Science.gov

Sample records for pulsar magnetic alignment

  1. Three-dimensional analytical description of magnetized winds from oblique pulsars

    NASA Astrophysics Data System (ADS)

    Tchekhovskoy, Alexander; Philippov, Alexander; Spitkovsky, Anatoly

    2016-04-01

    Rotating neutron stars, or pulsars and magnetars, are plausibly the source of power behind many astrophysical systems, such as gamma-ray bursts, supernovae, pulsar wind nebulae, and supernova remnants. In the past several years, three-dimensional (3D) numerical simulations made it possible to compute pulsar spin-down luminosity from first principles and revealed that oblique pulsar winds are more powerful than aligned ones. However, what causes this enhanced power output of oblique pulsars is not understood. In this work, using time-dependent 3D magnetohydrodynamic and force-free simulations, we show that, contrary to the standard paradigm, the open magnetic flux, which carries the energy away from the pulsar, is laterally non-uniform. We argue that this non-uniformity is the primary reason for the increased luminosity of oblique pulsars. To demonstrate this, we construct simple analytic descriptions of aligned and orthogonal pulsar winds and combine them to obtain an accurate 3D description of the pulsar wind for any obliquity. Our approach describes both the warped magnetospheric current sheet and the smooth variation of pulsar wind properties outside of it. We find that the jump in magnetic field components across the current sheet decreases with increasing obliquity, which could be a mechanism that reduces dissipation in near-orthogonal pulsars. Our analytical description of the pulsar wind can be used for constructing models of pulsar gamma-ray emission, pulsar wind nebulae, neutron star powered ultra-luminous X-ray sources, and magnetar-powered core-collapse gamma-ray bursts and supernovae.

  2. Magnetically aligned supramolecular hydrogels.

    PubMed

    Wallace, Matthew; Cardoso, Andre Zamith; Frith, William J; Iggo, Jonathan A; Adams, Dave J

    2014-12-01

    The magnetic-field-induced alignment of the fibrillar structures present in an aqueous solution of a dipeptide gelator, and the subsequent retention of this alignment upon transformation to a hydrogel upon the addition of CaCl2 or upon a reduction in solution pH is reported. Utilising the switchable nature of the magnetic field coupled with the slow diffusion of CaCl2 , it is possible to precisely control the extent of anisotropy across a hydrogel, something that is generally very difficult to do using alternative methods. The approach is readily extended to other compounds that form viscous solutions at high pH. It is expected that this work will greatly expand the utility of such low-molecular-weight gelators (LMWG) in areas where alignment is key. PMID:25345918

  3. Magnetized stimulated scattering in pulsar winds

    NASA Technical Reports Server (NTRS)

    Sincell, Mark W.; Krolik, Julian H.

    1992-01-01

    The effects of stimulated scattering on a collimated high brightness temperature beam of photons traversing a relativistically streaming magnetized plasma are studied. Under the assumption that the center of the photon beam is parallel to the bulk motion, we calculate the scattering rate as a function of the angular spread of the beam and the Lorentz factor gamma. Magnetization changes the photon recoil, without which stimulated scattering has no effect. It also introduces a strong dependence on frequency and polarization: if the photon frequency matches the electron cyclotron frequency, the scattering rate of photons polarized perpendicular to the magnetic field can be substantially enhanced relative to Thomson, and if the photon frequency is much less than the cyclotron frequency, the scattering is suppressed. Applying these calculations to pulsars, we find that stimulated scattering of the radio beam in the magnetized wind believed to exist outside the light cylinder can substantially alter the spectrum and polarization state of the radio signal. We suggest that the scattering rate is so high in some pulsars that the ability of the radio signal to penetrate the pulsar magnetosphere requires modification of either the conventional model of the magnetosphere or assumptions about the effects of stimulated scattering upon a beam.

  4. Measurements of magnetic field alignment

    SciTech Connect

    Kuchnir, M.; Schmidt, E.E.

    1987-11-06

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs.

  5. ON PLASMA ROTATION AND DRIFTING SUBPULSES IN PULSARS: USING ALIGNED PULSAR B0826-34 AS A VOLTMETER

    SciTech Connect

    Van Leeuwen, J.; Timokhin, A. N. E-mail: andrey.timokhin@nasa.gov

    2012-06-20

    We derive the exact drift velocity of plasma in the pulsar polar cap, in contrast to the order-of-magnitude expressions presented by Ruderman and Sutherland and generally used throughout the literature. We emphasize that the drift velocity depends not on the absolute value, as is generally used, but on the variation of the accelerating potential across the polar cap. If we assume that drifting subpulses in pulsars are indeed due to this plasma drift, several observed subpulse-drift phenomena that are incompatible with the Ruderman and Sutherland family of models can now be explained: we show that variations of drift rate, outright drift reversals, and the connection between drift rates and mode changes have natural explanations within the frame of the 'standard' pulsar model, when derived exactly. We apply this model for drifting subpulses to the case of PSR B0826-34, an aligned pulsar with two separate subpulse-drift regions emitted at two different colatitudes. Careful measurement of the changing and reversing drift rate in each band independently sets limits on the variation of the accelerating potential drop. The derived variation is small, {approx}10{sup -3} times the vacuum potential drop voltage. We discuss the implications of this result for pulsar modeling.

  6. ARECIBO MULTI-FREQUENCY TIME-ALIGNED PULSAR AVERAGE-PROFILE AND POLARIZATION DATABASE

    SciTech Connect

    Hankins, Timothy H.; Rankin, Joanna M. E-mail: Joanna.Rankin@uvm.edu

    2010-01-15

    We present Arecibo time-aligned, total intensity profiles for 46 pulsars over an unusually wide range of radio frequencies and multi-frequency, polarization-angle density diagrams, and/or polarization profiles for 57 pulsars at some or all of the frequencies 50, 111/130, 430, and 1400 MHz. The frequency-dependent dispersion delay has been removed in order to align the profiles for study of their spectral evolution, and wherever possible the profiles of each pulsar are displayed on the same longitude scale. Most of the pulsars within Arecibo's declination range that are sufficiently bright for such spectral or single pulse analysis are included in this survey. The calibrated single pulse sequences and average profiles are available by web download for further study.

  7. Polar cap models of gamma-ray pulsars: Emision from single poles of nearly aligned rotators

    NASA Technical Reports Server (NTRS)

    Daugherty, Joseph K.; Harding, Alice K.

    1994-01-01

    We compare a new Monte Carlo simulation of polar cap models for gamma-ray pulsars with observations of sources detected above 10 MeV by the Compton Observatory (CGRO). We find that for models in which the inclination of the magnetic axis is comparable to the angular radius of the polar cap, the radiation from a single cap may exhibit a pusle with either a single broad peak as in PSR 1706-44 and PSR 1055-52, or a doubly peaked profile comparable to those observed from the Crab, Vela and Geminga pulsars. In general, double pulses are seen by observers whose line of sight penetrates into the cap interior and are due to enhanced emission near the rim. For cascades induced by culvature radiation, increased rim emission occurs even when electrons are accelerated over the entire cap, since electrons from the interior escape along magnetic field lines with less curvature and hence emit less radiation. However, we obtain better fits to the duty cycles of observed profiles if we make the empirical assumption that acceleration occurs only near the rim. In either case, the model energy spectra are consistent with most of the observed sources. The beaming factors expected from nearly aligned rotators, based on standard estimates for the cap radius, imply that their luminosities need not be as large as in the case of orthogonal rotators. However, small beam angles are also a difficutly with this model because they imply low detection probablities. In either case the polar cap radius is a critical factor, and in this context we point out that plasma loading of the field lines should make the caps larger than the usual estimates based on pure dipole fields.

  8. Braking index of isolated pulsars. II. A novel two-dipole model of pulsar magnetism

    NASA Astrophysics Data System (ADS)

    Hamil, O.; Stone, N. J.; Stone, J. R.

    2016-09-01

    The magnetic dipole radiation model is currently the best approach we have to explain pulsar radiation. However, a most characteristic parameter of the observed radiation, the braking index nobs , shows deviations for all the eight best studied isolated pulsars, from the simple model prediction ndip=3 . The index depends upon the rotational frequency and its first and second time derivatives but also on the assumption that the magnetic dipole moment and inclination angle and the moment of inertia of the pulsar are constant in time. In a recent paper [Phys. Rev. D 91, 063007 (2015)], we showed conclusively that changes in the moment of inertia with frequency alone cannot explain the observed braking indices. Possible observational evidence for the magnetic dipole moment migrating away from the rotational axis at a rate α ˙ ˜0.6 ° per 100 years over the lifetime of the Crab pulsar has been recently suggested by Lyne et al. In this paper, we explore the magnetic dipole radiation model with constant moment of inertia and magnetic dipole moment but variable inclination angle α . We first discuss the effect of the variation of α on the observed braking indices and show they all can be understood. However, no explanation for the origin of the change in α is provided. After discussion of the possible source(s) of magnetism in pulsars, we propose a simple mechanism for the change in α based on a toy model in which the magnetic structure in pulsars consists of two interacting dipoles. We show that such a system can explain the Crab observation and the measured braking indices.

  9. Revised Pulsar Spindown

    SciTech Connect

    Contopoulos, Ioannis; Spitkovsky, Anatoly; /KIPAC, Menlo Park

    2005-12-14

    We address the issue of electromagnetic pulsar spindown by combining our experience from the two limiting idealized cases which have been studied in great extent in the past: that of an aligned rotator where ideal MHD conditions apply, and that of a misaligned rotator in vacuum. We construct a spindown formula that takes into account the misalignment of the magnetic and rotation axes, and the magnetospheric particle acceleration gaps. We show that near the death line aligned rotators spin down much slower than orthogonal ones. In order to test this approach, we use a simple Monte Carlo method to simulate the evolution of pulsars and find a good fit to the observed pulsar distribution in the P-{dot P} diagram without invoking magnetic field decay. Our model may also account for individual pulsars spinning down with braking index n < 3, by allowing the corotating part of the magnetosphere to end inside the light cylinder. We discuss the role of magnetic reconnection in determining the pulsar braking index. We show, however, that n {approx} 3 remains a good approximation for the pulsar population as a whole. Moreover, we predict that pulsars near the death line have braking index values n > 3, and that the older pulsar population has preferentially smaller magnetic inclination angles. We discuss possible signatures of such alignment in the existing pulsar data.

  10. Magnetic pair creation transparency in gamma-ray pulsars

    SciTech Connect

    Story, Sarah A.; Baring, Matthew G. E-mail: baring@rice.edu

    2014-07-20

    Magnetic pair creation, γ → e {sup +} e {sup –}, has been at the core of radio pulsar paradigms and central to polar cap models of gamma-ray pulsars for over three decades. The Fermi gamma-ray pulsar population now exceeds 140 sources and has defined an important part of Fermi's science legacy, providing rich information for the interpretation of young energetic pulsars and old millisecond pulsars. Among the population characteristics well established is the common occurrence of exponential turnovers in their spectra in the 1-10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in the strong magnetic fields of pulsar inner magnetospheres. By demanding insignificant photon attenuation precipitated by such single-photon pair creation, the energies of these turnovers for Fermi pulsars can be used to compute lower bounds for the typical altitude of GeV band emission. This paper explores such pair transparency constraints below the turnover energy and updates earlier altitude bound determinations that have been deployed in various Fermi pulsar papers. For low altitude emission locales, general relativistic influences are found to be important, increasing cumulative opacity, shortening the photon attenuation lengths, and also reducing the maximum energy that permits escape of photons from a neutron star magnetosphere. Rotational aberration influences are also explored, and are found to be small at low altitudes, except near the magnetic pole. The analysis presented in this paper clearly demonstrates that including near-threshold physics in the pair creation rate is essential to deriving accurate attenuation lengths and escape energies. The altitude bounds are typically in the range of 2-7 stellar radii for the young Fermi pulsar population, and provide key information on the emission altitude in radio quiet pulsars that do not possess double-peaked pulse profiles. The bound for the Crab pulsar is at a much higher altitude, with the

  11. Evolution of the magnetic field structure of the Crab pulsar.

    PubMed

    Lyne, Andrew; Graham-Smith, Francis; Weltevrede, Patrick; Jordan, Christine; Stappers, Ben; Bassa, Cees; Kramer, Michael

    2013-11-01

    Pulsars are highly magnetized rotating neutron stars and are well known for the stability of their signature pulse shapes, allowing high-precision studies of their rotation. However, during the past 22 years, the radio pulse profile of the Crab pulsar has shown a steady increase in the separation of the main pulse and interpulse components at 0.62° ± 0.03° per century. There are also secular changes in the relative strengths of several components of the profile. The changing component separation indicates that the axis of the dipolar magnetic field, embedded in the neutron star, is moving toward the stellar equator. This evolution of the magnetic field could explain why the pulsar does not spin down as expected from simple braking by a rotating dipolar magnetic field. PMID:24179221

  12. Evolution of the magnetic field structure of the Crab pulsar.

    PubMed

    Lyne, Andrew; Graham-Smith, Francis; Weltevrede, Patrick; Jordan, Christine; Stappers, Ben; Bassa, Cees; Kramer, Michael

    2013-11-01

    Pulsars are highly magnetized rotating neutron stars and are well known for the stability of their signature pulse shapes, allowing high-precision studies of their rotation. However, during the past 22 years, the radio pulse profile of the Crab pulsar has shown a steady increase in the separation of the main pulse and interpulse components at 0.62° ± 0.03° per century. There are also secular changes in the relative strengths of several components of the profile. The changing component separation indicates that the axis of the dipolar magnetic field, embedded in the neutron star, is moving toward the stellar equator. This evolution of the magnetic field could explain why the pulsar does not spin down as expected from simple braking by a rotating dipolar magnetic field.

  13. Pulsar Pair Cascades in a Distorted Magnetic Dipole Field

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Muslimov, Alex G.

    2010-01-01

    We investigate the effect of a distorted neutron star dipole magnetic field on pulsar pair cascade multiplicity and pair death lines. Using a simple model for a distorted dipole field that produces an offset polar cap (PC), we derive the accelerating electric field above the PC in space-charge-limited flow. We find that even a modest azimuthally asymmetric distortion can significantly increase the accelerating electric field on one side of the PC and, combined with a smaller field line radius of curvature, leads to larger pair multiplicity. The death line for producing pairs by curvature radiation moves downward in the P-P-dot diagram, allowing high pair multiplicities in a larger percentage of the radio pulsar population. These results could have important implications for the radio pulsar population, high energy pulsed emission, and the pulsar contribution to cosmic ray positrons.

  14. Magnetic alignment and the Poisson alignment reference system

    NASA Astrophysics Data System (ADS)

    Griffith, L. V.; Schenz, R. F.; Sommargren, G. E.

    1990-08-01

    Three distinct metrological operations are necessary to align a free-electron laser (FEL): the magnetic axis must be located, a straight line reference (SLR) must be generated, and the magnetic axis must be related to the SLR. This article begins with a review of the motivation for developing an alignment system that will assure better than 100-μm accuracy in the alignment of the magnetic axis throughout an FEL. The 100-μm accuracy is an error circle about an ideal axis for 300 m or more. The article describes techniques for identifying the magnetic axes of solenoids, quadrupoles, and wiggler poles. Propagation of a laser beam is described to the extent of revealing sources of nonlinearity in the beam. Development of a straight-line reference based on the Poisson line, a diffraction effect, is described in detail. Spheres in a large-diameter laser beam create Poisson lines and thus provide a necessary mechanism for gauging between the magnetic axis and the SLR. Procedures for installing FEL components and calibrating alignment fiducials to the magnetic axes of the components are also described. The Poisson alignment reference system should be accurate to 25 μm over 300 m, which is believed to be a factor-of-4 improvement over earlier techniques. An error budget shows that only 25% of the total budgeted tolerance is used for the alignment reference system, so the remaining tolerances should fall within the allowable range for FEL alignment.

  15. Diquark condensates and the magnetic field of pulsars

    NASA Astrophysics Data System (ADS)

    Blaschke, D.; Sedrakian, D. M.; Shahabasyan, K. M.

    1999-10-01

    We study the consequences of superconducting quark cores in neutron stars for the magnetic fields of pulsars. We find that within recent nonperturbative approaches to the effective quark interaction the diquark condensate forms a superconductor of second kind whereas previously quark matter was considered as a first kind superconductor. In both cases the magnetic field which is generated in the surrounding hadronic shell of superfluid neutrons and superconducting protons can penetrate into the quark matter core since it is concentrated in proton vortex clusters where the field strength exceeds the critical value. Therefore the magnetic field will not be expelled from the superconducting quark core with the consequence that there is no decay of the magnetic fields of pulsars. Thus we conclude that the occurence of a superconducting quark matter core in pulsars does not contradict the observational data which indicate that magnetic fields of pulsars have life times larger than 10(7) years. Research supported in part by the Volkswagen Stiftung under grant no. I/71 226

  16. Pulsar Kicks via Chiral Asymmetry of Magnetized Stellar Matter

    NASA Astrophysics Data System (ADS)

    Shovkovy, I.

    2015-11-01

    Unusual chiral properties of the ground state of relativistic matter in a strong magnetic field are briefly reviewed. The main emphasis is placed on the dynamical generation of the chiral asymmetry in dense stellar matter. The corresponding asymmetry provides a natural mechanism for the strong pulsar kicks.

  17. Magnetic axis alignment and the Poisson alignment reference system

    NASA Astrophysics Data System (ADS)

    Griffith, Lee V.; Schenz, Richard F.; Sommargren, Gary E.

    1989-01-01

    Three distinct metrological operations are necessary to align a free-electron laser (FEL): the magnetic axis must be located, a straight line reference (SLR) must be generated, and the magnetic axis must be related to the SLR. This paper begins with a review of the motivation for developing an alignment system that will assure better than 100 micrometer accuracy in the alignment of the magnetic axis throughout an FEL. The paper describes techniques for identifying the magnetic axis of solenoids, quadrupoles, and wiggler poles. Propagation of a laser beam is described to the extent of revealing sources of nonlinearity in the beam. Development and use of the Poisson line, a diffraction effect, is described in detail. Spheres in a large-diameter laser beam create Poisson lines and thus provide a necessary mechanism for gauging between the magnetic axis and the SLR. Procedures for installing FEL components and calibrating alignment fiducials to the magnetic axes of the components are also described. An error budget shows that the Poisson alignment reference system will make it possible to meet the alignment tolerances for an FEL.

  18. Modified pulsar current analysis: probing magnetic field evolution

    NASA Astrophysics Data System (ADS)

    Igoshev, A. P.; Popov, S. B.

    2014-10-01

    We use a modified pulsar current analysis to study magnetic field decay in radio pulsars. In our approach, we analyse the flow not along the spin period axis as has been performed in previous studies, but study the flow along the direction of growing characteristic age, τ =P/(2dot{P}). We perform extensive tests of the method and find that in most of the cases it is able to uncover non-negligible magnetic field decay (more than a few tens of per cent during the studied range of ages) in normal radio pulsars for realistic initial properties of neutron stars. However, precise determination of the magnetic field decay time-scale is not possible at present. The estimated time-scale may differ by a factor of few for different sets of initial distributions of neutron star parameters. In addition, some combinations of initial distributions and/or selection effects can also mimic enhanced field decay. We apply our method to the observed sample of radio pulsars at distances <10 kpc in the range of characteristic ages 8 × 104 < τ < 106 yr where, according to our study, selection effects are minimized. By analysing pulsars in the Parkes Multibeam and Swinburne surveys, we find that, in this range, the field decays roughly by a factor of 2. With an exponential fit, this corresponds to the decay time-scale ˜4 × 105 yr. With larger statistics and better knowledge of the initial distribution of spin periods and magnetic field strength, this method can be a powerful tool to probe magnetic field decay in neutron stars.

  19. Magnetic Fields in Supernova Remnants and Pulsar-Wind Nebulae

    NASA Astrophysics Data System (ADS)

    Reynolds, Stephen P.; Gaensler, B. M.; Bocchino, Fabrizio

    2012-05-01

    We review the observations of supernova remnants (SNRs) and pulsar-wind nebulae (PWNe) that give information on the strength and orientation of magnetic fields. Radio polarimetry gives the degree of order of magnetic fields, and the orientation of the ordered component. Many young shell supernova remnants show evidence for synchrotron X-ray emission. The spatial analysis of this emission suggests that magnetic fields are amplified by one to two orders of magnitude in strong shocks. Detection of several remnants in TeV gamma rays implies a lower limit on the magnetic-field strength (or a measurement, if the emission process is inverse-Compton upscattering of cosmic microwave background photons). Upper limits to GeV emission similarly provide lower limits on magnetic-field strengths. In the historical shell remnants, lower limits on B range from 25 to 1000 μG. Two remnants show variability of synchrotron X-ray emission with a timescale of years. If this timescale is the electron-acceleration or radiative loss timescale, magnetic fields of order 1 mG are also implied. In pulsar-wind nebulae, equipartition arguments and dynamical modeling can be used to infer magnetic-field strengths anywhere from ˜5 μG to 1 mG. Polarized fractions are considerably higher than in SNRs, ranging to 50 or 60% in some cases; magnetic-field geometries often suggest a toroidal structure around the pulsar, but this is not universal. Viewing-angle effects undoubtedly play a role. MHD models of radio emission in shell SNRs show that different orientations of upstream magnetic field, and different assumptions about electron acceleration, predict different radio morphology. In the remnant of SN 1006, such comparisons imply a magnetic-field orientation connecting the bright limbs, with a substantial density gradient across the remnant.

  20. Pulsar Pair Cascades in Magnetic Fields with Offset Polar Caps

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Muslimov, Alex G.

    2012-01-01

    Neutron star magnetic fields may have polar caps (PC) that are offset from the dipole axis, through field-line sweepback near the light cylinder or non-symmetric currents within the star. The effects of such offsets on electron-positron pair cascades are investigated, using simple models of dipole magnetic fields with small distortions that shift the PCs by different amounts or directions. Using a Monte Carlo pair cascade simulation, we explore the changes in the pair spectrum, multiplicity and energy flux across the PC, as well as the trends in pair flux and pair energy flux with spin-down luminosity, L(sub sd). We also give an estimate of the distribution of heating flux from returning positrons on the PC for different offsets. We find that even modest offsets can produce significant increases in pair multiplicity, especially for pulsars that are near or beyond the pair death lines for centered PCs, primarily because of higher accelerating fields. Pair spectra cover several decades in energy, with the spectral range of millisecond pulsars (MSPs) two orders of magnitude higher than for normal pulsars, and PC offsets allow significant extension of all spectra to lower pair energies. We find that the total PC pair luminosity L(sub pair) is proportional to L(sub sd), with L(sub pair) approximates 10(exp -3) L(sub sd) for normal pulsars and L(sub pair) approximates 10(exp -2) L(sub sd) for MSPs. Remarkably, the total PC heating luminosity for even large offsets increases by less than a factor of two, even though the PC area increases by much larger factors, because most of the heating occurs near the magnetic axis.

  1. Are pulsars born with a hidden magnetic field?

    NASA Astrophysics Data System (ADS)

    Torres-Forné, Alejandro; Cerdá-Durán, Pablo; Pons, José A.; Font, José A.

    2016-03-01

    The observation of several neutron stars in the centre of supernova remnants and with significantly lower values of the dipolar magnetic field than the average radio-pulsar population has motivated a lively debate about their formation and origin, with controversial interpretations. A possible explanation requires the slow rotation of the protoneutron star at birth, which is unable to amplify its magnetic field to typical pulsar levels. An alternative possibility, the hidden magnetic field scenario, considers the accretion of the fallback of the supernova debris on to the neutron star as responsible for the submergence (or screening) of the field and its apparently low value. In this paper, we study under which conditions the magnetic field of a neutron star can be buried into the crust due to an accreting, conducting fluid. For this purpose, we consider a spherically symmetric calculation in general relativity to estimate the balance between the incoming accretion flow and the magnetosphere. Our study analyses several models with different specific entropy, composition, and neutron star masses. The main conclusion of our work is that typical magnetic fields of a few times 1012 G can be buried by accreting only 10-3-10-2 M⊙, a relatively modest amount of mass. In view of this result, the central compact object scenario should not be considered unusual, and we predict that anomalously weak magnetic fields should be common in very young (< few kyr) neutron stars.

  2. Magnetic alignment of the Tara tandem mirror

    SciTech Connect

    Post, R.S.; Coleman, J.W.; Irby, J.H.; Olmstead, M.M.; Torti, R.P.

    1985-06-01

    Techniques developed for the alignment of high-energy accelerators have been applied to the alignment of the Tara tandem mirror magnetic confinement device. Tools used were: a transit/laser surveyor's system for establishing an invariant reference; optical scattering from ferromagnetic crystallites for establishing magnetic centers in the quadrupole anchor/transition modules; an electron-optical circle-generating wand for alignment of the solenoidal plug and central cell modules; and four differently configured electron emissive probes, including a 40-beam flux mapping e gun, for testing the alignment of the coils under vacuum. Procedures are outlined, and results are given which show that the magnetic axes of the individual coils in the Tara set have been made colinear with each other and with the reference to within +- 1.0 mm over the length of the machine between the anchor midplanes.

  3. Magnetic Field Measurement with Ground State Alignment

    NASA Astrophysics Data System (ADS)

    Yan, Huirong; Lazarian, A.

    Observational studies of magnetic fields are crucial. We introduce a process "ground state alignment" as a new way to determine the magnetic field direction in diffuse medium. The alignment is due to anisotropic radiation impinging on the atom/ion. The consequence of the process is the polarization of spectral lines resulting from scattering and absorption from aligned atomic/ionic species with fine or hyperfine structure. The magnetic field induces precession and realign the atom/ion and therefore the polarization of the emitted or absorbed radiation reflects the direction of the magnetic field. The atoms get aligned at their low levels and, as the life-time of the atoms/ions we deal with is long, the alignment induced by anisotropic radiation is susceptible to extremely weak magnetic fields (1 G ≳ B ≳ 10^{-15} G). In fact, the effects of atomic/ionic alignment were studied in the laboratory decades ago, mostly in relation to the maser research. Recently, the atomic effect has been already detected in observations from circumstellar medium and this is a harbinger of future extensive magnetic field studies. A unique feature of the atomic realignment is that they can reveal the 3D orientation of magnetic field. In this chapter, we shall review the basic physical processes involved in atomic realignment. We shall also discuss its applications to interplanetary, circumstellar and interstellar magnetic fields. In addition, our research reveals that the polarization of the radiation arising from the transitions between fine and hyperfine states of the ground level can provide a unique diagnostics of magnetic fields in the Epoch of Reionization.

  4. On the decay of the magnetic fields of single radio pulsars

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Dipankar; Wijers, Ralph A. M. J.; Hartman, Jan W.; Verbunt, Frank

    1992-01-01

    We investigate the statistical evidence for the decay of the magnetic field of single radio pulsars. We perform population syntheses for different assumed values for the time scale of field decay using a Monte Carlo method. We allow for the selection effects in pulsar surveys and compare the synthesized populations with the observed pulsars. We take account of the finite scale height of the distribution in the Galaxy of free electrons, which determine the dispersion measure and hence the apparent distance of radio pulsars. Our simulations give much better agreement with the observations if the time scale for the field decay is assumed to be longer than the typical active life time of a radio pulsar. This indicates that no significant field decay occurs in single radio pulsars.

  5. MODELING PHASE-ALIGNED GAMMA-RAY AND RADIO MILLISECOND PULSAR LIGHT CURVES

    SciTech Connect

    Venter, C.; Johnson, T. J.; Harding, A. K.

    2012-01-01

    Since the discovery of the first eight gamma-ray millisecond pulsars (MSPs) by the Fermi Large Area Telescope, this population has been steadily expanding. Four of the more recent detections, PSR J0034-0534, PSR J1939+2134 (B1937+21; the first MSP ever discovered), PSR J1959+2048 (B1957+20; the first discovery of a black widow system), and PSR J2214+3000, exhibit a phenomenon not present in the original discoveries: nearly phase-aligned radio and gamma-ray light curves (LCs). To account for the phase alignment, we explore models where both the radio and gamma-ray emission originate either in the outer magnetosphere near the light cylinder or near the polar caps. Using a Markov Chain Monte Carlo technique to search for best-fit model parameters, we obtain reasonable LC fits for the first three of these MSPs in the context of 'altitude-limited' outer gap (alOG) and two-pole caustic (alTPC) geometries (for both gamma-ray and radio emission). These models differ from the standard outer gap (OG)/two-pole caustic (TPC) models in two respects: the radio emission originates in caustics at relatively high altitudes compared to the usual conal radio beams, and we allow both the minimum and maximum altitudes of the gamma-ray and radio emission regions to vary within a limited range (excluding the minimum gamma-ray altitude of the alTPC model, which is kept constant at the stellar radius, and that of the alOG model, which is set to the position-dependent null charge surface altitude). Alternatively, phase-aligned solutions also exist for emission originating near the stellar surface in a slot gap scenario ('low-altitude slot gap' (laSG) models). We find that the alTPC models provide slightly better LC fits than the alOG models, and both of these give better fits than the laSG models (for the limited range of parameters considered in the case of the laSG models). Thus, our fits imply that the phase-aligned LCs are likely of caustic origin, produced in the outer magnetosphere

  6. Modeling Phase-Aligned Gamma-Ray and Radio Millisecond Pulsar Light Curves

    NASA Technical Reports Server (NTRS)

    Venter, C.; Johnson, T.; Harding, A.

    2012-01-01

    Since the discovery of the first eight gamma-ray millisecond pulsars (MSPs) by the Fermi Large Area Telescope, this population has been steadily expanding. Four of the more recent detections, PSR J00340534, PSR J1939+2134 (B1937+21; the first MSP ever discovered), PSR J1959+2048 (B1957+20; the first discovery of a black widow system), and PSR J2214+3000, exhibit a phenomenon not present in the original discoveries: nearly phase-aligned radio and gamma-ray light curves (LCs). To account for the phase alignment, we explore models where both the radio and gamma-ray emission originate either in the outer magnetosphere near the light cylinder or near the polar caps. Using a Markov Chain Monte Carlo technique to search for best-fit model parameters, we obtain reasonable LC fits for the first three of these MSPs in the context of altitude-limited outer gap (alOG) and two-pole caustic (alTPC) geometries (for both gamma-ray and radio emission). These models differ from the standard outer gap (OG)/two-pole caustic (TPC) models in two respects: the radio emission originates in caustics at relatively high altitudes compared to the usual conal radio beams, and we allow both the minimum and maximum altitudes of the gamma-ray and radio emission regions to vary within a limited range (excluding the minimum gamma-ray altitude of the alTPC model, which is kept constant at the stellar radius, and that of the alOG model, which is set to the position-dependent null charge surface altitude). Alternatively, phase-aligned solutions also exist for emission originating near the stellar surface in a slot gap scenario (low-altitude slot gap (laSG) models). We find that the alTPC models provide slightly better LC fits than the alOG models, and both of these give better fits than the laSG models (for the limited range of parameters considered in the case of the laSG models). Thus, our fits imply that the phase-aligned LCs are likely of caustic origin, produced in the outer magnetosphere, and

  7. Gravitational Waves from Pulsars and Their Braking Indices: The Role of a Time Dependent Magnetic Ellipticity

    NASA Astrophysics Data System (ADS)

    de Araujo, José C. N.; Coelho, Jaziel G.; Costa, César A.

    2016-11-01

    We study the role of time dependent magnetic ellipticities ({ε }B) on the calculation of the braking index of pulsars. Moreover, we study the consequences of such a {ε }B on the amplitude of gravitational waves (GWs) generated by pulsars with measured braking indices. We show that, since the ellipticity generated by the magnetic dipole is extremely small, the corresponding amplitude of GWs is much smaller than the amplitude obtained via the spindown limit.

  8. Pulsar discovery by global volunteer computing.

    PubMed

    Knispel, B; Allen, B; Cordes, J M; Deneva, J S; Anderson, D; Aulbert, C; Bhat, N D R; Bock, O; Bogdanov, S; Brazier, A; Camilo, F; Champion, D J; Chatterjee, S; Crawford, F; Demorest, P B; Fehrmann, H; Freire, P C C; Gonzalez, M E; Hammer, D; Hessels, J W T; Jenet, F A; Kasian, L; Kaspi, V M; Kramer, M; Lazarus, P; van Leeuwen, J; Lorimer, D R; Lyne, A G; Machenschalk, B; McLaughlin, M A; Messenger, C; Nice, D J; Papa, M A; Pletsch, H J; Prix, R; Ransom, S M; Siemens, X; Stairs, I H; Stappers, B W; Stovall, K; Venkataraman, A

    2010-09-10

    Einstein@Home aggregates the computer power of hundreds of thousands of volunteers from 192 countries to mine large data sets. It has now found a 40.8-hertz isolated pulsar in radio survey data from the Arecibo Observatory taken in February 2007. Additional timing observations indicate that this pulsar is likely a disrupted recycled pulsar. PSR J2007+2722's pulse profile is remarkably wide with emission over almost the entire spin period; the pulsar likely has closely aligned magnetic and spin axes. The massive computing power provided by volunteers should enable many more such discoveries.

  9. A study of magnetic fields of accreting X-ray pulsars with the Rossi X-ray Timing Explorer

    NASA Astrophysics Data System (ADS)

    Coburn, Wayne

    2001-12-01

    magnetic field. This has important implications for theoretical work on the formation of the continuum. I also find two correlations among the line shape parameters, and discuss the possibility that this might imply that accretion seeks to align the dipole and spin axes. Finally, I detail a prescription for finding upper limits on cyclotron lines in accreting pulsar spectra, and apply it to twelve sources.

  10. Pulsar timing irregularities and the imprint of magnetic field evolution

    NASA Astrophysics Data System (ADS)

    Pons, J. A.; Viganò, D.; Geppert, U.

    2012-11-01

    Context. The rotational evolution of isolated neutron stars is dominated by the magnetic field anchored to the solid crust of the star. Assuming that the core field evolves on much longer timescales, the crustal field evolves mainly though Ohmic dissipation and the Hall drift, and it may be subject to relatively rapid changes with remarkable effects on the observed timing properties. Aims: We investigate whether changes of the magnetic field structure and strength during the star evolution may have observable consequences in the braking index n. This is the most sensitive quantity to reflect small variations of the timing properties that are caused by magnetic field rearrangements. Methods: We performed axisymmetric, long-term simulations of the magneto-thermal evolution of neutron stars with state-of-the-art microphysical inputs to calculate the evolution of the braking index. Relatively rapid magnetic field modifications can be expected only in the crust of neutron stars, where we focus our study. Results: We find that the effect of the magnetic field evolution on the braking index can be divided into three qualitatively different stages depending on the age and the internal temperature: a first stage that may be different for standard pulsars (with n ~ 3) or low field neutron stars that accreted fallback matter during the supernova explosion (systematically n < 3); in a second stage, the evolution is governed by almost pure Ohmic field decay, and a braking index n > 3 is expected; in the third stage, at late times, when the interior temperature has dropped to very low values, Hall oscillatory modes in the neutron star crust result in braking indices of a high absolute value and both positive and negative signs. Conclusions: Current magneto-thermal evolution models predict a large contribution to the timing noise and, in particular, to the braking index, from temporal variations of the magnetic field. Models with strong (≳ 1014 G) multipolar or toroidal

  11. On the magnetization and origin of the millisecond pulsar 1937 + 214

    NASA Astrophysics Data System (ADS)

    Arons, J.

    1983-03-01

    The structure of the millisecond pulsar PSR1937 + 214 is shown to include a magnetosphere compatible with other radio pulsars, although no synchrotron radiation-emitting bright nebula has been observed. It is suggested that interstellar extinction lowers the nebular energy to below the detection threshold level for the Einstein Observatory. Constraints on the pulsars magnetic dipole moment indicate a minimum spin-down rate of 10 to the -19th. The low magnetization detected may arise from initially low magnetic fields or field decay. Models of an expanding gas bubble are described for the case of supersonic expansion if the object is less than 1000 yr old and subsonic expansion if older. A scenario of a groupe of short period, weakly magnetized neutron stars is discussed.

  12. ENHANCED DISSIPATION RATE OF MAGNETIC FIELD IN STRIPED PULSAR WINDS BY THE EFFECT OF TURBULENCE

    SciTech Connect

    Takamoto, Makoto; Inoue, Tsuyoshi; Inutsuka, Shu-ichiro E-mail: inouety@phys.aoyama.ac.jp

    2012-08-10

    In this paper, we report on turbulent acceleration of the dissipation of the magnetic field in the post-shock region of a Poynting flux-dominated flow, such as the Crab pulsar wind nebula. We have performed two-dimensional resistive relativistic magnetohydrodynamics simulations of subsonic turbulence driven by the Richtmyer-Meshkov instability at the shock fronts of the Poynting flux-dominated flows in pulsar winds. We find that turbulence stretches current sheets which substantially enhances the dissipation of the magnetic field, and that most of the initial magnetic field energy is dissipated within a few eddy-turnover times. We also develop a simple analytical model for turbulent dissipation of the magnetic field that agrees well with our simulations. The analytical model indicates that the dissipation rate does not depend on resistivity even in the small resistivity limit. Our findings can possibly alleviate the {sigma}-problem in the Crab pulsar wind nebulae.

  13. Pulsar activation by the interstellar medium?

    NASA Technical Reports Server (NTRS)

    Michel, F. Curtis

    1987-01-01

    Recent work suggests that rotating magnetized neutron stars (i.e., pulsar models) trap plasma instead of emitting it. The trapping arises because nonneutral plasma can be stably trapped within such a magnetosphere provided the overall system charge is nonzero. It has been argued that particles from the interstellar medium would discharge this system, thereby presumably reactivating the system as a pulsar. However, radiation pressure either precludes such discharging (requiring an alternative source of ionization) or pulsar magnetic moments must be almost perfectly aligned with the spin axis (a revolutionary alternative). Indeed, the pulsars for which particles could reach the neutron star are those with periods of at least 3 sec. But those periods are where pulsars become inactive, not active. Conceivably, nulling might represent intermittent accretion of the interstellar medium.

  14. Why are millisecond pulsar magnetic fields low and how do their X-rays arise?

    NASA Astrophysics Data System (ADS)

    Webb, Natalie

    2006-10-01

    Binary millisecond pulsars (MSPs) found in the field are thought to be recycled from accreting pulsars. These MSPs have short periods, low spindown rates (Pdot) and consequently low surface magnetic fields (Bs) as Bs is proportional to (Pdot P)^0.5. It is unclear, however, how the MSP surface magnetic field can evolve from the high fields observed in pulsars to the low MSP values. Two models have been proposed to explain this. Also, the origin of the high energy emission is unclear as too few MSP X-ray observations have been made to differentiate between competing models. With these XMM-Newton observations of four MSPs previously unobserved in X-rays, we will discriminate between differing models describing the magnetic field evolution and the high energy emission origin.

  15. Giant Magnetic Susceptibility of Gold Nanorods Detected by Magnetic Alignment

    NASA Astrophysics Data System (ADS)

    van Rhee, P. G.; Zijlstra, P.; Verhagen, T. G. A.; Aarts, J.; Katsnelson, M. I.; Maan, J. C.; Orrit, M.; Christianen, P. C. M.

    2013-09-01

    We have determined the magnetic properties of single-crystalline Au nanorods in solution using an optically detected magnetic alignment technique. The rods exhibit a large anisotropy in the magnetic volume susceptibility (ΔχV). ΔχV increases with decreasing rod size and increasing aspect ratio and corresponds to an average volume susceptibility (χV), which is drastically enhanced relative to bulk Au. This high value of χV is confirmed by SQUID magnetometry and is temperature independent (between 5 and 300 K). Given this peculiar size, shape, and temperature dependence, we speculate that the enhanced χV is the result of orbital magnetism due to mesoscopic electron trajectories within the nanorods.

  16. A SEARCH FOR NEUTRON STAR PRECESSION AND INTERSTELLAR MAGNETIC FIELD VARIATIONS VIA MULTIEPOCH PULSAR POLARIMETRY

    SciTech Connect

    Weisberg, J. M.; Everett, J. E.; Morgan, J. J.; Brisbin, D. G.; Cordes, J. M.

    2010-10-01

    In order to study precession and interstellar magnetic field variations, we measured the polarized position angle of 81 pulsars at several-month intervals for four years. We show that the uncertainties in a single-epoch measurement of position angle are usually dominated by random pulse-to-pulse jitter of the polarized subpulses. Even with these uncertainties, we find that the position angle variations in 19 pulsars are significantly better fitted (at the 3{sigma} level) by a sinusoid than by a constant. Such variations could be caused by precession, which would then indicate periods of {approx}(200-1300) days and amplitudes of {approx}(1-12) degrees. We narrow this collection to four pulsars that show the most convincing evidence of sinusoidal variation in position angle. Also, in a handful of pulsars, single discrepant position angle measurements are observed which may result from the line of sight passing across a discrete ionized, magnetized structure. We calculate the standard deviation of position angle measurements from the mean for each pulsar and relate these to limits on precession and interstellar magnetic field variations.

  17. Signs of magnetic accretion in the young Be/X-ray pulsar SXP 1062

    NASA Astrophysics Data System (ADS)

    Ikhsanov, N. R.

    2012-07-01

    The spin behaviour of the neutron star in the newly discovered young Be/X-ray long-period pulsar SXP 1062 is discussed. The star is observed to rotate with the period of 1062 s, and spin down at the rate ˜-2.6 × 10-12 Hz s-1. I show that all of the conventional accretion scenarios encounter major difficulties in explaining the rapid spin-down of the pulsar. These difficulties can be, however, avoided within the magnetic accretion scenario in which the neutron star is assumed to accrete from a magnetized wind. The spin-down rate of the pulsar can be explained within this scenario provided the surface magnetic field of the neutron star is B*˜ 4 × 1013 G. I show that the age of the pulsar in this case lies in the range (2-4) × 104 yr, which is consistent with observations. The spin evolution of the pulsar is briefly discussed.

  18. Inkjet printing of magnetic materials with aligned anisotropy

    NASA Astrophysics Data System (ADS)

    Song, Han; Spencer, Jeremy; Jander, Albrecht; Nielsen, Jeffrey; Stasiak, James; Kasperchik, Vladek; Dhagat, Pallavi

    2014-05-01

    3-D printing processes, which use drop-on-demand inkjet printheads, have great potential in designing and prototyping magnetic materials. Unlike conventional deposition and lithography, magnetic particles in the printing ink can be aligned by an external magnetic field to achieve both high permeability and low hysteresis losses, enabling prototyping and development of novel magnetic composite materials and components, e.g., for inductor and antennae applications. In this work, we report an inkjet printing technique with magnetic alignment capability. Magnetic films with and without particle alignment are printed, and their magnetic properties are compared. In the alignment-induced hard axis direction, an increase in high frequency permeability and a decrease in hysteresis losses are observed. Our results suggest that unique magnetic structures with arbitrary controllable anisotropy, not feasible otherwise, may be fabricated via inkjet printing.

  19. Chandra Phase-Resolved Spectroscopy of the High-Magnetic-Field Pulsar B1509-58

    NASA Astrophysics Data System (ADS)

    Hu, Chin-Ping; Ng, Chi-Yung

    2016-04-01

    We report on timing and spectral analysis of the young, high-magnetic-field pulsar B1509-58 using Chandra continuous-clocking mode observation. The on-pulsed X-ray spectrum can be described by a power law with a photon index of 1.16(2), which is flatter than those determined with RXTE/PCA and NuSTAR. This result supports the log-parabolic model for the broadband X-ray spectrum. With the unprecedented angular resolution of Chandra, we clearly identified off-pulsed X-ray emission from the pulsar. The spectrum is best fitted by a power law plus blackbody model. The latter component has a temperature of ~0.14 keV, which is similar to those of other young and high-magnetic-field pulsars, and lies between those of magnetars and typical rotational-powered pulsars. For the non-thermal emission of PSR B1509-58, we found that the power law component of the off-pulsed emission is significantly steeper than that of the on-pulsed one. We further divided the data into 24 phase bins and found that the photon index varies between 1.0 and 2.0 and anti-correlating with the flux. A similar correlation was also found in the Crab Pulsar, and this requires further theoretical interpretations. This work is supported by a GRF grant of Hong Kong Government under 17300215.

  20. Mathematical modeling of the nonlinear electrodynamics effect of signal delay in the magnetic field of pulsars

    NASA Astrophysics Data System (ADS)

    Gapochka, M. G.; Denisov, M. M.; Denisova, I. P.; Kalenova, N. V.; Korolev, A. F.

    2015-11-01

    The paper is devoted to mathematical modeling of the nonlinear vacuum electrodynamics effect: the action of the strong magnetic field of a pulsar on the propagation of electromagnetic waves. It is shown that, due to the birefringence of the vacuum, for one normal wave, it takes more time to travel from a pulsar to a detector installed on astrophysical satellites than for the other normal wave. The delay of the pulse carried by the second normal wave relative to pulse carried by the first normal wave from the common point of origin to the satellite is calculated.

  1. Timing Behavior of the Magnetically Active Rotation-Powered Pulsar in the Supernova Remnant Kesteven 75

    NASA Technical Reports Server (NTRS)

    Livingstone, Margaret A.; Gavriil, Fotis P.; Kaspi, Victoria M.

    2009-01-01

    We report a large spin-up glitch in PSR J1846-0258 which coincided with the onset of magnetar-like behavior on 2006 May 31. We show that the pulsar experienced an unusually large glitch recovery, with a recovery fraction of Q = 5.9+/-0.3, resulting in a net decrease of the pulse frequency. Such a glitch recovery has never before been observed in a rotation-powered pulsar, however, similar but smaller glitch over-recovery has been recently reported in the magnetar AXP 4U 0142+61 and may have occurred in the SGR 1900+14. We discuss the implications of the unusual timing behavior in PSR J1846-0258 on its status as the first identified magnetically active rotation-powered pulsar.

  2. Magnetic Compton-induced pair cascade model for gamma-ray pulsars

    NASA Technical Reports Server (NTRS)

    Sturner, Steven J.; Dermer, Charles D.; Michel, F. Curtis

    1995-01-01

    Electrons accelerated to relativistic energies in pulsar magnetospheres will Compton scatter surface thermal emission and nonthermal optical, UV, and soft X-ray emission to gamma-ray energies, thereby initiating a pair cascade through synchrotron radiation and magnetic pair production. This process is proposed as the origin of the high-energy radiation that has been detected from six isolated pulsars. We construct an analytic model of magnetic Compton scattering near the polar cap of isolated pulsar magnetospheres and present approximate analytic derivations for scattered spectra, electron energy-loss rates, and photon luminosities. A Monte Carlo simulation is used to model the pair cascade induced by relativistic electrons scattering photons through the cyclotron resonance. For simplicity, the primary electrons are assumed to be monoenergetic and the nonresonant emission is omitted. Assuming that the angle phi(sub B) between the magnetic and spin axes is approximately equal to the polar-cap angle theta(sub pc), this model can produce both double-peaked and broad single-peaked pulse profiles and account for the trend of harder gamma-ray spectra observed from older pulsars.

