of this analysis might include a rapid and objective system for evaluation of student maps (including point-data, such as attitude measurements) and quantification of temporal trends in student work as class sizes, pedagogical approaches or environmental variables change. Long-term goals include understanding and characterizing stochasticity in geological mapping beyond the undergraduate classroom, and better quantifying uncertainty in published map products.
Using satellite data in map design and production
Hutchinson, John A.
2002-01-01
Satellite image maps have been produced by the U.S. Geological Survey (USGS) since shortly after the launch of the first Landsat satellite in 1972. Over the years, the use of image data to design and produce maps has developed from a manual and photographic process to one that incorporates geographic information systems, desktop publishing, and digital prepress techniques. At the same time, the content of most image-based maps produced by the USGS has shifted from raw image data to land cover or other information layers derived from satellite imagery, often portrayed in combination with shaded relief.
A digital geologic map database for the state of Oklahoma
Heran, William D.; Green, Gregory N.; Stoeser, Douglas B.
2003-01-01
This dataset is a composite of part or all of the 12 1:250,000 scale quadrangles that make up Oklahoma. The result looks like a geologic map of the State of Oklahoma. But it is only an Oklahoma shaped map clipped from the 1:250,000 geologic maps. This is not a new geologic map. No new mapping took place. The geologic information from each quadrangle is available within the composite dataset.
Hampton, E.R.
1975-01-01
What is the rainfall of this region? What areas are prone to periodic flooding? What is the water supply? What is the chemical quality of the ground water and water in the streams? How deep is the water table? Which streams are gaged, and where? These and similar questions are being asked regularly by land and resource developers, urban planners, industrial consultants, and governmental resource managers. This map provides the first step toward answering these questions. It shows by symbols and color the hydrologic data published as of January 1974 for the Greater Denver area by the U.S. Environmental Data Service and by the U.S. Geological Survey and cooperating agencies, and the points or areas where these data have been collected. The sources of the data are given in both the following discussion and the references.
Valentine, Page C.; Gallea, Leslie B.; Blackwood, Dann S.; Twomey, Erin R.
2010-01-01
The U.S. Geological Survey, in collaboration with National Oceanic and Atmospheric Administration's National Marine Sanctuary Program, conducted seabed mapping and related research in the Stellwagen Bank National Marine Sanctuary region from 1993 to 2004. The mapped area is approximately 3,700 km (1,100 nmi) in size and was subdivided into 18 quadrangles. An extensive series of sea-floor maps of the region based on multibeam sonar surveys has been published as paper maps and online in digital format (PDF, EPS, PS). In addition, 2,628 seabed-sediment samples were collected and analyzed and are in the usSEABED: Atlantic Coast Offshore Surficial Sediment Data Release. This report presents for viewing and downloading the more than 10,600 still seabed photographs that were acquired during the project. The digital images are provided in thumbnail, medium (1536 x 1024 pixels), and high (3071 x 2048) resolution. The images can be viewed by quadrangle on the U.S. Geological Survey Woods Hole Coastal and Marine Science Center's photograph database. Photograph metadata are embedded in each image in Exchangeable Image File Format and also provided in spreadsheet format. Published digital topographic maps and descriptive text for seabed features are included here for downloading and serve as context for the photographs. An interactive topographic map for each quadrangle shows locations of photograph stations, and each location is linked to the photograph database. This map also shows stations where seabed sediment was collected for texture analysis; the results of grain-size analysis and associated metadata are presented in spreadsheet format.
Fullerton, David S.; Colton, Roger B.; Bush, Charles A.; Straub, Arthur W.
2004-01-01
This report is an overview of glacial limits and glacial history on the plains in northern Montana and northeastern North Dakota (long 102?-114?W.) and also in adjacent southern Alberta and Saskatchewan, Canada. In the Rocky Mountains and on the plains adjacent to the mountains in Montana, the map also depicts spatial relations of valley glaciers and piedmont ice lobes to continental ice sheets. Glacial limits east of 102?, in the United States and also in adjacent Canada, are depicted on published maps of the U.S. Geological Survey Quaternary Geologic Atlas of the United States (I-1420) map series. The limits shown here are from data compiled for the Lethbridge, Regina, Yellowstone, and Big Horn Mountains 4? x 6? quadrangles in the Quaternary Geologic Atlas series. This geospatial database has been prepared with a degree of detail appropriate for viewing at a scale of 1:1,000,000. Because of the degree of generalization required, the map is intended for regional analysis, rather than for detailed analysis in specific areas. It depicts the geographic positions of the limits of mountain and continental glaciations and the limits of selected glacial readvances. That information provides a foundation for reconstruction of geologic history and for reconstruction. The base map is simplified. Selected hydrographic features, selected towns and cities, selected physiographic features, and a grid of 1? x 2? topographic quadrangles are included to aid the reader in location of the glacial limits and other features that are depicted here on other maps at different scales. Most of the geologic data were compiled at 1:250,000 scale. The nominal reading scale of the digitized map data is 1:1,000,000. Enlargement will not restore resolution that was lost by simplification or generalization of data. Accompanying illustrations show regional directions of ice movement from Canada into the United States during maximum Illinoian glaciation, during maximum late Wisconsin glaciation, and during a later regional glacial readvance maximum
Geologic maps of the eastern Alaska Range, Alaska (1:63,360 scale)
Nokleberg, Warren J.; Aleinikoff, John N.; Bond, Gerard C.; Ferrians, Oscar J.; Herzon, Paige L.; Lange, Ian M.; Miyaoka, Ronny T.; Richter, Donald H.; Schwab, Carl E.; Silva, Steven R.; Smith, Thomas E.; Zehner, Richard E.
2015-01-01
This report provides a description of map units for a suite of 44 inch-to-mile (1:63,360-scale) geologic quadrangle maps of the eastern Alaska Range. This report also contains a geologic and tectonic summary and a comprehensive list of references pertaining to geologic mapping and specialized studies of the region. In addition to the geologic maps of the eastern Alaska Range, this package includes a list of map units and an explanation of map symbols and abbreviations. The geologic maps display detailed surficial and bedrock geology, structural and stratigraphic data, portrayal of the active Denali fault that bisects the core of the east–west-trending range, and portrayal of other young faults along the north and south flanks of the range.
Nasa's Planetary Geologic Mapping Program: Overview
NASA Astrophysics Data System (ADS)
Williams, D. A.
2016-06-01
NASA's Planetary Science Division supports the geologic mapping of planetary surfaces through a distinct organizational structure and a series of research and analysis (R&A) funding programs. Cartography and geologic mapping issues for NASA's planetary science programs are overseen by the Mapping and Planetary Spatial Infrastructure Team (MAPSIT), which is an assessment group for cartography similar to the Mars Exploration Program Assessment Group (MEPAG) for Mars exploration. MAPSIT's Steering Committee includes specialists in geological mapping, who make up the Geologic Mapping Subcommittee (GEMS). I am the GEMS Chair, and with a group of 3-4 community mappers we advise the U.S. Geological Survey Planetary Geologic Mapping Coordinator (Dr. James Skinner) and develop policy and procedures to aid the planetary geologic mapping community. GEMS meets twice a year, at the Annual Lunar and Planetary Science Conference in March, and at the Annual Planetary Mappers' Meeting in June (attendance is required by all NASA-funded geologic mappers). Funding programs under NASA's current R&A structure to propose geological mapping projects include Mars Data Analysis (Mars), Lunar Data Analysis (Moon), Discovery Data Analysis (Mercury, Vesta, Ceres), Cassini Data Analysis (Saturn moons), Solar System Workings (Venus or Jupiter moons), and the Planetary Data Archiving, Restoration, and Tools (PDART) program. Current NASA policy requires all funded geologic mapping projects to be done digitally using Geographic Information Systems (GIS) software. In this presentation we will discuss details on how geologic mapping is done consistent with current NASA policy and USGS guidelines.
Novice to Expert Cognition During Geologic Bedrock Mapping
NASA Astrophysics Data System (ADS)
Petcovic, H. L.; Libarkin, J.; Hambrick, D. Z.; Baker, K. M.; Elkins, J. T.; Callahan, C. N.; Turner, S.; Rench, T. A.; LaDue, N.
2011-12-01
Bedrock geologic mapping is a complex and cognitively demanding task. Successful mapping requires domain-specific content knowledge, visuospatial ability, navigation through the field area, creating a mental model of the geology that is consistent with field data, and metacognition. Most post-secondary geology students in the United States receive training in geologic mapping, however, not much is known about the cognitive processes that underlie successful bedrock mapping, or about how these processes change with education and experience. To better understand cognition during geologic mapping, we conducted a 2-year research study in which 67 volunteers representing a range from undergraduate sophomore to 20+ years professional experience completed a suite of cognitive measures plus a 1-day bedrock mapping task in the Rocky Mountains, Montana, USA. In addition to participants' geologic maps and field notes, the cognitive suite included tests and questionnaires designed to measure: (1) prior geologic experience, via a self-report survey; (2) geologic content knowledge, via a modified version of the Geoscience Concept Inventory; (3) visuospatial ability, working memory capacity, and perceptual speed, via paper-and-pencil and computerized tests; (4) use of space and time during mapping via GPS tracking; and (5) problem-solving in the field via think-aloud audio logs during mapping and post-mapping semi-structured interviews. Data were examined for correlations between performance on the mapping task and other measures. We found that both geological knowledge and spatial visualization ability correlated positively with accuracy in the field mapping task. More importantly, we found a Visuospatial Ability × Geological Knowledge interaction, such that visuospatial ability positively predicted mapping performance at low, but not high, levels of geological knowledge. In other words, we found evidence to suggest that visuospatial ability mattered for bedrock mapping for the novices in our sample, but not for the experts. For experienced mappers, we found a significant correlation between GCI scores and the thoroughness with which they covered the map area, plus a relationship between speed and map accuracy such that faster mappers produced better maps. However, fast novice mappers tended to produce the worst maps. Successful mappers formed a mental model of the underlying geologic structure immediately to early in the mapping task, then spent field time collecting observations to confirm, disconfirm, or modify their initial model. In contrast, the least successful mappers (all inexperienced) rarely generated explanations or models of the underlying geologic structure in the field.
Digitally enhanced GLORIA images for petroleum exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prindle, R.O.; Lanz, K
1990-05-01
This poster presentation graphically depicts the geological and structural information that can be derived from digitally enhanced Geological Long Range Inclined Asdic (GLORIA) sonar images. This presentation illustrates the advantages of scale enlargement as an interpreter's tool in an offshore area within the Eel River Basin, Northern California. Sonographs were produced from digital tapes originally collected for the exclusive economic zone (EEZ)-SCAN 1984 survey, which was published in the Atlas of the Western Conterminous US at a scale of 1:500,000. This scale is suitable for displaying regional offshore tectonic features but does not have the resolution required for detailed geologicalmore » mapping necessary for petroleum exploration. Applications of digital enhancing techniques which utilize contrast stretching and assign false colors to wide-swath sonar imagery (approximately 40 km) with 50-m resolution enables the acquisition and interpretation of significantly more geological and structural data. This, combined with a scale enlargement to 1:100,000 and high contrast contact prints vs. the offset prints of the atlas, increases the resolution and sharpness of bathymetric features so that many more subtle features may be mapped in detail. A tectonic interpretation of these digitally enhanced GLORIA sonographs from the Eel River basin is presented, displaying anticlines, lineaments, ridge axis, pathways of sediment flow, and subtle doming. Many of these features are not present on published bathymetric maps and have not been derived from seismic data because the plan view spatial resolution is much less than that available from the GLORIA imagery.« less
Williamson, Joyce E.; Jarrell, Gregory J.; Clawges, Rick M.; Galloway, Joel M.; Carter, Janet M.
2000-01-01
This compact disk contains digital data produced as part of the 1:100,000-scale map products for the Black Hills Hydrology Study conducted in western South Dakota. The digital data include 28 individual Geographic Information System (GIS) data sets: data sets for the hydrogeologic unit map including all mapped hydrogeologic units within the study area (1 data set) and major geologic structure including anticlines and synclines (1 data set); data sets for potentiometric maps including the potentiometric contours for the Inyan Kara, Minnekahta, Minnelusa, Madison, and Deadwood aquifers (5 data sets), wells used as control points for each aquifer (5 data sets), and springs used as control points for the potentiometric contours (1 data set); and data sets for the structure-contour maps including the structure contours for the top of each formation that contains major aquifers (5 data sets), wells and tests holes used as control points for each formation (5 data sets), and surficial deposits (alluvium and terrace deposits) that directly overlie each of the major aquifer outcrops (5 data sets). These data sets were used to produce the maps published by the U.S. Geological Survey.
Database for the geologic map of Upper Geyser Basin, Yellowstone National Park, Wyoming
Abendini, Atosa A.; Robinson, Joel E.; Muffler, L. J. Patrick; White, D. E.; Beeson, Melvin H.; Truesdell, A. H.
2015-01-01
This dataset contains contacts, geologic units, and map boundaries from Miscellaneous Investigations Series Map I-1371, "The Geologic map of upper Geyser Basin, Yellowstone, National Park, Wyoming". This dataset was constructed to produce a digital geologic map as a basis for ongoing studies of hydrothermal processes.
URBAN STORMWATER INVESTIGATIONS BY THE U. S. GEOLOGICAL SURVEY.
Jennings, Marshall E.
1985-01-01
Urban stormwater hydrology studies in the U. S. Geological Survey are currently focused on compilation of national data bases containing flood-peak and short time-interval rainfall, discharge and water-quality information for urban watersheds. Current data bases, updated annually, are nationwide in scope. Supplementing the national data files are published reports of interpretative analyses, a map report and research products including improved instrumentation and deterministic modeling capabilities. New directions of Survey investigations include gaging programs for very small catchments and for stormwater detention facilities.
The role of photogeologic mapping in traverse planning: Lessons from DRATS 2010 activities
Skinner, James A.; Fortezzo, Corey M.
2013-01-01
We produced a 1:24,000 scale photogeologic map of the Desert Research and Technology Studies (DRATS) 2010 simulated lunar mission traverse area and surrounding environments located within the northeastern part of the San Francisco Volcanic Field (SFVF), north-central Arizona. To mimic an exploratory mission, we approached the region “blindly” by rejecting prior knowledge or preconceived notions of the regional geologic setting and focused instead only on image and topographic base maps that were intended to be equivalent to pre-cursor mission “orbital returns”. We used photogeologic mapping techniques equivalent to those employed during the construction of modern planetary geologic maps. Based on image and topographic base maps, we identified 4 surficial units (talus, channel, dissected, and plains units), 5 volcanic units (older cone, younger cone, older flow, younger flow, and block field units), and 5 basement units (grey-toned mottled, red-toned platy, red-toned layered, light-toned slabby, and light-toned layered units). Comparison of our remote-based map units with published field-based map units indicates that the two techniques yield pervasively similar results of contrasting detail, with higher accuracies linked to remote-based units that have high topographic relief and tonal contrast relative to adjacent units. We list key scientific questions that remained after photogeologic mapping and prior to DRATS activities and identify 13 specific observations that the crew and science team would need to make in order to address those questions and refine the interpreted geologic context. We translated potential observations into 62 recommended sites for visitation and observation during the mission traverse. The production and use of a mission-specific photogeologic map for DRATS 2010 activities resulted in strategic and tactical recommendations regarding observational context and hypothesis tracking over the course of an exploratory mission.
The South Fork detachment fault, Park County, Wyoming: discussion and reply ( USA).
Pierce, W.G.
1986-01-01
Blackstone (1985) published an interpretation of South form detachment fault and related features. His interpretation of the area between Castle and Hardpan transverse faults is identical to mine of 1941. Subsequent detailed mapping has shown that the structure between the transverse faults is more complicated than originally envisioned and resurrected by Blackstone. The present paper describes and discusses geologic features that are the basis for my interpretations; also discussed are differences between my interpretations and those of Blackstone. Most data are shown on the geologic map of the Wapiti Quadrangle (Pierce and Nelson, 1969). Blackstone's 'allochthonous' masses are part of the South Form fault. Occurrences of Sundance Formation, which he interpreted as the upper plate of his 'North Fork fault', are related to Heart Mountain fault. Volcaniclastic rocks south of Jim Mountain mapped as Aycross Formation by Torres and Gingerich may be Cathedral Cliffs Formation, emplaced by movement of the Heart Mountain fault. - Author
A global tectonic activity map with orbital photographic supplement
NASA Technical Reports Server (NTRS)
Lowman, P. D., Jr.
1981-01-01
A three part map showing equatorial and polar regions was compiled showing tectonic and volcanic activity of the past one million years, including the present. Features shown include actively spreading ridges, spreading rates, major active faults, subduction zones, well defined plates, and volcanic areas active within the past one million years. Activity within this period was inferred from seismicity (instrumental and historic), physiography, and published literature. The tectonic activity map was used for planning global geodetic programs of satellite laser ranging and very long base line interferometry and for geologic education.
Geologic map of Big Bend National Park, Texas
Turner, Kenzie J.; Berry, Margaret E.; Page, William R.; Lehman, Thomas M.; Bohannon, Robert G.; Scott, Robert B.; Miggins, Daniel P.; Budahn, James R.; Cooper, Roger W.; Drenth, Benjamin J.; Anderson, Eric D.; Williams, Van S.
2011-01-01
The purpose of this map is to provide the National Park Service and the public with an updated digital geologic map of Big Bend National Park (BBNP). The geologic map report of Maxwell and others (1967) provides a fully comprehensive account of the important volcanic, structural, geomorphological, and paleontological features that define BBNP. However, the map is on a geographically distorted planimetric base and lacks topography, which has caused difficulty in conducting GIS-based data analyses and georeferencing the many geologic features investigated and depicted on the map. In addition, the map is outdated, excluding significant data from numerous studies that have been carried out since its publication more than 40 years ago. This report includes a modern digital geologic map that can be utilized with standard GIS applications to aid BBNP researchers in geologic data analysis, natural resource and ecosystem management, monitoring, assessment, inventory activities, and educational and recreational uses. The digital map incorporates new data, many revisions, and greater detail than the original map. Although some geologic issues remain unresolved for BBNP, the updated map serves as a foundation for addressing those issues. Funding for the Big Bend National Park geologic map was provided by the United States Geological Survey (USGS) National Cooperative Geologic Mapping Program and the National Park Service. The Big Bend mapping project was administered by staff in the USGS Geology and Environmental Change Science Center, Denver, Colo. Members of the USGS Mineral and Environmental Resources Science Center completed investigations in parallel with the geologic mapping project. Results of these investigations addressed some significant current issues in BBNP and the U.S.-Mexico border region, including contaminants and human health, ecosystems, and water resources. Funding for the high-resolution aeromagnetic survey in BBNP, and associated data analyses and interpretation, was from the USGS Crustal Geophysics and Geochemistry Science Center. Mapping contributed from university professors and students was mostly funded by independent sources, including academic institutions, private industry, and other agencies.
McKee, Edwin D.; Crosby, Eleanor J.; Bachman, George O.; Bell, Kenneth G.; Dixon, George H.; Frezon, Sherwood E.; Glick, Ernest E.; Irwin, William P.; Mallory, William W.; Mapel, William J.; Maughan, Edwin K.; Prichard, George E.; Shideler, Gerald L.; Stewart, Gary F.; Wanless, Harold R.; Wilson, Richard F.
1975-01-01
The Pennsylvanian is the fourth geologic system to be analyzed and synthesized by geologists of the U.S. Geological Survey in the form of a paleotectonic study covering the conterminous United States. Earlier investigations were of the Jurassic, Triassic, and Permian Systems. Results were published as Miscellaneous Geologic Investigation Maps I-175, I-300, and I-450 and in Professional Paper 515. The objective of these investigations is to provide in graphic form the factual basis for recognition of tectonic events of each system on a countrywide scale. The maps in this publication depict rock thickness, generalized lithology, ancient geography, and other regional relations of the Pennsylvanian System. Method of preparation of the maps, the stratigraphic limits of the map units, and various stratigraphic and structural features and their probable tectonic significance are discussed. Pennsylvanian data were largely compiled between 1961 and 196 by 16 geologists, including the late Harold R. Wanless, who covered the five eastern regions and contributed to several of the special studies. The areas of responsibility of the cooperating geologists are indicated in figure 1. Work in Kansas was done by Gary F. Stewart, of the Kansas Geological Survey. Results of this investigation are presented in three units. Part I comprises an introduction and 17 chapters, each describing and discussing one of the regions in which the conterminous United States was divided for purposes of study and mapping. Part II is a synthesis of Pennsylvanian history to accompany interpretive maps of the five divisions of the Pennsylvanian System treated in this publication; it also includes a series of chapters on depositional environments, climatic conditions, and economic products of the system. The final section of part II is devoted to an index of localities and sources used in construction of the principal maps of this publication. Part III consists of the plates on which are presented the major maps and sections.
Tectonic map of Indonesia: A progress report
Hamilton, Warren Bell
1970-01-01
Orogeny, volcanism, and seismicity are now intensely active in Indonesia. Many Dutch tectonists--Brouwer, Umbgrove, van Bemifielen, Smit4Sibinga, Vening Meinesz, Westerveld, and others--recognized that this complex cluster of islands represents an early stage in the evolution of orogenic belts. Not until Indonesia is understood can we comprehend the Alps. This report summarizes some aspects of work to date on the Tectonic Map of Indonesia. The preparation of this map is a joint project of the Geological Survey of Indonesia and the United States Geological Survey, sponsored by the Government of Indonesia and the United States Agency for International Development. The Tectonic Map of Indonesia will be published at a scale of 1:5,000,000. Adjacent regions in other countries will be included to provide a broader context. The map limits presently envisaged are the parallels of 12° N. and 15° S., and the meridians of 91° and 148° E. Tectonic features will be shown in many colors and patterns. Bathymetry is being newly compiled, and will be shown with contours and shades of blue. Figure 1 shows the islands of Indonesia.
Moss, C.K.; Abrams, G.A.
1985-01-01
Studies of the geology, geochemistry (Marsh and others, 1983a, b, Erickson, 1984), mines and prospects (Ellis, 1982), and mineral resource potential (Wrucke and others, 1983) of the Mazatzal Wilderness and contiguous roadless areas have been published elsewhere.
Availability of groundwater data for California, water year 2010
Ray, Mary; Orlando, Patricia v.P.
2011-01-01
The U.S. Geological Survey, in cooperation with Federal, State, and local agencies, obtains a large amount of data pertaining to the groundwater resources of California each water year (October 1-September 30). These data constitute a valuable database for developing an improved understanding of the water resources of the State. This Fact Sheet serves as an index to groundwater data for Water Year 2010. It contains a map of California showing the number of wells (by county) with available water-level or water-quality data for Water Year 2010 (fig. 1) and instructions for obtaining this and other groundwater information contained in the databases of the U.S. Geological Survey, California Water Science Center. From 1985 to 1993, data were published in the annual report "Water Resources Data for California, Volume 5. Ground-Water Data"; prior to 1985, the data were published in U.S. Geological Survey Water-Supply Papers.
Publications of the Volcano Hazards Program 2010
Nathenson, Manuel
2012-01-01
The Volcano Hazards Program of the U.S. Geological Survey (USGS) is part of the Geologic Hazards Assessments subactivity as funded by Congressional appropriation. Investigations are carried out in the USGS and with cooperators at the Alaska Division of Geological and Geophysical Surveys, University of Alaska Fairbanks Geophysical Institute, University of Hawaii Manoa and Hilo, University of Utah, and University of Washington Geophysics Program. This report lists publications from all these institutions. Only published papers and maps are included here; numerous abstracts presented at scientific meetings are omitted. Publication dates are based on year of issue, with no attempt to assign them to fiscal year.
Publications of the Volcano Hazards Program 2012
Nathenson, Manuel
2014-01-01
The Volcano Hazards Program of the U.S. Geological Survey (USGS) is part of the Geologic Hazards Assessments subactivity, as funded by Congressional appropriation. Investigations are carried out by the USGS and with cooperators at the Alaska Division of Geological and Geophysical Surveys, University of Alaska Fairbanks Geophysical Institute, University of Hawaii Manoa and Hilo, University of Utah, and University of Washington Geophysics Program. This report lists publications from all of these institutions. Only published papers and maps are included here; abstracts presented at scientific meetings are omitted. Publication dates are based on year of issue, with no attempt to assign them to a fiscal year.
Publications of the Volcano Hazards Program 2009
Nathenson, Manuel
2011-01-01
The Volcano Hazards Program of the U.S. Geological Survey (USGS) is part of the Geologic Hazards Assessments subactivity as funded by congressional appropriation. Investigations are carried out in the USGS and with cooperators at the Alaska Division of Geological and Geophysical Surveys, University of Alaska Fairbanks Geophysical Institute, University of Hawaii Manoa and Hilo, University of Utah, and University of Washington Geophysics Program. This report lists publications from all these institutions. Only published papers and maps are included here; numerous abstracts presented at scientific meetings are omitted. Publications dates are based on year of issue, with no attempt to assign them to fiscal year.
Publications - RI 97-15C | Alaska Division of Geological & Geophysical
content DGGS RI 97-15C Publication Details Title: Surficial geologic map of the Tanana B-1 Quadrangle geologic map of the Tanana B-1 Quadrangle, central Alaska: Alaska Division of Geological & Geophysical Maps & Other Oversized Sheets Sheet 1 Surficial geologic map of the Tanana B-1 Quadrangle, Central
Geologic map of the Devore 7.5' quadrangle, San Bernardino County, California
Morton, Douglas M.; Matti, Jonathan C.
2001-01-01
This Open-File Report contains a digital geologic map database of the Devore 7.5' quadrangle, San Bernardino County, California, that includes: 1. ARC/INFO (Environmental Systems Research Institute) version 7.2.1 coverages of the various components of the geologic map 2. A PostScript (.ps) file to plot the geologic map on a topographic base, containing a Correlation of Map Units diagram, a Description of Map Units, an index map, and a regional structure map 3. Portable Document Format (.pdf) files of: a. This Readme; includes an Appendix, containing metadata details found in devre_met.txt b. The same graphic as plotted in 2 above. (Test plots from this .pdf do not produce 1:24,000-scale maps. Adobe Acrobat page-size settings control map scale.) The Correlation of Map Units and Description of Map Units are in the editorial format of USGS Miscellaneous Investigations Series maps (I-maps) but have not been edited to comply with I-map standards. Within the geologic-map data package, map units are identified by such standard geologic-map criteria as formation name, age, and lithology. Even though this is an author-prepared report, every attempt has been made to closely adhere to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above). If roads in some areas, especially forest roads that parallel topographic contours, do not show well on plots of the geologic map, we recommend use of the USGS Devore 7.5’ topographic quadrangle in conjunction with the geologic map.
Preliminary Geologic Map of the Topanga 7.5' Quadrangle, Southern California: A Digital Database
Yerkes, R.F.; Campbell, R.H.
1995-01-01
INTRODUCTION This Open-File report is a digital geologic map database. This pamphlet serves to introduce and describe the digital data. There is no paper map included in the Open-File report. This digital map database is compiled from previously published sources combined with some new mapping and modifications in nomenclature. The geologic map database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U. S. Geological Survey. For detailed descriptions of the units, their stratigraphic relations and sources of geologic mapping consult Yerkes and Campbell (1994). More specific information about the units may be available in the original sources. The content and character of the database and methods of obtaining it are described herein. The geologic map database itself, consisting of three ARC coverages and one base layer, can be obtained over the Internet or by magnetic tape copy as described below. The processes of extracting the geologic map database from the tar file, and importing the ARC export coverages (procedure described herein), will result in the creation of an ARC workspace (directory) called 'topnga.' The database was compiled using ARC/INFO version 7.0.3, a commercial Geographic Information System (Environmental Systems Research Institute, Redlands, California), with version 3.0 of the menu interface ALACARTE (Fitzgibbon and Wentworth, 1991, Fitzgibbon, 1991, Wentworth and Fitzgibbon, 1991). It is stored in uncompressed ARC export format (ARC/INFO version 7.x) in a compressed UNIX tar (tape archive) file. The tar file was compressed with gzip, and may be uncompressed with gzip, which is available free of charge via the Internet from the gzip Home Page (http://w3.teaser.fr/~jlgailly/gzip). A tar utility is required to extract the database from the tar file. This utility is included in most UNIX systems, and can be obtained free of charge via the Internet from Internet Literacy's Common Internet File Formats Webpage http://www.matisse.net/files/formats.html). ARC/INFO export files (files with the .e00 extension) can be converted into ARC/INFO coverages in ARC/INFO (see below) and can be read by some other Geographic Information Systems, such as MapInfo via ArcLink and ESRI's ArcView (version 1.0 for Windows 3.1 to 3.11 is available for free from ESRI's web site: http://www.esri.com). 1. Different base layer - The original digital database included separates clipped out of the Los Angeles 1:100,000 sheet. This release includes a vectorized scan of a scale-stable negative of the Topanga 7.5 minute quadrangle. 2. Map projection - The files in the original release were in polyconic projection. The projection used in this release is state plane, which allows for the tiling of adjacent quadrangles. 3. File compression - The files in the original release were compressed with UNIX compression. The files in this release are compressed with gzip.
