Sample records for pulp cells dpcs

  1. Expression of high mobility group box 1 in inflamed dental pulp and its chemotactic effect on dental pulp cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xufang, E-mail: xufang.zhang@student.qut.edu.au; Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059; Jiang, Hongwei, E-mail: jianghw@163.com

    Highlights: • HMGB1 translocated from nucleus to cytoplasm during dental pulp inflammation. • HMGB1and its receptor RAGE were up-regulated in hDPCs under LPS stimulation. • HMGB1 enhanced hDPCs migration and induces cytoskeleton reorganization. • HMGB1 may play a critical role in dental pulp repair during inflamed state. - Abstract: High mobility group box 1 protein (HMGB1) is a chromatin protein which can be released extracellularly, eliciting a pro-inflammatory response and promoting tissue repair process. This study aimed to examine the expression and distribution of HMGB1 and its receptor RAGE in inflamed dental pulp tissues, and to assess its effects onmore » proliferation, migration and cytoskeleton of cultured human dental pulp cells (DPCs). Our data demonstrated that cytoplasmic expression of HMGB1 was observed in inflamed pulp tissues, while HMGB1 expression was confined in the nuclei in healthy dental pulp. The mRNA expression of HMGB1 and RAGE were significantly increased in inflamed pulps. In in vitro cultured DPCs, expression of HMGB1 in both protein and mRNA level was up-regulated after treated with lipopolysaccharide (LPS). Exogenous HMGB1 enhanced DPCs migration in a dose-dependent manner and induced the reorganization of f-actin in DPCs. Our results suggests that HMGB1 are not only involved in the process of dental pulp inflammation, but also play an important role in the recruitment of dental pulp stem cells, promoting pulp repair and regeneration.« less

  2. Effects of Extracellular pH on Dental Pulp Cells In Vitro.

    PubMed

    Hirose, Yujiro; Yamaguchi, Masaya; Kawabata, Shigetada; Murakami, Masashi; Nakashima, Misako; Gotoh, Momokazu; Yamamoto, Tokunori

    2016-05-01

    The proliferation and migration of dental pulp stem cells (DPSCs), a population comprised of dental pulp cells (DPCs), are important processes for pulp tissue repair. Dental pulp is exposed to changes in extracellular pH under various conditions, such as acidosis and exposure to caries-associated bacteria or a pulp capping agent. The objective of this study was to investigate the effects of extracellular pH on DPC proliferation and migration in vitro. To evaluate the proliferation potency of DPCs in various extracellular pH conditions, 2 × 10(4) cells were seeded into 35-mm dishes. The following day, we changed to NaHCO3-free medium, which was adjusted to different extracellular pH levels. After 120 hours, DPCs cultured in media from a pH of 3.5 to 5.5 showed cell death, those cultured in conditions from a pH of 6.5 to 7.5 showed growth arrest or cell death, and those grown at a pH of 9.5 showed mild proliferation. The migratory activity of living DPCs was not affected by extracellular pH. For histologic analysis, human teeth possessing a small abscess in the coronal pulp chamber were sliced for histologic analysis. Proliferating cell nuclear antigen (PCNA) immunolocalization was used as an index of cell proliferation for the sections and cultured cells. Acidic extracellular pH conditions resulted in reduced numbers of PCNA-positive DPCs in the dishes. As for pulp tissue affected by a small abscess, a PCNA-negative pulp cell layer was observed in close proximity to the infectious lesion. Together, these results suggest that an acidic extracellular pH condition is associated with DPC growth arrest or cell death. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Human Dental Pulp Cells Differentiate toward Neuronal Cells and Promote Neuroregeneration in Adult Organotypic Hippocampal Slices In Vitro.

    PubMed

    Xiao, Li; Ide, Ryoji; Saiki, Chikako; Kumazawa, Yasuo; Okamura, Hisashi

    2017-08-11

    The adult mammalian central nerve system has fundamental difficulties regarding effective neuroregeneration. The aim of this study is to investigate whether human dental pulp cells (DPCs) can promote neuroregeneration by (i) being differentiated toward neuronal cells and/or (ii) stimulating local neurogenesis in the adult hippocampus. Using immunostaining, we demonstrated that adult human dental pulp contains multipotent DPCs, including STRO-1, CD146 and P75-positive stem cells. DPC-formed spheroids were able to differentiate into neuronal, vascular, osteogenic and cartilaginous lineages under osteogenic induction. However, under neuronal inductive conditions, cells in the DPC-formed spheroids differentiated toward neuronal rather than other lineages. Electrophysiological study showed that these cells consistently exhibit the capacity to produce action potentials, suggesting that they have a functional feature in neuronal cells. We further co-cultivated DPCs with adult mouse hippocampal slices on matrigel in vitro. Immunostaining and presto blue assay showed that DPCs were able to stimulate the growth of neuronal cells (especially neurons) in both the CA1 zone and the edges of the hippocampal slices. Brain-derived neurotrophic factor (BDNF), was expressed in co-cultivated DPCs. In conclusion, our data demonstrated that DPCs are well-suited to differentiate into the neuronal lineage. They are able to stimulate neurogenesis in the adult mouse hippocampus through neurotrophic support in vitro.

  4. Human Dental Pulp Cells Differentiate toward Neuronal Cells and Promote Neuroregeneration in Adult Organotypic Hippocampal Slices In Vitro

    PubMed Central

    Ide, Ryoji; Saiki, Chikako; Kumazawa, Yasuo; Okamura, Hisashi

    2017-01-01

    The adult mammalian central nerve system has fundamental difficulties regarding effective neuroregeneration. The aim of this study is to investigate whether human dental pulp cells (DPCs) can promote neuroregeneration by (i) being differentiated toward neuronal cells and/or (ii) stimulating local neurogenesis in the adult hippocampus. Using immunostaining, we demonstrated that adult human dental pulp contains multipotent DPCs, including STRO-1, CD146 and P75-positive stem cells. DPC-formed spheroids were able to differentiate into neuronal, vascular, osteogenic and cartilaginous lineages under osteogenic induction. However, under neuronal inductive conditions, cells in the DPC-formed spheroids differentiated toward neuronal rather than other lineages. Electrophysiological study showed that these cells consistently exhibit the capacity to produce action potentials, suggesting that they have a functional feature in neuronal cells. We further co-cultivated DPCs with adult mouse hippocampal slices on matrigel in vitro. Immunostaining and presto blue assay showed that DPCs were able to stimulate the growth of neuronal cells (especially neurons) in both the CA1 zone and the edges of the hippocampal slices. Brain-derived neurotrophic factor (BDNF), was expressed in co-cultivated DPCs. In conclusion, our data demonstrated that DPCs are well-suited to differentiate into the neuronal lineage. They are able to stimulate neurogenesis in the adult mouse hippocampus through neurotrophic support in vitro. PMID:28800076

  5. Conditioned medium of dental pulp cells stimulated by Chinese propolis show neuroprotection and neurite extension in vitro.

    PubMed

    Kudo, Daichi; Inden, Masatoshi; Sekine, Shin-Ichiro; Tamaoki, Naritaka; Iida, Kazuki; Naito, Eiji; Watanabe, Kazuhiro; Kamishina, Hiroaki; Shibata, Toshiyuki; Hozumi, Isao

    2015-03-04

    The purpose of this study was to clarify the effect of Chinese propolis on the expression level of neurotrophic factors in dental pulp cells (DPCs). We also investigated that the effects of the conditioned medium (CM) of DPCs stimulated by the propolis against oxidative and endoplasmic reticulum (ER) stresses in human neuroblastoma SH-SY5Y cells, and on neurite extensions in rat adrenal pheochromocytoma PC12 cells. To investigate the effect of the propolis on the levels of neurotrophic factors in DPCs, we performed a qRT-PCR experiment. As results, NGF, but not BDNF and NT-3, in DPCs was significantly elevated by the propolis in a concentration-dependent manner. H2O2-induced cell death was significantly inhibited by the treatment with the CM of DPCs. In addition, the treatment with the propolis-stimulated CM of DPCs had a more protective effect than that with the CM of DPCs. We also examine the effect of the propolis-stimulated CM of DPCs against a tunicamycin-induced ER stress. The treatment with the propolis-stimulated CM as well as the CM of DPCs significantly inhibited tunicamycin-induced cell death. Moreover, the treatment with the propolis-stimulated CM of DPCs significantly induced neurite outgrowth from PC12 cells than that with the CM of DPCs. These results suggest that the CM of DPCs as well as DPCs will be an efficient source of new treatments for neurodegenerative diseases and that the propolis promote the advantage of the CM of DPCs via producing neurotrophic factors. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Stem cell regulatory gene expression in human adult dental pulp and periodontal ligament cells undergoing odontogenic/osteogenic differentiation.

    PubMed

    Liu, Lu; Ling, Junqi; Wei, Xi; Wu, Liping; Xiao, Yin

    2009-10-01

    During development and regeneration, odontogenesis and osteogenesis are initiated by a cascade of signals driven by several master regulatory genes. In this study, we investigated the differential expression of 84 stem cell-related genes in dental pulp cells (DPCs) and periodontal ligament cells (PDLCs) undergoing odontogenic/osteogenic differentiation. Our results showed that, although there was considerable overlap, certain genes had more differential expression in PDLCs than in DPCs. CCND2, DLL1, and MME were the major upregulated genes in both PDLCs and DPCs, whereas KRT15 was the only gene significantly downregulated in PDLCs and DPCs in both odontogenic and osteogenic differentiation. Interestingly, a large number of regulatory genes in odontogenic and osteogenic differentiation interact or crosstalk via Notch, Wnt, transforming growth factor beta (TGF-beta)/bone morphogenic protein (BMP), and cadherin signaling pathways, such as the regulation of APC, DLL1, CCND2, BMP2, and CDH1. Using a rat dental pulp and periodontal defect model, the expression and distribution of both BMP2 and CDH1 have been verified for their spatial localization in dental pulp and periodontal tissue regeneration. This study has generated an overview of stem cell-related gene expression in DPCs and PDLCs during odontogenic/osteogenic differentiation and revealed that these genes may interact through the Notch, Wnt, TGF-beta/BMP, and cadherin signaling pathways to play a crucial role in determining the fate of dental derived cell and dental tissue regeneration. These findings provided a new insight into the molecular mechanisms of the dental tissue mineralization and regeneration.

  7. Mesenchymal stem cell characteristics of dental pulp and periodontal ligament stem cells after in vivo transplantation.

    PubMed

    Lei, Ming; Li, Kun; Li, Bei; Gao, Li-Na; Chen, Fa-Ming; Jin, Yan

    2014-08-01

    Mesenchymal stem cells (MSCs) isolated from human postnatal dental pulp and periodontal ligament (PDL) tissues can give rise to multilineage differentiation in vitro and generate related dental tissues in vivo. However, the cell properties of human dental pulp stem cells (DPSCs) and PDL stem cells (PDLSCs) after in vivo implantation remain largely unidentified. In this study, cells were re-isolated from in vivo-generated dental pulp-like and PDL-like tissues (termed re-DPCs and re-PDLCs, respectively) as a result of ectopic transplantation of human DPSC and PDLSC sheets. The cell characteristics in terms of colony-forming ability, cell surface antigens and multi-differentiation potentials were all evaluated before and after implantation. It was found that re-DPCs and re-PDLCs were of human and mesenchymal origin and positive for MSC markers such as STRO-1, CD146, CD29, CD90 and CD105; and, to some extent, re-DPCs could maintain their colony forming abilities. Moreover, both cell types were able to form mineral deposits and differentiate into adipocytes and chondrocytes; however, quantitative analysis and related gene expression determination showed that the osteo-/chondro-differentiation capabilities of re-DPCs and re-PDLCs were significantly reduced compared to those of DPSCs and PDLSCs, respectively (P < 0.05); re-PDLCs showed a greater reduction potential than re-DPCs. We conclude that DPSCs and PDLSCs may maintain their MSC characteristics after in vivo implantation and, compared to PDLSCs, DPSCs appear much more stable under in vivo conditions. These findings provide additional cellular and molecular evidence that supports expanding the use of dental tissue-derived stem cells in cell therapy and tissue engineering. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. A monoclonal antibody recognizes undifferentiation-specific carbohydrate moieties expressed on cell surface of the human dental pulp cells.

    PubMed

    Kang, Kyung-Jung; Ko, Seon-Yle; Ryu, Chun-Jeih; Jang, Young-Joo

    2017-05-01

    Human dental pulp cells are obtained from dental pulp tissue, and have the ability to form dentin and a pulp-like complex. Although adult stem cells have been identified from the primary culture by using specific cell surface markers, the identity of surface markers for the purification of stem cells within the dental pulp population are still unclear. Previously, we had constructed monoclonal antibodies against the undifferentiated cell-specific surface markers of human dental pulp cells (hDPCs) by performing decoy immunization. Among them, a monoclonal antibody against the cell surface antigen of the undifferentiated hDPCs (named UPSA-1) was purified and its heavy and light chain consensus regions were analyzed. The cell surface binding affinity of UPSA-1 mAb on the undifferentiated hDPCs was stronger than that on the differentiated cells. When tunicamycin was applied to hDPSCs during culture, the cell surface binding affinity of the antibody was dramatically decreased, and dentinogenic differentiation was reduced. The purified UPSA-1 antigen band resulting from immunoprecipitation disappeared or shifted down on the SDS-PAGE by deglycosylation. These data suggested that glycosylation on the cell surface might be a marker of an undifferentiated state, and that UPSA-1 mAb might be useful for identifying the carbohydrate moiety on the cell surface of undifferentiated pulp cells. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. OCT4B1 Regulates the Cellular Stress Response of Human Dental Pulp Cells with Inflammation

    PubMed Central

    Liu, Lu; Huang, Rong; Yang, Ruiqi

    2017-01-01

    Introduction. Infection and apoptosis are combined triggers for inflammation in dental tissues. Octamer-binding transcription factor 4-B1 (OCT4B1), a novel spliced variant of OCT4 family, could respond to the cellular stress and possess antiapoptotic property. However, its specific role in dental pulpitis remains unknown. Methods. To investigate the effect of OCT4B1 on inflammation of dental pulp cells (DPCs), its expression in inflamed dental pulp tissues and DPCs was examined by in situ hybridization, real-time PCR, and FISH assay. OCT4B1 overexpressed DPCs model was established, confirmed by western blot and immunofluorescence staining, and then stimulated with Lipopolysaccharide (LPS). Apoptotic rate was determined by Hoechst/PI staining and FACS. Cell survival rate was calculated by CCK8 assay. Results. In situ hybridization, real-time PCR, and FISH assay revealed that OCT4B1 was extensively expressed in inflamed dental pulp tissues and DPCs with LPS stimulation. Western blot and immunofluorescence staining showed the expression of OCT4B1 and OCT4B increased after OCT4B1 transfection. Hoechst/PI staining and FACS demonstrated that less red/blue fluorescence was detected and apoptotic percentage decreased (3.45%) after transfection. CCK8 demonstrated that the survival rate of pCDH-OCT4B1-flag cells increased. Conclusions. OCT4B1 plays an essential role in inflammation and apoptosis of DPCs. OCT4B might operate synergistically with OCT4B1 to reduce apoptosis. PMID:28473980

  10. [Three dimensional bioprinting technology of human dental pulp cells mixtures].

    PubMed

    Xue, Shi-hua; Lv, Pei-jun; Wang, Yong; Zhao, Yu; Zhang, Ting

    2013-02-18

    To explore the three dimensional(3D)bioprinting technology, using human dental pulp cells (hDPCs) mixture as bioink and to lay initial foundations for the application of the 3D bioprinting technology in tooth regeneration. Imageware 11.0 computer software was used to aid the design of the 3D biological printing blueprint. Sodium alginate-gelatin hydrosol was prepared and mixed with in vitro isolated hDPCs. The mixture contained 20 g/L sodium alginate and 80 g/L gelatin with cell density of 1×10(6)/mL. The bioprinting of hDPCs mixture was carried out according to certain parameters; the 3D constructs obtained by printing were examined; the viability of hDPCs after printing by staining the constructs with calcein-AM and propidium iodide dye and scanning of laser scanning confocal microscope was evaluated. The in vitro constructs obtained by the bioprinting were cultured, and the proliferation of hDPCs in the constructs detected. By using Imageware 11.0 software, the 3D constructs with the grid structure composed of the accumulation of staggered cylindrical microfilament layers were obtained. According to certain parameters, the hDPCs-sodium alginate-gelatin blends were printed by the 3D bioprinting technology. The self-defined shape and dimension of 3D constructs with the cell survival rate of 87%± 2% were constructed. The hDPCs could proliferate in 3D constructs after printing. In this study, the 3D bioprinting of hDPCs mixtures was realized, thus laying initial foundations for the application of the 3D bioprinting technology in tooth regeneration.

  11. Molecular differences between mature and immature dental pulp cells: Bioinformatics and preliminary results.

    PubMed

    Chen, Long; Jiang, Yifeng; Du, Zhen

    2018-04-01

    Although previous studies have demonstrated that dental pulp stem cells (DPSCs) from mature and immature teeth exhibit potential for multi-directional differentiation, the molecular and biological difference between the DPSCs from mature and immature permanent teeth has not been fully investigated. In the present study, 500 differentially expressed genes from dental pulp cells (DPCs) in mature and immature permanent teeth were obtained from the Gene Expression Omnibus online database. Based on bioinformatics analysis using the Database for Annotation, Visualization and Integrated Discovery, these genes were divided into a number of subgroups associated with immunity, inflammation and cell signaling. The results of the present study suggest that immune features, response to infection and cell signaling may be different in DPCs from mature and immature permanent teeth; furthermore, DPCs from immature permanent teeth may be more suitable for use in tissue engineering or stem cell therapy. The Online Mendelian Inheritance in Man database stated that Sonic Hedgehog (SHH), a differentially expressed gene in DPCs from mature and immature permanent teeth, serves a crucial role in the development of craniofacial tissues, including teeth, which further confirmed that SHH may cause DPCs from mature and immature permanent teeth to exhibit different biological characteristics. The Search Tool for the Retrieval of Interacting Genes/Proteins database revealed that SHH has functional protein associations with a number of other proteins, including Glioma-associated oncogene (GLI)1, GLI2, growth arrest-specific protein 1, bone morphogenetic protein (BMP)2 and BMP4, in mice and humans. It was also demonstrated that SHH may interact with other genes to regulate the biological characteristics of DPCs. The results of the present study may provide a useful reference basis for selecting suitable DPSCs and molecules for the treatment of these cells to optimize features for tissue engineering or stem cell therapy. Quantitative polymerase chain reaction should be performed to confirm the differential expression of these genes prior to the beginning of a functional study.

  12. Expression and purification recombinant human dentin sialoprotein in Escherichia coli and its effects on human dental pulp cells.

    PubMed

    Yun, Ye-Rang; Kim, Hae-Won; Kang, Wonmo; Jeon, Eunyi; Lee, Sujin; Lee, Hye-Young; Kim, Cheol-Hwan; Jang, Jun-Hyeog

    2012-05-01

    Dentin sialoprotein (DSP) is cleaved from dentin sialophosphoprotein (DSPP) and most abundant dentinal non-collagenous proteins in dentin. DSP is believed to participate in differentiation and mineralization of cells. In this study, we first constructed recombinant human DSP (rhDSP) in Escherichia coli (E. coli) and investigated its odontoblastic differentiation effects on human dental pulp cells (hDPCs). Cell adhesion activity was measured by crystal violet assay and cell proliferation activity was measured by MTT assay. To assess mineralization activity of rhDSP, Alizarin Red S staining was performed. In addition, the mRNA levels of collagen type І (Col І), alkaline phosphatase (ALP), and osteocalcin (OCN) were measured due to their use as mineralization markers for odontoblast-/osteoblast-like differentiation of hDPCs. The obtained rhDSP in E. coli was approximately identified by SDS-PAGE and Western blot. Initially, rhDSP significantly enhanced hDPCs adhesion activity and proliferation (p<0.05). In Alizarin Red S staining, stained hDPCs increased in a time-dependent manner. This odontoblastic differentiation activity was also verified through mRNA levels of odontoblast-related markers. Here, we first demonstrated that rhDSP may be an important regulatory ECM in determining the hDPCs fate including cell adhesion, proliferation, and odontoblastic differentiation activity. These findings indicate that rhDSP can induce growth and differentiation on hDPCs, leading to improve tooth repair and regeneration. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. HDAC inhibitor LMK-235 promotes the odontoblast differentiation of dental pulp cells

    PubMed Central

    Liu, Zhao; Chen, Ting; Han, Qianqian; Chen, Ming; You, Jie; Fang, Fuchun; Peng, Ling; Wu, Buling

    2018-01-01

    The role of dental pulp cells (DPCs) in hard dental tissue regeneration had received increasing attention because DPCs can differentiate into odontoblasts and other tissue-specific cells. In recent years, epigenetic modifications had been identified to serve an important role in cell differentiation, and histone deacetylase (HDAC) inhibitors have been widely studied by many researchers. However, the effects of HDAC4 and HDAC5 on the differentiation of DPCs and the precise molecular mechanisms remain unclear. The present study demonstrated that LMK-235, a specific human HDAC4 and HDAC5 inhibitor, increased the expression of specific odontoblastic gene expression levels detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in dental pulp cells, and did not reduce cell proliferation tested by MTT assay after 3 days in culture at a low concentration. In addition, the mRNA and protein expression levels of dentin sialophosphoprotein, runt-related transcription factor 2, alkaline phosphatase (ALP) and osteocalcin were evaluated by RT-qPCR and western blotting, respectively. The increased gene and protein expression of specific markers demonstrated, indicating that LMK-235 promoted the odontoblast induction of DPCs. ALP activity and mineralised nodule formation were also enhanced due to the effect of LMK-235, detected by an ALP activity test and Alizarin Red S staining, respectively. Additionally, the vascular endothelial growth factor (VEGF)/RAC-gamma serine/threonine-protein kinase (AKT)/mechanistic target of rapamycin (mTOR) signalling pathway was tested to see if it takes part in the differentiation of DPCs treated with LMK-235, and it was demonstrated that the mRNA expression levels of VEGF, AKT and mTOR were upregulated. These findings indicated that LMK-235 may serve a key role in the proliferation and odontoblast differentiation of DPCs, and could be used to accelerate dental tissue regeneration. PMID:29138868

  14. Interaction between mDia1 and ROCK in Rho-induced migration and adhesion of human dental pulp cells.

    PubMed

    Cheng, L; Xu, J; Qian, Y Y; Pan, H Y; Yang, H; Shao, M Y; Cheng, R; Hu, T

    2017-01-01

    To investigate the effects of mammalian homologue of Drosophila diaphanous-1(mDia1) and Rho-associated coiled-coil-containing protein kinase (ROCK) on the migration and adhesion of dental pulp cells (DPCs). Lysophosphatidic acid (LPA) was used to activate Rho signalling. mDia1 and ROCK were inhibited by short interfering RNA and the specific inhibitor, Y-27632, respectively. The migration of DPCs was assessed using the transwell migration assay and scratch test. Formation of cytoskeleton and focal adhesions(FAs) was observed by confocal laser scanning microscopy. Cell adhesion and spreading assays were performed. Phosphorylation of focal adhesion kinase (FAK) and paxillin was detected by Western blotting, and the bands were analysed using Adobe Photoshop CS5 software. All experiments were performed at least three times, and data were analysed with one-way anova and a post hoc test. LPA-triggered activation of Rho and inhibition of ROCK significantly increased the cell migration rate. Cell migration was inhibited by silencing mDia1. mDia1 silencing and ROCK inhibition suppressed the LPA-induced formation of the cytoskeleton, FA and phosphorylation of FAK and paxillin. Inhibition of ROCK or mDia1 facilitated early cell adhesion and spreading; by contrast, the combined inhibition of ROCK and mDia1 neutralized these effects. mDia1 promoted RhoA-induced migration of DPCs, but ROCK had an opposite effect. Both mDia1 and ROCK participated in cytoskeleton formation and adhesion of DPCs. The interactions between mDia1 and ROCK might influence dental pulp repair by determining the migration and adhesion of DPCs. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  15. Transforming growth factor-β-induced gene product-h3 inhibits odontoblastic differentiation of dental pulp cells.

    PubMed

    Serita, Suguru; Tomokiyo, Atsushi; Hasegawa, Daigaku; Hamano, Sayuri; Sugii, Hideki; Yoshida, Shinichiro; Mizumachi, Hiroyuki; Mitarai, Hiromi; Monnouchi, Satoshi; Wada, Naohisa; Maeda, Hidefumi

    2017-06-01

    The aim of this study was to investigate transforming growth factor-β-induced gene product-h3 (βig-h3) expression in dental pulp tissue and its effects on odontoblastic differentiation of dental pulp cells (DPCs). A rat direct pulp capping model was prepared using perforated rat upper first molars capped with mineral trioxide aggregate cement. Human DPCs (HDPCs) were isolated from extracted teeth. βig-h3 expression in rat dental pulp tissue and HDPCs was assessed by immunostaining. Mineralization of HDPCs was assessed by Alizarin red-S staining. Odontoblast-related gene expression in HDPCs was analyzed by quantitative RT-PCR. Expression of βig-h3 was detected in rat dental pulp tissue, and attenuated by direct pulp capping, while expression of interleukin-1β and tumor necrosis factor-α was increased in exposed pulp tissue. βig-h3 expression was also detected in HDPCs, with reduced expression during odontoblastic differentiation. The above cytokines reduced βig-h3 expression in HDPCs, and promoted their mineralization. Recombinant βig-h3 inhibited the expression of odontoblast-related genes and mineralization of HDPCs, while knockdown of βig-h3 gene expression promoted the expression of odontoblast-related genes in HDPCs. The present findings suggest that βig-h3 in DPCs may be involved in reparative dentin formation and that its expression is likely to negatively regulate this process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. [Influence of the Arg-Gly-Asp-Ser sequence on the biological effects of bioactive glass on human dental pulp cells].

    PubMed

    Liu, Y; Wang, S N; Cui, C Y; Dong, Y M

    2017-04-18

    Positive effects of bioactive glass (BG) on proliferation, mineralization, and differentiation of human dental pulp cells (hDPCs) was already verified in various former studies. The Arg-Gly-Asp-Ser sequence (RGDS) was confirmed of affecting cell adhesion. Before further investigation, the objective of this study is to investigate whether RGDS can affect the effects of BG on the adhesion, proliferation and mineralization of hDPCs. hDPCs were harvested from third molars of 18-25-year-old individuals after informed consent. Enzyme digestion technique was used. The 4th to 6th generation of hDPCs were used for all experiments. The cells of the experimental groups were cultured in Dulbecco minimum essential medium (DMEM) containing ionic dissolution products of BG and RGDS of several concentrations (12.5 mg/L, 25.0 mg/L, 50.0 mg/L, 100.0 mg/L, 200.0 mg/L). DMEM containing ionic dissolution products of BG without RGDS was used for cell culture as control group. Cell adhesion was tested 4 h after cell seeding by MTT assay. Cell proliferation was examined at 1, 3, 5, 7, and 9 d after cell seeding by MTT assay. Cell mineralization was investigated on days 14 and 28 by alizarin red staining. After being stained and dried, mineralized nodules were dissolved by cetylpyridinium chloride (CPC) for semi-quantitative test. Results were statistically analyzed by one way ANOVA, SPSS (version 19.0) and P<0.05 was considered to be significant. Cell adhesion in BG group showed no difference from that in DMEM group. Compared with BG group, hDPCs in BG+RGDS groups suggested weaker cell adhesion.When the concentration of RGDS increased, the adhered cell number decreased. hDPCs cultured with BG and RGDS showed lower proliferation activity in the early stage, while no significant difference was observed after 3 d. BG group promoted the mineralization of hDPCs compared with positive control group, negative control group and RGDS group. No significant difference was observed between BG+RGDS group and BG group or between RGDS group and positive control group. BG promotes proliferation and mineralization without affecting cell adhesion of hDPCs. Unbounded RGDS inhibits cell adhesion, but has no influence on the positive effects of BG on the proliferation and mineralization of hDPCs.

  17. DNA methylcytosine dioxygenase ten-eleven translocation 2 enhances lipopolysaccharide-induced cytokine expression in human dental pulp cells by regulating MyD88 hydroxymethylation.

    PubMed

    Wang, Xinxuan; Feng, Zhihui; Li, Qimeng; Yi, Baicheng; Xu, Qiong

    2018-04-13

    Dental pulp inflammation is a bacterially driven inflammation process characterized by the local accumulation of cytokines/chemokines that participate in destructive processes in the pulp. Multiple mechanisms are involved in dental pulp inflammation, including epigenetic events, such as DNA methylation/demethylation. Ten-eleven translocation 2 (TET2) is a recently discovered DNA methylcytosine dioxygenase that plays important roles in inflammatory disease. However, its role in the inflammatory response of dental pulp is unknown. We observed elevated mRNA and protein levels of TET2 after lipopolysaccharide (LPS) stimulation in human dental pulp cells (hDPCs). To identify the effects of TET2 on cytokine expression, TET2 was knocked down and cytokines were detected using a cytokine antibody array after LPS stimulation. The protein expression of GM-CSF, IL-6, IL-8 and RANTES decreased in the LPS-induced hDPCs following TET2 knockdown. The downregulated expression levels of IL-6 and IL-8 were further confirmed by real-time quantitative polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). Additionally, the phosphorylation levels of IKK-α/β, p65 and IκBα of the NF-κB signaling pathway were decreased in the TET2-silenced group. Furthermore, the global 5-hydroxymethylcytosine (5hmC) level was significantly decreased and the genomic 5-methylcytosine (5mC) level was increased in the TET2-deficient hDPCs; TET2 depletion resulted in a decrease in the 5hmC level of the MyD88 promoter following LPS stimulation. These findings indicate that TET2 knockdown inhibits LPS-induced inflammatory response in hDPCs by downregulating MyD88 hydroxymethylation. Thus, TET2-dependent DNA demethylation might play an important role in dental pulp inflammation as an epigenetic regulator.

  18. Biological Analysis of Simvastatin-releasing Chitosan Scaffold as a Cell-free System for Pulp-dentin Regeneration.

    PubMed

    Soares, Diana G; Anovazzi, Giovanna; Bordini, Ester Alves F; Zuta, Uxua O; Silva Leite, Maria Luísa A; Basso, Fernanda G; Hebling, Josimeri; de Souza Costa, Carlos A

    2018-06-01

    The improvement of biomaterials capable of driving the regeneration of the pulp-dentin complex mediated by resident cells is the goal of regenerative dentistry. In the present investigation, a chitosan scaffold (CHSC) that released bioactive concentrations of simvastatin (SIM) was tested, aimed at the development of a cell-free tissue engineering system. First, we performed a dose-response assay to select the bioactive dose of SIM capable of inducing an odontoblastic phenotype in dental pulp cells (DPCs); after which we evaluated the synergistic effect of this dosage with the CHSC/DPC construct. SIM at 1.0 μmol/L (CHSC-SIM1.0) and 0.5 μmol/L were incorporated into the CHSC, and cell viability, adhesion, and calcium deposition were evaluated. Finally, we assessed the biomaterials in an artificial pulp chamber/3-dimensional culture model to simulate the cell-free approach in vitro. SIM at 0.1 μmol/L was selected as the bioactive dose. This drug was capable of strongly inducing an odontoblastic phenotype on the DPC/CHSC construct. The incorporation of SIM into CHSC had no deleterious effect on cell viability and adhesion to the scaffold structure. CHSC-SIM1.0 led to significantly higher calcium-rich matrix deposition on scaffold/dentin disc assay compared with the control (CHSC). This biomaterial induced the migration of DPCs from a 3-dimensional culture to its surface as well as stimulated significantly higher expressions of alkaline phosphatase, collagen type 1 alpha 1, dentin matrix acidic phosphoprotein 1, and dentin sialophosphoprotein on 3-dimensional-cultured DPCs than on those in contact with CHSC. CHSC-SIM1.0 scaffold was capable of increasing the chemotaxis and regenerative potential of DPCs. Copyright © 2018 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Oestrogen receptor β (ERβ) regulates osteogenic differentiation of human dental pulp cells.

    PubMed

    Alhodhodi, Aishah; Alkharobi, Hanaa; Humphries, Matthew; Alkhafaji, Hasanain; El-Gendy, Reem; Feichtinger, Georg; Speirs, Valerie; Beattie, James

    2017-11-01

    Estradiol (E 2 ) has many important actions in the tissues of the oral cavity. Disruption of E 2 metabolism or alterations in systemic E 2 concentrations have been associated with compromised periodontal health. In many instances such changes occur secondarily to the well characterised effects of E 2 on bone physiology -especially maintenance of bone mineral density (BMD). Despite these important epidemiological findings, little is known about the mechanism of action of E 2 in oral tissues or the expression and function of oestrogen receptor (ER) isoforms in these tissues. We have isolated human dental pulp cells (hDPCs), which are able to differentiate towards an osteogenic lineage under appropriate culture conditions. We show that hDPCs express ERα, ERβ1, ERβ2 and the cell membrane associated G protein-coupled ER (GPR30). Following osteogenic differentiation of hDPCs, ERβ1 and ERβ2 were up regulated approximately 50-fold while ERα and GPR30 were down regulated, but to a much lesser degree (approximately 2-fold). ERβ was characterised as a 59kDa protein following Western blot analysis with validated antibodies and ERβ was detected in both nuclear and cytoplasmic cell compartments following immunofluorescence (IF) and immunohistochemical (IHC) analysis of cultured cells. Furthermore isoform specific antibodies detected both ERβ1 and ERβ2 in DPC cultures and in situ analysis of ERβ expression in decalcified tooth/pulp sections identified the odontoblast layer of pulp cells juxtaposed to the tooth enamel as strongly reactive for both ERβ isoforms. Finally the use of isoform specific agonists identified ERβ as the main receptor responsible for the pro-osteogenic effect of oestrogenic hormones in this tissue. Our data suggest that oestrogens stimulated osteogenic differentiation in hDPCs and that this action is mediated principally through the ERβ isoform. These findings may have important consequences for the investigation and treatment of oral and periodontal pathologies which are associated with imbalances in oestrogen concentrations and action. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Influence of 2 cryopreservation methods to induce CCL-13 from dental pulp cells.

    PubMed

    Ahn, Su-Jin; Jang, Ji-Hyun; Seo, Ji-Sung; Cho, Kyu Min; Jung, Su-Hee; Lee, Hyeon-Woo; Kim, Eun-Cheol; Park, Sang Hyuk

    2013-12-01

    Cryopreservation preserves periodontal ligament cells but has a lower success rate with dental pulp cells (DPCs) because it causes inflammation. There are 2 well-known cryopreservation methods that reduce inflammation, slow freezing and rapid freezing, but the effects of the 2 methods on inflammation are not well-established. The purpose of this study was to compare the effects of the 2 different cryopreservation methods on CCL-13 induction from DPCs by using microarrays, real-time polymerase chain reaction (PCR), Western blotting, enzyme-linked immunosorbent assay, and confocal laser scanning microscopy (CLSM). In this study, the concentration of cryoprotectant was fixed, and the methods compared differed with respect to freezing speed. Initially we screened the DPCs of cryopreserved teeth with expression microarrays, and CCL-13 was identified as a differentially expressed gene involved in generalized inflammation. We then compared the expression of CCL-13 after exposing teeth to the 2 cryopreservation methods by using real-time PCR, Western blot, enzyme-linked immunosorbent assay, and CLSM. Expression of CCL-13 was up-regulated significantly only in the rapid freezing group, except in measurements made by real-time PCR. CLSM analysis also confirmed this up-regulation visually. Rapid freezing increased the expression of CCL-13 in DPCs compared with slow freezing. Understanding the inflammatory effect of cryopreservation should help to establish an optimal cryoprofile to minimize inflammation of DPCs and reduce the need for endodontic treatment. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Biocompatibility and bioactivity of calcium silicate-based endodontic sealers in human dental pulp cells.

    PubMed

    Mestieri, Leticia Boldrin; Gomes-Cornélio, Ana Lívia; Rodrigues, Elisandra Márcia; Salles, Loise Pedrosa; Bosso-Martelo, Roberta; Guerreiro-Tanomaru, Juliane Maria; Tanomaru-Filho, Mário

    2015-10-01

    Mineral Trioxide Aggregate (MTA) is a calcium silicate-based material. New sealers have been developed based on calcium silicate as MTA Fillapex and MTA Plus. The aim of this study was to evaluate biocompatibility and bioactivity of these two calcium silicate-based sealers in culture of human dental pulp cells (hDPCs). The cells were isolated from third molars extracted from a 16-year-old patient. Pulp tissue was sectioned into fragments with approximately 1 mm3 and kept in supplemented medium to obtain hDPCs adherent cultures. Cell characterization assays were performed to prove the osteogenic potential. The evaluated materials were: MTA Plus (MTAP); MTA Fillapex (MTAF) and FillCanal (FC). Biocompatibility was evaluated with MTT and Neutral Red (NR) assays, after hDPCs exposure for 24 h to different dilutions of each sealer extract (1:2, 1:3 and 1:4). Unexposed cells were the positive control (CT). Bioactivity was assessed by alkaline phosphatase (ALP) enzymatic assay in cells exposed for one and three days to sealer extracts (1:4 dilution). All data were analyzed by ANOVA and Tukey post-test (p≤0.05%). MTT and NR results showed suitable cell viability rates for MTAP at all dilutions (90-135%). Cells exposed to MTAF and FC (1:2 and 1:4 dilutions) showed significant low viability rate when compared to CT in MTT. The NR results demonstrated cell viability for all materials tested. In MTAP group, the cells ALP activity was similar to CT in one and three days of exposure to the material. MTAF and FC groups demonstrated a decrease in ALP activity when compared to CT at both periods of cell exposure. The hDPCs were suitable for the evaluation of new endodontic materialsin vitro. MTAP may be considered a promising material for endodontic treatments.

  2. Promotive Effect of Zinc Ions on the Vitality, Migration, and Osteogenic Differentiation of Human Dental Pulp Cells.

    PubMed

    An, Shaofeng; Gong, Qimei; Huang, Yihua

    2017-01-01

    Zinc is an essential trace element for proper cellular function and bone formation. However, its exact role in the osteogenic differentiation of human dental pulp cells (hDPCs) has not been fully clarified before. Here, we speculated that zinc may be effective to regulate their growth and osteogenic differentiation properties. To test this hypothesis, different concentrations (1 × 10 -5 , 4 × 10 -5 , and 8 × 10 -5  M) of zinc ions (Zn 2+ ) were added to the basic growth culture medium and osteogenic inductive medium. Cell viability and migration were measured by cell counting kit-8 (CCK-8) and transwell migration assay in the basic growth culture medium, respectively. The reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect the gene expression levels of selective osteogenic differentiation markers and zinc transporters. Alkaline phosphatase (ALP) activity analysis and alizarin red S staining were used to investigate the mineralization of hDPCs. Exposure of hDPCs to Zn 2+ stimulated their viability and migration capacity in a dose- and time-dependent manner. RT-qPCR assay revealed elevated expression levels of osteogenic differentiation-related genes and zinc transporters genes in various degrees. ALP activity was also increased with elevated Zn 2+ concentrations and extended culture periods, but enhanced matrix nodules formation were observed only in 4 × 10 -5 and 8 × 10 -5  M Zn 2+ groups. These findings suggest that specific concentrations of Zn 2+ could potentiate the vitality, migration, and osteogenic differentiation of hDPCs. We may combine optimum zinc element into pulp capping materials to improve their biological performance.

  3. The Anti-Inflammatory Effect of Human Telomerase-Derived Peptide on P. gingivalis Lipopolysaccharide-Induced Inflammatory Cytokine Production and Its Mechanism in Human Dental Pulp Cells

    PubMed Central

    Ko, Yoo-Jin; Kwon, Kil-Young; Kum, Kee-Yeon; Lee, Woo-Cheol; Baek, Seung-Ho; Kang, Mo K.; Shon, Won-Jun

    2015-01-01

    Porphyromonas gingivalis is considered with inducing pulpal inflammation and has lipopolysaccharide (LPS) as an inflammatory stimulator. GV1001 peptide has anticancer and anti-inflammation activity due to inhibiting activation of signaling molecules after penetration into the various types of cells. Therefore, this study examined inhibitory effect of GV1001 on dental pulp cells (hDPCs) stimulated by P. gingivalis LPS. The intracellular distribution of GV1001 was analyzed by confocal microscopy. Real-time RT-PCR was performed to determine the expression levels of TNF-α and IL-6 cytokines. The role of signaling by MAP kinases (ERK and p38) was explored using Western blot analysis. The effect of GV1001 peptide on hDPCs viability was measured by MTT assay. GV1001 was predominantly located in hDPC cytoplasm. The peptide inhibited P. gingivalis LPS-induced TNF-α and IL-6 production in hDPCs without significant cytotoxicity. Furthermore, GV1001 treatment markedly inhibited the phosphorylation of MAP kinases (ERK and p38) in LPS-stimulated hDPCs. GV1001 may prevent P. gingivalis LPS-induced inflammation of apical tissue. Also, these findings provide mechanistic insight into how GV1001 peptide causes anti-inflammatory actions in LPS-stimulated pulpitis without significantly affecting cell viability. PMID:26604431

  4. Ionic extraction of a novel nano-sized bioactive glass enhances differentiation and mineralization of human dental pulp cells.

    PubMed

    Gong, Weiyu; Huang, Zhiwei; Dong, Yanmei; Gan, Yehua; Li, Shenglin; Gao, Xuejun; Chen, Xiaofeng

    2014-01-01

    This study aimed to investigate the effects of a novel nano-sized 58S bioactive glass (nano-58S BG) on the odontogenic differentiation and mineralization of human dental pulp cells (hDPCs) in vitro. Extractions were prepared by incubating nano-58S BG, 45S5 BG, or 58S BG particulates in Dulbecco modified Eagle medium at 1% w/v for 24 hours and were filtrated through 0.22-μm filters. The supernatants were used as BG extractions. The hDPCs were cultured in nano-58S BG, 45S5 BG, and 58S BG extractions. The proliferation of hDPCs was evaluated using the methylthiazol tetrazolium assay. Odontogenic differentiation was evaluated based on the real-time polymerase chain reaction of differentiation- and mineralization-related genes, namely, alkaline phosphatase (ALP), collagen type I, dentin sialophosphoprotein (DSPP), and dentin matrix protein 1. The gene expressions were verified using ALP activity assessment, immunocytochemistry staining of osteocalcin and DSPP, and mineralization assay using alizarin red S stain. All BG extractions up-regulated the expression of odontogenic genes, and the most significant enhancement was in the nano-58S BG group. All BG extractions, especially nano-58S, increased ALP activity, osteocalcin and DSPP protein production, and mineralized nodules formation. Compared with regular BG, the novel nano-58S BG can induce the differentiation and mineralization of hDPCs more efficiently and might be a better potential candidate for dentin-pulp complex regeneration. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Fluocinolone acetonide partially restores the mineralization of LPS-stimulated dental pulp cells through inhibition of NF-κB pathway and activation of AP-1 pathway

    PubMed Central

    Liu, Zhongning; Jiang, Ting; Wang, Xinzhi; Wang, Yixiang

    2013-01-01

    BACKGROUND AND PURPOSE Fluocinolone acetonide (FA) is commonly used as a steroidal anti-inflammatory drug. We recently found that in dental pulp cells (DPCs) FA has osteo-/odonto-inductive as well as anti-inflammatory effects. However, the mechanism by which FA induces these effects in DPCs is poorly understood. EXPERIMENTAL APPROACH The effect of FA on the mineralization of DPCs during inflammatory conditions and the underlying mechanism were investigated by real-time PCR, Western blot, EMSA, histochemical staining, immunostaining and pathway blockade assays. KEY RESULTS FA significantly inhibited the inflammatory response in LPS-treated DPCs not only by down-regulating the expression of pro–inflammation-related genes, but also by up-regulating the expression of the anti-inflammatory gene PPAR-γ and mineralization-related genes. Moreover, histochemical staining and immunostaining showed that FA could partially restore the expressions of alkaline phosphatase, osteocalcin and dentin sialophosphoprotein (DSPP) and mineralization in LPS-stimulated DPCs. Real-time PCR and Western blot analysis revealed that FA up-regulated DSPP and runt-related transcription factor 2 expression by inhibiting the expression of phosphorylated-NF-κB P65 and activating activator protein-1 (AP-1) (p-c-Jun and Fra-1). These results were further confirmed through EMSA, by detection of NF-κB DNA-binding activity and pathway blockade assays using a NF-κB pathway inhibitor, AP-1 pathway inhibitor and glucocorticoid receptor antagonist. CONCLUSIONS AND IMPLICATIONS Inflammation induced by LPS suppresses the mineralization process in DPCs. FA partially restored this osteo-/odonto-genesis process in LPS-treated DPCs and had an anti-inflammatory effect through inhibition of the NF-κB pathway and activation of the AP-1 pathway. Hence, FA is a potential new treatment for inflammation-associated bone/teeth diseases. PMID:24024985

  6. The effect of UV-Vis to near-infrared light on the biological response of human dental pulp cells

    NASA Astrophysics Data System (ADS)

    Hadis, Mohammed A.; Cooper, Paul R.; Milward, Michael R.; Gorecki, Patricia; Tarte, Edward; Churm, James; Palin, William M.

    2015-03-01

    Human dental pulp cells (DPCs) were isolated and cultured in phenol-red-free α-MEM/10%-FCS at 37ºC in 5% CO2. DPCs at passages 2-4 were seeded (150μL; 25,000 cell/ml) in black 96-microwell plates with transparent bases. 24h post-seeding, cultures were irradiated using a bespoke LED array consisting of 60 LEDs (3.5mW/cm2) of wavelengths from 400-900nm (10 wavelengths, n=6) for time intervals of up to 120s. Metabolic and mitochondrial activity was assessed via a modified MTT assay. Statistical differences were identified using multi-factorial analysis of variance and post-hoc Tukey tests (P=0.05). The biological responses were significantly dependent upon post-irradiation incubation period, wavelength and exposure time (P<0.05). At shorter wavelength irradiances (400nm), a reduction in mitochondrial activity was detected although not significant, whereas longer wavelength irradiances (at 633, 656, 781 and 799nm) significantly increased mitochondrial activity (P<0.05) in DPCs. At these wavelengths, mitochondrial activity was generally increased for exposures less than 90s with 30s exposures being most effective with 24h incubation. Increasing the post-irradiation incubation period increased the measured response and identified further significance (P<0.05). The biological responses of human DPCs were wavelength, exposure-time and incubation period dependent. The optimisation of irradiation parameters will be key to the successful application of LLLT in dentistry.

  7. Collagenous matrix supported by a 3D-printed scaffold for osteogenic differentiation of dental pulp cells.

    PubMed

    Fahimipour, Farahnaz; Dashtimoghadam, Erfan; Rasoulianboroujeni, Morteza; Yazdimamaghani, Mostafa; Khoshroo, Kimia; Tahriri, Mohammadreza; Yadegari, Amir; Gonzalez, Jose A; Vashaee, Daryoosh; Lobner, Douglas C; Jafarzadeh Kashi, Tahereh S; Tayebi, Lobat

    2018-02-01

    A systematic characterization of hybrid scaffolds, fabricated based on combinatorial additive manufacturing technique and freeze-drying method, is presented as a new platform for osteoblastic differentiation of dental pulp cells (DPCs). The scaffolds were consisted of a collagenous matrix embedded in a 3D-printed beta-tricalcium phosphate (β-TCP) as the mineral phase. The developed construct design was intended to achieve mechanical robustness owing to 3D-printed β-TCP scaffold, and biologically active 3D cell culture matrix pertaining to the Collagen extracellular matrix. The β-TCP precursor formulations were investigated for their flow-ability at various temperatures, which optimized for fabrication of 3D printed scaffolds with interconnected porosity. The hybrid constructs were characterized by 3D laser scanning microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and compressive strength testing. The in vitro characterization of scaffolds revealed that the hybrid β-TCP/Collagen constructs offer superior DPCs proliferation and alkaline phosphatase (ALP) activity compared to the 3D-printed β-TCP scaffold over three weeks. Moreover, it was found that the incorporation of TCP into the Collagen matrix improves the ALP activity. The presented results converge to suggest the developed 3D-printed β-TCP/Collagen hybrid constructs as a new platform for osteoblastic differentiation of DPCs for craniomaxillofacial bone regeneration. Copyright © 2017. Published by Elsevier Ltd.

  8. The synergistic effects of Chinese herb and injectable calcium silicate/β-tricalcium phosphate composite on an osteogenic accelerator in vitro.

    PubMed

    Huang, Ming-Hsien; Kao, Chia-Tze; Chen, Yi-Wen; Hsu, Tuan-Ti; Shieh, Den-En; Huang, Tsui-Hsien; Shie, Ming-You

    2015-04-01

    This study investigates the physicochemical and biological effects of traditional Chinese medicines on the β-tricalcium phosphate (β-TCP)/calcium silicate (CS) composites of bone cells using human dental pulp cell. CS is an osteoconductive and bioactive material. For this research we have combined β-TCP and CS and check its effectiveness, a series of β-TCP/CS composites with different ratios of Xu Duan (XD) were prepared to make new bioactive and biodegradable biocomposites for bone repair. XD has been used in Traditional Chinese Medicine for hundreds of years as an antiosteoporosis, tonic and antiaging agent for the therapy of low back pain, traumatic hematoma, threatened abortion and bone fractures. Formation of bone-like apatite, the diametral tensile strength, and weight loss of composites were considered before and after immersion in simulated body fluid (SBF). In addition, we also examined the effects of XD released from β-TCP/CS composites and in vitro human dental pulp cell (hDPCs) and studied its behavior. The results show the XD-contained paste did not give any demixing when the weight ratio of XD increased to 5-10 % due to the filter-pressing effect during extrusion through the syringe. After immersion in SBF, the microstructure image showed a dense bone-like apatite layer covered on the β-TCP/CS/XD composites. In vitro cell experiments shows that the XD-rich composites promote human dental pulp cells (hDPCs) proliferation and differentiation. However, when the XD quantity in the composite is more than 5 %, the amount of cells and osteogenesis protein of hDPCs were stimulated by XD released from β-TCP/CS composites. The combination of XD in degradation of β-TCP and osteogenesis of CS gives strong reason to believe that these calcium-based composite cements may prove to be promising bone repair materials.

  9. Cytotoxicity of low-shrink composites with new monomer technology on bovine dental pulp-derived cells.

    PubMed

    Yalcin, M; Ahmetoglu, F; Sisman, R; Bozkurt, Bs; Hakki, Ss

    2015-01-01

    The aim of this study was to evaluate the cytotoxicity of four low-shrink composites with new monomer technology on the bovine dental pulp-derived cells (bDPCs). Ten samples were prepared for each group composites, and the samples were immersed in 7 mL of culture medium for 72 h at 37°C to extract residual monomer or cytotoxic substances. The culture medium containing the material extracts was sterile filtered for use on the cell cultures. Materials were incubated in medium with serum for 72 h. bDPCs were maintained in a medium with serum. A real-time cell analyzer was used to evaluate cell survival. After seeding 200 mL of the cell suspensions into the wells (10,000 cells/well) of the E-plate 96, bDPCs were treated with bioactive components released by the composite materials (1:1 and 1:2 dilutions) and monitored every 15 min for 50 h. According to analysis of variance, there were significant differences between the cell indexes of the control and GC kalore (p < 0.05) and Bisco Reflexions (p < 0.001) groups for the 1:1 dilutions at 25 h. When evaluated at 50 h, 1:1 dilutions of GC Kalore (p < 0.01) and Bisco Reflexions (p < 0.001) reduced cell survival significantly. Although composites resins are being advanced, their cytotoxic effects have been proceeding till this time. However, two of the four materials tested significantly reduced cell viability when compared with control. Research should focus on the cytotoxicity of composites in addition to their mechanical properties. © The Author(s) 2014.

  10. EZH2 Impairs Human Dental Pulp Cell Mineralization via the Wnt/β-Catenin Pathway.

    PubMed

    Li, B; Yu, F; Wu, F; Hui, T; A, P; Liao, X; Yin, B; Wang, C; Ye, L

    2018-05-01

    The enhancer of zeste homolog 2 (EZH2) is a catalytic subunit of PRC2 (polycomb repressor complex 2). It mediates gene silencing via methyltransferase activity and is involved in the determination of cell lineage. However, the function of EZH2 and the underlying mechanisms by which it affects the differentiation of human dental pulp cell (hDPC) have remained underexplored. In this research, we found that EZH2 expression decreased during the mineralization of hDPCs, with attenuated H3K27me3 (trimethylation on lysine 27 in histone H3). Overexpression of EZH2 impaired the odontogenic differentiation of hDPCs, while EZH2 without methyltransferase activity mutation (mutation of suppressed variegation of 3 to 9, enhancer of zeste and trithorax domain, EZH2ΔSET) did not display this phenotype. In addition, siRNA knockdown studies showed that EZH2 negatively modulated hDPC differentiation in vitro and inhibited mineralized nodule formation in transplanted β-tricalcium phosphate / hDPC composites. To further investigate the underlying mechanisms, we explored the Wnt/β-catenin signaling pathway in view of the fact that previous research had documented the essential role that it plays during hDPC mineralization, as well as its links to EZH2 in other cells. We demonstrated for the first time that EZH2 depletion activated the Wnt/β-catenin signaling pathway and enhanced the accumulation of β-catenin in hDPCs. Chromatin immunoprecipitation analysis suggested that these effects are attributable to the level of the EZH2-regulated H3K27me3 on the β-catenin promoter. We conclude that EZH2 plays a negative role during the odontogenic differentiation of hDPCs. Suppression of EZH2 could promote hDPC mineralization by epigenetically regulating the expression of β-catenin and activating the Wnt canonical signaling pathway.

  11. Osteogenesis and angiogenesis properties of dental pulp cell on novel injectable tricalcium phosphate cement by silica doped.

    PubMed

    Su, Ying-Fang; Lin, Chi-Chang; Huang, Tsui-Hsien; Chou, Ming-Yung; Yang, Jaw-Ji; Shie, Ming-You

    2014-09-01

    β-Tricalcium phosphate (β-TCP) is an osteoconductive material in clinical. In this study, we have doped silica (Si) into β-TCP and enhanced its bioactive and osteostimulative properties. To check its effectiveness, a series of Si-doped with different ratios were prepared to make new bioactive and biodegradable biocomposites for bone repair. Formation of the diametral tensile strength, ions released and weight loss of cements was considered after immersion. In addition, we also examined the behavior of human dental pulp cells (hDPCs) cultured on Si-doped β-TCP cements. The results showed that setting time and injectability of the Si-doped β-TCP cements were decreased as the Si content was increased. At the end of the immersion point, weight losses of 30.1%, 36.9%, 48.1%, and 55.3% were observed for the cement doping 0%, 10%, 20%, and 30% Si into β-TCP cements, respectively. In vitro cell experiments show that the Si-rich cements promote human dental pulp cell (hDPC) proliferation and differentiation. However, when the Si-doped in the cement is more than 20%, the amount of cells and osteogenesis protein of hDPCs was stimulated by Si released from Si-doped β-TCP cements. The degradation of β-TCP and osteogenesis of Si gives a strong reason to believe that these Si-doped β-TCP cements may prove to be promising bone repair materials. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Endothelial progenitor cells from human dental pulp-derived iPS cells as a therapeutic target for ischemic vascular diseases.

    PubMed

    Yoo, Chae Hwa; Na, Hee-Jun; Lee, Dong-Seol; Heo, Soon Chul; An, Yuri; Cha, Junghwa; Choi, Chulhee; Kim, Jae Ho; Park, Joo-Cheol; Cho, Yee Sook

    2013-11-01

    Human dental pulp cells (hDPCs) are a valuable source for the generation of patient-specific human induced pluripotent stem cells (hiPSCs). An advanced strategy for the safe and efficient reprogramming of hDPCs and subsequent lineage-specific differentiation is a critical step toward clinical application. In present research, we successfully generated hDPC-iPSCs using only two non-oncogenic factors: Oct4 and Sox2 (2F hDPC-hiPSCs) and evaluated the feasibility of hDPC-iPSCs as substrates for endothelial progenitor cells (EPCs), contributing to EPC-based therapies. Under conventional differentiation conditions, 2F hDPC-hiPSCs showed higher differentiation efficiency, compared to hiPSCs from other cell types, into multipotent CD34(+) EPCs (2F-hEPCs) capable to differentiate into functional endothelial and smooth muscle cells. The angiogenic and neovasculogenic activities of 2F-hEPCs were confirmed using a Matrigel plug assay in mice. In addition, the therapeutic effects of 2F-hEPC transplantation were confirmed in mouse models of hind-limb ischemia and myocardial infarction. Importantly, 2F-EPCs effectively integrated into newly formed vascular structures and enhanced neovascularization via likely both direct and indirect paracrine mechanisms. 2F hDPC-hiPSCs have a robust capability for the generation of angiogenic and vasculogenic EPCs, representing a strategy for patient-specific EPC therapies and disease modeling, particularly for ischemic vascular diseases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Amelogenin exons 8 and 9 encoded peptide enhances leucine rich amelogenin peptide mediated dental pulp repair.

    PubMed

    Huang, Yulei; Goldberg, Michel; Le, Thuan; Qiang, Ran; Warner, Douglas; Witkowska, Halina Ewa; Liu, Haichuan; Zhu, Li; Denbesten, Pamela; Li, Wu

    2012-01-01

    Amelogenins containing exons 8 and 9 are alternatively spliced variants of amelogenin. Some amelogenin spliced variants have been found to promote pulp regeneration following pulp exposure. The function of the amelogenin spliced variants with the exons 8 and 9 remains unknown. In this study, we synthesized recombinant leucine rich amelogenin peptide (LRAP, A-4), LRAP plus exons 8 and 9 peptide (LRAP 8, 9) or exons 8 and 9 peptide (P89), to determine their effects on odontoblasts. In vivo analyses were completed following the insertion of agarose beads containing LRAP or LRAP 8, 9 into exposed cavity preparations of rat molars. After 8, 15 or 30 days' exposure, the pulp tissues were analyzed for changes in histomorphometry and cell proliferation by PCNA stainings. In vitro analyses included the effects of the addition of the recombinant proteins or peptide on cell proliferation, differentiation and adhesion of postnatal human dental pulp cells (DPCs). These studies showed that in vivo LRAP 8, 9 enhanced the reparative dentin formation as compared to LRAP. In vitro LRAP 8, 9 promoted DPC proliferation and differentiation to a greater extent than LRAP. These data suggest that amelogenin exons 8 and 9 may be useful in amelogenin-mediated pulp repair. Copyright © 2012 S. Karger AG, Basel.

  14. A New Method to Develop Human Dental Pulp Cells and Platelet-rich Fibrin Complex.

    PubMed

    He, Xuan; Chen, Wen-Xia; Ban, Guifei; Wei, Wei; Zhou, Jun; Chen, Wen-Jin; Li, Xian-Yu

    2016-11-01

    Platelet-rich fibrin (PRF) has been used as a scaffold material in various tissue regeneration studies. In the previous methods to combine seed cells with PRF, the structure of PRF was damaged, and the manipulation time in vitro was also increased. The objective of this in vitro study was to explore an appropriate method to develop a PRF-human dental pulp cell (hDPC) complex to maintain PRF structure integrity and to find out the most efficient part of PRF. The PRF-hDPC complex was developed at 3 different time points during PRF preparation: (1) the before centrifugation (BC) group, the hDPC suspension was added to the venous blood before blood centrifugation; (2) the immediately after centrifugation (IAC) group, the hDPC suspension was added immediately after blood centrifugation; (3) the after centrifugation (AC) group, the hDPC suspension was added 10 minutes after blood centrifugation; and (4) the control group, PRF without hDPC suspension. The prepared PRF-hDPC complexes were cultured for 7 days. The samples were fixed for histologic, immunohistochemistry, and scanning electron microscopic evaluation. Real-time polymerase chain reaction was performed to evaluate messenger RNA expression of alkaline phosphatase and dentin sialophosphoprotein. Enzyme-linked immunosorbent assay quantification for growth factors was performed within the different parts of the PRF. Histologic, immunohistochemistry, and scanning electron microscopic results revealed that hDPCs were only found in the BC group and exhibited favorable proliferation. Real-time polymerase chain reaction revealed that alkaline phosphatase and dentin sialophosphoprotein expression increased in the cultured PRF-hDPC complex. The lower part of the PRF released the maximum quantity of growth factors. Our new method to develop a PRF-hDPCs complex maintained PRF structure integrity. The hDPCs were distributed in the buffy coat, which might be the most efficient part of PRF. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Physical characteristics, antimicrobial and odontogenesis potentials of calcium silicate cement containing hinokitiol.

    PubMed

    Huang, Ming-Hsien; Shen, Yu-Fang; Hsu, Tuan-Ti; Huang, Tsui-Hsien; Shie, Ming-You

    2016-08-01

    Hinokitiol is a natural material and it has antibacterial and anti-inflammatory effects. The purpose of this study was to evaluate the material characterization, cell viability, antibacterial and anti-inflammatory abilities of the hinokitiol-modified calcium silicate (CS) cement as a root end filling material. The setting times, diametral tensile strength (DTS) values and XRD patterns of CS cements with 0-10mM hinokitiol were examined. Then, the antibacterial effect and the expression levels of cyclooxygenase 2 (COX-2) and interleukin-1 (IL-1) of the hinokitiol-modified CS cements were evaluated. Furthermore, the cytocompatibility, the expression levels of the markers of odontoblastic differentiation, mineralized nodule formation and calcium deposition of human dental pulp cells (hDPCs) cultured on hinokitiol-modified CS cements were determined. The hinokitiol-modified CS cements had better antibacterial and anti-inflammatory abilities and cytocompatibility than non-modified CS cements. Otherwise, the hinokitiol-modified CS cements had suitable setting times and better odontoblastic potential of hDPCs. Previous report pointed out that the root-end filling materials may induce inflammatory cytokines reaction. In our study, hinokitiol-modified CS cements not only inhibited the expression level of inflammatory cytokines, but also had better cytocompatibility, antimicrobial properties and active ability of odontoblastic differentiation of hDPCs. Therefore, the hinokitiol-modified CS cement may be a potential root end filling material for clinic. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Biomodulatory effects of laser irradiation on dental pulp cells in vitro

    NASA Astrophysics Data System (ADS)

    Milward, Michael R.; Hadis, Mohammed A.; Cooper, Paul R.; Gorecki, Patricia; Carroll, James D.; Palin, William M.

    2015-03-01

    Low level laser/light therapy (LLLT) or photobiomodulation is a biophysical approach that can be used to reduce pain, inflammation and modulate tissue healing and repair. However, its application has yet to be fully realized for dental disease treatment. The aim of this study was to assess the modulation of dental pulp cell (DPC) responses using two LLLT lasers with wavelengths of 660nm and 810nm. Human DPCs were isolated and cultured in phenol-red-free α- MEM/10%-FCS at 37°C in 5% CO2. Central wells of transparent-based black walled 96-microplates were seeded with DPCs (passages 2-4; 150μL; 25,000 cell/ml). At 24h post-seeding, cultures were irradiated using a Thor Photomedicine LLLT device (THOR Photomedicine, UK) at 660nm (3, 6 or 13s to give 2, 5 and 10J/cm2) or 810nm (for 1, 2 or 5s to deliver 5, 10 and 20J/cm2). Metabolic activity was assessed via a modified MTT assay 24h post-irradiation. Statistical differences were identified using analysis of variance and post-hoc Tukey tests (P=0.05) and compared with nonirradiated controls. Significantly higher MTT activity was obtained for both lasers (P<0.05) using the high and intermediate radiant exposure (5-20J/cm2). The MTT response significantly decreased (P<0.05) at lower radiant exposures with no statistical significance from control (P>0.05). Consequently, enhanced irradiation parameters was apparent for both lasers. These parameters should be further optimised to identify the most effective for therapeutic application.

  17. Comparative evaluation of the isolation and quantification of stem cells derived from dental pulp and periodontal ligament of a permanent tooth and to assess their viability and proliferation on a platelet-rich fibrin scaffold.

    PubMed

    Khurana, Rohit; Kudva, Praveen Bhasker; Husain, Syed Yawer

    2017-01-01

    The present study aims to comparatively evaluate the isolation and quantification of stem cells derived from dental pulp and periodontal ligament of a permanent tooth and to assess their viability and proliferation on a platelet-rich fibrin (PRF) scaffold. A total of 15 systemically healthy individuals between the age group of 15-25 years requiring third molar or orthodontic premolar extractions. Teeth were extracted atraumatically and transported to the laboratory. Stem cells were isolated from dental pulp and periodontal ligament. After attaining more than 90% confluency by the 7 th day, these cells were tested for their viability and characterization. Stem cells were also incubated with PRF and viability was assessed on the 7 th day. The mean number of cell for dental pulp stem cells (DPSCs) and periodontal ligament stem cell (PDLSC) was statistically insignificant ( P > 0.05). The mean live cell viability was compared between DPSC (98.07%) and PDLSC (98%). Both DPSC and PDLSC showed a high percentage of expression of CD73 markers, 30.40% and 29.80%, respectively. However, DPSCs and PDLSCs lacked expression of CD34 expressing only 3.47% and 3.53%, respectively. PRF membrane as a scaffold exhibited no cytotoxic effects on DPCS's or PDLSC's. The cell viability of cells cultured with PRF was statistically insignificant ( P > 0.05) when compared to the cells cultured with culture media. The study thus indicates that dental pulp and periodontal ligament are both rich sources of mesenchymal stem cells and can be successfully used for obtaining stem cells. PRF exhibits no cytotoxic effects on the cells and can be used in conjunction with dental stem cells.

  18. TGF-beta is specifically expressed in human dermal papilla cells and modulates hair folliculogenesis.

    PubMed

    Inoue, Keita; Aoi, Noriyuki; Yamauchi, Yuji; Sato, Takahiro; Suga, Hirotaka; Eto, Hitomi; Kato, Harunosuke; Tabata, Yasuhiko; Yoshimura, Kotaro

    2009-01-01

    Dermal papilla cells (DPCs) in the mammalian hair follicle have been shown to develop hair follicles through epithelial-mesenchymal interactions. A cell therapy to regenerate human hair is theoretically possible by expanding autologous human DPCs (hDPCs) and transplanting them into bald skin, though much remains to be overcome before clinical success. In this study, we compared gene signatures of hDPCs at different passages and human dermal fibroblasts, and found transforming growth factor (TGF)-beta(2) to be highly expressed in cultured hDPCs. Keratinocyte conditioned medium, which is known to help preserve the hair-inducing capacity of hDPCs, up-regulated TGF-beta(2) expression of hDPCs and also enhanced their alkaline phosphatase (ALP) activity, a known index for hair-inductive capacity. Through screening of components secreted from keratinocytes, the vitamin D(3) analogue was found to promote TGF-beta(2) expression and ALP activity of hDPCs. In animal hair folliculogenesis models using rat epidermis and expanded hDPCs, inhibition of TGF-beta(2) signalling at the ligand or receptor level significantly impaired hair folliculogenesis and maturation. These results suggest an important role for TGF-beta(2) in hair follicle morphogenesis and provide insights into the establishment of future cell therapies for hair regrowth by transplanting expanded DPCs.

  19. Comparative evaluation of the isolation and quantification of stem cells derived from dental pulp and periodontal ligament of a permanent tooth and to assess their viability and proliferation on a platelet-rich fibrin scaffold

    PubMed Central

    Khurana, Rohit; Kudva, Praveen Bhasker; Husain, Syed Yawer

    2017-01-01

    Background: The present study aims to comparatively evaluate the isolation and quantification of stem cells derived from dental pulp and periodontal ligament of a permanent tooth and to assess their viability and proliferation on a platelet-rich fibrin (PRF) scaffold. Materials and Methods: A total of 15 systemically healthy individuals between the age group of 15–25 years requiring third molar or orthodontic premolar extractions. Teeth were extracted atraumatically and transported to the laboratory. Stem cells were isolated from dental pulp and periodontal ligament. After attaining more than 90% confluency by the 7th day, these cells were tested for their viability and characterization. Stem cells were also incubated with PRF and viability was assessed on the 7th day. Results: The mean number of cell for dental pulp stem cells (DPSCs) and periodontal ligament stem cell (PDLSC) was statistically insignificant (P > 0.05). The mean live cell viability was compared between DPSC (98.07%) and PDLSC (98%). Both DPSC and PDLSC showed a high percentage of expression of CD73 markers, 30.40% and 29.80%, respectively. However, DPSCs and PDLSCs lacked expression of CD34 expressing only 3.47% and 3.53%, respectively. PRF membrane as a scaffold exhibited no cytotoxic effects on DPCS's or PDLSC's. The cell viability of cells cultured with PRF was statistically insignificant (P > 0.05) when compared to the cells cultured with culture media. Conclusion: The study thus indicates that dental pulp and periodontal ligament are both rich sources of mesenchymal stem cells and can be successfully used for obtaining stem cells. PRF exhibits no cytotoxic effects on the cells and can be used in conjunction with dental stem cells. PMID:29386795

  20. Different patterns of 5{alpha}-reductase expression, cellular distribution, and testosterone metabolism in human follicular dermal papilla cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shicheng; Yamauchi, Hitoshi

    Androgens regulate hair growth, and 5{alpha}-reductase (5{alpha}R) plays a pivotal role in the action of androgens on target organs. To clarify the molecular mechanisms responsible for controlling hair growth, the present study presents evidence that the human follicular dermal papilla cells (DPCs) from either beard (bDPCs) or scalp hair (sDPCs) possess endogenous 5{alpha}R activity. Real-time RT-PCR revealed that the highest level of 5{alpha}R1 mRNA was found in bDPCs, followed by sDPCs, and a low but detectable level of 5{alpha}R1 mRNA was observed in fibroblasts. Minimally detectable levels of 5{alpha}R2 mRNA were found in all three cell types. A weak bandmore » at 26 kDa corresponding to the human 5{alpha}R1 protein was detected by Western blot in both DPCs, but not in fibroblasts. Immuonofluorescence analysis confirmed that 5{alpha}R1 was localized to the cytoplasm rather than in the nuclei in both DPCs Furthermore, a 5{alpha}R assay using [{sup 14}C]testosterone labeling in intact cells revealed that testosterone was transformed primarily into androstenedione, and in small amounts, into DHT. Our results demonstrate that the 5{alpha}R activities of either bDPCs or sDPCs are stronger than that of dermal fibroblasts, despite the fact that the major steroidogenic activity is attributed to 17{beta}-HSD rather than 5{alpha}R among the three cell types. The 5{alpha}R1 inhibitor MK386 exhibited a more potent inhibitory effect on 5{alpha}R activity than finasteride (5{alpha}R2 inhibitor) in bDPCs.« less

  1. Detection of DNA–protein crosslinks (DPCs) by novel direct fluorescence labeling methods: distinct stabilities of aldehyde and radiation-induced DPCs

    PubMed Central

    Shoulkamy, Mahmoud I.; Nakano, Toshiaki; Ohshima, Makiko; Hirayama, Ryoichi; Uzawa, Akiko; Furusawa, Yoshiya; Ide, Hiroshi

    2012-01-01

    Proteins are covalently trapped on DNA to form DNA–protein crosslinks (DPCs) when cells are exposed to DNA-damaging agents. DPCs interfere with many aspects of DNA transactions. The current DPC detection methods indirectly measure crosslinked proteins (CLPs) through DNA tethered to proteins. However, a major drawback of such methods is the non-linear relationship between the amounts of DNA and CLPs, which makes quantitative data interpretation difficult. Here we developed novel methods of DPC detection based on direct CLP measurement, whereby CLPs in DNA isolated from cells are labeled with fluorescein isothiocyanate (FITC) and quantified by fluorometry or western blotting using anti-FITC antibodies. Both formats successfully monitored the induction and elimination of DPCs in cultured cells exposed to aldehydes and mouse tumors exposed to ionizing radiation (carbon-ion beams). The fluorometric and western blotting formats require 30 and 0.3 μg of DNA, respectively. Analyses of the isolated genomic DPCs revealed that both aldehydes and ionizing radiation produce two types of DPC with distinct stabilities. The stable components of aldehyde-induced DPCs have half-lives of up to days. Interestingly, that of radiation-induced DPCs has an infinite half-life, suggesting that the stable DPC component exerts a profound effect on DNA transactions over many cell cycles. PMID:22730301

  2. 1α,25-dihydroxyvitamin D3 modulates the hair-inductive capacity of dermal papilla cells: therapeutic potential for hair regeneration.

    PubMed

    Aoi, Noriyuki; Inoue, Keita; Chikanishi, Toshihiro; Fujiki, Ryoji; Yamamoto, Hanako; Kato, Harunosuke; Eto, Hitomi; Doi, Kentaro; Itami, Satoshi; Kato, Shigeaki; Yoshimura, Kotaro

    2012-08-01

    Dermal papilla cells (DPCs) have the potential to induce differentiation of epithelial stem cells into hair, and Wnt signaling is deeply involved in the initiation process. The functional limitation of expanded adult DPCs has been a difficult challenge for cell-based hair regrowth therapy. We previously reported that 1α,25-dihydroxyvitamin D(3) (VD(3)) upregulates expression of transforming growth factor (TGF)-β2 and alkaline phosphatase (ALP) activity, both features of hair-inducing human DPCs (hDPCs). In this study, we further examined the effects and signaling pathways associated with VD(3) actions on DPCs. VD(3) suppressed hDPC proliferation in a dose-dependent, noncytotoxic manner. Among the Wnt-related genes investigated, Wnt10b expression was significantly upregulated by VD(3) in hDPCs. Wnt10b upregulation, as well as upregulation of ALPL (ALP, liver/bone/kidney) and TGF-β2, by VD(3) was specific in hDPCs and not detected in human dermal fibroblasts. Screening of paracrine or endocrine factors in the skin indicated that all-trans retinoic acid (atRA) upregulated Wnt10b gene expression, although synergistic upregulation (combined atRA and VD(3)) was not seen. RNA interference with vitamin D receptor (VDR) revealed that VD(3) upregulation of Wnt10b, ALPL, and TGF-β2 was mediated through the genomic VDR pathway. In a rat model of de novo hair regeneration by murine DPC transplantation, pretreatment with VD(3) significantly enhanced hair folliculogenesis. Specifically, a greater number of outgrowing hair shafts and higher maturation of regenerated follicles were observed. Together, these data suggest that VD(3) may promote functional differentiation of DPCs and be useful in preserving the hair follicle-inductive capacity of cultured DPCs for hair regeneration therapies.

  3. Radiation-induced DNA-protein cross-links: Mechanisms and biological significance.

    PubMed

    Nakano, Toshiaki; Xu, Xu; Salem, Amir M H; Shoulkamy, Mahmoud I; Ide, Hiroshi

    2017-06-01

    Ionizing radiation produces various DNA lesions such as base damage, DNA single-strand breaks (SSBs), DNA double-strand breaks (DSBs), and DNA-protein cross-links (DPCs). Of these, the biological significance of DPCs remains elusive. In this article, we focus on radiation-induced DPCs and review the current understanding of their induction, properties, repair, and biological consequences. When cells are irradiated, the formation of base damage, SSBs, and DSBs are promoted in the presence of oxygen. Conversely, that of DPCs is promoted in the absence of oxygen, suggesting their importance in hypoxic cells, such as those present in tumors. DNA and protein radicals generated by hydroxyl radicals (i.e., indirect effect) are responsible for DPC formation. In addition, DPCs can also be formed from guanine radical cations generated by the direct effect. Actin, histones, and other proteins have been identified as cross-linked proteins. Also, covalent linkages between DNA and protein constituents such as thymine-lysine and guanine-lysine have been identified and their structures are proposed. In irradiated cells and tissues, DPCs are repaired in a biphasic manner, consisting of fast and slow components. The half-time for the fast component is 20min-2h and that for the slow component is 2-70h. Notably, radiation-induced DPCs are repaired more slowly than DSBs. Homologous recombination plays a pivotal role in the repair of radiation-induced DPCs as well as DSBs. Recently, a novel mechanism of DPC repair mediated by a DPC protease was reported, wherein the resulting DNA-peptide cross-links were bypassed by translesion synthesis. The replication and transcription of DPC-bearing reporter plasmids are inhibited in cells, suggesting that DPCs are potentially lethal lesions. However, whether DPCs are mutagenic and induce gross chromosomal alterations remains to be determined. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Histone deacetylase inhibitors epigenetically promote reparative events in primary dental pulp cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, Henry F., E-mail: Hal.Duncan@dental.tcd.ie; Smith, Anthony J.; Fleming, Garry J.P.

    Application of histone deacetylase inhibitors (HDACi) to cells epigenetically alters their chromatin structure and induces transcriptional and cellular reparative events. This study investigated the application of two HDACi, valproic acid (VPA) and trichostatin A (TSA) on the induction of repair-associated responses in primary dental pulp cell (DPC) cultures. Flow cytometry demonstrated that TSA (100 nM, 400 nM) significantly increased cell viability. Neither HDACi was cytotoxic, although cell growth analysis revealed significant anti-proliferative effects at higher concentrations for VPA (>0.5 mM) and TSA (>50 nM). While high-content-analysis demonstrated that HDACi did not significantly induce caspase-3 or p21 activity, p53-expression was increasedmore » by VPA (3 mM, 5 mM) at 48 h. HDACi-exposure induced mineralization per cell dose-dependently to a plateau level (VPA-0.125 mM and TSA-25 nM) with accompanying increases in mineralization/dentinogenic-associated gene expression at 5 days (DMP-1, BMP-2/-4, Nestin) and 10 days (DSPP, BMP-2/-4). Both HDACis, at a range of concentrations, significantly stimulated osteopontin and BMP-2 protein expression at 10 and 14 days further supporting the ability of HDACi to promote differentiation. HDACi exert different effects on primary compared with transformed DPCs and promote mineralization and differentiation events without cytotoxic effects. These novel data now highlight the potential in restorative dentistry for applying low concentrations of HDACi in vital pulp treatment. -- Highlights: • Valproic acid and trichostatin A promoted mineralization in primary pulp cells. • Cell viability, apoptosis, caspase-3, p21 unaltered; p53 increased by valproic acid. • Trichostatin A increased cell viability at 24 h at selected concentrations. • Altered cell toxicity and differentiation between primary and transformed cells. • HDACi-induced the differentiation marker proteins osteopontin and BMP-2.« less

  5. 1α,25-Dihydroxyvitamin D3 Modulates the Hair-Inductive Capacity of Dermal Papilla Cells: Therapeutic Potential for Hair Regeneration

    PubMed Central

    Aoi, Noriyuki; Inoue, Keita; Chikanishi, Toshihiro; Fujiki, Ryoji; Yamamoto, Hanako; Kato, Harunosuke; Eto, Hitomi; Doi, Kentaro; Itami, Satoshi; Kato, Shigeaki

    2012-01-01

    Dermal papilla cells (DPCs) have the potential to induce differentiation of epithelial stem cells into hair, and Wnt signaling is deeply involved in the initiation process. The functional limitation of expanded adult DPCs has been a difficult challenge for cell-based hair regrowth therapy. We previously reported that 1α,25-dihydroxyvitamin D3 (VD3) upregulates expression of transforming growth factor (TGF)-β2 and alkaline phosphatase (ALP) activity, both features of hair-inducing human DPCs (hDPCs). In this study, we further examined the effects and signaling pathways associated with VD3 actions on DPCs. VD3 suppressed hDPC proliferation in a dose-dependent, noncytotoxic manner. Among the Wnt-related genes investigated, Wnt10b expression was significantly upregulated by VD3 in hDPCs. Wnt10b upregulation, as well as upregulation of ALPL (ALP, liver/bone/kidney) and TGF-β2, by VD3 was specific in hDPCs and not detected in human dermal fibroblasts. Screening of paracrine or endocrine factors in the skin indicated that all-trans retinoic acid (atRA) upregulated Wnt10b gene expression, although synergistic upregulation (combined atRA and VD3) was not seen. RNA interference with vitamin D receptor (VDR) revealed that VD3 upregulation of Wnt10b, ALPL, and TGF-β2 was mediated through the genomic VDR pathway. In a rat model of de novo hair regeneration by murine DPC transplantation, pretreatment with VD3 significantly enhanced hair folliculogenesis. Specifically, a greater number of outgrowing hair shafts and higher maturation of regenerated follicles were observed. Together, these data suggest that VD3 may promote functional differentiation of DPCs and be useful in preserving the hair follicle-inductive capacity of cultured DPCs for hair regeneration therapies. PMID:23197867

  6. Dermal Papilla Cells Improve the Wound Healing Process and Generate Hair Bud-Like Structures in Grafted Skin Substitutes Using Hair Follicle Stem Cells

    PubMed Central

    Leirós, Gustavo José; Kusinsky, Ana Gabriela; Drago, Hugo; Bossi, Silvia; Sturla, Flavio; Castellanos, María Lía; Stella, Inés Yolanda

    2014-01-01

    Tissue-engineered skin represents a useful strategy for the treatment of deep skin injuries and might contribute to the understanding of skin regeneration. The use of dermal papilla cells (DPCs) as a dermal component in a permanent composite skin with human hair follicle stem cells (HFSCs) was evaluated by studying the tissue-engineered skin architecture, stem cell persistence, hair regeneration, and graft-take in nude mice. A porcine acellular dermal matrix was seeded with HFSCs alone and with HFSCs plus human DPCs or dermal fibroblasts (DFs). In vitro, the presence of DPCs induced a more regular and multilayered stratified epidermis with more basal p63-positive cells and invaginations. The DPC-containing constructs more accurately mimicked the skin architecture by properly stratifying the differentiating HFSCs and developing a well-ordered epithelia that contributed to more closely recapitulate an artificial human skin. This acellular dermal matrix previously repopulated in vitro with HFSCs and DFs or DPCs as the dermal component was grafted in nude mice. The presence of DPCs in the composite substitute not only favored early neovascularization, good assimilation and remodeling after grafting but also contributed to the neovascular network maturation, which might reduce the inflammation process, resulting in a better healing process, with less scarring and wound contraction. Interestingly, only DPC-containing constructs showed embryonic hair bud-like structures with cells of human origin, presence of precursor epithelial cells, and expression of a hair differentiation marker. Although preliminary, these findings have demonstrated the importance of the presence of DPCs for proper skin repair. PMID:25161315

  7. 7-Phloroeckol promotes hair growth on human follicles in vitro.

    PubMed

    Bak, Soon-Sun; Sung, Young Kwan; Kim, Se-Kwon

    2014-08-01

    7-Phloroeckol, phloroglucinol derivative isolated from marine brown algae, has anti-oxidative, anti-inflammatory responses and MMP inhibitory activities. In this study, we evaluated the hair growth-promoting effects of 7-phloroeckol in human hair follicles. To investigate cell viability of human dermal papilla cells (DPCs) and outer root sheath (ORS) cells in the presence or absence of 7-phloroeckol treatment, MTT assay was employed. Moreover, gene expression and protein concentration of insulin-like growth factor (IGF)-1 was measured by reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. 7-Phloroeckol induced an increase in proliferation of DPCs and ORS cells. In addition, hair shaft growth was measured using the hair-follicle organ culture system. 7-Phloroeckol resulted in elongation of the hair shaft in cultured human hair follicles. 7-Phloroeckol induced an IGF-1 mRNA expression and protein concentration in DPCs and conditioned media, respectively. These results suggest that 7-phloroeckol promotes hair growth through stimulation of DPCs and ORS cells.

  8. The HOX genes are expressed, in vivo, in human tooth germs: in vitro cAMP exposure of dental pulp cells results in parallel HOX network activation and neuronal differentiation.

    PubMed

    D'Antò, Vincenzo; Cantile, Monica; D'Armiento, Maria; Schiavo, Giulia; Spagnuolo, Gianrico; Terracciano, Luigi; Vecchione, Raffaela; Cillo, Clemente

    2006-03-01

    Homeobox-containing genes play a crucial role in odontogenesis. After the detection of Dlx and Msx genes in overlapping domains along maxillary and mandibular processes, a homeobox odontogenic code has been proposed to explain the interaction between different homeobox genes during dental lamina patterning. No role has so far been assigned to the Hox gene network in the homeobox odontogenic code due to studies on specific Hox genes and evolutionary considerations. Despite its involvement in early patterning during embryonal development, the HOX gene network, the most repeat-poor regions of the human genome, controls the phenotype identity of adult eukaryotic cells. Here, according to our results, the HOX gene network appears to be active in human tooth germs between 18 and 24 weeks of development. The immunohistochemical localization of specific HOX proteins mostly concerns the epithelial tooth germ compartment. Furthermore, only a few genes of the network are active in embryonal retromolar tissues, as well as in ectomesenchymal dental pulp cells (DPC) grown in vitro from adult human molar. Exposure of DPCs to cAMP induces the expression of from three to nine total HOX genes of the network in parallel with phenotype modifications with traits of neuronal differentiation. Our observations suggest that: (i) by combining its component genes, the HOX gene network determines the phenotype identity of epithelial and ectomesenchymal cells interacting in the generation of human tooth germ; (ii) cAMP treatment activates the HOX network and induces, in parallel, a neuronal-like phenotype in human primary ectomesenchymal dental pulp cells. 2005 Wiley-Liss, Inc.

  9. Periodontal regeneration with nano-hyroxyapatite-coated silk scaffolds in dogs

    PubMed Central

    Yang, Cheryl; Lee, Jung-Seok; Jung, Ui-Won; Seo, Young-Kwon; Park, Jung-Keug

    2013-01-01

    Purpose In this study, we investigated the effect of silk scaffolds on one-wall periodontal intrabony defects. We conjugated nano-hydroxyapatite (nHA) onto a silk scaffold and then seeded periodontal ligament cells (PDLCs) or dental pulp cells (DPCs) onto the scaffold. Methods Five dogs were used in this study. Bilateral 4 mm×2 mm (depth×mesiodistal width), one-wall intrabony periodontal defects were surgically created on the distal side of the mandibular second premolar and the mesial side of the mandibular fourth premolar. In each dog, four of the defects were separately and randomly assigned to the following groups: the PDLC-cultured scaffold transplantation group (PDLC group), the DPC-cultured scaffold transplantation group (DPC group), the normal saline-soaked scaffold transplantation group, and the control group. The animals were euthanized following an 8-week healing interval for clinical, scanning electron microscopy (SEM), and histologic evaluations. Results There was no sign of inflammation or other clinical signs of postoperative complications. The examination of cell-seeded constructs by SEM provided visual confirmation of the favorable characteristics of nHA-coated silk scaffolds for tissue engineering. The scaffolds exhibited a firm connective porous structure in cross section, and after PDLCs and DPCs were seeded onto the scaffolds and cultured for 3 weeks, the attachment of well-spread cells and the formation of extracellular matrix (ECM) were observed. The histologic analysis revealed that a well-maintained grafted volume was present at all experimental sites for 8 weeks. Small amounts of inflammatory cells were seen within the scaffolds. The PDLC and DPC groups did not have remarkably different histologic appearances. Conclusions These observations indicate that nHA-coated silk scaffolds can be considered to be potentially useful biomaterials for periodontal regeneration. PMID:24455445

  10. Identification of mammalian proteins cross-linked to DNA by ionizing radiation.

    PubMed

    Barker, Sharon; Weinfeld, Michael; Zheng, Jing; Li, Liang; Murray, David

    2005-10-07

    Ionizing radiation (IR) is an important environmental risk factor for various cancers and also a major therapeutic agent for cancer treatment. Exposure of mammalian cells to IR induces several types of damage to DNA, including double- and single-strand breaks, base and sugar damage, as well as DNA-DNA and DNA-protein cross-links (DPCs). Little is known regarding the biological consequences of DPCs. Identifying the proteins that become cross-linked to DNA by IR would be an important first step in this regard. We have therefore undertaken a proteomics study to isolate and identify proteins involved in IR-induced DPCs. DPCs were induced in AA8 Chinese hamster ovary or GM00637 human fibroblast cells using 0-4 gray of gamma-rays under either aerated or hypoxic conditions. DPCs were isolated using a recently developed method, and proteins were identified by mass spectrometry. We identified 29 proteins as being cross-linked to DNA by IR under aerated and/or hypoxic conditions. The identified proteins include structural proteins, actin-associated proteins, transcription regulators, RNA-splicing components, stress-response proteins, cell cycle regulatory proteins, and GDP/GTP-binding proteins. The involvement of several proteins (actin, histone H2B, and others) in DPCs was confirmed by using Western blot analysis. The dose responsiveness of DPC induction was examined by staining one-dimensional SDS-polyacrylamide gels with SYPRO Tangerine followed by analysis using fluorescence imaging. Quantitation of the fluorescence signal indicated no significant difference in total yields of IR-induced DPCs generated under aerated or hypoxic conditions, although differences were observed for several individual protein bands.

  11. 11β-Hydroxysteroid Dehydrogenase Type 1 Inhibition Attenuates the Adverse Effects of Glucocorticoids on Dermal Papilla Cells.

    PubMed

    Lee, Sang Eun; Lee, Eun Young; Kang, Sang Jin; Lee, Seung Hun

    2017-11-01

    Glucocorticoids, stress-related hormones, inhibit hair growth. Intracellular glucocorticoid availability is regulated by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). 11β-HSD1 was recently detected in keratinocytes and fibroblasts. However, the expression of 11β-HSD1 in human hair follicles remains unknown. We aimed to examine 11β-HSD1 expression in human dermal papilla cells (DPCs) and to investigate whether modulation of 11β-HSD1 activity can regulate the negative effects of glucocorticoids on DPCs. 11β-HSD1 expression in normal human scalp skin was examined by immunohistochemistry. 11β-HSD1 protein was detected in Western blots of human DPCs. Cultured human DPCs were treated with cortisol with or without a selective 11β-HSD1 inhibitor and subsequently stained for Ki-67 antibody. Expression levels of 11β-HSD1, Wnt5a, alkaline phosphatase (ALP), and vascular endothelial growth factor (VEGF) were analyzed by Western blotting. 11β-HSD1 was detected in dermal papilla in human scalp skin by immunohistochemistry. Human DPCs expressed 11β-HSD1 protein in vitro. Furthermore, cortisol stimulated the expression of 11β-HSD1 in DPCs. Glucocorticoids decreased cellular proliferation and the expression of Wnt5a, ALP, and VEGF in DPCs. A specific 11β-HSD1 inhibitor significantly attenuated the anti-proliferative effects of cortisol and reversed the cortisol-induced suppression of Wnt5a, ALP, and VEGF expression in DPCs. Our data demonstrated the expression of 11β-HSD1 in human DPCs and revealed that inhibition of 11β-HSD1 activity can partially prevent the negative effect of glucocorticoids on DPCs, suggesting the possible application of 11β-HSD1 inhibitors for stress-related hair loss. © Copyright: Yonsei University College of Medicine 2017

  12. Ecklonia cava promotes hair growth.

    PubMed

    Bak, S S; Ahn, B N; Kim, J A; Shin, S H; Kim, J C; Kim, M K; Sung, Y K; Kim, S K

    2013-12-01

    Previous studies have reported the protective effects on skin elasticity of the edible marine seaweed Ecklonia cava, which acts through regulation of both antioxidative and anti-inflammatory responses. We evaluated the effect of E. cava and one of its components, dioxinodehydroeckol, on hair-shaft growth in cultured human hair follicles and on hair growth in mice. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to check cell viability of human dermal papilla cells (DPCs) and outer root sheath (ORS) cells after treatment with E. cava and its metabolite, dioxinodehydroeckol. Hair-shaft growth was measured using the in vitro hair-follicle organ-culture system, in the presence or absence of E. cava and dioxinodehydroeckol. Anagen induction activity was examined by topical application of E. cava to the dorsal skin of C57BL/6 mice. Insulin-like growth factor (IGF)-1 expression was measured by reverse transcriptase PCR and ELISA. The proliferation activity was found to be highest for the ethyl acetate-soluble fraction of E. cava (EAFE) in DPCs and in ORS cells. Treatment with EAFE resulted in elongation of the hair shaft in cultured human hair follicles, and promoted transition of the hair cycle from the telogen to the anagen phase in the dorsal skin of C57BL/6 mice. In addition, EAFE induced an increase in IGF-1 expression in DPCs. Dioxinodehydroeckol, a component of E. cava, induced elongation of the hair shaft, an increase in proliferation of DPCs and ORS cells, and an increase in expression of IGF-1 in DPCs. These results suggest that E. cava containing dioxinodehydroeckol promotes hair growth through stimulation of DPCs and ORS cells. © 2013 British Association of Dermatologists.

  13. Malva verticillata seed extracts upregulate the Wnt pathway in human dermal papilla cells.

    PubMed

    Lee, E Y; Choi, E-J; Kim, J A; Hwang, Y L; Kim, C-D; Lee, M H; Roh, S S; Kim, Y H; Han, I; Kang, S

    2016-04-01

    Mesenchymal-epithelial interactions are important in controlling hair growth and the hair cycle. The β-catenin pathway of dermal papilla cells (DPCs) plays a pivotal role in morphogenesis and normal regeneration of hair follicles. Deletion of β-catenin in the dermal papilla reduces proliferation of the hair follicle progenitor cells that generate the hair shaft and induces an early onset of the catagen phase. In this study, a modulator of the Wnt/β-catenin activity was studied in oriental herb extracts on cultured human DPCs. The effect of Malva verticillata (M. verticillata) seeds on human DPCs was investigated by a Wnt/β-catenin reporter activity assay system (β-catenin-TCF/LEF reporter gene) and cell proliferation analysis. The synthesis of the factors related to hair growth and cycling was measured at both the mRNA and the protein level by semi-quantitative PCR and Western blot analysis, respectively. An extract from M. verticillata seeds increased Wnt reporter activity in a concentration-dependent manner and also led to increased β-catenin levels in cultured human DPCs. Myristoleic acid, identified as an effective compound of M. verticillata seeds, stimulated the proliferation of DPCs in a dose-dependent manner and increased transcription levels of the downstream targets: IGF-1, KGF, VEGF and HGF. Myristoleic acid also enhanced the phosphorylation of MAPKs (Akt and p38). Overall, the data suggest that this extract of M. verticillata seeds could be a good candidate for treating hair loss by modulating the Wnt/β-catenin pathway in DPCs. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  14. iTRAQ-Based Quantitative Proteomic Comparison of Early- and Late-Passage Human Dermal Papilla Cell Secretome in Relation to Inducing Hair Follicle Regeneration.

    PubMed

    Zhang, Huan; Zhu, Ning-Xia; Huang, Keng; Cai, Bo-Zhi; Zeng, Yang; Xu, Yan-Ming; Liu, Yang; Yuan, Yan-Ping; Lin, Chang-Min

    2016-01-01

    Alopecia is an exceedingly prevalent problem that lacks effective therapy. Recently, research has focused on early-passage dermal papilla cells (DPCs), which have hair inducing activity both in vivo and in vitro. Our previous study indicated that factors secreted from early-passage DPCs contribute to hair follicle (HF) regeneration. To identify which factors are responsible for HF regeneration and why late-passage DPCs lose this potential, we collected 48-h-culture medium (CM) from both of passage 3 and 9 DPCs, and subcutaneously injected the DPC-CM into NU/NU mice. Passage 3 DPC-CM induced HF regeneration, based on the emergence of a white hair coat, but passage 9 DPC-CM did not. In order to identify the key factors responsible for hair induction, CM from passage 3 and 9 DPCs was analyzed by iTRAQ-based quantitative proteomic technology. We identified 1360 proteins, of which 213 proteins were differentially expressed between CM from early-passage vs. late-passage DPCs, including SDF1, MMP3, biglycan and LTBP1. Further analysis indicated that the differentially-expressed proteins regulated the Wnt, TGF-β and BMP signaling pathways, which directly and indirectly participate in HF morphogenesis and regeneration. Subsequently, we selected 19 proteins for further verification by multiple reaction monitoring (MRM) between the two types of CM. These results indicate DPC-secreted proteins play important roles in HF regeneration, with SDF1, MMP3, biglycan, and LTBP1 being potential key inductive factors secreted by dermal papilla cells in the regeneration of hair follicles.

  15. The impact of FANCD2 deficiency on formaldehyde-induced toxicity in human lymphoblastoid cell lines

    PubMed Central

    Ren, Xuefeng; Ji, Zhiying; McHale, Cliona M.; Yuh, Jessica; Bersonda, Jessica; Tang, Maycky; Smith, Martyn T.; Zhang, Luoping

    2015-01-01

    Formaldehyde (FA), a major industrial chemical and ubiquitous environmental pollutant, has recently been classified by the International Agency for Research on Cancer as a human leukemogen. The major mode of action of FA is thought to be the formation of DNA-protein crosslinks (DPCs). Repair of DPCs may be mediated by the Fanconi anemia pathway; however, data supporting the involvement of this pathway is limited, particularly in human hematopoietic cells. Therefore, we assessed the role of FANCD2, a critical component of the Fanconi anemia pathway, in FA-induced toxicity in human lymphoblast cell models of FANCD2-deficiency (PD20 cells) and FANCD2-sufficiency (PD20-D2 cells). After treatment of the cells with 0-150 μM FA for 24 hours, DPCs were increased in a dose-dependent manner in both cell lines, with greater increases in FANCD2-deficient PD20 cells. FA also induced cytotoxicity, micronuclei, chromosome aberrations, and apoptosis in a dose-dependent manner in both cell lines, with greater increases in cytotoxicity and apoptosis in PD20 cells. Increased levels of γ-ATR and γ-H2AX in both cell lines suggested the recognition of FA-induced DNA damage; however, the induction of BRCA2 was compromised in FANCD2-deficient PD20 cells, potentially reducing the capacity to repair DPCs. Together, these findings suggest that FANCD2 protein and the Fanconi anemia pathway are essential to protect human lymphoblastoid cells against FA toxicity. Future studies are needed to delineate the role of this pathway in mitigating FA-induced toxicity, particularly in hematopoietic stem cells, the target cells in leukemia. PMID:22872141

  16. Role of Arachidonic Acid in Promoting Hair Growth

    PubMed Central

    Munkhbayar, Semchin; Jang, Sunhyae; Cho, A-Ri; Choi, Soon-Jin; Shin, Chang Yup; Eun, Hee Chul; Kim, Kyu Han

    2016-01-01

    Background Arachidonic acid (AA) is an omega-6 polyunsaturated fatty acid present in all mammalian cell membranes, and involved in the regulation of many cellular processes, including cell survival, angiogenesis, and mitogenesis. The dermal papilla, composed of specialized fibroblasts located in the bulb of the hair follicle, contributes to the control of hair growth and the hair cycle. Objective This study investigated the effect of AA on hair growth by using in vivo and in vitro models. Methods The effect of AA on human dermal papilla cells (hDPCs) and hair shaft elongation was evaluated by MTT assay and hair follicle organ culture, respectively. The expression of various growth and survival factors in hDPCs were investigated by western blot or immunohistochemistry. The ability of AA to induce and prolong anagen phase in C57BL/6 mice was analyzed. Results AA was found to enhance the viability of hDPCs and promote the expression of several factors responsible for hair growth, including fibroblast growth factor-7 (FGF-7) and FGF-10. Western blotting identified the role of AA in the phosphorylation of various transcription factors (ERK, CREB, and AKT) and increased expression of Bcl-2 in hDPCs. In addition, AA significantly promoted hair shaft elongation, with increased proliferation of matrix keratinocytes, during ex vivo hair follicle culture. It was also found to promote hair growth by induction and prolongation of anagen phase in telogen-stage C57BL/6 mice. Conclusion This study concludes that AA plays a role in promoting hair growth by increasing the expression of growth factors in hDPCs and enhancing follicle proliferation and survival. PMID:26848219

  17. Combination of herbal extracts and platelet-rich plasma induced dermal papilla cell proliferation: involvement of ERK and Akt pathways.