  3. Supernova remnant G292.2-0.5, its pulsar, and the Galactic magnetic field

    NASA Astrophysics Data System (ADS)

    Caswell, J. L.; McClure-Griffiths, N. M.; Cheung, M. C. M.

    2004-08-01

    The extended low-brightness Galactic radio source G292.2-0.5 is one of the few supernova remnants (SNRs) showing a likely association with a young pulsar. New observations of the remnant with the Australia Telescope Compact Array yield a distance of 8.4 kpc determined from HI absorption measurements, and the first detection of linear polarization. The polarization was studied at two frequencies near 5 GHz, revealing a high mean rotation measure, approximately +800 rad m-2, strikingly similar to that of the pulsar. This similarity, and the compatibility of the pulsar distance estimate with the new SNR distance, now provides overwhelming evidence that the pulsar is indeed embedded within the SNR, and that both were presumably born in the same supernova event. The ratio of rotation measure to pulsar dispersion measure yields a value of -1.4 μG (towards us) for the (density-weighted) average line-of-sight component of magnetic field for the 8.4-kpc path-length to the SNR and pulsar. The unusually high rotation measure, together with the large distance over which it has accumulated, argues that this field is a persistent feature on a large scale that outweighs smaller-scale fluctuations and reversals. The 8.4-kpc path-length lies almost wholly within the Carina spiral arm of our Galaxy and thus this portion of the arm possesses an average clockwise field of 1.4 μG. We interpret other evidence to suggest that the clockwise field extends for at least a further 8.5 kpc along the same arm, in the region where it is usually referred to as the Sagittarius arm. Observations such as these provide a powerful tool for exploring the large-scale structure of the Galactic magnetic field in relation to the spiral-arm structure.

  4. On the magnetic fields of Be/X-ray pulsars in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Ikhsanov, N. R.; Mereghetti, S.

    2015-12-01

    We explore the possibility of explaining the properties of the Be/X-ray pulsars observed in the Small Magellanic Cloud (SMC) within the magnetic levitation accretion scenario. This implies that their X-ray emission is powered by a wind-fed accretion on to a neutron star (NS) which captures matter from a magnetized stellar wind. The NS in this case is accreting matter from a non-Keplerian magnetically levitating disc which is surrounding its magnetosphere. This allows us to explain the observed periods of the pulsars in terms of spin equilibrium without the need of invoking dipole magnetic fields outside the usual range ˜1011-1013 G inferred from cyclotron features of Galactic high-mass X-ray binaries. We find that the equilibrium period of a NS, under certain conditions, depends strongly on the magnetization of the stellar wind of its massive companion and, correspondingly, on the magnetic field of the massive companion itself. This may help to explain why similar NSs in binaries with similar properties rotate with different periods yielding a large scatter of periods of the accretion-powered pulsar observed in SMC and our galaxy.

  5. Magnetic alignment study of rare-earth-containing liquid crystals.

    PubMed

    Galyametdinov, Yury G; Haase, Wolfgang; Goderis, Bart; Moors, Dries; Driesen, Kris; Van Deun, Rik; Binnemans, Koen

    2007-12-20

    The liquid-crystalline rare-earth complexes of the type [Ln(LH)3(DOS)3]-where Ln is Tb, Dy, Ho, Er, Tm, or Yb; LH is the Schiff base N-octadecyl-4-tetradecyloxysalicylaldimine; and DOS is dodecylsulfate-exhibit a smectic A phase. Because of the presence of rare-earth ions with a large magnetic anisotropy, the smectic A phase of these liquid crystals can be easier aligned in an external magnetic field than smectic A phases of conventional liquid crystals. The magnetic anisotropy of the [Ln(LH)3(DOS)3] complexes was determined by measurement of the temperature-dependence of the magnetic susceptibility using a Faraday balance. The highest value for the magnetic anisotropy was found for the dysprosium(III) complex. The magnetic alignment of these liquid crystals was studied by time-resolved synchrotron small-angle X-ray scattering experiments. Depending on the sign of the magnetic anisotropy, the director of the liquid-crystalline molecules was aligned parallel or perpendicular to the magnetic field lines. A positive value of the magnetic anisotropy (and parallel alignment) was found for the thulium(III) and the ytterbium(III) complexes, whereas a negative value of the magnetic anisotropy (and perpendicular alignment) was observed for the terbium(III) and dysprosium(III) complexes. PMID:18044875

  6. PULSAR BINARY BIRTHRATES WITH SPIN-OPENING ANGLE CORRELATIONS

    SciTech Connect

    O'Shaughnessy, Richard; Kim, Chunglee E-mail: ckim@astro.lu.s

    2010-05-20

    One ingredient in an empirical birthrate estimate for pulsar binaries is the fraction of sky subtended by the pulsar beam: the pulsar beaming fraction. This fraction depends on both the pulsar's opening angle and the misalignment angle between its spin and magnetic axes. The current estimates for pulsar binary birthrates are based on an average value of beaming fractions for only two pulsars, i.e., PSRs B1913+16 and B1534+12. In this paper, we revisit the observed pulsar binaries to examine the sensitivity of birthrate predictions to different assumptions regarding opening angle and alignment. Based on empirical estimates for the relative likelihood of different beam half-opening angles and misalignment angles between the pulsar rotation and magnetic axes, we calculate an effective beaming correction factor, f{sub b,eff}, whose reciprocal is equivalent to the average fraction of all randomly selected pulsars that point toward us. For those pulsars without any direct beam geometry constraints, we find that f{sub b,eff} is likely to be smaller than 6, a canonically adopted value when calculating birthrates of Galactic pulsar binaries. We calculate f{sub b,eff} for PSRs J0737-3039A and J1141-6545, applying the currently available constraints for their beam geometry. As in previous estimates of the posterior probability density function P(R) for pulsar binary birthrates R, PSRs J0737-3039A and J1141-6545 still significantly contribute to, if not dominate, the Galactic birthrate of tight pulsar-neutron star (NS) and pulsar-white dwarf (WD) binaries, respectively. Our median posterior present-day birthrate predictions for tight PSR-NS binaries, wide PSR-NS binaries, and tight PSR-WD binaries given a preferred pulsar population model and beaming geometry are 89 Myr{sup -1}, 0.5 Myr{sup -1}, and 34 Myr{sup -1}, respectively. For long-lived PSR-NS binaries, these estimates include a weak (x1.6) correction for slowly decaying star formation in the galactic disk. For pulsars

  7. Alignment of the magnet and a positioning method

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Il

    2015-10-01

    The 100-MeV proton linac and magnets for the KOMAC (Korea Multi-purpose Accelerator Complex) were installed in the tunnel and the beamlines. The fiducialization process was accomplished with the measurement of mechanical shape and the transfer of the coordinates to the fiducial points that are used in two laser-trackers based alignments. The reference points called the alignment network were set up on the wall inside tunnel. The linac and the beam transport magnets were aligned based on the survey results of the alignment networks. In this paper, the alignment procedure and the alignment results are presented, and an algorithm that was developed to manipulate the adjusters of the magnetsis introduced.

  8. Going to Extremes: Pulsar Gives Insight on Ultra Dense Matter and Magnetic Fields

    NASA Astrophysics Data System (ADS)

    2004-12-01

    A long look at a young pulsar with NASA's Chandra X-ray Observatory revealed unexpectedly rapid cooling, which suggests that it contains much denser matter than previously expected. The pulsar's cool temperature and the vast magnetic web of high-energy particles that surrounds it have implications for the theory of nuclear matter and the origin of magnetic fields in cosmic objects. Animation: Layers of Chandra's 3-Color Image Animation: Layers of Chandra's 3-Color Image An international team of scientists used the Chandra data to measure the temperature of the pulsar at the center of 3C58, the remains of a star observed to explode in the year 1181. Chandra's image of 3C58 also shows spectacular jets, rings and magnetized loops of high-energy particles generated by the pulsar. "We now have strong evidence that, in slightly more than 800 years, the surface of the 3C58 pulsar has cooled to a temperature of slightly less than a million degrees Celsius," said Patrick Slane of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., and lead author on a paper describing these results in the November 20, 2004 issue of The Astrophysical Journal. "A million degrees may sound pretty hot, but for a young neutron star that's like the frozen tundra in Green Bay, Wisconsin." Optical & Chandra X-ray Composite of 3C58 Optical & Chandra X-ray Composite of 3C58 Pulsars are formed when the central core of a massive star collapses to create a dense object about 15 miles across that is composed almost entirely of neutrons. Collisions between neutrons and other subatomic particles in the interior of the star produce neutrinos that carry away energy as they escape from the star. This cooling process depends critically on the density and type of particles in the interior, so measurements of the surface temperature of pulsars provide a way to probe extreme conditions where densities are so high that our current understanding of how particles interact with one another is limited

  9. Synthesis and orientation of barium hexaferrite ceramics by magnetic alignment

    NASA Astrophysics Data System (ADS)

    Autissier, Denis

    1990-01-01

    Particles of Ba 2Mn xZn 2- xFe 12O 22 with planar structure were prepared by chemical precipitation. They were processed by sleep casting in presence of a magnetic field. The degree of alignment was improved by a special sintering treatment. By this procedure an alignment as high as 99.9% is obtained.

  10. ON THE MAGNETIC FIELD OF PULSARS WITH REALISTIC NEUTRON STAR CONFIGURATIONS

    SciTech Connect

    Belvedere, R.; Rueda, Jorge A.; Ruffini, R. E-mail: jorge.rueda@icra.it

    2015-01-20

    We have recently developed a neutron star model fulfilling global and not local charge neutrality, both in the static and in the uniformly rotating cases. The model is described by the coupled Einstein-Maxwell-Thomas-Fermi equations, in which all fundamental interactions are accounted for in the framework of general relativity and relativistic mean field theory. Uniform rotation is introduced following Hartle's formalism. We show that the use of realistic parameters of rotating neutron stars, obtained from numerical integration of the self-consistent axisymmetric general relativistic equations of equilibrium, leads to values of the magnetic field and radiation efficiency of pulsars that are very different from estimates based on fiducial parameters that assume a neutron star mass M = 1.4 M {sub ☉}, radius R = 10 km, and moment of inertia I = 10{sup 45} g cm{sup 2}. In addition, we compare and contrast the magnetic field inferred from the traditional Newtonian rotating magnetic dipole model with respect to the one obtained from its general relativistic analog, which takes into account the effect of the finite size of the source. We apply these considerations to the specific high-magnetic field pulsar class and show that, indeed, all of these sources can be described as canonical pulsars driven by the rotational energy of the neutron star, and have magnetic fields lower than the quantum critical field for any value of the neutron star mass.

  11. On the Magnetic Field of Pulsars with Realistic Neutron Star Configurations

    NASA Astrophysics Data System (ADS)

    Belvedere, R.; Rueda, Jorge A.; Ruffini, R.

    2015-01-01

    We have recently developed a neutron star model fulfilling global and not local charge neutrality, both in the static and in the uniformly rotating cases. The model is described by the coupled Einstein-Maxwell-Thomas-Fermi equations, in which all fundamental interactions are accounted for in the framework of general relativity and relativistic mean field theory. Uniform rotation is introduced following Hartle's formalism. We show that the use of realistic parameters of rotating neutron stars, obtained from numerical integration of the self-consistent axisymmetric general relativistic equations of equilibrium, leads to values of the magnetic field and radiation efficiency of pulsars that are very different from estimates based on fiducial parameters that assume a neutron star mass M = 1.4 M ⊙, radius R = 10 km, and moment of inertia I = 1045 g cm2. In addition, we compare and contrast the magnetic field inferred from the traditional Newtonian rotating magnetic dipole model with respect to the one obtained from its general relativistic analog, which takes into account the effect of the finite size of the source. We apply these considerations to the specific high-magnetic field pulsar class and show that, indeed, all of these sources can be described as canonical pulsars driven by the rotational energy of the neutron star, and have magnetic fields lower than the quantum critical field for any value of the neutron star mass.

  12. New Pulsar Theory

    NASA Astrophysics Data System (ADS)

    Kebede, Legesse

    2015-08-01

    Standard pulsar theory is based on fields that are conserved from progenitor stars. This has limited the scope of pulsar astronomy to a kind of study very much confined to a limited type of pulsars, so called field pulsars. The large majority of pulsars are technically eliminated from statistical studies because they are either too massive, or are of very high magnetic field with no mechanism yet known which forces them to decay to very low frequency rotators in a matter of a few thousands of years. This is one distinct property of these highly magnetized pulsars. The current presentation focuses on a new source for the generation of pulsar fields namely spinning separated surface charges and it shows that pulsar fields are strictly mass dependent. Massive neutron stars are strongly magnetized ( ≥ 1018 G) and less massive ones are weakly magnetized (1011 - 1013 G). This work therefore dismisses the current belief that there have to be two classes of pulsars (field pulsars and anomalous pulsars). It leads to a decay law that provides results that are consistent with observations from these two so called distinct classes of pulsars. This work also suggests that pulsar fields should be infinitely multi-polar which helps to successfully addresses the longtime issues of pulse shape and promises that the current problem of pulsar radiation could be solvable..

  13. TOWARD A REALISTIC PULSAR MAGNETOSPHERE

    SciTech Connect

    Kalapotharakos, Constantinos; Kazanas, Demosthenes; Harding, Alice

    2012-04-10

    We present the magnetic and electric field structures and the currents and charge densities of pulsar magnetospheres that do not obey the ideal condition, E {center_dot} B = 0. Since the acceleration of particles and the production of radiation require the presence of an electric field component parallel to the magnetic field, E{sub ||}, the structure of non-ideal pulsar magnetospheres is intimately related to the production of pulsar radiation. Therefore, knowledge of the structure of non-ideal pulsar magnetospheres is important because their comparison (including models for the production of radiation) with observations will delineate the physics and the parameters underlying the pulsar radiation problem. We implement a variety of prescriptions that support non-zero values for E{sub ||} and explore their effects on the structure of the resulting magnetospheres. We produce families of solutions that span the entire range between the vacuum and the (ideal) force-free electrodynamic solutions. We also compute the amount of dissipation as a fraction of the Poynting flux for pulsars of different angles between the rotation and magnetic axes and conclude that this is at most 20%-40% (depending on the non-ideal prescription) in the aligned rotator and 10% in the perpendicular one. We present also the limiting solutions with the property J = {rho}c and discuss their possible implication on the determination of the 'on/off' states of the intermittent pulsars. Finally, we find that solutions with values of J greater than those needed to null E{sub ||} locally produce oscillations, potentially observable in the data.

  14. Towards a Realistic Pulsar Magnetosphere

    NASA Technical Reports Server (NTRS)

    Kalapotharakos, Constantinos; Kazanas, Demosthenes; Harding, Alice; Contopoulos, Ioannis

    2012-01-01

    We present the magnetic and electric field structures as well as the currents ami charge densities of pulsar magnetospberes which do not obey the ideal condition, E(raised dot) B = O. Since the acceleration of particles and the production of radiation requires the presence of an electric field component parallel to the magnetic field, E(sub ll) the structure of non-Ideal pulsar magnetospheres is intimately related to the production of pulsar radiation. Therefore, knowledge of the structure of non-Ideal pulsar maglletospheres is important because their comparison (including models for t he production of radiation) with observations will delineate the physics and the parameters underlying the pulsar radiation problem. We implement a variety of prescriptions that support nonzero values for E(sub ll) and explore their effects on the structure of the resulting magnetospheres. We produce families of solutions that span the entire range between the vacuum and the (ideal) Force-Free Electrodynamic solutions. We also compute the amount of dissipation as a fraction of the Poynting flux for pulsars of different angles between the rotation and magnetic axes and conclude that tltis is at most 20-40% (depending on t he non-ideal prescription) in the aligned rotator and 10% in the perpendicular one. We present also the limiting solutions with the property J = pc and discuss their possible implicatioll on the determination of the "on/ off" states of the intermittent pulsars. Finally, we find that solutions with values of J greater than those needed to null E(sub ll) locally produce oscillations, potentially observable in the data.

  15. Magnetic fields generated by r-modes in accreting millisecond pulsars

    SciTech Connect

    Cuofano, Carmine; Drago, Alessandro

    2010-10-15

    In rotating neutron stars the existence of the Coriolis force allows the presence of the so-called Rossby oscillations (r-modes) which are known to be unstable to emission of gravitational waves. Here, for the first time, we introduce the magnetic damping rate in the evolution equations of r-modes. We show that r-modes can generate very strong toroidal fields in the core of accreting millisecond pulsars by inducing differential rotation. We shortly discuss the instabilities of the generated magnetic field and its long time-scale evolution in order to clarify how the generated magnetic field can stabilize the star.

  16. Torque Enhancement, Spin Equilibrium, and Jet Power from Disk-Induced Opening of Pulsar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Parfrey, Kyle; Spitkovsky, Anatoly; Beloborodov, Andrei M.

    2016-05-01

    The interaction of a rotating star’s magnetic field with a surrounding plasma disk lies at the heart of many questions posed by neutron stars in X-ray binaries. We consider the opening of stellar magnetic flux due to differential rotation along field lines coupling the star and disk, using a simple model for the disk-opened flux, the torques exerted on the star by the magnetosphere, and the power extracted by the electromagnetic wind. We examine the conditions under which the system enters an equilibrium spin state, in which the accretion torque is instantaneously balanced by the pulsar wind torque alone. For magnetic moments, spin frequencies, and accretion rates relevant to accreting millisecond pulsars, the spin-down torque from this enhanced pulsar wind can be substantially larger than that predicted by existing models of the disk-magnetosphere interaction, and is in principle capable of maintaining spin equilibrium at frequencies less than 1 kHz. We speculate that this mechanism may account for the non-detection of frequency increases during outbursts of SAX J1808.4-3658 and XTE J1814-338, and may be generally responsible for preventing spin-up to sub-millisecond periods. If the pulsar wind is collimated by the surrounding environment, the resulting jet can satisfy the power requirements of the highly relativistic outflows from Cir X-1 and Sco X-1. In this framework, the jet power scales relatively weakly with accretion rate, {L}{{j}}\\propto {\\dot{M}}4/7, and would be suppressed at high accretion rates only if the stellar magnetic moment is sufficiently low.

  17. CCO Pulsars as Anti-Magnetars: Evidence of Neutron Stars Weakly Magnetized at Birth

    NASA Astrophysics Data System (ADS)

    Gotthelf, E. V.; Halpern, J. P.

    2008-02-01

    Our new study of the two central compact object pulsars, PSR J1210-5226 (P = 424 ms) and PSR J1852+0040 (P = 105 ms), leads us to conclude that a weak natal magnetic field shaped their unique observational properties. In the dipole spin-down formalism, the 2-sigma upper limits on their period derivatives, <2×10-16 for both pulsars, implies surface magnetic field strengths of Bs<3×1011 G and spin periods at birth equal to their present periods to three significant digits. Their X-ray luminosities exceed their respective spin-down luminosities, implying that their thermal spectra are derived from residual cooling and perhaps partly from accretion of supernova debris. For sufficiently weak magnetic fields an accretion disk can penetrate the light cylinder and interact with the magnetosphere while resulting torques on the neutron star remain within the observed limits. We propose the following as the origin of radio-quiet CCOs: the magnetic field, derived from a turbulent dynamo, is weaker if the NS is formed spinning slowly, which enables it to accrete SN debris. Accretion excludes neutron stars born with both Bs<1011 G and P>0.1 s from radio pulsar surveys, where such weak fields are not encountered except among very old (>40 Myr) or recycled pulsars. We predict that these birth properties are common, and may be attributes of the youngest detected neutron star, the CCO in Cassiopeia A, as well as an undetected infant neutron star in the SN 1987A remnant. In view of the far-infrared light echo discovered around Cas A and attributed to an SGR-like outburst, it is especially important to determine via timing whether Cas A hosts a magnetar or not. If not a magnetar, the Cas A NS may instead have undergone a one-time phase transition (corequake) that powered the light echo.

  18. Torque Enhancement, Spin Equilibrium, and Jet Power from Disk-Induced Opening of Pulsar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Parfrey, Kyle; Spitkovsky, Anatoly; Beloborodov, Andrei M.

    2016-05-01

    The interaction of a rotating star’s magnetic field with a surrounding plasma disk lies at the heart of many questions posed by neutron stars in X-ray binaries. We consider the opening of stellar magnetic flux due to differential rotation along field lines coupling the star and disk, using a simple model for the disk-opened flux, the torques exerted on the star by the magnetosphere, and the power extracted by the electromagnetic wind. We examine the conditions under which the system enters an equilibrium spin state, in which the accretion torque is instantaneously balanced by the pulsar wind torque alone. For magnetic moments, spin frequencies, and accretion rates relevant to accreting millisecond pulsars, the spin-down torque from this enhanced pulsar wind can be substantially larger than that predicted by existing models of the disk–magnetosphere interaction, and is in principle capable of maintaining spin equilibrium at frequencies less than 1 kHz. We speculate that this mechanism may account for the non-detection of frequency increases during outbursts of SAX J1808.4-3658 and XTE J1814-338, and may be generally responsible for preventing spin-up to sub-millisecond periods. If the pulsar wind is collimated by the surrounding environment, the resulting jet can satisfy the power requirements of the highly relativistic outflows from Cir X-1 and Sco X-1. In this framework, the jet power scales relatively weakly with accretion rate, {L}{{j}}\\propto {\\dot{M}}4/7, and would be suppressed at high accretion rates only if the stellar magnetic moment is sufficiently low.

  19. Observations of Energetic High Magnetic Field Pulsars with the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Parent, D.; Kerr, M.; DenHartog, P. R.; Baring, M. G.; DeCesar, M. E.; Espinoza, C. M.; Harding, A. K.; Romani, R. W.; Stappers, B. W.; Watters, K.; Weltevrde, P.; Abdo, A. A.; Craig, H. A.; Kramer, M.; Lyne, A. G.

    2011-01-01

    We report the detection of gamma-ray pulsations from the high-magnetic-field rotation-powered pulsar PSR J1119.6127 using data from the Fermi Large Area Telescope. The gamma-ray light curve of PSR J1119.6127 shows a single, wide peak offset from the radio peak by 0.43 +/- 0.02 in phase. Spectral analysis suggests a power law of index 1.0 +/- 0.3(+0.4 -0.2) with an energy cut-off at 0.8 +/- 0.2(+2.0 -0.5) GeV. The first uncertainty is statistical and the second is systematic. We discuss the emission models of PSR J1119.6127 and demonstrate that despite the object's high surface magnetic field--near that of magnetars -- the field strength and structure in the gamma-ray emitting zone are apparently similar to those of typical young pulsars. Additionally, we present upper limits on the gamma-ray pulsed emission for the magnetically active PSR J1846.0258 in the supernova remnant Kesteven 75 and two other energetic high-Beta pulsars, PSRs J1718.3718 and J1734.3333. We explore possible explanations for the non-detection of these three objects, including peculiarities in their emission geometry.

  20. Repeating Fast Radio Bursts from Highly Magnetized Pulsars Traveling through Asteroid Belts

    NASA Astrophysics Data System (ADS)

    Dai, Z. G.; Wang, J. S.; Wu, X. F.; Huang, Y. F.

    2016-09-01

    Very recently, Spitler et al. and Scholz et al. reported their detections of 16 additional bright bursts in the direction of the fast radio burst (FRB) 121102. This repeating FRB is inconsistent with all of the catastrophic event models put forward previously for hypothetically non-repeating FRBs. Here, we propose a different model, in which highly magnetized pulsars travel through the asteroid belts of other stars. We show that a repeating FRB could originate from such a pulsar encountering a large number of asteroids in the belt. During each pulsar-asteroid impact, an electric field induced outside of the asteroid has such a large component parallel to the stellar magnetic field that electrons are torn off the asteroidal surface and accelerated to ultra-relativistic energies instantaneously. The subsequent movement of these electrons along magnetic field lines will cause coherent curvature radiation, which can account for all of the properties of an FRB. In addition, this model can self-consistently explain the typical duration, luminosity, and repetitive rate of the 17 bursts of FRB 121102. The predicted occurrence rate of repeating FRB sources may imply that our model would be testable in the next few years.

  1. Soft gamma-ray repeaters and anomalous X-ray pulsars as highly magnetized white dwarfs

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Banibrata; Rao, A. R.

    2016-05-01

    We explore the possibility that soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are powered by highly magnetized white dwarfs (B-WDs). We take a sample of SGRs and AXPs and provide the possible parameter space in mass, radius, and surface magnetic field based on their observed properties (period and its derivative) and the assumption that these sources obey the mass-radius relation derived for the B-WDs. The radius and magnetic field of B-WDs are adequate to explain energies in SGRs/AXPs as the rotationally powered energy. In addition, B-WDs also adequately explain the perplexing radio transient GCRT J1745-3009 as a white dwarf pulsar. Note that the radius and magnetic fields of B-WDs are neither extreme (unlike of highly magnetized neutron stars) nor ordinary (unlike of magnetized white dwarfs, yet following the Chandrasekhar's mass-radius relation (C-WDs)). In order to explain SGRs/AXPs, while the highly magnetized neutron stars require an extra, observationally not well established yet, source of energy, the C-WDs predict large ultra-violet luminosity which is observationally constrained from a strict upper limit. Finally, we provide a set of basic differences between the magnetar and B-WD hypotheses for SGRs/AXPs.

  2. Remanent magnetism of sediment governs magnetofossil alignment

    NASA Astrophysics Data System (ADS)

    Wendel, JoAnna

    2014-04-01

    Most bacteria navigate by reacting to different chemical signals in their surroundings, but some bacteria have another navigational tool in their arsenal—the Earth's magnetic field. Nestled inside these magnetotactic bacteria (MTB) are organelles called magnetosomes, filled with tiny magnetic crystals and arranged in chains, which form nano-sized compass needles. When MTB die and degrade, these tiny crystals can remain in sediment and eventually become magnetic fossils called magnetofossils.

  3. Magnetic memory based on magnetic alignment of a paramagnetic ionic liquid near room temperature.

    PubMed

    Funasako, Yusuke; Mochida, Tomoyuki; Inagaki, Takashi; Sakurai, Takahiro; Ohta, Hitoshi; Furukawa, Ko; Nakamura, Toshikazu

    2011-04-21

    A paramagnetic ferrocenium-based ionic liquid that exhibits a magnetic memory effect coupled with a liquid-solid phase transformation has been developed. Based on field alignment of the magnetically anisotropic ferrocenium cation, the magnetic susceptibility in the solid state can be tuned by the weak magnetic fields (<1 T) of permanent magnets.

  4. Modifications to the pulsar kick velocity due to magnetic interactions in dense plasma

    NASA Astrophysics Data System (ADS)

    Adhya, S. P.; Roy, P. K.; Dutt-Mazumder, A. K.

    2014-02-01

    In this work we calculate the pulsar kick velocity of a magnetized neutron star (NS) composed of a degenerate quark matter core with non-Fermi liquid (NFL) correction. Both the leading order (LO) and next to LO (NLO) corrections to the kick velocity have been incorporated. In addition, the NFL corrections to the specific heat of magnetized quark matter have been presented. This has been taken into account to calculate the kick velocity of the NS. The results show a significant departure from the normal Fermi liquid estimates. The relation between radius and temperature has been shown with a kick velocity of 100 km s-1 with and without NFL corrections.

  5. Period Clustering of the Anomalous X-Ray Pulsars and Magnetic Field Decay in Magnetars.

    PubMed

    Colpi; Geppert; Page

    2000-01-20

    We confront theoretical models for the rotational, magnetic, and thermal evolution of an ultramagnetized neutron star, or magnetar, with available data on the anomalous X-ray pulsars (AXPs). We argue that, if the AXPs are interpreted as magnetars, their clustering of spin periods between 6 and 12 s (observed at present in this class of objects), their period derivatives, their thermal X-ray luminosities, and the association of two of them with young supernova remnants can only be understood globally if the magnetic field in magnetars decays significantly on a timescale of the order of 104 yr.

  6. The attenuation of gamma-ray emission in strongly-magnetized pulsars

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.; Harding, Alice K.; Gonthier, Peter L.

    1997-01-01

    Gamma rays from pulsars can be efficiently attenuated in their magnetospheres via the mechanism of single photon pair production and the exotic quantum electrodynamics (QED) process of photon splitting. The modeling of strongly magnetized gamma ray pulsars focusing on the escape or attenuation of photons emitted near the pole at the neutron star surface in dipole fields in a Schwarzschild metric is considered. It was found that pair production and splitting totally inhibit emission above a value of between 10 and 30 MeV in PSR 1509-58 whose surface field is inferred as being high. The principle predictions of the attenuation analysis are reviewed and the observational diagnostic capabilities of the model are considered. The diagnostics include the energy of the gamma ray turnover and the spectral polarization, which constrain the estimated polar cap size and field strength and can determine the relative strength of splitting and pair creation.

  7. Tracing Magnetic Fields by Atomic Alignment in Extended Radiation Fields

    NASA Astrophysics Data System (ADS)

    Zhang, Heshou; Yan, Huirong; Dong, Le

    2015-05-01

    Tracing magnetic field is crucial as magnetic field plays an important role in many astrophysical processes. Earlier studies have demonstrated that ground state alignment (GSA) is an effective way to detect a weak magnetic field (1G≳ B≳ {{10}-15} G) in a diffuse medium. We explore the atomic alignment in the presence of an extended radiation field for both absorption lines and emission lines. The alignment in the circumstellar medium, binary systems, disks, and the local interstellar medium are considered in order to study the alignment in the radiation field where the pumping source has a clear geometric structure. Furthermore, the multipole expansion method is adopted to study GSA induced in the radiation field with unidentified pumping sources. We study the alignment in the dominant radiation components of the general radiation field: the dipole and quadrupole radiation field. We discuss the approximation of GSA in a general radiation field by summing the contribution from the dipole and quadrupole radiation field. We conclude that GSA is a powerful tool for detecting weak magnetic fields in the diffuse medium in general radiation fields.

  8. Magnetic field alignable domains in phospholipid vesicle membranes containing lanthanides.

    PubMed

    Beck, Paul; Liebi, Marianne; Kohlbrecher, Joachim; Ishikawa, Takashi; Rüegger, Heinz; Zepik, Helmut; Fischer, Peter; Walde, Peter; Windhab, Erich

    2010-01-14

    Magnetic fields were applied as a structuring force on phospholipid-based vesicular systems, using paramagnetic lanthanide ions as magnetic handles anchored to the vesicle membrane. Different vesicle formulations were investigated using small angle neutron scattering (SANS) in a magnetic field of up to 8 T, cryo-transmission electron microscopy (cryo-TEM), (31)P NMR spectroscopy, dynamic light scattering (DLS), and permeability measurements with a fluorescent water-soluble marker (calcein). The investigated vesicle formulations consisted usually of 80 mol % of the phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 20 mol % of a chelator lipid (DMPE-DTPA; 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-diethylenetriaminepentaacetate) with complexed lanthanide ions (Tm(3+), Dy(3+), or La(3+)), and the total lipid concentration was 15 mM. Vesicles containing the paramagnetic lanthanide Tm(3+) or Dy(3+) exhibited a temperature-dependent response to magnetic fields, which can be explained by considering the formation of lipid domains, which upon reaching a critical size become alignable in a magnetic field. The features of this "magnetic field alignable domain model" are as follows: with decreasing temperature (from 30 to 2.5 degrees C) solid domains, consisting mainly of the higher melting phospholipid (DMPE-DTPA.lanthanide), begin to form and grow in size. The domains assemble the large magnetic moments conferred by the lanthanides and orient in magnetic fields. The direction of alignment depends on the type of lanthanide used. The domains orient with their normal parallel to the magnetic field with thulium (Tm(3+)) and perpendicular with dysprosium (Dy(3+)). No magnetic field alignable domains were observed if DMPE-DTPA is replaced either by POPE-DTPA (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine-diethylenetriamine-pentaacetate) or by DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine).

  9. Magnetic alignment of nickel-coated carbon fibers

    SciTech Connect

    Hao, Chuncheng; Li, Xiaojiao; Wang, Guizhen

    2011-11-15

    Graphical abstract: Carbon nanofibers were subjected to a two-step pretreatment, sensitization and activation. Carbon nanofibers were encapsulated by a uniform layer of nickel nanoparticles. The prepared composites are ferromagnetic and with a small value of coercivity. Upon such functionalization, the carbon nanofibers can be aligned in a relatively small external magnetic field. Highlights: {center_dot} A simple microwave-assisted procedure for the magnetic composite. {center_dot} Dense layer of nickel on pretreated carbon nanofibers. {center_dot} Ferromagnetic properties and low coercivity. {center_dot} A long-chain aligned structure under magnetic field. -- Abstract: Magnetic composites of nickel-coated carbon nanofibers have been successfully fabricated by employing a simple microwave-assisted procedure. The scanning electron microscopy images show that a complete and uniform nickel coating with mean size of 25 nm could be deposited on carbon fibers. Magnetization curves demonstrate that the prepared composites are ferromagnetic and that the coercivity is 96 Oe. The magnetic carbon nanofibers can be aligned as a long-chain structure in an external magnetic field.

  10. Studies of Interstellar and Circumstellar Magnetic Field with Aligned Atoms

    NASA Astrophysics Data System (ADS)

    Lazarian, A.; Yan, H.

    2004-12-01

    Population of levels of the hyperfine and fine split ground state of an atom is affected by radiative transitions induced by anisotropic radiation flux. Such aligned atoms precess in the external magnetic field and this affects properties of polarized radiation arising from both scattering and absorption by atoms. As the result the degree of light polarization depends on the direction of the magnetic field. This provides a new tool for studies of astrophysical magnetic fields using optical and UV polarimetry. We provide calculations for several atoms and ions that can be used to study magnetic fields in interplanetary medium, interstellar medius, circumstellar regions and quasars.

  11. The effects of magnetic field, age and intrinsic luminosity on Crab-like pulsar wind nebulae

    NASA Astrophysics Data System (ADS)

    Torres, D. F.; Martín, J.; de Oña Wilhelmi, E.; Cillis, Analia

    2013-12-01

    We investigate the time-dependent behaviour of Crab-like pulsar wind nebulae (PWNe) generating a set of models using four different initial spin-down luminosities (L0 = {1, 0.1, 0.01, 0.001} × L0,Crab), eight values of magnetic fraction (η = 0.001, 0.01, 0.03, 0.1, 0.5, 0.9, 0.99 and 0.999, i.e. from fully particle dominated to fully magnetically dominated nebulae) and three distinctive ages: 940, 3000 and 9000 years. We find that the self-synchrotron Compton (SSC) contribution is irrelevant for LSD = 0.1, 1 and 10 per cent of the Crab power, disregarding the age and the magnetic fraction. SSC only becomes relevant for highly energetic (˜70 per cent of the Crab), particle dominated nebulae at low ages (of less than a few kyr), located in a far-infrared (FIR) background with relatively low energy density. Since no pulsar other than Crab is known to have these features, these results clarify why the Crab nebula, and only it, is SSC dominated. No young PWN would be detectable at TeV energies if the pulsar's spin-down power is 0.1 per cent Crab or lower. For 1 per cent of the Crab spin-down, only particle-dominated nebulae can be detected by HESS-like telescopes when young enough (with details depending on the precise injection and environmental parameters). Above 10 per cent of the Crab's power, all PWNe are detectable by HESS-like telescopes if they are particle dominated, no matter the age. The impact of the magnetic fraction on the final spectral energy distribution is varied and important, generating order of magnitude variations in the luminosity output for systems that are otherwise the same (equal P, dot{P}, injection and environment).

  12. Magnetic alignment of block copolymer microdomains by intrinsic chain anisotropy

    SciTech Connect

    Rokhlenko, Yekaterina; Yager, Kevin G.; Gopinadhan, Manesh; Osuji, Chinedum O.; Zhang, Kai; O'Hern, Corey S.; Larson, Steven R.; Gopalan, Padma; Majewski, Pawel W.

    2015-12-18

    We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-assembly of a block copolymer using in situ x-ray scattering. Alignment of a lamellar mesophase is observed on cooling across the disorder-order transition with the resulting orientational order inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy, Δχ, that drives alignment and calculate its magnitude using coarse-grained molecular dynamics to sample conformations of surface-tethered chains, finding Δχ ≈ 2×10–8. From field-dependent scattering data, we estimate that grains of ≈ 1.2 μm are present during alignment. Furthermore, these results demonstrate that intrinsic anisotropy is sufficient to support strong field-induced mesophase alignment and suggest a versatile strategy for field control of orientational order in block copolymers.

  13. Magnetic alignment of block copolymer microdomains by intrinsic chain anisotropy

    DOE PAGES

    Rokhlenko, Yekaterina; Yager, Kevin G.; Gopinadhan, Manesh; Osuji, Chinedum O.; Zhang, Kai; O'Hern, Corey S.; Larson, Steven R.; Gopalan, Padma; Majewski, Pawel W.

    2015-12-18

    We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-assembly of a block copolymer using in situ x-ray scattering. Alignment of a lamellar mesophase is observed on cooling across the disorder-order transition with the resulting orientational order inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy, Δχ, that drives alignment and calculate its magnitude using coarse-grained molecular dynamics to sample conformations of surface-tethered chains, finding Δχ ≈ 2×10–8. From field-dependent scattering data, we estimate that grains of ≈ 1.2 μm are present during alignment. Furthermore, these results demonstrate that intrinsic anisotropymore » is sufficient to support strong field-induced mesophase alignment and suggest a versatile strategy for field control of orientational order in block copolymers.« less

  14. Magnetic Alignment of Block Copolymer Microdomains by Intrinsic Chain Anisotropy

    NASA Astrophysics Data System (ADS)

    Rokhlenko, Yekaterina; Gopinadhan, Manesh; Osuji, Chinedum O.; Zhang, Kai; O'Hern, Corey S.; Larson, Steven R.; Gopalan, Padma; Majewski, Paweł W.; Yager, Kevin G.

    2015-12-01

    We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-assembly of a block copolymer using in situ x-ray scattering. Alignment of a lamellar mesophase is observed on cooling across the disorder-order transition with the resulting orientational order inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy, Δ χ , that drives alignment and calculate its magnitude using coarse-grained molecular dynamics to sample conformations of surface-tethered chains, finding Δ χ ≈2 ×1 0-8. From field-dependent scattering data, we estimate that grains of ≈1.2 μ m are present during alignment. These results demonstrate that intrinsic anisotropy is sufficient to support strong field-induced mesophase alignment and suggest a versatile strategy for field control of orientational order in block copolymers.

  15. Vela Pulsar and Its Synchrotron Nebula

    NASA Astrophysics Data System (ADS)

    Helfand, D. J.; Gotthelf, E. V.; Halpern, J. P.

    2001-07-01

    orthogonal-mode polarized components. We review effects that may enhance the probability of alignment between the spin axis and space velocity of a pulsar, and speculate that short-period, slowly moving pulsars are just the ones best-suited to producing synchrotron nebulae with such aligned structures. Previous interpretations of the compact Vela nebula as a bow-shock in a very weakly magnetized wind suffered from data of inadequate spatial resolution and less plausible physical assumptions.

  16. A New Standard Pulsar Magnetosphere

    NASA Technical Reports Server (NTRS)

    Contopoulos, Ioannis; Kalapotharakos, Constantinos; Kazanas, Demosthenes

    2014-01-01

    In view of recent efforts to probe the physical conditions in the pulsar current sheet, we revisit the standard solution that describes the main elements of the ideal force-free pulsar magnetosphere. The simple physical requirement that the electric current contained in the current layer consists of the local electric charge moving outward at close to the speed of light yields a new solution for the pulsar magnetosphere everywhere that is ideal force-free except in the current layer. The main elements of the new solution are as follows: (1) the pulsar spindown rate of the aligned rotator is 23% larger than that of the orthogonal vacuum rotator; (2) only 60% of the magnetic flux that crosses the light cylinder opens up to infinity; (3) the electric current closes along the other 40%, which gradually converges to the equator; (4) this transfers 40% of the total pulsar spindown energy flux in the equatorial current sheet, which is then dissipated in the acceleration of particles and in high-energy electromagnetic radiation; and (5) there is no separatrix current layer. Our solution is a minimum free-parameter solution in that the equatorial current layer is electrostatically supported against collapse and thus does not require a thermal particle population. In this respect, it is one more step toward the development of a new standard solution. We discuss the implications for intermittent pulsars and long-duration gamma-ray bursts. We conclude that the physical conditions in the equatorial current layer determine the global structure of the pulsar magnetosphere.

  17. A new standard pulsar magnetosphere

    SciTech Connect

    Contopoulos, Ioannis; Kalapotharakos, Constantinos; Kazanas, Demosthenes

    2014-01-20

    In view of recent efforts to probe the physical conditions in the pulsar current sheet, we revisit the standard solution that describes the main elements of the ideal force-free pulsar magnetosphere. The simple physical requirement that the electric current contained in the current layer consists of the local electric charge moving outward at close to the speed of light yields a new solution for the pulsar magnetosphere everywhere that is ideal force-free except in the current layer. The main elements of the new solution are as follows: (1) the pulsar spindown rate of the aligned rotator is 23% larger than that of the orthogonal vacuum rotator; (2) only 60% of the magnetic flux that crosses the light cylinder opens up to infinity; (3) the electric current closes along the other 40%, which gradually converges to the equator; (4) this transfers 40% of the total pulsar spindown energy flux in the equatorial current sheet, which is then dissipated in the acceleration of particles and in high-energy electromagnetic radiation; and (5) there is no separatrix current layer. Our solution is a minimum free-parameter solution in that the equatorial current layer is electrostatically supported against collapse and thus does not require a thermal particle population. In this respect, it is one more step toward the development of a new standard solution. We discuss the implications for intermittent pulsars and long-duration gamma-ray bursts. We conclude that the physical conditions in the equatorial current layer determine the global structure of the pulsar magnetosphere.

  18. Studies on in situ magnetic alignment of bonded anisotropic Nd-Fe-B alloy powders

    DOE PAGES

    Nlebedim, I. C.; Ucar, Huseyin; Hatter, Christine B.; McCallum, R. W.; McCall, Scott K.; Kramer, M. J.; Paranthaman, M. Parans

    2016-08-30

    We presented some considerations for achieving high degree of alignment in polymer bonded permanent magnets via the results of a study on in situ magnetic alignment of anisotropic Nd-Fe-B magnet powders. Contributions from effect of the alignment temperature, alignment magnetic field and the properties of the polymer on the hard magnetic properties of the bonded magnet were considered. Moreover, the thermo-rheological properties of the polymer and the response of the magnet powders to the applied magnetic field indicate that hard magnetic properties were optimized at an alignment temperature just above the melting temperature of the EVA co-polymer. This agrees withmore » an observed correlation between the change in magnetization due to improved magnetic alignment of the anisotropic powders and the change in viscosity of the binder. Finally, manufacturing cost can be minimized by identifying optimum alignment temperatures and magnetic field strengths.« less

  19. Neutron star dynamos and the origins of pulsar magnetism

    NASA Technical Reports Server (NTRS)

    Thompson, Christopher; Duncan, Robert C.

    1993-01-01

    Neutron star convection is a transient phenomenon and has an extremely high magnetic Reynolds number. In this sense, a neutron star dynamo is the quintessential fast dynamo. The convective motions are only mildly turbulent on scales larger than the approximately 100 cm neutrino mean free path, but the turbulence is well developed on smaller scales. Several fundamental issues in the theory of fast dynamos are raised in the study of a neutron star dynamo, in particular the possibility of dynamo action in mirror-symmetric turbulence. It is argued that in any high magnetic Reynolds number dynamo, most of the magnetic energy becomes concentrated in thin flux ropes when the field pressure exceeds the turbulent pressure at the smallest scale of turbulence. In addition, the possibilities for dynamo action during the various (pre-collapse) stages of convective motion that occur in the evolution of a massive star are examined, and the properties of white dwarf and neutron star progenitors are contrasted.

  20. Constraining compactness and magnetic field geometry of X-ray pulsars using pulse profile statistics

    SciTech Connect

    Annala, Marja; Poutanen, Juri

    2010-07-15

    We use the statistics of 131 X-ray pulsar light curves in order to constrain the neutron star compactness and the inclination of the magnetic dipole. The X-ray pulse profiles are classified according to the number of pulses seen during one period, dividing them into two classes, single- and double-peaked. The relative fraction of pulsars in these classes is compared with the probabilities predicted by a theoretical model for different types of pencil-beam patterns. Our results show that a statistic of pulse profiles does not constrain compactness of the neutron stars. In contrast to the previous claim, the data do not require the magnetic inclination to be confined in a narrow interval but instead the magnetic dipole can have arbitrary inclinations to the rotational axis. The observed fractions of different types of light curves can be explained by taking into account the X-ray detector sensitivity (i.e. detection threshold for weak pulses), which decreases the fraction of the observed double-peaked light curves.

  1. Photon Splitting in the Superstrong Magnetic Fields of Pulsars

    NASA Astrophysics Data System (ADS)

    Usov, Vladimir V.

    2002-06-01

    We discuss the polarization selection rules for the splitting of the two principal electromagnetic modes that propagate in a vacuum polarized by a superstrong magnetic field (B>0.1Bcr~=4×1012 G). We show that below the threshold of free pair creation, the selection rules found by Adler in the limit of weak dispersion remain unaffected by taking the resonant effects into consideration; i.e., splitting of one mode is strictly forbidden, while splitting of the other is allowed.

  2. Novel chelate-induced magnetic alignment of biological membranes.

    PubMed Central

    Prosser, R S; Volkov, V B; Shiyanovskaya, I V

    1998-01-01

    A phospholipid chelate complexed with ytterbium (DMPE-DTPA:Yb3+) is shown to be readily incorporated into a model membrane system, which may then be aligned in a magnetic field such that the average bilayer normal lies along the field. This so-called positively ordered smectic phase, whose lipids consist of less than 1% DMPE-DTPA:Yb3+, is ideally suited to structural studies of membrane proteins by solid-state NMR, low-angle diffraction, and spectroscopic techniques that require oriented samples. The chelate, 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine diethylenetriaminepentaacetic acid, which strongly binds the lanthanide ions and serves to orient the membrane in a magnetic field, prevents direct lanthanide-protein interactions and significantly reduces paramagnetic shifts and line broadening. Similar low-spin lanthanide chelates may have applications in field-ordered solution NMR studies of water-soluble proteins and in the design of new magnetically aligned liquid crystalline phases. PMID:9788910

  3. Scanning the Magnetized Accretion Column of X-ray Pulsars with Cyclotron Lines

    NASA Astrophysics Data System (ADS)

    Schönherr, Gabriele; Wilms, J.; Kretschmar, P.; Pottschmidt, K.; Rothschild, R.; Kreykenbohm, I.; MAGNET Collaboration

    2010-03-01

    The strongly magnetized accretion column of X-ray pulsars is still not understood in many aspects like, e.g., its basic geometry and physical parameters. Cyclotron Resonance Scattering Features (short: cyclotron lines) are now becoming a possible tool to tap this mystery. As they form due to scattering processes of X-ray photons with magnetically quantized electrons in the accreted plasma, a better physical understanding of their formation and shape along with direct comparisons to observational data allows to backtrack the physical parameters and magnetic field structure in the line-forming region. High-resolution spectra with todays’ and future instruments now allow for an in-depth analysis of their shapes, promising exciting progress. We discuss results based on our new modelling attempts, which link theoretical Monte Carlo simulations directly to observational findings.