Isostatic Gravity Map with Geology of the Santa Ana 30' x 60' Quadrangle, Southern California
Langenheim, V.E.; Lee, Tien-Chang; Biehler, Shawn; Jachens, R.C.; Morton, D.M.
2006-01-01
This report presents an updated isostatic gravity map, with an accompanying discussion of the geologic significance of gravity anomalies in the Santa Ana 30 by 60 minute quadrangle, southern California. Comparison and analysis of the gravity field with mapped geology indicates the configuration of structures bounding the Los Angeles Basin, geometry of basins developed within the Elsinore and San Jacinto Fault zones, and a probable Pliocene drainage network carved into the bedrock of the Perris block. Total cumulative horizontal displacement on the Elsinore Fault derived from analysis of the length of strike-slip basins within the fault zone is about 5-12 km and is consistent with previously published estimates derived from other sources of information. This report also presents a map of density variations within pre-Cenozoic metamorphic and igneous basement rocks. Analysis of basement gravity patterns across the Elsinore Fault zone suggests 6-10 km of right-lateral displacement. A high-amplitude basement gravity high is present over the San Joaquin Hills and is most likely caused by Peninsular Ranges gabbro and/or Tertiary mafic intrusion. A major basement gravity gradient coincides with the San Jacinto Fault zone and marked magnetic, seismic-velocity, and isotopic gradients that reflect a discontinuity within the Peninsular Ranges batholith in the northeast corner of the quadrangle.
USGS EDMAP Program-Training the Next Generation of Geologic Mappers
,
2010-01-01
EDMAP is an interactive and meaningful program for university students to gain experience and knowledge in geologic mapping while contributing to national efforts to map the geology of the United States. It is a matching-funds grant program with universities and is one of the three components of the congressionally mandated U.S. Geological Survey (USGS) National Cooperative Geologic Mapping Program. Geology professors whose specialty is geologic mapping request EDMAP funding to support upper-level undergraduate and graduate students at their colleges or universities in a 1-year mentor-guided geologic mapping project that focuses on a specific geographic area. Every Federal dollar that is awarded is matched with university funds.
Geologic mapping of Argyre Planitia
NASA Technical Reports Server (NTRS)
Gorsline, Donn S.; Parker, Timothy J.
1995-01-01
This report describes the results from the geologic mapping of the central and southern Argyre basin of Mars. At the Mars Geologic Mapper's Meeting in Flagstaff during July, 1993, Dave Scott (United States Geological Survey, Mars Geologic Mapping Steering Committee Chair) recommended that all four quadrangles be combined into a single 1:1,000,000 scale map for publication. It was agreed that this would be cost-effective and that the decrease in scale would not compromise the original science goals of the mapping. Tim Parker completed mapping on the 1:500,000 scale base maps, for which all the necessary materials had already been produced, and included the work as a chapter in his dissertation, which was completed in the fall of 1994. Geologic mapping of the two southernmost quadrangles (MTM -55036 and MTM -55043; MTM=Mars Transverse Mercator) was completed as planned during the first year of work. These maps and a detailed draft of the map text were given a preliminary review by Dave Scott during summer, 1993. Geologic mapping of the remaining two quadrangles (MTM -50036 and MTM -50043) was completed by summer, 1994. Results were described at the Mars Geologic Mappers Meeting, held in Pocatello, Idaho, during July, 1994. Funds for the third and final year of the project have been transferred to the Jet Propulsion Laboratory, where Tim Parker will revise and finalize all maps and map text for publication by the United States Geological Survey at the 1:1,000,000 map scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-01-01
This volume contains eight appendices: flight line maps, geology maps, explanation of geologic legend, flight line/geology maps, radiometric contour maps, magnetic contour maps, multi-variant analysis maps, and geochemical factor analysis maps. These appendices pertain to the Durango B detail area.
Location and age of foraminifer samples collected by Chevron Petroleum geologists in California
Brabb, Earl E.; Parker, John M.
2003-01-01
Most of the geologic maps published for parts of central California in the past century have been made without the benefit of ages from microfossils. The ages of Jurassic, Cretaceous and Tertiary rocks in the mostly poorly exposed and structurally complex sedimentary rocks represented in the Coast Ranges are critical in determining stratigraphic succession or lack of it, and in determining whether the juxtaposition of similar appearing but different age formations means that a fault is present. Since the 1940's, at least, oil company geologists have used microfossils to assist them in geologic mapping and in determining the environments of deposition of the sedimentary rocks containing them. This information had been so confidential that even the names of species were coded by some paleontologists to prevent disclosure. In the past 20 years, however, the attitude of petroleum companies about this information has changed, and many of the formerly confidential materials and reports are now available. We report here on an estimated 50,000 Chevron foraminifer samples from surface localities in more than 600 U.S. Geological Survey 7.5' quadrangles in California. Ages are provided for more than 27,000 of these samples which have been donated by Chevron, along with locality maps, paleontology reports, and other data, to the California Academy of Sciences. To our knowledge, this collection is the largest ever released to the public by a petroleum company for the West Coast. The information from the slides can be used to update geologic maps prepared without the benefit of microfossils, to study foraminifers of Jurassic, Cretaceous and Tertiary age collected from a variety of geologic environments, to analyze the depth and temperature of ocean water covering parts of California during these periods, and for solving nomenclature and other scientific problems.
Bedrock geologic map of Vermont
Ratcliffe, Nicholas M.; Stanley, Rolfe S.; Gale, Marjorie H.; Thompson, Peter J.; Walsh, Gregory J.; With contributions by Hatch, Norman L.; Rankin, Douglas W.; Doolan, Barry L.; Kim, Jonathan; Mehrtens, Charlotte J.; Aleinikoff, John N.; McHone, J. Gregory; Cartography by Masonic, Linda M.
2011-01-01
The Bedrock Geologic Map of Vermont is the result of a cooperative agreement between the U.S. Geological Survey (USGS) and the State of Vermont. The State's complex geology spans 1.4 billion years of Earth's history. The new map comes 50 years after the most recent map of the State by Charles G. Doll and others in 1961 and a full 150 years since the publication of the first geologic map of Vermont by Edward Hitchcock and others in 1861. At a scale of 1:100,000, the map shows an uncommon level of detail for State geologic maps. Mapped rock units are primarily based on lithology, or rock type, to facilitate derivative studies in multiple disciplines. The 1961 map was compiled from 1:62,500-scale or smaller maps. The current map was created to integrate more detailed (1:12,000- to 1:24,000-scale) modern and older (1:62,500-scale) mapping with the theory of plate tectonics to provide a framework for geologic, tectonic, economic, hydrogeologic, and environmental characterization of the bedrock of Vermont. The printed map consists of three oversize sheets (52 x 76 inches). Sheets 1 and 2 show the southern and northern halves of Vermont, respectively, and can be trimmed and joined so that the entire State can be displayed as a single entity. These sheets also include 10 cross sections and a geologic structure map. Sheet 3 on the front consists of descriptions of 486 map units, a correlation of map units, and references cited. Sheet 3 on the back features a list of the 195 sources of geologic map data keyed to an index map of 7.5-minute quadrangles in Vermont, as well as a table identifying ages of rocks dated by uranium-lead zircon geochronology.
Geologic map of the Fifteenmile Valley 7.5' quadrangle, San Bernardino County, California
Miller, F.K.; Matti, J.C.
2001-01-01
Open-File Report OF 01-132 contains a digital geologic map database of the Fifteenmile Valley 7.5’ quadrangle, San Bernardino County, California that includes: 1. ARC/INFO (Environmental Systems Research Institute, http://www.esri.com) version 7.2.1 coverages of the various elements of the geologic map. 2. A PostScript file to plot the geologic map on a topographic base, and containing a Correlation of Map Units diagram, a Description of Map Units, an index map, and a regional structure map. 3. Portable Document Format (.pdf) files of: a. This Readme; includes in Appendix I, data contained in fif_met.txt b. The same graphic as plotted in 2 above. (Test plots have not produced 1:24,000-scale map sheets. Adobe Acrobat pagesize setting influences map scale.) The Correlation of Map Units (CMU) and Description of Map Units (DMU) is in the editorial format of USGS Miscellaneous Investigations Series (I-series) maps. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Even though this is an author-prepared report, every attempt has been made to closely adhere to the stratigraphic nomenclature of the U. S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above). If roads in some areas, especially forest roads that parallel topographic contours, do not show well on plots of the geologic map, we recommend use of the USGS Fifteenmile Valley 7.5’ topographic quadrangle in conjunction with the geologic map.
Geologic map of the Wildcat Lake 7.5' quadrangle: Kitsap and Mason counties, Washington
Haeussler, Peter J.; Clark, Kenneth P.
2000-01-01
The Wildcat Lake quadrangle lies in the forearc of the Cascadia subduction zone, about 20-km east of the Cascadia accretionary complex exposed in the Olympic Mountains (Tabor and Cady, 1978),and about 100-km west of the axis of the Cascades volcanic arc. The quadrangle lies near the middle of the Puget Lowland, which typically has elevations less than 600 feet (183 m), but on Gold Mountain, in the center of the quadrangle, the elevation rises to 1761 feet (537 m). This anomalously high topography also provides a glimpse of the deeper crust beneath the Lowland. Exposed on Green and Gold Mountains are rocks related to the Coast Range basalt terrane. This terrane consists of Eocene submarine and subaerial tholeiitic basalt of the Crescent Formation, which probably accreted to the continental margin in Eocene time (Snavely and others, 1968). The Coast Range basalt terrane may have originated as an oceanic plateau or by oblique marginal rifting (Babcock and others, 1992), but its subsequent emplacement history is complex (Wells and others, 1984). In southern Oregon, onlapping strata constrain the suturing to have occured by 50 Ma; but on southern Vancouver Island where the terrane-bounding Leech River fault is exposed, Brandon and Vance (1992) concluded suturing to North America occurred in the broad interval between 42 and 24 Ma. After emplacement of the Coast Range basalt terrane, the Cascadia accretionary complex,exposed in the Olympic Mountains west of the quadrangle,developed by frontal accretion and underplating (e.g., Clowes and others, 1987). The Seattle basin, part of which lies to the north of Green Mountain, also began to develop in late Eocene time due to forced flexural subsidence along the Seattle fault zone (Johnson and others, 1994). Domal uplift of the accretionary complex beneath the Olympic Mountains occurred after approximately 18 million years ago (Brandon and others, 1998). Ice-sheet glaciation during Quaternary time reshaped the topography of the quadrangle, and approximately two-thirds of the map area is covered with Quaternary deposits related to the last glaciation. Geophysical studies and regional mapping indicate the Seattle fault lies north of Green Mountain. This fault produced a large earthquake about 1000 years ago and may pose a significant earthquake hazard (Bucknam and others, 1992; Atwater and Moore, 1992; Karlin and Abella,1992; Schuster and others, 1992; Jacoby and others, 1992). We found no evidence of Holocene faulting in the Wildcat Lake quadrangle. Geologic mapping within and marginal to the quadrangle began with Willis (1898), who described glacial deposits in Puget Sound. Weaver (1937) correlated volcanic rocks in the quadrangle to the Eocene Metchosin Volcanics on Vancouver Island. Sceva (1957), Garling and Moleenar (1965), and Deeter (1978) all focused on mapping and understanding the Quaternary stratigraphy of the Kitsap Peninsula, but they also examined bedrock in the quadrangle. Reeve (1979) was the first to examine the igneous rocks on Green and Gold Mountains in some detail, and Clark (1989) significantly improved Reeve's (1979) mapping. Clark's (1989) mapping was conducted soon after extensive logging on the mountains. A surficial geologic map of the Seattle 1:100,000-scale quadrangle, which includes the Wildcat Lake 1:24,000-scale quadrangle, was published by Yount and others (1993). Yount and Gower (1991) also published a bedrock geologic map of the Seattle quadrangle. Geologic mapping for this report was conducted by Haeussler in the spring and summer of 1998 and in the winter of 1999. We could not substantially improve upon the bedrock mapping of Clark (1989) and thus it is incorporated into this map. Well data in the southeastern corner of the map area also helped to constrain the surficial mapping (Geomatrix Consultants, 1997). In addition, 1995 vintage 1:12,000-scale aerial photographs were used in mapping Quaternary deposits. Geologic time scale is that of Berggeren and others (1995).
Conflation and integration of archived geologic maps and associated uncertainties
Shoberg, Thomas G.
2016-01-01
Old, archived geologic maps are often available with little or no associated metadata. This creates special problems in terms of extracting their data to use with a modern database. This research focuses on some problems and uncertainties associated with conflating older geologic maps in regions where modern geologic maps are, as yet, non-existent as well as vertically integrating the conflated maps with layers of modern GIS data (in this case, The National Map of the U.S. Geological Survey). Ste. Genevieve County, Missouri was chosen as the test area. It is covered by six archived geologic maps constructed in the years between 1928 and 1994. Conflating these maps results in a map that is internally consistent with these six maps, is digitally integrated with hydrography, elevation and orthoimagery data, and has a 95% confidence interval useful for further data set integration.
The Role of Geologic Mapping in NASA PDSI Planning
NASA Astrophysics Data System (ADS)
Williams, D. A.; Skinner, J. A.; Radebaugh, J.
2017-12-01
Geologic mapping is an investigative process designed to derive the geologic history of planetary objects at local, regional, hemispheric or global scales. Geologic maps are critical products that aid future exploration by robotic spacecraft or human missions, support resource exploration, and provide context for and help guide scientific discovery. Creation of these tools, however, can be challenging in that, relative to their terrestrial counterparts, non-terrestrial planetary geologic maps lack expansive field-based observations. They rely, instead, on integrating diverse data types wth a range of spatial scales and areal coverage. These facilitate establishment of geomorphic and geologic context but are generally limited with respect to identifying outcrop-scale textural details and resolving temporal and spatial changes in depositional environments. As a result, planetary maps should be prepared with clearly defined contact and unit descriptions as well as a range of potential interpretations. Today geologic maps can be made from images obtained during the traverses of the Mars rovers, and for every new planetary object visited by NASA orbital or flyby spacecraft (e.g., Vesta, Ceres, Titan, Enceladus, Pluto). As Solar System Exploration develops and as NASA prepares to send astronauts back to the Moon and on to Mars, the importance of geologic mapping will increase. In this presentation, we will discuss the past role of geologic mapping in NASA's planetary science activities and our thoughts on the role geologic mapping will have in exploration in the coming decades. Challenges that planetary mapping must address include, among others: 1) determine the geologic framework of all Solar System bodies through the systematic development of geologic maps at appropriate scales, 2) develop digital Geographic Information Systems (GIS)-based mapping techniques and standards to assist with communicating map information to the scientific community and public, 3) develop public awareness of the role and application of geologic map-information to the resolution of national issues relevant to planetary science and eventual off-planet resource assessments, 4) use topical science to drive mapping in areas likely to be determined vital to the welfare of endeavors related to planetary science and exploration.
Subsurface site conditions and geology in the San Fernando earthquake area
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duke, C.M.; Johnson, J.A.; Kharraz, Y.
1971-12-01
The report presents the progress to date in establishing the facts about dynamic subsurface properties and geological features in the area affected by the San Fernando earthquake of February 9, 1971. Special emphasis is given to the locations of accelerographs, seismoscopes and Seismological Field Survey aftershock instruments. Thirty shallow geophysical surveys were made for determination of S and P velocities, with damping measured at some sites. Deep velocity data were obtained from geophysical surveys by others. Soil Mechanics and water well borings by others were utilized. Published and ongoing geological studies were applied. Results are presented in the form ofmore » five geological cross-sections, nine subsurface exploration models extending through basement complex to depths of 14,000 feet, a general geologic map, the shallow geophysical surveys, and selected data on damping.« less
NASA Technical Reports Server (NTRS)
Feng, Wanda; Evans, Cynthia; Gruener, John; Eppler, Dean
2014-01-01
Geologic mapping involves interpreting relationships between identifiable units and landforms to understand the formative history of a region. Traditional field techniques are used to accomplish this on Earth. Mapping proves more challenging for other planets, which are studied primarily by orbital remote sensing and, less frequently, by robotic and human surface exploration. Systematic comparative assessments of geologic maps created by traditional mapping versus photogeology together with data from planned traverses are limited. The objective of this project is to produce a geologic map from data collected on the Desert Research and Technology Studies (RATS) 2010 analog mission using Apollo-style traverses in conjunction with remote sensing data. This map is compared with a geologic map produced using standard field techniques.
Geologic map of Gunnison Gorge National Conservation Area, Delta and Montrose Counties, Colorado
Kellogg, Karl; Hansen, Wallace R.; Tucker, Karen S.; VanSistine, D. Paco
2004-01-01
This publication consists of a geologic map database and printed map sheet. The map sheet has a geologic map as the center piece, and accompanying text describes (1) the various geological units, (2) the uplift history of the region and how it relates to canyon downcutting, (3) the ecology of the gorge, and (4) human history. The map is intended to be used by the general public as well as scientists and goes hand-in-hand with a separate geological guide to Gunnison Gorge.
NASA Astrophysics Data System (ADS)
Galluzzi, V.; Di Achille, G.; Ferranti, L.; Rothery, D. A.; Palumbo, P.
The first stratigraphic and geologic study of Mercury was released by Trask & Guest (1975) followed by Spudis & Guest (1988, and references therein), whose work was based on the images taken by Mariner 10 covering 42% of the total surface of Mercury. The planet has been officially divided into fifteen quadrangles: 2 polar, 5 equatorial and 8 at midlatitudes. Quadrangle H2 (= Hermes sheet n.2), named ``Victoria'' (20oN - 65oN Lon.; 270oE - 0o Lat.), was partially mapped by McGill & King (1983), though a wide area (˜64%) remained unmapped due to the lack of imagery. Following the terrain units recognized and described by the above authors, we have produced a geologic map of the entire quadrangle using MESSENGER (MErcury Surface, Space ENvironment, GEochemistry and Ranging) images. The images taken by the Mercury Dual Imaging System (MDIS) Wide Angle Camera (WAC) and Narrow Angle Camera (NAC) allowed us to map geologic and tectonic features in much greater detail than the previously published map (mapping scale range between 1:300k and 1:600k). We classified craters larger than 20 km using three relative age classes, which are a simplification of the past five degradation classes defined by McCauley et al. (1981). Victoria quadrangle is characterized by a localized N-S thrust array constituted by Victoria Rupes, Endeavour Rupes and Antoniadi Dorsum to the East and by a more diffuse system of NE-SW oriented fault arrays to the West: the two systems seem to be separated by a tectonic bulge. The Victoria-Endeavour-Antoniadi system has been interpreted as a fold-and-thrust belt by Byrne et al. (2014) and a previous study made on craters cross-cut by its thrusts reveals fault dips of 15-20o and a near dip slip motion (Galluzzi et al., 2015). This geologic map has the aim to build a regional model of its structural framework. Deciphering the geological setting of this quadrangle will bring important insights for understanding the tectonic evolution of the whole planet. Moreover, the results obtained with this study can help in the future targeting choices of the BepiColombo SIMBIOSYS instruments.
Geological Mapping Uses Landsat 4-5TM Satellite Data in Manlai Soum of Omnogovi Aimag
NASA Astrophysics Data System (ADS)
Norovsuren, B.
2014-12-01
Author: Bayanmonkh N1, Undram.G1, Tsolmon.R2, Ariunzul.Ya1, Bayartungalag B31 Environmental Research Information and Study Center 2NUM-ITC-UNESCO Space Science and Remote Sensing International Laboratory, National University of Mongolia 3Geology and Hydrology School, Korea University KEY WORDS: geology, mineral resources, fracture, structure, lithologyABSTRACTGeologic map is the most important map for mining when it does exploration job. In Mongolia geological map completed by Russian geologists which is done by earlier technology. Those maps doesn't satisfy for present requirements. Thus we want to study improve geological map which includes fracture, structural map and lithology use Landsat TM4-5 satellite data. If we can produce a geological map from satellite data with more specification then geologist can explain or read mineralogy very easily. We searched all methodology and researches of every single element of geological mapping. Then we used 3 different remote sensing methodologies to produce structural and lithology and fracture map based on geographic information system's softwares. There can be found a visible lithology border improvement and understandable structural map and we found fracture of the Russian geological map has a lot of distortion. The result of research geologist can read mineralogy elements very easy and discovered 3 unfound important elements from satellite image.
Morton, Douglas M.; Digital preparation by Bovard, Kelly R.
2003-01-01
Open-File Report 03-418 is a digital geologic data set that maps and describes the geology of the Fontana 7.5’ quadrangle, Riverside and San Bernardino Counties, California. The Fontana quadrangle database is one of several 7.5’ quadrangle databases that are being produced by the Southern California Areal Mapping Project (SCAMP). These maps and databases are, in turn, part of the nation-wide digital geologic map coverage being developed by the National Cooperative Geologic Map Program of the U.S. Geological Survey (USGS). General Open-File Report 03-418 contains a digital geologic map database of the Fontana 7.5’ quadrangle, Riverside and San Bernardino Counties, California that includes: 1. ARC/INFO (Environmental Systems Research Institute, http://www.esri.com) version 7.2.1 coverages of the various elements of the geologic map. 2. A Postscript file (fon_map.ps) to plot the geologic map on a topographic base, and containing a Correlation of Map Units diagram (CMU), a Description of Map Units (DMU), and an index map. 3. An Encapsulated PostScript (EPS) file (fon_grey.eps) created in Adobe Illustrator 10.0 to plot the geologic map on a grey topographic base, and containing a Correlation of Map Units (CMU), a Description of Map Units (DMU), and an index map. 4. Portable Document Format (.pdf) files of: a. the Readme file; includes in Appendix I, data contained in fon_met.txt b. The same graphics as plotted in 2 and 3 above.Test plots have not produced precise 1:24,000-scale map sheets. Adobe Acrobat page size setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Where known, grain size is indicated on the map by a subscripted letter or letters following the unit symbols as follows: lg, large boulders; b, boulder; g, gravel; a, arenaceous; s, silt; c, clay; e.g. Qyfa is a predominantly young alluvial fan deposit that is arenaceous. Multiple letters are used for more specific identification or for mixed units, e.g., Qfysa is a silty sand. In some cases, mixed units are indicated by a compound symbol; e.g., Qyf2sc. Even though this is an Open-File Report and includes the standard USGS Open-File disclaimer, the report closely adheres to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (4b above) or plotting the postscript files (2 or 3 above).
Prototype of Partial Cutting Tool of Geological Map Images Distributed by Geological Web Map Service
NASA Astrophysics Data System (ADS)
Nonogaki, S.; Nemoto, T.
2014-12-01
Geological maps and topographical maps play an important role in disaster assessment, resource management, and environmental preservation. These map information have been distributed in accordance with Web services standards such as Web Map Service (WMS) and Web Map Tile Service (WMTS) recently. In this study, a partial cutting tool of geological map images distributed by geological WMTS was implemented with Free and Open Source Software. The tool mainly consists of two functions: display function and cutting function. The former function was implemented using OpenLayers. The latter function was implemented using Geospatial Data Abstraction Library (GDAL). All other small functions were implemented by PHP and Python. As a result, this tool allows not only displaying WMTS layer on web browser but also generating a geological map image of intended area and zoom level. At this moment, available WTMS layers are limited to the ones distributed by WMTS for the Seamless Digital Geological Map of Japan. The geological map image can be saved as GeoTIFF format and WebGL format. GeoTIFF is one of the georeferenced raster formats that is available in many kinds of Geographical Information System. WebGL is useful for confirming a relationship between geology and geography in 3D. In conclusion, the partial cutting tool developed in this study would contribute to create better conditions for promoting utilization of geological information. Future work is to increase the number of available WMTS layers and the types of output file format.
Unified Ecoregions of Alaska: 2001
Nowacki, Gregory J.; Spencer, Page; Fleming, Michael; Brock, Terry; Jorgenson, Torre
2003-01-01
Major ecosystems have been mapped and described for the State of Alaska and nearby areas. Ecoregion units are based on newly available datasets and field experience of ecologists, biologists, geologists and regional experts. Recently derived datasets for Alaska included climate parameters, vegetation, surficial geology and topography. Additional datasets incorporated in the mapping process were lithology, soils, permafrost, hydrography, fire regime and glaciation. Thirty two units are mapped using a combination of the approaches of Bailey (hierarchial), and Omernick (integrated). The ecoregions are grouped into two higher levels using a 'tri-archy' based on climate parameters, vegetation response and disturbance processes. The ecoregions are described with text, photos and tables on the published map.
Graymer, R.W.; Langenheim, V.E.; Roberts, M.A.; McDougall, Kristin
2014-01-01
The Cambria 30´ x 60´ quadrangle comprises southwestern Monterey County and northwestern San Luis Obispo County. The land area includes rugged mountains of the Santa Lucia Range extending from the northwest to the southeast part of the map; the southern part of the Big Sur coast in the northwest; broad marine terraces along the southwest coast; and broadvalleys, rolling hills, and modest mountains in the northeast. This report contains geologic, gravity anomaly, and aeromagnetic anomaly maps of the eastern three-fourths of the 1:100,000-scale Cambria quadrangle and the associated geologic and geophysical databases (ArcMap databases), as well as complete descriptions of the geologic map units and the structural relations in the mapped area. A cross section is based on both the geologic map and potential-field geophysical data. The maps are presented as an interactive, multilayer PDF, rather than more traditional pre-formatted map-sheet PDFs. Various geologic, geophysical, paleontological, and base map elements are placed on separate layers, which allows the user to combine elements interactively to create map views beyond the traditional map sheets. Four traditional map sheets (geologic map, gravity map, aeromagnetic map, paleontological locality map) are easily compiled by choosing the associated data layers or by choosing the desired map under Bookmarks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-01-01
This volume comprises eight appendices containing the following information for the Durango D detail area: flight line maps, geology maps, explanation of geologic legend, flight line/geology maps, radiometric contour maps, magnetic contour maps, multi-variant analysis maps, and geochemical factor analysis maps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-01-01
This volume comprises eight appendices containing the following information for the Durango C detail area: flight line maps, geology maps, explanation of geologic legend, flight line/geology maps, radiometric contour maps, magnetic contour maps, multi-variant analysis maps, and geochemical factor analysis maps.
About the geologic map in the National Atlas of the United States of America
Reed, John C.; Bush, Charles A.