    PubMed

    Rastegar, Hosein; Ahmadi Ashtiani, Hamidreza; Aghaei, Mahmoud; Ehsani, Amirohushang; Barikbin, Behrooz

    2013-06-01

    Recently, platelet-rich plasma (PRP) has attracted attention in various medical fields, including plastic surgery, treatment for problematic wounds, and dermatology. Specifically, PRP has been tested during hair transplantation to reduce swelling and pain and to increase hair density. We examined the effects of PRP and herbal extracts combination in order to identify potential stimulants of hair growth. PRP was prepared using the double-spin method and applied to dermal papilla cells (DPCs). MTT viability test and BrdU cell proliferation assay were used to study the effect of herbal extracts and PRP on proliferation of DPCs. To understand the mechanisms of herbal extracts and PRP involved in the regulation of hair growth, we evaluated signaling pathways and measured the expressions of ERK and Akt, by Western blot. Combination of herbal extracts and PRP was found to induce significant proliferation of human DPCs at concentrations ranging from 1.5% to 4.5%. The present study shows that herbal extracts and PRP affect the expressions of extracellular signal-regulated kinase (ERK) and Akt in DPCs. In this study, we have shown that combination of herbal extracts and PRP plays an active role in promoting the proliferation of human dermal papilla (DP) cells via the regulation of ERK and Akt proteins, and this may be applicable to the future development of herbal extracts and PRP combination therapeutics to enhance hair growth. © 2013 Wiley Periodicals, Inc.

  18. Inhibition of Ape1 Redox Activity Promotes Odonto/osteogenic Differentiation of Dental Papilla Cells.

    PubMed

    Chen, Tian; Liu, Zhi; Sun, Wenhua; Li, Jingyu; Liang, Yan; Yang, Xianrui; Xu, Yang; Yu, Mei; Tian, Weidong; Chen, Guoqing; Bai, Ding

    2015-12-07

    Dentinogenesis is the formation of dentin, a substance that forms the majority of teeth, and this process is performed by odontoblasts. Dental papilla cells (DPCs), as the progenitor cells of odontoblasts, undergo the odontogenic differentiation regulated by multiple cytokines and paracrine signal molecules. Ape1 is a perfect paradigm of the function complexity of a biological macromolecule with two major functional regions for DNA repair and redox regulation, respectively. To date, it remains unclear whether Ape1 can regulate the dentinogenesis in DPCs. In the present study, we firstly examed the spatio-temporal expression of Ape1 during tooth germ developmental process, and found the Ape1 expression was initially high and then gradually reduced along with the tooth development. Secondly, the osteo/odontogenic differentiation capacity of DPCs was up-regulated when treated with either Ape1-shRNA or E3330 (a specific inhibitor of the Ape1 redox function), respectively. Moreover, we found that the canonical Wnt signaling pathway was activated in this process, and E3330 reinforced-osteo/odontogenic differentiation capacity was suppressed by Dickkopf1 (DKK1), a potent antagonist of canonical Wnt signaling pathway. Taken together, we for the first time showed that inhibition of Ape1 redox regulation could promote the osteo/odontogenic differentiation capacity of DPCs via canonical Wnt signaling pathway.

  19. Preventable effect of L-threonate, an ascorbate metabolite, on androgen-driven balding via repression of dihydrotestosterone-induced dickkopf-1 expression in human hair dermal papilla cells.

    PubMed

    Kwack, Mi Hee; Ahn, Ji Sup; Kim, Moon Kyu; Kim, Jung Chul; Sung, Young Kwan

    2010-10-01

    In a previous study, we recently claimed that dihydrotestosterone (DHT)-inducible dickkopf-1 (DKK-1) expression is one of the key factors involved in androgen-potentiated balding. We also demonstrated that L-ascorbic acid 2-phosphate (Asc 2-P) represses DHT-induced DKK-1 expression in cultured dermal papilla cells (DPCs). Here, we investigated whether or not L-threonate could attenuate DHT-induced DKK-1 expression. We observed via RT-PCR analysis and enzyme-linked immunosorbent assay that DHT-induced DKK-1 expression was attenuated in the presence of L-threonate. We also found that DHT-induced activation of DKK-1 promoter activity was significantly repressed by L-threonate. Moreover, a co-culture system featuring outer root sheath (ORS) keratinocytes and DPCs showed that DHT inhibited the growth of ORS cells, which was then significantly reversed by L-threonate. Collectively, these results indicate that L-threonate inhibited DKK-1 expression in DPCs and therefore is a good treatment for the prevention of androgen-driven balding.

  20. Measurement of endogenous versus exogenous formaldehyde-induced DNA-protein crosslinks in animal tissues by stable isotope labeling and ultrasensitive mass spectrometry

    PubMed Central

    Lai, Yongquan; Yu, Rui; Hartwell, Hadley J.; Moeller, Benjamin C.; Bodnar, Wanda M.; Swenberg, James A.

    2016-01-01

    DNA-protein crosslinks (DPCs) arise from a wide range of endogenous and exogenous chemicals, such as chemotherapeutic drugs and formaldehyde. Importantly, recent identification of aldehydes as endogenous genotoxins in Fanconi anemia has provided new insight into disease causation. Due to their bulky nature, DPCs pose severe threats to genome stability, but previous methods to measure formaldehyde-induced DPCs were incapable of discriminating between endogenous and exogenous sources of chemical. In this study, we developed methods that provide accurate and distinct measurements of both exogenous and endogenous DPCs in a structurally-specific manner. We exposed experimental animals to stable isotope-labeled formaldehyde ([13CD2]-formaldehyde) by inhalation and performed ultrasensitive mass spectrometry to measure endogenous (unlabeled) and exogenous (13CD2-labeled) DPCs. We found that exogenous DPCs readily accumulated in nasal respiratory tissues, but were absent in tissues distant to the site of contact. This observation together with the finding that endogenous formaldehyde-induced DPCs were present in all tissues examined suggests that endogenous DPCs may be responsible for increased risks of bone marrow toxicity and leukemia. Furthermore, the slow rate of DPC repair provided evidence for persistence of DPCs. In conclusion, our method for measuring endogenous and exogenous DPCs presents a new perspective for the potential health risks inflicted by endogenous formaldehyde, and may inform improved disease prevention and treatment strategies. PMID:26984759

  1. [Inhibition effect of 6-gingerol on hair growth].

    PubMed

    Miao, Yong; Sun, Ya-Bin; Wang, Wen-Jun; Zhang, Zhi-Dan; Jiang, Jin-Dou; Li, Ze-Hua; Hu, Zhi-Qi

    2013-11-01

    To investigate the effect of 6-gingerol, the main active component of ginger, on hair shaft elongation in vitro and hair growth in vivo. Firstly, Hair follicles were co-cultured with 3 different concentration of 6-gingerol for 5 days and hair elongation in three groups was measured. Secondly, The proliferative effect of 6-gingerol on DPCs was measured using MTT assay. Thirdly, the expression of Bcl-2 and Bax in DPCs were measured using Western blotting. In vivo study, the influence of 6-gingerol on hair growth in C57BL/6 rats was measured through topical application of 6-gingerol on the dorsal skin of each animal. The length of hair shaft in 20 microg/ml 6-Gingerol group (0.50 +/- 0.08 mm) is less than 0 microg/ml (0.66 +/- 0.19) mm and 10 microg/ml (0.64 +/- 0.03) mm 6-Gingerol group (P < 0.05). In cell culture, compared to 0 microg/ml and 5 microg/ml 6-Gingerol, 10 microg/ml 6-Gingerol can significantly inhibited the proliferation of DPCs (P < 0.05). Along with the growth inhibition of DPCs by 6-gingerol, the Bax/Bcl-2 ratio increased obviously. In vivo study, the hair length and density decreased a lot after using 1 mg/ml 6-gingerol. 6-Gingerol can suppress human hair shaft elongation because it has pro-apoptotic effects on DPCs via increasing Bax/Bcl-2 ratio. It might inhibit hair growth by prolonging the telogen stage in vivo.

  2. DNA-Protein Cross-Links: Formation, Structural Identities, and Biological Outcomes.

    PubMed

    Tretyakova, Natalia Y; Groehler, Arnold; Ji, Shaofei

    2015-06-16

    Noncovalent DNA-protein interactions are at the heart of normal cell function. In eukaryotic cells, genomic DNA is wrapped around histone octamers to allow for chromosomal packaging in the nucleus. Binding of regulatory protein factors to DNA directs replication, controls transcription, and mediates cellular responses to DNA damage. Because of their fundamental significance in all cellular processes involving DNA, dynamic DNA-protein interactions are required for cell survival, and their disruption is likely to have serious biological consequences. DNA-protein cross-links (DPCs) form when cellular proteins become covalently trapped on DNA strands upon exposure to various endogenous, environmental and chemotherapeutic agents. DPCs progressively accumulate in the brain and heart tissues as a result of endogenous exposure to reactive oxygen species and lipid peroxidation products, as well as normal cellular metabolism. A range of structurally diverse DPCs are found following treatment with chemotherapeutic drugs, transition metal ions, and metabolically activated carcinogens. Because of their considerable size and their helix-distorting nature, DPCs interfere with the progression of replication and transcription machineries and hence hamper the faithful expression of genetic information, potentially contributing to mutagenesis and carcinogenesis. Mass spectrometry-based studies have identified hundreds of proteins that can become cross-linked to nuclear DNA in the presence of reactive oxygen species, carcinogen metabolites, and antitumor drugs. While many of these proteins including histones, transcription factors, and repair proteins are known DNA binding partners, other gene products with no documented affinity for DNA also participate in DPC formation. Furthermore, multiple sites within DNA can be targeted for cross-linking including the N7 of guanine, the C-5 methyl group of thymine, and the exocyclic amino groups of guanine, cytosine, and adenine. This structural complexity complicates structural and biological studies of DPC lesions. Two general strategies have been developed for creating DNA strands containing structurally defined, site-specific DPCs. Enzymatic methodologies that trap DNA modifying proteins on their DNA substrate are site specific and efficient, but do not allow for systematic studies of DPC lesion structure on their biological outcomes. Synthetic methodologies for DPC formation are based on solid phase synthesis of oligonucleotide strands containing protein-reactive unnatural DNA bases. The latter approach allows for a wider range of protein substrates to be conjugated to DNA and affords a greater flexibility for the attachment sites within DNA. In this Account, we outline the chemistry of DPC formation in cells, describe our recent efforts to identify the cross-linked proteins by mass spectrometry, and discuss various methodologies for preparing DNA strands containing structurally defined, site specific DPC lesions. Polymerase bypass experiments conducted with model DPCs indicate that the biological outcomes of these bulky lesions are strongly dependent on the peptide/protein size and the exact cross-linking site within DNA. Future studies are needed to elucidate the mechanisms of DPC repair and their biological outcomes in living cells.

  3. DNA-Protein Cross-links: Formation, Structural Identities, and Biological Outcomes

    PubMed Central

    Tretyakova, Natalia Y.; Groehler, Arnold; Ji, Shaofei

    2015-01-01

    CONSPECTUS Non-covalent DNA-protein interactions are at the heart of normal cell function. In eukaryotic cells, genomic DNA is wrapped around histone octamers to allow for chromosomal packaging in the nucleus. Binding of regulatory protein factors to DNA directs replication, controls transcription, and mediates cellular responses to DNA damage. Because of their fundamental significance in all cellular processes involving DNA, dynamic DNA-protein interactions are required for cell survival, and their disruption is likely to have serious biological consequences. DNA-protein cross-links (DPCs) form when cellular proteins become covalently trapped on DNA strands upon exposure to various endogenous, environmental and chemotherapeutic agents. DPCs progressively accumulate in the brain and heart tissues as a result of endogenous exposure to reactive oxygen species and lipid peroxidation products, as well as normal cellular metabolism. A range of structurally diverse DPCs are found following treatment with chemotherapeutic drugs, transition metal ions, and metabolically activated carcinogens. Because of their considerable size and their helix-distorting nature, DPCs interfere with the progression of replication and transcription machineries and hence hamper the faithful expression of genetic information, potentially contributing to mutagenesis and carcinogenesis. Mass spectrometry-based studies have identified hundreds of proteins that can become cross-linked to nuclear DNA in the presence of reactive oxygen species, carcinogen metabolites, and antitumor drugs. While many of these proteins including histones, transcription factors, and repair proteins are known DNA binding partners, other gene products with no documented affinity for DNA also participate in DPC formation. Furthermore, multiple sites within DNA can be targeted for cross-linking including the N7 of guanine, the C-5 methyl group of thymine, and the exocyclic amino groups of guanine, cytosine, and adenine. This structural complexity complicates structural and biological studies of DPC lesions. Two general strategies have been developed for creating DNA strands containing structurally defined, site-specific DPCs. Enzymatic methodologies that trap DNA modifying proteins on their DNA substrate are site specific and efficient, but do not allow for systematic studies of DPC lesion structure on their biological outcomes. Synthetic methodologies for DPC formation are based on solid phase synthesis of oligonucleotide strands containing protein-reactive unnatural DNA bases. The latter approach allows for a wider range of protein substrates to be conjugated to DNA and affords a greater flexibility for the attachment sites within DNA. In this Account, we outline the chemistry of DPC formation in cells, describe our recent efforts to identify the cross-linked proteins by mass spectrometry, and discuss various methodologies for preparing DNA strands containing structurally defined, site specific DPC lesions. Polymerase bypass experiments conducted with model DPCs indicate that the biological outcomes of these bulky lesions are strongly dependent on the peptide/protein size and the exact cross-linking site within DNA. Future studies are needed to elucidate the mechanisms of DPC repair and their biological outcomes in living cells. PMID:26032357

  4. Measurement of Endogenous versus Exogenous Formaldehyde-Induced DNA-Protein Crosslinks in Animal Tissues by Stable Isotope Labeling and Ultrasensitive Mass Spectrometry.

    PubMed

    Lai, Yongquan; Yu, Rui; Hartwell, Hadley J; Moeller, Benjamin C; Bodnar, Wanda M; Swenberg, James A

    2016-05-01

    DNA-protein crosslinks (DPC) arise from a wide range of endogenous and exogenous chemicals, such as chemotherapeutic drugs and formaldehyde. Importantly, recent identification of aldehydes as endogenous genotoxins in Fanconi anemia has provided new insight into disease causation. Because of their bulky nature, DPCs pose severe threats to genome stability, but previous methods to measure formaldehyde-induced DPCs were incapable of discriminating between endogenous and exogenous sources of chemical. In this study, we developed methods that provide accurate and distinct measurements of both exogenous and endogenous DPCs in a structurally specific manner. We exposed experimental animals to stable isotope-labeled formaldehyde ([(13)CD2]-formaldehyde) by inhalation and performed ultrasensitive mass spectrometry to measure endogenous (unlabeled) and exogenous ((13)CD2-labeled) DPCs. We found that exogenous DPCs readily accumulated in nasal respiratory tissues but were absent in tissues distant to the site of contact. This observation, together with the finding that endogenous formaldehyde-induced DPCs were present in all tissues examined, suggests that endogenous DPCs may be responsible for increased risks of bone marrow toxicity and leukemia. Furthermore, the slow rate of DPC repair provided evidence for the persistence of DPCs. In conclusion, our method for measuring endogenous and exogenous DPCs presents a new perspective for the potential health risks inflicted by endogenous formaldehyde and may inform improved disease prevention and treatment strategies. Cancer Res; 76(9); 2652-61. ©2016 AACR. ©2016 American Association for Cancer Research.

  5. Cytotoxicity and Bioactivity of Calcium Silicate Cements Combined with Niobium Oxide in Different Cell Lines.

    PubMed

    Mestieri, Leticia Boldrin; Gomes-Cornélio, Ana Lívia; Rodrigues, Elisandra Márcia; Faria, Gisele; Guerreiro-Tanomaru, Juliane Maria; Tanomaru-Filho, Mário

    2017-01-01

    The aim of this study was to evaluate the cytotoxicity and bioactivity of calcium silicate-based cements combined with niobium oxide (Nb2O5) micro and nanoparticles, comparing the response in different cell lines. This evaluation used four cell lines: two primary cultures (human dental pulp cells - hDPCs and human dental follicle cells - hDFCs) and two immortalized cultures (human osteoblast-like cells - Saos-2 and mouse periodontal ligament cells - mPDL). The tested materials were: White Portland Cement (PC), mineral trioxide aggregate (MTA), white Portland cement combined with microparticles (PC/Nb2O5µ) or nanoparticles (PC/Nb2O5n) of niobium oxide (Nb2O5). Cytotoxicity was evaluated by the methylthiazolyldiphenyl-tetrazolium bromide (MTT) and trypan blue exclusion assays and bioactivity by alkaline phosphatase (ALP) enzyme activity. Results were analyzed by ANOVA and Tukey test (a=0.05). PC/Nb2O5n presented similar or higher cell viability than PC/Nb2O5µ in all cell lines. Moreover, the materials presented similar or higher cell viability than MTA. Saos-2 exhibited high ALP activity, highlighting PC/Nb2O5µ material at 7 days of exposure. In conclusion, calcium silicate cements combined with micro and nanoparticles of Nb2O5 presented cytocompatibility and bioactivity, demonstrating the potential of Nb2O5 as an alternative radiopacifier agent for these cements. The different cell lines had similar response to cytotoxicity evaluation of calcium silicate cements. However, bioactivity was more accurately detected in human osteoblast-like cell line, Saos-2.

  6. Icariin promotes mouse hair follicle growth by increasing insulin-like growth factor 1 expression in dermal papillary cells.

    PubMed

    Su, Y-S; Fan, Z-X; Xiao, S-E; Lin, B-J; Miao, Y; Hu, Z-Q; Liu, H

    2017-04-01

    Icariin is a major flavonoid isolated from Epimedium spp. leaves (Epimedium Herba), and has multiple pharmacological functions, including anti-angiogenesis, anti-oxidant, anti-inflammatory and immunoprotective effects. To investigate whether icariin can stimulate growth of hair follicles in mice and the underlying mechanism. In vitro, the effect of icariin on hair growth was assessed by using a vibrissae hair follicle (VHF) organ-culture model. The proliferation of hair matrix keratinocytes and the expression of insulin-like growth factor (IGF)-1 in follicles were examined by double immunostaining for 5-bromo-2'-deoxyuridine and IGF-1, in the presence or absence of icariin. Dermal papilla cells (DPCs) were cultured and IGF-1 level was measured by reverse transcription-PCR and ELISA after icariin treatment. In vivo, the effect of icariin on hair growth was examined by gavage feeding of icariin to mice whose backs had been depilated, and the conversion of telogen to anagen hair was observed. Treatment with icariin promoted hair shaft elongation, prolonged the hair cycle growth phase (anagen) in cultured VHFs, and accelerated transition of hair cycle from telogen to anagen phase in the dorsal skin of mice. There was significant proliferation of matrix keratinocytes and an increased level of IGF-1 in cultured VHFs. Moreover, icariin treatment upregulated IGF-1 mRNA expression in DPCs and increased IGF-1 protein content in the conditioned medium of DPCs. These results suggest that icariin can promote mouse hair follicle growth via stimulation of IGF-1 expression in DPCs. © 2017 British Association of Dermatologists.

  7. Promotion effect of constituents from the root of Polygonum multiflorum on hair growth.

    PubMed

    Sun, Ya Nan; Cui, Long; Li, Wei; Yan, Xi Tao; Yang, Seo Young; Kang, Jung Il; Kang, Hee Kyoung; Kim, Young Ho

    2013-09-01

    Two new compounds, gallic acid ester of torachrysone-8-O-β-D-glucoside (1) and (E)-2,3,5,4'-tetrahydroxystilbene-2-O-β-D-xyloside (4), along with eight known compounds (2, 3, 5-10) were isolated from a 70% ethanol extract of Polygonum multiflorum roots. The structures were determined by (1)H and (13)C NMR, HMQC, and HMBC spectrometry. Extracts of P. multiflorum have been reported to promote hair growth in vivo. This study was carried out to evaluate the effects of isolated compounds from P. multiflorum on promoting hair growth using dermal papilla cells (DPCs), which play an important role in hair growth. When DPCs were treated with compounds (1-10) from P. multiflorum, compounds 1, 2, 3, 6, and 10 increased the proliferation of DPCs compared with the control. Specifically, compound 2 (10 and 20 μM) induced a greater increase in the proliferation of DPCs than minoxidil (10 μM). Additionally, treatment of vibrissa follicles with compound 2 for 21 days increased hair-fiber length significantly. On the basis of this result, further investigation and optimization of these derivatives might help in the development of therapeutic agents for the treatment of alopecia. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. 6-Gingerol inhibits hair shaft growth in cultured human hair follicles and modulates hair growth in mice.

    PubMed

    Miao, Yong; Sun, Yabin; Wang, Wenjun; Du, Benjun; Xiao, Shun-e; Hu, Yijue; Hu, Zhiqi

    2013-01-01

    Ginger (Zingiber officinale) has been traditionally used to check hair loss and stimulate hair growth in East Asia. Several companies produce shampoo containing an extract of ginger claimed to have anti-hair loss and hair growth promotion properties. However, there is no scientific evidence to back up these claims. This study was undertaken to measure 6-gingerol, the main active component of ginger, on hair shaft elongation in vitro and hair growth in vivo, and to investigate its effect on human dermal papilla cells (DPCs) in vivo and in vitro. 6-Gingerol suppressed hair growth in hair follicles in culture and the proliferation of cultured DPCs. The growth inhibition of DPCs by 6-gingerol in vitro may reflect a decrease in the Bcl-2/Bax ratio. Similar results were obtained in vivo. The results of this study showed that 6-gingerol does not have the ability to promote hair growth, on the contrary, can suppress human hair growth via its inhibitory and pro-apoptotic effects on DPCs in vitro, and can cause prolongation of telogen phase in vivo. Thus, 6-gingerol rather than being a hair growth stimulating drug, it is a potential hair growth suppressive drug; i.e. for hair removal.

  9. 6-Gingerol Inhibits Hair Shaft Growth in Cultured Human Hair Follicles and Modulates Hair Growth in Mice

    PubMed Central

    Miao, Yong; Sun, Yabin; Wang, Wenjun; Du, Benjun; Xiao, Shun-e; Hu, Yijue; Hu, Zhiqi

    2013-01-01

    Ginger (Zingiber officinale) has been traditionally used to check hair loss and stimulate hair growth in East Asia. Several companies produce shampoo containing an extract of ginger claimed to have anti-hair loss and hair growth promotion properties. However, there is no scientific evidence to back up these claims. This study was undertaken to measure 6-gingerol, the main active component of ginger, on hair shaft elongation in vitro and hair growth in vivo, and to investigate its effect on human dermal papilla cells (DPCs) in vivo and in vitro. 6-Gingerol suppressed hair growth in hair follicles in culture and the proliferation of cultured DPCs. The growth inhibition of DPCs by 6-gingerol in vitro may reflect a decrease in the Bcl-2/Bax ratio. Similar results were obtained in vivo. The results of this study showed that 6-gingerol does not have the ability to promote hair growth, on the contrary, can suppress human hair growth via its inhibitory and pro-apoptotic effects on DPCs in vitro, and can cause prolongation of telogen phase in vivo. Thus, 6-gingerol rather than being a hair growth stimulating drug, it is a potential hair growth suppressive drug; i.e. for hair removal. PMID:23437345

  10. Hair growth-promoting effect of Geranium sibiricum extract in human dermal papilla cells and C57BL/6 mice.

    PubMed

    Boisvert, William A; Yu, Miri; Choi, Youngbin; Jeong, Gi Hee; Zhang, Yi-Lin; Cho, Sunghun; Choi, Changsun; Lee, Sanghyun; Lee, Bog-Hieu

    2017-02-13

    Geranium sibiricum L. has been used as a medicinal plant to treat diarrhea, bacterial infection, and cancer in Bulgaria, Peru, and Korea. However, its hair growth-promoting effect was not investigated so far. This study examined the effects of Geranium sibiricum L. extract (GSE) on hair growth, using in vitro and in vivo models. Antioxidant, proliferation and migration assay of GSE was performed with human dermal papilla cells (hDPCs). Hair-growth promoting effect was measured in animal model. Relative expression of interleukin-1, vascular endothelial growth factor, hepatocyte growth factor, and transforming growth factor beta 1 was determined by real time RT-PCR. Expression of Ki-67 and stem cell factor were analyzed by immunohistochemistry. GSE treatment proliferated and migrated human dermal papilla cells (hDPCs) more than treatment of 10 μM minoxidil. GSE significantly stimulated the expression of Ki-67 protein and the mRNA levels of hepatocyte growth factor and vascular endothelial growth factor in hDPCs. Topical application of 1,000 ppm GSE for 3 weeks promoted more significant hair growth on shaved C57BL/6 mice than did 5% minoxidil. The histological morphology of hair follicles demonstrated an active anagen phase with the induction of stem cell factor. GSE treatment significantly reduced the number of mast cells and the expression of transforming growth factor beta 1 in mouse skin tissues. These results demonstrated that GSE promotes hair growth in vitro and in vivo by regulating growth factors and the cellular response.

  11. Experimental study on repairing of nude mice skin defects with composite skin consisting of xenogeneic dermis and epidermal stem cells and hair follicle dermal papilla cells.

    PubMed

    Qi, Shao-Hai; Liu, Po; Xie, Ju-Lin; Shu, Bin; Xu, Ying-Bin; Ke, Chang-Neng; Liu, Xu-Sheng; Li, Tian-Zeng

    2008-05-01

    To investigate the influence of hair follicle dermal papilla cells (DPCs) on biological features of composite skin. In the test group, xenogeneic acellular dermal matrix was employed as the frame, DPCs were seeded on the subcutaneous side, and epithelial stem cells onto the dermal papilla side of the dermal frame so as to construct a composite skin. In the control group, there was no DPC in the frame. The two kinds of composite skin were employed to cover skin defects on the back of the nude mice. Wound healing was observed 4 weeks after grafting and area was analyzed and contraction rate was calculated. The tissue samples in the grafted area were harvested for HE staining and the state of the composite skin was observed. The stress-strain curve of the sampled skin was measured, so as to calculate the maximal breaking power of the sample. The data were collected and statistically analyzed. HE staining indicated that the epithelial depth was increased (more than 10 layers of cells) in test group, with only 6-7 layers in control group. The skin contraction rate in test group on the 4th week after skin grafting (3.94+/-0.013)% was much lower than that in control group (29.07+/-0.018)% (P<0.05). It was indicated by biomechanical test that the stress-strain curve of the composite skin in the test group was closer to that of normal nude mice skin in comparison to that in control group. The maximal breaking force of the composite skin in test group was (1.835+/-0.035)N (Newton), while that in control group was (1.075+/-0.065)N (P<0.01). Reconstruction of epidermis in composite skin was promoted by dermal DPCs seeded in the dermal matrix frame. As a result, there was less skin contraction in the composite skin with DPCs, so that the biological characteristics of the skin were improved.

  12. Minoxidil activates β-catenin pathway in human dermal papilla cells: a possible explanation for its anagen prolongation effect.

    PubMed

    Kwack, Mi Hee; Kang, Bo Mi; Kim, Moon Kyu; Kim, Jung Chul; Sung, Young Kwan

    2011-06-01

    It is believed that the length of the actively growing phase of the anagen hair cycle mainly contributes to hair length. Recent studies showed that maintenance of β-catenin activity in the dermal papilla cells (DPCs) enables hair follicles to keep actively growing. Topical minoxidil treatment promotes hair growth in men with androgenetic alopecia, suggesting that minoxidil may prolong the actively growing phase of the anagen hair cycle. To investigate whether minoxidil prolongs the anagen hair cycle in mice and, if so, to investigate whether minoxidil activates β-catenin pathway in human DPCs. Dorsal skins of C57BL/6 mice were depilated to synchronize the hair cycle. After 10 days, 3% minoxidil were topically applied daily for 10 days. Sections of back skins were stained with hematoxylin and eosin. Hair follicles were graded and hair cycle score (HCS) was calculated. Cultured human DPCs were transiently transfected with the β-catenin responsive TCF reporter plasmid (pTopflash) and corresponding negative control reporter (pFopflash) to assess the activity of β-catenin signaling by minoxidil. Immunofluorescence staining and immunoblot were performed to examine the expression and localization of β-catenin in the presence or absence of minoxidil. Phosphorylation of GSK3β, PKA and PKB were also examined by immunoblot after minoxidil treatment. RT-PCR analysis and immunoblot were employed to investigate the expression of β-catenin pathway targets in DPCs, such as Axin2, Lef-1, and EP2. Modest extension of anagen phase thereby delay of catagen progression was observed by application of minoxidil in mice. Minoxidil stimulated the transcriptional activity of pTopflash but not pFopflash. Nuclear accumulation of β-catenin was also observed after minoxidil treatment. Immunoblot further showed that minoxidil treatment increases the phosphorylation of GSK3β, PKA and PKB. Moreover, minoxidil induced Axin2, Lef-1, and EP2 expression. Our results strongly suggest that minoxidil extends the anagen phase by activating β-catenin activity in the DPCs. Copyright © 2011 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  13. The effect of cilostazol, a phosphodiesterase 3 (PDE3) inhibitor, on human hair growth with the dual promoting mechanisms.

    PubMed

    Choi, Hye-In; Kim, Dong Young; Choi, Soon-Jin; Shin, Chang-Yup; Hwang, Sungjoo Tommy; Kim, Kyu Han; Kwon, Ohsang

    2018-07-01

    Cilostazol, a phosphodiesterase 3 (PDE3) inhibitor, increases the intracellular level of cyclic adenosine monophosphate to cause vasodilation. Topical application of cilostazol is reported to improve local blood flow and enhance wound healing; however, its effect on human hair follicles is unknown. The purpose of this study was to determine the effect of cilostazol on hair growth. We investigated the expression of PDE3 in human dermal papilla cells (DPCs), outer root sheath cells (ORSCs), and hair follicles. The effects of cilostazol on DPC and ORSC proliferation were evaluated using BrdU and WST-1 assays. The expression of various growth factors in DPCs was investigated by growth factor antibody array. Additionally, hair shaft elongation was measured using ex vivo hair follicle organ cultures, and anagen induction was evaluated in C57BL/6 mice. Finally, the effects of cilostazol on vessel formation and activation of the mitogen-activated protein kinase pathway were evaluated. We confirmed high mRNA and protein expression of PDE3 in human DPCs. Cilostazol not only enhanced the proliferation of human DPCs but also regulated the secretion of several growth factors responsible for hair growth. Furthermore, it promoted hair shaft elongation ex vivo, with increased proliferation of matrix keratinocytes. Cilostazol also accelerated anagen induction by stimulating vessel formation and upregulating the levels of phosphorylated extracellular signal-regulated kinase, c-Jun N-terminal kinase, and P38 after its topical application in C57BL/6 mice. Our results show that cilostazol promotes hair growth and may serve as a therapeutic agent for the treatment of alopecia. Copyright © 2018 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  14. Red ginseng extract promotes the hair growth in cultured human hair follicles.

    PubMed

    Park, Gyeong-Hun; Park, Ki-young; Cho, Hong-il; Lee, Sang-Min; Han, Ji Su; Won, Chong Hyun; Chang, Sung Eun; Lee, Mi Woo; Choi, Jee Ho; Moon, Kee Chan; Shin, Hyoseung; Kang, Yong Jung; Lee, Dong Hun

    2015-03-01

    Ginseng has been shown to promote hair growth in several recent studies. However, its effects on human hair follicles and its mechanisms of action have not been sufficiently elucidated. This study aimed to investigate the hair growth-promoting effects of red ginseng extract (RGE) and its ginsenosides. The proliferative activities of cultured human hair follicles treated with RGE and ginsenoside-Rb1 were assessed using Ki-67 immunostaining. Their effects on isolated human dermal papilla cells (hDPCs) were evaluated using cytotoxicity assays, immunoblot analysis of signaling proteins, and the determination of associated growth factors. We examined the ability of RGE and ginsenosides to protect hair matrix keratinocyte proliferation against dihydrotestosterone (DHT)-induced suppression and their effects on the expression of androgen receptor. The in vivo hair growth-promoting effect of RGE was also investigated in C57BL/6 mice. Both RGE and ginsenoside-Rb1 enhanced the proliferation of hair matrix keratinocytes. hDPCs treated with RGE or ginsenoside-Rb1 exhibited substantial cell proliferation and the associated phosphorylation of ERK and AKT. Moreover, RGE, ginsenoside-Rb1, and ginsenoside-Rg3 abrogated the DHT-induced suppression of hair matrix keratinocyte proliferation and the DHT-induced upregulation of the mRNA expression of androgen receptor in hDPCs. Murine experiments revealed that the subcutaneous injection of 3% RGE resulted in more rapid hair growth than the negative control. In conclusion, RGE and its ginsenosides may enhance hDPC proliferation, activate ERK and AKT signaling pathways in hDPCs, upregulate hair matrix keratinocyte proliferation, and inhibit the DHT-induced androgen receptor transcription. These results suggest that red ginseng may promote hair growth in humans.

  15. Red Ginseng Extract Promotes the Hair Growth in Cultured Human Hair Follicles

    PubMed Central

    Park, Gyeong-Hun; Park, Ki-young; Cho, Hong-il; Lee, Sang-Min; Han, Ji Su; Chang, Sung Eun; Lee, Mi Woo; Choi, Jee Ho; Moon, Kee Chan; Shin, Hyoseung; Kang, Yong Jung; Lee, Dong Hun

    2015-01-01

    Abstract Ginseng has been shown to promote hair growth in several recent studies. However, its effects on human hair follicles and its mechanisms of action have not been sufficiently elucidated. This study aimed to investigate the hair growth-promoting effects of red ginseng extract (RGE) and its ginsenosides. The proliferative activities of cultured human hair follicles treated with RGE and ginsenoside-Rb1 were assessed using Ki-67 immunostaining. Their effects on isolated human dermal papilla cells (hDPCs) were evaluated using cytotoxicity assays, immunoblot analysis of signaling proteins, and the determination of associated growth factors. We examined the ability of RGE and ginsenosides to protect hair matrix keratinocyte proliferation against dihydrotestosterone (DHT)-induced suppression and their effects on the expression of androgen receptor. The in vivo hair growth-promoting effect of RGE was also investigated in C57BL/6 mice. Both RGE and ginsenoside-Rb1 enhanced the proliferation of hair matrix keratinocytes. hDPCs treated with RGE or ginsenoside-Rb1 exhibited substantial cell proliferation and the associated phosphorylation of ERK and AKT. Moreover, RGE, ginsenoside-Rb1, and ginsenoside-Rg3 abrogated the DHT-induced suppression of hair matrix keratinocyte proliferation and the DHT-induced upregulation of the mRNA expression of androgen receptor in hDPCs. Murine experiments revealed that the subcutaneous injection of 3% RGE resulted in more rapid hair growth than the negative control. In conclusion, RGE and its ginsenosides may enhance hDPC proliferation, activate ERK and AKT signaling pathways in hDPCs, upregulate hair matrix keratinocyte proliferation, and inhibit the DHT-induced androgen receptor transcription. These results suggest that red ginseng may promote hair growth in humans. PMID:25396716

  16. The Hair Growth-Promoting Effect of Rumex japonicus Houtt. Extract

    PubMed Central

    Lee, Hyunkyoung; Kim, Na-Hyun; Yang, Hyeryeon; Bae, Seong Kyeong; Heo, Yunwi; Choudhary, Indu; Kwon, Young Chul; Byun, Jae Kuk; Yim, Hyeong Jun; Noh, Byung Seung; Heo, Jeong-Doo; Kim, Euikyung

    2016-01-01

    Rumex japonicus Houtt. is traditionally used as a medicinal plant to treat patients suffering from skin disease in Korea. However, the beneficial effect of Rumex japonicus Houtt. on hair growth has not been thoroughly examined. Therefore, the present study aims to investigate the hair growth-promoting effect of Rumex japonicus (RJ) Houtt. root extract using human dermal papilla cells (DPCs), HaCaT cells, and C57BL/6 mice model. RJ induced antiapoptotic and proliferative effects on DPCs and HaCaT cells by increasing Bcl-2/Bax ratio and activating cellular proliferation-related proteins, ERK and Akt. RJ also increased β-catenin via the inhibition of GSK-3β. In C57BL/6 mice model, RJ promoted the anagen induction and maintained its period. Immunohistochemistry analysis demonstrated that RJ upregulated Ki-67 and β-catenin expressions, suggesting that the hair growth effect of RJ may be mediated through the reinforcement of hair cell proliferation. These results provided important insights for the possible mechanism of action of RJ and its potential as therapeutic agent to promote hair growth. PMID:27974900

  17. Hair growth-promotion effects of different alternating current parameter settings are mediated by the activation of Wnt/β-catenin and MAPK pathway.

    PubMed

    Sohn, Ki Min; Jeong, Kwan Ho; Kim, Jung Eun; Park, Young Min; Kang, Hoon

    2015-12-01

    Electrical stimulation is being used in variable skin therapeutic conditions. There have been clinical studies demonstrating the positive effect of electrical stimuli on hair regrowth. However, the underlying exact mechanism and optimal parameter settings are not clarified yet. To investigate the effects of different parameter settings of electrical stimuli on hair growth by examining changes in human dermal papilla cells (hDPCs) in vitro and by observing molecular changes in animal tissue. In vitro, cultured hDPCs were electrically stimulated with different parameter settings at alternating current (AC). Cell proliferation was measured by MTT assay. The Ki67 expression was measured by immunofluorescence. Hair growth-related gene expressions were measured by RT-PCR. In animal model, different parameter settings of AC were applied to the shaved dorsal skin of rabbit for 8 weeks. Expression of hair-related genes in the skin of rabbit was examined by RT-PCR. At low voltage power (3.5 V) and low frequency (1 or 2 MHz) with AC, in vitro proliferation of hDPCs was successfully induced. A significant increase in Wnt/β-catenin, Ki67, p-ERK and p-AKT expressions was observed under the aforementioned settings. In animal model, hair regrowth was observed in the entire stimulated areas under individual conditions. Expression of hair-related genes in the skin significantly increased on the 6th week of treatment. There are optimal conditions for electrical stimulated hair growth, and they might be different in the cells, animals and human tissues. Electrical stimuli induce mechanisms such as the activation of Wnt/β-catenin and MAPK pathway in hair follicles. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Influence of different types of pulp treatment during isolation in the obtention of human dental pulp stem cells

    PubMed Central

    Viña-Almunia, Jose; Borras, Consuelo; Gambini, Juan; El Alamy, Marya; Viña, Jose

    2016-01-01

    Background Different methods have been used in order to isolate dental pulp stem cells. The aim of this study was to study the effect of different types of pulp treatment during isolation, under 3% O2 conditions, in the time needed and the efficacy for obtaining dental pulp stem cells. Material and Methods One hundred and twenty dental pulps were used to isolate dental pulp stem cells treating the pulp tissue during isolation using 9 different methods, using digestive, disgregation, or mechanical agents, or combining them. The cells were positive for CD133, Oct4, Nestin, Stro-1, CD34 markers, and negative for the hematopoietic cell marker CD-45, thus confirming the presence of mesenchymal stem cells. The efficacy of dental pulp stem cells obtention and the minimum time needed to obtain such cells comparing the 9 different methods was analyzed. Results Dental pulp stem cells were obtained from 97 of the 120 pulps used in the study, i.e. 80.8% of the cases. They were obtained with all the methods used except with mechanical fragmentation of the pulp, where no enzymatic digestion was performed. The minimum time needed to isolate dental pulp stem cells was 8 hours, digesting with 2mg/ml EDTA for 10 minutes, 4mg/ml of type I collagenase, 4mg/ml of type II dispase for 40 minutes, 13ng/ml of thermolysine for 40 minutes and sonicating the culture for one minute. Conclusions Dental pulp stem cells were obtained in 97 cases from a series of 120 pulps. The time for obtaining dental pulp stem cells was reduced maximally, without compromising the obtention of the cells, by combining digestive, disgregation, and mechanical agents. Key words:Dental pulp stem cells, mesenchymal stem cells, isolation method. PMID:26946201

  19. Challenges of stem cell-based pulp and dentin regeneration: a clinical perspective.

    PubMed

    Huang, George T-J; Al-Habib, Mey; Gauthier, Philippe

    2013-03-01

    There are two types of approaches to regenerate tissues: cell-based and cell-free. The former approach is to introduce exogenous cells into the host to regenerate tissues, and the latter is to use materials other than cells in an attempt to regenerate tissues. There has been a significant advancement in stem cell-based pulp and dentin regeneration research in the past few years. Studies in small and large animals have demonstrated that pulp/dentin-like tissues can be regenerated partially or completely in the root canal space with apical openings of 0.7-3.0 mm using dental pulp stem cells, including stem cells from apical papilla (SCAP) and subpopulations of pulp stem cells. Bone marrow mesenchymal stem cells (BMMSCs) and adipose tissue-derived MSCs (ADMSCs) have also been shown to regenerate pulp-like tissue. In contrast, the cell-free approach has not produced convincing evidence on pulp regeneration. However, one crucial concept has not been considered nor defined in the field of pulp/dentin regeneration and that is the critical size defect of dentin and pulp. Without such consideration and definition, it is difficult to predict or anticipate the extent of cell-free pulp regeneration that would occur. By reasoning, cell-free therapy is unlikely to regenerate an organ/tissue after total loss. Similarly, after a total loss of pulp, it is unlikely to regenerate without using exogenously introduced cells. A cell homing approach may provide a limited amount of tissue regeneration. Although stem cell-based pulp/dentin regeneration has shown great promise, clinical trials are difficult to launch at present. This article will address several issues that challenge and hinder the clinical applications of pulp/dentin regeneration which need to be overcome before stem cell-based pulp/dentin regeneration can occur in the clinic.

  20. Challenges of stem cell-based pulp and dentin regeneration: a clinical perspective

    PubMed Central

    HUANG, GEORGE T.-J.; AL-HABIB, MEY; GAUTHIER, PHILIPPE

    2013-01-01

    There are two types of approaches to regenerate tissues: cell-based and cell-free. The former approach is to introduce exogenous cells into the host to regenerate tissues, and the latter is to use materials other than cells in an attempt to regenerate tissues. There has been a significant advancement in stem cell-based pulp and dentin regeneration research in the past few years. Studies in small and large animals have demonstrated that pulp/dentin-like tissues can be regenerated partially or completely in the root canal space with apical openings of 0.7-3.0 mm using dental pulp stem cells, including stem cells from apical papilla (SCAP) and subpopulations of pulp stem cells. Bone marrow mesenchymal stem cells (BMMSCs) and adipose tissue-derived MSCs (ADMSCs) have also been shown to regenerate pulp-like tissue. In contrast, the cell-free approach has not produced convincing evidence on pulp regeneration. However, one crucial concept has not been considered nor defined in the field of pulp/dentin regeneration and that is the critical size defect of dentin and pulp. Without such consideration and definition, it is difficult to predict or anticipate the extent of cell-free pulp regeneration that would occur. By reasoning, cell-free therapy is unlikely to regenerate an organ/tissue after total loss. Similarly, after a total loss of pulp, it is unlikely to regenerate without using exogenously introduced cells. A cell homing approach may provide a limited amount of tissue regeneration. Although stem cell-based pulp/dentin regeneration has shown great promise, clinical trials are difficult to launch at present. This article will address several issues that challenge and hinder the clinical applications of pulp/dentin regeneration which need to be overcome before stem cell-based pulp/dentin regeneration can occur in the clinic. PMID:23914150

  1. Comparison of Calcium and Barium Microcapsules as Scaffolds in the Development of Artificial Dermal Papillae.

    PubMed

    Liu, Yang; Lin, Changmin; Zeng, Yang; Li, Haihong; Cai, Bozhi; Huang, Keng; Yuan, Yanping; Li, Yu

    2016-01-01

    This study aimed to develop and evaluate barium and calcium microcapsules as candidates for scaffolding in artificial dermal papilla. Dermal papilla cells (DPCs) were isolated and cultured by one-step collagenase treatment. The DPC-Ba and DPC-Ca microcapsules were prepared by using a specially designed, high-voltage, electric-field droplet generator. Selected microcapsules were assessed for long-term inductive properties with xenotransplantation into Sprague-Dawley rat ears. Both barium and calcium microcapsules maintained xenogenic dermal papilla cells in an immunoisolated environment and induced the formation of hair follicle structures. Calcium microcapsules showed better biocompatibility, permeability, and cell viability in comparison with barium microcapsules. Before 18 weeks, calcium microcapsules gathered together, with no substantial immune response. After 32 weeks, some microcapsules were near inflammatory cells and wrapped with fiber. A few large hair follicles were found. Control samples showed no marked changes at the implantation site. Barium microcapsules were superior to calcium microcapsules in structural and mechanical stability. The cells encapsulated in hydrogel barium microcapsules exhibited higher short-term viability. This study established a model to culture DPCs in 3D culture conditions. Barium microcapsules may be useful in short-term transplantation study. Calcium microcapsules may provide an effective scaffold for the development of artificial dermal papilla.

  2. Photosensitized UVA-Induced Cross-Linking between Human DNA Repair and Replication Proteins and DNA Revealed by Proteomic Analysis

    PubMed Central

    2016-01-01

    Long wavelength ultraviolet radiation (UVA, 320–400 nm) interacts with chromophores present in human cells to induce reactive oxygen species (ROS) that damage both DNA and proteins. ROS levels are amplified, and the damaging effects of UVA are exacerbated if the cells are irradiated in the presence of UVA photosensitizers such as 6-thioguanine (6-TG), a strong UVA chromophore that is extensively incorporated into the DNA of dividing cells, or the fluoroquinolone antibiotic ciprofloxacin. Both DNA-embedded 6-TG and ciprofloxacin combine synergistically with UVA to generate high levels of ROS. Importantly, the extensive protein damage induced by these photosensitizer+UVA combinations inhibits DNA repair. DNA is maintained in intimate contact with the proteins that effect its replication, transcription, and repair, and DNA–protein cross-links (DPCs) are a recognized reaction product of ROS. Cross-linking of DNA metabolizing proteins would compromise these processes by introducing physical blocks and by depleting active proteins. We describe a sensitive and statistically rigorous method to analyze DPCs in cultured human cells. Application of this proteomics-based analysis to cells treated with 6-TG+UVA and ciprofloxacin+UVA identified proteins involved in DNA repair, replication, and gene expression among those most vulnerable to cross-linking under oxidative conditions. PMID:27654267

  3. Bee Venom Promotes Hair Growth in Association with Inhibiting 5α-Reductase Expression.

    PubMed

    Park, Seeun; Erdogan, Sedef; Hwang, Dahyun; Hwang, Seonwook; Han, Eun Hye; Lim, Young-Hee

    2016-06-01

    Alopecia is an important issue that can occur in people of all ages. Recent studies show that bee venom can be used to treat certain diseases including rheumatoid arthritis, neuralgia, and multiple sclerosis. In this study, we investigated the preventive effect of bee venom on alopecia, which was measured by applying bee venom (0.001, 0.005, 0.01%) or minoxidil (2%) as a positive control to the dorsal skin of female C57BL/6 mice for 19 d. Growth factors responsible for hair growth were analyzed by quantitative real-time PCR and Western blot analysis using mice skins and human dermal papilla cells (hDPCs). Bee venom promoted hair growth and inhibited transition from the anagen to catagen phase. In both anagen phase mice and dexamethasone-induced catagen phase mice, hair growth was increased dose dependently compared with controls. Bee venom inhibited the expression of SRD5A2, which encodes a type II 5α-reductase that plays a major role in the conversion of testosterone into dihydrotestosterone. Moreover, bee venom stimulated proliferation of hDPCs and several growth factors (insulin-like growth factor 1 receptor (IGF-1R), vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF)2 and 7) in bee venom-treated hDPCs dose dependently compared with the control group. In conclusion, bee venom is a potentially potent 5α-reductase inhibitor and hair growth promoter.

  4. The effect of sebocytes cultured from nevus sebaceus on hair growth.

    PubMed

    Lee, Weon Ju; Cha, Hyun Wuk; Lim, Hyun Jung; Lee, Seok-Jong; Kim, Do Won

    2012-10-01

    Sebaceous glands are known to affect hair growth. Nevus sebaceus, a sebaceous gland hamartomas, presents as hairless patches. In this study, cultures of nevus sebaceus sebocytes (NSS) and normal scalp hair follicle sebocytes (NS) were used in performance of microarray, RT-PCR, western blot assay and immunofluorescence staining. NSS- and NS-conditioned media were also added to the culture of outer root sheath cells (ORSCs), dermal papilla cells (DPCs) or normal scalp hair follicle sebocytes. Results of this study showed a decrease in the survival rate of ORSCs and DPCs and hair growth in the NSS-conditioned medium-treated group, compared with the control and NS-conditioned medium-treated groups. An increase in expression of fibroblast growth factor (FGF)-5, Dickkopf-1 and inflammatory cytokines and a decrease in expression of Wnt10b and Lef1 were observed. In conclusion, NSS showed an increase in expression of hair growth-suppressing bioactive factors, including FGF-5, and a decrease in expression of hair growth-stimulating factors. © 2012 John Wiley & Sons A/S.

  5. The additive effects of minoxidil and retinol on human hair growth in vitro.

    PubMed

    Yoo, Hyeon Gyeong; Chang, In-Young; Pyo, Hyun Keol; Kang, Yong Jung; Lee, Seung Ho; Kwon, Oh Sang; Cho, Kwang Hyun; Eun, Hee Chul; Kim, Kyu Han

    2007-01-01

    Minoxidil enhances hair growth by prolonging the anagen phase and induces new hair growth in androgenetic alopecia (AGA), whereas retinol significantly improves scalp skin condition and promotes hair growth. We investigated the combined effects of minoxidil and retinol on human hair growth in vitro and on cultured human dermal papilla cells (DPCs) and epidermal keratinocytes (HaCaT). The combination of minoxidil and retinol additively promoted hair growth in hair follicle organ cultures. In addition, minoxidil plus retinol more effectively elevated phosphorylated Erk, phosphorylated Akt levels, and the Bcl-2/Bax ratio than minoxidil alone in DPCs and HaCaT. We found that the significant hair shaft elongation demonstrated after minoxidil plus retinol treatment would depend on the dual kinetics associated with the activations of Erk- and Akt-dependent pathways and the prevention of apoptosis by increasing the Bcl-2/Bax ratio.

  6. Recruitment of dental pulp cells by dentine and pulp extracellular matrix components.

    PubMed

    Smith, J G; Smith, A J; Shelton, R M; Cooper, P R

    2012-11-01

    The present study aimed to determine whether dentine tissue and preparations of extracellular matrix (ECM) from pulp (pECM) and dentine (dECM), and breakdown products, influenced pulp cell migration. Chemotaxis transwell and agarose spot assays demonstrated that both dentine and pulp ECM molecules acted as chemoattractants for primary pulp cells. Chemoattractant activities of dECM and pECM were enhanced when subjected to acid and enzymatic breakdown, respectively. This enhanced activity following physiologically relevant breakdown may be pertinent to the disease environment. Pulp cell migration in response to dental ECMs was dependent on an active rho pathway. Recruited cells exhibited increased stem cell marker expression indicating that dental ECMs and their breakdown products selectively attract progenitor cells that contribute to repair processes. In conclusion, combined these results indicate that ECM molecules contribute to cell recruitment necessary for regeneration of the dentine-pulp complex after injury. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. System-Level Logistics for Dual Purpose Canister Disposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinina, Elena A.

    2014-06-03

    The analysis presented in this report investigated how the direct disposal of dual purpose canisters (DPCs) may be affected by the use of standard transportation aging and disposal canisters (STADs), early or late start of the repository, and the repository emplacement thermal power limits. The impacts were evaluated with regard to the availability of the DPCs for emplacement, achievable repository acceptance rates, additional storage required at an interim storage facility (ISF) and additional emplacement time compared to the corresponding repackaging scenarios, and fuel age at emplacement. The result of this analysis demonstrated that the biggest difference in the availability ofmore » UNF for emplacement between the DPC-only loading scenario and the DPCs and STADs loading scenario is for a repository start date of 2036 with a 6 kW thermal power limit. The differences are also seen in the availability of UNF for emplacement between the DPC-only loading scenario and the DPCs and STADs loading scenario for the alternative with a 6 kW thermal limit and a 2048 start date, and for the alternatives with a 10 kW thermal limit and 2036 and 2048 start dates. The alternatives with disposal of UNF in both DPCs and STADs did not require additional storage, regardless of the repository acceptance rate, as compared to the reference repackaging case. In comparison to the reference repackaging case, alternatives with the 18 kW emplacement thermal limit required little to no additional emplacement time, regardless of the repository start time, the fuel loading scenario, or the repository acceptance rate. Alternatives with the 10 kW emplacement thermal limit and the DPCs and STADs fuel loading scenario required some additional emplacement time. The most significant decrease in additional emplacement time occurred in the alternative with the 6 kW thermal limit and the 2036 repository starting date. The average fuel age at emplacement ranges from 46 to 88 years. The maximum fuel age at emplacement ranges from 81 to 146 years. The difference in the average and maximum age of fuel at emplacement between the DPC-only and the DPCs and STADs fuel loading scenarios becomes less significant as the repository thermal limit increases and as the repository start date increases. In general, the role of STADs is to store young (30 year or younger) high burnup (45 GWD/MTU or higher) fuel. Recommendations for future study include detailed evaluation of the feasible alternatives with regard to the costs and factors not considered in this analysis, such as worker dose, dose to members of the public, and economic benefits to host entities. It is also recommended to conduct an additional analysis to evaluate the assumption regarding the transportability and disposability of DPCs for the next iteration of the direct disposal of DPCs study.« less

  8. Human dental pulp stem cells with highly angiogenic and neurogenic potential for possible use in pulp regeneration.

    PubMed

    Nakashima, Misako; Iohara, Koichiro; Sugiyama, Masahiko

    2009-01-01

    Dental caries is a common public health problem, causing early loss of dental pulp and resultant tooth loss. Dental pulp has important functions to sustain teeth providing nutrient and oxygen supply, innervation, reactionary/reparative dentin formation and immune response. Regeneration of pulp is an unmet need in endodontic therapy, and angiogenesis/vasculogenesis and neurogenesis are critical for pulp regeneration. Permanent and deciduous pulp tissue is easily available from teeth after extraction without ethical issues and has potential for clinical use. In this review, we introduce some stem cell subfractions, CD31(-)/CD146(-) SP cells and CD105(+) cells with high angiogenic and neurogenic potential, derived from human adult dental pulp tissue. Potential utility of these cells is addressed as a source of cells for treatment of cerebral and limb ischemia and pulp inflammation complete with angiogenesis and vasculogenesis.

  9. Comparison of Gingiva, Dental Pulp, and Periodontal Ligament Cells From the Standpoint of Mesenchymal Stem Cell Properties.

    PubMed

    Otabe, Koji; Muneta, Takeshi; Kawashima, Nobuyuki; Suda, Hideaki; Tsuji, Kunikazu; Sekiya, Ichiro

    2012-01-01

    The specific properties of mesenchymal stem cells (MSCs) in oral tissues still remain unknown though their existence has been previously reported. We collected gingiva, dental pulp, and periodontal ligament tissues from removed teeth and isolated MSCs. These MSCs were compared in terms of their yields per tooth, surface epitopes, and differentiation potentials by patient-matched analysis. For in vivo calcification analysis, rat gingival and dental pulp cells mounted on β-tricalcium phospateTCP were transplanted into the perivertebral muscle of rats for 6 weeks. Gingival cells and dental pulp cells showed higher yield per tooth than periodontal ligament cells (n=6, p<0.05). Yields of periodontal ligament cells were too low for further analysis. Gingival and dental pulp cells expressed MSC markers such as CD44, CD90, and CD166. Gingival and dental pulp cells obtained phenotypes of chondrocytes and adipocytes in vitro. Approximately 60% of the colonies of gingival cells and 40% of the colonies of dental pulp cells were positively stained with alizarin red in vitro, and both gingival and dental pulp cells were calcified in vivo. We clarified properties of MSCs derived from removed teeth. We could obtain a high yield of MSCs with osteogenic potential from gingiva and dental pulp. These results indicate that gingiva and dental pulp are putative cell sources for hard tissue regeneration.

  10. Comparison of Gingiva, Dental Pulp, and Periodontal Ligament Cells From the Standpoint of Mesenchymal Stem Cell Properties

    PubMed Central

    Otabe, Koji; Muneta, Takeshi; Kawashima, Nobuyuki; Suda, Hideaki; Tsuji, Kunikazu; Sekiya, Ichiro

    2012-01-01

    The specific properties of mesenchymal stem cells (MSCs) in oral tissues still remain unknown though their existence has been previously reported. We collected gingiva, dental pulp, and periodontal ligament tissues from removed teeth and isolated MSCs. These MSCs were compared in terms of their yields per tooth, surface epitopes, and differentiation potentials by patient-matched analysis. For in vivo calcification analysis, rat gingival and dental pulp cells mounted on β-tricalcium phospateTCP were transplanted into the perivertebral muscle of rats for 6 weeks. Gingival cells and dental pulp cells showed higher yield per tooth than periodontal ligament cells (n=6, p<0.05). Yields of periodontal ligament cells were too low for further analysis. Gingival and dental pulp cells expressed MSC markers such as CD44, CD90, and CD166. Gingival and dental pulp cells obtained phenotypes of chondrocytes and adipocytes in vitro. Approximately 60% of the colonies of gingival cells and 40% of the colonies of dental pulp cells were positively stained with alizarin red in vitro, and both gingival and dental pulp cells were calcified in vivo. We clarified properties of MSCs derived from removed teeth. We could obtain a high yield of MSCs with osteogenic potential from gingiva and dental pulp. These results indicate that gingiva and dental pulp are putative cell sources for hard tissue regeneration. PMID:26858852

  11. Characterization of stem and progenitor cells in the dental pulp of erupted and unerupted murine molars

    PubMed Central

    Balic, Anamaria; Aguila, H. Leonardo; Caimano, Melissa J.; Francone, Victor P.; Mina, Mina

    2010-01-01

    In the past few years there have been significant advances in the identification of putative stem cells also referred to as “mesenchymal stem cells” (MSC) in dental tissues including the dental pulp. It is thought that MSC in dental pulp share certain similarities with MSC isolated from other tissues. However, cells in dental pulp are still poorly characterized. This study focused on the characterization of progenitor and stem cells in dental pulps of erupted and unerupted mice molars. Our study showed that dental pulps from unerupted molars contain a significant number of cells expressing CD90+/CD45-, CD117+/CD45-, Sca-1+/CD45- and little if any CD45+ cells. Our in vitro functional studies showed that dental pulp cells from unerupted molars displayed extensive osteo-dentinogenic potential but were unable to differentiate into chondrocytes and adipocytes. Dental pulp from erupted molars displayed a reduced number of cells, contained higher percentage of CD45+ and lower percentage of cells expressing CD90+/CD45-, CD117+/CD45- as compared to unerupted molars. In vitro functional assays demonstrated the ability of a small fraction of cells to differentiate into odontoblasts, osteoblasts, adipocytes and chondrocytes. There was a significant reduction in the osteo-dentinogenic potential of the pulp cells derived from erupted molars compared to unerupted molars. Furthermore, the adipogenic and chondrogenic differentiation of pulp cells from erupted molars was dependent on a long induction period and infrequent. Based on these findings we propose that the dental pulp of the erupted molars contain a small population of multipotent cells, whereas the dental pulp of the unerupted molars does not contain multipotent cells but is enriched in osteo-dentinogenic progenitors engaged in the formation of coronal and radicular odontoblasts. PMID:20193787

  12. A Novel Combinatorial Therapy With Pulp Stem Cells and Granulocyte Colony-Stimulating Factor for Total Pulp Regeneration

    PubMed Central

    Iohara, Koichiro; Murakami, Masashi; Takeuchi, Norio; Osako, Yohei; Ito, Masataka; Ishizaka, Ryo; Utunomiya, Shinji; Nakamura, Hiroshi; Matsushita, Kenji

    2013-01-01

    Treatment of deep caries with pulpitis is a major challenge in dentistry. Stem cell therapy represents a potential strategy to regenerate the dentin-pulp complex, enabling conservation and restoration of teeth. The objective of this study was to assess the efficacy and safety of pulp stem cell transplantation as a prelude for the impending clinical trials. Clinical-grade pulp stem cells were isolated and expanded according to good manufacturing practice conditions. The absence of contamination, abnormalities/aberrations in karyotype, and tumor formation after transplantation in an immunodeficient mouse ensured excellent quality control. After autologous transplantation of pulp stem cells with granulocyte-colony stimulating factor (G-CSF) in a dog pulpectomized tooth, regenerated pulp tissue including vasculature and innervation completely filled in the root canal, and regenerated dentin was formed in the coronal part and prevented microleakage up to day 180. Transplantation of pulp stem cells with G-CSF yielded a significantly larger amount of regenerated dentin-pulp complex compared with transplantation of G-CSF or stem cells alone. Also noteworthy was the reduction in the number of inflammatory cells and apoptotic cells and the significant increase in neurite outgrowth compared with results without G-CSF. The transplanted stem cells expressed angiogenic/neurotrophic factors. It is significant that G-CSF together with conditioned medium of pulp stem cells stimulated cell migration and neurite outgrowth, prevented cell death, and promoted immunosuppression in vitro. Furthermore, there was no evidence of toxicity or adverse events. In conclusion, the combinatorial trophic effects of pulp stem cells and G-CSF are of immediate utility for pulp/dentin regeneration, demonstrating the prerequisites of safety and efficacy critical for clinical applications. PMID:23761108

  13. Stimulation of angiogenesis, neurogenesis and regeneration by side population cells from dental pulp.

    PubMed

    Ishizaka, Ryo; Hayashi, Yuki; Iohara, Koichiro; Sugiyama, Masahiko; Murakami, Masashi; Yamamoto, Tsubasa; Fukuta, Osamu; Nakashima, Misako

    2013-03-01

    Mesenchymal stem cells (MSCs) have been used for cell therapy in various experimental disease models. However, the regenerative potential of MSCs from different tissue sources and the influence of the tissue niche have not been investigated. In this study, we compared the regenerative potential of dental pulp, bone marrow and adipose tissue-derived CD31(-) side population (SP) cells isolated from an individual porcine source. Pulp CD31(-) SP cells expressed the highest levels of angiogenic/neurotrophic factors and had the highest migration activity. Conditioned medium from pulp CD31(-) SP cells produced potent anti-apoptotic activity and neurite outgrowth, compared to those from bone marrow and adipose CD31(-) SP cells. Transplantation of pulp CD31(-) SP cells in a mouse hindlimb ischemia model produced higher blood flow and capillary density than transplantation of bone marrow and adipose CD31(-) SP cells. Motor function recovery and infarct size reduction were greater with pulp CD31(-) SP cells. Pulp CD31(-) SP cells induced maximal angiogenesis, neurogenesis and pulp regeneration in ectopic transplantation models compared to other tissue sources. These results demonstrate that pulp stem cells have higher angiogenic, neurogenic and regenerative potential and may therefore be superior to bone marrow and adipose stem cells for cell therapy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. A Smart Colorful Supercapacitor with One Dimensional Photonic Crystals.

    PubMed

    Liu, Cihui; Liu, Xing; Xuan, Hongyun; Ren, Jiaoyu; Ge, Liqin

    2015-12-22

    To meet the pressing demands for portable and flexible equipment in contemporary society, developing flexible, lightweight, and sustainable supercapacitor systems with large power densities, long cycle life, and ease of strongly required. However, estimating the state-of-charge of existing supercapacitors is difficult, and thus their service life is limited. In this study, we fabricate a flexible color indicative supercapacitor device with mesoporous polyaniline (mPANI)/Poly(N-Isopropyl acrylamide-Graphene Oxide-Acrylic Acid) (P(NiPPAm-GO-AA)) one dimensional photonic crystals (1DPCs) as the electrode material through a low-cost, eco-friendly, and scalable fabrication process. We found that the state-of-charge could be monitored by the structural color oscillation due to the change in the photonic band gap position of the 1DPCs. The flexible 1DPCs supercapacitor is thin at 3 mm and exhibits good specific capacitance of 22.6 F g(-1) with retention of 91.1% after 3,000 cycles. This study shows the application of the 1DPCs supercapacitor as a visual ultrathin power source. The technology may find many applications in future wearable electronics.

  15. A Smart Colorful Supercapacitor with One Dimensional Photonic Crystals

    PubMed Central

    Liu, Cihui; Liu, Xing; Xuan, Hongyun; Ren, Jiaoyu; Ge, Liqin

    2015-01-01

    To meet the pressing demands for portable and flexible equipment in contemporary society, developing flexible, lightweight, and sustainable supercapacitor systems with large power densities, long cycle life, and ease of strongly required. However, estimating the state-of-charge of existing supercapacitors is difficult, and thus their service life is limited. In this study, we fabricate a flexible color indicative supercapacitor device with mesoporous polyaniline (mPANI)/Poly(N-Isopropyl acrylamide-Graphene Oxide-Acrylic Acid) (P(NiPPAm-GO-AA)) one dimensional photonic crystals (1DPCs) as the electrode material through a low-cost, eco-friendly, and scalable fabrication process. We found that the state-of-charge could be monitored by the structural color oscillation due to the change in the photonic band gap position of the 1DPCs. The flexible 1DPCs supercapacitor is thin at 3 mm and exhibits good specific capacitance of 22.6 F g−1 with retention of 91.1% after 3,000 cycles. This study shows the application of the 1DPCs supercapacitor as a visual ultrathin power source. The technology may find many applications in future wearable electronics. PMID:26689375

  16. A Smart Colorful Supercapacitor with One Dimensional Photonic Crystals

    NASA Astrophysics Data System (ADS)

    Liu, Cihui; Liu, Xing; Xuan, Hongyun; Ren, Jiaoyu; Ge, Liqin

    2015-12-01

    To meet the pressing demands for portable and flexible equipment in contemporary society, developing flexible, lightweight, and sustainable supercapacitor systems with large power densities, long cycle life, and ease of strongly required. However, estimating the state-of-charge of existing supercapacitors is difficult, and thus their service life is limited. In this study, we fabricate a flexible color indicative supercapacitor device with mesoporous polyaniline (mPANI)/Poly(N-Isopropyl acrylamide-Graphene Oxide-Acrylic Acid) (P(NiPPAm-GO-AA)) one dimensional photonic crystals (1DPCs) as the electrode material through a low-cost, eco-friendly, and scalable fabrication process. We found that the state-of-charge could be monitored by the structural color oscillation due to the change in the photonic band gap position of the 1DPCs. The flexible 1DPCs supercapacitor is thin at 3 mm and exhibits good specific capacitance of 22.6 F g-1 with retention of 91.1% after 3,000 cycles. This study shows the application of the 1DPCs supercapacitor as a visual ultrathin power source. The technology may find many applications in future wearable electronics.

  17. Local myogenic pulp-derived cell injection enhances craniofacial muscle regeneration in vivo.

    PubMed

    Jung, J E; Song, M J; Shin, S; Choi, Y J; Kim, K H; Chung, C J

    2017-02-01

    To enhance myogenic differentiation in pulp cells isolated from extracted premolars by epigenetic modification using a DNA demethylation agent, 5-aza-2'-deoxycytidine (5-Aza), and to evaluate the potent stimulatory effect of 5-Aza-treated pulp cell injection for craniofacial muscle regeneration in vivo. Pulp cells were isolated from premolars extracted for orthodontic purposes from four adults (age range, 18-22.1 years). Levels of myogenic differentiation and functional contraction response in vitro were compared between pulp cells with or without pre-treatment of 5-Aza. Changes in muscle regeneration in response to green fluorescent protein (GFP)-labelled myogenic pulp cell injection in vivo were evaluated using a cardiotoxin (CTX)-induced muscle injury model of the gastrocnemius as well as the masseter muscle in mice. Pre-treatment of 5-Aza in pulp cells stimulated myotube formation, myogenic differentiation in terms of desmin and myogenin expression, and the level of collagen gel contraction. The local injection of 5-Aza pre-treated myogenic pulp cells was engrafted into the host tissue and indicated signs of enhanced muscle regeneration in both the gastrocnemius and the masseter muscles. The epigenetic modification of pulp cells from extracted premolars and the local injection of myogenic pulp cells may stimulate craniofacial muscles regeneration in vivo. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Testing of the cytotoxic effects of sulfate pulp mill waste waters.

    PubMed

    Cernáková, M; Golis, E

    1994-01-01

    The effect of 22 technological waste water samples and of some standards was tested on bacteria, fungi, chlorococcal algae, flagellata, plant cells, cells of Tubifex tubifex, hamster cells V79 and the fish Lebistes reticulatus. Of these 22 samples, some inhibition of cell life processes was displayed by the black liquor formed in the production of paper pulp and viscose pulp, by the waste solution produced during the preparation of bleaching agents for paper pulp and viscose pulp, and by the residual liquor after hypochlorite treatment of paper pulp.

  19. Role of Angiogenesis in Endodontics: Contributions of Stem Cells and Proangiogenic and Antiangiogenic Factors to Dental Pulp Regeneration

    PubMed Central

    Saghiri, Mohammad Ali; Asatourian, Armen; Sorenson, Christine M.; Sheibani, Nader

    2016-01-01

    Introduction Dental pulp regeneration is a part of regenerative endodontics, which includes isolation, propagation, and re-transplantation of stem cells inside the prepared root canal space. The formation of new blood vessels through angiogenesis is mandatory to increase the survival rate of re-transplanted tissues. Angiogenesis is defined as the formation of new blood vessels from preexisting capillaries, which has great importance in pulp regeneration and homeostasis. Here the contribution of human dental pulp stem cells and proangiogenic and antiangiogenic factors to angiogenesis process and regeneration of dental pulp is reviewed. Methods A search was performed on the role of angiogenesis in dental pulp regeneration from January 2005 through April 2014. The recent aspects of the relationship between angiogenesis, human dental pulp stem cells, and proangiogenic and antiangiogenic factors in regeneration of dental pulp were assessed. Results Many studies have indicated an intimate relationship between angiogenesis and dental pulp regeneration. The contribution of stem cells and mechanical and chemical factors to dental pulp regeneration has been previously discussed. Conclusions Angiogenesis is an indispensable process during dental pulp regeneration. The survival of inflamed vital pulp and engineered transplanted pulp tissue are closely linked to the process of angiogenesis at sites of application. However, the detailed regulatory mechanisms involved in initiation and progression of angiogenesis in pulp tissue require investigation. PMID:25649306

  20. Monitoring Notch Signaling-Associated Activation of Stem Cell Niches within Injured Dental Pulp

    PubMed Central

    Mitsiadis, Thimios A.; Catón, Javier; Pagella, Pierfrancesco; Orsini, Giovanna; Jimenez-Rojo, Lucia

    2017-01-01

    Dental pulp stem/progenitor cells guarantee tooth homeostasis, repair and regeneration throughout life. The decision between renewal and differentiation of these cells is influenced by physical and molecular interactions with stromal cells and extracellular matrix molecules forming the specialized microenvironment of dental pulp stem cell niches. Here we study the activation of putative pulp niches after tooth injury through the upregulation of Notch signaling pathway. Notch1, Notch2, and Notch3 molecules were used as markers of dental pulp stem/progenitor cells. Upon dental injury, Notch1 and Notch3 are detected in cells related to vascular structures suggesting a role of these proteins in the activation of specific pulpal perivascular niches. In contrast, a population of Notch2-positive cells that are actively proliferative is observed in the apical part of the pulp. Kinetics of these cells is followed up with a lipophilic DiI labeling, showing that apical pulp cells migrate toward the injury site where dynamic regenerative/repair events occur. The knowledge of the activation and regulation of dental pulp stem/progenitor cells within their niches in pathologic conditions may be helpful for the realization of innovative dental treatments in the near future. PMID:28611689

  1. A modified efficient method for dental pulp stem cell isolation.

    PubMed

    Raoof, Maryam; Yaghoobi, Mohammad Mehdi; Derakhshani, Ali; Kamal-Abadi, Ali Mohammadi; Ebrahimi, Behnam; Abbasnejad, Mehdi; Shokouhinejad, Noushin

    2014-03-01

    Dental pulp stem cells can be used in regenerative endodontic therapy. The aim of this study was to introduce an efficient method for dental pulp stem cells isolation. In this in-vitro study, 60 extracted human third molars were split and pulp tissue was extracted. Dental pulp stem cells were isolated by the following three different methods: (1) digestion of pulp by collagenase/dispase enzyme and culture of the released cells; (2) outgrowth of the cells by culture of undigested pulp pieces; (3) digestion of pulp tissue pieces and fixing them. The cells were cultured in minimum essential medium alpha modification (αMEM) medium supplemented with 20% fetal bovine serum(FBS) in humid 37°C incubator with 5% CO 2. The markers of stem cells were studied by reverse transcriptase polymerase chain reaction (PCR). The student t-test was used for comparing the means of independent groups. P <0.05 was considered as significant. The results indicated that by the first method a few cell colonies with homogenous morphology were detectable after 4 days, while in the outgrowth method more time was needed (10-12 days) to allow sufficient numbers of heterogeneous phenotype stem cells to migrate out of tissue. Interestingly, with the improved third method, we obtained stem cells successfully with about 60% efficiency after 2 days. The results of RT-PCR suggested the expression of Nanog, Oct-4, and Nucleostemin markers in the isolated cells from dental pulps. This study proposes a new method with high efficacy to obtain dental pulp stem cells in a short time.

  2. Wide-angle Spectrally Selective Perfect Absorber by Utilizing Dispersionless Tamm Plasmon Polaritons

    PubMed Central

    Xue, Chun-hua; Wu, Feng; Jiang, Hai-tao; Li, Yunhui; Zhang, Ye-wen; Chen, Hong

    2016-01-01

    We theoretically investigate wide-angle spectrally selective absorber by utilizing dispersionless Tamm plasmon polaritons (TPPs) under TM polarization. TPPs are resonant tunneling effects occurring on the interface between one-dimensional photonic crystals (1DPCs) and metal slab, and their dispersion properties are essentially determined by that of 1DPCs. Our investigations show that dispersionless TPPs can be excited in 1DPCs containing hyperbolic metamaterials (HMMs) on metal substrate. Based on dispersionless TPPs, electromagnetic waves penetrate into metal substrate and are absorbed entirely by lossy metal, exhibiting a narrow-band and wide-angle perfect absorption for TM polarization. Our results exhibit nearly perfect absorption with a value over 98% in the angle of incidence region of 0–80 degree. PMID:27991565

  3. Promotive Effect of Minoxidil Combined with All-trans Retinoic Acid (tretinoin) on Human Hair Growth in Vitro

    PubMed Central

    Kwon, Oh Sang; Pyo, Hyun Keol; Oh, Youn Jin; Han, Ji Hyun; Lee, Se Rah; Chung, Jin Ho; Eun, Hee Chul

    2007-01-01

    Minoxidil induces hair growth in male pattern baldness and prolongs the anagen phase. All-trans retinoic acid (ATRA) has been reported to act synergistically with minoxidil in vivo: they can enhance more dense hair regrowth than either compound alone. We evaluated the effect of minoxidil combined with ATRA on hair growth in vitro. The effect of co-treatment of minoxidil and ATRA on hair growth was studied in hair follicle organ culture. In cultured human dermal papilla cells (DPCs) and normal human epidermal keratinocytes, the expressions of Erk, Akt, Bcl-2, Bax, P53 and P21 were evaluated by immunoblot analysis. Minoxidil plus ATRA additively promoted hair growth in vitro, compared with minoxidil alone. In addition, minoxidil plus ATRA elevated phosphorylated Erk, phosphorylated Akt and the ratio of Bcl-2/Bax, but decreased the expressions of P53 and P21 more effectively than by minoxidil alone. Our results suggest that minoxidil plus ATRA would additively enhance hair growth by mediating dual functions: 1) the prolongation of cell survival by activating the Erk and Akt signaling pathways, and 2) the prevention of apoptosis of DPCs and epithelial cells by increasing the ratio of Bcl-2/Bax and downregulating the expressions of P53 and P21. PMID:17449938

  4. Expression of insulin-like growth factor-1 and proliferating cell nuclear antigen in human pulp cells of teeth with complete and incomplete root development.

    PubMed

    Caviedes-Bucheli, J; Canales-Sánchez, P; Castrillón-Sarria, N; Jovel-Garcia, J; Alvarez-Vásquez, J; Rivero, C; Azuero-Holguín, M M; Diaz, E; Munoz, H R

    2009-08-01

    To quantify the expression of insulin-like growth factor-1 (IGF-1) and proliferating cell nuclear antigen (PCNA) in human pulp cells of teeth with complete or incomplete root development, to support the specific role of IGF-1 in cell proliferation during tooth development and pulp reparative processes. Twenty six pulp samples were obtained from freshly extracted human third molars, equally divided in two groups according to root development stage (complete or incomplete root development). All samples were processed and immunostained to determine the expression of IGF-1 and PCNA in pulp cells. Sections were observed with a light microscope at 80x and morphometric analyses were performed to calculate the area of PCNA and IGF-1 immunostaining using digital image software. Mann-Whitney's test was used to determine statistically significant differences between groups (P < 0.05) for each peptide and the co-expression of both. Expression of IGF-1 and PCNA was observed in all human pulp samples with a statistically significant higher expression in cells of pulps having complete root development (P = 0.0009). Insulin-like growth factor-1 and PCNA are expressed in human pulp cells, with a significant greater expression in pulp cells of teeth having complete root development.

  5. Characterization of Coronal Pulp Cells and Radicular Pulp Cells in Human Teeth.

    PubMed

    Honda, Masaki; Sato, Momoko; Toriumi, Taku

    2017-09-01

    Dental pulp has garnered much attention as an easily accessible postnatal tissue source of high-quality mesenchymal stem cells (MSCs). Since the discovery of dental pulp stem cells (DPSCs) in permanent third molars, stem cells from human exfoliated deciduous teeth and from supernumerary teeth (mesiodentes) have been identified as a population distinct from DPSCs. Dental pulp is divided into 2 parts based on the developing stage: the coronal pulp and the radicular pulp. Root formation begins after the crown part is completed. We performed a sequential study to examine the differences between the characteristics of coronal pulp cells (CPCs) and radicular pulp cells (RPCs) from permanent teeth, mesiodentes, and deciduous teeth. Interestingly, although we have not obtained any data on the difference between CPCs and RPCs in permanent teeth, there are some differences between the characteristics of CPCs and RPCs from mesiodentes and deciduous teeth. The MSC characteristics differed between the RPCs and CPCs, and the reprogramming efficiency for the generation of induced pluripotent stem cells was greater in RPCs than in CPCs from deciduous teeth. The proportion of CD105 + cells in CPCs versus that in RPCs varied in mesiodentes but not in permanent teeth. The results indicate that the proportion of CD105 + cells is an effective means of characterizing dental pulp cells in mesiodentes. Taken together, the stem cells in deciduous and supernumerary teeth share many characteristics, such as a high proliferation rate and an immunophenotype similar to that of DPSCs. Thus, mesiodentes accidentally encountered on radiographs by the general dental practitioner might be useful for stem cell therapy. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. Pulp Cell Tracking by Radionuclide Imaging for Dental Tissue Engineering

    PubMed Central

    Souron, Jean-Baptiste; Petiet, Anne; Decup, Franck; Tran, Xuan Vinh; Lesieur, Julie; Poliard, Anne; Le Guludec, Dominique; Letourneur, Didier; Chaussain, Catherine; Rouzet, Francois

    2014-01-01

    Pulp engineering with dental mesenchymal stem cells is a promising therapy for injured teeth. An important point is to determine the fate of implanted cells in the pulp over time and particularly during the early phase following implantation. Indeed, the potential engraftment of the implanted cells in other organs has to be assessed, in particular, to evaluate the risk of inducing ectopic mineralization. In this study, our aim was to follow by nuclear imaging the radiolabeled pulp cells after implantation in the rat emptied pulp chamber. For that purpose, indium-111-oxine (111In-oxine)-labeled rat pulp cells were added to polymerizing type I collagen hydrogel to obtain a pulp equivalent. This scaffold was implanted in the emptied pulp chamber space in the upper first rat molar. Labeled cells were then tracked during 3 weeks by helical single-photon emission computed tomography (SPECT)/computed tomography performed on a dual modality dedicated small animal camera. Negative controls were performed using lysed radiolabeled cells obtained in a hypotonic solution. In vitro data indicated that 111In-oxine labeling did not affect cell viability and proliferation. In vivo experiments allowed a noninvasive longitudinal follow-up of implanted living cells for at least 3 weeks and indicated that SPECT signal intensity was related to implanted cell integrity. Notably, there was no detectable systemic release of implanted cells from the tooth. In addition, histological analysis of the samples showed mitotically active fibroblastic cells as well as neoangiogenesis and nervous fibers in pulp equivalents seeded with entire cells, whereas pulp equivalents prepared from lysed cells were devoid of cell colonization. In conclusion, our study demonstrates that efficient labeling of pulp cells can be achieved and, for the first time, that these cells can be followed up after implantation in the tooth by nuclear imaging. Furthermore, it appears that grafted cells retained the label and are viable to follow the repair process. This technique is expected to be of major interest for monitoring implanted cells in innovative therapies for injured teeth. PMID:23789732

  7. Electrophysiologic and functional evaluations of regenerated facial nerve defects with a tube containing dental pulp cells in rats.

    PubMed

    Sasaki, Ryo; Matsumine, Hajime; Watanabe, Yorikatsu; Takeuchi, Yuichi; Yamato, Masayuki; Okano, Teruo; Miyata, Mariko; Ando, Tomohiro

    2014-11-01

    Dental pulp tissue contains Schwann and neural progenitor cells. Tissue-engineered nerve conduits with dental pulp cells promote facial nerve regeneration in rats. However, no nerve functional or electrophysiologic evaluations were performed. This study investigated the compound muscle action potential recordings and facial functional analysis of dental pulp cell regenerated nerve in rats. A silicone tube containing rat dental pulp cells in type I collagen gel was transplanted into a 7-mm gap of the buccal branch of the facial nerve in Lewis rats; the same defect was created in the marginal mandibular branch, which was ligatured. Compound muscle action potential recordings of vibrissal muscles and facial functional analysis with facial palsy score of the nerve were performed. Tubulation with dental pulp cells showed significantly lower facial palsy scores than the autograft group between 3 and 10 weeks postoperatively. However, the dental pulp cell facial palsy scores showed no significant difference from those of autograft after 11 weeks. Amplitude and duration of compound muscle action potentials in the dental pulp cell group showed no significant difference from those of the intact and autograft groups, and there was no significant difference in the latency of compound muscle action potentials between the groups at 13 weeks postoperatively. However, the latency in the dental pulp cell group was prolonged more than that of the intact group. Tubulation with dental pulp cells could recover facial nerve defects functionally and electrophysiologically, and the recovery became comparable to that of nerve autografting in rats.

  8. Trophic Effects and Regenerative Potential of Mobilized Mesenchymal Stem Cells From Bone Marrow and Adipose Tissue as Alternative Cell Sources for Pulp/Dentin Regeneration.

    PubMed

    Murakami, Masashi; Hayashi, Yuki; Iohara, Koichiro; Osako, Yohei; Hirose, Yujiro; Nakashima, Misako

    2015-01-01

    Dental pulp stem cell (DPSC) subsets mobilized by granulocyte-colony-stimulating factor (G-CSF) are safe and efficacious for complete pulp regeneration. The supply of autologous pulp tissue, however, is very limited in the aged. Therefore, alternative sources of mesenchymal stem/progenitor cells (MSCs) are needed for the cell therapy. In this study, DPSCs, bone marrow (BM), and adipose tissue (AD)-derived stem cells of the same individual dog were isolated using G-CSF-induced mobilization (MDPSCs, MBMSCs, and MADSCs). The positive rates of CXCR4 and G-CSFR in MDPSCs were similar to MADSCs and were significantly higher than those in MBMSCs. Trophic effects of MDPSCs on angiogenesis, neurite extension, migration, and antiapoptosis were higher than those of MBMSCs and MADSCs. Pulp-like loose connective tissues were regenerated in all three MSC transplantations. Significantly higher volume of regenerated pulp and higher density of vascularization and innervation were observed in response to MDPSCs compared to MBMSC and MADSC transplantation. Collagenous matrix containing dentin sialophosphoprotein (DSPP)-positive odontoblast-like cells was the highest in MBMSCs and significantly higher in MADSCs compared to MDPSCs. MBMSCs and MADSCs, therefore, have potential for pulp regeneration, although the volume of regenerated pulp tissue, angiogenesis, and reinnervation, were less. Thus, in conclusion, an alternative cell source for dental pulp/dentin regeneration are stem cells from BM and AD tissue.

  9. Uremia Induces Dental Pulp Ossification but Reciprocally Inhibits Adjacent Alveolar Bone Osteogenesis.

    PubMed

    Yang, Chih-Yu; Chang, Zee-Fen; Chau, Yat-Pang; Chen, Ann; Lee, Oscar Kuang-Sheng; Yang, An-Hang

    2015-11-01

    Uremic patients are predisposed to atrophy of the alveolar bone and narrowing of the dental pulp chamber. Such pulp chamber changes have only been diagnosed radiologically; however, this has not been supported by any pathological evidence. We used a uremic rat model with secondary hyperparathyroidism induced by 5/6 nephrectomy surgery and high-phosphate diet to examine the dental pulp and adjacent alveolar bone pathology. In addition, we collected pulp tissues for real-time PCR. We found an opposite histopathological presentation of the ossified dental pulp and the osteomalacic adjacent alveolar bone. Furthermore, pulp cells with positive staining for Thy-1, a surrogate stem cell marker, were significantly reduced in the pulp of uremic rats compared to the controls, indicating a paucity of stem cells. This was further evidenced by the reduced pulp expression of dickkopf-1 (Dkk-1), a Wnt/β-catenin signaling inhibitor produced by mesenchymal stem cells. In contrast, expressions of receptor activator of nuclear factor κB ligand (RANKL) and RANK in uremic pulp were up-regulated, probably to counteract the ossifying process of uremic pulp. In conclusion, uremic pulp ossifications were associated with a paucity of stem cells and dysregulated Dkk-1 and RANKL signaling systems, further shifting the imbalance toward osteogenesis. Strategies to counteract such an imbalance may offer a potential therapeutic target to improve dental health in uremic patients, which warrants further interventional studies.

  10. Regenerative Endodontics in light of the stem cell paradigm

    PubMed Central

    Rosa, Vinicius; Botero, Tatiana M.; Nör, Jacques E.

    2013-01-01

    Stem cells play a critical role in development and in tissue regeneration. The dental pulp contains a small sub-population of stem cells that are involved in the response of the pulp to caries progression. Specifically, stem cells replace odontoblasts that have undergone cell death as a consequence of the cariogenic challenge. Stem cells also secrete factors that have the potential to enhance pulp vascularization and provide the oxygen and nutrients required for the dentinogenic response that is typically observed in teeth with deep caries. However, the same angiogenic factors that are required for dentin regeneration may ultimately contribute to the demise of the pulp by enhancing vascular permeability and interstitial pressure. Recent studies focused on the biology of dental pulp stem cells revealed that the multipotency and angiogenic capacity of these cells could be exploited therapeutically in dental pulp tissue engineering. Collectively, these findings suggest new treatment paradigms in the field of Endodontics. The goal of this review is to discuss the potential impact of dental pulp stem cells to Regenerative Endodontics. PMID:21726222

  11. Synthesis of Sequence-Specific DNA-Protein Conjugates via a Reductive Amination Strategy

    PubMed Central

    Wickramaratne, Susith; Mukherjee, Shivam; Villalta, Peter W.; Schärer, Orlando D.; Tretyakova, Natalia

    2013-01-01

    DNA-protein cross-links (DPCs) are ubiquitous, structurally diverse DNA lesions formed upon exposure to bis-electrophiles, transition metals, UV light, and reactive oxygen species. Because of their super-bulky, helix distorting nature, DPCs interfere with DNA replication, transcription, and repair, potentially contributing to mutagenesis and carcinogenesis. However, the biological implications of DPC lesions have not been fully elucidated due to the difficulty of generating site-specific DNA substrates representative of DPC lesions formed in vivo. In the present study, a novel approach involving post-synthetic reductive amination has been developed to prepare a range of hydrolytically stable lesions structurally mimicking the DPCs produced between the N7 position of guanine in DNA and basic lysine or arginine side chains of proteins and peptides. PMID:23885807

  12. Functionalized scaffolds to control dental pulp stem cell fate

    PubMed Central

    Piva, Evandro; Silva, Adriana F.; Nör, Jacques E.

    2014-01-01

    Emerging understanding about interactions between stem cells, scaffolds and morphogenic factors has accelerated translational research in the field of dental pulp tissue engineering. Dental pulp stem cells constitute a sub-population of cells endowed with self-renewal and multipotency. Dental pulp stem cells seeded in biodegradable scaffolds and exposed to dentin-derived morphogenic signals give rise to a pulp-like tissue capable of generating new dentin. Notably, dentin-derived proteins are sufficient to induce dental pulp stem cell differentiation into odontoblasts. Ongoing work is focused on developing ways of mobilizing dentin-derived proteins and disinfecting the root canal of necrotic teeth without compromising the morphogenic potential of these signaling molecules. On the other hand, dentin by itself does not appear to be capable of inducing endothelial differentiation of dental pulp stem cells, despite the well known presence of angiogenic factors in dentin. This is particularly relevant in the context of dental pulp tissue engineering in full root canals, where access to blood supply is limited to the apical foramina. To address this challenge, scientists are looking at ways to use the scaffold as a controlled release device for angiogenic factors. The aim of this manuscript is to present and discuss current strategies to functionalize injectable scaffolds and customize them for dental pulp tissue engineering. The long-term goal of this work is to develop stem cell-based therapies that enable the engineering of functional dental pulps capable of generating new tubular dentin in humans. PMID:24698691

  13. Role of CD146 Enrichment in Purification of Stem Cells Derived from Dental Pulp Polyp.

    PubMed

    Tavangar, Maryam Sadat; Hosseini, Seyed-Mojtaba; Dehghani-Nazhvani, Ali; Monabati, Ahmad

    2017-01-01

    Hyperplastic pulpitis (pulp polyp) tissues contains cells with stem cell properties similar to that of the dental pulp stem cells (DPSCs). It has also been shown that CD146 enrichment can homogenize the cultures of DPSCs and enhance the colony forming potentials of their cultures. This study determines whether CD146 enrichment can help purifying the stem cells from heterogeneous cultures of the pulp polyp derived stem cells (PPSCs). Healthy dental pulps and pulp polyp tissues were enzymatically digested and the harvested single cells were sorted according to the presence of CD146 marker. The sorted cells were seeded directly for colony forming unit (CFU) assays of the negative and positive portions. Flowcytometric antigen panel and differentiation assays were used to see if these cells conform with mesenchymal stems cells (MSCs) definition. Differences between the between groups was assessed using independent t-test. The level of significance was set at 0.05. Normal pulp tissue derived cells formed higher colonies (42.5±16.8 per 10 4 cells) than the pulp polyp (17.75±8.9 per 10 4 cells) ( P =0.015). The CD146 positive portion of the polyp derived cells formed an average of 91.5±29.7 per 10 4 cells per CFU. On the other hand, CD146 negative portion did not show any colonies ( P <0.001). Both resources showed cells with flowcytometric antigen panel and differentiation potentials conforming to MSC definition. The entire CFU of PPSCs were formed within CD146 enriched portion. It seems that CD146 enrichment may reduce the number of possible fibroblasts of the pulp polyps and may further homogenize the culture of the PPSCs.

  14. Two Distinct Processes of Bone-like Tissue Formation by Dental Pulp Cells after Tooth Transplantation

    PubMed Central

    Yukita, Akira; Yoshiba, Kunihiko; Yoshiba, Nagako; Takahashi, Masafumi; Nakamura, Hiroaki

    2012-01-01

    Dental pulp is involved in the formation of bone-like tissue in response to external stimuli. However, the origin of osteoblast-like cells constructing this tissue and the mechanism of their induction remain unknown. We therefore evaluated pulp mineralization induced by transplantation of a green fluorescent protein (GFP)–labeled tooth into a GFP-negative hypodermis of host rats. Five days after the transplantation, the upper pulp cavity became necrotic; however, cell-rich hard tissue was observed adjacent to dentin at the root apex. At 10 days, woven bone-like tissue was formed apart from the dentin in the upper pulp. After 20 days, these hard tissues expanded and became histologically similar to bone. GFP immunoreactivity was detected in the hard tissue-forming cells within the root apex as well as in the upper pulp. Furthermore, immunohistochemical observation of α–smooth muscle actin, a marker for undifferentiated cells, showed a positive reaction in cells surrounding this bone-like tissue within the upper pulp but not in those within the root apex. Immunoreactivities of Smad4, Runx2, and Osterix were detected in the hard tissue-forming cells within both areas. These results collectively suggest that the dental pulp contains various types of osteoblast progenitors and that these cells might thus induce bone-like tissue in severely injured pulp. PMID:22899860

  15. Antibacterial and Odontogenesis Efficacy of Mineral Trioxide Aggregate Combined with CO2 Laser Treatment.

    PubMed

    Hsu, Tuan-Ti; Yeh, Chia-Hung; Kao, Chia-Tze; Chen, Yi-Wen; Huang, Tsui-Hsien; Yang, Jaw-Ji; Shie, Ming-You

    2015-07-01

    Mineral trioxide aggregate (MTA) has been successfully used in clinical applications in endodontics. Studies show that the antibacterial effects of CO2 laser irradiation are highly efficient when bacteria are embedded in biofilm because of a photothermal mechanism. The aim of this study was to confirm the effects of CO2 laser irradiation on MTA with regard to both material characterization and cell viability. MTA was irradiated with a dental CO2 laser using directly mounted fiber optics in the wound healing mode with a spot area of 0.25 cm(2) and then stored in an incubator at 100% relative humidity and 37°C for 1 day to set. The human dental pulp cells cultured on MTA were analyzed along with their proliferation and odontogenic differentiation behaviors. The results indicate that the setting time of MTA after irradiation by the CO2 laser was significantly reduced to 118 minutes rather than the usual 143 minutes. The maximum diametral tensile strength and x-ray diffraction patterns were similar to those obtained without CO2 laser irradiation. However, the CO2 laser irradiation increased the amount of Ca and Si ions released from the MTA and regulated cell behavior. CO2 laser-irradiated MTA promoted odontogenic differentiation of hDPCs, with the increased formation of mineralized nodules on the substrate's surface. It also up-regulated the protein expression of multiple markers of odontogenic and the expression of dentin sialophosphoprotein protein. The current study provides new and important data about the effects of CO2 laser irradiation on MTA with regard to the decreased setting time and increased ion release. Taking cell functions into account, the Si concentration released from MTA with laser irradiation may be lower than a critical value, and this information could lead to the development of new regenerative therapies for dentin and periodontal tissue. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Regeneration of dental pulp by stem cells.

    PubMed

    Nakashima, M; Iohara, K

    2011-07-01

    Angiogenesis/vasculogenesis and neurogenesis are essential for pulp regeneration. Two subfractions of side-population (SP) cells, CD31(-)/CD146(-) SP cells and CD105(+) cells with angiogenic and neurogenic potential, were isolated by flow cytometry from canine dental pulp. In an experimental model of mouse hindlimb ischemia, transplantation of these cell populations resulted in an increase in blood flow, including high-density capillary formation. In a model of rat cerebral ischemia, stem cell transplantations enhanced neuronal regeneration and recovery from motor disability. Autologous transplantation of the CD31(-)/CD146(-) SP cells into an in vivo model of amputated pulp resulted in complete regeneration of pulp tissue with vascular and neuronal processes within 14 days. The transplanted cells expressed pro-angiogenic factors, implying trophic action on endothelial cells. Autologous transplantation of CD31(-)/CD146(-) SP cells or CD105(+) cells with stromal-cell-derived factor-1 (SDF-1) into root canals after whole pulp removal of mature teeth resulted in complete regeneration of pulp replete with nerves and vasculature by day 14, followed by dentin formation along the dentinal wall by day 35. Therefore, the potential utility of fractionated SP cells and CD105(+) cells in angiogenesis and neurogenesis was demonstrated by treatment of limb and cerebral ischemia following pulpotomy and pulpectomy.

  17. Fibroblast growth factor-2 regulates the cell function of human dental pulp cells.

    PubMed

    Shimabukuro, Yoshio; Ueda, Maki; Ozasa, Masao; Anzai, Jun; Takedachi, Masahide; Yanagita, Manabu; Ito, Masako; Hashikawa, Tomoko; Yamada, Satoru; Murakami, Shinya

    2009-11-01

    Homeostasis and tissue repair of dentin-pulp complex are attributed to dental pulp tissue and several growth factors. Dental pulp cells play a pivotal role in homeostasis of dentin-pulp complex and tissue responses after tooth injury. Among these cytokines, fibroblast growth factor (FGF)-2 has multifunctional biologic activity and is known as a signaling molecule that induces tissue regeneration. In this study, we examined the effects of FGF-2 on growth, migration, and differentiation of human dental pulp cells (HDPC). HDPC were isolated from healthy dental pulp. Cellular response was investigated by [(3)H]-thymidine incorporation into DNA. Cytodifferentiation was examined by alkaline phosphatase (ALPase) assay and cytochemical staining of calcium by using alizarin red. Migratory activity was determined by counting the cells migrating into cleared area that had introduced with silicon block. FGF-2 activated HDPC growth and migration but suppressed ALPase activity and calcified nodule formation. Interestingly, HDPC, which had been pretreated with FGF-2, showed increased ALPase activity and calcified nodule formation when subsequently cultured without FGF-2. These results suggest that FGF-2 potentiates cell growth and accumulation of HDPC that notably did not disturb cytodifferentiation of the cells later. Thus, FGF-2 is a favorable candidate for pulp capping agent. These results provide new evidence for the possible involvement of FGF-2 not only in homeostasis but also in regeneration of dentin-pulp complex.

  18. Anti-PDGF receptor β antibody-conjugated squarticles loaded with minoxidil for alopecia treatment by targeting hair follicles and dermal papilla cells.