  4. Particle acceleration in pulsar magnetospheres

    NASA Technical Reports Server (NTRS)

    Baker, K. B.

    1978-01-01

    The structure of pulsar magnetospheres and the acceleration mechanism for charged particles in the magnetosphere was studied using a pulsar model which required large acceleration of the particles near the surface of the star. A theorem was developed which showed that particle acceleration cannot be expected when the angle between the magnetic field lines and the rotation axis is constant (e.g. radial field lines). If this angle is not constant, however, acceleration must occur. The more realistic model of an axisymmetric neutron star with a strong dipole magnetic field aligned with the rotation axis was investigated. In this case, acceleration occurred at large distances from the surface of the star. The magnitude of the current can be determined using the model presented. In the case of nonaxisymmetric systems, the acceleration is expected to occur nearer to the surface of the star.

  5. Quantum theory of spin alignment in a circular magnetic nanotube

    NASA Astrophysics Data System (ADS)

    Bergmann, Gerd; Thompson, Richard S.; Lu, Jia G.

    2015-12-01

    When electron spin and momentum couple in a solid, one generally obtains intriguing and unexpected phenomena. Metallic ferromagnetic nanotubes of cobalt with circular magnetization, which have been prepared by us and others, are a particularly interesting system. Here the spins of the conduction electrons are frustrated. They would like to align parallel to the magnetic field of the magnetization, but as the electrons move quickly around the tube the spins cannot follow the magnetization direction. In a previous short theoretical paper we solved the spin dynamics using a classical model. Here we generalize our work to a quantum mechanical model. The surprising result is that the spin of most conduction electrons is not parallel or anti-parallel to the circumferential magnetization but mostly parallel or anti-parallel to the axis of the nanotube. This result means that such a cobalt nanotube is a different ferromagnet from a cobalt film or bulk cobalt.

  6. On the spectra and pulse profiles of gamma-ray pulsars

    NASA Technical Reports Server (NTRS)

    Sturner, Steven J.; Dermer, Charles D.

    1994-01-01

    We model spectra and pulse profiles of gamma-ray pulsars assuming that the pulsar's magnetic axis is nearly aligned with its rotation axis. In this model, the nonthermal energy of electrons flowing outward along field lines connected to the light cylinder is efficiently converted to gamma rays via magnetic Compton scattering of optical and soft X-ray photons. The hard photons initiate a pair cascade in the pulsar magnetosphere through magnetic pair production followed by synchrotron emission. The calculated spectra are used to fit gamma-ray pulsar observations. This model produces a hollow cone of emission which can reproduce both the broad single-peaked and narrow double-peaked pulse profiles observed from gamma-ray pulsars.

  7. Theoretical study of alignment dynamics of magnetic oblate spheroids in rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Tan, Mingyang; Song, Han; Dhagat, Pallavi; Jander, Albrecht; Walker, Travis W.

    2016-06-01

    Magnetic composites containing anisotropic magnetic particles can achieve properties not possible in corresponding bulk or thin films of the magnetic material. In this work, we discuss how planar magnetic anisotropy may be achieved in a composite by aligning disk-shaped particles in an in-plane rotating magnetic field. Previous efforts have reported a simple model of aligning particles in a high-frequency rotating magnetic field. However, no complete analytic solution was proposed. Here, we provide a full analytic solution that describes the alignment dynamics of microdisks in a rotating field that covers the entire frequency range. We also provide simplified solutions at both high-frequency and low-frequency limits through asymptotic expansions for easy implementation into industrial settings. The analytic solution is confirmed by numerical simulation and shows agreement with experiments.

  8. SSC dipole magnet measurement and alignment using laser technology

    SciTech Connect

    Lipski, A.; Carson, J.A.; Robotham, W.F.

    1990-06-01

    Advancing into the prototype production stage of the SSC dipole magnets has introduced the need for a reliable, readily available, accurate alignment measuring system which gives results in real time. Components and subassemblies such as the cold mass and vacuum vessel are being measured for various geometric conditions such as straightness and twist. Variations from nominal dimensions are also being recorded so they can be compensated for during the final assembly process. Precision laser alignment takes specific advantages of the greatest accuracy. When combined with an optically produced perpendicular plane, this results in a system of geometric references of unparalleled accuracy. This paper describes the geometric requirements for SSC dipole magnet components, sub and final assemblies as well as the use of laser technology for surveying as part of the assembly process.

  9. Tridimensional Burning Structures Associated with Anisotropic Thermal Conductivities in Magnetically Confined and Pulsar Plasmas

    NASA Astrophysics Data System (ADS)

    Cardinali, A.; Coppi, B.; Sonnino, G.

    2015-11-01

    A surprising result of the most recent theory of the thermonuclear instability, which can take place in D-T plasmas close to ignition, is that it can develop with tridimensional structures emerging from an axisymmetric toroidal confinement configurations. These structures are helical filaments (``snakes'') that are localized radially around a given rational magnetic surface. Until now well known analyses of fusion burning processes in magnetically confined plasmas, that include the thermonuclear instability, have been carried out by 1+1/2 D transport codes and, consequently, the onset of tri-dimensional structures has not been investigated. The importance of the electron thermal conductivities anisotropy is pointed out also for the inhomogeneous thermonuclear burning of plasmas on the surface of pulsars and for the formation of the observed bright spots on some of them. Sponsored in part by the U.S. DoE.

  10. Post-fall-back evolution of multipolar magnetic fields and radio pulsar activation

    NASA Astrophysics Data System (ADS)

    Igoshev, A. P.; Elfritz, J. G.; Popov, S. B.

    2016-11-01

    It has long been unclear if the small-scale magnetic structures on the neutron star (NS) surface could survive the fall-back episode. The study of the Hall cascade by Cumming, Arras & Zweibel hinted that energy in small-scales structures should dissipate on short time-scales. Our new 2D magneto-thermal simulations suggest the opposite. For the first ˜10 kyr after the fall-back episode with accreted mass 10-3 M⊙, the observed NS magnetic field appears dipolar, which is insensitive to the initial magnetic topology. In framework of the Ruderman & Sutherland, vacuum gap model during this interval, non-thermal radiation is strongly suppressed. After this time, the initial (i.e. multipolar) structure begins to re-emerge through the NS crust. We distinguish three evolutionary epochs for the re-emergence process: the growth of internal toroidal field, the advection of buried poloidal field, and slow Ohmic diffusion. The efficiency of the first two stages can be enhanced when small-scale magnetic structure is present. The efficient re-emergence of high-order harmonics might significantly affect the curvature of the magnetospheric field lines in the emission zone. So, only after few 104 yr would be the NS starts shining as a pulsar again, which is in correspondence with radio silence of central compact objects. In addition, these results can explain the absence of good candidates for thermally emitting NSs with freshly re-emerged field among radio pulsars (), as NSs have time to cool down, and supernova remnants can already dissipate.

  11. Polarized curvature radiation in pulsar magnetosphere

    NASA Astrophysics Data System (ADS)

    Wang, P. F.; Wang, C.; Han, J. L.

    2014-07-01

    The propagation of polarized emission in pulsar magnetosphere is investigated in this paper. The polarized waves are generated through curvature radiation from the relativistic particles streaming along curved magnetic field lines and corotating with the pulsar magnetosphere. Within the 1/γ emission cone, the waves can be divided into two natural wave-mode components, the ordinary (O) mode and the extraordinary (X) mode, with comparable intensities. Both components propagate separately in magnetosphere, and are aligned within the cone by adiabatic walking. The refraction of O mode makes the two components separated and incoherent. The detectable emission at a given height and a given rotation phase consists of incoherent X-mode and O-mode components coming from discrete emission regions. For four particle-density models in the form of uniformity, cone, core and patches, we calculate the intensities for each mode numerically within the entire pulsar beam. If the corotation of relativistic particles with magnetosphere is not considered, the intensity distributions for the X-mode and O-mode components are quite similar within the pulsar beam, which causes serious depolarization. However, if the corotation of relativistic particles is considered, the intensity distributions of the two modes are very different, and the net polarization of outcoming emission should be significant. Our numerical results are compared with observations, and can naturally explain the orthogonal polarization modes of some pulsars. Strong linear polarizations of some parts of pulsar profile can be reproduced by curvature radiation and subsequent propagation effect.

  12. A new model for the X-ray continuum of the magnetized accreting pulsars

    NASA Astrophysics Data System (ADS)

    Farinelli, Ruben; Ferrigno, Carlo; Bozzo, Enrico; Becker, Peter A.

    2016-06-01

    Context. Accreting highly magnetized pulsars in binary systems are among the brightest X-ray emitters in our Galaxy. Although a number of high-quality broad-band (0.1-100 keV) X-ray observations are available, the spectral energy distribution of these sources is usually investigated by adopting pure phenomenological models rather than models linked to the physics of accretion. Aims: In this paper, a detailed spectral study of the X-ray emission recorded from the high-mass X-ray binary pulsars Cen X-3, 4U 0115+63, and Her X-1 is carried out by using BeppoSAX and joined Suzaku +NuStar data, together with an advanced version of the compmag model, which provides a physical description of the high-energy emission from accreting pulsars, including the thermal and bulk Comptonization of cyclotron and bremsstrahlung seed photons along the neutron star accretion column. Methods: The compmag model is based on an iterative method for solving second-order partial differential equations, whose convergence algorithm has been improved and consolidated during the preparation of this paper. Results: Our analysis shows that the broad-band X-ray continuum of all considered sources can be self-consistently described by the compmag model. The cyclotron absorption features (not included in the model) can be accounted for by using Gaussian components. From the fits of the compmag model to the data we inferred the physical properties of the accretion columns in all sources, finding values reasonably close to those theoretically expected according to our current understanding of accretion in highly magnetized neutron stars. Conclusions: The updated version of the compmag model has been tailored to the physical processes that are known to occur in the columns of highly magnetized accreting neutron stars and it can thus provide a better understanding of the high-energy radiation from these sources. The availability of broad-band high-quality X-ray data, such as those provided by BeppoSAX in

  13. Magnetic Alignment and Charge Transport Improvement in Functional Soft Materials

    NASA Astrophysics Data System (ADS)

    Majewski, Pawel W.

    The realization of nanostructured functional materials by self-assembly in polymers and polymer nanocomposites is adversely affected by persisting structural defects which greatly diminish the performance of the material. The use of magnetic fields to impose long-range order is investigated in three distinct systems - ion-conducting block copolymers, semiconducting nanowire-polymer composites and lyotropic surfactant mesophases. The alignment process is quantitatively studied with X-ray scattering and microscopic methods. Time and temperature resolved data collected in situ during the magnetic experiments provide an insight into the thermodynamic and kinetic aspects of the process. These data together with simultaneous electrical conductivity measurements allow relating fundamental structural properties (e.g., morphology and long-range order) to transport properties (i.e., conductivity). In particular, it is demonstrated that magnetic fields offer a viable route for improvement of electric conductivity in these systems. More than an order of magnitude increase in conductivity is recorded in magnetically-annealed materials. The resulting aligned nanostructured systems are attractive for ordered solid polymer electrolyte membranes, heterojunction photovoltaic devices and generally help to understand charge transport mechanisms in anisotropic heterogeneous systems.

  14. Alignment of Iron Nanoparticles in a Magnetic Field Due to Shape Anisotropy

    SciTech Connect

    Radhakrishnan, Balasubramaniam; Nicholson, Don M; Eisenbach, Markus; Ludtka, Gerard Michael; Rios, Orlando; Parish, Chad M

    2015-07-09

    During high magnetic field processing there is evidence for alignment of non-spherical metallic particles above the Curie temperature in alloys with negligible magneto-crystalline anisotropy. The main driving force for alignment is the magnetic shape anisotropy. Current understanding of the phenomenon is not adequate to quantify the effect of particle size, aspect ratio, temperature and the magnetic field on particle alignment. We demonstrate a Monte Carlo approach coupled with size scaling to show the conditions under which alignment is possible.

  15. Magnetically aligned H I fibers and the rolling hough transform

    SciTech Connect

    Clark, S. E.; Putman, M. E.; Peek, J. E. G.

    2014-07-01

    We present observations of a new group of structures in the diffuse Galactic interstellar medium (ISM): slender, linear H I features we dub 'fibers' that extend for many degrees at high Galactic latitude. To characterize and measure the extent and strength of these fibers, we present the Rolling Hough Transform, a new machine vision method for parameterizing the coherent linearity of structures in the image plane. With this powerful new tool we show that the fibers are oriented along the interstellar magnetic field as probed by starlight polarization. We find that these low column density (N{sub H} {sub I}≃5×10{sup 18} cm{sup –2}) fiber features are most likely a component of the local cavity wall, about 100 pc away. The H I data we use to demonstrate this alignment at high latitude are from the Galactic Arecibo L-Band Feed Array H I (GALFA-H I) Survey and the Parkes Galactic All Sky Survey. We find better alignment in the higher resolution GALFA-H I data, where the fibers are more visually evident. This trend continues in our investigation of magnetically aligned linear features in the Riegel-Crutcher H I cold cloud, detected in the Southern Galactic Plane Survey. We propose an application of the RHT for estimating the field strength in such a cloud, based on the Chandrasekhar-Fermi method. We conclude that data-driven, quantitative studies of ISM morphology can be very powerful predictors of underlying physical quantities.

  16. Magnetically Aligned H I Fibers and the Rolling Hough Transform

    NASA Astrophysics Data System (ADS)

    Clark, S. E.; Peek, J. E. G.; Putman, M. E.

    2014-07-01

    We present observations of a new group of structures in the diffuse Galactic interstellar medium (ISM): slender, linear H I features we dub "fibers" that extend for many degrees at high Galactic latitude. To characterize and measure the extent and strength of these fibers, we present the Rolling Hough Transform, a new machine vision method for parameterizing the coherent linearity of structures in the image plane. With this powerful new tool we show that the fibers are oriented along the interstellar magnetic field as probed by starlight polarization. We find that these low column density (NH \\scriptsize{I} ≃ 5 × 1018 cm-2) fiber features are most likely a component of the local cavity wall, about 100 pc away. The H I data we use to demonstrate this alignment at high latitude are from the Galactic Arecibo L-Band Feed Array H I (GALFA-H I) Survey and the Parkes Galactic All Sky Survey. We find better alignment in the higher resolution GALFA-H I data, where the fibers are more visually evident. This trend continues in our investigation of magnetically aligned linear features in the Riegel-Crutcher H I cold cloud, detected in the Southern Galactic Plane Survey. We propose an application of the RHT for estimating the field strength in such a cloud, based on the Chandrasekhar-Fermi method. We conclude that data-driven, quantitative studies of ISM morphology can be very powerful predictors of underlying physical quantities.

  17. Alignment of the magnetic circuit of the BIPM watt balance

    NASA Astrophysics Data System (ADS)

    Bielsa, F.; Lu, Y. F.; Lavergne, T.; Kiss, A.; Fang, H.; Stock, M.

    2015-12-01

    The International Bureau of Weights and Measures (BIPM) is developing a watt balance for the forthcoming redefinition of the kilogram. An improved version of the apparatus, based on a new closed magnetic circuit is now being assembled. The new apparatus will significantly reduce the type B uncertainty due to misalignment of the magnetic circuit as this work demonstrates. We present two techniques recently developed to accurately align the magnetic field of the circuit perpendicular to the direction defined by the local acceleration of gravity. Uncertainty below 30 μrad was achieved for both techniques which fulfils the requirements for the BIPM watt balance to enable a Planck constant determination at the 1  ×  10-8 level.

  18. Ab Initio Pulsar Magnetosphere: The Role of General Relativity

    NASA Astrophysics Data System (ADS)

    Philippov, Alexander A.; Cerutti, Benoît; Tchekhovskoy, Alexander; Spitkovsky, Anatoly

    2015-12-01

    It has recently been demonstrated that self-consistent particle-in-cell simulations of low-obliquity pulsar magnetospheres in flat spacetime show weak particle acceleration and no pair production near the poles. We investigate the validity of this conclusion in a more realistic spacetime geometry via general-relativistic particle-in-cell simulations of the aligned pulsar magnetosphere with pair formation. We find that the addition of the frame-dragging effect makes the local current density along the magnetic field larger than the Goldreich–Julian value, which leads to unscreened parallel electric fields and the ignition of a pair cascade. When pair production is active, we observe field oscillations in the open field bundle, which could be related to pulsar radio emission. We conclude that general-relativistic effects are essential for the existence of the pulsar mechanism in low-obliquity rotators.

  19. AB INITIO PULSAR MAGNETOSPHERE: THE ROLE OF GENERAL RELATIVITY

    SciTech Connect

    Philippov, Alexander A.; Cerutti, Benoit; Spitkovsky, Anatoly; Tchekhovskoy, Alexander

    2015-12-20

    It has recently been demonstrated that self-consistent particle-in-cell simulations of low-obliquity pulsar magnetospheres in flat spacetime show weak particle acceleration and no pair production near the poles. We investigate the validity of this conclusion in a more realistic spacetime geometry via general-relativistic particle-in-cell simulations of the aligned pulsar magnetosphere with pair formation. We find that the addition of the frame-dragging effect makes the local current density along the magnetic field larger than the Goldreich–Julian value, which leads to unscreened parallel electric fields and the ignition of a pair cascade. When pair production is active, we observe field oscillations in the open field bundle, which could be related to pulsar radio emission. We conclude that general-relativistic effects are essential for the existence of the pulsar mechanism in low-obliquity rotators.

  20. Magnetic field-aligned electric potentials in nonideal plasma flows

    NASA Technical Reports Server (NTRS)

    Schindler, K.; Hesse, M.; Birn, J.

    1991-01-01

    The electric field component parallel to the magnetic field arising from plasma flows which violate the frozen-in field condition of ideal magnetohydrodynamics is discussed. The quantity of interest is the potential U = integral E parallel ds where the integral is extended along field lines. It is shown that U can be directly related to magnetic field properties, expressed by Euler potentials, even when time-dependence is included. These results are applicable to earth's magnetosphere, to solar flares, to aligned-rotator models of compact objects, and to galactic rotation. On the basis of order-of-magnitude estimates, these results support the view that parallel electric fields associated with nonideal plasma flows might play an important role in cosmic particle acceleration.

  1. MAGNETARS VERSUS HIGH MAGNETIC FIELD PULSARS: A THEORETICAL INTERPRETATION OF THE APPARENT DICHOTOMY

    SciTech Connect

    Pons, Jose A.; Perna, Rosalba

    2011-11-10

    Highly magnetized neutron stars (NSs) are characterized by a bewildering range of astrophysical manifestations. Here, building on our simulations of the evolution of magnetic stresses in the NS crust and its ensuing fractures, we explore in detail, for the middle-aged and old NSs, the dependence of starquake frequency and energetics on the relative strength of the poloidal (B{sub p}) and toroidal (B{sub tor}) components. We find that, for B{sub p} {approx}> 10{sup 14} G, since a strong crustal toroidal field B{sub tor} {approx} B{sub p} is quickly formed on a Hall timescale, the initial toroidal field needs to be B{sub tor} >> B{sub p} to have a clear influence on the outbursting behavior. For initial fields B{sub p} {approx}< 10{sup 14} G, it is very unlikely that a middle-aged (t {approx} 10{sup 5} years) NS shows any bursting activity. This study allows us to solve the apparent puzzle of how NSs with similar dipolar magnetic fields can behave in a remarkably different way: an outbursting 'magnetar' with a high X-ray luminosity, or a quiet, low-luminosity, 'high-B' radio pulsar. As an example, we consider the specific cases of the magnetar 1E 2259+586 and the radio pulsar PSR J1814-1744, which at present have a similar dipolar field {approx}6 Multiplication-Sign 10{sup 13} G. We determine for each object an initial magnetic field configuration that reproduces the observed timing parameters at their current age. The same two configurations also account for the differences in quiescent X-ray luminosity and for the 'magnetar/outbursting' behavior of 1E 2259+586 but not of PSR J1814-1744. We further use the theoretically predicted surface temperature distribution to compute the light curve for these objects. In the case of 1E 2259+586, for which data are available, our predicted temperature distribution gives rise to a pulse profile whose double-peaked nature and modulation level are consistent with the observations.

  2. ALIGNMENT BETWEEN FLATTENED PROTOSTELLAR INFALL ENVELOPES AND AMBIENT MAGNETIC FIELDS

    SciTech Connect

    Chapman, Nicholas L.; Matthews, Tristan G.; Novak, Giles; Davidson, Jacqueline A.; Goldsmith, Paul F.; Houde, Martin; Kwon, Woojin; Looney, Leslie W.; Li Zhiyun; Matthews, Brenda; Peng Ruisheng; Vaillancourt, John E.; Volgenau, Nikolaus H.

    2013-06-20

    We present 350 {mu}m polarization observations of four low-mass cores containing Class 0 protostars: L483, L1157, L1448-IRS2, and Serp-FIR1. This is the second paper in a larger survey aimed at testing magnetically regulated models for core-collapse. One key prediction of these models is that the mean magnetic field in a core should be aligned with the symmetry axis (minor axis) of the flattened young stellar object inner envelope (aka pseudodisk). Furthermore, the field should exhibit a pinched or hourglass-shaped morphology as gravity drags the field inward toward the central protostar. We combine our results for the four cores with results for three similar cores that were published in the first paper from our survey. An analysis of the 350 {mu}m polarization data for the seven cores yields evidence of a positive correlation between mean field direction and pseudodisk symmetry axis. Our rough estimate for the probability of obtaining by pure chance a correlation as strong as the one we found is about 5%. In addition, we combine together data for multiple cores to create a source-averaged magnetic field map having improved signal-to-noise ratio, and this map shows good agreement between mean field direction and pseudodisk axis (they are within 15 Degree-Sign ). We also see hints of a magnetic pinch in the source-averaged map. We conclude that core-scale magnetic fields appear to be strong enough to guide gas infall, as predicted by the magnetically regulated models. Finally, we find evidence of a positive correlation between core magnetic field direction and bipolar outflow axis.

  3. Spatial Distribution of Pair Production Over the Pulsar Polar Cap

    NASA Astrophysics Data System (ADS)

    Belyaev, Mikhail A.; Parfrey, Kyle

    2016-10-01

    Using an analytic, axisymmetric approach that includes general relativity, coupled to a condition for pair production deduced from simulations, we derive general results about the spatial distribution of pair-producing field lines over the pulsar polar cap. In particular, we show that pair production on magnetic field lines operates over only a fraction of the polar cap for an aligned rotator for general magnetic field configurations, assuming the magnetic field varies spatially on a scale that is larger than the size of the polar cap. We compare our result to force-free simulations of a pulsar with a dipole surface field and find excellent agreement. Our work has implications for first-principles simulations of pulsar magnetospheres and for explaining observations of pulsed radio and high-energy emission.

  4. IS CALVERA A GAMMA-RAY PULSAR?

    SciTech Connect

    Halpern, J. P.

    2011-07-20

    Originally selected as a neutron star (NS) candidate in the ROSAT All-Sky Survey, 1RXS J141256.0+792204 ('Calvera') was discovered to be a 59 ms X-ray pulsar in a pair of XMM-Newton observations by Zane et al. Surprisingly, their claimed detection of this pulsar in Fermi {gamma}-ray data requires no period derivative, severely restricting its dipole magnetic field strength, spin-down luminosity, and distance to small values. This implies that the cooling age of Calvera is much younger than its characteristic spin-down age. If so, it could be a mildly recycled pulsar, or the first 'orphaned' central compact object (CCO). Here we show that the published Fermi ephemeris fails to align the pulse phases of the two X-ray observations with each other, which indicates that the Fermi detection is almost certainly spurious. Analysis of additional Fermi data also does not confirm the {gamma}-ray detection. This leaves the spin-down rate of Calvera less constrained, and its place among the families of NSs uncertain. It could still be either an ordinary pulsar, a mildly recycled pulsar, or an orphaned CCO.

  5. Pair production and annihilation in strong magnetic fields. [of neutron stars and pulsars

    NASA Technical Reports Server (NTRS)

    Daugherty, J. K.; Harding, A. K.

    1983-01-01

    Electromagnetic phenomena occurring in the presence of strong magnetic fields are currently of great interest in high-energy astrophysics. In particular, the process of pair production by single photons in the presence of fields of order 10 to the 12th power Gauss is of importance in cascade models of pulsar gamma ray emission, and may also become significant in theories of other radiation phenomena whose sources may be neutron stars (e.g., gamma ray bursts). In addition to pair production, the inverse process of pair annihilation is greatly affected by the presence of superstrong magnetic fields. The most significant departures from annihilation processes in free space are a reduction in the total rate for annihilation into two photons, a broadening of the familiar 511-keV line for annihilation at rest, and the possibility for annihilation into a single photon which dominates the two-photon annihilation for B (10 to 13th power Gauss) The physics of these pair conversion processes, which is reviewed briefly, can become quite complex in the teragauss regime, and can involve calculations which are technically difficult to incorporate into models of emission mechanisms in neutron star magnetospheres. However, theoretical work, especially the case of pair annihilation, also suggests potential techniques for more direct measurements of field strengths near the stellar surface.

  6. Investigation of the Possibility of Using Nuclear Magnetic Spin Alignment

    NASA Technical Reports Server (NTRS)

    Dent, William V., Jr.

    1998-01-01

    The goal of the program to investigate a "Gasdynamic fusion propulsion system for space exploration" is to develop a fusion propulsion system for a manned mission to the planet mars. A study using Deuterium and Tritium atoms are currently in progress. When these atoms under-go fusion, the resulting neutrons and alpha particles are emitted in random directions (isotropically). The probable direction of emission is equal for all directions, thus resulting in wasted energy, massive shielding and cooling requirements, and serious problems with the physics of achieving fusion. If the nuclear magnetic spin moments of the deuterium and tritium nuclei could be precisely aligned at the moment of fusion, the stream of emitted neutrons could be directed out the rear of the spacecraft for thrust and the alpha particles directed forward into an electromagnet ot produce electricity to continue operating the fusion engine. The following supporting topics are discussed: nuclear magnetic moments and spin precession in magnetic field, nuclear spin quantum mechanics, kinematics of nuclear reactions, and angular distribution of particles.

  7. Toward an Empirical Theory of Pulsar Emission. XI. Understanding the Orientations of Pulsar Radiation and Supernova “Kicks”

    NASA Astrophysics Data System (ADS)

    Rankin, Joanna M.

    2015-05-01

    Two entwined problems have remained unresolved since pulsars were discovered nearly 50 yr ago: the orientation of their polarized emission relative to the emitting magnetic field and the direction of putative supernova “kicks” relative to their rotation axes. The rotational orientation of most pulsars can be inferred only from the (“fiducial”) polarization angle of their radiation, when their beam points directly at the Earth and the emitting polar fluxtube field is ∥ to the rotation axis. Earlier studies have been unrevealing owing to the admixture of different types of radiation (core and conal, two polarization modes), producing both ∥ or ⊥ alignments. In this paper we analyze some 50 pulsars having three characteristics: core radiation beams, reliable absolute polarimetry, and accurate proper motions (PMs). The “fiducial” polarization angle of the core emission, we then find, is usually oriented ⊥ to the PM direction on the sky. The primary core emission is polarized ⊥ to the projected magnetic field in Vela and other pulsars where X-ray imaging reveals the orientation. This shows that the PMs usually lie ∥ to the rotation axes on the sky. Two key physical consequences then follow: first, to the extent that supernova “kicks” are responsible for pulsar PMs, they are mostly ∥ to the rotation axis; and, second, most pulsar radiation is heavily processed by the magnetospheric plasma such that the lowest altitude “parent” core emission is polarized ⊥ to the emitting field, propagating as the extraordinary (X) mode.

  8. Composite Materials with Magnetically Aligned Carbon Nanoparticles Having Enhanced Electrical Properties and Methods of Preparation

    NASA Technical Reports Server (NTRS)

    Hong, Haiping (Inventor); Peterson, G.P. (Bud) (Inventor); Salem, David R. (Inventor)

    2016-01-01

    Magnetically aligned carbon nanoparticle composites have enhanced electrical properties. The composites comprise carbon nanoparticles, a host material, magnetically sensitive nanoparticles and a surfactant. In addition to enhanced electrical properties, the composites can have enhanced mechanical and thermal properties.

  9. THE LIGHT CURVE AND INTERNAL MAGNETIC FIELD OF THE MODE-SWITCHING PULSAR PSR B0943+10

    SciTech Connect

    Storch, Natalia I.; Lai, Dong; Ho, Wynn C. G.; Bogdanov, Slavko; Heinke, Craig O.

    2014-07-10

    A number of radio pulsars exhibit intriguing mode-switching behavior. Recent observations of PSR B0943+10 revealed correlated radio and X-ray mode switches, providing a new avenue for understanding this class of objects. The large X-ray pulse fraction observed during the radio-quiet phase (Q-mode) was previously interpreted as a result of changing obscuration of X-rays by dense magnetosphere plasma. We show that the large X-ray pulse fraction can be explained by including the beaming effect of a magnetic atmosphere, while remaining consistent with the dipole field geometry constrained by radio observations. We also explore a more extreme magnetic field configuration, where a magnetic dipole displaced from the center of the star produces two magnetic polar caps of different sizes and magnetic field strengths. These models are currently consistent with data in radio and X-rays and can be tested or constrained by future X-ray observations.

  10. Understanding the Dynamics of Magnetic Field Alignment for Rod-Coil Block Copolymers

    NASA Astrophysics Data System (ADS)

    McCulloch, Bryan; Portale, Giuseppe; Bras, Wim; Hexemer, Alexander; Segalman, Rachel A.

    2012-02-01

    Alignment of semiconducting block copolymer nanostructures is crucial to optimize charge transport in these materials. Magnetic fields can act on the liquid crystalline conjugated polymers, inducing alignment in rod-coil block copolymers. By using a combination of small angle x-ray scattering (SAXS) and transmission electron microscopy (TEM) we have studied the magnetic field alignment of poly(alkoxy phenylene vinylene-b-isoprene) (PPV-PI) rod-coil block copolymers. In situ measurements have also shown the magnetic field leads to a stabilization of the ordered phase. Furthermore, there appear to be two distinct timescales for alignment: at short times the alignment of these materials is fast likely caused by preferential growth of aligned domains, and at long times alignment increases by the very slow process of defect annihilation. Further, there is an optimum temperature where the kinetics and thermodynamic driving forces for alignment are balanced, producing very highly aligned samples. Understanding the mechanisms by which alignment occurs has lead to knowledge helping to rationally optimize the magnetic alignment of rod-coil block copolymers.

  11. EMISSION PATTERNS AND LIGHT CURVES OF GAMMA RAYS IN THE PULSAR MAGNETOSPHERE WITH A CURRENT-INDUCED MAGNETIC FIELD

    SciTech Connect

    Li, X.; Zhang, L.

    2011-12-20

    We study the emission patterns and light curves of gamma rays in the pulsar magnetosphere with a current-induced magnetic field perturbation. Based on the solution of a static dipole with the magnetic field induced by some currents (perturbation field), we derive the solutions of a static as well as a retarded dipole with the perturbation field in the Cartesian coordinates. The static (retarded) magnetic field can be expressed as the sum of the pure static (retarded) dipolar magnetic field and the static (retarded) perturbation field. We use the solution of the retarded magnetic field to investigate the influence of the perturbation field on the emission patterns and light curves, and apply the perturbed solutions to calculate the gamma-ray light curves for the case of the Vela pulsar. We find that the perturbation field induced by the currents will change the emission patterns and then the light curves of gamma rays, especially for a larger perturbation field. Our results indicate that the perturbation field created by the outward-flowing (inward-flowing) electrons (positrons) can decrease the rotation effect on the magnetosphere and makes emission pattern appear to be smoother relative to that of the pure retarded dipole, but the perturbation field created by the outward-flowing (inward-flowing) positrons (electrons) can make the emission pattern less smooth.

  12. Alignment dynamics of single-walled carbon nanotubes in pulsed ultrahigh magnetic fields.

    PubMed

    Shaver, Jonah; Parra-Vasquez, A Nicholas G; Hansel, Stefan; Portugall, Oliver; Mielke, Charles H; von Ortenberg, Michael; Hauge, Robert H; Pasquali, Matteo; Kono, Junichiro

    2009-01-27

    We have measured the dynamic alignment properties of single-walled carbon nanotube (SWNT) suspensions in pulsed high magnetic fields through linear dichroism spectroscopy. Millisecond-duration pulsed high magnetic fields up to 56 T as well as microsecond-duration pulsed ultrahigh magnetic fields up to 166 T were used. Because of their anisotropic magnetic properties, SWNTs align in an applied magnetic field, and because of their anisotropic optical properties, aligned SWNTs show linear dichroism. The characteristics of their overall alignment depend on several factors, including the viscosity and temperature of the suspending solvent, the degree of anisotropy of nanotube magnetic susceptibilities, the nanotube length distribution, the degree of nanotube bundling, and the strength and duration of the applied magnetic field. To explain our data, we have developed a theoretical model based on the Smoluchowski equation for rigid rods that accurately reproduces the salient features of the experimental data.

  13. Unusual Pulsed X-Ray Emission from the Young, High Magnetic Field Pulsar PSR J1119--6127

    SciTech Connect

    Gonzalez, M E; Kaspi, V M; Camilo, F; Gaensler, B M; Pivovaroff, M J

    2005-08-05

    We present XMM-Newton observations of the radio pulsar PSR J1119-6127, which has an inferred age of 1,700 yr and surface dipole magnetic field strength of 4.1 x 10{sup 13} G. We report the first detection of pulsed X-ray emission from PSR J1119-6127. In the 0.5-2.0 keV range, the pulse profile shows a narrow peak with a very high pulsed fraction of (74 {+-} 14)%. In the 2.0-10.0 keV range, the upper limit for the pulsed fraction is 28% (99% confidence). The pulsed emission is well described by a thermal blackbody model with a temperature of T{infinity} = 2.4{sub -0.2}{sup +0.3} x 10{sup 6} K and emitting radius of 3.4{sub -0.3}{sup +1.8} km (at a distance of 8.4 kpc). Atmospheric models result in problematic estimates for the distance/emitting area. PSR J1119-6127 is now the radio pulsar with smallest characteristic age from which thermal X-ray emission has been detected. The combined temporal and spectral characteristics of this emission are unlike those of other radio pulsars detected at X-ray energies and challenge current models of thermal emission from neutron stars.

  14. An X-ray Pulsar with a Superstrong Magnetic Field in the Soft Gamma-Ray Repeater SGR1806-20

    NASA Technical Reports Server (NTRS)

    Kouveliotou, C.; Dieters, S.; Strohmayer, T.; vanParadijs, J.; Fishman, G. J.; Meegan, C. A.; Hurley, K.; Kommers, J.; Smith, I.; Frail, D.; Murakami, T.

    1998-01-01

    Soft gamma-ray repeaters (SGRs) emit multiple, brief (approximately O.1 s) intense outbursts of low-energy gamma-rays. They are extremely rare; three are known in our galaxy and one in the Large Magellanic Cloud. Two SGRs are associated with young supernova remnants (SNRs), and therefore most probably with neutron stars, but it remains a puzzle why SGRs are so different from 'normal' radio pulsars. Here we report the discovery of pulsations in the persistent X-ray flux of SGR1806-20, with a period of 7.47 s and a spindown rate of 2.6 x 10(exp -3) s/yr. We argue that the spindown is due to magnetic dipole emission and find that the pulsar age and (dipolar) magnetic field strength are approximately 1500 years and 8 x 10(exp 14) gauss, respectively. Our observations demonstrate the existence of 'magnetars', neutron stars with magnetic fields about 100 times stronger than those of radio pulsars, and support earlier suggestions that SGR bursts are caused by neutron-star 'crust-quakes' produced by magnetic stresses. The 'magnetar' birth rate is about one per millenium, a substantial fraction of that of radio pulsars. Thus our results may explain why some SNRs have no radio pulsars.

  15. ON THE GLOBAL STRUCTURE OF PULSAR FORCE-FREE MAGNETOSPHERE

    SciTech Connect

    Petrova, S. A.

    2013-02-20

    The dipolar magnetic field structure of a neutron star is modified by the plasma originating in the pulsar magnetosphere. In the simplest case of a stationary axisymmetric force-free magnetosphere, a self-consistent description of the fields and currents is given by the well-known pulsar equation. Here we revise the commonly used boundary conditions of the problem in order to incorporate the plasma-producing gaps and to provide a framework for a truly self-consistent treatment of the pulsar magnetosphere. A generalized multipolar solution of the pulsar equation is found, which, as compared to the customary split monopole solution, is suggested to better represent the character of the dipolar force-free field at large distances. In particular, the outer gap location entirely inside the light cylinder implies that beyond the light cylinder the null and critical lines should be aligned and become parallel to the equator at a certain altitude. Our scheme of the pulsar force-free magnetosphere, which will hopefully be followed by extensive analytic and numerical studies, may have numerous implications for different fields of pulsar research.

  16. Magnetic alignment experiment of fine graphite-crystals dispersed in He gas oriented to study alignment of crystalline-axes of nano-sized non-magnetic particles.

    PubMed

    Uyeda, C; Skakibara, M; Tanaka, K; Takashima, R

    2005-01-01

    The ensemble of nano-sized crystals is expected to attain additional physical properties when preferential alignments of certain crystal-axes are achieved by a magnetic field. The reduction of temperature T may realize alignment even if the mole number of the particle N and the diamagnetic anisotropy per mole (Deltachi)(DIA) are considerably small for the nano-sized diamagnetic oxides, since alignment proceeds by the balance between the energy of rotational Brownian motion and field-induced anisotropy energy. Alignment of various basic inorganic oxides such as gypsum, quartz, forsterite, KDP or calcite, having a size of 20 nm diameter, is expected to occur by a field intensity of approximately 50 T at T = 10 K; this intensity is presently available at a high magnetic-field laboratory. It is expected that the magnetic alignment of nano-sized particles can be observed by dispersing the particles in He gas, as achieved recently for micron-sized graphite crystals; a cryogenic liquid cannot be used as a dispersing medium. Measured (Deltachi)(DIA) values accumulated for basic inorganic-oxides are explained quantitatively by assuming that individual bonding-orbital composing the material possesses a constant amount of diamagnetic anisotropy; hence the majority of diamagnetic nano-sized insulators are expected to show magnetic alignment at finite field intensity.

  17. Cooperative Ordering and Kinetics of Cellulose Nanocrystal Alignment in a Magnetic Field.

    PubMed

    De France, Kevin J; Yager, Kevin G; Hoare, Todd; Cranston, Emily D

    2016-08-01

    Cellulose nanocrystals (CNCs) are emerging nanomaterials that form chiral nematic liquid crystals above a critical concentration (C*) and additionally orient within electromagnetic fields. The control over CNC alignment is significant for materials processing and end use; to date, magnetic alignment has been demonstrated using only strong fields over extended or arbitrary time scales. This work investigates the effects of comparatively weak magnetic fields (0-1.2 T) and CNC concentration (1.65-8.25 wt %) on the kinetics and degree of CNC ordering using small-angle X-ray scattering. Interparticle spacing, correlation length, and orientation order parameters (η and S) increased with time and field strength following a sigmoidal profile. In a 1.2 T magnetic field for CNC suspensions above C*, partial alignment occurred in under 2 min followed by slower cooperative ordering to achieve nearly perfect alignment in under 200 min (S = -0.499 where S = -0.5 indicates perfect antialignment). At 0.56 T, nearly perfect alignment was also achieved, yet the ordering was 36% slower. Outside of a magnetic field, the order parameter plateaued at 52% alignment (S = -0.26) after 5 h, showcasing the drastic effects of relatively weak magnetic fields on CNC alignment. For suspensions below C*, no magnetic alignment was detected.

  18. Cooperative Ordering and Kinetics of Cellulose Nanocrystal Alignment in a Magnetic Field.

    PubMed

    De France, Kevin J; Yager, Kevin G; Hoare, Todd; Cranston, Emily D

    2016-08-01

    Cellulose nanocrystals (CNCs) are emerging nanomaterials that form chiral nematic liquid crystals above a critical concentration (C*) and additionally orient within electromagnetic fields. The control over CNC alignment is significant for materials processing and end use; to date, magnetic alignment has been demonstrated using only strong fields over extended or arbitrary time scales. This work investigates the effects of comparatively weak magnetic fields (0-1.2 T) and CNC concentration (1.65-8.25 wt %) on the kinetics and degree of CNC ordering using small-angle X-ray scattering. Interparticle spacing, correlation length, and orientation order parameters (η and S) increased with time and field strength following a sigmoidal profile. In a 1.2 T magnetic field for CNC suspensions above C*, partial alignment occurred in under 2 min followed by slower cooperative ordering to achieve nearly perfect alignment in under 200 min (S = -0.499 where S = -0.5 indicates perfect antialignment). At 0.56 T, nearly perfect alignment was also achieved, yet the ordering was 36% slower. Outside of a magnetic field, the order parameter plateaued at 52% alignment (S = -0.26) after 5 h, showcasing the drastic effects of relatively weak magnetic fields on CNC alignment. For suspensions below C*, no magnetic alignment was detected. PMID:27407001

  19. Radio efficiency of pulsars

    SciTech Connect

    Szary, Andrzej; Melikidze, George I.; Gil, Janusz; Zhang, Bing; Xu, Ren-Xin E-mail: zhang@physics.unlv.edu

    2014-03-20

    We investigate radio emission efficiency, ξ, of pulsars and report a near-linear inverse correlation between ξ and the spin-down power, E-dot , as well as a near-linear correlation between ξ and pulsar age, τ. This is a consequence of very weak, if any, dependences of radio luminosity, L, on pulsar period, P, and the period derivative, P-dot , in contrast to X-ray or γ-ray emission luminosities. The analysis of radio fluxes suggests that these correlations are not due to a selection effect, but are intrinsic to the pulsar radio emission physics. We have found that, although with a large variance, the radio luminosity of pulsars is ≈10{sup 29} erg s{sup –1}, regardless of the position in the P-- P-dot diagram. Within such a picture, a model-independent statement can be made that the death line of radio pulsars corresponds to an upper limit in the efficiency of radio emission. If we introduce the maximum value for radio efficiency into the Monte Carlo-based population syntheses we can reproduce the observed sample using the random luminosity model. Using the Kolmogorov-Smirnov test on a synthetic flux distribution reveals a high probability of reproducing the observed distribution. Our results suggest that the plasma responsible for generating radio emission is produced under similar conditions regardless of pulsar age, dipolar magnetic field strength, and spin-down rate. The magnetic fields near the pulsar surface are likely dominated by crust-anchored, magnetic anomalies, which do not significantly differ among pulsars, leading to similar conditions for generating electron-positron pairs necessary to power radio emission.

  20. Magnetars and white dwarf pulsars

    NASA Astrophysics Data System (ADS)

    Lobato, Ronaldo V.; Malheiro, Manuel; Coelho, Jaziel G.

    2016-07-01

    The anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs) are a class of pulsars understood as neutron stars (NSs) with super strong surface magnetic fields, namely B ≳ 1014G, and for that reason are known as magnetars. However, in the last years, some SGRs/AXPs with low surface magnetic fields B ˜ (1012-1013)G have been detected, challenging the magnetar description. Moreover, some fast and very magnetic white dwarfs (WDs) have also been observed, and at least one showed X-ray energy emission as an ordinary pulsar. Following this fact, an alternative model based on WDs pulsars has been proposed to explain this special class of pulsars. In this model, AXPs and SGRs as dense and magnetized WDs can have surface magnetic field B ˜ 107-1010 G and rotate very fast with frequencies Ω ˜ 1rad/s, consistent with the observed rotation periods P ˜ (2-12)s.

  1. Stellar evolution and pulsars.

    NASA Technical Reports Server (NTRS)

    Chiu, H.-Y.

    1972-01-01

    It has been found that pulsars are rotating magnetic neutron stars, which are created during catastrophic collapses of old stars whose nuclear fuel has long since been used up. The maximum size of pulsars, based on the fastest rotation period of 33 msec, cannot exceed 100 km. The densest star the theory predicts is the neutron star. Its diameter is only 10 km. The processes producing radiation from pulsars are discussed, giving attention to a process similar to that by which a klystron operates and to a process based on a maser mechanism.

  2. Rotational Sweepback of Magnetic Field Lines in Geometrical Models of Pulsar Radio Emission

    NASA Technical Reports Server (NTRS)

    Dyks, J.; Harding, Alice K.

    2004-01-01

    We study the rotational distortions of the vacuum dipole magnetic field in the context of geometrical models of the radio emission from pulsars. We find that at low altitudes the rotation deflects the local direction of the magnetic field by at most an angle of the order of r(sup 2 sub n), where r(sub n) = r/R(sub lc), r is the radial distance and R(sub lc) is the light cylinder radius. To the lowest (i.e. second) order in r(sub n) this distortion is symmetrical with respect to the plane containing the dipole axis and the rotation axis ((Omega, mu) plane). The lowest order distortion which is asymmetrical with respect to the (Omega, mu) plane is third order in r(sub n). These results confirm the common assumption that the rotational sweepback has negligible effect on the position angle (PA) curve. We show, however, that the influence of the sweep back on the outer boundary of the open field line region (open volume) is a much larger effect, of the order of r(sup 1/2 sub n). The open volume is shifted backwards with respect to the rotation direction by an angle delta(sub o nu) approx. 0.2 sin alpha r(sup 1/2 sub n) where alpha is the dipole inclination with respect to the rotation axis. The associated phase shift of the pulse profile Delta phi(sub o nu) approx. 0.2 r(sup 1/2 sub n) can easily exceed the shift due to combined effects of aberration and propagation time delays (approx. 2r(sub n)). This strongly affects the misalignment of the center of the PA curve and the center of the pulse profile, thereby modifying the delay radius relation. Contrary to intuition, the effect of sweepback dominates over other effects when emission occurs at low altitudes. For r(sub n) < or approx. 3 x 10(exp -3) the shift becomes negative, i.e. the center of the position angle curve precedes the profile center. With the sweepback effect included, the modified delay-radius relation predicts larger emission radii and is in much better agreement with the other methods of determining r

  3. Preliminary studies on a magneto-optical procedure for aligning RHIC magnets

    SciTech Connect

    Goldman, M.A.; Sikora, R.E.; Shea, T.J.