2007-01-01
Introduction The geologic map in the National Atlas of the United States of America shows the age, distribution, and general character of the rocks that underlie the Nation, including Alaska, Hawaii, Puerto Rico, and the Virgin Islands (but excluding other small island possessions). (The National Atlas of the United States can be accessed at URL http://nationalatlas.gov/natlas/Natlasstart.asp.) The map depicts the bedrock that lies immediately beneath soils or surficial deposits except where these deposits are so thick and extensive that the type of bedrock beneath them can only be inferred by deep drilling or geophysical methods, or both. Thus, it does not show the extensive glacial deposits of the North Central and Northeastern States, the deep residuum of the Southeastern and South Central States, the relatively thin alluvium along many major rivers and basins, and extensive eolian deposits on the high plains. However, it does show, in a general way, the thick alluvial deposits along the lower Mississippi River and on the Atlantic and Gulf Coastal Plains, and in the deep basins of the western cordillera. The rocks are classified as either sedimentary, volcanic, plutonic, or metamorphic, and their geologic ages are given in terms using a simplified version of the 1999 Geological Society of America geologic time scale. In some places rocks depicted as sedimentary are interlayered with volcanic rocks, including tuff, volcanic breccia, and volcanic flows. Conversely, many of the rocks shown as volcanic include interlayered sedimentary rocks. Plutonic rocks are classified by age and as granitic, intermediate, mafic, or ultramafic, but no similar classification has been attempted for the volcanic rocks in this version of the map. Where sedimentary or volcanic rocks have been metamorphosed but still retain clear evidence of their depositional age and origin, the extent of the metamorphism is shown by a pattern. Where the metamorphism has been so intense that the rocks bear little resemblance to the rocks from which they were derived, they are mapped as gneiss, but the age given is generally the age of the original rocks. The map in the National Atlas is a generalization of a new geologic map of North America that has recently been published by the Geological Society of America. The original compilation was prepared at a scale of 1:2,500,000 for publication at a scale of 1:5,000,000. This generalized version is intended for viewing at scales between about 1:10,000,000 and 1:7,500,000.
Brabb, Earl E.; Parker, John M.
2003-01-01
Most of the geologic maps published for central California before 1960 were made without the benefit of age determinations from microfossils. The ages of Cretaceous and Tertiary rocks in the mostly poorly exposed and structurally complex sedimentary rocks represented in the Coast Ranges are critical in determining stratigraphic succession or lack of it, and in determining whether the juxtaposition of similar appearing but different age formations means a fault is present. Since the 1930’s, at least, oil company geologists have used microfossils to assist them in geologic mapping and in determining the environments of deposition of the sediment containing the microfossils. This information has been so confidential that some companies even coded the names of foraminifers to prevent disclosure. In the past 20 years, however, the attitude of petroleum companies about this information has changed, and many of the formerly confidential materials and reports are now available. We report here on 1,964 Exxon foraminifer samples mostly from surface localities in the San Francisco Bay region, and elsewhere in California. Most but not all the samples were plotted on U. S. Geological Survey (USGS) 7.5’ topographic maps or on obsolete USGS 15’ maps. The information from the slides can be used to update geologic maps prepared without the benefit of microfossil data, to analyze the depth and temperature of ocean water covering parts of California during the Mesozoic and Cenozoic Eras, and for solving nomenclature and other scientific problems. A similar report on more than 30,000 slides for surface samples collected by Chevron geologists has been released (Brabb and Parker, 2003), and another report provides information on slides for more than 2000 oil test wells in Northern California (Brabb, Powell, and Brocher, 2001).
Geologic map of the north polar region of Mars
Tanaka, Kenneth L.; Fortezzo, Corey M.
2012-01-01
The north polar region of Mars occurs within the central and lowest part of the vast northern plains of Mars and is dominated by the roughly circular north polar plateau, Planum Boreum. The northern plains formed very early in Martian time and have collected volcanic flows and sedimentary materials shed from highland sources. Planum Boreum has resulted from the accumulation of water ice and dust particles. Extensive, uncratered dune fields adjacent to Planum Boreum attest to the active and recent transport and accumulation of sand. Our geologic map of Planum Boreum is the first to record its entire observable stratigraphic record using the various post-Viking image and topography datasets released before 2009. We also provide much more detail in the map than previously published, including some substantial revisions based on new data and observations. The available data have increased and improved immensely in quantity, resolution, coverage, positional accuracy, and spectral range, enabling us to resolve previously unrecognized geomorphic features, stratigraphic relations, and compositional information. We also employ more carefully prescribed and effective mapping methodologies and digital techniques, as well as formatting guidelines. The foremost aspect to our mapping approach is how geologic units are discriminated based primarily on their temporal relations with other units as expressed in unit contacts by unconformities or by gradational relations. Whereas timing constraints of such activity in the north polar region are now better defined stratigraphically, they remain poorly constrained chronologically. The end result is a new reconstruction of the sedimentary, erosional, and structural histories of the north polar region and how they may have been driven by climate conditions, available geologic materials, and eolian, periglacial, impact, magmatic, hydrologic, and tectonic activity.
Publications - STATEMAP Project | Alaska Division of Geological &
., 2008, Surficial-geologic map of the Salcha River-Pogo area, Big Delta Quadrangle, Alaska: Alaska , Engineering - geologic map, Alaska Highway corridor, Delta Junction to Dot Lake, Alaska: Alaska Division of geologic map of the Salcha River-Pogo area, Big Delta Quadrangle, Alaska: Alaska Division of Geological
Gray, Floyd; Tosdal, R.M.; Peterson, J.A.; Cox, D.P.; Miller, R.J.; Klein, D.P.; Theobald, P.K.; Haxel, G.B.; Grubensky, M.J.; Raines, G.L.; Barton, H.N.; Singer, D.A.; Eppinger, R.G.
1992-01-01
Encompassing about 21,000 km 2 in southwestern Arizona, the Ajo and Lukeville 1 ? by 2 ? quadrangles have been the subject of mineral resource investigations utilizing field and laboratory studies in the disciplines of geology, geochemistry, geophysics, and Landsat imagery. The results of these studies are published as a folio of maps, figures, and tables, with accompanying discussions. Past mineral production has been limited to copper from the Ajo Mining District. In addition to copper, the quadrangles contain potentially significant resources of gold and silver; a few other commodities, including molybdenum and evaporites, may also exist in the area as appreciable resources. This circular provides background information on the mineral deposits and on the investigations and integrates the information presented in the folio. The bibliography cites references to the geology, geochemistry, geophysics, and mineral deposits of the two quadrangles.
The interoperability skill of the Geographic Portal of the ISPRA - Geological Survey of Italy
NASA Astrophysics Data System (ADS)
Pia Congi, Maria; Campo, Valentina; Cipolloni, Carlo; Delogu, Daniela; Ventura, Renato; Battaglini, Loredana
2010-05-01
The Geographic Portal of Geological Survey of Italy (ISPRA) available at http://serviziogeologico.apat.it/Portal was planning according to standard criteria of the INSPIRE directive. ArcIMS services and at the same time WMS and WFS services had been realized to satisfy the different clients. For each database and web-services the metadata had been wrote in agreement with the ISO 19115. The management architecture of the portal allow it to encode the clients input and output requests both in ArcXML and in GML language. The web-applications and web-services had been realized for each database owner of Land Protection and Georesources Department concerning the geological map at the scale 1:50.000 (CARG Project) and 1:100.000, the IFFI landslide inventory, the boreholes due Law 464/84, the large-scale geological map and all the raster format maps. The portal thus far published is at the experimental stage but through the development of a new graphical interface achieves the final version. The WMS and WFS services including metadata will be re-designed. The validity of the methodology and the applied standards allow to look ahead to the growing developments. In addition to this it must be borne in mind that the capacity of the new geological standard language (GeoSciML), which is already incorporated in the web-services deployed, will be allow a better display and query of the geological data according to the interoperability. The characteristics of the geological data demand for the cartographic mapping specific libraries of symbols not yet available in a WMS service. This is an other aspect regards the standards of the geological informations. Therefore at the moment were carried out: - a library of geological symbols to be used for printing, with a sketch of system colors and a library for displaying data on video, which almost completely solves the problems of the coverage point and area data (also directed) but that still introduces problems for the linear data (solutions: ArcIMS services from Arcmap projects or a specific SLD implementation for WMS services); - an update of "Guidelines for the supply of geological data" in a short time will be published; - the Geological Survey of Italy is officially involved in the IUGS-CGI working group for the processing and experimentation on the new GeoSciML language with the WMS/WFS services. The availability of geographic informations occurs through the metadata that can be distributed online so that search engines can find them through specialized research. The collected metadata in catalogs are structured in a standard (ISO 19135). The catalogs are a ‘common' interface to locate, view and query data and metadata services, web services and other resources. Then, while working in a growing sector of the environmental knowledgement the focus is to collect the participation of other subjects that contribute to the enrichment of the informative content available, so as to be able to arrive to a real portal of national interest especially in case of disaster management.
Using geologic maps and seismic refraction in pavement-deflection analysis
DOT National Transportation Integrated Search
1999-10-01
The researchers examined the relationship between three data types -- geologic maps, pavement deflection, and seismic refraction data -- from diverse geologic settings to determine whether geologic maps and seismic data might be used to interpret def...
Virtual Field Reconnaissance to enable multi-site collaboration in geoscience fieldwork in Chile.
NASA Astrophysics Data System (ADS)
Hughes, Leanne; Bateson, Luke; Ford, Jonathan; Napier, Bruce; Creixell, Christian; Contreras, Juan-Pablo; Vallette, Jane
2017-04-01
The unique challenges of geological mapping in remote terrains can make cross-organisation collaboration challenging. Cooperation between the British and Chilean Geological Surveys and the Chilean national mining company used the BGS digital Mapping Workflow and virtual field reconnaissance software (GeoVisionary) to undertake geological mapping in a complex area of Andean Geology. The international team undertook a pre-field evaluation using GeoVisionary to integrate massive volumes of data and interpret high resolution satellite imagery, terrain models and existing geological information to capture, manipulate and understand geological features and re-interpret existing maps. This digital interpretation was then taken into the field and verified using the BGS digital data capture system (SIGMA.mobile). This allowed the production of final geological interpretation and creation of a geological map. This presentation describes the digital mapping workflow used in Chile and highlights the key advantages of increased efficiency and communication to colleagues, stakeholders and funding bodies.
Geologic map of the Willow Creek Reservoir SE Quadrangle, Elko, Eureka, and Lander Counties, Nevada
Wallace, Alan R.
2003-01-01
Map Scale: 1:24,000 Map Type: colored geologic map A 1:24,000-scale, full-color geologic map of the Willow CreekReservoir 7.5-minute SE Quadrangle in Elko, Eureka, and LanderCounties, Nevada, with two cross sections and descriptions of 24 rock units. Accompanying text discusses the geology, paleogeography, and formation of the Ivanhoe Hg-Au district.
Geologic map of the eastern part of the Challis National Forest and vicinity, Idaho
Wilson, A.B.; Skipp, B.A.
1994-01-01
The paper version of the Geologic Map of the eastern part of the Challis National Forest and vicinity, Idaho was compiled by Anna Wilson and Betty Skipp in 1994. The geology was compiled on a 1:250,000 scale topographic base map. TechniGraphic System, Inc. of Fort Collins Colorado digitized this map under contract for N.Shock. G.Green edited and prepared the digital version for publication as a GIS database. The digital geologic map database can be queried in many ways to produce a variety of geologic maps.
Digital geologic map of the Coeur d'Alene 1:100,000 quadrangle, Idaho and Montana
digital compilation by Munts, Steven R.
2000-01-01
Between 1961 and 1969, Alan Griggs and others conducted fieldwork to prepare a geologic map of the Spokane 1:250,000 map (Griggs, 1973). Their field observations were posted on paper copies of 15-minute quadrangle maps. In 1999, the USGS contracted with the Idaho Geological Survey to prepare a digital version of the Coeur d’Alene 1:100,000 quadrangle. To facilitate this work, the USGS obtained the field maps prepared by Griggs and others from the USGS Field Records Library in Denver, Colorado. The Idaho Geological Survey (IGS) digitized these maps and used them in their mapping program. The mapping focused on field checks to resolve problems in poorly known areas and in areas of disagreement between adjoining maps. The IGS is currently in the process of preparing a final digital spatial database for the Coeur d’Alene 1:100,000 quadrangle. However, there was immediate need for a digital version of the geologic map of the Coeur d’Alene 1:100,000 quadrangle and the data from the field sheets along with several other sources were assembled to produce this interim product. This interim product is the digital geologic map of the Coeur d’Alene 1:100,000 quadrangle, Idaho and Montana. It was compiled from the preliminary digital files prepared by the Idaho Geological, and supplemented by data from Griggs (1973) and from digital databases by Bookstrom and others (1999) and Derkey and others (1996). The resulting digital geologic map (GIS) database can be queried in many ways to produce a variety of geologic maps. Digital base map data files (topography, roads, towns, rivers and lakes, etc.) are not included: they may be obtained from a variety of commercial and government sources. This database is not meant to be used or displayed at any scale larger than 1:100,000 (e.g., 1:62,500 or 1:24,000). The digital geologic map graphics (of00-135_map.pdf) that are provided are representations of the digital database. The map area is located in north Idaho. This open-file report describes the geologic map units, the methods used to convert the geologic map data into a digital format, the ArcInfo GIS file structures and relationships, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet.
Dickinson, William R.; digital database by Hirschberg, Douglas M.; Pitts, G. Stephen; Bolm, Karen S.
2002-01-01
The geologic map of Catalina Core Complex and San Pedro Trough by Dickinson (1992) was digitized for input into a geographic information system (GIS) by the U.S. Geological Survey staff and contractors in 2000-2001. This digital geospatial database is one of many being created by the U.S. Geological Survey as an ongoing effort to provide geologic information in a geographic information system (GIS) for use in spatial analysis. The resulting digital geologic map database data can be queried in many ways to produce a variety of geologic maps and derivative products. Digital base map data (topography, roads, towns, rivers, lakes, and so forth) are not included; they may be obtained from a variety of commercial and government sources. This database is not meant to be used or displayed at any scale larger than 1:125,000 (for example, 1:100,000 or 1:24,000). The digital geologic map plot files that are provided herein are representations of the database. The map area is located in southern Arizona. This report lists the geologic map units, the methods used to convert the geologic map data into a digital format, the ArcInfo GIS file structures and relationships, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet. The manuscript and digital data review by Lorre Moyer (USGS) is greatly appreciated.
Berg, Richard C.; Brown, Steven E.; Thomason, Jason F.; Hasenmueller, Nancy R.; Letsinger, Sally L.; Kincare, Kevin A.; Esch, John M.; Kehew, Alan E.; Thorleifson, L. Harvey; Kozlowski, Andrew L.; Bird, Brian C.; Pavey, Richard R.; Bajc, Andy F.; Burt, Abigail K.; Fleeger, Gary M.; Carson, Eric C.
2016-01-01
The Great Lakes Geologic Mapping Coalition (GLGMC), consisting of state geological surveys from all eight Great Lakes states, the Ontario Geological Survey, and the U.S. Geological Survey, was conceived out of a societal need for unbiased and scientifically defensible geologic information on the shallow subsurface, particularly the delineation, interpretation, and viability of groundwater resources. Only a small percentage (<10%) of the region had been mapped in the subsurface, and there was recognition that no single agency had the financial, intellectual, or physical resources to conduct such a massive geologic mapping effort at a detailed scale over a wide jurisdiction. The GLGMC provides a strategy for generating financial and stakeholder support for three-dimensional (3-D) geologic mapping, pooling of physical and personnel resources, and sharing of mapping and technological expertise to characterize the thick cover of glacial sediments. Since its inception in 1997, the GLGMC partners have conducted detailed surficial and 3-D geologic mapping within all jurisdictions, and concurrent significant scientific advancements have been made to increase understanding of the history and framework of geologic processes. More importantly, scientific information has been provided to public policymakers in understandable formats, emphasis has been placed on training early-career scientists in new mapping techniques and emerging technologies, and a successful model has been developed of state/provincial and federal collaboration focused on geologic mapping, as evidenced by this program's unprecedented and long-term successful experiment of 10 geological surveys working together to address common issues.
Aniakchak National Monument and Preserve: Geologic resources inventory report
Hults, Chad P.; Neal, Christina
2015-01-01
This GRI report is a companion document to previously completed GRI digital geologic map data. It was written for resource managers to support science-informed decision making. It may also be useful for interpretation. The report was prepared using available geologic information, and the NPS Geologic Resources Division conducted no new fieldwork in association with its preparation. Sections of the report discuss distinctive geologic features and processes within the park, highlight geologic issues facing resource managers, describe the geologic history leading to the present-day landscape, and provide information about the GRI geologic map data. A poster illustrates these data. The Map Unit Properties Table summarizes report content for each geologic map unit.
High-Resolution geophysical data from the inner continental shelf at Vineyard Sound, Massachusetts
Andrews, Brian D.; Ackerman, Seth D.; Baldwin, Wayne E.; Foster, David S.; Schwab, William C.
2013-01-01
The U.S. Geological Survey (USGS) and the Massachusetts Office of Coastal Zone Management (CZM) have mapped approximately 340 square kilometers of the inner continental shelf in Vineyard Sound, Massachusetts, under a cooperative mapping program. The geophysical data collected between 2009 and 2011 by the U.S. Geological Survey as part of this program are published in this report. The data include (1) swath bathymetry from interferometric sonar, (2) acoustic backscatter from sidescan sonar, and (3) seismic-reflection profiles from a chirp subbottom profiler. These data were collected to support research on the influence of sea-level change and sediment supply on coastal evolution and sediment transport processes and to provide baseline seabed characterization information required for management of coastal and offshore resources within the coastal zone of Massachusetts.
Koch, Richard D.; Ramsey, David W.; Christiansen, Robert L.
2011-01-01
The superlative hot springs, geysers, and fumarole fields of Yellowstone National Park are vivid reminders of a recent volcanic past. Volcanism on an immense scale largely shaped the unique landscape of central and western Yellowstone Park, and intimately related tectonism and seismicity continue even now. Furthermore, the volcanism that gave rise to Yellowstone's hydrothermal displays was only part of a long history of late Cenozoic eruptions in southern and eastern Idaho, northwestern Wyoming, and southwestern Montana. The late Cenozoic volcanism of Yellowstone National Park, although long believed to have occurred in late Tertiary time, is now known to have been of latest Pliocene and Pleistocene age. The eruptions formed a complex plateau of voluminous rhyolitic ash-flow tuffs and lavas, but basaltic lavas too have erupted intermittently around the margins of the rhyolite plateau. Volcanism almost certainly will recur in the Yellowstone National Park region. This digital release contains all the information used to produce the geologic maps published as plates in U.S. Geological Survey Professional Paper 729-G (Christiansen, 2001). The main component of this digital release is a geologic map database prepared using geographic information systems (GIS) applications. This release also contains files to view or print the geologic maps and main report text from Professional Paper 729-G.
Holocene evolution of Apalachicola Bay, Florida
Osterman, Lisa E.; Twichell, David C.
2011-01-01
A program of geophysical mapping and vibracoring was conducted in 2007 to better understand the geologic evolution of Apalachicola Bay and its response to sea-level rise. A detailed geologic history could help better understand how this bay may respond to both short-term (for example, storm surge) and long-term sea-level rise. The results of this study were published (Osterman and others, 2009) as part of a special issue of Geo-Marine Letters that documents early results from the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazard Susceptibility Project.
Geologic map of the Cucamonga Peak 7.5' quadrangle, San Bernardino County, California
Morton, D.M.; Matti, J.C.; Digital preparation by Koukladas, Catherine; Cossette, P.M.
2001-01-01
a. This Readme; includes in Appendix I, data contained in fif_met.txt b. The same graphic as plotted in 2 above. (Test plots have not produced 1:24,000-scale map sheets. Adobe Acrobat pagesize setting influences map scale.) The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Miscellaneous Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Even though this is an author-prepared report, every attempt has been made to closely adhere to the stratigraphic nomenclature of the U. S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above). If roads in some areas, especially forest roads that parallel topographic contours, do not show well on plots of the geologic map, we recommend use of the USGS Cucamonga Peak 7.5’ topographic quadrangle in conjunction with the geologic map.
Geologic map of the Telegraph Peak 7.5' quadrangle, San Bernardino County, California
Morton, D.M.; Woodburne, M.O.; Foster, J.H.; Morton, Gregory; Cossette, P.M.
2001-01-01
a. This Readme; includes in Appendix I, data contained in fif_met.txt b. The same graphic as plotted in 2 above. Test plots have not produced 1:24,000-scale map sheets. Adobe Acrobat pagesize setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Miscellaneous Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Even though this is an author-prepared report, every attempt has been made to closely adhere to the stratigraphic nomenclature of the U. S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above). If roads in some areas, especially forest roads that parallel topographic contours, do not show well on plots of the geologic map, we recommend use of the USGS Telegraph Peak 7.5’ topographic quadrangle in conjunction with the geologic map.
Geologic map of the Valjean Hills 7.5' quadrangle, San Bernardino County, California
Calzia, J.P.; Troxel, Bennie W.; digital database by Raumann, Christian G.
2003-01-01
FGDC-compliant metadata for the ARC/INFO coverages. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Even though this is an Open-File Report and includes the standard USGS Open-File disclaimer, the report closely adheres to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3 above) or plotting the postscript file (2 above).
Semantics-informed cartography: the case of Piemonte Geological Map
NASA Astrophysics Data System (ADS)
Piana, Fabrizio; Lombardo, Vincenzo; Mimmo, Dario; Giardino, Marco; Fubelli, Giandomenico
2016-04-01
In modern digital geological maps, namely those supported by a large geo-database and devoted to dynamical, interactive representation on WMS-WebGIS services, there is the need to provide, in an explicit form, the geological assumptions used for the design and compilation of the database of the Map, and to get a definition and/or adoption of semantic representation and taxonomies, in order to achieve a formal and interoperable representation of the geologic knowledge. These approaches are fundamental for the integration and harmonisation of geological information and services across cultural (e.g. different scientific disciplines) and/or physical barriers (e.g. administrative boundaries). Initiatives such as GeoScience Markup Language (last version is GeoSciML 4.0, 2015, http://www.geosciml.org) and the INSPIRE "Data Specification on Geology" http://inspire.jrc.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_GE_v3.0rc3.pdf (an operative simplification of GeoSciML, last version is 3.0 rc3, 2013), as well as the recent terminological shepherding of the Geoscience Terminology Working Group (GTWG) have been promoting information exchange of the geologic knowledge. Grounded on these standard vocabularies, schemas and data models, we provide a shared semantic classification of geological data referring to the study case of the synthetic digital geological map of the Piemonte region (NW Italy), named "GEOPiemonteMap", developed by the CNR Institute of Geosciences and Earth Resources, Torino (CNR IGG TO) and hosted as a dynamical interactive map on the geoportal of ARPA Piemonte Environmental Agency. The Piemonte Geological Map is grounded on a regional-scale geo-database consisting of some hundreds of GeologicUnits whose thousands instances (Mapped Features, polygons geometry) widely occur in Piemonte region, and each one is bounded by GeologicStructures (Mapped Features, line geometry). GeologicUnits and GeologicStructures have been spatially correlated through the whole region and described using the GeoSciML vocabularies. A hierarchical schema is provided for the Piemonte Geological Map that gives the parental relations between several orders of GeologicUnits referring to mostly recurring geological objects and main GeologicEvents, in a logical framework compliant with GeoSciML and INSPIRE data models. The classification criteria and the Hierarchy Schema used to define the GEOPiemonteMap Legend, as well as the intended meanings of the geological concepts used to achieve the overall classification schema, are explicitly described in several WikiGeo pages (implemented by "MediaWiki" open source software, https://www.mediawiki.org/wiki/MediaWiki). Moreover, a further step toward a formal classification of the contents (both data and interpretation) of the GEOPiemonteMap was triggered, by setting up an ontological framework, named "OntoGeonous", in order to achieve a thorough semantic characterization of the Map.
Publications - PDF 98-37A v. 1.1 | Alaska Division of Geological &
main content DGGS PDF 98-37A v. 1.1 Publication Details Title: Geologic map of the Tanana A-1 and A-2 ., 1998, Geologic map of the Tanana A-1 and A-2 quadrangles, central Alaska: Alaska Division of Geological & Other Oversized Sheets Maps & Other Oversized Sheets Sheet 1 Preliminary geologic map of the
Stratigraphic sections of the Phosphoria formation in Idaho, 1947-48, Part I
McKelvey, Vincent Ellis; Davidson, D.F.; O'Malley, F. W.; Smith, L.E.; Armstrong, F.C.; Sheldon, R.P.
1952-01-01
The Permian Phosphoria formation of the western states contains one of the world's largest reserves of phosphate. Although previous investigations (see especially Mansfield, 1927), including reconnaissance geologic mapping and sampling, established the location of most of the important deposits and their quality of scattered localities, they were not sufficiently detailed to permit a comparison of the merits of individual deposits or an appraisal of the reserves of phosphate rock that might be available under present economic conditions. Because the growing importance of the western phosphate deposits requires a better, more detailed understanding of their distribution and quality, the Geological Survey began in 1947 a comprehensive investigation, including (1) reconnaissance geologic mapping, mostly in Montana, of areas in which the Phosphoria formation could occur but where it had not previously been looked for or found; (2) geologic mapping, mostly in Montana, at a scale no smaller than 1:62,500, of several areas known to contain the Phosphoria formation but not previously mapped except in reconnaissance fashion; (3) geologic and topographic mapping, at a scale of 1:12,000, of some of the richest, thickest, and most accessible deposits; (4) measuring, describing, and sampling all beds of the phosphatic and shaly parts, and in some places the full thickness, of the Phosphoria formation and its stratigraphic equivalents at one or two localities per township over the entire field; (5) chemical and spectrographic analysis of the samples for phosphate, fluorine, minor metals, oil, and rock-forming constituents; and (6) petrologic and geochemical studies of the rocks and minerals of the formation. These studies are designed to define the regional and local geologic structures in which the phosphate bed lie, to provide a basis for the estimation of reserves of the inferred class over the entire region, and to determine the origin of the rocks and the elements contained in them. The data collected are not of the detail required to plan actual mining operations, but it is hoped they will guide industry in the selection of individual deposits worthy of further exploration. Most of the field work contemplated as a part of this investigation is now completed. Although the data will not be compiled or published in final form for some years to come, segments of the data, accompanied by little or no interpretation, will be published as preliminary maps or reports as they are assembled. The present report is the first of a series presenting in abbreviated form the description and analyses of the beds measured and sampled at various localities in southeastern Idaho (pl. 1). Companion reports presenting segments of the data from Montana, Wyoming, and Utah (Swanson and others, 1952, and McKelvey and others, 1952a and 1952b) are being released at the same time as this report, and others are in preparation.
Publications - PDF 99-24D | Alaska Division of Geological & Geophysical
Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska ; Engineering; Engineering Geologic Map; Engineering Geology; Geologic Map; Geology; Land Subsidence; Landslide
Geologic map and database of the Roseburg 30' x 60' quadrangle, Douglas and Coos counties, Oregon
Wells, Ray E.; Jayko, A.S.; Niem, A.R.; Black, G.; Wiley, T.; Baldwin, E.; Molenaar, K.M.; Wheeler, K.L.; DuRoss, C.B.; Givler, R.W.