    PubMed

    Aljuffali, Ibrahim A; Pan, Tai-Long; Sung, Calvin T; Chang, Shu-Hao; Fang, Jia-You

    2015-08-01

    This study developed lipid nanocarriers, called squarticles, conjugated with anti-platelet-derived growth factor (PDGF)-receptor β antibody to determine whether targeted Minoxidil (MXD) delivery to the follicles and dermal papilla cells (DPCs) could be achieved. Squalene and hexadecyl palmitate (HP) were used as the matrix of the squarticles. The PDGF-squarticles showed a mean diameter and zeta potential of 195 nm and -46 mV, respectively. Nanoparticle encapsulation enhanced MXD porcine skin deposition from 0.11 to 0.23 μg/mg. The antibody-conjugated nanoparticles ameliorated follicular uptake of MXD by 3-fold compared to that of the control solution in the in vivo mouse model. Both vertical and horizontal skin sections exhibited a wide distribution of nanoparticles in the follicles, epidermis, and deeper skin strata. The encapsulated MXD moderately elicited proliferation of DPCs and vascular endothelial growth factor (VEGF) expression. The active targeting of PDGF-squarticles may be advantageous to improving the limited success of alopecia therapy. Topical use of minoxidil is only one of the very few treatment options for alopecia. Nonetheless, the current delivery method is far from ideal. In this article, the authors developed lipid nanocarriers with anti-platelet-derived growth factor receptor ? antibody to target dermal papilla cells, and showed enhanced uptake of minoxidil. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Regenerative Endodontics: Barriers and Strategies for Clinical Translation

    PubMed Central

    Kim, Sahng G.; Zhou, Jian; Ye, Ling; Cho, Shoko; Suzuki, Takahiro; Fu, Susan Y.; Yang, Rujing; Zhou, Xuedong; Mao, Jeremy J.

    2014-01-01

    SYNOPSIS Despite a great deal of enthusiasm and effort, regenerative endodontics has encountered substantial challenges towards clinical translation. Recent adoption by the American Dental Association (ADA) of evoked pulp bleeding in immature permanent teeth is an important step for regenerative endodontics. However, there is no regenerative therapy for the majority of endodontic diseases. Simple recapitulation of cell therapy and tissue engineering strategies that are under development for other organ systems has not led to clinical translation in regeneration endodontics. Dental pulp stem cells may appear to be a priori choice for dental pulp regeneration. However, dental pulp stem cells may not be available in a patient who is in need of pulp regeneration. Even if dental pulp stem cells are available autologously or perhaps allogeneically, one must address a multitude of scientific, regulatory and commercialization barriers, and unless these issues are resolved, transplantation of dental pulp stem cells will remain a scientific exercise, rather than a clinical reality. Recent work using novel biomaterial scaffolds and growth factors that orchestrate the homing of host endogenous cells represents a departure from traditional cell transplantation approaches and may accelerate clinical translation. Given the functions and scale of dental pulp and dentin, regenerative endodontics is poised to become one of the early biological solutions in regenerative dental medicine. PMID:22835543

  20. Biomimetic extracellular matrix mediated somatic stem cell differentiation: applications in dental pulp tissue regeneration

    PubMed Central

    Ravindran, Sriram; George, Anne

    2015-01-01

    Dental caries is one of the most widely prevalent infectious diseases in the world. It affects more than half of the world's population. The current treatment for necrotic dental pulp tissue arising from dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality making it prone for secondary infections. Over the past decade, several tissue-engineering approaches have attempted regeneration of the dental pulp tissue. Although several studies have highlighted the potential of dental stem cells, none have transitioned into a clinical setting owing to limited availability of dental stem cells and the need for growth factor delivery systems. Our strategy is to utilize the intact ECM of pulp cells to drive lineage specific differentiation of bone marrow derived mesenchymal stem cells. From a clinical perspective, pulp ECM scaffolds can be generated using cell lines and patient specific somatic stem cells can be used for regeneration. Our published results have shown the feasibility of using pulp ECM scaffolds for odontogenic differentiation of non-dental mesenchymal cells. This focused review discusses the issues surrounding dental pulp tissue regeneration and the potential of our strategy to overcome these issues. PMID:25954205

  1. Immunolocalization of bone-resorptive cytokines in rat pulp and periapical lesions following surgical pulp exposure.

    PubMed

    Tani-Ishii, N; Wang, C Y; Stashenko, P

    1995-08-01

    The bone-resorptive cytokines interleukin 1 (IL-1) and tumor necrosis factor (TNF) have been implicated in the pathogenesis of many chronic inflammatory diseases, including pulpitis and apical periodontitis.To further elucidate their role in these disorders, we have identified cells that express IL-1 alpha and TNF alpha in infected pulps and in developing rat periapical lesions after surgical pulp exposure. As detected by immunohistochemistry, IL-1 alpha- and TNF alpha-positive cells were present as early as 2 days after pulp exposure in both the pulp and periapical region. The numbers of cytokine-expressing cells increased up to day 4 in the pulp and up to day 30 in the periapex. In contrast, cells expressing IL-1 beta and TNF beta, the homologous forms of these mediators, were not found in pulp or periapical lesions during this period. Cells expressing IL-1 alpha and TNF alpha were identified primarily as macrophages and fibroblasts, with occasional staining of polymorphonuclear leukocytes. Osteoblasts and osteoclasts were also positive, whereas lymphocytes were negative. In general, cytokine-expressing cells were located proximal to abscesses and the root apex. These findings demonstrate that cells that express bone-resorptive cytokines IL-1 alpha and TNF alpha are present immediately after pulp exposure in this model, which supports the hypothesis that these mediators play a key role in pulpal and periapical pathogenesis, including the concomitant bone destruction. They also indicate that both resident connective tissue cells as well as infiltrating cells express bone-resorptive cytokines in response to infection in these lesions.

  2. Synthetic octacalcium phosphate-enhanced reparative dentine formation via induction of odontoblast differentiation.

    PubMed

    Wang, Xiaogu; Suzawa, Tetsuo; Miyauchi, Tomohiko; Zhao, Baohong; Yasuhara, Rika; Anada, Takahisa; Nakamura, Masanori; Suzuki, Osamu; Kamijo, Ryutaro

    2015-11-01

    Synthetic octacalcium phosphate (OCP) has been suggested to be a useful biomaterial for the regeneration of hard tissues, including bone. However, it remains unknown whether OCP induces dentine formation by dental pulp. We investigated biomineralization of dental pulp exposed to synthetic OCP in vitro and in vivo. When dental pulp was exposed directly to OCP, rapid formation of reparative dentine (RD) was induced and expression of dentine sialoprotein synthesis was observed in dental pulp adjacent to newly synthesized RD. OCP inhibited the proliferation of rat pulp cells and also promoted their odontoblastic differentiation in vitro, as alkaline phosphatase activity, mineralization of pulp cells and the expression level of dentine sialophosphoprotein were enhanced. Direct contact between OCP and pulp cells is required for OCP to exhibit its effects in vitro. The expression level of Runx2, a transcription factor whose downregulation is closely related to odontoblast differentiation, was downregulated in pulp cells cultured with OCP. Structural changes of OCP during culture were determined by Fourier transform infrared spectroscopy. OCP tended to be converted to carbonate hydroxyapatite after incubation with or without pulp cells, which may be analogous to biological apatite crystals. Taken together, our data suggest that synthetic OCP supports RD formation by dental pulp and downregulation of Runx2 may be involved in that stimulatory activity. Furthermore, OCP-apatite conversion is involved in this stimulatory capacity of OCP. Copyright © 2013 John Wiley & Sons, Ltd.

  3. Investigation of functional activity human dental pulp stem cells at acute and chronic pulpitis.

    PubMed

    Ustiashvili, M; Kordzaia, D; Mamaladze, M; Jangavadze, M; Sanodze, L

    2014-09-01

    It is already recognized that together with the other connective tissues organ-specific progenic stem cells are also found in postnatal dental pulp. This group of undifferentiated cells is only 1% of total cell population of the pulp. The aim of the study was the identification of stem cells in human dental pulp, detection of their localization and assessment of functional activity during inflammation process and/or at norm. The obtained results showed that at acute pulpitis the pulp stroma is hypocellular in comparison with the norm but cells proliferative activity is low. CD 133 and NCAM (CD 56) positive stem cells were found in perivascularl space of the pulp stroma and in Hohle layer. At process prolongation and transition to the chronic phase pulp stroma is hypercellular, the cells with large, rounded or oval-shaped nuclei with clear chromatin appear together with fibroblasts. They are distributed as about entire thickness of the stroma as especially Hohle layer. In such cells higher proliferative activity (Ki67 expression) was observed. The cells in the mentioned proliferation phase are intensively marked by CD133, the rate of which is high in Hohle layer and along it. A large number of NCAM (CD 56) positive cells appear in pulp stroma. During pulpitis an involvement of stem cells into the process of reparative dentinogenesis should be conducted stepwise. In acute cases of the disease, stem cell perivascularl mobilization and proliferation and its migration to Hohle layer occur in response to irritation /stimulation. Chronification of the process leads not only to the migration of stem cells to the periphery of the pulp but also s their В«maturationВ» (increase of NCAM expression in the stem cells), which causes an increase the number of dentin producing active odontoblasts and initiation of reparative dentinogenesis.

  4. Nicotine stimulation increases proliferation and matrix metalloproteinases-2 and -28 expression in human dental pulp cells.

    PubMed

    Manuela, Rizzi; Mario, Migliario; Vincenzo, Rocchetti; Filippo, Renò

    2015-08-15

    Dental pulp is the specialized tissue responsible for maintaining tooth viability. When tooth mineralized matrix is damaged, pulp is exposed to a plethora of environmental stimuli. In particular, in smokers, pulp become exposed to very high concentrations of nicotine. The aim of this study was to investigate the effect of direct nicotine stimulation on human dental pulp cell proliferation. Moreover, as it is known that nicotine could upregulate the expression of matrix metalloproteinases (MMPs), enzymes involved in pulpal inflammation, the effects of nicotine stimulation on MMP-2 and MMP-28 gene expression have also been investigated. Human dental pulp cells were extracted from impacted third molars obtained from healthy patients undergoing routine orthodontic treatments. Such cells were treated with growing concentrations of nicotine in the presence or absence of a nicotine antagonist (hexamethonium chloride) or of a MEK signaling inhibitor (PD98059). Cell proliferation was evaluated by cell counting, while nicotine effects on MMP expression were evaluated by PCR. The data obtained indicate that nicotine is able to increase human dental pulp cell proliferation by acting through nicotinic cholinergic receptors and downstream MAPK signaling pathway. Moreover, it is also able to increase both MMP-2 and MMP-28 gene expression. In summary these results highlight that direct exposure of human dental pulp cells to nicotine results in an inflammatory response, that could have a role in pulpal inflammation onset, a pathological condition that, when ignored, could eventually spread to the surrounding alveolar bone and progress to pulp necrosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Pulp regeneration concepts for non-vital teeth: from tissue engineering to clinical approaches.

    PubMed

    Orti, Valérie; Collart-Dutilleul, Pierre-Yves; Piglionico, Sofía Silvia; Pall, Orsolya; Cuisinier, Frédéric; Panayotov, Ivan Vladislavov

    2018-05-04

    Following the basis of tissue engineering (Cells - Scaffold - Bioactive molecules), regenerative endodontic has emerged as a new concept of dental treatment. Clinical procedures have been proposed by endodontic practitioners willing to promote regenerative therapy. Preserving pulp vitality was a first approach. Later procedures aimed to regenerate a vascularized pulp in necrotic root canals. However, there is still no protocol allowing an effective regeneration of necrotic pulp tissue either in immature or mature teeth. This review explore in vitro and preclinical concepts developed during the last decade, especially the potential use of stem cells, bioactive molecules and scaffolds, and makes a comparison with the goals achieved so far in clinical practice. Regeneration of pulp-like tissue has been shown in various experimental conditions. However, the appropriate techniques are currently in a developmental stage. The ideal combination of scaffolds and growth factors to obtain a complete regeneration of the pulp-dentin complex is still unknown. The use of stem cells, especially from pulp origin, sounds promising for pulp regeneration therapy, but it has not been applied so far for clinical endodontics, in case of necrotic teeth. The gap observed between the hope raised from in vitro experiments and the reality of endodontic treatments suggests that clinical success may be achieved without external stem cell application. Therefore, procedures using the concept of cell homing, through evoked bleeding, that permit to recreate a living tissue that mimics the original pulp have been proposed. Perspectives for pulp tissue engineering in a near future include a better control of clinical parameters and pragmatic approach of the experimental results (autologous stem cells from cell homing, controlled release of growth factors). In the coming years, this therapeutic strategy will probably become a clinical reality, even for mature necrotic teeth.

  6. Dental pulp stem cells in regenerative dentistry.

    PubMed

    Casagrande, Luciano; Cordeiro, Mabel M; Nör, Silvia A; Nör, Jacques E

    2011-01-01

    Stem cells constitute the source of differentiated cells for the generation of tissues during development, and for regeneration of tissues that are diseased or injured postnatally. In recent years, stem cell research has grown exponentially owing to the recognition that stem cell-based therapies have the potential to improve the life of patients with conditions that span from Alzheimer's disease to cardiac ischemia to bone or tooth loss. Growing evidence demonstrates that stem cells are primarily found in niches and that certain tissues contain more stem cells than others. Among these tissues, the dental pulp is considered a rich source of mesenchymal stem cells that are suitable for tissue engineering applications. It is known that dental pulp stem cells have the potential to differentiate into several cell types, including odontoblasts, neural progenitors, osteoblasts, chondrocytes, and adipocytes. The dental pulp stem cells are highly proliferative. This characteristic facilitates ex vivo expansion and enhances the translational potential of these cells. Notably, the dental pulp is arguably the most accessible source of postnatal stem cells. Collectively, the multipotency, high proliferation rates, and accessibility make the dental pulp an attractive source of mesenchymal stem cells for tissue regeneration. This review discusses fundamental concepts of stem cell biology and tissue engineering within the context of regenerative dentistry.

  7. MAPK signaling is required for LPS-induced VEGF in pulp stem cells.

    PubMed

    Botero, T M; Son, J S; Vodopyanov, D; Hasegawa, M; Shelburne, C E; Nör, J E

    2010-03-01

    Caries-induced pulpitis is typically accompanied by an increase in dental pulp microvascular density. However, the mechanisms by which dental pulp cells recognize lipopolysaccharides (LPSs) remain unclear. We hypothesized that Porphyromonas endodontalis and Escherichia coli LPSs induce vascular endothelial growth factor (VEGF) expression in dental pulp stem cells (DPSC) and human dental pulp fibroblasts (HDPF) through mitogen-activated protein kinase (MAPK) signaling. ELISA, semi-quantitative RT-PCR, immunofluorescence, and Western blots were used. Here, we observed that LPSs induced VEGF expression in DPSC and HDPF cells, and both cell types express Toll-like receptor 4 (TLR- 4). Notably, LPS-induced VEGF is associated with phosphorylation of protein kinase C (PKC zeta) and extracellular signal-regulator kinase (ERK1/2) and is dependent upon MAPK activation. Analysis of these data, collectively, unveils a signaling pathway responsible for synthesis of VEGF by pulp cells and suggests a novel therapeutic target for the management of vascular responses in teeth with pulpitis.

  8. CD146 positive human dental pulp stem cells promote regeneration of dentin/pulp-like structures.

    PubMed

    Matsui, Mikiko; Kobayashi, Tomoko; Tsutsui, Takeo W

    2018-04-01

    CD146 and STRO-1 are endothelial biomarkers that are co-expressed on the cellular membranes of blood vessels within human dental pulp tissue. This study characterized the percentage of dentin-like structures produced by CD146-positive (CD146 + ) human dental pulp stem cells (DPSCs), compared with their CD146-negative (CD146 - ) counterparts. DPSC populations were enriched using magnetic-activated cell sorting (MACS), yielding CD146 + and CD146 - cells, as well as mixtures composed of 25% CD146 + cells and 75% CD146 - cells (CD146 +/- ). Cell growth assays indicated that CD146 + cells exhibit an approximate 3-4 h difference in doubling time, compared with CD146 - cells. Cell cycle distributions were determined by flow cytometry analysis. The low percentage of CD146 + cells' DNA content in G 0 /G 1 phase were compared with CD146 - and non-separated cells. In contrast to CD146 - and non-separated cells, prompt mineralization was observed in CD146 + cells. Subsequently, qRT-PCR revealed high mRNA expression of CD146 and Alkaline phosphatase in mineralization-induced CD146 + cells. CD146 + cells were also observed high adipogenic ability by Oil red O staining. Histological examinations revealed an increased area of dentin/pulp-like structures in transplanted CD146 + cells, compared with CD146 - and CD146 +/- cells. Immunohistochemical studies detected dentin matrix protein-1 (DMP1) and dentin sialophosphoprotein (DSPP), as well as human mitochondria, in transplanted DPSCs. Co-expression of CD146 and GFP indicated that CD146 was expressed in transplanted CD146 + cells. CD146 + cells may promote mineralization and generate dentin/pulp-like structures, suggesting a role in self-renewal of stem cells and dental pulp regenerative therapy.

  9. Schwann Cell Phenotype Changes in Aging Human Dental Pulp.

    PubMed

    Couve, E; Lovera, M; Suzuki, K; Schmachtenberg, O

    2018-03-01

    Schwann cells are glial cells that support axonal development, maintenance, defense, and regeneration in the peripheral nervous system. There is limited knowledge regarding the organization, plasticity, and aging of Schwann cells within the dental pulp in adult permanent teeth. The present study sought to relate changes in the pattern of Schwann cell phenotypes between young and old adult teeth with neuronal, immune, and vascular components of the dental pulp. Schwann cells are shown to form a prominent glial network at the dentin-pulp interface, consisting of nonmyelinating and myelinating phenotypes, forming a multicellular neuroimmune interface in association with nerve fibers and dendritic cells. Schwann cell phenotypes are recognized by the expression of S100, glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), Sox10, GAP43, and p75NTR markers. In young adult teeth, a dense population of nonmyelinating Schwann cells projects processes in close association with sensory nerve terminals through the odontoblast layer, reaching the adjacent predentin/dentin domain. While GAP43 and p75NTR are highly expressed in nonmyelinating Schwann cells from young adult teeth, the presence of these markers declines significantly in old adult teeth. Myelinated axons, identified by MBP expression, are mainly present at the Raschkow plexus and within nerve bundles in the dental pulp, but their density is significantly reduced in old adult versus young adult teeth. These data reveal age-related changes within the glial network of the dental pulp, in association with a reduction of coronal dental pulp innervation in old adult versus young adult teeth. The prominence of Schwann cells as a cellular component at the dentin-pulp interface supports the notion that their association with sensory nerve terminals and immune system components forms part of an integrated multicellular barrier for defense against pathogens and dentin repair.

  10. Cold atmospheric-pressure plasma induces DNA-protein crosslinks through protein oxidation.

    PubMed

    Guo, Li; Zhao, Yiming; Liu, Dingxin; Liu, Zhichao; Chen, Chen; Xu, Ruobing; Tian, Miao; Wang, Xiaohua; Chen, Hailan; Kong, Michael G

    2018-05-03

    Reactive oxygen and nitrogen species (ROS and RNS) generated by cold atmospheric-pressure plasma could damage genomic DNA, although the precise type of these DNA damage induced by plasma are poorly characterized. Understanding plasma-induced DNA damage will help to elucidate the biological effect of plasma and guide the application of plasma in ROS-based therapy. In this study, it was shown that ROS and RNS generated by physical plasma could efficiently induce DNA-protein crosslinks (DPCs) in bacteria, yeast, and human cells. An in vitro assay showed that plasma treatment resulted in the formation of covalent DPCs by activating proteins to crosslink with DNA. Mass spectrometry and hydroperoxide analysis detected oxidation products induced by plasma. DPC formation were alleviated by singlet oxygen scavenger, demonstrating the importance of singlet oxygen in this process. These results suggested the roles of DPC formation in DNA damage induced by plasma, which could improve the understanding of the biological effect of plasma and help to develop a new strategy in plasma-based therapy including infection and cancer therapy.

  11. A Miniature Swine Model for Stem Cell-Based De Novo Regeneration of Dental Pulp and Dentin-Like Tissue.

    PubMed

    Zhu, Xiaofei; Liu, Jie; Yu, Zongdong; Chen, Chao-An; Aksel, Hacer; Azim, Adham A; Huang, George T-J

    2018-02-01

    The goal of this study was to establish mini-swine as a large animal model for stem cell-based pulp regeneration studies. Swine dental pulp stem cells (sDPSCs) were isolated from mini-swine and characterized in vitro. For in vivo studies, we first employed both ectopic and semi-orthotopic study models using severe combined immunodeficiency mice. One is hydroxyapatite-tricalcium phosphate (HA/TCP) model for pulp-dentin complex formation, and the other is tooth fragment model for complete pulp regeneration with new dentin depositing along the canal walls. We found that sDPSCs are similar to their human counterparts exhibiting mesenchymal stem cell characteristics with ability to form colony forming unit-fibroblastic and odontogenic differentiation potential. sDPSCs formed pulp-dentin complex in the HA/TCP model and showed pulp regeneration capacity in the tooth fragment model. We then tested orthotopic pulp regeneration on mini-swine including the use of multi-rooted teeth. Using autologous sDPSCs carried by hydrogel and transplanted into the mini-swine root canal space, we observed regeneration of vascularized pulp-like tissue with a layer of newly deposited dentin-like (rD) tissue or osteodentin along the canal walls. In some cases, dentin bridge-like structure was observed. Immunohistochemical analysis detected the expression of nestin, dentin sialophosphoprotein, dentin matrix protein 1, and bone sialoprotein in odontoblast-like cells lining against the produced rD. We also tested the use of allogeneic sDPSCs for the same procedures. Similar findings were observed in allogeneic transplantation. This study is the first to show an establishment of mini-swine as a suitable large animal model utilizing multi-rooted teeth for further cell-based pulp regeneration studies.

  12. Stem/Progenitor Cell–Mediated De Novo Regeneration of Dental Pulp with Newly Deposited Continuous Layer of Dentin in an In Vivo Model

    PubMed Central

    Yamaza, Takayoshi; Shea, Lonnie D.; Djouad, Farida; Kuhn, Nastaran Z.; Tuan, Rocky S.; Shi, Songtao

    2010-01-01

    The ultimate goal of this study is to regenerate lost dental pulp and dentin via stem/progenitor cell–based approaches and tissue engineering technologies. In this study, we tested the possibility of regenerating vascularized human dental pulp in emptied root canal space and producing new dentin on existing dentinal walls using a stem/progenitor cell–mediated approach with a human root fragment and an immunocompromised mouse model. Stem/progenitor cells from apical papilla and dental pulp stem cells were isolated, characterized, seeded onto synthetic scaffolds consisting of poly-D,L-lactide/glycolide, inserted into the tooth fragments, and transplanted into mice. Our results showed that the root canal space was filled entirely by a pulp-like tissue with well-established vascularity. In addition, a continuous layer of dentin-like tissue was deposited onto the canal dentinal wall. This dentin-like structure appeared to be produced by a layer of newly formed odontoblast-like cells expressing dentin sialophosphoprotein, bone sialoprotein, alkaline phosphatase, and CD105. The cells in regenerated pulp-like tissue reacted positively to anti-human mitochondria antibodies, indicating their human origin. This study provides the first evidence showing that pulp-like tissue can be regenerated de novo in emptied root canal space by stem cells from apical papilla and dental pulp stem cells that give rise to odontoblast-like cells producing dentin-like tissue on existing dentinal walls. PMID:19737072

  13. TOOTH (The Open study Of dental pulp stem cell Therapy in Humans): Study protocol for evaluating safety and feasibility of autologous human adult dental pulp stem cell therapy in patients with chronic disability after stroke.

    PubMed

    Nagpal, Anjali; Kremer, Karlea L; Hamilton-Bruce, Monica A; Kaidonis, Xenia; Milton, Austin G; Levi, Christopher; Shi, Songtao; Carey, Leeanne; Hillier, Susan; Rose, Miranda; Zacest, Andrew; Takhar, Parabjit; Koblar, Simon A

    2016-07-01

    Stroke represents a significant global disease burden. As of 2015, there is no chemical or biological therapy proven to actively enhance neurological recovery during the chronic phase post-stroke. Globally, cell-based therapy in stroke is at the stage of clinical translation and may improve neurological function through various mechanisms such as neural replacement, neuroprotection, angiogenesis, immuno-modulation, and neuroplasticity. Preclinical evidence in a rodent model of middle cerebral artery ischemic stroke as reported in four independent studies indicates improvement in neurobehavioral function with adult human dental pulp stem cell therapy. Human adult dental pulp stem cells present an exciting potential therapeutic option for improving post-stroke disability. TOOTH (The Open study Of dental pulp stem cell Therapy in Humans) will investigate the use of autologous stem cell therapy for stroke survivors with chronic disability, with the following objectives: (a) determine the maximum tolerable dose of autologous dental pulp stem cell therapy; (b) define that dental pulp stem cell therapy at the maximum tolerable dose is safe and feasible in chronic stroke; and (c) estimate the parameters of efficacy required to design a future Phase 2/3 clinical trial. TOOTH is a Phase 1, open-label, single-blinded clinical trial with a pragmatic design that comprises three stages: Stage 1 will involve the selection of 27 participants with middle cerebral artery ischemic stroke and the commencement of autologous dental pulp stem cell isolation, growth, and testing in sequential cohorts (n = 3). Stage 2 will involve the transplantation of dental pulp stem cell in each cohort of participants with an ascending dose and subsequent observation for a 6-month period for any dental pulp stem cell-related adverse events. Stage 3 will investigate the neurosurgical intervention of the maximum tolerable dose of autologous dental pulp stem cell followed by 9 weeks of intensive task-specific rehabilitation. Advanced magnetic resonance and positron emission tomography neuro-imaging, and clinical assessment will be employed to probe any change afforded by stem cell therapy in combination with rehabilitation. Nine participants will step-wise progress in Stage 2 to a dose of up to 10 million dental pulp stem cell, employing a cumulative 3 + 3 statistical design with low starting stem cell dose and subsequent dose escalation, assuming that an acceptable probability of dose-limiting complications is between 1 in 6 (17%) and 1 in 3 (33%) of patients. In Stage 3, another 18 participants will receive an intracranial injection with the maximum tolerable dose of dental pulp stem cell. The primary outcomes to be measured are safety and feasibility of intracranial administration of autologous human adult DPSC in patients with chronic stroke and determination of the maximum tolerable dose in human subjects. Secondary outcomes include estimation of the measures of effectiveness required to design a future Phase 2/3 clinical trial. © 2016 World Stroke Organization.

  14. In vitro proliferation and osteogenic differentiation of human dental pulp stem cells in injectable thermo-sensitive chitosan/β-glycerophosphate/hydroxyapatite hydrogel.

    PubMed

    Chen, Yantian; Zhang, Fengli; Fu, Qiang; Liu, Yong; Wang, Zejian; Qi, Nianmin

    2016-09-01

    Injectable thermo-sensitive hydrogels have a potential application in bone tissue engineering for their sensitivities and minimal invasive properties. Human dental pulp stem cells have been considered a promising tool for tissue reconstruction. The objective of this study was to investigate the proliferation and osteogenic differentiation of dental pulp stem cells in injectable thermo-sensitive chitosan/β-glycerophosphate/hydroxyapatite hydrogel in vitro. The chitosan /β-glycerophosphate hydrogel and chitosan/β-glycerophosphate/hydroxyapatite hydrogel were prepared using the sol-gel method. The injectability of chitosan /β-glycerophosphate hydrogel and chitosan/β-glycerophosphate/hydroxyapatite hydrogel was measured using a commercial disposable syringe. Scanning electron microscopy was used to observe the inner structure of hydrogels. Then dental pulp stem cells were seeded in chitosan /β-glycerophosphate hydrogel and chitosan/β-glycerophosphate/hydroxyapatite hydrogel, respectively. The growth of dental pulp stem cells was periodically observed under an inverted microscope. The proliferation of dental pulp stem cells was detected by using an Alamar Blue kit, while cell apoptosis was determined by using a Live/Dead Viability/Cytotoxicity kit. The osteogenic differentiations of dental pulp stem cells in chitosan /β-glycerophosphate hydrogel and chitosan/β-glycerophosphate/hydroxyapatite hydrogel were evaluated by alkaline phosphatase activity assay and mRNA expression of osteogenesis gene for 21 days in osteogenic medium. The results indicated that there was no significant difference between chitosan /β-glycerophosphate hydrogel and chitosan/β-glycerophosphate/hydroxyapatite hydrogel in injectability. Cells within the chitosan/β-glycerophosphate/hydroxyapatite hydrogel displayed a typical adherent cell morphology and rapid proliferation with high cellular viability after 14 days of culture. Dental pulp stem cells seeded in chitosan/β-glycerophosphate/hydroxyapatite hydrogels had a higher alkaline phosphatase activity and better up-regulation of gene expression levels of Runx-2, Collagen I, alkaline phosphatase and osteocalcin than in chitosan /β-glycerophosphate hydrogels after osteogenic differentiation. These results demonstrated that the chitosan/β-glycerophosphate/hydroxyapatite hydrogel had excellent cellular compatibility and the superiority in promoting dental pulp stem cells osteogenic differentiation in vitro, showing that the combination of dental pulp stem cells and chitosan/β-glycerophosphate/hydroxyapatite hydrogel has the potential to be used for bone tissue engineering. © The Author(s) 2016.

  15. Decellularized Swine Dental Pulp as a Bioscaffold for Pulp Regeneration

    PubMed Central

    Hu, Lei; Gao, Zhenhua; Zhu, Zhao; Zhang, Chunmei; Wang, Jinsong

    2017-01-01

    Endodontic regeneration shows promise in treating dental pulp diseases; however, no suitable scaffolds exist for pulp regeneration. Acellular natural extracellular matrix (ECM) is a favorable scaffold for tissue regeneration since the anatomical structure and ECM of the natural tissues or organs are well-preserved. Xenogeneic ECM is superior to autologous or allogeneic ECM in tissue engineering for its unlimited resources. This study investigated the characteristics of decellularized dental pulp ECM from swine and evaluated whether it could mediate pulp regeneration. Dental pulps were acquired from the mandible anterior teeth of swine 12 months of age and decellularized with 10% sodium dodecyl sulfate (SDS) combined with Triton X-100. Pulp regeneration was conducted by seeding human dental pulp stem cells into decellularized pulp and transplanted subcutaneously into nude mice for 8 weeks. The decellularized pulp demonstrated preserved natural shape and structure without any cellular components. Histological analysis showed excellent ECM preservation and pulp-like tissue, and newly formed mineralized tissues were regenerated after being transplanted in vivo. In conclusion, decellularized swine dental pulp maintains ECM components favoring stem cell proliferation and differentiation, thus representing a suitable scaffold for improving clinical outcomes and functions of teeth with dental pulp diseases. PMID:29387727

  16. Manufacturing of dental pulp cell-based products from human third molars: current strategies and future investigations

    PubMed Central

    Ducret, Maxime; Fabre, Hugo; Degoul, Olivier; Atzeni, Gianluigi; McGuckin, Colin; Forraz, Nico; Alliot-Licht, Brigitte; Mallein-Gerin, Frédéric; Perrier-Groult, Emeline; Farges, Jean-Christophe

    2015-01-01

    In recent years, mesenchymal cell-based products have been developed to improve surgical therapies aimed at repairing human tissues. In this context, the tooth has recently emerged as a valuable source of stem/progenitor cells for regenerating orofacial tissues, with easy access to pulp tissue and high differentiation potential of dental pulp mesenchymal cells. International guidelines now recommend the use of standardized procedures for cell isolation, storage and expansion in culture to ensure optimal reproducibility, efficacy and safety when cells are used for clinical application. However, most dental pulp cell-based medicinal products manufacturing procedures may not be fully satisfactory since they could alter the cells biological properties and the quality of derived products. Cell isolation, enrichment and cryopreservation procedures combined to long-term expansion in culture media containing xeno- and allogeneic components are known to affect cell phenotype, viability, proliferation and differentiation capacities. This article focuses on current manufacturing strategies of dental pulp cell-based medicinal products and proposes a new protocol to improve efficiency, reproducibility and safety of these strategies. PMID:26300779

  17. C-myb Regulates Autophagy for Pulp Vitality in Glucose Oxidative Stress.

    PubMed

    Lee, Y H; Kim, H S; Kim, J S; Yu, M K; Cho, S D; Jeon, J G; Yi, H K

    2016-04-01

    Diabetes mellitus is closely related to oral-complicated diseases by oxidative stress. This study investigates whether cellular myeloblastosis (c-myb) could protect human dental pulp cells against glucose oxidative stress and regulate autophagy activity for pulp vitality. Diabetes mellitus was induced by streptozotocin in Sprague-Dawley rats, and their pulp tissue in teeth was analyzed in terms of pulp cavity and molecules by hematoxylin and eosin and immunohistochemistry staining. Human dental pulp cells were serially subcultured and treated with glucose oxidase in the presence of elevated glucose to generate glucose oxidative stress. The replication-deficient adenovirus c-myb and small interfering RNA c-myb were introduced for c-myb expression. The pulp tissue from the diabetic rats was structurally different from normal tissue in terms of narrow pulp capacity, reduced c-myb, and dentinogenesis molecules. Glucose oxidase treatment decreased c-myb and dentinogenesis molecules (bone morphogenetic protein 2 and 7, dentin matrix protein 1, and dentin sialophosphoprotein) in human dental pulp cells. However, overexpression of c-myb by adenovirus c-myb increased dentinogenesis, autophagy molecules (autophagy protein 5, microtubule-associated protein 1A/1B-light chain 3, and Beclin-1), and cell survival via p-AMPK/AKT signaling even with glucose oxidative stress. In contrast, the lack of c-myb decreased the above molecules and cell survival by downregulating p-AMPK/AKT signaling. The results indicate that diabetes leads to irreversible damage to dental pulp, which is related to downexpression of autophagy via the p-AMPK/AKT pathway by decline of c-myb. The findings of this study provide a new insight that c-myb could ameliorate autophagy activity and that it is applicable for monitoring complicated diseases of dental pulp. The involvement of c-myb in pulp pathology could serve a therapeutic target in oral-complicated diseases. © International & American Associations for Dental Research 2015.

  18. The Interplay of Dental Pulp Stem Cells and Endothelial Cells in an Injectable Peptide Hydrogel on Angiogenesis and Pulp Regeneration In Vivo

    PubMed Central

    Dissanayaka, Waruna Lakmal; Hargreaves, Kenneth M.; Jin, Lijian; Samaranayake, Lakshman P.

    2015-01-01

    Securing an adequate blood supply for the survival of cell transplants is critical for a successful outcome in tissue engineering. Interactions between endothelial and progenitor/stem cells are important for vascularization of regenerating tissue. Recently, self-assembling peptide nanofibers were described as a promising environment for pulp regeneration due to their synthetic nature and controlled physicochemical properties. In this study, the peptide hydrogel PuraMatrix™ was used as a scaffold system to investigate the role of dental pulp stem cells (DPSCs) in triggering angiogenesis and the potential for regenerating vascularized pulp in vivo. Human umbilical vein endothelial cells (HUVECs), DPSCs, or cocultures of both cell types were encapsulated in three-dimensional PuraMatrix. The peptide nanofiber microenvironment supported cell survival, cell migration, and capillary network formation in the absence of exogenous growth factors. DPSCs increased early vascular network formation by facilitating the migration of HUVECs and by increasing vascular endothelial growth factor (VEGF) expression. Both the DPSC-monoculture and coculture groups exhibited vascularized pulp-like tissue with patches of osteodentin after transplantation in mice. The cocultured groups exhibited more extracellular matrix, vascularization, and mineralization than the DPSC-monocultures in vivo. The DPSCs play a critical role in initial angiogenesis, whereas coordinated efforts by the HUVECs and DPSCs are required to achieve a balance between extracellular matrix deposition and mineralization. The findings of this study also highlighted the importance of a microenvironment that supports cell–cell interactions and cell migration, which contribute to successful dental pulp regeneration. PMID:25203774

  19. Davallialactone reduces inflammation and repairs dentinogenesis on glucose oxidase-induced stress in dental pulp cells.

    PubMed

    Lee, Young-Hee; Kim, Go-Eun; Song, Yong-Beom; Paudel, Usha; Lee, Nan-Hee; Yun, Bong-Sik; Yu, Mi-Kyung; Yi, Ho-Keun

    2013-11-01

    The chronic nature of diabetes mellitus (DM) raises the risk of oral complication diseases. In general, DM causes oxidative stress to organs. This study aimed to evaluate the cellular change of dental pulp cells against glucose oxidative stress by glucose oxidase with a high glucose state. The purpose of this study was to test the antioxidant character of davallialactone and to reduce the pathogenesis of dental pulp cells against glucose oxidative stress. The glucose oxidase with a high glucose concentration was tested for hydroxy peroxide (H2O2) production, cellular toxicity, reactive oxygen species (ROS) formation, induction of inflammatory molecules and disturbance of dentin mineralization in human dental pulp cells. The anti-oxidant effect of Davallilactone was investigated to restore dental pulp cells' vitality and dentin mineralization via reduction of H2O2 production, cellular toxicity, ROS formation and inflammatory molecules. The treatment of glucose oxidase with a high glucose concentration increased H2O2 production, cellular toxicity, and inflammatory molecules and disturbed dentin mineralization by reducing pulp cell activity. However, davallialactone reduced H2O2 production, cellular toxicity, ROS formation, inflammatory molecules, and dentin mineralization disturbances even with a long-term glucose oxidative stress state. The results of this study imply that the development of oral complications is related to the irreversible damage of dental pulp cells by DM-induced oxidative stress. Davallialactone, a natural antioxidant, may be useful to treat complicated oral disease, representing an improvement for pulp vital therapy. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. The preparation of high quality alumina defective photonic crystals and their application of photoluminescence enhancement

    NASA Astrophysics Data System (ADS)

    An, Yu-Ying; Wang, Jian; Zhou, Wen-Ming; Jin, Hong-Xia; Li, Jian-Feng; Wang, Cheng-Wei

    2018-07-01

    The high quality anodic aluminum oxide (AAO) defective photonic crystals (DPCs) have been successfully prepared by using a modified periodic pulse anodization technique including an effective voltage compensating strategy. The test results confirmed that the AAO DPCs were with a perfect regular layered-structure and had a narrow defective photonic band gap (DPBG) with a high quality defective mode. When the rhodamine B (rhB) was absorbed onto the pore walls of the AAO DPCs, it was found that the DPBG blue edge and localized defective mode inside could significantly enhance the photoluminescence (PL) intensity of rhodamine B (rhB), while they were carefully regulated to match with the emission peak position of rhB respectively. Even more intriguing was that the localized defective peak in DPBG had more notable effect on rhB's photoluminescence, 3.1 times higher than that of the control samples under the same conditions. The corresponding mechanism for photoluminescence enhancement was also discussed in detail.

  1. Real-time sensing and gas jet mitigation of VDEs on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Granetz, R. S.; Wolfe, S. M.; Izzo, V. A.; Reinke, M. L.; Terry, J. L.; Hughes, J. W.; Zhurovich, K.; Whyte, D. G.; Bakhtiari, M.; Wurden, G.

    2006-10-01

    Experiments have been carried out in Alcator C-Mod to test the effectiveness of gas jet disruption mitigation of VDEs with real-time detection and triggering by the C-Mod digital plasma control system (DPCS). The DPCS continuously computes the error in the plasma vertical position from the magnetics diagnostics. When this error exceeds an adjustable preset value, the DPCS triggers the gas jet valve (with a negligible latency time). The high-pressure gas (argon) only takes a few milliseconds to enter the vacuum chamber and begin affecting the plasma, but this is comparable to the VDE timescale on C-Mod. Nevertheless, gas jet injection reduced the halo current, increased the radiated power fraction, and reduced the heating of the divertor compared to unmitigated disruptions, but not quite as well as in earlier mitigation experiments with vertically stable plasmas. Presumably a faster overall response time would be beneficial, and several ways to achieve this will also be discussed.

  2. Production of colony-stimulating factor in human dental pulp fibroblasts.

    PubMed

    Sawa, Y; Horie, Y; Yamaoka, Y; Ebata, N; Kim, T; Yoshida, S

    2003-02-01

    Class II major histocompatilibity complex (MHC)-expressing cells are usually distributed in dental pulp, and it was postulated that the colony-stimulating factor (CSF) derived from dental pulp fibroblasts contributes to the migration of class II MHC-expressing cells into pulp tissue. This study aimed to investigate the CSF production of human dental pulp fibroblasts. In pulp tissue sections, granulocyte (G)-CSF was detected from normal teeth, while G-CSF, macrophage (M)-CSF, and granulocyte-macrophage (GM)-CSF were detected from teeth with dentinal caries. In cultured dental pulp fibroblasts, G-CSF was detected by immunostaining, immunoprecipitation, and ELISA, and mRNAs of G-CSF, M-CSF, and GM-CSF were detected by RT-PCR. The dental pulp fibroblasts cultured with TNF-alpha were found to increase the G-CSF expression and to produce M-CSF and GM-CSF. These findings suggest that dental pulp fibroblasts usually produce G-CSF. In the presence of TNF-alpha, dental pulp fibroblast express M-CSF and GM-CSF.

  3. Is Pulp Inflammation a Prerequisite for Pulp Healing and Regeneration?

    PubMed

    Goldberg, Michel; Njeh, Akram; Uzunoglu, Emel

    2015-01-01

    The importance of inflammation has been underestimated in pulpal healing, and in the past, it has been considered only as an undesirable effect. Associated with moderate inflammation, necrosis includes pyroptosis, apoptosis, and nemosis. There are now evidences that inflammation is a prerequisite for pulp healing, with series of events ahead of regeneration. Immunocompetent cells are recruited in the apical part. They slide along the root and migrate toward the crown. Due to the high alkalinity of the capping agent, pulp cells display mild inflammation, proliferate, and increase in number and size and initiate mineralization. Pulp fibroblasts become odontoblast-like cells producing type I collagen, alkaline phosphatase, and SPARC/osteonectin. Molecules of the SIBLING family, matrix metalloproteinases, and vascular and nerve mediators are also implicated in the formation of a reparative dentinal bridge, osteo/orthodentin closing the pulp exposure. Beneath a calciotraumatic line, a thin layer identified as reactionary dentin underlines the periphery of the pulp chamber. Inflammatory and/or noninflammatory processes contribute to produce a reparative dentinal bridge closing the pulp exposure, with minute canaliculi and large tunnel defects. Depending on the form and severity of the inflammatory and noninflammatory processes, and according to the capping agent, pulp reactions are induced specifically.

  4. Is Pulp Inflammation a Prerequisite for Pulp Healing and Regeneration?

    PubMed Central

    Goldberg, Michel; Njeh, Akram; Uzunoglu, Emel

    2015-01-01

    The importance of inflammation has been underestimated in pulpal healing, and in the past, it has been considered only as an undesirable effect. Associated with moderate inflammation, necrosis includes pyroptosis, apoptosis, and nemosis. There are now evidences that inflammation is a prerequisite for pulp healing, with series of events ahead of regeneration. Immunocompetent cells are recruited in the apical part. They slide along the root and migrate toward the crown. Due to the high alkalinity of the capping agent, pulp cells display mild inflammation, proliferate, and increase in number and size and initiate mineralization. Pulp fibroblasts become odontoblast-like cells producing type I collagen, alkaline phosphatase, and SPARC/osteonectin. Molecules of the SIBLING family, matrix metalloproteinases, and vascular and nerve mediators are also implicated in the formation of a reparative dentinal bridge, osteo/orthodentin closing the pulp exposure. Beneath a calciotraumatic line, a thin layer identified as reactionary dentin underlines the periphery of the pulp chamber. Inflammatory and/or noninflammatory processes contribute to produce a reparative dentinal bridge closing the pulp exposure, with minute canaliculi and large tunnel defects. Depending on the form and severity of the inflammatory and noninflammatory processes, and according to the capping agent, pulp reactions are induced specifically. PMID:26538825

  5. Vital Pulp Therapy—Current Progress of Dental Pulp Regeneration and Revascularization

    PubMed Central

    Zhang, Weibo; Yelick, Pamela C.

    2010-01-01

    Pulp vitality is extremely important for the tooth viability, since it provides nutrition and acts as biosensor to detect pathogenic stimuli. In the dental clinic, most dental pulp infections are irreversible due to its anatomical position and organization. It is difficult for the body to eliminate the infection, which subsequently persists and worsens. The widely used strategy currently in the clinic is to partly or fully remove the contaminated pulp tissue, and fill and seal the void space with synthetic material. Over time, the pulpless tooth, now lacking proper blood supply and nervous system, becomes more vulnerable to injury. Recently, potential for successful pulp regeneration and revascularization therapies is increasing due to accumulated knowledge of stem cells, especially dental pulp stem cells. This paper will review current progress and feasible strategies for dental pulp regeneration and revascularization. PMID:20454445

  6. An In vivo Model for Short-Term Evaluation of the Implantation Effects of Biomolecules or Stem Cells in the Dental Pulp

    PubMed Central

    Lacerda-Pinheiro, Sally; Marchadier, Arnaud; Donãs, Patricio; Septier, Dominique; Benhamou, Laurent; Kellermann, Odile; Goldberg, Michel; Poliard, Anne

    2008-01-01

    The continuously growing rodent incisor is a widely used model to investigate odontogenesis and mineralized tissue formation. This study focused on evaluating the mouse mandibular incisor as an experimental biological tool for analyzing in vivo the capacity of odontoblast-like progenitors or bioactive molecules to contribute to reparative dentinogenesis. We describe here a surgical procedure allowing direct access to the forming part of the incisor dental pulp Amelogenin peptide A+4 adsorbed on agarose beads, or dental pulp progenitor cells were implanted in the pulp following this procedure. After 10 days A+4 induced the formation of an osteodentin occluding almost the totality of the pulp compartment. Implantation of progenitor cells leads to formation of islets of osteodentin-like structures located centrally in the pulp. These pilot studies validate the incisor as an experimental model to test the capacity of progenitor cells or bioactive molecules to induce the formation of reparative dentin. PMID:19088885

  7. Cell-derived micro-environment helps dental pulp stem cells promote dental pulp regeneration.

    PubMed

    Zhang, Xuexin; Li, Hui; Sun, Jingjing; Luo, Xiangyou; Yang, Hefeng; Xie, Li; Yang, Bo; Guo, Weihua; Tian, Weidong

    2017-10-01

    The function of the dental pulp is closely connected to the extracellular matrix (ECM) structure, and ECM has received significant attention due to its biological functions for regulating cells. As such, the interaction between the ECM niche and cells is worth exploring for potential clinical uses. In this study, dental pulp stem cell (DPSC)-derived ECM (DPM) was prepared through cell culture and decellularization to function as the cell niche, and changes in DPSC behaviour and histological analysis of dental pulp tissue regeneration were evaluated following the DPM culture. DPM promoted the replication of DPSCs and exhibited retention of their mineralization. Then, the DPM-based culture strategy under odontogenic culture medium was further investigated, and the mineralization-related markers showed that DPSCs were regulated towards odontogenic differentiation. Dental pulp-like tissue with well-arranged ECM was harvested after a 2-month subcutaneous implantation in nude mice with DPM application. Additionally, DPSCs cultured on the plastic culture surface showed the up-regulation of mineralization makers in vitro, but there was a disorder in matrix formation and mineralization when the cells were cultured in vivo. DPM-based cultivation could serve as a cell niche and modulate DPSC behaviour, and this method also provided an alternative to harvest tissue-specific ECM and provided a strategy for ECM-cell interaction. © 2017 John Wiley & Sons Ltd.

  8. In vitro effects of ascorbic acid and β-glycerophosphate on human gingival fibroblast cells.

    PubMed

    Martinez, Elizabeth F; Donato, Tatiani A G; Arana-Chavez, Victor E

    2012-10-01

    Ascorbic acid (AA) and β-glycerophosphate (βG) are considered in vitro osteogenic factors important to the differentiation of osteoblastic progenitor and dental pulp cells into mineralized tissue-forming cells. So, the present study investigated in vitro if these mineralizing inducible factors (AA and βG) could influence differentiation of human gingival fibroblasts when compared with human pulp cells and osteogenic cells derived from rat calvaria cultured. The expression of osteopontin (OPN) and osteoadherin (OSAD) was analyzed by indirect immunofluorescence, immunocytochemistry as well as Western-blotting. In addition, the main ultrastructural aspects were also investigated. No mineralized matrix formation occurred on gingival fibroblasts induced with AA+βG. On these cells, no expression of OPN and OSAD was observed when compared with pulp cells, pulp cells induced with AA+βG as well as osteogenic cells. Ultrastructure analysis additionally showed that gingival fibroblasts exhibited typical fibroblast morphology with no nodule formation. The present findings showed that AA and βG could not promote a mineralized cell differentiation of human gingival fibroblasts and confirm that human dental pulp cells, as the osteogenic cells, are capable to form a mineralized extracellular. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Effect of Cinnamomum osmophloeum Kanehira Leaf Aqueous Extract on Dermal Papilla Cell Proliferation and Hair Growth

    PubMed Central

    Wen, Tung-Chou; Li, Yuan-Sheng; Rajamani, Karthyayani; Harn, Horng-Jyh; Lin, Shinn-Zong; Chiou, Tzyy-Wen

    2018-01-01

    In this study, we explored the effect of the water extract of Cinnamomum osmophloeum Kanehira (COK) leaves on hair growth by in vitro and in vivo assays. Using an in vitro 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, it was found that the proliferation of rat vibrissae and human hair dermal papilla cells (hDPCs) was significantly enhanced by the COK leaf extract treatment. As determined by quantitative real-time polymerase chain reaction (RT-PCR), the messenger RNA (mRNA) levels of some hair growth–related factors including vascular endothelial growth factor, keratinocyte growth factor (KGF), and transforming growth factor-β2 were found to be higher in the cultured hDPCs exposed to COK leaf extract than those in the untreated control group. In the hair-depilated C57BL/6 mouse model, the stimulation of hair growth was demonstrated in the group of COK leaf extract treatment. Both photographical and histological observations revealed the promotion of the anagen phase in the hair growth cycle by the COK leaf extract in the C57BL/6 mice. Finally, the ultra performance liquid chromatography (UPLC) showed that the COK extract contained mostly cinnamic aldehyde and a small amount of cinnamic acid. The results suggest that the COK leaf extract may find use for the treatment of hair loss. PMID:29637818

  10. Preclinical and Clinical Studies Demonstrate That the Proprietary Herbal Extract DA-5512 Effectively Stimulates Hair Growth and Promotes Hair Health.

    PubMed

    Yu, Jae Young; Gupta, Biki; Park, Hyoung Geun; Son, Miwon; Jun, Joon-Ho; Yong, Chul Soon; Kim, Jeong Ah; Kim, Jong Oh

    2017-01-01

    The proprietary DA-5512 formulation comprises six herbal extracts from traditional oriental plants historically associated with therapeutic and other applications related to hair. Here, we investigated the effects of DA-5512 on the proliferation of human dermal papilla cells (hDPCs) in vitro and on hair growth in C57BL/6 mice and conducted a clinical study to evaluate the efficacy and safety of DA-5512. DA-5512 significantly enhanced the viability of hDPCs in a dose-dependent manner ( p < 0.05), and 100 ppm of DA-5512 and 1  μ M minoxidil (MXD) significantly increased the number of Ki-67-positive cells, compared with the control group ( p < 0.05). MXD (3%) and DA-5512 (1%, 5%) significantly stimulated hair growth and increased the number and length of hair follicles (HFs) versus the controls (each p < 0.05). The groups treated with DA-5512 exhibited hair growth comparable to that induced by MXD. In clinical study, we detected a statistically significant increase in the efficacy of DA-5512 after 16 weeks compared with the groups treated with placebo or 3% MXD ( p < 0.05). In conclusion, DA-5512 might promote hair growth and enhance hair health and can therefore be considered an effective option for treating hair loss.

  11. Mesenchymal and embryonic characteristics of stem cells obtained from mouse dental pulp.

    PubMed

    Guimarães, Elisalva Teixeira; Cruz, Gabriela Silva; de Jesus, Alan Araújo; Lacerda de Carvalho, Acácia Fernandes; Rogatto, Silvia Regina; Pereira, Lygia da Veiga; Ribeiro-dos-Santos, Ricardo; Soares, Milena Botelho Pereira

    2011-11-01

    Several studies have demonstrated that human dental pulp is a source of mesenchymal stem cells. To better understand the biological properties of these cells we isolated and characterized stem cells from the dental pulp of EGFP transgenic mice. The pulp tissue was gently separated from the roots of teeth extracted from C57BL/6 mice, and cultured under appropriate conditions. Flow cytometry, RT-PCR, light microscopy (staining for alkaline phosphatase) and immunofluorescence were used to investigate the expression of stem cell markers. The presence of chromosomal abnormalities was evaluated by G banding. The mouse dental pulp stem cells (mDPSC) were highly proliferative, plastic-adherent, and exhibited a polymorphic morphology predominantly with stellate or fusiform shapes. The presence of cell clusters was observed in cultures of mDPSC. Some cells were positive for alkaline phosphatase. The karyotype was normal until the 5th passage. The Pou5f1/Oct-4 and ZFP42/Rex-1, but not Nanog transcripts were detected in mDPSC. Flow cytometry and fluorescence analyses revealed the presence of a heterogeneous population positive for embryonic and mesenchymal cell markers. Adipogenic, chondrogenic and osteogenic differentiation was achieved after two weeks of cell culture under chemically defined in vitro conditions. In addition, some elongated cells spontaneously acquired a contraction capacity. Our results reinforce that the dental pulp is an important source of adult stem cells and encourage studies on therapeutic potential of mDPSC in experimental disease models. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Potential dental pulp revascularization and odonto-/osteogenic capacity of a novel transplant combined with dental pulp stem cells and platelet-rich fibrin.

    PubMed

    Chen, Yong-Jin; Zhao, Yin-Hua; Zhao, Ya-Juan; Liu, Nan-Xia; Lv, Xin; Li, Qiang; Chen, Fa-Ming; Zhang, Min

    2015-08-01

    Our aim is to investigate the cytobiological effects of autologous platelet-rich fibrin (PRF) on dental pulp stem cells (DPSCs) and to explore the ectopic and orthotopic possibilities of dental pulp revascularization and pulp-dentin complex regeneration along the root canal cavities of the tooth by using a novel tissue-engineered transplant composed of cell-sheet fragments of DPSCs and PRF granules. Canine DPSCs were isolated and characterized by assaying their colony-forming ability and by determining their cell surface markers and osteogenic/adipogenic differentiation potential. The biological effects of autologous PRF on DPSCs, including cell proliferation, alkaline phosphatase (ALP) activity and odonto-/osteogenic gene expression, were then investigated and quantified. A novel transplant consisting of cell-sheet fragments of DPSCs and PRF granules was adopted to regenerate pulp-dentin-like tissues in the root canal, both subcutaneously in nude mice and in the roots of canines. PRF promoted the proliferation of DPSCs in a dose- and time-dependent manner and induced the differentiation of DPSCs to odonto-/osteoblastic fates by increasing the expression of the Alp, Dspp, Dmp1 and Bsp genes. Transplantation of the DPSC/PRF construct led both to a favorable regeneration of homogeneous and compact pulp-like tissues with abundantly distributed blood capillaries and to the deposition of regenerated dentin along the intracanal walls at 8 weeks post-operation. Thus, the application of DPSC/PRF tissue constructs might serve as a potential therapy in regenerative endodontics for pulp revitalization or revascularization.

  13. Claustral single cell reactions to tooth pulp stimulation in cats.

    PubMed

    Jastreboff, P; Sikora, M; Frydrychowski, A; Słoniewski, P

    1983-01-01

    Single unit activity in the central region of the claustrum, evoked by electrical stimulation of tooth pulp or paws was studied on cats under chloralose anesthesia. The majority of cells responded in similar manner to stimulation of tooth pulp or paws, but there were cells with clear preference to a given type of stimulation. Latencies of reactions evoked by tooth pulp stimulation were significantly shorter than those for limb stimulation. In the former case latencies as short as 8 rns were observed. It is postulated that the central region of the claustrum receives a projection from the tooth pulp, and that in those cases with very short latency the projection is direct and does not involve the cerebral cortex.

  14. Isolation and morphology of Stem Cells from Deciduous Tooth (SHED) and Human Dental Pulp Stem Cells (hDPSC)

    NASA Astrophysics Data System (ADS)

    Ariffin, Shahrul Hisham Zainal; Manogaran, Thanaletchumi; Abidin, Intan Zarina Zainol; Senafi, Sahidan; Wahab, Rohaya Megat Abdul

    2016-11-01

    Dental pulp is a tissue obtained from pulp chamber of deciduous and permanent tooth which contain stem cells. Stem cell isolation procedure is performed to obtain cells from tissue using enzymatic digestion. The aim of this study is to isolate and observe the morphology of stem cells during passage 0 and passage 3. Dental pulp from deciduous and permanent tooth was enzymatically digested using collagenase Type I and cells obtained were cultured in DMEM-KO that contains 10% fetal bovine serum, 1% antibiotic-antimycotic solution and 0.001× GlutaMax®. During culture, cell morphology was observed under the microscope on day 3, 16 and 33 and captured using cellB software. Giemsa staining was conducted on cells at passage 3. Cells attached at the bottom of the flask on day 3 and started forming small colonies. Cells became confluent after approximately 4 weeks. Both Stem Cells from Deciduous Tooth (SHED) and Human Dental Pulp Stem Cells (hDPSC) exhibited fibroblast-like morphology during passage 0 and passage 3. Meanwhile, Giemsa staining at passage 3 revealed single intact nucleus surrounded by fibroblastic cytoplasm structure. It can be concluded that SHED and hDPSC showed consistent fibroblast-like morphology throughout culture period.

  15. Red pulp macrophages in the human spleen are a distinct cell population with a unique expression of Fc-γ receptors

    PubMed Central

    Bruggeman, Christine W.; den Haan, Joke M. M.; Mul, Erik P. J.; van den Berg, Timo K.; van Bruggen, Robin; Kuijpers, Taco W.

    2018-01-01

    Tissue-resident macrophages in the spleen play a major role in the clearance of immunoglobulin G (IgG)–opsonized blood cells, as occurs in immune thrombocytopenia (ITP) and autoimmune hemolytic anemia (AIHA). Blood cells are phagocytosed via the Fc-γ receptors (FcγRs), but little is known about the FcγR expression on splenic red pulp macrophages in humans, with only a few previous studies that showed conflicting results. We developed a novel method to specifically isolate red pulp macrophages from 82 human spleens. Surface expression of various receptors and phagocytic capacity was analyzed by flow cytometry and immunofluorescence of tissue sections. Red pulp macrophages were distinct from splenic monocytes and blood monocyte–derived macrophages on various surface markers. Human red pulp macrophages predominantly expressed the low-affinity receptors FcγRIIa and FcγRIIIa. In contrast to blood monocyte–derived macrophages, red pulp macrophages did not express the inhibitory FcγRIIb. Red pulp macrophages expressed very low levels of the high-affinity receptor FcγRI. Messenger RNA transcript analysis confirmed this expression pattern. Unexpectedly and despite these differences in FcγR expression, phagocytosis of IgG-opsonized blood cells by red pulp macrophages was dependent on the same FcγRs as phagocytosis by blood monocyte–derived macrophages, especially in regarding the response to IV immunoglobulin. Concluding, we show the distinct nature of splenic red pulp macrophages in human subjects. Knowledge on the FcγR expression and usage of these cells is important for understanding and improving treatment strategies for autoimmune diseases such as ITP and AIHA. PMID:29692344

  16. A Customized Self-Assembling Peptide Hydrogel for Dental Pulp Tissue Engineering

    PubMed Central

    Hartgerink, Jeffrey D.; Cavender, Adriana C.; Schmalz, Gottfried

    2012-01-01

    Root canal therapy is common practice in dentistry. During this procedure, the inflamed or necrotic dental pulp is removed and replaced with a synthetic material. However, recent research provides evidence that engineering of dental pulp and dentin is possible by using biologically driven approaches. As tissue engineering strategies hold the promise to soon supersede conventional root canal treatment, there is a need for customized scaffolds for stem cell delivery or recruitment. We hypothesize that the incorporation of dental pulp-derived stem cells with bioactive factors into such a scaffold can promote cell proliferation, differentiation, and angiogenesis. In this study, we used a cell adhesive, enzyme-cleavable hydrogel made from self-assembling peptide nanofibers to encapsulate dental pulp stem cells. The growth factors (GFs) fibroblast growth factor basic, transforming growth factor β1, and vascular endothelial growth factor were incorporated into the hydrogel via heparin binding. Release profiles were established, and the influence of GFs on cell morphology and proliferation was assessed to confirm their bioactivity after binding and subsequent release. Cell morphology and spreading in three-dimensional cultures were visualized by using cell tracker and histologic stains. Subcutaneous transplantation of the hydrogel within dentin cylinders into immunocompromised mice led to the formation of a vascularized soft connective tissue similar to dental pulp. These data support the use of this novel biomaterial as a highly promising candidate for future treatment concepts in regenerative endodontics. PMID:21827280

  17. Effect of sodium hypochlorite on human pulp cells: an in vitro study

    PubMed Central

    Essner, Mark D.; Javed, Amjad; Eleazer, Paul D.

    2014-01-01

    Background The purpose of this study was to determine the effect of sodium hypochlorite (NaOCl) on human pulp cells to provide an aid in determining its optimum concentration in maintaining the viability of remaining pulp cells in the revascularization of immature permanent teeth with apical periodontitis. Study design Human pulp tissue cells taken from extracted third molars were plated, incubated, and subjected to various concentrations of NaOCl (0.33%, 0.16%, 0.08%, and 0.04%) for 5-, 10-, and 15-minute time intervals to simulate possible contact times in vivo. The Cell Titer–Glo Luminescent Cell Viability Assay was used to determine the number of viable cells present in culture following treatment. Results The results showed an increase in cell viability with the lowering of NaOCl concentration. The use of 0.04% NaOCl was similar to the control, indicating nearly complete preservation of cell viability at all time intervals tested. As sodium hypochlorite concentration increased from 0.04% to 0.33%, cell viability decreased correspondingly. Conclusions The results indicate that the lowest concentration of NaOCl tested did not affect the viability of cells. This may prove beneficial in developing a new treatment protocol to help preserve existing vital pulp cells in revascularization cases. PMID:21821446

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobes, Vladimir; Scaglione, John M; Wagner, John C

    Spent nuclear fuel (SNF) management practices in the United States rely on dry storage systems that include both canister- and cask-based systems. The United States Department of Energy Used Fuel Disposition Campaign is examining the feasibility of direct disposal of dual-purpose (storage and transportation) canisters (DPCs) in a geological repository. One of the major technical challenges for direct disposal is the ability to demonstrate the subcriticality of the DPCs loaded with SNF for the repository performance period (e.g., 10,000 years or more) as the DPCs may undergo degradation over time. Specifically, groundwater ingress into the DPC (i.e., flooding) could allowmore » the system to achieve criticality in scenarios where the neutron absorber plates in the DPC basket have degraded. However, as was shown by Banerjee et al., some aqueous species in the groundwater provide noticeable reactivity reduction for these systems. For certain amounts of particular aqueous species (e.g., chlorine, lithium) in the groundwater, subcriticality can be demonstrated even for DPCs with complete degradation of the neutron absorber plates or a degraded fuel basket configuration. It has been demonstrated that chlorine is the leading impurity, as indicated by significant neutron absorption in the water that is available in reasonable quantities for the deep geological repository media under consideration. This paper presents the results of an investigation of the available integral experiments worldwide that could be used to validate DPC disposal criticality evaluations, including credit for chlorine. Due to the small number of applicable critical configurations, validation through traditional trending analysis was not possible. The bias in the eigenvalue of the application systems due only to the chlorine was calculated using TSURFER analysis and found to be on the order of 100 percent mille (1 pcm = 10 -5 k eff). This study investigated the design of a series of critical configurations with varying amounts of chlorine to address validation gaps. Such integral experiments would support the crediting of the chlorine neutron-absorption properties in groundwater and the demonstration of subcriticality for DPCs in deep geologic repositories with sufficient chlorine availability.« less

  19. Validation Study for Crediting Chlorine in Criticality Analyses for US Spent Nuclear Fuel Disposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobes, Vladimir; Scaglione, John M.; Wagner, John C.

    2015-01-01

    Spent nuclear fuel (SNF) management practices in the United States rely on dry storage systems that include both canister- and cask-based systems. The United States Department of Energy Used Fuel Disposition Campaign is examining the feasibility of direct disposal of dual-purpose (storage and transportation) canisters (DPCs) in a geological repository. One of the major technical challenges for direct disposal is the ability to demonstrate the subcriticality of the DPCs loaded with SNF for the repository performance period (e.g., 10,000 years or more) as the DPCs may undergo degradation over time. Specifically, groundwater ingress into the DPC (i.e., flooding) could allowmore » the system to achieve criticality in scenarios where the neutron absorber plates in the DPC basket have degraded. However, as was shown by Banerjee et al., some aqueous species in the groundwater provide noticeable reactivity reduction for these systems. For certain amounts of particular aqueous species (e.g., chlorine, lithium) in the groundwater, subcriticality can be demonstrated even for DPCs with complete degradation of the neutron absorber plates or a degraded fuel basket configuration. It has been demonstrated that chlorine is the leading impurity, as indicated by significant neutron absorption in the water that is available in reasonable quantities for the deep geological repository media under consideration. This paper presents the results of an investigation of the available integral experiments worldwide that could be used to validate DPC disposal criticality evaluations, including credit for chlorine. Due to the small number of applicable critical configurations, validation through traditional trending analysis was not possible. The bias in the eigenvalue of the application systems due only to the chlorine was calculated using TSURFER analysis and found to be on the order of 100 percent mille (1 pcm = 10 -5 k eff). This study investigated the design of a series of critical configurations with varying amounts of chlorine to address validation gaps. Such integral experiments would support the crediting of the chlorine neutron-absorption properties in groundwater and the demonstration of subcriticality for DPCs in deep geologic repositories with sufficient chlorine availability.« less

  20. A role of placental growth factor in hair growth.

    PubMed

    Yoon, Sun-Young; Yoon, Ji-Seon; Jo, Seong Jin; Shin, Chang Yup; Shin, Jong-Yeon; Kim, Jong-Il; Kwon, Ohsang; Kim, Kyu Han

    2014-05-01

    The dermal papilla (DP) comprises specialized mesenchymal cells at the bottom of the hair follicle and plays a pivotal role in hair formation, anagen induction and the hair cycle. In this study, DPs were isolated from human hair follicles and serially subcultured. From each subculture at passages 1, 3, and 5 (n=4), we compared gene expression profiles using mRNA sequencing. Among the growth factors that were down-regulated in later passages of human DP cells (hDPCs), placental growth factor (PlGF) was selected. To elucidate the effect of PlGF on hair growth. We evaluated the effect of PlGF on hDPCs and on ex vivo hair organ culture. We investigated the effect of PlGF on an in vivo model of depilation-induced hair regeneration. We confirmed that the mRNA and protein expression levels of PlGF significantly decreased following subculture of the cells. It was shown that PlGF enhanced hair shaft elongation in ex vivo hair organ culture. Furthermore, PlGF significantly accelerated hair follicle growth and markedly prolonged anagen hair growth in an in vivo model of depilation-induced hair regeneration. PlGF prevented cell death by increasing the levels of phosphorylated extracellular signal-regulated kinase (ERK) and cyclin D1 and promoted survival by up-regulation of phosphorylated Akt and Bcl2, as determined by Western blotting. Our results suggest that PlGF plays a role in the promotion of hair growth and therefore may serve as an additional therapeutic target for the treatment of alopecia. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Influence of different types of light on the response of the pulp tissue in dental bleaching: a systematic review.

    PubMed

    Benetti, Francine; Lemos, Cleidiel Aparecido Araújo; de Oliveira Gallinari, Marjorie; Terayama, Amanda Miyuki; Briso, André Luiz Fraga; de Castilho Jacinto, Rogério; Sivieri-Araújo, Gustavo; Cintra, Luciano Tavares Angelo

    2018-05-01

    This systematic review (PROSPERO register: CRD42016053140) investigated the influence of different types of light on the pulp tissue during dental bleaching. Two independent authors conducted a systematic search and risk of bias evaluations. An electronic search was undertaken (PubMed/Medline, Embase, The Cochrane Library, and other databases) until May 2017. The population, intervention, comparison, outcomes (PICO) question was: "Does the light in dental bleaching change the response of the pulp to the bleaching procedure?" The intervention involved pulp tissue/cells after bleaching with light, while the comparison involved pulp tissue/cells after bleaching without light. The primary outcome was the inflammation/cytotoxicity observed in pulp after bleaching. Out of 2210 articles found, 12 articles were included in the review; four were in vivo studies (one study in dogs/others in human), and eight were in vitro studies (cell culture/with artificial pulp chamber or not). The light source used was halogen, light-emitting diode (LED), and laser. Only one in vivo study that used heat to simulate light effects showed significant pulp inflammation. Only two in vitro studies demonstrated that light influenced cell metabolism; one using halogen light indicated negative effects, and the other using laser therapy indicated positive effects. Given that animal and in vitro studies have been identified, there remain some limitations for extrapolation to the human situation. Furthermore, different light parameters were used. The effects of dental bleaching on the pulp are not influenced by different types of light, but different light parameters can influence these properties. There is insufficient evidence about the influence of different types of light on inflammation/cytotoxicity of the pulp.

  2. Interferon-gamma improves impaired dentinogenic and immunosuppressive functions of irreversible pulpitis-derived human dental pulp stem cells

    PubMed Central

    Sonoda, Soichiro; Yamaza, Haruyoshi; Ma, Lan; Tanaka, Yosuke; Tomoda, Erika; Aijima, Reona; Nonaka, Kazuaki; Kukita, Toshio; Shi, Songtao; Nishimura, Fusanori; Yamaza, Takayoshi

    2016-01-01

    Clinically, irreversible pulpitis is treated by the complete removal of pulp tissue followed by replacement with artificial materials. There is considered to be a high potential for autologous transplantation of human dental pulp stem cells (DPSCs) in endodontic treatment. The usefulness of DPSCs isolated from healthy teeth is limited. However, DPSCs isolated from diseased teeth with irreversible pulpitis (IP-DPSCs) are considered to be suitable for dentin/pulp regeneration. In this study, we examined the stem cell potency of IP-DPSCs. In comparison with healthy DPSCs, IP-DPSCs expressed lower colony-forming capacity, population-doubling rate, cell proliferation, multipotency, in vivo dentin regeneration, and immunosuppressive activity, suggesting that intact IP-DPSCs may be inadequate for dentin/pulp regeneration. Therefore, we attempted to improve the impaired in vivo dentin regeneration and in vitro immunosuppressive functions of IP-DPSCs to enable dentin/pulp regeneration. Interferon gamma (IFN-γ) treatment enhanced in vivo dentin regeneration and in vitro T cell suppression of IP-DPSCs, whereas treatment with tumor necrosis factor alpha did not. Therefore, these findings suggest that IFN-γ may be a feasible modulator to improve the functions of impaired IP-DPSCs, suggesting that autologous transplantation of IFN-γ-accelerated IP-DPSCs might be a promising new therapeutic strategy for dentin/pulp tissue engineering in future endodontic treatment. PMID:26775677

  3. Human dental pulp stem cells derived from cryopreserved dental pulp tissues of vital extracted teeth with disease demonstrate hepatic-like differentiation.

    PubMed

    Chen, Y K; Huang, Anderson H C; Chan, Anthony W S; Lin, L M

    2016-06-01

    Reviewing the literature, hepatic differentiation of human dental pulp stem cells (hDPSCs) from cryopreserved dental pulp tissues of vital extracted teeth with disease has not been studied. This study is aimed to evaluate the hypothesis that hDPSCs from cryopreserved dental pulp tissues of vital extracted teeth with disease could possess potential hepatic differentiation. Forty vital extracted teeth with disease recruited for hDPSCs isolation, stem cell characterization and hepatic differentiation were randomly and equally divided into group A (liquid nitrogen-stored dental pulp tissues) and group B (freshly derived dental pulp tissues). Samples of hDPSCs isolated from groups A and B but without hepatic growth factors formed negative controls. A well-differentiated hepatocellular carcinoma cell line was employed as a positive control. All the isolated hDPSCs from groups A and B showed hepatic-like differentiation with morphological change from a spindle-shaped to a polygonal shape and normal karyotype. Differentiated hDPSCs and the positive control expressed hepatic metabolic function genes and liver-specific genes. Glycogen storage of differentiated hDPSCs was noted from day 7 of differentiation-medium culture. Positive immunofluorescence staining of low-density lipoprotein and albumin was observed from day 14 of differentiation-medium culture; urea production in the medium was noted from week 6. No hepatic differentiation was observed for any of the samples of the negative controls. We not only demonstrated the feasibility of hepatic-like differentiation of hDPSCs from cryopreserved dental pulp tissues of vital extracted teeth with disease but also indicated that the differentiated cells possessed normal karyotype and were functionally close to normal hepatic-like cells. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Isolation and evaluation of dental pulp stem cells from teeth with advanced periodontal disease.

    PubMed

    Derakhshani, Ali; Raoof, Maryam; Dabiri, Shahriar; Farsinejad, Ali Reza; Gorjestani, Hedayat; Yaghoobi, Mohammad Mehdi; Shokouhinejad, Noushin; Ehsani, Maryam

    2015-04-01

    Successful isolation of mesenchymal stem cells from waste tissues might be extremely promising for developing stem cell-based therapies. This study aimed to explore whether cells retrieved from teeth extracted due to advanced periodontal disease present mesenchymal stem cell-like properties. Pulp cells were isolated from 15 intact molars and 15 teeth with advanced periodontal disease. Cell proliferation and markers of mesenchymal stem cells were evaluated. Based on the RT-PCR and agarose gel electrophoresis, nucleostemin, Oct-4 and jmj2c, but not Nanog, were expressed in undifferentiated mesenchymal stem cells of both groups. Interestingly, diseased pulp exhibited higher gene expressions although it was not statistically significant. The average percentage of BrdU positive cells in the diseased group (84.4%, n = 5) was significantly higher than that of the control group (65.4%, n = 5) (t-test, P = 0.001). Our results indicate the successful isolation of mesenchymal stem cells from the pulp tissue of hopeless periodontally involved teeth.

  5. Cytotoxicity Testing of Temporary Luting Cements with Two- and Three-Dimensional Cultures of Bovine Dental Pulp-Derived Cells

    PubMed Central

    Ülker, Hayriye Esra; Ülker, Mustafa; Gümüş, Hasan Önder; Yalçın, Muhammet; Şengün, Abdulkadir

    2013-01-01

    This study evaluated the cytotoxicity of eugenol-containing and eugenol-free temporary luting cements. For cytotoxicity testing, bovine pulp-derived cells transfected with Simian virus 40 Large T antigen were exposed to extracts of eugenol-containing (Rely X Temp E) and eugenol-free (Provicol, PreVISION CEM, and Rely X Temp NE) temporary luting cements for 24 h. The cytotoxicity of the same materials was also evaluated in a dentin barrier test device using three-dimensional cell cultures of bovine pulp-derived cells. The results of the cytotoxicity studies with two-dimensional cultures of bovine dental pulp-derived cells revealed that cell survival with the extracts of Rely X Temp E, Provicol, PreVISION CEM, and Rely X Temp NE was 89.1%, 84.9%, 92.3%, and 66.8%, respectively. Rely X Temp NE and Provicol showed cytotoxic effects on bovine dental pulp-derived cells (P < 0.05). The results of the dentin barrier test revealed that cell survival with the above-mentioned temporary cement was 101.5%, 91.9%, 93.5%, and 90.6%, respectively. None of the temporary luting cements significantly reduced cell survival compared with the negative control in the dentin barrier test (P > 0.05). Biologically active materials released from temporary luting cements may not influence the dentine-pulp complex if the residual dentine layer is at least 0.5 mm thick. PMID:23984419

  6. Molecular and clinical analyses of Helicobacter pylori colonization in inflamed dental pulp.

    PubMed

    Nomura, Ryota; Ogaya, Yuko; Matayoshi, Saaya; Morita, Yumiko; Nakano, Kazuhiko

    2018-04-16

    Recently, dental pulp has been considered a possible source of infection of Helicobacter pylori (H. pylori) in children. We previously developed a novel PCR system for H. pylori detection with high specificity and sensitivity using primer sets constructed based on the complete genome information for 48 H. pylori strains. This PCR system showed high sensitivity with a detection limit of 1-10 cells when serial dilutions of H. pylori genomic DNA were used as templates. However, the detection limit was lower (10 2 -10 3 cells) when H. pylori bacterial DNA was detected from inflamed pulp specimens. Thus, we further refined the system using a nested PCR method, which was much more sensitive than the previous single PCR method. In addition, we examined the distribution and virulence of H. pylori in inflamed pulp tissue. Nested PCR system was constructed using primer sets designed from the complete genome information of 48 H. pylori strains. The detection limit of the nested PCR system was 1-10 cells using both H. pylori genomic DNA and bacterial DNA isolated from inflamed pulp specimens. Next, distribution of H. pylori was examined using 131 inflamed pulp specimens with the nested PCR system. In addition, association between the detection of H. pylori and clinical information regarding endodontic-infected teeth were investigated. Furthermore, adhesion property of H. pylori strains to human dental fibroblast cells was examined. H. pylori was present in 38.9% of inflamed pulp specimens using the nested PCR system. H. pylori was shown to be predominantly detected in primary teeth rather than permanent teeth. In addition, samplings of the inflamed pulp were performed twice from the same teeth at 1- or 2-week intervals, which revealed that H. pylori was detected in most specimens in both samplings. Furthermore, H. pylori strains showed adhesion property to human dental fibroblast cells. Our results suggest that H. pylori colonizes inflamed pulp in approximately 40% of all cases through adhesion to human dental fibroblast cells.

  7. Isolation, Characterization, and Differentiation of Dental Pulp Stem Cells in Ferrets.

    PubMed

    Homayounfar, Negar; Verma, Prashant; Nosrat, Ali; El Ayachi, Ikbale; Yu, Zongdong; Romberg, Elaine; Huang, George T-J; Fouad, Ashraf F

    2016-03-01

    The ferret canine tooth has been introduced as a suitable model for studying dental pulp regeneration. The aim of this study was to isolate and characterize ferret dental pulp stem cells (fDPSCs) and their differentiation potential. Dental pulp stem cells were isolated from freshly extracted ferret canine teeth. The cells were examined for the expression of stem cell markers STRO-1, CD90, CD105, and CD146. The osteo/odontogenic and adipogenic differentiation potential of fDPSCs was evaluated. Osteogenic and odontogenic marker genes were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR) on days 1, 4, and 8 after osteo/odontogenic induction of fDPSCs including dentin sialophosphoprotein (DSPP), dentin matrix protein-1, osteopontin, and alkaline phosphatase. Human dental pulp cells were used as the control. The results were analyzed using 3-way analysis of variance. fDPSCs were positive for STRO1, CD90, and CD105 and negative for CD146 markers with immunohistochemistry. fDPSCs showed strong osteogenic and weak adipogenic potential. The overall expression of DSPP was not significantly different between fDPSCs and human dental pulp cells. The expression of DSPP in osteo/odontogenic media was significantly higher in fDPSCs on day 4 (P < .01). The overall expression of dentin matrix protein-1, osteopontin, and alkaline phosphatase was significantly higher in fDPSCs (P = .0005). fDPSCs were positive for several markers of dental pulp stem cells resembling human DPSCs and appeared to show a stronger potential to differentiate to osteoblastic rather than odontoblastic lineage. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Comparison of cytotoxicity, genotoxicity and immunological inflammatory biomarker activity of several endodontic sealers against immortalized human pulp cells.

    PubMed

    Martinho, F C; Camargo, S E A; Fernandes, A M M; Campos, M S; Prado, R F; Camargo, C H R; Valera, M C

    2018-01-01

    To establish an SV40 T-Ag-transfected cell line of human pulp-derived cells in order to compare the cytotoxicity, genotoxicity and to investigate the activities of immunological biomarkers of several endodontic sealers. Primary human pulp cells and transfected cells were cultured. Cell morphology and proliferation were analysed, and the expression of cell-specific gene transcripts and proteins was detected by RT-PCR and immunohistochemistry. Transfection of human pulp-derived cells resulted in an immortalized cell line retaining phenotypic characteristics from the primarily cells tested. The SV40 T-Ag-transfected cells were cultured and stimulated by sealers (Apexit Plus, Real Seal, AH Plus, and EndoREZ) to evaluate the cytotoxicity and genotoxicity by MTT and MTN assays, respectively. Immunological inflammatory biomarkers (IL6, IL8 and TNF-α) were determined by ELISA assay. The differences between median values were statistically analysed using Kruskal-Wallis and Dunn's tests at 5% significance level. The cytotoxicity assay revealed that multimethacrylate (Real Seal) was the most cytotoxic sealer (P < 0.05) and exhibited the highest inflammatory potential against the SV40 T-Ag-transfected cells (P < 0.05). All root canal sealers tested were able to stimulate the immortalized pulp cells to produce IL-6, IL-8 and TNF-α, with differences in relation to the control group (P < 0.05). Higher levels of IL-6, IL-8 and TNF-α were found in cell supernatant after stimulation with multimethacrylate (Real Seal) compared to all other sealers tested (P < 0.05). No differences were found comparing epoxy resin-based sealer (AHPlus), single-methacrylate sealer (EndoREZ) and calcium hydroxide-based sealer (Apexit Plus), regardless of the cytokine investigated (all P > 0.05). A SV40 T-Ag-transfected cell line of human pulp-derived cells was established. The methacrylate resin-based sealer (Real Seal) exhibited the greatest cytoxicity and inflammatory potential against immortalized pulp cells compared to an epoxy resin-based sealer (AH Plus), a methacrylate-based sealer (EndoRez) and a calcium hydroxide-based sealer (Apexit). © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  9. Stem/progenitor cells from inflamed human dental pulp retain tissue regeneration potential

    PubMed Central

    Alongi, Dominick J; Yamaza, Takayoshi; Song, Yingjie; Fouad, Ashraf F; Romberg, Elaine E; Shi, Songtao; Tuan, Rocky S; Huang, George T-J

    2011-01-01

    Background Potent stem/progenitor cells have been isolated from normal human dental pulps termed dental pulp stem cells (DPSCs). However, it is unknown whether these cells exist in inflamed pulps (IPs). Aims To determine whether DPSCs can be identified and isolated from IPs; and if they can be successfully cultured, whether they retain tissue regeneration potential in vivo. Materials & methods DPSCs from freshly collected normal pulps (NPs) and IPs were characterized in vitro and their tissue regeneration potential tested using an in vivo study model. Results The immunohistochemical analysis showed that IPs expressed higher levels of mesenchymal stem cell markers STRO-1, CD90, CD105 and CD146 compared with NPs (p < 0.05). Flow cytometry analysis showed that DPSCs from both NPs and IPs expressed moderate to high levels of CD146, stage-specific embryonic antigen-4, CD73 and CD166. Total population doubling of DPSCs-IPs (44.6 ± 2.9) was lower than that of DPSCs-NPs (58.9 ± 2.5) (p < 0.05), and DPSCs-IPs appeared to have a decreased osteo/dentinogenic potential compared with DPSCs-NPs based on the mineral deposition in cultures. Nonetheless, DPSCs-IPs formed pulp/dentin complexes similar to DPSCs-NPs when transplanted into immunocompromised mice. Conclusion DPSCs-IPs can be isolated and their mesenchymal stem cell marker profiles are similar to those from NPs. Although some stem cell properties of DPSCs-IPs were altered, cells from some samples remained potent in tissue regeneration in vivo. PMID:20465527

  10. Tissue engineering: Dentin - pulp complex regeneration approaches (A review).

    PubMed

    Hashemi-Beni, Batool; Khoroushi, Maryam; Foroughi, Mohammad Reza; Karbasi, Saeed; Khademi, Abbas Ali

    2017-10-01

    Dental pulp is a highly specialized tissue that preserves teeth. It is important to maintain the capabilities of dental pulp before a pulpectomy by creating a local restoration of the dentin-pulp complex from residual dental pulp. The articles identified were selected by two reviewers based on entry and exit criteria. All relevant articles indexed in PubMed, Springer, Science Direct, and Scopus with no limitations from 1961 to 2016 were searched. Factors investigated in the selected articles included the following key words: Dentin-Pulp Complex, Regeneration, Tissue Engineering, Scaffold, Stem Cell, and Growth Factors. Of the 233 abstracts retrieved, the papers which were selected had evaluated the clinical aspects of the application of dentin-pulp regeneration. Generally, this study has introduced a new approach to provoke the regeneration of the dentin-pulp complex after a pulpectomy, so that exogenous growth factors and the scaffold are able to induce cells and blood vessels from the residual dental pulp in the tooth root canal. This study further presents a new strategy for local regeneration therapy of the dentin-pulp complex. This review summarizes the current knowledge of the potential beneficial effects derived from the interaction of dental materials with the dentin-pulp complex as well as potential future developments in this exciting field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Scaffold-free Prevascularized Microtissue Spheroids for Pulp Regeneration

    PubMed Central

    Dissanayaka, W.L.; Zhu, L.; Hargreaves, K.M.; Jin, L.; Zhang, C.

    2014-01-01

    Creating an optimal microenvironment that mimics the extracellular matrix (ECM) of natural pulp and securing an adequate blood supply for the survival of cell transplants are major hurdles that need to be overcome in dental pulp regeneration. However, many currently available scaffolds fail to mimic essential functions of natural ECM. The present study investigated a novel approach involving the use of scaffold-free microtissue spheroids of dental pulp stem cells (DPSCs) prevascularized by human umbilical vein endothelial cells (HUVECs) in pulp regeneration. In vitro-fabricated microtissue spheroids were inserted into the canal space of tooth-root slices and were implanted subcutaneously into immunodeficient mice. Histological examination revealed that, after four-week implantation, tooth-root slices containing microtissue spheroids resulted in well-vascularized and cellular pulp-like tissues, compared with empty tooth-root slices, which were filled with only subcutaneous fat tissue. Immunohistochemical staining indicated that the tissue found in the tooth-root slices was of human origin, as characterized by the expression of human mitochondria, and contained odontoblast-like cells organized along the dentin, as assessed by immunostaining for nestin and dentin sialoprotein (DSP). Vascular structures formed by HUVECs in vitro were successfully anastomosed with the host vasculature upon transplantation in vivo, as shown by immunostaining for human CD31. Collectively, these findings demonstrate that prevascularized, scaffold-free, microtissue spheroids can successfully regenerate vascular dental pulp-like tissue and also highlight the significance of the microtissue microenvironment as an optimal environment for successful pulp-regeneration strategies. PMID:25201919

  12. Design and characterization of one-dimensional photonic crystals based on ZnS/Ge for infrared-visible compatible stealth applications

    NASA Astrophysics Data System (ADS)

    Qi, Dong; Wang, Xian; Cheng, Yongzhi; Gong, Rongzhou; Li, Bowen

    2016-12-01

    One-dimensional photonic crystals (1DPCs) based on ZnS/Ge for compatible stealth of infrared and visible were firstly proposed theoretically and investigated experimentally. Owing to the equal inclination interference, the designed 1DPCs structure can be fabricated with a certain color corresponding to the different responded wavelength. In addition, the average emissivity of the proposed structure can reach as low as 0.054 at infrared atmosphere window of 3-5 μm. The as-prepared structure indicates that it is feasible for 1DPC to achieve infrared-visible compatible stealth.

  13. Analysis of papaya cell wall-related genes during fruit ripening indicates a central role of polygalacturonases during pulp softening.

    PubMed

    Fabi, João Paulo; Broetto, Sabrina Garcia; da Silva, Sarah Lígia Garcia Leme; Zhong, Silin; Lajolo, Franco Maria; do Nascimento, João Roberto Oliveira

    2014-01-01

    Papaya (Carica papaya L.) is a climacteric fleshy fruit that undergoes dramatic changes during ripening, most noticeably a severe pulp softening. However, little is known regarding the genetics of the cell wall metabolism in papayas. The present work describes the identification and characterization of genes related to pulp softening. We used gene expression profiling to analyze the correlations and co-expression networks of cell wall-related genes, and the results suggest that papaya pulp softening is accomplished by the interactions of multiple glycoside hydrolases. The polygalacturonase cpPG1 appeared to play a central role in the network and was further studied. The transient expression of cpPG1 in papaya results in pulp softening and leaf necrosis in the absence of ethylene action and confirms its role in papaya fruit ripening.

  14. Effect of Propolis on Dentin Regeneration and the Potential Role of Dental Pulp Stem Cell in Guinea Pigs

    PubMed Central

    Ahangari, Zohreh; Naseri, Mandana; Jalili, Maryam; Mansouri, Yasaman; Mashhadiabbas, Fatemeh; Torkaman, Anahita

    2012-01-01

    Objective: Evaluation of the effect of Propolis as a bioactive material on quality of dentin and presence of dental pulp stem cells. Materials and Methods: For conducting this experimental split-mouth study,a total of 48 maxillary and mandibular incisors of male guinea pigs were randomly divided into an experimental Propolis group and a control calcium hydroxide group. Cutting the crowns and using Propolis or calcium hydroxide to cap the pulp, all of the cavities were sealed. Sections of the teeth were obtained after sacrificing 4 guinea pigs from each group on the 10th, 15th and 30th day. After they had been stained by hematoxylin and eosin (H&E), specimens underwent a histological evaluation under a light microscope for identification of the presence of odontoblast-like cells, pulp vitality, congestion, inflammation of the pulp and the presence of remnants of the material used. The immunohistochemistry (IHC) method using CD29 and CD146 was performed to evaluate the presence of stem cells and the results were statistically evaluated by Kruskal-Wallis, Chi Square and Fisher tests. Results: In H&E stained specimens, there was no difference between the two groups in the presence of odontoblast-like cells, pulp vitality, congestion, inflammation of the pulp and the presence of remnants of used material(p>0.05). There was a significant difference between the quality of regenerative dentin on the 15th and 30th days (p<0.05): all of the Propolis cases presented tubular dentin while 14% of the calcium hydroxide cases produced porous dentin. There was no significant difference between Propolis and calcium hydroxide in stimulation of dental pulp stem cells (DPSCs). Conclusion: This study which is the first one that documented the stimulation of stem cells by Propolis, provides evidence that this material has advantages over calcium hydroxide as a capping agent in vital pulp therapy. In addition to producing no pulpal inflammation, infection or necrosis this material induces the production of high quality tubular dentin. PMID:23508294

  15. Cryopreservation Method for the Effective Collection of Dental Pulp Stem Cells.

    PubMed

    Takebe, Yusuke; Tatehara, Seiko; Fukushima, Tatsuhiro; Tokuyama-Toda, Reiko; Yasuhara, Rika; Mishima, Kenji; Satomura, Kazuhito

    2017-05-01

    Dental pulp stem cells (DPSCs) are an attractive cell source for use in cell-based therapy, regenerative medicine, and tissue engineering because DPSCs have a high cell proliferation ability and multidifferentiation capacity. However, several problems are associated with the collection and preservation of DPSCs for use in future cell-based therapy. In particular, the isolation of DPSCs for cryopreservation is time consuming and expensive. In this study, we developed a novel cryopreservation method (NCM) for dental pulp tissues to isolate suitable DPSCs after thawing cryopreserved tissue. Using the NCM, dental pulp tissues were cultured on adhesion culture dishes for 5 days and then cryopreserved. After thawing, the cryopreserved dental pulp tissue fragments exhibited cell migration. We evaluated each property of DPSCs isolated using the NCM (DPSCs-NCM) and the explant method alone without cryopreservation (DPSCs-C). DPSCs-NCM had the same proliferation capacity as DPSCs-C. Flow cytometry (FACS) analysis indicated that both DPSCs-NCM and DPSCs-C were positive for mesenchymal stem cell markers at the same level but negative for hematopoietic cell markers. Moreover, both DPSCs-NCM and DPSCs-C could differentiate into osteogenic, chondrogenic, and adipogenic cells during culture in each induction medium. These results suggest that DPSCs-NCM may be mesenchymal stem cells. Therefore, our novel method might facilitate the less expensive cryopreservation of DPSCs, thereby providing suitable DPSCs for use in patients in future cell-based therapies.

  16. Response of human dental pulp cells to a silver-containing PLGA/TCP-nanofabric as a potential antibacterial regenerative pulp-capping material.

    PubMed

    Cvikl, Barbara; Hess, Samuel C; Miron, Richard J; Agis, Hermann; Bosshardt, Dieter; Attin, Thomas; Schmidlin, Patrick R; Lussi, Adrian

    2017-02-27

    Damage or exposure of the dental pulp requires immediate therapeutic intervention. This study assessed the biocompatibility of a silver-containing PLGA/TCP-nanofabric scaffold (PLGA/Ag-TCP) in two in vitro models, i.e. the material adapted on pre-cultured cells and cells directly cultured on the material, respectively. Collagen saffolds with and without hyaluronan acid (Coll-HA; Coll) using both cell culturing methods and cells growing on culture plates served as reference. Cell viability and proliferation were assessed after 24, 48, and 72 h based on formazan formation and BrdU incorporation. Scaffolds were harvested. Gene expression of interleukin(IL)-6, tumor necrosis factor (TNF)-alpha, and alkaline phosphatase (AP) was assessed 24 h after stimulation. In both models formazan formation and BrdU incorporation was reduced by PLGA/Ag-TCP on dental pulp cells, while no significant reduction was found in cells with Coll and Coll-HA. Cells with PLGA/Ag-TCP for 72 h showed similar relative BrdU incorporation than cells stimulated with Coll and Coll-HA. A prominent increase in the pro-inflammatory genes IL-6 and TNF-α was observed when cells were cultured with PLGA/Ag-TCP compared to the other groups. This increase was parallel with a slight increase in AP expression. Overall, no differences between the two culture methods were observed. PLGA/Ag-TCP decreased viability and proliferation rate of human dental pulp cells and increased the pro-inflammatory capacity and alkaline phosphatase expression. Whether these cellular responses observed in vitro translate into pulp regeneration in vivo will be assessed in further studies.

  17. Stimulation of matrix metalloproteinases by black-pigmented Bacteroides in human pulp and periodontal ligament cell cultures.

    PubMed

    Chang, Yu-Chao; Lai, Chung-Chih; Yang, Shun-Fa; Chan, You; Hsieh, Yih-Shou

    2002-02-01

    Matrix metalloproteinases (MMPs) are a group of proteolytic enzymes capable of degrading most components of the extracellular matrix. Recently, evidence has shown that MMPs may play a role in tissue degradation in inflamed dental pulp. To date very little is known regarding the mechanism of extracellular matrix destruction at the site of bacterial infection. The purpose of this study was to determine the effects of the supernatants from Porphyromonas endodontalis and Porphyromonas gingivalis on the production and secretion of MMPs by primary human pulp and periodontal ligament (PDL) cell cultures in vitro. The results were evaluated by substrate gel zymography from long-term cultures. The main gelatinase secreted by human pulp and PDL cells migrated at 72 kDa and represented MMP-2. Minor gelatinolytic bands were also observed at 92 kDa regions that correspond to MMP-9. After an 8-day culture period, P. endodontalis and P. gingivalis were found to elevate MMP-2 production both in human pulp and PDL cell cultures. In addition, the stimulation was in a dose- and time-dependent manner. Both human pulp and PDL cells, however, treated with either P. endodontalis or P. gingivalis had no effect on the pattern of MMP-9 produced or secreted in either cell extracts or conditioned medium fractions. These results indicate that black-pigmented Bacteroides species play an important role in tissue destruction and disintegration of extracellular matrix in pulpal and periapical diseases. Thus, activation of MMPs may be one of the distinct host degradative pathways in the pathogenesis of microbial-induced pulpal and periapical lesion. An understanding of the actions of these black-pigmented Bacteroides species on pulp and PDL cells may result in new therapies to augment current treatment of pulpal and periapical lesions.

  18. The Experimental Study of the Performance of Nano-Thin Polyelectrolyte Shell for Dental Pulp Stem Cells Immobilization.

    PubMed

    Grzeczkowicz, A; Granicka, L H; Maciejewska, I; Strawski, M; Szklarczyk, M; Borkowska, M

    2015-12-01

    Carious is the most frequent disease of mineralized dental tissues which might result in dental pulp inflammation and mortality. In such cases an endodontic treatment is the only option to prolong tooth functioning in the oral cavity; however, in the cases of severe pulpitis, especially when complicated with periodontal tissue inflammation, the endodontic treatment might not be enough to protect against tooth loss. Thus, keeping the dental pulp viable and/or possibility of the reconstruction of a viable dental pulp complex, appears to become a critical factor for carious and/or pulp inflammation treatment. The nowadays technologies, which allow handling dental pulp stem cells (DPSC), seem to bring us closer to the usage of dental stem cells for tooth tissues reconstruction. Thus, DPSC immobilized within nano-thin polymeric shells, allowing for a diffusion of produced factors and separation from bacteria, may be considered as a cover system supporting technology of dental pulp reconstruction. The DPSC were immobilized using a layer-by-layer technique within nano-thin polymeric shells constructed and modified by nanostructure involvement to ensure the layers stability and integrity as well as separation from bacterial cells. The cytotoxity of the material used for membrane production was assessed on the model of adherent cells. The performance of DPSC nano-coating was assessed in vitro. Membrane coatings showed no cytotoxicity on the immobilized cells. The presence of coating shell was confirmed with flow cytometry, atomic force microscopy and visualized with fluorescent microscopy. The transfer of immobilized DPSC within the membrane system ensuring cells integrity, viability and protection from bacteria should be considered as an alternative method for dental tissues transportation and regeneration.