    1993-06-01

    Colloid dispersions of magnetite were used at SLAC and KEK to locate multipole magnet centers. We study the possible adaption of this method, to align RHIC magnets. A procedure for locating magnetic centers with respect to external fiducial markers, using electronic coordinate determination and digital TV image processing is described.

  4. Mechanical alignment of particles for use in fabricating superconducting and permanent magnetic materials

    DOEpatents

    Nellis, William J.; Maple, M. Brian

    1992-01-01

    A method for mechanically aligning oriented superconducting or permanently magnetic materials for further processing into constructs. This pretreatment optimizes the final crystallographic orientation and, thus, properties in these constructs. Such materials as superconducting fibers, needles and platelets are utilized.

  5. DEEP X-RAY OBSERVATIONS OF THE YOUNG HIGH-MAGNETIC-FIELD RADIO PULSAR J1119-6127 AND SUPERNOVA REMNANT G292.2-0.5

    SciTech Connect

    Ng, C.-Y.; Kaspi, V. M.; Ho, W. C. G.; Weltevrede, P.; Bogdanov, S.; Shannon, R.; Gonzalez, M. E.

    2012-12-10

    High-magnetic-field radio pulsars are important transition objects for understanding the connection between magnetars and conventional radio pulsars. We present a detailed study of the young radio pulsar J1119-6127, which has a characteristic age of 1900 yr and a spin-down-inferred magnetic field of 4.1 Multiplication-Sign 10{sup 13} G, and its associated supernova remnant G292.2-0.5, using deep XMM-Newton and Chandra X-ray Observatory exposures of over 120 ks from each telescope. The pulsar emission shows strong modulation below 2.5 keV with a single-peaked profile and a large pulsed fraction of 0.48 {+-} 0.12. Employing a magnetic, partially ionized hydrogen atmosphere model, we find that the observed pulse profile can be produced by a single hot spot of temperature 0.13 keV covering about one-third of the stellar surface, and we place an upper limit of 0.08 keV for an antipodal hot spot with the same area. The non-uniform surface temperature distribution could be the result of anisotropic heat conduction under a strong magnetic field, and a single-peaked profile seems common among high-B radio pulsars. For the associated remnant G292.2-0.5, its large diameter could be attributed to fast expansion in a low-density wind cavity, likely formed by a Wolf-Rayet progenitor, similar to two other high-B radio pulsars.

  6. Pulsar Animation

    NASA Video Gallery

    Pulsars are thought to emit relatively narrow radio beams, shown as green in this animation. If these beams don't sweep toward Earth, astronomers cannot detect the radio signals. Pulsar gamma-ray e...

  7. Pulsed taut-wire measurement of the magnetic alignment of the ITS induction cells

    SciTech Connect

    Melton, J.G.; Burns, M.J.; Honaberger, D.J.

    1993-06-01

    The mechanical and magnetic alignment of the first eight induction-cell, solenoid magnets of the Integrated Test Stand (ITS) for the Dual-Axis Radiographic Hydrodynamic Test (DARHT) facility were measured by observing the deflection of a fine, taut wire carrying a pulsed current. To achieve the required alignment (less than 0.25 mm offset and less than 5 mrad tilt), the magnet design uses quadrufilar windings and iron field-smoothing rings. After detailed measurements of each solenoid magnet, the cells are assembled and then mechanically aligned using a laser and an alignment target moved along the cell centerline. After the cells are in final position, the pulsed wire method is used to verify the magnetic alignment. The measurements show an average offset of the magnetic axes from the mechanical axis of 0. 15 mm, with a maximum offset of 0.3 mm. The average tilt of the magnetic axis was 0.7 mrad with a maximum tilt of 1.4 mrad. Tilts are corrected to less than 0.3 mrad, using dipole trim magnets assembled into each cell. Correction is limited noise.

  8. Asymmetric Neutrino Emissions in Relativistic Mean-Field Approach and Observables: Pulsar Kick and Rapid Spin-Deceleration of Magnetized Proto-Neutron Stars

    NASA Astrophysics Data System (ADS)

    Maruyama, T.; Kajino, T.; Yasutake, N.; Hidaka, J.; Kuroda, T.; Cheoun, M. K.; Ryu, C. Y.; Mathews, G. J.

    2015-11-01

    We calculate absorption cross-sections of neutrino in proto-neutron stars with strong magnetic field in the relativistic mean-field theory. Then, we apply this result to the neutrino transfer in the matter, and study the pulsar kick and the rapid spin down of magnetars.

  9. Pulsars and Extreme Physics

    NASA Astrophysics Data System (ADS)

    Bell-Burnell, Jocelyn

    2004-10-01

    Pulsars were discovered 35 years ago. What do we know about them now, and what have they taught us about the extremes of physics? With an average density comparable to that of the nucleus, magnetic fields around 108 T and speeds close to c these objects have stretched our understanding of the behaviour of matter. They serve as extrememly accurate clocks with which to carry out precision experiments in relativity. Created in cataclysmic explosions, pulsars are a (stellar) form of life after death. After half a billion revolutions most pulsars finally die, but amazingly some are born again to yet another, even weirder, afterlife. Pulsar research continues lively, delivering exciting, startling and almost unbelievable results!

  10. Magnetic Alignment of Cellulose Nanowhiskers in an All-Cellulose Composite

    SciTech Connect

    Li, Dongsheng; Liu, Zuyan; Al-Haik, Marwan; Tehrani, Mehran; Murray, Frank; Tennenbaum, Rina; Garmestani, Hamid

    2010-08-01

    Unidirectional reinforced nanocomposite paper was fabricated from cellulose nanowhiskers and wood pulp under an externally-applied magnetic field. A 1.2 Tesla magnetic field was applied in order to align the nanowhiskers in the pulp as it was being formed into a sheet of paper. The magnetic alignment was driven by the characteristic negative diamagnetic anisotropy of the cellulose nanowhiskers. ESEM micrographs demonstrated unidirectional alignment of the nanowhiskers in the all-cellulose composite paper. Comparing with control paper sheets made from wood pulp only, the storage modulus in the all-cellulose nanocomposites increased dramatically. The storage modulus along the direction perpendicular to the magnetic field was much stronger than that parallel to the magnetic field. This new nanocomposite, which contains preferentially-oriented microstructures and has improved mechanical properties, demonstrates the possibility of expanding the functionality of paper products and constitutes a promising alternative to hydrocarbon based materials and fibers.

  11. Magnetic and electric field alignments of cellulose chains for electro-active paper actuator

    NASA Astrophysics Data System (ADS)

    Yun, Sungryul; Chen, Yi; Lee, Sang Woo; Kim, Jaehwan; Kim, Heung Soo

    2008-03-01

    To improve the piezoelectricity of cellulose electro-active paper (EAPap), electrical field and magnetic field alignments were investigated. EAPap is made with cellulose by dissolving cotton pulp and regenerating cellulose with aligned cellulose fibers. EAPap made with cellulose has piezoelectric property due to its structural crystallinity. Noncentro-symmetric crystal structure of EAPap, which is mostly cellulose II, can exhibit piezoelectricity. However, EAPap has ordered crystal parts as well as disordered parts of cellulose. Thus, well alignment of cellulose chains in EAPap is important to improve its piezoelectricity. In this paper, uniaxial alignments of cellulose chains were investigated by applying electric field and magnetic field. As exposing different fields to EAPap samples, the changed characteristics were analyzed by X-Ray diffractometer (XRD) and Scanning electron microscopy (SEM). Finally, the piezoelectricity of EAPap samples was evaluated by comparing their piezoelectric charge constant [d 31]. As increasing applied electric field up to 40V/mm, d 31 value was gradually improved due to increased cellulose crystallinity as well as alignment of cellulose chains. Also the alignment of cellulose chains was improved with increasing the exposing time to magnetic field (5.3T) and well alignment was achieved by exposing EAPap sample on the magnetic field for 180min.

  12. Optical Polarization From Aligned Atoms As A Diagnostic Of Interstellar And Circumstellar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Yan, H.; Lazarian, A.

    2005-12-01

    Population among sublevels of the ground state of an atom is affected by radiative transitions induced by anisotropic radiation flux. Such aligned atoms precess in the external magnetic field and this affects properties of polarized radiation arising from both scattering and absorption by atoms. As the result the degree of light polarization depends on the direction of the magnetic field. This provides a perspective tool for studies of astrophysical magnetic fields using optical and UV polarimetry. We discuss the process of alignment that can be used to study magnetic fields in interplanetary medium, interstellar medium, circumstellar regions and quasars. To exemplify what atomic alignment can provide to the observers we consider synthetic data obtained with MHD simulations of comet wake.

  13. Geriatric Pulsar Still Kicking

    NASA Astrophysics Data System (ADS)

    2009-02-01

    's clearly fading as it ages, it is still more than holding its own with the younger generations." It's likely that two forms of X-ray emission are produced in J0108: emission from particles spiraling around magnetic fields, and emission from heated areas around the neutron star's magnetic poles. Measuring the temperature and size of these heated regions can provide valuable insight into the extraordinary properties of the neutron star surface and the process by which charged particles are accelerated by the pulsar. The younger, bright pulsars commonly detected by radio and X-ray telescopes are not representative of the full population of objects, so observing objects like J0108 helps astronomers see a more complete range of behavior. At its advanced age, J0108 is close to the so-called "pulsar death line," where its pulsed radiation is expected to switch off and it will become much harder, if not impossible, to observe. "We can now explore the properties of this pulsar in a regime where no other pulsar has been detected outside the radio range," said co-author Oleg Kargaltsev of the University of Florida. "To understand the properties of 'dying pulsars,' it is important to study their radiation in X-rays. Our finding that a very old pulsar can be such an efficient X-ray emitter gives us hope to discover new nearby pulsars of this class via their X-ray emission." The Chandra observations were reported by Pavlov and colleagues in the January 20, 2009, issue of The Astrophysical Journal. However, the extreme nature of J0108 was not fully apparent until a new distance to it was reported on February 6 in the PhD thesis of Adam Deller from Swinburne University in Australia. The new distance is both larger and more accurate than the distance used in the Chandra paper, showing that J0108 was brighter in X-rays than previously thought. "Suddenly this pulsar became the record holder for its ability to make X-rays," said Pavlov, "and our result became even more interesting without us

  14. Exploring the Potential of Starch/Polycaprolactone Aligned Magnetic Responsive Scaffolds for Tendon Regeneration.

    PubMed

    Gonçalves, Ana I; Rodrigues, Márcia T; Carvalho, Pedro P; Bañobre-López, Manuel; Paz, Elvira; Freitas, Paulo; Gomes, Manuela E

    2016-01-21

    The application of magnetic nanoparticles (MNPs) in tissue engineering (TE) approaches opens several new research possibilities in this field, enabling a new generation of multifunctional constructs for tissue regeneration. This study describes the development of sophisticated magnetic polymer scaffolds with aligned structural features aimed at applications in tendon tissue engineering (TTE). Tissue engineering magnetic scaffolds are prepared by incorporating iron oxide MNPs into a 3D structure of aligned SPCL (starch and polycaprolactone) fibers fabricated by rapid prototyping (RP) technology. The 3D architecture, composition, and magnetic properties are characterized. Furthermore, the effect of an externally applied magnetic field is investigated on the tenogenic differentiation of adipose stem cells (ASCs) cultured onto the developed magnetic scaffolds, demonstrating that ASCs undergo tenogenic differentiation synthesizing a Tenascin C and Collagen type I rich matrix under magneto-stimulation conditions. Finally, the developed magnetic scaffolds were implanted in an ectopic rat model, evidencing good biocompatibility and integration within the surrounding tissues. Together, these results suggest that the effect of the magnetic aligned scaffolds structure combined with magnetic stimulation has a significant potential to impact the field of tendon tissue engineering toward the development of more efficient regeneration therapies.

  15. Inertial spin alignment in a circular magnetic nanotube

    NASA Astrophysics Data System (ADS)

    Bergmann, Gerd; Thompson, Richard S.; Lu, Jia G.

    2015-09-01

    In cobalt nanotubes with a curling magnetization, the orbital motion of the conduction electrons interacts with their spin. As the spin goes around the nanotube it cannot follow the magnetization, since with the Fermi velocity it moves too fast. Instead, we predict that the spin precesses about an axis that is almost parallel to the axis of the nanotube and that rotates with the angular velocity of the electron. Therefore, the (absolute) value of the magnetic energy of the spin | μ ṡ B | is strongly reduced. The physics of the ferromagnet is considerably modified.

  16. Liquid crystal surface alignments by using ion beam sputtered magnetic thin films

    SciTech Connect

    Wu, H.-Y.; Pan, R.-P.

    2007-08-13

    A method for liquid crystal surface alignment by using a one-step, ion beam bombardment of the glass substrates is demonstrated. Precoating by polyimide is not necessary. The authors show that the homeotropic alignment is achieved due to orientation of the diamagnetic nematogenic molecules by the magnetic field from the {gamma}-Fe{sub 2}O{sub 3} ferrimagnetic thin films created on the substrates by ion beam bombardment. The film exhibits a high Curie temperature well above 300 K and a compensation temperature which is the typical feature of ferrimagnetism. This is a simple, noncontact, and reliable alignment method for liquid crystal devices.

  17. The enigma of the magnetic pulsar SXP1062: a new look with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Oskinova, Lidia

    2012-10-01

    SXP 1062 is an exceptional case of a young neutron star with known age in a wind-fed HMXB. A unique combination of measured spin period, its derivative, luminosity and young age makes this source a key probe for the physics of accretion and neutron star evolution. All current accretion scenarios encounter major difficulties explaining the spin-down rate of this accretion-powered pulsar. This study will allow us to construct a spin period-luminosity relation as a powerful tool for distinguishing between different accretion and evolution scenarios. The XMM-Newton observations of SXP 1062 will thus shed new light on the physics of accreting neutron stars.

  18. Radio Polarization Observations of the Snail: A Crushed Pulsar Wind Nebula in G327.1-1.1 with a Highly Ordered Magnetic Field

    NASA Astrophysics Data System (ADS)

    Ma, Y. K.; Ng, C.-Y.; Bucciantini, N.; Slane, P. O.; Gaensler, B. M.; Temim, T.

    2016-04-01

    Pulsar wind nebulae (PWNe) are suggested to be acceleration sites of cosmic rays in the Galaxy. While the magnetic field plays an important role in the acceleration process, previous observations of magnetic field configurations of PWNe are rare, particularly for evolved systems. We present a radio polarization study of the “Snail” PWN inside the supernova remnant G327.1-1.1 using the Australia Telescope Compact Array. This PWN is believed to have been recently crushed by the supernova (SN) reverse shock. The radio morphology is composed of a main circular body with a finger-like protrusion. We detected a strong linear polarization signal from the emission, which reflects a highly ordered magnetic field in the PWN and is in contrast to the turbulent environment with a tangled magnetic field generally expected from hydrodynamical simulations. This could suggest that the characteristic turbulence scale is larger than the radio beam size. We built a toy model to explore this possibility, and found that a simulated PWN with a turbulence scale of about one-eighth to one-sixth of the nebula radius and a pulsar wind filling factor of 50%-75% provides the best match to observations. This implies substantial mixing between the SN ejecta and pulsar wind material in this system.

  19. Magnetic prism alignment system for measuring large-angle strabismus.

    PubMed

    Bishop, John Edward

    2014-02-01

    Prismatic measurement of large-angle strabismus requires the simultaneous use of two or more prisms for neutralization. To facilitate the clinical measurement of large-angle strabismus a new prism system was designed utilizing a flat plate and a ferrous metal surface coupled with prisms containing rare earth magnets implanted in their base and bottom surfaces. PMID:24569000

  20. Magnetic prism alignment system for measuring large-angle strabismus.

    PubMed

    Bishop, John Edward

    2014-02-01

    Prismatic measurement of large-angle strabismus requires the simultaneous use of two or more prisms for neutralization. To facilitate the clinical measurement of large-angle strabismus a new prism system was designed utilizing a flat plate and a ferrous metal surface coupled with prisms containing rare earth magnets implanted in their base and bottom surfaces.

  1. The pulsar spectral index distribution

    NASA Astrophysics Data System (ADS)

    Bates, S. D.; Lorimer, D. R.; Verbiest, J. P. W.

    2013-05-01

    The flux-density spectra of radio pulsars are known to be steep and, to first order, described by a power-law relationship of the form Sν ∝ να, where Sν is the flux density at some frequency ν and α is the spectral index. Although measurements of α have been made over the years for several hundred pulsars, a study of the intrinsic distribution of pulsar spectra has not been carried out. From the result of pulsar surveys carried out at three different radio frequencies, we use population synthesis techniques and a likelihood analysis to deduce what underlying spectral index distribution is required to replicate the results of these surveys. We find that in general the results of the surveys can be modelled by a Gaussian distribution of spectral indices with a mean of -1.4 and unit standard deviation. We also consider the impact of the so-called gigahertz-peaked spectrum pulsars proposed by Kijak et al. The fraction of peaked-spectrum sources in the population with any significant turnover at low frequencies appears to be at most 10 per cent. We demonstrate that high-frequency (>2 GHz) surveys preferentially select flatter spectrum pulsars and the converse is true for lower frequency (<1 GHz) surveys. This implies that any correlations between α and other pulsar parameters (for example age or magnetic field) need to carefully account for selection biases in pulsar surveys. We also expect that many known pulsars which have been detected at high frequencies will have shallow, or positive, spectral indices. The majority of pulsars do not have recorded flux density measurements over a wide frequency range, making it impossible to constrain their spectral shapes. We also suggest that such measurements would allow an improved description of any populations of pulsars with `non-standard' spectra. Further refinements to this picture will soon be possible from the results of surveys with the Green Bank Telescope and LOFAR.

  2. Magnetic Alignment in Carps: Evidence from the Czech Christmas Fish Market

    PubMed Central

    Hart, Vlastimil; Kušta, Tomáš; Němec, Pavel; Bláhová, Veronika; Ježek, Miloš; Nováková, Petra; Begall, Sabine; Červený, Jaroslav; Hanzal, Vladimír; Malkemper, Erich Pascal; Štípek, Kamil; Vole, Christiane; Burda, Hynek

    2012-01-01

    While magnetoreception in birds has been studied intensively, the literature on magnetoreception in bony fish, and particularly in non-migratory fish, is quite scarce. We examined alignment of common carps (Cyprinus carpio) at traditional Christmas sale in the Czech Republic. The sample comprised measurements of the directional bearings in 14,537 individual fish, distributed among 80 large circular plastic tubs, at 25 localities in the Czech Republic, during 817 sampling sessions, on seven subsequent days in December 2011. We found that carps displayed a statistically highly significant spontaneous preference to align their bodies along the North-South axis. In the absence of any other common orientation cues which could explain this directional preference, we attribute the alignment of the fish to the geomagnetic field lines. It is apparent that the display of magnetic alignment is a simple experimental paradigm of great heuristic potential. PMID:23227241

  3. Magnetic alignment in carps: evidence from the Czech christmas fish market.

    PubMed

    Hart, Vlastimil; Kušta, Tomáš; Němec, Pavel; Bláhová, Veronika; Ježek, Miloš; Nováková, Petra; Begall, Sabine; Cervený, Jaroslav; Hanzal, Vladimír; Malkemper, Erich Pascal; Stípek, Kamil; Vole, Christiane; Burda, Hynek

    2012-01-01

    While magnetoreception in birds has been studied intensively, the literature on magnetoreception in bony fish, and particularly in non-migratory fish, is quite scarce. We examined alignment of common carps (Cyprinus carpio) at traditional Christmas sale in the Czech Republic. The sample comprised measurements of the directional bearings in 14,537 individual fish, distributed among 80 large circular plastic tubs, at 25 localities in the Czech Republic, during 817 sampling sessions, on seven subsequent days in December 2011. We found that carps displayed a statistically highly significant spontaneous preference to align their bodies along the North-South axis. In the absence of any other common orientation cues which could explain this directional preference, we attribute the alignment of the fish to the geomagnetic field lines. It is apparent that the display of magnetic alignment is a simple experimental paradigm of great heuristic potential.

  4. Alignment of magnetized accretion disks and relativistic jets with spinning black holes.

    PubMed

    McKinney, Jonathan C; Tchekhovskoy, Alexander; Blandford, Roger D

    2013-01-01

    Accreting black holes (BHs) produce intense radiation and powerful relativistic jets, which are affected by the BH's spin magnitude and direction. Although thin disks might align with the BH spin axis via the Bardeen-Petterson effect, this does not apply to jet systems with thick disks. We used fully three-dimensional general relativistic magnetohydrodynamical simulations to study accreting BHs with various spin vectors and disk thicknesses and with magnetic flux reaching saturation. Our simulations reveal a "magneto-spin alignment" mechanism that causes magnetized disks and jets to align with the BH spin near BHs and to reorient with the outer disk farther away. This mechanism has implications for the evolution of BH mass and spin, BH feedback on host galaxies, and resolved BH images for the accreting BHs in SgrA* and M87.

  5. Paramagnetic alignment of small grains: A novel method for measuring interstellar magnetic fields

    SciTech Connect

    Hoang, Thiem; Martin, P. G.; Lazarian, A.

    2014-07-20

    We present a novel method to measure the strength of interstellar magnetic fields using ultraviolet (UV) polarization of starlight that is in part produced by weakly aligned, small dust grains. We begin with calculating the degrees of the paramagnetic alignment of small (size a ∼ 0.01 μm) and very small (a ∼ 0.001 μm) grains in the interstellar magnetic field due to the Davis-Greenstein relaxation and resonance relaxation. To calculate the degrees of paramagnetic alignment, we use Langevin equations and take into account various interaction processes essential for the rotational dynamics of small grains. We find that the alignment of small grains is necessary to reproduce the observed polarization in the UV, although the polarization arising from these small grains is negligible at the optical and infrared (IR) wavelengths. Based on fitting theoretical models to observed extinction and polarization curves, we find that the best-fit model for the case with the peak wavelength of polarization λ{sub max} < 0.55 μm requires a higher degree of alignment of small grains than for the typical case with λ{sub max} = 0.55 μm. We interpret the correlation between the systematic increase of the UV polarization relative to maximum polarization (i.e., of p(6 μm{sup –1})/p{sub max}) with λ{sub max}{sup −1} for cases of low λ{sub max} by appealing to the higher degree of alignment of small grains. We utilize the correlation of the paramagnetic alignment of small grains with the magnetic field strength B to suggest a new way to measure B using the observable parameters λ{sub max} and p(6 μm{sup –1})/p{sub max}.

  6. On the maximum accretion luminosity of magnetized neutron stars: connecting X-ray pulsars and ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Mushtukov, Alexander A.; Suleimanov, Valery F.; Tsygankov, Sergey S.; Poutanen, Juri

    2015-12-01

    We study properties of luminous X-ray pulsars using a simplified model of the accretion column. The maximal possible luminosity is calculated as a function of the neutron star (NS) magnetic field and spin period. It is shown that the luminosity can reach values of the order of 1040 erg s-1 for the magnetar-like magnetic field (B ≳ 1014 G) and long spin periods (P ≳ 1.5 s). The relative narrowness of an area of feasible NS parameters which are able to provide higher luminosities leads to the conclusion that L ≃ 1040 erg s-1 is a good estimate for the limiting accretion luminosity of an NS. Because this luminosity coincides with the cut-off observed in the high-mass X-ray binaries luminosity function which otherwise does not show any features at lower luminosities, we can conclude that a substantial part of ultraluminous X-ray sources are accreting neutron stars in binary systems.

  7. Cholesterol-diethylenetriaminepentaacetate complexed with thulium ions integrated into bicelles to increase their magnetic alignability.

    PubMed

    Liebi, Marianne; Kuster, Simon; Kohlbrecher, Joachim; Ishikawa, Takashi; Fischer, Peter; Walde, Peter; Windhab, Erich J

    2013-11-27

    Lanthanides have been used for several decades to increase the magnetic alignability of bicelles. DMPE-DTPA (1,2-dimyristoyl-sn-glycero-3-phospho-ethanolamine-diethylenetriaminepentaacetate) is commonly applied to anchor the lanthanides into the bicelles. However, because DMPE-DTPA has the tendency to accumulate at the highly curved edge region of the bicelles and if located there does not contribute to the magnetic orientation energy, we have tested cholesterol-DTPA complexed with thulium ions (Tm(3+)) as an alternative chelator to increase the magnetic alignability. Differential scanning calorimetric (DSC) measurements indicate the successful integration of cholesterol-DTPA into a DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) bilayer. Cryo transmission electron microscopy and small-angle neutron scattering (SANS) measurements show that the disklike structure, that is, bicelles, is maintained if cholesterol-DTPA·Tm(3+) is integrated into a mixture of DMPC, cholesterol, and DMPE-DTPA·Tm(3+). The size of the bicelles is increased compared to the size of the bicelles obtained from mixtures without cholesterol-DTPA·Tm(3+). Magnetic-field-induced birefringence and SANS measurements in a magnetic field show that with addition of cholesterol-DTPA·Tm(3+) the magnetic alignability of these bicelles is significantly increased compared to bicelles composed of DMPC, cholesterol, and DMPE-DTPA·Tm(3+) only.

  8. Spontaneous magnetic alignment by yearling snapping turtles: rapid association of radio frequency dependent pattern of magnetic input with novel surroundings.

    PubMed

    Landler, Lukas; Painter, Michael S; Youmans, Paul W; Hopkins, William A; Phillips, John B

    2015-01-01

    We investigated spontaneous magnetic alignment (SMA) by juvenile snapping turtles using exposure to low-level radio frequency (RF) fields at the Larmor frequency to help characterize the underlying sensory mechanism. Turtles, first introduced to the testing environment without the presence of RF aligned consistently towards magnetic north when subsequent magnetic testing conditions were also free of RF ('RF off → RF off'), but were disoriented when subsequently exposed to RF ('RF off → RF on'). In contrast, animals initially introduced to the testing environment with RF present were disoriented when tested without RF ('RF on → RF off'), but aligned towards magnetic south when tested with RF ('RF on → RF on'). Sensitivity of the SMA response of yearling turtles to RF is consistent with the involvement of a radical pair mechanism. Furthermore, the effect of RF appears to result from a change in the pattern of magnetic input, rather than elimination of magnetic input altogether, as proposed to explain similar effects in other systems/organisms. The findings show that turtles first exposed to a novel environment form a lasting association between the pattern of magnetic input and their surroundings. However, under natural conditions turtles would never experience a change in the pattern of magnetic input. Therefore, if turtles form a similar association of magnetic cues with the surroundings each time they encounter unfamiliar habitat, as seems likely, the same pattern of magnetic input would be associated with multiple sites/localities. This would be expected from a sensory input that functions as a global reference frame, helping to place multiple locales (i.e., multiple local landmark arrays) into register to form a global map of familiar space.

  9. Spontaneous magnetic alignment by yearling snapping turtles: rapid association of radio frequency dependent pattern of magnetic input with novel surroundings.

    PubMed

    Landler, Lukas; Painter, Michael S; Youmans, Paul W; Hopkins, William A; Phillips, John B

    2015-01-01

    We investigated spontaneous magnetic alignment (SMA) by juvenile snapping turtles using exposure to low-level radio frequency (RF) fields at the Larmor frequency to help characterize the underlying sensory mechanism. Turtles, first introduced to the testing environment without the presence of RF aligned consistently towards magnetic north when subsequent magnetic testing conditions were also free of RF ('RF off → RF off'), but were disoriented when subsequently exposed to RF ('RF off → RF on'). In contrast, animals initially introduced to the testing environment with RF present were disoriented when tested without RF ('RF on → RF off'), but aligned towards magnetic south when tested with RF ('RF on → RF on'). Sensitivity of the SMA response of yearling turtles to RF is consistent with the involvement of a radical pair mechanism. Furthermore, the effect of RF appears to result from a change in the pattern of magnetic input, rather than elimination of magnetic input altogether, as proposed to explain similar effects in other systems/organisms. The findings show that turtles first exposed to a novel environment form a lasting association between the pattern of magnetic input and their surroundings. However, under natural conditions turtles would never experience a change in the pattern of magnetic input. Therefore, if turtles form a similar association of magnetic cues with the surroundings each time they encounter unfamiliar habitat, as seems likely, the same pattern of magnetic input would be associated with multiple sites/localities. This would be expected from a sensory input that functions as a global reference frame, helping to place multiple locales (i.e., multiple local landmark arrays) into register to form a global map of familiar space. PMID:25978736

  10. Spontaneous Magnetic Alignment by Yearling Snapping Turtles: Rapid Association of Radio Frequency Dependent Pattern of Magnetic Input with Novel Surroundings

    PubMed Central

    Landler, Lukas; Painter, Michael S.; Youmans, Paul W.; Hopkins, William A.; Phillips, John B.

    2015-01-01

    We investigated spontaneous magnetic alignment (SMA) by juvenile snapping turtles using exposure to low-level radio frequency (RF) fields at the Larmor frequency to help characterize the underlying sensory mechanism. Turtles, first introduced to the testing environment without the presence of RF aligned consistently towards magnetic north when subsequent magnetic testing conditions were also free of RF (‘RF off → RF off’), but were disoriented when subsequently exposed to RF (‘RF off → RF on’). In contrast, animals initially introduced to the testing environment with RF present were disoriented when tested without RF (‘RF on → RF off’), but aligned towards magnetic south when tested with RF (‘RF on → RF on’). Sensitivity of the SMA response of yearling turtles to RF is consistent with the involvement of a radical pair mechanism. Furthermore, the effect of RF appears to result from a change in the pattern of magnetic input, rather than elimination of magnetic input altogether, as proposed to explain similar effects in other systems/organisms. The findings show that turtles first exposed to a novel environment form a lasting association between the pattern of magnetic input and their surroundings. However, under natural conditions turtles would never experience a change in the pattern of magnetic input. Therefore, if turtles form a similar association of magnetic cues with the surroundings each time they encounter unfamiliar habitat, as seems likely, the same pattern of magnetic input would be associated with multiple sites/localities. This would be expected from a sensory input that functions as a global reference frame, helping to place multiple locales (i.e., multiple local landmark arrays) into register to form a global map of familiar space. PMID:25978736

  11. On some electrodynamic properties of binary pulsars

    NASA Astrophysics Data System (ADS)

    Sironi, Lorenzo

    2006-07-01

    The main purpose of my thesis is to examine some electrodynamic properties of binary pulsars, trying to understand the peculiar physical processes that can happen in their magnetospheres; the ultimate aim is to discuss if such systems can be the source of the observed flux of cosmic rays between the knee and the ankle, since the mechanisms of acceleration for the cosmic rays in this range of energies are still unknown. Attention around binary pulsars has arisen after the recent discovery (December 2003) of the first double neutron star system in which both the stars are visible as pulsars (PSR J0737-3039); the inspection of the physical features of this binary pulsar has led to some intriguing possibilities up to now unexplored. In this thesis I will first of all review what is already known about the main properties of this binary system. I will describe in particular the possibility to go further in the verification of the predictions of general relativity with the so-called post-Keplerian parameters; I will discuss the possibility of studying the optical properties of the magnetospheres, since the inclination angle of the orbit is nearly 90° and some orbital phases show an eclipse of the light from one pulsar due to absorption by the magnetosphere of the companion; I will rapidly summarize how the discovery of that binary pulsar can enlarge our knowledge about the origin and evolution of double neutron star systems; lastly, I will examine the increase in the estimate of the Galactic double neutron star merger rate due to the discovery of PSR J0737-3039. I will then summarize the current knowledge about the magnetosphere of a single pulsar. After describing the Gold-Pacini model for the energy loss of the oblique rotator (in which the magnetic and rotational axes are not parallel), I will discuss the Goldreich-Julian model for the aligned axisymmetric rotator in the force-free approximation in which the inertial and gravitational forces are neglected with

  12. A SEARCH FOR RAPIDLY SPINNING PULSARS AND FAST TRANSIENTS IN UNIDENTIFIED RADIO SOURCES WITH THE NRAO 43 METER TELESCOPE

    SciTech Connect

    Schmidt, Deborah; Crawford, Fronefield; Gilpin, Claire; Langston, Glen

    2013-04-15

    We have searched 75 unidentified radio sources selected from the NRAO VLA Sky Survey catalog for the presence of rapidly spinning pulsars and short, dispersed radio bursts. The sources are radio bright, have no identifications or optical source coincidences, are more than 5% linearly polarized, and are spatially unresolved in the catalog. If these sources are fast-spinning pulsars (e.g., sub-millisecond pulsars), previous large-scale pulsar surveys may have missed detection due to instrumental and computational limitations, eclipsing effects, or diffractive scintillation. The discovery of a sub-millisecond pulsar would significantly constrain the neutron star equation of state and would have implications for models predicting a rapid slowdown of highly recycled X-ray pulsars to millisecond periods from, e.g., accretion disk decoupling. These same sources were previously searched unsuccessfully for pulsations at 610 MHz with the Lovell Telescope at Jodrell Bank. This new search was conducted at a different epoch with a new 800 MHz backend on the NRAO 43 m Telescope at a center frequency of 1200 MHz. Our search was sensitive to sub-millisecond pulsars in highly accelerated binary systems and to short transient pulses. No periodic or transient signals were detected from any of the target sources. We conclude that diffractive scintillation, dispersive smearing, and binary acceleration are unlikely to have prevented detection of the large majority of the sources if they are pulsars, though we cannot rule out eclipsing, nulling or intermittent emission, or radio interference as possible factors for some non-detections. Other (speculative) possibilities for what these sources might include radio-emitting magnetic cataclysmic variables or older pulsars with aligned magnetic and spin axes.

  13. Effect of magnetic field strength on the alignment of α''-Fe16N2 nanoparticle films

    NASA Astrophysics Data System (ADS)

    Kartikowati, Christina W.; Suhendi, Asep; Zulhijah, Rizka; Ogi, Takashi; Iwaki, Toru; Okuyama, Kikuo

    2016-01-01

    Aligning the magnetic orientation is one strategy to improve the magnetic performance of magnetic materials. In this study, well-dispersed single-domain core-shell α''-Fe16N2/Al2O3 nanoparticles (NPs) were aligned by vertically applying magnetic fields with various strengths to a Si wafer substrate followed by fixation with resin. X-ray diffraction indicated that the alignment of the easy c-axis of the α''-Fe16N2 crystal and the magnetic orientation of the NPs depended upon the applied magnetic field. Magnetic analysis demonstrated that increasing the magnetic field strength resulted in hysteresis loops approaching a rectangular form, implying a higher magnetic coercivity, remanence, and maximum energy product. The same tendency was also observed when a horizontal magnetic field was applied. The fixation of the easy c-axis alignment of each nanoparticle caused by Brownian rotation under the magnetic field, instead of Néel rotation, was the reason for the enhancement in the magnetic performance. These results on the alignment of the magnetic orientation of α''-Fe16N2 NPs suggest the practical application of high-performance permanent bulk magnets from well-dispersed single-domain α''-Fe16N2/Al2O3 NPs.

  14. Effect of magnetic field strength on the alignment of α''-Fe16N2 nanoparticle films.

    PubMed

    Kartikowati, Christina W; Suhendi, Asep; Zulhijah, Rizka; Ogi, Takashi; Iwaki, Toru; Okuyama, Kikuo

    2016-02-01

    Aligning the magnetic orientation is one strategy to improve the magnetic performance of magnetic materials. In this study, well-dispersed single-domain core-shell α''-Fe16N2/Al2O3 nanoparticles (NPs) were aligned by vertically applying magnetic fields with various strengths to a Si wafer substrate followed by fixation with resin. X-ray diffraction indicated that the alignment of the easy c-axis of the α''-Fe16N2 crystal and the magnetic orientation of the NPs depended upon the applied magnetic field. Magnetic analysis demonstrated that increasing the magnetic field strength resulted in hysteresis loops approaching a rectangular form, implying a higher magnetic coercivity, remanence, and maximum energy product. The same tendency was also observed when a horizontal magnetic field was applied. The fixation of the easy c-axis alignment of each nanoparticle caused by Brownian rotation under the magnetic field, instead of Néel rotation, was the reason for the enhancement in the magnetic performance. These results on the alignment of the magnetic orientation of α''-Fe16N2 NPs suggest the practical application of high-performance permanent bulk magnets from well-dispersed single-domain α''-Fe16N2/Al2O3 NPs.

  15. Fluctuating neutron star magnetosphere: braking indices of eight pulsars, frequency second derivatives of 222 pulsars and 15 magnetars

    NASA Astrophysics Data System (ADS)

    Ou, Z. W.; Tong, H.; Kou, F. F.; Ding, G. Q.

    2016-04-01

    Eight pulsars have low braking indices, which challenge the magnetic dipole braking of pulsars. 222 pulsars and 15 magnetars have abnormal distribution of frequency second derivatives, which also make contradiction with classical understanding. How neutron star magnetospheric activities affect these two phenomena are investigated by using the wind braking model of pulsars. It is based on the observational evidence that pulsar timing is correlated with emission and both aspects reflect the magnetospheric activities. Fluctuations are unavoidable for a physical neutron star magnetosphere. Young pulsars have meaningful braking indices, while old pulsars' and magnetars' fluctuation item dominates their frequency second derivatives. It can explain both the braking index and frequency second derivative of pulsars uniformly. The braking indices of eight pulsars are the combined effect of magnetic dipole radiation and particle wind. During the lifetime of a pulsar, its braking index will evolve from three to one. Pulsars with low braking index may put strong constraint on the particle acceleration process in the neutron star magnetosphere. The effect of pulsar death should be considered during the long term rotational evolution of pulsars. An equation like the Langevin equation for Brownian motion was derived for pulsar spin-down. The fluctuation in the neutron star magnetosphere can be either periodic or random, which result in anomalous frequency second derivative and they have similar results. The magnetospheric activities of magnetars are always stronger than those of normal pulsars.

  16. Array of 12 coils to measure the position, alignment, and sensitivity of magnetic sensors over temperature

    NASA Astrophysics Data System (ADS)

    Husstedt, Hendrik; Ausserlechner, Udo; Kaltenbacher, Manfred

    2012-04-01

    A measurement setup is presented that allows one to determine the position, alignment, and sensitivity of magnetic sensors over temperature. To this end, an array of 12 coils is used where the number of coils is larger than the number of unknowns to increase accuracy, and to ensure an adequate measurement signal for an arbitrary orientation of the magnetic sensors. With this coil array, a 3D sensing system is analyzed which is used during the testing of automotive magnetic sensors. In particular, the influence of assembly tolerances, and the variation of temperature are examined.

  17. Geriatric Pulsar Still Kicking

    NASA Astrophysics Data System (ADS)

    2009-02-01

    's clearly fading as it ages, it is still more than holding its own with the younger generations." It's likely that two forms of X-ray emission are produced in J0108: emission from particles spiraling around magnetic fields, and emission from heated areas around the neutron star's magnetic poles. Measuring the temperature and size of these heated regions can provide valuable insight into the extraordinary properties of the neutron star surface and the process by which charged particles are accelerated by the pulsar. The younger, bright pulsars commonly detected by radio and X-ray telescopes are not representative of the full population of objects, so observing objects like J0108 helps astronomers see a more complete range of behavior. At its advanced age, J0108 is close to the so-called "pulsar death line," where its pulsed radiation is expected to switch off and it will become much harder, if not impossible, to observe. "We can now explore the properties of this pulsar in a regime where no other pulsar has been detected outside the radio range," said co-author Oleg Kargaltsev of the University of Florida. "To understand the properties of 'dying pulsars,' it is important to study their radiation in X-rays. Our finding that a very old pulsar can be such an efficient X-ray emitter gives us hope to discover new nearby pulsars of this class via their X-ray emission." The Chandra observations were reported by Pavlov and colleagues in the January 20, 2009, issue of The Astrophysical Journal. However, the extreme nature of J0108 was not fully apparent until a new distance to it was reported on February 6 in the PhD thesis of Adam Deller from Swinburne University in Australia. The new distance is both larger and more accurate than the distance used in the Chandra paper, showing that J0108 was brighter in X-rays than previously thought. "Suddenly this pulsar became the record holder for its ability to make X-rays," said Pavlov, "and our result became even more interesting without us

  18. Magnetic field aligned assembly of nonmagnetic composite dumbbells in nanoparticle-based aqueous ferrofluid.

    PubMed

    Takahashi, Hayato; Nagao, Daisuke; Watanabe, Kanako; Ishii, Haruyuki; Konno, Mikio

    2015-05-26

    Monodisperse, nonmagnetic, asymmetrical composite dumbbells in a suspension of magnetic nanoparticles (ferrofluid) were aligned by application of an external magnetic field to the ferrofluid. The asymmetrical composite dumbbells were prepared by two-step soap-free emulsion polymerization consisting of the first polymerization to coat spherical silica cores with cross-linked poly(methyl methacrylate) (PMMA) shell and the second polymerization to protrude a polystyrene (PSt) lobe from the core-shell particles. A chain structure of nonmagnetic dumbbells oriented to the applied magnetic field was observed at nanoparticle content of 2.0 vol % and field strengths higher than 1.0 mT. A similar chain structure of the dumbbells was observed under application of alternating electric field at strengths higher than 50 V/mm. Parallel and orthogonally combined applications of the electric and magnetic fields were also conducted to examine independence of the electric and magnetic applications as operational factors in the dumbbell assembling. Dumbbell chains stiffer than those in a single application of external field were formed in the parallel combined application of electric and magnetic fields. The orthogonal combination of the different applied fields could form a magnetically aligned chain structure of the nonmagnetic dumbbells oriented to the electric field. The present work experimentally indicated that the employment of inverse magnetorheological effect for nonmagnetic, anisotropic particles can be a useful method for the simultaneous controls over the orientation and the positon of anisotropic particles in their assembling. PMID:25927488

  19. Searching for Planets Around Pulsars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-09-01

    suggests that long-lived supernova fallback disks may actually be much rarer than thought, or they exist only in conditions that arent compatible with planet formation.So if thats the case, what about the planets found around PSR 1257+12? This pulsar may actually be somewhat unique, in that it was born with an unusually weak magnetic field. This birth defect might have allowed it to form a fallback disk and, subsequently, planets where the sample of energetic pulsars studied here could not.CitationM. Kerr et al.2015 ApJ 809 L11 doi:10.1088/2041-8205/809/1/L11

  20. Pulsars and Acceleration Sites

    NASA Technical Reports Server (NTRS)

    Harding, Alice

    2008-01-01

    Rotation-powered pulsars are excellent laboratories for the studying particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields and relativity. But even forty years after their discovery, we still do not understand their pulsed emission at any wavelength. I will review both the basic physics of pulsars as well as the latest developments in understanding their high-energy emission. Special and general relativistic effects play important roles in pulsar emission, from inertial frame-dragging near the stellar surface to aberration, time-of-flight and retardation of the magnetic field near the light cylinder. Understanding how these effects determine what we observe at different wavelengths is critical to unraveling the emission physics. Fortunately the Gamma-Ray Large Area Space Telescope (GLAST), with launch in May 2008 will detect many new gamma-ray pulsars and test the predictions of these models with unprecedented sensitivity and energy resolution for gamma-rays in the range of 30 MeV to 300 GeV.

  1. Recycled pulsars

    NASA Astrophysics Data System (ADS)

    Jacoby, Bryan Anthony

    2005-11-01

    In a survey of ~4,150 square degrees, we discovered 26 previously unknown pulsars, including 7 "recycled" millisecond or binary pulsars. The most significant discovery of this survey is PSR J1909-3744, a 2.95 ms pulsar in an extremely circular 1.5 d orbit with a low-mass white dwarf companion. Though this system is a fairly typical low-mass binary pulsar (LMBP) system, it has several exceptional qualities: an extremely narrow pulse profile and stable rotation have enabled the most precise long-term timing ever reported, and a nearly edge-on orbit gives rise to a strong Shapiro delay which has allowed the most precise measurement of the mass of a millisecond pulsar: m p = (1.438 +/- 0.024) [Special characters omitted.] . Our accurate parallax distance measurement, d p = ([Special characters omitted.] ) kpc, combined with the mass of the optically-detected companion, m c = (0.2038 +/- 0.022) [Special characters omitted.] , will provide an important calibration for white dwarf models relevant to other LMBP companions. We have detected optical counterparts for two intermediate mass binary pulsar (IMBP) systems; taken together with optical detections and non-detections of several similar systems, our results indicate that the characteristic age t = c P /2 P consistently overestimates the time since the end of mass accretion in these recycled systems. We have measured orbital decay in the double neutron star system PSR B2127+11C in the globular cluster M15. This has allowed an improved measurement of the mass of the pulsar, m p = (1.3584 +/- 0.0097) [Special characters omitted.] , and companion, m c = (1.3544 +/- 0.0097) [Special characters omitted.] , as well as a test of general relativity at the 3% level. We find that the proper motions of this pulsar as well as PSR B2127+11A and PSR B2127+11B are consistent with each other and with one published measurement of the cluster proper motion. We have discovered three binary millisecond pulsars in the globular cluster M62

  2. X-ray study of aligned magnetic stripe domains in perpendicular multilayers

    SciTech Connect

    Hellwig, O.; Denbeaux, G.P.; Kortright, J.B.; Fullerton, Eric E.

    2003-03-03

    We have investigated the stripe domain structure and the magnetic reversal of perpendicular Co/Pt based multilayers at room temperature using magnetometry, magnetic imaging and magnetic x-ray scattering. In-plane field cycling aligns the stripe domains along the field direction. In magnetic x-ray scattering the parallel stripe domains act as a magnetic grating resulting in observed Bragg reflections up to 5th order. We model the scattering profile to extract and quantify the domain as well as domain wall widths. Applying fields up to {approx}1.2 kOe perpendicular to the film reversibly changes the relative width of up versus down domains while maintaining the overall stripe periodicity. Fields above 1.2 kOe introduce irreversible changes into the domain structure by contracting and finally annihilating individual stripe domains. We compare the current results with modeling and previous measurements of films with perpendicular anisotropy.