2001-01-01
The Roseburg 30' x 60' Quadrangle covers the southeastern margin of the Oregon Coast Range and its tectonic boundary with Mesozoic terranes of the Klamath Mountains (see figures 1 and 2 in pamphlet, also shown on map sheet). The geologic framework of the Roseburg area was established by the pioneering work of Diller (1898), Wells and Peck, (1961) and Ewart Baldwin (1974) and his students (see figure 3 in pamphlet, also shown on map sheet). Baldwin and his students focussed on the history of the Eocene Tyee basin, where the sediments lap across the tectonic boundary with the Mesozoic terranes and record the accretion of the Coast Range basement to the continent. Others have examined the sedimentary fill of the Tyee basin in detail, recognizing the deep marine turbidite facies of the Tyee Formation (Snavely and others, 1964) and proposing several models for the Eocene evolution of the forearc basin (Heller and Ryberg, 1983; Chan and Dott, 1983; Heller and Dickinson, 1985; Molenaar, 1985; see Ryu and others, 1992 for a comprehensive summary). Along the eastern margin of the quadrangle, both the Tyee basin and the Klamath terranes are overlain by Eocene volcanic rocks of the Western Cascade arc (Walker and MacLeod, 1991). The thick Eocene sedimentary sequence of the Tyee basin has significant oil and gas potential (Armentrout and Suek, 1985; Gautier and others, 1993; Ryu and others, 1996). Although 13 deep test wells have been drilled in the Roseburg quadrangle (see figure 2 and table 1 in pamphlet, also shown on map sheet), exploration to date has been hampered by an incomplete understanding of the basin�s tectonic setting and evolution. In response, the Oregon Department of Geology and Mineral Industries (DOGAMI) initiated a five year assessment of the oil and gas potential of the Tyee basin. This map is a product of a cooperative effort by the U. S. Geological Survey, Oregon State University, and DOGAMI to systematically map the sedimentary facies and structure of the Tyee basin. New geologic mapping of twenty-eight 7.5' quadrangles is summarized on the map (see figure 3, also shown on map sheet), and the digital database contains geologic information suitable for both 1:100K and 1:24K scale analysis. DOGAMI has published a compilation and synthesis of previous mapping (Niem and Niem, 1990), a basin-wide sequence stratigraphic model and correlations (Ryu and others, 1992), and a report on the oil and gas potential (Ryu and others, 1996). Readers interested in the oil and gas potential of the Roseburg quadrangle should use the map in combination with Ryu and others (1996) to address specific stratigraphic units and structural plays. Stratigraphic terminology for the Tyee basin adopts the type sections, formation names, and framework of Ryu and others (1992, 1996), which were developed concurrently with the mapping and are recognized throughout the basin. For detailed discussion of nomenclature, type sections, lithology, thickness and distribution, age, contact relationships, and depositional environment of stratigraphic units, the reader is referred to Ryu and others (1992). In this report we focus on the spatial, temporal, and structural relationships between units revealed by geologic mapping. Map unit ages (see figure 4 in pamphlet, also shown on map sheeet) are adjusted slightly from Ryu and others (1992, 1996) to fit new coccolith age determinations (D. Bukry, cited in pamphlet), paleomagnetic polarity data (Simpson, 1977 and new data cited in pamphlet), and the time scale of Berggren and others (1995).
Schaefer, F. L.
1987-01-01
Because of the importance and complexity of the water resources of New Jersey today, there is a need for a current bibliography to serve as a basis for future water resources studies. This report lists about 400 book reports, map reports, and articles that deal with the water resources of New Jersey published through 1986. The publications are grouped under three major headings: (1) publications of the U.S. Geological Survey, (2) publications of State agencies prepared by or in cooperation with the U.S. Geological Survey, and (3) other publications, such as technical journals prepared by or co-authored by U.S. Geological Survey personnel. Most of the publications are available for inspection at the West Trenton office of the U.S. Geologic Survey and at large public and university libraries. Ordering information is given for those publications that are for sale. (USGS)
Volume I: Introduction and engineering aspects
Nicol, Allen H.; Flint, Delos E.; Saplis, Raymond A.
1957-01-01
This series of military geology reports on Okinawa is part of the Corps of Engineers Post Hostilities Mapping Program. The purpose of this survey is twofold. The first is to collect scientific information through field study; the second is to publish it in a form that is usable by the United States Armed Forces and Civil Administrators.
Dyman, T.S.; Wilcox, L.A.
1983-01-01
The U.S. Geological Survey and Petroleum Information Corporation in Denver, Colorado, developed the Eastern Gas Shale Project (EGSP)Data System for the U.S. Department of Energy, Morgantown, West Virginia. Geological, geochemical, geophysical, and engineering data from Devonian shale samples from more than 5800 wells and outcrops in the Appalachian basin were edited and converted to a Petroleum Information Corporation data base. Well and sample data may be retrieved from this data system to produce (1)production-test summaries by formation and well location; (2)contoured isopach, structure, and trendsurface maps of Devonian shale units; (3)sample summary reports for samples by location, well, contractor, and sample number; (4)cross sections displaying digitized log traces, geochemical, and lithologic data by depth for wells; and (5)frequency distributions and bivariate plots. Although part of the EGSP Data System is proprietary, and distribution of complete well histories is prohibited by contract, maps and aggregated well-data listings are being made available to the public through published reports. ?? 1983 Plenum Publishing Corporation.
Mapping variation in radon potential both between and within geological units.
Miles, J C H; Appleton, J D
2005-09-01
Previously, the potential for high radon levels in UK houses has been mapped either on the basis of grouping the results of radon measurements in houses by grid squares or by geological units. In both cases, lognormal modelling of the distribution of radon concentrations was applied to allow the estimated proportion of houses above the UK radon Action Level (AL, 200 Bq m(-3)) to be mapped. This paper describes a method of combining the grid square and geological mapping methods to give more accurate maps than either method can provide separately. The land area is first divided up using a combination of bedrock and superficial geological characteristics derived from digital geological map data. Each different combination of geological characteristics may appear at the land surface in many discontinuous locations across the country. HPA has a database of over 430,000 houses in which long-term measurements of radon concentration have been made, and whose locations are accurately known. Each of these measurements is allocated to the appropriate bedrock--superficial geological combination underlying it. Taking each geological combination in turn, the spatial variation of radon potential is mapped, treating the combination as if it were continuous over the land area. All of the maps of radon potential within different geological combinations are then combined to produce a map of variation in radon potential over the whole land surface.
A Pyramid Scheme for Constructing Geologic Maps on Geobrowsers
NASA Astrophysics Data System (ADS)
Whitmeyer, S. J.; de Paor, D. G.; Daniels, J.; Jeremy, N.; Michael, R.; Santangelo, B.
2008-12-01
Hundreds of geologic maps have been draped onto Google Earth (GE) using the ground overlay tag of Keyhole Markup Language (KML) and dozens have been published on academic and survey web pages as downloadable KML or KMZ (zipped KML) files. The vast majority of these are small KML docs that link to single, large - often very large - image files (jpegs, tiffs, etc.) Files that exceed 50 MB in size defeat the purpose of GE as an interactive and responsive, and therefore fast, virtual terrain medium. KML supports super-overlays (a.k.a. image pyramids), which break large graphic files into manageable tiles that load only when they are in the visible region at a sufficient level of detail (LOD), and several automatic tile-generating applications have been written. The process of exporting map data from applications such as ArcGIS® to KML format is becoming more manageable but still poses challenges. Complications arise, for example, because of differences between grid-north at a point on a map and true north at the equivalent location on the virtual globe. In our recent field season, we devised ways of overcoming many of these obstacles in order to generate responsive, panable, zoomable geologic maps in which data is layered in a pyramid structure similar to the image pyramid used for default GE terrain. The structure of our KML code for each level of the pyramid is self-similar: (i) check whether the current tile is in the visible region, (ii) if so, render the current overlay, (iii) add the current data level, and (iv) using four network links, check the visibility and LOD of four nested tiles. By using this pyramid structure we provide the user with access to geologic and map data at multiple levels of observation. For example, when the viewpoint is distant, regional structures and stratigraphy (e.g. lithological groups and terrane boundaries) are visible. As the user zooms to lower elevations, formations and ultimately individual outcrops come into focus. The pyramid structure is ideally suited to geologic data which tends to be unevenly exposed across the earth's surface.
Publications - RI 97-15A | Alaska Division of Geological & Geophysical
content DGGS RI 97-15A Publication Details Title: Geologic map of the Tanana B-1 Quadrangle, central ., and Weber, F.R., 1997, Geologic map of the Tanana B-1 Quadrangle, central Alaska: Alaska Division of ; Other Oversized Sheets Maps & Other Oversized Sheets Sheet 1 Geologic map of the Tanana B-1
Adams, G.P.; Runkle, Donna; Rea, Alan; Cederstrand, J.R.
1997-01-01
ARC/INFO export and nonproprietary format files This diskette contains digitized aquifer boundaries, maps of hydraulic conductivity, recharge, and ground-water level elevation contours for the alluvial and terrace deposits along the Cimarron River from Freedom to Guthrie in northwestern Oklahoma. Ground water in 1,305 square miles of Quaternary-age alluvial and terrace deposits along the the Cimarron River from Freedom to Guthrie is an important source of water for irrigation, industrial, municipal, stock, and domestic supplies. Alluvial and terrace deposits are composed of interfingering lenses of clay, sandy clay, and cross-bedded poorly sorted sand and gravel. The aquifer is composed of hydraulically connected alluvial and terrace deposits that unconformably overlie the Permian-age Formations. The aquifer boundaries are from a ground-water modeling report on the alluvial and terrace aquifer along the Cimarron River from Freedom to Guthrie in northwestern Oklahoma and published digital surficial geology data sets. The aquifer boundary data set was created from digital geologic data sets from maps published at a scale of 1:250,000. The hydraulic conductivity values, recharge rates, and ground-water level elevation contours are from the ground-water modeling report. Water-level elevation contours were digitized from a map at a scale of 1:250,000. The maps were published at a scale of 1:900,000. Ground-water flow models are numerical representations that simplify and aggregate natural systems. Models are not unique; different combinations of aquifer characteristics may produce similar results. Therefore, values of hydraulic conductivity and recharge used in the model and presented in this data set are not precise, but are within a reasonable range when compared to independently collected data.
Hermann Karsten, pioneer of geologic mapping in northwestern South America
NASA Astrophysics Data System (ADS)
Aalto, K. R.
2015-06-01
In the late 19th century, a regional map of Nueva Granada (present-day Colombia, Panama and parts of Venezuela and Ecuador) was published by German botanist and geologist Hermann Karsten (1817-1908). Karsten's work was incorporated by Agustín Codazzi (1793-1859), an Italian who emigrated to Venezuela and Colombia to serve as a government cartographer and geographer, in his popular Atlas geográfico e histórico de la Republica de Colombia (1889). Geologic mapping and most observations provided in this 1889 atlas were taken from Karsten's Géologie de l'ancienne Colombie bolivarienne: Vénézuela, Nouvelle-Grenade et Ecuador (1886), as cited by Manual Paz and/or Felipe Pérez, who edited this edition of the atlas. Karsten defined four epochs in Earth history: Primera - without life - primary crystalline rocks, Segunda - with only marine life - chiefly sedimentary rocks, Tercera - with terrestrial quadrupeds and fresh water life forms life - chiefly sedimentary rocks, and Cuarta - mankind appears, includes diluvial (glacigenic) and post-diluvial terranes. He noted that Colombia is composed of chiefly of Quaternary, Tertiary and Cretaceous plutonic, volcanic and sedimentary rocks, and that Earth's internal heat (calor central) accounted, by escape of inner gases, for volcanism, seismicity and uplift of mountains. Karsten's regional mapping and interpretation thus constitutes the primary source and ultimate pioneering geologic research.
Map and data for Quaternary faults and folds in New Mexico
Machette, M.N.; Personius, S.F.; Kelson, K.I.; Haller, K.M.; Dart, R.L.
1998-01-01
The "World Map of Major Active Faults" Task Group is compiling a series of digital maps for the United States and other countries in the Western Hemisphere that show the locations, ages, and activity rates of major earthquake-related features such as faults and fault-related folds; the companion database includes published information on these seismogenic features. The Western Hemisphere effort is sponsored by International Lithosphere Program (ILP) Task Group H-2, whereas the effort to compile a new map and database for the United States is funded by the Earthquake Reduction Program (ERP) through the U.S. Geological Survey. The maps and accompanying databases represent a key contribution to the new Global Seismic Hazards Assessment Program (ILP Task Group II-O) for the International Decade for Natural Disaster Reduction. This compilation, which describes evidence for surface faulting and folding in New Mexico, is the third of many similar State and regional compilations that are planned for the U.S. The compilation for West Texas is available as U.S. Geological Survey Open-File Report 96-002 (Collins and others, 1996 #993) and the compilation for Montana will be released as a Montana Bureau of Mines product (Haller and others, in press #1750).
Recharge and Groundwater Flow Within an Intracratonic Basin, Midwestern United States.
Panno, Samuel V; Askari, Zohreh; Kelly, Walton R; Parris, Thomas M; Hackley, Keith C
2018-01-01
The conservative nature of chloride (Cl - ) in groundwater and the abundance of geochemical data from various sources (both published and unpublished) provided a means of developing, for the first time, a representation of the hydrogeology of the Illinois Basin on a basin-wide scale. The creation of Cl - isocons superimposed on plan view maps of selected formations and on cross sections across the Illinois Basin yielded a conceptual model on a basin-wide scale of recharge into, groundwater flow within and through the Illinois Basin. The maps and cross sections reveal the infiltration and movement of freshwater into the basin and dilution of brines within various geologic strata occurring at basin margins and along geologic structures. Cross-formational movement of brines is also seen in the northern part of the basin. The maps and cross sections also show barriers to groundwater movement created by aquitards resulting in areas of apparent isolation/stagnation of concentrated brines within the basin. The distribution of Cl - within the Illinois Basin suggests that the current chemical composition of groundwater and distribution of brines within the basin is dependent on five parameters: (1) presence of bedrock exposures along basin margins; (2) permeability of geologic strata and their distribution relative to one another; (3) presence or absence of major geologic structures; (4) intersection of major waterways with geologic structures, basin margins, and permeable bedrock exposures; and (5) isolation of brines within the basin due to aquitards, inhomogeneous permeability, and, in the case of the deepest part of the basin, brine density effects. © 2017, National Ground Water Association.
USGS National Seismic Hazard Maps
Frankel, A.D.; Mueller, C.S.; Barnhard, T.P.; Leyendecker, E.V.; Wesson, R.L.; Harmsen, S.C.; Klein, F.W.; Perkins, D.M.; Dickman, N.C.; Hanson, S.L.; Hopper, M.G.
2000-01-01
The U.S. Geological Survey (USGS) recently completed new probabilistic seismic hazard maps for the United States, including Alaska and Hawaii. These hazard maps form the basis of the probabilistic component of the design maps used in the 1997 edition of the NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, prepared by the Building Seismic Safety Council arid published by FEMA. The hazard maps depict peak horizontal ground acceleration and spectral response at 0.2, 0.3, and 1.0 sec periods, with 10%, 5%, and 2% probabilities of exceedance in 50 years, corresponding to return times of about 500, 1000, and 2500 years, respectively. In this paper we outline the methodology used to construct the hazard maps. There are three basic components to the maps. First, we use spatially smoothed historic seismicity as one portion of the hazard calculation. In this model, we apply the general observation that moderate and large earthquakes tend to occur near areas of previous small or moderate events, with some notable exceptions. Second, we consider large background source zones based on broad geologic criteria to quantify hazard in areas with little or no historic seismicity, but with the potential for generating large events. Third, we include the hazard from specific fault sources. We use about 450 faults in the western United States (WUS) and derive recurrence times from either geologic slip rates or the dating of pre-historic earthquakes from trenching of faults or other paleoseismic methods. Recurrence estimates for large earthquakes in New Madrid and Charleston, South Carolina, were taken from recent paleoliquefaction studies. We used logic trees to incorporate different seismicity models, fault recurrence models, Cascadia great earthquake scenarios, and ground-motion attenuation relations. We present disaggregation plots showing the contribution to hazard at four cities from potential earthquakes with various magnitudes and distances.
Geologic map of the Chewelah 30' x 60' Quadrangle, Washington and Idaho
Miller, F.K.
2001-01-01
This data set maps and describes the geology of the Chewelah 30' X 60' quadrangle, Washington and Idaho. Created using Environmental Systems Research Institute's ARC/INFO software, the data base consists of the following items: (1) a map coverage containing geologic contacts and units, (2) a point coverage containing site-specific geologic structural data, (3) two coverages derived from 1:100,000 Digital Line Graphs (DLG); one of which represents topographic data, and the other, cultural data, (4) two line coverages that contain cross-section lines and unit-label leaders, respectively, and (5) attribute tables for geologic units (polygons), contacts (arcs), and site-specific data (points). In addition, the data set includes the following graphic and text products: (1) A PostScript graphic plot-file containing the geologic map, topography, cultural data, and two cross sections, and on a separate sheet, a Correlation of Map Units (CMU) diagram, an abbreviated Description of Map Units (DMU), modal diagrams for granitic rocks, an index map, a regional geologic and structure map, and a key for point and line symbols; (2) PDF files of the Readme text-file and expanded Description of Map Units (DMU), and (3) this metadata file. The geologic map database contains original U.S. Geological Survey data generated by detailed field observation and by interpretation of aerial photographs. The map was compiled from geologic maps of eight 1:48,000 15' quadrangle blocks, each of which was made by mosaicing and reducing the four constituent 7.5' quadrangles. These 15' quadrangle blocks were mapped chiefly at 1:24,000 scale, but the detail of the mapping was governed by the intention that it was to be compiled at 1:48,000 scale. The compilation at 1:100,000 scale entailed necessary simplification in some areas and combining of some geologic units. Overall, however, despite a greater than two times reduction in scale, most geologic detail found on the 1:48,000 maps is retained on the 1:100,000 map. Geologic contacts across boundaries of the eight constituent quadrangles required minor adjustments, but none significant at the final 1:100,000 scale. The geologic map was compiled on a base-stable cronoflex copy of the Chewelah 30' X 60' topographic base and then scribed. The scribe guide was used to make a 0.007 mil-thick blackline clear-film, which was scanned at 1200 DPI by Optronics Specialty Company, Northridge, California. This image was converted to vector and polygon GIS layers and minimally attributed by Optronics Specialty Company. Minor hand-digitized additions were made at the USGS. Lines, points, and polygons were subsequently edited at the USGS by using standard ARC/INFO commands. Digitizing and editing artifacts significant enough to display at a scale of 1:100,000 were corrected. Within the database, geologic contacts are represented as lines (arcs), geologic units as polygons, and site-specific data as points. Polygon, arc, and point attribute tables (.pat, .aat, and .pat, respectively) uniquely identify each geologic datum.
Digital geologic map of part of the Thompson Falls 1:100,000 quadrangle, Idaho
Lewis, Reed S.; Derkey, Pamela D.
1999-01-01
The geology of the Thompson Falls 1:100,000 quadrangle, Idaho was compiled by Reed S. Lewis in 1997 onto a 1:100,000-scale greenline mylar of the topographic base map for input into a geographic information system (GIS). The resulting digital geologic map GIS can be queried in many ways to produce a variety of geologic maps. Digital base map data files (topography, roads, towns, rivers and lakes, etc.) are not included: they may be obtained from a variety of commercial and government sources. This database is not meant to be used or displayed at any scale larger than 1:100,000 (e.g., 1:62,500 or 1:24,000). The map area is located in north Idaho. This open-file report describes the geologic map units, the methods used to convert the geologic map data into a digital format, the Arc/Info GIS file structures and relationships, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet.
Atlas of depth-duration frequency of precipitation annual maxima for Texas
Asquith, William H.; Roussel, Meghan C.
2004-01-01
Ninety-six maps depicting the spatial variation of the depth-duration frequency of precipitation annual maxima for Texas are presented. The recurrence intervals represented are 2, 5, 10, 25, 50, 100, 250, and 500 years. The storm durations represented are 15 and 30 minutes; 1, 2, 3, 6, and 12 hours; and 1, 2, 3, 5, and 7 days. The maps were derived using geographically referenced parameter maps of probability distributions used in previously published research by the U.S. Geological Survey to model the magnitude and frequency of precipitation annual maxima for Texas. The maps in this report apply that research and update depth-duration frequency of precipitation maps available in earlier studies done by the National Weather Service.
Imes, Jeffrey L.; Davis, J.V.
1991-01-01
The Ozark aquifer is a thick sequence of water-bearing dolostone, limestone, and sandstone of latest Cambrian through Middle Devonian age that is widely used as a source of water throughout the Ozark Plateaus province (index map). The Ozark aquifer is the largest of three aquifers that form part of the Ozark Plateaus aquifer system. The aquifer was studied as part of the Central Midwest Regional Aquifer-System Analysis (CMRASA; Jorgensen and Signor, 1981), a study of regional aquifer systems in the midcontinent United States that includes parts of 10States. Because of its significance as a source of freshwater in parts of Missouri, Arkansas, Kansas, and Oklahoma, a subregional project was established to investigate the Ozark Plateaus aquifer system in more detail than the regional study could provide.The geologic and hydrologic relation between the Ozark Plateaus aquifer system and other regional aquifer systems of the Midwest is presented in Jorgensen and others (in press). The relation of the Ozark aquifer to the Ozark Plateaus aquifer system is explained in Imes [in press (a)]. A companion publication, Imes [1990 (b)], contains contour maps of the altitude of the top, thickness, and potentiometric surface of the Ozark aquifer. This report contains maps that show water type and concentrations of dissolved solids, chloride, and sulfate in water from the Ozark aquifer. Most of the data from which these maps are compiled is stored in the CMRASA hydrochemical data base (R.B. Leonard, U.S. Geological Survey, written commun., 1986). Data for Oklahoma were also taken from data published by Havens (1978). The maps in this report on the Ozark subregion may contain small differences from maps in other CMRASA publications because the criteria for data selection may be different and the subregional maps may contain additional data. However, regional trends in these maps are consistent with other maps published as part of the regional project.
Machette, Michael N.; Thompson, Ren A.; Brandt, Theodore R.
2008-01-01
This geologic map presents new polygon (geologic map unit contacts) and line (terrace and lacustrine spit/barrier bar) vector data for a map comprised of four 7.5' quadrangles in the north-central part of the Alamosa, Colorado, 30' x 60' quadrangle. The quadrangles include Baldy, Blanca, Blanca SE, and Lasauses. The map database, compiled at 1:50,000 scale from new 1:24,000-scale mapping, provides geologic coverage of an area of current hydrogeologic, tectonic, and stratigraphic interest. The mapped area is located primarily in Costilla County, but contains portions of Alamosa and Conejos Counties, and includes the town of Blanca in its northeastern part. The map area is mainly underlain by surficial geologic materials (fluvial and lacustrine deposits, and eolian sand), but Tertiary volcanic and volcaniclastic rocks crop out in the San Luis Hills, which are in the central and southern parts of the mapped area. The surficial geology of this area has never been mapped at any scale greater than 1:250,000 (broad reconnaissance), so this new map provides important data for ground-water assessments, engineering geology, and the Quaternary geologic history of the San Luis Basin. Newly discovered shoreline deposits are of particular interest (sands and gravels) that are associated with the high-water stand of Lake Alamosa, a Pliocene to middle Pleistocene lake that occupied the San Luis basin prior to its overflow and cutting of a river gorge through the San Luis Hills. After the lake drained, the Rio Grande system included Colorado drainages for the first time since the Miocene (>5.3 Ma). In addition, Servilleta Basalt, which forms the Basaltic Hills on the east margin of the map area, is dated at 3.79+or-0.17 Ma, consistent with its general age range of 3.67-4.84 Ma. This map provides new geologic information for better understanding ground-water flow paths in and adjacent to the Rio Grande system. The map abuts U.S. Geological Survey Open File Report 2005-1392 (a map of the northwestern part of the Alamosa 30' x 60' quadrangle map) to the west and U.S. Geological Survey Scientific Investigations Map 2965 (Fort Garland 7.5' quadrangle) to the east.
Brown, Timothy A.; Dunning, Charles P.; Sharpe, Jennifer B.
2000-01-01
The report series will enable investigators involved in site-specific studies within the subcrop area to understand the regional geologic framework of the unit and to find additional reference sources. This report consists of four sheets that show the altitude (sheet 1), depth from land surface (sheet 2), total thickness (sheet 3), and location of altitude data (sheet 4) of the lithologic units that constitute the Galena-Platteville bedrock unit within the subcrop area. The sheets also show major known geologic features within the Galena-Platteville study area in Illinois and Wisconsin. A geographic information system (GIS) was used to generate data layers (coverages) from point data and from published and unpublished contour maps at various scales and detail. Standard GIS procedures were used to change the coverages into the maps shown on the sheets presented in this report. A list of references for the data used to prepare the maps is provided.
Brown, S.G.
1976-01-01
This atlas was prepared to meet the need for information on the areal distribution, quantity, and availability of ground water in the lower Colorado River region, an area of about 140,000 square miles in parts of Arizona, Nevada, New Mexico, and Utah. The maps are necessarily generalized in places owing to the lack of sufficient data. In general the geohydrologic information pertains to large areas, and local exceptions occur. Users needing more detailed information for specific areas may address inquiries to the district chief of the U.S. Geological Survey at the addresses given in the section “Selected References.” The maps were prepared using data from previously published reports, data collected by other Federal State, and local agencies, and data from the files of the U.S. Geological Survey offices in Arizona, Nevada, New Mexico, and Utah. The report is the result of the lower Colorado River region Type I framework study made in cooperation with the U.S. Bureau of Reclamation.
A comparison of infrared, radar, and geologic mapping of lunar craters
Thompson, T.W.; Masursky, H.; Shorthill, R.W.; Tyler, G.L.; Zisk, S.H.
1974-01-01
Between 1000 and 2000 infrared (eclipse) and radar anomalies have been mapped on the nearside hemisphere of the Moon. A study of 52 of these anomalies indicates that most are related to impact craters and that the nature of the infrared and radar responses is compatible with a previously developed geologic model of crater aging processes. The youngest craters are pronounced thermal and radar anomalies; that is, they have enhanced eclipse temperatures and are strong radar scatterers. With increasing crater age, the associated thermal and radar responses become progressively less noticeable until they assume values for the average lunar surface. The last type of anomaly to disappear is radar enhancement at longer wavelengths. A few craters, however, have infrared and radar behaviors not predicted by the aging model. One previously unknown feature - a field strewn with centimeter-sized rock fragments - has been identified by this technique of comparing maps at the infrared, radar, and visual wavelengths. ?? 1974 D. Reidel Publishing Company, Dordrecht-Holland.
A revised “earthquake report” questionaire
Stover, C.; Reagor, G.; Simon, R.
1976-01-01
The U.S geological Survey is responsible for conducting intensity and damage surveys following felt or destructive earthquakes in the United States. Shortly after a felt or damaging earthquake occurs, a canvass of the affected area is made. Specially developed questionnaires are mailed to volunteer observers located within the estimated felt area. These questionnaires, "Earthquake Reports," are filled out by the observers and returned to the Survey's National Earthquake Information Service, which is located in Colorado. They are then evaluated, and, based on answers to questions about physical effects seen or felt, each canvassed location is assigned to the various locations, they are plotted on an intensity distribution map. When all of the intensity data have been plotted, isoseismals can then be contoured through places where equal intensity was experienced. The completed isoseismal map yields a detailed picture of the earthquake, its effects, and its felt area. All of the data and maps are published quarterly in a U.S Geological Survey Circular series entitled "Earthquakes in the United States".
NASA Technical Reports Server (NTRS)
Goetz, A. F. H. (Principal Investigator); Billingsley, F. C.; Gillespie, A. R.; Abrams, M. J.; Squires, R. L.; Shoemaker, E. M.; Lucchitta, I.; Elston, D. P.
1975-01-01
The author has identified the following significant results. Computer image processing was shown to be both valuable and necessary in the extraction of the proper subset of the 200 million bits of information in an ERTS image to be applied to a specific problem. Spectral reflectivity information obtained from the four MSS bands can be correlated with in situ spectral reflectance measurements after path radiance effects have been removed and a proper normalization has been made. A detailed map of the major fault systems in a 90,000 sq km area in northern Arizona was compiled from high altitude photographs and pre-existing published and unpublished map data. With the use of ERTS images, three major fault systems, the Sinyala, Bright Angel, and Mesa Butte, were identified and their full extent measured. A byproduct of the regional studies was the identification of possible sources of shallow ground water, a scarce commodity in these regions.
Three-dimensional geologic model of the southeastern Espanola Basin, Santa Fe County, New Mexico
Pantea, Michael P.; Hudson, Mark R.; Grauch, V.J.S.; Minor, Scott A.
2011-01-01
This multimedia model and report show and describe digital three-dimensional faulted surfaces and volumes of lithologic units that confine and constrain the basin-fill aquifers within the Espanola Basin of north-central New Mexico. These aquifers are the primary groundwater resource for the cities of Santa Fe and Espanola, six Pueblo nations, and the surrounding areas. The model presented in this report is a synthesis of geologic information that includes (1) aeromagnetic and gravity data and seismic cross sections; (2) lithologic descriptions, interpretations, and geophysical logs from selected drill holes; (3) geologic maps, geologic cross sections, and interpretations; and (4) mapped faults and interpreted faults from geophysical data. Modeled faults individually or collectively affect the continuity of the rocks that contain the basin aquifers; they also help define the form of this rift basin. Structure, trend, and dip data not previously published were added; these structures are derived from interpretations of geophysical information and recent field observations. Where possible, data were compared and validated and reflect the complex relations of structures in this part of the Rio Grande rift. This interactive geologic framework model can be used as a tool to visually explore and study geologic structures within the Espanola Basin, to show the connectivity of geologic units of high and low permeability between and across faults, and to show approximate dips of the lithologic units. The viewing software can be used to display other data and information, such as drill-hole data, within this geologic framework model in three-dimensional space.