  19. Effects of Camphorquinone on Cytotoxicity, Cell Cycle Regulation and Prostaglandin E2 Production of Dental Pulp Cells: Role of ROS, ATM/Chk2, MEK/ERK and Hemeoxygenase-1

    PubMed Central

    Chang, Mei-Chi; Lin, Li-Deh; Wu, Min-Tsz; Chan, Chiu-Po; Chang, Hsiao-Hua; Lee, Ming-Shu; Sun, Tzu-Ying; Jeng, Po-Yuan; Yeung, Sin-Yuet; Lin, Hsueh-Jen; Jeng, Jiiang-Huei

    2015-01-01

    Camphorquinone (CQ) is a popularly-used photosensitizer in composite resin restoration. In this study, the effects of CQ on cytotoxicity and inflammation-related genes and proteins expression of pulp cells were investigated. The role of reactive oxygen species (ROS), ATM/Chk2/p53 and hemeoxygenase-1 (HO-1) and MEK/ERK signaling was also evaluated. We found that ROS and free radicals may play important role in CQ toxicity. CQ (1 and 2 mM) decreased the viability of pulp cells to about 70% and 50% of control, respectively. CQ also induced G2/M cell cycle arrest and apoptosis of pulp cells. The expression of type I collagen, cdc2, cyclin B, and cdc25C was inhibited, while p21, HO-1 and cyclooxygenase-2 (COX-2) were stimulated by CQ. CQ also activated ATM, Chk2, and p53 phosphorylation and GADD45α expression. Besides, exposure to CQ increased cellular ROS level and 8-isoprostane production. CQ also stimulated COX-2 expression and PGE2 production of pulp cells. The reduction of cell viability caused by CQ can be attenuated by N-acetyl-L-cysteine (NAC), catalase and superoxide dismutase (SOD), but can be promoted by Zinc protoporphyin (ZnPP). CQ stimulated ERK1/2 phosphorylation, and U0126 prevented the CQ-induced COX-2 expression and prostaglandin E2 (PGE2) production. These results indicate that CQ may cause cytotoxicity, cell cycle arrest, apoptosis, and PGE2 production of pulp cells. These events could be due to stimulation of ROS and 8-isoprostane production, ATM/Chk2/p53 signaling, HO-1, COX-2 and p21 expression, as well as the inhibition of cdc2, cdc25C and cyclin B1. These results are important for understanding the role of ROS in pathogenesis of pulp necrosis and pulpal inflammation after clinical composite resin filling. PMID:26658076

  20. DENTAL PULP TISSUE ENGINEERING

    PubMed Central

    Demarco, FF; Conde, MCM; Cavalcanti, B; Casagrande, L; Sakai, V; Nör, JE

    2013-01-01

    Dental pulp is a highly specialized mesenchymal tissue, which have a restrict regeneration capacity due to anatomical arrangement and post-mitotic nature of odontoblastic cells. Entire pulp amputation followed by pulp-space disinfection and filling with an artificial material cause loss of a significant amount of dentin leaving as life-lasting sequelae a non-vital and weakened tooth. However, regenerative endodontics is an emerging field of modern tissue engineering that demonstrated promising results using stem cells associated with scaffolds and responsive molecules. Thereby, this article will review the most recent endeavors to regenerate pulp tissue based on tissue engineering principles and providing insightful information to readers about the different aspects enrolled in tissue engineering. Here, we speculate that the search for the ideal combination of cells, scaffolds, and morphogenic factors for dental pulp tissue engineering may be extended over future years and result in significant advances in other areas of dental and craniofacial research. The finds collected in our review showed that we are now at a stage in which engineering a complex tissue, such as the dental pulp, is no longer an unachievable and the next decade will certainly be an exciting time for dental and craniofacial research. PMID:21519641

  1. Pulp revascularization of immature permanent teeth: a review of the literature and a proposal of a new clinical protocol.

    PubMed

    Namour, Mélanie; Theys, Stephanie

    2014-01-01

    Tissue engineering is a growing field. In the near future, it will probably be possible to generate a complete vital tooth from a single stem cell. Pulp revascularization is dependent on the ability of residual pulp and apical and periodontal stem cells to differentiate. These cells have the ability to generate a highly vascularized and a conjunctive rich living tissue. This one is able to colonize the available pulp space. Revascularization is a new treatment method for immature necrotic permanent teeth. Up to now, apexification procedures were applied for these teeth, using calcium dihydroxide or MTA to produce an artificial apical barrier. However, the pulp revascularization allows the stimulation of the apical development and the root maturation of immature teeth. Two pulp revascularization techniques are used in the literature, one using calcium dihydroxide and the second using a triple antibiotic paste. Based on these two different pulp revascularization protocols, which obtain the desired therapeutic success, the literature will be reviewed and analyzed according to the relevance of their choice of materials. Based on the literature, we propose a new relevant protocol and a new mixture of antibiotics.

  2. Systemically Transplanted Bone Marrow-derived Cells Contribute to Dental Pulp Regeneration in a Chimeric Mouse Model.

    PubMed

    Xu, Wenan; Jiang, Shan; Chen, Qiuyue; Ye, Yanyan; Chen, Jiajing; Heng, Boon Chin; Jiang, Qianli; Wu, Buling; Ding, Zihai; Zhang, Chengfei

    2016-02-01

    Migratory cells via blood circulation or cells adjacent to the root apex may potentially participate in dental pulp tissue regeneration or renewal. This study investigated whether systemically transplanted bone marrow cells can contribute to pulp regeneration in a chimeric mouse model. A chimeric mouse model was created through the injection of bone marrow cells from green fluorescent protein (GFP) transgenic C57BL/6 mice into the tail veins of recipient wild-type C57BL/6 mice that had been irradiated with a lethal dose of 8.5 Gy from a high-frequency linear accelerator. These mice were subjected to pulpectomy and pulp revascularization. At 1, 4, and 8 weeks after surgery, in vivo animal imaging and histologic analyses were conducted. In vivo animal imaging showed that the green biofluorescence signal from the transplanted GFP+ cells increased significantly and was maintained at a high level during the first 4 weeks after surgery. Immunofluorescence analyses of tooth specimens collected at 8 weeks postsurgery showed the presence of nestin+/GFP+, α smooth muscle actin (α-SMA)/GFP+, and NeuN/GFP+ cells within the regenerated pulplike tissue. These data confirm that transplanted bone marrow-derived cells can contribute to dental pulp regeneration. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Effects of Growth Factors on Dental Stem/ProgenitorCells

    PubMed Central

    Kim, Sahng G.; Solomon, Charles; Zheng, Ying; Suzuki, Takahiro; Mo, Chen; Song, Songhee; Jiang, Nan; Cho, Shoko; Zhou, Jian; Mao, Jeremy J.

    2014-01-01

    Synopsis The primary goal of regenerative endodontics is to restore the vitality and functions of the dentin-pulp complex, as opposed to filing of the root canal with bioinert materials. Structural restoration is also important but is likely secondary to vitality and functions. Myriads growth factors regulate multiple cellular functions including migration, proliferation, differentiation and apoptosis of several cell types that are intimately involved in dentin-pulp regeneration: odontoblasts, interstitial fibroblasts, vascular-endothelial cells and sprouting nerve fibers. Recent work showing that growth factor delivery, without cell transplantation, can yield pulp-dentin like tissues in vivo provides one of the tangible pathways for regenerative endodontics. This review synthesizes our knowledge on a multitude of growth factors that are known or anticipated to be efficacious in dental pulp-dentin regeneration. PMID:22835538

  4. Transplantation of human immature dental pulp stem cell in dogs with chronic spinal cord injury.

    PubMed

    Feitosa, Matheus Levi Tajra; Sarmento, Carlos Alberto Palmeira; Bocabello, Renato Zonzini; Beltrão-Braga, Patrícia Cristina Baleeiro; Pignatari, Graciela Conceição; Giglio, Robson Fortes; Miglino, Maria Angelica; Orlandin, Jéssica Rodrigues; Ambrósio, Carlos Eduardo

    2017-07-01

    To investigate the therapeutic potential of human immature dental pulp stem cells in the treatment of chronic spinal cord injury in dogs. Three dogs of different breeds with chronic SCI were presented as animal clinical cases. Human immature dental pulp stem cells were injected at three points into the spinal cord, and the animals were evaluated by limb function and magnetic resonance imaging (MRI) pre and post-operative. There was significant improvement from the limb function evaluated by Olby Scale, though it was not supported by the imaging data provided by MRI and clinical sign and evaluation. Human dental pulp stem cell therapy presents promising clinical results in dogs with chronic spinal cord injuries, if used in association with physical therapy.

  5. Analysis of Papaya Cell Wall-Related Genes during Fruit Ripening Indicates a Central Role of Polygalacturonases during Pulp Softening

    PubMed Central

    Fabi, João Paulo; Broetto, Sabrina Garcia; da Silva, Sarah Lígia Garcia Leme; Zhong, Silin; Lajolo, Franco Maria; do Nascimento, João Roberto Oliveira

    2014-01-01

    Papaya (Carica papaya L.) is a climacteric fleshy fruit that undergoes dramatic changes during ripening, most noticeably a severe pulp softening. However, little is known regarding the genetics of the cell wall metabolism in papayas. The present work describes the identification and characterization of genes related to pulp softening. We used gene expression profiling to analyze the correlations and co-expression networks of cell wall-related genes, and the results suggest that papaya pulp softening is accomplished by the interactions of multiple glycoside hydrolases. The polygalacturonase cpPG1 appeared to play a central role in the network and was further studied. The transient expression of cpPG1 in papaya results in pulp softening and leaf necrosis in the absence of ethylene action and confirms its role in papaya fruit ripening. PMID:25162506

  6. Inhibition of TGF-β Signaling in SHED Enhances Endothelial Differentiation.

    PubMed

    Xu, J G; Gong, T; Wang, Y Y; Zou, T; Heng, B C; Yang, Y Q; Zhang, C F

    2018-02-01

    Low efficiency of deriving endothelial cells (ECs) from adult stem cells hampers their utilization in tissue engineering studies. The purpose of this study was to investigate whether suppression of transforming growth factor beta (TGF-β) signaling could enhance the differentiation efficiency of dental pulp-derived stem cells into ECs. We initially used vascular endothelial growth factor A (VEGF-A) to stimulate 2 dental pulp-derived stem cells (dental pulp stem cells and stem cells from human exfoliated deciduous teeth [SHED]) and compared their differentiation capacity into ECs. We further evaluated whether the vascular endothelial growth factor receptor I (VEGF-RI)-specific ligand placental growth factor-1 (PlGF-1) could mediate endothelial differentiation. Finally, we investigated whether the TGF-β signaling inhibitor SB-431542 could enhance the inductive effect of VEGF-A on endothelial differentiation, as well as the underlying mechanisms involved. ECs differentiated from dental pulp-derived stem cells exhibited the typical phenotypes of primary ECs, with SHED possessing a higher endothelial differentiation potential than dental pulp stem cells. VEGFR1-specific ligand-PLGF exerted a negligible effect on SHED-ECs differentiation. Compared with VEGF-A alone, the combination of VEGF-A and SB-431542 significantly enhanced the endothelial differentiation of SHED. The presence of SB-431542 inhibited the phosphorylation of Suppressor of Mothers Against Decapentaplegic 2/3 (SMAD2/3), allowing for VEGF-A-dependent phosphorylation and upregulation of VEGFR2. Our results indicate that the combination of VEGF-A and SB-431542 could enhance the differentiation of dental pulp-derived stem cells into endothelial cells, and this process is mediated through enhancement of VEGF-A-VEGFR2 signaling and concomitant inhibition of TGF-β-SMAD2/3 signaling.

  7. Direct and Indirect Pulp Capping: A Brief History, Material Innovations, and Clinical Case Report.

    PubMed

    Alex, Gary

    2018-03-01

    Among the goals of pulp capping are to manage bacteria, arrest caries progression, stimulate pulp cells to form new dentin, and produce a durable seal that protects the pulp complex. This article will provide a general discussion of direct and indirect pulp capping procedures, offering practitioners a pragmatic and science-based clinical protocol for treatment of vital pulp exposures. A clinical case will be presented in which a novel light-cured resin-modified mineral trioxide aggregate hybrid material was used to manage a mechanical vital pulp exposure that occurred during deep caries excavation.

  8. Inflammatory and immunological aspects of dental pulp repair

    PubMed Central

    Goldberg, Michel; Farges, Jean-Christophe; Lacerda-Pinheiro, Sally; Six, Ngampis; Jegat, Nadège; Decup, Frank; Septier, Dominique; Carrouel, Florence; Durand, Stéphanie; Chaussain-Miller, Catherine; DenBesten, Pamela; Veis, Arthur; Poliard, Anne

    2010-01-01

    The repair of dental pulp by direct capping with calcium hydroxide or by implantation of bioactive extracellular matrix (ECM) molecules implies a cascade of four steps: a moderate inflammation, the commitment of adult reserve stem cells, their proliferation and terminal differentiation. The link between the initial inflammation and cell commitment is not yet well established but appears as a potential key factor in the reparative process. Either the release of cytokines due to inflammatory events activates resident stem (progenitor) cells, or inflammatory cells or pulp fibroblasts undergo a phenotypic conversion into osteoblast/odontoblast-like progenitors implicated in reparative dentin formation. Activation of antigen-presenting dendritic cells by mild inflammatory processes may also promote osteoblast/odontoblast-like differentiation and expression of ECM molecules implicated in mineralization. Recognition of bacteria by specific odontoblast and fibroblast membrane receptors triggers an inflammatory and immune response within the pulp tissue that would also modulate the repair process. PMID:18602009

  9. ASSEMBLY TRANSFER SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B. Gorpani

    2000-06-26

    The Assembly Transfer System (ATS) receives, cools, and opens rail and truck transportation casks from the Carrier/Cask Handling System (CCHS). The system unloads transportation casks consisting of bare Spent Nuclear Fuel (SNF) assemblies, single element canisters, and Dual Purpose Canisters (DPCs). For casks containing DPCs, the system opens the DPCs and unloads the SNF. The system stages the assemblies, transfer assemblies to and from fuel-blending inventory pools, loads them into Disposal Containers (DCs), temporarily seals and inerts the DC, decontaminates the DC and transfers it to the Disposal Container Handling System. The system also prepares empty casks and DPCs formore » off-site shipment. Two identical Assembly Transfer System lines are provided in the Waste Handling Building (WHB). Each line operates independently to handle the waste transfer throughput and to support maintenance operations. Each system line primarily consists of wet and dry handling areas. The wet handling area includes a cask transport system, cask and DPC preparation system, and a wet assembly handling system. The basket transport system forms the transition between the wet and dry handling areas. The dry handling area includes the dry assembly handling system, assembly drying system, DC preparation system, and DC transport system. Both the wet and dry handling areas are controlled by the control and tracking system. The system operating sequence begins with moving transportation casks to the cask preparation area. The cask preparation operations consist of cask cavity gas sampling, cask venting, cask cool-down, outer lid removal, and inner shield plug lifting fixture attachment. Casks containing bare SNF (no DPC) are filled with water and placed in the cask unloading pool. The inner shield plugs are removed underwater. For casks containing a DPC, the cask lid(s) is removed, and the DPC is penetrated, sampled, vented, and cooled. A DPC lifting fixture is attached and the cask is placed into the cask unloading pool. In the cask unloading pool the DPC is removed from the cask and placed in an overpack and the DPC lid is severed and removed. Assemblies are removed from either an open cask or DPC and loaded into assembly baskets positioned in the basket staging rack in the assembly unloading pool. A method called ''blending'' is utilized to load DCs with a heat output of less than 11.8 kW. This involves combining hotter and cooler assemblies from different baskets. Blending requires storing some of the hotter fuel assemblies in fuel-blending inventory pools until cooler assemblies are available. The assembly baskets are then transferred from the basket staging rack to the assembly handling cell and loaded into the assembly drying vessels. After drying, the assemblies are removed from the assembly drying vessels and loaded into a DC positioned below the DC load port. After installation of a DC inner lid and temporary sealing device, the DC is transferred to the DC decontamination cell where the top area of the DC, the DC lifting collar, and the DC inner lid and temporary sealing device are decontaminated, and the DC is evacuated and backfilled with inert gas to prevent prolonged clad exposure to air. The DC is then transferred to the Disposal Container Handling System for lid welding. In another cask preparation and decontamination area, lids are replaced on the empty transportation casks and DPC overpacks, the casks and DPC overpacks are decontaminated, inspected, and transferred to the Carrier/Cask Handling System for shipment off-site. All system equipment is designed to facilitate manual or remote operation, decontamination, and maintenance. The system interfaces with the Carrier/Cask Handling System for incoming and outgoing transportation casks and DPCs. The system also interfaces with the Disposal Container Handling System, which prepares the DC for loading and subsequently seals the loaded DC. The system support interfaces are the Waste Handling Building System and other internal WHB support systems.« less

  10. Red algae and their use in papermaking.

    PubMed

    Seo, Yung-Bum; Lee, Youn-Woo; Lee, Chun-Han; You, Hack-Chul

    2010-04-01

    Gelidialian red algae, that contain rhizoidal filaments, except the family Gelidiellaceae were processed to make bleached pulps, which can be used as raw materials for papermaking. Red algae consist of rhizoidal filaments, cortical cells usually reddish in color, and medullary cells filled with mucilaginous carbohydrates. Red algae pulp consists of mostly rhizoidal filaments. Red algae pulp of high brightness can be produced by extracting mucilaginous carbohydrates after heating the algae in an aqueous medium and subsequently treating the extracted with bleaching chemicals. In this study, we prepared paper samples from bleached pulps obtained from two red algae species (Gelidium amansii and Gelidium corneum) and compared their properties to those of bleached wood chemical pulps. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. Digital Plasma Control System for Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Ferrara, M.; Wolfe, S.; Stillerman, J.; Fredian, T.; Hutchinson, I.

    2004-11-01

    A digital plasma control system (DPCS) has been designed to replace the present C-Mod system, which is based on hybrid analog-digital computer. The initial implementation of DPCS comprises two 64 channel, 16 bit, low-latency cPCI digitizers, each with 16 analog outputs, controlled by a rack-mounted single-processor Linux server, which also serves as the compute engine. A prototype system employing three older 32 channel digitizers was tested during the 2003-04 campaign. The hybrid's linear PID feedback system was emulated by IDL code executing a synchronous loop, using the same target waveforms and control parameters. Reliable real-time operation was accomplished under a standard Linux OS (RH9) by locking memory and disabling interrupts during the plasma pulse. The DPCS-computed outputs agreed to within a few percent with those produced by the hybrid system, except for discrepancies due to offsets and non-ideal behavior of the hybrid circuitry. The system operated reliably, with no sample loss, at more than twice the 10kHz design specification, providing extra time for implementing more advanced control algorithms. The code is fault-tolerant and produces consistent output waveforms even with 10% sample loss.

  12. Method and apparatus for assaying wood pulp fibers

    DOEpatents

    Gustafson, Richard [Bellevue, WA; Callis, James B [Seattle, WA; Mathews, Jeffrey D [Neenah, WI; Robinson, John [Issaquah, WA; Bruckner, Carsten A [San Mateo, CA; Suvamakich, Kuntinee [Seattle, WA

    2009-05-26

    Paper pulp is added to a stain solution. The stain solution and pulp fibers are mixed to form a slurry. Samples are removed from the slurry and are admixed with dilution water and a bleach. Then, the fibers are moved into a flow cell where they are subjected to a light source adapted to stimulate fluorescence from the stained pulp fiber. Before the fiber slurry enters the flow cell it is mixed with a dilution water of bleach to reduce background fluorescence. The fluorescent light is collimated and directed through a dichroic filter onto a fluorescence splitting dichroic filter.

  13. Allogenic banking of dental pulp stem cells for innovative therapeutics.

    PubMed

    Collart-Dutilleul, Pierre-Yves; Chaubron, Franck; De Vos, John; Cuisinier, Frédéric J

    2015-08-26

    Medical research in regenerative medicine and cell-based therapy has brought encouraging perspectives for the use of stem cells in clinical trials. Multiple types of stem cells, from progenitors to pluripotent stem cells, have been investigated. Among these, dental pulp stem cells (DPSCs) are mesenchymal multipotent cells coming from the dental pulp, which is the soft tissue within teeth. They represent an interesting adult stem cell source because they are recovered in large amount in dental pulps with non-invasive techniques compared to other adult stem cell sources. DPSCs can be obtained from discarded teeth, especially wisdom teeth extracted for orthodontic reasons. To shift from promising preclinical results to therapeutic applications to human, DPSCs must be prepared in clinical grade lots and transformed into advanced therapy medicinal products (ATMP). As the production of patient-specific stem cells is costly and time-consuming, allogenic biobanking of clinical grade human leukocyte antigen (HLA)-typed DPSC lines provides efficient innovative therapeutic products. DPSC biobanks represent industrial and therapeutic innovations by using discarded biological tissues (dental pulps) as a source of mesenchymal stem cells to produce and store, in good manufacturing practice (GMP) conditions, DPSC therapeutic batches. In this review, we discuss about the challenges to transfer biological samples from a donor to HLA-typed DPSC therapeutic lots, following regulations, GMP guidelines and ethical principles. We also present some clinical applications, for which there is no efficient therapeutics so far, but that DPSCs-based ATMP could potentially treat.

  14. Allogenic banking of dental pulp stem cells for innovative therapeutics

    PubMed Central

    Collart-Dutilleul, Pierre-Yves; Chaubron, Franck; De Vos, John; Cuisinier, Frédéric J

    2015-01-01

    Medical research in regenerative medicine and cell-based therapy has brought encouraging perspectives for the use of stem cells in clinical trials. Multiple types of stem cells, from progenitors to pluripotent stem cells, have been investigated. Among these, dental pulp stem cells (DPSCs) are mesenchymal multipotent cells coming from the dental pulp, which is the soft tissue within teeth. They represent an interesting adult stem cell source because they are recovered in large amount in dental pulps with non-invasive techniques compared to other adult stem cell sources. DPSCs can be obtained from discarded teeth, especially wisdom teeth extracted for orthodontic reasons. To shift from promising preclinical results to therapeutic applications to human, DPSCs must be prepared in clinical grade lots and transformed into advanced therapy medicinal products (ATMP). As the production of patient-specific stem cells is costly and time-consuming, allogenic biobanking of clinical grade human leukocyte antigen (HLA)-typed DPSC lines provides efficient innovative therapeutic products. DPSC biobanks represent industrial and therapeutic innovations by using discarded biological tissues (dental pulps) as a source of mesenchymal stem cells to produce and store, in good manufacturing practice (GMP) conditions, DPSC therapeutic batches. In this review, we discuss about the challenges to transfer biological samples from a donor to HLA-typed DPSC therapeutic lots, following regulations, GMP guidelines and ethical principles. We also present some clinical applications, for which there is no efficient therapeutics so far, but that DPSCs-based ATMP could potentially treat. PMID:26328017

  15. Proteomic Analysis of Mesenchymal Stem Cells from Normal and Deep Carious Dental Pulp

    PubMed Central

    Gao, Jie; Yan, Wenjuan; Liu, Ying; Xu, Shuaimei; Wu, Buling

    2014-01-01

    Dental pulp stem cells (DPSCs), precursor cells of odontoblasts, are ideal seed cells for tooth tissue engineering and regeneration. Our previous study has demonstrated that stem cells exist in dental pulp with deep caries and are called carious dental pulp stem cells (CDPSCs). The results indicated that CDPSCs had a higher proliferative and stronger osteogenic differentiation potential than DPSCs. However, the molecular mechanisms responsible for the biological differences between DPSCs and CDPSCs are poorly understood. The aim of this study was to define the molecular features of DPSCs and CDPSCs by comparing the proteomic profiles using two-dimensional fluorescence difference gel electrophoresis (2-D DIGE) in combination with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Our results revealed that there were 18 protein spots differentially expressed between DPSCs and CDPSCs in a narrow pH range of 4 to 7. These differently expressed proteins are mostly involved in the regulation of cell proliferation, differentiation, cell cytoskeleton and motility. In addition, our results suggested that CDPSCs had a higher expression of antioxidative proteins that might protect CDPSCs from oxidative stress. This study explores some potential proteins responsible for the biological differences between DPSCs and CDPSCs and expands our understanding on the molecular mechanisms of mineralization of DPSCs in the formation of the dentin-pulp complex. PMID:24809979

  16. Deciphering the Epigenetic Code in Embryonic and Dental Pulp Stem Cells

    PubMed Central

    Bayarsaihan, Dashzeveg

    2016-01-01

    A close cooperation between chromatin states, transcriptional modulation, and epigenetic modifications is required for establishing appropriate regulatory circuits underlying self-renewal and differentiation of adult and embryonic stem cells. A growing body of research has established that the epigenome topology provides a structural framework for engaging genes in the non-random chromosomal interactions to orchestrate complex processes such as cell-matrix interactions, cell adhesion and cell migration during lineage commitment. Over the past few years, the functional dissection of the epigenetic landscape has become increasingly important for understanding gene expression dynamics in stem cells naturally found in most tissues. Adult stem cells of the human dental pulp hold great promise for tissue engineering, particularly in the skeletal and tooth regenerative medicine. It is therefore likely that progress towards pulp regeneration will have a substantial impact on the clinical research. This review summarizes the current state of knowledge regarding epigenetic cues that have evolved to regulate the pluripotent differentiation potential of embryonic stem cells and the lineage determination of developing dental pulp progenitors. PMID:28018144

  17. Repair dentinogenesis following transplantation into normal and germ-free animals.

    PubMed

    Inoue, T; Shimono, M

    1992-01-01

    The purpose of this study was to investigate the dentinogenesis of dental pulp tissue following transplantation and during regeneration in normal and germ free animals, as well as in vitro experiments. (1) Partial and complete exposure of dental pulp in germ free rats by removing the enamel and dentin of molars. (2) The central portion of rat incisor which consisted of pulp and pulp chamber were autografted into various tissues. (3) Explants of rat pulp tissue were cultured on dentin matrix. (4) Resin bonding agent, 4-META/MMA-TBB-O (Superbond), was placed directly on surgically-exposed dental pulp. (1) Dentin bridge formation was recognized at 5 days after operation in germ free rat. (2) The cut surface of the transplant exhibited dentin bridge at 7 days after implantation, and the thickness of the newly formed dentin increased gradually thereafter up to 30 days. (3) Cultured pulp cells had high alkaline phosphatase activity and bone- or dentin-like hard tissue was synthesized on the dentin matrix in vitro. (4) Dentin bridge formation was evident on the surgically-exposed dental pulp even after application of Superbond. From these results, it is suggested that pulp tissue has a high activity of dentinogenesis both in vivo and in vitro and 3 days is enough for pulp cells to express the odontoblast phenotype when inflammatory factors are not present.

  18. Autophagy in SDF-1α-mediated DPSC migration and pulp regeneration.

    PubMed

    Yang, Jing-Wen; Zhang, Yu-Feng; Wan, Chun-Yan; Sun, Zhe-Yi; Nie, Shuai; Jian, Shu-Juan; Zhang, Lu; Song, Guang-Tai; Chen, Zhi

    2015-03-01

    Critical morphological requirements for pulp regeneration are tissues replete with vascularisation, neuron formation, and dentin deposition. Autophagy was recently shown to be related to angiogenesis, neural differentiation, and osteogenesis. The present study aimed to investigate the involvement of autophagy in stromal cell-derived factor-1α (SDF-1α)-mediated dental pulp stem cell (DPSC) migration and pulp regeneration, and identify its presence during pulp revascularisation of pulpectomised dog teeth with complete apical closure. In vitro studies showed that SDF-1α enhanced DPSCs migration and optimised focal adhesion formation and stress fibre assembly, which were accompanied by autophagy. Moreover, autophagy inhibitors significantly suppressed, whereas autophagy activator substantially augmented SDF-1α-stimulated DPSCs migration. Furthermore, after ectopic transplantation of tooth fragment/silk fibroin scaffold with DPSCs into nude mice, pulp-like tissues with vascularity, well-organised fibrous matrix formation, and new dentin deposition along the dentinal wall were generated in SDF-1α-loaded samples accompanied by autophagy. More importantly, in a pulp revascularisation model in situ, SDF-1α-loaded silk fibroin scaffolds improved the de novo ingrowth of pulp-like tissues in pulpectomised mature dog teeth, which correlated with the punctuated LC3 and Atg5 expressions, indicating autophagy. Our findings provide novel insights into the pulp regeneration mechanism, and SDF-1α shows promise for future clinical application in pulp revascularisation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Tissue non-specific alkaline phosphatase production by human dental pulp stromal cells is enhanced by high density cell culture.

    PubMed

    Tomlinson, Matthew J; Dennis, Caitriona; Yang, Xuebin B; Kirkham, Jennifer

    2015-08-01

    The cell surface hydrolase tissue non-specific alkaline phosphatase (TNAP) (also known as MSCA-1) is used to identify a sub-population of bone marrow stromal cells (BMSCs) with high mineralising potential and is found on subsets of cells within the dental pulp. We aim to determine whether TNAP is co-expressed by human dental pulp stromal cells (hDPSCs) alongside a range of BMSC markers, whether this is an active form of the enzyme and the effects of culture duration and cell density on its expression. Cells from primary dental pulp and culture expanded hDPSCs expressed TNAP. Subsequent analyses revealed persistent TNAP expression and co-expression with BMSC markers such as CD73 and CD90. Flow cytometry and biochemical assays showed that increased culture durations and cell densities enhanced TNAP expression by hDPSCs. Arresting the hDPSC cell cycle also increased TNAP expression. These data confirm that TNAP is co-expressed by hDPSCs together with other BMSC markers and show that cell density affects TNAP expression levels. We conclude that TNAP is a potentially useful marker for hDPSC selection especially for uses in mineralised tissue regenerative therapies.

  20. Molecular, cellular, and behavioral changes associated with pathological pain signaling occur after dental pulp injury

    PubMed Central

    Lee, Caroline S; Ramsey, Austin A; De Brito-Gariepy, Helaine; Michot, Benoit; Podborits, Eugene; Melnyk, Janet

    2017-01-01

    Persistent pain can occur after routine dental treatments in which the dental pulp is injured. To better understand pain chronicity after pulp injury, we assessed whether dental pulp injury in mice causes changes to the sensory nervous system associated with pathological pain. In some experiments, we compared findings after dental pulp injury to a model of orofacial neuropathic pain, in which the mental nerve is injured. After unilateral dental pulp injury, we observed increased expression of activating transcription factor 3 (ATF3) and neuropeptide Y (NPY) mRNA and decreased tachykinin precursor 1 gene expression, in the ipsilateral trigeminal ganglion. We also observed an ipsilateral increase in the number of trigeminal neurons expressing immunoreactivity for ATF3, a decrease in substance P (SP) immunoreactive cells, and no change in the number of cells labeled with IB4. Mice with dental pulp injury transiently exhibit hindpaw mechanical allodynia, out to 12 days, while mice with mental nerve injury have persistent hindpaw allodynia. Mice with dental pulp injury increased spontaneous consumption of a sucrose solution for 17 days while mental nerve injury mice did not. Finally, after dental pulp injury, an increase in expression of the glial markers Iba1 and glial fibrillary acidic protein occurs in the transition zone between nucleus caudalis and interpolaris, ipsilateral to the injury. Collectively these studies suggest that dental pulp injury is associated with significant neuroplasticity that could contribute to persistent pain after of dental pulp injury. PMID:28580829

  1. One step pulp revascularization treatment of an immature permanent tooth with chronic apical abscess: a case report.

    PubMed

    Shin, S Y; Albert, J S; Mortman, R E

    2009-12-01

    To describe a case in which a mandibular right second premolar with a necrotic pulp, sinus tract, periradicular radiolucency and an immature apex underwent revascularization via a single treatment approach. Revascularization procedures have the potential to heal a partially necrotic pulp, which can be beneficial for the continued root development of immature teeth. However, it is not clear which revascularization protocols are the most effective. This case report details the outcome of a successful revascularization procedure on tooth 45 (FDI) in a 12-year-old patient, eliminating the associated periapical pathosis within 19 months. The tooth was treated using coronal root irrigation with 6% NaOCl and 2% chlorhexidine without instrumentation in a single visit. The successful outcome of this case report suggests that this conservative revascularization treatment approach can preserve the vitality of the dental pulp stem cells and create a suitable environment for pulp regeneration, resulting in the completion of root maturation. The noninstrumentation procedure using 6% NaOCl and 2% chlorhexidine coronal irrigation may help preserve the remaining vital dental pulp stem cells believed to be critical for pulp revascularization. A single visit pulp revascularization protocol can be a favourable treatment option for an immature permanent tooth with a partially necrotic pulp.

  2. Enhanced differentiation of dental pulp cells cultured on microtubular polymer scaffolds in vitro.

    PubMed

    Haeri, Morteza; Sagomonyants, Karen; Mina, Mina; Kuhn, Liisa T; Goldberg, A Jon

    2017-06-01

    Dental caries (tooth decay) is the most common chronic disease. Dental tissue engineering is a promising alternative approach to alleviate the shortcomings of the currently available restorative materials. Mimicking the natural extracellular matrix (ECM) could enhance the performance of tissue engineering scaffolds. In this study, we developed microtubular (~20 μm diameter) polymethyl methacrylate (PMMA) scaffolds resembling the tubular (~2.5 μm diameter) structure of dentin, the collagen-based mineralized tissue that forms the major portion of teeth, to study the effect of scaffold architecture on differentiation of mouse dental pulp cells in vitro . Flat (control), plasma-treated solid and microtubular PMMA scaffolds with densities of 240±15, 459±51 and 480±116 tubules/mm 2 were first characterized using scanning electron microscopy and contact angle measurements. Dental pulp cells were cultured on the surface of the scaffolds for up to 21 days and examined using various assays. Cell proliferation and mineralization were examined using Alamar Blue and Xylenol Orange (XO) staining assays, respectively. The differentiation of pulp cells into odontoblasts was examined by immunostaining for Nestin and by quantitative PCR analysis for dentin matrix protein 1 ( Dmp1 ), dentin sialophosphoprotein ( Dspp ) and osteocalcin ( Ocn ). Our results showed that the highest tubular density scaffolds significantly (p<0.05) enhanced differentiation of pulp cells into odontoblasts as compared to control flat scaffolds, as evidenced by increased expression of Nestin (5.4x). However, mineralization was suppressed on all surfaces, possibly due to low cell density. These results suggest that the microtubular architecture may be a desirable feature of scaffolds developed for clinical applications. Regenerative engineering of diseased or traumatized tooth structure could avoid the deficiencies of traditional dental restorative (filling) materials. Cells in the dental pulp have the potential to differentiate to dentin-producing odontoblast cells. Furthermore, cell-supporting scaffolds that mimic a natural extracellular matrix (ECM) are known to influence behavior of progenitor cells. Accordingly, we hypothesized that a dentin-like microtubular scaffold would enhance differentiation of dental pulp cells. The hypothesis was proven true and differentiation to odontoblasts increased with increasing density of the microtubules. However, mineralization was suppressed, possibly due to a low density of cells. The results demonstrate the potential benefits of a microtubular scaffold design to promote odontoblast cells for regeneration of dentin.

  3. [Comparison of expression of transforming growth factor-β1 in rat dental pulp during direct pulp capping with 2 capping agents].

    PubMed

    Zhang, Xiao-fang; Yao, Ya-peng; Kang, Hong-ying; Dong, Pei

    2014-04-01

    To examine and compare the expression of transforming growth factor-β1(TGF-β1) in rat dental pulp after direct pulp capping with calcium hydroxide (CH) and mineral trioxide aggregate (MTA). The model of direct dental pulp capping after first molars was established in 28 female Wistar rats with CH and MTA. The rats were sacrificed 1, 3, 5, 7, 14,21 and 28 days after direct pulp capping. TGF-β1 expression in pulp tissues were measured with immunohistochemical staining. The data was analyzed by Dunnett t test and paired t test with SPSS 13.0 software package. The results showed that no TGF-β1 expression was detected in the control group. After direct pulp capping with MTA, TGF-β1 expression gradually increased and reached peak expression on 5 day. TGF-β1 expression gradually decreased afterwards and reached normal on 21 day after direct pulp. TGF-β1 was mainly expressed in neutrophils, odontoblasts cells, vascular endothelial cells and fibroblasts. The expression of TGF-β1 was significantly different between 2 capping agents 1, 3, 5, 7, 14 days after direct pulp capping (P<0.05). The results suggest that TGF-β1 expression increases at first and then decreases after direct pulp capping. The type of capping agents has an impact on the expression of TGF-β1 after direct pulp capping. MTA enhances more TGFβ-1 expression than CH 1, 3, 5, 7 and 14 days after direct pulp capping. Supported by Science and Technology Plan Project of Liaoning Province (2009225001-2).

  4. Iloprost up-regulates vascular endothelial growth factor expression in human dental pulp cells in vitro and enhances pulpal blood flow in vivo.

    PubMed

    Limjeerajarus, Chalida Nakalekha; Osathanon, Thanaphum; Manokawinchoke, Jeeranan; Pavasant, Prasit

    2014-07-01

    Prostacyclin (PGI2) is a biomolecule capable of enhancing angiogenesis and cellular proliferation. We investigated the influence of a PGI2 analogue (iloprost) on dental pulp revascularization in vitro and in vivo by using human dental pulp cells (HDPCs) and a rat tooth injury model, respectively. Iloprost stimulated the human dental pulp cell mRNA expression of vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2), and platelet-derived growth factor (PDGF) in a significant dose-dependent manner. This mRNA up-regulation was significantly inhibited by pretreatment with a PGI2 receptor antagonist and forskolin (a protein kinase A activator). In contrast, a protein kinase A inhibitor significantly enhanced the iloprost-induced mRNA expression of VEGF, FGF-2, and PDGF. Pretreatment with a fibroblast growth factor receptor inhibitor attenuated the VEGF, FGF-2, and PDGF mRNA expression, indicating opposing regulatory mechanisms. The effect of iloprost on the dental pulp was investigated in vivo by using a rat molar pulp injury model. The iloprost-treated group exhibited a significant increase in pulpal blood flow at 72 hours compared with control. The present study indicates that iloprost may be a candidate agent to promote neovascularization in dental pulp tissue, suggesting the potential clinical use of iloprost in vital pulp therapy. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Screening antimutagenic and antiproliferative properties of extracts isolated from Jackfruit pulp (Artocarpus heterophyllus Lam).

    PubMed

    Ruiz-Montañez, G; Burgos-Hernández, A; Calderón-Santoyo, M; López-Saiz, C M; Velázquez-Contreras, C A; Navarro-Ocaña, A; Ragazzo-Sánchez, J A

    2015-05-15

    The present focused on the study of the antimutagenic and antiproliferative potential of pulp Jackfruit (Artocarpus heterophyllus Lam) extract, using Salmonella typhimurium tester strains TA98 and TA100 with metabolic activation (S9) and a cancer cell line M12.C3.F6 (murine B-cell lymphoma), respectively. Jackfruit pulp extract was sequentially fractionated by chromatography (RP-HPLC) and each fraction was tested for antimutagenic and antiproliferative activities. The organic extracts obtained from Jackfruit pulp reduced the number of revertants caused by aflatoxin B1 (AFB1) and proliferation of cells M12.C3.F6; a dose-response relationship was showed. Sequential RP-HPLC fractionation of the active extracts produced both antimutagenic and/or antiproliferative fractions. These results suggested that the Jackfruit contained compounds with chemoprotective properties to reduce the mutagenicity of AFB1, also proliferation of a cancer cell line. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. EDTA conditioning of dentine promotes adhesion, migration and differentiation of dental pulp stem cells.

    PubMed

    Galler, K M; Widbiller, M; Buchalla, W; Eidt, A; Hiller, K-A; Hoffer, P C; Schmalz, G

    2016-06-01

    To evaluate the effect of dentine conditioning on migration, adhesion and differentiation of dental pulp stem cells. Dentine discs prepared from extracted human molars were pre-treated with EDTA (10%), NaOCl (5.25%) or H2 O. Migration of dental pulp stem cells towards pre-treated dentine after 24 and 48 h was assessed in a modified Boyden chamber assay. Cell adhesion was evaluated indirectly by measuring cell viability. Expression of mineralization-associated genes (COL1A1, ALP, BSP, DSPP, RUNX2) in cells cultured on pre-treated dentine for 7 days was determined by RT-qPCR. Nonparametric statistical analysis was performed for cell migration and cell viability data to compare different groups and time-points (Mann-Whitney U-test, α = 0.05). Treatment of dentine with H2 O or EDTA allowed for cell attachment, which was prohibited by NaOCl with statistical significance (P = 0.000). Furthermore, EDTA conditioning induced cell migration towards dentine. The expression of mineralization-associated genes was increased in dental pulp cells cultured on dentine after EDTA conditioning compared to H2 O-pre-treated dentine discs. EDTA conditioning of dentine promoted the adhesion, migration and differentiation of dental pulp stem cells towards or onto dentine. A pre-treatment with EDTA as the final step of an irrigation protocol for regenerative endodontic procedures has the potential to act favourably on new tissue formation within the root canal. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  7. Transforming growth factor beta 1 increases collagen content, and stimulates procollagen I and tissue inhibitor of metalloproteinase-1 production of dental pulp cells: Role of MEK/ERK and activin receptor-like kinase-5/Smad signaling.

    PubMed

    Lin, Po-Shuen; Chang, Hsiao-Hua; Yeh, Chien-Yang; Chang, Mei-Chi; Chan, Chiu-Po; Kuo, Han-Yueh; Liu, Hsin-Cheng; Liao, Wan-Chuen; Jeng, Po-Yuan; Yeung, Sin-Yuet; Jeng, Jiiang-Huei

    2017-05-01

    In order to clarify the role of transforming growth factor beta 1 (TGF-β1) in pulp repair/regeneration responses, we investigated the differential signaling pathways responsible for the effects of TGF-β1 on collagen turnover, matrix metalloproteinase-3 (MMP-3), and tissue inhibitor of metalloproteinase-1 (TIMP-1) production in human dental pulp cells. Pulp cells were exposed to TGF-β1 with/without pretreatment and coincubation by 1,4-diamino-2,3-dicyano-1,4-bis(o-aminophenyl mercapto)butadiene (U0126; a mitogen-activated protein kinase kinase [MEK]/extracellular signal-regulated kinase [ERK] inhibitor) and 4-(5-benzol[1,3]dioxol-5-yl-4-pyrldin-2-yl-1H- imidazol-2-yl)-benzamide hydrate (SB431542; an activin receptor-like kinase-5/Smad signaling inhibitor). Sircol collagen assay was used to measure cellular collagen content. Culture medium procollagen I, TIMP-1, and MMP-3 levels were determined by enzyme-linked immunosorbent assay. TGF-β1 increased the collagen content, procollagen I, and TIMP-1 production, but slightly decreased MMP-3 production of pulp cells. SB431542 and U0126 prevented the TGF-β1-induced increase of collagen content and TIMP-1 production of dental pulp cells. These results indicate that TGF-β1 may be involved in the healing/regeneration processes of dental pulp in response to injury by stimulation of collagen and TIMP-1 production. These events are associated with activin receptor-like kinase-5/Smad2/3 and MEK/ERK signaling. Copyright © 2016. Published by Elsevier B.V.

  8. Splenic red pulp macrophages are intrinsically superparamagnetic and contaminate magnetic cell isolates.

    PubMed

    Franken, Lars; Klein, Marika; Spasova, Marina; Elsukova, Anna; Wiedwald, Ulf; Welz, Meike; Knolle, Percy; Farle, Michael; Limmer, Andreas; Kurts, Christian

    2015-08-11

    A main function of splenic red pulp macrophages is the degradation of damaged or aged erythrocytes. Here we show that these macrophages accumulate ferrimagnetic iron oxides that render them intrinsically superparamagnetic. Consequently, these cells routinely contaminate splenic cell isolates obtained with the use of MCS, a technique that has been widely used in immunological research for decades. These contaminations can profoundly alter experimental results. In mice deficient for the transcription factor SpiC, which lack red pulp macrophages, liver Kupffer cells take over the task of erythrocyte degradation and become superparamagnetic. We describe a simple additional magnetic separation step that avoids this problem and substantially improves purity of magnetic cell isolates from the spleen.

  9. Elevated extracellular calcium increases expression of bone morphogenetic protein-2 gene via a calcium channel and ERK pathway in human dental pulp cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tada, Hiroyuki; Nemoto, Eiji, E-mail: e-nemoto@umin.ac.jp; Kanaya, Sousuke

    Dental pulp cells, which have been shown to share phenotypical features with osteoblasts, are capable of differentiating into odontoblast-like cells and generating a dentin-like mineral structure. Elevated extracellular Ca{sup 2+}Ca{sub o}{sup 2+} has been implicated in osteogenesis by stimulating the proliferation and differentiation of osteoblasts; however, the role of Ca{sub o}{sup 2+} signaling in odontogenesis remains unclear. We found that elevated Ca{sub o}{sup 2+} increases bone morphogenetic protein (BMP)-2 gene expression in human dental pulp cells. The increase was modulated not only at a transcriptional level but also at a post-transcriptional level, because treatment with Ca{sup 2+} increased the stabilitymore » of BMP-2 mRNA in the presence of actinomycin D, an inhibitor of transcription. A similar increase in BMP-2 mRNA level was observed in other human mesenchymal cells from oral tissue; periodontal ligament cells and gingival fibroblasts. However, the latter cells exhibited considerably lower expression of BMP-2 mRNA compared with dental pulp cells and periodontal ligament cells. The BMP-2 increase was markedly inhibited by pretreatment with an extracellular signal-regulated kinase (ERK) inhibitor, PD98059, and partially inhibited by the L-type Ca{sup 2+} channels inhibitor, nifedipine. However, pretreatment with nifedipine had no effect on ERK1/2 phosphorylation triggered by Ca{sup 2+}, suggesting that the Ca{sup 2+} influx from Ca{sup 2+} channels may operate independently of ERK signaling. Dental pulp cells do not express the transcript of Ca{sup 2+}-sensing receptors (CaSR) and only respond slightly to other cations such as Sr{sup 2+} and spermine, suggesting that dental pulp cells respond to Ca{sub o}{sup 2+} to increase BMP-2 mRNA expression in a manner different from CaSR and rather specific for Ca{sub o}{sup 2+} among cations.« less

  10. Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and β-glucosidase.

    PubMed

    Apiwatanapiwat, Waraporn; Murata, Yoshinori; Kosugi, Akihiko; Yamada, Ryosuke; Kondo, Akihiko; Arai, Takamitsu; Rugthaworn, Prapassorn; Mori, Yutaka

    2011-04-01

    In order to develop a method for producing fuel ethanol from cassava pulp using cell surface engineering (arming) technology, an arming yeast co-displaying α-amylase (α-AM), glucoamylase, endoglucanase, cellobiohydrase, and β-glucosidase on the surface of the yeast cells was constructed. The novel yeast strain, possessing the activities of all enzymes, was able to produce ethanol directly from soluble starch, barley β-glucan, and acid-treated Avicel. Cassava is a major crop in Southeast Asia and used mainly for starch production. In the starch manufacturing process, large amounts of solid wastes, called cassava pulp, are produced. The major components of cassava pulp are starch (approximately 60%) and cellulose fiber (approximately 30%). We attempted simultaneous saccharification and ethanol fermentation of cassava pulp with this arming yeast. During fermentation, ethanol concentration increased as the starch and cellulose fiber substrates contained in the cassava pulp decreased. The results clearly showed that the arming yeast was able to produce ethanol directly from cassava pulp without addition of any hydrolytic enzymes.

  11. Flow Line, Durafill VS, and Dycal toxicity to dental pulp cells: effects of growth factors

    PubMed Central

    Furey, Alyssa; Hjelmhaug, Julie; Lobner, Doug

    2010-01-01

    Introduction The objective was to determine the effects of growth factor treatment on dental pulp cell sensitivity to toxicity of two composite restoration materials, Flow Line and Durafill VS, and a calcium hydroxide pulp capping material, Dycal. Methods Toxicity of the dental materials to cultures of primary dental pulp cells was determined by the MTT metabolism assay. The ability of six different growth factors to influence the toxicity was tested. Results A 24 hour exposure to either Flow Line or Durafill VS caused approximately 40% cell death, while Dycal exposure caused approximately 80% cell death. The toxicity of Flow Line and Durafill VS was mediated by oxidative stress. Four of the growth factors tested (BMP-2, BMP-7, EGF, and TGF-β) decreased the basal MTT values while making the cells resistant to Flow Line and Durafill VS toxicity, except BMP-2 which made the cells more sensitive to Flow Line. Treatment with FGF-2 caused no change in basal MTT metabolism, prevented the toxicity of Durafill VS, but increased the toxicity of Flow Line. Treatment with IGF-I increased basal MTT metabolism and made the cells resistant to Flow Line and Durafill VS toxicity. None of the growth factors made the cells resistant to Dycal toxicity. Conclusions The results indicate that growth factors can be used to alter the sensitivity of dental pulp cells to commonly used restoration materials. The growth factors BMP-7, EGF, TGF-β, and IGF-I provided the best profile of effects, making the cells resistant to both Flow Line and Durafill VS toxicity. PMID:20630288

  12. Biophysical characterization of low-frequency ultrasound interaction with dental pulp stem cells

    PubMed Central

    2013-01-01

    Background Low-intensity ultrasound is considered an effective non-invasive therapy to stimulate hard tissue repair, in particular to accelerate delayed non-union bone fracture healing. More recently, ultrasound has been proposed as a therapeutic tool to repair and regenerate dental tissues. Our recent work suggested that low-frequency kilohertz-range ultrasound is able to interact with dental pulp cells which could have potential to stimulate dentine reparative processes and hence promote the viability and longevity of teeth. Methods In this study, the biophysical characteristics of low-frequency ultrasound transmission through teeth towards the dental pulp were explored. We conducted cell culture studies using an odontoblast-like/dental pulp cell line, MDPC-23. Half of the samples underwent ultrasound exposure while the other half underwent ‘sham treatment’ where the transducer was submerged into the medium but no ultrasound was generated. Ultrasound was applied directly to the cell cultures using a therapeutic ultrasound device at a frequency of 45 kHz with intensity settings of 10, 25 and 75 mW/cm2 for 5 min. Following ultrasound treatment, the odontoblast-like cells were detached from the culture using a 0.25% Trypsin/EDTA solution, and viable cell numbers were counted. Two-dimensional tooth models based on μ-CT 2D images of the teeth were analyzed using COMSOL as the finite element analysis platform. This was used to confirm experimental results and to demonstrate the potential theory that with the correct combination of frequency and intensity, a tooth can be repaired using small doses of ultrasound. Frequencies in the 30 kHz–1 MHz range were analyzed. For each frequency, pressure/intensity plots provided information on how the intensity changes at each point throughout the propagation path. Spatial peak temporal average (SPTA) intensity was calculated and related to existing optimal spatial average temporal average (SATA) intensity deemed effective for cell proliferation during tooth repair. Results The results demonstrate that odontoblast MDPC-23 cell numbers were significantly increased following three consecutive ultrasound treatments over a 7-day culture period as compared with sham controls underscoring the anabolic effects of ultrasound on these cells. Data show a distinct increase in cell number compared to the sham data after ultrasound treatment for intensities of 10 and 25 mW/cm2 (p < 0.05 and p < 0.01, respectively). Using finite element analysis, we demonstrated that ultrasound does indeed propagate through the mineralized layers of the teeth and into the pulp chamber where it forms a ‘therapeutic’ force field to interact with the living dental pulp cells. This allowed us to observe the pressure/intensity of the wave as it propagates throughout the tooth. A selection of time-dependent snapshots of the pressure/intensity reveal that the lower frequency waves propagate to the pulp and remain within the chamber for a while, which is ideal for cell excitation. Input frequencies and pressures of 30 kHz (70 Pa) and 45 kHz (31 kPa), respectively, with an average SPTA of up to 120 mW/cm2 in the pulp seem to be optimal and agree with the SATA intensities reported experimentally. Conclusions Our data suggest that ultrasound can be harnessed to propagate to the dental pulp region where it can interact with the living cells to promote dentine repair. Further research is required to analyze the precise physical and biological interactions of low-frequency ultrasound with the dental pulp to develop a novel non-invasive tool for dental tissue regeneration. PMID:25516801

  13. Hematopoietic Stem Cells as a Novel Source of Dental Tissue Cells.

    PubMed

    Wilson, Katie R; Kang, In-Hong; Baliga, Uday; Xiong, Ying; Chatterjee, Shilpak; Moore, Emily; Parthiban, Beneta; Thyagarajan, Krishnamurthy; Borke, James L; Mehrotra, Shikhar; Kirkwood, Keith L; LaRue, Amanda C; Ogawa, Makio; Mehrotra, Meenal

    2018-05-23

    While earlier studies have suggested that cells positive for hematopoietic markers can be found in dental tissues, it has yet to be confirmed. To conclusively demonstrate this, we utilized a unique transgenic model in which all hematopoietic cells are green fluorescent protein + (GFP + ). Pulp, periodontal ligament (PDL) and alveolar bone (AvB) cell culture analysis demonstrated numerous GFP + cells, which were also CD45 + (indicating hematopoietic origin) and co-expressed markers of cellular populations in pulp (dentin matrix protein-1, dentin sialophosphoprotein, alpha smooth muscle actin [ASMA], osteocalcin), in PDL (periostin, ASMA, vimentin, osteocalcin) and in AvB (Runx-2, bone sialoprotein, alkaline phosphatase, osteocalcin). Transplantation of clonal population derived from a single GFP + hematopoietic stem cell (HSC), into lethally irradiated recipient mice, demonstrated numerous GFP + cells within dental tissues of recipient mice, which also stained for markers of cell populations in pulp, PDL and AvB (used above), indicating that transplanted HSCs can differentiate into cells in dental tissues. These hematopoietic-derived cells deposited collagen and can differentiate in osteogenic media, indicating that they are functional. Thus, our studies demonstrate, for the first time, that cells in pulp, PDL and AvB can have a hematopoietic origin, thereby opening new avenues of therapy for dental diseases and injuries.

  14. Overexpression of interleukin-6 and -8, cell growth inhibition and morphological changes in 2-hydroxyethyl methacrylate-treated human dental pulp mesenchymal stem cells.

    PubMed

    Trubiani, O; Cataldi, A; De Angelis, F; D'Arcangelo, C; Caputi, S

    2012-01-01

    To evaluate morphological features, cell growth and interleukin-6 (IL-6) and interleukin-8 (IL-8) secretion in expanded ex vivo human dental pulp mesenchymal stem cells (DP-MSCs) after exposure to 2-hydroxyethyl methacrylate (HEMA).   Dental pulp mesenchymal stem cells were derived from the dental pulps of 10 young donors. After in vitro isolation, DP-MSCs were treated with 3 and 5 mmol L(-1) HEMA, and after 24, 48 and 72 h of incubation, their morphological features, cell growth, IL-6 and IL-8 secretion were analysed. Differences in the cell growth and in the interleukin secretion were analysed for statistical significance with two-way anova tests and the Holm-Sidak method for multiple comparisons.   Dental pulp mesenchymal stem cells revealed a decrease in cell growth with both treatments (P < 0.05), more evident at 5 mmol L(-1) . Microscopic analysis displayed extensive cytotoxic effects in treated cells, which lost their fibroblastoid features and became retracted, even roundish, with a large number of granules. An up-regulation of IL-6 and IL-8 in treated cells cytokines was evident (P < 0.05).   2-Hydroxyethyl methacrylate exhibited cytotoxicity, inhibited cell growth and induced morphological changes in cultured DP-MSCs. Moreover, in treated samples, an up-regulation of soluble mediators of inflammation such as IL-6 and IL-8 cytokines was found. The direct application of HEMA potentially induces an inflammation process that could be the starting point for toxic response and cell damage in DP-MSCs. © 2011 International Endodontic Journal.

  15. Examination of the signal transduction pathways leading to upregulation of tissue type plasminogen activator by Porphyromonas endodontalis in human pulp cells.

    PubMed

    Huang, F-M; Chen, Y-J; Chou, M-Y; Chang, Y-C

    2005-12-01

    To investigate the tissue type plasminogen activator (t-PA) activity in human pulp cells stimulated with Porphyromonas endodontalis (P. endodontalis) in the absence or presence of p38 inhibitor SB203580, mitogen-activated protein kinase kinase (MEK) inhibitor U0126 and phosphatidylinositaol 3-kinase (PI3K) inhibitor LY294002. The supernatants of P. endodontalis were used to evaluate t-PA activity in human pulp cells using casein zymography and enzyme-linked immunosorbent assay (ELISA). Furthermore, to search for possible signal transduction pathways, SB203580, U0126 and LY294002 were added to test how they modulated the t-PA activity. The main casein secreted by human pulp cells migrated at 70 kDa and represented t-PA. Secretion of t-PA was found to be stimulated with P. endodontalis during 2-day cultured period (P < 0.05). From the results of casein zymography and ELISA, SB203580 and U0126 significantly reduced the P. endodontalis stimulated t-PA production respectively (P < 0.05). However, LY294002 lacked the ability to change the P. endodontalis stimulated t-PA production (P > 0.05). Porphyromonas endodontalis enhances t-PA production in human pulp cells, and the signal transduction pathways p38 and MEK are involved in the inhibition of t-PA.

  16. PAR-1 and PAR-2 Expression Is Enhanced in Inflamed Odontoblast Cells.

    PubMed

    Alvarez, M M P; Moura, G E; Machado, M F M; Viana, G M; de Souza Costa, C A; Tjäderhane, L; Nader, H B; Tersariol, I L S; Nascimento, F D

    2017-12-01

    Protease-activated receptors (PARs) are G protein-coupled receptors, which are activated by proteolytical cleavage of the amino-terminus and act as sensors for extracellular proteases. We hypothesized that PAR-1 and PAR-2 can be modulated by inflammatory stimulus in human dental pulp cells. PAR-1 and PAR-2 gene expression in human pulp tissue and MDPC-23 cells were analyzed by quantitative polymerase chain reaction. Monoclonal PAR-1 and PAR-2 antibodies were used to investigate the cellular expression of these receptors using Western blot, flow cytometry, and confocal microscopy in MDPC-23 cells. Immunofluorescence assays of human intact and carious teeth were performed to assess the presence of PAR-1 and PAR-2 in the dentin-pulp complex. The results show for the first time that human odontoblasts and MDPC-23 cells constitutively express PAR-1 and PAR-2. PAR-2 activation increased significantly the messenger RNA expression of matrix metalloproteinase (MMP)-2, MMP-9, MMP-13, and MMP-14 in MDPC-23 cells ( P < 0.05), while the expression of these enzymes decreased significantly in the PAR-1 agonist group ( P < 0.05). The high-performance liquid chromatography and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry analysis showed the presence of MMP-13 activity cleaving PAR-1 at specific, noncanonical site TLDPRS 42 ↓F 43 LL in human dental pulp tissues. Also, we detected a presence of a trypsin-like activity cleaving PAR-2 at canonical site SKGR 20 ↓S 21 LIGRL in pulp tissues. Confocal microscopy analysis of human dentin-pulp complex showed intense positive staining of PAR-1 and PAR-2 in the odontoblast processes in dentinal tubules of carious teeth compared to intact ones. The present results support the hypothesis of activation of the upregulated PAR-1 and PAR-2 by endogenous proteases abundant during the inflammatory response in dentin-pulp complex.

  17. Concentrations of and application protocols for hydrogen peroxide bleaching gels: effects on pulp cell viability and whitening efficacy.

    PubMed

    Soares, Diana Gabriela; Basso, Fernanda Gonçalves; Hebling, Josimeri; de Souza Costa, Carlos Alberto

    2014-02-01

    To assess the whitening effectiveness and the trans-enamel/trans-dentinal toxicity of experimental tooth-bleaching protocols on pulp cells. Enamel/dentine discs individually adapted to trans-well devices were placed on cultured odontoblast-like cells (MDPC-23) or human dental pulp cells (HDPCs). The following groups were formed: G1 - no treatment (control); G2 to G4 - 35% H2O2, 3 × 15, 1 × 15, and 1 × 5 min, respectively; and G5 to G7 - 17.5% H2O2, 3 × 15, 1 × 15, and 1 × 5 min, respectively. Cell viability and morphology were evaluated immediately after bleaching (T1) and 72 h thereafter (T2). Oxidative stress and cell membrane damage were also assessed (T1). The amount of H2O2 in culture medium was quantified (Mann-Whitney; α=5%) and colour change (ΔE) of enamel was analysed after 3 sessions (Tukey's test; α=5%). Cell viability reduction, H2O2 diffusion, cell morphology alteration, oxidative stress, and cell membrane damage occurred in a concentration-/time-dependent fashion. The cell viability reduction was significant in all groups for HDPCs and only for G2, G3, and G5 in MDPC-23 cells compared with G1. Significant cell viability and morphology recovery were observed in all groups at T2, except for G2 in HDPCs. The highest ΔE value was found in G2. However, all groups presented significant ΔE increases compared with G1. Shortening the contact time of a 35%-H2O2 gel for 5 min, or reducing its concentration to 17.5% and applying it for 45, 15, or 5 min produce gradual tooth colour change associated with reduced trans-enamel and trans-dentinal cytotoxicity to pulp cells. The experimental protocols tested in the present study provided significant tooth-bleaching improvement associated with decreased toxicity to pulp cells, which may be an interesting alternative to be tested in clinical situations intended to reduce tooth sensitivity and pulp damage. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. A PET detector prototype based on digital SiPMs and GAGG scintillators.

    PubMed

    Schneider, Florian R; Shimazoe, Kenji; Somlai-Schweiger, Ian; Ziegler, Sibylle I

    2015-02-21

    Silicon Photomultipliers (SiPM) are interesting light sensors for Positron Emission Tomography (PET). The detector signal of analog SiPMs is the total charge of all fired cells. Energy and time information have to be determined with dedicated readout electronics. Philips Digital Photon Counting has developed a SiPM with added electronics on cell level delivering a digital value of the time stamp and number of fired cells. These so called Digital Photon Counters (DPC) are fully digital devices. In this study, the feasibility of using DPCs in combination with LYSO (Lutetium Yttrium Oxyorthosilicate) and GAGG (Gadolinium Aluminum Gallium Garnet) scintillators for PET is tested. Each DPC module has 64 channels with 3.2 × 3.8775 mm(2), comprising 3200 cells each. GAGG is a recently developed scintillator (Zeff = 54, 6.63 g cm(-3), 520 nm peak emission, 46 000 photons MeV(-1), 88 ns (92%) and 230 ns (8%) decay times, non-hygroscopic, chemically and mechanically stable). Individual crystals of 2 × 2 × 6 mm(3) were coupled onto each DPC pixel. LYSO coupled to the DPC results in a coincidence time resolution (CTR) of 171 ps FWHM and an energy resolution of 12.6% FWHM at 511 keV. Using GAGG, coincidence timing is 310 ps FWHM and energy resolution is 8.5% FWHM. A PET detector prototype with 2 DPCs equipped with a GAGG array matching the pixel size (3.2 × 3.8775 × 8 mm(3)) was assembled. To emulate a ring of 10 modules, objects are rotated in the field of view. CTR of the PET is 619 ps and energy resolution is 9.2% FWHM. The iterative MLEM reconstruction is based on system matrices calculated with an analytical detector response function model. A phantom with rods of different diameters filled with (18)F was used for tomographic tests.

  19. A PET detector prototype based on digital SiPMs and GAGG scintillators

    NASA Astrophysics Data System (ADS)

    Schneider, Florian R.; Shimazoe, Kenji; Somlai-Schweiger, Ian; Ziegler, Sibylle I.

    2015-02-01

    Silicon Photomultipliers (SiPM) are interesting light sensors for Positron Emission Tomography (PET). The detector signal of analog SiPMs is the total charge of all fired cells. Energy and time information have to be determined with dedicated readout electronics. Philips Digital Photon Counting has developed a SiPM with added electronics on cell level delivering a digital value of the time stamp and number of fired cells. These so called Digital Photon Counters (DPC) are fully digital devices. In this study, the feasibility of using DPCs in combination with LYSO (Lutetium Yttrium Oxyorthosilicate) and GAGG (Gadolinium Aluminum Gallium Garnet) scintillators for PET is tested. Each DPC module has 64 channels with 3.2 × 3.8775 mm2, comprising 3200 cells each. GAGG is a recently developed scintillator (Zeff = 54, 6.63 g cm-3, 520 nm peak emission, 46 000 photons MeV-1, 88 ns (92%) and 230 ns (8%) decay times, non-hygroscopic, chemically and mechanically stable). Individual crystals of 2 × 2 × 6 mm3 were coupled onto each DPC pixel. LYSO coupled to the DPC results in a coincidence time resolution (CTR) of 171 ps FWHM and an energy resolution of 12.6% FWHM at 511 keV. Using GAGG, coincidence timing is 310 ps FWHM and energy resolution is 8.5% FWHM. A PET detector prototype with 2 DPCs equipped with a GAGG array matching the pixel size (3.2 × 3.8775 × 8 mm3) was assembled. To emulate a ring of 10 modules, objects are rotated in the field of view. CTR of the PET is 619 ps and energy resolution is 9.2% FWHM. The iterative MLEM reconstruction is based on system matrices calculated with an analytical detector response function model. A phantom with rods of different diameters filled with 18F was used for tomographic tests.

  20. Tissue Engineering of Necrotic Dental Pulp of Immature Teeth with Apical Periodontitis in Dogs: Radiographic and Histological Evaluation.

    PubMed

    El Ashiry, Eman A; Alamoudi, Najlaa M; El Ashiry, Mahmoud K; Bastawy, Hagar A; El Derwi, Douaa A; Atta, Hazem M

    2018-05-15

    To evaluate tissue engineering technology to regenerate pulp-dentin like tissues in pulp canals of immature necrotic permanent teeth with apical periodontitis in dogs. The study was performed on 36 teeth in 12 dogs. The experiment was carried out using split mouth design. In each dog 3 teeth were selected for implementing the study procedure. Apical periodontitis was induced in Group A and B teeth. Group (A): immature upper left 2 nd permanent incisors that were transplanted with a construct of autologous dental pulp stem cells with growth factors seeded in a chitosn hydrogel scaffold. Group (B): immature upper right 2 nd permanent incisor that received only growth factors with scaffold. A third tooth in each dog was selected randomly for isolation of dental pulp stem cells (DPSCs). Both groups were closed with a double coronal seal of white MTA (Mineral trioxide aggregate) and glass ionomer cement. Both groups were monitored radiographically for 4 months and histologically after sacrificing the animals. There was no statistically significant difference in radiographic findings between group (A) and group (B) for healing of radiolucencies, while there was statistically significant difference between group (A) and group (B) regarding radicular thickening, root lengthening and apical closure. Histologically, group (A) teeth showed regeneration of pulp-dentin like tissue while group (B) teeth did not show any tissue regeneration. Dental pulp stem cells and growth factors incorporated in chitosan hydrogel are able to regenerate pulp-dentine like tissue and help in complete root maturation of non-vital immature permanent teeth with apical periodontitis in dogs.

  1. Inflammatory response of human dental pulp to at-home and in-office tooth bleaching

    PubMed Central

    Vaz, Maysa Magalhães; Lopes, Lawrence Gonzaga; Cardoso, Paula Carvalho; de Souza, João Batista; Batista, Aline Carvalho; Costa, Nádia Lago; Torres, Érica Miranda; Estrela, Carlos

    2016-01-01

    ABSTRACT Tooth bleaching is a technique of choice to obtain a harmonious smile, but bleaching agents may damage the dental pulp. Objective: This study evaluated the inflammatory responses of human dental pulp after the use of two bleaching techniques. Material and Methods: Pulp samples were collected from human third molars extracted for orthodontic reasons and divided into three groups: control - no tooth bleaching (CG) (n=7); at-home bleaching with 15% carbamide peroxide (AH) (n = 10), and in-office bleaching with 38% hydrogen peroxide (IO) (n=12). Pulps were removed and stained with hematoxylin-eosin for microscopic analysis of inflammation intensity, collagen degradation, and pulp tissue organization. Immunohistochemistry was used to detect mast cells (tryptase+), blood vessels (CD31+), and macrophages (CD68+). Chi-square, Kruskal-Wallis, and Mann Whitney tests were used for statistical analysis. The level of significance was set at p<.05. Results: The inflammation intensity and the number of macrophages were significantly greater in IO than in AH and CG (p<0.05). The results of CD31+ (blood vessels per mm2) were similar in CG (61.39±20.03), AH (52.29±27.62), and IO (57.43±8.69) groups (p>0.05). No mast cells were found in the pulp samples analyzed. Conclusion: In-office bleaching with 38% hydrogen peroxide resulted in more intense inflammation, higher macrophages migration, and greater pulp damage then at-home bleaching with 15% carbamide peroxide, however, these bleaching techniques did not induce migration of mast cells and increased the number of blood vessels. PMID:27812622

  2. Overexpression of Receptor for Advanced Glycation End Products and High-Mobility Group Box 1 in Human Dental Pulp Inflammation

    PubMed Central

    Tancharoen, Salunya; Tengrungsun, Tassanee; Suddhasthira, Theeralaksna; Kikuchi, Kiyoshi; Vechvongvan, Nuttavun; Maruyama, Ikuro

    2014-01-01

    High mobility group box 1 (HMGB1), a nonhistone DNA-binding protein, is released into the extracellular space and promotes inflammation. HMGB1 binds to related cell signaling transduction receptors, including receptor for advanced glycation end products (RAGE), which actively participate in vascular and inflammatory diseases. The aim of this study was to examine whether RAGE and HMGB1 are involved in the pathogenesis of pulpitis and investigate the effect of Prevotella intermedia (P. intermedia) lipopolysaccharide (LPS) on RAGE and HMGB1 expression in odontoblast-like cells (OLC-1). RAGE and HMGB1 expression levels in clinically inflamed dental pulp were higher than those in healthy dental pulp. Upregulated expression of RAGE was observed in odontoblasts, stromal pulp fibroblasts-like cells, and endothelial-like cell lining human pulpitis tissue. Strong cytoplasmic HMGB1 immunoreactivity was noted in odontoblasts, whereas nuclear HMGB1 immunoreactivity was seen in stromal pulp fibroblasts-like cells in human pulpitis tissue. LPS stimulated OLC-1 cells produced HMGB1 in a dose-dependent manner through RAGE. HMGB1 translocation towards the cytoplasm and secretion from OLC-1 in response to LPS was inhibited by TPCA-1, an inhibitor of NF-κB activation. These findings suggest that RAGE and HMGB1 play an important role in the pulpal immune response to oral bacterial infection. PMID:25114379

  3. Transplantation of Human Dental Pulp-Derived Stem Cells or Differentiated Neuronal Cells from Human Dental Pulp-Derived Stem Cells Identically Enhances Regeneration of the Injured Peripheral Nerve.

    PubMed

    Ullah, Imran; Park, Ju-Mi; Kang, Young-Hoon; Byun, June-Ho; Kim, Dae-Geon; Kim, Joo-Heon; Kang, Dong-Ho; Rho, Gyu-Jin; Park, Bong-Wook

    2017-09-01

    Human dental mesenchymal stem cells isolated from the dental follicle, pulp, and root apical papilla of extracted wisdom teeth have been known to exhibit successful and potent neurogenic differentiation capacity. In particular, human dental pulp-derived stem cells (hDPSCs) stand out as the most prominent source for in vitro neuronal differentiation. In this study, to evaluate the in vivo peripheral nerve regeneration potential of hDPSCs and differentiated neuronal cells from DPSCs (DF-DPSCs), a total of 1 × 10 6 hDPSCs or DF-hDPSCs labeled with PKH26 tracking dye and supplemented with fibrin glue scaffold and collagen tubulization were transplanted into the sciatic nerve resection (5-mm gap) of rat models. At 12 weeks after cell transplantation, both hDPSC and DF-hDPSC groups showed notably increased behavioral activities and higher muscle contraction forces compared with those in the non-cell transplanted control group. In immunohistochemical analysis of regenerated nerve specimens, specific markers for angiogenesis, axonal fiber, and myelin sheath increased in both the cell transplantation groups. Pretransplanted labeled PKH26 were also distinctly detected in the regenerated nerve tissues, indicating that transplanted cells were well-preserved and differentiated into nerve cells. Furthermore, no difference was observed in the nerve regeneration potential between the hDPSC and DF-hDPSC transplanted groups. These results demonstrate that dental pulp tissue is an excellent stem cell source for nerve regeneration, and in vivo transplantation of the undifferentiated hDPSCs could exhibit sufficient and excellent peripheral nerve regeneration potential.

  4. Dental pulp stem cells express tendon markers under mechanical loading and are a potential cell source for tissue engineering of tendon-like tissue.

    PubMed

    Chen, Yu-Ying; He, Sheng-Teng; Yan, Fu-Hua; Zhou, Peng-Fei; Luo, Kai; Zhang, Yan-Ding; Xiao, Yin; Lin, Min-Kui

    2016-12-16

    Postnatal mesenchymal stem cells have the capacity to differentiate into multiple cell lineages. This study explored the possibility of dental pulp stem cells (DPSCs) for potential application in tendon tissue engineering. The expression of tendon-related markers such as scleraxis, tenascin-C, tenomodulin, eye absent homologue 2, collagens I and VI was detected in dental pulp tissue. Interestingly, under mechanical stimulation, these tendon-related markers were significantly enhanced when DPSCs were seeded in aligned polyglycolic acid (PGA) fibre scaffolds. Furthermore, mature tendon-like tissue was formed after transplantation of DPSC-PGA constructs under mechanical loading conditions in a mouse model. This study demonstrates that DPSCs could be a potential stem cell source for tissue engineering of tendon-like tissue.

  5. Advanced Scaffolds for Dental Pulp and Periodontal Regeneration.

    PubMed

    Bottino, Marco C; Pankajakshan, Divya; Nör, Jacques E

    2017-10-01

    No current therapy promotes root canal disinfection and regeneration of the pulp-dentin complex in cases of pulp necrosis. Antibiotic pastes used to eradicate canal infection negatively affect stem cell survival. Three-dimensional easy-to-fit antibiotic-eluting nanofibers, combined with injectable scaffolds, enriched or not with stem cells and/or growth factors, may increase the likelihood of achieving predictable dental pulp regeneration. Periodontitis is an aggressive disease that impairs the integrity of tooth-supporting structures and may lead to tooth loss. The latest advances in membrane biomodification to endow needed functionalities and technologies to engineer patient-specific membranes/constructs to amplify periodontal regeneration are presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Effect of novel chitosan-fluoroaluminosilicate resin modified glass ionomer cement supplemented with translationally controlled tumor protein on pulp cells.

    PubMed

    Wanachottrakul, Nattaporn; Chotigeat, Wilaiwan; Kedjarune-Leggat, Ureporn

    2014-04-01

    Dental materials that can promote cell proliferation and function is required for regenerative pulp therapy. Resin modified glass ionomer cement (RMGIC), a broadly used liner or restorative material, can cause apoptosis to pulp cells mainly due to HEMA (2-hydroxyethyl methacrylate), the released residual monomer. Recent studies found that chitosan and albumin could promote release of protein in GIC while translationally controlled tumor protein (TCTP) has an anti-apoptotic activity against HEMA. The aim of this study was to examine the effect of chitosan and albumin modified RMGIC (Exp-RMGIC) supplemented with TCTP on pulp cell viability and mineralization. Exp-RMGIC+TCTP was composed of RMGIC powder incorporated with 15 % of chitosan, 5 % albumin and supplemented with TCTP mixed with the same liquid components of RMGIC. The effect of each specimen on pulp cells was examined using the Transwell plate. From the MTT assay, Exp-RMGIC+TCTP had the highest percentages of viable cells (P < 0.05) at both 24 and 74 h. Flow cytometry revealed that, after 24 h, Exp-RMGIC+TCTP gave the lowest percentages of apoptotic cells compared to other groups. There was no difference in alkaline phosphatase (ALP) activity among different formula of the specimens, while cells cultured in media with TCTP had higher ALP activity. Von Kossa staining revealed that RMGIC+TCTP, and Exp-RMGIC+TCTP had higher percentages of calcium deposit area compared to those without TCTP. It was concluded that Exp-RMGIC supplemented with TCTP had less cytotoxicity than RMGIC and can protect cells from apoptosis better than RMGIC supplemented with TCTP.

  7. Effects of washed platelets vs platelet-rich plasma on the proliferation and mineralization of rat dental pulp cells.

    PubMed

    Zhang, L; Xie, Y H; Lin, B R

    2015-08-14

    We examined the effects of washed platelets (WPLTs) and platelet-rich plasma (PRP) on the proliferation and mineralization of rat dental pulp cells. Rat dental pulp cells were separated, cultured, and identified. Medium containing 1, 10, 100, or 500 mL/L PRP or WPLTs was added to 4th generation cells. The MTS method was used to determine cell proliferation. Alizarin red staining was used to observe the formation of mineralized nodules after cell mineralization and induction for 10 and 20 days under different culture conditions, and the areas of the mineralized nodules formed 20 days after induction were computed. The addition of 1, 10, and 100 mL/L WPLTs or PRP significantly promoted rat dental pulp cell proliferation (P < 0.05) whereas 500 mL/L WPLTs or PRP had no significant effect (P > 0.05). Under the same concentrations, no significant differences on cell proliferation were observed between WPLT and PRP treatments (P > 0.05 in all groups). After 10 days mineralization and culture, the 100 and 500 mL/L WPLT and PRP group positive nodule rates were significantly higher than those of the low concentration and the control groups (P < 0.05). After 20 days, the areas of the mineralized nodules formed in the 100 and 500 mL/L WPLT and PRP groups were significantly larger than those in the control group (P < 0.05). These results demonstrate that both WPLTs and PRP are equally able to significantly promote the proliferation and calcification of rat dental pulp cells under a certain range of concentrations.

  8. In vivo stem cell transplantation using reduced cell numbers.

    PubMed

    Tsutsui, Takeo W

    2015-01-01

    Dental pulp stem cell (DPSC) characterization is essential for regeneration of a dentin/pulp like complex in vivo. This is especially important for identifying the potential of DPSCs to function as stem cells. Previously reported DPSC transplantation methods have used with huge numbers of cells, along with hydroxyapatite/tricalcium phosphate (HA/TCP), gelatin and fibrin, and collagen scaffolds. This protocol describe a transplantation protocol that uses fewer cells and a temperature-responsive cell culture dish.

  9. Isolation of tooth pulp cells for sex chromatin studies in experimental dehydrated and cremated remains.

    PubMed

    Duffy, J B; Waterfield, J D; Skinner, M F

    1991-03-01

    In experiments designed to assess sex chromatin in artificially mummified and heated pulp tissue, a method was devised that successfully separates cells while minimizing nuclear damage. Sex chromatin (both Barr bodies and F-bodies) is shown to preserve in dehydrated human pulps up to one year. Human pulp tissue retains sex diagnostic characteristics when heated to 100 degrees C for up to 1 h. Parallel experiments on extracted teeth from young pigs reveals comparable tissue preservation. Heat penetration is retarded, however, in unextracted pig teeth in fleshed jaws such that temperatures could be raised to 300 degrees C for longer than 1 h. Heat penetration into fleshed material was further tested by the insertion of thermocouple probes to assess the temperature attained within the pulp chamber. At chamber temperatures up to 75 degrees C sex diagnosis in human pulps from extracted teeth was still possible. In outdoor incineration of fleshed pigs' heads in an open fire, 75 degrees C in the pulp chamber was reached at a fire temperature within the range 500-700 degrees C. The implications of these findings for forensic situations are described.

  10. Artificial dental pulp exposure injury up-regulates antigen-presenting cell-related molecules in rat central nervous system.

    PubMed

    Kaneko, Tomoatsu; Kaneko, Mitsuhiro; Chokechanachaisakul, Uraiwan; Kawamura, Jun; Kaneko, Reika; Sunakawa, Mitsuhiro; Okiji, Takashi; Suda, Hideaki

    2010-03-01

    Bacterial infection and resulting inflammation of the dental pulp might not only trigger neuroimmune interactions in this tissue but also sensitize the central nervous system (CNS) such as the thalamus via nociceptive neurons. Thus, immunopathologic changes in the rat thalamus that take place after pulp inflammation were investigated. Pulp exposure was made in mandibular right first molars of 5-week-old Wistar rats. After 24 hours, the thalamus was retrieved and subjected to either immunohistochemistry for class II major histocompatibility complex (MHC) molecules and glial fibrillary acidic protein (GFAP) or mRNA expression analysis of antigen-presenting cell-related molecules and N-methyl-D-aspartate receptor 2D subunit (NR2D) by means of reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR. At 24 hours after pulp exposure, the density of class II MHC molecule-expressing and GFAP-expressing cells was increased in the contralateral thalamus. Gene expression analysis revealed the up-regulation of class II MHC molecules, CD80, CD83, CD86, and NR2D in the contralateral thalamus, as compared with the ipsilateral thalamus. These results suggest the signal of pulp inflammation induces neuronal activation in the CNS. Copyright (c) 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Immunocytochemical investigation of immune cells within human primary and permanent tooth pulp.

    PubMed

    Rodd, H D; Boissonade, F M

    2006-01-01

    The aim of this study was to determine whether there are any differences in the number and distribution of immune cells within human primary and permanent tooth pulp, both in health and disease. The research took the form of a quantitative immunocytochemical study. One hundred and twenty-four mandibular first permanent molars and second primary molars were obtained from children requiring dental extractions under general anaesthesia. Following exodontia, 10-microm-thick frozen pulp sections were processed for indirect immunofluorescence. Triple-labelling regimes were employed using combinations of the following: (1) protein gene product 9.5, a general neuronal marker; (2) leucocyte common antigen (LCA); and (3) Ulex europaeus I lectin, a marker of vascular endothelium. Image analysis was then used to determine the percentage area of immunostaining for LCA. Leucocytes were significantly more abundant in the pulp horn and mid-coronal region of intact and carious primary teeth, as compared to permanent teeth (P < 0.05, anova). Both dentitions demonstrated the presence of well-localized inflammatory cell infiltrates and marked aborization of pulpal nerves in areas of dense leucocyte accumulation. Primary and permanent tooth pulps appear to have a similar potential to mount inflammatory responses to gross caries The management of the compromised primary tooth pulp needs to be reappraised in the light of these findings.

  12. Mesenchymal stem cells promote hard-tissue repair after direct pulp capping.

    PubMed

    Obeid, Maram; Saber, Shehab El Din Mohamed; Ismael, Alaa El Din; Hassanien, Ehab

    2013-05-01

    The aim of this study was to investigate the potential of autologous mesenchymal bone marrow stem cells (BMSCs) to promote hard-tissue formation after direct pulp capping procedures. Bone marrow was aspirated from the iliac crest of healthy dogs of nonspecific race. Mononuclear cells were obtained using the Histopaque (Sigma-Aldrich, St Louis, MO) protocol and cultured for 21 days. Direct pulp capping procedures were performed in posterior teeth, and then mineral trioxide aggregate (MTA), hydroxyapatite/tricalcium phosphate, or BMSCs were used as direct pulp capping agents. After 3 months, animals were sacrificed, and jaw segments were processed for radiographic examination using cone-beam computed tomography scanning and histologic examination to assess the formation of a hard-tissue barrier according to a scoring system. The longitudinal and cross-sectional radiophotographs and histologic sections confirmed the formation of an evident calcific barrier after direct pulp capping with MTA and BMSCs. Statistical analysis of the scores given for radiographic and histologic calcific bridge formation showed that both MTA and BMSCs had a comparable tendency to produce a hard-tissue barrier that was significantly higher than hydroxyapatite tricalcium phosphate (P < .05). Autologous mesenchymal BMSCs were able to promote hard-tissue formation after direct pulp capping procedures. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Efficacy of Sex Determination from Human Dental Pulp Tissue and its Reliability as a Tool in Forensic Dentistry.

    PubMed

    Khanna, Kaveri Surya

    2015-01-01

    Sex determination is one of the primary steps in forensics. Barr body can be used as a histological method for identification of sex as it is found to be specific to female somatic cells and rare in male cells. To demarcate human dental pulp as an important identification tool of sex in forensic odontology (FO) and to evaluate the time period till which sex can be determined from pulp tissue using three stains H and E, Feulgen, and acridine - orange under fluorescence so as. 90 pulp samples (45 males and 45 females) were subjected to Barr body analysis for determination of sex using light and fluorescent microscopy. Barr body was found to be positive for female samples and negative or rare in the male sample (<3%). Barr body from human dental pulp tissue can be used as a successful determinant of sex identification in FO.

  14. Dentin and pulp sense cold stimulus.

    PubMed

    Tokuda, Masayuki; Tatsuyama, Shoko; Fujisawa, Mari; Morimoto-Yamashita, Yoko; Kawakami, Yoshiko; Shibukawa, Yoshiyuki; Torii, Mistuso

    2015-05-01

    Dentin hypersensitivity is a common symptom, and recent convergent evidences have reported transient receptor potential (TRP) channels in odontoblasts act as mechanical and thermal molecular sensor, which detect stimulation applied on the exposed dentin surface, to drive multiple odontoblastic cellular functions, such as sensory transduction and/or dentin formation. In the present study, we confirmed expression of TRP melastatin subfamily member-8 (TRPM8) channels in primary cultured cells derived from human dental pulp cells (HPCs) and mouse odontoblast-lineage cells (OLCs) as well as in dentin matrix protein-1 (DMP-1) and dentin sialoprotein (DSP) positive acutely isolated rat odontoblasts from dental pulp tissue slice culture by immunohistochemical analyses. In addition, we detected TRPM8 channel expression on HPCs and OLCs by RT-PCR and Western blotting analyses. These results indicated that both odontoblasts and dental pulp cells express TRPM8 channels in rat, mouse and human, and therefore we hypothesize they may contribute as cold sensor in tooth. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Advanced glycation end products increase expression of S100A8 and A9 via RAGE-MAPK in rat dental pulp cells.

    PubMed

    Nakajima, Y; Inagaki, Y; Kido, J; Nagata, T

    2015-04-01

    Advanced glycation end products (AGE) are involved in the progression of diabetic complications. Although our previous reports show that AGE increased dental pulp calcification, AGE accumulation is also associated with inflammation. This study examined AGE effect on the expression of inflammation factors using rat dental pulp tissues and cell cultures. Receptor for AGE (RAGE), S100A8, S100A9, and interleukin (IL)-1β were selected as inflammation parameters. Rat dental pulp cells were cultured and treated with AGE, and the effects were determined by real-time PCR. An anti-RAGE antibody or MAPK pathway inhibitors (PD98059, SB203580, and SP60012) were used to investigate AGE signaling pathway. The mRNA levels of RAGE, S100A8, S100A9, and IL-1β were higher in diabetic pulp tissues. AGE increased mRNA expressions of S100A8, S100A9, and IL-1β in cultured dental pulp cells. In the presence of anti-RAGE antibody, AGE did not increase in S100A8 or S100A9 expressions. The AGE-induced increases in S100A8 and S100A9 were inhibited by PD98059 and SB203580, respectively. Advanced glycation end products increased mRNA expression of S100A8, S100A9, and IL-1β under diabetic pulp conditions, and AGE-induced increases in S100A8 and S100A9 expressions may be associated with the RAGE-MAPK signaling pathway. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. The Anti-Inflammatory Effects of Matrix Metalloproteinase-3 on Irreversible Pulpitis of Mature Erupted Teeth

    PubMed Central

    Eba, Hisanori; Murasawa, Yusuke; Iohara, Koichiro; Isogai, Zenzo; Nakamura, Hiroshi; Nakamura, Hiroyuki; Nakashima, Misako

    2012-01-01

    Matrix metalloproteinases (MMPs) are involved in extracellular matrix degradation and the modulation of cell behavior. These proteinases have also been implicated in tissue repair and regeneration. Our previous studies have demonstrated that MMP-3 elicits stimulatory effects on the proliferation and the migration of endothelial cells as well as anti-apoptotic effects on these cells in vitro. In addition, we found that MMP-3 enhanced the regeneration of lost pulp tissue in a rat incisor pulp injury model. However, continuously erupting rodent incisors exhibit significantly different pulp organization compared with mature erupted teeth. Therefore, we have further extended these studies using a canine irreversible pulpitis model to investigate the effects of MMP-3. In this study, the crowns of the canine mature premolars were removed and the pulp tissues were amputated. The amputated pulp tissues remained exposed for 24 or 72 hours to induce mild or severe irreversible pulpitis, respectively, followed by sealing of the cavities. In both models, the whole pulp tissues became necrotic by day 14. In this mild pulpitis model, the regeneration of pulp tissue with vasculature and nerves was observed until 14 days after sealing with MMP-3, followed by extracellular matrix formation in the regenerated pulp tissues until day 28. The treatment with MMP-3 resulted in a decrease in the number of macrophage and antigen-presenting cells and a significant inhibition of IL-6 expression on day 3. The inhibition of MMP-3 activity abolished these anti-inflammatory effects. Immunofluorescence staining demonstrated that MMP-3 was involved in the modification of serum-derived hyaluronan-associated proteins and hyaluronan (SHAP-HA) complexes possibly through the degradation of versican. These results demonstrate that MMP-3 can act as an anti-inflammatory agent and suggest that MMP-3 might represent a useful therapy for the treatment of mild irreversible pulpitis. PMID:23285075

  17. [Human stem cells from apical papilla can regenerate dentin-pulp complex].

    PubMed

    Xiong, Huacui; Chen, Ke; Huang, Yibin; Liu, Caiqi

    2013-10-01

    To regenerate dentin-pulp complex by tissue engineering with human stem cells from apical papilla cells (SCAP) as the seed cells. SCAP was separated from from normal human impacted third molars with immature roots by outgrowth culture. The cells were then cultured in the differentiation medium for 3 weeks or in normal medium for 60 days, and analyzed for mineralization potential by Alizarin red staining. The osteo/odontogenic markers including alkaline phosphatase (ALP), bone sialoprotein (BSP), osteocalcin (OC) and dentin sialoprotein (DSP) were investigated by immunofluorescence staining and reverse transcription-polymerase chain reaction. The co-cultured mixture of SCAP and HA/TCP, or HA/TCP alone was implanted subcutaneously on the back of nude mice for 8 weeks, and the implants were collected and examined by HE and immunohistochemical staining. Round alizarin red-positive nodules formed in the isolated cells after cell culture in the differentiation medium for 3 weeks or in normal medium for 60 days with positive staining for osteo/odontogenic markers. SCAP with HA/TCP could regenerate pulp-dentin complex-like tissue in nude mice. The cells near the dentin-like tissue were positive for DSP. No mineral tissue was found in mice receiving HA/TCP implantation. SCAP may serve as a promising seed cell for dentin-pulp complex tissue engineering.

  18. Fibrin gel improves tissue ingrowth and cell differentiation in human immature premolars implanted in rats.

    PubMed

    Ruangsawasdi, Nisarat; Zehnder, Matthias; Weber, Franz E

    2014-02-01

    In pulpless immature human premolars implanted in rodents, this study investigated whether fibrin gel offered advantages over leaving the root canal empty regarding soft tissue ingrowth and cell differentiation. Root canals of extracted human immature premolars (n = 12) were accessed and then irrigated with 5% sodium hypochlorite followed by 17% ethylenediaminetetraacetic acid. Root canals were then either left empty or filled with a fibrin gel (n = 6 each) before being placed subcutaneously on top of the calvarial bone of rats (1 tooth per rat) for 12 weeks. After sacrifice, teeth were histologically assessed. Tissue ingrowth was quantified and compared between groups using the Mann-Whitney U test (P < .05). Cells adhering to the pulp canal wall were immunohistochemically screened for the presence of bone sialoprotein (BSP) and dentin sialoprotein (DSP). More tissue grew into the pulp space when teeth were filled with fibrin gel (P < .05). The presence of fibrin gel affected not only the extent of tissue ingrowth but also tissue morphology and differentiation of cells contacting the dentinal wall. In the fibrin gel group, newly formed tissue was similar to normal pulp, constituted of inner pulp, cell-rich zone, cell-free zone, and an apparent odontoblast layer, which stained positive for BSP and DSP. Newly formed blood vessels were also more abundant compared with the initially empty root canals. Under the conditions of this study, fibrin gel improved cell infiltration and cell-dentin interaction. Both are necessary for pulp tissue regeneration. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Adult stem cell-based apexogenesis

    PubMed Central

    Li, Yao; Shu, Li-Hong; Yan, Ming; Dai, Wen-Yong; Li, Jun-Jun; Zhang, Guang-Dong; Yu, Jin-Hua

    2014-01-01

    Generally, the dental pulp needs to be removed when it is infected, and root canal therapy (RCT) is usually required in which infected dental pulp is replaced with inorganic materials (paste and gutta percha). This treatment approach ultimately brings about a dead tooth. However, pulp vitality is extremely important to the tooth itself, since it provides nutrition and acts as a biosensor to detect the potential pathogenic stimuli. Despite the reported clinical success rate, RCT-treated teeth are destined to be devitalized, brittle and susceptible to postoperative fracture. Recently, the advances and achievements in the field of stem cell biology and regenerative medicine have inspired novel biological approaches to apexogenesis in young patients suffering from pulpitis or periapical periodontitis. This review mainly focuses on the benchtop and clinical regeneration of root apex mediated by adult stem cells. Moreover, current strategies for infected pulp therapy are also discussed here. PMID:25332909

  20. Odontoblast-Like Cells Differentiated from Dental Pulp Stem Cells Retain Their Phenotype after Subcultivation

    PubMed Central

    Baldión, Paula A.; Velandia-Romero, Myriam L.

    2018-01-01

    Odontoblasts, the main cell type in teeth pulp tissue, are not cultivable and they are responsible for the first line of response after dental restauration. Studies on dental materials cytotoxicity and odontoblast cells physiology require large quantity of homogenous cells retaining most of the phenotype characteristics. Odontoblast-like cells (OLC) were differentiated from human dental pulp stem cells using differentiation medium (containing TGF-β1), and OLC expanded after trypsinization (EXP-21) were evaluated and compared. Despite a slower cell growth curve, EXP-21 cells express similarly the odontoblast markers dentinal sialophosphoprotein and dentin matrix protein-1 concomitantly with RUNX2 transcripts and low alkaline phosphatase activity as expected. Both OLC and EXP-21 cells showed similar mineral deposition activity evidenced by alizarin red and von Kossa staining. These results pointed out minor changes in phenotype of subcultured EXP-21 regarding the primarily differentiated OLC, making the subcultivation of these cells a useful strategy to obtain odontoblasts for biocompatibility or cell physiology studies in dentistry. PMID:29670655

  1. Regenerative endodontics--Creating new horizons.

    PubMed

    Dhillon, Harnoor; Kaushik, Mamta; Sharma, Roshni

    2016-05-01

    Trauma to the dental pulp, physical or microbiologic, can lead to inflammation of the pulp followed by necrosis. The current treatment modality for such cases is non-surgical root canal treatment. The damaged tissue is extirpated and the root canal system prepared. It is then obturated with an inert material such a gutta percha. In spite of advances in techniques and materials, 10%-15% of the cases may end in failure of treatment. Regenerative endodontics combines principles of endodontics, cell biology, and tissue engineering to provide an ideal treatment for inflamed and necrotic pulp. It utilizes mesenchymal stem cells, growth factors, and organ tissue culture to provide treatment. Potential treatment modalities include induction of blood clot for pulp revascularization, scaffold aided regeneration, and pulp implantation. Although in its infancy, successful treatment of damaged pulp tissue has been performed using principles of regenerative endodontics. This field is dynamic and exciting with the ability to shape the future of endodontics. This article highlights the fundamental concepts, protocol for treatment, and possible avenues for research in regenerative endodontics. © 2015 Wiley Periodicals, Inc.

  2. Stage-specific effects of FGF2 on the differentiation of dental pulp cells

    PubMed Central

    Sagomonyants, Karen; Mina, Mina

    2015-01-01

    Dentinogenesis is a complex and multistep process, which is regulated by various growth factors, including members of the Fibroblast Growth Factor (FGF) family. Both positive and negative effects of FGFs on dentinogenesis have been reported but the underlying mechanisms of these conflicting results are still unclear. To gain better insight into the role of FGF2 in dentinogenesis, we used dental pulp cells from various transgenic mice, in which fluorescent protein expression identifies cells at different stages of odontoblast differentiation. Our results showed that continuous exposure of pulp cells to FGF2 inhibited mineralization and revealed both stimulatory and inhibitory effects of FGF2 on expression of markers of dentinogenesis and various transgenes. During the proliferation phase of in vitro growth FGF2 increased expression of markers of dentinogenesis and the percentages of DMP1-GFP+ functional odontoblasts and DSPP-Cerulean+ odontoblasts. Additional exposure to FGF2 during the differentiation/mineralization phase of in vitro growth decreased the extent of mineralization, expression of markers of dentinogenesis, and expression of DMP1-GFP and DSPP-Cerulean transgenes. Recovery experiments showed that the inhibitory effects of FGF2 on dentinogenesis were related to the blocking of differentiation of cells into mature odontoblasts. These observations together showed stage-specific effects of FGF2 on dentinogenesis by dental pulp cells and provide critical information for the development of improved treatments for vital pulp therapy and dentin regeneration. PMID:25823776

  3. Dentin barrier test with transfected bovine pulp-derived cells.

    PubMed

    Schmalz, G; Schuster, U; Thonemann, B; Barth, M; Esterbauer, S

    2001-02-01

    Growth kinetics of SV40 large T-antigen-transfected bovine pulp-derived cells on dentin were investigated. These cells were used in a dentin barrier test device, and the system was evaluated by testing a set of dental filling materials. Cells (120 cells/mm2) were seeded on dentin slices and incubated for up to 21 days. Cell proliferation was recorded using MTT assay. For cytotoxicity tests 3500 cells/mm2 were seeded on dentin discs, which were then incorporated into the dentin barrier test device. After 72 h preincubation test materials were applied. After a 24 h exposure with or without perfusion of the pulpal part of the test device, cell survival was evaluated using MTT assay. The cells revealed similar growth kinetics on dentin slices and on tissue culture plates. In cytotoxicity tests the cells were more sensitive toward the test materials than previously used three-dimensional cultures of human foreskin fibroblasts and as anticipated from clinical experience. Further improvement is expected by using three-dimensional cultures of pulp-derived cells.

  4. Effect of ITGA5 down-regulation on the migration capacity of human dental pulp stem cells

    PubMed Central

    Xu, Shuaimei; Cui, Li; Ma, Dandan; Sun, Wenjuan; Wu, Buling

    2015-01-01

    Background: The purpose of this study was to evaluate the role of integrin-α5 (ITGA5) in regulating the migration capacity of human dental pulp stem cells (hDPSCs), which might provide new evidence for understanding the repair and regeneration mechanisms of dental pulp tissues. Materials and methods: The enzyme digestion method was employed to isolate the hDPSCs from dental pulp tissues. The cell surface markers of hDPSCs were detected using flow cytometry analysis. Then the colony forming and multi-differentiation capacity of hDPSCs were evaluated. The lentivirus vector that carried the ITGA5 shRNA was constructed and real-time PCR was used to examine the effectiveness of ITGA5 shRNA lentivirus. Then transwell assay was performed to evaluate the impact of ITGA5 inhibition on the migration capability of hDPSCs. Results: Our results showed that the cells we isolated from the dental pulps were positive for mesenchymal stem cells biomarkers. In addition, the cells possessed both colony forming capacity and multi-differentiation potential. ITGA5 shRNA lentivirus could not only infect hDPSCs with high efficiency, but also down-regulate the expression level of ITGA5 mRNA significantly (P<0.01). The transwell assay revealed the number of cells that migrated to the lower chamber was significantly less in the ITGA5 shRNA group compared with that in the scrambled shRNA group (P=0.016). Conclusion: ITGA5 plays an important role in maintaining and regulating the normal migration capacity of hDPSCs. PMID:26823759

  5. Human immature dental pulp stem cells (hIDPSCs), their application to cell therapy and bioengineering: an analysis by systematic revision of the last decade of literature.