  3. Liquid Crystalline Block Copolymers with Brush Type Architecture: Toward Functional Membranes by Magnetic Field Alignment

    NASA Astrophysics Data System (ADS)

    Choo, Youngwoo; Gopinadhan, Manesh; Mahajan, Lalit; Kasi, Rajeswari; Osuji, Chinedum

    2015-03-01

    We introduce a novel liquid crystalline block copolymer with brush type architecture for membrane applications by magnetic field directed self-assembly. Ring-opening metathesis of n-alkyloxy cyanobiphenyl and polylactide (PLA) functionalized norbornene monomers provides efficient polymerization yielding low polydispersity block copolymers. The molecular weight of the PLA side chains, spacer length of the cyanobiphenyl mesogens are systematically varied to form well-ordered BCP morphologies at varying volume fractions. Interestingly, the system features morphology dependent anchoring condition where mesogens adopt planar anchoring on cylindrical interface while homeotropic anchoring was preferred on a planar block interface. The minority PLA domains from highly aligned materials can be readily degraded by hydrolysis to produce vertically aligned nanoporous polymer films which exhibit reversible thermal switching behavior. The polymers introduced here provide a versatile platform for scalable fabrication of aligned membranes and further functional materials based on such templates. This work was supported by NSF(CCMI-1246804).

  4. High-energy emission of the first millisecond pulsar

    SciTech Connect

    Ng, C.-Y.; Takata, J.; Leung, G. C. K.; Cheng, K. S.; Philippopoulos, P.

    2014-06-01

    We report on X-ray and gamma-ray observations of the millisecond pulsar (MSP) B1937+21 taken with the Chandra X-ray Observatory, XMM-Newton, and the Fermi Large Area Telescope. The pulsar X-ray emission shows a purely non-thermal spectrum with a hard photon index of 0.9 ± 0.1, and is nearly 100% pulsed. We found no evidence of varying pulse profile with energy as previously claimed. We also analyzed 5.5 yr of Fermi survey data and obtained much improved constraints on the pulsar's timing and spectral properties in gamma-rays. The pulsed spectrum is adequately fitted by a simple power-law with a photon index of 2.38 ± 0.07. Both the gamma-ray and X-ray pulse profiles show similar two-peak structure and generally align with the radio peaks. We found that the aligned profiles and the hard spectrum in X-rays seem to be common properties among MSPs with high magnetic fields at the light cylinder. We discuss a possible physical scenario that could give rise to these features.

  5. A STRONGLY MAGNETIZED PULSAR WITHIN THE GRASP OF THE MILKY WAY'S SUPERMASSIVE BLACK HOLE

    SciTech Connect

    Rea, N.; Torres, D. F.; Papitto, A.; Camero-Arranz, A.; Esposito, P.; Mereghetti, S.; Tiengo, A.; Pons, J. A.; Viganò, D.; Turolla, R.; Israel, G. L.; Stella, L.; Possenti, A.; Burgay, M.; Perna, R.; Ponti, G.; Baganoff, F. K.; Haggard, D.; Zane, S.; Minter, A.; and others

    2013-10-01

    The center of our Galaxy hosts a supermassive black hole, Sagittarius (Sgr) A*. Young, massive stars within 0.5 pc of Sgr A* are evidence of an episode of intense star formation near the black hole a few million years ago, which might have left behind a young neutron star traveling deep into Sgr A*'s gravitational potential. On 2013 April 25, a short X-ray burst was observed from the direction of the Galactic center. With a series of observations with the Chandra and the Swift satellites, we pinpoint the associated magnetar at an angular distance of 2.4 ± 0.3 arcsec from Sgr A*, and refine the source spin period and its derivative (P = 3.7635537(2) s and P-dot = 6.61(4)×10{sup -12} s s{sup –1}), confirmed by quasi simultaneous radio observations performed with the Green Bank Telescope and Parkes Radio Telescope, which also constrain a dispersion measure of DM = 1750 ± 50 pc cm{sup –3}, the highest ever observed for a radio pulsar. We have found that this X-ray source is a young magnetar at ≈0.07-2 pc from Sgr A*. Simulations of its possible motion around Sgr A* show that it is likely (∼90% probability) in a bound orbit around the black hole. The radiation front produced by the past activity from the magnetar passing through the molecular clouds surrounding the Galactic center region might be responsible for a large fraction of the light echoes observed in the Fe fluorescence features.

  6. Monitoring the effect of magnetically aligned collagen scaffolds on tendon tissue engineering by PSOCT

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Ahearne, Mark; Wimpenny, Ian; Torbet, Jim

    2009-02-01

    As the repair of injured or degenerated tendon is often compromised by the shortage of suitable donor tissue, other procedures need to be developed. The application of a functional tissue engineered tendon could prove to be a promising alternative therapy. Due to their good biocompatibility, collagen hydrogel based scaffolds have been considered to be potentially suitable for engineering tendon tissue in vitro. One of the major limitations of collagen hydrogels for engineering tissues is the difficulty in controlling their architecture and collagen concentration which results in poor mechanical strength. This study aims to overcome these limitations by creating a highly biocompatible scaffold that is both mechanically robust and aligned. Collagen fibers were pre-aligned under a high magnetic field then concentrated using plastic compression. Primary tenocytes cultured from rats were seeded on the aligned scaffolds. Following a protocol in public domain, thick cultured collagen constructs were rolled up into a spiral after undergoing plastic compressed. Both a light microscopy and a polarization sensitive optical coherence tomography (PSOCT) with central beam at 1300 nm were used to monitor the birefringence in the constructs. Conventional light microscopy showed that the tenocytes aligned along the pre-organized collagen bundles in contrast to the random distributed observed on unaligned scaffolds. PSOCT only revealed weak birefringence from aligned but uncompressed constructs. However, PSOCT images showed contrast band structures in the spiral constructs which suggests that the birefringence signal depends on the density of aligned collagen fibers. The effect of aligned cells, neo-formed matrix and the plastic compression on the birefringence signals are discussed in this paper briefly.

  7. Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Billaud, Juliette; Bouville, Florian; Magrini, Tommaso; Villevieille, Claire; Studart, André R.

    2016-08-01

    As lithium-ion batteries become ubiquitous, the energy storage market is striving for better performance, longer lifetime and better safety of the devices. This race for performance is often focused on the search for new materials, whereas less effort has been dedicated to the electrode engineering. Enhancing the power density by increasing the amount of active material remains impractical since it impinges the transport of ions across the electrode during the charging and discharging processes. Here, we show that the electrochemical performance of a battery containing a thick (about 200 μm), highly loaded (about 10 mg cm-2) graphite electrode can be remarkably enhanced by fabricating anodes with an out-of-plane aligned architecture using a low external magnetic field. The lower tortuosity resulting from such a simple and scalable magnetic alignment approach leads to a specific charge up to three times higher than that of non-architectured electrodes at a rate of 1C.

  8. Magnetic field-aligned electrons escaping from plasma density minima in the cusp

    NASA Astrophysics Data System (ADS)

    Pedersen, A.; Lybekk, B.; Haaland, S.; Svenes, K.; Dandouras, I.; Fazakerley, A. N.

    2012-04-01

    On Cluster the plasma density in very tenuous plasmas can be estimated based on spacecraft potential measurements. This has made it possible to detect plasma density minima of 0.01-0.1 cm-3 in the cusp poleward of the main precipitation of electrons and ions. Electron data from PEACE show that some of these minima have magnetic field-aligned outflow of electrons with energies of several hundred eV. Ion data from CIS will be used to look for possible related ion field-aligned flow. In this study the locations and the extents of plasma density minima, with electron outflow, will be determined for the northern and the southern cusp. Information about extent across the magnetic field can be obtained by using data from all four Cluster satellites, and electric field data can be used to detect plasma drift and wave activity. Possible connections to solar wind conditions and magnetosphere disturbance level will be presented

  9. Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Billaud, Juliette; Bouville, Florian; Magrini, Tommaso; Villevieille, Claire; Studart, André R.

    2016-08-01

    As lithium-ion batteries become ubiquitous, the energy storage market is striving for better performance, longer lifetime and better safety of the devices. This race for performance is often focused on the search for new materials, whereas less effort has been dedicated to the electrode engineering. Enhancing the power density by increasing the amount of active material remains impractical since it impinges the transport of ions across the electrode during the charging and discharging processes. Here, we show that the electrochemical performance of a battery containing a thick (about 200 μm), highly loaded (about 10 mg cm‑2) graphite electrode can be remarkably enhanced by fabricating anodes with an out-of-plane aligned architecture using a low external magnetic field. The lower tortuosity resulting from such a simple and scalable magnetic alignment approach leads to a specific charge up to three times higher than that of non-architectured electrodes at a rate of 1C.

  10. Magnetically Aligned HI and Dust: New insights into the physical properties of the diffuse ISM

    NASA Astrophysics Data System (ADS)

    Clark, Susan E.; Peek, Joshua E. G.; Hill, J. Colin; Putman, Mary; Schudel, Lowell E.

    2015-08-01

    Sensitive, high resolution observations of Galactic HI reveal an intricate network of slender linear features, much as sensitive surveys of dust in Galactic molecular clouds reveal ubiquitous filamentary structure. Across the high Galactic latitude sky, diffuse HI structures are aligned with the interstellar magnetic field, as revealed by background starlight polarization (Clark, Peek, Putman 2014). We present the discovery that the orientation of HI structures traces the Planck 353 GHz polarization angle measurements with extraordinary accuracy. We explore the physical properties of the HI structures, and the physical mechanisms responsible for their alignment, by examining the HI structures across a range of densities and environments. We discuss the insights that may be gained from a deeper understanding of the interplay between gas, dust, and magnetic fields in the ISM.

  11. The Radio Properties and Magnetic Field Configuration in the Crab-Like Pulsar Wind Nebula G54.1+0.3

    NASA Astrophysics Data System (ADS)

    Lang, Cornelia C.; Wang, Q. Daniel; Lu, Fangjun; Clubb, Kelsey I.

    2010-02-01

    We present a multifrequency radio investigation of the Crab-like pulsar wind nebula (PWN) G54.1+0.3 using the Very Large Array. The high resolution of the observations reveals that G54.1+0.3 has a complex radio structure which includes filamentary and loop-like structures that are magnetized, a diffuse extent similar to the associated diffuse X-ray emission. But the radio and X-ray structures in the central region differ strikingly, indicating that they trace very different forms of particle injection from the pulsar and/or particle acceleration in the nebula. No spectral index gradient is detected in the radio emission across the PWN, whereas the X-ray emission softens outward in the nebula. The extensive radio polarization allows us to image in detail the intrinsic magnetic field, which is well-ordered and reveals that a number of loop-like filaments are strongly magnetized. In addition, we determine that there are both radial and toroidal components to the magnetic field structure of the PWN. Strong mid-infrared (IR) emission detected in Spitzer Space Telescope data is closely correlated with the radio emission arising from the southern edge of G54.1+0.3. In particular, the distributions of radio and X-ray emission compared with the mid-IR emission suggest that the PWN may be interacting with this interstellar cloud. This may be the first PWN where we are directly detecting its interplay with an interstellar cloud that has survived the impact of the supernova explosion associated with the pulsar's progenitor.

  12. Can primordial magnetic fields seeded by electroweak strings cause an alignment of quasar axes on cosmological scales?

    PubMed

    Poltis, Robert; Stojkovic, Dejan

    2010-10-15

    The decay of nontopological electroweak strings may leave an observable imprint in the Universe today in the form of primordial magnetic fields. Protogalaxies preferentially tend to form with their axis of rotation parallel to an external magnetic field, and, moreover, an external magnetic field produces torque which tends to align the galaxy axis with the magnetic field. We demonstrate that the shape of a magnetic field left over from two looped electroweak strings can explain the observed nontrivial alignment of quasar polarization vectors and make predictions for future observations.

  13. Pulsar extinction. [astrophysics

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Baker, K.; Turk, J. S.

    1975-01-01

    Radio emission from pulsars, attributed to an instability associated with the creation of electron-positron pairs from gamma rays was investigated. The condition for pair creation therefore lead to an extinction condition. The relevant physical processes were analyzed in the context of a mathematical model, according to which radiation originated at the polar caps and magnetic field lines changed from a closed configuration to an open configuration at the force balance or corotation radius.

  14. Pulsar Electrodynamics: a Time-dependent View

    SciTech Connect

    Spitkovsky, Anatoly; /KIPAC, Menlo Park

    2006-04-10

    Pulsar spindown forms a reliable yet enigmatic prototype for the energy loss processes in many astrophysical objects including accretion disks and back holes. In this paper we review the physics of pulsar magnetospheres, concentrating on recent developments in force-free modeling of the magnetospheric structure. In particular, we discuss a new method for solving the equations of time-dependent force-free relativistic MHD in application to pulsars. This method allows to dynamically study the formation of the magnetosphere and its response to perturbations, opening a qualitatively new window on pulsar phenomena. Applications of the method to other magnetized rotators, such as magnetars and accretion disks, are also discussed.

  15. Radio polarimetry of Galactic Centre pulsars

    NASA Astrophysics Data System (ADS)

    Schnitzeler, D. H. F. M.; Eatough, R. P.; Ferrière, K.; Kramer, M.; Lee, K. J.; Noutsos, A.; Shannon, R. M.

    2016-07-01

    To study the strength and structure of the magnetic field in the Galactic Centre (GC), we measured Faraday rotation of the radio emission of pulsars which are seen towards the GC. Three of these pulsars have the largest rotation measures (RMs) observed in any Galactic object with the exception of Sgr A⋆. Their large dispersion measures, RMs and the large RM variation between these pulsars and other known objects in the GC implies that the pulsars lie in the GC and are not merely seen in projection towards the GC. The large RMs of these pulsars indicate large line-of-sight magnetic field components between ˜ 16 and 33 μG; combined with recent model predictions for the strength of the magnetic field in the GC this implies that the large-scale magnetic field has a very small inclination angle with respect to the plane of the sky (˜12°). Foreground objects like the Radio Arc or possibly an ablated, ionized halo around the molecular cloud G0.11-0.11 could contribute to the large RMs of two of the pulsars. If these pulsars lie behind the Radio Arc or G0.11-0.11 then this proves that low-scattering corridors with lengths ≳100 pc must exist in the GC. This also suggests that future, sensitive observations will be able to detect additional pulsars in the GC. Finally, we show that the GC component in our most accurate electron density model oversimplifies structure in the GC.

  16. Alignment of Velocity and Magnetic Fluctuations in Simulations of Anisotropic MHD Turbulence

    NASA Astrophysics Data System (ADS)

    Ng, C. S.; Bhattacharjee, A.

    2007-11-01

    There has been recent theoretical interest in the effect of the alignment of velocity and magnetic fluctuations in three-dimensional (3D) MHD turbulence with a large-scale magnetic field [Boldyrev 2005, 2006]. This theory predicts that the angle θ between the velocity and magnetic fluctuation vectors has a scaling of θ&1/4circ;, where λ is the spatial scale of the fluctuations. There have also been simulations on 3D forced MHD turbulence that supports this prediction [Mason et al. 2006, 2007]. The scaling has also been tested against observations of solar wind turbulence [Podesta et al. 2007]. We report here simulation results based on decaying 2D turbulence. The scaling of θ&1/4circ; and Iroshnikov-Kraichnan scaling has also been observed within a range of time interval and spatial scales, despite the fact that Boldyrev's theory was developed for fully 3D turbulence in the presence of a strong external field. As the external field is reduced in magnitude and becomes comparable to the magnitude of magnetic fluctuations or lower, the scale-dependent alignment is weakened. Implications for observations of solar wind turbulence will be discussed.

  17. Magnetic field alignment of supramolecular perylene/block copolymer complexes for electro-optic thin films

    NASA Astrophysics Data System (ADS)

    Gopinadhan, Manesh; Majewski, Pawel; Shade, Ryan; Dell, Emma; Gupta, Nalini; Campos, Luis; Osuji, Chinedum

    2012-02-01

    The realization of nanostructured electro-optic materials by self-assembly is complicated by the persistence of structural defects which render the system properties isotropic on macroscopic length scales. Here we demonstrate the use of magnetic fields to facilitate large area alignment of a supramolecular system consisting of a poly(styrene-b-acrylic acid) (PS-b-PAA) diblock copolymer host and a semiconducting perylene ligand. Hydrogen bonding between the carboxylic acid groups of PAA and imidazole head group of the perylene species results in hierarchically ordered materials with smectic perylene layers in a matrix of hexagonally packed PS cylinders at appropriate stoichiometries. The smectic layers and the PS domains are strongly aligned by the application of large (> 2T) magnetic fields in a manner reflective of the positive diamagnetic anisotropy and the planar anchoring of perylene units at the PS interface. We use a combination of SAXS studies in-situ with applied magnetic fields, GISAXS and polarized optical transmission measurements to characterize the system. Magnetic fields thus offer a viable route for directing the self-assembly of functional materials based on rigid chromophores and further, that supramolecular approaches can be complementary to such efforts.

  18. Short-term magnetic field alignment variations of equatorial ionospheric irregularities

    SciTech Connect

    Johnson, A.L.

    1988-06-01

    The ionospheric irregularities that cause equatorial scintillation are elongated along the north-south magnetic field lines. During a 1981 field campaign at Ascension Island, 250-MHz receivers were spaced from 300 m to 1.6 km along the field lines, and the signals received from the Marisat satellite were cross correlated. Data collected during eight nights of fading showed a linear relationship between fading rate and cross correlation. The alignment of the antennas was adjusted to give a zero time lag between the widely spaced receivers with a measurement accuracy of 0.03 s. Since the average irregularity velocity was 125 m/s, this time accuracy translated to an angular measurement accuracy of 0.1 deg. During a 4-hour period of nightly fading, occasional differences in time of arrival were noted that corresponded to a tilt in the north-south alignment of + or - 1 deg. Data from several nights of fading were analyzed, and each night exhibited the same variance in the north-south irregularity alignment. It is postulated that the shift in the measured peak correlation may have been caused by patches of irregularities at different altitudes where the magnetic field lines have a slightly different direction. 13 references.

  19. The alignment of molecular cloud magnetic fields with the spiral arms in M33.

    PubMed

    Li, Hua-bai; Henning, Thomas

    2011-11-24

    The formation of molecular clouds, which serve as stellar nurseries in galaxies, is poorly understood. A class of cloud formation models suggests that a large-scale galactic magnetic field is irrelevant at the scale of individual clouds, because the turbulence and rotation of a cloud may randomize the orientation of its magnetic field. Alternatively, galactic fields could be strong enough to impose their direction upon individual clouds, thereby regulating cloud accumulation and fragmentation, and affecting the rate and efficiency of star formation. Our location in the disk of the Galaxy makes an assessment of the situation difficult. Here we report observations of the magnetic field orientation of six giant molecular cloud complexes in the nearby, almost face-on, galaxy M33. The fields are aligned with the spiral arms, suggesting that the large-scale field in M33 anchors the clouds.

  20. Alignment of the high beta magnets in the RHIC interaction regions

    SciTech Connect

    Trbojevic, D.; Jain, A.; Tepikian, S.; Grandinetti, R.; Ganetis, G.; Wei, J.; Karl, F.

    1997-07-01

    The betatron functions inside the triplet quadrupoles in the Relativistic Heavy Ion Collider-RHIC are of the order of 1,500 m, necessitating additional attention in the alignment procedure. On each side of the interaction regions eight cryogenic elements (six quadrupoles and two horizontal bending dipoles) are placed inside large cryostats. The quadrupole magnetic centers are obtained by antenna measurements with an accuracy of {+-} 60 {micro}m. The signals from the antenna were cross calibrated with the colloidal cell measurements of the same magnet. The positions of the fiducials are related to the magnet centers during the antenna measurements. Elements are positioned warm inside the cryostats, with offsets to account for shrinkage during the cool down. The supports at the middle of the two central quadrupoles are fixed, while every other element slides longitudinally inside the cryostat during cool down or warm up.

  1. The alignment of molecular cloud magnetic fields with the spiral arms in M33

    NASA Astrophysics Data System (ADS)

    Li, Hua-Bai; Henning, Thomas

    2011-11-01

    The formation of molecular clouds, which serve as stellar nurseries in galaxies, is poorly understood. A class of cloud formation models suggests that a large-scale galactic magnetic field is irrelevant at the scale of individual clouds, because the turbulence and rotation of a cloud may randomize the orientation of its magnetic field. Alternatively, galactic fields could be strong enough to impose their direction upon individual clouds, thereby regulating cloud accumulation and fragmentation, and affecting the rate and efficiency of star formation. Our location in the disk of the Galaxy makes an assessment of the situation difficult. Here we report observations of the magnetic field orientation of six giant molecular cloud complexes in the nearby, almost face-on, galaxy M33. The fields are aligned with the spiral arms, suggesting that the large-scale field in M33 anchors the clouds.

  2. Angle-dependent radiative grain alignment. Confirmation of a magnetic field - radiation anisotropy angle dependence on the efficiency of interstellar grain alignment

    NASA Astrophysics Data System (ADS)

    Andersson, B.-G.; Pintado, O.; Potter, S. B.; Straižys, V.; Charcos-Llorens, M.

    2011-10-01

    Context. Interstellar grain alignment studies are currently experiencing a renaissance due to the development of a new quantitative theory based on radiative alignment torques (RAT). One of the distinguishing predictions of this theory is a dependence of the grain alignment efficiency on the relative angle (Ψ) between the magnetic field and the anisotropy direction of the radiation field. In an earlier study we found observational evidence for such an effect from observations of the polarization around the star HD 97300 in the Chamaeleon I cloud. However, due to the large uncertainties in the measured visual extinctions, the result was uncertain. Aims: By acquiring explicit spectral classification of the polarization targets, we have sought to perform a more precise reanalysis of the existing polarimetry data. Methods: We have obtained new spectral types for the stars in our for our polarization sample, which we combine with photometric data from the literature to derive accurate visual extinctions for our sample of background field stars. This allows a high accuracy test of the grain alignment efficiency as a function of Ψ. Results: We confirm and improve the measured accuracy of the variability of the grain alignment efficiency with Ψ, seen in the earlier study. We note that the grain temperature (heating) also shows a dependence on Ψ which we interpret as a natural effect of the projection of the grain surface to the illuminating radiation source. This dependence also allows us to derive an estimate of the fraction of aligned grains in the cloud.

  3. Influence of magnetic field alignment of cellulose whiskers on the mechanics of all-cellulose nanocomposites.

    PubMed

    Pullawan, Tanittha; Wilkinson, Arthur N; Eichhorn, Stephen J

    2012-08-13

    Orientation of cellulose nanowhiskers (CNWs) derived from tunicates, in an all-cellulose nanocomposite, is achieved through the application of a magnetic field. CNWs are incorporated into a dissolved cellulose matrix system and during solvent casting of the nanocomposite a magnetic field is applied to induce their alignment. Unoriented CNW samples, without the presence of a magnetic field, are also produced. The CNWs are found to orient under the action of the magnetic field, leading to enhanced stiffness and strength of the composites, but not to the level that is theoretically predicted for a fully aligned system. Lowering the volume fraction of the CNWs is shown to allow them to orient more readily in the magnetic field, leading to larger relative increases in the mechanical properties. It is shown, using polarized light microscopy, that the all-cellulose composites have a domain structure, with some domains showing pronounced orientation of CNWs and others where no preferred orientation occurs. Raman spectroscopy is used to both follow the position of bands located at ~1095 and ~895 cm(-1) with deformation and also their intensity as a function rotation angle of the specimens. It is shown that these approaches give valuable independent information on the respective molecular deformation and orientation of the CNWs, and the molecules in the matrix phase, in oriented and nonoriented domains of all-cellulose composites. These data are then related to an increase in the level of molecular deformation in the axial direction, as revealed by the Raman technique. Little orientation of the matrix phase is observed under the action of the magnetic field indicating the dominance of the stiff CNWs in governing mechanical properties.

  4. Photorefractive Bragg gratings in nematic liquid crystals aligned by a magnetic field

    SciTech Connect

    Wiederrecht, G.P.; Wasielewski, M.R. |

    1999-06-01

    Photorefractive Bragg gratings are observed in low-molar-mass nematic liquid crystals doped with electron donor and acceptor molecules. This is accomplished by alignment of the nematic liquid crystals in a 0.3 T magnetic field, which produces thicker homeotropic aligned samples than traditional surfactant techniques. Grating fringe spacings as low as 3.7 {mu}m are achieved with 176-{mu}m-thick samples, producing grating {ital Q} values of 33. Up to this point, low molar mass nematic liquid crystals have exhibited photorefractive gratings with Q{le}1. Asymmetric two-beam coupling and photoconductivity experiments are performed to verify the photorefractive origin of the gratings. {copyright} {ital 1999 American Institute of Physics.}

  5. Pulsars Magnetospheres

    NASA Technical Reports Server (NTRS)

    Timokhin, Andrey

    2012-01-01

    Current density determines the plasma flow regime. Cascades are non-stationary. ALWAYS. All flow regimes look different: multiple components (?) Return current regions should have particle accelerating zones in the outer magnetosphere: y-ray pulsars (?) Plasma oscillations in discharges: direct radio emission (?)

  6. A Chandra Search for a Pulsar Wind Nebula around PSR B1055–52

    NASA Astrophysics Data System (ADS)

    Posselt, B.; Spence, G.; Pavlov, G. G.

    2015-10-01

    The nearby, middle-aged PSR B1055‑52 has many properties in common with the Geminga pulsar. Motivated by the Geminga's enigmatic and prominent pulsar wind nebula (PWN), we searched for extended emission around PSR B1055‑52 with Chandra ACIS. For an energy range 0.3–1 keV, we found a 4σ flux enhancement in a 4\\buildrel{\\prime\\prime}\\over{.} 9-20\\prime\\prime annulus around the pulsar. There is a slight asymmetry in the emission close, 1\\buildrel{\\prime\\prime}\\over{.} 5-4\\prime\\prime , to the pulsar. The excess emission has a luminosity of about 1029 erg s‑1 in an energy range 0.3–8 keV for a distance of 350 pc. Overall, the faint extended emission around \\text{PSR B1055-52} is consistent with a PWN of an aligned rotator moving away from us along the line of sight with supersonic velocity, but a contribution from a dust scattering halo cannot be excluded. Comparing the properties of other nearby, middle-aged pulsars, we suggest that the geometry—the orientations of rotation axis, magnetic field axis, and the sight-line—is the deciding factor for a pulsar to show a prominent PWN. We also report on an ≳ 30% flux decrease of PSR B1055‑52 between the 2000 XMM-Newton and our 2012 Chandra observation. We tentatively attribute this flux decrease to a cross-calibration problem, but further investigations of the pulsar are required to exclude actual intrinsic flux changes.

  7. The suppression of pulsar and gamma-ray burst annihilation lines by magnetic photon splitting

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.

    1993-01-01

    Neutron stars, relativistic and compact by nature, show great potential for the copious creation of electron-positron pairs in the magnetospheres; these rapidly cool, thermalize, and then annihilate. It is therefore expected that many neutron sources might display evidence of pair annihilation lines in the 400-500 keV range. It is shown that magnetic photon splitting, which operates effectively at these energies and in the enormous neutron star magnetic fields, can destroy an annihilation feature by absorbing line photons and reprocessing them to lower energies. In so doing, photon splitting creates a soft gamma-ray bump and a broad quasi-power-law contribution to the X-ray continuum, which is too flat to conflict with the observed X-ray paucity in gamma-ray bursts. The destruction of the line occurs in neutron stars with surface fields of 5 x 10 exp 12 G or maybe even less, depending on the size of the emission region.

  8. Dynamics of the field-aligned current distribution during a magnetic storm: AMPERE

    NASA Astrophysics Data System (ADS)

    Vassiliadis, D.; Tepke, B. P.

    2015-12-01

    Field-aligned current density in the ionosphere can be used to identify the location and intensity of solar wind-magnetosphere-ionosphere coupling, and help identify the large-scale processes that contribute to this coupling. The Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) mission effectively provides high-resolution spatial and temporal measurements of the radial current during magnetic storms. These in situ measurements are complementary to magnetic remote sensing from the ground using magnetometer arrays. Here we examine two storms, on May 29, 2010 and August 5, 2011, using AMPERE and solar wind data. We identify the regions whose radial current density has the greatest correlation with solar wind coupling functions and individual magnetic and plasma variables. We develop a statistical model of the radial current density from the magnetospheric and solar wind data which is then used to represent regions of outflowing and inflowing current in the two hemispheres. While the model is limited in representing high spatial resolution, time series of regional and global field-aligned current are reproduced with relatively large correlation coefficients (0.70-0.90) in each event.

  9. Pulsars for the Beginner

    ERIC Educational Resources Information Center

    DiLavore, Phillip; Wayland, James R.

    1971-01-01

    Presents the history of the discovery of pulsars, observations that have been made on pulsar radiation, and theories that have been presented for its presence and origin. Illustrations using pulsar's properties are presented in mechanics, electromagnetic radiation and thermodynamics. (DS)

  10. Time-dependent Force-free Pulsar Magnetospheres: Axisymmetric and Oblique Rotators

    SciTech Connect

    Spitkovsky, Anatoly; /KIPAC, Menlo Park

    2006-04-10

    Magnetospheres of many astrophysical objects can be accurately described by the low-inertia (or ''force-free'') limit of MHD. We present a new numerical method for solution of equations of force-free relativistic MHD based on the finite-difference time-domain (FDTD) approach with a prescription for handling spontaneous formation of current sheets. We use this method to study the time-dependent evolution of pulsar magnetospheres in both aligned and oblique magnetic geometries. For the aligned rotator we confirm the general properties of the time-independent solution of Contopoulos et al. (1999). For the oblique rotator we present the 3D structure of the magnetosphere and compute, for the first time, the spindown power of pulsars as a function of inclination of the magnetic axis. We find the pulsar spindown luminosity to be L {approx} ({mu}{sup 2}{Omega}{sub *}{sup 4}/c{sup 3})(1 + sin{sup 2}{alpha}) for a star with the dipole moment {mu}, rotation frequency {Omega}{sub *}, and magnetic inclination angle {alpha}. We also discuss the effects of current sheet resistivity and reconnection on the structure and evolution of the magnetosphere.

  11. Highly polarized light emission by isotropic quantum dots integrated with magnetically aligned segmented nanowires

    SciTech Connect

    Uran, Can; Erdem, Talha; Guzelturk, Burak; Perkgöz, Nihan Kosku; Jun, Shinae; Jang, Eunjoo; Demir, Hilmi Volkan

    2014-10-06

    In this work, we demonstrate a proof-of-concept system for generating highly polarized light from colloidal quantum dots (QDs) coupled with magnetically aligned segmented Au/Ni/Au nanowires (NWs). Optical characterizations reveal that the optimized QD-NW coupled structures emit highly polarized light with an s-to p-polarization (s/p) contrast as high as 15:1 corresponding to a degree of polarization of 0.88. These experimental results are supported by the finite-difference time-domain simulations, which demonstrate the interplay between the inter-NW distance and the degree of polarization.

  12. Wet electrostatic precipitator having removable nested hexagonal collector plates and magnetic aligning and rapping means

    SciTech Connect

    Young, C.E.; Drzewiecki, G.

    1984-04-10

    A wet electrostatic precipitator including a plurality of removable nested collecting electrodes or plates forming a repeating pattern of hexagonal collecting zones throughout the precipitator. Each collecting plate is formed with a sixty degree bend along two opposing longitudinal edges so as to allow three plates to form a self-nesting Y-shaped intersection point. Six points form a hexagonal collecting zone. The plates are removable thereby expediting replacement. A plurality of strategically placed spray nozzles provide wash fluid to the plates. Magnet sets provide for discharge electrode alignment and rapping.

  13. Spin-down of Pulsars, and Their Electromagnetic and Gravitational Wave Radiations

    NASA Astrophysics Data System (ADS)

    Yue-zhu, Zhang; Yan-yan, Fu; Yi-huan, Wei; Cheng-min, Zhang; Shao-hua, Yu; Yuan-yue, Pan; Yuan-qi, Guo; De-hua, Wang

    2016-04-01

    Pulsars posses extremely strong magnetic fields, and their magnetic axis does not coincide with their rotation axis, this causes the pulsars to emit electromagnetic radiations. Pulsars rely on their rotational energy to compensate for the energy loss caused by the electromagnetic radiation, which leads to the gradually decelerated spin of pulsars. According to the theoretical deduction, we have calculated the initial period of the Crab Nebula pulsar, and derived the period evolution of the pulsar at any time in the future under the effect of the electromagnetic radiation. Considered the possible existence of quadrupole moment in the mass distribution of a pulsar, the gravitational wave radiation will also make the pulsar spin down, hence the variation of spin period of the Crab pulsar under the effect of gravitational wave radiation is further analyzed. Finally, combining the two kinds of radiation mechanisms, the evolution of spin period of the Crab pulsar under the joint action of these two kinds of radiation mechanisms is analyzed.

  14. Magneto-plasmonic study of aligned Ni, Co and Ni/Co multilayer in polydimethylsiloxane as magnetic field sensor

    NASA Astrophysics Data System (ADS)

    Hamidi, Seyedeh Mehri; Mosaeii, Babak; Afsharnia, Mina; Aftabi, Ali; Najafi, Mojgan

    2016-11-01

    We report the magneto-optical properties of aligned cobalt, Nickel and nickel/ Cobalt multilayer nanowires embedded in polydimethylsiloxane matrix. The NWs prepared by electrodeposition method in anodic alumina template and then dispersed in ethanol and placed in a heater to evaporate the ethanol and finally dispersed in polydimethylsiloxane matrix to reach to the composite. The used external magnetic field arranges the nanowires and our aligned nanowires were investigated by magneto-optical surface plasmon resonance techniques in two easy and hard axis configurations. Our results show the sufficient sensitivity in magneto-optical surface plasmon resonance of Nickel and cobalt arrays nanowires and because the different modulation mechanism in Ni and Co nanodisks, in Ni/Co multilayer we see the magnetization modulation of the excitation angle in accordance with magnetic field modulation of the SPP wave vector in each nanodisk. Finally, we show that the Ni/Co multilayer aligned nanowires can be used as efficient magnetic field sensor.

  15. On the relationship between morning sector irregular magnetic pulsations and field aligned currents

    NASA Technical Reports Server (NTRS)

    Engebretson, M. J.; Cahill, L. J., Jr.; Potemra, T. A.; Zanetti, L. J.; Arnoldy, R. L.; Mende, S. B.; Rosenberg, T. J.

    1984-01-01

    For three magnetically disturbed days in early 1980, data from south polar masses of the Magsat satellite are compared with data from search coil magnetometer, riometer, and photometer instrumentation at Siple, Antarctica. It is found that during each Magsat polar pass in the morning sector, the level of Pi 1 activity correlates well with the intensities of three-dimensional current systems. Fine structure is often observed in the field-aligned currents during periods of intense Pi activity. Among the Birkeland currents are 2-s to 10-s (16-80 km) structured perturbations; these are evident in the transverse components of the field and are thought to indicate filamentary currents. Pi 1 amplitudes are found to be considerably larger when region 2 Birkeland currents are overhead than when they are not. In one case, detailed features are identified in the high-resolution Magsat magnetic field data that may be current fluctuations related to asymmetric Pi 1.

  16. AN EXTREME PULSAR TAIL PROTRUDING FROM THE FRYING PAN SUPERNOVA REMNANT

    SciTech Connect

    Ng, C.-Y.; Bouchard, A.; Bucciantini, N.; Gaensler, B. M.; Camilo, F.; Chatterjee, S.

    2012-02-10

    The Frying Pan (G315.9-0.0) is a radio supernova remnant with a peculiar linear feature (G315.78-0.23) extending 10' radially outward from the rim of the shell. We present radio imaging and polarization observations obtained from the Molonglo Observatory Synthesis Telescope and the Australia Telescope Compact Array, confirming G315.78-0.23 as a bow-shock pulsar wind nebula (PWN) powered by the young pulsar J1437-5959. This is one of the longest pulsar tails observed in radio and it has a physical extent over 20 pc. We found a bow-shock standoff distance of 0.002 pc, smallest among similar systems, suggesting a large pulsar velocity over 1000 km s{sup -1} and a high Mach number {approx}200. The magnetic field geometry inferred from radio polarimetry shows a good alignment with the tail orientation, which could be a result of high flow speed. There are also hints that the postshock wind has a low magnetization and is dominated by electrons and positrons in energy. This study shows that PWNe can offer a powerful probe of their local environment, particularly for the case of a bow shock where the parent supernova shell is also detected.

  17. A bifunctional spin label reports the structural topology of phospholamban in magnetically-aligned bicelles

    NASA Astrophysics Data System (ADS)

    McCaffrey, Jesse E.; James, Zachary M.; Svensson, Bengt; Binder, Benjamin P.; Thomas, David D.

    2016-01-01

    We have applied a bifunctional spin label and EPR spectroscopy to determine membrane protein structural topology in magnetically-aligned bicelles, using monomeric phospholamban (PLB) as a model system. Bicelles are a powerful tool for studying membrane proteins by NMR and EPR spectroscopies, where magnetic alignment yields topological constraints by resolving the anisotropic spectral properties of nuclear and electron spins. However, EPR bicelle studies are often hindered by the rotational mobility of monofunctional Cys-linked spin labels, which obscures their orientation relative to the protein backbone. The rigid and stereospecific TOAC label provides high orientational sensitivity but must be introduced via solid-phase peptide synthesis, precluding its use in large proteins. Here we show that a bifunctional methanethiosulfonate spin label attaches rigidly and stereospecifically to Cys residues at i and i + 4 positions along PLB's transmembrane helix, thus providing orientational resolution similar to that of TOAC, while being applicable to larger membrane proteins for which synthesis is impractical. Computational modeling and comparison with NMR data shows that these EPR experiments provide accurate information about helix tilt relative to the membrane normal, thus establishing a robust method for determining structural topology in large membrane proteins with a substantial advantage in sensitivity over NMR.

  18. Microstructures and magnetic alignment of L10 FePt nanoparticles

    NASA Astrophysics Data System (ADS)

    Kang, Shishou; Shi, Shifan; Jia, Zhiyong; Thompson, G. B.; Nikles, David E.; Harrell, J. W.; Li, Daren; Poudyal, Narayan; Nandwana, Vikas; Liu, J. Ping

    2007-05-01

    Chemically ordered FePt nanoparticles were obtained by high temperature annealing a mixture of FePt particles with NaCl. After the NaCl was removed with de-ionized water, the transformed FePt nanoparticles were redispersed in cyclohexanone. X-ray diffraction patterns clearly show the L10 phase. Scherrer analysis indicates that the average particle size is about 8nm, which is close to the transmission electron microscopy (TEM) statistical results. The coercivity ranges from 16kOe to more than 34kOe from room temperature down to 10K. High resolution TEM images reveal that most of the FePt particles were fully transformed into the L10 phase, except for a small fraction of particles which were partially chemically ordered. Nano-energy dispersive spectroscopy measurements on the individual particles show that the composition of the fully transformed particles is close to 50/50, while the composition of the partially transformed particles is far from equiatomic. TEM images and electron diffraction patterns indicate c-axis alignment for a monolayer of L10 FePt particles formed by drying a dilute dispersion on copper grids under a magnetic field. For thick samples dried under a magnetic field, the degree of easy axis alignment is not as high as predicted due to strong interactions between particles.

  19. A bifunctional spin label reports the structural topology of phospholamban in magnetically-aligned bicelles.

    PubMed

    McCaffrey, Jesse E; James, Zachary M; Svensson, Bengt; Binder, Benjamin P; Thomas, David D

    2016-01-01

    We have applied a bifunctional spin label and EPR spectroscopy to determine membrane protein structural topology in magnetically-aligned bicelles, using monomeric phospholamban (PLB) as a model system. Bicelles are a powerful tool for studying membrane proteins by NMR and EPR spectroscopies, where magnetic alignment yields topological constraints by resolving the anisotropic spectral properties of nuclear and electron spins. However, EPR bicelle studies are often hindered by the rotational mobility of monofunctional Cys-linked spin labels, which obscures their orientation relative to the protein backbone. The rigid and stereospecific TOAC label provides high orientational sensitivity but must be introduced via solid-phase peptide synthesis, precluding its use in large proteins. Here we show that a bifunctional methanethiosulfonate spin label attaches rigidly and stereospecifically to Cys residues at i and i+4 positions along PLB's transmembrane helix, thus providing orientational resolution similar to that of TOAC, while being applicable to larger membrane proteins for which synthesis is impractical. Computational modeling and comparison with NMR data shows that these EPR experiments provide accurate information about helix tilt relative to the membrane normal, thus establishing a robust method for determining structural topology in large membrane proteins with a substantial advantage in sensitivity over NMR. PMID:26720587

  20. DEATH LINE OF GAMMA-RAY PULSARS WITH OUTER GAPS

    SciTech Connect

    Wang, Ren-Bo; Hirotani, Kouichi E-mail: hirotani@tiara.sinica.edu.tw

    2011-08-01

    We analytically investigate the condition for a particle accelerator to be active in the outer magnetosphere of a rotation-powered pulsar. Within the accelerator (or the gap), the magnetic-field-aligned electric field accelerates electrons and positrons, which emit copious gamma-rays via the curvature process. If one of the gamma-rays emitted by a single pair materializes as a new pair on average, the gap is self-sustained. However, if the neutron-star spin-down rate decreases below a certain limit, the gap becomes no longer self-sustained and the gamma-ray emission ceases. We explicitly compute the multiplicity of cascading pairs and find that the obtained limit corresponds to a modification of the previously derived outer-gap death line. In addition to this traditional death line, we find another death line, which becomes important for millisecond pulsars, by separately considering the threshold of photon-photon pair production. Combining these traditional and new death lines, we give predictions on the detectability of gamma-ray pulsars with Fermi and AGILE. An implication for X-ray observations of heated polar-cap emission is also discussed.

  1. Stability estimate for the aligned magnetic field in a periodic quantum waveguide from Dirichlet-to-Neumann map

    NASA Astrophysics Data System (ADS)

    Mejri, Youssef

    2016-06-01

    In this article, we study the boundary inverse problem of determining the aligned magnetic field appearing in the magnetic Schrödinger equation in a periodic quantum cylindrical waveguide, by knowledge of the Dirichlet-to-Neumann map. We prove a Hölder stability estimate with respect to the Dirichlet-to-Neumann map, by means of the geometrical optics solutions of the magnetic Schrödinger equation.

  2. Alignment of bicelles studied with high-field magnetic birefringence and small-angle neutron scattering measurements.

    PubMed

    Liebi, Marianne; van Rhee, Peter G; Christianen, Peter C M; Kohlbrecher, Joachim; Fischer, Peter; Walde, Peter; Windhab, Erich J

    2013-03-12

    Birefringence measurements at high magnetic field strength of up to 33 T were used to detect magnetically induced alignment of bicelles composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), cholesterol, and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-diethylenetriaminepentaacetate (DMPE-DTPA) with complexed lanthanide ions. These birefringence measurements together with a small-angle neutron scattering (SANS) analysis in a magnetic field showed parallel alignment of the bicelles if the lanthanide was thulium (Tm(3+)), and perpendicular alignment with dysprosium (Dy(3+)). With the birefringence measurements, the order parameter S can be determined as a function of the magnetic field strength, if the magnetic alignment reaches saturation. Additional structural information can be obtained if the maximum induced birefringence is considered. The degree of alignment of the studied bicelles increased with decreasing temperature from 40 to 5 °C and showed a new bicellar structure comprising a transient hole formation at intermediate temperatures (20 °C) during heating from 5 to 40 °C.

  3. Electro-magnetic properties of composites with aligned Fe-Co hollow fibers

    NASA Astrophysics Data System (ADS)

    Cho, Seungchan; Choi, Jae Ryung; Jung, Byung Mun; Choi, U. Hyeok; Lee, Sang-Kwan; Kim, Ki Hyeon; Lee, Sang-Bok

    2016-05-01

    A novel Fe-Co binary hollow fiber was synthesized by electroless plating using hydrolyzed polyester fiber and its anisotropy characteristic was investigated for electromagnetic wave absorbing materials. The hollow fibers in parallel with magnetic field show higher saturated magnetization of 202 emu/g at the applied magnetic field of 10 kOe and lower coercivity (27.658 Oe), compared with the random and vertical oriented hollow fibers. From complex permittivity measurement, the Fe-Co hollow fiber composites clearly display a single dielectric resonance, located at ˜14 GHz. The Fe-Co hollow fibers not only provide excellent EM properties in GHz frequency ranges, resulting mainly from the strong resonance, but also adjust the soft magnetic properties through fiber alignments. The cavitary structure of the Fe-Co hollow fibers, not only giving rise to a dielectric loss resonance and also adjusting its peak frequency, may be a pathway to useful EM wave absorptive devices in GHz frequency ranges.

  4. PICsar: Particle in cell pulsar magnetosphere simulator

    NASA Astrophysics Data System (ADS)

    Belyaev, Mikhail A.

    2016-07-01

    PICsar simulates the magnetosphere of an aligned axisymmetric pulsar and can be used to simulate other arbitrary electromagnetics problems in axisymmetry. Written in Fortran, this special relativistic, electromagnetic, charge conservative particle in cell code features stretchable body-fitted coordinates that follow the surface of a sphere, simplifying the application of boundary conditions in the case of the aligned pulsar; a radiation absorbing outer boundary, which allows a steady state to be set up dynamically and maintained indefinitely from transient initial conditions; and algorithms for injection of charged particles into the simulation domain. PICsar is parallelized using MPI and has been used on research problems with ~1000 CPUs.

  5. Finite element analysis of in-situ alignment of nanoparticles in polymeric nanofibers using magnetic field assisted electrospinning

    NASA Astrophysics Data System (ADS)

    Jayaseelan, D.; Biji, P.

    2015-09-01

    In this study, a three-dimensional magnetic field assisted electrospinning (MFAES) system has been modeled to understand the correlation between the applied magnetic field and electric field distributions during nanoparticle alignment. The results reveal that the electric field distribution has been altered by positioning the magnets at the needle end. The analysis explored the possibility to create a stable liquid jet under a magnetic field, which allows the formation of organized nanostructures in nanofibers. The polarity of the magnet has been used to manipulate the electric field distribution in the electrospinning system. Based on the configuration of magnetic flux lines, the distribution of the electric field has been found to be altered. An axial magnetic field has been provided by the repulsive mode configuration, which could be the reason for alignment of nanoparticles during electrospinning. Simulation proved that the bending instability of the charged liquid jet can be efficiently controlled by placing the magnets on both sides of the fiber formation path in the electrospinning system. The impact of an axial magnetic field on nanofiber formation and nanoparticle alignment during the MFAES process was further experimentally validated.

  6. Wideband Observations of Radio Pulsars

    NASA Astrophysics Data System (ADS)

    Pennucci, Timothy T.