Williams, David A.; Keszthelyi, Laszlo P.; Crown, David A.; Yff, Jessica A.; Jaeger, Windy L.; Schenk, Paul M.; Geissler, Paul E.; Becker, Tammy L.
2011-01-01
Io, discovered by Galileo Galilei on January 7–13, 1610, is the innermost of the four Galilean satellites of the planet Jupiter (Galilei, 1610). It is the most volcanically active object in the Solar System, as recognized by observations from six National Aeronautics and Space Administration (NASA) spacecraft: Voyager 1 (March 1979), Voyager 2 (July 1979), Hubble Space Telescope (1990–present), Galileo (1996–2001), Cassini (December 2000), and New Horizons (February 2007). The lack of impact craters on Io in any spacecraft images at any resolution attests to the high resurfacing rate (1 cm/yr) and the dominant role of active volcanism in shaping its surface. High-temperature hot spots detected by the Galileo Solid-State Imager (SSI), Near-Infrared Mapping Spectrometer (NIMS), and Photopolarimeter-Radiometer (PPR) usually correlate with darkest materials on the surface, suggesting active volcanism. The Voyager flybys obtained complete coverage of Io's subjovian hemisphere at 500 m/pixel to 2 km/pixel, and most of the rest of the satellite at 5–20 km/pixel. Repeated Galileo flybys obtained complementary coverage of Io's antijovian hemisphere at 5 m/pixel to 1.4 km/pixel. Thus, the Voyager and Galileo data sets were merged to enable the characterization of the whole surface of the satellite at a consistent resolution. The United States Geological Survey (USGS) produced a set of four global mosaics of Io in visible wavelengths at a spatial resolution of 1 km/pixel, released in February 2006, which we have used as base maps for this new global geologic map. Much has been learned about Io's volcanism, tectonics, degradation, and interior since the Voyager flybys, primarily during and following the Galileo Mission at Jupiter (December 1995–September 2003), and the results have been summarized in books published after the end of the Galileo Mission. Our mapping incorporates this new understanding to assist in map unit definition and to provide a global synthesis of Io's geology.
Preliminary geologic map of the Perris 7.5' quadrangle, Riverside County, California
Morton, Douglas M.; Digital preparation by Bovard, Kelly R.; Alvarez, Rachel M.
2003-01-01
Open-File Report 03-270 contains a digital geologic map database of the Perris 7.5’ quadrangle, Riverside County, California that includes: 1. ARC/INFO (Environmental Systems Research Institute, http://www.esri.com) version 7.2.1 coverages of the various elements of the geologic map. 2. A Postscript file to plot the geologic map on a topographic base, and containing a Correlation of Map Units diagram (CMU), a Description of Map Units (DMU), and an index map. 3. Portable Document Format (.pdf) files of: a. A Readme file b. The same graphic as described in 2 above. Test plots have not produced precise 1:24,000- scale map sheets. Adobe Acrobat page size setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formationname, age, and lithology. Where known, grain size is indicated on the map by a subscripted letter or letters following the unit symbols as follows: lg, large boulders; b, boulder; g, gravel; a, arenaceous; s, silt; c, clay; e.g. Qyfa is a predominantly young alluvial fan deposit that is arenaceous. Multiple letters are used for more specific identification or for mixed units, e.g., Qfysa is a silty sand. In some cases, mixed units are indicated by a compound symbol; e.g., Qyf2sc.
A guided inquiry approach to learning the geology of the U.S
Leech, M.L.; Howell, D.G.; Egger, A.E.
2004-01-01
A guided inquiry exercise has been developed to help teach the geology of the U.S. This exercise is intended for use early in the school term when undergraduate students have little background knowledge of geology. Before beginning, students should be introduced to rock types and have a basic understanding of geologic time. This exercise uses three maps: the U.S. Geological Survey's "A Tapestry of Time and Terrain" and "Landforms of the Conterminous United States" maps, and a geologic map of the United States. Using these maps, groups of 3 to 5 students are asked to identify between 8 and 12 geologic provinces based on topography, the age of rocks, and rock types. Each student is given a blank outline map of the contiguous U.S. and each group is given a set of the three maps and colored pencils; as a group, students work to define regions in the U.S. with similar geology. A goal of 8 to 12 geologic provinces is given to help establish the level of detail being asked of students. One member of each group is asked to present their group's findings to the class, describing their geologic provinces and the reasoning behind their choices.
Aeromagnetic Map with Geology of the Los Angeles 30 x 60 Minute Quadrangle, Southern California
Langenheim, V.E.; Hildenbrand, T.G.; Jachens, R.C.; Campbell, R.H.; Yerkes, R.F.
2006-01-01
Introduction: An important objective of geologic mapping is to project surficial structures and stratigraphy into the subsurface. Geophysical data and analysis are useful tools for achieving this objective. This aeromagnetic anomaly map provides a three-dimensional perspective to the geologic mapping of the Los Angeles 30 by 60 minute quadrangle. Aeromagnetic maps show the distribution of magnetic rocks, primarily those containing magnetite (Blakely, 1995). In the Los Angeles quadrangle, the magnetic sources are Tertiary and Mesozoic igneous rocks and Precambrian crystalline rocks. Aeromagnetic anomalies mark abrupt spatial contrasts in magnetization that can be attributed to lithologic boundaries, perhaps caused by faulting of these rocks or by intrusive contacts. This aeromagnetic map overlain on geology, with information from wells and other geophysical data, provides constraints on the subsurface geology by allowing us to trace faults beneath surficial cover and estimate fault dip and offset. This map supersedes Langenheim and Jachens (1997) because of its digital form and the added value of overlaying the magnetic data on a geologic base. The geologic base for this map is from Yerkes and Campbell (2005); some of their subunits have been merged into one on this map.
NASA Astrophysics Data System (ADS)
Morris, Kevin Peter
Accurate mapping of geological structures is important in numerous applications, ranging from mineral exploration through to hydrogeological modelling. Remotely sensed data can provide synoptic views of study areas enabling mapping of geological units within the area. Structural information may be derived from such data using standard manual photo-geologic interpretation techniques, although these are often inaccurate and incomplete. The aim of this thesis is, therefore, to compile a suite of automated and interactive computer-based analysis routines, designed to help a the user map geological structure. These are examined and integrated in the context of an expert system. The data used in this study include Digital Elevation Model (DEM) and Airborne Thematic Mapper images, both with a spatial resolution of 5m, for a 5 x 5 km area surrounding Llyn Cow lyd, Snowdonia, North Wales. The geology of this area comprises folded and faulted Ordo vician sediments intruded throughout by dolerite sills, providing a stringent test for the automated and semi-automated procedures. The DEM is used to highlight geomorphological features which may represent surface expressions of the sub-surface geology. The DEM is created from digitized contours, for which kriging is found to provide the best interpolation routine, based on a number of quantitative measures. Lambertian shading and the creation of slope and change of slope datasets are shown to provide the most successful enhancement of DEMs, in terms of highlighting a range of key geomorphological features. The digital image data are used to identify rock outcrops as well as lithologically controlled features in the land cover. To this end, a series of standard spectral enhancements of the images is examined. In this respect, the least correlated 3 band composite and a principal component composite are shown to give the best visual discrimination of geological and vegetation cover types. Automatic edge detection (followed by line thinning and extraction) and manual interpretation techniques are used to identify a set of 'geological primitives' (linear or arc features representing lithological boundaries) within these data. Inclusion of the DEM data provides the three-dimensional co-ordinates of these primitives enabling a least-squares fit to be employed to calculate dip and strike values, based, initially, on the assumption of a simple, linearly dipping structural model. A very large number of scene 'primitives' is identified using these procedures, only some of which have geological significance. Knowledge-based rules are therefore used to identify the relevant. For example, rules are developed to identify lake edges, forest boundaries, forest tracks, rock-vegetation boundaries, and areas of geomorphological interest. Confidence in the geological significance of some of the geological primitives is increased where they are found independently in both the DEM and remotely sensed data. The dip and strike values derived in this way are compared to information taken from the published geological map for this area, as well as measurements taken in the field. Many results are shown to correspond closely to those taken from the map and in the field, with an error of < 1°. These data and rules are incorporated into an expert system which, initially, produces a simple model of the geological structure. The system also provides a graphical user interface for manual control and interpretation, where necessary. Although the system currently only allows a relatively simple structural model (linearly dipping with faulting), in the future it will be possible to extend the system to model more complex features, such as anticlines, synclines, thrusts, nappes, and igneous intrusions.
,
2006-01-01
GDA (Geologic Data Assistant) is an extension to ArcPad, a mobile mapping software program by Environmental Systems Research Institute (ESRI) designed to run on personal digital assistant (PDA) computers. GDA and ArcPad allow a PDA to replace the paper notebook and field map traditionally used for geologic mapping. GDA allows easy collection of field data.
Onshore and offshore geologic map of the Coal Oil Point area, southern California
Dartnell, Pete; Conrad, James E.; Stanley, Richard G.; Guy R. Cochrane, Guy R.
2011-01-01
Geologic maps that span the shoreline and include both onshore and offshore areas are potentially valuable tools that can lead to a more in depth understanding of coastal environments. Such maps can contribute to the understanding of shoreline change, geologic hazards, both offshore and along-shore sediment and pollutant transport. They are also useful in assessing geologic and biologic resources. Several intermediate-scale (1:100,000) geologic maps that include both onshore and offshore areas (herein called onshore-offshore geologic maps) have been produced of areas along the California coast (see Saucedo and others, 2003; Kennedy and others, 2007; Kennedy and Tan, 2008), but few large-scale (1:24,000) maps have been produced that can address local coastal issues. A cooperative project between Federal and State agencies and universities has produced an onshore-offshore geologic map at 1:24,000 scale of the Coal Oil Point area and part of the Santa Barbara Channel, southern California (fig. 1). As part of the project, the U.S. Geological Survey (USGS) and the California Geological Survey (CGS) hosted a workshop (May 2nd and 3rd, 2007) for producers and users of coastal map products (see list of participants) to develop a consensus on the content and format of onshore-offshore geologic maps (and accompanying GIS files) so that they have relevance for coastal-zone management. The USGS and CGS are working to develop coastal maps that combine geospatial information from offshore and onshore and serve as an important tool for addressing a broad range of coastal-zone management issues. The workshop was divided into sessions for presentations and discussion of bathymetry and topography, geology, and habitat products and needs of end users. During the workshop, participants reviewed existing maps and discussed their merits and shortcomings. This report addresses a number of items discussed in the workshop and details the onshore and offshore geologic map of the Coal Oil Point area. Results from this report directly address issues raised in the California Ocean Protection Act (COPA) Five Year Strategic Plan. For example, one of the guiding principles of the COPA five-year strategic plan is to 'Recognize the interconnectedness of the land and the sea, supporting sustainable uses of the coast and ensuring the health of ecosystems.' Results from this USGS report directly connect the land and sea with the creation of both a seamless onshore and offshore digital terrain model (DTM) and geologic map. One of the priority goals (and objectives) of the COPA plan is to 'monitor and map the ocean environment to provide data about conditions and trends.' Maps within this report provide land and sea geologic information for mapping and monitoring nearshore sediment processes, pollution transport, and sea-level rise and fall.
Publications - PDF 99-24B | Alaska Division of Geological & Geophysical
Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska (6.4 M) Keywords Ar-Ar; Bedrock; Bedrock Geologic Map; Bedrock Geology; Economic Geology; Geochronology ; Geologic; Geologic Map; Geology; Gold; Lode; Plutonic; Plutonic Hosted; Porphyry; STATEMAP Project; Silver
NASA Technical Reports Server (NTRS)
Morrison, R. B. (Principal Investigator); Hallberg, G. R.
1973-01-01
The author has identified the following significant results. Maps of 1:1 million scale exemplifying the first phase of investigation were prepared for ten study areas (mostly 1 deg x 2 deg in area): 2 in Kansas, 1 in Missouri-Kansas, 2 in Nebraska, 1 in South Dakota, 3 in Illinois, and 1 in Iowa-Illinois (a total of 13 such maps, covering about 97,000 sq. mi., since the start of the project). Collection of all pertinent published geologic-terrain data also has been completed for all the study areas for which these first-phase maps have been made. The ground truth data are being used in combination with additional interpretation of the repetitive ERTS-1 images of most of these study areas to prepare enhanced information maps at 1:500,000. For areas that have not been mapped at 1:500,000 or larger scales, the maps will provide the first moderately detailed information on landform features and surficial materials. Much of the information mapped is significant for exploration and development of ground water (and locally petroleum) and for applications in engineering and environmental geology, and land use patterns as indicated by tone and texture on the images. Numerous moraines have been identified; also, the trends of parts of ancient filled valleys have been identified. Valley alinement appears controlled by faults or other structural lineaments.
Hydrogeology and history of Washington, D.C.
NASA Astrophysics Data System (ADS)
For Washington, D.C., inhabitants or anyone planning a trip to the area, interesting information on the hydrology, geology, and natural and cultural history is available.To provide geographic and historical background for field trips in the area, a book was published for the 28th International Geological Congress, held in Washington in July 1989. Geology, Hydrology, and History of the Washington, D.C. Area, edited by John E. Moore of the U.S. Geological Survey, Reston, Va., and Julia A. Jackson of the American Geological Institute, Alexandria, Va., describes such interesting items as the Washington Canal, which ran from the Potomac River to the Capitol and is now Constitution Avenue, and the Cabin John Aqueduct, where a 297-foot granite arch was the longest masonry arch in the world for 40 years. The aqueduct has carried water to Washington since 1863. The 114-page book contains many historic photographs and maps and can be purchased from the American Geological Institute, 4220 King Street, Alexandria, VA 22302-1507, tel. 703-379-2480.
Presentations - Loveland, A.M. and others, 2009 | Alaska Division of
Details Title: Geologic map of the South-central Sagavanirktok Quadrangle, North Slope, Alaska (poster , Geologic map of the South-central Sagavanirktok Quadrangle, North Slope, Alaska (poster): Alaska Geological quadrangle, North Slope, Alaska (14.0 M) Keywords Energy Resources Posters and Presentations; Geologic Map
Billingsley, George H.; Block, Debra L.; Hiza-Redsteer, Margaret
2014-01-01
The eastern quarter of the Flagstaff 30′ x 60′ quadrangle includes eight USGS 1:24,000-scale quadrangles in Coconino County, northern Arizona (fig. 1, map sheet): Anderson Canyon, Babbitt Wash, Canyon Diablo, Grand Falls, Grand Falls SE, Grand Falls SW, Grand Falls NE, and Meteor Crater. The map is bounded by lat 35° to 35°30′ N. and long 111° to 111°15′ W. and is on the southern part of the Colorado Plateaus geologic province (herein Colorado Plateau). Elevations range from 4,320 ft (1,317 m) at the Little Colorado River in the northwest corner of the map area to about 6,832 ft (2,082 m) at the southwest corner of the map. This geologic map provides an updated geologic framework for the eastern quarter of the Flagstaff 30′ x 60′ quadrangle and is adjacent to two other recent geologic maps, the Cameron and Winslow 30′ x 60′ quadrangles (Billingsley and others, 2007, 2013). This geologic map is the product of a cooperative effort between the U.S. Geological Survey (USGS) and the Navajo Nation. It provides geologic information for resource management officials of the U.S. Forest Service, the Arizona Game and Fish Department, and the Navajo Nation Reservation (herein the Navajo Nation). Funding for the map was provided by the USGS geologic mapping program, Reston, Virginia. Field work on the Navajo Nation was conducted under a permit from the Navajo Nation Minerals Department. Any persons wishing to conduct geologic investigations on the Navajo Nation must first apply for, and receive, a permit from the Navajo Nation Minerals Department, P.O. Box 1910, Window Rock, Arizona 86515, telephone (928) 871-6587.
Computer-assisted photogrammetric mapping systems for geologic studies-A progress report
Pillmore, C.L.; Dueholm, K.S.; Jepsen, H.S.; Schuch, C.H.
1981-01-01
Photogrammetry has played an important role in geologic mapping for many years; however, only recently have attempts been made to automate mapping functions for geology. Computer-assisted photogrammetric mapping systems for geologic studies have been developed and are currently in use in offices of the Geological Survey of Greenland at Copenhagen, Denmark, and the U.S. Geological Survey at Denver, Colorado. Though differing somewhat, the systems are similar in that they integrate Kern PG-2 photogrammetric plotting instruments and small desk-top computers that are programmed to perform special geologic functions and operate flat-bed plotters by means of specially designed hardware and software. A z-drive capability, in which stepping motors control the z-motions of the PG-2 plotters, is an integral part of both systems. This feature enables the computer to automatically position the floating mark on computer-calculated, previously defined geologic planes, such as contacts or the base of coal beds, throughout the stereoscopic model in order to improve the mapping capabilities of the instrument and to aid in correlation and tracing of geologic units. The common goal is to enhance the capabilities of the PG-2 plotter and provide a means by which geologists can make conventional geologic maps more efficiently and explore ways to apply computer technology to geologic studies. ?? 1981.
Geologic map of the Great Smoky Mountains National Park region, Tennessee and North Carolina
Southworth, Scott; Schultz, Art; Aleinikoff, John N.; Merschat, Arthur J.
2012-01-01
The geology of the Great Smoky Mountains National Park region of Tennessee and North Carolina was studied from 1993 to 2003 as part of a cooperative investigation by the U.S. Geological Survey with the National Park Service (NPS). This work resulted in a 1:100,000-scale geologic map derived from mapping that was conducted at scales of 1:24,000 and 1:62,500. The geologic data are intended to support cooperative investigations with the NPS, the development of a new soil map by the Natural Resources Conservation Service, and the All Taxa Biodiversity Inventory. In response to a request by the NPS, we mapped previously unstudied areas, revised the geology where problems existed, and developed a map database for use in interdisciplinary research, land management, and interpretive programs for park visitors.
Miller, David M.; Bedford, David R.
2000-01-01
This geologic map database for the El Mirage Lake area describes geologic materials for the dry lake, parts of the adjacent Shadow Mountains and Adobe Mountain, and much of the piedmont extending south from the lake upward toward the San Gabriel Mountains. This area lies within the western Mojave Desert of San Bernardino and Los Angeles Counties, southeastern California. The area is traversed by a few paved highways that service the community of El Mirage, and by numerous dirt roads that lead to outlying properties. An off-highway vehicle area established by the Bureau of Land Management encompasses the dry lake and much of the land north and east of the lake. The physiography of the area consists of the dry lake, flanking mud and sand flats and alluvial piedmonts, and a few sharp craggy mountains. This digital geologic map database, intended for use at 1:24,000-scale, describes and portrays the rock units and surficial deposits of the El Mirage Lake area. The map database was prepared to aid in a water-resource assessment of the area by providing surface geologic information with which deepergroundwater-bearing units may be understood. The area mapped covers the Shadow Mountains SE and parts of the Shadow Mountains, Adobe Mountain, and El Mirage 7.5-minute quadrangles. The map includes detailed geology of surface and bedrock deposits, which represent a significant update from previous bedrock geologic maps by Dibblee (1960) and Troxel and Gunderson (1970), and the surficial geologic map of Ponti and Burke (1980); it incorporates a fringe of the detailed bedrock mapping in the Shadow Mountains by Martin (1992). The map data were assembled as a digital database using ARC/INFO to enable wider applications than traditional paper-product geologic maps and to provide for efficient meshing with other digital data bases prepared by the U.S. Geological Survey's Southern California Areal Mapping Project.
Application of remote sensor data to geologic analysis of the Bonanza test site, Colorado
NASA Technical Reports Server (NTRS)
Lee, K. (Compiler)
1972-01-01
A variety of remote sensor data has aided geologic mapping in central Colorado. This report summarizes the application of sensor data to both regional and local geologic mapping and presents some conclusions on the practical use of remote sensing for solving geologic mapping problems. It is emphasized that this study was not conducted primarily to test or evaluate remote sensing systems or data, but, rather, to apply sensor data as an accessory tool for geologic mapping. The remote sensor data used were acquired by the NASA Earth Observations Aircraft Program. Conclusions reached on the utility of the various sensor data and interpretation techniques for geologic mapping were by-products of attempts to use them.
Johnson, Bruce R.; Derkey, Pamela D.
1998-01-01
Geologic data from the geologic map of the Spokane 1:100,000-scale quadrangle compiled by Joseph (1990) were entered into a geographic information system (GIS) as part of a larger effort to create regional digital geology for the Pacific Northwest. The map area is located in eastern Washington and extends across the state border into western Idaho (Fig. 1). This open-file report describes the methods used to convert the geologic map data into a digital format, documents the file structures, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet.
Fridrich, Chris J.; Lindsay, Charles R.; Snee, Lawrence W.
2007-01-01
This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Maldonado, Florian; Turner, Kenzie J.
2007-01-01
This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Geologic Map of Quadrangle 3568, Polekhomri (503) and Charikar (504) Quadrangles, Afghanistan
Lindsay, Charles R.; Snee, Lawrence W.; Bohannon, Robert G.; Wahl, Ronald R.; Sawyer, David A.
2007-01-01
This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Geologic Map of Quadrangle 3364, Pasa-Band (417) and Kejran (418) Quadrangles, Afghanistan
McKinney, Kevin C.; Sawyer, David A.; Turner, Kenzie J.
2007-01-01
This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Turner, Kenzie J.
2007-01-01
This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
O'Leary, Dennis W.; Whitney, John W.; Bohannon, Robert G.
2007-01-01
This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Geologic Map of Quadrangle 3262, Farah (421) and Hokumat-E-Pur-Chaman (422) Quadrangles, Afghanistan
Lidke, David J.
2007-01-01
This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Wahl, Ronald R.
2007-01-01
This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Geologic Map of Quadrangle 3362, Shin-Dand (415) and Tulak (416) Quadrangles, Afghanistan
Bohannon, Robert G.; Lindsay, Charles R.
2007-01-01
This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Wahl, Ronald R.
2007-01-01
This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Geologic Map of Quadrangle 3670, Jarm-Keshem (223) and Zebak (224) Quadrangles, Afghanistan
Stoeser, Douglas B.
2007-01-01
This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Lindsay, Charles R.; Snee, Lawrence W.; Bohannon, Robert G.; Wahl, Ronald R.; Sawyer, David A.
2007-01-01
This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Geologic Map of Quadrangle 3464, Shahrak (411) and Kasi (412) Quadrangles, Afghanistan
Bohannon, Robert G.; Yount, James
2007-01-01
This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Bohannon, Robert G.; Stoeser, Douglas B.
2007-01-01
This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Bohannon, Robert G.
2007-01-01
This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Williams, Van S.
2007-01-01
This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
O'Leary, Dennis W.; Whitney, John W.; Bohannon, Robert G.
2007-01-01
This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Bohannon, Robert G.; Turner, Kenzie J.
2007-01-01
This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Geologic Map of Quadrangle 3162, Chakhansur (603) and Kotalak (604) Quadrangles, Afghanistan
Maldonado, Florian
2007-01-01
This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Geologic Map of Quadrangle 3462, Herat (409) and Chesht-Sharif (410) Quadrangles, Afghanistan
Bohannon, Robert G.; Lindsay, Charles R.
2007-01-01
This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Geologic Map of Quadrangle 3266, Ourzgan (519) and Moqur (520) Quadrangles, Afghanistan
Sawyer, David A.; Stoeser, Douglas B.
2007-01-01
This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
McKinney, Kevin C.; Lidke, David J.
2007-01-01
This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Geologic Map of Quadrangle 3564, Chahriaq (Joand) (405) and Gurziwan (406) Quadrangles, Afghanistan
McKinney, Kevin C.; Sawyer, David A.
2007-01-01
This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Geologic Map of Quadrangle 3166, Jaldak (701) and Maruf-Nawa (702) Quadrangles, Afghanistan
Bohannon, Robert G.
2007-01-01
This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Geologic Map of Quadrangle 3264, Nawzad-Musa-Qala (423) and Dehrawat (424) Quadrangles, Afghanistan
Bohannon, Robert G.; Lindsay, Charles R.
2007-01-01
This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Geologic Map of Quadrangle 3164, Lashkargah (605) and Kandahar (606) Quadrangles, Afghanistan
O'Leary, Dennis W.; Whitney, John W.
2007-01-01
This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Geologic Map of Quadrangle 3366, Gizab (513) and Nawer (514) Quadrangles, Afghanistan
Bohannon, Robert G.
2007-01-01
This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Geologic Map of Quadrangle 3466, Lal-Sarjangal (507) and Bamyan (508) Quadrangles, Afghanistan
Yount, James C.
2007-01-01
This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
O'Leary, Dennis W.; Whitney, John W.
2007-01-01
This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Geologic Map of Quadrangle 3468, Chak Wardak-Syahgerd (509) and Kabul (510) Quadrangles, Afghanistan
Bohannon, Robert G.; Turner, Kenzie J.
2007-01-01
This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Lindsay, Charles R.
2007-01-01
This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Williams, Van S.
2007-01-01
This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
NASA Astrophysics Data System (ADS)
Williams, S. J.; Reid, J. A.; Arsenault, M. A.; Jenkins, C.
2006-12-01
Geologic maps of offshore areas containing detailed morphologic features and sediment character can serve many scientific and operational purposes. Such maps have been lacking, but recent computer technology and software to capture diverse marine data are offering promise. Continental margins, products of complex geologic history and dynamic oceanographic processes, dominated by the Holocene marine transgression, contain landforms which provide a variety of important functions: critical habitats for fish, ship navigation, national defense, and engineering activities (i.e., oil and gas platforms, pipeline and cable routes, wind-energy sites) and contain important sedimentary records. Some shelf areas also contain sedimentary deposits such as sand and gravel, regarded as potential aggregate resources for mitigating coastal erosion, reducing vulnerability to hazards, and restoring ecosystems. Because coastal and offshore areas are increasingly important, knowledge of the framework geology and marine processes is useful to many. Especially valuable are comprehensive and integrated digital databases based on data from original sources in the marine community. Products of interest are GIS maps containing thematic information such as seafloor physiography, geology, sediment character and texture, seafloor roughness, and geotechnical engineering properties. These map products are useful to scientists modeling nearshore and shelf processes as well as planners and managers. The USGS with partners is leading a Nation-wide program to gather a wide variety of extant marine geologic data into the usSEABED system (http://walrus.wr.usgs/usseabed). This provides a centralized, fully integrated digital database of marine geologic data collected over the past 50 years by USGS, other federal and state agencies, universities and private companies. To date, approximately 325,000 data points from the U.S. EEZ reside in usSEABED. The usSEABED, which combines a broad array of physical data and information (both analytical and descriptive) about the sea floor, including sediment textural, statistical, geochemical, geophysical, and compositional information, is available to the marine community through USGS Data Series publications. Three DS reports for the Atlantic (DS-118), Gulf of Mexico (DS-146) and Pacific(DS-182) were published in 2006 and reports for HI and AK are forthcoming. The use of usSEABED and derivative map products are part of ongoing USGS efforts to conduct regional assessments of potential marine sand and gravel resources, map benthic habitats, and support research in understanding seafloor character and mobility, transport processes and natural resources.
AAPG-CSD geologic provinces code map
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, R.F.; Wallace, L.G.; Wagner, F.J. Jr.
1991-10-01
This article provides the history of a revised geologic map which was drawn based on both surface geology and petroleum occurrence. The map includes offshore maps for California and the Gulf Coast of Texas and Louisiana. For onshore sites it provides geologic province boundaries which were drawn along county boundaries to approximate their position relative to oil and gas production. The offshore sites are drawn based on the universal transverse Mercator system.
Geologic map of the San Francisco Bay region
Graymer, R.W.; Moring, B.C.; Saucedo, G.J.; Wentworth, C.M.; Brabb, E.E.; Knudsen, K. L.