    PubMed

    de Souza, Priscilla Vianna; Alves, Fabiana Bucholdz Teixeira; Costa Ayub, Cristina Lucia Sant'Ana; de Miranda Soares, Maria Albertina; Gomes, Jose Rosa

    2013-12-01

    During recent years, attention has been given to the potential of therapeutic approaches using stem cells obtained from dental pulp tissue. The aim of this study, therefore, was to give an overview of the papers produced during the last 10 years that have described the use of stem cells obtained from human deciduous teeth in cell therapy or bioengineering. The PubMed database was investigated from January 2002 until July 2011 and the papers published during this period were analyzed according to criteria previously established, using the methodology of systematic review. The measurements were done using "stem cell" as the primary keyword, and "human deciduous teeth dental pulp cell" and "human exfoliated deciduous teeth" as the secondary keywords. Four hundred and seventy-five papers were found. The first screening resulted in 276 papers, from which 84 papers were selected. However, only 11 of them attained the aim proposed in our approach. There were few scientific studies related to direct therapeutic application using stem cells of human deciduous teeth and none of them had been applied to humans. However, the results indicated important and promising applications of the pulp stem-cells in cell therapy and bioengineering as demonstrated by studies in animal models of muscular dystrophy, Parkison's disease, and lupus erythematosus. Copyright © 2013 Wiley Periodicals, Inc.

  6. Electrochemical delignification of wood pulp using polyoxometalate mediators

    Treesearch

    R.S. Reiner; E.L. Springer; R.H. Atalla

    2003-01-01

    It has been found that polyoxometalates (POMs) can act as mediators in the electrochemical oxidation of lignin in pulps. An electrochemical cell, with a Nafion® membrane separating the anode and cathode compartments, was used in the delignification experiments. A softwood kraft pulp was placed in the anode compartment with a buffered 0.01M solution of the...

  7. Dental pulp stem cells. Biology and use for periodontal tissue engineering.

    PubMed

    Ashri, Nahid Y; Ajlan, Sumaiah A; Aldahmash, Abdullah M

    2015-12-01

    Inflammatory periodontal disease is a major cause of loss of tooth-supporting structures. Novel approaches for regeneration of periodontal apparatus is an area of intensive research. Periodontal tissue engineering implies the use of appropriate regenerative cells, delivered through a suitable scaffold, and guided through signaling molecules. Dental pulp stem cells have been used in an increasing number of studies in dental tissue engineering. Those cells show mesenchymal (stromal) stem cell-like properties including self-renewal and multilineage differentiation potentials, aside from their relative accessibility and pleasant handling properties. The purpose of this article is to review the biological principles of periodontal tissue engineering, along with the challenges facing the development of a consistent and clinically relevant tissue regeneration platform. This article includes an updated review on dental pulp stem cells and their applications in periodontal regeneration, in combination with different scaffolds and growth factors.

  8. Concise Review: Dental Pulp Stem Cells: A Novel Cell Therapy for Retinal and Central Nervous System Repair.

    PubMed

    Mead, Ben; Logan, Ann; Berry, Martin; Leadbeater, Wendy; Scheven, Ben A

    2017-01-01

    Dental pulp stem cells (DPSC) are neural crest-derived ecto-mesenchymal stem cells that can relatively easily and non-invasively be isolated from the dental pulp of extracted postnatal and adult teeth. Accumulating evidence suggests that DPSC have great promise as a cellular therapy for central nervous system (CNS) and retinal injury and disease. The mode of action by which DPSC confer therapeutic benefit may comprise multiple pathways, in particular, paracrine-mediated processes which involve a wide array of secreted trophic factors and is increasingly regarded as the principal predominant mechanism. In this concise review, we present the current evidence for the use of DPSC to repair CNS damage, including recent findings on retinal ganglion cell neuroprotection and regeneration in optic nerve injury and glaucoma. Stem Cells 2017;35:61-67. © 2016 AlphaMed Press.

  9. Imperative role of dental pulp stem cells in regenerative therapies: a systematic review.

    PubMed

    Kabir, Ramchandra; Gupta, Manish; Aggarwal, Avanti; Sharma, Deepak; Sarin, Anurag; Kola, Mohammed Zaheer

    2014-01-01

    Stem cells are primitive cells that can differentiate and regenerate organs in different parts of the body such as heart, bones, muscles and nervous system. This has been a field of great clinical interest with immense possibilities of using the stem cells in regeneration of human organ those are damaged due to disease, developmental defects and accident. The knowledge of stem cell technology is increasing quickly in all medical specialties and in dental field too. Stem cells of dental origin appears to hold the key to various cell-based therapies in regenerative medicine, but most avenues are in experimental stages and many procedures are undergoing standardization and validation. Long-term preservation of SHED cells or DPSC is becoming a popular consideration, similar to the banking of umbilical cord blood. Dental pulp stem cells (DPSCs) are the adult multipotent cells that reside in the cell rich zone of the dental pulp. The multipotent nature of these DPSCs may be utilized in both dental and medical applications. A systematic review of the literature was performed using various internet based search engines (PubMed, Medline Plus, Cochrane, Medknow, Ebsco, Science Direct, Hinari, WebMD, IndMed, Embase) using keywords like "dental pulp stem cells", "regeneration", "medical applications", "tissue engineering". DPSCs appears to be a promising innovation for the re-growth of tissues however, long term clinical studies need to be carried out that could establish some authentic guidelines in this perspective.

  10. Histogenesis of splenic lesions in Hodgkin's disease.

    PubMed

    Yam, L T; Li, C Y

    1976-12-01

    Histochemical markers were used to identify the various cellular and structural components of the human spleen, and to investigate the histogenesis of the splenic lesions of Hodgkin's disease. The early lesions appear in areas near the central artery (periarterial lymphatic sheath) in the white pulp. The white pulp becomes hypertrophic. The lesions enlarge, extend into the red pulp, and compress the sinuses and the cords of Billroth. The derivations of various "histiocytes" contained with the lesions are differentiated by using cytochemical stains for lysosomal enzymes and for granulocytes. The epithelioid cells in the granulomas are rich in those lysosomal enzymes typically seen in phagocytic histiocytes, suggesting that they are indeed true histiocytes. The malignant "histiocytes," including the mononuclear Hodgkin cells, the binucleated Sternberg-Reed cells, and the multinucleated giant cells, do not contain significant amounts of lysosomal enzymes and more closely resemble stimulated lymphocytes. The splenic lesions in Hodkin's disease may be the result of a lymphocytic and histiocytic cellular response to an unknown agent, which reaches the spleen through the central artery in the white pulp.

  11. Melatonin attenuates inflammation of acute pulpitis subjected to dental pulp injury

    PubMed Central

    Li, Ji-Guo; Lin, Jia-Ji; Wang, Zhao-Ling; Cai, Wen-Ke; Wang, Pei-Na; Jia, Qian; Zhang, An-Sheng; Wu, Gao-Yi; Zhu, Guo-Xiong; Ni, Long-Xing

    2015-01-01

    Acute pulpitis (AP), one of the most common diseases in the endodontics, usually causes severe pain to the patients, which makes the search for therapeutic target of AP essential in clinic. Toll-like receptor 4 (TLR4) signaling is widely involved in the mechanism of pulp inflammation, while melatonin has been reported to have an inhibition for a various kinds of inflammation. We hereby studied whether melatonin can regulate the expression of TLR4/NF-ĸB signaling in the pulp tissue of AP and in human dental pulp cells (HDPCs). Two left dental pulps of the adult rat were drilled open to establish the AP model, and the serum levels of melatonin and pro-inflammatory cytokines, including interleukin 1β (IL-1β), interleukin 18 (IL-18) and tumor necrosis factor α (TNF-α), were assessed at 1, 3 and 5 d post injury. At the same time points, the expression of TLR4 signaling in the pulp was explored by quantitative real-time PCR and immunohistochemistry. The AP rats were administered an abdominal injection of melatonin to assess whether melatonin rescued AP and TLR4/NF-ĸB signaling. Dental pulp injury led to an approximately five-day period acute pulp inflammation and necrosis in the pulp and a significant up-regulation of IL-1β, IL-18 and TNF-α in the serum. ELISA results showed that the level of melatonin in the serum decreased due to AP, while an abdominal injection of melatonin suppressed the increase in serum cytokines and the percentage of necrosis at the 5 d of the injured pulp. Consistent with the inflammation in AP rats, TLR4, NF-ĸB, TNF-α and IL-1β in the pulp were increased post AP compared with the baseline expression. And melatonin showed an inhibition on TLR4/NF-ĸB signaling as well as IL-1β and TNF-α production in the pulp of AP rats. Furthermore, melatonin could also regulate the expression of TLR4/NF-ĸB signaling in LPS-stimulated HDPCs. These data suggested that dental pulp injury induced AP and reduced the serum level of melatonin and that supplementation with melatonin may have a protective effect on AP by modulating TLR4/NF-ĸB signaling in the pulp and in pulp cells. PMID:25755829

  12. Efficacy of Sex Determination from Human Dental Pulp Tissue and its Reliability as a Tool in Forensic Dentistry

    PubMed Central

    Khanna, Kaveri Surya

    2015-01-01

    Background: Sex determination is one of the primary steps in forensics. Barr body can be used as a histological method for identification of sex as it is found to be specific to female somatic cells and rare in male cells. To demarcate human dental pulp as an important identification tool of sex in forensic odontology (FO) and to evaluate the time period till which sex can be determined from pulp tissue using three stains H and E, Feulgen, and acridine - orange under fluorescence so as. Materials and Methods: 90 pulp samples (45 males and 45 females) were subjected to Barr body analysis for determination of sex using light and fluorescent microscopy. Results: Barr body was found to be positive for female samples and negative or rare in the male sample (<3%). Conclusion: Barr body from human dental pulp tissue can be used as a successful determinant of sex identification in FO. PMID:26668474

  13. Substance P influenced gelatinolytic activity via reactive oxygen species in human pulp cells.

    PubMed

    Wang, F-M; Hu, T; Cheng, R; Tan, H; Zhou, X-D

    2008-10-01

    To investigate the effects of substance P (SP) on gelatinolytic activity of matrix metalloproteinases (MMPs) in human pulp cells. Human dental pulp cells were isolated and cultured. Subconfluent cells, between the third and sixth passages, were maintained under serum deprivation for 18 h followed by the treatment of varying doses of SP (1 pmol L(-1), 100 pmol L(-1), 10 nmol L(-1), 1 micromol L(-1) and 100 micromol L(-1)). Conditioned media were then subjected to gelatin zymography using 8% sodium dodecyl sulphate polyacrylamide gel electrophoresis minigels containing 1.5 g L(-1) gelatin. The effect of SP on intracellular reactive oxygen species (ROS) was also examined by confocal microscopy. ROS scavenger N-Acetyl-L-cysteine (NAC, 5 mmol L(-1)) was utilized to evaluate the roles of ROS pathway in mediating the impact of SP on cellular gelatinolytic activity. Data were analysed using analysis of variance with Bonferroni correction for multiple comparisons or an unpaired Student's t-test. Substance P, at levels above 1 micromol L(-1), remarkably enhanced MMP-2 activity reflected by the band migrating at 66 kDa (P < 0.05). A gelatinolytic band at approximately 44 kDa appeared to be intensified in a SP dose-dependent manner. In addition, it was demonstrated that SP could induce ROS production in pulp cells and ROS scavenger NAC was further found to significantly reduce MMP-2 activity (P < 0.05), as well as other bands of gelatinolytic proteinases. Substance P can influence gelatinolytic activity in human pulp cells via ROS pathway.

  14. Dual ECM Biomimetic Scaffolds for Dental Pulp Regenerative Applications

    PubMed Central

    Huang, Chun-Chieh; Narayanan, Raghuvaran; Warshawsky, Noah; Ravindran, Sriram

    2018-01-01

    Dental pulp is a highly vascularized and innervated tissue that provides sensitivity and vitality to the tooth. Chronic caries results in an infected pulp tissue prone to necrosis. Existing clinical treatments replace the living pulp tissue with a non-responsive resin filling resulting in loss of tooth vitality. Tissue engineering approaches to dental pulp tissue regeneration have been investigated to preserve tooth vitality and function. However, a critical criterion is the choice of growth factors that may promote mesenchymal stem cell differentiation and more importantly, vascularization. But, the problems associated with growth factor dosage, delivery, safety, immunological and ectopic complications affect their translatory potential severely. The purpose of this study is to develop, characterize and evaluate a biomimetic native extracellular matrix (ECM) derived dual ECM scaffold that consists of a pulp-specific ECM to promote MSC attachment, proliferation and differentiation and an endothelial ECM to promote migration of host endothelial cells and eventual vascularization in vivo. Our results show that the dual ECM scaffolds possess similar properties as a pulp-ECM scaffold to promote MSC attachment and odontogenic differentiation in vitro. Additionally, when implanted subcutaneously in a tooth root slice model in vivo, the dual ECM scaffolds promoted robust odontogenic differentiation of both dental pulp and bone marrow derived MSCs and also extensive vascularization when compared to respective controls. These scaffolds are mass producible for clinical use and hence have the potential to replace root canal therapy as a treatment for chronic dental caries. PMID:29887803

  15. Imperative Role of Dental Pulp Stem Cells in Regenerative Therapies: A Systematic Review

    PubMed Central

    Kabir, Ramchandra; Gupta, Manish; Aggarwal, Avanti; Sharma, Deepak; Sarin, Anurag; Kola, Mohammed Zaheer

    2014-01-01

    Stem cells are primitive cells that can differentiate and regenerate organs in different parts of the body such as heart, bones, muscles and nervous system. This has been a field of great clinical interest with immense possibilities of using the stem cells in regeneration of human organ those are damaged due to disease, developmental defects and accident. The knowledge of stem cell technology is increasing quickly in all medical specialties and in dental field too. Stem cells of dental origin appears to hold the key to various cell-based therapies in regenerative medicine, but most avenues are in experimental stages and many procedures are undergoing standardization and validation. Long-term preservation of SHED cells or DPSC is becoming a popular consideration, similar to the banking of umbilical cord blood. Dental pulp stem cells (DPSCs) are the adult multipotent cells that reside in the cell rich zone of the dental pulp. The multipotent nature of these DPSCs may be utilized in both dental and medical applications. A systematic review of the literature was performed using various internet based search engines (PubMed, Medline Plus, Cochrane, Medknow, Ebsco, Science Direct, Hinari, WebMD, IndMed, Embase) using keywords like “dental pulp stem cells”, “regeneration”, “medical applications”, “tissue engineering”. DPSCs appears to be a promising innovation for the re-growth of tissues however, long term clinical studies need to be carried out that could establish some authentic guidelines in this perspective. PMID:24665194

  16. Changes in alpha-L-arabinofuranosidase activity in peel and pulp of banana (Musa sp.) fruits during ripening and softening.

    PubMed

    Zhuang, Jun-Ping; Su, Jing; Li, Xue-Ping; Chen, Wei-Xin

    2007-04-01

    Arabinose is one of the most dynamic cell wall glycosyl residues released during fruit ripening, alpha-L-arabinofuranosidase (alpha-Arab) are major glycosidases that may remove arabinose units from fruit cell wall polysaccharides. To find out whether alpha-Arab plays important roles in banana fruit softening, the enzyme activities in peel and pulp, fruit firmness, respiration rate and ethylene release rate were assayed during banana softening. The results showed that alpha-Arab activities in banana pulp and peel increased slightly at the beginning of storage and reached their maxima when the fruit firmness decreased drastically, alpha-Arab activity increased by more than ten folds in both pulp and peel during ripening and alpha-Arab activities were higher in pulp than in peel. Treatment of banana fruits with ethylene absorbent postponed the time of reaching of its maxima of respiration and ethylene, enhanced the firmness of pup and decreased alpha-Arab activity in the peel and pulp. These results suggest that alpha-Arab induced the decrease of fruit firmness and played an important role in banana fruit softening, and its activity was regulated by ethylene.

  17. Dental Pulp and Dentin Tissue Engineering and Regeneration – Advancement and Challenge

    PubMed Central

    Huang, George T.-J.

    2012-01-01

    Hard tissue is difficult to repair especially dental structures. Tooth enamel is incapable of self-repairing whereas dentin and cememtum can regenerate with limited capacity. Enamel and dentin are commonly under the attack by caries. Extensive forms of caries destroy enamel and dentin and can lead to dental pulp infection. Entire pulp amputation followed by the pulp space disinfection and filled with an artificial rubber-like material is employed to treat the infection --commonly known as root canal or endodontic therapy. Regeneration of dentin relies on having vital pulps; however, regeneration of pulp tissue has been difficult as the tissue is encased in dentin without collateral blood supply except from the root apical end. With the advent of modern tissue engineering concept and the discovery of dental stem cells, regeneration of pulp and dentin has been tested. This article will review the recent endeavor on pulp and dentin tissue engineering and regeneration. The prospective outcome of the current advancement and challenge in this line of research will be discussed. PMID:21196351

  18. Sensitivity of human dental pulp cells to eighteen chemical agents used for endodontic treatments in dentistry.

    PubMed

    Kobayashi, Morio; Tsutsui, Takeo W; Kobayashi, Tomoko; Ohno, Maki; Higo, Yukari; Inaba, Tomohiro; Tsutsui, Takeki

    2013-01-01

    To determine the adverse effects against human dental pulp tissue, the sensitivity of human dental pulp cells (D824 cells) to 18 chemical agents used for endodontic treatments in dentistry was examined. The cytotoxicity, as determined by a decrease in colony-forming ability of cells treated with the chemical agents, increased as the concentration increased. As a quantitative measure of the cytotoxic effect, LC(50), the concentration which induces a 50% lethality, was extrapolated from the concentration-response curves. The rank of the chemical agents according to their cytotoxic effect (LC(50)) was sodium arsenite > formaldehyde > hydrogen peroxide > zinc oxide > thymol ≈ iodoform ≈ eugenol > guaiacol > ethylenediaminetetraacetic acid ≈ iodine > procaine > lidocaine ≈ chloramphenicol ≈ m-cresol > calcium hydroxide ≈ sodium hypochlorite ≈ phenol ≈ p-phenolsulfonic acid. To compare the cytotoxicity and the levels of apoptosis and mRNA expression of five genes related to the function of dental pulp tissue, D824 cells treated with the LC(50) concentrations of chemical agents were assayed by the TUNEL method and quantitative reverse transcription polymerase chain reaction analysis, respectively. The inducibility of apoptotic cells and the level of mRNA expression of the genes varied with the chemical agents, indicating that both effects occurred independent of the rank of cytotoxic effect of the chemical agents. The results not only provide information concerning cytotoxicity of various chemical agents to human dental pulp cells, but also show an insight into the diversity of the pharmacodynamic action of the chemical agents.

  19. Regenerative medicine using dental pulp stem cells for liver diseases.

    PubMed

    Ohkoshi, Shogo; Hara, Hajime; Hirono, Haruka; Watanabe, Kazuhiko; Hasegawa, Katsuhiko

    2017-02-06

    Acute liver failure is a refractory disease and its prognosis, if not treated using liver transplantation, is extremely poor. It is a good candidate for regenerative medicine, where stem cell-based therapies play a central role. Mesenchymal stem cells (MSCs) are known to differentiate into multiple cell lineages including hepatocytes. Autologous cell transplant without any foreign gene induction is feasible using MSCs, thereby avoiding possible risks of tumorigenesis and immune rejection. Dental pulp also contains an MSC population that differentiates into hepatocytes. A point worthy of special mention is that dental pulp can be obtained from deciduous teeth during childhood and can be subsequently harvested when necessary after deposition in a tooth bank. MSCs have not only a regenerative capacity but also act in an anti-inflammatory manner via paracrine mechanisms. Promising efficacies and difficulties with the use of MSC derived from teeth are summarized in this review.

  20. SEM evaluation of pulp reaction to different pulp capping materials in dog’s teeth

    PubMed Central

    Asgary, Saeed; Parirokh, Masoud; Eghbal, Mohammad Jafar; Ghoddusi, Jamileh

    2006-01-01

    Introduction: This investigation evaluates the effects of mineral trioxide aggregate (MTA), calcium hydroxide (CH) and calcium enriched mixture (CEM) as pulp capping materials on dental pulp tissues. Materials and Methods: The experimental procedures were performed on eighteen intact dog canine teeth. The pulps were exposed. Cavities were randomly filled with CEM, MTA, or CH followed by glass ionomer filling. After 2 months, animals were sacrificed, each tooth was sectioned into halves, and the interface between each capping material and pulp tissue was evaluated by scanning electron microscope (SEM) in profile view of the specimens. Results: Dentinal bridge formation as the most characteristic reaction was resulted from SEM observation in all examined groups. Odontoblast-like cells were formed and create dens collagen network, which was calcified gradually by deposition of calcosphirit structures to form newly dentinal bridge. Conclusion: Based on the results of this in vivo study, it was concluded that these test materials are able to produce calcified tissue in underlying pulp in the case of being used as a pulp capping agent. Additionally, it appears that CEM has the potential to be used as a direct pulp capping material during vital pulp therapy. PMID:24379876

  1. Role of medullary astroglial glutamine synthesis in tooth pulp hypersensitivity associated with frequent masseter muscle contraction.

    PubMed

    Watase, Tetsuro; Shimizu, Kohei; Ohara, Kinuyo; Komiya, Hiroki; Kanno, Kohei; Hatori, Keisuke; Noma, Noboru; Honda, Kuniya; Tsuboi, Yoshiyuki; Katagiri, Ayano; Shinoda, Masamichi; Ogiso, Bunnai; Iwata, Koichi

    2018-01-01

    Background The mechanisms underlying tooth pulp hypersensitivity associated with masseter muscle hyperalgesia remain largely underinvestigated. In the present study, we aimed to determine whether masseter muscle contraction induced by daily electrical stimulation influences the mechanical head-withdrawal threshold and genioglossus electromyography activity caused by the application of capsaicin to the upper first molar tooth pulp. We further investigated whether astroglial glutamine synthesis is involved in first molar tooth pulp hypersensitivity associated with masseter muscle contraction. Methods The first molar tooth pulp was treated with capsaicin or vehicle in masseter muscle contraction or sham rats, following which the astroglial glutamine synthetase inhibitor methionine sulfoximine or Phosphate buffered saline (PBS) was applied. Astroglial activation was assessed via immunohistochemistry. Results The mechanical head-withdrawal threshold of the ipsilateral masseter muscle was significantly decreased in masseter muscle contraction rats than in sham rats. Genioglossus electromyography activity was significantly higher in masseter muscle contraction rats than sham rats. Glial fibrillary acidic protein-immunoreactive cell density was significantly higher in masseter muscle contraction rats than in sham rats. Administration of methionine sulfoximine induced no significant changes in the density of glial fibrillary acidic protein-immunoreactive cells relative to PBS treatment. However, mechanical head-withdrawal threshold was significantly higher in masseter muscle contraction rats than PBS-treated rats after methionine sulfoximine administration. Genioglossus electromyography activity following first molar tooth pulp capsaicin treatment was significantly lower in methionine sulfoximine-treated rats than in PBS-treated rats. In the ipsilateral region, the total number of phosphorylated extracellular signal-regulated protein kinase immunoreactive cells in the medullary dorsal horn was significantly smaller upon first molar tooth pulp capsaicin application in methionine sulfoximine-treated rats than in PBS-treated rats. Conclusions Our results suggest that masseter muscle contraction induces astroglial activation, and that this activation spreads from caudal to the obex in the medullary dorsal horn, resulting in enhanced neuronal excitability associated with astroglial glutamine synthesis in medullary dorsal horn neurons receiving inputs from the tooth pulp. These findings provide significant insight into the mechanisms underlying tooth pulp hypersensitivity associated with masseter muscle contraction.

  2. Stem cells in dentistry--review of literature.

    PubMed

    Dziubińska, P; Jaskólska, M; Przyborowska, P; Adamiak, Z

    2013-01-01

    Stem cells have been successfully isolated from a variety of human and animal tissues, including dental pulp. This achievement marks progress in regenerative dentistry. This article reviews the latest improvements made in regenerative dental medicine with the involvement of stem cells. Although, various types of multipotent somatic cells can be applied in dentistry, two types of cells have been investigated in this review. Dental pulp cells are classified as: DPSCs, SCAPs and SHEDs.The third group includes two types of cell associated with the periodontium: PDL and DFPC. This review aims to systematize basic knowledge about cellular engineering in dentistry.

  3. Insulin-like growth factor 1 promotes the proliferation and committed differentiation of human dental pulp stem cells through MAPK pathways.

    PubMed

    Lv, Taohong; Wu, Yongzheng; Mu, Chao; Liu, Genxia; Yan, Ming; Xu, Xiangqin; Wu, Huayin; Du, Jinyin; Yu, Jinhua; Mu, Jinquan

    2016-12-01

    Insulin-like growth factor 1 (IGF-1) is a broad-spectrum growth-promoting factor that plays a key role in natural tooth development. Human dental pulp stem cells (hDPSCs) are multipotent and can influence the reparative regeneration of dental pulp and dentin. This study was designed to evaluate the effects of IGF-1 on the proliferation and differentiation of human dental pulp stem cells. HDPSCs were isolated and purified from human dental pulps. The proliferation and osteo/odontogenic differentiation of hDPSCs treated with 100ng/ml exogenous IGF-1 were subsequently investigated. MTT assays revealed that IGF-1 enhanced the proliferation of hDPSCs. ALP activity in IGF-1-treated group was obviously enhanced compared to the control group from days 3 to 9. Alizarin red staining revealed that the IGF-1-treated cells contained a greater number of mineralization nodules and had higher calcium concentrations. Moreover, western blot and qRT-PCR analyses demonstrated that the expression levels of several osteogenic genes (e.g., RUNX2, OSX, and OCN) and an odontoblast-specific marker (DSPP) were significantly up-regulated in IGF-1-treated hDPSCs as compared with untreated cells (P<0.01). Interestingly, the expression of phospho-ERK and phospho-p38 were also up-regulated, indicating that the MAPK signaling pathway is activated during the differentiation of hDPSCs. IGF-1 can promote the proliferation and osteo/odontogenic differentiation of hDPSCs by activating MAPK pathways. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Pulpal responses to cavity preparation in aged rat molars.

    PubMed

    Kawagishi, Eriko; Nakakura-Ohshima, Kuniko; Nomura, Shuichi; Ohshima, Hayato

    2006-10-01

    The dentin-pulp complex is capable of repair after tooth injuries including dental procedures. However, few data are available concerning aged changes in pulpal reactions to such injuries. The present study aimed to clarify the capability of defense in aged pulp by investigating the responses of odontoblasts and cells positive for class II major histocompatibility complex (MHC) to cavity preparation in aged rat molars (300-360 days) and by comparing the results with those in young adult rats (100 days). In untreated control teeth, immunoreactivity for intense heat-shock protein (HSP)-25 and nestin was found in odontoblasts, whereas class-II-MHC-positive cells were densely distributed in the periphery of the pulp. Cavity preparation caused two types of pulpal reactions based on the different extent of damage in the aged rats. In the case of severe damage, destruction of the odontoblast layer was conspicuous at the affected site. By 12 h after cavity preparation, numerous class-II-MHC-positive cells appeared along the pulp-dentin border but subsequently disappeared together with HSP-25-immunopositive cells, and finally newly differentiated odontoblast-like cells took the place of the degenerated odontoblasts and acquired immunoreactivity for HSP-25 and nestin by postoperative day 3. In the case of mild damage, no remarkable changes occurred in odontoblasts after operation, and some survived through the experimental stages. These findings indicate that aged pulp tissue still possesses a defense capacity, and that a variety of reactions can occur depending on the difference in the status of dentinal tubules and/or odontoblast processes in individuals.

  5. Dental pulp of the third molar: a new source of pluripotent-like stem cells.

    PubMed

    Atari, Maher; Gil-Recio, Carlos; Fabregat, Marc; García-Fernández, Dani; Barajas, Miguel; Carrasco, Miguel A; Jung, Han-Sung; Alfaro, F Hernández; Casals, Nuria; Prosper, Felipe; Ferrés-Padró, Eduard; Giner, Luis

    2012-07-15

    Dental pulp is particularly interesting in regenerative medicine because of the accessibility and differentiation potential of the tissue. Dental pulp has an early developmental origin with multi-lineage differentiation potential as a result of its development during childhood and adolescence. However, no study has previously identified the presence of stem cell populations with embryonic-like phenotypes in human dental pulp from the third molar. In the present work, we describe a new population of dental pulp pluripotent-like stem cells (DPPSCs) that were isolated by culture in medium containing LIF, EGF and PDGF. These cells are SSEA4(+), OCT3/4(+), NANOG(+), SOX2(+), LIN28(+), CD13(+), CD105(+), CD34(-), CD45(-), CD90(+), CD29(+), CD73(+), STRO1(+) and CD146(-), and they show genetic stability in vitro based on genomic analysis with a newly described CGH technique. Interestingly, DPPSCs were able to form both embryoid-body-like structures (EBs) in vitro and teratoma-like structures that contained tissues derived from all three embryonic germ layers when injected in nude mice. We examined the capacity of DPPSCs to differentiate in vitro into tissues that have similar characteristics to mesoderm, endoderm and ectoderm layers in both 2D and 3D cultures. We performed a comparative RT-PCR analysis of GATA4, GATA6, MIXL1, NANOG, OCT3/4, SOX1 and SOX2 to determine the degree of similarity between DPPSCs, EBs and human induced pluripotent stem cells (hIPSCs). Our analysis revealed that DPPSCs, hIPSC and EBs have the same gene expression profile. Because DPPSCs can be derived from healthy human molars from patients of different sexes and ages, they represent an easily accessible source of stem cells, which opens a range of new possibilities for regenerative medicine.

  6. Age estimation using exfoliative cytology and radiovisiography: A comparative study.

    PubMed

    Nallamala, Shilpa; Guttikonda, Venkateswara Rao; Manchikatla, Praveen Kumar; Taneeru, Sravya

    2017-01-01

    Age estimation is one of the essential factors in establishing the identity of an individual. Among various methods, exfoliative cytology (EC) is a unique, noninvasive technique, involving simple, and pain-free collection of intact cells from the oral cavity for microscopic examination. The study was undertaken with an aim to estimate the age of an individual from the average cell size of their buccal smears calculated using image analysis morphometric software and the pulp-tooth area ratio in mandibular canine of the same individual using radiovisiography (RVG). Buccal smears were collected from 100 apparently healthy individuals. After fixation in 95% alcohol, the smears were stained using Papanicolaou stain. The average cell size was measured using image analysis software (Image-Pro Insight 8.0). The RVG images of mandibular canines were obtained, pulp and tooth areas were traced using AutoCAD 2010 software, and area ratio was calculated. The estimated age was then calculated using regression analysis. The paired t -test between chronological age and estimated age by cell size and pulp-tooth area ratio was statistically nonsignificant ( P > 0.05). In the present study, age estimated by pulp-tooth area ratio and EC yielded good results.

  7. Mineralization and Expression of Col1a1-3.6GFP Transgene in Primary Dental Pulp Culture

    PubMed Central

    Balic, Anamaria; Rodgers, Barbara; Mina, Mina

    2008-01-01

    We have examined and compared the effects of various differentiation-inducing media on mineralization, cell morphology and expression of pOBCol3.6GFP (3.6-GFP) in primary dental pulp cultures derived from 3.6-GFP transgenic mice. Our results show that media containing ascorbic acid only could not induce mineralization in primary dental pulp cultures. On the other hand, media containing ascorbic acid and β-glycerophosphate induced formation of mineralized matrix-containing dentin. The amount of mineralized matrix was increased by addition of dexamethasone. Cells treated with ascorbic acid and β-glycerophosphate were fibroblast like and cells treated with dexamethasone were cuboidal. In all culture conditions, high levels of 3.6-GFP were expressed in areas of mineralization PMID:18781059

  8. Human dental pulp stem cells: from biology to clinical applications.

    PubMed

    d'Aquino, Riccardo; De Rosa, Alfredo; Laino, Gregorio; Caruso, Filippo; Guida, Luigi; Rullo, Rosario; Checchi, Vittorio; Laino, Luigi; Tirino, Virginia; Papaccio, Gianpaolo

    2009-07-15

    Dental pulp stem cells (DPSCs) can be found within the "cell rich zone" of dental pulp. Their embryonic origin, from neural crests, explains their multipotency. Up to now, two groups have studied these cells extensively, albeit with different results. One group claims that these cells produce a "dentin-like tissue", whereas the other research group has demonstrated that these cells are capable of producing bone, both in vitro and in vivo. In addition, it has been reported that these cells can be easily cryopreserved and stored for long periods of time and still retain their multipotency and bone-producing capacity. Moreover, recent attention has been focused on tissue engineering and on the properties of these cells: several scaffolds have been used to promote 3-D tissue formation and studies have demonstrated that DPSCs show good adherence and bone tissue formation on microconcavity surface textures. In addition, adult bone tissue with good vascularization has been obtained in grafts. These results enforce the notion that DPSCs can be used successfully for tissue engineering. (c) 2008 Wiley-Liss, Inc.

  9. Cytotoxicity Evaluation of Self Adhesive Composite Resin Cements by Dentin Barrier Test on 3D Pulp Cells.

    PubMed

    Ulker, Hayriye Esra; Sengun, Abdulkadir

    2009-04-01

    The aim of this study was to evaluate the effects of five self-etch dental composite resin cements on the cell viability of bovine dental papilla-derived cells. The cytotoxicity of composite resin cements (Rely X Unicem Clicker, 3M ESPE; MaxCem; KERR, Panavia F 2.0; Kuraray, BisCem; Bisco and Bistite II DC; Tokuyama) was analyzed in a dentin barrier test device using three-dimensional (3D) pulp cell cultures. A commercially available cell culture perfusion chamber was separated into two compartments by 500 mum dentin disc. The three dimensional cultures placed on a dentin disk held in place by a special biocompatible stainless-steel holder. Test materials were introduced into the upper compartment in direct contact with the cavity side of the dentin disks according to the manufacturer's instructions. Subsequently, the pulpal part of the perfusion chamber containing the cell cultures was perfused with medium (2 ml/h). After an exposure period of 24 h, the cell survival was determined by the MTT assay. Statistical analyses were performed using the Mann-Whitney U-test. In dentin barrier test, cell survival was similar with Maxcem and negative control group (P>.05), and all other tested materials were cytotoxic for the three dimensional cell cultures (P>.05). The significance of composite resin cements is being more important in dentistry. The cytotoxic potencies demonstrated by these materials might be of clinical relevance. Some composite resin cements include biologically active ingredients and may modify pulp cell metabolism when the materials are used in deep cavities or directly contact pulp tissue.

  10. Human dental pulp pluripotent-like stem cells promote wound healing and muscle regeneration.

    PubMed

    Martínez-Sarrà, Ester; Montori, Sheyla; Gil-Recio, Carlos; Núñez-Toldrà, Raquel; Costamagna, Domiziana; Rotini, Alessio; Atari, Maher; Luttun, Aernout; Sampaolesi, Maurilio

    2017-07-27

    Dental pulp represents an easily accessible autologous source of adult stem cells. A subset of these cells, named dental pulp pluripotent-like stem cells (DPPSC), shows high plasticity and can undergo multiple population doublings, making DPPSC an appealing tool for tissue repair or maintenance. DPPSC were harvested from the dental pulp of third molars extracted from young patients. Growth factors released by DPPSC were analysed using antibody arrays. Cells were cultured in specific differentiation media and their endothelial, smooth and skeletal muscle differentiation potential was evaluated. The therapeutic potential of DPPSC was tested in a wound healing mouse model and in two genetic mouse models of muscular dystrophy (Scid/mdx and Sgcb-null Rag2-null γc-null). DPPSC secreted several growth factors involved in angiogenesis and extracellular matrix deposition and improved vascularisation in all three murine models. Moreover, DPPSC stimulated re-epithelialisation and ameliorated collagen deposition and organisation in healing wounds. In dystrophic mice, DPPSC engrafted in the skeletal muscle of both dystrophic murine models and showed integration in muscular fibres and vessels. In addition, DPPSC treatment resulted in reduced fibrosis and collagen content, larger cross-sectional area of type II fast-glycolytic fibres and infiltration of higher numbers of proangiogenic CD206 + macrophages. Overall, DPPSC represent a potential source of stem cells to enhance the wound healing process and slow down dystrophic muscle degeneration.

  11. Pulp Obliteration in a Patient with Sclerodermatous Chronic Graft-versus-Host Disease.

    PubMed

    Gomes, Camilla Borges Ferreira; Treister, Nathaniel Simon; Miller, Brian; Armand, Philippe; Friedland, Bernard

    2016-04-01

    Dental pulp calcification is a common finding associated with localized dental trauma, genetic disorders, and systemic inflammatory diseases. Chronic graft-versus-host disease (cGVHD) is a frequent complication after allogeneic hematopoietic cell transplantation (allo-HCT) characterized by immune-mediated injury to the skin, mouth, eyes, liver, and other tissues, resulting in significant disability and reduced quality of life. We report a patient with sclerodermatous cGVHD who presented with general pulp calcification in all teeth 5 years after allo-HCT. A review of full mouth dental radiographs obtained just before allo-HCT revealed normal-appearing pulp chambers. Based on prior reports of generalized pulp calcification associated with progressive systemic sclerosis, we hypothesized that the etiology was likely related to the presence of cGVHD with associated vascular and fibrotic tissue changes within the pulp vasculature. Clinicians should consider cGVHD in the differential diagnosis of generalized pulp calcification. Copyright © 2016 American Association of Endodontists. All rights reserved.

  12. Regeneration of dental pulp/dentine complex with a three-dimensional and scaffold-free stem-cell sheet-derived pellet.

    PubMed

    Na, Sijia; Zhang, Hao; Huang, Fang; Wang, Weiqi; Ding, Yin; Li, Dechao; Jin, Yan

    2016-03-01

    Dental pulp/dentine complex regeneration is indispensable to the construction of biotissue-engineered tooth roots and represents a promising approach to therapy for irreversible pulpitis. We used a tissue-engineering method based on odontogenic stem cells to design a three-dimensional (3D) and scaffold-free stem-cell sheet-derived pellet (CSDP) with the necessary physical and biological properties. Stem cells were isolated and identified and stem cells from root apical papilla (SCAPs)-based CSDPs were then fabricated and examined. Compact cell aggregates containing a high proportion of extracellular matrix (ECM) components were observed, and the CSDP culture time was prolonged. The expression of alkaline phosphatase (ALP), dentine sialoprotein (DSPP), bone sialoprotein (BSP) and runt-related gene 2 (RUNX2) mRNA was higher in CSDPs than in cell sheets (CSs), indicating that CSDPs have greater odonto/osteogenic potential. To further investigate this hypothesis, CSDPs and CSs were inserted into human treated dentine matrix fragments (hTDMFs) and transplanted into the subcutaneous space in the backs of immunodeficient mice, where they were cultured in vivo for 6 weeks. The root space with CSDPs was filled entirely with a dental pulp-like tissue with well-established vascularity, and a continuous layer of dentine-like tissue was deposited onto the existing dentine. A layer of odontoblast-like cells was found to express DSPP, ALP and BSP, and human mitochondria lined the surface of the newly formed dentine-like tissue. These results clearly indicate that SCAP-CSDPs with a mount of endogenous ECM have a strong capacity to form a heterotopic dental pulp/dentine complex in empty root canals; this method can be used in the fabrication of bioengineered dental roots and also provides an alternative treatment approach for pulp disease. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Success of Maxillary Alveolar Defect Repair in Rats Using Osteoblast-Differentiated Human Deciduous Dental Pulp Stem Cells.

    PubMed

    Jahanbin, Arezoo; Rashed, Roozbeh; Alamdari, Daryoush Hamidi; Koohestanian, Niloufar; Ezzati, Atefeh; Kazemian, Mojgan; Saghafi, Shadi; Raisolsadat, Mohammad Ali

    2016-04-01

    The use of cell-based therapies represents one of the most advanced methods for enhancing the regenerative response in craniofacial abnormalities. The main aim of this study was to evaluate the regenerative potential of human dental pulp stem cells, isolated from deciduous teeth, for reconstructing maxillary alveolar defects in Wistar rats. Human deciduous dental pulp stem cells were isolated and stimulated to differentiate into osteoblasts in culture media. Maxillary alveolar defects were created in 60 Wistar rats by a surgical procedure. Then, on the basis of the type of graft used to repair the bone defect, the rats were divided into 6 equal groups: groups 1 and 2, transplantation of iliac bone graft; groups 3 and 4, transplantation of stem cells derived from deciduous dental pulp in addition to collagen matrix; groups 5 and 6, transplantation of just collagen matrix. Then, fetal bone formation, granulation tissue, fibrous tissue, and inflammatory tissue were evaluated by hematoxylin-eosin staining at 1 month (groups 1, 3, and 5) and 2 months (groups 2, 4, and 6) after surgery, and data were analyzed and compared using the Fisher exact test. Maximum fetal bone formation occurred in group 2, in which iliac bone graft was inserted into the defect area for 2 months; there also were significant differences among the groups for bone formation (P = .009). In the 1-month groups, there were no significant differences between the control and stem cell-plus-scaffold groups. There were significant differences between the 2-month groups for fetal bone formation only between the control and scaffold groups (P = .026). The study showed that human dental pulp stem cells are an additional cell resource for repairing maxillary alveolar defects in rats and constitute a promising model for reconstruction of human maxillary alveolar defects in patients with cleft lip and palate. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  14. Histological Effects of Enamel Matrix Derivative on Exposed Dental Pulp.

    PubMed

    Bajić, Marijana Popović; Danilović, Vesna; Prokić, Branislav; Prokić, Bogomir Bolka; Manojlović, Milica; Živković, Slavoljub

    2015-01-01

    Direct pulp capping procedure is a therapeutic application of a drug on exposed tooth pulp in order to ensure the closure of the pulp chamber and to allow the healing process to take place. The aim of this study was to examine the histological effects of Emdogain® on exposed tooth pulp of a Vietnamese pig (Sus scrofa verus). The study comprised 20 teeth of a Vietnamese pig. After class V preparation on the buccal surfaces of incisors, canines and first premolars, pulp was exposed. In the experimental group, the perforations were capped with Emdogain® (Straumann, Basel, Switzerland), while in the control group pulp capping was performed with MTA® (Dentsply Tulsa Dental, Johnson City, TN, USA). All cavities were restored with glass-ionomer cement (GC Fuji VIII, GC Corporation, Tokyo, Japan). The observational period was 28 days, after which the animal was sacrificed and histological preparations were made. A light microscope was used to analyze dentin bridge formation, tissue reorganization and inflammation, and the presence of bacteria in the pulp. The formation of dentin bridge was observed in the experimental and control groups. Inflammation of the pulp was mild to moderate in both groups. Angiogenesis and many odontoblast-like cells, responsible for dentin bridge formation, were observed. Necrosis was not observed in any case, nor were bacteria present in the pulp. Histological analysis indicated a favorable therapeutic effect of Emdogain® Gel in direct pulp capping of Vietnamese pigs. Pulp reaction was similar to that of MTA®.

  15. Characteristics of dental pulp in human upper first premolar teeth based on immunohistochemical and morphometric examinations.

    PubMed

    Tomaszewska, Joanna Maria; Miskowiak, Bogdan; Matthews-Brzozowska, Teresa; Wierzbicki, Piotr

    2013-01-01

    Teeth extracted for orthodontic reasons are commonly considered as healthy. Therefore, it is possible to examine structure of the dental pulp can be fully recognized and how it is affected by malocclusion. The aim of the study was to evaluate by immunohistochemistry (IHC) and morphometry dental pulp in human upper first premolar teeth extracted for orthodontic reasons. The material comprised 36 teeth of 20 patients in the age range 16-26 years. By the use of IHC markers the presence of immunocompetent cells (CD20, CD45RO, and CD68), blood vessels (CD31) and nerves (PGP9.5) were examined in the pulp. Inflammatory infiltrates and tissue atrophy were observed in 24 and 10 teeth, respectively. Strong positive correlation between the width of the odontoblastic layer, the number of rows of odontoblast nuclei and the increase of MVA (microvessel area) in the pulp of atrophic teeth was found. The cellular infiltrations found in H&E-stained sections were identified by IHC as memory T cells (CD45RO+) and B lymphocytes (CD20+) with macrophages (CD68+) present at the periphery. The CD20 antigen was intensively expressed in 13 teeth, CD45RO in 33 teeth, and CD68 in 20 teeth. Thus, despite the lack of any clinical signs of pulp disease many teeth extracted for orthodontic reasons show focal pulp inflammation and atrophy which probably results from the malocclusion stress accompanying teeth crowding.

  16. Nemesia Root Hair Response to Paper Pulp Substrate for Micropropagation

    PubMed Central

    Labrousse, Pascal; Delmail, David; Decou, Raphaël; Carlué, Michel; Lhernould, Sabine; Krausz, Pierre

    2012-01-01

    Agar substrates for in vitro culture are well adapted to plant micropropagation, but not to plant rooting and acclimatization. Conversely, paper-pulp-based substrates appear as potentially well adapted for in vitro culture and functional root production. To reinforce this hypothesis, this study compares in vitro development of nemesia on several substrates. Strong differences between nemesia roots growing in agar or in paper-pulp substrates were evidenced through scanning electron microscopy. Roots developed in agar have shorter hairs, larger rhizodermal cells, and less organized root caps than those growing on paper pulp. In conclusion, it should be noted that in this study, in vitro microporous substrates such as paper pulp lead to the production of similar root hairs to those found in greenhouse peat substrates. Consequently, if agar could be used for micropropagation, rooting, and plant acclimatization, enhancement could be achieved if rooting stage was performed on micro-porous substrates such as paper pulp. PMID:22312323

  17. Nemesia root hair response to paper pulp substrate for micropropagation.

    PubMed

    Labrousse, Pascal; Delmail, David; Decou, Raphaël; Carlué, Michel; Lhernould, Sabine; Krausz, Pierre

    2012-01-01

    Agar substrates for in vitro culture are well adapted to plant micropropagation, but not to plant rooting and acclimatization. Conversely, paper-pulp-based substrates appear as potentially well adapted for in vitro culture and functional root production. To reinforce this hypothesis, this study compares in vitro development of nemesia on several substrates. Strong differences between nemesia roots growing in agar or in paper-pulp substrates were evidenced through scanning electron microscopy. Roots developed in agar have shorter hairs, larger rhizodermal cells, and less organized root caps than those growing on paper pulp. In conclusion, it should be noted that in this study, in vitro microporous substrates such as paper pulp lead to the production of similar root hairs to those found in greenhouse peat substrates. Consequently, if agar could be used for micropropagation, rooting, and plant acclimatization, enhancement could be achieved if rooting stage was performed on micro-porous substrates such as paper pulp.

  18. Histological evaluation of direct pulp capping with all-in-one adhesives in rat teeth.

    PubMed

    Shinkai, Koichi; Taira, Yoshihisa; Kawashima, Satoki; Suzuki, Shiro; Suzuki, Masaya

    2017-05-31

    The aim of this study was to histologically evaluate direct pulp capping using different all-in-one adhesives in rat teeth. Five all-in-one adhesives and a control material (MTA) were used. Each material was applied on the exposed pulp, and each cavity was subsequently restored with the resin composite. Rats were sacrificed 14 days after the surgical procedure. Serial stained sections were histologically evaluated for examining pulp tissue disorganization (PTD), inflammatory cell infiltration (ICI), dentin bridge formation (DBF), and bacterial penetration (BP). We found that rat pulps, which were direct capped with all-in-one adhesives, showed various degrees of PTD, ICI, and DBF depending on the material, and that there were no complete dentin bridges. In contrast, rat pulps capped with MTA showed no PTD and ICI, and there were complete dentin bridges in all, but one specimen. No BP was observed in any specimen.

  19. Application of thermophilic enzymes and water jet system to cassava pulp.

    PubMed

    Chaikaew, Siriporn; Maeno, Yuka; Visessanguan, Wonnop; Ogura, Kota; Sugino, Gaku; Lee, Seung-Hwan; Ishikawa, Kazuhiko

    2012-12-01

    Co-production of fermentable sugars and nanofibrillated cellulose from cassava pulp was achieved by the combination of thermophilic enzymes (endoglucanase, β-glucosidase, and α-amylase) and a new atomization system (Star Burst System; SBS), which employs opposing water jets. The SBS represents a key technology for providing cellulose nanofibers and improving the enzymatic saccharification of cassava pulp. Depending on the enzymes used, the production of glucose from cassava pulp treated with the SBS was 1.2- to 2.5-fold higher than that from pulp not treated with the SBS. Nanofibrillated cellulose with the gel-like property in suspension was produced (yield was over 90%) by α-amylase treatment, which completely released trapped starch granules from the fibrous cell wall structure of cassava pulp pretreated with the SBS. The SBS provides an environmentally low-impact pretreatment system for processing biomass material into value-added products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. P16/p53 expression and telomerase activity in immortalized human dental pulp cells

    PubMed Central

    Egbuniwe, Obi; Idowu, Bernadine D; Funes, Juan M; Grant, Andrew D; Renton, Tara

    2011-01-01

    Introduction Residing within human dental pulp are cells of an ectomesenchymal origin that have the potential to differentiate into odontoblast-like cells. These cells have a limited growth potential owing to the effects of cell senescence. This study examines the effects of immortalizing odontoblast-like cells on cell proliferation and mineralization by comparing transformed dental pulp stem cells (tDPSCs) and non-transformed dental pulp stem cells (nDPSCs). Results With the exogenous expression of hTERT, tDPSCs maintained a continued expression of odontogenic markers for cell proliferation and mineralization (ALP, COL-1, DMP-1, DSPP, OCN and OPN), as did nDPSCs. Oncoprotein expression was seen in both groups except for a noted absence of p16 in the tDPSCs. nDPSCs also showed lower levels of total ALP and DNA activity in comparison to tDPSCs when assayed, as well as low telomerase activity readings. Methods Using a retroviral vector, exogenous human telomerase reverse transcriptase (hTERT) was expressed in tDPSCs. Both cell groups were cultured, and their telomerase activities were determined using a telomerase quantification assay. Also examined, were the expression of genes involved in proliferation and mineralization, such as human alkaline phosphatase (ALP), β-actin, collagen I (col-1), core binding factor (cbfa)-1, dentin matrix protein (DMP-1), dentin sialophosphoprotein (DSPP), GAPDH, hTERT, osteocalcin (OCN), osteopontin (OPN) as well as oncoproteins involved in senescence (p16, p21 and p53) using RT-PCR. DNA and alkaline phosphate activity was also assayed in both cell groups. Conclusion These results indicate maintenance of odontoblast-like differentiation characteristics after retroviral transformation with hTERT and suggest a possible link with a reduced p16 expression. PMID:22067611

  1. Stimulation of interleukin-1 beta production of human dental pulp cells by Porphyromonas endodontalis lipopolysaccharide.

    PubMed

    Hosoya, S; Matsushima, K

    1997-01-01

    IL-1 beta is synthesized as an inactive precursor, which is subsequently processed by IL-1 beta converting enzyme (ICE) and found extracellularly as a mature biologically active polypeptide. Also, IL-1 beta has been detected in necrotic and inflamed dental pulp. We examined the IL-1 beta production in human dental pulp (HDP) cells treated with lipopolysaccharide (LPS) from Porphyromonas endodontalis (P. e.) isolated from root canals and radicular cyst fluids. We demonstrated that P. e. LPS stimulated IL-1 beta release from HDP cells in a time- and dose-dependent manner. However, ICE activity was not increased by P. e. LPS. Northern blot hybridization analysis revealed that the IL-1 beta mRNA level in HDP cells was increased by P. e. LPS. These results suggest that stimulation of IL-1 beta release from HDP cells by P. e. LPS may have an important role in the progression of inflammation in pulpal and periapical disease.

  2. Dynamic Hydrostatic Pressure Promotes Differentiation of Human Dental Pulp Stem Cells

    PubMed Central

    Yu, V; Damek-Poprawa, M.; Nicoll, S. B.; Akintoye, S.O.

    2009-01-01

    The masticatory apparatus absorbs high occlusal forces, but uncontrolled parafunctional or orthodontic forces damage periodontal ligament (PDL), cause pulpal calcification, pulp necrosis and tooth loss. Morphology and functional differentiation of connective tissue cells can be controlled by mechanical stimuli but effects of uncontrolled forces on intra-pulpal homeostasis and ability of dental pulp stem cells (DPSCs) to withstand direct external forces are unclear. Using dynamic hydrostatic pressure (HSP), we tested the hypothesis that direct HSP disrupts DPSC survival and odontogenic differentiation. DPSCs from four teenage patients were subjected to HSP followed by assessment of cell adhesion, survival and recovery capacity based on odontogenic differentiation, mineralization and responsiveness to bone morphogenetic protein-2 (BMP-2). HSP down-regulated DPSC adhesion and survival but promoted differentiation by increasing mineralization, in vivo hard tissue regeneration and BMP-2 responsiveness despite reduced cell numbers. HSP-treated DPSCs displayed enhanced odontogenic differentiation, an indication of favorable recovery from HSP-induced cellular stress. PMID:19555657

  3. Phenotypic Characterization of a Novel Virulence-Factor Deletion Strain of Burkholderia mallei that Provides Partial Protection against Inhalational Glanders in Mice

    DTIC Science & Technology

    2016-02-26

    minimal to mild expansion of the white pulp by lymphoid hyperplasia with variable numbers of plasma cells within the white and red pulp (Figures 8G–I... Cell . Infect. Microbiol. 6:21. doi: 10.3389/fcimb.2016.00021 Phenotypic Characterization of a Novel Virulence-Factor Deletion Strain of Burkholderia...respect to intracellular growth, macrophage uptake and phagosomal escape, actin-based motility, and multinucleated giant cell formation. Based on observed

  4. Diabetes induces metabolic alterations in dental pulp.

    PubMed

    Leite, Mariana Ferreira; Ganzerla, Emily; Marques, Márcia Martins; Nicolau, José

    2008-10-01

    Diabetes can interfere in tissue nutrition and can impair dental pulp metabolism. This disease causes oxidative stress in cells and tissues. However, little is known about the antioxidant system in the dental pulp of diabetics. Thus, it would be of importance to study this system in this tissue in order to verify possible alterations indicative of oxidative stress. The aim of this study was to evaluate some parameters of antioxidant system of the dental pulp of healthy (n = 8) and diabetic rats (n = 8). Diabetes was induced by streptozotocin in rats. Six weeks after diabetes induction, a pool of the dental pulp of the 4 incisors of each rat (healthy and diabetic) was used for the determination of total protein and sialic acid concentrations and catalase and peroxidase activities. Data were compared by a Student t test (p

  5. Joint Workplan on Filler Investigations for DPCs.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardin, Ernest; Brady, Patrick Vane

    2017-12-01

    This workplan addresses filler attributes (i.e., possible requirements), assumptions needed for analysis, selection of filler materials, testing needs, and a long-range perspective on R&D activities leading to filler demonstration and a safety basis for implementation.

  6. Dentinogenic Specificity in the Preclinical Evaluation of Vital Pulp Treatment Strategies: A Critical Review.

    PubMed

    Tziafas, Dimitrios; Kodonas, Konstantinos

    2015-11-27

    Reviews on the clinical performance of vital pulp treatment strategies and capping materials repeatedly showed an insufficient grade of evidence concerning their therapeutic validity. The biological mechanisms underlying the regenerative potential of pulp-dentin complex have attracted much attention during the last two decades, since new pulp treatment modalities have been designed and tested at the preclinical level. It has been recognized that evaluation should be based on the specific ability of therapeutic interventions to signal recruitment and differentiation of odontoblast-like cells forming a matrix in a predentin-like pattern, rather than uncontrolled hard tissue deposition in a scar-like form. The aim of the present article was to critically review data from histological experimental studies on pulp capping, published during the last 7 decades. A comprehensive literature search covering the period from 1949 to 2015 was done using the Medline/Pubmed database. Inclusion of a study was dependent on having sufficient data regarding the type of capping material used and the unit of observation (human permanent tooth in vivo or animal permanent dentition; primary teeth were excluded). The post-operatively deposited matrix was categorized into three types: unspecified, osteotypic, or dentin-like matrix. One hundred fifty-two studies were included in the final evaluation. Data from the present systematic review have shown that only 30.2% of the 152 experimental histological pulp capping studies described the heterogenic nature of the hard tissue bridge formation, including osteotypic and tubular mineralized tissue. Structural characteristics of the new matrix and the associated formative cells were not provided by the remaining 106 studies. Analysis showed that more careful preclinical evaluation with emphasis on the evidence regarding the dentinogenic specificity of pulp therapies is required. It seems that selection of appropriate vital pulp treatment strategies and pulp capping materials would be further facilitated in terms of their therapeutic validity if international consensus could be reached on a select number of mandatory criteria for tissue-specific dentinogenic events.

  7. Dentinogenic Specificity in the Preclinical Evaluation of Vital Pulp Treatment Strategies: A Critical Review

    PubMed Central

    Tziafas, Dimitrios; Kodonas, Konstantinos

    2015-01-01

    Reviews on the clinical performance of vital pulp treatment strategies and capping materials repeatedly showed an insufficient grade of evidence concerning their therapeutic validity. The biological mechanisms underlying the regenerative potential of pulp-dentin complex have attracted much attention during the last two decades, since new pulp treatment modalities have been designed and tested at the preclinical level. It has been recognized that evaluation should be based on the specific ability of therapeutic interventions to signal recruitment and differentiation of odontoblast-like cells forming a matrix in a predentin-like pattern, rather than uncontrolled hard tissue deposition in a scar-like form. The aim of the present article was to critically review data from histological experimental studies on pulp capping, published during the last 7 decades. A comprehensive literature search covering the period from 1949 to 2015 was done using the Medline/Pubmed database. Inclusion of a study was dependent on having sufficient data regarding the type of capping material used and the unit of observation (human permanent tooth in vivo or animal permanent dentition; primary teeth were excluded). The post-operatively deposited matrix was categorized into three types: unspecified, osteotypic, or dentin-like matrix. One hundred fifty-two studies were included in the final evaluation. Data from the present systematic review have shown that only 30.2% of the 152 experimental histological pulp capping studies described the heterogenic nature of the hard tissue bridge formation, including osteotypic and tubular mineralized tissue. Structural characteristics of the new matrix and the associated formative cells were not provided by the remaining 106 studies. Analysis showed that more careful preclinical evaluation with emphasis on the evidence regarding the dentinogenic specificity of pulp therapies is required. It seems that selection of appropriate vital pulp treatment strategies and pulp capping materials would be further facilitated in terms of their therapeutic validity if international consensus could be reached on a select number of mandatory criteria for tissue-specific dentinogenic events. PMID:29567934

  8. Comparison of immunodulatory properties of dental pulp stem cells derived from healthy and inflamed teeth.

    PubMed

    Yazid, Farinawati Binti; Gnanasegaran, Nareshwaran; Kunasekaran, Wijenthiran; Govindasamy, Vijayendran; Musa, Sabri

    2014-12-01

    The aim of this study was to investigate the immunodulatory properties of dental pulp stem cells derived from healthy (SCD) and inflamed pulp deciduous (SCDIP) tissues. The overall hypothesis is that SCDIP possess equal immune properties with SCD and could be used as an alternative tissue source in regenerative medicine. An intra-oral examination was carried out to assess the status of the pulp tissues and group them according to healthy or inflamed. Primary cells were established from these groups, and basic mesenchymal stem cells (MSC) characterizations were conducted. The expression of human leukocyte antigen (HLA), namely HLA-G, HLA-DR, and HLA-ABC were examined in both cell lines using flow cytometry. We further compared the immunosuppressive effects of SCD and SCDIP on phytohemagglutinin-induced T cell proliferation. Supernatants were tested for cytokine profiling using multiplex array. While SCD exhibited typical MSC characteristics, SCDIP on the other hand, did not. Compared with SCDIP, SCD effectively suppresses mitogen-induced T cells proliferation in a dose-dependent manner, as well as express a higher percentage of HLA-ABC and HLA-G. In addition, levels of several cytokines, such as TNF-α, TNF-β, and IL-2, were drastically suppressed in SCD than SCDIP. Furthermore, a high level of IL-10, an important anti-inflammatory cytokine, was present in SCD compared with SCDIP. These findings suggest that SCDIP is highly dysfunctional in terms of their stemness and immunomodulatory properties. SCDIP is not a viable therapeutic cell source especially when used in graft versus host disease (GvHD) and organ rejection.

  9. Protective effects of seabuckthorn pulp and seed oils against radiation-induced acute intestinal injury.

    PubMed

    Shi, Jing; Wang, Lan; Lu, Yan; Ji, Yue; Wang, Yaqing; Dong, Ke; Kong, Xiangqing; Sun, Wei

    2017-01-01

    Radiation-induced gastrointestinal syndrome, including nausea, diarrhea and dehydration, contributes to morbidity and mortality after medical or industrial radiation exposure. No safe and effective radiation countermeasure has been approved for clinical therapy. In this study, we aimed to investigate the potential protective effects of seabuckthorn pulp and seed oils against radiation-induced acute intestinal injury. C57/BL6 mice were orally administered seabuckthorn pulp oil, seed oil and control olive oil once per day for 7 days before exposure to total-body X-ray irradiation of 7.5 Gy. Terminal deoxynucleotidyl transferase dUTP nick end labeling, quantitative real-time polymerase chain reaction and western blotting were used for the measurement of apoptotic cells and proteins, inflammation factors and mitogen-activated protein (MAP) kinases. Seabuckthorn oil pretreatment increased the post-radiation survival rate and reduced the damage area of the small intestine villi. Both the pulp and seed oil treatment significantly decreased the apoptotic cell numbers and cleaved caspase 3 expression. Seabuckthorn oil downregulated the mRNA level of inflammatory factors, including tumor necrosis factor-α, interleukin (IL)-1β, IL-6 and IL-8. Both the pulp and seed oils elevated the level of phosphorylated extracellular-signal-regulated kinase and reduced the levels of phosphorylated c-Jun N-terminal kinase and p38. Palmitoleic acid (PLA) and alpha linolenic acid (ALA) are the predominant components of pulp oil and seed oil, respectively. Pretreatment with PLA and ALA increased the post-radiation survival time. In conclusion, seabuckthorn pulp and seed oils protect against mouse intestinal injury from high-dose radiation by reducing cell apoptosis and inflammation. ALA and PLA are promising natural radiation countermeasure candidates. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  10. Ionizing radiation induces senescence and differentiation of human dental pulp stem cells.

    PubMed

    Havelek, R; Soukup, T; Ćmielová, J; Seifrtová, M; Suchánek, J; Vávrová, J; Mokrý, J; Muthná, D; Řezáčová, M

    2013-01-01

    Head and neck cancer is one of the most common cancers in Europe. Many current anti-cancer treatments, including ionizing radiation, induce apoptosis via DNA damage. Unfortunately, such treatments are non-selective to cancer cells and produce similar toxicity in normal cells, including adult stem cells. One of the fundamental properties of an adult stem cell is that it does not have any tissue-specific structures that allow it to perform specialized functions. However, under certain stimuli, unspecialized adult stem cells can give rise to specialized cells to generate replacements for cells that are lost during one's life or due to injury or disease. Nevertheless, specialization of stem cells must be controlled by specific milieu and also initiated at the proper time, making the entire process beneficial for tissue recovery and maintaining it for a long time. In this paper we assess whether irradiated dental pulp stem cells have maintained open their options to mature into specialized cells, or whether they have lost their unspecialized (immature) state following irradiation. Our findings showed radiation-induced premature differentiation of dental pulp stem cells towards odonto-/osteoblast lineages in vitro. Matrix calcification was visualized from Day 6 or Day 9 following irradiation of cells expressing low or high levels of CD146, respectively.

  11. Dental Pulp Defence and Repair Mechanisms in Dental Caries

    PubMed Central

    Farges, Jean-Christophe; Alliot-Licht, Brigitte; Renard, Emmanuelle; Ducret, Maxime; Gaudin, Alexis; Smith, Anthony J.; Cooper, Paul R.

    2015-01-01

    Dental caries is a chronic infectious disease resulting from the penetration of oral bacteria into the enamel and dentin. Microorganisms subsequently trigger inflammatory responses in the dental pulp. These events can lead to pulp healing if the infection is not too severe following the removal of diseased enamel and dentin tissues and clinical restoration of the tooth. However, chronic inflammation often persists in the pulp despite treatment, inducing permanent loss of normal tissue and reducing innate repair capacities. For complete tooth healing the formation of a reactionary/reparative dentin barrier to distance and protect the pulp from infectious agents and restorative materials is required. Clinical and in vitro experimental data clearly indicate that dentin barrier formation only occurs when pulp inflammation and infection are minimised, thus enabling reestablishment of tissue homeostasis and health. Therefore, promoting the resolution of pulp inflammation may provide a valuable therapeutic opportunity to ensure the sustainability of dental treatments. This paper focusses on key cellular and molecular mechanisms involved in pulp responses to bacteria and in the pulpal transition between caries-induced inflammation and dentinogenic-based repair. We report, using selected examples, different strategies potentially used by odontoblasts and specialized immune cells to combat dentin-invading bacteria in vivo. PMID:26538821

  12. Dental Pulp Defence and Repair Mechanisms in Dental Caries.

    PubMed

    Farges, Jean-Christophe; Alliot-Licht, Brigitte; Renard, Emmanuelle; Ducret, Maxime; Gaudin, Alexis; Smith, Anthony J; Cooper, Paul R

    2015-01-01

    Dental caries is a chronic infectious disease resulting from the penetration of oral bacteria into the enamel and dentin. Microorganisms subsequently trigger inflammatory responses in the dental pulp. These events can lead to pulp healing if the infection is not too severe following the removal of diseased enamel and dentin tissues and clinical restoration of the tooth. However, chronic inflammation often persists in the pulp despite treatment, inducing permanent loss of normal tissue and reducing innate repair capacities. For complete tooth healing the formation of a reactionary/reparative dentin barrier to distance and protect the pulp from infectious agents and restorative materials is required. Clinical and in vitro experimental data clearly indicate that dentin barrier formation only occurs when pulp inflammation and infection are minimised, thus enabling reestablishment of tissue homeostasis and health. Therefore, promoting the resolution of pulp inflammation may provide a valuable therapeutic opportunity to ensure the sustainability of dental treatments. This paper focusses on key cellular and molecular mechanisms involved in pulp responses to bacteria and in the pulpal transition between caries-induced inflammation and dentinogenic-based repair. We report, using selected examples, different strategies potentially used by odontoblasts and specialized immune cells to combat dentin-invading bacteria in vivo.

  13. Evaluation of the antihypertensive properties of yellow passion fruit pulp (Passiflora edulis Sims f. flavicarpa Deg.) in spontaneously hypertensive rats.

    PubMed

    Konta, Eliziane Mieko; Almeida, Mara Ribeiro; do Amaral, Cátia Lira; Darin, Joana Darc Castania; de Rosso, Veridiana V; Mercadante, Adriana Zerlotti; Antunes, Lusânia Maria Greggi; Bianchi, Maria Lourdes Pires

    2014-01-01

    Various species of the genus Passiflora have been extensively used in traditional medicine as sedatives, anxiolytics, diuretics and analgesics. In the present study, after the identification and quantification of phytochemical compounds from yellow passion fruit pulp by liquid chromatography-photodiode array-mass spectrometry (HPLC-PDA-MS/MS), its antihypertensive effect was investigated on spontaneously hypertensive rats. Additionally, the renal function, evaluated by kidney/body weight, serum creatinine, proteinuria, urinary flow, reduced glutathione (GSH) levels and thiobarbituric acid-reactive substances (TBARS) and mutagenicity in bone marrow cells were assessed to evaluate the safety of passion fruit consumption. Yellow passion fruit pulp (5, 6 or 8 g/kg b.w.) was administered by gavage once a day for 5 consecutive days. HLPC-PDA-MS/MS analysis revealed that yellow passion fruit pulp contains phenolic compounds, ascorbic acid, carotenoids and flavonoids. The highest dose of passion fruit pulp significantly reduced the systolic blood pressure, increased the GSH levels and decreased TBARS. There were no changes in renal function parameters or the frequency of micronuclei in bone marrow cells. In conclusion, the antihypertensive effect of yellow passion fruit pulp, at least in part, might be due to the enhancement of the antioxidant status. The exact mechanisms responsible by this effect need further investigation. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Immunohistochemical study of dental pulp applied with 4-META/MMA-TBB adhesive resin after pulpotomy.

    PubMed

    Nakamura, M; Inoue, T; Shimono, M

    2000-08-01

    The purpose of this study was to investigate nerve regeneration and proliferative activity in amputated pulp tissue after the application of 4-META/MMA-TBB adhesive resin (4-META resin). Calcium hydroxide was used as a control material. At 3 days, fibroblast-like cells were positive for proliferating cell nuclear antigen (PCNA) in both 4-META resin- and calcium hydroxide-treated groups and were located mainly within 0.5 mm from the cut surface. Only a few fragmented neurofilament protein (NFP)-positive nerve fibers were observed in this area. At 7 and 14 days, the number of PCNA-positive cells had gradually decreased and regenerated NFP-positive nerve fibers were observed close to the cut surface of the pulp in both groups. At 21 days in the experimental group, several PCNA-positive cells were still found in the area 0.5 mm from the cut surface, and NFP-positive nerve fibers were detected about 0.15-;0.2 mm from the cut surface. In contrast, a dentin bridge was produced under the necrotic layer at 21 days in the control group. PCNA-positive cells were not found underneath the dentin bridge, but NFP-positive nerve fibers had regenerated close to it. These results suggest that although cell differentiation and nerve regeneration are delayed, wound healing occurred even after the application of 4-META resin to exposed pulp surface the same as calcium hydroxide application. Copyright 2000 John Wiley & Sons, Inc.

  15. Evaluation of an experimental rat model for comparative studies of bleaching agents.

    PubMed

    Cintra, Luciano Tavares Angelo; Benetti, Francine; Ferreira, Luciana Louzada; Rahal, Vanessa; Ervolino, Edilson; Jacinto, Rogério de Castilho; Gomes Filho, João Eduardo; Briso, André Luiz Fraga

    2016-04-01

    Dental materials in general are tested in different animal models prior to the clinical use in humans, except for bleaching agents. Objectives To evaluate an experimental rat model for comparative studies of bleaching agents, by investigating the influence of different concentrations and application times of H2O2 gel in the pulp tissue during in-office bleaching of rats' vital teeth. Material and Methods The right and left maxillary molars of 50 Wistar rats were bleached with 20% and 35% H2O2 gels, respectively, for 5, 10, 15, 30, or 45 min (n=10 rats/group). Ten animals were untreated (control). The rats were killed after 2 or 30 days, and the maxillae were examined by light microscopy. Inflammation was evaluated through histomorphometric analysis with inflammatory cell count in the coronal and radicular thirds of the pulp. Fibroblasts were also counted. Scores were attributed to odontoblastic layer and vascular changes. Tertiary dentin area and pulp chamber central area were measured histomorphometrically. Data were compared by analysis of variance and Kruskal-Wallis test (p<0.05). Results After 2 days, the amount of inflammatory cells increased in the coronal pulp occlusal third up to the 15-min application groups of each bleaching gel. In the groups exposed to each concentration for 30 and 45 min, the number of inflammatory cells decreased along with the appearance of necrotic areas. After 30 days, reduction on the pulp chamber central area and enlargement of the tertiary dentin area were observed, without the detection of inflammation areas. Conclusion The rat model of extracoronal bleaching showed to be adequate for studies of bleaching protocols, as it was possible to observe alterations in the pulp tissues and tooth structure caused by different concentrations and application periods of bleaching agents.

  16. Evaluation of an experimental rat model for comparative studies of bleaching agents

    PubMed Central

    CINTRA, Luciano Tavares Angelo; BENETTI, Francine; FERREIRA, Luciana Louzada; RAHAL, Vanessa; ERVOLINO, Edilson; JACINTO, Rogério de Castilho; GOMES, João Eduardo; BRISO, André Luiz Fraga

    2016-01-01

    ABSTRACT Dental materials in general are tested in different animal models prior to the clinical use in humans, except for bleaching agents. Objectives To evaluate an experimental rat model for comparative studies of bleaching agents, by investigating the influence of different concentrations and application times of H2O2 gel in the pulp tissue during in-office bleaching of rats’ vital teeth. Material and Methods The right and left maxillary molars of 50 Wistar rats were bleached with 20% and 35% H2O2 gels, respectively, for 5, 10, 15, 30, or 45 min (n=10 rats/group). Ten animals were untreated (control). The rats were killed after 2 or 30 days, and the maxillae were examined by light microscopy. Inflammation was evaluated through histomorphometric analysis with inflammatory cell count in the coronal and radicular thirds of the pulp. Fibroblasts were also counted. Scores were attributed to odontoblastic layer and vascular changes. Tertiary dentin area and pulp chamber central area were measured histomorphometrically. Data were compared by analysis of variance and Kruskal-Wallis test (p<0.05). Results After 2 days, the amount of inflammatory cells increased in the coronal pulp occlusal third up to the 15-min application groups of each bleaching gel. In the groups exposed to each concentration for 30 and 45 min, the number of inflammatory cells decreased along with the appearance of necrotic areas. After 30 days, reduction on the pulp chamber central area and enlargement of the tertiary dentin area were observed, without the detection of inflammation areas. Conclusion The rat model of extracoronal bleaching showed to be adequate for studies of bleaching protocols, as it was possible to observe alterations in the pulp tissues and tooth structure caused by different concentrations and application periods of bleaching agents. PMID:27119766

  17. Effects of pulpectomy on the amount of root resorption during orthodontic tooth movement.

    PubMed

    Kaku, Masato; Sumi, Hiromi; Shikata, Hanaka; Kojima, Shunichi; Motokawa, Masahide; Fujita, Tadashi; Tanimoto, Kotaro; Tanne, Kazuo

    2014-03-01

    Previous studies have revealed that orthodontic force affects dental pulp via the rupture of blood vessels and vacuolization of pulp tissues. We hypothesized that pulp tissues express inflammatory cytokines and regulators of odontoclast differentiation after excess orthodontic force. The purpose of this study was to investigate the effects of tensile force in human pulp cells and to measure inflammatory root resorption during tooth movement in pulpless rat teeth. After cyclic tensile force application in human pulp cells, gene expression and protein concentration of macrophage colony-stimulating factor, receptor activator of nuclear factor kappa-B ligand, interleukin-1 beta, and tumor necrosis factor alpha were determined by real-time polymerase chain reaction and enzyme-linked immunoassay. Moreover, the role of the stretch-activated channel was evaluated by gadolinium (Gd(3+)) treatment. The upper right first molars of 7-week Wistar rats were subjected to pulpectomy and root canal filling followed by mesial movement for 6 months. The expression of cytokine messenger RNAs and proteins in the experimental group peaked with loading at 10-kPa tensile force after 48 hours (P < .01). Gd(3+) reduced the expression of these cytokine messenger RNAs and protein concentrations (P < .01). The amount of inflammatory root resorption was significantly larger in the control teeth than the pulpectomized teeth (P < .05). This study shows that tensile forces in the pulp cells enhance the expression of various cytokines via the S-A channel, which may lead to inflammatory root resorption during tooth movement. It also suggests that root canal treatment is effective for progressive severe inflammatory root resorption during tooth movement. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. PAR-2 regulates dental pulp inflammation associated with caries.

    PubMed

    Lundy, F T; About, I; Curtis, T M; McGahon, M K; Linden, G J; Irwin, C R; El Karim, I A

    2010-07-01

    Protease-activated receptors (PARs) are G-protein-coupled receptors that are activated enzymatically by proteolysis of an N-terminal domain. The cleavage and activation of PARs by serine proteases represent a novel mechanism by which such enzymes could influence the host inflammatory response. The aim of this study was to determine whether PAR-2 expression and activation were increased in dental caries. Using immunohistochemistry, we showed PAR-2 to be localized to pulp cells subjacent to caries lesions, but minimally expressed by healthy pulp tissue. Trypsin and the PAR-2 agonist (PAR2-AP) activated PAR-2 in an in vitro functional assay. Endogenous molecules present in pulp cell lysates from carious teeth specifically activated PAR-2, but those from healthy teeth failed to do so. The activation of PAR-2 in vitro was shown to increase the expression of the pro-inflammatory mediator cyclo-oxygenase-2 (COX-2), providing a mechanism whereby PAR-2 could modulate pulpal inflammation.

  19. Pulp and apical tissue response to deep caries in immature teeth: A histologic and histobacteriologic study.

    PubMed

    Ricucci, Domenico; Siqueira, José F; Loghin, Simona; Lin, Louis M

    2017-01-01

    Descriptions of the pathologic changes in the pulp and associated apical structures of human immature teeth in response to deep caries are lacking in the literature. This article describes the histologic events associated with the radicular pulp and the apical tissues of human immature teeth following pulp inflammation and necrosis. Twelve immature teeth with destructive caries lesions were obtained from 8 patients. Two intact immature teeth served as controls. Teeth were extracted for reasons not related to this study and immediately processed for histopathologic and histobacteriologic analyses. Serial sections were examined for the pulp conditions and classified as reversible or irreversible pulp inflammation, or pulp necrosis. Other histologic parameters were also evaluated. In the 3 cases with reversible pulp inflammation, tissue in the pulp chamber showed mild to moderate inflammation and tertiary dentin formation related to tubules involved in the caries process. Overall, the radicular pulp tissue, apical papilla and Hertwig's epithelial root sheath (HERS) exhibited characteristics of normality. In the 3 cases with irreversible pulp inflammation, the pulps were exposed and severe inflammation occurred in the pulp chamber, with minor areas of necrosis and infection. Large areas of the canal walls were free from odontoblasts and lined by an atubular mineralized tissue. The apical papilla showed extremely reduced cellularity or lack of cells and HERS was discontinuous or absent. In the 6 cases with pulp necrosis, the coronal and radicular pulp tissue was necrotic and colonized by bacterial biofilms. The apical papilla could not be discerned, except for one case. HERS was absent in the necrotic cases. While immature teeth with reversible pulpitis showed histologic features almost similar to normal teeth in the canal and in the apical region, those with irreversible pulpitis and necrosis exhibited significant alterations not only in the radicular pulp but also in the apical tissues, including the apical papilla and HERS. Alterations in the radicular pulp and apical tissues help explain the outcome of current regenerative/reparative therapies and should be taken into account when devising more predictable therapeutic protocols for teeth with incomplete root formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Current Advance and Future Prospects of Tissue Engineering Approach to Dentin/Pulp Regenerative Therapy

    PubMed Central

    Gong, Ting; Heng, Boon Chin; Lo, Edward Chin Man; Zhang, Chengfei

    2016-01-01

    Recent advances in biomaterial science and tissue engineering technology have greatly spurred the development of regenerative endodontics. This has led to a paradigm shift in endodontic treatment from simply filling the root canal systems with biologically inert materials to restoring the infected dental pulp with functional replacement tissues. Currently, cell transplantation has gained increasing attention as a scientifically valid method for dentin-pulp complex regeneration. This multidisciplinary approach which involves the interplay of three key elements of tissue engineering—stem cells, scaffolds, and signaling molecules—has produced an impressive number of favorable outcomes in preclinical animal studies. Nevertheless, many practical hurdles need to be overcome prior to its application in clinical settings. Apart from the potential health risks of immunological rejection and pathogenic transmission, the lack of a well-established banking system for the isolation and storage of dental-derived stem cells is the most pressing issue that awaits resolution and the properties of supportive scaffold materials vary across different studies and remain inconsistent. This review critically examines the classic triad of tissue engineering utilized in current regenerative endodontics and summarizes the possible techniques developed for dentin/pulp regeneration. PMID:27069484

  1. Promotion Effect of Apo-9'-fucoxanthinone from Sargassum muticum on Hair Growth via the Activation of Wnt/β-Catenin and VEGF-R2.

    PubMed

    Kang, Jung-Il; Yoo, Eun-Sook; Hyun, Jin-Won; Koh, Young-Sang; Lee, Nam Ho; Ko, Mi-Hee; Ko, Chang-Sik; Kang, Hee-Kyoung

    2016-01-01

    This study was conducted to evaluate the effects of Sargassum muticum extract and apo-9'-fucoxanthinone, a principal component of S. muticum, on hair growth. When rat vibrissa follicles were treated with S. muticum extract for 21 d, the hair-fiber lengths for the vibrissa follicles increased significantly. Treatment with the S. muticum extract and the EtOAc fraction of the S. muticum extract markedly increased the proliferation of dermal papilla cells (DPCs) and decreased the 5α-reductase activity. In addition, the EtOAc fraction of the S. muticum extract significantly promoted anagen initiation in C57BL/6 mice. Especially, apo-9'-fucoxanthinone, an active constituent from the S. muticum extract, caused an increase in DPC proliferation and a decrease in 5α-reductase activity. To elucidate the molecular mechanisms of apo-9'-fucoxanthinone on the proliferation of DPCs, we examined the level of various signaling proteins. Apo-9'-fucoxanthinone increased the level of vascular endothelial growth factor receptor-2 (VEGF-R2), Wnt/β-catenin signaling proteins such as phospho(ser9)-glycogen synthase kinase-3β (GSK-3β) and phospho(ser552)-β-catenin, whereas apo-9'-fucoxanthinone did not affect the transforming growth factor-β (TGF-β) signaling proteins such as Smad2/3. These results suggest that apo-9'-fucoxanthinone from S. muticum could have the potential for hair growth with DPC proliferation via the activation of Wnt/β-catenin signaling and the VEGF-R2 pathway.

  2. ION EXCHANGE TESTS ON LIQUOR AND PULPS PRODUCED FROM UTEX ORES. Topical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollis, E.T.; Pickwick, F.J. Jr.; Kazanjian, A.R.

    1954-07-30

    Uranium leach liquors produced from Utex ore by cold leaching, hot leaching, and pugging proved amenable to the lon exchange process, Higher resin loadings were obtained rom the cold leach liquors than from the hot leach and pug liquors. In general, the less vigorous leaching conditions produced liquors which gave the highest resin loadings. In addition, a resin-in-pulp system was operated using the lucite Winchester cells on Utex pulp produced by cold leaching. Satisfactory loadings were obtained. (auth)

  3. Formation, Accumulation, and Hydrolysis of Endogenous and Exogenous Formaldehyde-Induced DNA Damage

    PubMed Central

    Yu, Rui; Lai, Yongquan; Hartwell, Hadley J.; Moeller, Benjamin C.; Doyle-Eisele, Melanie; Kracko, Dean; Bodnar, Wanda M.; Starr, Thomas B.; Swenberg, James A.

    2015-01-01

    Formaldehyde is not only a widely used chemical with well-known carcinogenicity but is also a normal metabolite of living cells. It thus poses unique challenges for understanding risks associated with exposure. N2-hydroxymethyl-dG (N2-HOMe-dG) is the main formaldehyde-induced DNA mono-adduct, which together with DNA-protein crosslinks (DPCs) and toxicity-induced cell proliferation, play important roles in a mutagenic mode of action for cancer. In this study, N2-HOMe-dG was shown to be an excellent biomarker for direct adduction of formaldehyde to DNA and the hydrolysis of DPCs. The use of inhaled [13CD2]-formaldehyde exposures of rats and primates coupled with ultrasensitive nano ultra performance liquid chromatography-tandem mass spectrometry permitted accurate determinations of endogenous and exogenous formaldehyde DNA damage. The results show that inhaled formaldehyde only reached rat and monkey noses, but not tissues distant to the site of initial contact. The amounts of exogenous adducts were remarkably lower than those of endogenous adducts in exposed nasal epithelium. Moreover, exogenous adducts accumulated in rat nasal epithelium over the 28-days exposure to reach steady-state concentrations, followed by elimination with a half-life (t1/2) of 7.1 days. Additionally, we examined artifact formation during DNA preparation to ensure the accuracy of nonlabeled N2-HOMe-dG measurements. These novel findings provide critical new data for understanding major issues identified by the National Research Council Review of the 2010 Environmental Protection Agency’s Draft Integrated Risk Information System Formaldehyde Risk Assessment. They support a data-driven need for reflection on whether risks have been overestimated for inhaled formaldehyde, whereas underappreciating endogenous formaldehyde as the primary source of exposure that results in bone marrow toxicity and leukemia in susceptible humans and rodents deficient in DNA repair. PMID:25904104

  4. DENTAL PULP STEM CELLS AND HUMAN PERIAPICAL CYST MESENCHYMAL STEM CELLS IN BONE TISSUE REGENERATION: COMPARISON OF BASAL AND OSTEOGENIC DIFFERENTIATED GENE EXPRESSION OF A NEWLY DISCOVERED MESENCHYMAL STEM CELL LINEAGE.

    PubMed

    Tatullo, M; Falisi, G; Amantea, M; Rastelli, C; Paduano, F; Marrelli, M

    2015-01-01

    Bone regeneration is an interesting field of biomedicine. The most recent studies are aimed to achieve a bone regeneration using mesenchymal stem cells (MSCs) taken from more accessible sites: oral and dental tissues have been widely investigated as a rich accessible source of MSCs. Dental Pulp Stem Cells (DPSCs) and human Periapical Cysts Mesenchymal Stem Cells (hPCy-MSCs) represent the new generation MSCs. The aim of this study is to compare the gene expression of these two innovative cell types to highlight the advantages of their use in bone regeneration. The harvesting, culturing and differentiating of cells isolated from dental pulp as well as from periapical cystic tissue were carried out as described in previously published reports. qRT-PCR analyses were performed on osteogenic genes in undifferentiated and osteogenic differentiated cells of DPSC and hPCy-MSC lineage. Real-time RT-PCR data suggested that both DPSCs and hPCy-MSCs cultured in osteogenic media are able to differentiate into osteoblast/odontoblast-like cells: however, some differences indicated that DPSCs seem to be directed more towards dentinogenesis, while hPCy-MSCs seem to be directed more towards osteogenesis.

  5. Improved pulp bleaching potential of Bacillus subtilis WB800 through overexpression of three lignolytic enzymes from various bacteria.

    PubMed

    Ozer, Aysegul; Uzuner, Ugur; Guler, Halil Ibrahim; Ay Sal, Fulya; Belduz, Ali Osman; Deniz, Ilhan; Canakci, Sabriye

    2017-12-29

    A chemical bleaching process of paper pulps gives off excessive amount of chlorinated organic wastes mostly released to environment without exposing complete bioremediaton. Recent alternative and eco-friendly approaches toward pulp bleaching appear more responsive to environmental awareness. Here we report, direct use of a recombinant Bacillus subtilis bacterium for pulp bleaching, endowed with three ligninolytic enzymes from various bacteria. In addition, efficient bleaching performance from glutathione-S-transferase (GST) biocatalyst tested for the first time in pulp bleaching applications was also achieved. Simultaneous and extracellular overproduction of highly active GST, laccase, and lignin peroxidase catalysts were also performed by Bacillus cells. Both enhanced bleaching success and improved delignification rates were identified when enzyme combinations tested on both pine kraft and waste paper pulps, ranging from 69.75% to 79.18% and 60.89% to 74.65%, respectively. Furthermore, when triple enzyme combination applied onto the papers from pine kraft and waste pulps, the best ISO brightness values were identified as 66.45% and 64.67%, respectively. The delignification rates of pulp fibers exposed to various enzymatic bleaching sequences were comparatively examined under SEM. In conclusion, the current study points out that in near future, a more fined-tuned engineering of pulp-colonizing bacteria may become a cost-effective and environmentally friendly alternative to chemical bleaching. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  6. Effects of Non-Collagenous Proteins, TGF-β1, and PDGF-BB on Viability and Proliferation of Dental Pulp Stem Cells

    PubMed Central

    Tabatabaei, Fahimeh Sadat

    2016-01-01

    ABSTRACT Objectives The dentin matrix servers as a reservoir of growth factors, sequestered during dentinogenesis. The aim of this study was to assess the viability and proliferation of dental pulp stem cells in the presence of dentin matrix-derived non-collagenous proteins and two growth factors; platelet-derived growth factor BB and transforming growth factor beta 1. Material and Methods The dental pulp cells were isolated and cultured. The dentin proteins were extracted and purified. The MTT assay was performed for assessment of cell viability and proliferation in the presence of different concentrations of dentin proteins and growth factors during 24 - 72 h post-treatment. Results The cells treated with 250 ng/mL dentin proteins had the best viability and proliferation ability in comparison with other concentrations (P < 0.05). The MTT assay demonstrated that cells cultured with 5 ng/mL platelet-derived growth factor BB had the highest viability at each time point as compared to other groups (P < 0.05). However, in presence of platelet-derived growth factor BB alone and in combination with transforming growth factor beta 1 and dentin proteins (10 ng/mL), significant higher viability was seen at all time points (P < 0.05). The least viability and proliferation at each growth factor concentration was seen in cells treated with combination of transforming growth factor beta 1 and dentin proteins at 72 h (P < 0.05). Conclusions The results indicated that the triple combination of growth factors and matrix-derived non-collagenous proteins (especially at 10 ng/mL concentration) has mitogenic effect on dental pulp stem cells. PMID:27099698

  7. Lanthanum Element Induced Imbalance of Mineral Nutrients, HSP 70 Production and DNA-Protein Crosslink, Leading to Hormetic Response of Cell Cycle Progression in Root Tips of Vicia faba L. seedlings.

    PubMed

    Wang, Chengrun; Shi, Cuie; Liu, Ling; Wang, Chen; Qiao, Wei; Gu, Zhimang; Wang, Xiaorong

    2012-01-01

    The effects and mechanisms of rare earth elements on plant growth have not been extensively characterized. In the current study, Vicia faba L. seedlings were cultivated in lanthanum (La)-containing solutions for 10 days to investigate the possible effects and mechanisms of La on cell proliferation and root lengthening in roots. The results showed that increasing La levels resulted in abnormal calcium (Ca), Ferrum (Fe) or Potassium (K) contents in the roots. Flow cytometry analysis revealed G1/S and S/G2 arrests in response to La treatments in the root tips. Heat shock protein 70 (HSP 70) production showed a U-shaped dose response to increasing La levels. Consistent with its role in cell cycle regulation, HSP 70 fluctuated in parallel with the S-phase ratios and proliferation index. Furthermore, DNA-protein crosslinks (DPCs) enhanced at higher La concentrations, perhaps involved in blocking cell progression. Taken together, these data provide important insights into the hormetic effects and mechanisms of REE(s) on plant cell proliferation and growth.

  8. Prion protein-deficient mice exhibit decreased CD4 T and LTi cell numbers and impaired spleen structure.

    PubMed

    Kim, Soochan; Han, Sinsuk; Lee, Ye Eun; Jung, Woong-Jae; Lee, Hyung Soo; Kim, Yong-Sun; Choi, Eun-Kyoung; Kim, Mi-Yeon

    2016-01-01

    The cellular prion protein is expressed in almost all tissues, including the central nervous system and lymphoid tissues. To investigate the effects of the prion protein in lymphoid cells and spleen structure formation, we used prion protein-deficient (Prnp(0/0)) Zürich I mice generated by inactivation of the Prnp gene. Prnp(0/0) mice had decreased lymphocytes, in particular, CD4 T cells and lymphoid tissue inducer (LTi) cells. Decreased CD4 T cells resulted from impaired expression of CCL19 and CCL21 in the spleen rather than altered chemokine receptor CCR7 expression. Importantly, some of the white pulp regions in spleens from Prnp(0/0) mice displayed impaired T zone structure as a result of decreased LTi cell numbers and altered expression of the lymphoid tissue-organizing genes lymphotoxin-α and CXCR5, although expression of the lymphatic marker podoplanin and CXCL13 by stromal cells was not affected. In addition, CD3(-)CD4(+)IL-7Rα(+) LTi cells were rarely detected in impaired white pulp in spleens of these mice. These data suggest that the prion protein is required to form the splenic white pulp structure and for development of normal levels of CD4 T and LTi cells. Copyright © 2015. Published by Elsevier GmbH.

  9. Dental Stem Cell Migration on Pulp Ceiling Cavities Filled with MTA, Dentin Chips, or Bio-Oss

    PubMed Central

    Lymperi, Stefania; Taraslia, Vasiliki; Tsatsoulis, Ioannis N.; Samara, Athina; Agrafioti, Anastasia; Anastasiadou, Ema; Kontakiotis, Evangelos

    2015-01-01

    MTA, Bio-Oss, and dentin chips have been successfully used in endodontics. The aim of this study was to assess the adhesion and migration of dental stem cells on human pulp ceiling cavities filled with these endodontic materials in an experimental model, which mimics the clinical conditions of regenerative endodontics. Cavities were formed, by a homemade mold, on untouched third molars, filled with endodontic materials, and observed with electron microscopy. Cells were seeded on cavities' surface and their morphology and number were analysed. The phenomenon of tropism was assessed in a migration assay. All three materials demonstrated appropriate microstructures for cell attachment. Cells grew on all reagents, but they showed a differential morphology. Moreover, variations were observed when comparing cells numbers on cavity's filling versus the surrounding dentine disc. The highest number of cells was recorded on dentin chips whereas the opposite was true for Bio-Oss. This was confirmed in the migration assay where a statistically significant lower number of cells migrated towards Bio-Oss as compared to MTA and dentin chips. This study highlights that MTA and dentin chips have a greater potential compared to Bio-Oss regarding the attraction of dental stem cells and are good candidates for bioengineered pulp regeneration. PMID:26146613

  10. Angiogenic mechanisms of human dental pulp and their relationship with substance P expression in response to occlusal trauma.

    PubMed

    Caviedes-Bucheli, J; Gomez-Sosa, J F; Azuero-Holguin, M M; Ormeño-Gomez, M; Pinto-Pascual, V; Munoz, H R

    2017-04-01

    Angiogenesis is the formation of new blood vessels based on a pre-existing vasculature. It comprises two processes, sprouting of endothelial cells and the division of vessels due to abnormal growth of the microvasculature. It has been demonstrated that substance P (SP) can induce angiogenesis either by modulating endothelial cell growth (direct mechanism) or by attracting cells with angiogenic potential to the injury site (indirect mechanism). Therefore, the purpose of this article is to review the angiogenic mechanisms that regulate mineralized tissue formation in human dental pulp tissue and their relationship with SP expression as a defence response to stimuli such as the masticatory function and occlusal trauma. Articles included in this review were searched in PubMed, Scopus and ISI Web of Science databases, combining the following keywords: human dentine pulp, angiogenesis, angiogenic growth factors, neuropeptides, substance P, neurogenic inflammation, dentine matrix, dentinogenesis, occlusal trauma and dental occlusion. It is concluded that human dental pulp tissue responds to occlusal trauma and masticatory function with a neurogenic inflammatory phenomenon in which SP plays an important role in the direct and indirect mechanisms of angiogenesis by the action evoked via NK1 receptors at different cells, such as fibroblasts, endothelial and inflammatory cells, leading to new blood vessel formation which are needed to stimulate mineralized tissue formation as a defence mechanism. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  11. Evaluation of in situ layers for treatment of acid mine drainage: a field comparison.

    PubMed

    Hulshof, Andrea H M; Blowes, David W; Gould, W Douglas

    2006-05-01

    Reactive treatment layers, containing labile organic carbon, were evaluated to determine their ability to promote sulfate reduction and metal sulfide precipitation within a tailings impoundment, thereby treating tailings effluent prior to discharge. Organic carbon materials, including woodchips and pulp waste, were mixed with the upper meter of tailings in two separate test cells, a third control cell contained only tailings. In the woodchip cell sulfate reduction rates were 500 mg L-1a-1, (5.2 mmol L-1a-1) this was coupled with the gradual removal of 350 mg L-1 Zn (5.4 mmol L-1). Decreased delta13CDIC values from -3 per thousand to as low as -12 per thousand indicated that sulfate reduction was coupled with organic carbon oxidation. In the pulp waste cell the most dramatic change was observed near the interface between the pulp waste amended tailings and the underlying undisturbed tailings. Sulfate reduction rates were 5000 mg L-1a-1 (52 mmol L-1a-1), Fe concentrations decreased by 80-99.5% (148 mmol L-1) and Zn was consistently <5 mg L-1. Rates of sulfate reduction and metal removal decreased as the pore water migrated upward into the shallower tailings. Increased rates of sulfate reduction in the pulp waste cell were consistent with decreased delta13CDIC values, to as low as -22 per thousand, and increased populations of sulfate reducing bacteria. Lower concentrations of the nutrients, phosphorus, organic carbon and nitrogen in the woodchip material contribute to the lower sulfate reduction rates observed in the woodchip cell.

  12. Three-dimensional culture of dental pulp stem cells in direct contact to tricalcium silicate cements.

    PubMed

    Widbiller, M; Lindner, S R; Buchalla, W; Eidt, A; Hiller, K-A; Schmalz, G; Galler, K M

    2016-03-01

    Calcium silicate cements are biocompatible dental materials applicable in contact with vital tissue. The novel tricalcium silicate cement Biodentine™ offers properties superior to commonly used mineral trioxide aggregate (MTA). Objective of this study was to evaluate its cytocompatibility and ability to induce differentiation and mineralization in three-dimensional cultures of dental pulp stem cells after direct contact with the material. Test materials included a new tricalcium silicate (Biodentine™, Septodont, Saint-Maur-des-Fossés, France), MTA (ProRoot® MTA, DENSPLY Tulsa Dental Specialities, Johnson City, TN, USA), glass ionomer (Ketac™ Molar Aplicap™, 3M ESPE, Seefeld, Germany), human dentin disks and polystyrene. Magnetic activated cell sorting for to the surface antigen STRO-1 was performed to gain a fraction enriched with mesenchymal stem cells. Samples were allowed to set and dental pulp stem cells in collagen carriers were placed on top. Scanning electron microscopy of tricalcium silicate cement surfaces with and without cells was conducted. Cell viability was measured for 14 days by MTT assay. Alkaline phosphatase activity was evaluated (days 3, 7, and 14) and expression of mineralization-associated genes (COL1A1, ALP, DSPP, and RUNX2) was quantified by real-time quantitative PCR. Nonparametric statistical analysis for cell viability and alkaline phosphatase data was performed to compare different materials as well as time points (Mann-Whitney U test, α = 0.05). Cell viability was highest on tricalcium silicate cement, followed by MTA. Viability on glass ionomer cement and dentin disks was significantly lower. Alkaline phosphatase activity was lower in cells on new tricalcium silicate cement compared to MTA, whereas expression patterns of marker genes were alike. Increased cell viability and similar levels of mineralization-associated gene expression in three-dimensional cell cultures on the novel tricalcium silicate cement and mineral trioxide aggregate indicate that the material is cytocompatible and bioactive. The tested new tricalcium silicate cement confirms its suitability as an alternative to MTA in vital pulp therapy.

  13. Comparative characterization of stem cells from human exfoliated deciduous teeth, dental pulp, and bone marrow-derived mesenchymal stem cells.