    2015-08-01

    Pulsars are exotic objects which have yielded a bounty of important astrophysical results. As rapidly rotating, highly magnetized neutron stars, pulsars' stable rotation and beamed radio emission enables their use as interstellar laboratory clocks. The extraordinary timing regularity of the millisecond pulsar (MSP) population permits some of the most precise measurements in astronomy. The discovery of MSPs raised the probability of directly detecting gravitational waves for the first time. Ongoing efforts by several pulsar timing array (PTA) collaborations compliment the ground- and space-based efforts of laser interferometers. One such PTA is the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). NANOGrav has recently employed a new set of wideband instruments to increase the sensitivity of their PTA, and the future of pulsar astronomy is moving towards progressively larger bandwidths. In this dissertation, we address the benefits and issues from adopting the new instrumentation, particularly for the scientific motivations of NANOGrav. We first develop a measurement technique for simultaneously obtaining pulse times-of-arrival (TOAs) and dispersion measures (DMs) using 2D models of evolving Gaussian components. We then apply the methodology broadly to a variety of pulsars, including a bright, test MSP in a globular cluster, the Galactic Center magnetar, and the entire suite of 37 MSPs from the NANOGrav 9-year data set. For a subset of these MSPs, we make targeted observations at specific orbital phases aimed at improving the timing models and constraining the Shapiro delay. With a few exceptions, we find positive or consistent timing results from the implementation of our first generation wideband timing protocol. Some highlights include: improved measurement uncertainties, mitigation of chromatic ISM effects, a reduction in the number of timing parameters and TOAs, signs of chromatic DMs, and at least one new pulsar mass.

  7. Electrostatic lower hybrid waves excited by electromagnetic whistler mode waves scattering from planar magnetic-field-aligned plasma density irregularities

    NASA Technical Reports Server (NTRS)

    Bell, T. F.; Ngo, H. D.

    1990-01-01

    This paper presents a theoretical model for electrostatic lower hybrid waves excited by electromagnetic whistler mode waves propagating in regions of the magnetosphere and the topside ionosphere, where small-scale magnetic-field-aligned plasma density irregularities are thought to exist. In this model, the electrostatic waves are excited by linear mode coupling as the incident electromagnetic whistler mode waves scatter from the magnetic-field-aligned plasma density irregularities. Results indicate that high-amplitude short-wavelength (5 to 100 m) quasi-electrostatic whistler mode waves can be excited when electromagnetic whistler mode waves scatter from small-scale planar magnetic-field-aligned plasma density irregularities in the topside ionosphere and magnetosphere.

  8. The imprint of pulsar parameters on the morphology of Pulsar Wind Nebulae

    NASA Astrophysics Data System (ADS)

    Bühler, Rolf; Giomi, Matteo

    2016-11-01

    The morphology of young Pulsar Wind Nebulae (PWN) is largely determined by the properties of the wind injected by the pulsar. We have used a recent parametrization of the wind obtained from force-free electrodynamics simulations of pulsar magnetospheres to simulate nebulae for different sets of pulsar parameters. We performed axisymmetric relativistic magnetohydrodynamics simulations to test the morphology dependence of the nebula on the obliquity of the pulsar and on the magnetization of the pulsar wind. We compare these simulations to the morphology of the Vela and Crab PWN. We find that the morphology of Vela can be reproduced qualitatively if the pulsar obliquity angle is α ≈ 45° and the magnetization of the wind is high (σ0 ≈ 3.0). A morphology similar to the one of the Crab nebula is only obtained for low-magnetization simulations with α ≳ 45°. Interestingly, we find that Kelvin-Helmholtz instabilities produce small-scale turbulences downstream of the reverse shock of the pulsar wind.

  9. An unexpected drop in the magnetic field of the X-ray pulsar V0332+53 after the bright outburst occurred in 2015

    NASA Astrophysics Data System (ADS)

    Cusumano, G.; La Parola, V.; D'Aì, A.; Segreto, A.; Tagliaferri, G.; Barthelmy, S. D.; Gehrels, N.

    2016-07-01

    How the accreted mass settling on the surface of a neutron star affects the topology of the magnetic field and how the secular evolution of the binary system depends on the magnetic field change is still an open issue. We report evidence for a clear drop in the observed magnetic field in the accreting pulsar V0332+53 after undergoing a bright 3-month long X-ray outburst. We determine the field from the position of the fundamental cyclotron line in its X-ray spectrum and relate it to the luminosity. For equal levels of luminosity, in the declining phase we measure a systematically lower value of the cyclotron line energy with respect to the rising phase. This results in a drop of ˜1.7 × 1011 G of the observed field between the onset and the end of the outburst. The settling of the accreted plasma on to the polar cap seems to induce a distortion of the magnetic field lines weakening their intensity along the accretion columns. Therefore, the dissipation rate of the magnetic field could be much faster than previously estimated, unless the field is able to restore its original configuration on a time-scale comparable with the outbursts recurrence time.

  10. Magnetic Field Alignment of PS-P4VP: a Non-Liquid Crystalline Coil-Coil Block Copolymer

    NASA Astrophysics Data System (ADS)

    Rokhlenko, Yekaterina; Zhang, Kai; Larson, Steven; Gopalan, Padma; O'Hern, Corey; Osuji, Chinedum

    2015-03-01

    Magnetic fields provide the ability to control alignment of self-assembled soft materials such as block copolymers. Most prior work in this area has relied on the presence of ordered assemblies of anisotropic liquid crystalline species to ensure sufficient magnetic anisotropy to drive alignment. Recent experiments with poly(styrene-b-4-vinylpyridine), a non-liquid crystalline BCP, however, show field-induced alignment of a lamellar microstructure during cooling across the order-disorder transition. Using in situ x-ray scattering, we examine the roles of field strength and cooling rate on the alignment response of this low MW coil-coil BCP. Alignment is first observed at field strengths as low as 1 Tesla and improves markedly with both increasing field strength and slower cooling. We present a geometric argument to illustrate the origin of a finite, non-trivial magnetic susceptibility anisotropy for highly stretched surface-tethered polymer chains and corroborate this using coarse-grained molecular dynamics simulations. We rationalize the magnetic field response of the system in terms of the mobility afforded by the absence of entanglements, the intrinsic anisotropy resulting from the stretched polymer chains and sterically constrained conjugated rings, and the large grain size in these low molecular weight materials.

  11. Interplanetary GPS using pulsar signals

    NASA Astrophysics Data System (ADS)

    Becker, W.; Bernhardt, M. G.; Jessner, A.

    2015-11-01

    An external reference system suitable for deep space navigation can be defined by fast spinning and strongly magnetized neutron stars, called pulsars. Their beamed periodic signals have timing stabilities comparable to atomic clocks and provide characteristic temporal signatures that can be used as natural navigation beacons, quite similar to the use of GPS satellites for navigation on Earth. By comparing pulse arrival times measured on-board a spacecraft with predicted pulse arrivals at a reference location, the spacecraft position can be determined autonomously and with high accuracy everywhere in the solar system and beyond. The unique properties of pulsars make clear already today that such a navigation system will have its application in future astronautics. In this paper we describe the basic principle of spacecraft navigation using pulsars and report on the current development status of this novel technology.

  12. Magnetically aligned phospholipid bilayers with positive ordering: a new model membrane system.

    PubMed Central

    Prosser, R S; Hwang, J S; Vold, R R

    1998-01-01

    A stable smectic phospholipid bilayer phase aligned with the director parallel to the magnetic field can be generated by the addition of certain trivalent paramagnetic lanthanide ions to a bicellar solution of dimyristoylphosphatidylcholine (DMPC) and dihexanoylphosphatidylcholine (DHPC) in water. Suitable lanthanide ions are those with positive anisotropy of their magnetic susceptibility, namely Eu3+, Er3+, Tm3+, and Yb3+. For samples doped with Tm3+, this phase extends over a wide range of Tm3+ concentrations (6-40 mM) and temperatures (35-90 degrees C) and appears to undergo a transition from a fluid nematic discotic to a fluid, but highly ordered, smectic phase at a temperature that depends on the thulium concentration. As a membrane mimetic, these new, positively ordered phospholipid phases have high potential for structural studies using a variety of techniques such as magnetic resonance (EMR and NMR), small-angle x-ray and neutron diffraction, as well as optical and infrared spectroscopy. PMID:9591667

  13. A CHANDRA X-RAY OBSERVATION OF THE BINARY MILLISECOND PULSAR PSR J1023+0038

    SciTech Connect

    Bogdanov, Slavko; Archibald, Anne M.; Kaspi, Victoria M.; Hessels, Jason W. T.; Lorimer, Duncan; McLaughlin, Maura A.; Ransom, Scott M.; Stairs, Ingrid H.

    2011-12-01

    We present a Chandra X-Ray Observatory ACIS-S variability, spectroscopy, and imaging study of the peculiar binary containing the millisecond pulsar J1023+0038. The X-ray emission from the system exhibits highly significant (12.5{sigma}) large-amplitude (factor of two to three) orbital variability over the five consecutive orbits covered by the observation, with a pronounced decline in the flux at all energies at superior conjunction. This can be naturally explained by a partial geometric occultation by the secondary star of an X-ray-emitting intrabinary shock, produced by the interaction of outflows from the two stars. The depth and duration of the eclipse imply that the intrabinary shock is localized near or at the surface of the companion star and close to the inner Lagrangian point. The energetics of the shock favor a magnetically dominated pulsar wind that is focused into the orbital plane, requiring close alignment of the pulsar spin and orbital angular momentum axes. The X-ray spectrum consists of a dominant non-thermal component and at least one thermal component, likely originating from the heated pulsar polar caps, although a portion of this emission may be from an optically thin 'corona'. We find no evidence for extended emission due to a pulsar wind nebula or bow shock down to a limiting luminosity of L{sub X} {approx}< 3.6 Multiplication-Sign 10{sup 29} erg s{sup -1} (0.3-8 keV), {approx}< 7 Multiplication-Sign 10{sup -6} of the pulsar spin-down luminosity, for a distance of 1.3 kpc and an assumed power-law spectrum with photon index {Gamma} = 1.5.

  14. Aligned magnetic domains in p- and n-type ferromagnetic nanocrystals and in pn-junction nanodiodes.

    PubMed

    Bera, Abhijit; Pal, Amlan J

    2013-11-27

    We form pn- and np-junctions between monolayers of p- and n-type nanocrystals that exhibit current rectification in the nanodiodes when characterized with a scanning tunneling microscope (STM) tip. With the use of ferromagnetic nanocrystals, we study the effect of mutual alignment of magnetization vectors on current rectification in the junction between the two nanocrystals. We show that when the magnetization vectors of the p- and of the n-type nanocrystals are parallel to each other (and both facing toward the apex of the STM tip) tunneling current in both bias modes increases with correspondingly a higher rectification ratio. This is in contrast to the parameters of the nanodiodes in which magnetization vectors of the components are unaligned or randomized. To analyze the results, we record scanning tunneling spectroscopy of the monolayer of the components having magnetization vectors aligned or unaligned to locate their valence and conduction band edges and to determine the effect of the alignment on the band edges. Upon alignment of the magnetization vectors of the nanocrystals in a monolayer, the conduction band edge of the p-type and valence band edge of the n-type semiconductor shift towards the Fermi energy leading to a change in energy levels of the pn-junctions and accounting for the improved parameters of the nanodiodes.

  15. Pulsar wind model for the spin-down behavior of intermittent pulsars

    SciTech Connect

    Li, L.; Tong, H.; Yan, W. M.; Yuan, J. P.; Wang, N.; Xu, R. X.

    2014-06-10

    Intermittent pulsars are part-time radio pulsars. They have higher slow down rates in the on state (radio-loud) than in the off state (radio-quiet). This gives evidence that particle wind may play an important role in pulsar spindown. The effect of particle acceleration is included in modeling the rotational energy loss rate of the neutron star. Applying the pulsar wind model to the three intermittent pulsars (PSR B1931+24, PSR J1841–0500, and PSR J1832+0029) allows their magnetic fields and inclination angles to be calculated simultaneously. The theoretical braking indices of intermittent pulsars are also given. In the pulsar wind model, the density of the particle wind can always be the Goldreich-Julian density. This may ensure that different on states of intermittent pulsars are stable. The duty cycle of particle wind can be determined from timing observations. It is consistent with the duty cycle of the on state. Inclination angle and braking index observations of intermittent pulsars may help to test different models of particle acceleration. At present, the inverse Compton scattering induced space charge limited flow with field saturation model can be ruled out.

  16. Discovery of a 112 ms X-Ray Pulsar in Puppis A: Further Evidence of Neutron Stars Weakly Magnetized at Birth

    NASA Astrophysics Data System (ADS)

    Gotthelf, E. V.; Halpern, J. P.

    2009-04-01

    We report the discovery of 112 ms X-ray pulsations from RX J0822-4300, the compact central object (CCO) in the supernova remnant (SNR) Puppis A, in two archival Newton X-Ray Multi-Mirror Mission observations taken in 2001. The sinusoidal light curve has a pulsed fraction of 11% with an abrupt 180° change in phase at 1.2 keV. The observed phase shift and modulation are likely the result of emission from opposing thermal hot spots of distinct temperatures. Phase-resolved spectra reveal an emission feature at E line = 0.8 keV associated with the cooler region, possibly due to an electron cyclotron resonance effect similar to that seen in the spectrum of the CCO pulsar 1E 1207.4-5209. No change in the spin period of PSR J0821-4300 is detected in seven months, with a 2σ upper limit on the period derivative of \\dot{P} < 8.3 × 10^{-15}. This implies limits on the spin-down energy loss rate of \\dot{E} < 2.3 \\times 10^{35} erg s-1, the surface magnetic dipole field strength Bs < 9.8 × 1011 G, and the spin-down age τ c > 220 kyr. The latter is much longer than the SNR age, indicating that PSR J0821-4300 was born spinning near its present period. Its properties are remarkably similar to those of the two other known CCO pulsars, demonstrating the existence of a class of neutron stars born with weak magnetic fields related to a slow original spin. These results are also of importance in understanding the extreme transverse velocity of PSR J0821-4300, favoring the hydrodynamic instability mechanism in the supernova explosion.

  17. Probing gamma-ray emissions of Fermi-LAT pulsars with a non-stationary outer gap model

    NASA Astrophysics Data System (ADS)

    Takata, J.; Ng, C. W.; Cheng, K. S.

    2016-02-01

    We explore a non-stationary outer gap scenario for gamma-ray emission process in pulsar magnetosphere. Electrons/positrons that migrate along the magnetic field line and enter the outer gap from the outer/inner boundaries activate the pair-creation cascade and high-energy emission process. In our model, the rate of the particle injection at the gap boundaries is key physical quantity to control the gap structure and properties of the gamma-ray spectrum. Our model assumes that the injection rate is time variable and the observed gamma-ray spectrum are superposition of the emissions from different gap structures with different injection rates at the gap boundaries. The calculated spectrum superposed by assuming power law distribution of the particle injection rate can reproduce sub-exponential cut-off feature in the gamma-ray spectrum observed by Fermi-LAT. We fit the phase-averaged spectra for 43 young/middle-age pulsars and 14 millisecond pulsars with the model. Our results imply that (1) a larger particle injection at the gap boundaries is more frequent for the pulsar with a larger spin-down power and (2) outer gap with an injection rate much smaller than the Goldreich-Julian value produces observed >10 GeV emissions. Fermi-LAT gamma-ray pulsars show that (i) the observed gamma-ray spectrum below cut-off energy tends to be softer for the pulsar with a higher spin-down rate and (ii) the second peak is more prominent in higher energy bands. Based on the results of the fitting, we describe possible theoretical interpretations for these observational properties. We also briefly discuss Crab-like millisecond pulsars that show phase-aligned radio and gamma-ray pulses.

  18. Radio pulsar disk electrodynamics

    SciTech Connect

    Michel, F.C.

    1983-03-01

    We outline the macroscopic physics of a disk close to an isolated, magnetized, rotating neutron star. It seems likely that such systems are formed from time to time in the universe. The neutron star acts as a Faraday disk dynamo, and the disk acts as both a load and a neutral sheet, permitting the polar cap current to return to the neutron star and also splitting a dipolar magnetic field into two monopolar halves. Michel and Dessler have proposed that such systems are radio pulsars. The dominant energy loss is from the stellar wind torque (giving a deceleration index n = 7/3), and the next contribution is dissipation in the ''auroral'' zones, where the current returns to the star in a sheet about 5 cm thick. The latter is comparable to the observed radio luminosities and is in reasonable accord with the data. The disk itself may be a source of visible radiation comparable to that in pulsed radiofrequency emission. As the pulsar ages, the disk expands and narrows into a ring, the plausible consequence of which could be cessation of pulsed emission at periods of a few seconds.

  19. Pair-Starved Pulsar Magnetospheres

    NASA Technical Reports Server (NTRS)

    Muslimov, Alex G.; Harding, Alice K.

    2009-01-01

    We propose a simple analytic model for the innermost (within the light cylinder of canonical radius, approx. c/Omega) structure of open-magnetic-field lines of a rotating neutron star (NS) with relativistic outflow of charged particles (electrons/positrons) and arbitrary angle between the NS spin and magnetic axes. We present the self-consistent solution of Maxwell's equations for the magnetic field and electric current in the pair-starved regime where the density of electron-positron plasma generated above the pulsar polar cap is not sufficient to completely screen the accelerating electric field and thus establish thee E . B = 0 condition above the pair-formation front up to the very high altitudes within the light cylinder. The proposed mode1 may provide a theoretical framework for developing the refined model of the global pair-starved pulsar magnetosphere.

  20. Star Cluster Buzzing With Pulsars

    NASA Astrophysics Data System (ADS)

    2005-01-01

    left after a massive star explodes as a supernova at the end of its life. The pulsars in Terzan 5 are the product of a complex history. The stars in the cluster formed about 10 billion years ago, the astronomers say. Some of the most massive stars in the cluster exploded and left the neutron stars as their remnants after only a few million years. Normally, these neutron stars would no longer be seen as swiftly-rotating pulsars: their spin would have slowed because of the "drag" of their intense magnetic fields until the "lighthouse" effect is no longer observable. The Green Bank Telescope The Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF (Click on image for GBT gallery) However, the dense concentration of stars in the cluster gave new life to the pulsars. In the core of a globular cluster, as many as a million stars may be packed into a volume that would fit easily between the Sun and our nearest neighbor star. In such close quarters, stars can pass near enough to form new binary pairs, split apart such pairs, and binary systems even can trade partners, like an elaborate cosmic square dance. When a neutron star pairs up with a "normal" companion star, its strong gravitational pull can draw material off the companion onto the neutron star. This also transfers some of the companion's spin, or angular momentum, to the neutron star, thereby "recycling" the neutron star into a rapidly-rotating millisecond pulsar. In Terzan 5, all the pulsars discovered are rotating rapidly as a result of this process. Astronomers previously had discovered three pulsars in Terzan 5, some 28,000 light-years distant in the constellation Sagittarius, but suspected there were more. On July 17, 2004, Ransom and his colleagues used the GBT, and, in a 6-hour observation, found 14 new pulsars, the most ever found in a single observation. "This was possible because of the great sensitivity of the GBT and the new capabilities of our backend processor," said Ingrid Stairs, a professor at the

  1. A Pulsar Eases Off the Brakes

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-10-01

    In 2006, pulsar PSR 18460258 unexpectedly launched into a series of energetic X-ray outbursts. Now a study has determined that this event may have permanently changed the behavior of this pulsar, raising questions about our understanding of how pulsars evolve.Between CategoriesA pulsar a highly magnetized, rotating neutron star that emits a beam of electromagnetic radiation can be powered by one of three mechanisms:Rotation-powered pulsars transform rotational energy into radiation, gradually slowing down in a predictable way.Accretion-powered pulsars convert the gravitational energy of accreting matter into radiation.Magnetars are powered by the decay of their extremely strong magnetic fields.Astronomical classification often results in one pesky object that doesnt follow the rules. In this case, that object is PSR 18460258, a young pulsar categorized as rotation-powered. But in 2006, PSR 18460258 suddenly emitted a series of short, hard X-ray bursts and underwent a flux increase behavior that is usually only exhibited by magnetars. After this outburst, it returned to normal, rotation-powered-pulsar behavior.Since the discovery of this event, scientists have been attempting to learn more about this strange pulsar that seems to straddle the line between rotation-powered pulsars and magnetars.Unprecedented DropOne way to examine whats going on with PSR 18460258 is to evaluate whats known as its braking index, a measure of how quickly the pulsars rotation slows down. For a rotation-powered pulsar, the braking index should be roughly constant. The pulsar then slows down according to a fixed power law, where the slower it rotates, the slower it slows down.In a recent study, Robert Archibald (McGill University) and collaborators report on 7 years worth of timing observations of PSR 18460258 after its odd magnetar-like outburst. They then compare these observations to 6.5 years of data from before the outburst. The team finds that the braking index for this bizarre

  2. Dust Particle Alignment in the Solar Magnetic Field: a Possible Cause of the Cometary Circular Polarization

    NASA Astrophysics Data System (ADS)

    Kolokolova, L.; Koenders, C.; Rosenbush, V.; Kiselev, N.; Ivanova, A.; Afanasiev, V.

    2015-12-01

    Circular polarization (CP) produced by scattering of sunlight on cometary dust has been observed in 11 comets, and showed the values from 0.01% to 0.8%. CP of both signs was observed, although negative (left-handed) CP dominates. Recent observations of several comets using SCORPIO-2 focal reducer at the 6-m BTA telescope of the Special Astrophysical Observatory (Russia) allowed producing maps of CP in the comet continuum filter at 684 nm and red wide-band filter. A gradual increase of the CP with the nucleocentric distance was usually observed. The most plausible reason why the light scattered by cometary dust becomes circularly polarized is alignment of the dust particles in the solar magnetic field. However, in-situ data for comet Halley, indicated that the solar magnetic field could not penetrate deep into the coma, limited by the diamagnetic cavity, and, thus, could not be responsible for the CP observed closer than ~4000 km from the nucleus. Advanced theoretical studies of interaction of the solar magnetic field with cometary ions led to reconsidering the diamagnetic cavity boundary - it is defined by the cometary ionopause, at which a balance is achieved between the magnetic pressure in the magnetic pile up region and the neutral friction force. The nucleocentric distance where this balance is achieved depends on the comet characteristics, increasing with the increase of the gas production rate, and local solar wind conditions, approximatively given by the comet location, specifically, its heliocentric distance. The size of diamagnetic cavity was calculated for the conditions of our CP observations. We found that it could be as small as dozens (comets 73P, 8P, 290P) or hundreds (comets Q4 NEAT, K1 PanSTARRS, Tago-Sato-Kosaka) kilometers. Thus, non-zero CP close to the nucleus can be easily explained by the interaction of the dust particles with the solar magnetic field. This mechanism also explains the observed increase in CP with the distance from the

  3. Birth and Evolution of Isolated Radio Pulsars

    NASA Astrophysics Data System (ADS)

    Faucher-Giguère, Claude-André; Kaspi, Victoria M.

    2006-05-01

    We investigate the birth and evolution of Galactic isolated radio pulsars. We begin by estimating their birth space velocity distribution from proper-motion measurements of Brisken and coworkers. We find no evidence for multimodality of the distribution and favor one in which the absolute one-dimensional velocity components are exponentially distributed and with a three-dimensional mean velocity of 380+40-60 km s-1. We then proceed with a Monte Carlo-based population synthesis, modeling the birth properties of the pulsars, their time evolution, and their detection in the Parkes and Swinburne Multibeam surveys. We present a population model that appears generally consistent with the observations. Our results suggest that pulsars are born in the spiral arms, with a galactocentric radial distribution that is well described by the functional form proposed by Yusifov & Küçük, in which the pulsar surface density peaks at radius ~3 kpc. The birth spin period distribution extends to several hundred milliseconds, with no evidence of multimodality. Models that assume the radio luminosities of pulsars to be independent of the spin periods and period derivatives are inadequate, as they lead to the detection of too many old simulated pulsars in our simulations. Dithered radio luminosities proportional to the square root of the spin-down luminosity accommodate the observations well and provide a natural mechanism for the pulsars to dim uniformly as they approach the death line, avoiding an observed pileup on the latter. There is no evidence for significant torque decay (due to magnetic field decay or otherwise) over the lifetime of the pulsars as radio sources (~100 Myr). Finally, we estimate the pulsar birthrate and total number of pulsars in the Galaxy.

  4. Aligned and exchange-coupled L1{sub 0} (Fe,Co)Pt-based magnetic films

    SciTech Connect

    Liu, Y.; George, T. A.; Skomski, R.; Sellmyer, D. J.

    2012-04-01

    Films of aligned L1{sub 0}-structure (Fe,Co)Pt with fcc Fe(Co,Pt) are synthesized by co-sputtering Fe, Co, and Pt on an (001) MgO substrate with in situ heating at 830 deg. C. The nanostructures and magnetic properties of the films are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and superconducting quantum interference device (SQUID). The compositions of the samples (Fe,Co){sub x}Pt{sub 1-x} are designed to maintain an atomic Fe: Co ratio of 65: 35 while increasing the Fe,Co content in each successive sample. In samples with low Fe and Co concentration, the XRD patterns exhibit three strong peaks, namely L1{sub 0} (Fe,Co)Pt (001), L1{sub 0} (Fe,Co)Pt (002), and MgO (002). A fourth peak is observed in samples with high Fe and Co concentration and identified as fcc (002). The XRD patterns confirm the formation of L1{sub 0}-ordered (Fe,Co)Pt and its epitaxial growth on MgO. TEM shows that the (Fe,Co)Pt films form isolated magnetic grains of about 100 nm in diameter. Hysteresis-loop measurements show that the increase of the Fe,Co concentration from 57.3 to 68.3 at % enhances the saturation magnetization M{sub s} from 1245 emu/cm{sup 3} to 1416 emu/cm{sup 3}, and the coercivity decreases from 32 kOe to 8.9 kOe. The nominal maximum energy product per grain is 64 MGOe.

  5. Numerical simulations of Hall-effect plasma accelerators on a magnetic-field-aligned mesh.

    PubMed

    Mikellides, Ioannis G; Katz, Ira

    2012-10-01

    The ionized gas in Hall-effect plasma accelerators spans a wide range of spatial and temporal scales, and exhibits diverse physics some of which remain elusive even after decades of research. Inside the acceleration channel a quasiradial applied magnetic field impedes the current of electrons perpendicular to it in favor of a significant component in the E×B direction. Ions are unmagnetized and, arguably, of wide collisional mean free paths. Collisions between the atomic species are rare. This paper reports on a computational approach that solves numerically the 2D axisymmetric vector form of Ohm's law with no assumptions regarding the resistance to classical electron transport in the parallel relative to the perpendicular direction. The numerical challenges related to the large disparity of the transport coefficients in the two directions are met by solving the equations on a computational mesh that is aligned with the applied magnetic field. This approach allows for a large physical domain that extends more than five times the thruster channel length in the axial direction and encompasses the cathode boundary where the lines of force can become nonisothermal. It also allows for the self-consistent solution of the plasma conservation laws near the anode boundary, and for simulations in accelerators with complex magnetic field topologies. Ions are treated as an isothermal, cold (relative to the electrons) fluid, accounting for the ion drag in the momentum equation due to ion-neutral (charge-exchange) and ion-ion collisions. The density of the atomic species is determined using an algorithm that eliminates the statistical noise associated with discrete-particle methods. Numerical simulations are presented that illustrate the impact of the above-mentioned features on our understanding of the plasma in these accelerators.

  6. Numerical simulations of Hall-effect plasma accelerators on a magnetic-field-aligned mesh.

    PubMed

    Mikellides, Ioannis G; Katz, Ira

    2012-10-01

    The ionized gas in Hall-effect plasma accelerators spans a wide range of spatial and temporal scales, and exhibits diverse physics some of which remain elusive even after decades of research. Inside the acceleration channel a quasiradial applied magnetic field impedes the current of electrons perpendicular to it in favor of a significant component in the E×B direction. Ions are unmagnetized and, arguably, of wide collisional mean free paths. Collisions between the atomic species are rare. This paper reports on a computational approach that solves numerically the 2D axisymmetric vector form of Ohm's law with no assumptions regarding the resistance to classical electron transport in the parallel relative to the perpendicular direction. The numerical challenges related to the large disparity of the transport coefficients in the two directions are met by solving the equations on a computational mesh that is aligned with the applied magnetic field. This approach allows for a large physical domain that extends more than five times the thruster channel length in the axial direction and encompasses the cathode boundary where the lines of force can become nonisothermal. It also allows for the self-consistent solution of the plasma conservation laws near the anode boundary, and for simulations in accelerators with complex magnetic field topologies. Ions are treated as an isothermal, cold (relative to the electrons) fluid, accounting for the ion drag in the momentum equation due to ion-neutral (charge-exchange) and ion-ion collisions. The density of the atomic species is determined using an algorithm that eliminates the statistical noise associated with discrete-particle methods. Numerical simulations are presented that illustrate the impact of the above-mentioned features on our understanding of the plasma in these accelerators. PMID:23214706

  7. Pulsar Polar Cap and Slot Gap Models: Confronting Fermi Data

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2012-01-01

    Rotation-powered pulsars are excellent laboratories for studying particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields and relativity. I will review acceleration and gamma-ray emission from the pulsar polar cap and slot gap. Predictions of these models can be tested with the data set on pulsars collected by the Large Area Telescope on the Fermi Gamma-Ray Telescope over the last four years, using both detailed light curve fitting and population synthesis.

  8. Correlation between magnetic and electric field perturbations in the field-aligned current regions deduced from DE 2 observations

    NASA Technical Reports Server (NTRS)

    Ishii, M.; Sugiura, M.; Iyemori, T.; Slavin, J. A.

    1992-01-01

    The satellite-observed high correlations between magnetic and electric field perturbations in the high-latitude field-aligned current regions are investigated by examining the dependence of the relationship between Delta-B and E on spatial scale, using the electric and magnetic field data obtained by DE 2 in the polar regions. The results are compared with the Pedersen conductivity inferred from the international reference ionosphere model and the Alfven wave velocity calculated from the in situ ion density and magnetic field measurements.

  9. Particles generation and cooling of pulsar magnetosphere

    NASA Astrophysics Data System (ADS)

    Kryvdyk, Volodymyr

    2016-07-01

    The generation of secondary particles (neutrinos, neutrons, electrons, protons, mesons) and gamma-ray photons because of nuclear interactions in magnetospheres of pulsars and magnetars are considered. By means of the nuclear interactions, the primarily accelerated electrons and protons in the pulsar magnetosphere will be generated secondary particles and photons, which will also generate particles and gamma-ray photons by cascading interactions. Namely from these particles and photons, which arise because of multiple interactions, and will consist of the pulsar magnetosphere. It is important that in pulsar magnetosphere will generate the powerful flux of neutral particles (neutrons) and a neutrino that do not interact with the magnetic field and are free to go out with her, bringing out energy and cooling magnetosphere. So, we obtain a powerful new channel cooling pulsar magnetosphere. This is a new result, which shows that cooling of pulsar and magnetars is not only a result of the processes generating neutrinos in the inner core, but also due to the generation of neutrino and neutrons in the pulsar magnetosphere and subsequently their exit in the interstellar environment.

  10. Synthesis of double-wall nanoscrolls intercalated with polyfluorinated cationic surfactant into layered niobate and their magnetic alignment.

    PubMed

    Nabetani, Yu; Uchikoshi, Akino; Miyajima, Souki; Hassan, Syed Zahid; Ramakrishnan, Vivek; Tachibana, Hiroshi; Yamato, Masafumi; Inoue, Haruo

    2016-04-28

    The orientation of nanomaterials with an anisotropic nature such as nanoscrolls is very important for realizing their efficient and sophisticated functions in devices, including nanostructured electrodes in artificial photosynthetic cells. In this study, we successfully synthesized a nanoscroll by intercalation of a cationic polyfluorinated surfactant into the interlayer spaces of layered niobate and successfully controlled its orientation by applying an external magnetic field in water. The exfoliated niobate nanosheets were efficiently rolled-up to form nanoscrolls, which have a fine layered structure (d020 = 3.64 nm), by mixing with heptafluorobutanoylaminoethylhexadecyldimethylammonium bromide (C3F-S) in water, whereas the corresponding hydrocarbon analogue (C3H-S) did not form nanoscrolls. The synthetic yield for the purified and isolated nanoscrolls from the nanosheets was estimated to be 62% by weight. It was confirmed by atomic force microscopy (AFM) that most of the niobate nanosheets (98%) were converted to nanoscrolls. An external magnetic field was applied to the nanoscrolls to force them to align. After the magnetic treatment, the orientation of the nanoscrolls was investigated by small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The non-uniform ring distribution of the SAXS patterns indicates that the nanoscrolls dispersed in water were aligned well on applying the magnetic field. The long axis of the nanoscroll was oriented in the direction of the applied field and long nanoscrolls were aligned more efficiently. When the intercalated C3F-S molecules were removed from the nanoscrolls by treating with an acid, the resultant nanoscrolls did not exhibit magnetic alignment, strongly suggesting that C3F-S plays an important role in the orientation control of the nanoscrolls by the magnetic field. PMID:27074750

  11. Pulsar Astronomy with GLAST

    SciTech Connect

    Thorsett, Stephen

    2005-09-12

    Despite their name, the rotation powered neutron stars called "radio pulsars" are actually most luminous in the hard x-ray and gamma-ray bands. GLAST will be the first high-energy satellite with sufficient sensitivity to detect and study large numbers of these pulsars. I will review GLAST's key science goals in pulsar astrophysics and summarize the extraordinary advances in low-energy pulsar surveys since the days of CGRO.

  12. Braking Index of Isolated Pulsars

    NASA Astrophysics Data System (ADS)

    Hamil, Oliver; Stone, Jirina; Urbanec, Martin; Urbancova, Gabriela

    2015-04-01

    Isolated pulsars are rotating neutron stars with accurately measured angular velocities Ω, and their time derivatives which show unambiguously that the pulsars are slowing down. The exact mechanism of the spin-down is a question of debate in detail, but the commonly accepted view is that it arises through emission of magnetic dipole radiation (MDR). The energy loss by a rotating pulsar is proportional to a model dependent power of Ω. This relation leads to the power law Ω˙ = -K Ωn where n is called the braking index, equal to the ratio (ΩΩ̈)/ Ω˙2 . The simple MDR model predicts the value of n = 3, but observations of isolated pulsars provide rather precise values of n, individually accurate to a few percent or better, in the range 1 < n < 2.8, which is consistently less than the predictions of the MDR model. In this work, we study the dynamical limits of the MDR model as a function of angular velocity. The effects of variation in the rest mass, the moment of inertia, and the dependence on a realistic Equation of State of the rotating star are considered. Furthermore, we introduce a simulated superfluid effect by which the angular momentum of the core is eliminated from the calculation.

  13. Sting-free measurements on a magnetically supported right circular cylinder aligned with the free stream

    NASA Astrophysics Data System (ADS)

    Higuchi, Hiroshi; Sawada, Hideo; Kato, Hiroyuki

    The flow over cylinders of varying fineness ratio (length to diameter) aligned with the free stream was examined using a magnetic suspension and balance system in order to avoid model support interference. The drag coefficient variation of a right circular cylinder was obtained for a wide range of fineness ratios. Particle image velocimetry (PIV) was used to examine the flow field, particularly the behaviour of the leading-edge separation shear layer and its effect on the wake. Reynolds numbers based on the cylinder diameter ranged from 5105, while the major portion of the experiment was conducted at ReD=1.0×105. For moderately large fineness ratio, the shear layer reattaches with subsequent growth of the boundary layer, whereas over shorter cylinders, the shear layer remains detached. Differences in the wake recirculation region and the immediate wake patterns are clarified in terms of both the mean velocity and turbulent flow fields, including longitudinal vortical structures in the cross-flow plane of the wake. The minimum drag corresponded to the fineness ratio for which the separated shear layer reattached at the trailing edge of the cylinder. The base pressure was obtained with a telemetry technique. Pressure fields and aerodynamic force fluctuations are also discussed.

  14. HSX: Engineering Design and Fabrication of the main Magnet Coils, Vacuum Vessel and Support/Alignment Structure

    NASA Astrophysics Data System (ADS)

    Anderson, F. Simon B.; Anderson, D. T.; Almagri, A. F.; Matthews, P. G.; Probert, P. H.; Shohet, J. L.; Talmadge, J. N.

    1996-11-01

    The HSX device, with a magnetic field consisting of a SINGLE dominant HELICAL component, has a set of 48 twisted main magnetic field coils. Engineering analysis (ANSYS) has resulted in a set of construction and alignment constraints and goals for field accuracy and coil structural strength. Close proximity of the main coil set to the magnetic separatrix imposes space restrictions on the vacuum vessel. Fabrication of the vessel using explosive techniques, and the structural analysis for the stresses in the vacuum chamber will be discussed. Crucial to the integrity of the quasihelical magnetic field is the accurate positioning of the magnet coils and maintenance of the position during operation. The design and construct- ion of the completed support structure for HSX coils will also be presented. *** Work supported by U.S Dept. of Energy Grant DE-FG02-93ER54222

  15. Controlling anisotropic drug diffusion in lipid-Fe3O4 nanoparticle hybrid mesophases by magnetic alignment.

    PubMed

    Vallooran, Jijo J; Negrini, Renata; Mezzenga, Raffaele

    2013-01-29

    We present a new strategy to control the anisotropic diffusion of hydrophilic drugs in lyotropic liquid crystals via the dispersion of magnetic nanoparticles in the mesophase, followed by reorientation of the mesophase domains via an external magnetic field. We select a lipid reverse hexagonal phase doped with magnetic iron oxide nanoparticles and glucose and caffeine as model hybrid mesophase and hydrophilic drugs, respectively. Upon cooling through the disorder-order phase transition of the hexagonal phase and under exposure to an external moderate magnetic field (1.1 T), both the nanoparticles and the hexagonal domains align with their columnar axes along the field direction. As a result, the water nanochannels of the inverted hexagonal domains also align parallel to the field direction, leading to a drug diffusion coefficient parallel to the field direction much larger than what was measured perpendicularly: in the case of glucose, for example, this difference in diffusion coefficients approaches 1 order of magnitude. Drug diffusion of the unaligned reverse hexagonal phase, which consists of randomly distributed domains, shows values in between the parallel and transversal diffusion values. This study shows that modifying the overall alignment of anisotropic mesophases via moderate external fields is a valuable means to control the corresponding transport tensor of the mesophase and demonstrates that the orientation of the domains plays an important role in the diffusion process of foreign hydrophilic molecules. PMID:23302008

  16. Self-propelled in-tube shuttle and control system for automated measurements of magnetic field alignment

    SciTech Connect

    Boroski, W.N.; Nicol, T.H. ); Pidcoe, S.V. . Space Systems Div.); Zink, R.A. )

    1990-03-01

    A magnetic field alignment gauge is used to measure the field angle as a function of axial position in each of the magnets for the Superconducting Super Collider (SSC). Present measurements are made by manually pushing the through the magnet bore tube and stopping at intervals to record field measurements. Gauge location is controlled through graduation marks and alignment pins on the push rods. Field measurements are recorded on a logging multimeter with tape output. Described is a computerized control system being developed to replace the manual procedure for field alignment measurements. The automated system employs a pneumatic walking device to move the measurement gauge through the bore tube. Movement of the device, called the Self-Propelled In-Tube Shuttle (SPITS), is accomplished through an integral, gas driven, double-acting cylinder. The motion of the SPITS is transferred to the bore tube by means of a pair of controlled, retractable support feet. Control of the SPITS is accomplished through an RS-422 interface from an IBM-compatible computer to a series of solenoid-actuated air valves. Direction of SPITS travel is determined by the air-valve sequence, and is managed through the control software. Precise axial position of the gauge within the magnet is returned to the control system through an optically-encoded digital position transducer attached to the shuttle. Discussed is the performance of the transport device and control system during preliminary testing of the first prototype shuttle. 1 ref., 7 figs.

  17. Perspectives on Gamma-Ray Pulsar Emission

    NASA Astrophysics Data System (ADS)

    Baring, Matthew G.

    2011-09-01

    Pulsars are powerful sources of radiation across the electromagnetic spectrum. This paper highlights some theoretical insights into non-thermal, magnetospheric pulsar gamma-ray radiation. These advances have been driven by NASA's Fermi mission, launched in mid-2008. The Large Area Telescope (LAT) instrument on Fermi has afforded the discrimination between polar cap and slot gap/outer gap acceleration zones in young and middle-aged pulsars. Altitude discernment using the highest energy pulsar photons will be addressed, as will spectroscopic interpretation of the primary radiation mechanism in the LAT band, connecting to both polar cap/slot gap and outer gap scenarios. Focuses will mostly be on curvature radiation and magnetic pair creation, including population trends that may afford probes of the magnetospheric accelerating potential.

  18. Relation between the alignment dependence of coercive force decrease ratio and the angular dependence of coercive force of ferrite magnets

    NASA Astrophysics Data System (ADS)

    Matsuura, Yutaka; Kitai, Nobuyuki; Hosokawa, Seiichi; Hoshijima, Jun

    2016-08-01

    The relation of the coercive force decrease ratio (CFDR) and the angular dependence of the coercive force (ADCF) of ferrite magnets and their temperature properties were investigated. When we compared that against the angle of the magnetization reverse area obtained from these calculation results, which was obtained from the Gaussian distribution of the grain alignment and the postulation that every grain follows the Kondorskii law or the 1/cos θ law, and against the angle of the reverse magnetization area calculated from the experiment CFDR data of these magnets, it was found that this latter expanded at room temperature, to 36° from the calculated angle, for magnet with α=0.96. It was also found that, as temperature increased from room temperature to 413 K, the angle of the reverse magnetization area of ferrite magnets obtained from the experiment data expanded from 36° to 41°. When we apply these results to the temperature properties of ADCF, it seems that the calculated ADCF could qualitatively and reasonably explain these temperature properties, even though the difference between the calculated angular dependence and the experimental data still exists in the high angle range. These results strongly suggest that the coercive force of these magnets is determined by the magnetic domain wall motion. The magnetic domain walls are strongly pinned at tilted grains, and when the domain walls are de-pinned from their pinning sites, the coercive force is determined.

  19. High-Energy Pulsar Models: Developments and New Questions

    NASA Technical Reports Server (NTRS)

    Venter, C.; Harding, A. K.

    2014-01-01

    The past few years have seen a major advance in observational knowledge of high-energy (HE) pulsars. The Fermi Large Area Telescope (LAT) and AGILE have increased the number of known gamma-ray pulsars by an order of magnitude, its members being divided roughly equally among millisecond pulsars (MSPs), young radio-loud pulsars, and young radio-quiet pulsars. Many new and diverse emission characteristics are being measured, while radio and X-ray follow-up observations increase the pulsar detection rate and enrich our multiwavelength picture of these extreme sources. The wealth of new data has provided impetus for further development and improvement of existing theoretical pulsar models. Geometric light curve (LC) modelling has uncovered three broad classes into which HE pulsars fall: those where the radio profile leads, is aligned with, or lags the gamma-ray profile. For example, the original MSP and original black widow system are members of the second class, requiring co-located emission regions and thereby breaking with traditional notions of radio emission origin. These models imply narrow accelerator gaps in the outer magnetosphere, indicating copious pair production even in MSP magnetospheres that were previously thought to be pair-starved. The increased quality and variety of the LCs necessitate construction of ever more sophisticated models. We will review progress in global magnetosphere solutions which specify a finite conductivity on field lines above the stellar surface, filling the gap between the standard vacuum and force-free (FF; plasma-filled) models. The possibility of deriving phase-resolved spectra for the brightest pulsars, coupled with the fact that the HE pulsar population is sizable enough to allow sampling of various pulsar geometries, will enable much more stringent testing of future radiation models. Reproduction of the observed phase-resolved behavior of this disparate group will be one of the next frontiers in pulsar science, impacting on

  20. Multi-wavelength analysis of young pulsars: an overview.

    NASA Astrophysics Data System (ADS)

    Maritz, J. M.; Meintjes, P. J.; Buchner, S. J.

    Young pulsars emit a broad spectrum of radiation that range from radio to gamma ray energies. These pulsars are considered as rotation powered pulsars that spin rapidly and are strongly magnetized. Following the discovery of pulsars nearly four decades ago, the population of known pulsars already reached a number of roughly two thousand. This known population of pulsars includes both millisecond and normal pulsars that were discovered by several telescopes. We analyze both HartRAO radio data and Fermi gamma ray data of the Vela pulsar. We also explore a proposed method of probing the electron column density of the instellar gas through analyzing the gamma ray diffuse data associated with the Fermi two-year observation. This paper serves as an overview of gamma ray and radio timing analysis of bright young pulsars with respect to the use of open source timing analysis tools (Tempo2, Psrchive, Enrico and the Fermi tools). We reason that the multi-wavelength picture of pulsars can help clarify questions regarding the origin of pulsed radiation emission mechanisms in several energy bands, but that radio observations will prove adequate for timing noise analysis, given the accurate and long radio data sets. The process of identifying gravitational waves in timing data, rests on gaining a deeper insight into the timing noise phenomena.

  1. Ensemble Pulsar Time Scale

    NASA Astrophysics Data System (ADS)

    Yin, D. S.; Gao, Y. P.; Zhao, S. H.

    2016-05-01

    Millisecond pulsars can generate another type of time scale that is totally independent of the atomic time scale, because the physical mechanisms of the pulsar time scale and the atomic time scale are quite different from each other. Usually the pulsar timing observational data are not evenly sampled, and the internals between data points range from several hours to more than half a month. What's more, these data sets are sparse. And all these make it difficult to generate an ensemble pulsar time scale. Hence, a new algorithm to calculate the ensemble pulsar time scale is proposed. Firstly, we use cubic spline interpolation to densify the data set, and make the intervals between data points even. Then, we employ the Vondrak filter to smooth the data set, and get rid of high-frequency noise, finally adopt the weighted average method to generate the ensemble pulsar time scale. The pulsar timing residuals represent clock difference between the pulsar time and atomic time, and the high precision pulsar timing data mean the clock difference measurement between the pulsar time and atomic time with a high signal to noise ratio, which is fundamental to generate pulsar time. We use the latest released NANOGRAV (North American Nanohertz Observatory for Gravitational Waves) 9-year data set to generate the ensemble pulsar time scale. This data set is from the newest NANOGRAV data release, which includes 9-year observational data of 37 millisecond pulsars using the 100-meter Green Bank telescope and 305-meter Arecibo telescope. We find that the algorithm used in this paper can lower the influence caused by noises in timing residuals, and improve long-term stability of pulsar time. Results show that the long-term (> 1 yr) frequency stability of the pulsar time is better than 3.4×10-15.

  2. Pulsar gamma-rays: Spectra luminosities and efficiencies

    NASA Technical Reports Server (NTRS)

    Harding, A. K.