2006-01-01
The rocks and fossils of the San Francisco Bay region reveal that the geology there is the product of millions of years at the active western margin of North America. The result of this history is a complex mosaic of geologic materials and structures that form the landscape. A geologic map is one of the basic tools to understand the geology, geologic hazards, and geologic history of a region.With heightened public awareness about earthquake hazards leading up to the 100th anniversary of the 1906 San Francisco earthquake, the U.S. Geological Survey (USGS) is releasing new maps of the San Francisco Bay Area designed to give residents and others a new look at the geologic history and hazards of the region. The “Geologic Map of the San Francisco Bay region” shows the distribution of geologic materials and structures, demonstrates how geologists study the age and origin of the rocks and deposits that we live on, and reveals the complicated geologic history that has led to the landscape that shapes the Bay Area.
Bedford, David R.; Ludington, Steve; Nutt, Constance M.; Stone, Paul A.; Miller, David M.; Miller, Robert J.; Wagner, David L.; Saucedo, George J.
2003-01-01
The USGS is creating an integrated national database for digital state geologic maps that includes stratigraphic, age, and lithologic information. The majority of the conterminous 48 states have digital geologic base maps available, often at scales of 1:500,000. This product is a prototype, and is intended to demonstrate the types of derivative maps that will be possible with the national integrated database. This database permits the creation of a number of types of maps via simple or sophisticated queries, maps that may be useful in a number of areas, including mineral-resource assessment, environmental assessment, and regional tectonic evolution. This database is distributed with three main parts: a Microsoft Access 2000 database containing geologic map attribute data, an Arc/Info (Environmental Systems Research Institute, Redlands, California) Export format file containing points representing designation of stratigraphic regions for the Geologic Map of Utah, and an ArcView 3.2 (Environmental Systems Research Institute, Redlands, California) project containing scripts and dialogs for performing a series of generalization and mineral resource queries. IMPORTANT NOTE: Spatial data for the respective stage geologic maps is not distributed with this report. The digital state geologic maps for the states involved in this report are separate products, and two of them are produced by individual state agencies, which may be legally and/or financially responsible for this data. However, the spatial datasets for maps discussed in this report are available to the public. Questions regarding the distribution, sale, and use of individual state geologic maps should be sent to the respective state agency. We do provide suggestions for obtaining and formatting the spatial data to make it compatible with data in this report. See section ‘Obtaining and Formatting Spatial Data’ in the PDF version of the report.
Status of shallow-aquifer mapping in the Northern Front Range Area, Colorado
Robson, Stanley G.
2001-01-01
Mapping of shallow aquifers in the northern Front Range area of Colorado has been completed as part of the U.S. Geological Survey Front Range Infrastructure Resources Project. The aquifer mapping was undertaken as part of a comprehensive effort to better define the mineral, energy, cartographic, biological, and water resources that are critical to the support and development of the area's infrastructure, such as streets. highways, airports, and buildings. The aquifer mapping was undertaken in cooperation with the Colorado Division of Water Resources and the Colorado Water Conservation Board. The shallow aquifers have been mapped in a 2,450-square-mile area extending as an approximately 30-mile-wide band from north of Fort Collins to the Arapahoe-Douglas County line south of Denver (fig. I). The shallow aquifer mapping in the Denver metropolitan area was published in 1996 as Hydrologic Investigations Atlas HA-736 (Robson. 1996). Shallow aquifer mapping in the Greeley-Nunn area was published as HA-746A (Robson, Arnold, and Heiny, 2000a); mapping in the Fort Collins-Loveland area was published as HA-746B (Robson, Arnold, and Heiny, 2000b); mapping in the Fort Lupton-Gilcrest area was published as HA-746C (Robson, Heiny, and Arnold, 2000c); and mapping in the Boulder-Longmont area was published as HA-746D (Robson, Heiny, and Arnold, 2000d). Each of the five atlases contains five map sheets at 1:50,000 scale showing: 1. The thickness and extent of the unconsolidated sediments (loose gravel. sand. silt, and clay) that overlie the bedrock formations in the area (fig. 2). 2. The altitude and configuration of the bedrock surface. 3. The altitude of the water table and direction of ground-water movement. 4. The saturated thickness of the shallow aquifers. 5. The depth to the water table in the shallow aquifers.
Stoeser, Douglas B.; Green, Gregory N.; Morath, Laurie C.; Heran, William D.; Wilson, Anna B.; Moore, David W.; Van Gosen, Bradley S.
2005-01-01
The growth in the use of Geographic Information Systems (GIS) has highlighted the need for regional and national digital geologic maps attributed with age and lithology information. Such maps can be conveniently used to generate derivative maps for purposes including mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This Open-File Report is a preliminary version of part of a series of integrated state geologic map databases that cover the entire United States. The only national-scale digital geologic maps that portray most or all of the United States for the conterminous U.S. are the digital version of the King and Beikman (1974a, b) map at a scale of 1:2,500,000, as digitized by Schruben and others (1994) and the digital version of the Geologic Map of North America (Reed and others, 2005a, b) compiled at a scale of 1:5,000,000 which is currently being prepared by the U.S. Geological Survey. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. In a few cases, new digital compilations were prepared (e.g. OH, SC, SD) or existing paper maps were digitized (e.g. KY, TX). For Alaska and Hawaii, new regional maps are being compiled and ultimately new state maps will be produced. The digital geologic maps are presented in standardized formats as ARC/INFO (.e00) export files and as ArcView shape (.shp) files. Accompanying these spatial databases are a set of five supplemental data tables that relate the map units to detailed lithologic and age information. The maps for the CONUS have been fitted to a common set of state boundaries based on the 1:100,000 topographic map series of the United States Geological Survey (USGS). When the individual state maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps. No attempt has been made to reconcile differences in mapped geology across state lines. This is the first version of this product and it will be subsequently updated to include four additional states (North Dakota, South Dakota, Nebraska, and Iowa)
Nicholson, Suzanne W.; Dicken, Connie L.; Horton, John D.; Foose, Michael P.; Mueller, Julia A.L.; Hon, Rudi
2006-01-01
The rapid growth in the use of Geographic Information Systems (GIS) has highlighted the need for regional and national scale digital geologic maps that have standardized information about geologic age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. Although two digital geologic maps (Schruben and others, 1994; Reed and Bush, 2004) of the United States currently exist, their scales (1:2,500,000 and 1:5,000,000) are too general for many regional applications. Most states have digital geologic maps at scales of about 1:500,000, but the databases are not comparably structured and, thus, it is difficult to use the digital database for more than one state at a time. This report describes the result for a seven state region of an effort by the U.S. Geological Survey to produce a series of integrated and standardized state geologic map databases that cover the entire United States. In 1997, the United States Geological Survey's Mineral Resources Program initiated the National Surveys and Analysis (NSA) Project to develop national digital databases. One primary activity of this project was to compile a national digital geologic map database, utilizing state geologic maps, to support studies in the range of 1:250,000- to 1:1,000,000-scale. To accomplish this, state databases were prepared using a common standard for the database structure, fields, attribution, and data dictionaries. For Alaska and Hawaii new state maps are being prepared and the preliminary work for Alaska is being released as a series of 1:250,000 scale quadrangle reports. This document provides background information and documentation for the integrated geologic map databases of this report. This report is one of a series of such reports releasing preliminary standardized geologic map databases for the United States. The data products of the project consist of two main parts, the spatial databases and a set of supplemental tables relating to geologic map units. The datasets serve as a data resource to generate a variety of stratigraphic, age, and lithologic maps. This documentation is divided into four main sections: (1) description of the set of data files provided in this report, (2) specifications of the spatial databases, (3) specifications of the supplemental tables, and (4) an appendix containing the data dictionaries used to populate some fields of the spatial database and supplemental tables.
NASA Technical Reports Server (NTRS)
Martin, P.; Stofan, E. R.; Guest, J. E.
2009-01-01
A geologic map of the Sedna Planitia (V-19) quadrangle is being completed at the 1:5,000,000 scale as part of the NASA Planetary Geologic Mapping Program, and will be submitted for review by September 2009.
NASA Astrophysics Data System (ADS)
Ebner, M.; Schiegl, M.; Stöckl, W.; Heger, H.
2012-04-01
The Geological Survey of Austria is legally obligated by the INSPIRE directive to provide data that fall under this directive (geology, mineral resources and natural risk zones) to the European commission in a semantically harmonized and technically interoperable way. Until recently the focus was entirely on the publication of high quality printed cartographic products. These have a complex (carto-)graphic data-model, which allows visualizing several thematic aspects, such as lithology, stratigraphy, tectonics, geologic age, mineral resources, mass movements, geomorphology etc. in a single planar map/product. Nonetheless these graphic data-models do not allow retrieving individual thematic aspects since these were coded in a complex portrayal scheme. Automatic information retrieval is thus impossible; and domain knowledge is necessary to interpret these "encrypted datasets". With INSPIRE becoming effective and a variety of conceptual models (e.g. GeoSciML), built around a semantic framework (i.e. controlled vocabularies), being available it is necessary to develop a strategy and workflow for semantic harmonization of such datasets. In this contribution we demonstrate the development of a multistage workflow which will allow us to transform our printed maps to semantically enabled datasets and services and discuss some prerequisites, foundations and problems. In a first step in our workflow we analyzed our maps and developed controlled vocabularies that describe the thematic content of our data. We then developed a physical data-model which we use to attribute our spatial data with thematic information from our controlled vocabularies to form core thematic data sets. This physical data model is geared towards use on an organizational level but builds upon existing standards (INSPIRE, GeoSciML) to allow transformation to international standards. In a final step we will develop a standardized mapping scheme to publish INSPIRE conformant services from our core datasets. This two-step transformation is necessary since a direct mapping to international standards is not possible for traditional map-based data. Controlled vocabularies provide the foundation of a semantic harmonization. For the encoding of the vocabularies we build upon the W3C standard SKOS (=Simple Knowledge Organisation System), a thesaurus specification for the semantic web, which is itself based on the Resource Description Framework (RDF) and RDF Schema and added some DublinCore and VoID for the metadata of our vocabularies and resources. For the development of these thesauri we use the commercial software PoolParty, which is a tool specially build to develop, manage and publish multilingual thesauri. The corporate thesauri of the Austrian Geological Survey are exposed via a web-service that is conformant with the linked data principles. This web-service gives access to a (1) RDF/HTML representation of the resources via a simple, robust and thus persistent http URIs (2) a download of the complete vocabularies in RDF-format (3) a full-fledged SPARQL-Endpoint to query the thesaurus. With the development of physical data-models (based on preexisting conceptual models) one must dismiss the classical schemes of map-based portrayal of data. E.g. for individual Geological units on traditional geological maps usually a single age range is given (e.g. formation age). But one might want to attribute several geologic ages (formation age, metamorphic age, cooling ages etc.) to individual units. Such issues have to be taken into account when developing robust physical data-models. Based on our experience we are convinced that individual institutions need to develop their own controlled vocabularies and individual data-models that fit the specific needs on an organizational level. If externally developed vocabularies and data-models are introduced to established workflows newly generated and existing data may be diverging and it will be hard to achieve or maintain a common standard. We thus suggest that it is necessary for institutions to keep (or develop) to their organizational standards and vocabularies and map them to generally agreed international standards such as INSPIRE or GeoSciML in a fashion suggested by the linked data principles.
Preliminary geologic map of the Elsinore 7.5' Quadrangle, Riverside County, California
Morton, Douglas M.; Weber, F. Harold; Digital preparation: Alvarez, Rachel M.; Burns, Diane
2003-01-01
Open-File Report 03-281 contains a digital geologic map database of the Elsinore 7.5’ quadrangle, Riverside County, California that includes: 1. ARC/INFO (Environmental Systems Research Institute, http://www.esri.com) version 7.2.1 coverages of the various elements of the geologic map. 2. A Postscript file to plot the geologic map on a topographic base, and containing a Correlation of Map Units diagram (CMU), a Description of Map Units (DMU), and an index map. 3. Portable Document Format (.pdf) files of: a. This Readme; includes in Appendix I, data contained in els_met.txt b. The same graphic as plotted in 2 above. Test plots have not produced precise 1:24,000-scale map sheets. Adobe Acrobat page size setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Where known, grain size is indicated on the map by a subscripted letter or letters following the unit symbols as follows: lg, large boulders; b, boulder; g, gravel; a, arenaceous; s, silt; c, clay; e.g. Qyfa is a predominantly young alluvial fan deposit that is arenaceous. Multiple letters are used for more specific identification or for mixed units, e.g., Qfysa is a silty sand. In some cases, mixed units are indicated by a compound symbol; e.g., Qyf2sc. Even though this is an Open-File Report and includes the standard USGS Open-File disclaimer, the report closely adheres to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above).
Preliminary geologic map of the Big Bear City 7.5' Quadrangle, San Bernardino County, California
Miller, Fred K.; Cossette, Digital preparation by Pamela M.
2004-01-01
This data set maps and describes the geology of the Big Bear City 7.5' quadrangle, San Bernardino County, California. Created using Environmental Systems Research Institute's ARC/INFO software, the data base consists of the following items: (1) a rock-unit coverage and attribute tables (polygon and arc) containing geologic contacts, units and rock-unit labels as annotation which are also included in a separate annotation coverage, bbc_anno (2) a point coverage containing structural point data and (3) a coverage containing fold axes. In addition, the data set includes the following graphic and text products: (1) A PostScript graphic plot-file containing the geologic map, topography, cultural data, a Correlation of Map Units (CMU) diagram, a Description of Map Units (DMU), an index map, a regional geologic and structure map, and an explanation for point and line symbols; (2) PDF files of the Readme (including the metadata file as an appendix), and a screen graphic of the plot produced by the PostScript plot file. The geologic map describes a geologically complex area on the north side of the San Bernardino Mountains. Bedrock units in the Big Bear City quadrangle are dominated by (1) large Cretaceous granitic bodies ranging in composition from monzogranite to gabbro, (2) metamorphosed sedimentary rocks ranging in age from late Paleozoic to late Proterozoic, and (3) Middle Proterozoic gneiss. These rocks are complexly deformed by normal, reverse, and thrust faults, and in places are tightly folded. The geologic map database contains original U.S. Geological Survey data generated by detailed field observation and by interpretation of aerial photographs. The map data was compiled on base-stable cronoflex copies of the Big Bear City 7.5' topographic map, transferred to a scribe-guide and subsequently digitized. Lines, points, and polygons were edited at the USGS using standard ARC/INFO commands. Digitizing and editing artifacts significant enough to display at a scale of 1:24,000 were corrected. Within the database, geologic contacts are represented as lines (arcs), geologic units as polygons, and site-specific data as points. Polygon, arc, and point attribute tables (.pat, .aat, and .pat, respectively) uniquely identify each geologic datum.
Wyoming Geology and Geography, Unit I.
ERIC Educational Resources Information Center
Robinson, Terry
This unit on the geology and geography of Wyoming for elementary school students provides activities for map and globe skills. Goals include reading and interpreting maps and globes, interpreting map symbols, comparing maps and drawing inferences, and understanding time and chronology. Outlines and charts are provided for Wyoming geology and…
The 1:3M geologic map of Mercury: progress and updates
NASA Astrophysics Data System (ADS)
Galluzzi, Valentina; Guzzetta, Laura; Mancinelli, Paolo; Giacomini, Lorenza; Malliband, Christopher C.; Mosca, Alessandro; Wright, Jack; Ferranti, Luigi; Massironi, Matteo; Pauselli, Cristina; Rothery, David A.; Palumbo, Pasquale
2017-04-01
After the end of Mariner 10 mission a 1:5M geologic map of seven of the fifteen quadrangles of Mercury [Spudis and Guest, 1988] was produced. The NASA MESSENGER mission filled the gap by imaging 100% of the planet with a global average resolution of 200 m/pixel and this led to the production of a global 1:15M geologic map of the planet [Prockter et al., 2016]. Despite the quality gap between Mariner 10 and MESSENGER images, no global geological mapping project with a scale larger than 1:5M has been proposed so far. Here we present the status of an ongoing project for the geologic mapping of Mercury at an average output scale of 1:3M based on the available MESSENGER data. This project will lead to a fuller grasp of the planet's stratigraphy and surface history. Completing such a product for Mercury is an important goal in preparation for the forthcoming ESA/JAXA BepiColombo mission to aid selection of scientific targets and to provide context for interpretation of new data. At the time of this writing, H02 Victoria [Galluzzi et al., 2016], H03 Shakespeare [Guzzetta et al., 2016] and H04 Raditladi [Mancinelli et al., 2016] have been completed and H05 Hokusai [Rothery et al., 2017], H06 Kuiper [Giacomini et al., 2017], H07 Beethoven and H10 Derain [Malliband et al., 2017] are being mapped. The produced geologic maps were merged using the ESRI ArcGIS software adjusting discontinuous contacts along the quadrangle boundaries. Contact discrepancies were reviewed and discussed among the mappers of adjoining quadrangles in order to match the geological interpretation and provide a unique consistent stratigraphy. At the current stage, more than 20% of Mercury has now a complete 1:3M map and more than 40% of the planet will be covered soon by the maps that are being prepared. This research was supported by the Italian Space Agency (ASI) within the SIMBIOSYS project (ASI-INAF agreement no. I/022/10/0). References Galluzzi V. et al. (2016). Geology of the Victoria Quadrangle (H02), Mercury. J. Maps, 12, 226-238. Giacomini L. et al. (2017). Geological mapping of the Kuiper quadrangle (H06) of Mercury. EGU General Assembly 2017, Abs. #14574. Guzzetta L. et al. (2016). Geologic map of the Shakespeare Quadrangle (H03) of Mercury. 88th Congress of the Italian Geological Society, 7-9 Sep 2016, Naples. Malliband C.C. et al. (2017). Preliminary results of 1:3million geological mapping of the Mercury quadrangle H-10 (Derain). XLVIII LPSC Abs., #1476. Mancinelli P. et al. (2016). Geology of the Raditladi Quadrangle, Mercury (H04). J. Maps, 12, 190-202. Prockter L. M. et al. (2016). The First Global Geological Map of Mercury. XLVII LPSC., Abs. #1245. Rothery D. A. et al. (2017). Geological mapping of the Hokusai (H05) quadrangle of Mercury. XLVIII LPSC, Abs. #1406. Spudis P. D. and Guest J. E. (1988). Stratigraphy and geologic history of Mercury. In: Vilas F., Chapman, C. R. and Matthews M. S. Eds., Mercury, 118-164. The University of Arizona Press, Tucson.
Maldonado, Florian; Slate, Janet L.; Love, Dave W.; Connell, Sean D.; Cole, James C.; Karlstrom, Karl E.
2007-01-01
This 1:50,000-scale map compiles geologic mapping of the Pueblo of Isleta tribal lands and vicinity in the central part of the Albuquerque Basin in central New Mexico. The map synthesizes new geologic mapping and summarizes the stratigraphy, structure, and geomorphology of an area of approximately 2,000 km2 that spans the late Paleogene-Neogene Rio Grande rift south of Albuquerque, N. Mex. The map is part of studies conducted between 1996 and 2001 under the U.S. Geological Survey (USGS) Middle Rio Grande Basin Study by geologists from the USGS, the New Mexico Bureau of Geology and Mineral Resources (NMBGMR), and the University of New Mexico (UNM). This work was conducted in order to investigate the geologic factors that influence ground-water resources of the Middle Rio Grande Basin, and to provide new insights into the complex geologic history of the Rio Grande rift in this region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D`Agnese, F.A.; Faunt, C.C.; Turner, A.K.
1995-10-01
Parts of four 1:250,000-scale geologic maps by the California Department of Natural Resources, Division of Mines and Geology have been digitized for use in hydrogeologic characterization. These maps include the area of California between lat. 35{degree}N; Long. 115{degree}W and lat. 38{degree}N, long. 118{degree}W of the Kingman Sheet (Jennings, 1961), Trona Sheet (Jennings and others, 1962), Mariposa Sheet (Strand, 1967), and Death Valley Sheet (Streitz and Stinson, 1974). These digital maps are being released by the US Geological Survey in the ARC/INFO Version 6.1 Export format. The digitized data include geologic unit boundaries, fault traces, and identity of geologic units. Themore » procedure outlined in US Geological Survey Circular 1054 (Soller and others, 1990) was sued during the map construction. The procedure involves transferring hard-copy data into digital format by scanning manuscript maps, manipulating the digital map data, and outputting the data. Most of the work was done using Environmental Systems Research Institute`s ARC/INFO software. The digital maps are available in ARC/INFO Rev. 6.1 Export format, from the USGS, Yucca Mountain Project, in Denver, Colorado.« less
A Lithology Based Map Unit Schema For Onegeology Regional Geologic Map Integration
NASA Astrophysics Data System (ADS)
Moosdorf, N.; Richard, S. M.
2012-12-01
A system of lithogenetic categories for a global lithological map (GLiM, http://www.ifbm.zmaw.de/index.php?id=6460&L=3) has been compiled based on analysis of lithology/genesis categories for regional geologic maps for the entire globe. The scheme is presented for discussion and comment. Analysis of units on a variety of regional geologic maps indicates that units are defined based on assemblages of rock types, as well as their genetic type. In this compilation of continental geology, outcropping surface materials are dominantly sediment/sedimentary rock; major subdivisions of the sedimentary category include clastic sediment, carbonate sedimentary rocks, clastic sedimentary rocks, mixed carbonate and clastic sedimentary rock, colluvium and residuum. Significant areas of mixed igneous and metamorphic rock are also present. A system of global categories to characterize the lithology of regional geologic units is important for Earth System models of matter fluxes to soils, ecosystems, rivers and oceans, and for regional analysis of Earth surface processes at global scale. Because different applications of the classification scheme will focus on different lithologic constituents in mixed units, an ontology-type representation of the scheme that assigns properties to the units in an analyzable manner will be pursued. The OneGeology project is promoting deployment of geologic map services at million scale for all nations. Although initial efforts are commonly simple scanned map WMS services, the intention is to move towards data-based map services that categorize map units with standard vocabularies to allow use of a common map legend for better visual integration of the maps (e.g. see OneGeology Europe, http://onegeology-europe.brgm.fr/ geoportal/ viewer.jsp). Current categorization of regional units with a single lithology from the CGI SimpleLithology (http://resource.geosciml.org/201202/ Vocab2012html/ SimpleLithology201012.html) vocabulary poorly captures the lithologic character of such units in a meaningful way. A lithogenetic unit category scheme accessible as a GeoSciML-portrayal-based OGC Styled Layer Description resource is key to enabling OneGeology (http://oneGeology.org) geologic map services to achieve a high degree of visual harmonization.
NASA Technical Reports Server (NTRS)
Houston, R. S. (Principal Investigator); Zochol, F. W.; Smithson, S. B.
1973-01-01
The author has identified the following significant results. Reconnaissance geologic mapping can be done with 60-70% accuracy in the Dry Valleys of Antarctica using ERTS-1 imagery. Bedrock geology can be mapped much better than unconsolidated deposits of Quaternary age. Mapping of bedrock geology is facilitated by lack of vegetation, whereas mapping of Quaternary deposits is hindered by lack of vegetation. Antarctic images show remarkable clarity and under certain conditions (moderate relief, selection of the optimum band for specific rock types, stereo-viewing) irregular contacts can be mapped in local areas that are amazing like those mapped at a scale of 1:25,000, but, of course, lack details due to resolution limitations. ERTS-1 images should be a valuable aid to Antarctic geologists who have some limited ground truth and wish to extend boundaries of geologic mapping from known areas.
Geologic map of the San Bernardino North 7.5' quadrangle, San Bernardino County, California
Miller, F.K.; Matti, J.C.
2001-01-01
3. Portable Document Format (.pdf) files of: a. This Readme; includes an Appendix, containing data found in sbnorth_met.txt . b. The Description of Map Units identical to that found on the plot of the PostScript file. c. The same graphic as plotted in 2 above. (Test plots from this .pdf do not produce 1:24,000-scale maps. Use Adobe Acrobat pagesize setting to control map scale.) The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Miscellaneous Investigations Series (I-series) maps. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Even though this is an author-prepared report, every attempt has been made to closely adhere to the stratigraphic nomenclature of the U. S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above). If roads in some areas, especially forest roads that parallel topographic contours, do not show well on plots of the geologic map, we recommend use of the USGS San Bernardino North 7.5’ topographic quadrangle in conjunction with the geologic map.
Macrostrat and GeoDeepDive: A Platform for Geological Data Integration and Deep-Time Research
NASA Astrophysics Data System (ADS)
Husson, J. M.; Peters, S. E.; Ross, I.; Czaplewski, J. J.
2016-12-01
Characterizing the quantity, lithology, age, and properties of rocks and sediments in the upper crust is central to many questions in Earth science. Although a large number of geological maps, regional syntheses, and sample-based measurements have been published in a variety of formats, there is no system for integrating and accessing rock record-derived data or for facilitating the large-scale quantitative interrogation of the physical, chemical, and biological properties of Earth's crust. Here we describe two data resources that aim to overcome some of these limitations: 1) Macrostrat, a geospatial database and supporting cyberinfrastructure that is designed to enable quantitative analyses of the entire assemblage of surface and subsurface sedimentary, igneous and metamorphic rocks, and 2) GeoDeepDive, a digital library and high throughput computing system designed to facilitate the location and extraction of information and data from the published literature. Macrostrat currently contains general summaries of the age and lithology of rocks and sediments in the upper crust at 1,474 regions in North and Central America, the Caribbean, New Zealand, and the deep sea. Distributed among these geographic regions are nearly 34,000 lithologically and chronologically-defined geological units, many of which are linked to a bedrock geologic map database with more than 1.7 million globally distributed units. Sample-derived data, including fossil occurrences in the Paleobiology Database and more than 180,000 geochemical and outcrop-derived measurements are linked to Macrostrat units and/or lithologies within those units. The rock names, lithological terms, and geological time intervals that are applied to Macrostrat units define a hierarchical, spatially and temporally indexed vocabulary that is leveraged by GeoDeepDive in order to provide researchers access to data within the scientific literature as it is published and ingested into the infrastructure. All data in Macrostrat are accessible via an Application Programming Interface, which enables the development of mobile and analytical applications. The GeoDeepDive infrastructure also supports the development and execution of applications that are tailored to the specific, literature-based data location and extraction needs of geoscientists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brant, R.A.; Chesnut, D.R.; Frankie, W.T.
This report is the fifth in the Energy Resource Series published by the University of Kentucky Institute for Mining and Minerals Research (IMMR), with the Kentucky Geological Survey (KGS). It summarizes the coal resources of the Hazard District (Breathitt, Knott, Leslie, Perry, and parts of Harlan and Letcher counties) of the Eastern Kentucky Coal Field as calculated by the Kentucky Geological Survey. Tonnage estimates for the individual coal beds in the district are presented in tabular form, along with resource maps of the major coal beds.
Recent Geologic Mapping Results for the Polar Regions of Mars
NASA Technical Reports Server (NTRS)
tanaka, K. L.; Kolb, E. J.
2008-01-01
The polar regions of Mars include the densest data coverage for the planet because of the polar orbits of MGS, ODY, and MEX. Because the geology of the polar plateaus has been among the most dynamic on the planet in recent geologic time, the data enable the most detailed and complex geologic investigations of any regions on Mars, superseding previous, even recent, mapping efforts [e.g., 1-3]. Geologic mapping at regional and local scales is revealing that the stratigraphy and modificational histories of polar materials by various processes are highly complex at both poles. Here, we describe some of our recent results in polar geologic mapping and how they address the geologic processes involved and implications for polar climate history.