    PubMed

    Kunimatsu, Ryo; Nakajima, Kengo; Awada, Tetsuya; Tsuka, Yuji; Abe, Takaharu; Ando, Kazuyo; Hiraki, Tomoka; Kimura, Aya; Tanimoto, Kotaro

    2018-06-18

    Mesenchymal stem cells (MSCs) are used clinically in tissue engineering and regenerative medicine. The proliferation and osteogenic differentiation potential of MSCs vary according to factors such as tissue source and cell population heterogeneity. Dental tissue has received attention as an easily accessible source of high-quality stem cells. In this study, we compared the in vitro characteristics of dental pulp stem cells from deciduous teeth (SHED), human dental pulp stem cells (hDPSCs), and human bone marrow mesenchymal stem cells (hBMSCs). SEHD and hDPSCs were isolated from dental pulp and analyzed in comparison with human bone marrow (hBM)MSCs. Proliferative capacity of cultured cells was analyzed using a bromodeoxyuridine immunoassay and cell counting. Alkaline phosphatase (ALP) levels were monitored to assess osteogenic differentiation. Mineralization was evaluated by alizarin red staining. Levels of bone marker mRNA were examined by real-time PCR analysis. SHED were highly proliferative compared with hDPSCs and hBMSCs. SHED, hDPSCs, and hBMSCs exhibited dark alizarin red staining on day 21 after induction of osteogenic differentiation, and staining of hBMSCs was significantly higher than that of SHED and hDPSCs by spectrophotometry. ALP staining was stronger in hBMSCs compared with SHED and hDPSCs, and ALP activity was significantly higher in hBMSCs compared with SHED or hDPSCs. SHED showed significantly higher expression of the Runx2 and ALP genes compared with hBMSCs, based on real-time PCR analysis. In bFGF, SHED showed significantly higher expression of the basic fibroblast growth factor (bFGF) gene compared with hDPSCs and hBMSCs. SHED exhibited higher proliferative activity and levels of bFGF and BMP-2 gene expression compared with BMMSCs and DPSCs. The ease of harvesting cells and ability to avoid invasive surgical procedures suggest that SHED may be a useful cell source for application in bone regeneration treatments. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Active Nanomaterials to Meet the Challenge of Dental Pulp Regeneration

    PubMed Central

    Keller, Laetitia; Offner, Damien; Schwinté, Pascale; Morand, David; Wagner, Quentin; Gros, Catherine; Bornert, Fabien; Bahi, Sophie; Musset, Anne-Marie; Benkirane-Jessel, Nadia; Fioretti, Florence

    2015-01-01

    The vitality of the pulp is fundamental to the functional life of the tooth. For this aim, active and living biomaterials are required to avoid the current drastic treatment, which is the removal of all the cellular and molecular content regardless of its regenerative potential. The regeneration of the pulp tissue is the dream of many generations of dental surgeons and will revolutionize clinical practices. Recently, the potential of the regenerative medicine field suggests that it would be possible to achieve such complex regeneration. Indeed, three crucial steps are needed: the control of infection and inflammation and the regeneration of lost pulp tissues. For regenerative medicine, in particular for dental pulp regeneration, the use of nano-structured biomaterials becomes decisive. Nano-designed materials allow the concentration of many different functions in a small volume, the increase in the quality of targeting, as well as the control of cost and delivery of active molecules. Nanomaterials based on extracellular mimetic nanostructure and functionalized with multi-active therapeutics appear essential to reverse infection and inflammation and concomitantly to orchestrate pulp cell colonization and differentiation. This novel generation of nanomaterials seems very promising to meet the challenge of the complex dental pulp regeneration. PMID:28793649

  15. A preliminary report on histological outcome of pulpotomy with endodontic biomaterials vs calcium hydroxide.

    PubMed

    Nosrat, Ali; Peimani, Ali; Asgary, Saeed

    2013-11-01

    The purpose of the study was to evaluate human dental pulp response to pulpotomy with calcium hydroxide (CH), mineral trioxide aggregate (MTA), and calcium enriched mixture (CEM) cement. A total of nine erupted third molars were randomly assigned to each pulpotomy group. The same clinician performed full pulpotomies and coronal restorations. The patients were followed clinically for six months; the teeth were then extracted and prepared for histological assessments. The samples were blindly assessed by an independent observer for pulp vitality, pulp inflammation, and calcified bridge formation. All patients were free of clinical signs/symptoms of pulpal/periradicular diseases during the follow up period. In CH group, one tooth had necrotic radicular pulp; other two teeth in this group had vital uninflamed pulps with complete dentinal bridge formation. In CEM cement and MTA groups all teeth had vital uninflamed radicular pulps. A complete dentinal bridge was formed beneath CEM cement and MTA in all roots. Odontoblast-like cells were present beneath CEM cement and MTA in all samples. This study revealed that CEM cement and MTA were reliable endodontic biomaterials in full pulpotomy treatment. In contrast, the human dental pulp response to CH might be unpredictable.

  16. Effects of TGF-β1 on plasminogen activation in human dental pulp cells: Role of ALK5/Smad2, TAK1 and MEK/ERK signalling.

    PubMed

    Chang, Mei-Chi; Chang, Hsiao-Hua; Lin, Po-Shuan; Huang, Yu-An; Chan, Chiu-Po; Tsai, Yi-Ling; Lee, Shen-Yang; Jeng, Po-Yuan; Kuo, Han-Yueh; Yeung, Sin-Yuet; Jeng, Jiiang-Huei

    2018-04-01

    Transforming growth factor-β1 (TGF-β1) plays an important role in the pulpal repair and dentinogenesis. Plasminogen activation (PA) system regulates extracellular matrix turnover. In this study, we investigated the effects of TGF-β1 on PA system of dental pulp cells and its signalling pathways. Dental pulp cells were treated with different concentrations of TGF-β1. MTT assay, reverse transcription-polymerase chain reaction, Western blotting and enzyme-linked immunosorbant assay (ELISA) were used to detect the effect of TGF-β1 on cell viability, mRNA and protein expression of urokinase-type plasminogen activator (uPA), uPA receptor (uPAR), plasminogen activator inhibitor-1 (PAI-1) as well as their secretion. The phosphorylation of Smad2 and TAK1 was analysed by Pathscan ELISA or Western blotting. Cells were pretreated with SB431542 (ALK5/Smad2/3 inhibitor), 5z-7-oxozeaenol (TAK1 inhibitor) and U0126 (MEK/ERK inhibitor) for examining the related signalling. TGF-β1 slightly inhibited cell growth that was reversed by SB431542. TGF-β1 upregulated both RNA and protein expression of PAI-1 and uPAR, whereas it downregulated uPA expression. Accordingly, TGF-β1 stimulated PAI-1 and soluble uPAR (suPAR) secretion of pulp cells, whereas uPA secretion was inhibited. TGF-β1 induced the phosphorylation of Smad2 and TAK1. In addition, SB431542, 5z-7-oxozeaenol and U0126 attenuated the TGF-β1-induced secretion of PAI-1 and suPAR. These results indicate that TGF-β1 is possibly involved in the repair/regeneration and inflammatory processes of dental pulp via regulation of PAI-1, uPA and uPAR. These effects of TGF-β1 are related to activation of ALK5/Smad2, TAK1 and MEK/ERK signalling pathways. Clarifying the signal transduction for the effects of TGF-β1 is helpful for pulpo-dentin regeneration and tissue engineering. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Cryopreserved Dental Pulp Tissues of Exfoliated Deciduous Teeth Is a Feasible Stem Cell Resource for Regenerative Medicine

    PubMed Central

    Yamaza, Haruyoshi; Akiyama, Kentaro; Hoshino, Yoshihiro; Song, Guangtai; Kukita, Toshio; Nonaka, Kazuaki; Shi, Songtao; Yamaza, Takayoshi

    2012-01-01

    Human exfoliated deciduous teeth have been considered to be a promising source for regenerative therapy because they contain unique postnatal stem cells from human exfoliated deciduous teeth (SHED) with self-renewal capacity, multipotency and immunomodulatory function. However preservation technique of deciduous teeth has not been developed. This study aimed to evaluate that cryopreserved dental pulp tissues of human exfoliated deciduous teeth is a retrievable and practical SHED source for cell-based therapy. SHED isolated from the cryopreserved deciduous pulp tissues for over 2 years (25–30 months) (SHED-Cryo) owned similar stem cell properties including clonogenicity, self-renew, stem cell marker expression, multipotency, in vivo tissue regenerative capacity and in vitro immunomodulatory function to SHED isolated from the fresh tissues (SHED-Fresh). To examine the therapeutic efficacy of SHED-Cryo on immune diseases, SHED-Cryo were intravenously transplanted into systemic lupus erythematosus (SLE) model MRL/lpr mice. Systemic SHED-Cryo-transplantation improved SLE-like disorders including short lifespan, elevated autoantibody levels and nephritis-like renal dysfunction. SHED-Cryo amended increased interleukin 17-secreting helper T cells in MRL/lpr mice systemically and locally. SHED-Cryo-transplantation was also able to recover osteoporosis bone reduction in long bones of MRL/lpr mice. Furthermore, SHED-Cryo-mediated tissue engineering induced bone regeneration in critical calvarial bone-defect sites of immunocompromised mice. The therapeutic efficacy of SHED-Cryo transplantation on immune and skeletal disorders was similar to that of SHED-Fresh. These data suggest that cryopreservation of dental pulp tissues of deciduous teeth provide a suitable and desirable approach for stem cell-based immune therapy and tissue engineering in regenerative medicine. PMID:23251621

  18. Lactic Acid Fermentation of Cactus Cladodes (Opuntia ficus-indica L.) Generates Flavonoid Derivatives with Antioxidant and Anti-Inflammatory Properties.

    PubMed

    Filannino, Pasquale; Cavoski, Ivana; Thlien, Nadia; Vincentini, Olimpia; De Angelis, Maria; Silano, Marco; Gobbetti, Marco; Di Cagno, Raffaella

    2016-01-01

    Cactus pear (Opuntia ficus-indica L.) is widely distributed in the arid and semi-arid regions throughout the world. In the last decades, the interest towards vegetative crop increased, and cladodes are exploited for nutraceutical and health-promoting properties. This study aimed at investigating the capacity of selected lactic acid bacteria to increase the antioxidant and anti-inflammatory properties of cactus cladodes pulp, with the perspective of producing a functional ingredient, dietary supplement or pharmaceutical preparation. Preliminarily, the antioxidant activity was determined through in vitro assays. Further, it was confirmed through ex vivo analysis on intestinal Caco-2/TC7 cells, and the profile of flavonoids was characterized. Cactus cladode pulp was fermented with lactic acid bacteria, which were previously selected from plant materials. Chemically acidified suspension, without bacterial inoculum and incubated under the same conditions, was used as the control. Lactobacillus plantarum CIL6, POM1 and 1MR20, Lactobacillus brevis POM2 and POM4, Lactobacillus rossiae 2LC8 and Pediococcus pentosaceus CILSWE5 were the best growing strains. Fermentation of cladode pulp with L. brevis POM2 and POM4 allowed the highest concentration of γ-amino butyric acid. Lactic acid fermentation had preservative effects (P<0.05) on the levels of vitamin C and carotenoids. Two flavonoid derivatives (kaemferol and isorhamnetin) were identified in the ethyl acetate extracts, which were considered to be the major compounds responsible for the increased radical scavenging activity. After inducing oxidative stress by IL-1β, the increased antioxidant activity (P<0.05) of fermented cladode pulp was confirmed using Caco-2/TC7 cells. Fermented cladode pulp had also immune-modulatory effects towards Caco-2 cells. Compared to the control, fermented cladode pulp exhibited a significantly (P<0.05) higher inhibition of IL-8, TNFα and prostaglandins PGE2 synthesis. The highest functional effect was found using ethyl acetate extracts. In conclusion, fermentation, especially with L. plantarum strains and L. brevis POM4, enhanced the antioxidant and immune-modulation features of cladode pulp.

  19. Lactic Acid Fermentation of Cactus Cladodes (Opuntia ficus-indica L.) Generates Flavonoid Derivatives with Antioxidant and Anti-Inflammatory Properties

    PubMed Central

    Filannino, Pasquale; Cavoski, Ivana; Thlien, Nadia; Vincentini, Olimpia; De Angelis, Maria; Silano, Marco; Gobbetti, Marco; Di Cagno, Raffaella

    2016-01-01

    Cactus pear (Opuntia ficus-indica L.) is widely distributed in the arid and semi-arid regions throughout the world. In the last decades, the interest towards vegetative crop increased, and cladodes are exploited for nutraceutical and health-promoting properties. This study aimed at investigating the capacity of selected lactic acid bacteria to increase the antioxidant and anti-inflammatory properties of cactus cladodes pulp, with the perspective of producing a functional ingredient, dietary supplement or pharmaceutical preparation. Preliminarily, the antioxidant activity was determined through in vitro assays. Further, it was confirmed through ex vivo analysis on intestinal Caco-2/TC7 cells, and the profile of flavonoids was characterized. Cactus cladode pulp was fermented with lactic acid bacteria, which were previously selected from plant materials. Chemically acidified suspension, without bacterial inoculum and incubated under the same conditions, was used as the control. Lactobacillus plantarum CIL6, POM1 and 1MR20, Lactobacillus brevis POM2 and POM4, Lactobacillus rossiae 2LC8 and Pediococcus pentosaceus CILSWE5 were the best growing strains. Fermentation of cladode pulp with L. brevis POM2 and POM4 allowed the highest concentration of γ-amino butyric acid. Lactic acid fermentation had preservative effects (P<0.05) on the levels of vitamin C and carotenoids. Two flavonoid derivatives (kaemferol and isorhamnetin) were identified in the ethyl acetate extracts, which were considered to be the major compounds responsible for the increased radical scavenging activity. After inducing oxidative stress by IL-1β, the increased antioxidant activity (P<0.05) of fermented cladode pulp was confirmed using Caco-2/TC7 cells. Fermented cladode pulp had also immune-modulatory effects towards Caco-2 cells. Compared to the control, fermented cladode pulp exhibited a significantly (P<0.05) higher inhibition of IL-8, TNFα and prostaglandins PGE2 synthesis. The highest functional effect was found using ethyl acetate extracts. In conclusion, fermentation, especially with L. plantarum strains and L. brevis POM4, enhanced the antioxidant and immune-modulation features of cladode pulp. PMID:27023062

  20. Retrieval of a periodontally compromised tooth by allogeneic grafting of mesenchymal stem cells from dental pulp: A case report.

    PubMed

    Hernández-Monjaraz, Beatriz; Santiago-Osorio, Edelmiro; Ledesma-Martínez, Edgar; Alcauter-Zavala, Andrés; Mendoza-Núñez, Víctor Manuel

    2018-01-01

    Objective To report a case of successful allogeneic grafting of mesenchymal dental pulp stem cells (DPSCs) as preliminary findings in a patient with periodontal disease enrolled into clinical trial ISRCTN12831118. Methods Mesenchymal stem cells from the dental pulp of a deciduous tooth from a 7-year-old donor were separated from the pulp chamber and processed via enzymatic digestion and centrifugation. DPSCs were passaged and cultured on a 35 × 13 mm culture dish in minimum essential medium-alpha, without supplementation. After reaching 80% confluency, 5 x 10 6 allogeneic DPSCs in 250 µl phosphate buffered saline were seeded onto a dry scaffold of lyophilized collagen-polyvinylpyrrolidone sponge placed in the left lower premolar area of a 61-year-old patient with periodontal disease. Surgical access to the lower premolar area was achieved using the flap technique. Results At 3 and 6 months following allogeneic graft, the patient showed no sign of rejection and exhibited decreases in tooth mobility, periodontal pocket depth and bone defect area. Bone mineral density had increased at the graft site. Conclusions Regenerative periodontal therapy using DPSCs of allogeneic origin may be a promising treatment for periodontal disease-induced bone defects.

  1. A clinical assessment of the effects of 10% carbamide peroxide gel on human pulp tissue.

    PubMed

    Anderson, D G; Chiego, D J; Glickman, G N; McCauley, L K

    1999-04-01

    Bleaching vital teeth with 10% carbamide peroxide gel is a routine procedure in which there has been no evidence of associated permanent pulpal damage. Synthesis of the enzyme heme oxygenase-1 (HO-1) is increased after exposure of eukaryotic cells to conditions of oxidative stress (including H2O2) as a defense against the damaging effects of free radicals. Dental pulps were evaluated for HO-1 (aka Heat Shock Protein 32) presence in teeth treated with 10% carbamide peroxide. Seventeen intact first premolars scheduled for orthodontic extraction were bleached for 4 h immediately preceding extraction. Fourteen additional premolars from the same individuals were not bleached. All 31 teeth were extracted, fixed, demineralized, frozen, sectioned, and immunostained with anti-HO-1 antibody using a standard ABC protocol. There was no significant difference in the presence of HO-1 between total bleached versus total unbleached teeth using the Fisher's Exact Test (p < or = 0.05). However, the histological findings could be interpreted to suggest that coronal odontoblasts and endothelial cells in the underlying pulp proper may have the potential to respond to oxidative stress by increasing the synthesis of HO-1 (HSP32). This could represent a component of an initial defensive response by specific cells in strategic locations in the pulp that precedes classical inflammatory pathways.

  2. Biocompatibility Evaluation of Four Dentin Adhesives Used as Indirect Pulp Capping Materials

    PubMed Central

    Cortés, Olga; Bernabé, Antonia

    2017-01-01

    Background In many cases, the indirect pulp treatment (IPT) is an acceptable treatment for deciduous teeth with reversible pulp inflammation. Various medicaments have been used for IPT, ranging from calcium hydroxide and glass ionomers to dentin adhesives. Objective This in vitro trial aimed to measure cytotoxicity in a cell culture, comparing the following four adhesives: Xeno® V (XE), Excite® F DSC (EX), Adhese® OneF (AD) and Prime & Bond NT (PB). Materials and methods The adhesives were prepared according to the manufacturer’s instructions. After 24 hours of exposure, the cell viability was evaluated using a photometrical test (MTT test). Data were subjected to analysis of variance (ANOVA). Results Adhesives, the main component of which was 2-hydroxyethyl methacrylate (HEMA), were found to be less cytotoxic, while those that included the monomer urethane dimethacrylate (UDMA were the most cytotoxic) in their composition. The effects on cell viability assay varied between the adhesives assayed with statistically significant differences. Conclusions The results may support the argument that Adhese® OneF is the least cytotoxic of the adhesives assayed, and may be considered as an adhesive agent for indirect pulp treatment. However, Prime and Bond NT showed a reduced biocompatibility under the same conditions. PMID:28827848

  3. Characterization of mesenchymal stem cells from human dental pulp, preapical follicle and periodontal ligament.

    PubMed

    Navabazam, Ali Reza; Sadeghian Nodoshan, Fatemeh; Sheikhha, Mohammad Hasan; Miresmaeili, Sayyed Mohsen; Soleimani, Mehrdad; Fesahat, Farzaneh

    2013-03-01

    Human dental stem cells have high proliferative potential for self-renewal that is important to the regenerative capacity of the tissue. Objective : The aim was to isolate human dental pulp stem cells (DPSC), periodontal ligament stem cells (PDLSC) and periapical follicle stem cells (PAFSC) for their potential role in tissue regeneration. In this experimental study, the postnatal stem cells were isolated from dental pulp, preapical follicle and periodontal ligament .The cells were stained for different stem cell markers by immunocytochemistry. To investigate the mesenchymal nature of cells, differentiation potential along osteoblastic and adipogenic lineages and gene expression profile were performed. For proliferation potential assay, Brdu staining and growth curve tests were performed. Finally, all three cell types were compared together regarding their proliferation, differentiation and displaying phenotype. The isolated cell populations have similar fibroblastic like morphology and expressed all examined cell surface molecule markers. These cells were capable of differentiating into osteocyte with different capability and adipocyte with the same rate. PAFSCs showed more significant proliferation rate than others. Reverse transcriptase PCR (RT-PCR) for nanog, oct4, Alkaline phosphatase (ALP) and glyceraldehydes-3-phosphate dehydrogenease (GADPH) as control gene showed strong positive expression of these genes in all three isolated cell types. PDLSCs, DPSCs and PAFSCs exist in various tissues of the teeth and can use as a source of mesenchymal stem cells for developing bioengineered organs and also in craniomaxillofacial reconstruction with varying efficiency in differentiation and proliferation.

  4. Mechanical deconstruction of lignocellulose cell walls and their enzymatic saccharification

    Treesearch

    Ingrid C. Hoeger; Sandeep S. Nair; Arthur J. Ragauskas; Yulin Deng; Orlando J. Rojas; J.Y. Zhu

    2013-01-01

    Laboratory mechanical softwood pulps (MSP) and commercial bleached softwood kraft pulps (BSKP) were mechanically fibrillated by stone grinding with a SuperMassColloider®. The extent of fibrillation was evaluated by SEM imaging, water retention value (WRV) and cellulase adsorption. Both lignin content and mechanical treatment significantly affected deconstruction and...

  5. Mechanism and Regulation of DNA-Protein Crosslink Repair by the DNA-Dependent Metalloprotease SPRTN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stingele, Julian; Bellelli, Roberto; Alte, Ferdinand

    Covalent DNA-protein crosslinks (DPCs) are toxic DNA lesions that interfere with essential chromatin transactions, such as replication and transcription. Little was known about DPC-specific repair mechanisms until the recent identification of a DPC-processing protease in yeast. The existence of a DPC protease in higher eukaryotes is inferred from data in Xenopus laevis egg extracts, but its identity remains elusive. Here we identify the metalloprotease SPRTN as the DPC protease acting in metazoans. Loss of SPRTN results in failure to repair DPCs and hypersensitivity to DPC-inducing agents. SPRTN accomplishes DPC processing through a unique DNA-induced protease activity, which is controlled bymore » several sophisticated regulatory mechanisms. Cellular, biochemical, and structural studies define a DNA switch triggering its protease activity, a ubiquitin switch controlling SPRTN chromatin accessibility, and regulatory autocatalytic cleavage. Our data also provide a molecular explanation on how SPRTN deficiency causes the premature aging and cancer predisposition disorder Ruijs-Aalfs syndrome.« less

  6. Mechanism and Regulation of DNA-Protein Crosslink Repair by the DNA-Dependent Metalloprotease SPRTN

    DOE PAGES

    Stingele, Julian; Bellelli, Roberto; Alte, Ferdinand; ...

    2016-10-27

    Covalent DNA-protein crosslinks (DPCs) are toxic DNA lesions that interfere with essential chromatin transactions, such as replication and transcription. Little was known about DPC-specific repair mechanisms until the recent identification of a DPC-processing protease in yeast. The existence of a DPC protease in higher eukaryotes is inferred from data in Xenopus laevis egg extracts, but its identity remains elusive. Here we identify the metalloprotease SPRTN as the DPC protease acting in metazoans. Loss of SPRTN results in failure to repair DPCs and hypersensitivity to DPC-inducing agents. SPRTN accomplishes DPC processing through a unique DNA-induced protease activity, which is controlled bymore » several sophisticated regulatory mechanisms. Cellular, biochemical, and structural studies define a DNA switch triggering its protease activity, a ubiquitin switch controlling SPRTN chromatin accessibility, and regulatory autocatalytic cleavage. Our data also provide a molecular explanation on how SPRTN deficiency causes the premature aging and cancer predisposition disorder Ruijs-Aalfs syndrome.« less

  7. Indirect immobilized Jagged1 suppresses cell cycle progression and induces odonto/osteogenic differentiation in human dental pulp cells.

    PubMed

    Manokawinchoke, Jeeranan; Nattasit, Praphawi; Thongngam, Tanutchaporn; Pavasant, Prasit; Tompkins, Kevin A; Egusa, Hiroshi; Osathanon, Thanaphum

    2017-08-31

    Notch signaling regulates diverse biological processes in dental pulp tissue. The present study investigated the response of human dental pulp cells (hDPs) to the indirect immobilized Notch ligand Jagged1 in vitro. The indirect immobilized Jagged1 effectively activated Notch signaling in hDPs as confirmed by the upregulation of HES1 and HEY1 expression. Differential gene expression profiling using an RNA sequencing technique revealed that the indirect immobilized Jagged1 upregulated genes were mainly involved in extracellular matrix organization, disease, and signal transduction. Downregulated genes predominantly participated in the cell cycle, DNA replication, and DNA repair. Indirect immobilized Jagged1 significantly reduced cell proliferation, colony forming unit ability, and the number of cells in S phase. Jagged1 treated hDPs exhibited significantly higher ALP enzymatic activity, osteogenic marker gene expression, and mineralization compared with control. Pretreatment with a γ-secretase inhibitor attenuated the Jagged1-induced ALP activity and mineral deposition. NOTCH2 shRNA reduced the Jagged1-induced osteogenic marker gene expression, ALP enzymatic activity, and mineral deposition. In conclusion, indirect immobilized Jagged1 suppresses cell cycle progression and induces the odonto/osteogenic differentiation of hDPs via the canonical Notch signaling pathway.

  8. Potential Roles of Dental Pulp Stem Cells in Neural Regeneration and Repair

    PubMed Central

    Luo, Lihua; Wang, Xiaoyan; Key, Brian; Lee, Bae Hoon

    2018-01-01

    This review summarizes current advances in dental pulp stem cells (DPSCs) and their potential applications in the nervous diseases. Injured adult mammalian nervous system has a limited regenerative capacity due to an insufficient pool of precursor cells in both central and peripheral nervous systems. Nerve growth is also constrained by inhibitory factors (associated with central myelin) and barrier tissues (glial scarring). Stem cells, possessing the capacity of self-renewal and multicellular differentiation, promise new therapeutic strategies for overcoming these impediments to neural regeneration. Dental pulp stem cells (DPSCs) derive from a cranial neural crest lineage, retain a remarkable potential for neuronal differentiation, and additionally express multiple factors that are suitable for neuronal and axonal regeneration. DPSCs can also express immunomodulatory factors that stimulate formation of blood vessels and enhance regeneration and repair of injured nerve. These unique properties together with their ready accessibility make DPSCs an attractive cell source for tissue engineering in injured and diseased nervous systems. In this review, we interrogate the neuronal differentiation potential as well as the neuroprotective, neurotrophic, angiogenic, and immunomodulatory properties of DPSCs and its application in the injured nervous system. Taken together, DPSCs are an ideal stem cell resource for therapeutic approaches to neural repair and regeneration in nerve diseases. PMID:29853908

  9. Pulpo-dentin complex response after direct capping with self-etch adhesive systems.

    PubMed

    Nowicka, Alicja; Parafiniuk, Miroslaw; Lipski, Mariusz; Lichota, Damian; Buczkowska-Radlinska, Jadwiga

    2012-01-01

    The purpose of the present study was to evaluate morphologically the response of feline teeth pulp to direct pulp capping with two different self-etch adhesive systems. Twenty-four cavities in feline teeth were mechanically exposed and assigned to one of two experimental groups: AdheSE + Tetric Ceram (the ASE group), or Adper Prompt L-Pop + Filtek Supreme (the APLP group). There was also a control group Dycal Ca(OH)(2) liner + Amalgam (the CH group eight teeth), and six teeth were used as an intact control group. The animals were sacrificed after 40 days. The teeth were removed and processed for standard histological evaluation, using a scoring system for inflammatory cell response, pulp tissue disorganisation, reparative tissue formation, and the presence of bacteria. Statistical analysis revealed no significant differences between the ASE and APLP self-etching resin systems during the observation period. The majority of the specimens presented inflammatory pulp response with tissue disorganisation and a lack of dentinal bridge formation. CH capping resulted in a significantly smaller inflammatory pulp response and a considerably higher incidence of reparative dentin formation. ASE and APLP were comparably effective as direct pulp capping materials, but their application resulted in significantly greater pulp tissue damage than CH capping. Further in vivo human studies are necessary to determine which adhesive resin systems should be clinically used for direct pulp capping without incurring severe damage to the pulpal tissue.

  10. Stem cell-based biological tooth repair and regeneration

    PubMed Central

    Volponi, Ana Angelova; Pang, Yvonne; Sharpe, Paul T.

    2010-01-01

    Teeth exhibit limited repair in response to damage, and dental pulp stem cells probably provide a source of cells to replace those damaged and to facilitate repair. Stem cells in other parts of the tooth, such as the periodontal ligament and growing roots, play more dynamic roles in tooth function and development. Dental stem cells can be obtained with ease, making them an attractive source of autologous stem cells for use in restoring vital pulp tissue removed because of infection, in regeneration of periodontal ligament lost in periodontal disease, and for generation of complete or partial tooth structures to form biological implants. As dental stem cells share properties with mesenchymal stem cells, there is also considerable interest in their wider potential to treat disorders involving mesenchymal (or indeed non-mesenchymal) cell derivatives, such as in Parkinson's disease. PMID:21035344

  11. Evaluation of an experimental rat model for comparative studies of bleaching agents

    PubMed Central

    Cintra, Luciano Tavares Angelo; Benetti, Francine; Ferreira, Luciana Lousada; Rahal, Vanessa; Ervolino, Edilson; Jacinto, Rogério de Castilho; Gomes, João Eduardo; Briso, André Luiz Fraga

    2016-01-01

    ABSTRACT Dental materials, in general, are tested in different animal models prior to their clinical use in humans, except for bleaching agents. Objectives To evaluate an experimental rat model for comparative studies of bleaching agents by investigating the influence of different concentrations and application times of H2O2 gel in the pulp tissue during in-office bleaching of rats’ vital teeth. Material and methods The right and left maxillary molars of 50 Wistar rats were bleached with 20% and 35% H2O2 gels, respectively, for 5, 10, 15, 30, or 45 min (n=10 rats/group). Ten animals (control) were untreated. The rats were killed after 2 or 30 days, and the maxillae were examined by light microscopy. Inflammation was evaluated by histomorphometric analysis with inflammatory cell counting in the coronal and radicular thirds of the pulp. The counting of fibroblasts was also performed. Scores were attributed to the odontoblastic layer and to vascular changes. The tertiary dentin area and the pulp chamber central area were histomorphometrically measured. Data were compared by the analysis of variance and the Kruskal-Wallis test (p<0.05). Results After 2 days, the amount of inflammatory cells increased in the occlusal third of the coronal pulp until the time of 15 min for both concentrations of bleaching gels. In 30 and 45 min groups of each concentration, the number of inflammatory cells decreased along with the appearance of necrotic areas. After 30 days, a reduction in the pulp chamber central area and an enlargement of tertiary dentin area were observed without the detection of inflammation areas. Conclusion The rat model of extra coronal bleaching showed to be adequate for bleaching protocols studies, as it was possible to observe alterations in the pulp tissues and in the tooth structure caused by different concentrations and periods of application of bleaching agents. PMID:27008262

  12. Evaluation of an experimental rat model for comparative studies of bleaching agents.

    PubMed

    Cintra, Luciano Tavares Angelo; Benetti, Francine; Ferreira, Luciana Lousada; Rahal, Vanessa; Ervolino, Edilson; Jacinto, Rogério de Castilho; Gomes Filho, João Eduardo; Briso, André Luiz Fraga

    2016-01-01

    Dental materials, in general, are tested in different animal models prior to their clinical use in humans, except for bleaching agents. To evaluate an experimental rat model for comparative studies of bleaching agents by investigating the influence of different concentrations and application times of H2O2 gel in the pulp tissue during in-office bleaching of rats' vital teeth. The right and left maxillary molars of 50 Wistar rats were bleached with 20% and 35% H2O2 gels, respectively, for 5, 10, 15, 30, or 45 min (n=10 rats/group). Ten animals (control) were untreated. The rats were killed after 2 or 30 days, and the maxillae were examined by light microscopy. Inflammation was evaluated by histomorphometric analysis with inflammatory cell counting in the coronal and radicular thirds of the pulp. The counting of fibroblasts was also performed. Scores were attributed to the odontoblastic layer and to vascular changes. The tertiary dentin area and the pulp chamber central area were histomorphometrically measured. Data were compared by the analysis of variance and the Kruskal-Wallis test (p<0.05). After 2 days, the amount of inflammatory cells increased in the occlusal third of the coronal pulp until the time of 15 min for both concentrations of bleaching gels. In 30 and 45 min groups of each concentration, the number of inflammatory cells decreased along with the appearance of necrotic areas. After 30 days, a reduction in the pulp chamber central area and an enlargement of tertiary dentin area were observed without the detection of inflammation areas. The rat model of extra coronal bleaching showed to be adequate for bleaching protocols studies, as it was possible to observe alterations in the pulp tissues and in the tooth structure caused by different concentrations and periods of application of bleaching agents.

  13. Intra-pulp temperature increase of equine cheek teeth during treatment with motorized grinding systems: influence of grinding head position and rotational speed.

    PubMed

    Haeussler, Silvia; Luepke, Matthias; Seifert, Hermann; Staszyk, Carsten

    2014-02-21

    In equine practice, teeth corrections by means of motorized grinding systems are standard procedure. The heat resulting from that treatment may cause irreparable damage to the dental pulp. It has been shown that a 5.5°C temperature rise may cause severe destruction in pulp cells. Hence, the capability to continuously form secondary dentine is lost, and may lead, due to equine-typical occlusal tooth abrasion, to an opening of the pulp cavity.To obtain reliable data on the intra-pulp increase in temperature during corrective treatments, equine cheek teeth (CT) were modified in a way (occlusal surface smoothed, apical parts detached, pulp horns standardized) that had been qualified in own former published studies. All parameters influencing the grinding process were standardized (force applied, initial temperatures, dimensions of pulp horns, positioning of grinding disk, rotational speed). During grinding experiments, imitating real dental treatments, the time span for an intra-pulp temperature increase of 5.5°C was determined. The minimum time recorded for an intra-pulp temperature increase of 5.5°C was 38 s in mandibular CT (buccal grinding, 12,000 rpm) and 70 s in maxillary CT (flat occlusal grinding, 12,000 rpm). The data obtained showed that doubling the rotational speed of the disk results in halving the time span after which the critical intra-pulp temperature increase in maxillary CT is reached. For mandibular CT, the time span even drops by two thirds. The use of standardized hypsodont CT enabled comparative studies of intra-pulp heating during the grinding of occlusal tooth surfaces using different tools and techniques. The anatomical structure of the natural vital hypsodont tooth must be kept in mind, so that the findings of this study do not create a deceptive sense of security with regard to the time-dependent heating of the native pulp.

  14. Intra-pulp temperature increase of equine cheek teeth during treatment with motorized grinding systems: influence of grinding head position and rotational speed

    PubMed Central

    2014-01-01

    Background In equine practice, teeth corrections by means of motorized grinding systems are standard procedure. The heat resulting from that treatment may cause irreparable damage to the dental pulp. It has been shown that a 5.5°C temperature rise may cause severe destruction in pulp cells. Hence, the capability to continuously form secondary dentine is lost, and may lead, due to equine-typical occlusal tooth abrasion, to an opening of the pulp cavity. To obtain reliable data on the intra-pulp increase in temperature during corrective treatments, equine cheek teeth (CT) were modified in a way (occlusal surface smoothed, apical parts detached, pulp horns standardized) that had been qualified in own former published studies. All parameters influencing the grinding process were standardized (force applied, initial temperatures, dimensions of pulp horns, positioning of grinding disk, rotational speed). During grinding experiments, imitating real dental treatments, the time span for an intra-pulp temperature increase of 5.5°C was determined. Results The minimum time recorded for an intra-pulp temperature increase of 5.5°C was 38 s in mandibular CT (buccal grinding, 12,000 rpm) and 70 s in maxillary CT (flat occlusal grinding, 12,000 rpm). The data obtained showed that doubling the rotational speed of the disk results in halving the time span after which the critical intra-pulp temperature increase in maxillary CT is reached. For mandibular CT, the time span even drops by two thirds. Conclusion The use of standardized hypsodont CT enabled comparative studies of intra-pulp heating during the grinding of occlusal tooth surfaces using different tools and techniques. The anatomical structure of the natural vital hypsodont tooth must be kept in mind, so that the findings of this study do not create a deceptive sense of security with regard to the time-dependent heating of the native pulp. PMID:24559121

  15. IGF-1 and TGF-β stimulate cystine/glutamate exchange activity in dental pulp cells

    PubMed Central

    Pauly, Katherine; Fritz, Kimberly; Furey, Alyssa; Lobner, Doug

    2011-01-01

    Introduction The growth factors IGF-1 and TGF-β are protective to dental pulp cells in culture against the toxicity of the composite materials Durafill VS and Flow Line. Since the toxicity of these materials is mediated by oxidative stress, it seemed possible that the protective effects of IGF-1 and TGF-β were through enhancement of an endogenous antioxidant mechanism. Methods We used cultured dental pulp cells to determine the mechanism of the protective effects of IGF-1 and TGF-β, focusing on the glutathione system and the role of cystine/glutamate exchange (system xc-). Results We found that the toxicity of Durafill VS and Flow Line was attenuated by addition of glutathione monoethylester, suggesting a specific role for the cellular antioxidant glutathione. Supporting this hypothesis we found that IGF-1 and TGF-β were protective against the toxicity of the glutathione synthesis inhibitor buthionine sulfoximine. Since levels of cellular cystine are the limiting factor in the production of glutathione we tested the effects of IGF-1 and TGF-β on cystine uptake. Both growth factors stimulated system xc- mediated cystine uptake. Furthermore, they attenuated the glutathione depletion induced by Durafill VS and Flow Line. Conclusions The results suggest that IGF-1 and TGF-β are protective through the stimulation of system xc- mediated cystine uptake leading to maintenance of cellular glutathione. This novel action of growth factors on dental pulp cells has implications not only for preventing toxicity of dental materials but also for the general function of these cells. PMID:21689549

  16. Regeneration of Corneal Epithelium With Dental Pulp Stem Cells Using a Contact Lens Delivery System.

    PubMed

    Kushnerev, Evgeny; Shawcross, Susan G; Sothirachagan, Shankari; Carley, Fiona; Brahma, Arun; Yates, Julian M; Hillarby, M Chantal

    2016-10-01

    The corneal epithelium is sloughed off surface of the eye by the action of blinking and is continually replaced by division and maturation of the limbal stem cells (LSCs). In the case of injury or disease, LSCs can be lost or damaged to a point at which the corneal epithelial layer is no longer maintained. leading to LSC deficiencies (LSCDs). When this occurs, the opaque conjunctiva overgrows the anterior surface of the eye, leading to vision impairment or loss. Dental pulp stem cells (DPSCs) are promising candidates as autologous LSC substitutes. In this study, contact lenses (CLs) are used as a novel medical device to deliver DPSCs onto corneal surface to enhance corneal epithelium regeneration. Dental pulp stem cells labeled with green fluorescent Qtracker 525 were seeded onto the pretreated CLs, allowed to adhere, then delivered to debrided human corneas. Expression of KRT3, 12, 13, and 19 was investigated by immunostaining, then standard and confocal microscopy. Dental pulp stem cells were successfully isolated, labeled, and delivered to the corneal surface using CLs. Following removal of CLs, confocal microscopy showed that the DPSCs had migrated onto the cornea. Coexpression of KRT12 and green fluorescent Qtracker 525 confirmed that the DPSCs had transdifferentiated into corneal epithelial progenitors. Delimitation of KRT 19 and green fluorescence provides evidence that Qtracker 525-labeled DPSCs establish a barrier to the invasion of the cornea by conjunctiva. In this study we show that DPSCs, delivered using CLs, can be used to enhance repair and regeneration of the human corneal epithelium.

  17. Survival of the Apical Papilla and Its Resident Stem Cells in a Case of Advanced Pulpal Necrosis and Apical Periodontitis.

    PubMed

    Chrepa, Vanessa; Pitcher, Brandon; Henry, Michael A; Diogenes, Anibal

    2017-04-01

    Apical papilla represents a source of an enriched mesenchymal stem cell (MSC) population (stem cells of the apical papilla [SCAPs]) that modulates root development and may participate in regenerative endodontic procedures in immature teeth with pulp necrosis. The characteristics and phenotype of this tissue in the presence of inflammation are largely unknown. The purpose of this study was to characterize a human apical papilla sample that was isolated from an immature tooth with pulp necrosis and apical periodontitis. Inflamed periapical tissue that included part of the apical papilla (apical papilla clinical sample [CS]) was collected from an immature mandibular premolar previously diagnosed with pulp necrosis and apical periodontitis during an apexification procedure. Harvested cells from this tissue (SCAP CS) were compared with inflamed periapical progenitor cells (IPAPCs) and normal SCAP (SCAP-RP89) in flow cytometry and quantitative osteogenesis experiments. Part of the issue was further processed for immunohistochemistry and compared with apical papilla and coronal pulp sections from normal immature teeth as well as inflamed periapical tissues from mature teeth. Similar to SCAP-RP89, 96.6% of the SCAP CS coexpressed the MSC markers CD73, CD90, and CD105, whereas only 66.3% of IPAPCs coexpressed all markers. The SCAP CS showed a significantly greater mineralization potential than both SCAP-RP89 and IPAPCs. Finally, immunohistochemical analysis revealed moderate infiltration of cells expressing the inflammatory markers CD45/68 in the apical papilla CS and prominent CD24, CD105, and von Willebrand factor expression. Under inflammatory conditions, human apical papilla was found moderately inflamed with retained SCAP vitality and stemness and increased osteogenic and angiogenesis potential. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Reversal of the hair loss phenotype by modulating the estradiol-ANGPT2 axis in the mouse model of female pattern hair loss.

    PubMed

    Endo, Yujiro; Obayashi, Yuko; Ono, Tomoji; Serizawa, Tetsushi; Murakoshi, Michiaki; Ohyama, Manabu

    2018-07-01

    Despite high demand for a remedy, the treatment options for female pattern hair loss (FPHL) are limited. FPHL is frequent in postmenopausal women. In ovariectomized (OVX) mice, which lack β-estradiol (E2) and manifest hair loss mimicking FPHL, E2 supplementation has been shown to increase hair density. However, the mechanism by which E2 exhibits its biological activity remains elusive. To identify the downstream targets of E2 in the context of FPHL pathophysiology and discover a potential therapeutic agent for the E2-dependent subtype of FPHL. Human dermal papilla cells (hDPCs) were cultured with E2, and a microarray analysis was performed to identify the genes regulated by E2. Using OVX mice, the identified gene product was intradermally administered and then quantitative image analysis of hair density was conducted. In silico analysis to link E2 and the identified gene was performed. Global gene expression and bioinformatics analyses revealed that the genes associated with the angiopoietin-2 (ANGPT2) pathway were upregulated by E2 in hDPCs. ANGPT2 was significantly downregulated in OVX mice than in sham-operated mice (P < 0.01). Importantly, hair density was higher in OVX mice treated with ANGPT2 than in control mice (P < 0.05). In silico analysis showed DNA sequences with high possibility of estrogen receptor binding in the promoter region of ANGPT2. The E2-ANGPT2 axis is present in hair follicles. ANGPT2 provides a strategy for the management of E2-dependent and postmenopausal subsets of FPHL. Copyright © 2018 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  19. p75 neurotrophin receptor positive dental pulp stem cells: new hope for patients with neurodegenerative disease and neural injury.

    PubMed

    Dai, Jie-wen; Yuan, Hao; Shen, Shun-yao; Lu, Jing-ting; Zhu, Xiao-fang; Yang, Tong; Zhang, Jiang-fei; Shen, Guo-fang

    2013-08-01

    Neurodegenerative diseases and neural injury are 2 of the most feared disorders that afflict humankind by leading to permanent paralysis and loss of sensation. Cell based treatment for these diseases had gained special interest in recent years. Previous studies showed that dental pulp stem cells (DPSCs) could differentiate toward functionally active neurons both in vitro and in vivo, and could promote neuranagenesis through both cell-autonomous and paracrine neuroregenerative activities. Some of these neuroregenerative activities were unique to tooth-derived stem cells and superior to bone marrow stromal cells. However, DPSCs used in most of these studies were mixed and unfractionated dental pulp cells that contain several types of cells, and most were fibroblast cells while just contain a small portion of DPSCs. Thus, there might be weaker ability of neuranagenesis and more side effects from the fibroblast cells that cannot differentiate into neural cells. p75 neurotrophin receptor (p75NTR) positive DPSCs subpopulation was derived from migrating cranial neural crest cells and had been isolated from DPSCs, which had capacity of differentiation into neurons and repairing neural system. In this article, we hypothesize that p75NTR positive DPSCs simultaneously have greater propensity for neuronal differentiation and fewer side effects from fibroblast, and in vivo transptantation of autologous p75NTR positive DPSCs is a novel method for neuranagenesis. This will bring great hope to patients with neurodegenerative disease and neural injury.

  20. A preliminary report on histological outcome of pulpotomy with endodontic biomaterials vs calcium hydroxide

    PubMed Central

    Peimani, Ali; Asgary, Saeed

    2013-01-01

    Objectives The purpose of the study was to evaluate human dental pulp response to pulpotomy with calcium hydroxide (CH), mineral trioxide aggregate (MTA), and calcium enriched mixture (CEM) cement. Materials and Methods A total of nine erupted third molars were randomly assigned to each pulpotomy group. The same clinician performed full pulpotomies and coronal restorations. The patients were followed clinically for six months; the teeth were then extracted and prepared for histological assessments. The samples were blindly assessed by an independent observer for pulp vitality, pulp inflammation, and calcified bridge formation. Results All patients were free of clinical signs/symptoms of pulpal/periradicular diseases during the follow up period. In CH group, one tooth had necrotic radicular pulp; other two teeth in this group had vital uninflamed pulps with complete dentinal bridge formation. In CEM cement and MTA groups all teeth had vital uninflamed radicular pulps. A complete dentinal bridge was formed beneath CEM cement and MTA in all roots. Odontoblast-like cells were present beneath CEM cement and MTA in all samples. Conclusions This study revealed that CEM cement and MTA were reliable endodontic biomaterials in full pulpotomy treatment. In contrast, the human dental pulp response to CH might be unpredictable. PMID:24303358

  1. CCL3 and CXCL12 production in vitro by dental pulp fibroblasts from permanent and deciduous teeth stimulated by Porphyromonas gingivalis LPS

    PubMed Central

    SIPERT, Carla Renata; MORANDINI, Ana Carolina de Faria; MODENA, Karin Cristina da Silva; DIONÍSIO, Thiago José; MACHADO, Maria Aparecida Andrade Moreira; de OLIVEIRA, Sandra Helena Penha; CAMPANELLI, Ana Paula; SANTOS, Carlos Ferreira

    2013-01-01

    Objective: The aim of this study was to compare the production of the chemokines CCL3 and CXCL12 by cultured dental pulp fibroblasts from permanent (PDPF) and deciduous (DDPF) teeth under stimulation by Porphyromonas gingivalis LPS (PgLPS). Material and Methods: Primary culture of fibroblasts from permanent (n=3) and deciduous (n=2) teeth were established using an explant technique. After the fourth passage, fibroblasts were stimulated by increasing concentrations of PgLPS (0 - 10 µg/mL) at 1, 6 and 24 h. The cells were tested for viability through MTT assay, and production of the chemokines CCL3 and CXCL12 was determined through ELISA. Comparisons among samples were performed using One-way ANOVA for MTT assay and Two-way ANOVA for ELISA results. Results: Cell viability was not affected by the antigen after 24 h of stimulation. PgLPS induced the production of CCL3 by dental pulp fibroblasts at similar levels for both permanent and deciduous pulp fibroblasts. Production of CXCL12, however, was significantly higher for PDPF than DDPF at 1 and 6 h. PgLPS, in turn, downregulated the production of CXCL12 by PDPF but not by DDPF. Conclusion: These data suggest that dental pulp fibroblasts from permanent and deciduous teeth may present a differential behavior under PgLPS stimulation. PMID:23739851

  2. Clinical and histological evaluation of thermal injury thresholds in human teeth: a preliminary study.

    PubMed

    Baldissara, P; Catapano, S; Scotti, R

    1997-11-01

    The effect on healthy dental pulp of thermal increases ranging from 8.9 to 14.7 degrees C was evaluated. These temperature increases correspond approximately to those caused by certain restorative procedures, such as tooth preparation with high-speed instruments and the fabrication of direct provisional crowns. Two criteria of evaluation have been used in conjunction, a clinical (symptomatic) and a histological one, to assert with greater precision potential damage to the pulp. The results suggest a low susceptibility of cells to heat, which does not appear to be a major factor of injury, at least in the short term. The main cause of postoperative inflammation or necrosis of the pulp is probably the injury of the dentine, a tissue in direct functional and physiological connection with the pulp.

  3. [Morpho-functional reaction of spleen natural killer cells and macrophages to melatonin administration to the animals kept on different illumination regimens].

    PubMed

    Shatskikh, O A; Luzikova, E M

    2012-01-01

    The aim this investigation was to study the changes in the numbers of spleen CD57+ and CD68+ cells (natural killer cells and macrophages respectively) after melatonin administration to the animals kept on different illumination regimens. The experimental animals were given melatonin in dose of 0.03 mg per day for 2 and 4 weeks under conditions of natural illumination or artificial darkening. Spleen paraffin sections were stained using immunohistochemical methods for detection of CD57+ and CD68+ cells. It was shown that long-term administration of melatonin under conditions of natural illumination had an immunosuppressive effect, that was manifested by the depopulation of the marginal zones, white pulp and all the zones of the red pulp, parenchyma loosening and denudation of the reticular stroma of the organ. However, long-term hormone administration under conditions of artificial darkening had an immunostimulatory effect as evidenced by the increased inflow of immunocompetent cells into the spleen, their migration from the white pulp into the marginal zones and emigration into peripheral blood flow, concomitant with the increase in the number of lymphoid nodules. The number of CD57+ and CD68+ cells was increased in splenic periarterial lymphoid sheaths and decreased in B-dependent zones of the organ.

  4. Enamel Matrix Derivative Promote Primary Human Pulp Cell Differentiation and Mineralization

    PubMed Central

    Riksen, Elisabeth Aurstad; Landin, Maria A.; Reppe, Sjur; Nakamura, Yukio; Lyngstadaas, Ståle Petter; Reseland, Janne E.

    2014-01-01

    Enamel matrix derivative (EMD) has been found to induce reactive dentin formation; however the molecular mechanisms involved are unclear. The effect of EMD (5–50 μg/mL) on primary human pulp cells were compared to untreated cells and cells incubated with 10−8 M dexamethasone (DEX) for 1, 2, 3, 7, and 14 days in culture. Expression analysis using Affymetrix microchips demonstrated that 10 μg/mL EMD regulated several hundred genes and stimulated the gene expression of proteins involved in mesenchymal proliferation and differentiation. Both EMD and DEX enhanced the expression of amelogenin (amel), and the dentinogenic markers dentin sialophosphoprotein (DSSP) and dentin matrix acidic phosphoprotein 1 (DMP1), as well as the osteogenic markers osteocalcin (OC, BGLAP) and collagen type 1 (COL1A1). Whereas, only EMD had effect on alkaline phosphatase (ALP) mRNA expression, the stimulatory effect were verified by enhanced secretion of OC and COL1A from EMD treated cells, and increased ALP activity in cell culture medium after EMD treatment. Increased levels of interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemoattractant proteins (MCP-1) in the cell culture medium were also found. Consequently, the suggested effect of EMD is to promote differentiation of pulp cells and increases the potential for pulpal mineralization to favor reactive dentine formation. PMID:24857913

  5. Biocompatability of compomer restorative systems on nonexposed dental pulps of primate teeth.

    PubMed

    Tarim, B; Hafez, A A; Suzuki, S H; Suzuki, S; Cox, C F

    1997-01-01

    This study evaluated the histologic response of total-etched and nonetched compomer restored cavity preparations. One hundred fifteen class 5 cavity preparations were placed in the teeth of four healthy adult monkeys at 7, 27, and 90 days. A 37% H3PO4 was applied for 10 seconds and rinsed in total-etched preparations. No statistical differences were seen in inflammatory reactions among total-etched or nonetched compomers at 7, 27, and 90 days. There were no statistical differences in inflammatory cell responses among all compomer systems in regard to time intervals. Pulpal responses of compomers were greater than IRM at each time period. Pulp responses were associated with stained bacteria in 32 of 89 compomer teeth. No necrotic pulps were seen in any teeth. Statistical data show a positive correlation (P < 0.05) between bacterial presence and pulpal inflammation. IRM pulps showed no inflammation or bacterial staining. Compomers are biologically compatible with pulp tissues when bacteria are excluded.

  6. Insulin-Like Growth Factor 1 Receptor and p38 Mitogen-Activated Protein Kinase Signals Inversely Regulate Signal Transducer and Activator of Transcription 3 Activity to Control Human Dental Pulp Stem Cell Quiescence, Propagation, and Differentiation

    PubMed Central

    Vandomme, Jerome; Touil, Yasmine; Ostyn, Pauline; Olejnik, Cecile; Flamenco, Pilar; El Machhour, Raja; Segard, Pascaline; Masselot, Bernadette; Bailliez, Yves; Formstecher, Pierre

    2014-01-01

    Dental pulp stem cells (DPSCs) remain quiescent until activated in response to severe dental pulp damage. Once activated, they exit quiescence and enter regenerative odontogenesis, producing reparative dentin. The factors and signaling molecules that control the quiescence/activation and commitment to differentiation of human DPSCs are not known. In this study, we determined that the inhibition of insulin-like growth factor 1 receptor (IGF-1R) and p38 mitogen-activated protein kinase (p38 MAPK) signaling commonly activates DPSCs and promotes their exit from the G0 phase of the cell cycle as well as from the pyronin Ylow stem cell compartment. The inhibition of these two pathways, however, inversely determines DPSC fate. In contrast to p38 MAPK inhibitors, IGF-1R inhibitors enhance dental pulp cell sphere-forming capacity and reduce the cells' colony-forming capacity without inducing cell death. The inverse cellular changes initiated by IGF-1R and p38 MAPK inhibitors were accompanied by inverse changes in the levels of active signal transducer and activator of transcription 3 (STAT3) factor, inactive glycogen synthase kinase 3, and matrix extracellular phosphoglycoprotein, a marker of early odontoblast differentiation. Our data suggest that there is cross talk between the IGF-1R and p38 MAPK signaling pathways in DPSCs and that the signals provided by these pathways converge at STAT3 and inversely regulate its activity to maintain quiescence or to promote self-renewal and differentiation of the cells. We propose a working model that explains the possible interactions between IGF-1R and p38 MAPK at the molecular level and describes the cellular consequences of these interactions. This model may inspire further fundamental study and stimulate research on the clinical applications of DPSC in cellular therapy and tissue regeneration. PMID:24266654

  7. Wnt5a Promotes Inflammatory Responses via Nuclear Factor κB (NF-κB) and Mitogen-activated Protein Kinase (MAPK) Pathways in Human Dental Pulp Cells*

    PubMed Central

    Zhao, Yuan; Wang, Chen-Lin; Li, Rui-Min; Hui, Tian-Qian; Su, Ying-Ying; Yuan, Quan; Zhou, Xue-Dong; Ye, Ling

    2014-01-01

    Wnt5a has been found recently to be involved in inflammation regulation through a mechanism that remains unclear. Immunohistochemical staining of infected human dental pulp and tissue from experimental dental pulpitis in rats showed that Wnt5a levels were increased. In vitro, Wnt5a was increased 8-fold in human dental pulp cells (HDPCs) after TNF-α stimulation compared with control cells. We then investigated the role of Wnt5a in HDPCs. In the presence of TNF-α, Wnt5a further increased the production of cytokines/chemokines, whereas Wnt5a knockdown markedly reduced cytokine/chemokine production induced by TNF-α. In addition, in HDPCs, Wnt5a efficiently induced cytokine/chemokine expression and, in particular, expression of IL-8 (14.5-fold) and CCL2 (25.5-fold), as assessed by a Luminex assay. The cytokine subsets regulated by Wnt5a overlap partially with those induced by TNF-α. However, no TNF-α and IL-1β was detected after Wnt5a treatment. We then found that Wnt5a alone and the supernatants of Wnt5a-treated HDPCs significantly increased macrophage migration, which supports a role for Wnt5a in macrophage recruitment and as an inflammatory mediator in human dental pulp inflammation. Finally, Wnt5a participates in dental pulp inflammation in a MAPK-dependent (p38-, JNK-, and ERK-dependent) and NF-κB-dependent manner. Our data suggest that Wnt5a, as an inflammatory mediator that drives the integration of cytokines and chemokines, acts downstream of TNF-α. PMID:24891513

  8. Simultaneous saccharification and viscosity reduction of cassava pulp using a multi-component starch- and cell-wall degrading enzyme for bioethanol production.

    PubMed

    Poonsrisawat, Aphisit; Paemanee, Atchara; Wanlapatit, Sittichoke; Piyachomkwan, Kuakoon; Eurwilaichitr, Lily; Champreda, Verawat

    2017-10-01

    In this study, an efficient ethanol production process using simultaneous saccharification and viscosity reduction of raw cassava pulp with no prior high temperature pre-gelatinization/liquefaction step was developed using a crude starch- and cell wall-degrading enzyme preparation from Aspergillus aculeatus BCC17849. Proteomic analysis revealed that the enzyme comprised a complex mixture of endo- and exo-acting amylases, cellulases, xylanases, and pectina ses belonging to various glycosyl hydrolase families. Enzymatic hydrolysis efficiency was dependent on the initial solid loading in the reaction. Reduction in mixture viscosity was observed with a rapid decrease in complex viscosity from 3785 to 0.45 Pa s with the enzyme dosage of 2.19 mg/g on a dried weight basis within the first 2 h, which resulted from partial destruction of the plant cell wall fiber and degradation of the released starch granules by the enzymes as shown by scanning electron microscopy. Saccharification of cassava pulp at an initial solid of 16% (w/v) in a bench-scale bioreactor resulted in 736.4 mg glucose/g, which is equivalent to 82.92% glucose yield based on the total starch and glucan in the substrate, after 96 h at 40 °C. Simultaneous saccharification and fermentation of cassava pulp by Saccharomyces cerevisiae with the uncooked enzymatic process led to a final ethanol concentration of 6.98% w/v, equivalent to 96.7% theoretical yield based on the total starch and cellulose content. The results demonstrated potential of the enzyme for low-energy processing of cassava pulp in biofuel industry.

  9. Orthodontic treatment mediates dental pulp microenvironment via IL17A.

    PubMed

    Yu, Wenjing; Zhang, Yueling; Jiang, Chunmiao; He, Wei; Yi, Yating; Wang, Jun

    2016-06-01

    Orthodontic treatment induces dental tissue remodeling; however, dental pulp stem cell (DPSC)-mediated pulp micro-environmental alteration is still largely uncharacterized. In the present study, we identified elevated interleukin-17A (IL17A) in the dental pulp, which induced the osteogenesis of DPSCs after orthodontic force loading. Tooth movement animal models were established in Sprague-Dawley rats, and samples were harvested at 1, 4, 7, 14, and 21 days after orthodontic treatment loading. DPSC self-renewal and differentiation at different time points were examined, as well as the alteration of the microenvironment of dental pulp tissue by histological analysis and the systemic serum IL17A expression level by an ELISA assay. In vitro recombinant IL17A treatment was used to confirm the effect of IL17A on the enhancement of DPSC self-renewal and differentiation. Orthodontic treatment altered the dental pulp microenvironment by activation of the pro-inflammatory cytokine IL17A in vivo. Orthodontic loading significantly promoted the self-renewal and differentiation of DPSCs. Inflammation and elevated IL17A secretion occurred in the dental pulp during orthodontic tooth movement. Moreover, in vitro recombinant IL17A treatment mimicked the enhancement of the self-renewal and differentiation of DPSCs. Orthodontic treatment enhanced the differentiation and self-renewal of DPSCs, mediated by orthodontic-induced inflammation and subsequent elevation of IL17A level in the dental pulp microenvironment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Protective Effect of Adansonia digitata against Isoproterenol-Induced Myocardial Injury in Rats.

    PubMed

    Ghoneim, Mona A M; Hassan, Amal I; Mahmoud, Manal G; Asker, Mohsen S

    2016-01-01

    The baobab fruit (Adansonia digitata) was analyzed for proximate composition, amino acids, and minerals. The fruit pulp was found to be a good source of carbohydrates, proteins, phenols, and substantial quantities of K, Ca, and Mg. Amino acid analyses revealed high glutamic and aspartic acid, but the sulfur amino acids were the most limited. The present study was designed to investigate the role of Adansonia digitata (Baobab fruit pulp) against isoproterenol induced myocardial oxidative stress in experimental rats by demonstrating the changes in tissue cardiac markers, some antioxidant enzymes, interleukin-1 β (IL-1 β), monocyte chemoattractant protein-1(MCP-1), myeloperoxidase (MPO), Collagen-1, galectin-3, and serum corticosterone. The activities of enzymatic antioxidant glutathione peroxidase (GPX) and non-enzymatic antioxidant reduced glutathione (GSH) in the heart tissue; additionally, histopathological examination of the heart was estimated. Male albino rats were randomly divided into four groups of ten animals each. Group I served as normal control animal. Group II animals received isoproterenol (ISP) (85 mg/kg body weight intraperitonealy (i.p.) to develop myocardial injury. Group III were myocardial oxidative animals treated with Baobab fruit pulp (200 µg/rats/day) for 4 weeks. Group IV received Baobab fruit pulp only. The data suggested an isoproterenol increase in levels of cardiac marker enzymes [creatine kinase MB (CK- MB), lactate dehydrogenase (LDH), and aspartate aminotransferase (AST)], IL-1ß, MCP-1, MPO, Collagen, and galectin-3, with concomitant decrease in the activities GPX and GSH in heart tissue as well as corticosterone in serum. Baobab fruit pulp brings all the parameters to near normal level in ISP-induced myocardial infarction in rats. Histopathological examination of heart tissue of ISP-administered model rat showed infiltration of inflammatory cells and congestion in the blood vessels. However, treatment with Baobab fruit pulp (200 µg/rats/day) showed predominantly normal myocardial structure and no inflammatory cell infiltration. It has been concluded that Baobab fruit pulp has cardio protective effect against ISP-induced oxidative stress in rats.

  11. Cellular response of pulp fibroblast to single or multiple photobiomodulation applications

    NASA Astrophysics Data System (ADS)

    Fernandes, Amanda; Lourenço Neto, Natalino; Teixeira Marques, Nadia Carolina; Lourenço Ribeiro Vitor, Luciana; Tavares Oliveira Prado, Mariel; Cardoso Oliveira, Rodrigo; Moreira Machado, Maria Aparecida Andrade; Marchini Oliveira, Thais

    2018-06-01

    This study aimed to evaluate in vitro the effects of single or multiple photobiomodulation (PBM) applications on the viability and proliferation of pulp fibroblasts. Pulp fibroblasts from human deciduous teeth were obtained from a biorepository, plated into 96-well plates, and irradiated according to the experimental groups. At 24 h, 48 h, and 72 h after irradiation, cell viability and proliferation were assessed through MTT and Crystal Violet assays, respectively. The intragroup comparison revealed statistically significant differences for 2.5 J cm‑2 (3×) with increasing viability at 72 h over 48 h (p  =  0.027). The intergroup analysis showed a greater viability of the multiple PBM applications 2.5 J cm‑2 (3×) over the single application 7.5 J cm‑2 (1×) at 72 h. The application of 5 J cm‑2 (1×) exhibited greater proliferation than the application of 7.5 J cm‑2 (1×), 2.5 J cm‑2 (2×) and 2.5 J cm‑2 (3×). Single or multiple PBM applications demonstration different stimulatory effects on pulp fibroblast. The results show that the group submitted to multiple irradiation presented significantly higher cell viability than the groups with single irradiation at 72 h. However, the photobiomodulation therapy with single irradiations was more effective on cell proliferation at 24 h.

  12. Euterpe oleracea pulp extract: Chemical analyses, antibiofilm activity against Staphylococcus aureus, cytotoxicity and interference on the activity of antimicrobial drugs.

    PubMed

    Dias-Souza, Marcus Vinícius; Dos Santos, Renan Martins; Cerávolo, Isabela Penna; Cosenza, Gustavo; Ferreira Marçal, Pedro Henrique; Figueiredo, Flávio Jr Barbosa

    2018-01-01

    Euterpe oleracea (Açaí) fruit are widely consumed at the Brazilian Amazon region, and biological potentials such as immunomodulatory and antioxidant have been described for its extracts. However, its antimicrobial properties remain poorly investigated. Here, the antimicrobial and antibiofilm activities of the methanolic extract of an artisanally-manufactured açaí pulp (MEAP) were evaluated against clinical isolates of Staphylococcus aureus. Besides, MEAP interference on the activity of antimicrobial drugs of clinical relevance was explored, and its cytotoxicity against hepatocellular carcinoma cells (HepG2) was investigated. Biochemical and physicochemical properties of the pulp were investigated, and the presence of polyphenols on the extract was confirmed. For the first time, we report that the methanolic extract of açaí pulp is effective against planktonic cells and biofilms of S. aureus, and also decreased the proliferation of HepG2 cells. Statistically significant synergism was observed when the extract was combined to the tested antimicrobials except for erythromycin, and all biochemical and physicochemical parameters ranged within the accepted values established by the Brazilian legislation. Our data open doors for more studies on the antimicrobial activity of phytomolecules isolated from Euterpe oleracea extracts, and also for its combined use with antimicrobial drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Synthetic Light-Curable Polymeric Materials Provide a Supportive Niche for Dental Pulp Stem Cells.

    PubMed

    Vining, Kyle H; Scherba, Jacob C; Bever, Alaina M; Alexander, Morgan R; Celiz, Adam D; Mooney, David J

    2018-01-01

    Dental disease annually affects billions of patients, and while regenerative dentistry aims to heal dental tissue after injury, existing polymeric restorative materials, or fillings, do not directly participate in the healing process in a bioinstructive manner. There is a need for restorative materials that can support native functions of dental pulp stem cells (DPSCs), which are capable of regenerating dentin. A polymer microarray formed from commercially available monomers to rapidly identify materials that support DPSC adhesion is used. Based on these findings, thiol-ene chemistry is employed to achieve rapid light-curing and minimize residual monomer of the lead materials. Several triacrylate bulk polymers support DPSC adhesion, proliferation, and differentiation in vitro, and exhibit stiffness and tensile strength similar to existing dental materials. Conversely, materials composed of a trimethacrylate monomer or bisphenol A glycidyl methacrylate, which is a monomer standard in dental materials, do not support stem cell adhesion and negatively impact matrix and signaling pathways. Furthermore, thiol-ene polymerized triacrylates are used as permanent filling materials at the dentin-pulp interface in direct contact with irreversibly injured pulp tissue. These novel triacrylate-based biomaterials have potential to enable novel regenerative dental therapies in the clinic by both restoring teeth and providing a supportive niche for DPSCs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Porous microscaffolds for 3D culture of dental pulp mesenchymal stem cells.

    PubMed

    Bhuptani, Ronak S; Patravale, Vandana B

    2016-12-30

    The collective power of stem cells due to their evident advantages is incessantly investigated in regenerative medicine to be the next generation exceptional remedy for tissue regeneration and treatment of diseases. Stem cells are highly sensitive and a 3D culture environment is a requisite for its successful transplantation and integration with tissues. Porous microscaffolds can create a 3D microenvironment for growing stems cells, controlling their fate both in vitro and in vivo. In the present study, interconnected porous PLGA microscaffolds were fabricated, characterized and employed to propagate human dental pulp mesenchymal stem cells (DPMSCs) in vitro. The porous topography was investigated by scanning electron microscopy and the pore size was controlled by fabrication conditions such as the concentration of porogen. DPMSCs were cultured on microscaffolds and were evaluated for their morphology, attachment, proliferation, cell viability via MTT and molecular expression (RT-PCR). DPMSCs were adequately proliferated and adhered over the microscaffolds forming a 3D cell-microscaffold construct. The average number of DPMSCs grown on PLGA microscaffolds was significantly higher than monolayer 2D culture during 5th and 7th day. Moreover, cell viability and gene expression results together corroborated that microscaffolds maintained the viability, stemness and plasticity of the cultured dental pulp mesenchymal stem cells. The novel porous microscaffold developed acts as promising scaffold for 3D culture and survival and transplantation of stem cells for tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Pulp tissue in sex determination: A fluorescent microscopic study

    PubMed Central

    Nayar, Amit; Singh, Harkanwal Preet; Leekha, Swati

    2014-01-01

    Aims: To determine and compare the reliability of pulp tissue in determination of sex and to analyze whether caries have any effect on fluorescent body test. Materials and Methods: This study was carried on 50 maxillary and mandibular teeth (25 male teeth and 25 female teeth), which were indicated for extraction. The teeth are categorized into 5 groups, 10 each (5 from males and 5 from females) on the basis of caries progression. The pulp cells are stained with quinacrine hydrochloride and observed with fluorescent microscope for fluorescent body. Gender is determined by identification of Y chromosome fluorescence in dental pulp. Results: Fluorescent bodies were found to be more in sound teeth in males as the caries increase the mean percentage of fluorescent bodies observed decreases in males. We also observed the fluorescent spots in females, and the value of the spot increases in female as the caries progresses, thereby giving false positive results in females. Conclusion: Sex determination by fluorescent staining of the Y chromosome is a reliable technique in teeth with healthy pulps or caries with enamel or up to half way of dentin. Teeth with caries involving pulp cannot be used for sex determination. PMID:25125912

  16. Bioceramic/poly (glycolic)-poly (lactic acid) composite induces mineralized barrier after direct capping of rat tooth pulp tissue.

    PubMed

    Gala-Garcia, Alfonso; Teixeira, Karina Imaculada Rosa; Wykrota, Francisco Henrique Lana; Sinisterra, Rubén Dario; Cortés, Maria Esperanza

    2010-01-01

    The aim of this study was to observe the histopathological pulp response following direct pulp capping of mechanically exposed teeth in rats with a composite of beta-tricalcium phosphate-hydroxyapatite bioceramic (BC) and poly (glycolic)-poly (lactic acid) (PLGA) material or a calcium hydroxide [Ca(OH)2] material, compared to BC alone and a negative control of water. Pulp of the maxillary molars was exposed, followed by capping with the experimental material. The pulpal tissue response was assessed post-operatively at 1, 7, 14 and 30 d, followed by histological analysis. The Ca(OH)2 group exhibited severe acute inflammatory cell infiltration at day 14. However after 30 d, a new hard tissue with macro porous obliteration of the pulp chamber and a characteristic necrotic area had appeared. BC and Ca(OH)2 capping were associated with moderate inflammation and dentinal bridge similar. Meanwhile, in the BC/PLGA composite group, there was moderate inflammatory infiltrate and formation of a dense and complete dentinal bridge. In conclusion, the BC/PLGA composite material showed a large zone of tertiary dentin, and effectively reorganized the dentin-pulp complex.

  17. Omega 3 Fatty Acids Reduce Bone Resorption While Promoting Bone Generation in Rat Apical Periodontitis.

    PubMed

    Azuma, Mariane Maffei; Gomes-Filho, João Eduardo; Ervolino, Edilson; Pipa, Camila Barbosa; Cardoso, Carolina de Barros Morais; Andrada, Ana Cristina; Kawai, Toshihisa; Cintra, Luciano Tavares Angelo

    2017-06-01

    This study evaluated the effects of the dietary supplement omega 3 polyunsaturated fatty acids (ω-3 PUFAs) on pulp exposure-induced apical periodontitis (AP) in rats. Twenty-eight male rats were divided into groups: control untreated rats (C), control rats treated with ω-3 PUFAs alone (C-O), rats with pulp exposure-induced AP, and rats with pulp exposure-induced AP treated with ω-3 PUFAs (AP-O). The ω-3 PUFAs were administered orally, once a day, for 15 days before pulp exposure and, subsequently, 30 days after pulp exposure. Rats were killed 30 days after pulp exposure, and jaws were subjected to histologic and immunohistochemical analyses. Immunohistochemical analyses were performed to detect tartrate-resistant acid phosphatase-positive osteoclasts and osteocalcin-positive osteoblasts on the bone surface of periapical area. Results were statistically evaluated by using analysis of variance and Tukey honestly significant difference, and P < .05 was considered statistically significant. The bone resorption lesion was significantly larger in the AP group compared with AP-O, C, and C-O groups (P < .05). The level of inflammatory cell infiltration was significantly elevated, and the number of tartrate-resistant acid phosphatase-positive osteoclasts was significantly higher in the periapical lesions of the AP group compared with AP-O, C, and C-O groups (P < .05). The number of osteocalcin-positive osteoblasts was significantly increased in the AP-O group compared with the AP group (P > .05). Supplementation with ω-3 PUFAs not only suppresses bone resorption but also promotes new bone formation in the periapical area of rats with AP in conjunction with downregulation of inflammatory cell infiltration into the lesion. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Highly Efficient In Vitro Reparative Behaviour of Dental Pulp Stem Cells Cultured with Standardised Platelet Lysate Supplementation.

    PubMed

    Marrazzo, Pasquale; Paduano, Francesco; Palmieri, Francesca; Marrelli, Massimo; Tatullo, Marco

    2016-01-01

    Dental pulp is an accessible source of multipotent mesenchymal stromal cells (MSCs). The perspective role of dental pulp stem cells (DPSCs) in regenerative medicine demands an in vitro expansion and in vivo delivery which must deal with the safety issues about animal serum, usually required in cell culture practice. Human platelet lysate (PL) contains autologous growth factors and has been considered as valuable alternative to fetal bovine serum (FBS) in cell cultures. The optimum concentration to be added of such supplement is highly dependent on its preparation whose variability limits comparability of results. By in vitro experiments, we aimed to evaluate a standardised formulation of pooled PL. A low selected concentration of PL (1%) was able to support the growth and maintain the viability of the DPSCs. The use of PL in cell cultures did not impair cell surface signature typically expressed by MSCs and even upregulated the transcription of Sox2. Interestingly, DPSCs cultured in presence of PL exhibited a higher healing rate after injury and are less susceptible to toxicity mediated by exogenous H 2 O 2 than those cultured with FBS. Moreover, PL addition was shown as a suitable option for protocols promoting osteogenic and chondrogenic differentiation of DPSCs. Taken together, our results indicated that PL is a valid substitute of FBS to culture and differentiate DPSCs for clinical-grade use.

  19. Highly Efficient In Vitro Reparative Behaviour of Dental Pulp Stem Cells Cultured with Standardised Platelet Lysate Supplementation

    PubMed Central

    Palmieri, Francesca; Marrelli, Massimo

    2016-01-01

    Dental pulp is an accessible source of multipotent mesenchymal stromal cells (MSCs). The perspective role of dental pulp stem cells (DPSCs) in regenerative medicine demands an in vitro expansion and in vivo delivery which must deal with the safety issues about animal serum, usually required in cell culture practice. Human platelet lysate (PL) contains autologous growth factors and has been considered as valuable alternative to fetal bovine serum (FBS) in cell cultures. The optimum concentration to be added of such supplement is highly dependent on its preparation whose variability limits comparability of results. By in vitro experiments, we aimed to evaluate a standardised formulation of pooled PL. A low selected concentration of PL (1%) was able to support the growth and maintain the viability of the DPSCs. The use of PL in cell cultures did not impair cell surface signature typically expressed by MSCs and even upregulated the transcription of Sox2. Interestingly, DPSCs cultured in presence of PL exhibited a higher healing rate after injury and are less susceptible to toxicity mediated by exogenous H2O2 than those cultured with FBS. Moreover, PL addition was shown as a suitable option for protocols promoting osteogenic and chondrogenic differentiation of DPSCs. Taken together, our results indicated that PL is a valid substitute of FBS to culture and differentiate DPSCs for clinical-grade use. PMID:27774106

  20. Biological Characteristics of Fluorescent Superparamagnetic Iron Oxide Labeled Human Dental Pulp Stem Cells

    PubMed Central

    Li, Ming-wei; Bai, Yu; Guo, Hui-hui

    2017-01-01

    Tracking transplanted stem cells is necessary to clarify cellular properties and improve transplantation success. In this study, we investigate the effects of fluorescent superparamagnetic iron oxide particles (SPIO) (Molday ION Rhodamine-B™, MIRB) on biological properties of human dental pulp stem cells (hDPSCs) and monitor hDPSCs in vitro and in vivo using magnetic resonance imaging (MRI). Morphological analysis showed that intracellular MIRB particles were distributed in the cytoplasm surrounding the nuclei of hDPSCs. 12.5–100 μg/mL MIRB all resulted in 100% labeling efficiency. MTT showed that 12.5–50 μg/mL MIRB could promote cell proliferation and MIRB over 100 μg/mL exhibited toxic effect on hDPSCs. In vitro MRI showed that 1 × 106 cells labeled with various concentrations of MIRB (12.5–100 μg/mL) could be visualized. In vivo MRI showed that transplanted cells could be clearly visualized up to 60 days after transplantation. These results suggest that 12.5–50 μg/mL MIRB is a safe range for labeling hDPSCs. MIRB labeled hDPSCs cell can be visualized by MRI in vitro and in vivo. These data demonstrate that MIRB is a promising candidate for hDPSCs tracking in hDPSCs based dental pulp regeneration therapy. PMID:28298928

  1. Evaluation of a Commercially Available Hyaluronic Acid Hydrogel (Restylane) as Injectable Scaffold for Dental Pulp Regeneration: An In Vitro Evaluation.

    PubMed

    Chrepa, Vanessa; Austah, Obadah; Diogenes, Anibal

    2017-02-01

    Regenerative endodontic procedures (REPs) are viable alternatives for treating immature teeth, yet these procedures do not predictably lead to pulp-dentin regeneration. A true bioengineering approach for dental pulp regeneration requires the incorporation of a scaffold conducive with the regeneration of the pulp-dentin complex. Several materials have been proposed as scaffolds for REPs; nonetheless, the majority are not eligible for immediate clinical chairside use. Thus, the aim of this study was to evaluate Restylane, a Food and Drug Administration-approved hyaluronic acid-based gel, as possible scaffold for REPs. Stem cells of the apical papilla (SCAP) were cultured either alone or in mixtures with either Restylane or Matrigel scaffolds. Groups were cultured in basal culture medium for 6, 24, and 72 hours, and cell viability was assessed. For the mineralizing differentiation experiments, groups were cultured in differentiation medium either for 7 days and processed for alkaline phosphatase activity or for 14 days and processed for gene expression by using quantitative reverse-transcription polymerase chain reaction. SCAP in basal medium served as control. Cell encapsulation in either Restylane or Matrigel demonstrated reduced cell viability compared with control. Nonetheless, cell viability significantly increased in the Restylane group in the course of 3 days, whereas it decreased significantly in the Matrigel group. Restylane promoted significantly greater alkaline phosphatase activity and upregulation of dentin sialophosphoprotein, dentin matrix acidic phosphoprotein-1, and matrix extracellular phosphoglycoprotein, compared with control. A Food and Drug Administration-approved hyaluronic acid-based injectable gel promoted SCAP survival, mineralization, and differentiation into an odontoblastic phenotype and may be a promising scaffold material for REPs. Published by Elsevier Inc.

  2. Redefining the potential applications of dental stem cells: An asset for future

    PubMed Central

    Rai, Shalu; Kaur, Mandeep; Kaur, Sandeep; Arora, Sapna Panjwani

    2012-01-01

    Recent exciting discoveries isolated dental stem cells from the pulp of the primary and permanent teeth, from the periodontal ligament, and from associated healthy tissues. Dental pulp stem cells (DPSCs) represent a kind of adult cell colony which has the potent capacity of self-renewing and multilineage differentiation. Stem cell-based tooth engineering is deemed as a promising approach to the making of a biological tooth (bio-tooth) or engineering of functional tooth structures. Dental professionals have the opportunity to make their patients aware of these new sources of stem cells that can be stored for future use as new therapies are developed for a range of diseases and injuries. The aim of this article is to review and understand how dental stem cells are being used for regeneration of oral and conversely nonoral tissues. A brief review on banking is also done for storing of these valuable stem cells for future use. PMID:23716933

  3. Lanthanum Element Induced Imbalance of Mineral Nutrients, HSP 70 Production and DNA-Protein Crosslink, Leading to Hormetic Response of Cell Cycle Progression in Root Tips of Vicia faba L. seedlings

    PubMed Central

    Wang, Chengrun; Shi, Cuie; Liu, Ling; Wang, Chen; Qiao, Wei; Gu, Zhimang; Wang, Xiaorong

    2011-01-01

    The effects and mechanisms of rare earth elements on plant growth have not been extensively characterized. In the current study, Vicia faba L. seedlings were cultivated in lanthanum (La)-containing solutions for 10 days to investigate the possible effects and mechanisms of La on cell proliferation and root lengthening in roots. The results showed that increasing La levels resulted in abnormal calcium (Ca), Ferrum (Fe) or Potassium (K) contents in the roots. Flow cytometry analysis revealed G1/S and S/G2 arrests in response to La treatments in the root tips. Heat shock protein 70 (HSP 70) production showed a U-shaped dose response to increasing La levels. Consistent with its role in cell cycle regulation, HSP 70 fluctuated in parallel with the S-phase ratios and proliferation index. Furthermore, DNA-protein crosslinks (DPCs) enhanced at higher La concentrations, perhaps involved in blocking cell progression. Taken together, these data provide important insights into the hormetic effects and mechanisms of REE(s) on plant cell proliferation and growth. PMID:22423233

  4. Stem cell research: applicability in dentistry.

    PubMed

    Mathur, Shivani; Chopra, Rahul; Pandit, I K; Srivastava, Nikhil; Gugnani, Neeraj

    2014-01-01

    In the face of extraordinary advances in the prevention, diagnosis, and treatment of human diseases, the inability of most tissues and organs to repair and regenerate after damage is a problem that needs to be solved. Stem cell research is being pursued in the hope of achieving major medical breakthroughs. Scientists are striving to create therapies that rebuild or replace damaged cells with tissues grown from stem cells that will offer hope to people suffering from various ailments. Regeneration of damaged periodontal tissue, bone, pulp, and dentin is a problem that dentists face today. Stem cells present in dental pulp, periodontal ligament, and alveolar bone marrow have the potential to repair and regenerate teeth and periodontal structures. These stem cells can be harvested from dental pulp, periodontal ligament, and/or alveolar bone marrow; expanded; embedded in an appropriate scaffold; and transplanted back into a defect to regenerate bone and tooth structures. These cells have the potential to regenerate dentin, periodontal ligament, and cementum and can also be used to restore bone defects. The kind of scaffold, the source of cells, the type of in vitro culturing, and the type of surgical procedure to be used all require careful consideration. The endeavor is clearly multidisciplinary in nature, and the practicing dental surgeon has a critical role in it. Playing this role in the most effective way requires awareness of the huge potential associated with the use of stem cells in a clinical setting, as well as a proper understanding of the related problems.

  5. Human Dental Pulp Stem Cells Suppress Alloantigen-induced Immunity by Stimulating T Cells to Release Transforming Growth Factor Beta.

    PubMed

    Kwack, Kyu Hwan; Lee, Jung Min; Park, Sang Hyuk; Lee, Hyeon Woo

    2017-01-01

    Human dental pulp stem cells (hDPSCs) are ideal candidates for regenerating damaged dental tissue. To examine the possibility that hDPSCs may be used to regenerate pulp, we tested their in vitro effects on acute allogeneic immune responses. A peripheral blood mononuclear cell (PBMC) proliferation assay and immunoglobulin (Ig) production assay were performed to evaluate the immunosuppressive properties of hDPSCs. The mixed lymphocyte reaction was suppressed by incubation with hDPSCs. Transforming growth factor beta (TGF-β) was the major soluble factor responsible for inhibiting the allogeneic proliferation of PBMCs. The production of IgM and IgG by allogeneic activation of responder B lymphocytes was also completely abrogated by TGF-β released from hDPSCs via interferon gamma in response to activation of the responder T lymphocytes. hDPSCs inhibit acute allogeneic immune responses by their release of TGF-β as a result of allogeneic stimulation of T lymphocytes. This study provides an insight into the potential clinical use of hDPSCs for allogeneic transplantation. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. Tooth Tissue Engineering: The Importance of Blood Products as a Supplement in Tissue Culture Medium for Human Pulp Dental Stem Cells.

    PubMed

    Pisciolaro, Ricardo Luiz; Duailibi, Monica Talarico; Novo, Neil Ferreira; Juliano, Yara; Pallos, Debora; Yelick, Pamela Crotty; Vacanti, Joseph Phillip; Ferreira, Lydia Masako; Duailibi, Silvio Eduardo

    2015-11-01

    One of the goals in using cells for tissue engineering (TE) and cell therapy consists of optimizing the medium for cell culture. The present study compares three different blood product supplements for improved cell proliferation and protection against DNA damage in cultured human dental pulp stem cells for tooth TE applications. Human cells from dental pulp were first characterized as adult stem cells (ectomesenchymal mixed origin) by flow cytometry. Next, four different cell culture conditions were tested: I, supplement-free; II, supplemented with fetal bovine serum; III, allogeneic human serum; and IV, autologous human serum. Cultured cells were then characterized for cell proliferation, mineralized nodule formation, and colony-forming units (CFU) capability. After 28 days in culture, the comet assay was performed to assess possible damage in cellular DNA. Our results revealed that Protocol IV achieved higher cell proliferation than Protocol I (p = 0.0112). Protocols II and III resulted in higher cell proliferation than Protocol I, but no statistical differences were found relative to Protocol IV. The comet assay revealed less cell damage in cells cultured using Protocol IV as compared to Protocols II and III. The damage percentage observed on Protocol II was significantly higher than all other protocols. CFUs capability was highest using Protocol IV (p = 0.0018) and III, respectively, and the highest degree of mineralization was observed using Protocol IV as compared to Protocols II and III. Protocol IV resulted in significantly improved cell proliferation, and no cell damage was observed. These results demonstrate that human blood product supplements can be used as feasible supplements for culturing adult human dental stem cells.

  7. Inflammation triggers constitutive activity and agonist-induced negative responses at M(3) muscarinic receptor in dental pulp.

    PubMed

    Sterin-Borda, Leonor; Orman, Betina; De Couto Pita, Alejandra; Borda, Enri

    2011-02-01

    The purpose of this study was to investigate whether the inflammation of rat dental pulp induces the muscarinic acetylcholine receptor (mAChR) constitutive receptor activity. Pulpitis was induced with bacterial lipolysaccharide in rat incisors dental pulp. Saturation assay with [(3)H]-quinuclidinyl benzilate ([(3)H] QNB), competitive binding with different mAChR antagonist subtypes, and nitric oxide synthase (NOS) activity were performed. A drastic change in expression and response to mAChR subtypes was observed in pulpitis. Inflamed pulp expressed high number of M(3) mAChR of high affinity, whereas the M(1) mAChR is the main subtype displayed in normal pulp. Consistent with the identification of the affinity constant (Ki) of M(3) and Ki of M(1) in both pulpitis and in normal pulps are the differences in the subtype functionality of these cells. In pulpitis, pilocarpine (1 × 10(-11) mol/L to 5 × 10(-9) mol/L) exerted an inhibitory action on NOS activity that was blocked by J 104129 fumarate (highest selective affinity to M(3) mAChR). In normal pulps, pilocarpine (1 × 10(-11) mol/L to 5 × 10(-9) mol/L) has no effect. NOS basal activity was 5.9 times as high in pulpitis as in the normal pulp as a result of the activation of inducible NOS. The irreversible pulpitis could induce a mAChR alteration, increasing the high-affinity receptor density and transduction-coupling efficiency of inducible NOS activity, leading to a spontaneously active conformation of the receptor. Pilocarpine acting as an inverse agonist might be useful therapeutically to prevent necrosis and subsequent loss of dental pulp. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Absorption and biological activity of phytochemical-rich extracts from açai (Euterpe oleracea Mart.) pulp and oil in vitro.

    PubMed

    Pacheco-Palencia, Lisbeth A; Talcott, Stephen T; Safe, Stephen; Mertens-Talcott, Susanne

    2008-05-28

    Polyphenolic extracts from various fruits and vegetables have been shown to exert growth inhibitory effects in cell culture studies. Whereas individual polyphenolic compounds have been extensively evaluated, understanding of the biological activity of polyphenolic extracts from natural sources is limited and critical to the understanding of their potential effects on the human body. This study investigated the absorption and antiproliferative effects of phytochemical extracts from acai pulp and a polyphenolic-enriched acai oil obtained from the fruit pulp of the acai berry ( Euterpe oleracea Mart.). Chemical composition, antioxidant properties, and polyphenolic absorption of phytochemical fractions in a Caco-2 monolayer were determined, along with their cytotoxicity in HT-29 human colon adenocarcinoma cells. Standardized extracts were characterized by their predominance of hydroxybenzoic acids, monomeric flavan-3-ols, and procyanidin dimers and trimers. Polyphenolic mixtures (0-12 microg of gallic acid equiv/mL) from both acai pulp and acai oil extracts inhibited cell proliferation by up to 90.7%, which was accompanied by an increase of up to 2.1-fold in reactive oxygen species. Absorption experiments using a Caco-2 intestinal cell monolayer demonstrated that phenolic acids such as p-hydroxybenzoic, vanillic, syringic, and ferulic acids, in the presence of DMSO, were readily transported from the apical to the basolateral side along with monomeric flavanols such as (+)-catechin and (-)-epicatechin. Results from this study provide further evidence for the bioactive properties of acai polyphenolics and offer new insight on their composition and cellular absorption.

  9. Antimicrobial and biological activity of leachate from light curable pulp capping materials.

    PubMed

    Arias-Moliz, Maria Teresa; Farrugia, Cher; Lung, Christie Y K; Wismayer, Pierre Schembri; Camilleri, Josette

    2017-09-01

    Characterization of a number of pulp capping materials and assessment of the leachate for elemental composition, antimicrobial activity and cell proliferation and expression. Three experimental light curable pulp-capping materials, Theracal and Biodentine were characterized by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. The elemental composition of the leachate formed after 24h was assessed by inductively coupled plasma (ICP). The antimicrobial activity of the leachate was determined by the minimum inhibitory concentration (MIC) against multispecies suspensions of Streptococcus mutans ATCC 25175, Streptococcus gordonii ATCC 33478 and Streptococcus sobrinus ATCC 33399. Cell proliferation and cell metabolic function over the material leachate was assessed by an indirect contact test using 3-(4,5 dimethylthiazolyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The hydration behavior of the test materials varied with Biodentine being the most reactive and releasing the highest amount of calcium ions in solution. All materials tested except the unfilled resin exhibited depletion of phosphate ions from the solution indicating interaction of the materials with the media. Regardless the different material characteristics, there was a similar antimicrobial activity and cellular activity. All the materials exhibited no antimicrobial activity and were initially cytotoxic with cell metabolic function improving after 3days. The development of light curable tricalcium silicate-based pulp capping materials is important to improve the bonding to the final resin restoration. Testing of both antimicrobial activity and biological behavior is critical for material development. The experimental light curable materials exhibited promising biological properties but require further development to enhance the antimicrobial characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The in vitro and in vivo influence of 4-META/MMA-TBB resin components on dental pulp tissues.

    PubMed

    Inoue, T; Miyakoshi, S; Shimono, M

    2001-08-01

    The purpose of this study was to qualitate the penetration of the major components of 4-META/MMA-TBB adhesive resin (4-META resin) and to characterize their influence on the in vitro and in vivo wound healing of dental pulp tissues. Fresh 4-META resin was applied to rabbit mesentery; its components penetrated the mesentery to form three of layers, depending on the amounts of monomer components in the tissue. The superficial layer was a soft-tissue hybrid layer (STHL), the intermediate layer contained small particles of polymerized 4-META resin, while the deepest layer contained unpolymerized monomer components including MMA and butanol, which were detected by gas chromatography (GC). To characterize the in vivo effects of the deepest layer, we immersed the pulp tissue in MMA or in 5% 4-META/MMA and autotransplanted it to placement beneath a rabbit kidney capsule. The MMA-immersed pulp was positive for osteocalcin and presented osteodentin formation at 7 days, as did the untreated control pulp tissue. In contrast, the 5% 4-META/MMA-immersed pulp collapsed into the cell-deficient fibrous connective tissue, with slight calcification by 7 days and less osteodentin formation at 14 days. Analysis of these data suggests that MMA does not inhibit osteogenic activity of pulp tissue, while 5% 4-META/MMA does inhibit osteogenic activity to some extent.

  11. Lymphocyte migration in the micro-channel of splenic sheathed capillaries in Chinese soft-shelled turtles, Pelodiscus sinensis.

    PubMed

    Zhang, Qian; Ullah, Shakeeb; Liu, Yi; Yang, Ping; Chen, Bing; Waqas, Yasir; Bao, Huijun; Hu, Lisi; Li, Quanfu; Chen, Qiusheng

    2016-01-01

    The structural characteristics of the splenic sheathed capillary were investigated using light microscopy and transmission electron microscopy (TEM). This study mainly focused on lymphocyte migration to the splenic white pulp via micro-channels in Chinese soft-shelled turtles, Pelodiscus sinensis. The results showed that the sheathed capillaries in the turtle spleen were high endothelial venule (HEV)-like vessels. These capillaries consist of micro-channels that facilitate lymphocyte migration to the splenic white pulp. The micro-channel is a dynamic structure comprising processes of endothelial cells, supporting cells, and ellipsoid-associated cells (EACs), which provides a microenvironment for lymphocyte migration. The pattern of lymphocyte migration in the micro-channel of the turtle spleen includes the following steps: (i) lymphocyte first adheres to the endothelium of the sheathed capillary, passes through the endothelial cells, and traverses through the basement membrane of the sheathed capillary; (ii) it then enters into the ellipsoid combined with supporting cells and EACs; and (iii) lymphocyte migrates from the ellipsoid to the periellipsoidal lymphatic sheath (PELS) via the micro-channel. This study provides morphological evidence for lymphocyte migration in the micro-channels of turtle spleens and also an insight into the mechanism of lymphocyte homing to the splenic white pulp of reptiles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Healthy Dental Pulp Oxygen Saturation Rates in Subjects with Homozygous Sickle Cell Anemia: A Cross-Sectional Study Nested in a Cohort.

    PubMed

    Souza, Soraia de Fátima Carvalho; Thomaz, Erika Bárbara Abreu Fonseca; Costa, Cyrene Piazera Silva

    2017-12-01

    To compare the percentage of arterial oxygen saturation (SpO 2 ) in healthy teeth with confirmed pulp vitality between individuals with sickle cell anemia (HbSS) and normal hemoglobin A (HbAA). This is a cross-sectional study nested within a cohort. Samples (n = 2543) comprised teeth with intact crowns and pulp vitality confirmed by thermal sensitivity tests and no history of caries, periodontal disease, or dental trauma. A total of 728 teeth of 113 individuals with HbSS and 1815 teeth of 246 individuals with HbAA were evaluated. Data analysis was performed using the χ 2 and Mann-Whitney tests and Spearman correlation analysis (α = 0.05). The study groups were comparable in terms of age, race, and sex (P > .05). Subjects with HbSS exhibited lower median SpO 2 levels in the body and upper teeth, excluding canines, than subjects with HbAA (P < .05). There were no significant differences in the evaluated parameters between the 2 groups (P > .05). Compared with individuals with HbAA, those with HbSS exhibited lower SpO 2 in maxillary teeth with confirmed pulp vitality, except in the canines. There was no correlation between SpO 2 levels of the body and dental pulp in individuals with HbSS or HbAA. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Dentine sialoprotein and collagen I expression after experimental pulp capping in humans using emdogain gel.

    PubMed

    Fransson, H; Petersson, K; Davies, J R

    2011-03-01

    To characterize the hard tissue formed in human teeth experimentally pulp capped either with calcium hydroxide or with Emdogain Gel (Biora AB, Malmö, Sweden) - a derivative of enamel matrix (EMD), using two markers for dentine; dentine sialoprotein (DSP) and type 1 collagen (Col I). Affinity-purified rabbit anti-Col I and anti-DSP polyclonal antibodies were used to stain histological sections from nine pairs of contra-lateral premolars that had been experimentally pulp amputated and randomly capped with EMDgel or calcium hydroxide. Twelve weeks after the teeth had been pulp capped, they were extracted, fixed, demineralized and serially sectioned prior to immunohistochemical staining. In the calcium hydroxide treated teeth DSP was seen in the new hard tissue which formed a bridge. DSP was also seen in the newly formed hard tissue in the EMDgel-treated teeth. Proliferated pulp tissue partly filled the space initially occupied by EMDgel and DSP-stained hard tissue was observed alongside exposed dentine surfaces as well as in isolated masses within the proliferated pulp tissue, although the new hard tissue did not cover the pulp exposure. DSP staining was also seen in the cells lining the hard tissue in both groups. Col I staining was seen in the newly formed hard tissue in both groups. The new hard tissue formed after pulp capping with EMDgel or calcium hydroxide contained DSP and Col I, considered to be markers for dentine. Thus, the newly formed hard tissue can be characterized as dentine rather than unspecific hard tissue. © 2010 International Endodontic Journal.

  14. Cytotoxic effects of glass ionomer cements on human dental pulp stem cells correlate with fluoride release.

    PubMed

    Kanjevac, Tatjana; Milovanovic, Marija; Volarevic, Vladislav; Lukic, Miodrag L; Arsenijevic, Nebojsa; Markovic, Dejan; Zdravkovic, Nebojsa; Tesic, Zivoslav; Lukic, Aleksandra

    2012-01-01

    Glass ionomer cements (GICs) are commonly used as restorative materials. Responses to GICs differ among cell types and it is therefore of importance to thoroughly investigate the influence of these restorative materials on pulp stem cells that are potential source for dental tissue regeneration. Eight biomaterials were tested: Fuji I, Fuji II, Fuji VIII, Fuji IX, Fuji Plus, Fuji Triage, Vitrebond and Composit. We compared their cytotoxic activity on human dental pulp stem cells (DPSC) and correlated this activity with the content of Fluoride, Aluminium and Strontium ions in their eluates. Elution samples of biomaterials were prepared in sterile tissue culture medium and the medium was tested for toxicity by an assay of cell survival/proliferation (MTT test) and apoptosis (Annexin V FITC Detection Kit). Concentrations of Fluoride, Aluminium and Strontium ions were tested by appropriate methods in the same eluates. Cell survival ranged between 79.62% (Fuji Triage) to 1.5% (Fuji Plus) and most dead DPSCs were in the stage of late apoptosis. Fluoride release correlated with cytotoxicity of GICs, while Aluminium and Strontium ions, present in significant amount in eluates of tested GICs did not. Fuji Plus, Vitrebond and Fuji VIII, which released fluoride in higher quantities than other GICs, were highly toxic to human DPSCs. Opposite, low levels of released fluoride correlated to low cytotoxic effect of Composit, Fuji I and Fuji Triage.

  15. 3D porous chitosan scaffolds suit survival and neural differentiation of dental pulp stem cells.