    1980-01-01

    The general characteristics of pulsar gamma ray spectra are presented for a model where the gamma rays are produced by curvature radiation from energetic particles above the polar cap and attenuated by pair production. The shape of the spectrum is found to depend on pulsar period, magnetic field strength, and primary particle energy. By a comparison of numerically calculated spectra with the observed spectra of the Crab and Vela pulsars, it is determined that primary particles must be accelerated to energies of about 3 x 10 to the 7th power mc sq. A genaral formula for pulsar gamma ray luminosity is determined and is found to depend on period and field strength.

  3. Age Discrepancy Throws Pulsar Theories into Turmoil

    NASA Astrophysics Data System (ADS)

    2002-03-01

    Space Research at the Massachusetts Institute of Technology, another one of the researchers. By tracking the pulsar's motion for more than a decade, the astronomers were able to calculate that it is traveling through space at more than 500,000 miles per hour. At that speed, the pulsar required about 64,000 years to travel from its birthplace -- the site of the supernova explosion -- to its present location. That means, the astronomers say, that the pulsar is about 64,000 years old. This age, however, differs significantly from the age estimated by another method which has been used by astronomers for decades. This method uses measurements of the rotation rate of the neutron star and the tiny amount by which that rotation slows over time to arrive at an estimate called the pulsar's "characteristic age." For B1951+32, that method produced an estimated age of 107,000 years. "Now we have a pulsar that is much younger than we thought. In 2000, a different pulsar was shown to be significantly older than we thought. That means that some of the assumptions that have gone into estimating the ages of these objects are unjustified," Migliazzo said. The pulsar's rotation is thought to slow because the neutron star's powerful magnetic field acts as a giant dynamo, emitting light, radio waves and other electromagnetic radiation as the star rotates. The energy lost by emitting the radiation results in the star's rotation slowing down. Previous estimates of pulsar ages have assumed that all pulsars are born spinning much faster than we see them now, that the physical characteristics of the pulsar such as its mass and magnetic-field strength do not change with time, and that the slowdown rate can be estimated by applying the physics of a magnet spinning in a vacuum. "With one pulsar older than the estimates and one younger, we now realize that we have to question all three of these assumptions," said Gaensler. Further research, the scientists say, should help them understand more about

  4. The effect of stress on the magnetic alignment of hot-pressed Fe-Nd-B magnets derived by computer simulation

    SciTech Connect

    Park, J.D.; Kwak, C.S. . Dept. of Mechanical Engineering); Jang, T.S. . Dept. of Metallurgical Engineering); Jeung, W.Y. . Division of Materials)

    1993-11-01

    The distribution of stress during hot pressing of a cast (Fe,Cu)-Nd-B magnet was simulated by SPID. The calculated stress components were compression stress ([sigma][sub z]) and shear stress ([tau][sub rz]). The stress component causing the magnetic alignment during hot pressing was [sigma][sub z][center dot][tau][sub rz] virtually played no role in the magnetic alignment. Generally, [sigma][sub z] was higher at the center of a specimen and decreased gradually along the radial direction to the periphery of a specimen during hot pressing, while [tau][sub rz] was negligible and uniformly distributed throughout the specimen. Random orientation and grain growth of [phi] were evident at the outer part of a specimen where [sigma][sub z] is very weak.

  5. The Vela Pulsar and Its Synchrotron Nebula

    NASA Astrophysics Data System (ADS)

    Helfand, D.; Gotthelf, E.; Halpern, J.

    2000-10-01

    We present high-resolution Chandra X-ray observations of PSR0833-45, the 89 ms pulsar associated with the Vela supernova remnant. We have acquired two observations of the pulsar separated by one month to search for morphological changes in the pulsar and its environment following an extreme glitch in its rotation frequency. We find a well-resolved nebula with a morphology remarkably similar to the torus-like structure observed in the Crab Nebula, along with an axial Crab-like jet. The flux from the pulsar is found to be steady to within 0.75 %; the 3 sigma limit on the fractional increase in the pulsar's X-ray flux is <10-5 of the inferred glitch energy. We use this limit to constrain parameters of glitch models and neutron star structure. We do find a significant increase in the flux of the nebula's outer torus; if associated with the glitch, the inferred propogation velocity is ~0.5c, similar to that seen in the brightening of the Crab Nebula wisps. We propose an explanation for the X-ray structure of the Vela synchrotron nebula based on a model originally developed for the Crab Nebula. In this model, the bright, arc-shaped X-ray wisps are the shocked termination of a relativistic equatorial pulsar wind which is contained within the surrounding kidney-bean shaped synchrotron nebula which comprises the post-shock, but still relativistic, flow. In a departure from the Crab model, the magnetization parameter of the Vela pulsar wind is required to be of order unity; this is consistent with the simplest MHD transport of magnetic field from the pulsar to the nebula, where B ~ 4 x 10-4G.

  6. rf surface resistance of a magnetically aligned sintered pellet of YBa2Cu3O7

    NASA Astrophysics Data System (ADS)

    Padamsee, H.; Kirchgessner, J.; Moffat, D.; Rubin, D.; Shu, Q. S.; Hart, H. R.; Gaddipati, A. R.

    1990-02-01

    rf (radio frequency) properties of polycrystalline ceramic material are substantially inferior to those of the best microtwinned crystals. At 6 GHz and 77 K, the best surface resistance values for ceramics are ˜20 mΩ, compared to <0.5 mΩ for high-quality crystals. The microwave resistance is observed to increase at higher rf fields for ceramics, e.g., two orders of magnitude between 0.1 and 10 Oe, but remains low for crystals. A possible reason for the inferior properties in randomly oriented polycrystalline ceramics is related to the anisotropy of the superconducting properties; crystals aligned unfavorably with the sampling rf field could be responsible for the high resistance. Another possibility is related to the difficulty of carrying current across the grain boundaries due to weak links arising from second phases, impurities, cracks, etc., at the boundaries. To elucidate the contribution from these two potential problem sources, we have measured the rf properties at 6 GHz of an oriented polycrystalline ceramic pellet prepared from a suspension of high purity powder in a 4-T magnetic field. Samples were characterized by x-ray diffraction, light microscopy, transmission electron microscopy, x-ray rocking curves, and x-ray pole figure studies, indicating a high degree of alignment, although not as complete as in epitaxial thin films. At liquid He temperature, the surface resistance is 28 times lower when the c axis is perpendicular to the plane in which rf currents flow than when the c axis is in the plane. At 77 K, the surface resistance is 3 mΩ, a significant improvement over the properties of the best randomly oriented material reported. At 4 K the resistance improves to 0.3 mΩ. These resistances were all measured with rf fields below 0.1 Oe, but increased by one order of magnitude when the rf field was increased to 10 Oe, as in the polycrystalline material. Our results indicate that while the low-field rf behavior is strongly improved by orientation

  7. Gravitational waves from pulsars with measured braking index

    NASA Astrophysics Data System (ADS)

    de Araujo, José C. N.; Coelho, Jaziel G.; Costa, Cesar A.

    2016-09-01

    We study the putative emission of gravitational waves (GWs) in particular for pulsars with measured braking index. We show that the appropriate combination of both GW emission and magnetic dipole brakes can naturally explain the measured braking index, when the surface magnetic field and the angle between the magnetic dipole and rotation axes are time dependent. Then we discuss the detectability of these very pulsars by aLIGO and the Einstein Telescope. We call attention to the realistic possibility that aLIGO can detect the GWs generated by at least some of these pulsars, such as Vela, for example.

  8. Avoiding Tokamak Disruptions by Applying Static Magnetic Fields That Align Locked Modes with Stabilizing Wave-Driven Currents.

    PubMed

    Volpe, F A; Hyatt, A; La Haye, R J; Lanctot, M J; Lohr, J; Prater, R; Strait, E J; Welander, A

    2015-10-23

    Nonrotating ("locked") magnetic islands often lead to complete losses of confinement in tokamak plasmas, called major disruptions. Here locked islands were suppressed for the first time, by a combination of applied three-dimensional magnetic fields and injected millimeter waves. The applied fields were used to control the phase of locking and so align the island O point with the region where the injected waves generated noninductive currents. This resulted in stabilization of the locked island, disruption avoidance, recovery of high confinement, and high pressure, in accordance with the expected dependencies upon wave power and relative phase between the O point and driven current.

  9. CHANGES IN THE CRAB PULSAR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Scientists are learning more about how pulsars work by studying a series of Hubble Space Telescope images of the heart of the Crab Nebula. The images, taken over a period of several months, show that the Crab is a far more dynamic object than previously understood. At the center of the nebula lies the Crab Pulsar. The pulsar is a tiny object by astronomical standards -- only about six miles across -- but has a mass greater than that of the Sun and rotates at a rate of 30 times a second. As the pulsar spins its intense magnetic field whips around, acting like a sling shot, accelerating subatomic particles and sending them hurtling them into space at close to the speed of light. The tiny pulsar and its wind are the powerhouse for the entire Crab Nebula, which is 10 light-years across -- a feat comparable to an object the size of a hydrogen atom illuminating a volume of space a kilometer across. The three pictures shown here, taken from the series of Hubble images, show dramatic changes in the appearance of the central regions of the nebula. These include wisp-like structures that move outward away from the pulsar at half the speed of light, as well as a mysterious 'halo' which remains stationary, but grows brighter then fainter over time. Also seen are the effects of two polar jets that move out along the rotation axis of the pulsar. The most dynamic feature seen -- a small knot that 'dances around' so much that astronomers have been calling it a 'sprite' -- is actually a shock front (where fast-moving material runs into slower-moving material)in one of these polar jets. The telescope captured the images with the Wide Field and Planetary Camera 2 using a filter that passes light of wavelength around 550 nanometers, near the middle of the visible part of the spectrum. The Crab Nebula is located 7,000 light-years away in the constellation Taurus. Credit: Jeff Hester and Paul Scowen (Arizona State University), and NASA

  10. Instability of field-aligned electron-cyclotron waves in a magnetic mirror plasma with anisotropic temperature

    NASA Astrophysics Data System (ADS)

    Grishanov, N. I.; Azarenkov, N. A.

    2016-08-01

    > Dispersion characteristics have been analysed for field-aligned electron-cyclotron waves (also known as right-hand polarized waves, extraordinary waves or whistlers) in a cylindrical magnetic mirror plasma including electrons with anisotropic temperature. It is shown that the instability of these waves is possible only in the range below the minimal electron-cyclotron frequency, which is much lower than the gyrotron frequency used for electron-cyclotron resonance power input into the plasma, under the condition where the perpendicular temperature of the resonant electrons is larger than their parallel temperature. The growth rates of whistler instability in the two magnetized plasma models, where the stationary magnetic field is either uniform or has a non-uniform magnetic mirror configuration, are compared.

  11. Temporal evolution of isolated pulsars; Age-Tau problem

    NASA Astrophysics Data System (ADS)

    Kutukcu, Pinar; Ankay, Askin

    2014-09-01

    In this work, we examine the evolution of a sample of isolated pulsars connected to Galactic supernova remnants (SNRs) five of which have measured braking indices. For the pulsars in our sample without measured braking index values we have calculated the estimated braking indices adopting the supernova remnant ages as the real ages of pulsar-SNR pairs assuming short initial spin periods (10-30 ms). Some of these pulsars exhibit at least one order of magnitude differences between the characteristic pulsar ages and the ages of the SNRs they are physically connected to. We adopt an exponential B-decay model, which is the decrease in the surface dipole magnetic field component perpendicular to the spin axis, in order to explain the evolutions of such pulsars on the spin period versus the spin period change diagram. The decay can be either due to a decrease in the angle between the spin axis and the magnetic axis and/or due to a decay in the surface dipole magnetic field itself. Based on a previous work by Ankay et al. on the X-ray pulsar 1E1207-5209 we show that there are some other young isolated pulsars which experience B-decay as the predominant effect throughout their observational lifetimes. As compared to ordinary radio pulsars the magneto-dipole radiation torques are not so effective for such pulsars and the characteristic decay times are significantly shorter (about three orders of magnitude). Assuming simple exponential evolutionary tracks we give possible physical interpretations for this new class of neutron stars by examining the observational data of each pulsar-SNR pair.

  12. Post-Outburst Observations of the Magnetically Active Pulsar J1846-0258: A New Braking Index, Increased Timing Noise, and Radiative Recovery

    NASA Technical Reports Server (NTRS)

    Livingstone, Margaret A.; Ng, C.-Y.; Kaspi, Victoria M.; Gavriil, Fotis P.; Gotthelf, E. V.

    2010-01-01

    The approx.800yr-old pulsar J1846-0258 is a unique transition object between rotation-powered pulsars and magnetars: though behaving like a rotation-powered pulsar most of the time, in 2006 it exhibited a distinctly magnetar-like outburst accompanied by a large glitch. Here we present X-ray timing observations taken with the Rossi X-ray Timing Explorer over a 2.2-yr period after the X-ray outburst and glitch had recovered. We observe that the braking index of the pulsar, previously measured to be n = 2.65+/-0.01, is now n = 2.16+/-0.13, a decrease of 18+/-5%. We also note a persistent increase in the timing noise relative to the pre-outburst level. Despite the timing changes, a 2009 Chandra X-ray Observatory observation shows that the X-ray flux and spectrum of the pulsar and its wind nebula are consistent with the quiescent levels observed in 2000. Subject headings: pulsars: general pulsars: individual (PSR J1846-0258) supernovae: individual (Kes 75 X-rays: stars)

  13. Polarization Properties of Rotation Powered Pulsars

    NASA Technical Reports Server (NTRS)

    Harding Alice K.

    2009-01-01

    Polarization measurements of rotation-powered pulsars and their nebulae have unique diagnostic potential. The polarization position angle of the pulsar wind nebula, as is know for the Crab pulsar, can tell us the orientation of the spin axis. Phase-resolved polarimetry of pulsars has had enormous diagnostic capability at radio and optical wavelengths and could also be a powerful diagnostic in the X-ray range. Measurement of the polarization properties as a function of pulse phase can therefore provide a multidimensional mapping of the pulsar emission. In the 'rotating vector' model, radiation originating near a magnetic pole is expected to show a characteristic S-shaped swing of the position angle vs. pulse phase. In this case it is possible to determine the magnetic inclination and viewing angles. Radiation originating further from the poles or further above the neutron star surface will have a more complex polarization signature, as a result of relativistic effects of aberration and time-of-flight delays and may also cause depolarization of the signal. I will discuss predicted polarization properties of pulsed emission in polar cap models, where radiation originates near the neutron star surface at the magnetic poles, and in slot gap and outer gap models, where radiation originates over a range of altitudes out to the speed-of-light cylinder.

  14. A Pulsar and a Disk

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-07-01

    Recent, unusual X-ray observations from our galactic neighbor, the Small Magellanic Cloud, have led to an interesting model for SXP 214, a pulsar in a binary star system.Artists illustration of the magnetic field lines of a pulsar, a highly magnetized, rotating neutron star. [NASA]An Intriguing BinaryAn X-ray pulsar is a magnetized, rotating neutron star in a binary system with a stellar companion. Material is fed from the companion onto the neutron star, channeled by the objects magnetic fields onto a hotspot thats millions of degrees. This hotspot rotating past our line of sight is what produces the pulsations that we observe from X-ray pulsars.Located in the Small Magellanic Cloud, SXP 214 is a transient X-ray pulsar in a binary with a Be-type star. This star is spinning so quickly that material is thrown off of it to form a circumstellar disk.Recently, a team of authors led by JaeSub Hong (Harvard-Smithsonian Center for Astrophysics) have presented new Chandra X-ray observations of SXP 214, tracking it for 50 ks (~14 hours) in January 2013. These observations reveal some very unexpected behavior for this pulsar.X-ray PuzzleThe energy distribution of the X-ray emission from SXP 214 over time. Dark shades or blue colors indicate high counts, and light shades or yellow colors indicate low counts. Lower-energy X-ray emission appeared only later, after about 20 ks. [Hong et al. 2016]Three interesting pieces of information came from the Chandra observations:SXP 214s rotation period was measured to be 211.5 s an increase in the spin rate since the discovery measurement of a 214-second period. Pulsars usually spin down as they lose angular momentum over time so what caused this one to spin up?Its overall X-ray luminosity steadily increased over the 50 ks of observations.Its spectrum became gradually softer (lower energy) over time; in the first 20 ks, the spectrum only consisted of hard X-ray photons above 3 keV, but after 20 ks, softer X-ray photons below 2 ke

  15. Birth and Evolution of Isolated Radio Pulsars

    NASA Astrophysics Data System (ADS)

    Faucher-Giguère, Claude-André; Kaspi, Victoria M.

    2008-02-01

    We investigate the birth and evolution of isolated radio pulsars using a population synthesis method, modeling the birth properties of the pulsars, their time evolution, and their detection in the Parkes and Swinburne Multibeam (MB) surveys. Together, the Parkes and Swinburne MB surveys [1, 2] have detected nearly 2/3 of the known pulsars and provide a remarkably homogeneous sample to compare with simulations. New proper motion measurements [3, 4] and an improved model of the distribution of free electrons in the interstellar medium, NE2001 [5], also make revisiting these issues particularly worthwhile. We present a simple population model that reproduces the actual observations well, and consider others that fail. We conclude that: pulsars are born in the spiral arms, with the birthrate of 2.8+/-0.5 pulsars/century peaking at a distance ~3 kpc from the Galactic centre, and with mean initial speed of 380-60+40 km s-1 the birth spin period distribution extends to several hundred milliseconds, with no evidence of multimodality, implying that characteristic ages overestimate the true ages of the pulsars by a median factor >2 for true ages <30,000 yr models in which the radio luminosities of the pulsars are random generically fail to reproduce the observed P-Ṗ diagram, suggesting a relation between intrinsic radio luminosity and (P,Ṗ) radio luminosities L~Ė provides a good match to the observed P-Ṗ diagram; for this favored radio luminosity model, we find no evidence for significant magnetic field decay over the lifetime of the pulsars as radio sources (~100 Myr).

  16. Observation of transient alignment-inversion walls in nematics of phenyl benzoates in the presence of a magnetic field.

    PubMed

    Hinov, Hristo P; Vistin', Leonard K; Marinov, Yordan G

    2014-04-17

    Formation of new transient walls by a constant magnetic field at the Fréedericsz critical value has been observed. They are oriented along the initial alignment of the nematic phase of phenyl benzoates and appeared only in relatively thick samples with a thickness between 50 and 100 μm of the cells. The excellent planarity of the liquid crystal orientation is considered to be the most important condition for their presence These magnetic walls are transient as they disappear either after a few seconds for 100 μm thick nematic cells or after parts of a second for thinner (50 μm) nematic cells. Nonregular stable magnetic walls, incorporating disclinations with core, appear immediately after the relaxation of the transient walls, when the planarity of the nematic orientation is not perfect. In thinner nematic cells of 20 μm or less, a Fréedericksz transition has only been observed. The formation of transient magnetic walls can be described by a model taking into account alignment-inversion, twisted along Y regions. The transient walls accompanied by a system of Becke lines relax by going through three-dimensional twist-splay-bend deformations. PMID:24670039

  17. Characteristic Age and True Age of Pulsars

    NASA Astrophysics Data System (ADS)

    Jiang, Long; Zhang, Cheng-Min; Tanni, Ali; Zhao, Hai-Hui

    2013-01-01

    Age of a pulsar is a useful parameter, but it is difficult to get the age from observation. We can only derive the characteristic age from the observed parameters: spin period (P) and period derivative (Ṗ). In this paper, we discussed the relationship between characteristic age and magnetic field of a pulsar. Monte Carlo simulation is also used to support the idea: it is useless to study the magnetic field evolution using characteristic age. From some observation evidences we get that: the characteristic age cannot be used as true age, especially for millisecond pulsar (MSP). The difference between them is also discussed. From the studying of breaking index and MSP's initial spin period (P0), we get the conclusion that: the problem cannot be resolved using different radiation models.

  18. Observing peculiar γ-ray pulsars with AGILE

    NASA Astrophysics Data System (ADS)

    Pilia, M.; Pellizzoni, A.

    2011-08-01

    The AGILE γ-ray satellite provides large sky exposure levels (>=109 cm2 s per year on the Galactic Plane) with sensitivity peaking at E ~100 MeV where the bulk of pulsar energy output is typically released. Its ~1 μs absolute time tagging capability makes it perfectly suited for the study of γ-ray pulsars. AGILE collected a large number of γ-ray photons from EGRET pulsars (>=40,000 pulsed counts for Vela) in two years of observations unveiling new interesting features at sub-millisecond level in the pulsars' high-energy light-curves, γ-ray emission from pulsar glitches and Pulsar Wind Nebulae. AGILE detected about 20 nearby and energetic pulsars with good confidence through timing and/or spatial analysis. Among the newcomers we find pulsars with very high rotational energy losses, such as the remarkable PSR B1509-58 with a magnetic field in excess of 1013 Gauss, and PSR J2229+6114 providing a reliable identification for the previously unidentified EGRET source 3EG2227+6122. Moreover, the powerful millisecond pulsar B1821-24, in the globular cluster M28, is detected during a fraction of the observations.

  19. Ultrasonic alignment of bio-functionalized magnetic beads and live cells in PDMS micro-fluidic channel.

    PubMed

    Islam, Afroja T; Siddique, Ariful H; Ramulu, T S; Reddy, Venu; Eu, Young-Jae; Cho, Seung Hyun; Kim, CheolGi

    2012-12-01

    In this work, we demonstrated the alignment of polystyrene latex microspheres (diameter of 1 ~45 μm), bio-functionalized superparamagnetic beads (diameter 2.8 μm), and live cells (average diameter 1 ~2 μm) using an ultrasonic standing wave (USW) in a PDMS microfluidic channel (330 μm width) attached on a Si substrate for bio-medical applications. To generate a standing wave inside the channel, ultrasound of 2.25 MHz resonance frequency (for the channel width) was applied by two ultrasound transducers installed at both sides of the channel which caused the radiation force to concentrate the micro-particles at the single pressure nodal plane of USW. By increasing the frequency to the next resonance condition of the channel, the particles were concentrated in dual nodal planes. Migration time of the micro-particles towards the single nodal plane was recorded as 108 s, 17 s, and 115 s for polystyrene particles of 2 μm diameter, bio-functionalized magnetic beads, and live cells, respectively. These successful alignments of the bio-functionalized magnetic beads along the desired part of the channel can enhance the performance of a sensor which is applicable for the bio-hybrid system and the alignment of live cells without any damage can be used for sample pre-treatment for the application of lab-on-a-chip type bioassays.

  20. Search for signatures of magnetically-induced alignment in the arrival directions measured by the Pierre Auger Observatory

    SciTech Connect

    Abreu, P.; Aglietta, M.; Ahn, E.J.; Albuquerque, I.F.M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Ambrosio, M.; /Naples U. /INFN, Naples /Nijmegen U., IMAPP

    2011-11-01

    We present the results of an analysis of data recorded at the Pierre Auger Observatory in which we search for groups of directionally-aligned events (or ''multiplets'') which exhibit a correlation between arrival direction and the inverse of the energy. These signatures are expected from sets of events coming from the same source after having been deflected by intervening coherent magnetic fields. The observation of several events from the same source would open the possibility to accurately reconstruct the position of the source and also measure the integral of the component of the magnetic field orthogonal to the trajectory of the cosmic rays. We describe the largest multiplets found and compute the probability that they appeared by chance from an isotropic distribution. We find no statistically significant evidence for the presence of multiplets arising from magnetic deflections in the present data.

  1. Search for signatures of magnetically-induced alignment in the arrival directions measured by the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; Benzvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Domenico, M.; de Donato, C.; de Jong, S. J.; de La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; de Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; Del Peral, L.; Del Río, M.; Deligny, O.; Dembinski, H.; Dhital, N.; di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Gesterling, K.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Hrabovský, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mićanović, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Moura, C. A.; Mueller, S.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Parsons, R. D.; Pastor, S.; Paul, T.; Pech, M.; PeĶala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Phan, N.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Robledo, C.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-D'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tamashiro, A.; Tapia, A.; Tartare, M.; Taşcău, O.; Tavera Ruiz, C. G.; Tcaciuc, R.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tiwari, D. K.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Varela, E.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Warner, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Winnick, M. G.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zimbres Silva, M.; Ziolkowski, M.

    2012-01-01

    We present the results of an analysis of data recorded at the Pierre Auger Observatory in which we search for groups of directionally-aligned events (or 'multiplets') which exhibit a correlation between arrival direction and the inverse of the energy. These signatures are expected from sets of events coming from the same source after having been deflected by intervening coherent magnetic fields. The observation of several events from the same source would open the possibility to accurately reconstruct the position of the source and also measure the integral of the component of the magnetic field orthogonal to the trajectory of the cosmic rays. We describe the largest multiplets found and compute the probability that they appeared by chance from an isotropic distribution. We find no statistically significant evidence for the presence of multiplets arising from magnetic deflections in the present data.

  2. AB INITIO PULSAR MAGNETOSPHERE: THREE-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS OF AXISYMMETRIC PULSARS

    SciTech Connect

    Philippov, Alexander A.; Spitkovsky, Anatoly

    2014-04-20

    We perform ''first-principles'' relativistic particle-in-cell simulations of aligned pulsar magnetosphere. We allow free escape of particles from the surface of a neutron star and continuously populate the magnetosphere with neutral pair plasma to imitate pair production. As pair plasma supply increases, we observe the transition from a charge-separated ''electrosphere'' solution with trapped plasma and no spin-down to a solution close to the ideal force-free magnetosphere with electromagnetically dominated pulsar wind. We calculate the magnetospheric structure, current distribution, and spin-down power of the neutron star. We also discuss particle acceleration in the equatorial current sheet.

  3. Gamma-Ray Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2011-01-01

    The Fermi Gamma-Ray Space Telescope has revolutionized the study of pulsar physics with the detection of over 80 gamma-ray pulsars. Several new populations have been discovered, including 24 radio quiet pulsars found through gamma-ray pulsations alone and about 20 millisecond gamma-ray pulsars. The gamma-ray pulsations from millisecond pulsars were discovered by both folding at periods of known radio millisecond pulsars or by detecting them as gamma-ray sources that are followed up by radio pulsar searches. The second method has resulted in a phenomenally successful synergy, with -35 new radio MSPs (to date) having been discovered at Fermi unidentified source locations and the gamma-ray pulsations having then been detected in a number of these using the radio timing solutions. The higher sensitivity and larger energy range of the Fermi Large Area Telescope has produced detailed energy-dependent light curves and phase-resolved spectroscopy on brighter pulsars, that have ruled out polar cap models as the major source of the emission in favor of outer magnetosphere accelerators. The large number of gamma-ray pulsars now allows for the first time meaningful population and sub-population studies that are revealing surprising properties of these fascinating sources.

  4. LUMINOSITY EVOLUTION OF GAMMA-RAY PULSARS

    SciTech Connect

    Hirotani, Kouichi

    2013-04-01

    We investigate the electrodynamic structure of a pulsar outer-magnetospheric particle accelerator and the resulting gamma-ray emission. By considering the condition for the accelerator to be self-sustained, we derive how the trans-magnetic-field thickness of the accelerator evolves with the pulsar age. It is found that the thickness is small but increases steadily if the neutron-star envelope is contaminated by sufficient light elements. For such a light element envelope, the gamma-ray luminosity of the accelerator is kept approximately constant as a function of age in the initial 10,000 yr, forming the lower bound of the observed distribution of the gamma-ray luminosity of rotation-powered pulsars. If the envelope consists of only heavy elements, on the other hand, the thickness is greater, but it increases less rapidly than a light element envelope. For such a heavy element envelope, the gamma-ray luminosity decreases relatively rapidly, forming the upper bound of the observed distribution. The gamma-ray luminosity of a general pulsar resides between these two extreme cases, reflecting the envelope composition and the magnetic inclination angle with respect to the rotation axis. The cutoff energy of the primary curvature emission is regulated below several GeV even for young pulsars because the gap thickness, and hence the acceleration electric field, is suppressed by the polarization of the produced pairs.

  5. THE PECULIAR PULSAR POPULATION OF THE CENTRAL PARSEC

    SciTech Connect

    Dexter, Jason; O'Leary, Ryan M. E-mail: oleary@berkeley.edu

    2014-03-01

    Pulsars orbiting the Galactic center black hole, Sgr A*, would be potential probes of its mass, distance, and spin, and may even be used to test general relativity. Despite predictions of large populations of both ordinary and millisecond pulsars in the Galactic center, none have been detected within 25 pc by deep radio surveys. One explanation has been that hyperstrong temporal scattering prevents pulsar detections, but the recent discovery of radio pulsations from a highly magnetized neutron star (magnetar) within 0.1 pc shows that the temporal scattering is much weaker than predicted. We argue that an intrinsic deficit in the ordinary pulsar population is the most likely reason for the lack of detections to date: a ''missing pulsar problem'' in the Galactic center. In contrast, we show that the discovery of a single magnetar implies efficient magnetar formation in the region. If the massive stars in the central parsec form magnetars rather than ordinary pulsars, their short lifetimes could explain the missing pulsars. Efficient magnetar formation could be caused by strongly magnetized progenitors, or could be further evidence of a top-heavy initial mass function. Furthermore, current high-frequency surveys should already be able to detect bright millisecond pulsars, given the measured degree of temporal scattering.

  6. Magnetic NGF-releasing PLLA/iron oxide nanoparticles direct extending neurites and preferentially guide neurites along aligned electrospun microfibers.

    PubMed

    Zuidema, Jonathan M; Provenza, Christina; Caliendo, Tyler; Dutz, Silvio; Gilbert, Ryan J

    2015-11-18

    Nerve growth factor releasing composite nanoparticles (NGF-cNPs) were developed to direct the extension of neurite outgrowth from dorsal root ganglia (DRG). Iron oxide magnetic nanoparticles were incorporated into poly-l-lactic acid (PLLA) nanoparticles in order to position the NGF-cNPs in a culture dish. Neurites growing from DRG extended toward the NGF released from the NGF-cNPs. DRG were then cultured on aligned PLLA microfibers in the presence of NGF-cNPs, and these biomaterials combined to align DRG neurite extension along one axis and preferentially toward the NGF-cNPs. This combinatorial biomaterial approach shows promise as a strategy to direct the extension of regenerating neurites. PMID:26322376

  7. A general approach to controlled alignment of filamentous supra-biomolecular assemblies into centimeter-scale highly-ordered patterns through nature-inspired magnetic guidance

    PubMed Central

    Cao, Binrui; Zhu, Ye; Wang, Lin

    2013-01-01

    We took the advantage of the capability of magnetic nanoparticles (MNPs) being aligned along a magnetic field and reproducibly generated large scale bio-nanofiber assemblies with the orientation of the constituent bio-nanofibers defined by the applied magnetic field. When decorated by MNPs, bio-nanofibers could be guided by the external magnetic field to become oriented either horizontally or vertically, forming single- and multi-orientation layered assemblies. PMID:24115320

  8. Enrichment of magnetic alignment stimulated by γ-radiation in core-shell type nanoparticle Mn-Zn ferrite

    NASA Astrophysics Data System (ADS)

    Naik, P. P.; Tangsali, R. B.; Sonaye, B.; Sugur, S.

    2013-02-01

    Core shell type nanoparticle MnxZn1-xFe2O4 systems with x=0.55, 0.65 & 0.75 were prepared using autocombustion method. The systems were characterized using tools like XRD and IR for structure confirmation. Magnetic parameter measurements like Saturation magnetization and coercivity were obtained from hysteresis loop which exhibited a symmetry shift due to core shell nature of the nanoparticles. Nanoparticles of particle size between 21.2nm to 25.7nm were found to show 20 percent shrinkage after being radiated by the γ-radiation. This is due to variation in the cation distribution which also affects the cell volume of the cubic cell. Lattice constant reduction observed is reflected in the magnetic properties of the samples. A considerable hike in the saturation magnetization of the samples was observed due to enrichment of magnetic alignment in the magnetic core of the particles. Samples under investigation were irradiated with gamma radiation from Co60 source for different time intervals.

  9. Enrichment of magnetic alignment stimulated by {gamma}-radiation in core-shell type nanoparticle Mn-Zn ferrite

    SciTech Connect

    Naik, P. P.; Tangsali, R. B.; Sonaye, B.; Sugur, S.

    2013-02-05

    Core shell type nanoparticle Mn{sub x}Zn{sub 1-x}Fe{sub 2}O{sub 4} systems with x=0.55, 0.65 and 0.75 were prepared using autocombustion method. The systems were characterized using tools like XRD and IR for structure confirmation. Magnetic parameter measurements like Saturation magnetization and coercivity were obtained from hysteresis loop which exhibited a symmetry shift due to core shell nature of the nanoparticles. Nanoparticles of particle size between 21.2nm to 25.7nm were found to show 20 percent shrinkage after being radiated by the {gamma}-radiation. This is due to variation in the cation distribution which also affects the cell volume of the cubic cell. Lattice constant reduction observed is reflected in the magnetic properties of the samples. A considerable hike in the saturation magnetization of the samples was observed due to enrichment of magnetic alignment in the magnetic core of the particles. Samples under investigation were irradiated with gamma radiation from Co{sup 60} source for different time intervals.

  10. High resolution radio imaging study of the Pulsar Wind Nebula MSH 15-52

    NASA Astrophysics Data System (ADS)

    Leung, W.-Y.; Ng, C.-Y.

    2016-06-01

    We present a new high-resolution radio imaging study of the pulsar wind nebula (PWN) MSH 15-52, also dubbed as "the hand of God", with the Australia Telescope Compact Array observations. The system is powered by a young and energetic radio pulsar B1509-58 with high spin down luminosity of E(dot) = 2 x 10^37 erg/s. Previous X-ray images have shown that the PWN has a complex hand-shape morphology extending over 10 pc with features like jets, arc, filaments and enhanced emission knots in the HII region RCW 89. The new 6cm and 3cm radio images show different morphology than the X-ray counterpart. No radio counterpart of the X-ray jet is detected, instead we found enhanced emission in a sheath surrounding the jet. Additional small-scale features including a polarized linear filament next to the pulsar have also been discovered. Our polarisation measurements show that the intrinsic orientation of magnetic field aligns with the sheath. Finally, spectral analysis results indicate a steep spectrum for the system, which is rather unusual among PWNe. Implications of these findings will be discussed. The Australia Telescope Compact Array is part of the Australia Telescope National Facility which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. This work is supported by an ECS grant under HKU 709713P.

  11. Braking index of isolated pulsars

    NASA Astrophysics Data System (ADS)

    Hamil, O.; Stone, J. R.; Urbanec, M.; Urbancová, G.

    2015-03-01

    Isolated pulsars are rotating neutron stars with accurately measured angular velocities Ω , and their time derivatives that show unambiguously that the pulsars are slowing down. Although the exact mechanism of the spin-down is a question of detailed debate, the commonly accepted view is that it arises through emission of magnetic dipole radiation (MDR) from a rotating magnetized body. Other processes, including the emission of gravitational radiation, and of relativistic particles (pulsar wind), are also being considered. The calculated energy loss by a rotating pulsar with a constant moment of inertia is assumed proportional to a model dependent power of Ω . This relation leads to the power law Ω ˙ =-K Ωn where n is called the braking index. The MDR model predicts n exactly equal to 3. Selected observations of isolated pulsars provide rather precise values of n , individually accurate to a few percent or better, in the range 1

  12. Arecibo Pulsar Highlights

    NASA Astrophysics Data System (ADS)

    Seymour, Andrew

    2016-01-01

    Here we present some of the recent interesting pulsar research that has been conducted from the Arecibo Observatory (AO). Many of these results are only possible because of the unique capabilities of AO's 305 meter telescope. Along with this, we state several possible improvements to AO's capabilities that would aid pulsar studies in the immediate future.

  13. Observational properties of pulsars.

    PubMed

    Manchester, R N

    2004-04-23

    Pulsars are remarkable clocklike celestial sources that are believed to be rotating neutron stars formed in supernova explosions. They are valuable tools for investigations into topics such as neutron star interiors, globular cluster dynamics, the structure of the interstellar medium, and gravitational physics. Searches at radio and x-ray wavelengths over the past 5 years have resulted in a large increase in the number of known pulsars and the discovery of new populations of pulsars, posing challenges to theories of binary and stellar evolution. Recent images at radio, optical, and x-ray wavelengths have revealed structures resulting from the interaction of pulsar winds with the surrounding interstellar medium, giving new insights into the physics of pulsars. PMID:15105491

  14. A magnetically actuated cellular strain assessment tool for quantitative analysis of strain induced cellular reorientation and actin alignment

    NASA Astrophysics Data System (ADS)

    Khademolhosseini, F.; Liu, C.-C.; Lim, C. J.; Chiao, M.

    2016-08-01

    Commercially available cell strain tools, such as pneumatically actuated elastomer substrates, require special culture plates, pumps, and incubator setups. In this work, we present a magnetically actuated cellular strain assessment tool (MACSAT) that can be implemented using off-the-shelf components and conventional incubators. We determine the strain field on the MACSAT elastomer substrate using numerical models and experimental measurements and show that a specific region of the elastomer substrate undergoes a quasi-uniaxial 2D stretch, and that cells confined to this region of the MACSAT elastomer substrate undergo tensile, compressive, or zero axial strain depending on their angle of orientation. Using the MACSAT to apply cyclic strain on endothelial cells, we demonstrate that actin filaments within the cells reorient away from the stretching direction, towards the directions of minimum axial strain. We show that the final actin orientation angles in strained cells are spread over a region of compressive axial strain, confirming previous findings on the existence of a varied pre-tension in the actin filaments of the cytoskeleton. We also demonstrate that strained cells exhibit distinctly different values of actin alignment coherency compared to unstrained cells and therefore propose that this parameter, i.e., the coherency of actin alignment, can be used as a new readout to determine the occurrence/extent of actin alignment in cell strain experiments. The tools and methods demonstrated in this study are simple and accessible and can be easily replicated by other researchers to study the strain response of other adherent cells.

  15. Gamma-ray pulsars: A gold mine

    NASA Astrophysics Data System (ADS)

    Grenier, Isabelle A.; Harding, Alice K.

    2015-08-01

    The most energetic neutron stars, powered by their rotation, are capable of producing pulsed radiation from the radio up to γ rays with nearly TeV energies. These pulsars are part of the universe of energetic and powerful particle accelerators, using their uniquely fast rotation and formidable magnetic fields to accelerate particles to ultra-relativistic speed. The extreme properties of these stars provide an excellent testing ground, beyond Earth experience, for nuclear, gravitational, and quantum-electrodynamical physics. A wealth of γ-ray pulsars has recently been discovered with the Fermi Gamma-Ray Space Telescope. The energetic γ rays enable us to probe the magnetospheres of neutron stars and particle acceleration in this exotic environment. We review the latest developments in this field, beginning with a brief overview of the properties and mysteries of rotation-powered pulsars, and then discussing γ-ray observations and magnetospheric models in more detail. xml:lang="fr"

  16. Aligned magnetic field and cross-diffusion effects of a nanofluid over an exponentially stretching surface in porous medium

    NASA Astrophysics Data System (ADS)

    Sulochana, C.; Sandeep, N.; Sugunamma, V.; Rushi Kumar, B.

    2016-06-01

    In this paper, we investigated the effects of aligned magnetic field, thermal radiation, heat generation/absorption, cross-diffusion, viscous dissipation, heat source and chemical reaction on the flow of a nanofluid past an exponentially stretching sheet in porous medium. The governing partial differential equations are transformed to set of ordinary differential equations using self-similarity transformation, which are then solved numerically using bvp4c Matlab package. Finally the effects of various non-dimensional parameters on velocity, temperature, concentration, skin friction, local Nusselt and Sherwood numbers are thoroughly investigated and presented through graphs and tables. We observed that an increase in the aligned angle strengthens the applied magnetic field and decreases the velocity profiles of the flow. Soret and Dufour numbers are helpful to enhance the heat transfer rate. An increase in the heat source parameter, radiation parameter and Eckert number increases the mass transfer rate. Mixed convection parameter has tendency to enhance the friction factor along with the heat and mass transfer rate.

  17. Thermal characterization of composites made up of magnetically aligned carbonyl iron particles in a polyester resin matrix

    NASA Astrophysics Data System (ADS)

    Medina-Esquivel, R. A.; Zambrano-Arjona, M. A.; Mendez-Gamboa, J. A.; Yanez-Limon, J. M.; Ordonez-Miranda, J.; Alvarado-Gil, J. J.

    2012-03-01

    The thermal characterization of composites made up by magnetically aligned carbonyl iron micro-sized particles embedded in a polyester resin matrix is performed using photothermal radiometry technique. The measured experimental data show that the thermal conductivity and thermal diffusivity of the composite, in the direction of the applied magnetic field, increase with the concentration of the particles and are enhanced with respect to their corresponding values for a random distribution of the particles. This thermal enhancement has a maximum at a concentration of particles of 10% and is very low at small and high iron volume fractions, such that for particles concentrations of about 40%, the composite thermal conductivity reduces to its values for random particles. This behavior indicates that for high volume fractions, the effect of the microparticles concentration plays a dominant role over the effect of their alignment. It is shown that the thermal conductivity of the composite can be modeled in terms of the Nielsen model, under an appropriate parameterization of the form factor of the particles. The results of this work could be highly useful for improving the thermal performance of mechanical and electronic devices involving composite materials.

  18. Radio pulsar death lines to SGRs/AXPs and white dwarfs pulsars

    SciTech Connect

    Lobato, Ronaldo V.; Malheiro, M.; Coelho, J. G.

    2015-12-17

    Recently, an alternative model based on white dwarfs pulsars has been proposed to explain a class of pulsars known as Soft Gamma Repeaters (SGR) and Anomalus X-Ray Pulsars (AXP) [1], usually named as magnetars. In this model, the magnetized white dwarfs can have surface magnetic field B ∼ 10{sup 7} − 10{sup 10} G and rotate very fast with angular frequencies Ω ∼ 1 rad/s, allowing them to produce large electromagnetic (EM) potentials and generate electron-positron pairs. These EM potentials are comparable with the ones of neutron star pulsars with strong magnetic fields and even larger. In this study we consider two possible processes associated with the particle acceleration, both of them are common used to explain radio emission in neutron star pulsars: in the first process the pair production happens near to the star polar caps, i.e. inside of the light cylinder where magnetic field lines are closed; in the second one the creation of pair happens in the outer magnetosphere, i.e. far away of the star surface where magnetic field lines are open [2]. The analysis of the possibility of radio emission were done for 23 SGRs/AXPs of the McGill Online Magnetar Catalog [3] that contains the current information available on these sources. The results of this work show that the model where the particles production occur in the outer magnetosphere emission “o2” is the process compatible with the astronomical observations of absence of radio emission for almost all SGRs/AXPs when these sources are understood as white dwarf pulsars. Our work is a first attempted to find an explanation for the puzzle why for almost all the SGRs/AXPs was expected radio emission, but it was observed in only four of them. These four sources, as it was suggested recently [4], seem to belong to an high magnetic field neutron star pulsar category, different from all the others SGRs/AXPs that our work indicate to belong to a new class of white dwarf pulsars, very fast and magnetized.

  19. Preoperative assessment of femoral rotation and its relationship with coronal alignment: A magnetic resonance imaging study.

    PubMed

    McDougall, Catherine J; Gallie, Price; Whitehouse, Sarah L

    2016-12-01

    This MRI study explores the individual variation of the rotational axes of the distal femur, and investigate the relationship of this variation with overall coronal alignment in the osteoarthritic knee,The mean surgical epicondylar axis (SEA) was 1.7°, anatomical epicondylar axis (AEA) 5.6° and AP trochlea axis (APA) 94.3° external rotation, compared to the posterior condylar line. Investigating this relationship between different coronal alignment groups, there were statistically significant differences between excessive varus and excessive valgus knees for SEA (0.9:3.0 p < 0.001) and AEA (4.7:7.0 p < 0.001). There was no statistical difference for APA (93.9:95.3 p = 0.238). PMID:27408506

  20. Interstellar Dust Grain Alignment

    NASA Astrophysics Data System (ADS)

    Andersson, B.-G.; Lazarian, A.; Vaillancourt, John E.

    2015-08-01

    Interstellar polarization at optical-to-infrared wavelengths is known to arise from asymmetric dust grains aligned with the magnetic field. This effect provides a potentially powerful probe of magnetic field structure and strength if the details of the grain alignment can be reliably understood. Theory and observations have recently converged on a quantitative, predictive description of interstellar grain alignment based on radiative processes. The development of a general, analytical model for this radiative alignment torque (RAT) theory has allowed specific, testable predictions for realistic interstellar conditions. We outline the theoretical and observational arguments in favor of RAT alignment, as well as reasons the "classical" paramagnetic alignment mechanism is unlikely to work, except possibly for the very smallest grains. With further detailed characterization of the RAT mechanism, grain alignment and polarimetry promise to not only better constrain the interstellar magnetic field but also provide new information on the dust characteristics.

  1. Constraining Gamma-Ray Pulsar Gap Models with a Simulated Pulsar Population

    NASA Technical Reports Server (NTRS)

    Pierbattista, Marco; Grenier, I. A.; Harding, A. K.; Gonthier, P. L.

    2012-01-01

    With the large sample of young gamma-ray pulsars discovered by the Fermi Large Area Telescope (LAT), population synthesis has become a powerful tool for comparing their collective properties with model predictions. We synthesised a pulsar population based on a radio emission model and four gamma-ray gap models (Polar Cap, Slot Gap, Outer Gap, and One Pole Caustic). Applying gamma-ray and radio visibility criteria, we normalise the simulation to the number of detected radio pulsars by a select group of ten radio surveys. The luminosity and the wide beams from the outer gaps can easily account for the number of Fermi detections in 2 years of observations. The wide slot-gap beam requires an increase by a factor of 10 of the predicted luminosity to produce a reasonable number of gamma-ray pulsars. Such large increases in the luminosity may be accommodated by implementing offset polar caps. The narrow polar-cap beams contribute at most only a handful of LAT pulsars. Using standard distributions in birth location and pulsar spin-down power (E), we skew the initial magnetic field and period distributions in a an attempt to account for the high E Fermi pulsars. While we compromise the agreement between simulated and detected distributions of radio pulsars, the simulations fail to reproduce the LAT findings: all models under-predict the number of LAT pulsars with high E , and they cannot explain the high probability of detecting both the radio and gamma-ray beams at high E. The beaming factor remains close to 1.0 over 4 decades in E evolution for the slot gap whereas it significantly decreases with increasing age for the outer gaps. The evolution of the enhanced slot-gap luminosity with E is compatible with the large dispersion of gamma-ray luminosity seen in the LAT data. The stronger evolution predicted for the outer gap, which is linked to the polar cap heating by the return current, is apparently not supported by the LAT data. The LAT sample of gamma-ray pulsars

  2. On the valve nature of a monolayer of aligned molecular magnets in tunneling spin-polarized electrons: Towards organic molecular spintronics

    SciTech Connect

    Chakrabarti, Sudipto; Pal, Amlan J.