75 FR 75693 - National Cooperative Geologic Mapping Program (NCGMP) Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-06
... DEPARTMENT OF THE INTERIOR Geological Survey National Cooperative Geologic Mapping Program (NCGMP) Advisory Committee AGENCY: U.S. Geological Survey, Interior. ACTION: Notice of audio conference. [[Page 75694
Publications - PDF 99-24C | Alaska Division of Geological & Geophysical
Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska :63,360 (6.7 M) Keywords Geologic Map; Geology; Geomorphology; Glacial; STATEMAP Project; Slope Instability; Surficial; Surficial Geologic Map; Surficial Geology Top of Page Department of Natural Resources
Bove, Dana J.; Yager, Douglas B.; Mast, M. Alisa; Dalton, J. Brad
2007-01-01
This map was produced to provide hard-copy and digital data for alteration assemblages in the historical mining area centered on the Tertiary San Juan and Silverton calderas. The data have direct application to geoenvironmental and mineral exploration objectives. This dataset represents alteration mapping for the upper Animas River watershed near Silverton, Colorado. The map is based on detailed 1:12,000-scale field mapping, X-ray diffraction (XRD) analysis, mineral mapping by remote sensing (AVIRIS) data, and 1:24,000-scale aerial photographic interpretation. Geologic structures were compiled and generalized from multiple published and unpublished sources (Burbank and Luedke, 1964; Steven and others, 1974; Luedke and Burbank 1975a, b; Lipman, 1976; Luedke and Burbank, 1987; Luedke, 1996) (see Index Map). Unpublished mapping of the Ironton quadrangle by D.J. Bove and J.P. Kurtz in 1997-1999 was included.
Ground-water levels in the alluvial aquifer at Louisville, Kentucky, 1982-87
Faust, R.J.; Lyverse, M.A.
1987-01-01
Water level data have been collected in the alluvial aquifer at Louisville, Kentucky by the U.S. Geological Survey since 1943. Interpretations of these data have been published in several reports by the Survey, but none have been published since 1983. Contour maps and hydrographs are presented in this report to document and to help interpret water level changes for the period 1982-87. Maps and hydrographs show that groundwater levels generally stabilized in the 1980 's after rising for many years. Two areas of groundwater withdrawals are apparent in the maps and hydrographs. Withdrawals in an industrial area in west Louisville disrupt the typical pattern of the contours to curve landward around the area of withdrawal. Resumption of pumping of groundwater for heating and cooling of some buildings in the downtown area in 1985 caused declines of about 3 to 4 ft in the downtown area. (Author 's abstract)
Sado, Edward V.; Fullerton, David S.; Goebel, Joseph E.; Ringrose, Susan M.; Edited and Integrated by Fullerton, David S.
1995-01-01
The Quaternary Geologic Map of the Lake of the Woods 4 deg x 6 deg Quadrangle, United States and Canada, was mapped as part of the U.S. Geological Survey Quaternary Geologic Atlas of the United States map series (Miscellaneous Investigations Series I-1420, NM-15). The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the earth. They make up the 'ground' on which we walk, the 'dirt' in which we dig foundations, and the 'soil' in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. This map is a product of collaboration of the Ontario Geological Survey, the Minnesota Geological Survey, the Manitoba Department of Energy and Mines, and the U.S. Geological Survey, and is designed for both scientific and practical purposes. It was prepared in two stages. First, separate maps and map explanations were prepared by the compilers. Second, the maps were combined, integrated, and supplemented by the editor. Map unit symbols were revised to a uniform system of classification and the map unit descriptions were prepared by the editor from information received from the compilers and from additional sources listed under Sources of Information. Diagrams accompanying the map were prepared by the editor. For scientific purposes, the map differentiates Quaternary surficial deposits on the basis of lithology or composition, texture or particle size, structure, genesis, stratigraphic relationships, engineering geologic properties, and relative age, as shown on the correlation diagram and indicated in the description of map units. Deposits of some constructional landforms, such as kame moraine deposits, are distinguished as map units. Deposits of erosional landforms, such as outwash terraces, are not distinguished, although glaciofluvial, ice-contact, and lacustrine deposits that are mapped may be terraced. As a Quaternary geologic map, it serves as a base from which a variety of maps relating Quaternary geologic history can be derived. For practical purposes, the map is a surficial materials map. Materials are distinguished on the basis of lithology or composition, texture or particle size, and other physical, chemical, and engineering characteristics. It is not a map of soils that are recognized and classified in pedology or agronomy. Rather, it is a generalized map of soils as recognized in engineering geology, or of substrata or parent materials in which pedologic or agronomic soils are formed. As a materials map, it serves as a base from which a variety of maps for use in planning engineering, land-use, or land-management projects can be derived.
NASA Technical Reports Server (NTRS)
Skinner, J. A., Jr.; Eppler, D. B.; Bleacher, J. E.; Evans, C. A.; Feng, W.; Gruener, J.; Hurwitz, D. M.; Janoiko, B.; Whitson, P.
2014-01-01
Cartographic products and - specifically - geologic maps provide critical assistance for establishing physical and temporal frameworks of planetary surfaces. The technical methods that result in the creation of geologic maps vary depending on how observations are made as well as the overall intent of the final products [1-3]. These methods tend to follow a common linear work flow, including the identification and delineation of spatially and temporally discrete materials (units), the documentation of their primary (emplacement) and secondary (erosional) characteristics, analysis of the relative and absolute age relationships between these materials, and the collation of observations and interpretations into an objective map product. The "objectivity" of a map is critical cross comparison with overlapping maps and topical studies as well as its relevance to scientific posterity. However, the "accuracy" and "correctness" of a geologic map is very subject to debate. This can be evidenced by comparison of existing geologic maps at various scales, particularly those compiled through field- and remote-based mapped efforts. Our study focuses on comparing the fidelity of (1) "Apollo-style" geologic investigations, where typically non-geologist crew members follow static traverse routes established through pre-mission planning, and (2) "traditional" field-based investigations, where geologists are given free rein to observe without preplanned routes. This abstract summarizes the regional geology wherein our study was conducted, presents the geologic map created from traditional field mapping techniques, and offers basic insights into how geologic maps created from different tactics can be reconciled in support of exploratory missions. Additional abstracts [4-6] from this study discuss various exploration and science results of these efforts.
NASA Astrophysics Data System (ADS)
Gruber, D.; Gootee, B.
2016-12-01
Citizen-scientists of the McDowell Sonoran Conservancy Field Institute originated and led this project to study milky quartz deposits. Milky quartz veins of all sizes are visible throughout the McDowell Sonoran Preserve (Scottsdale, Arizona) and are commonly found in Arizona Proterozoic rocks. No research on milky quartz has been done locally and little is known about its formation and emplacement history. Working with Brian Gootee, research geologist with the Arizona Geological Survey (AZGS), a citizen science team identified candidate study sites with large quartz veins and then conducted aerial balloon photography followed by geologic mapping, basic data collection, photo-documentation, and sampling from two sites. Samples were analyzed with a UV lamp, Geiger counter, and x-ray fluorescence spectrometer. Petroscopic analysis and interpretation of the samples were done by Gootee. Daniel Gruber, the citizen-science project leader, and Gootee summarized methodology, sample analyses, and interpretation in a report including detailed geologic maps. Analysis of samples from one site provided evidence of several events of Proterozoic quartz formation. The other site hosted pegmatite, cumulates, graphic granite and orbicular granite in association with milky quartz, all discovered by citizen scientists. The milky quartz and surrounding pegmatites in granite at this site trace the progression of late-stage crystallization at the margin of a fractionated granite batholith, providing an exemplary opportunity for further research into batholith geochemistry and evolution. The project required 1000 hours of citizen-science time for training, field work, data organization and entry, mapping, and writing. The report by Gootee and Gruber was reviewed and published by AZGS as an Open File Report in its online document repository. The citizen scientist team leveraged the time of professional geologists to expand knowledge of an important geologic feature of the McDowell Mountains.
Publications - RI 2013-2 | Alaska Division of Geological & Geophysical
content DGGS RI 2013-2 Publication Details Title: Surficial-geologic map of the Livengood area, central Burns, P.A.C., 2013, Surficial-geologic map of the Livengood area, central Alaska: Alaska Division of Sheet 1 Surficial-geologic map of the Livengood area, central Alaska, scale 1:50,000 (30.0 M) Digital
Walcott, Charles D.
1901-01-01
Area treated.—The Black and Grand prairies of Texas and southern Indian Territory comprise about 50,000 square miles (see Pl. LXV, in pocket)—an area equal to that of fifty of the quadrangles mapped and described by the United States Geological Survey in its Geologic Atlas of the United States. The accompanying general geologic map (Pl. LXVI, in pocket) is a condensed presentation of the geology usually shown on that number of atlas sheets as published in folio form. Most of these quadrangles have been studied by the writer and his former assistants.Sources of data.—An entirely satisfactory presentation of these results is still impossible by reason of the lack of adequate maps. The topographic maps of the United States Geological Survey, which cover 24 of the 50 units of area, were made in the earlier years of the Survey and with a contour interval insufficient for the expression of the geology. For the remaining portion of the area it was necessary to use as a base the Land Office maps of the State of Texas.The conclusions herein presented, often condensed in a short paragraph, are founded upon a large amount of paleontologic, stratigraphic, and topographic data. The results, so far as they refer to the Black and Grand prairies, are the outcome of studies made by the writer since 1882, sometimes independently, sometimes with the assistance of the United States Geological Survey, and during two years in connection with the Texas Geological Survey. In times past he has been assisted in this work by his former students, C. C. McCulloch, now captain, U. S. A.; Messrs. Wilson T. Davidson and L. T. Dashiel; Mr. Joseph A. Taff, now of the United States Geological Survey; Dr. J. W. Stone, Mr. N. F. Drake, and Mr. G. H. Ragsdale. Inasmuch as the details which these gentlemem worked out were problems of the writer's suggestion, he has incorporated them into this paper, and here acknowledges indebtedness therefor. Upon the writer's retirement from the Texas Survey, Mr. Taff continued the work of mapping the region. He published two reports, which have been freely used and which have been of great assistance in the preparation of this paper. Importance of paleontology.—In addition to the collection of the data which appear in the text and illustrations, much paleontologic research has been necessary in order to classify the formations. Paleontology is the most reliable guide in determining the position of any bed in the geologic series with a view to ascertaining the depth, from any particular portion of the surface, of the underground waters in the Cretaceous regions of Texas. If a few species of fossils, such as can be found in any locality, be sent to one familiar with the sequence of the beds, he can predict within a few feet the depth below the surface of any particular water-bearing stratum in the series. It was a labor of years to disentangle the preexisting confusion concerning the occurrence and succession of these fossils and their bearings upon the determination and definition of the strata. Their further consideration has been left to Mr. T. W. Stanton, who, it is presumed, will make final publication of the descriptions and the scientific results.This is not a final and complete report. Detailed field work is desirable in many localities. Chemical analyses of water and illustrations of typical scenery should be more complete, but these were not obtainable with the means and time at the writer's disposal. When appreciation of geologic investigation shall have been awakened in Texas and the region under discussion shall have been studied more closely by resident students, in the manner now common in other parts of the United States, the data here presented will be largely increased and refined, and the conclusions will doubtless be correspondingly amended and rectified.
Slate, Janet L.; Berry, Margaret E.; Rowley, Peter D.; Fridrich, Christopher J.; Morgan, Karen S.; Workman, Jeremiah B.; Young, Owen D.; Dixon, Gary L.; Williams, Van S.; McKee, Edwin H.; Ponce, David A.; Hildenbrand, Thomas G.; Swadley, W.C.; Lundstrom, Scott C.; Ekren, E. Bartlett; Warren, Richard G.; Cole, James C.; Fleck, Robert J.; Lanphere, Marvin A.; Sawyer, David A.; Minor, Scott A.; Grunwald, Daniel J.; Laczniak, Randell J.; Menges, Christopher M.; Yount, James C.; Jayko, Angela S.
1999-01-01
This digital geologic map of the Nevada Test Site (NTS) and vicinity, as well as its accompanying digital geophysical maps, are compiled at 1:100,000 scale. The map compilation presents new polygon (geologic map unit contacts), line (fault, fold axis, metamorphic isograd, dike, and caldera wall) and point (structural attitude) vector data for the NTS and vicinity, Nye, Lincoln, and Clark Counties, Nevada, and Inyo County, California. The map area covers two 30 x 60-minute quadrangles-the Pahute Mesa quadrangle to the north and the Beatty quadrangle to the south-plus a strip of 7.5-minute quadrangles on the east side-72 quadrangles in all. In addition to the NTS, the map area includes the rest of the southwest Nevada volcanic field, part of the Walker Lane, most of the Amargosa Desert, part of the Funeral and Grapevine Mountains, some of Death Valley, and the northern Spring Mountains. This geologic map improves on previous geologic mapping of the same area (Wahl and others, 1997) by providing new and updated Quaternary and bedrock geology, new geophysical interpretations of faults beneath the basins, and improved GIS coverages. Concurrent publications to this one include a new isostatic gravity map (Ponce and others, 1999) and a new aeromagnetic map (Ponce, 1999).
Geologic Map of the Carlton Quadrangle, Yamhill County, Oregon
Wheeler, Karen L.; Wells, Ray E.; Minervini, Joseph M.; Block, Jessica L.
2009-01-01
The Carlton, Oregon, 7.5-minute quadrangle is located in northwestern Oregon, about 35 miles (57 km) southwest of Portland. It encompasses the towns of Yamhill and Carlton in the northwestern Willamette Valley and extends into the eastern flank of the Oregon Coast Range. The Carlton quadrangle is one of several dozen quadrangles being mapped by the U.S. Geological Survey (USGS) and the Oregon Department of Geology and Mineral Industries (DOGAMI) to provide a framework for earthquake- hazard assessments in the greater Portland, Oregon, metropolitan area. The focus of USGS mapping is on the structural setting of the northern Willamette Valley and its relation to the Coast Range uplift. Mapping was done in collaboration with soil scientists from the National Resource Conservation Service, and the distribution of geologic units is refined over earlier regional mapping (Schlicker and Deacon, 1967). Geologic mapping was done on 7.5-minute topographic base maps and digitized in ArcGIS to produce ArcGIS geodatabases and PDFs of the map and text. The geologic contacts are based on numerous observations and samples collected in 2002 and 2003, National Resource Conservation Service soils maps, and interpretations of 7.5-minute topography. The map was completed before new, high-resolution laser terrain mapping was flown for parts of the northern Willamette Valley in 2008.
Tucker, Robert D.; Peters, Stephen G.; Schulz, Klaus J.; Renaud, Karine M.; Stettner, Will R.; Masonic, Linda M.; Packard, Patricia H.
2011-01-01
This map is a modified version of the Geological map of the Khanneshin carbonatite complex, scale 1:10,000, which was compiled by V.G. Cheremytsin in 1976. Scientists from the U.S. Geological Survey, in cooperation with the Afghan Geological Survey and the Task Force for Business and Stability Operations of the U.S. Department of Defense, studied the original map and also visited the field area in September 2009, August 2010, and February 2011. This modified map, which includes cross sections, illustrates the geologic structure of the Khanneshin carbonatite complex. The map reproduces the topology (contacts, faults, and so forth) of the original Soviet map and cross sections and includes modifications based on our examination of that map and a related report, and based on observations made during our field visits. (Refer to the References section in the Map PDF for complete citations of the original map and related report.) Elevations on the cross section are derived from the original Soviet topography and may not match the newer topography used on the current map. We have attempted to translate the original Russian terminology and rock classification into modern English geologic usage as literally as possible without changing any genetic or process-oriented implications in the original descriptions. We also use the age designations from the original map. The unit colors on the map and cross sections differ from the colors shown on the original version. The units are colored according to the color and pattern scheme of the Commission for the Geological Map of the World (CGMW) (http://www.ccgm.org).
NASA Astrophysics Data System (ADS)
Seo, Yongbeom; Macias, Francisco Javier; Jakobsen, Pål Drevland; Bruland, Amund
2018-05-01
The net penetration rate of hard rock tunnel boring machines (TBM) is influenced by rock mass degree of fracturing. This influence is taken into account in the NTNU prediction model by the rock mass fracturing factor ( k s). k s is evaluated by geological mapping, the measurement of the orientation of fractures and the spacing of fractures and fracture type. Geological mapping is a subjective procedure. Mapping results can therefore contain considerable uncertainty. The mapping data of a tunnel mapped by three researchers were compared, and the influence of the variation in geological mapping was estimated to assess the influence of subjectivity in geological mapping. This study compares predicted net penetration rates and actual net penetration rates for TBM tunneling (from field data) and suggests mapping methods that can reduce the error related to subjectivity. The main findings of this paper are as follows: (1) variation of mapping data between individuals; (2) effect of observed variation on uncertainty in predicted net penetration rates; (3) influence of mapping methods on the difference between predicted and actual net penetration rate.
Beta Regio - Phoebe Regio on Venus: Geologic mapping with the Magellan data
NASA Technical Reports Server (NTRS)
Nikishin, A. M.; Borozdin, V. K.; Bobina, N. N.; Burba, G. A.
1993-01-01
The geologic maps of C1-15N283 and C1-00N283 sheets were produced (preliminary versions) with Magellan SAR images. This work was undertaken as a part of Russia's contribution into C1 geologic mapping efforts. The scale of the original maps is 1:8,000,000, and the maps are reproduced here at a reduced size.
Preliminary geologic map of the island of Saipan, Commonwealth of the Northern Mariana Islands
Weary, David J.; Burton, William C.
2011-01-01
This map provides an update and reinterpretation of the geology of the island of Saipan. The geology of the island was previously documented in 1956 in U.S. Geological Survey (USGS) Professional Paper 280-A by Preston E. Cloud, Jr., and others. This report includes a geologic map at a scale of 1:20,000. The fieldwork for this project was performed in 2006 and 2007.
Geologic Map Database of Texas
Stoeser, Douglas B.; Shock, Nancy; Green, Gregory N.; Dumonceaux, Gayle M.; Heran, William D.
2005-01-01
The purpose of this report is to release a digital geologic map database for the State of Texas. This database was compiled for the U.S. Geological Survey (USGS) Minerals Program, National Surveys and Analysis Project, whose goal is a nationwide assemblage of geologic, geochemical, geophysical, and other data. This release makes the geologic data from the Geologic Map of Texas available in digital format. Original clear film positives provided by the Texas Bureau of Economic Geology were photographically enlarged onto Mylar film. These films were scanned, georeferenced, digitized, and attributed by Geologic Data Systems (GDS), Inc., Denver, Colorado. Project oversight and quality control was the responsibility of the U.S. Geological Survey. ESRI ArcInfo coverages, AMLs, and shapefiles are provided.
Geologic map of the upper Arkansas River valley region, north-central Colorado
Kellogg, Karl S.; Shroba, Ralph R.; Ruleman, Chester A.; Bohannon, Robert G.; McIntosh, William C.; Premo, Wayne R.; Cosca, Michael A.; Moscati, Richard J.; Brandt, Theodore R.
2017-11-17
This 1:50,000-scale U.S. Geological Survey geologic map represents a compilation of the most recent geologic studies of the upper Arkansas River valley between Leadville and Salida, Colorado. The valley is structurally controlled by an extensional fault system that forms part of the prominent northern Rio Grande rift, an intra-continental region of crustal extension. This report also incorporates new detailed geologic mapping of previously poorly understood areas within the map area and reinterprets previously studied areas. The mapped region extends into the Proterozoic metamorphic and intrusive rocks in the Sawatch Range west of the valley and the Mosquito Range to the east. Paleozoic rocks are preserved along the crest of the Mosquito Range, but most of them have been eroded from the Sawatch Range. Numerous new isotopic ages better constrain the timing of both Proterozoic intrusive events, Late Cretaceous to early Tertiary intrusive events, and Eocene and Miocene volcanic episodes, including widespread ignimbrite eruptions. The uranium-lead ages document extensive about 1,440-million years (Ma) granitic plutonism mostly north of Buena Vista that produced batholiths that intruded an older suite of about 1,760-Ma metamorphic rocks and about 1,700-Ma plutonic rocks. As a result of extension during the Neogene and possibly latest Paleogene, the graben underlying the valley is filled with thick basin-fill deposits (Dry Union Formation and older sediments), which occupy two sub-basins separated by a bedrock high near the town of Granite. The Dry Union Formation has undergone deep erosion since the late Miocene or early Pliocene. During the Pleistocene, ongoing steam incision by the Arkansas River and its major tributaries has been interrupted by periodic aggradation. From Leadville south to Salida as many as seven mapped alluvial depositional units, which range in age from early to late Pleistocene, record periodic aggradational events along these streams that are commonly associated with deposition of glacial outwash or bouldery glacial-flood deposits. Many previously unrecognized Neogene and Quaternary faults, some of the latter with possible Holocene displacement, have been identified on lidar (light detection and ranging) imagery which covers 59 percent of the map area. This imagery has also permitted more accurate remapping of glacial, fluvial, and mass-movement deposits and aided in the determination of their relative ages. Recently published 10beryllium cosmogenic surface-exposure ages, coupled with our new geologic mapping, have revealed the timing and rates of late Pleistocene deglaciation. Glacial dams that impounded the Arkansas River at Clear Creek and possibly at Pine Creek failed at least three times during the middle and late Pleistocene, resulting in catastrophic floods and deposition of enormous boulders and bouldery alluvium downstream; at least two failures occurred during the late Pleistocene during the Pinedale glaciation.
NASA Technical Reports Server (NTRS)
Dohm, J. M.; Banks, M.; Buczkowski, D.
2010-01-01
The primary objective of the mapping effort is to produce a geologic map of the Argyre basin and surrounding region at 1:5,000,000 scale in both digital and print formats that will detail the stratigraphic and crosscutting relations among rock materials and landforms (30 deg. S to 65 deg. S, 290 deg. E to 340 deg E). There has not been a detailed geologic map produced of the Argyre region since the Viking-era mapping investigation. The mapping tasks include stratigraphic mapping, crater counting, feature mapping, quantitative landform analysis, and spectroscopic/ stratigraphic investigation feature mapping. The regional geologic mapping investigation includes the Argyre basin floor and rim materials, the transition zone that straddles the Thaumasia plateau, which includes Argyre impactrelated modification, and the southeast margin of the Thaumasia plateau using important new data sets from the Mars Global Surveyor, Mars Odyssey, Mars Express, and Mars Reconnaissance Orbiter. The geologic information unfolded by this new mapping project will be useful to the community for constraining the regional geology, paleohydrology, and paleoclimate, which includes but is not limited to the assessment of: (1) whether the Argyre basin contained lakes, (2) the extent of reported flooding and glaciation, (3) existing interpretations of the origin of the narrow ridges located in the southeast part of the basin floor, and (4) the extent of Argyre-related tectonism and its influence on the surrounding regions.
Geologic studies in Alaska by the U.S. Geological Survey, 1988
Dover, James H.; Galloway, John P.
1989-01-01
This volume continues the annual series of U.S. Geological Survey (USGS) reports on geologic investigations in Alaska. Since 1975, when the first of these collections of short papers appeared under the title "The United States Geological Survey in Alaska: Accomplishments during 1975," the series has been published as USGS circulars. This bulletin departs from the circular style, in part to provide a more flexible format for longer reports with more depth of content, better documentation, and broader scope than is possible for circular articles.The 13 papers in this bulletin represent a sampling of research activities carried out in Alaska by the USGS over the past few years. The topics addressed range from mineral resource studies (including natural gas) and geochemistry, Quaternary geology, basic stratigraphic and structural problems, and the use of computer graphics in geologic map preparation, to the application of geochronology to regional tectonic problems. Geographic areas represented are numbered on figure 1 and include the North Slope (1) and Brooks Range (2, 3) of Arctic Alaska, Seward Peninsula (4), interior Alaska (5-9), and remote locations of the Alaska Peninsula (10, 11) and southeast Alaska (12, 13).Two bibliographies following the reports of investigations list (1) reports about Alaska in USGS publications released in 1988 and (2) reports about Alaska by USGS authors in publications outside the USGS in 1988. A bibliography and index of the short papers in past USGS circulars devoted to Geological Research and Accomplishments in Alaska (1975-1986) is published as USGS Open-File Report 87-420.
Day, Warren C.; O’Neill, J. Michael; Dusel-Bacon, Cynthia; Aleinikoff, John N.; Siron, Christopher R.
2014-01-01
This map was developed by the U.S. Geological Survey Mineral Resources Program to depict the fundamental geologic features for the western part of the Fortymile mining district of east-central Alaska, and to delineate the location of known bedrock mineral prospects and their relationship to rock types and structural features. This geospatial map database presents a 1:63,360-scale geologic map for the Kechumstuk fault zone and surrounding area, which lies 55 km northwest of Chicken, Alaska. The Kechumstuk fault zone is a northeast-trending zone of faults that transects the crystalline basement rocks of the Yukon-Tanana Upland of the western part of the Fortymile mining district. The crystalline basement rocks include Paleozoic metasedimentary and metaigneous rocks as well as granitoid intrusions of Triassic, Jurassic, and Cretaceous age. The geologic units represented by polygons in this dataset are based on new geologic mapping and geochronological data coupled with an interpretation of regional and new geophysical data collected by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys. The geochronological data are reported in the accompanying geologic map text and represent new U-Pb dates on zircons collected from the igneous and metaigneous units within the map area.
Global geologic mapping of Mars: The western equatorial region
Scott, D.H.
1985-01-01
Global geologic mapping of Mars was originally accomplished following acquisition of orbital spacecraft images from the Mariner 9 mission. The mapping program represented a joint enterprise by the U.S. Geological Survey and other planetary scientists from universities in the United States and Europe. Many of the Mariner photographs had low resolution or poor albedo contrast caused by atmospheric haze and high-sun angles. Some of the early geologic maps reflect these deficiencies in their poor discrimination and subdivision of rock units. New geologic maps made from higher resolution and better quality Viking images also represent a cooperative effort, by geologists from the U.S. Geological Survey, Arizona State University, and the University of London. This second series of global maps consists of three parts: 1) western equatorial region, 2) eastern equatorial region, and 3) north and south polar regions. These maps, at 1:15 million scale, show more than 60 individual rock-stratigraphic units assigned to three Martian time-stratigraphic systems. The first completed map of the series covers the western equatorial region of Mars. Accompanying the map is a description of the sequence and distribution of major tectonic, volcanic, and fluvial episodes as recorded in the stratigraphic record. ?? 1985.
Lunar Geologic Mapping: A Preliminary Map of a Portion of the LQ-10 ("Marius") Quadrangle
NASA Technical Reports Server (NTRS)
Gregg, T. K. P.; Yingst, R. A.
2009-01-01
Since the first lunar mapping program ended in the 1970s, new topographical, multispectral, elemental and albedo imaging datasets have become available (e.g., Clementine, Lunar Prospector, Galileo). Lunar science has also advanced within the intervening time period. A new systematic lunar geologic mapping effort endeavors to build on the success of earlier mapping programs by fully integrating the many disparate datasets using GIS software and bringing to bear the most current understanding of lunar geologic history. As part of this program, we report on a 1:2,500,000-scale preliminary map of a subset of Lunar Quadrangle 10 ("LQ-10" or the "Marius Quadrangle," see Figures 1 and 2), and discuss the first-order science results. By generating a geologic map of this region, we can constrain the stratigraphic and geologic relationships between features, revealing information about the Moon s chemical and thermal evolution.