    PubMed

    Feng, Xingmei; Lu, Xiaohui; Huang, Dan; Xing, Jing; Feng, Guijuan; Jin, Guohua; Yi, Xin; Li, Liren; Lu, Yuanzhou; Nie, Dekang; Chen, Xiang; Zhang, Lei; Gu, Zhifeng; Zhang, Xinhua

    2014-08-01

    A key aspect of cell replacement therapy in brain injury treatment is construction of a suitable biomaterial scaffold that can effectively carry and transport the therapeutic cells to the target area. In the present study, we created small 3D porous chitosan scaffolds through freeze-drying, and showed that these can support and enhance the differentiation of dental pulp stem cells (DPSCs) to nerve cells in vitro. The DPSCs were collected from the dental pulp of adult human third molars. At a swelling rate of ~84.33 ± 10.92 %, the scaffold displayed high porosity and interconnectivity of pores, as revealed by SEM. Cell counting kit-8 assay established the biocompatibility of the chitosan scaffold, supporting the growth and survival of DPSCs. The successful neural differentiation of DPSCs was assayed by RT-PCR, western blotting, and immunofluorescence. We found that the scaffold-attached DPSCs showed high expression of Nestin that decreased sharply following induction of differentiation. Exposure to the differentiation media also increased the expression of neural molecular markers Microtubule-associated protein 2, glial fibrillary acidic protein, and 2',3'-cyclic nucleotide phosphodiesterase. This study demonstrates that the granular 3D chitosan scaffolds are non-cytotoxic, biocompatible, and provide a conducive and favorable micro-environment for attachment, survival, and neural differentiation of DPSCs. These scaffolds have enormous potential to facilitate future advances in treatment of brain injury.

  16. Isolation of a stable subpopulation of mobilized dental pulp stem cells (MDPSCs) with high proliferation, migration, and regeneration potential is independent of age.

    PubMed

    Horibe, Hiroshi; Murakami, Masashi; Iohara, Koichiro; Hayashi, Yuki; Takeuchi, Norio; Takei, Yoshifumi; Kurita, Kenichi; Nakashima, Misako

    2014-01-01

    Insights into the understanding of the influence of the age of MSCs on their cellular responses and regenerative potential are critical for stem cell therapy in the clinic. We have isolated dental pulp stem cells (DPSCs) subsets based on their migratory response to granulocyte-colony stimulating factor (G-CSF) (MDPSCs) from young and aged donors. The aged MDPSCs were efficiently enriched in stem cells, expressing high levels of trophic factors with high proliferation, migration and anti-apoptotic effects compared to young MDPSCs. In contrast, significant differences in those properties were detected between aged and young colony-derived DPSCs. Unlike DPSCs, MDPSCs showed a small age-dependent increase in senescence-associated β-galactosidase (SA-β-gal) production and senescence markers including p16, p21, Interleukin (IL)-1β, -6, -8, and Groα in long-term culture. There was no difference between aged and young MDPSCs in telomerase activity. The regenerative potential of aged MDPSCs was similar to that of young MDPSCs in an ischemic hindlimb model and an ectopic tooth root model. These results demonstrated that the stem cell properties and the high regenerative potential of MDPSCs are independent of age, demonstrating an immense utility for clinical applications by autologous cell transplantation in dental pulp regeneration and ischemic diseases.

  17. Reducing sugar production of sweet sorghum bagasse kraft pulp

    NASA Astrophysics Data System (ADS)

    Solihat, Nissa Nurfajrin; Fajriutami, Triyani; Adi, Deddy Triyono Nugroho; Fatriasari, Widya; Hermiati, Euis

    2017-01-01

    Kraft pulping of sweet sorghum bagasse (SSB) has been used for effective delignification method for cellulose production. This study was conducted to evaluate the performance pulp kraft of SSB for reducing sugar production. The study intended to investigate the effect of active alkali and sulfidity loading variation of SSB pulp kraft on reducing sugar yield per biomass. The SSB pulp was prepared after pulping using three variations of active alkali (17, 19, and 22%) and sulfidity loading (20, 22, and 24%) at 170°C for 4 h with liquor to wood ratio of 10. A total of 9 pulps were obtained from these pretreatments. Delignification pretreatment has been succesfully removed lignin and hemicellulose more than 90% and 50%, respectively. Increasing active alkali and sulfidity loading has significantly increased lignin removal caused by disruption of the cell wall structure for releasing lignin into black liquor in the cellulose extraction. The enzymatic hydrolysis of pulp was carried out with cellulase loading of 40 FPU per g substrate in the shaking incubator at 50°C and 150 rpm for 78 h. For each 24 h, the reducing sugar yield (DNS assay) has been observed. Even though the lignin and hemicellulose loss occurred along with higher active alkali loading, this condition tends to decrease its yield. The reducing sugar concentration varied between 7-8 g/L. Increasing active alkali and sulfidity was significantly decreased the reducing sugar per biomass. Pulp delignified by 17% active alkali and 20% sulfidity has demonstrated the maximum reducing sugar yield per biomass of 45.57% resulted after 72 h enzymatic hydrolysis. These results indicated that kraft pulping was success to degrade more lignin and hemicellulose content to facilitate the enzyme for breaking down the cellulose into its sugar monomer. A high loss of lignin and hemicellulose are not single factor to improve digestibility of SSB. This sugar has potential for yeast fermented into bioethanol.

  18. Histological transformations of the dental pulp as possible indicator of post mortem interval: a pilot study.

    PubMed

    Carrasco, Patricio A; Brizuela, Claudia I; Rodriguez, Ismael A; Muñoz, Samuel; Godoy, Marianela E; Inostroza, Carolina

    2017-10-01

    The correct estimation of the post mortem interval (PMI) can be crucial on the success of a forensic investigation. Diverse methods have been used to estimate PMI, considering physical changes that occur after death, such as mortis algor, livor mortis, among others. Degradation after death of dental pulp is a complex process that has not yet been studied thoroughly. It has been described that pulp RNA degradation could be an indicator of PMI, however this study is limited to 6 days. The tooth is the hardest organ of the human body, and within is confined dental pulp. The pulp morphology is defined as a lax conjunctive tissue with great sensory innervation, abundant microcirculation and great presence of groups of cell types. The aim of this study is to describe the potential use of pulp post mortem alterations to estimate PMI, using a new methodology that will allow obtainment of pulp tissue to be used for histomorphological analysis. The current study will identify potential histological indicators in dental pulp tissue to estimate PMI in time intervals of 24h, 1 month, 3 months and 6 months. This study used 26 teeth from individuals with known PMI of 24h, 1 month, 3 months or 6 months. All samples were manipulated with the new methodology (Carrasco, P. and Inostroza C. inventors; Universidad de los Andes, assignee. Forensic identification, post mortem interval estimation and cause of death determination by recovery of dental tissue. United State patent US 61/826,558 23.05.2013) to extract pulp tissue without the destruction of the tooth. The dental pulp tissues obtained were fixed in formalin for the subsequent generation of histological sections, stained with Hematoxylin Eosin and Masson's Trichrome. All sections were observed under an optical microscope using magnifications of 10× and 40×. The microscopic analysis of the samples showed a progressive transformation of the cellular components and fibers of dental pulp along PMI. These results allowed creating a chart of qualitative and quantitative parameters to be used on the estimation on PMI based on microscopic degradation of dental pulp. The histological transformations of dental pulp as a function of time can be used as PMI indicators. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Autologous dental pulp stem cells in periodontal regeneration: a case report.

    PubMed

    Aimetti, Mario; Ferrarotti, Francesco; Cricenti, Luca; Mariani, Giulia Maria; Romano, Federica

    2014-01-01

    Histologic findings in animal models suggest that the application of dental pulp stem cells (DPSCs) may promote periodontal regeneration in infrabony defects. This case report describes the clinical and radiographic regenerative potential of autologous DPSCs in the treatment of human noncontained intraosseous defects. A chronic periodontitis patient with one vital third molar requiring extraction was surgically treated. The third molar was extracted and used as an autologous DPSCs source to regenerate the infrabony defect on the mandibular right second premolar. At the 1-year examination, the defect was completely filled with bonelike tissue as confirmed through the reentry procedure.

  20. Manufacture of dissolving pulps from cornstalk by novel method coupling steam explosion and mechanical carding fractionation.

    PubMed

    Wang, Ning; Chen, Hong-Zhang

    2013-07-01

    In order to solve the inhomogeneity of cornstalk as fiber material to manufacture dissolving pulp, a novel method of steam explosion coupling mechanical carding was put forward to fractionate cornstalk long fiber for the production of cornstalk dissolving pulp. The fractionated long fiber had homogeneous structure and low hemicellulose and ash content. The fiber cell content was up to 85% in area, and the hemicellulose and ash content was 8.34% and 1.10% respectively. The α-cellulose content of cornstalk dissolving pulps was up to 93.10-97.10%, the viscosity was 14.37-23.96 mPas, and the yields of cornstalk dissolving pulps were from 10.11% to 12.44%. In addition, the fractionated short fiber was to be hydrolyzed by enzyme to build sugar platform. The constructed method of steam explosion coupling mechanical carding achieved the fractionation of cornstalk into long fiber and short fiber cleanly and effectively, and provided a new way for cornstalk integrated refinery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. The effects of human platelet lysate on dental pulp stem cells derived from impacted human third molars.

    PubMed

    Chen, Bo; Sun, Hai-Hua; Wang, Han-Guo; Kong, Hui; Chen, Fa-Ming; Yu, Qing

    2012-07-01

    Human platelet lysate (PL) has been suggested as a substitute for fetal bovine serum (FBS) in the large-scale expansion of dental pulp stem cells (DPSCs). However, the biological effects and the optimal concentrations of PL for the proliferation and differentiation of human DPSCs remain unexplored. We isolated and expanded stem cells from the dental pulp of extracted third molars and evaluated the effects of PL on the cells' proliferative capacity and differentiation potential in vitro and in vivo. Before testing, immunocytochemical staining and flow cytometry-based cell sorting showed that the cells derived from human dental pulp contained mesenchymal stem cell populations. Cells were grown on tissue culture plastic or on hydroxyapatite-tricalcium phosphate (HA/TCP) biomaterials and were incubated with either normal or odontogenic/osteogenic media in the presence or absence of various concentrations of human PL for further investigation. The proliferation of DPSCs was significantly increased when the cells were cultured in 5% PL under all testing conditions (P < 0.05). However, this enhancement was inconsistent when the cells were cultured in 1% PL or in 10% PL; 10% PL significantly inhibited cell proliferation and was therefore excluded from further differentiation testing. Culture medium containing 5% PL also significantly promoted the mineralized differentiation of DPSCs, as indicated by the measurement of alkaline phosphatase activity and calcium deposition under mineral-conditioned media (P < 0.05). Scanning electron microscopy and modified Ponceau trichrome staining showed that the cells treated with 5% PL and mineralizing media were highly capable of integrating with the HA/TCP biomaterials and had fully covered the surface of the scaffold with an extensive sheet-like structure 14 d after seeding. In addition, 5% PL showed significantly positive effects on tissue regeneration in two in vivo transplantation models. We conclude that the appropriate concentration of PL enhances the proliferation and mineralized differentiation of human DPSCs both in vitro and in vivo, which supports the use of PL as an alternative to FBS or a nonzoonotic adjuvant for cell culture in future clinical trials. However, the elucidation of the molecular complexity of PL products and the identification of both the essential growth factors that determine the fate of a specific stem cell and the criteria to establish dosing require further investigation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Differences of isolated dental stem cells dependent on donor age and consequences for autologous tooth replacement.

    PubMed

    Kellner, Manuela; Steindorff, Marina M; Strempel, Jürgen F; Winkel, Andreas; Kühnel, Mark P; Stiesch, Meike

    2014-06-01

    Autologous therapy via stem cell-based tissue regeneration is an aim to rebuild natural teeth. One option is the use of adult stem cells from the dental pulp (DPSCs), which have been shown to differentiate into several types of tissue in vitro and in vivo, especially into tooth-like structures. DPSCs are mainly isolated from the dental pulp of third molars routinely extracted for orthodontic reasons. Due to the extraction of third molars at various phases of life, DPSCs are isolated at different developmental stages of the tooth. The present study addressed the question whether DPSCs from patients of different ages were similar in their growth characteristics with respect to the stage of tooth development. Therefore DPSCs from third molars of 12-30 year-old patients were extracted, and growth characteristics, e.g. doubling time and maximal cell division potential were analysed. In addition, pulp and hard dental material weight were recorded. Irrespective of the age of patients almost all isolated cells reached 40-60 generations with no correlation between maximal cell division potential and patient age. Cells from patients <22 years showed a significantly faster doubling time than the cells from patients ≥22 years. The age of patients at the time of stem cell isolation is not a crucial factor concerning maximal cell division potential, but does have an impact on the doubling time. However, differences in individuals regarding growth characteristics were more pronounced than age-dependent differences. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Influence of adhesive restorations on diffusion of H2O2 released from a bleaching agent and its toxic effects on pulp cells.

    PubMed

    Soares, Diana Gabriela; Pastana, Júlia Vieira; de Oliveira Duque, Carla Caroline; Dias Ribeiro, Ana Paula; Basso, Fernanda Gonçalves; Hebling, Josimeri; de Souza Costa, Carlos Alberto

    2014-04-01

    To assess the influence of adhesive restorations on hydrogen peroxide (H2O2) diffusion through enamel and dentin and its cytotoxicity to pulp (MDPC-23) cells. Sound and resin-restored enamel/dentin disks were stored in water for 24 h or 6 months and adapted to artificial pulp chambers. Bleaching gels with 20% or 35% H2O2 were applied to the enamel surface for 45 min, and a culture medium in direct contact with the dentin surface (extract) was applied for 1 h to the MDPC-23 cells. Cell metabolism (MTT assay) and cell morphology (SEM) were assessed. The amount of H2O2 in the extracts was also quantified (peroxidase/leuco-crystal violet reaction). A significant reduction in cell metabolism was observed between the group bleached with the 35% gel and the control group (sound, nonbleached) (p < 0.05). The H2O2 diffusion was directly related to its concentration in the bleaching gel. The variables "presence of restoration" and "time of water storage" did not significantly influence H2O2 diffusion or cell metabolism for either of the bleaching gels (p > 0.05). All bleached groups presented alterations in cell morphology related to the concentration of H2O2 in the bleaching gel. The reduction in cell metabolism and the changes in cell morphology were H2O2-concentration dependent, having no relationship with the presence of either new or aged adhesive restorations on teeth subjected to bleaching therapies.

  4. Enamel tissue engineering using subcultured enamel organ epithelial cells in combination with dental pulp cells.

    PubMed

    Honda, Masaki J; Shinmura, Yuka; Shinohara, Yoshinori

    2009-01-01

    We describe a strategy for the in vitro engineering of enamel tissue using a novel technique for culturing enamel organ epithelial (EOE) cells isolated from the enamel organ using 3T3-J2 cells as a feeder layer. These subcultured EOE cells retain the capacity to produce enamel structures over a period of extended culture. In brief, enamel organs from 6-month-old porcine third molars were dissociated into single cells and subcultured on 3T3-J2 feeder cell layers. These subcultured EOE cells were then seeded onto a collagen sponge in combination with primary dental pulp cells isolated at an early stage of crown formation, and these constructs were transplanted into athymic rats. After 4 weeks, complex enamel-dentin structures were detected in the implants. These results show that our culture technique maintained ameloblast lineage cells that were able to produce enamel in vivo. This novel subculture technique provides an important tool for tooth tissue engineering. Copyright 2008 S. Karger AG, Basel.

  5. Unique proliferation response in odontoblastic cells derived from human skeletal muscle stem cells by cytokine-induced matrix metalloproteinase-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozeki, Nobuaki; Hase, Naoko; Kawai, Rie

    A pro-inflammatory cytokine mixture (CM: interleukin (IL)-1β, tumor necrosis factor-α and interferon-γ) and IL-1β-induced matrix metalloproteinase (MMP)-3 activity have been shown to increase the proliferation of rat dental pulp cells and murine stem cell-derived odontoblast-like cells. This suggests that MMP-3 may regulate wound healing and regeneration in the odontoblast-rich dental pulp. Here, we determined whether these results can be extrapolated to human dental pulp by investigating the effects of CM-induced MMP-3 up-regulation on the proliferation and apoptosis of purified odontoblast-like cells derived from human skeletal muscle stem cells. We used siRNA to specifically reduce MMP-3 expression. We found that CMmore » treatment increased MMP-3 mRNA and protein levels as well as MMP-3 activity. Cell proliferation was also markedly increased, with no changes in apoptosis, upon treatment with CM and following the application of exogenous MMP-3. Endogenous tissue inhibitors of metalloproteinases were constitutively expressed during all experiments and unaffected by MMP-3. Although treatment with MMP-3 siRNA suppressed cell proliferation, it also unexpectedly increased apoptosis. This siRNA-mediated increase in apoptosis could be reversed by exogenous MMP-3. These results demonstrate that cytokine-induced MMP-3 activity regulates cell proliferation and suppresses apoptosis in human odontoblast-like cells. - Highlights: • Pro-inflammatory cytokines induce MMP-3 activity in human odontoblast-like cells. • Increased MMP-3 activity can promote cell proliferation in odontoblasts. • Specific loss of MMP-3 increases apoptosis in odontoblasts. • MMP-3 has potential as a promising new target for pupal repair and regeneration.« less

  6. Effect of fluoride-treated enamel on indirect cytotoxicity of a 16% carbamide peroxide bleaching gel to pulp cells.

    PubMed

    Soares, Diana Gabriela; Ribeiro, Ana Paula Dias; Lima, Adriano Fonseca; Sacono, Nancy Tomoko; Hebling, Josimeri; de Souza Costa, Carlos Alberto

    2013-01-01

    The aim of this study was to evaluate the possibility of fluoride solutions applied to enamel to protect pulp cells against the trans-enamel and transdentinal cytotoxicity of a 16% carbamide peroxide (CP) bleaching gel. The CP gel was applied to enamel/dentin discs adapted to aicial pulp chambers (8 h/day) during 1, 7 or 14 days, followed by fluoride (0.05% or 0.2%) application for 1 min. The extracts (culture medium in contact with dentin) were applied to MDPC-23 cells for 1 h, and cell metabolism (MTT assay), alkaline phosphatase (ALP) activity and cell membrane damage (flow cytometry) were analyzed. Knoop microhardness of enamel was also evaluated. Data were analyzed statistically by ANOVA and Kruskal-Wallis tests (α=0.05). For the MTT assay and ALP activity, significant reductions between the control and the bleached groups were observed (p<0.05). No statistically significant difference occurred among bleached groups (p>0.05), regardless of fluoride application or treatment days. Flow cytometry analysis demonstrated 30% of cell membrane damage in all bleached groups. After 14 days of treatment, the fluoride-treated enamel presented significantly higher microhardness values than the bleached-only group (p<0.05). It was concluded that, regardless of the increase in enamel hardness due to the application of fluoride solutions, the treated enamel surface did not prevent the toxic effects caused by the 16% CP gel to odontoblast-like cells.

  7. Polymeric vs hydroxyapatite-based scaffolds on dental pulp stem cell proliferation and differentiation

    PubMed Central

    Khojasteh, Arash; Motamedian, Saeed Reza; Rad, Maryam Rezai; Shahriari, Mehrnoosh Hasan; Nadjmi, Nasser

    2015-01-01

    AIM: To evaluate adhesion, proliferation and differentiation of human dental pulp stem cells (hDPSCs) on four commercially available scaffold biomaterials. METHODS: hDPSCs were isolated from human dental pulp tissues of extracted wisdom teeth and established in stem cell growth medium. hDPSCs at passage 3-5 were seeded on four commercially available scaffold biomaterials, SureOss (Allograft), Cerabone (Xenograft), PLLA (Synthetic), and OSTEON II Collagen (Composite), for 7 and 14 d in osteogenic medium. Cell adhesion and morphology to the scaffolds were evaluated by scanning electron microscopy (SEM). Cell proliferation and differentiation into osteogenic lineage were evaluated using DNA counting and alkaline phosphatase (ALP) activity assay, respectively. RESULTS: All scaffold biomaterials except SureOss (Allograft) supported hDPSC adhesion, proliferation and differentiation. hDPSCs seeded on PLLA (Synthetic) scaffold showed the highest cell proliferation and attachment as indicated with both SEM and DNA counting assay. Evaluating the osteogenic differentiation capability of hDPSCs on different scaffold biomaterials with ALP activity assay showed high level of ALP activity on cells cultured on PLLA (Synthetic) and OSTEON II Collagen (Composite) scaffolds. SEM micrographs also showed that in the presence of Cerabone (Xenograft) and OSTEON II Collagen (Composite) scaffolds, the hDPSCs demonstrated the fibroblastic phenotype with several cytoplasmic extension, while the cells on PLLA scaffold showed the osteoblastic-like morphology, round-like shape. CONCLUSION: PLLA scaffold supports adhesion, proliferation and osteogenic differentiation of hDPSCs. Hence, it may be useful in combination with hDPSCs for cell-based reconstructive therapy. PMID:26640621

  8. Dietary supplementation with the polyphenol-rich açaí pulps (Euterpe oleracea Mart. and Euterpe precatoria Mart.) improves cognition in aged rats and attenuates inflammatory signaling in BV-2 microglial cells

    USDA-ARS?s Scientific Manuscript database

    Objectives: The present study was carried out to determine if lyophilized acai fruit pulp (genus, Euterpe), rich in polyphenolics and other bioactive antioxidant and anti-inflammatory phytochemicals, is efficacious in reversing age-related cognitive deficits in aged rats. Methods: The diets of 19-mo...

  9. Enhanced regeneration potential of mobilized dental pulp stem cells from immature teeth.

    PubMed

    Nakayama, H; Iohara, K; Hayashi, Y; Okuwa, Y; Kurita, K; Nakashima, M

    2017-07-01

    We have previously demonstrated that dental pulp stem cells (DPSCs) isolated from mature teeth by granulocyte colony-stimulating factor (G-CSF)-induced mobilization method can enhance angiogenesis/vasculogenesis and improve pulp regeneration when compared with colony-derived DPSCs. However, the efficacy of this method in immature teeth with root-formative stage has never been investigated. Therefore, the aim of this study was to examine the stemness, biological characteristics, and regeneration potential in mobilized DPSCs compared with colony-derived DPSCs from immature teeth. Mobilized DPSCs isolated from immature teeth were compared to colony-derived DPSCs using methods including flow cytometry, migration assays, mRNA expression of angiogenic/neurotrophic factor, and induced differentiation assays. They were also compared in trophic effects of the secretome. Regeneration potential was further compared in an ectopic tooth transplantation model. Mobilized DPSCs had higher migration ability and expressed more angiogenic/neurotrophic factors than DPSCs. The mobilized DPSC secretome produced a higher stimulatory effect on migration, immunomodulation, anti-apoptosis, endothelial differentiation, and neurite extension. In addition, vascularization and pulp regeneration potential were higher in mobilized DPSCs than in DPSCs. G-CSF-induced mobilization method enhances regeneration potential of colony-derived DPSCs from immature teeth. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Investigation of the Maillard Reaction between Polysaccharides and Proteins from Longan Pulp and the Improvement in Activities.

    PubMed

    Han, Miao-Miao; Yi, Yang; Wang, Hong-Xun; Huang, Fei

    2017-06-05

    The purpose of this study was to investigate the Maillard reaction between polysaccharides and proteins from longan pulp and the effects of reaction on their in vitro activities. The polysaccharide-protein mixtures of fresh longan pulp (LPPMs) were co-prepared by an alkali extraction-acid precipitation method. They were then dry-heated under controlled conditions for monitoring the characterization of the Maillard reaction by the measurement of the free amino group content, ultraviolet-visible spectrum, Fourier transform infrared spectrum and molecular weight distribution. All the physicochemical analyses indicated the development of the Maillard reaction between polysaccharides and proteins. The in vitro activity evaluation indicated that the Maillard reaction could effectively enhance the antioxidant, antitumor and immunostimulating activities of LPPMs. The enhancement of 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity and ferric reducing antioxidant power displayed both a positive correlation with the reaction time ( p < 0.05). LPPMs dry-heated for three days obtained relatively strong inhibitory activity against HepG2 cells and SGC7901 cells, as well as strong immunostimulating effects on the nitric oxide production and tumor necrosis factor α secretion of macrophages. Maillard-type intermacromolecular interaction is suggested to be an effective and controllable method for improving the functional activities of polysaccharides and proteins from longan pulp.

  11. Tissue Engineering Considerations in Dental Pulp Regeneration

    PubMed Central

    Nosrat, Ali; Kim, Jong Ryul; Verma, Prashant; S. Chand, Priya

    2014-01-01

    Regenerative endodontic procedure is introduced as a biologically based treatment for immature teeth with pulp necrosis. Successful clinical and radiographic outcomes following regenerative procedures have been reported in landmark case reports. Retrospective studies have shown that this conservative treatment allows for continued root development and increases success and survival rate of the treated teeth compared to other treatment options. Although the goal of treatment is regeneration of a functional pulp tissue, histological analyses show a different outcome. Developing predictable protocols would require the use of key elements for tissue engineering: stem cells, bioactive scaffolds, and growth factors. In this study we will review the evidence based steps and outcomes of regenerative endodontics. PMID:24396373

  12. RAC1 regulate tumor necrosis factor-α-mediated impaired osteogenic differentiation of dental pulp stem cells.

    PubMed

    Feng, Guijuan; Shen, Qijie; Lian, Min; Gu, Zhifeng; Xing, Jing; Lu, Xiaohui; Huang, Dan; Li, Liren; Huang, Shen; Wang, Yi; Zhang, Jinlong; Shi, Jiahai; Zhang, Dongmei; Feng, Xingmei

    2015-09-01

    Human dental pulp contains a rapidly proliferative subpopulation of precursor cells termed dental pulp stem cells (DPSCs) that show self-renewal and multilineage differentiation, including neurogenic, chondrogenic, osteogenic and adipogenic. We previously reported that tomuor necrosis factor-α (TNF-α) (10 ng/mL) triggered osteogenic differentiation of human DPSCs via the nuclear factor-κB (NF-κB) signaling pathway. While previous studies showed that cells treated with TNF-α at higher concentrations showed decreased osteogenic differentiation capability. In this study we analyze the function of TNF-α (100 ng/mL) on osteogenic differentiation of human DPSCs for the first time and identify the underlying molecule mechanisms. Our data revealed that TNF-α with higher concentration significantly reduced mineralization and the expression of bone morphogenetic protein 2 (BMP2), alkaline phosphatase (ALP) and runt-related transcription factor 2 (RUNX2). Further, we revealed that TNF-α could suppress the osteogenic differentiation of DPSCs via increasing the expression of RAC1, which could activate the Wnt/β-catenin signaling pathway and liberate β-catenin to translocate into the nucleus. Genetic silencing of RAC1 expression using siRNA restored osteogenic differentiation of DPSCs. Our findings may provide a potential approach to bone regeneration in inflammatory microenvironments. © 2015 Japanese Society of Developmental Biologists.

  13. Human dental pulp stem cells produce mineralized matrix in 2D and 3D cultures

    PubMed Central

    Riccio, M.; Resca, E.; Maraldi, T.; Pisciotta, A.; Ferrari, A.; Bruzzesi, G.; De Pol, A.

    2010-01-01

    The aim of this study was to characterize the in vitro osteogenic differentiation of dental pulp stem cells (DPSCs) in 2D cultures and 3D biomaterials. DPSCs, separated from dental pulp by enzymatic digestion, and isolated by magnetic cell sorting were differentiated toward osteogenic lineage on 2D surface by using an osteogenic medium. During differentiation process, DPSCs express specific bone proteins like Runx-2, Osx, OPN and OCN with a sequential expression, analogous to those occurring during osteoblast differentiation, and produce extracellular calcium deposits. In order to differentiate cells in a 3D space that mimes the physiological environment, DPSCs were cultured in two distinct bioscaffolds, Matrigel™ and Collagen sponge. With the addition of a third dimension, osteogenic differentiation and mineralized extracellular matrix production significantly improved. In particular, in Matrigel™ DPSCs differentiated with osteoblast/osteocyte characteristics and connected by gap junction, and therefore formed calcified nodules with a 3D intercellular network. Furthermore, DPSCs differentiated in collagen sponge actively secrete human type I collagen micro-fibrils and form calcified matrix containing trabecular-like structures. These neo-formed DPSCs-scaffold devices may be used in regenerative surgical applications in order to resolve pathologies and traumas characterized by critical size bone defects. PMID:21263745

  14. Trichoderma Reesei single cell protein production from rice straw pulp in solid state fermentation

    NASA Astrophysics Data System (ADS)

    Zaki, M.; Said, S. D.

    2018-04-01

    The dependency on fish meal as a major protein source for animal feed can lead toit priceinstability in line with the increasing in meat production and consumption in Indonesia. In order todeal with this problem, an effort to produce an alternative protein sources production is needed. This scenario is possible due to the abundantavailability of agricultural residues such as rice straw whichcould be utilized as substrate for production of single cell proteins as an alternative proteinsource. This work investigated the potential utilization of rice straw pulp and urea mixture as substrate for the production of local Trichoderma reesei single cell protein in solid state fermentation system. Some parameters have been analyzed to evaluate the effect of ratio of rice straw pulp to urea on mixed single cell protein biomass (mixed SCP biomass) composition, such as total crude protein (analyzed by kjedhal method) and lignin content (TAPPI method).The results showed that crude protein content in mixed SCP biomassincreases with the increasing in fermentation time, otherwise it decreases with the increasing insubstrate carbon to nitrogen (C/N) ratio. Residual lignin content in mixed SCP biomass decreases from 7% to 0.63% during fermentationproceeded of 21 days. The highest crude protein content in mixed SCP biomasswas obtained at substrate C/N ratio 20:1 of 25%.

  15. Bioactive Molecule Delivery Systems for Dentin-pulp Tissue Engineering.

    PubMed

    Shrestha, Suja; Kishen, Anil

    2017-05-01

    Regenerative endodontic procedures use bioactive molecules (BMs), which are active signaling molecules that initiate and maintain cell responses and interactions. When applied in a bolus form, they may undergo rapid diffusion and denaturation resulting in failure to induce the desired effects on target cells. The controlled release of BMs from a biomaterial carrier is expected to enhance and accelerate functional tissue engineering during regenerative endodontic procedures. This narrative review presents a comprehensive review of different polymeric BM release strategies with relevance to dentin-pulp engineering. Carrier systems designed to allow the preprogrammed release of BMs in a spatial- and temporal-controlled manner would aid in mimicking the natural wound healing process while overcoming some of the challenges faced in clinical translation of regenerative endodontic procedures. Spatial- and temporal-controlled BM release systems have become an exciting option in dentin-pulp tissue engineering; nonetheless, further validation of this concept and knowledge is required for their potential clinical translation. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. In Vitro and In Vivo Dentinogenic Efficacy of Human Dental Pulp-Derived Cells Induced by Demineralized Dentin Matrix and HA-TCP

    PubMed Central

    Kang, Kyung-Jung; Lee, Min Suk; Moon, Chan-Woong; Lee, Jae-Hoon

    2017-01-01

    Human dental pulp cells have been known to have the stem cell features such as self-renewal and multipotency. These cells are differentiated into hard tissue by addition of proper cytokines and biomaterials. Hydroxyapatite-tricalcium phosphates (HA-TCPs) are essential components of hard tissue and generally used as a biocompatible material in tissue engineering of bone. Demineralized dentin matrix (DDM) has been reported to increase efficiency of bone induction. We compared the efficiencies of osteogenic differentiation and in vivo bone formation of HA-TCP and DDM on human dental pulp stem cells (hDPSCs). DDM contains inorganic components as with HA-TCP, and organic components such as collagen type-1. Due to these components, osteoinduction potential of DDM on hDPSCs was remarkably higher than that of HA-TCP. However, the efficiencies of in vivo bone formation are similar in HA-TCP and DDM. Although osteogenic gene expression and bone formation in immunocompromised nude mice were similar levels in both cases, dentinogenic gene expression level was slightly higher in DDM transplantation than in HA-TCP. All these results suggested that in vivo osteogenic potentials in hDPSCs are induced with both HA-TCP and DDM by osteoconduction and osteoinduction, respectively. In addition, transplantation of hDPSCs/DDM might be more effective for differentiation into dentin. PMID:28761445

  17. Decellularized bone extracellular matrix and human dental pulp stem cells as a construct for bone regeneration.

    PubMed

    Paduano, Francesco; Marrelli, Massimo; Alom, Noura; Amer, Mahetab; White, Lisa J; Shakesheff, Kevin M; Tatullo, Marco

    2017-06-01

    Dental pulp tissue represents a source of mesenchymal stem cells that have a strong differentiation potential towards the osteogenic lineage. The objective of the current study was to examine in vitro osteogenic induction of dental pulp stem cells (DPSCs) cultured on hydrogel scaffolds derived from decellularized bone extracellular matrix (bECM) compared to collagen type I (Col-I), the major component of bone matrix. DPSCs in combination with bECM hydrogels were cultured under three different conditions: basal medium, osteogenic medium and medium supplemented with growth factors (GFs) and cell growth, mineral deposition, gene and protein expression were investigated. The DPSCs/bECM hydrogel constructs cultured in basal medium showed that cells were viable after three weeks and that the expression of runt-related transcription factor 2 (RUNX-2) and bone sialoprotein (BSP) were significantly upregulated in the absence of extra osteogenic inducers compared to Col-I hydrogel scaffolds. In addition, the protein expression levels of BSP and osteocalcin were higher on bECM with respect to Col-I hydrogel scaffolds. Furthermore, DPSCs/bECM hydrogels cultured with osteogenic or GFs supplemented medium displayed a higher upregulation of the osteo-specific markers compared to Col-I hydrogels in identical media. Collectively, our results demonstrate that bECM hydrogels might be considered as suitable scaffolds to support osteogenic differentiation of DPSCs.

  18. In Vitro and In Vivo Dentinogenic Efficacy of Human Dental Pulp-Derived Cells Induced by Demineralized Dentin Matrix and HA-TCP.

    PubMed

    Kang, Kyung-Jung; Lee, Min Suk; Moon, Chan-Woong; Lee, Jae-Hoon; Yang, Hee Seok; Jang, Young-Joo

    2017-01-01

    Human dental pulp cells have been known to have the stem cell features such as self-renewal and multipotency. These cells are differentiated into hard tissue by addition of proper cytokines and biomaterials. Hydroxyapatite-tricalcium phosphates (HA-TCPs) are essential components of hard tissue and generally used as a biocompatible material in tissue engineering of bone. Demineralized dentin matrix (DDM) has been reported to increase efficiency of bone induction. We compared the efficiencies of osteogenic differentiation and in vivo bone formation of HA-TCP and DDM on human dental pulp stem cells (hDPSCs). DDM contains inorganic components as with HA-TCP, and organic components such as collagen type-1. Due to these components, osteoinduction potential of DDM on hDPSCs was remarkably higher than that of HA-TCP. However, the efficiencies of in vivo bone formation are similar in HA-TCP and DDM. Although osteogenic gene expression and bone formation in immunocompromised nude mice were similar levels in both cases, dentinogenic gene expression level was slightly higher in DDM transplantation than in HA-TCP. All these results suggested that in vivo osteogenic potentials in hDPSCs are induced with both HA-TCP and DDM by osteoconduction and osteoinduction, respectively. In addition, transplantation of hDPSCs/DDM might be more effective for differentiation into dentin.

  19. Confocal Raman microscopy to monitor extracellular matrix during dental pulp stem cells differentiation

    NASA Astrophysics Data System (ADS)

    Salehi, Hamideh; Collart-Dutilleul, Pierre-Yves; Gergely, Csilla; Cuisinier, Frédéric J. G.

    2015-07-01

    Regenerative medicine brings promising applications for mesenchymal stem cells, such as dental pulp stem cells (DPSCs). Confocal Raman microscopy, a noninvasive technique, is used to study osteogenic differentiation of DPSCs. Integrated Raman intensities in the 2800 to 3000 cm-1 region (C-H stretching) and the 960 cm-1 peak (ν1 PO43-) were collected (to image cells and phosphate, respectively), and the ratio of two peaks 1660 over 1690 cm-1 (amide I bands) to measure the collagen cross-linking has been calculated. Raman spectra of DPSCs after 21 days differentiation reveal several phosphate peaks: ν1 (first stretching mode) at 960 cm-1, ν2 at 430 cm-1, and ν4 at 585 cm-1 and collagen cross-linking can also be calculated. Confocal Raman microscopy enables monitoring osteogenic differentiation in vitro and can be a credible tool for clinical stem cell based research.

  20. Pulp regeneration in a full-length human tooth root using a hierarchical nanofibrous microsphere system.

    PubMed

    Li, Xiangwei; Ma, Chi; Xie, Xiaohua; Sun, Hongchen; Liu, Xiaohua

    2016-04-15

    While pulp regeneration using tissue engineering strategy has been explored for over a decade, successful regeneration of pulp tissues in a full-length human root with a one-end seal that truly simulates clinical endodontic treatment has not been achieved. To address this challenge, we designed and synthesized a unique hierarchical growth factor-loaded nanofibrous microsphere scaffolding system. In this system, vascular endothelial growth factor (VEGF) binds with heparin and is encapsulated in heparin-conjugated gelatin nanospheres, which are further immobilized in the nanofibers of an injectable poly(l-lactic acid) (PLLA) microsphere. This hierarchical microsphere system not only protects the VEGF from denaturation and degradation, but also provides excellent control of its sustained release. In addition, the nanofibrous PLLA microsphere integrates the extracellular matrix-mimicking architecture with a highly porous injectable form, efficiently accommodating dental pulp stem cells (DPSCs) and supporting their proliferation and pulp tissue formation. Our in vivo study showed the successful regeneration of pulp-like tissues that fulfilled the entire apical and middle thirds and reached the coronal third of the full-length root canal. In addition, a large number of blood vessels were regenerated throughout the canal. For the first time, our work demonstrates the success of pulp tissue regeneration in a full-length root canal, making it a significant step toward regenerative endodontics. The regeneration of pulp tissues in a full-length tooth root canal has been one of the greatest challenges in the field of regenerative endodontics, and one of the biggest barriers for its clinical application. In this study, we developed a unique approach to tackle this challenge, and for the first time, we successfully regenerated living pulp tissues in a full-length root canal, making it a significant step toward regenerative endodontics. This study will make positive scientific impact and interest the broad and multidisciplinary readership in the dental biomaterials and craniofacial tissue engineering community. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Microbicidal and cytotoxic effects of functional water in vitro.

    PubMed

    Gomi, Kazuhiro; Makino, Tomohiko; Suzuki, Shinichi; Hasegawa, Masako; Maeda, Nobuko; Arai, Takashi

    2010-10-01

    Several kinds of functional water are used in the fields of food hygiene and medicine. The purpose of this study was to evaluate both the disinfection and cytotoxic effects of functional water in comparison with commonly used root canal irrigants such as sodium hypochlorite solution and hydrogen peroxide solution. Three kinds of functional water were examined: alkaline electrolysis water (AEW), strong acid electrolyzed water (SAEW), and hypochlorous acid water (HAW). The disinfection effect was studied using Enterococcus faecalis and Candida albicans with or without organic substance. Each kind of functional water was applied to samples, and the colony formation was evaluated. The cytotoxic effect was evaluated by mitogenic assay (MTT) and alkaline phosphatase (ALPase) activity in pulp cells. SAEW and HAW showed microbicidal effects in the presence of organic substance, with an effect almost similar to sodium hypochlorite solution. AEW did not show any microbicidal effect. SAEW, AEW, and HAW at 10- and 1,000-times dilution did not inhibit the MTT assay and ALPase activity. The cytotoxicity of SAEW and HAW against pulp cells was mild compared to that of sodium hypochlorite solution. Functional water like SAEW and HAW have a good microbicidal effect under existing organic substance and are also mild to pulp cells.

  2. A perisinusoidal niche for extramedullary haematopoiesis in the spleen.

    PubMed

    Inra, Christopher N; Zhou, Bo O; Acar, Melih; Murphy, Malea M; Richardson, James; Zhao, Zhiyu; Morrison, Sean J

    2015-11-26

    Haematopoietic stresses mobilize haematopoietic stem cells (HSCs) from the bone marrow to the spleen and induce extramedullary haematopoiesis (EMH). However, the cellular nature of the EMH niche is unknown. Here we assessed the sources of the key niche factors, SCF (also known as KITL) and CXCL12, in the mouse spleen after EMH induction by myeloablation, blood loss, or pregnancy. In each case, Scf was expressed by endothelial cells and Tcf21(+) stromal cells, primarily around sinusoids in the red pulp, while Cxcl12 was expressed by a subset of Tcf21(+) stromal cells. EMH induction markedly expanded the Scf-expressing endothelial cells and stromal cells by inducing proliferation. Most splenic HSCs were adjacent to Tcf21(+) stromal cells in red pulp. Conditional deletion of Scf from spleen endothelial cells, or of Scf or Cxcl12 from Tcf21+ stromal cells, severely reduced spleen EMH and reduced blood cell counts without affecting bone marrow haematopoiesis. Endothelial cells and Tcf21(+) stromal cells thus create a perisinusoidal EMH niche in the spleen, which is necessary for the physiological response to diverse haematopoietic stresses.

  3. Transcriptome comparison of human neurons generated using induced pluripotent stem cells derived from dental pulp and skin fibroblasts.

    PubMed

    Chen, Jian; Lin, Mingyan; Foxe, John J; Pedrosa, Erika; Hrabovsky, Anastasia; Carroll, Reed; Zheng, Deyou; Lachman, Herbert M

    2013-01-01

    Induced pluripotent stem cell (iPSC) technology is providing an opportunity to study neuropsychiatric disorders through the capacity to grow patient-specific neurons in vitro. Skin fibroblasts obtained by biopsy have been the most reliable source of cells for reprogramming. However, using other somatic cells obtained by less invasive means would be ideal, especially in children with autism spectrum disorders (ASD) and other neurodevelopmental conditions. In addition to fibroblasts, iPSCs have been developed from cord blood, lymphocytes, hair keratinocytes, and dental pulp from deciduous teeth. Of these, dental pulp would be a good source for neurodevelopmental disorders in children because obtaining material is non-invasive. We investigated its suitability for disease modeling by carrying out gene expression profiling, using RNA-seq, on differentiated neurons derived from iPSCs made from dental pulp extracted from deciduous teeth (T-iPSCs) and fibroblasts (F-iPSCs). This is the first RNA-seq analysis comparing gene expression profiles in neurons derived from iPSCs made from different somatic cells. For the most part, gene expression profiles were quite similar with only 329 genes showing differential expression at a nominally significant p-value (p<0.05), of which 63 remained significant after correcting for genome-wide analysis (FDR <0.05). The most striking difference was the lower level of expression detected for numerous members of the all four HOX gene families in neurons derived from T-iPSCs. In addition, an increased level of expression was seen for several transcription factors expressed in the developing forebrain (FOXP2, OTX1, and LHX2, for example). Overall, pathway analysis revealed that differentially expressed genes that showed higher levels of expression in neurons derived from T-iPSCs were enriched for genes implicated in schizophrenia (SZ). The findings suggest that neurons derived from T-iPSCs are suitable for disease-modeling neuropsychiatric disorder and may have some advantages over those derived from F-iPSCs.

  4. Priming Dental Pulp Stem Cells With Fibroblast Growth Factor-2 Increases Angiogenesis of Implanted Tissue-Engineered Constructs Through Hepatocyte Growth Factor and Vascular Endothelial Growth Factor Secretion

    PubMed Central

    Gorin, Caroline; Rochefort, Gael Y.; Bascetin, Rumeyza; Ying, Hanru; Lesieur, Julie; Sadoine, Jérémy; Beckouche, Nathan; Berndt, Sarah; Novais, Anita; Lesage, Matthieu; Hosten, Benoit; Vercellino, Laetitia; Merlet, Pascal; Le-Denmat, Dominique; Marchiol, Carmen; Letourneur, Didier; Nicoletti, Antonino; Vital, Sibylle Opsahl; Poliard, Anne; Salmon, Benjamin; Germain, Stéphane

    2016-01-01

    Tissue engineering strategies based on implanting cellularized biomaterials are promising therapeutic approaches for the reconstruction of large tissue defects. A major hurdle for the reliable establishment of such therapeutic approaches is the lack of rapid blood perfusion of the tissue construct to provide oxygen and nutrients. Numerous sources of mesenchymal stem cells (MSCs) displaying angiogenic potential have been characterized in the past years, including the adult dental pulp. Establishment of efficient strategies for improving angiogenesis in tissue constructs is nevertheless still an important challenge. Hypoxia was proposed as a priming treatment owing to its capacity to enhance the angiogenic potential of stem cells through vascular endothelial growth factor (VEGF) release. The present study aimed to characterize additional key factors regulating the angiogenic capacity of such MSCs, namely, dental pulp stem cells derived from deciduous teeth (SHED). We identified fibroblast growth factor-2 (FGF-2) as a potent inducer of the release of VEGF and hepatocyte growth factor (HGF) by SHED. We found that FGF-2 limited hypoxia-induced downregulation of HGF release. Using three-dimensional culture models of angiogenesis, we demonstrated that VEGF and HGF were both responsible for the high angiogenic potential of SHED through direct targeting of endothelial cells. In addition, FGF-2 treatment increased the fraction of Stro-1+/CD146+ progenitor cells. We then applied in vitro FGF-2 priming to SHED before encapsulation in hydrogels and in vivo subcutaneous implantation. Our results showed that FGF-2 priming is more efficient than hypoxia at increasing SHED-induced vascularization compared with nonprimed controls. Altogether, these data demonstrate that FGF-2 priming enhances the angiogenic potential of SHED through the secretion of both HGF and VEGF. Significance The results from the present study show that fibroblast growth factor-2 (FGF-2) priming is more efficient than hypoxia at increasing dental pulp stem cells derived from deciduous teeth (SHED)-induced vascularization compared with nonprimed controls. Together, these data demonstrate that FGF-2 priming enhances the angiogenic potential of SHED through the secretion of both hepatocyte growth factor and vascular endothelial growth factor. PMID:26798059

  5. Decellularized Human Dental Pulp as a Scaffold for Regenerative Endodontics.

    PubMed

    Song, J S; Takimoto, K; Jeon, M; Vadakekalam, J; Ruparel, N B; Diogenes, A

    2017-06-01

    Teeth undergo postnatal organogenesis relatively late in life and only complete full maturation a few years after the crown first erupts in the oral cavity. At this stage, development can be arrested if the tooth organ is damaged by either trauma or caries. Regenerative endodontic procedures (REPs) are a treatment alternative to conventional root canal treatment for immature teeth. These procedures rely on the transfer of apically positioned stem cells, including stem cells of the apical papilla (SCAP), into the root canal system. Although clinical success has been reported for these procedures, the predictability of expected outcomes and the organization of the newly formed tissues are affected by the lack of an available suitable scaffold that mimics the complexity of the dental pulp extracellular matrix (ECM). In this study, we evaluated 3 methods of decellularization of human dental pulp to be used as a potential autograft scaffold. Tooth slices of human healthy extracted third molars were decellularized by 3 different methods. One of the methods generated the maximum observed decellularization with minimal impact on the ECM composition and organization. Furthermore, recellularization of the scaffold supported the proliferation of SCAP throughout the scaffold with differentiation into odontoblast-like cells near the dentinal walls. Thus, this study reports that human dental pulp from healthy extracted teeth can be successfully decellularized, and the resulting scaffold supports the proliferation and differentiation of SCAP. The future application of this form of an autograft in REPs can fulfill a yet unmet need for a suitable scaffold, potentially improving clinical outcomes and ultimately promoting the survival and function of teeth with otherwise poor prognosis.

  6. Use of different extracts of coffee pulp for the production of bioethanol.

    PubMed

    Menezes, Evandro Galvão Tavares; do Carmo, Juliana Ribeiro; Menezes, Aline Galvão Tavares; Alves, José Guilherme Lembi Ferreira; Pimenta, Carlos José; Queiroz, Fabiana

    2013-01-01

    Coffee is one of the most important agricultural products in Brazil. More than 50 % of the coffee fruit is not used for the production of commercial green coffee and is therefore discarded, usually ending up in the environment. The goal of this work was to select an efficient process for obtaining coffee pulp extract and to evaluate the use of this extract in bioethanol production. The effects of heat treatment and trituration on the yield and composition of the extract were investigated by measuring the amounts of reducing sugars, starch, pectin, and phenolic compounds. The extraction process was most efficient at room temperature using grinding followed by pressing. Five different fermentation media were tested: sugarcane juice or molasses diluted with water or with coffee pulp extract and a medium with only coffee pulp extract. Batch fermentations were carried out at 30 °C for 24 h, and samples were taken to obtain measurements of the total reducing sugars, cell count, and ethanol concentration. The addition of coffee pulp extract did not influence the fermentation or yeast viability, and it can thus be mixed with sugarcane juice or molasses for the production of bioethanol, with a yield of approximately 70 g/L.

  7. Pulp response to high fluoride releasing glass ionomer, silver diamine fluoride, and calcium hydroxide used for indirect pulp treatment: An in-vivo comparative study

    PubMed Central

    Korwar, Atish; Sharma, Sidhartha; Logani, Ajay; Shah, Naseem

    2015-01-01

    Aims and Objectives: The study aims at determining pulp response of two high fluoride releasing materials silver diamine fluoride (SDF) and Type VII glass ionomer cement (GIC) when used as indirect pulp treatment (IPT) materials. Materials and Methods: Deep Class V cavities were made on four first premolars indicated for extraction for orthodontic reasons. SDF, Type VII GIC, and calcium hydroxide base are given in three premolars, and one is kept control. Premolars were extracted 6 weeks after the procedure and subjected to histopathological examination to determine the pulp response. The results were analyzed using Chi-square test. Results: No inflammatory changes were observed in any of the groups. Significantly more number of specimens in SDF and Type VII GIC groups showed tertiary dentin deposition (TDD) when compared to control group. No significant difference was seen in TDD when intergroup comparison was made. Odontoblasts were seen as short cuboidal cells with dense basophilic nucleus in SDF and Type VII GIC group. Conclusion: The study demonstrated TDD inducing ability of SDF and Type VII GIC and also established the biocompatibility when used as IPT materials. PMID:26321822

  8. Differentiation potential of STRO-1+ dental pulp stem cells changes during cell passaging.

    PubMed

    Yu, Jinhua; He, Huixia; Tang, Chunbo; Zhang, Guangdong; Li, Yuanfei; Wang, Ruoning; Shi, Junnan; Jin, Yan

    2010-05-08

    Dental pulp stem cells (DPSCs) can be driven into odontoblast, osteoblast, and chondrocyte lineages in different inductive media. However, the differentiation potential of naive DPSCs after serial passaging in the routine culture system has not been fully elucidated. DPSCs were isolated from human/rat dental pulps by the magnetic activated cell sorting based on STRO-1 expression, cultured and passaged in the conventional culture media. The biological features of STRO-1+ DPSCs at the 1st and 9th passages were investigated. During the long-term passage, the proliferation ability of human STRO-1+ DPSCs was downregulated as indicated by the growth kinetics. When compared with STRO-1+ DPSCs at the 1st passage (DPSC-P1), the expression of mature osteoblast-specific genes/proteins (alkaline phosphatase, bone sialoprotein, osterix, and osteopontin), odontoblast-specific gene/protein (dentin sialophosphoprotein and dentin sialoprotein), and chondrocyte-specific gene/protein (type II collagen) was significantly upregulated in human STRO-1+ DPSCs at the 9th passage (DPSC-P9). Furthermore, human DPSC-P9 cells in the mineralization-inducing media presented higher levels of alkaline phosphatase at day 3 and day 7 respectively, and produced more mineralized matrix than DPSC-P9 cells at day 14. In vivo transplantation results showed that rat DPSC-P1 cell pellets developed into dentin, bone and cartilage structures respectively, while DPSC-P9 cells can only generate bone tissues. These findings suggest that STRO-1+ DPSCs consist of several interrelated subpopulations which can spontaneously differentiate into odontoblasts, osteoblasts, and chondrocytes. The differentiation capacity of these DPSCs changes during cell passaging, and DPSCs at the 9th passage restrict their differentiation potential to the osteoblast lineage in vivo.

  9. Histochemistry of nerve fibres double labelled with anti-TRPV2 antibodies and sensory nerve marker AM1-43 in the dental pulp of rat molars.

    PubMed

    Nishikawa, Sumio

    2008-09-01

    AM1-43 can label sensory nerve fibres and sensory neurons. Permeation of non-selective cation channels of the nerve cell membrane is suggested to be the mechanism responsible for labelling. To identify these channels, two candidates, TRPV1 and TRPV2 were examined by immunocytochemistry in the dental pulp and trigeminal ganglion of rats injected with AM1-43. A part of AM1-43-labelled nerve fibres was also positive for anti-TRPV2 antibody but negative for anti-TRPV1 antibody in the dental pulp. In the trigeminal ganglion, a part of the neuron showed both bright AM1-43 labelling and anti-TRPV2 immunolabelling, but neurons double labelled with AM1-43 and TRPV1 were rare. These results suggest that TRPV2 channels, but not TRPV1 channels, contribute to the fluorescent labelling of AM1-43 in the dental pulp.

  10. IFN-γ regulates human dental pulp stem cells behavior via NF-κB and MAPK signaling

    PubMed Central

    He, Xinyao; Jiang, Wenkai; Luo, Zhirong; Qu, Tiejun; Wang, Zhihua; Liu, Ningning; Zhang, Yaqing; Cooper, Paul R.; He, Wenxi

    2017-01-01

    During caries, dental pulp expresses a range of pro-inflammatory cytokines in response to the infectious challenge. Interferon gamma (IFN-γ) is a dimerized soluble cytokine, which is critical for immune responses. Previous study has demonstrated that IFN-γ at relative high concentration (100 ng/mL) treatment improved the impaired dentinogenic and immunosuppressive regulatory functions of disease-derived dental pulp stem cells (DPSCs). However, little is known about the regulatory effects of IFN-γ at relative low concentration on healthy DPSC behavior (including proliferation, migration, and multiple-potential differentiation). Here we demonstrate that IFN-γ at relatively low concentrations (0.5 ng/mL) promoted the proliferation and migration of DPSCs, but abrogated odonto/osteogenic differentiation. Additionally, we identified that NF-κB and MAPK signaling pathways are both involved in the process of IFN-γ-regulated odonto/osteogenic differentiation of DPSCs. DPSCs treated with IFN-γ and supplemented with pyrrolidine dithiocarbamate (PDTC, an NF-κB inhibitor) or SB203580 (a MAPK inhibitor) showed significantly improved potential for odonto/osteogenic differentiation of DPSCs both in vivo and in vitro. These data provide important insight into the regulatory effects of IFN-γ on the biological behavior of DPSCs and indicate a promising therapeutic strategy for dentin/pulp tissue engineering in future endodontic treatment. PMID:28098169

  11. Continuous bio-catalytic conversion of sugar mixture to acetone-butanol-ethanol by immobilized Clostridium acetobutylicum DSM 792.

    PubMed

    Survase, Shrikant A; van Heiningen, Adriaan; Granström, Tom

    2012-03-01

    Continuous production of acetone, n-butanol, and ethanol (ABE) was carried out using immobilized cells of Clostridium acetobutylicum DSM 792 using glucose and sugar mixture as a substrate. Among various lignocellulosic materials screened as a support matrix, coconut fibers and wood pulp fibers were found to be promising in batch experiments. With a motive of promoting wood-based bio-refinery concept, wood pulp was used as a cell holding material. Glucose and sugar mixture (glucose, mannose, galactose, arabinose, and xylose) comparable to lignocellulose hydrolysate was used as a substrate for continuous production of ABE. We report the best solvent productivity among wild-type strains using column reactor. The maximum total solvent concentration of 14.32 g L(-1) was obtained at a dilution rate of 0.22 h(-1) with glucose as a substrate compared to 12.64 g L(-1) at 0.5 h(-1) dilution rate with sugar mixture. The maximum solvent productivity (13.66 g L(-1) h(-1)) was obtained at a dilution rate of 1.9 h(-1) with glucose as a substrate whereas solvent productivity (12.14 g L(-1) h(-1)) was obtained at a dilution rate of 1.5 h(-1) with sugar mixture. The immobilized column reactor with wood pulp can become an efficient technology to be integrated with existing pulp mills to convert them into wood-based bio-refineries.

  12. Basic Fibroblast Growth Factor Regulates Gene and Protein Expression Related to Proliferation, Differentiation, and Matrix Production of Human Dental Pulp Cells.

    PubMed

    Chang, Ya-Ching; Chang, Mei-Chi; Chen, Yi-Jane; Liou, Ji-Uei; Chang, Hsiao-Hua; Huang, Wei-Ling; Liao, Wan-Chuen; Chan, Chiu-Po; Jeng, Po-Yuan; Jeng, Jiiang-Huei

    2017-06-01

    Basic fibroblast growth factor (bFGF) plays differential effects on the proliferation, differentiation, and extracellular matrix turnover in various tissues. However, limited information is known about the effect of bFGF on dental pulp cells. The purposes of this study were to investigate whether bFGF influences the cell differentiation and extracellular matrix turnover of human dental pulp cells (HDPCs) and the related gene and protein expression as well as the role of the mitogen-activated protein kinase (MEK)/extracellular-signal regulated kinase (ERK) signaling pathway. The expression of fibroblast growth factor receptors (FGFRs) in HDPCs was also studied. The expression of FGFR1 and FGFR2 in HDPCs was investigated by reverse-transcription polymerase chain reaction. HDPCs were treated with different concentrations of bFGF. Cell proliferation was evaluated using the 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Cell differentiation was evaluated using alkaline phosphatase (ALP) staining. Changes in messenger expression of cyclin B1 and tissue inhibitor of metalloproteinase (TIMP) 1 were determined by reverse-transcription polymerase chain reaction. Changes in protein expression of cdc2, TIMP-1, TIMP-2, and collagen I were determined by Western blotting. U0126 was used to clarify the role of MEK/ERK signaling. HDPCs expressed both FGFR1 and FGFR2. Cell viability was stimulated by 50-250 ng/mL bFGF. The expression and enzyme activities of ALP were inhibited by 10-500 ng/mL bFGF. At similar concentrations, bFGF stimulates cdc2, cyclin B1, and TIMP-1 messenger RNA and protein expression. bFGF showed little effect on TIMP-2 and partly inhibited collagen I expression of pulp cells. U0126 (a MEK/ERK inhibitor) attenuated the bFGF-induced increase of cyclin B1, cdc2, and TIMP-1. bFGF may be involved in pulpal repair and regeneration by activation of FGFRs to regulate cell growth; stimulate cdc2, cyclin B1, and TIMP-1 expression; and inhibit ALP. These events are partly associated with MEK/ERK signaling. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Cells deficient in the FANC/BRCA pathway are hypersensitive to plasma levels of formaldehyde.

    PubMed

    Ridpath, John R; Nakamura, Ayumi; Tano, Keizo; Luke, April M; Sonoda, Eiichiro; Arakawa, Hiroshi; Buerstedde, Jean-Marie; Gillespie, David A F; Sale, Julian E; Yamazoe, Mitsuyoshi; Bishop, Douglas K; Takata, Minoru; Takeda, Shunichi; Watanabe, Masami; Swenberg, James A; Nakamura, Jun

    2007-12-01

    Formaldehyde is an aliphatic monoaldehyde and is a highly reactive environmental human carcinogen. Whereas humans are continuously exposed to exogenous formaldehyde, this reactive aldehyde is a naturally occurring biological compound that is present in human plasma at concentrations ranging from 13 to 97 micromol/L. It has been well documented that DNA-protein crosslinks (DPC) likely play an important role with regard to the genotoxicity and carcinogenicity of formaldehyde. However, little is known about which DNA damage response pathways are essential for cells to counteract formaldehyde. In the present study, we first assessed the DNA damage response to plasma levels of formaldehyde using chicken DT40 cells with targeted mutations in various DNA repair genes. Here, we show that the hypersensitivity to formaldehyde is detected in DT40 mutants deficient in the BRCA/FANC pathway, homologous recombination, or translesion DNA synthesis. In addition, FANCD2-deficient DT40 cells are hypersensitive to acetaldehyde, but not to acrolein, crotonaldehyde, glyoxal, and methylglyoxal. Human cells deficient in FANCC and FANCG are also hypersensitive to plasma levels of formaldehyde. These results indicate that the BRCA/FANC pathway is essential to counteract DPCs caused by aliphatic monoaldehydes. Based on the results obtained in the present study, we are currently proposing that endogenous formaldehyde might have an effect on highly proliferating cells, such as bone marrow cells, as well as an etiology of cancer in Fanconi anemia patients.

  14. CD34+ cells from dental pulp stem cells with a ZFN-mediated and homology-driven repair-mediated locus-specific knock-in of an artificial β-globin gene.

    PubMed

    Chattong, S; Ruangwattanasuk, O; Yindeedej, W; Setpakdee, A; Manotham, K

    2017-07-01

    In humans, mutations in the β-globin gene (HBB) have two important clinical manifestations: β-thalassemia and sickle cell disease. The progress in genome editing and stem cell research may be relevant to the treatment of β-globin-related diseases. In this work, we employed zinc-finger nuclease (ZFN)-mediated gene integration of synthetic β-globin cDNA into HBB loci, thus correcting almost all β-globin mutations. The integration was achieved in both HEK 293 cells and isolated dental pulp stem cell (DPSCs). We also showed that DPSCs with an artificial gene knock-in were capable of generating stable six-cell clones and were expandable at least 10 8 -fold; therefore, they may serve as a personalized stem cell factory. In addition, transfection with non-integrated pCAG-hOct4 and culturing in a conditioned medium converted the genome-edited DPSCs to CD34 + HSC-like cells. We believe that this approach may be useful for the treatment of β-globin-related diseases, especially the severe form of β-thalassemia.

  15. Odontogenic Differentiation of Human Dental Pulp Stem Cells Stimulated by the Calcium Phosphate Porous Granules

    PubMed Central

    Nam, Sunyoung; Won, Jong-Eun; Kim, Cheol-Hwan; Kim, Hae-Won

    2011-01-01

    Effects of three-dimensional (3D) calcium phosphate (CaP) porous granules on the growth and odontogenic differentiation of human dental pulp stem cells (hDPSCs) were examined for dental tissue engineering. hDPSCs isolated from adult human dental pulps were cultured for 3-4 passages, and populated on porous granules. Cell growth on the culture dish showed an ongoing increase for up to 21 days, whereas the growth on the 3D granules decreased after 14 days. This reduction in proliferative potential on the 3D granules was more conspicuous under the osteogenic medium conditions, indicating that the 3D granules may induce the odontogenic differentiation of hDPSCs. Differentiation behavior on the 3D granules was confirmed by the increased alkaline phosphatase activity, up-regulation of odontoblast-specific genes, including dentin sialophosphoprotein (DSPP) and dentin matrix protein 1 (DMP1) by quantitative polymerase chain reaction, and greater level of dentin sialoprotein synthesis by western blot. Moreover, the cellular mineralization, as assessed by Alizarin red S and calcium quantification, was significantly higher in the 3D CaP granules than in the culture dish. Taken all, the 3D CaP porous granules should be useful for dental tissue engineering in combination with hDPSCs by providing favorable 3D substrate conditions for cell growth and odontogenic development. PMID:21772958

  16. Characterization of the Deoxyguanosine–Lysine Cross-Link of Methylglyoxal

    PubMed Central

    2015-01-01

    Methylglyoxal is a mutagenic bis-electrophile that is produced endogenously from carbohydrate precursors. Methylglyoxal has been reported to induce DNA–protein cross-links (DPCs) in vitro and in cultured cells. Previous work suggests that these cross-links are formed between guanine and either lysine or cysteine side chains. However, the chemical nature of the methylglyoxal induced DPC have not been determined. We have examined the reaction of methylglyoxal, deoxyguanosine (dGuo), and Nα-acetyllysine (AcLys) and determined the structure of the cross-link to be the N2-ethyl-1-carboxamide with the lysine side chain amino group (1). The cross-link was identified by mass spectrometry and the structure confirmed by comparison to a synthetic sample. Further, the cross-link between methylglyoxal, dGuo, and a peptide (AcAVAGKAGAR) was also characterized. The mechanism of cross-link formation is likely to involve an Amadori rearrangement. PMID:24801980

  17. Effects of recombinant dentin sialoprotein in dental pulp cells.

    PubMed

    Lee, S-Y; Kim, S-Y; Park, S-H; Kim, J-J; Jang, J-H; Kim, E-C

    2012-04-01

    Dentin sialophosphoprotein (DSPP) is critical for dentin mineralization. However, the function of dentin sialoprotein (DSP), the cleaved product of DSPP, remains unclear. This study aimed to investigate the signal transduction pathways and effects of recombinant human DSP (rh-DSP) on proliferation, migration, and odontoblastic differentiation in human dental pulp cells (HDPCs). The exogenous addition of rh-DSP enhanced the proliferation and migration of HDPCs in dose- and time-dependent manners. rh-DSP markedly increased ALP activity, calcium nodule formation, and levels of odontoblastic marker mRNA. rh-DSP increased BMP-2 expression and Smad1/5/8 phosphorylation, which was blocked by the BMP antagonist, noggin. Furthermore, rh-DSP phosphorylated extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), Akt, and IκB-α, and induced the nuclear translocation of the NF-κB p65 subunit. Analysis of these data demonstrates a novel signaling function of rh-DSP for the promotion of growth, migration, and differentiation in HDPCS via the BMP/Smad, JNK, ERK, MAPK, and NF-κB signaling pathways, suggesting that rh-DSP may have therapeutic utility in dentin regeneration or dental pulp tissue engineering.

  18. A novel whole tooth-in-jaw-bone culture of rat molars: morphological, immunohistochemical, and laser capture microdissection analysis.

    PubMed

    Chokechanachaisakul, Uraiwan; Kaneko, Tomoatsu; Yamanaka, Yusuke; Okiji, Takashi; Suda, Hideaki

    2012-10-01

    In conventional whole-tooth culture systems, limitation exists regarding maintenance of the vitality of the dental pulp, because this tissue is encased in rigid dentin walls that hinder nutrition supply. We here report a whole tooth-in-jaw-bone culture system of rat mandibular first molars, where transcardiac perfusion with culture medium was carried out before placement of the jaw bone into culture medium, aiming to facilitate longer time preservation of the dental pulp tissue. Following 7 days of culture, the pulp tissues were analyzed by histology and immunohistochemistry to ED2 (antiresident macrophage). ED2-positive macrophages were also analyzed for their Class II MHC, interleukin-6 (IL-6), and p53 mRNA expression levels by means of immune-laser capture microdissection (immune-LCM). Dentin sialophosphoprotein (DSPP) mRNA expression in odontobalstic layer was also examined by LCM. Teeth cultured following saline-perfusion and nonperfusion served as cultured controls. Normal teeth also served as noncultured controls. Histological examination demonstrated that the structure of the pulp tissue was well preserved in the medium-perfused explants in contrast to the cultured control groups. The Class II MHC, IL-6, and p53 mRNA expression levels of ED2-positive cells and DSPP expression levels of odontoblastic layer tissues in the pulp of medium-perfused explants were not significantly different from those in the noncultured normal teeth. In conclusion, the structural integrity and mRNA expression in the pulp were maintained at the in vivo level in the ex vivo whole tooth-in-jaw-bone culture system. The system may lay the foundation for studies aiming at defining further histological and molecular mechanism of the pulp. Copyright © 2012 Wiley Periodicals, Inc.

  19. Gene expression in the pulp of ripening bananas. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of in vitro translation products and cDNA cloning of 25 different ripening-related mRNAs.

    PubMed Central

    Medina-Suárez, R; Manning, K; Fletcher, J; Aked, J; Bird, C R; Seymour, G B

    1997-01-01

    mRNA was extracted from the pulp and peel of preclimacteric (d 0) bananas (Musa AAA group, cv Grand Nain) and those exposed to ethylene gas for 24 h and stored in air alone for a further 1 (d 2) and 4 d (d 5). Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of in vitro translation products from the pulp and peel of these fruits revealed significant up-regulation of numerous transcripts during ripening. The majority of the changes were initiated by d 2, with the level of these messages increasing during the remainder of the ripening period. Pulp tissue from d 2 was used for the construction of a cDNA library. This library was differentially screened for ripening-related clones using cDNA from d-0 and d-2 pulp by a novel microtiter plate method. In the primary screen 250 up- and down-regulated clones were isolated. Of these, 59 differentially expressed clones were obtained from the secondary screen. All of these cDNAs were partially sequenced and grouped into families after database searches. Twenty-five nonredundant groups of pulp clones were identified. These encoded enzymes were involved in ethylene biosynthesis, respiration, starch metabolism, cell wall degradation, and several other key metabolic events. We describe the analysis of these clones and their possible involvement in ripening. PMID:9342865

  20. Effects of fibroblast growth factor-2 on the expression and regulation of chemokines in human dental pulp cells.

    PubMed

    Kim, Young-Suk; Min, Kyung-San; Jeong, Dong-Ho; Jang, Jun-Hyeog; Kim, Hae-Won; Kim, Eun-Cheol

    2010-11-01

    Fibroblast growth factor-2 (FGF-2) participates in both hematopoiesis and osteogenesis; however, the effects of FGF-2 on chemokines during odontoblastic differentiation have not been reported. This study investigated whether human dental pulp cells (HDPCs) treated with FGF-2 could express chemokines during differentiation into odontoblastic cells and sought to identify its underlying mechanism of action. To analyze differentiation, we measured alkaline phosphatase (ALP) activity, calcified nodule formation by alizarin red staining, and marker RNA (mRNA) expression by reverse-transcriptase polymerase chain reaction (RT-PCR). Expression of chemokines, such as interleukin-6 (IL-6), IL-8, monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein-1α (MIP-1α), and MIP-3α, were evaluated by RT-PCR. ALP activity, the mineralization, and mRNA expression for odontoblastic markers were enhanced by FGF-2 in HDPCs. FGF-2 also up-regulated the expression of IL-6, IL-8, MCP-1, MIP-1α, and MIP-3α mRNAs, which were attenuated by inhibitors of p38, ERK1/2 and p38 MAP kinases, protein kinase C, phosphoinositide-3 kinase, and NF-κB. Taken together, these data suggest that FGF-2 plays a role not only as a differentiation inducing factor in the injury repair processes of pulpal tissue but also as a positive regulator of chemokine expression, which may help in tissue engineering and pulp regeneration using HDPCs. However, the fate of odontoblastic or osteoblastic differentiation, effective local delivery for FGF-2, interaction of chemotatic and odontogenic factors, and other limitations will need to be overcome before a major modality for the treatment of pulp disease. Copyright © 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. [In vitro and in vivo effects of mango pulp (Mangifera indica cv. Azucar) in colon carcinogenesis].

    PubMed

    Corrales-Bernal, Andrea; Amparo Urango, Luz; Rojano, Benjamín; Maldonado, Maria Elena

    2014-03-01

    Mango pulp contains ascorbic acid, carotenoids, polyphenols, terpenoids and fiber which are healthy and could protect against colon cancer. The aim of this study was to evaluate the antiproliferative and preventive capacity of an aqueous extract of Mangifera indica cv. Azúcar on a human colon adenocarcinoma cell line (SW480) and in a rodent model of colorectal cancer, respectively. The content of total phenolics, flavonoids and carotenoids were also analyzed in the extract. SW480 cell growth was inhibited in a dose and time dependent manner by 22.3% after a 72h exposure to the extract (200 µg/ mL). Colon carcinogenesis was initiated in Balb/c mice by two intra-peritoneal injections of azoxymethane (AOM) at the third and fourth week of giving mango in drinking water (0.3%, 0.6%, 1.25%). After 10 weeks of treatment, in the colon of mice receiving 0.3% mango, aberrant crypt foci formation was inhibited more than 60% (p=0,05) and the inhibition was dose-dependent when compared with controls receiving water. These results show that mango pulp, a natural food, non toxic, part of human being diet, contains bioactive compounds able to reduce growth of tumor cells and to prevent the appearance of precancerous lesions in colon during carcinogenesis initiation.

  2. A novel three-dimensional scaffold for regenerative endodontics: materials and biological characterizations.

    PubMed

    Bottino, Marco C; Yassen, Ghaeth H; Platt, Jeffrey A; Labban, Nawaf; Windsor, L Jack; Spolnik, Kenneth J; Bressiani, Ana H A

    2015-11-01

    An electrospun nanocomposite fibrous material holds promise as a scaffold, as well as a drug-delivery device to aid in root maturogenesis and the regeneration of the pulp-dentine complex. A novel three-dimensional (3D) nanocomposite scaffold composed of polydioxanone (PDS II®) and halloysite nanotubes (HNTs) was designed and fabricated by electrospinning. Morphology, structure, mechanical properties and cell compatibility studies were carried out to evaluate the effects of HNTs incorporation (0.5-10 wt% relative to PDS w/w). Overall, a 3D porous network was seen in the different fabricated electrospun scaffolds, regardless of the HNT content. The incorporation of HNTs at 10 wt% led to a significant (p < 0.0001) fibre diameter increase and a reduction in scaffold strength. Moreover, PDS-HNTs scaffolds supported the attachment and proliferation of human-derived pulp fibroblast cells. Quantitative proliferation assay performed with human dental pulp-derived cells as a function of nanotubes concentration indicated that the HNTs exhibit a high level of biocompatibility, rendering them good candidates for the potential encapsulation of distinct bioactive molecules. Collectively, the reported data support the conclusion that PDS-HNTs nanocomposite fibrous structures hold potential in the development of a bioactive scaffold for regenerative endodontics. Copyright © 2013 John Wiley & Sons, Ltd.

  3. Hydrogen sulphide increases hepatic differentiation of human tooth pulp stem cells compared with human bone marrow stem cells.

    PubMed

    Okada, M; Ishkitiev, N; Yaegaki, K; Imai, T; Tanaka, T; Fukuda, M; Ono, S; Haapasalo, M

    2014-12-01

    To determine the differences in stem cell properties, in hepatic differentiation and in the effects of hydrogen sulphide (H2 S) on hepatic differentiation between human bone marrow stem cells (hBMC) and stem cells from human exfoliated primary tooth pulp (SHED). CD117(+) cells were magnetically separated and subjected to hepatic differentiation. CD117(+) cell lineages were characterized for transcription factors indicative of stem cells by qRT-PCR. For the last 9 days of the differentiation, the test cells were exposed to 0.1 ng mL(-1) H2 S. Immunocytochemistry and flow cytometry of albumin, alpha-fetoprotein and carbamoyl phosphate synthetase were carried out after differentiation. Urea concentration and glycogen synthesis were also determined. Genes expressed in SHED were also expressed in BMC. No difference in expression level of hepatic markers was shown by immunofluorescence. SHED showed more positive cells than hBMC (P < 0.01). H2 S increased the number of positive cells in both cultures (P < 0.01). Urea concentration and glycogen synthesis increased significantly after H2 S exposure (P < 0.001 and P < 0.05, respectively). Real-time PCR data were analysed by RT(2) profiler RT-PCR Array Data Analysis version 3.5 (Qiagen), and ELISA data were analysed by Bonferroni's multiple comparison using Windows spss version 16 (SPSS Inc, Chicago, IL, USA). Bonferroni's multiple comparison test was also carried out after angle transformation for the percentage data of flow cytometer using Windows spss(®) version 16 (SPSS Inc). Statistical significance was accepted at P < 0.05. Stem cells from human exfoliated primary tooth pulp and BMC have similar properties. The level of hepatic differentiation in SHED compared with BMC was the same or higher. H2 S increased the level of hepatic differentiation. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  4. Antimicrobial properties and dental pulp stem cell cytotoxicity using carboxymethyl cellulose-silver nanoparticles deposited on titanium plates

    PubMed Central

    Laredo-Naranjo, Martha Alicia; Carrillo-Gonzalez, Roberto; De La Garza-Ramos, Myriam Angelica; Garza-Navarro, Marco Antonio; Torre-Martinez, Hilda H. H.; Del Angel-Mosqueda, Casiano; Mercado-Hernandez, Roberto; Carrillo-Fuentevilla, Roberto

    2016-01-01

    Abstract Objective: To evaluate the antimicrobial properties and dental pulp stem cells (DPSCs) cytotoxicity of synthesized carboxymethyl cellulose-silver nanoparticles impregnated on titanium plates. Material and methods: The antibacterial effect of silver nanoparticles in a carboxymethyl cellulose matrix impregnated on titanium plates (Ti-AgNPs) in three concentrations: 16%, 50% and 100% was determined by adding these to bacterial cultures of Streptococcus mutans and Porphyromonas gingivalis. The Ti-AgNPs cytotoxicity on DPSCs was determined using a fluorimetric cytotoxicity assay with 0.12% chlorhexidine as a positive control. Results: Silver nanoparticles in all concentrations were antimicrobial, with concentrations of 50% and 100% being more cytotoxic with 4% cell viability. Silver nanoparticles 16% had a cell viability of 95%, being less cytotoxic than 0.12% chlorhexidine. Conclusions: Silver nanoparticles are a promising structure because of their antimicrobial properties. These have high cell viability at a concentration of 16%, and are less toxic than chlorhexidine. PMID:28642914

  5. The Hajdu Cheney Mutation Is a Determinant of B-Cell Allocation of the Splenic Marginal Zone.

    PubMed

    Yu, Jungeun; Zanotti, Stefano; Walia, Bhavita; Jellison, Evan; Sanjay, Archana; Canalis, Ernesto

    2018-01-01

    The neurogenic locus notch homolog protein (Notch)-2 receptor is a determinant of B-cell allocation, and gain-of-NOTCH2-function mutations are associated with Hajdu-Cheney syndrome (HCS), a disease presenting with osteoporosis and acro-osteolysis. We generated a mouse model reproducing the HCS mutation (Notch2HCS), and heterozygous global mutant mice displayed gain-of-Notch2 function. In the mutant spleen, the characteristic perifollicular rim marking the marginal zone (MZ), which is the interface between the nonlymphoid red pulp and the lymphoid white pulp, merged with components of the white pulp. As a consequence, the MZ of Notch2HCS mice occupied most of the splenic structure. To explore the mechanisms involved, lymphocyte populations from the bone marrow and spleen were harvested from heterozygous Notch2HCS mice and sex-matched control littermates and analyzed by flow cytometry. Notch2HCS mice had an increase in CD21/35 high CD23 - splenic MZ B cells of approximately fivefold and a proportional decrease in splenic follicular B cells (CD21/35 int CD23 + ) at 1, 2, and 12 months of age. Western blot analysis revealed that Notch2HCS mutant splenocytes had increased phospho-Akt and phospho-Jun N-terminal kinase, and gene expression analysis of splenic CD19 + B cells demonstrated induction of Hes1 and Hes5 in Notch2HCS mutants. Anti-Notch2 antibodies decreased MZ B cells in control and Notch2HCS mice. In conclusion, Notch2HCS mutant mice have increased mature B cells in the MZ of the spleen. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  6. Effects of Adenosine Triphosphate on Proliferation and Odontoblastic Differentiation of Human Dental Pulp Cells.

    PubMed

    Wang, Wei; Yi, Xiaosong; Ren, Yanfang; Xie, Qiufei

    2016-10-01

    Adenosine 5'-triphosphate (ATP) is a potent signaling molecule that regulates diverse biological activities in cells. Its effects on human dental pulp cells (HDPCs) remain unknown. This study aimed to examine the effects of ATP on proliferation and differentiation of HDPCs. Reverse transcription polymerase chain reaction was performed to explore the mRNA expression of P2 receptor subtypes. Cell Counting Kit-8 test and flow cytometry analysis were used to examine the effects of ATP on proliferation and cell cycle of HDPCs. The effects of ATP on differentiation of HDPCs were examined by using alizarin red S staining, energy-dispersive x-ray analysis, Western blot analysis, and real-time polymerase chain reaction. The purinoceptors P2X3, P2X4, P2X5, P2X7, and all P2Y receptor subtypes were confirmed to present in HDPCs. ATP enhanced HDPC proliferation at 10 μmol/L concentration. However, it inhibited cell proliferation by arresting the cell cycle in G0G1 phase (P < .05 versus control) and induced odontoblastic differentiation, ERK/MAPK activation, and dentin matrix protein 1 (DMP1) and dentin sialophosphoprotein (DSPP) mRNA transcriptions at 800 μmol/L concentration. Suramin, an ATP receptor antagonist, inhibited ERK/MAPK activation and HDPC odontoblastic differentiation (P < .05 versus control). Extracellular ATP activates P2 receptors and downstream signaling events that induce HDPC odontogenic differentiation. Thus, ATP may promote dental pulp tissue healing and repair through P2 signaling. Results provide new insights into the molecular regulation of pulpal wound healing. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Osteo-/odontogenic differentiation of induced mesenchymal stem cells generated through epithelial-mesenchyme transition of cultured human keratinocytes.

    PubMed

    Yi, Jin-Kyu; Mehrazarin, Shebli; Oh, Ju-Eun; Bhalla, Anu; Oo, Jenessa; Chen, Wei; Lee, Min; Kim, Reuben H; Shin, Ki-Hyuk; Park, No-Hee; Kang, Mo K

    2014-11-01

    Revascularization of necrotic pulp has been successful in the resolution of periradicular inflammation; yet, several case studies suggest the need for cell-based therapies using mesenchymal stem cells (MSCs) as an alternative for de novo pulp regeneration. Because the availability of MSCs may be limited, especially in an aged population, the current study reports an alternative approach in generating MSCs from epidermal keratinocytes through a process called epithelial-mesenchymal transition (EMT). We induced EMT in primary normal human epidermal keratinocytes (NHEKs) by transient transfection of small interfering RNA targeting the p63 gene. The resulting cells were assayed for their mesenchymal marker expression, proliferation capacities as a monolayer and in a 3-dimensional collagen scaffold, and differentiation capacities. Transient transfection of p63 small-interfering RNA successfully abolished the expression of endogenous p63 in NHEKs and induced the expression of mesenchymal markers (eg, vimentin and fibronectin), whereas epithelial markers (eg, E-cadherin and involucrin) were lost. The NHEKs exhibiting the EMT phenotype acquired extended replicative potential and an increased telomere length compared with the control cells. Similar to the established MSCs, the NHEKs with p63 knockdown showed attachment onto the 3-dimensional collagen scaffold and underwent progressive proliferation and differentiation. Upon differentiation, these EMT cells expressed alkaline phosphatase activity, osteocalcin, and osteonectin and readily formed mineralized nodules detected by alizarin S red staining, showing osteo-/odontogenic differentiation. The induction of EMT in primary NHEKs by means of transient p63 knockdown allows the generation of induced MSCs from autologous sources. These cells may be used for tissues engineering purposes, including that of dental pulp. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. The effect of nerve section on the incidence and distribution of gap junctions in the odontoblast layer of the cat.

    PubMed

    Holland, G R

    1987-08-01

    Gap junctions are numerous in the odontoblast layer of the dental pulp and may link sensory axons to odontoblasts. If these junctions do link axons and odontoblasts, they, together with the axons, should disappear after cutting the pulpal nerves centrally. Under general anesthesia the inferior alveolar nerve on one side of two young adult cats was sectioned. Under general anesthesia the animals were perfused with fixative 56 hours later and the coronal dental pulp prepared for electron microscopy. Ultrathin sections were examined from the level of the pulpal cornu and levels approximately one, two, and three mm below this. The incidence of cell processes and gap junctions was measured at different distances from the pulp predentin junction, and operated and control sides compared. The odontoblast layer at the level of the cornu differed from elsewhere in having, on the control side, a greater density of cell processes and gap junctions and in having clearly recognizable axons approaching to within 5 to 10 micron of the predentin. The only statistically significant changes after nerve section occurred in this layer and consisted of a decline in the incidence of cell processes and of gap junctions that link one cell process to another. There was no significant difference between the operated and control sides in the number of gap junctions linking cell processes to recognizable cell bodies. The odontoblast layer in the pulpal cornu contained substantial numbers of unsheathed axons, many presumably en route to the dentin. These axons may participate in gap junctions that link them to other cell processes, possibly even other axons.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Assessment of the Tumorigenic Potential of Spontaneously Immortalized and hTERT-Immortalized Cultured Dental Pulp Stem Cells

    PubMed Central

    Wilson, Ryan; Urraca, Nora; Skobowiat, Cezary; Hope, Kevin A.; Miravalle, Leticia; Chamberlin, Reed; Donaldson, Martin; Seagroves, Tiffany N.

    2015-01-01

    Dental pulp stem cells (DPSCs) provide an exciting new avenue to study neurogenetic disorders. DPSCs are neural crest-derived cells with the ability to differentiate into numerous tissues including neurons. The therapeutic potential of stem cell-derived lines exposed to culturing ex vivo before reintroduction into patients could be limited if the cultured cells acquired tumorigenic potential. We tested whether DPSCs that spontaneously immortalized in culture acquired features of transformed cells. We analyzed immortalized DPSCs for anchorage-independent growth, genomic instability, and ability to differentiate into neurons. Finally, we tested both spontaneously immortalized and human telomerase reverse transcriptase (hTERT)-immortalized DPSC lines for the ability to form tumors in immunocompromised animals. Although we observed increased colony-forming potential in soft agar for the spontaneously immortalized and hTERT-immortalized DPSC lines relative to low-passage DPSC, no tumors were detected from any of the DPSC lines tested. We noticed some genomic instability in hTERT-immortalized DPSCs but not in the spontaneously immortalized lines tested. We determined that immortalized DPSC lines generated in our laboratory, whether spontaneously or induced, have not acquired the potential to form tumors in mice. These data suggest cultured DPSC lines that can be differentiated into neurons may be safe for future in vivo therapy for neurobiological diseases. Significance This study demonstrated that immortalized dental pulp stem cells (DPSCs) do not form tumors in animals and that immortalized DPSCs can be differentiated into neurons in culture. These results lend support to the use of primary and immortalized DPSCs for future therapeutic approaches to treatment of neurobiological diseases. PMID:26032749

  10. A Simplified and Systematic Method to Isolate, Culture, and Characterize Multiple Types of Human Dental Stem Cells from a Single Tooth.

    PubMed

    Bakkar, Mohammed; Liu, Younan; Fang, Dongdong; Stegen, Camille; Su, Xinyun; Ramamoorthi, Murali; Lin, Li-Chieh; Kawasaki, Takako; Makhoul, Nicholas; Pham, Huan; Sumita, Yoshinori; Tran, Simon D

    2017-01-01

    This chapter describes a simplified method that allows the systematic isolation of multiple types of dental stem cells such as dental pulp stem cells (DPSC), periodontal ligament stem cells (PDLSC), and stem cells of the apical papilla (SCAP) from a single tooth. Of specific interest is the modified laboratory approach to harvest/retrieve the dental pulp tissue by minimizing trauma to DPSC by continuous irrigation, reduction of frictional heat from the bur rotation, and reduction of the bur contact time with the dentin. Also, the use of a chisel and a mallet will maximize the number of live DPSC for culture. Steps demonstrating the potential for multiple cell differentiation lineages of each type of dental stem cell into either osteocytes, adipocytes, or chondrocytes are described. Flow cytometry, with a detailed strategy for cell gating and analysis, is described to verify characteristic markers of human mesenchymal multipotent stromal cells (MSC) from DPSC, PDLSC, or SCAP for subsequent experiments in cell therapy and in tissue engineering. Overall, this method can be adapted to any laboratory with a general setup for cell culture experiments.

  11. Functions that Protect Escherichia coli from Tightly Bound DNA-Protein Complexes Created by Mutant EcoRII Methyltransferase.

    PubMed

    Henderson, Morgan L; Kreuzer, Kenneth N

    2015-01-01

    Expression of mutant EcoRII methyltransferase protein (M.EcoRII-C186A) in Escherichia coli leads to tightly bound DNA-protein complexes (TBCs), located sporadically on the chromosome rather than in tandem arrays. The mechanisms behind the lethality induced by such sporadic TBCs are not well studied, nor is it clear whether very tight binding but non-covalent complexes are processed in the same way as covalent DNA-protein crosslinks (DPCs). Using 2D gel electrophoresis, we found that TBCs induced by M.EcoRII-C186A block replication forks in vivo. Specific bubble molecules were detected as spots on the 2D gel, only when M.EcoRII-C186A was induced, and a mutation that eliminates a specific EcoRII methylation site led to disappearance of the corresponding spot. We also performed a candidate gene screen for mutants that are hypersensitive to TBCs induced by M.EcoRII-C186A. We found several gene products necessary for protection against these TBCs that are known to also protect against DPCs induced with wild-type M.EcoRII (after 5-azacytidine incorporation): RecA, RecBC, RecG, RuvABC, UvrD, FtsK, XerCD and SsrA (tmRNA). In contrast, the RecFOR pathway and Rep helicase are needed for protection against TBCs but not DPCs induced by M.EcoRII. We propose that stalled fork processing by RecFOR and RecA promotes release of tightly bound (but non-covalent) blocking proteins, perhaps by licensing Rep helicase-driven dissociation of the blocking M.EcoRII-C186A. Our studies also argued against the involvement of several proteins that might be expected to protect against TBCs. We took the opportunity to directly compare the sensitivity of all tested mutants to two quinolone antibiotics, which target bacterial type II topoisomerases and induce a unique form of DPC. We uncovered rep, ftsK and xerCD as novel quinolone hypersensitive mutants, and also obtained evidence against the involvement of a number of functions that might be expected to protect against quinolones.

  12. Regeneration and Repair in Endodontics—A Special Issue of the Regenerative Endodontics—A New Era in Clinical Endodontics

    PubMed Central

    Saoud, Tarek Mohamed A.; Ricucci, Domenico; Lin, Louis M.; Gaengler, Peter

    2016-01-01

    Caries is the most common cause of pulp-periapical disease. When the pulp tissue involved in caries becomes irreversibly inflamed and progresses to necrosis, the treatment option is root canal therapy because the infected or non-infected necrotic pulp tissue in the root canal system is not accessible to the host's innate and adaptive immune defense mechanisms and antimicrobial agents. Therefore, the infected or non-infected necrotic pulp tissue must be removed from the canal space by pulpectomy. As our knowledge in pulp biology advances, the concept of treatment of pulpal and periapical disease also changes. Endodontists have been looking for biologically based treatment procedures, which could promote regeneration or repair of the dentin-pulp complex destroyed by infection or trauma for several decades. After a long, extensive search in in vitro laboratory and in vivo preclinical animal experiments, the dental stem cells capable of regenerating the dentin-pulp complex were discovered. Consequently, the biological concept of ‘regenerative endodontics’ emerged and has highlighted the paradigm shift in the treatment of immature permanent teeth with necrotic pulps in clinical endodontics. Regenerative endodontics is defined as biologically based procedures designed to physiologically replace damaged tooth structures, including dentin and root structures, as well as the pulp-dentin complex. According to the American Association of Endodontists’ Clinical Considerations for a Regenerative Procedure, the primary goal of the regenerative procedure is the elimination of clinical symptoms and the resolution of apical periodontitis. Thickening of canal walls and continued root maturation is the secondary goal. Therefore, the primary goal of regenerative endodontics and traditional non-surgical root canal therapy is the same. The difference between non-surgical root canal therapy and regenerative endodontic therapy is that the disinfected root canals in the former therapy are filled with biocompatible foreign materials and the root canals in the latter therapy are filled with the host's own vital tissue. The purpose of this article is to review the potential of using regenerative endodontic therapy for human immature and mature permanent teeth with necrotic pulps and/or apical periodontitis, teeth with persistent apical periodontitis after root canal therapy, traumatized teeth with external inflammatory root resorption, and avulsed teeth in terms of elimination of clinical symptoms and resolution of apical periodontitis. PMID:29563445

  13. Regeneration and Repair in Endodontics-A Special Issue of the Regenerative Endodontics-A New Era in Clinical Endodontics.

    PubMed

    Saoud, Tarek Mohamed A; Ricucci, Domenico; Lin, Louis M; Gaengler, Peter

    2016-02-27

    Caries is the most common cause of pulp-periapical disease. When the pulp tissue involved in caries becomes irreversibly inflamed and progresses to necrosis, the treatment option is root canal therapy because the infected or non-infected necrotic pulp tissue in the root canal system is not accessible to the host's innate and adaptive immune defense mechanisms and antimicrobial agents. Therefore, the infected or non-infected necrotic pulp tissue must be removed from the canal space by pulpectomy. As our knowledge in pulp biology advances, the concept of treatment of pulpal and periapical disease also changes. Endodontists have been looking for biologically based treatment procedures, which could promote regeneration or repair of the dentin-pulp complex destroyed by infection or trauma for several decades. After a long, extensive search in in vitro laboratory and in vivo preclinical animal experiments, the dental stem cells capable of regenerating the dentin-pulp complex were discovered. Consequently, the biological concept of 'regenerative endodontics' emerged and has highlighted the paradigm shift in the treatment of immature permanent teeth with necrotic pulps in clinical endodontics. Regenerative endodontics is defined as biologically based procedures designed to physiologically replace damaged tooth structures, including dentin and root structures, as well as the pulp-dentin complex. According to the American Association of Endodontists' Clinical Considerations for a Regenerative Procedure, the primary goal of the regenerative procedure is the elimination of clinical symptoms and the resolution of apical periodontitis. Thickening of canal walls and continued root maturation is the secondary goal. Therefore, the primary goal of regenerative endodontics and traditional non-surgical root canal therapy is the same. The difference between non-surgical root canal therapy and regenerative endodontic therapy is that the disinfected root canals in the former therapy are filled with biocompatible foreign materials and the root canals in the latter therapy are filled with the host's own vital tissue. The purpose of this article is to review the potential of using regenerative endodontic therapy for human immature and mature permanent teeth with necrotic pulps and/or apical periodontitis, teeth with persistent apical periodontitis after root canal therapy, traumatized teeth with external inflammatory root resorption, and avulsed teeth in terms of elimination of clinical symptoms and resolution of apical periodontitis.

  14. Restoration of stressor-induced calcium dysregulation and autophagy inhibition by polyphenol-rich açaí (Euterpe spp.) fruit pulp extracts in rodent brain cells in vitro.

    PubMed

    Poulose, Shibu M; Fisher, Derek R; Bielinski, Donna F; Gomes, Stacey M; Rimando, Agnes M; Schauss, Alexander G; Shukitt-Hale, Barbara

    2014-01-01

    Oxidative damage to lipids, proteins, and nucleic acids in the brain often causes progressive neuronal degeneration and death that are the focal traits of chronic and acute pathologies, including those involving cognitive decline. The aim of this study was to investigate the specific effects of both Euterpe oleracea and Euterpe precatoria açaí fruit pulp on restoring stressor-induced calcium dysregulation, stunted growth of basal dendrites, and autophagy inhibition using embryonic hippocampal and HT22 hippocampal neurons. Water-soluble whole fruit pulp extracts from two açaí species were applied to rat primary neurons and HT22 hippocampal neurons with varied time and concentrations. Recovery of neurons from dopamine-induced Ca(2+) dysregulation was measured by live cell imaging using fluorescent microscopy. The effect of açaí fruit pulp extracts on neurons following chemically-induced autophagy inhibition was measured using both immunofluorescence and immunohistochemical techniques. It has been postulated that at least part of the loss of cognitive function in aging may depend on a dysregulation in calcium ion (Ca(2+)) homeostasis and a loss of autophagy function in the brain, which affects numerous signaling pathways and alters protein homeostasis. In the present study, polyphenol-rich fruit pulp extracts from two species of açaí, Euterpe precatoria and Euterpe oleracea, when applied to rat hippocampal primary neuronal cells (E18), caused a significant (P < 0.05) recovery of depolarized brain cells from dopamine-induced Ca(2+) influx. Autophagy, a protein homeostasis mechanism in brain, when blocked by known inhibitors such as bafilomycin A1 or wortmannin, caused a significant reduction in the growth of primary basal dendrites in rodent primary hippocampal neurons and significant accumulation of polyubiquitinated proteins in mouse HT22 hippocampal neurons in culture. However, pretreatment with açaí extracts up to 1 mg/mL significantly increased the length of basal dendrites and attenuated the inhibitor-induced autophagy dysfunction. Açaí extracts activated the phosphorylation of mammalian target of rapamycin, increased the turnover of autophagosomes and MAP1 B LC3-II, and decreased accumulation of LC3-ubiquitin binding P62/SQSTM1. Although the polyphenol profile of Euterpe precatoria showed substantially higher concentrations of major flavonoids han Euterpe oleracea, the relative effects were essentially similar for both species. The study adds to growing evidence that supports the putative health effects of açaí fruit species on brain cells. Published by Elsevier Inc.

  15. Immunohistochemical expression of hard tissue related factors in the mouse dental pulp after immediate teeth separation

    PubMed Central

    2011-01-01

    We examined change of Runx2 and ALP expression in mouse tooth pulp which exposed to teeth separation experiment by immunohistochemistry as a model for conservative dentistry treatment. 8-week-old 36 male ddY mice were used and wedge was inserted between upper 1st and 2nd molars. The wedge was removed 30 minutes as well as 3 hours after the insertion and the samples were prepared extending up to 1 week of time period for regular histopathological and immunohistochemical examinations for ALP and Runx2 expression. The opposite sides without wedge insertion were taken as controls. In the control group pulp, weak expressions of Runx2 and ALP in the vessel endothelial cells as well as the pulp cells were revealed, suggesting the appearance of these genes upon mechanical stress induced by mastication and tongue pressure etc. On the other hand in the experiment group, Runx2 expression increased both in 30-minute and 3-hour teeth separation group. The expression became maximum at 24 hours. Then it gradually decreased and became similar level with the control group at 1-week after the wedge insertion. Similarly ALP expression increased after the wedge insertion and was maximum at 24 hours and then gradually decreased to the levels similar with the control group. These results suggest that when immunohistochemical expression of Runx2 as well as ALP was used as an index, no severe damage occur upon clinical application of wedge insertion. PMID:22027645

  16. Correlation between Fibrillin-1 Degradation and mRNA Downregulation and Myofibroblast Differentiation in Cultured Human Dental Pulp Tissue

    PubMed Central

    Yoshiba, Nagako; Yoshiba, Kunihiko; Ohkura, Naoto; Takei, Erika; Edanami, Naoki; Oda, Youhei; Hosoya, Akihiro; Nakamura, Hiroaki; Okiji, Takashi

    2015-01-01

    Myofibroblasts and extracellular matrix are important components in wound healing. Alpha-smooth muscle actin (α-SMA) is a marker of myofibroblasts. Fibrillin-1 is a major constituent of microfibrils and an extracellular-regulator of TGF-β1, an important cytokine in the transdifferentiation of resident fibroblasts into myofibroblasts. To study the correlation between changes in fibrillin-1 expression and myofibroblast differentiation, we examined alterations in fibrillin-1 and α-SMA expression in organotypic cultures of dental pulp in vitro. Extracted healthy human teeth were cut to 1-mm-thick slices and cultured for 7 days. In intact dental pulp, fibrillin-1 was broadly distributed, and α-SMA was observed in pericytes and vascular smooth muscle cells. After 7 days of culture, immunostaining for fibrillin-1 became faint concomitant with a downregulation in its mRNA levels. Furthermore, fibroblasts, odontoblasts and Schwann cells were immunoreactive for α-SMA with a significant increase in α-SMA mRNA expression. Double immunofluorescence staining was positive for pSmad2/3, central mediators of TGF-β signaling, and α-SMA. The administration of inhibitors for extracellular matrix proteases recovered fibrillin-1 immunostaining; moreover, fibroblasts lost their immunoreactivity for α-SMA along with a downregulation in α-SMA mRNA. These findings suggest that the expression of α-SMA is TGF-β1 dependent, and fibrillin-1 degradation and downregulation might be implicated in the differentiation of myofibroblasts in dental pulp wound healing. PMID:25805839

  17. Pre-existing Periapical Inflammatory Condition Exacerbates Tooth Extraction–induced BRONJ Lesions in Mice

    PubMed Central

    Song, Minju; Alshaikh, Abdullah; Kim, Terresa; Kim, Sol; Dang, Michelle; Mehrazarin, Shebli; Shin, Ki-Hyuk; Kang, Mo; Park, No-Hee; Kim, Reuben H.

    2016-01-01

    Introduction Surgical interventions such as tooth extraction increase a chance of developing osteonecrosis of the jaw (ONJ) in patients receiving bisphosphonates (BPs) for treatment of bone-related diseases. Tooth extraction is often performed to eliminate pre-existing pathological inflammatory conditions that make the tooth unsalvageable; however, the role of such conditions on bisphosphonate-related ONJ (BRONJ) development following tooth extraction is not clearly defined. Here, we examined the effects of periapical periodontitis on tooth extraction-induced BRONJ development in mice. Methods Periapical periodontitis was induced by exposing the pulp of the maxillary first molar for 3 weeks in C57/BL6 mice that were intravenously administered with BP. The same tooth was extracted, and after 3 additional weeks, the mice were harvested for histological, histomorphometric, and histochemical staining analyses. Results Pulp exposure induced periapical radiolucency as demonstrated by increased inflammatory cells, TRAP+ osteoclasts, and bone resorption. When BP was administered, pulp exposure did not induce apical bone resorption despite the presence of inflammatory cells and TRAP+ osteoclasts. While tooth extraction alone induced BRONJ lesions, pulp exposure further increased tooth extraction-induced BRONJ development as demonstrated by the presence of more bone necrosis. Conclusion Our study demonstrates that pre-existing pathological inflammatory condition such as periapical periodontitis is a predisposing factor that may exacerbate BRONJ development following tooth extraction. Our study further provides a clinical implication whereby periapical periodontitis should be controlled before performing tooth extraction in BP-users in order to reduce the risk of developing BRONJ. PMID:27637460

  18. Green preparation of carbon dots with mangosteen pulp for the selective detection of Fe3+ ions and cell imaging

    NASA Astrophysics Data System (ADS)

    Yang, Rui; Guo, Xiangfeng; Jia, Lihua; Zhang, Yu; Zhao, Zhenlong; Lonshakov, Fedor

    2017-11-01

    A simple method was developed in the synthesis of fluorescent carbon dots (referred to as M-CDs), calcined treatment of mangosteen pulp in air, without the assistance of any chemical reagent. The M-CDs possess good-solubility, satisfactory chemical stability and can be applied as the fluorescent temperature probe. More strikingly, the fluorescence of M-CDs can be fleetly and selectively quenched by Fe3+ ions. The phenomenon was used to develop a fluorescent method for facile detection of Fe3+ with a linear range of 0-0.18 mM and a detection limit of 52 nM. Eventually, the M-CDs were applied for cell imaging, demonstrating their potential toward diverse applications.

  19. Dietary supplementation with the polyphenol-rich açaí pulps (Euterpe oleracea Mart. and Euterpe precatoria Mart.) improves cognition in aged rats and attenuates inflammatory signaling in BV-2 microglial cells.

    PubMed

    Carey, Amanda N; Miller, Marshall G; Fisher, Derek R; Bielinski, Donna F; Gilman, Casey K; Poulose, Shibu M; Shukitt-Hale, Barbara

    2017-05-01

    The present study was carried out to determine if lyophilized açaí fruit pulp (genus, Euterpe), rich in polyphenols and other bioactive antioxidant and anti-inflammatory phytochemicals, is efficacious in reversing age-related cognitive deficits in aged rats. The diets of 19-month-old Fischer 344 rats were supplemented for 8 weeks with 2% Euterpe oleracea (EO), Euterpe precatoria (EP), or a control diet. Rats were tested in the Morris water maze and then blood serum from the rats was used to assess inflammatory responses of BV-2 microglial cells. After 8 weeks of dietary supplementation with 2% EO or EP, rats demonstrated improved working memory in the Morris water maze, relative to controls; however, only the EO diet improved reference memory. BV-2 microglial cells treated with blood serum collected from EO-fed rats produced less nitric oxide (NO) than control-fed rats. Serum from both EO- and EP-fed rats reduced tumor necrosis factor-alpha (TNF-α). There is a relationship between performance in the water maze and the production of NO and TNF-α by serum-treated BV-2 cells, such that serum from rats with better performance was more protective against inflammatory signaling. Protection of memory during aging by supplementation of lyophilized açaí fruit pulp added to the diet may result from its ability to influence antioxidant and anti-inflammatory signaling.

  20. Calcium Hydroxide-induced Proliferation, Migration, Osteogenic Differentiation, and Mineralization via the Mitogen-activated Protein Kinase Pathway in Human Dental Pulp Stem Cells.

    PubMed

    Chen, Luoping; Zheng, Lisha; Jiang, Jingyi; Gui, Jinpeng; Zhang, Lingyu; Huang, Yan; Chen, Xiaofang; Ji, Jing; Fan, Yubo

    2016-09-01

    Calcium hydroxide has been extensively used as the gold standard for direct pulp capping in clinical dentistry. It induces proliferation, migration, and mineralization in dental pulp stem cells (DPSCs), but the underlying mechanisms are still unclear. The aim of this study was to investigate the role of the mitogen-activated protein (MAP) kinase pathway in calcium hydroxide-induced proliferation, migration, osteogenic differentiation, and mineralization in human DPSCs. Human DPSCs between passages 3 and 6 were used. DPSCs were preincubated with inhibitors of MAP kinases and cultured with calcium hydroxide. The phosphorylated MAP kinases were detected by Western blot analysis. Cell viability was analyzed via the methylthiazol tetrazolium assay. Cell migration was estimated using the wound healing assay. Alkaline phosphatase (ALP) expression was analyzed using the ALP staining assay. Mineralization was studied by alizarin red staining analysis. Calcium hydroxide significantly promoted the phosphorylation of the c-Jun N-terminal kinase (JNK), p38, and extracellular signal-regulated kinase. The inhibition of JNK and p38 signaling abolished calcium hydroxide-induced proliferation of DPSCs. The inhibition of JNK, p38, and extracellular signal-regulated kinase signaling suppressed the migration, ALP expression, and mineralization of DPSCs. Our study showed that the MAP kinase pathway was involved in calcium hydroxide-induced proliferation, migration, osteogenic differentiation, and mineralization in human DPSCs. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Lectin histochemistry of the rat lymph node: visualisation of stroma, blood vessels, sinuses, and macrophages. A contribution to the concept of an immune accessory role of sinus-lining endothelia.

    PubMed

    Düllmann, Jochen; Van Damme, Els J M; Peumans, Willy J; Ziesenitz, Maike; Schumacher, Udo

    2002-01-01

    The lectin Chelidonium majus agglutinin (CMA) was previously shown to visualise endothelia of all blood vessels and those lining sinuses of red pulp, stromal reticular meshwok (RM) and dendritic cells of lymphatic follicles in white pulp of the spleen in rats. The aim of the present study was the analysis of CMA and some other lectins in labelling RM, vascular structures and macrophages in lymph nodes of rats. It appeared that CMA stained the entire RM, dendritic cells, lining cells of sinuses and all types of blood vessels. Sinus-lining cells of lymph nodes were labelled with CMA and mannose-, GalNac-, and sialic acid-specific lectins. Moreover, lymph node macrophages were labelled above all by mannose specific lectins. The broad lectin-binding pattern of sinuses--not observed in rat spleen- and CMA-reactivity of both sinus-lining and dendritic cells corroborates the hypothesis that lymph node sinus-lining endothelia are precursors or a special type of immune accessory cells.

  2. An evaluation of the inflammatory response of lipopolysaccharide-treated primary dental pulp cells with regard to calcium silicate-based cements

    PubMed Central

    Lai, Wei-Yun; Kao, Chia-Tze; Hung, Chi-Jr; Huang, Tsui-Hsien; Shie, Ming-You

    2014-01-01

    This study compared the biological changes of lipopolysaccharide (LPS)-treated dental pulp (DP) cells directly cultured on mineral trioxide aggregate (MTA) and calcium silicate (CS) cements. DP cells were treated with LPS for 24 h. Then, the LPS-treated DP cells were cultured on MTA or CS cements. Cell viability, cell death mechanism and interleukin (IL)-1β expressions were analysed. A one-way analysis of variance was used to evaluate the significance of the differences between the means. A significantly higher IL-1β expression (2.9-fold) was found for LPS-treated cells (P<0.05) compared with DP cells without LPS treatment at 24 h. Absorbance values of LPS-treated cells cultured on CS cement were higher than a tissue culture plate. A significant difference (P<0.05) in cell viability was observed between cells on CS and MTA cements 24 h after seeding. At 48 h, a high concentration of Si (5 mM) was released from MTA, which induced LPS-treated DP cell apoptosis. The present study demonstrates that CS cement is biocompatible with cultured LPS-treated DP cells. MTA stimulates inflammation in LPS-treated DP cells, which leads to greater IL-1β expression and apoptosis. PMID:24556955

  3. Priming Dental Pulp Stem Cells With Fibroblast Growth Factor-2 Increases Angiogenesis of Implanted Tissue-Engineered Constructs Through Hepatocyte Growth Factor and Vascular Endothelial Growth Factor Secretion.

    PubMed

    Gorin, Caroline; Rochefort, Gael Y; Bascetin, Rumeyza; Ying, Hanru; Lesieur, Julie; Sadoine, Jérémy; Beckouche, Nathan; Berndt, Sarah; Novais, Anita; Lesage, Matthieu; Hosten, Benoit; Vercellino, Laetitia; Merlet, Pascal; Le-Denmat, Dominique; Marchiol, Carmen; Letourneur, Didier; Nicoletti, Antonino; Vital, Sibylle Opsahl; Poliard, Anne; Salmon, Benjamin; Muller, Laurent; Chaussain, Catherine; Germain, Stéphane

    2016-03-01

    Tissue engineering strategies based on implanting cellularized biomaterials are promising therapeutic approaches for the reconstruction of large tissue defects. A major hurdle for the reliable establishment of such therapeutic approaches is the lack of rapid blood perfusion of the tissue construct to provide oxygen and nutrients. Numerous sources of mesenchymal stem cells (MSCs) displaying angiogenic potential have been characterized in the past years, including the adult dental pulp. Establishment of efficient strategies for improving angiogenesis in tissue constructs is nevertheless still an important challenge. Hypoxia was proposed as a priming treatment owing to its capacity to enhance the angiogenic potential of stem cells through vascular endothelial growth factor (VEGF) release. The present study aimed to characterize additional key factors regulating the angiogenic capacity of such MSCs, namely, dental pulp stem cells derived from deciduous teeth (SHED). We identified fibroblast growth factor-2 (FGF-2) as a potent inducer of the release of VEGF and hepatocyte growth factor (HGF) by SHED. We found that FGF-2 limited hypoxia-induced downregulation of HGF release. Using three-dimensional culture models of angiogenesis, we demonstrated that VEGF and HGF were both responsible for the high angiogenic potential of SHED through direct targeting of endothelial cells. In addition, FGF-2 treatment increased the fraction of Stro-1+/CD146+ progenitor cells. We then applied in vitro FGF-2 priming to SHED before encapsulation in hydrogels and in vivo subcutaneous implantation. Our results showed that FGF-2 priming is more efficient than hypoxia at increasing SHED-induced vascularization compared with nonprimed controls. Altogether, these data demonstrate that FGF-2 priming enhances the angiogenic potential of SHED through the secretion of both HGF and VEGF. ©AlphaMed Press.

  4. Human dental pulp stem cells: Applications in future regenerative medicine

    PubMed Central

    Potdar, Pravin D; Jethmalani, Yogita D

    2015-01-01

    Stem cells are pluripotent cells, having a property of differentiating into various types of cells of human body. Several studies have developed mesenchymal stem cells (MSCs) from various human tissues, peripheral blood and body fluids. These cells are then characterized by cellular and molecular markers to understand their specific phenotypes. Dental pulp stem cells (DPSCs) are having a MSCs phenotype and they are differentiated into neuron, cardiomyocytes, chondrocytes, osteoblasts, liver cells and β cells of islet of pancreas. Thus, DPSCs have shown great potentiality to use in regenerative medicine for treatment of various human diseases including dental related problems. These cells can also be developed into induced pluripotent stem cells by incorporation of pluripotency markers and use for regenerative therapies of various diseases. The DPSCs are derived from various dental tissues such as human exfoliated deciduous teeth, apical papilla, periodontal ligament and dental follicle tissue. This review will overview the information about isolation, cellular and molecular characterization and differentiation of DPSCs into various types of human cells and thus these cells have important applications in regenerative therapies for various diseases. This review will be most useful for postgraduate dental students as well as scientists working in the field of oral pathology and oral medicine. PMID:26131314

  5. Human dental pulp stem cells cultured in serum-free supplemented medium

    PubMed Central

    Bonnamain, Virginie; Thinard, Reynald; Sergent-Tanguy, Solène; Huet, Pascal; Bienvenu, Géraldine; Naveilhan, Philippe; Farges, Jean-Christophe; Alliot-Licht, Brigitte

    2013-01-01

    Growing evidence show that human dental pulp stem cells (DPSCs) could provide a source of adult stem cells for the treatment of neurodegenerative pathologies. In this study, DPSCs were expanded and cultured with a protocol generally used for the culture of neural stem/progenitor cells. Methodology: DPSC cultures were established from third molars. The pulp tissue was enzymatically digested and cultured in serum-supplemented basal medium for 12 h. Adherent (ADH) and non-adherent (non-ADH) cell populations were separated according to their differential adhesion to plastic and then cultured in serum-free defined N2 medium with epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). Both ADH and non-ADH populations were analyzed by FACS and/or PCR. Results: FACS analysis of ADH-DPSCs revealed the expression of the mesenchymal cell marker CD90, the neuronal marker CD56, the transferrin receptor CD71, and the chemokine receptor CXCR3, whereas hematopoietic stem cells markers CD45, CD133, and CD34 were not expressed. ADH-DPSCs expressed transcripts coding for the Nestin gene, whereas expression levels of genes coding for the neuronal markers β-III tubulin and NF-M, and the oligodendrocyte marker PLP-1 were donor dependent. ADH-DPSCs did not express the transcripts for GFAP, an astrocyte marker. Cells of the non-ADH population that grew as spheroids expressed Nestin, β-III tubulin, NF-M and PLP-1 transcripts. DPSCs that migrated out of the spheroids exhibited an odontoblast-like morphology and expressed a higher level of DSPP and osteocalcin transcripts than ADH-DPSCs. Conclusion: Collectively, these data indicate that human DPSCs can be expanded and cultured in serum-free supplemented medium with EGF and bFGF. ADH-DPSCs and non-ADH populations contained neuronal and/or oligodendrocyte progenitors at different stages of commitment and, interestingly, cells from spheroid structures seem to be more engaged into the odontoblastic lineage than the ADH-DPSCs. PMID:24376422

  6. Cucurbitane-type triterpenoids from the fruit pulp of Momordica charantia.

    PubMed

    Liao, Yun-Wen; Chen, Chiy-Rong; Kuo, Yueh-Hsiung; Hsu, Jue-Liang; Shih, Wen-Ling; Cheng, Hsueh-Ling; Huang, Tzou-Chi; Chang, Chi-I

    2012-12-01

    Three new cucurbitane-type triterpenoids, 5beta,19-epoxy-23(R)-methoxycucurbita-6,24-dien-3beta-ol (1), 5beta,19-epoxy-23(S)-methoxycucurbita-6,24-dien-3beta-ol (2), and 3beta-hydroxy-23(R)-methoxycucurbita-6,24-dien-5beta,19-olide (3), were isolated from the fruit pulp of Momordica charantia. Their structures were established on the basis of extensive NMR (1H, 13C, COSY, HMQC, HMBC, and NOESY) and EI-MS studies. Compound 1 exhibited cytotoxic activity against the SK-Hep 1 cell line.

  7. [Cloning and characterization of genes differentially expressed in human dental pulp cells and gingival fibroblasts].

    PubMed

    Wang, Zhong-dong; Wu, Ji-nan; Zhou, Lin; Ling, Jun-qi; Guo, Xi-min; Xiao, Ming-zhen; Zhu, Feng; Pu, Qin; Chai, Yu-bo; Zhao, Zhong-liang

    2007-02-01

    To study the biological properties of human dental pulp cells (HDPC) by cloning and analysis of genes differentially expressed in HDPC in comparison with human gingival fibroblasts (HGF). HDPC and HGF were cultured and identified by immunocytochemistry. HPDC and HGF subtractive cDNA library was established by PCR-based modified subtractive hybridization, genes differentially expressed by HPDC were cloned, sequenced and compared to find homogeneous sequence in GenBank by BLAST. Cloning and sequencing analysis indicate 12 genes differentially expressed were obtained, in which two were unknown genes. Among the 10 known genes, 4 were related to signal transduction, 2 were related to trans-membrane transportation (both cell membrane and nuclear membrane), and 2 were related to RNA splicing mechanisms. The biological properties of HPDC are determined by the differential expression of some genes and the growth and differentiation of HPDC are associated to the dynamic protein synthesis and secretion activities of the cell.

  8. The biochemical characterization, stabilization studies and the antiproliferative effect of bromelain against B16F10 murine melanoma cells.

    PubMed

    São Paulo Barretto Miranda, Íngara Keisle; Fontes Suzart Miranda, Anderson; Souza, Fernanda Vidigal Duarte; Vannier-Santos, Marcos André; Pirovani, Carlos Priminho; Pepe, Iuri Muniz; Rodowanski, Ivanoé João; Ferreira, Katiúcia Tícila de Souza Eduvirgens; Mendes Souza Vaz, Luciano; de Assis, Sandra Aparecida

    2017-06-01

    The current study aims to extract bromelain from different parts (stem, crown, peels, pulp and leaves) of Ananas comosus var. comosus AGB 772; to determine of optimum pH and temperature; to test bromelain stability in disodium EDTA and sodium benzoate, and to investigate its pharmacological activity on B16F10 murine melanoma cells in vitro. The highest enzymatic activity was found in bromelain extracted from the pulp and peel. The optimum bromelain pH among all studied pineapple parts was 6.0. The optimum temperature was above 50 °C in all bromelain extracts. The fluorescence analysis confirmed the stability of bromelain in the presence of EDTA and sodium benzoate. Bromelain was pharmacologically active against B16F10 melanoma cells and it was possible verifying approximately 100% inhibition of tumor cell proliferation in vitro. Since bromelain activity was found in different parts of pineapple plants, pineapple residues from the food industry may be used for bromelain extraction.

  9. Toll-like receptor expression and function differ between splenic marginal zone B cell lymphoma and splenic diffuse red pulp B cell lymphoma

    PubMed Central

    Verney, Aurélie; Traverse-Glehen, Alexandra; Callet-Bauchu, Evelyne; Jallades, Laurent; Magaud, Jean-Pierre; Salles, Gilles; Genestier, Laurent; Baseggio, Lucile

    2018-01-01

    In splenic marginal zone lymphoma (SMZL), specific and functional Toll-like Receptor (TLR) patterns have been recently described, suggesting their involvement in tumoral proliferation. Splenic diffuse red pulp lymphoma with villous lymphocytes (SDRPL) is close to but distinct from SMZL, justifying here the comparison of TLR patterns and functionality in both entities. Distinct TLR profiles were observed in both lymphoma subtypes. SDRPL B cells showed higher expression of TLR7 and to a lesser degree TLR9, in comparison to SMZL B cells. In both entities, TLR7 and TLR9 pathways appeared functional, as shown by IL-6 production upon TLR7 and TLR9 agonists stimulations. Interestingly, circulating SDRPL, but not SMZL B cells, constitutively expressed CD86. In addition, stimulation with both TLR7 and TLR9 agonists significantly increased CD80 expression in circulating SDRPL but not SMZL B cells. Finally, TLR7 and TLR9 stimulations had no impact on proliferation and apoptosis of SMZL or SDRPL B cells. In conclusion, SMZL and SDRPL may derive from different splenic memory B cells with specific immunological features that can be used as diagnosis markers in the peripheral blood.

  10. Fourier Transform Infrared Imaging analysis of dental pulp inflammatory diseases.

    PubMed

    Giorgini, E; Sabbatini, S; Conti, C; Rubini, C; Rocchetti, R; Fioroni, M; Memè, L; Orilisi, G

    2017-05-01

    Fourier Transform Infrared microspectroscopy let characterize the macromolecular composition and distribution of tissues and cells, by studying the interaction between infrared radiation and matter. Therefore, we hypothesize to exploit this analytical tool in the analysis of inflamed pulps, to detect the different biochemical features related to various degrees of inflammation. IR maps of 13 irreversible and 12 hyperplastic pulpitis, together with 10 normal pulps, were acquired, compared with histological findings and submitted to multivariate (HCA, PCA, SIMCA) and statistical (one-way ANOVA) analysis. The fit of convoluted bands let calculate meaningful band area ratios (means ± s.d., P < 0.05). The infrared imaging analysis pin-pointed higher amounts of water and lower quantities of type I collagen in all inflamed pulps. Specific vibrational markers were defined for irreversible pulpitis (Lipids/Total Biomass, PhII/Total Biomass, CH 2 /CH 3 , and Ty/AII) and hyperplastic ones (OH/Total Biomass, Collagen/Total Biomass, and CH 3 Collagen/Total Biomass). The study confirmed that FTIR microspectroscopy let discriminate tissues' biological features. The infrared imaging analysis evidenced, in inflamed pulps, alterations in tissues' structure and composition. Changes in lipid metabolism, increasing amounts of tyrosine, and the occurrence of phosphorylative processes were highlighted in irreversible pulpitis, while high amounts of water and low quantities of type I collagen were detected in hyperplastic samples. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Influence of kraft pulping on carboxylate content of softwood kraft pulps

    Treesearch

    Zheng Dang; Thomas Elder; Arthur J. Ragauskas

    2006-01-01

    This study characterizes changes in fiber charge, which is the carboxylate content of fibers, for two sets of kraft pulps: (1) conventional laboratory cooked loblolly pine kraft pulps and (2) conventional pulping (CK) versus low solids pulping (LS) pulps. Laboratory kraft pulping of loblolly pine was carried out to study the influence of pulping conditions, including...

  12. Osteoblastic/Cementoblastic and Neural Differentiation of Dental Stem Cells and Their Applications to Tissue Engineering and Regenerative Medicine

    PubMed Central

    Kim, Byung-Chul; Bae, Hojae; Kwon, Il-Keun; Lee, Eun-Jun; Park, Jae-Hong

    2012-01-01

    Recently, dental stem and progenitor cells have been harvested from periodontal tissues such as dental pulp, periodontal ligament, follicle, and papilla. These cells have received extensive attention in the field of tissue engineering and regenerative medicine due to their accessibility and multilineage differentiation capacity. These dental stem and progenitor cells are known to be derived from ectomesenchymal origin formed during tooth development. A great deal of research has been accomplished for directing osteoblastic/cementoblastic differentiation and neural differentiation from dental stem cells. To differentiate dental stem cells for use in tissue engineering and regenerative medicine, there needs to be efficient in vitro differentiation toward the osteoblastic/cementoblastic and neural lineage with well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source. This review focuses on the multilineage differentiation capacity, especially into osteoblastic/cementoblastic lineage and neural lineages, of dental stem cells such as dental pulp stem cells (DPSC), dental follicle stem cells (DFSC), periodontal ligament stem cells (PDLSC), and dental papilla stem cells (DPPSC). It also covers various experimental strategies that could be used to direct lineage-specific differentiation, and their potential applications in tissue engineering and regenerative medicine. PMID:22224548

  13. Osteoblastic/cementoblastic and neural differentiation of dental stem cells and their applications to tissue engineering and regenerative medicine.

    PubMed

    Kim, Byung-Chul; Bae, Hojae; Kwon, Il-Keun; Lee, Eun-Jun; Park, Jae-Hong; Khademhosseini, Ali; Hwang, Yu-Shik

    2012-06-01

    Recently, dental stem and progenitor cells have been harvested from periodontal tissues such as dental pulp, periodontal ligament, follicle, and papilla. These cells have received extensive attention in the field of tissue engineering and regenerative medicine due to their accessibility and multilineage differentiation capacity. These dental stem and progenitor cells are known to be derived from ectomesenchymal origin formed during tooth development. A great deal of research has been accomplished for directing osteoblastic/cementoblastic differentiation and neural differentiation from dental stem cells. To differentiate dental stem cells for use in tissue engineering and regenerative medicine, there needs to be efficient in vitro differentiation toward the osteoblastic/cementoblastic and neural lineage with well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source. This review focuses on the multilineage differentiation capacity, especially into osteoblastic/cementoblastic lineage and neural lineages, of dental stem cells such as dental pulp stem cells (DPSC), dental follicle stem cells (DFSC), periodontal ligament stem cells (PDLSC), and dental papilla stem cells (DPPSC). It also covers various experimental strategies that could be used to direct lineage-specific differentiation, and their potential applications in tissue engineering and regenerative medicine.

  14. Biphasic effects of FGF2 on odontoblast differentiation involve changes in the BMP and Wnt signaling pathways.

    PubMed

    Sagomonyants, Karen; Mina, Mina

    2014-08-01

    Odontoblast differentiation during physiological and reparative dentinogenesis is dependent upon multiple signaling molecules, including fibroblast growth factors (FGFs), bone morphogenetic proteins (BMPs) and Wingless/Integrated (Wnt) ligands. Recent studies in our laboratory showed that continuous exposure of primary dental pulp cultures to FGF2 exerted biphasic effects on the expression of markers of dentinogenesis. In the present study, we examined the possible involvement of the BMP and Wnt signaling pathways in mediating the effects of FGF2 on dental pulp cells. Our results showed that stimulatory effects of FGF2 on dentinogenesis during the proliferation phase of growth were associated with increased expression of the components of the BMP (Bmp2, Dlx5, Msx2, Osx) and Wnt (Wnt10a, Wisp2) pathways, and decreased expression of an inhibitor of the Wnt signaling, Nkd2. Further addition of FGF2 during the differentiation/mineralization phase of growth resulted in decreased expression of components of the BMP signaling (Bmp2, Runx2, Osx) and increased expression of inhibitors of the Wnt signaling (Nkd2, Dkk3). This suggests that both BMP and Wnt pathways may be involved in mediating the effects of FGF2 on dental pulp cells.

  15. Recombinant Amelogenin Protein Induces Apical Closure and Pulp Regeneration in Open-apex, Non-vital Permanent Canine Teeth

    PubMed Central

    Mounir, Maha M.F.; Matar, Moustafa A.; Lei, Yaping; Snead, Malcolm L.

    2015-01-01

    Introduction Recombinant DNA produced amelogenin protein was compared to calcium hydroxide in a study of immature apex closure conducted in 24 young mongrel dogs. Methods Root canals of maxillary and mandibular right premolars (n = 240) were instrumented and left open for 14 days. Canals were cleansed, irrigated and split equally for treatment with recombinant mouse amelogenin (n = 120) or calcium hydroxide (n = 120). Results After 1, 3, and 6 months, the animals were sacrificed and the treated teeth recovered for histological assessment and immunodetection of protein markers associated with odontogenic cells. After 1 month, amelogenin-treated canals revealed calcified tissue formed at the apical foramen and a pulp chamber containing soft connective tissue and hard tissue; amelogenin-treated canals assessed after 3 and 6 month intervals further included apical tissue functionally attached to bone by a periodontal ligament. In contrast, calcified apical tissue was poorly formed in the calcium hydroxide group and soft connective tissue within the pulp chamber was not observed. Conclusions The findings from this experimental strategy suggest recombinant amelogenin protein can signal cells to enhance apex formation in non-vital immature teeth and promote soft connective tissue regeneration. PMID:26709200

  16. Anti-inflammatory, antiproliferative and cytoprotective potential of the Attalea phalerata Mart. ex Spreng. pulp oil

    PubMed Central

    Lescano, Caroline Honaiser; Arrigo, Jucicléia da Silva; Cardoso, Cláudia Andrea Lima; Coutinho, Janclei Pereira; Moslaves, Iluska Senna Bonfá; Ximenes, Thalita Vieira do Nascimento; Kadri, Monica Cristina Toffoli; Weber, Simone Schneider; Perdomo, Renata Trentin; Kassuya, Cândida Aparecida Leite; Vieira, Maria do Carmo; Sanjinez-Argandoña, Eliana Janet

    2018-01-01

    The anti-inflammatory, antiproliferative and cytoprotective activity of the Attalea phalerata Mart. ex Spreng pulp oil was evaluated by in vitro and in vivo methods. As for the chemical profile, the antioxidant activity was performed by spectrophotometry, and the profile of carotenoids and amino acids by chromatography. Our data demonstrated that A. phalerata oil has high carotenoid content, antioxidant activity and the presence of 5 essential amino acids. In the in vitro models of inflammation, the oil demonstrated the capacity to inhibit COX1 and COX2 enzymes, the production of nitric oxide and also induces macrophages to spreading. In the in vivo models of inflammation, the oil inhibited edema and leukocyte migration in the Wistar rats. In the in vitro model of antiproliferative and cytoprotective activity, the oil was shown inactive against the kidney carcinoma and prostate carcinoma lineage cells and with cytoprotective capacity in murine fibroblast cells, inhibiting the cytotoxic action of doxorubicin. Therefore, it is concluded that A. phalerata pulp oil has anti-inflammatory effects with nutraceutical properties potential due to the rich composition. Moreover, the oil also has cytoprotective activity probably because of its ability to inhibit the action of free radicals. PMID:29634766

  17. Metallic ions catalysis for improving bioleaching yield of Zn and Mn from spent Zn-Mn batteries at high pulp density of 10.

    PubMed

    Niu, Zhirui; Huang, Qifei; Wang, Jia; Yang, Yiran; Xin, Baoping; Chen, Shi

    2015-11-15

    Bioleaching of spent batteries was often conducted at pulp density of 1.0% or lower. In this work, metallic ions catalytic bioleaching was used for release Zn and Mn from spent ZMBs at 10% of pulp density. The results showed only Cu(2+) improved mobilization of Zn and Mn from the spent batteries among tested four metallic ions. When Cu(2+) content increased from 0 to 0.8 g/L, the maximum release efficiency elevated from 47.7% to 62.5% for Zn and from 30.9% to 62.4% for Mn, respectively. The Cu(2+) catalysis boosted bioleaching of resistant hetaerolite through forming a possible intermediate CuMn2O4 which was subject to be attacked by Fe(3+) based on a cycle of Fe(3+)/Fe(2+). However, poor growth of cells, formation of KFe3(SO4)2(OH)6 and its possible blockage between cells and energy matters destroyed the cycle of Fe(3+)/Fe(2+), stopping bioleaching of hetaerolite. The chemical reaction controlled model fitted best for describing Cu(2+) catalytic bioleaching of spent ZMBs. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Hyperglycemia and xerostomia are key determinants of tooth decay in type 1 diabetic mice.

    PubMed

    Yeh, Chih-Ko; Harris, Stephen E; Mohan, Sumathy; Horn, Diane; Fajardo, Roberto; Chun, Yong-Hee Patricia; Jorgensen, James; Macdougall, Mary; Abboud-Werner, Sherry

    2012-06-01

    Insulin-dependent type 1 diabetes mellitus (DM) and oral diseases are closely interrelated. Poor metabolic control in diabetics is associated with a high risk of gingivitis, periodontitis and tooth loss. Salivary flow declines in diabetics and patients suffer from xerostomia. Reduced saliva predisposes to enamel hypomineralization and caries formation; however, the mechanisms that initiate and lead to progression of tooth decay and periodontitis in type 1 DM have not been explored. To address this issue, we analyzed tooth morphology in Akita ⁻/⁻ mice that harbor a point mutation in the Ins2 insulin gene, which leads to progressive hyperglycemia. Mandibles from Akita ⁻/⁻ and wild-type littermates were analyzed by microCT, scanning EM and histology; teeth were examined for amelogenin (Amel) and ameloblastin (Ambn) expression. Mice were injected with pilocarpine to assess saliva production. As hyperglycemia may alter pulp repair, the effect of high glucose levels on the proliferation/differentiation of cultured MD10-F2 pulp cells was also analyzed. Results showed that Akita ⁻/⁻ mice at 6 weeks of age showed chalky white incisors that correlated with marked hyperglycemia and impaired saliva production. MicroCT of Akita ⁻/⁻ teeth revealed excessive enamel wearing and hypomineralization; immunostaining for Amel and Ambn was decreased. A striking feature was invasion of dentinal tubules with Streptococcus mitis and microabcesses that originated in the coronal pulp and progressed to pulp necrosis and periapical periodontitis. High levels of glucose also inhibited MD10-F2 cell proliferation and differentiation. Our findings provide the first evidence that hyperglycemia in combination with reduced saliva in a model of type1 DM leads to decreased enamel mineralization/matrix proteins and predisposes to excessive wearing and decay. Importantly, hyperglycemia adversely affects enamel matrix proteins and pulp repair. Early detection and treatment of hyperglycemia and hyposalivation may provide a useful strategy for preventing the dental complications of diabetes and promoting oral health in this population.

  19. Genetic Augmentation of Syringyl Lignin in Low-lignin Aspen Trees, Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung-Jui Tsai; Mark F. Davis; Vincent L. Chiang

    2004-11-10

    As a polysaccharide-encrusting component, lignin is critical to cell wall integrity and plant growth but also hinders recovery of cellulose fibers during the wood pulping process. To improve pulping efficiency, it is highly desirable to genetically modify lignin content and/or structure in pulpwood species to maximize pulp yields with minimal energy consumption and environmental impact. This project aimed to genetically augment the syringyl-to-guaiacyl lignin ratio in low-lignin transgenic aspen in order to produce trees with reduced lignin content, more reactive lignin structures and increased cellulose content. Transgenic aspen trees with reduced lignin content have already been achieved, prior to themore » start of this project, by antisense downregulation of a 4-coumarate:coenzyme A ligase gene (Hu et al., 1999 Nature Biotechnol 17: 808- 812). The primary objective of this study was to genetically augment syringyl lignin biosynthesis in these low-lignin trees in order to enhance lignin reactivity during chemical pulping. To accomplish this, both aspen and sweetgum genes encoding coniferaldehyde 5-hydroxylase (Osakabe et al., 1999 PNAS 96: 8955-8960) were targeted for over-expression in wildtype or low-lignin aspen under control of either a constitutive or a xylem-specific promoter. A second objective for this project was to develop reliable and cost-effective methods, such as pyrolysis Molecular Beam Mass Spectrometry and NMR, for rapid evaluation of cell wall chemical components of transgenic wood samples. With these high-throughput techniques, we observed increased syringyl-to-guaiacyl lignin ratios in the transgenic wood samples, regardless of the promoter used or gene origin. Our results confirmed that the coniferaldehyde 5-hydroxylase gene is key to syringyl lignin biosynthesis. The outcomes of this research should be readily applicable to other pulpwood species, and promise to bring direct economic and environmental benefits to the pulp and paper industry.« less

  20. Hyperglycemia and xerostomia are key determinants of tooth decay in type 1 diabetic mice

    PubMed Central

    Yeh, Chih-Ko; Harris, Stephen E; Mohan, Sumathy; Horn, Diane; Fajardo, Roberto; Chun, Yong-Hee Patricia; Jorgensen, James; MacDougall, Mary; Abboud-Werner, Sherry

    2012-01-01

    Insulin-dependent type 1 diabetes mellitus (DM) and oral diseases are closely interrelated. Poor metabolic control in diabetics is associated with a high risk of gingivitis, periodontitis and tooth loss. Salivary flow declines in diabetics and patients suffer from xerostomia. Reduced saliva predisposes to enamel hypomineralization and caries formation; however, the mechanisms that initiate and lead to progression of tooth decay and periodontitis in type 1 DM have not been explored. To address this issue, we analyzed tooth morphology in Akita −/− mice that harbor a point mutation in the Ins2 insulin gene, which leads to progressive hyperglycemia. Mandibles from Akita −/− and wild-type littermates were analyzed by microCT, scanning EM and histology; teeth were examined for amelogenin (Amel) and ameloblastin (Ambn) expression. Mice were injected with pilocarpine to assess saliva production. As hyperglycemia may alter pulp repair, the effect of high glucose levels on the proliferation/differentiation of cultured MD10-F2 pulp cells was also analyzed. Results showed that Akita −/− mice at 6 weeks of age showed chalky white incisors that correlated with marked hyperglycemia and impaired saliva production. MicroCT of Akita −/− teeth revealed excessive enamel wearing and hypomineralization; immunostaining for Amel and Ambn was decreased. A striking feature was invasion of dentinal tubules with Streptococcus mitis and microabcesses that originated in the coronal pulp and progressed to pulp necrosis and periapical periodontitis. High levels of glucose also inhibited MD10-F2 cell proliferation and differentiation. Our findings provide the first evidence that hyperglycemia in combination with reduced saliva in a model of type1 DM leads to decreased enamel mineralization/matrix proteins and predisposes to excessive wearing and decay. Importantly, hyperglycemia adversely affects enamel matrix proteins and pulp repair. Early detection and treatment of hyperglycemia and hyposalivation may provide a useful strategy for preventing the dental complications of diabetes and promoting oral health in this population. PMID:22449801

  1. Induced Pluripotent Stem (iPS) Cells in Dentistry: A Review

    PubMed Central

    Malhotra, Neeraj

    2016-01-01

    iPS cells are derived from somatic cells via transduction and expression of selective transcription factors. Both viral-integrating (like retroviral) and non-integrating (like, mRNA or protein-based) techniques are available for the production of iPS cells. In the field of dentistry, iPS cells have been derived from stem cells of apical papilla, dental pulp stem cells, and stem cells from exfoliated deciduous teeth, gingival and periodontal ligament fibroblasts, and buccal mucosa fibroblasts. iPS cells have the potential to differentiate into all derivatives of the 3 primary germ layers i.e. ectoderm, endoderm, and mesoderm. They are autogeneically accessible, and can produce patient-specific or disease-specific cell lines without the issue of ethical controversy. They have been successfully tested to produce mesenchymal stem cells-like cells, neural crest-like cells, ameloblasts-like cells, odontoblasts-like cells, and osteoprogenitor cells. These cells can aid in regeneration of periodontal ligament, alveolar bone, cementum, dentin-pulp complex, as well as possible Biotooth formation. However certain key issues like, epigenetic memory of iPS cells, viral-transduction, tumorgenesis and teratoma formation need to be overcome, before they can be successfully used in clinical practice. The article discusses the sources, pros and cons, and current applications of iPS cells in dentistry with an emphasis on encountered challenges and their solutions. PMID:27572712

  2. [Bioactive glass 45S5-silk fibroin membrane supports proliferation and differentiation of human dental pulp stem cells].

    PubMed

    Lyu, Xiaoshuai; Li, Zhengmao; Wang, Haiyan; Yang, Xuechao

    2015-12-01

    To investigate the effect of bioactivity glass 45S5- silk fibroin(BG45S5- SF) membrane on growth, proliferation and differentiation of human dental pulp stem cells(hDPSC), and to provide new ideas and method for the regeneration of pulp-dentine complex. hDPSC seed on pure silk fibroin membrane (protein membrane group) and BG45S5-SF membrane with different concentrations(1 000, 5 000 mg/L, composite membrane group A and B, respectively) were prepared, and the materials were incubated in cell culture fluid for 24 h. No material membrane orifice plate was used as blank control group. Contact angle meter was used to measure surface contact angle of protein membrane and composite membrane group(each group had three repeated holes). Cell proliferation was assessed by cell counting kit- 8 on the 4, 7, 14, and 21 days. The state of adhesion and growth of hDPSC on the materials surface was evaluated by scanning electron microscopy and cytoskeleton staining; and alkaline phosphatase (ALP) activity was measured to evaluate the cell differentiation potential. The expression of odontoblastic differentiation-related genes was measured by real-time PCR. Surface contact angle of the protein membrane group and composite membrane group A and group B were 89.51° ± 0.12°, 70.32° ± 0.07° and 71.31° ± 0.09° respectively. hDPSC adhered well on each materials surface on the 7, 14, 21 days, ALP activity and differentiation genes of composite membrane group A and B rised more significantly than the blank control group and protein membrane group did (P<0.05). Dentin matrix protein1(DMP- 1), dentin sialoprotein(DSP), ALP, osteocalcin(OC) mRNA expression reached peak on the 14 days in group A, and in group B on the 21 days. Bone sialoprotein(BSP) mRNA expression in both group A and B reached peak on the 21 days. BG45S5- SF membrane is able to support the proliferation and showed the potential of odontoblastic differentiation for hDPSC. This finding suggests that BG45S5-SF membrane was a kind of tissue engineering film material with the regeneration potential for pulp-dentine complex.

  3. Human dental pulp stem cell adhesion and detachment in polycaprolactone electrospun scaffolds under direct perfusion

    PubMed Central

    Paim, A.; Braghirolli, D.I.; Cardozo, N.S.M.; Pranke, P.; Tessaro, I.C.

    2018-01-01

    Cell adhesion in three-dimensional scaffolds plays a key role in tissue development. However, stem cell behavior in electrospun scaffolds under perfusion is not fully understood. Thus, an investigation was made on the effect of flow rate and shear stress, adhesion time, and seeding density under direct perfusion in polycaprolactone electrospun scaffolds on human dental pulp stem cell detachment. Polycaprolactone scaffolds were electrospun using a solvent mixture of chloroform and methanol. The viable cell number was determined at each tested condition. Cell morphology was analyzed by confocal microscopy after various incubation times for static cell adhesion with a high seeding density. Scanning electron microscopy images were obtained before and after perfusion for the highest flow rate tested. The wall pore shear stress was calculated for all tested flow rates (0.005–3 mL/min). An inversely proportional relationship between adhesion time with cell detachment under perfusion was observed. Lower flow rates and lower seeding densities reduced the drag of cells by shear stress. However, there was an operational limit for the lowest flow rate that can be used without compromising cell viability, indicating that a flow rate of 0.05 mL/min might be more suitable for the tested cell culture in electrospun scaffolds under direct perfusion. PMID:29590258

  4. Cytotoxicity assessment of polyhydroxybutyrate/chitosan/nano- bioglass nanofiber scaffolds by stem cells from human exfoliated deciduous teeth stem cells from dental pulp of exfoliated deciduous tooth

    PubMed Central

    Hashemi-Beni, Batool; Khoroushi, Maryam; Foroughi, Mohammad Reza; Karbasi, Saeed; Khademi, Abbas Ali

    2018-01-01

    Background: The aim of this study was to compare the cytotoxicity and the biocompatibility of three different nanofibers scaffolds after seeding of stem cells harvested from human deciduous dental pulp. Given the importance of scaffold and its features in tissue engineering, this study demonstrated the construction of polyhydroxybutyrate (PHB)/chitosan/nano-bioglass (nBG) nanocomposite scaffold using electrospinning method. Materials and Methods: This experimental study was conducted on normal exfoliated deciduous incisors obtained from 6-year-old to 11-year-old healthy children. The dental pulp was extracted from primary incisor teeth which are falling aseptically. After digesting the tissue with 4 mg/ml of type I collagenase, the cells were cultured in medium solution. Identification of stem cells from human exfoliated deciduous teeth was performed by flowcytometry using CD19, CD14, CD146, and CD90 markers. Then, 1 × 104 stem cells were seeded on the scaffold with a diameter of 10 mm × 0.3 mm. Cell viability was evaluated on days 3, 5, and 7 through methyl thiazol tetrazolium techniques (P < 0.05) on different groups that they are groups included (1) PHB scaffold (G1), (2) PHB/chitosan scaffold (G2), (3) the optimal PHB/chitosan/nBG scaffold (G3), (4) mineral trioxide aggregate (MTA), and (5) the G3 + MTA scaffold (G3 + MTA). Data were analyzed with two-way ANOVA at significance level of P < 0.05. Results: The results indicated that the PHB/chitosan/nBG scaffold and PHB/chitosan/nBG scaffold + MTA groups showed significant difference compared with the PHB/chitosan scaffold and PHB scaffold groups on the 7th day (P < 0.05). Conclusion: Thus, it can be concluded that the scaffold with nBG nanoparticles is more biocompatible than the other scaffolds and can be considered as a suitable scaffold for growth and proliferation of stem cells. PMID:29576778

  5. Cytotoxicity assessment of polyhydroxybutyrate/chitosan/nano- bioglass nanofiber scaffolds by stem cells from human exfoliated deciduous teeth stem cells from dental pulp of exfoliated deciduous tooth.

    PubMed

    Hashemi-Beni, Batool; Khoroushi, Maryam; Foroughi, Mohammad Reza; Karbasi, Saeed; Khademi, Abbas Ali

    2018-01-01

    The aim of this study was to compare the cytotoxicity and the biocompatibility of three different nanofibers scaffolds after seeding of stem cells harvested from human deciduous dental pulp. Given the importance of scaffold and its features in tissue engineering, this study demonstrated the construction of polyhydroxybutyrate (PHB)/chitosan/nano-bioglass (nBG) nanocomposite scaffold using electrospinning method. This experimental study was conducted on normal exfoliated deciduous incisors obtained from 6-year-old to 11-year-old healthy children. The dental pulp was extracted from primary incisor teeth which are falling aseptically. After digesting the tissue with 4 mg/ml of type I collagenase, the cells were cultured in medium solution. Identification of stem cells from human exfoliated deciduous teeth was performed by flowcytometry using CD19, CD14, CD146, and CD90 markers. Then, 1 × 10 4 stem cells were seeded on the scaffold with a diameter of 10 mm × 0.3 mm. Cell viability was evaluated on days 3, 5, and 7 through methyl thiazol tetrazolium techniques ( P < 0.05) on different groups that they are groups included (1) PHB scaffold (G1), (2) PHB/chitosan scaffold (G2), (3) the optimal PHB/chitosan/nBG scaffold (G3), (4) mineral trioxide aggregate (MTA), and (5) the G3 + MTA scaffold (G3 + MTA). Data were analyzed with two-way ANOVA at significance level of P < 0.05. The results indicated that the PHB/chitosan/nBG scaffold and PHB/chitosan/nBG scaffold + MTA groups showed significant difference compared with the PHB/chitosan scaffold and PHB scaffold groups on the 7 th day ( P < 0.05). Thus, it can be concluded that the scaffold with nBG nanoparticles is more biocompatible than the other scaffolds and can be considered as a suitable scaffold for growth and proliferation of stem cells.

  6. Human periapical cyst-mesenchymal stem cells differentiate into neuronal cells.

    PubMed

    Marrelli, M; Paduano, F; Tatullo, M

    2015-06-01

    It was recently reported that human periapical cysts (hPCys), a commonly occurring odontogenic cystic lesion of inflammatory origin, contain mesenchymal stem cells (MSCs) with the capacity for self-renewal and multilineage differentiation. In this study, periapical inflammatory cysts were compared with dental pulp to determine whether this tissue may be an alternative accessible tissue source of MSCs that retain the potential for neurogenic differentiation. Flow cytometry and immunofluorescence analysis indicated that hPCy-MSCs and dental pulp stem cells spontaneously expressed the neuron-specific protein β-III tubulin and the neural stem-/astrocyte-specific protein glial fibrillary acidic protein (GFAP) in their basal state before differentiation occurs. Furthermore, undifferentiated hPCy-MSCs showed a higher expression of transcripts for neuronal markers (β-III tubulin, NF-M, MAP2) and neural-related transcription factors (MSX-1, Foxa2, En-1) as compared with dental pulp stem cells. After exposure to neurogenic differentiation conditions (neural media containing epidermal growth factor [EGF], basic fibroblast growth factor [bFGF], and retinoic acid), the hPCy-MSCs showed enhanced expression of β-III tubulin and GFAP proteins, as well as increased expression of neurofilaments medium, neurofilaments heavy, and neuron-specific enolase at the transcript level. In addition, neurally differentiated hPCy-MSCs showed upregulated expression of the neural transcription factors Pitx3, Foxa2, Nurr1, and the dopamine-related genes tyrosine hydroxylase and dopamine transporter. The present study demonstrated for the first time that hPCy-MSCs have a predisposition toward the neural phenotype that is increased when exposed to neural differentiation cues, based on upregulation of a comprehensive set of proteins and genes that define neuronal cells. In conclusion, these results provide evidence that hPCy-MSCs might be another optimal source of neural/glial cells for cell-based therapies to treat neurologic diseases. © International & American Associations for Dental Research 2015.

  7. Comparison of the bone regeneration ability between stem cells from human exfoliated deciduous teeth, human dental pulp stem cells and human bone marrow mesenchymal stem cells.

    PubMed

    Nakajima, Kengo; Kunimatsu, Ryo; Ando, Kazuyo; Ando, Toshinori; Hayashi, Yoko; Kihara, Takuya; Hiraki, Tomoka; Tsuka, Yuji; Abe, Takaharu; Kaku, Masato; Nikawa, Hiroki; Takata, Takashi; Tanne, Kazuo; Tanimoto, Kotaro

    2018-03-11

    Cleft lip and palate is the most common congenital anomaly in the orofacial region. Autogenous iliac bone graft, in general, has been employed for closing the bone defect at the alveolar cleft. However, such iliac bone graft provides patients with substantial surgical and psychological invasions. Consequently, development of a less invasive method has been highly anticipated. Stem cells from human exfoliated deciduous teeth (SHED) are a major candidate for playing a significant role in tissue engineering and regenerative medicine. The aim of this study was to elucidate the nature of bone regeneration by SHED as compared to that of human dental pulp stem cells (hDPSCs) and bone marrow mesenchymal stem cells (hBMSCs). The stems cells derived from pulp tissues and bone marrow were transplanted with a polylactic-coglycolic acid barrier membrane as a scaffold, for use in bone regeneration in an artificial bone defect of 4 mm in diameter in the calvaria of immunodeficient mice. Three-dimensional analysis using micro CT and histological evaluation were performed. Degree of bone regeneration with SHED relative to the bone defect was almost equivalent to that with hDPSCs and hBMSCs 12 weeks after transplantation. The ratio of new bone formation relative to the pre-created bone defect was not significantly different among groups with SHED, hDPSCs and hBMSCs. In addition, as a result of histological evaluation, SHED produced the largest osteoid and widely distributed collagen fibers compared to hDPSCs and hBMSCs groups. Thus, SHED transplantation exerted bone regeneration ability sufficient for the repair of bone defect. The present study has demonstrated that SHED is one of the best candidate as a cell source for the reconstruction of alveolar cleft due to the bone regeneration ability with less surgical invasion. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Facile synthesis and characterization of novel rapid-setting spherical sub-micron bioactive glasses cements and their biocompatibility in vitro.

    PubMed

    Li, Yuli; Liang, Qiming; Lin, Cai; Li, Xian; Chen, Xiaofeng; Hu, Qing

    2017-06-01

    Dental pulp vitality is extremely important for the tooth viability, since it provides nutrition and forms the dentin. Bioactive glasses (BGs) may be promising materials for pulp repair due to their excellent abilities of rapidly bonding to bone and stimulating new bone growth. However, the unsatisfied handling property, low plasticity, and poor rapid-setting property of traditional BGs limit its application in vital pulp therapy. Spherical bioactive glasses (SBGs) exhibited higher osteogenesis and odontogenic differentiation than irregular BGs. This study focuses on the application of SBGs with rapid setting property for dental pulp repair. Here, SBGs with various compositions were successfully synthesized by a sol-gel process using dodecylamine (DDA) served as both a catalyst and a template. The maximum content of CaO in SBGs was about 15%. The non-bridge oxygen amounts of the SiO network and the apatite-forming ability increased with the content proportion of CaO and P 2 O 5 . Bioactive glass pulp capping materials (BGPCMs) were prepared by mixing the SBGs powders and the phosphate buffer solution (PBS). The K 3 CaH(PO 4 ) 2 and hydroxyapatite (HA) formed between SBGs particles as soon as they were mixed with PBS solution. The compressive strengths of fully set BCPCM-2 molded were measured to be 31.76±1.9577MPa after setting for 24h. The K 3 CaH(PO 4 ) 2 and the low crystallinity HA phases at the initial stage of solidification transformed to crystalline HA for 3days, and the compressive strength was still higher than 10MPa. Additionally, SBG-2 with a designed molar composition of 35% SiO 2 , 55% CaO and 10% P 2 O 5 more promoted dental pulp cell proliferation, and could be potential pulp capping applications. Copyright © 2017. Published by Elsevier B.V.

  9. Transplanted Dental Pulp Stem Cells Migrate to Injured Area and Express Neural Markers in a Rat Model of Cerebral Ischemia.

    PubMed

    Zhang, Xuemei; Zhou, Yinglian; Li, Hulun; Wang, Rui; Yang, Dan; Li, Bing; Cao, Xiaofang; Fu, Jin

    2018-01-01

    Ischemic stroke is a major cause of disability and mortality worldwide, while effective restorative treatments are limited at present. Stem cell transplantation holds therapeutic potential for ischemic vascular diseases and may provide an opportunity for neural regeneration. Dental pulp stem cells (DPSCs) origin from neural crest and have neuro-ectodermal features including proliferation and multilineage differentiation potentials. The rat model of middle cerebral artery occlusion (MCAO) was used to evaluate whether intravenous administration of DPSCs can reduce infarct size and to estimate the migration and trans-differentiation into neuron-like cells in focal cerebral ischemia models. Brain tissues were collected at 4 weeks following cell transplantation and analyzed with immunofluorescence, immunohistochemistry and real-time polymerase chain reaction (RT-PCR) methods. Intravenously administration of rat-derived DPSCs were found to migrate into the boundary of ischemic areas and expressed neural specific markers, reducing infarct volume and cerebral edema. These results suggest that DPSCs treatment may serve as a potential therapy for clinical stroke patients in the future. © 2018 The Author(s). Published by S. Karger AG, Basel.

  10. Regenerative endodontics: a state of the art.

    PubMed

    Bansal, Rashmi; Bansal, Rajesh

    2011-01-01

    Scientific advances in the creation of restorative biomaterials, in vitro cell culture technology, tissue grafting, tissue engineering, molecular biology and the human genome project provide the basis for the introduction of new technologies into dentistry. Non-vital infected teeth have long been treated with root canal therapy (for mature root apex) and apexification (for immature root apex), or doomed to extraction. Although successful, current treatments fail to re-establish healthy pulp tissue in these teeth. But, what if the non-vital tooth could be made vital once again? That is the hope offered by regenerative endodontics, an emerging field focused on replacing traumatized and diseased pulp with functional pulp tissue. Restoration of vitality of non-vital tooth is based on tissue engineering and revascularization procedures. The purpose of this article is to review these biological procedures and the hurdles that must be overcome to develop regenerative endodontic procedures.

  11. Bladder Smooth Muscle Cells Differentiation from Dental Pulp Stem Cells: Future Potential for Bladder Tissue Engineering

    PubMed Central

    Song, Bing; Jiang, Wenkai; Alraies, Amr; Liu, Qian; Gudla, Vijay; Oni, Julia; Wei, Xiaoqing; Sloan, Alastair; Ni, Longxing; Agarwal, Meena

    2016-01-01

    Dental pulp stem cells (DPSCs) are multipotent cells capable of differentiating into multiple cell lines, thus providing an alternative source of cell for tissue engineering. Smooth muscle cell (SMC) regeneration is a crucial step in tissue engineering of the urinary bladder. It is known that DPSCs have the potential to differentiate into a smooth muscle phenotype in vitro with differentiation agents. However, most of these studies are focused on the vascular SMCs. The optimal approaches to induce human DPSCs to differentiate into bladder SMCs are still under investigation. We demonstrate in this study the ability of human DPSCs to differentiate into bladder SMCs in a growth environment containing bladder SMCs-conditioned medium with the addition of the transforming growth factor beta 1 (TGF-β1). After 14 days of exposure to this medium, the gene and protein expression of SMC-specific marker (α-SMA, desmin, and calponin) increased over time. In particular, myosin was present in differentiated cells after 11 days of induction, which indicated that the cells differentiated into the mature SMCs. These data suggested that human DPSCs could be used as an alternative and less invasive source of stem cells for smooth muscle regeneration, a technology that has applications for bladder tissue engineering. PMID:26880982

  12. RELATIONSHIP OF GERMINAL CENTERS IN LYMPHOID TISSUE TO IMMUNOLOGICAL MEMORY

    PubMed Central

    Wakefield, J. D.; Thorbecke, G. J.

    1968-01-01

    The fate, proliferation, and developmental potentialities of cell suspensions made from white pulp containing large germinal centers have been studied in the mouse by transfer of cells labeled with thymidine-3H to lethally irradiated, syngeneic recipients. Radioautographic analyses were made using both smears and sections of a variety of tissues. Thymidine-3H-labeling patterns of white pulp showed that, initially, labeling occurred in a majority of blast and "intermediate cells" but in very few or no small lymphocytes. After intravenous transfer, most of the labeled cells localized in the lymphoid tissues of spleen, lymph nodes, and Peyer's patches. Few cells migrated to the thymus, lung, liver, and intestinal mucosa. Both after intravenous and after intraperitoneal transfer there was a rapid increase in the incidence of labeled small lymphocytes and a decrease of labeled blasts and intermediate cells. This was accompanied by an increase in the grain count of the small lymphocytes and a progressive decrease in the grain counts of the blast cells. Exposure of nonlabeled donor cells to thymidine-3H at various time intervals after transfer indicated that dividing cells were present early after transfer but that their incidence progressively decreased. Between 24 and 48 hr, very little cell division was detectable. PMID:5662013

  13. New Approaches in Vital Pulp Therapy in Permanent Teeth

    PubMed Central

    Ghoddusi, Jamileh; Forghani, Maryam; Parisay, Iman

    2014-01-01

    Vitality of dental pulp is essential for long-term tooth survival. The aim of vital pulp therapy is to maintain healthy pulp tissue by eliminating bacteria from the dentin-pulp complex. There are several different treatment options for vital pulp therapy in extensively decayed or traumatized teeth. Pulp capping or pulpotomy procedures rely upon an accurate assessment of the pulp status, and careful management of the remaining pulp tissue. The purpose of this review is to provide an overview of new approaches in vital pulp therapy in permanent teeth. PMID:24396371

  14. EZH2 regulates dental pulp inflammation by direct effect on inflammatory factors.

    PubMed

    Hui, Tianqian; A, Peng; Zhao, Yuan; Yang, Jing; Ye, Ling; Wang, Chenglin

    2018-01-01

    Pulpitis is a multi-factorial disease that could be caused by complex interactions between genetics, epigenetics and environmental factors. We aimed to evaluate the role of Enhancer of Zeste Homolog 2 (EZH2) in the inflammatory response of human dental pulp cells (HDPCs) and dental pulp tissues. The expressions of inflammatory cytokines in HDPCs treated by EZH2 complex or EZH2 siRNA with or without rhTNF-α were examined by quantitative real-time polymerase chain reaction (q-PCR). The levels of secreted inflammatory cytokines including IL-6, IL-8, IL-15, CCL2 and CXCL12 in culture supernatants were measured by Luminex assay. In rat pulpitis model, the effects of EZH2 on dental pulp tissues were verified by histology. We invested the mechanisms of the effect of EZH2 on the inflammatory factors by ChIP assay. EZH2 down-regulation inhibited the expression of inflammatory factors, including IL-6, IL-8, IL-15, CCL2 and CXCL12 in HDPCs. EZH2 complex promoted the expression and secretion of these inflammatory factors in HDPCs, while EZH2 silencing could attenuate the promotion of inflammatory factors that were induced by rhTNF-α. In pulpitis models of rats, EZH2 down-regulation inhibited the inflammatory process of dental pulp while EZH2 complex showed no significant facilitation of pulpal inflammation. In addition, EZH2 could bind on the promoters of IL-6, IL-8 and CCL2, but not IL-15 and CXCL12, to affect the transcription of these proinflammatory cytokines. In HDPCs, EZH2 could induce inflammation, while EZH2 down-regulation could attenuate the inflammatory responses. EZH2 plays an important role in this inflammatory process of dental pulp. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Dietery acai fruit improves cognition in aged rats

    USDA-ARS?s Scientific Manuscript database

    Açai is a black-purple fruit (genus Euterpe) cultivated in the Amazon delta and in Brazil (Euterpe oleracea Mart.; EO), as well as Bolivia (Euterpe precatoria Mart.; EP). The fruit’s pulp is known to be rich in polyphenolics that may affect cell-to-cell signaling, receptor sensitivity, inflammatory...

  16. In vitro effects of two silicate-based materials, Biodentine and BioRoot RCS, on dental pulp stem cells in models of reactionary and reparative dentinogenesis

    PubMed Central

    Loison-Robert, Ludwig Stanislas; Berbar, Tsouria; Isaac, Juliane; Berdal, Ariane; Simon, Stéphane

    2018-01-01

    Background Calcium silicate-based cements are biomaterials with calcium oxide and carbonate filler additives. Their properties are close to those of dentin, making them useful in restorative dentistry and endodontics. The aim of this study was to evaluate the in vitro biological effects of two such calcium silicate cements, Biodentine (BD) and Bioroot (BR), on dental stem cells in both direct and indirect contact models. The two models used aimed to mimic reparative dentin formation (direct contact) and reactionary dentin formation (indirect contact). An original aspect of this study is the use of an interposed thin agarose gel layer to assess the effects of diffusible components from the materials. Results The two biomaterials were compared and did not modify dental pulp stem cell (DPSC) proliferation. BD and BR showed no significant cytotoxicity, although some cell death occurred in direct contact. No apoptosis or inflammation induction was detected. A striking increase of mineralization induction was observed in the presence of BD and BR, and this effect was greater in direct contact. Surprisingly, biomineralization occurred even in the absence of mineralization medium. This differentiation was accompanied by expression of odontoblast-associated genes. Exposure by indirect contact did not stimulate the induction to such a level. Conclusion These two biomaterials both seem to be bioactive and biocompatible, preserving DPSC proliferation, migration and adhesion. The observed strong mineralization induction through direct contact highlights the potential of these biomaterials for clinical application in dentin-pulp complex regeneration. PMID:29370163

  17. The effect of Aloe vera gel on viability of dental pulp stem cells.

    PubMed

    Sholehvar, Fatemeh; Mehrabani, Davood; Yaghmaei, Parichehr; Vahdati, Akbar

    2016-10-01

    Dental pulp stem cells (DPSCs) can play a prominent role in tissue regeneration. Aloe vera L. (Liliaceae) contains the polysaccharide of acemannan that was shown to be a trigger factor for cell proliferation, differentiation, mineralization, and dentin formation. This study sought to determine the viability of DPSCs in Aloe vera in comparison with Hank's balanced salt solution (HBSS). Twelve rabbits underwent anesthesia, and their incisor teeth were extracted; the pulp tissue was removed, chopped, treated with collagenase and plated in culture flasks. DPSCs from passage 3 were cultured in 24-well plates, and after 3 days, the culture media changed to 10, 25, 50, and 100% concentrations of Aloe vera at intervals of 45 and 90 min and 3 and 6 h. Distilled water was used as negative and HBSS as positive control for comparison. The cell morphology, viability, population doubling time (PDT), and growth kinetics were evaluated. RT-PCR was carried out for characterization and karyotyping for chromosomal stability. Aloe vera showed a significant higher viability than HBSS (74.74%). The 50% Aloe vera showed higher viability (97.73%) than other concentrations. PDT in 50% concentration was 35.1 h and for HBSS was 49.5 h. DPSCs were spindle shaped and were positive for CD73 and negative for CD34 and CD45. Karyotyping was normal. Aloe vera as an inexpensive and available herb can improve survival of avulsed or broken teeth in emergency cases as a transfer media. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Regulation of Polysaccharide- and Protein- Specific Antibody Responses to Intact Extracellular Bacteria

    DTIC Science & Technology

    2016-03-11

    50, Immunology. 26 | P a g e blood-borne antigens. The white pulp consists of the periarteriolar lymphoid sheath (PALS) which contain T cells ...and CD8α+ dendritic (DC), and adjacent lymphoid follicles containing mainly circulating B cells , known as follicular B cells (FB). The outer boundary...complexes, for initial priming within the T cell zones of secondary lymphoid organs followed by migration of T cells to the T cell -B cell border. B

  19. Stimulation of EphB2/ephrin-B1 signalling by tumour necrosis factor alpha in human dental pulp stem cells.

    PubMed

    Zhu, Lifang; Dissanayaka, Waruna Lakmal; Green, David William; Zhang, Chengfei

    2015-04-01

    The aim of this study was to investigate whether in vitro stimulation of dental pulp stem cells (DPSCs) by tumour necrosis factor alpha (TNF-α) would induce secretion of EphB2/ephrin-B1 signalling. Dental pulp stem cells isolated from human dental pulp were treated with TNF-α (5-100 ng/ml) over 2-48 h. EphB2/ephrin-B1 mRNA and protein levels were measured by real-time polymerase chain reaction (RT-PCR) and western blot analysis respectively. Additionally, DPSCs were pre-incubated with TNF-α receptor neutralizing antibodies or infected with nuclear factor-kappa B (NF-ĸB) inhibitor, p38 MAPK inhibitor, Jun N-terminal kinase (JNK) inhibitor and MEK inhibitor before TNF-α treatment. Results were analysed by one-way ANOVA. Tumour necrosis factor alpha increased EphB2 mRNA expression in DPSCs at concentrations up to 20 ng/ml and ephrin-B1 at concentrations up to 40 ng/ml (P < 0.05). Its mRNA expression reached maximum at 24 h when treated with TNF-α at 20 ng/ml (P < 0.05). EphB2/ephrin-B1 protein expression levels were high at 16 and 24 h as shown by western blotting. Neutralizing antibodies for TNFR1/2 receptors down-regulated EphB2/ephrin-B1 mRNA expression (P < 0.05) and ephrin-B1 protein expression, but not EphB2 protein expression. JNK-inhibitor inhibited EphB2 mRNA expression only (P < 0.05). EphB2/ephrin-B1 were invoked in DPSCs with TNF-α treatment via the JNK-dependent pathway, but not NF-ĸB, p38 MAPK or MEK signalling. © 2015 John Wiley & Sons Ltd.

  20. Influence of lignocellulose and low or high levels of sugar beet pulp on nutrient digestibility and the fecal microbiota in dogs.

    PubMed

    Kröger, S; Vahjen, W; Zentek, J

    2017-04-01

    Lignocellulose is an alternative fiber source for dogs; however, it has not yet been studied as a feed ingredient for the nutrition of dogs. Eight adult Beagles were involved in the study, which consisted of 3 feeding periods of 8 to 12 wk each. All dogs received 3 different diets, which either had the same concentration of fiber sources (2.7% sugar beet pulp or lignocellulose) or were formulated for a similar concentration of approximately 3% crude fiber: 12% sugar beet pulp (highSBP; 3.1% crude fiber), 2.7% sugar beet pulp (lowSBP; 0.96% crude fiber), or 2.7% lignocellulose (LC; 2.4% crude fiber). Feces samples were collected at the end of each feeding period, and the apparent nutrient digestibility, daily amount, and DM content of feces and fecal cell numbers of relevant bacteria were analyzed. The daily feces amount was lower and the feces DM was higher when dogs were fed the LC diet and the lowSBP diet compared with the highSBP diet ( < 0.001). Apparent digestibility of CP, Na, and K was highest with the lowSBP diet followed by the LC and highSBP diets ( < 0.001). After feeding LC, the bacterial cell counts of spp., spp., and the cluster were reduced compared with feeding highSBP and even more reduced after feeding lowSBP ( < 0.001). The bacterial cell count of the cluster was lower in LC and lowSBP compared with highSBP ( < 0.001). The feces of dogs fed LC and lowSBP had lower concentrations of acetate ( < 0.001), propionate ( < 0.001), -butyrate ( = 0.015), total fatty acids ( < 0.001), and lactate ( < 0.001) compared with dogs fed highSBP. The concentration of -butyrate was higher in the feces of dogs fed with LC compared with dogs fed high and low sugar beet pulp (SBP; < 0.001). The pH of the feces of the LC-fed dogs was highest followed by lowSBP- and highSBP-fed dogs ( < 0.001). Depending on the concentration, the use of LC and SBP as fiber sources in dog feed has different impacts on the fecal microbiota and the apparent digestibility of nutrients. Therefore, different areas of application should be considered.

  1. Small Molecules Affect Human Dental Pulp Stem Cell Properties Via Multiple Signaling Pathways

    PubMed Central

    Al-Habib, Mey; Yu, Zongdong

    2013-01-01

    One fundamental issue regarding stem cells for regenerative medicine is the maintenance of stem cell stemness. The purpose of the study was to test whether small molecules can enhance stem cell properties of mesenchymal stem cells (MSCs) derived from human dental pulp (hDPSCs), which have potential for multiple clinical applications. We identified the effects of small molecules (Pluripotin (SC1), 6-bromoindirubin-3-oxime and rapamycin) on the maintenance of hDPSC properties in vitro and the mechanisms involved in exerting the effects. Primary cultures of hDPSCs were exposed to optimal concentrations of these small molecules. Treated hDPSCs were analyzed for their proliferation, the expression levels of pluripotent and MSC markers, differentiation capacities, and intracellular signaling activations. We found that small molecule treatments decreased cell proliferation and increased the expression of STRO-1, NANOG, OCT4, and SOX2, while diminishing cell differentiation into odonto/osteogenic, adipogenic, and neurogenic lineages in vitro. These effects involved Ras-GAP-, ERK1/2-, and mTOR-signaling pathways, which may preserve the cell self-renewal capacity, while suppressing differentiation. We conclude that small molecules appear to enhance the immature state of hDPSCs in culture, which may be used as a strategy for adult stem cell maintenance and extend their capacity for regenerative applications. PMID:23573877

  2. Truncated EphA2 likely potentiates cell adhesion via integrins as well as infiltration and/or lodgment of a monocyte/macrophage cell line in the red pulp and marginal zone of the mouse spleen, where ephrin-A1 is prominently expressed in the vasculature.

    PubMed

    Konda, Naoko; Saeki, Noritaka; Nishino, Shingo; Ogawa, Kazushige

    2017-03-01

    We previously established a J774.1 monocyte/macrophage subline expressing a truncated EphA2 construct lacking the kinase domain. We demonstrated that following ephrin-A1 stimulation, endogenous EphA2 promotes cell adhesion through interaction with integrins and integrin ligands such as ICAM1 and that truncated EphA2 potentiates the adhesion and becomes associated with the integrin/integrin ligand complex. Based on these findings, we hypothesized that the EphA/ephrin-A system, particularly EphA2/ephrin-A1, regulates transendothelial migration/tissue infiltration of monocytes/macrophages, because ephrin-A1 is widely recognized to be upregulated in inflammatory vasculatures. To evaluate whether this hypothesis is applicable in the spleen, we screened for EphA2/ephrin-A1 expression and reexamined the cellular properties of the J774.1 subline. We found that ephrin-A1 was expressed in the vasculature of the marginal zone and the red pulp and that its expression was upregulated in response to phagocyte depletion; further, CD115, F4/80, and CXCR4 were expressed in J774.1 cells, which serve as a usable substitute for monocytes/macrophages. Moreover, following ephrin-A1 stimulation, truncated EphA2 did not detectably interfere with the phosphorylation of endogenous EphA2, and it potentiated cell adhesion possibly through modulation of integrin avidity. Accordingly, by intravenously injecting mice with equal numbers of J774.1 and the subline cells labeled with distinct fluorochromes, we determined that truncated EphA2 markedly potentiated preferential cell infiltration into the red pulp and the marginal zone. Thus, modulation of EphA2 signaling might contribute to effective transplantation of tissue-specific resident macrophages and/or monocytes.

  3. GaAlAs laser irradiation induces active tertiary dentin formation after pulpal apoptosis and cell proliferation in rat molars.

    PubMed

    Shigetani, Yoshimi; Sasa, Natsuki; Suzuki, Hironobu; Okiji, Takashi; Ohshima, Hayato

    2011-08-01

    This study aimed to clarify pulpal responses to gallium-aluminum-arsenide (GaAlAs) laser irradiation. Maxillary first molars of 8-week-old rats were irradiated at an output power of 0.5 or 1.5 W for 180 seconds, and the samples were collected at intervals of 0 to 14 days. The demineralized paraffin sections were processed for immunohistochemistry for heat-shock protein (HSP)-25 and nestin in addition to cell proliferation assay using bromodeoxyuridine (BrdU) labeling and apoptosis assay using deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling (TUNEL). Intense HSP-25 and nestin immunoreactivities in the odontoblast layer were weakened immediately after 0.5-W irradiation and recovered on day 1, resulting in slight tertiary dentin formation by day 14. On the contrary, 1.5-W irradiation immediately induced the loss of HSP-25 and nestin-immunoreactivities in the odontoblast layer. On day 1, numerous TUNEL-positive cells appeared in a degenerative zone that was surrounded by intense HSP-25 immunoreactivity. BrdU-positive cells occurred within the intensely HSP-25-immunopositive areas during days 2 through 5, whereas TUNEL-positive cells gradually decreased in number by day 5. HSP-25- and nestin-positive odontoblast-like cells were arranged along the pulp-dentin border by day 7, resulting in remarkable tertiary dentin formation on day 14. The output energy determined pulpal healing patterns after GaAlAs laser irradiation; the higher energy induced the apoptosis in the affected dental pulp including odontoblasts followed by active cell proliferation in the intense HSP-25-immunoreactive areas surrounding the degenerative tissue, resulting in abundant tertiary dentin formation. Thus, the optimal GaAlAs laser irradiation elicited intentional tertiary dentin formation in the dental pulp. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Stimulation of interleukin-1beta-independent interleukin-6 production in human dental pulp cells by lipopolysaccharide.

    PubMed

    Hosoya, S; Matsushima, K; Ohbayashi, E; Yamazaki, M; Shibata, Y; Abiko, Y

    1996-12-01

    Dental pulpal infection is most commonly caused by extensive dental caries. A principal driving force behind pulpal disease response appears to lie in the immune system's response to bacteria. However, the production of interleukin (IL)-1beta and IL-6 in human dental pulp (HDP) cells in response to lipopolysaccharide (LPS) has not been well characterized. We examined IL-1beta and IL-6 production in HDP cells by challenging with LPS from Porphyromonas endodontalis, which is a Gram-negative bacteria found in root canals. Our results presented here showed that when HDP cells were stimulated by LPS, the production of IL-6 always preceded that of IL-1beta. Since the IL-6 production was observed even in the presence of the IL-1beta receptor antagonist, we concluded IL-6 production was independent of the IL-1beta molecule in LPS-stimulated HDP cells. This idea was further supported by the results obtained from RT-PCR experiments, in which IL-6 mRNA, but not IL-1beta mRNA, was present in the RNA preparation isolated from the early stage of cells.

  5. Laser Doppler flowmetry in endodontics: a review.

    PubMed

    Jafarzadeh, H

    2009-06-01

    Vascular supply is the most accurate marker of pulp vitality. Tests for assessing vascular supply that rely on the passage of light through a tooth have been considered as possible methods for detecting pulp vitality. Laser Doppler flowmetry (LDF), which is a noninvasive, objective, painless, semi-quantitative method, has been shown to be reliable for measuring pulpal blood flow. The relevant literature on LDF in the context of endodontics up to March 2008 was reviewed using PubMed and MEDLINE database searches. This search identified papers published between June 1983 and March 2008. Laser light is transmitted to the pulp by means of a fibre optic probe. Scattered light from moving red blood cells will be frequency-shifted whilst that from the static tissue remains unshifted. The reflected light, composed of Doppler-shifted and unshifted light, is returned by afferent fibres and a signal is produced. This technique has been successfully employed for estimating pulpal vitality in adults and children, differential diagnosis of apical radiolucencies (on the basis of pulp vitality), examining the reactions to pharmacological agents or electrical and thermal stimulation, and monitoring of pulpal responses to orthodontic procedures and traumatic injuries. Assessments may be highly susceptible to environmental and technique-related factors. Nonpulpal signals, principally from periodontal blood flow, may contaminate the signal. Because this test produces no noxious stimuli, apprehensive or distressed patients accept it more readily than current methods of pulp vitality assessment. A review of the literature and a discussion of the application of this system in endodontics are presented.

  6. Coliform Bacteria and Nitrogen Fixation in Pulp and Paper Mill Effluent Treatment Systems

    PubMed Central

    Gauthier, Francis; Neufeld, Josh D.; Driscoll, Brian T.; Archibald, Frederick S.

    2000-01-01

    The majority of pulp and paper mills now biotreat their combined effluents using activated sludge. On the assumption that their wood-based effluents have negligible fixed N, and that activated-sludge microorganisms will not fix significant N, these mills routinely spend large amounts adding ammonia or urea to their aeration tanks (bioreactors) to permit normal biomass growth. N2 fixation in seven Eastern Canadian pulp and paper mill effluent treatment systems was analyzed using acetylene reduction assays, quantitative nitrogenase (nifH) gene probing, and bacterial isolations. In situ N2 fixation was undetectable in all seven bioreactors but was present in six associated primary clarifiers. One primary clarifier was studied in greater detail. Approximately 50% of all culturable cells in the clarifier contained nifH, of which >90% were Klebsiella strains. All primary-clarifier coliform bacteria growing on MacConkey agar were identified as klebsiellas, and all those probed contained nifH. In contrast, analysis of 48 random coliform isolates from other mill water system locations showed that only 24 (50%) possessed the nifH gene, and only 13 (27%) showed inducible N2-fixing activity. Thus, all the pulp and paper mill primary clarifiers tested appeared to be sites of active N2 fixation (0.87 to 4.90 mg of N liter−1 day−1) and a microbial community strongly biased toward this activity. This may also explain why coliform bacteria, especially klebsiellas, are indigenous in pulp and paper mill water systems. PMID:11097883

  7. Contribution of the Collagen-Binding Proteins of Streptococcus mutans to Bacterial Colonization of Inflamed Dental Pulp.

    PubMed

    Nomura, Ryota; Ogaya, Yuko; Nakano, Kazuhiko

    2016-01-01

    Streptococcus mutans is a major pathogen of dental caries. Collagen-binding proteins (CBPs) (approximately 120 kDa), termed Cnm and Cbm, are regarded as important cell surface antigens related to the adherence of S. mutans to collagenous tissue. Furthermore, CBP-positive S. mutans strains are associated with various systemic diseases involving bacteremia, such as infective endocarditis. Endodontic infection is considered to be an important cause of bacteremia, but little is known regarding the presence of S. mutans in dental pulp tissue. In the present study, the distribution and virulence of S. mutans in dental pulp tissues were investigated by focusing on CBPs. Adhesion and invasion properties of various S. mutans strains were analyzed using human dental pulp fibroblasts (HDPFs). CBP-positive strains had a significantly higher rate of adhesion to HDPFs compared with CBP-defective isogenic mutant strains (P<0.001). In addition, CBP-positive strains induced HDPF proliferation, which is a possible mechanism related to development of hyperplastic pulpitis. The distribution of S. mutans strains isolated from infected root canal specimens was then analyzed by PCR. We found that approximately 50% of the root canal specimens were positive for S. mutans. Approximately 20% of these strains were Cnm-positive, while no Cbm-positive strains were isolated. The Cnm-positive strains isolated from the specimens showed adhesion to HDPFs. Our results suggest that CBP-positive S. mutans strains exhibit high colonization in dental pulp. This could be a possible virulence factor for various systemic diseases.

  8. Local Regeneration of Dentin-Pulp Complex Using Controlled Release of FGF-2 and Naturally Derived Sponge-Like Scaffolds

    PubMed Central

    Kitamura, Chiaki; Nishihara, Tatsuji; Terashita, Masamichi; Tabata, Yasuhiko; Washio, Ayako

    2012-01-01

    Restorative and endodontic procedures have been recently developed in an attempt to preserve the vitality of dental pulp after exposure to external stimuli, such as caries infection or traumatic injury. When damage to dental pulp is reversible, pulp wound healing can proceed, whereas irreversible damage induces pathological changes in dental pulp, eventually requiring its removal. Nonvital teeth lose their defensive abilities and become severely damaged, resulting in extraction. Development of regeneration therapy for the dentin-pulp complex is important to overcome limitations with presently available therapies. Three strategies to regenerate the dentin-pulp complex have been proposed; regeneration of the entire tooth, local regeneration of the dentin-pulp complex from amputated dental pulp, and regeneration of dental pulp from apical dental pulp or periapical tissues. In this paper, we focus on the local regeneration of the dentin-pulp complex by application of exogenous growth factors and scaffolds to amputated dental pulp. PMID:22174717

  9. Dry Kraft Pulping at Ambient Pressure for Cost Effective Energy Saving and Pollution Deduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yulin Deng; Art Ragauskas

    Sponsored by the DOE Industrial Energy Efficiency Grand Challenge program, our research team at the Georgia Institute of Technology conducted laboratory studies and confirmed the concept of making wood pulp using a dry pulping technology. This technology is a new process different from any prior pulping technology used in Kraft and CTMP pulping. Three different kinds of dry pulping methods were investigated. (a) Dry Pulping at Atmospheric Pressure: The first one is to dry and bake the pretreated woodchips in a conventional oven at atmospheric pressure without the use of a catalyst. (b) Dry Pulping at Reduced Pressure: The secondmore » method is to dry the pretreated woodchips first in a vacuum oven in the presence of anthraquinone (AQ) as a pulping catalyst, followed by baking at elevated temperature. (c) Liquid Free Chemical Pulping, LFCP. The third method is to first remove the free water of pretreated woodchips, followed by dry pulping using a conventional Kraft pulping digester with AQ and triton as additives. Method one: Experimental results indicated that Dry Pulping at Atmospheric Pressure could produce pulp with higher brightness and lower bulk than conventional Kraft pulp. However, tensile strength of the acquired pulp is much lower than traditional Kraft pulp, and their Kappa number and energy consumption are higher than conventional Kraft pulp. By fully analyzing the results, we concluded that wood fibers might be damaged during the drying process at elevated temperature. The main reason for wood fiber damage is that a long drying time was used during evaporation of water from the woodchips. This resulted in an un-uniform reaction condition on the woodchips: the outside layer of the woodchips was over reacted while inside the woodchips did not reacted at all. To solve this problem, dry pulping at reduced pressure was investigated. Method two: To achieve uniform reaction throughout the entire reaction system, the water inside the pretreated woodchips was evaporated first under vacuum condition at low temperature. Then, the dry woodchips were baked at high temperature (120-130 C) at atmospheric pressure. The qualities of the pulp made with this method were improved compared to that made with method one. The pulp shows higher brightness and lower bulk than Kraft pulping. The tensile strength is significantly higher than the pulp made from the first method. Although the pulp is stronger than that of TMP pulp, it is still lower than conventional Kraft fiber. Method Three: The third dry method was done in a Kraft pulping digester at elevated pressure but without free liquid in the digester. With this method, pulp that has almost the same qualities as conventional Kraft pulp could be produced. The screen yield, Kappa number, fiber brightness, pulp strength and pulp bulk are almost identical to the conventional Kraft pulp. The key advantages of this dry pulping method include ca. 55 % of cooking energy saved during the pulping process, as high as 50 wt% of NaOH saving as well as 3 wt% of Na2S saving comparing to Kraft one. By analyzing fiber properties, yields, chemical and energy consumptions, we concluded that the dry pulping method based on Liquid Free Chemical Pulping, LFCP, could be very attractive for the pulp and paper industry. More fundamental studies and scale up trials are needed to fully commercialize the technology. We expect to conduct pilot trials between 12 to 24 months of period if the DOE or industry can provide continual research funding. Based on the technology we demonstrated in this report, several pilot trial facilities in the United States will be available after small modifications. For example, the Herty Foundation in Savannah, Georgia is one of these potential locations. DOE funding for continuous study and final lead to commercialization of the technique is important.« less

  10. Application of Stem Cell Technology in Dental Regenerative Medicine.

    PubMed

    Feng, Ruoxue; Lengner, Chistopher

    2013-07-01

    In this review, we summarize the current literature regarding the isolation and characterization of dental tissue-derived stem cells and address the potential of these cell types for use in regenerative cell transplantation therapy. Looking forward, platforms for the delivery of stem cells via scaffolds and the use of growth factors and cytokines for enhancing dental stem cell self-renewal and differentiation are discussed. We aim to understand the developmental origins of dental tissues in an effort to elucidate the molecular pathways governing the genesis of somatic dental stem cells. The advantages and disadvantages of several dental stem cells are discussed, including the developmental stage and specific locations from which these cells can be purified. In particular, stem cells from human exfoliated deciduous teeth may act as a very practical and easily accessibly reservoir for autologous stem cells and hold the most value in stem cell therapy. Dental pulp stem cells and periodontal ligament stem cells should also be considered for their triple lineage differentiation ability and relative ease of isolation. Further, we address the potentials and limitations of induced pluripotent stem cells as a cell source in dental regenerative. From an economical and a practical standpoint, dental stem cell therapy would be most easily applied in the prevention of periodontal ligament detachment and bone atrophy, as well as in the regeneration of dentin-pulp complex. In contrast, cell-based tooth replacement due to decay or other oral pathology seems, at the current time, an untenable approach.

  11. Low Temperature Soda-Oxygen Pulping of Bagasse.

    PubMed

    Yue, Fengxia; Chen, Ke-Li; Lu, Fachuang

    2016-01-13

    Wood shortages, environmental pollution and high energy consumption remain major obstacles hindering the development of today's pulp and paper industry. Energy-saving and environmental friendly pulping processes are still needed, especially for non-woody materials. In this study, soda-oxygen pulping of bagasse was investigated and a successful soda-oxygen pulping process for bagasse at 100 °C was established. The pulping parameters of choice were under active alkali charge of 23%, maximum cooking temperature 100 °C, time hold at maximum temperature 180 min, initial pressure of oxygen 0.6 MPa, MgSO4 charge 0.5%, and de-pithed bagasse consistency 12%. Properties of the resultant pulp were screened yield 60.9%, Kappa number 14, viscosity 766 dm³/kg, and brightness 63.7% ISO. Similar pulps were also obtained at 110 °C or 105 °C with a cooking time of 90 min. Compared with pulps obtained at higher temperatures (115-125 °C), this pulp had higher screened yield, brightness, and acceptable viscosity, while the delignification degree was moderate. These results indicated that soda-oxygen pulping at 100 °C, the lowest cooking temperature reported so far for soda-oxygen pulping, is a suitable process for making chemical pulp from bagasse. Pulping at lower temperature and using oxygen make it an environmental friendly and energy-saving pulping process.

  12. Production of single cell protein from agro-waste using Rhodococcus opacus.

    PubMed

    Mahan, Kristina M; Le, Rosemary K; Wells, Tyrone; Anderson, Seth; Yuan, Joshua S; Stoklosa, Ryan J; Bhalla, Aditya; Hodge, David B; Ragauskas, Arthur J

    2018-06-18

    Livestock and fish farming are rapidly growing industries facing the simultaneous pressure of increasing production demands and limited protein required to produce feed. Bacteria that can convert low-value non-food waste streams into singe cell protein (SCP) present an intriguing route for rapid protein production. The oleaginous bacterium Rhodococcus opacus serves as a model organism for understanding microbial lipid production. SCP production has not been explored using an organism from this genus. In the present research, R. opacus strains DSM 1069 and PD630 were fed three agro-waste streams: (1) orange pulp, juice, and peel; (2) lemon pulp, juice, and peel; and (3) corn stover effluent, to determine if these low-cost substrates would be suitable for producing a value-added product, SCP for aquafarming or livestock feed. Both strains used agro-waste carbon sources as a growth substrate to produce protein-rich cell biomass suggesting that that R. opacus can be used to produce SCP using agro-wastes as low-cost substrates.

  13. Scaffolds in regenerative endodontics: A review

    PubMed Central

    Gathani, Kinjal M.; Raghavendra, Srinidhi Surya

    2016-01-01

    Root canal therapy has enabled us to save numerous teeth over the years. The most desired outcome of endodontic treatment would be when diseased or nonvital pulp is replaced with healthy pulp tissue that would revitalize the teeth through regenerative endodontics. ‘A search was conducted using the Pubmed and MEDLINE databases for articles with the criteria ‘Platelet rich plasma’, ‘Platelet rich fibrin’, ‘Stem cells’, ‘Natural and artificial scaffolds’ from 1982–2015’. Tissues are organized as three-dimensional structures, and appropriate scaffolding is necessary to provide a spatially correct position of cell location and regulate differentiation, proliferation, or metabolism of the stem cells. Extracellular matrix molecules control the differentiation of stem cells, and an appropriate scaffold might selectively bind and localize cells, contain growth factors, and undergo biodegradation over time. Different scaffolds facilitate the regeneration of different tissues. To ensure a successful regenerative procedure, it is essential to have a thorough and precise knowledge about the suitable scaffold for the required tissue. This article gives a review on the different scaffolds providing an insight into the new developmental approaches on the horizon. PMID:27857762

  14. Biomaterial Selection for Tooth Regeneration

    PubMed Central

    Yuan, Zhenglin; Nie, Hemin; Wang, Shuang; Lee, Chang Hun; Li, Ang; Fu, Susan Y.; Zhou, Hong

    2011-01-01

    Biomaterials are native or synthetic polymers that act as carriers for drug delivery or scaffolds for tissue regeneration. When implanted in vivo, biomaterials should be nontoxic and exert intended functions. For tooth regeneration, biomaterials have primarily served as a scaffold for (1) transplanted stem cells and/or (2) recruitment of endogenous stem cells. This article critically synthesizes our knowledge of biomaterial use in tooth regeneration, including the selection of native and/or synthetic polymers, three-dimensional scaffold fabrication, stem cell transplantation, and stem cell homing. A tooth is a complex biological organ. Tooth loss represents the most common organ failure. Tooth regeneration encompasses not only regrowth of an entire tooth as an organ, but also biological restoration of individual components of the tooth including enamel, dentin, cementum, or dental pulp. Regeneration of tooth root represents perhaps more near-term opportunities than the regeneration of the whole tooth. In the adult, a tooth owes its biological vitality, arguably more, to the root than the crown. Biomaterials are indispensible for the regeneration of tooth root, tooth crown, dental pulp, or an entire tooth. PMID:21699433

  15. Recombinant Amelogenin Protein Induces Apical Closure and Pulp Regeneration in Open-apex, Nonvital Permanent Canine Teeth.

    PubMed

    Mounir, Maha M F; Matar, Moustafa A; Lei, Yaping; Snead, Malcolm L

    2016-03-01

    Recombinant DNA-produced amelogenin protein was compared with calcium hydroxide in a study of immature apex closure conducted in 24 young mongrel dogs. Root canals of maxillary and mandibular right premolars (n = 240) were instrumented and left open for 14 days. Canals were cleansed, irrigated, and split equally for treatment with recombinant mouse amelogenin (n = 120) or calcium hydroxide (n = 120). After 1, 3, and 6 months, the animals were sacrificed and the treated teeth recovered for histologic assessment and immunodetection of protein markers associated with odontogenic cells. After 1 month, amelogenin-treated canals revealed calcified tissue formed at the apical foramen and a pulp chamber containing soft connective tissue and hard tissue; amelogenin-treated canals assessed after 3- and 6-month intervals further included apical tissue functionally attached to bone by a periodontal ligament. In contrast, calcified apical tissue was poorly formed in the calcium hydroxide group, and soft connective tissue within the pulp chamber was not observed. The findings from this experimental strategy suggest recombinant amelogenin protein can signal cells to enhance apex formation in nonvital immature teeth and promote soft connective tissue regeneration. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. [Postsynaptic reactions of cerebral cortex neurons, activated by nociceptive afferents during stimulation of the Raphe nuclei].

    PubMed

    Labakhua, T Sh; Dzhanashiia, T K; Gedevanishvili, G I; Dzhokhadze, L D; Tkemaladze, T T; Abzianidze, I V

    2012-01-01

    On cats, we studied the influence of stimulation of the Raphe nuclei (RN) on postsynaptic processes evoked in neurons of the somatosensory cortex by stimulation of nociceptive (intensive stimulation of the tooth pulp) and non-nociceptive (moderate stimulation of the ventroposteromedial--VPN--nucleus of the thalamus) afferent inputs. 6 cells, selectively excited by stimulation of nocciceptors and 9 cells, activated by both the above nociceptive and non-nociceptive influences (nociceptive and convergent neurons, respectively) were recorded intracellular. In neurons of both groups, responses to nociceptive stimulation (of sufficient intensity) looked like an EPSP-spike-IPSP (the letter of significant duration, up to 200-300 ms) compleх. Conditioning stimulation of the RN which preceded test stimulus applied to the tooth pulp or VPM nucleus by 100 to 800 ms, induced 40-60 % decrease of the IPSP amplitude only, while maхimal effect of influence, in both cases, was noted within intervals of 300-800 ms between conditioning and test stimulus. During stimulation of the RN, serotonin released via receptor and second messengers, provides postsynaptic modulation of GABAergic system, decreasing the IPSP amplitude which occurs after stimulation of both the tooth pulp and VPM thalamic nucleus. This process may be realized trough either pre- or postsynaptic mechanisms.

  17. Effects of CO2 Lasers on Dental Pulp Biology in Rats.

    PubMed

    Ser-Od, Tungalag; Yasumoto, Masafumi; Al-Wahabi, Akram; Nakajima, Kei; Murakami, Satoshi; Matsuzaka, Kenichi; Inoue, Takashi

    2016-04-01

    The purpose of this study was to investigate the effects of CO2 lasers on the proliferation and differentiation of dental pulp cells, and their latent self-recovery in connection with their stemness using reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry. The first molars from male Sprague-Dawley rats, each weighing ∼150-200 g, were used for this study. The upper first molars were irradiated with a 10,600 nm wavelength CO2 laser under identical parameters (2 W CO2 laser, energy 4J, energy density 203.84 J/cm(2) for 8.8 sec) through the dentin of the occlusal surface. The molars were extracted immediately, or at 1, 3 or 5 days after the laser irradiation. RT-PCR analysis using primers specific for heat shock protein 70 (Hsp70), adenosine triphosphate (ATP)-binding cassette transporter G2 (ABCG2), dentin sialophosphoprotein (DSPP), and dentin matrix protein 1 (DMP1), and immunohistochemistry using antibodies specific for proliferating cell nuclear antigen (PCNA), ABCG2, CD34, and CD44 were performed. RT-PCR analysis revealed that Hsp70 mRNA expression in the immediate group and ABCG2 mRNA expression at day 1 were the highest. DSPP and DMP1 mRNA expression in the laser-irradiated groups increased gradually, reaching its peak on the 5th day of the experiment, although no significant difference found among groups with regard to DMP1 expression. Immunohistochemically, PCNA-positive cells were observed at all times after the laser irradiation; however, they were most evident on day 3. CD44-positive cells were observed strongly on day 1 and day 3, while ABCG2-positive cells were the most evident on day 3. These results demonstrate that CO2 laser irradiation induces degeneration in the pulp tissue, which is then repaired by newly formed odontoblast-like cells.

  18. Transplantation of dental pulp stem cells suppressed inflammation in sciatic nerves by promoting macrophage polarization towards anti-inflammation phenotypes and ameliorated diabetic polyneuropathy.

    PubMed

    Omi, Maiko; Hata, Masaki; Nakamura, Nobuhisa; Miyabe, Megumi; Kobayashi, Yasuko; Kamiya, Hideki; Nakamura, Jiro; Ozawa, Shogo; Tanaka, Yoshinobu; Takebe, Jun; Matsubara, Tatsuaki; Naruse, Keiko

    2016-07-01

    Dental pulp stem cells (DPSCs) are thought to be an attractive candidate for cell therapy. We recently reported that the transplantation of DPSCs increased nerve conduction velocity and nerve blood flow in diabetic rats. In the present study, we investigated the immunomodulatory effects of DPSC transplantation on diabetic peripheral nerves. DPSCs were isolated from the dental pulp of Sprague-Dawley rats and expanded in culture. Eight weeks after the streptozotocin injection, DPSCs were transplanted into the unilateral hindlimb skeletal muscles. Four weeks after DPSC transplantation, neurophysiological measurements, inflammatory gene expressions and the number of CD68-positive cells in sciatic nerves were assessed. To confirm the immunomodulatory effects of DPSCs, the effects of DPSC-conditioned media on lipopolysaccharide-stimulated murine macrophage RAW264.7 cells were investigated. Diabetic rats showed significant delays in sciatic nerve conduction velocities and decreased sciatic nerve blood flow, all of which were ameliorated by DPSC transplantation. The number of CD68-positive monocytes/macrophages and the gene expressions of M1 macrophage-expressed cytokines, tumor necrosis factor-α and interleukin-1β, were increased in the sciatic nerves of the diabetic rats. DPSC transplantation significantly decreased monocytes/macrophages and tumor necrosis factor-α messenger ribonucleic acid expression, and increased the gene expression of the M2 macrophage marker, CD206, in the sciatic nerves of the diabetic rats. The in vitro study showed that DPSC-conditioned media significantly increased the gene expressions of interleukin-10 and CD206 in lipopolysaccharide-stimulated RAW264.7 cells. These results suggest that DPSC transplantation promoted macrophages polarization towards anti-inflammatory M2 phenotypes, which might be one of the therapeutic mechanisms for diabetic polyneuropathy. © 2015 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  19. A Review on Vital Pulp Therapy in Primary Teeth

    PubMed Central

    Parisay, Iman; Ghoddusi, Jamileh; Forghani, Maryam

    2015-01-01

    Maintaining deciduous teeth in function until their natural exfoliation is absolutely necessary. Vital pulp therapy (VPT) is a way of saving deciduous teeth. The most important factors in success of VPT are the early diagnosis of pulp and periradicular status, preservation of the pulp vitality and proper vascularization of the pulp. Development of new biomaterials with suitable biocompatibility and seal has changed the attitudes towards preserving the reversible pulp in cariously exposed teeth. Before exposure and irreversible involvement of the pulp, indirect pulp capping (IPC) is the treatment of choice, but after the spread of inflammation within the pulp chamber and establishment of irreversible pulpitis, removal of inflamed pulp tissue is recommended. In this review, new concepts in preservation of the healthy pulp tissue in deciduous teeth and induction of the reparative dentin formation with new biomaterials instead of devitalization and the consequent destruction of vital tissues are discussed. PMID:25598803

  20. 40 CFR 430.76 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Mechanical Pulp... mechanical pulp facilities where pulp and paper at groundwood mills are produced through the application of the thermo-mechanical process; mechanical pulp facilities where the integrated production of pulp and...

Top