Smethurst, M A; Watson, R J; Baranwal, V C; Rudjord, A L; Finne, I
2017-01-01
It is estimated that exposure to radon in Norwegian dwellings is responsible for as many as 300 deaths a year due to lung cancer. To address this, the authorities in Norway have developed a national action plan that has the aim of reducing exposure to radon in Norway (Norwegian Ministries, 2010). The plan includes further investigation of the relationship between radon hazard and geological conditions, and development of map-based tools for assessing the large spatial variation in radon hazard levels across Norway. The main focus of the present contribution is to describe how we generate map predictions of radon potential (RP), a measure of radon hazard, from available airborne gamma ray spectrometry (AGRS) surveys in Norway, and what impact these map predictions can be expected to have on radon protection work including land-use planning and targeted surveying. We have compiled 11 contiguous AGRS surveys centred on the most populated part of Norway around Oslo to produce an equivalent uranium map measuring 180 km × 102 km that represents the relative concentrations of radon in the near surface of the ground with a spatial resolution in the 100 s of metres. We find that this map of radon in the ground offers a far more detailed and reliable picture of the distribution of radon in the sub-surface than can be deduced from the available digital geology maps. We tested the performances of digital geology and AGRS data as predictors of RP. We find that digital geology explains approximately 40% of the observed variance in ln RP nationally, while the AGRS data in the Oslo area split into 14 bands explains approximately 70% of the variance in the same parameter. We also notice that there are too few indoor data to characterise all geological settings in Norway which leaves areas in the geology-based RP map in the Oslo area, and elsewhere, unclassified. The AGRS RP map is derived from fewer classes, all characterised by more than 30 indoor measurements, and the corresponding RP map of the Oslo area has no unclassified parts. We used statistics of proportions to add 95% confidence limits to estimates of RP on our predictive maps, offering public health strategists an objective measure of uncertainty in the model. The geological and AGRS RP maps were further compared in terms of their performances in correctly classifying local areas known to be radon affected and less affected. Both maps were accurate in their predictions; however the AGRS map out-performed the geology map in its ability to offer confident predictions of RP for all of the local areas tested. We compared the AGRS RP map with the 2015 distribution of population in the Oslo area to determine the likely impact of radon contamination on the population. 11.4% of the population currently reside in the area classified as radon affected. 34% of ground floor living spaces in this affected area are expected to exceed the maximum limit of 200 Bq/m 3 , while 8.4% of similar spaces outside the affected area exceed this same limit, indicating that the map is very efficient at separating areas with quite different radon contamination profiles. The usefulness of the AGRS RP map in guiding new indoor radon surveys in the Oslo area was also examined. It is shown that indoor measuring programmes targeted on elevated RP areas could be as much as 6 times more efficient at identifying ground floor living spaces above the radon action level compared with surveys based on a random sampling strategy. Also, targeted measuring using the AGRS RP map as a guide makes it practical to search for the worst affected homes in the Oslo area: 10% of the incidences of very high radon contamination in ground floor living spaces (≥800 Bq/m 3 ) are concentrated in just 1.2% of the populated part of the area. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Harmonisation of geological data to support geohazard mapping: the case of eENVplus project
NASA Astrophysics Data System (ADS)
Cipolloni, Carlo; Krivic, Matija; Novak, Matevž; Pantaloni, Marco; Šinigoj, Jasna
2014-05-01
In the eENVplus project, which aims is to unlock huge amounts of environmental datamanaged by the national and regional environmental agencies and other public and private organisations, we have developed a cross-border pilot on the geological data harmonisation through the integration and harmonisation of existing services. The pilot analyses the methodology and results of the OneGeology-Europe project, elaborated at the scale of 1:1M, to point out difficulties and unsolved problems highlighted during the project. This preliminary analysis is followed by a comparison of two geological maps provided by the neighbouring countries with the objective to compare and define the geometric and semantic anomalous contacts between geological polygons and lines in the maps. This phase will be followed by a detailed scale geological map analysis aimed to solve the anomalies identified in the previous phase. The two Geological Surveys involved into the pilot will discuss the problems highlighted during this phase. Subsequently the semantic description will be redefined and the geometry of the polygons in geological maps will be redrawn or adjusted according to a lithostratigraphic approach that takes in account the homogeneity of age, lithology, depositional environment and consolidation degree of geological units. The two Geological Surveys have decided to apply the harmonisation process on two different dataset: the first is represented by the Geological Map at the scale of 1:1,000,000, partially harmonised within the OneGeology-Europe project that will be re-aligned with GE INSPIRE data model to produce data and services compliant with INSPIRE target schema. The main target of Geological Surveys is to produce data and web services compliant with the wider international schema, where there are more options to provide data, with specific attributes that are important to obtain the geohazard map as in the case of this pilot project; therefore we have decided to apply GeoSciML 3.2 schema to the dataset that represents Geological Map at the scale of 1:100,000. Within the pilot will be realised two main geohazard examples with a semi-automatized procedure based on a specific tool component integrated in the client: a landslide susceptibility map and a potential flooding map. In this work we want to present the first results obtained with use case geo-processing procedure in the first test phase, where we have developed a dataset compliant with GE INSPIRE to perform the landslide and flooding susceptibility maps.
Publications - PIR 2015-6 | Alaska Division of Geological & Geophysical
content DGGS PIR 2015-6 Publication Details Title: Geologic map of the Talkeetna Mountains C-4 Quadrangle ., Freeman, L.K., and Lande, L.L., 2015, Geologic map of the Talkeetna Mountains C-4 Quadrangle and adjoining Sheets Sheet 1 Geologic map of the Talkeetna Mountains C-4 Quadrangle and adjoining areas, central Alaska
Environmental geology of the Wilcox Group Lignite Belt, east Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, C.D.; Basciano, J.M.
This report provides a data base for decisions about lignite mining and reclamation in the Wilcox Group of East Texas. A set of environmental geologic maps, which accompanies this report, depicts the character of the land that will be affected by mining. The environmental geologic maps of the East Texas lignite belt provide an accurate inventory of land resources. The maps identify areas where mining is most likely to occur, areas of critical natural resources that could be affected by mining, such as aquifer recharge areas, and areas of natural hazards, such as floodplains. Principal areas of both active andmore » planned surface mining are also located. The seven environmental geologic maps cover the outcrop area of the Wilcox Group, the major lignite host, and adjacent geologic units from Bastrop County to Texarkana. This report begins with a discussion of various physical aspects of the lignite belt, including geology, hydrology, soils, climate, and land use, to aid in understanding the maps. The criteria and methodology used to delineate the environmental geologic units are discussed. Varied applications of the environmental geologic maps are considered. 23 references, 9 figures, 3 tables.« less
Rember, William C.; Bennett, Earl H.
2001-01-01
he paper geologic map of the east part of the Pullman 1·x 2· degree quadrangle, Idaho (Rember and Bennett, 1979) was scanned and initially attributed by Optronics Specialty Co., Inc. (Northridge, CA) and remitted to the U.S. Geological Survey for further attribution and publication of the geospatial digital files. The resulting digital geologic map GIS can be queried in many ways to produce a variety of geologic maps. This digital geospatial database is one of many being created by the U.S. Geological Survey as an ongoing effort to provide geologic information in a geographic information system (GIS) for use in spatial analysis. Digital base map data files (topography, roads, towns, rivers and lakes, and others.) are not included: they may be obtained from a variety of commercial and government sources. This database is not meant to be used or displayed at any scale larger than 1:250,000 (for example, 1:100,000 or 1:24,000). The digital geologic map graphics and plot files (pull250k.gra/.hp /.eps) that are provided in the digital package are representations of the digital database.
Billingsley, George H.; Wellmeyer, Jessica L.
2003-01-01
The geologic map of the Mount Trumbull 30' x 60' quadrangle is a cooperative product of the U.S. Geological Survey, the National Park Service, and the Bureau of Land Management that provides geologic map coverage and regional geologic information for visitor services and resource management of Grand Canyon National Park, Lake Mead Recreational Area, and Grand Canyon Parashant National Monument, Arizona. This map is a compilation of previous and new geologic mapping that encompasses the Mount Trumbull 30' x 60' quadrangle of Arizona. This digital database, a compilation of previous and new geologic mapping, contains geologic data used to produce the 100,000-scale Geologic Map of the Mount Trumbull 30' x 60' Quadrangle, Mohave and Coconino Counties, Northwestern Arizona. The geologic features that were mapped as part of this project include: geologic contacts and faults, bedrock and surficial geologic units, structural data, fold axes, karst features, mines, and volcanic features. This map was produced using 1:24,000-scale 1976 infrared aerial photographs followed by extensive field checking. Volcanic rocks were mapped as separate units when identified on aerial photographs as mappable and distinctly separate units associated with one or more pyroclastic cones and flows. Many of the Quaternary alluvial deposits that have similar lithology but different geomorphic characteristics were mapped almost entirely by photogeologic methods. Stratigraphic position and amount of erosional degradation were used to determine relative ages of alluvial deposits having similar lithologies. Each map unit and structure was investigated in detail in the field to ensure accuracy of description. Punch-registered mylar sheets were scanned at the Flagstaff Field Center using an Optronics 5040 raster scanner at a resolution of 50 microns (508 dpi). The scans were output in .rle format, converted to .rlc, and then converted to ARC/INFO grids. A tic file was created in geographic coordinates and projected into the base map projection (Polyconic) using a central meridian of -113.500. The tic file was used to transform the grid into Universal Transverse Mercator projection. The linework was vectorized using gridline. Scanned lines were edited interactively in ArcEdit. Polygons were attributed in ArcEdit and all artifacts and scanning errors visible at 1:100,000 were removed. Point data were digitized onscreen. Due to the discovery of digital and geologic errors on the original files, the ARC/INFO coverages were converted to a personal geodatabase and corrected in ArcMap. The feature classes which define the geologic units, lines and polygons, are topologically related and maintained in the geodatabase by a set of validation rules. The internal database structure and feature attributes were then modified to match other geologic map databases being created for the Grand Canyon region. Faults were edited with the downthrown block, if known, on the 'right side' of the line. The 'right' and 'left' sides of a line are determined from 'starting' at the line's 'from node' and moving to the line's end or 'to node'.
Spatial digital database for the tectonic map of Southeast Arizona
map by Drewes, Harald; digital database by Fields, Robert A.; Hirschberg, Douglas M.; Bolm, Karen S.
2002-01-01
A spatial database was created for Drewes' (1980) tectonic map of southeast Arizona: this database supercedes Drewes and others (2001, ver. 1.0). Staff and a contractor at the U.S. Geological Survey in Tucson, Arizona completed an interim digital geologic map database for the east part of the map in 2001, made revisions to the previously released digital data for the west part of the map (Drewes and others, 2001, ver. 1.0), merged data files for the east and west parts, and added additional data not previously captured. Digital base map data files (such as topography, roads, towns, rivers and lakes) are not included: they may be obtained from a variety of commercial and government sources. This digital geospatial database is one of many being created by the U.S. Geological Survey as an ongoing effort to provide geologic information in a geographic information system (GIS) for use in spatial analysis. The resulting digital geologic map database can be queried in many ways to produce a variety of geologic maps and derivative products. Because Drewes' (1980) map sheets include additional text and graphics that were not included in this report, scanned images of his maps (i1109_e.jpg, i1109_w.jpg) are included as a courtesy to the reader. This database should not be used or displayed at any scale larger than 1:125,000 (for example, 1:100,000 or 1:24,000). The digital geologic map plot files (i1109_e.pdf and i1109_w.pdf) that are provided herein are representations of the database (see Appendix A). The map area is located in southeastern Arizona (fig. 1). This report describes the map units (from Drewes, 1980), the methods used to convert the geologic map data into a digital format, the ArcInfo GIS file structures and relationships, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet. The manuscript and digital data review by Helen Kayser (Information Systems Support, Inc.) is greatly appreciated.
Index to river surveys made by the United States Geological Survey and other agencies
Jones, Benjamin E.; Helland, Randolph Olaf
1948-01-01
The descriptive list of surveys of rivers in the United States issued by the United States Geological Survey in 1926 as Water-Supply Paper 558 comprised surveys by the Geological Survey and other Federal bureaus and by State, semiofficial, and private agencies. Since then many additional river surveys, most of them now available in published sheets, have been completed by the Geological Survey, and four supplemental lists describing them have been issued in mimeographed form. The first supplement was compiled by B. E. Jones in 1934, the second by R. O. Helland and D. M. Paul in 1938, the third by R. O. Helland in 1940, and the fourth by L. L. Young and N. J. Tubbs in 1944. The present compilation adds to the preliminary index the material issued in the supplements and later information concerning revisions and availability of maps.
Geologic Mapping of the Medusae Fossae Formation, Mars, and the Northern Lowland Plains, Venus
NASA Technical Reports Server (NTRS)
Zimbelman, J. R.
2010-01-01
This report summarizes the status of mapping projects supported by NASA grant NNX07AP42G, through the Planetary Geology and Geophysics (PGG) program. The PGG grant is focused on 1:2M-scale mapping of portions of the Medusae Fossae Formation (MFF) on Mars. Also described below is the current status of two Venus geologic maps, generated under an earlier PGG mapping grant.
NASA Technical Reports Server (NTRS)
Doggett, T.; Figueredo, P.; Greeley, R.; Hare, T.; Kolb, E.; Mullins, K.; Senske, D.; Tanaka, K.; Weiser, S.
2008-01-01
Europa, with its indications of a sub-ice ocean, is of keen interest to astrobiology and planetary geology. Knowledge of the global distribution and timing of Europan geologic units is a key step for the synthesis of data from the Galileo mission, and for the planning of future missions to the satellite. The first geologic map of Europa was produced at a hemisphere scale with low resolution Voyager data. Following the acquisition of higher resolution data by the Galileo mission, researchers have identified surface units and determined sequences of events in relatively small areas of Europa through geologic mapping using images at various resolutions acquired by Galileo's Solid State Imaging camera. These works provided a local to subregional perspective and employed different criteria for the determination and naming of units. Unified guidelines for the identification, mapping and naming of Europan geologic units were put forth by and employed in regional-to-hemispheric scale mapping which is now being expanded into a global geologic map. A global photomosaic of Galileo and Voyager data was used as a basemap for mapping in ArcGIS, following suggested methodology of all-stratigraphy for planetary mapping. The following units have been defined in global mapping and are listed in stratigraphic order from oldest to youngest: ridged plains material, Argadnel Regio unit, dark plains material, lineaments, disrupted plains material, lenticulated plains material and Chaos material.
A campus-based course in field geology
NASA Astrophysics Data System (ADS)
Richard, G. A.; Hanson, G. N.
2009-12-01
GEO 305: Field Geology offers students practical experience in the field and in the computer laboratory conducting geological field studies on the Stony Brook University campus. Computer laboratory exercises feature mapping techniques and field studies of glacial and environmental geology, and include geophysical and hydrological analysis, interpretation, and mapping. Participants learn to use direct measurement and mathematical techniques to compute the location and geometry of features and gain practical experience in representing raster imagery and vector geographic data as features on maps. Data collecting techniques in the field include the use of hand-held GPS devices, compasses, ground-penetrating radar, tape measures, pacing, and leveling devices. Assignments that utilize these skills and techniques include mapping campus geology with GPS, using Google Earth to explore our geologic context, data file management and ArcGIS, tape and compass mapping of woodland trails, pace and compass mapping of woodland trails, measuring elevation differences on a hillside, measuring geologic sections and cores, drilling through glacial deposits, using ground penetrating radar on glaciotectonic topography, mapping the local water table, and the identification and mapping of boulders. Two three-hour sessions are offered per week, apportioned as needed between lecture; discussion; guided hands-on instruction in geospatial and other software such as ArcGIS, Google Earth, spreadsheets, and custom modules such as an arc intersection calculator; outdoor data collection and mapping; and writing of illustrated reports.
GIS data for the Seaside, Oregon, Tsunami Pilot Study to modernize FEMA flood hazard maps
Wong, Florence L.; Venturato, Angie J.; Geist, Eric L.
2007-01-01
A Tsunami Pilot Study was conducted for the area surrounding the coastal town of Seaside, Oregon, as part of the Federal Emergency Management's (FEMA) Flood Insurance Rate Map Modernization Program (Tsunami Pilot Study Working Group, 2006). The Cascadia subduction zone extends from Cape Mendocino, California, to Vancouver Island, Canada. The Seaside area was chosen because it is typical of many coastal communities subject to tsunamis generated by far- and near-field (Cascadia) earthquakes. Two goals of the pilot study were to develop probabilistic 100-year and 500-year tsunami inundation maps using Probabilistic Tsunami Hazard Analysis (PTHA) and to provide recommendations for improving tsunami hazard assessment guidelines for FEMA and state and local agencies. The study was an interagency effort by the National Oceanic and Atmospheric Administration, U.S. Geological Survey, and FEMA, in collaboration with the University of Southern California, Middle East Technical University, Portland State University, Horning Geoscience, Northwest Hydraulics Consultants, and the Oregon Department of Geological and Mineral Industries. The pilot study model data and results are published separately as a geographic information systems (GIS) data report (Wong and others, 2006). The flood maps and GIS data are briefly described here.
Map showing springs in the Salina quadrangle, Utah
Covington, Harry R.
1972-01-01
A spring is “a place where, without the agency of man, water flows from a rock or soil upon the land or into a body of surface water” (Meinzer, 1923, p. 48).About 450 springs are located on this map. Locations and names are from the U.S. Forest Service maps (1963, 1964) and from topographic maps of the U.S. Geological Survey, both published and in preparation. There is considerable variation in geological occurrence of the springs and in quantity and chemical quality of the water that issues from them. Springs in the Salina quadrangle are more abundant where annual precipitation is 16 inches or more, although there are many springs in arid parts of the quadrangle as well.In the Salina quadrangle, springs are used most commonly for watering livestock. They are used also for irrigation and for domestic and municipal water supply. Several communities in Rabbit Valley, Grass Valley, and Sevier Valley depend on springs for all or part of their water supply.Quantity and quality of water are shown for those few springs for which data are available (Mundorff, 1971). Caution must be used in drinking from springs, especially in arid areas; the water commonly tastes bad and may cause illness.
Geologic structure in California: Three studies with ERTS-1 imagery
NASA Technical Reports Server (NTRS)
Lowman, P. D., Jr.
1974-01-01
Results are presented of three early applications of imagery from the NASA Earth Resources Technology Satellite to geologic studies in California. In the Coast Ranges near Monterey Bay, numerous linear drainage features possibly indicating unmapped fracture zones were mapped within one week after launch of the satellite. A similar study of the Sierra Nevada near Lake Tahoe revealed many drainage features probably formed along unmapped joint or faults in granitic rocks. The third study, in the Peninsular Ranges, confirmed existence of several major faults not shown on published maps. One of these, in the Sawtooth Range, crosses in Elsinore fault without lateral offset; associated Mid-Cretaceous structures have also been traced continuously across the fault without offset. It therefore appears that displacement along the Elsinore fault has been primarily of a dip-slip nature, at least in this area, despite evidence for lateral displacement elsewhere.
Shallow geology, sea-floor texture, and physiographic zones of Buzzards Bay, Massachusetts
Foster, David S.; Baldwin, Wayne E.; Barnhardt, Walter A.; Schwab, William C.; Ackerman, Seth D.; Andrews, Brian D.; Pendleton, Elizabeth A.
2015-01-07
Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Buzzards Bay, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a result of a collaborative effort between the U.S. Geological Survey and the Massachusetts Office of Coastal Zone Management to characterize the surface and subsurface geologic framework offshore of Massachusetts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arney, B.; Goff, F.; Eddy, A.C.
1985-04-01
As part of a reconnaissance mapping project, 40 chemical analyses and 13 potassium-argon age dates were obtained for Tertiary volcanic and Precambrian granitic rocks between Kingman and Bill Williams Mountain, Arizona. The dated volcanic rocks range in age from 5.5 +- 0.2 Myr for basalt in the East Juniper Mountains to about 25 Myr for a biotite-pyroxene andesite. The date for Picacho Butte, a rhyodacite in the Mt. Floyd volcanic field, was 9.8 +- 0.07 Myr, making it the oldest rhyodacite dome in that volcanic field. Dated rocks in the Fort Rock area range from 20.7 to 24.3 Myr. Nomore » ages were obtained on the Precambrian rocks. Compositionally, the volcanic rocks analyzed range from alkali basalt to rhyolite, but many rocks on the western side of the map area are unusually potassic. The granites chosen for analysis include syenogranite from the Hualapai Mountains, a muscovite granite from the Picacho Butte area, and two other granites. The chemical and K-Ar age data and petrographic descriptions included in this report accompany the reconnaissance geologic strip map published as LA-9202-MAP by Goff, Eddy, and Arney. 9 refs., 4 figs., 2 tabs.« less
Appleton, J D; Doyle, E; Fenton, D; Organo, C
2011-06-01
The probability of homes in Ireland having high indoor radon concentrations is estimated on the basis of known in-house radon measurements averaged over 10 km × 10 km grid squares. The scope for using airborne gamma-ray spectrometer data for the Tralee-Castleisland area of county Kerry and county Cavan to predict the radon potential (RP) in two distinct areas of Ireland is evaluated in this study. Airborne data are compared statistically with in-house radon measurements in conjunction with geological and ground permeability data to establish linear regression models and produce radon potential maps. The best agreement between the percentage of dwellings exceeding the reference level (RL) for radon concentrations in Ireland (% > RL), estimated from indoor radon data, and modelled RP in the Tralee-Castleisland area is produced using models based on airborne gamma-ray spectrometry equivalent uranium (eU) and ground permeability data. Good agreement was obtained between the % > RL from indoor radon data and RP estimated from eU data in the Cavan area using terrain specific models. In both areas, RP maps derived from eU data are spatially more detailed than the published 10 km grid map. The results show the potential for using airborne radiometric data for producing RP maps.
Measuring novices' field mapping abilities using an in-class exercise based on expert task analysis
NASA Astrophysics Data System (ADS)
Caulkins, J. L.
2010-12-01
We are interested in developing a model of expert-like behavior for improving the teaching methods of undergraduate field geology. Our aim is to assist students in mastering the process of field mapping more efficiently and effectively and to improve their ability to think creatively in the field. To examine expert-mapping behavior, a cognitive task analysis was conducted with expert geologic mappers in an attempt to define the process of geologic mapping (i.e. to understand how experts carry out geological mapping). The task analysis indicates that expert mappers have a wealth of geologic scenarios at their disposal that they compare against examples seen in the field, experiences that most undergraduate mappers will not have had. While presenting students with many geological examples in class may increase their understanding of geologic processes, novices still struggle when presented with a novel field situation. Based on the task analysis, a short (45-minute) paper-map-based exercise was designed and tested with 14 pairs of 3rd year geology students. The exercise asks students to generate probable geologic models based on a series of four (4) data sets. Each data set represents a day’s worth of data; after the first “day,” new sheets simply include current and previously collected data (e.g. “Day 2” data set includes data from “Day 1” plus the new “Day 2” data). As the geologic complexity increases, students must adapt, reject or generate new geologic models in order to fit the growing data set. Preliminary results of the exercise indicate that students who produced more probable geologic models, and produced higher ratios of probable to improbable models, tended to go on to do better on the mapping exercises at the 3rd year field school. These results suggest that those students with more cognitively available geologic models may be more able to use these models in field settings than those who are unable to draw on these models for whatever reason. Giving students practice at generating geologic models to explain data may be useful in preparing our students for field mapping exercises.
TRENDS IN ENGINEERING GEOLOGIC AND RELATED MAPPING.
Varnes, David J.; Keaton, Jeffrey R.
1983-01-01
Progress is reviewed that has been made during the period 1972-1982 in producing medium- and small-scale engineering geologic maps with a variety of content. Improved methods to obtain and present information are evolving. Standards concerning text and map content, soil and rock classification, and map symbols have been proposed. Application of geomorphological techniques in terrain evaluation has increased, as has the use of aerial photography and other remote sensing. Computers are being used to store, analyze, retrieve, and print both text and map information. Development of offshore resources, especially petroleum, has led to marked improvement and growth in marine engineering geology and geotechnology. Coordinated planning for societal needs has required broader scope and increased complexity of both engineering geologic and environmental geologic studies. Refs.
OneGeology-Europe: architecture, portal and web services to provide a European geological map
NASA Astrophysics Data System (ADS)
Tellez-Arenas, Agnès.; Serrano, Jean-Jacques; Tertre, François; Laxton, John
2010-05-01
OneGeology-Europe is a large ambitious project to make geological spatial data further known and accessible. The OneGeology-Europe project develops an integrated system of data to create and make accessible for the first time through the internet the geological map of the whole of Europe. The architecture implemented by the project is web services oriented, based on the OGC standards: the geological map is not a centralized database but is composed by several web services, each of them hosted by a European country involved in the project. Since geological data are elaborated differently from country to country, they are difficult to share. OneGeology-Europe, while providing more detailed and complete information, will foster even beyond the geological community an easier exchange of data within Europe and globally. This implies an important work regarding the harmonization of the data, both model and the content. OneGeology-Europe is characterised by the high technological capacity of the EU Member States, and has the final goal to achieve the harmonisation of European geological survey data according to common standards. As a direct consequence Europe will make a further step in terms of innovation and information dissemination, continuing to play a world leading role in the development of geosciences information. The scope of the common harmonized data model was defined primarily by the requirements of the geological map of Europe, but in addition users were consulted and the requirements of both INSPIRE and ‘high-resolution' geological maps were considered. The data model is based on GeoSciML, developed since 2006 by a group of Geological Surveys. The data providers involved in the project implemented a new component that allows the web services to deliver the geological map expressed into GeoSciML. In order to capture the information describing the geological units of the map of Europe the scope of the data model needs to include lithology; age; genesis and metamorphic character. For high resolution maps physical properties, bedding characteristics and weathering also need to be added. Furthermore, Geological data held by national geological surveys is generally described in national language of the country. The project has to deal with the multilingual issue, an important requirement of the INSPIRE directive. The project provides a list of harmonized vocabularies, a set of web services to deal with them, and a web site for helping the geoscientists while mapping the terms used into the national datasets into these vocabularies. The web services provided by each data provider, with the particular component that allows them to deliver the harmonised data model and to handle the multilingualism, are the first part of the architecture. The project also implements a web portal that provides several functionalities. Thanks to the common data model implemented by each web service delivering a part of the geological map, and using OGC SLD standards, the client offers the following option. A user can request for a sub-selection of the map, for instance searching on a particular attribute such as "age is quaternary", and display only the parts of the map according to the filter. Using the web services on the common vocabularies, the data displayed are translated. The project started September 2008 for two years, with 29 partners from 20 countries (20 partners are Geological Surveys). The budget is 3.25 M€, with a European Commission contribution of 2.6 M€. The paper will describe the technical solutions to implement OneGeology-Europe components: the profile of the common data model to exchange geological data, the web services to view and access geological data; and a geoportal to provide the user with a user-friendly way to discover, view and access geological data.
Preliminary northeast Asia geodynamics map
Parfenov, Leonid M.; Khanchuk, Alexander I.; Badarch, Gombosuren; Miller, Robert J.; Naumova, Vera V.; Nokleberg, Warren J.; Ogasawara, Masatsugu; Prokopiev, Andrei V.; Yan, Hongquan
2003-01-01
This map portrays the geodynamics of Northeast Asia at a scale of 1:5,000,000 using the concepts of plate tectonics and analysis of terranes and overlap assemblages. The map is the result of a detailed compilation and synthesis at 5 million scale and is part of a major international collaborative study of the Mineral Resources, Metallogenesis, and Tectonics of Northeast Asia conducted from 1997 through 2002 by geologists from earth science agencies and universities in Russia, Mongolia, Northeastern China, South Korea, Japan, and the USA. This map is the result of extensive geologic mapping and associated tectonic studies in Northeast Asia in the last few decades and is the first collaborative compilation of the geology of the region at a scale of 1:5,000,000 by geologists from Russia, Mongolia, Northeastern China, South Korea, Japan, and the USA. The map was compiled by a large group of international geologists using the below concepts and definitions during collaborative workshops over a six-year period. The map is a major new compilation and re-interpretation of pre-existing geologic maps of the region. The map is designed to be used for several purposes, including regional tectonic analyses, mineral resource and metallogenic analysis, petroleum resource analysis, neotectonic analysis, and analysis of seismic hazards and volcanic hazards. The map consists of two sheets. Sheet 1 displays the map at a scale of 1:5,000,000, explanation. Sheet 2 displays the introduction, list of map units, and source references. Detailed descriptions of map units and stratigraphic columns are being published separately. This map is one of a series of publications on the mineral resources, metallogenesis, and geodynamics,of Northeast Asia. Companion studies and other articles and maps , and various detailed reports are: (1) a compilation of major mineral deposit models (Rodionov and Nokleberg, 2000; Rodionov and others, 2000; Obolenskiy and others, in press a); (2) a series of metallogenic belt maps (Obolenskiy and others, 2001; in press b); (3) a lode mineral deposits and placer districts location map for Northeast Asia (Ariunbileg and others, in press b); (4) descriptions of metallogenic belts (Rodionov and others, in press); and (5) a database on significant metalliferous and selected nonmetalliferous lode deposits, and selected placer districts (Ariunbileg and others, in press a).