    2014-01-06

    We form a monolayer of magnetic organic molecules and immobilize their moments pointing either upwards or downwards with respect to the substrate through an electrostatic-binding process. Such a monolayer is probed with a scanning tunneling microscope tip, which is also magnetized with the magnetization vector pointing towards (or away from) apex of the tip. From spin-polarized tunneling current, we show that the current was higher when magnetization vectors of the tip and molecules were parallel as compared to that when they were anti-parallel. We show that for tunneling of spin-polarized electrons, aligned organic molecular magnets can act as a valve.

  3. Magnetic measurements of the upper critical field, irreversibility line, anisotropy, and magnetic penetration depth of grain-aligned YBa sub 2 Cu sub 4 O sub 8

    SciTech Connect

    Lee, W.C.; Ginsberg, D.M. )

    1992-04-01

    We have measured the upper critical field and the irreversibility line of grain-aligned YBa{sub 2}Cu{sub 4}O{sub 8}, with the magnetic field oriented perpendicular to the CuO{sub 2} planes. The upper critical field's slope, {ital dH}{sub {ital c}2}/{ital dT}, is {minus}1.57 T/K, corresponding to a zero-temperature Ginzburg-Landau (GL) coherence length of 19.5 A. The irreversibility line obeys a power-law behavior similar to that of 90-K YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}}. Using the lower-critical-field data, we obtain the zero-temperature magnetic penetration depth {lambda}{sub {ital a}{ital b}}(0)=1960 A and GL parameter {kappa}{sub {ital c}}=100.

  4. Alignment of Carbon Nanotubes Comprising Magnetically Sensitive Metal Oxides in Nanofluids

    NASA Technical Reports Server (NTRS)

    Hong, Haiping (Inventor); Peterson, G. P. " Bud" (Inventor)

    2016-01-01

    The present invention is a nanoparticle mixture or suspension or nanofluid comprising nonmagnetically sensitive nanoparticles, magnetically sensitive nanoparticles, and surfactant(s). The present invention also relates to methods of preparing and using the same.

  5. Alignment of Carbon Nanotubes Comprising Magnetically Sensitive Metal Oxides in Nanofluids

    NASA Technical Reports Server (NTRS)

    Hong, Haiping (Inventor); Peterson, G. P. 'Bud' (Inventor)

    2014-01-01

    The present invention is a nanoparticle mixture or suspension or nanofluid comprising nonmagnetically sensitive nanoparticles, magnetically sensitive nanoparticles, and surfactant(s). The present invention also relates to methods of preparing and using the same.

  6. High-School Teams Joining Massive Pulsar Search

    NASA Astrophysics Data System (ADS)

    2008-09-01

    High school students and teachers will join astronomers on the cutting edge of science under a program to be operated by the National Radio Astronomy Observatory (NRAO) and West Virginia University (WVU), and funded by the National Science Foundation (NSF). The program, called the Pulsar Search Collaboratory, will engage West Virginia students and teachers in a massive search for new pulsars using data from the Robert C. Byrd Green Bank Telescope (GBT). Sue Ann Heatherly Sue Ann Heatherly, NRAO Education Officer CREDIT: Bill Saxton, NRAO/AUI/NSF (Click on image for larger version) The NSF announced a $892,838 grant to NRAO and WVU to conduct the three-year program. The project will involve 60 teachers and some 600 students in helping astronomers analyze data from 1500 hours of observing time on the GBT. The 120 terabytes of data produced by some 70,000 individual pointings of the giant, 17-million-pound telescope is expected to reveal dozens of previously-unknown pulsars. "The students in this program will be partners in frontier research, discovering new pulsars and measuring changes in pulsars already known," said Sue Ann Heatherly, the NRAO Education Officer in Green Bank and Principal Investigator in the project. Pulsars are superdense neutron stars, the corpses of massive stars that have exploded as supernovae. As the neutron star spins, lighthouse-like beams of radio waves, streaming from the poles of its powerful magnetic field, sweep through space. When one of these beams sweeps across the Earth, radio telescopes can capture the pulse of radio waves. Pulsars serve as exotic laboratories for studying the physics of extreme conditions. Scientists can learn valuable new information about the physics of subatomic particles, electromagnetics, and General Relativity by observing pulsars and the changes they undergo over time. The Pulsar Search Collaboratory (PSC) combines the capabilities of NRAO and WVU to provide a unique opportunity for teachers and students

  7. Experimental study of laser-detected magnetic resonance based on atomic alignment

    SciTech Connect

    Di Domenico, Gianni; Bison, Georg; Groeger, Stephan; Knowles, Paul; Pazgalev, Anatoly S.; Rebetez, Martin; Saudan, Herve; Weis, Antoine

    2006-12-15

    We present an experimental study of the spectra produced by optical-radio-frequency double resonance in which resonant linearly polarized laser light is used in the optical pumping and detection processes. We show that the experimental spectra obtained for cesium are in excellent agreement with a very general theoretical model developed in our group [Weis, Bison, and Pazgalev, Phys. Rev. A 74, 033401 (2006)] and we investigate the limitations of this model. Finally, the results are discussed in view of their use in the study of relaxation processes in aligned alkali-metal vapors.

  8. Magnetic and optical properties of Mn-doped ZnO vertically aligned nanorods synthesized by hydrothermal technique

    NASA Astrophysics Data System (ADS)

    Panda, J.; Sasmal, I.; Nath, T. K.

    2016-03-01

    In this paper we have reported the synthesis of high quality vertically aligned undoped and Mn-doped ZnO single crystalline nanorods arrays on Si (100) substrates using two steps process, namely, initial slow seed layer formation followed by solution growth employing wet chemical hydrothermal method. The shapes of the as grown single crystalline nanorods are hexagonal. The diameter and length of the as grown undoped ZnO nanorods varies in the range of 80-150 nm and 1.0 - 1.4 μm, respectively. Along with the lattice parameters of the hexagonal crystal structure, the diameter and length of Mn doped ZnO nanorods are found to increase slightly as compared to the undoped ZnO nanorods. The X-ray photoelectron spectroscopy confirms the presence of Mn atoms in Mn2+ state in the single crystalline ZnO nanorods. The recorded photoluminescence spectrum contains two emissions peaks having UV exciton emissions along with a green-yellow emission. The green-yellow emissions provide the evidence of singly ionized oxygen vacancies. The magnetic field dependent magnetization measurements [M (H)] and zero field cooled (ZFC) and field cooled (FC) magnetization [M(T)] measurements have been carried out at different isothermal conditions in the temperature range of 5-300 K. The Mn doped ZnO nanorods clearly show room temperature ferromagnetic ordering near room temperature down to 5 K. The observed magnetization may be attributed to the long range ferromagnetic interaction between bound magnetic polarons led by singly charged oxygen vacancies.

  9. Fermi Pulsar Analysis

    NASA Video Gallery

    This animation illustrates how analysis of Fermi data reveals new pulsars. Fermi's LAT records the precise arrival time and approximate direction of the gamma rays it detects, but to identify a pul...

  10. Is Jupiter's magnetosphere like a pulsar's or earth's?

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Coroniti, F. V.

    1974-01-01

    The application of pulsar physics to determine the magnetic structure in the planet Jupiter outer magnetosphere is discussed. A variety of theoretical models are developed to illuminate broad areas of consistency and conflict between theory and experiment. Two possible models of Jupiter's magnetosphere, a pulsar-like radial outflow model and an earth-like convection model, are examined. A compilation of the simple order of magnitude estimates derivable from the various models is provided.

  11. A magnetically actuated cellular strain assessment tool for quantitative analysis of strain induced cellular reorientation and actin alignment.

    PubMed

    Khademolhosseini, F; Liu, C-C; Lim, C J; Chiao, M

    2016-08-01

    Commercially available cell strain tools, such as pneumatically actuated elastomer substrates, require special culture plates, pumps, and incubator setups. In this work, we present a magnetically actuated cellular strain assessment tool (MACSAT) that can be implemented using off-the-shelf components and conventional incubators. We determine the strain field on the MACSAT elastomer substrate using numerical models and experimental measurements and show that a specific region of the elastomer substrate undergoes a quasi-uniaxial 2D stretch, and that cells confined to this region of the MACSAT elastomer substrate undergo tensile, compressive, or zero axial strain depending on their angle of orientation. Using the MACSAT to apply cyclic strain on endothelial cells, we demonstrate that actin filaments within the cells reorient away from the stretching direction, towards the directions of minimum axial strain. We show that the final actin orientation angles in strained cells are spread over a region of compressive axial strain, confirming previous findings on the existence of a varied pre-tension in the actin filaments of the cytoskeleton. We also demonstrate that strained cells exhibit distinctly different values of actin alignment coherency compared to unstrained cells and therefore propose that this parameter, i.e., the coherency of actin alignment, can be used as a new readout to determine the occurrence/extent of actin alignment in cell strain experiments. The tools and methods demonstrated in this study are simple and accessible and can be easily replicated by other researchers to study the strain response of other adherent cells. PMID:27587150

  12. Cosmic Ray Positrons from Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2010-01-01

    Pulsars are potential Galactic sources of positrons through pair cascades in their magnetospheres. There are, however, many uncertainties in establishing their contribution to the local primary positron flux. Among these are the local density of pulsars, the cascade pair multiplicities that determine the injection rate of positrons from the pulsar, the acceleration of the injected particles by the pulsar wind termination shock, their rate of escape from the pulsar wind nebula, and their propagation through the interstellar medium. I will discuss these issues in the context of what we are learning from the new Fermi pulsar detections and discoveries.

  13. Pulse Portraiture: Pulsar timing

    NASA Astrophysics Data System (ADS)

    Pennucci, Timothy T.; Demorest, Paul B.; Ransom, Scott M.

    2016-06-01

    Pulse Portraiture is a wideband pulsar timing code written in python. It uses an extension of the FFTFIT algorithm (Taylor 1992) to simultaneously measure a phase (TOA) and dispersion measure (DM). The code includes a Gaussian-component-based portrait modeling routine. The code uses the python interface to the pulsar data analysis package PSRCHIVE (ascl:1105.014) and also requires the non-linear least-squares minimization package lmfit (ascl:1606.014).

  14. Disc polarization from both emission and scattering of magnetically aligned grains: the case of NGC 1333 IRAS 4A1

    NASA Astrophysics Data System (ADS)

    Yang, Haifeng; Li, Zhi-Yun; Looney, Leslie W.; Cox, Erin G.; Tobin, John; Stephens, Ian W.; Segura-Cox, Dominque M.; Harris, Robert J.

    2016-08-01

    Dust polarization in millimetre (and centimetre) has been mapped in discs around an increasing number of young stellar objects. It is usually thought to come from emission by magnetically aligned (non-spherical) grains, but can also be produced by dust scattering. We present a semi-analytic theory of disc polarization that includes both the direction emission and scattering, with an emphasis on their relative importance and how they are affected by the disc inclination. For face-on discs, both emission and scattering tend to produce polarization in the radial direction, making them difficult to distinguish, although the scattering-induced polarization can switch to the azimuthal direction if the incident radiation is beamed strongly enough in the radial direction in the disc plane. Disc inclination affects the polarizations from emission and scattering differently, especially on the major axis where, in the edge-on limit, the former vanishes while the latter reaches a polarization fraction as large as 1/3. The polarizations from the two competing mechanisms tend to cancel each other on the major axis, producing two low polarization `holes' (one on each side of the centre) under certain conditions. We find tantalizing evidence for at least one such `hole' in NGC 1333 IRAS 4A1, whose polarization observed at 8 mm on the 100 au scale is indicative of a pattern dominated by scattering close to the centre and by direction emission in the outer region. If true, it would imply not only that a magnetic field exists on the disc scale, but that it is strong enough to align large, possibly mm-sized, grains.

  15. Magnetic Alignment of Microelements Containing Cultured Neuronal Networks for High-Throughput Screening

    PubMed Central

    Gordon, Kent R.; Wang, Yuli; Allbritton, Nancy L.; Taylor, Anne Marion

    2015-01-01

    High-throughput screening (HTS) on neurons presents unique difficulties because they are postmitotic, limited in supply, and challenging to harvest from animals or generate from stem cells. These limitations have hindered neurological drug discovery, leaving an unmet need to develop cost-effective technology for HTS using neurons. Traditional screening methods use up to 20,000 neurons per well in 384-well plates. To increase throughput, we use “microraft” arrays, consisting of 1600 square, releasable, paramagnetic, polystyrene microelements (microrafts), each providing a culture surface for 500–700 neurons. These microrafts can be detached from the array and transferred to 384-well plates for HTS; however, they must be centered within wells for automated imaging. Here, we developed a magnet array plate, compatible with HTS fluid-handling systems, to center microrafts within wells. We used finite element analysis to select an effective size of the magnets and confirmed that adjacent magnetic fields do not interfere. We then experimentally tested the plate’s centering ability and found a centering efficiency of 100%, compared with 4.35% using a flat magnet. We concluded that microrafts could be centered after settling randomly within the well, overcoming friction, and confirmed these results by centering microrafts containing hippocampal neurons cultured for 8 days. PMID:26250488

  16. Magnetic Alignment of Microelements Containing Cultured Neuronal Networks for High-Throughput Screening.

    PubMed

    Gordon, Kent R; Wang, Yuli; Allbritton, Nancy L; Taylor, Anne Marion

    2015-10-01

    High-throughput screening (HTS) on neurons presents unique difficulties because they are postmitotic, limited in supply, and challenging to harvest from animals or generate from stem cells. These limitations have hindered neurological drug discovery, leaving an unmet need to develop cost-effective technology for HTS using neurons. Traditional screening methods use up to 20,000 neurons per well in 384-well plates. To increase throughput, we use "microraft" arrays, consisting of 1600 square, releasable, paramagnetic, polystyrene microelements (microrafts), each providing a culture surface for 500-700 neurons. These microrafts can be detached from the array and transferred to 384-well plates for HTS; however, they must be centered within wells for automated imaging. Here, we developed a magnet array plate, compatible with HTS fluid-handling systems, to center microrafts within wells. We used finite element analysis to select an effective size of the magnets and confirmed that adjacent magnetic fields do not interfere. We then experimentally tested the plate's centering ability and found a centering efficiency of 100%, compared with 4.35% using a flat magnet. We concluded that microrafts could be centered after settling randomly within the well, overcoming friction, and confirmed these results by centering microrafts containing hippocampal neurons cultured for 8 days.

  17. Magnetic Alignment of Microelements Containing Cultured Neuronal Networks for High-Throughput Screening.

    PubMed

    Gordon, Kent R; Wang, Yuli; Allbritton, Nancy L; Taylor, Anne Marion

    2015-10-01

    High-throughput screening (HTS) on neurons presents unique difficulties because they are postmitotic, limited in supply, and challenging to harvest from animals or generate from stem cells. These limitations have hindered neurological drug discovery, leaving an unmet need to develop cost-effective technology for HTS using neurons. Traditional screening methods use up to 20,000 neurons per well in 384-well plates. To increase throughput, we use "microraft" arrays, consisting of 1600 square, releasable, paramagnetic, polystyrene microelements (microrafts), each providing a culture surface for 500-700 neurons. These microrafts can be detached from the array and transferred to 384-well plates for HTS; however, they must be centered within wells for automated imaging. Here, we developed a magnet array plate, compatible with HTS fluid-handling systems, to center microrafts within wells. We used finite element analysis to select an effective size of the magnets and confirmed that adjacent magnetic fields do not interfere. We then experimentally tested the plate's centering ability and found a centering efficiency of 100%, compared with 4.35% using a flat magnet. We concluded that microrafts could be centered after settling randomly within the well, overcoming friction, and confirmed these results by centering microrafts containing hippocampal neurons cultured for 8 days. PMID:26250488

  18. AB INITIO PULSAR MAGNETOSPHERE: THREE-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS OF OBLIQUE PULSARS

    SciTech Connect

    Philippov, Alexander A.; Spitkovsky, Anatoly; Cerutti, Benoit

    2015-03-01

    We present “first-principles” relativistic particle-in-cell simulations of the oblique pulsar magnetosphere with pair formation. The magnetosphere starts to form with particles extracted from the surface of the neutron star. These particles are accelerated by surface electric fields and emit photons capable of producing electron–positron pairs. We inject secondary pairs at the locations of primary energetic particles whose energy exceeds the threshold for pair formation. We find solutions that are close to the ideal force-free magnetosphere with the Y-point and current sheet. Solutions with obliquities ≤40° do not show pair production in the open field line region because the local current density along the magnetic field is below the Goldreich–Julian value. The bulk outflow in these solutions is charge-separated, and pair formation happens in the current sheet and return current layer only. Solutions with higher inclinations show pair production in the open field line region, with high multiplicity of the bulk flow and the size of the pair-producing region increasing with inclination. We observe the spin-down of the star to be comparable to MHD model predictions. The magnetic dissipation in the current sheet ranges between 20% for the aligned rotator and 3% for the orthogonal rotator. Our results suggest that for low obliquity neutron stars with suppressed pair formation at the light cylinder, the presence of phenomena related to pair activity in the bulk of the polar region, e.g., radio emission, may crucially depend on the physics beyond our simplified model, such as the effects of curved spacetime or multipolar surface fields.

  19. Optical study of pulsars

    NASA Astrophysics Data System (ADS)

    Sanwal, Divas

    The Crab Pulsar emits radiation at all wavelengths from radio to extreme γ-rays including the optical. We have performed extremely high time resolution multicolor photometry of the Crab Pulsar at optical wavelengths to constrain the high energy emission models for pulsars. Our observations with 1 microsecond time resolution are a factor of 20 better than the previous best observations. We have completely resolved the peak of the main pulse of the Crab Pulsar in optical passbands. The peaks of the main pulse and the interpulse move smoothly from the rising branch to the falling branch with neither a flat top nor a cusp. We find that the peak of the Crab Pulsar main pulse in the B band arrives 140 microseconds before the peak of the radio pulse. The color of the emission changes across the phase. The maximum variation in the color ratio is about 25%. The bluest color occurs in the bridge region between the main pulse and the interpulse. The Crab Pulsar has faded by 2 +/- 2.8% since the previous observations in 1991 using the same instrument. The statistics of photon arrival times are consistent with atmospheric scintillation causing most of the variations in addition to the mean pulse variations in the shape. However, the autocorrelation function (ACF) of the Crab Pulsar light curve shows extra correlations at very short time scales. We identify two time scales, one at about 20 microseconds and another one at about 1000 microseconds at which we observe a break in the ACF. We conclude that these short timescale correlations are internal to the pulsar. We attribute the extra correlation observed in our data to microstructures. This is the first time evidence for microstructures has been observed outside the radio wavelengths. The upturn in the ACF at short time scales depends on the color. The U band shows about 10% more correlation at short time scales while the R band shows only about 3% change. We have also observed the young X-ray pulsar PSR 0656+14 at optical

  20. STRONG FIELD EFFECTS ON PULSAR ARRIVAL TIMES: GENERAL ORIENTATIONS

    SciTech Connect

    Wang Yan; Creighton, Teviet; Price, Richard H.; Jenet, Frederick A.

    2009-11-10

    A pulsar beam passing close to a black hole can provide a probe of very strong gravitational fields even if the pulsar itself is not in a strong field region. In the case that the spin of the hole can be ignored, we have previously shown that all strong field effects on the beam can be understood in terms of two 'universal' functions: F(phi{sub in}) and T(phi{sub in}) of the angle of beam emission phi{sub in}; these functions are universal in that they depend only on a single parameter, the pulsar/black hole distance from which the beam is emitted. Here we apply this formalism to general pulsar-hole-observer geometries, with arbitrary alignment of the pulsar spin axis and arbitrary pulsar beam direction and angular width. We show that the analysis of the observational problem has two distinct elements: (1) the computation of the location and trajectory of an observer-dependent 'keyhole' direction of emission in which a signal can be received by the observer; and (2) the determination of an annulus that represents the set of directions containing beam energy. Examples of each are given along with an example of a specific observational scenario.

  1. Bi-directional-bi-dimensionality alignment of self-supporting Mn3O4 nanorod and nanotube arrays with different bacteriostasis and magnetism.

    PubMed

    Chen, Qun; Wei, Chengzhen; Gao, Feng; Pang, Huan; Lu, Qingyi

    2013-12-21

    Self-supported Mn3O4 patterns of aligned nanorods and nanotubes were synthesized through a bi-directional-bi-dimensionality growth model by using sodium gluconate and urea as additives under mild hydrothermal conditions without the use of any substrates. In one direction, Mn3O4 grows to form one-dimensional nanorods or nanotubes, while in the other direction Mn3O4 grows into two-dimensional nanoplates to support the nanorods or nanotubes to align into arrays. These two kinds of new nanostructures, a nanotube pattern and a nanorod pattern, show similar and good bacteriostasis for Gram positive bacteria, but for Gram negative bacteria the nanotube pattern shows much better bacterial restraint than the nanorod pattern. Magnetic studies show that the nanorod arrays display similar magnetic properties to the commercial Mn3O4, while the nanotube arrays show different ferromagnetic behaviors with enhanced remnant magnetization and saturation magnetization (Ms) at low temperature.

  2. VLT polarimetry observations of the middle-aged pulsar PSR B0656+14

    NASA Astrophysics Data System (ADS)

    Mignani, R. P.; Moran, P.; Shearer, A.; Testa, V.; Słowikowska, A.; Rudak, B.; Krzeszowski, K.; Kanbach, G.

    2015-11-01

    Context. Optical polarisation measurements are key tests for different models of the pulsar magnetosphere. Furthermore, comparing the relative orientation of the phase-averaged linear polarisation direction and the pulsar proper motion vector may unveil a peculiar alignment, clearly seen in the Crab pulsar. Aims: Our goal is to obtain the first measurement of the phase-averaged optical linear polarisation of the fifth brightest optical pulsar, PSR B0656+14, which also has a precisely measured proper motion, and to verify a possible alignment between the polarisation direction and the proper motion vector. Methods: We carried out observations with the Very Large Telescope (VLT) to measure the phase-averaged optical polarisation degree (PD) and position angle (PA) of PSR B0656+14. Results: We measured a PD of 11.9% ± 5.5% and a PA of 125.8° ± 13.2°, measured east of north. Albeit of marginal significance, this is the first measurement of the phase-averaged optical PD for this pulsar. Moreover, we found that the PA of the phase-averaged polarisation vector is close to that of the pulsar proper motion (93.12° ± 0.38°). Conclusions: Deeper observations are needed to confirm our polarisation measurement of PSR B0656+14, whereas polarisation measurements for more pulsars will better assess possible correlations of the polarisation degree with the pulsar parameters. Based on observations collected at ESO, Paranal, under Programme 090.D-0106(A).

  3. High Energy Cosmic Rays and Neutrinos from Newborn Pulsars

    NASA Astrophysics Data System (ADS)

    Fang, Ke; Kotera, Kumiko; Olinto, Angela

    2013-04-01

    Newborn pulsars offer favorable sites for cosmic ray acceleration and interaction. Particles could be striped off the star surface and accelerated in the pulsar wind up to PeV-100 EeV energies, depending on the pulsar's birth period and magnetic field strength. Once accelerated, the cosmic rays interact with the surrounding supernova ejecta until they escape the source. By assuming a normal distribution of pulsar birth periods centered at 300,ms, we find the combined contribution of extragalactic pulsars produce ultrahigh energy cosmic rays that agree with both the observed energy spectrum and composition trend reported by the Auger Observatory. Meanwhile, we point out their Galactic counterparts naturally give rise to a cosmic ray flux peaked at very high energies (VHE, between 10^16 and 10^18 ,eV), which can bridge the gap between predictions of cosmic rays produced by supernova remnants and the observed spectrum and composition just below the ankle. Young pulsars in the universe would also contribute to a diffuse neutrino background due to the photomeson interactions, whose detectability and typical neutrino energy are discussed. Lastly, we predict a neutrino emission level for the future birth of a nearby pulsar.

  4. Self-Assembled Fibers Containing Stable Organic Radical Moieties: Alignment and Magnetic Properties in Liquid Crystals.

    PubMed

    Eimura, Hiroki; Umeta, Yoshikazu; Tokoro, Hiroko; Yoshio, Masafumi; Ohkoshi, Shin-Ichi; Kato, Takashi

    2016-06-20

    Macroscopically oriented stable organic radicals have been obtained by using a liquid-crystalline (LC) gel composed of an l-isoleucine-based low molecular weight gelator containing a 2,2,6,6-tetramethylpiperidine 1-oxyl moiety. The LC gel has allowed magnetic measurements of the oriented organic radical. The gelator has formed fibrous aggregates in liquid crystals via intermolecular hydrogen bonds. The fibrous aggregates of the radical gelator are formed and oriented on cooling by applying a magnetic field to the mixture of liquid crystals and the gelator. Superconducting quantum interference device (SQUID) measurements have revealed that both oriented and nonoriented fibrous aggregates exhibited antiferromagnetic interactions, in which super-exchange interaction constant J is estimated as -0.89 cm(-1) . PMID:27219716

  5. Self-Assembled Fibers Containing Stable Organic Radical Moieties: Alignment and Magnetic Properties in Liquid Crystals.

    PubMed

    Eimura, Hiroki; Umeta, Yoshikazu; Tokoro, Hiroko; Yoshio, Masafumi; Ohkoshi, Shin-Ichi; Kato, Takashi

    2016-06-20

    Macroscopically oriented stable organic radicals have been obtained by using a liquid-crystalline (LC) gel composed of an l-isoleucine-based low molecular weight gelator containing a 2,2,6,6-tetramethylpiperidine 1-oxyl moiety. The LC gel has allowed magnetic measurements of the oriented organic radical. The gelator has formed fibrous aggregates in liquid crystals via intermolecular hydrogen bonds. The fibrous aggregates of the radical gelator are formed and oriented on cooling by applying a magnetic field to the mixture of liquid crystals and the gelator. Superconducting quantum interference device (SQUID) measurements have revealed that both oriented and nonoriented fibrous aggregates exhibited antiferromagnetic interactions, in which super-exchange interaction constant J is estimated as -0.89 cm(-1) .

  6. Pulsar lensing geometry

    NASA Astrophysics Data System (ADS)

    Liu, Siqi; Pen, Ue-Li; Macquart, J.-P.; Brisken, Walter; Deller, Adam

    2016-05-01

    We test the inclined sheet pulsar scintillation model (Pen & Levin) against archival very long baseline interferometry (VLBI) data on PSR 0834+06 and show that its scintillation properties can be precisely reproduced by a model in which refraction occurs on two distinct lens planes. These data strongly favour a model in which grazing-incidence refraction instead of diffraction off turbulent structures is the primary source of pulsar scattering. This model can reproduce the parameters of the observed diffractive scintillation with an accuracy at the percent level. Comparison with new VLBI proper motion results in a direct measure of the ionized interstellar medium (ISM) screen transverse velocity. The results are consistent with ISM velocities local to the PSR 0834+06 sight-line (through the Galaxy). The simple 1-D structure of the lenses opens up the possibility of using interstellar lenses as precision probes for pulsar lens mapping, precision transverse motions in the ISM, and new opportunities for removing scattering to improve pulsar timing. We describe the parameters and observables of this double screen system. While relative screen distances can in principle be accurately determined, a global conformal distance degeneracy exists that allows a rescaling of the absolute distance scale. For PSR B0834+06, we present VLBI astrometry results that provide (for the first time) a direct measurement of the distance of the pulsar. For most of the recycled millisecond pulsars that are the targets of precision timing observations, the targets where independent distance measurements are not available. The degeneracy presented in the lens modelling could be broken if the pulsar resides in a binary system.

  7. Does the Earth's Magnetic Field Serve as a Reference for Alignment of the Honeybee Waggle Dance?

    PubMed Central

    Lambinet, Veronika; Hayden, Michael E.; Bieri, Marco; Gries, Gerhard

    2014-01-01

    The honeybee (Apis mellifera) waggle dance, which is performed inside the hive by forager bees, informs hive mates about a potent food source, and recruits them to its location. It consists of a repeated figure-8 pattern: two oppositely directed turns interspersed by a short straight segment, the “waggle run”. The waggle run consists of a single stride emphasized by lateral waggling motions of the abdomen. Directional information pointing to a food source relative to the sun's azimuth is encoded in the angle between the waggle run line and a reference line, which is generally thought to be established by gravity. Yet, there is tantalizing evidence that the local (ambient) geomagnetic field (LGMF) could play a role. We tested the effect of the LGMF on the recruitment success of forager bees by placing observation hives inside large Helmholtz coils, and then either reducing the LGMF to 2% or shifting its apparent declination. Neither of these treatments reduced the number of nest mates that waggle dancing forager bees recruited to a feeding station located 200 m north of the hive. These results indicate that the LGMF does not act as the reference for the alignment of waggle-dancing bees. PMID:25541731

  8. Classical Accreting Pulsars with NICER

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2014-01-01

    Soft excesses are very common center dot Lx > 1038 erg/s - reprocessing by optically thick material at the inner edge of the accretion disk center dot Lx < 1036 erg/s - photoionized or collisionally heated diffuse gas or thermal emission from the NS surface center dot Lx 1037 erg/s - either or both types of emission center dot NICER observations of soft excesses in bright X-ray pulsars combined with reflection modeling will constrain the ionization state, metalicity and dynamics of the inner edge of the magnetically truncated accretion disk Reflection models of an accretion disk for a hard power law - Strong soft excess below 3 keV from hot X-ray heated disk - For weakly ionized case: strong recombination lines - Are we seeing changes in the disk ionization in 4U1626-26? 13 years of weekly monitoring with RXTE PCA center dot Revealed an unexpectedly large population of Be/X-ray binaries compared to the Milky Way center dot Plotted luminosities are typical of "normal" outbursts (once per orbit) center dot The SMC provides an excellent opportunity to study a homogenous population of HMXBs with low interstellar absorption for accretion disk studies. Monitoring with NICER will enable studies of accretion disk physics in X-ray pulsars center dot The SMC provides a potential homogeneous low-absorption population for this study center dot NICER monitoring and TOO observations will also provide measurements of spinfrequencies, QPOs, pulsed fluxes, and energy spectra.

  9. ON THE POLAR CAP CASCADE PAIR MULTIPLICITY OF YOUNG PULSARS

    SciTech Connect

    Timokhin, A. N.; Harding, A. K.

    2015-09-10

    We study the efficiency of pair production in polar caps of young pulsars under a variety of conditions to estimate the maximum possible multiplicity of pair plasma in pulsar magnetospheres. We develop a semi-analytic model for calculation of cascade multiplicity which allows efficient exploration of the parameter space and corroborate it with direct numerical simulations. Pair creation processes are considered separately from particle acceleration in order to assess different factors affecting cascade efficiency, with acceleration of primary particles described by recent self-consistent non-stationary model of pair cascades. We argue that the most efficient cascades operate in the curvature radiation/synchrotron regime, the maximum multiplicity of pair plasma in pulsar magnetospheres is ∼few × 10{sup 5}. The multiplicity of pair plasma in magnetospheres of young energetic pulsars weakly depends on the strength of the magnetic field and the radius of curvature of magnetic field lines and has a stronger dependence on pulsar inclination angle. This result questions assumptions about very high pair plasma multiplicity in theories of pulsar wind nebulae.

  10. Braking indices of pulsars obtained in the presence of an effective force

    NASA Astrophysics Data System (ADS)

    Magalhaes, N. S.; Okada, A. S.; Frajuca, C.

    2016-10-01

    Braking indices of pulsars present a scientific challenge as their theoretical calculation is still an open problem. In this paper, we report results of a study regarding such calculation which adapts the canonical model (which admits that pulsars are rotating magnetic dipoles) basically by introducing a compensating component in the energy conservation equation of the system. This component would correspond to an effective force that varies with the first power of the tangential velocity of the pulsar's crust. We test the proposed model using data available and predict braking indices values for different stars. We comment on the high braking index recently measured of the pulsar J1640-4631.

  11. An extremely bright gamma-ray pulsar in the Large Magellanic Cloud.

    PubMed

    2015-11-13

    Pulsars are rapidly spinning, highly magnetized neutron stars, created in the gravitational collapse of massive stars. We report the detection of pulsed giga-electron volt gamma rays from the young pulsar PSR J0540-6919 in the Large Magellanic Cloud, a satellite galaxy of the Milky Way. This is the first gamma-ray pulsar detected in another galaxy. It has the most luminous pulsed gamma-ray emission yet observed, exceeding the Crab pulsar's by a factor of 20. PSR J0540-6919 presents an extreme test case for understanding the structure and evolution of neutron star magnetospheres.

  12. An extremely bright gamma-ray pulsar in the Large Magellanic Cloud.

    PubMed

    2015-11-13

    Pulsars are rapidly spinning, highly magnetized neutron stars, created in the gravitational collapse of massive stars. We report the detection of pulsed giga-electron volt gamma rays from the young pulsar PSR J0540-6919 in the Large Magellanic Cloud, a satellite galaxy of the Milky Way. This is the first gamma-ray pulsar detected in another galaxy. It has the most luminous pulsed gamma-ray emission yet observed, exceeding the Crab pulsar's by a factor of 20. PSR J0540-6919 presents an extreme test case for understanding the structure and evolution of neutron star magnetospheres. PMID:26564852

  13. X-RAY OBSERVATIONS OF HIGH-B RADIO PULSARS

    SciTech Connect

    Olausen, S. A.; Kaspi, V. M.; Zhu, W. W.; Vogel, J. K.; Lyne, A. G.; Espinoza, C. M.; Stappers, B. W.; Manchester, R. N.; McLaughlin, M. A.

    2013-02-10

    The study of high-magnetic-field pulsars is important for examining the relationships between radio pulsars, magnetars, and X-ray-isolated neutron stars (XINSs). Here, we report on X-ray observations of three such high-magnetic-field radio pulsars. We first present the results of a deep XMM-Newton observation of PSR J1734-3333, taken to follow up on its initial detection in 2009. The pulsar's spectrum is well fit by a blackbody with a temperature of 300 {+-} 60 eV, with bolometric luminosity L{sub bb}=2.0{sub -0.7}{sup +2.2} Multiplication-Sign 10{sup 32} erg s{sup -1}{approx}0.0036 E-dot for a distance of 6.1 kpc. We detect no X-ray pulsations from the source, setting a 1{sigma} upper limit on the pulsed fraction of 60% in the 0.5-3 keV band. We compare PSR J1734-3333 to other rotation-powered pulsars of similar age and find that it is significantly hotter, supporting the hypothesis that the magnetic field affects the observed thermal properties of pulsars. We also report on XMM-Newton and Chandra observations of PSRs B1845-19 and J1001-5939. We do not detect either pulsar, setting 3{sigma} upper limits on their blackbody temperatures of 48 and 56 eV, respectively. Despite the similarities in rotational properties, these sources are significantly cooler than all but one of the XINSs, which we attribute to the two groups having been born with different magnetic fields and hence evolving differently.

  14. Modelling pulsar glitches

    NASA Astrophysics Data System (ADS)

    Haskell, Brynmor

    2016-07-01

    Pulsar glitches, i.e. sudden jumps in the spin frequency of pulsars, are thought to be due to the presence of large scale superfluid components in neutron star interiors, and offer a unique insight into the physics of matter at high densities and low temperatures. Nevertheless, more than forty years after the first observation, many open questions still exist on the nature of pulsar glitches. In this talk I will review our current theoretical understanding of glitches, of their trigger mechanisms and of the hydrodynamics of superfluid neutron stars. In particular I will focus on 'superfluid vortex avalanches' and recent advances in applying this paradigm to glitch observations, and I will discuss hydrodynamical modelling of the post-glitch recovery.

  15. Detection of 16 gamma-ray pulsars through blind frequency searches using the Fermi LAT.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Anderson, B; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Bignami, G F; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; Dermer, C D; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; Dormody, M; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Gwon, C; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jóhannesson, G; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Marelli, M; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Pierbattista, M; Piron, F; Porter, T A; Primack, J R; Rainò, S; Rando, R; Ray, P S; Razzano, M; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J G; Thompson, D J; Tibaldo, L; Tibolla, O; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Van Etten, A; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Watters, K; Winer, B L; Wolff, M T; Wood, K S; Ylinen, T; Ziegler, M

    2009-08-14

    Pulsars are rapidly rotating, highly magnetized neutron stars emitting radiation across the electromagnetic spectrum. Although there are more than 1800 known radio pulsars, until recently only seven were observed to pulse in gamma rays, and these were all discovered at other wavelengths. The Fermi Large Area Telescope (LAT) makes it possible to pinpoint neutron stars through their gamma-ray pulsations. We report the detection of 16 gamma-ray pulsars in blind frequency searches using the LAT. Most of these pulsars are coincident with previously unidentified gamma-ray sources, and many are associated with supernova remnants. Direct detection of gamma-ray pulsars enables studies of emission mechanisms, population statistics, and the energetics of pulsar wind nebulae and supernova remnants. PMID:19574346

  16. Search for Gamma-Ray Millisecond Pulsars with the Fermi LAT

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2009-01-01

    Prior to the launch of Fermi, only weak gamma-ray pulsations from a single millisecond pulsar, PSR J0218+4232, had been reported. A firm detection of gamma rays from a member of this class of pulsar having periods near neutron star break-up and magnetic dipole moments well below those of normal pulsars would provide new insights into pulsar acceleration and emission. Using accurate ephemerides obtained from several radio telescopes as well as the unprecedented accuracy of the GPS-derived clocks used by Fermi and the LAT, we have searched for gamma-ray pulsations from known pulsars over a broad range of timing parameters. We will present some results from our search for pulsed gamma rays from millisecond pulsars.

  17. Vertically aligned dust particles under the influence of crossed electric and magnetic fields in the sheath of a radio frequency discharge

    NASA Astrophysics Data System (ADS)

    Puttscher, M.; Melzer, A.

    2015-07-01

    We present experiments on two dust particles with a size of a few microns that are levitated in the sheath region of an rf discharge in the presence of an external magnetic field transverse to the sheath electric field. The two particles are vertically aligned due to the ion focusing effect. First, it is observed that the magnetic field causes a displacement of the dust particles either in the E → × B → - or in the opposite direction. Second, at a sufficiently large neutral gas pressure, the vertical alignment breaks up when the magnetic field strength is increased. The occurrence of this dissociation is described by the horizontal force balance on the two particles.

  18. Theory of Pulsar Action as Revealed by PSR B1931+24 (the "intermittent Pulsar")

    NASA Astrophysics Data System (ADS)

    Michel, F. Curtis

    2010-03-01

    The intermittent pulsar B1931+24 is observed to be ON for about a week at a time and OFF for about a month in between. Compared to its period of about 0.8 seconds, each interval is effectively "forever". The more popular theories are based on an old model that suggests that pulsars cannot be OFF, but are fundamentally doomed to be active at all times. The alternative theory which has had less attention is just the opposite and in its simplest form suggests that the pulsar could instead be OFF at all times. We now know that the later is not true owing to magnetic pair production (ApJ, 383, 808, 1991), which additionally explains coherent radio emission as being due to particle bunching. An obvious explanation of B1931+24 (and others are known) is that pulsars can become "stuck" in between these limiting states. If this is true, the obvious conclusion is that in the OFF state it has no currents to/from the neutron star and is being slowed purely from magnetic dipole radiation (n=3, in the simplest limit, although there may be corrections from change in inclination).

  19. Thermal Conductivity of Polymer-Based Composites with Magnetic Aligned Hexagonal Boron Nitride Platelets.

    PubMed

    Yuan, Chao; Duan, Bin; Li, Lan; Xie, Bin; Huang, Mengyu; Luo, Xiaobing

    2015-06-17

    Hexagonal boron nitride (hBN) platelets are widely used as the reinforcing fillers for enhancing the thermal conductivity of polymer-based composites. Since hBN platelets have high aspect ratio and show a highly anisotropic thermal property, the thermal conductivity of the hBNs-filled composites should be strongly associated with the platelets' orientation. However, the orientation effect has been explored less frequently due to the technical difficulties in precontrol of the platelets' orientation in the polymer matrix. In this paper, we report the use of magnetic fields to assemble the platelets into various microstructures and to study the thermal conductivities of the designed composites. The experimental results showed that thermal conductivities are dramatically different among these composites. For instance, the thermal conductivities of the composites with platelets oriented parallel and perpendicular to the heat flux direction are respectively 44.5% higher and 37.9% lower than that of unaligned composites at the volume fraction of 9.14%. The results were also analyzed by a theoretical model. The model suggests that the orientation of the hBN platelets is the main reason for the variance in the thermal conductivity.

  20. OSCILLATION-DRIVEN MAGNETOSPHERIC ACTIVITY IN PULSARS

    SciTech Connect

    Lin, Meng-Xiang; Xu, Ren-Xin; Zhang, Bing E-mail: r.x.xu@pku.edu.cn

    2015-02-01

    We study the magnetospheric activity in the polar cap region of pulsars under stellar oscillations. The toroidal oscillation of the star propagates into the magnetosphere, which provides additional voltage due to unipolar induction, changes Goldreich-Julian charge density from the traditional value due to rotation, and hence influences particle acceleration. We present a general solution of the effect of oscillations within the framework of the inner vacuum gap model and consider three different inner gap modes controlled by curvature radiation, inverse Compton scattering, and two-photon annihilation, respectively. With different pulsar parameters and oscillation amplitudes, one of three modes would play a dominant role in defining the gap properties. When the amplitude of oscillation exceeds a critical value, mode changing occurs. Oscillations also lead to a change of the size of the polar cap. As applications, we show the inner gap properties under oscillations in both normal pulsars and anomalous X-ray pulsars/soft gamma-ray repeaters (AXPs/SGRs). We interpret the onset of radio emission after glitches/flares in AXPs/SGRs as due to oscillation-driven magnetic activities in these objects, within the framework of both the magnetar model and the solid quark star model. Within the magnetar model, radio activation may be caused by the enlargement of the effective polar cap angle and the radio emission beam due to oscillation, whereas within the solid quark star angle, it may be caused by activation of the pulsar inner gap from below the radio emission death line due to an oscillation-induced voltage enhancement. The model can also explain the glitch-induced radio profile change observed in PSR J1119–6127.

  1. Growth of (Y1-x Ca x )Ba2Cu4O8 in ambient pressure and its tri-axial magnetic alignment

    NASA Astrophysics Data System (ADS)

    Horii, S.; Yamaki, M.; Shimoyama, J.; Kishio, K.; Doi, T.

    2015-10-01

    We report the growth of single crystals in ambient pressure and tri-axial orientation under modulated rotation magnetic fields (MRFs) for (Y1-x Ca x )Ba2Cu4O8 [(Y1-x Ca x )124] with x ≤ 0.1. Rectangular (Y1-x Ca x )124 crystals approximately 50 μm in size have been successfully grown for x ≤ 0.1 in a growth temperature region from 650 °C to 750 °C. Their critical temperatures increased with x and exhibited approximately 91 K for x = 0.1. By applying an MRF of 10 T, pulverised powders of (Y1-x Ca x )124 were tri-axially aligned in epoxy resin at room temperature in a whole x region below x = 0.1. The magnitude relationship of the magnetic susceptibilities (χ) along crystallographic directions for (Y1-x Ca x )124 was χ c > χ a > χ b at room temperature and was unchanged with a change in x. From changes in the degrees of the c-axis and the in-plane orientation (Δω) for the (Y1-x Ca x )124 powder samples aligned under three different MRF conditions, it was found that MRFs above at least 1 T were required to achieve almost complete tri-axial alignment with Δω < 5°. Irreversibility lines for H//c were successfully determined even from the powder samples by the introduction of magnetic alignment without using single crystalline samples. The present study indicates that magnetic alignment is a useful process for the fabrication of quasi-single-crystals from the perspective of solid-state physics and the production of cuprate superconducting materials.

  2. High-Energy Emission From Millisecond Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Usov, Vladimir V.; Muslimov, Alex G.

    2004-01-01

    The X-ray and gamma-ray spectrum of rotation-powered millisecond pulsars is investigated in a model for acceleration and pair cascades on open field lines above the polar caps. Although these pulsars have low surface magnetic fields, their short periods allow them to have large magnetospheric potential drops, but the majority do not produce sufficient pairs to completely screen the accelerating electric field. In these sources, the primary and secondary electrons continue to accelerate to high altitude and their Lorentz factors are limited by curvature and synchrotron radiation reaction. The accelerating particles maintain high Lorentz factors and undergo cyclotron resonant absorption of radio emission, that produces and maintains a large pitch angle, resulting in a strong synchrotron component. The resulting spectra consist of several distinct components: curvature radiation from primary electrons dominating from 1 - 100 GeV, synchrotron radiation from primary and secondary electrons dominating up to about 100 MeV, and much weaker inverse-Compton radiation from primary electrons a t 0.1 - 1 TeV. We find that the relative size of these components depends on pulsar period, period derivative, and neutron star mass and radius with the level of the synchrotron component also depending sensitively on the radio emission properties. This model is successful in describing the observed X-ray and gamma-ray spectrum of PSR J0218+4232 as synchrotron radiation, peaking around 100 MeV and extending up to a turnover around several GeV. The predicted curvature radiation components from a number of millisecond pulsars, as well as the collective emission from the millisecond pulsars in globular clusters, should be detectable with AGILE and GLAST. We also discuss a hidden population of X-ray-quiet and radio-quiet millisecond pulsars which have evolved below the pair death line, some of which may be detectable by telescopes sensitive above 1 GeV. Subject headings: pulsars: general

  3. Magnetically aligned iron oxide/gold nanoparticle-decorated carbon nanotube hybrid structure as a humidity sensor.

    PubMed

    Lee, Jaewook; Mulmi, Suresh; Thangadurai, Venkataraman; Park, Simon S

    2015-07-22

    Functionalized carbon nanotubes (f-CNTs), particularly CNTs decorated with nanoparticles (NPs), are of great interest because of their synergic effects, such as surface-enhanced Raman scattering, plasmonic resonance energy transfer, magnetoplasmonic, magnetoelectric, and magnetooptical effects. In general, research has focused on a single type of NP, such as a metal or metal oxide, that has been modified on a CNT surface. In this study, however, a new strategy is introduced for the decoration of two different NP types on CNTs. In order to improve the functionality of modified CNTs, we successfully prepared binary NP-decorated CNTs, namely, iron oxide/gold (Au) NP-decorated CNTs (IA-CNTs), which were created through two simple reactions in deionized water, without high temperature, high pressure, or harsh reducing agents. The physicochemical properties of IA-CNTs were characterized by ultraviolet/visible spectroscopy, Fourier transform infrared spectroscopy, a superconducting quantum interference device, scanning electron microscopy, and transmission electron microscopy. In this study, IA-CNTs were utilized to detect humidity. Magnetic IA-CNTs were aligned on interdigitated platinum electrodes under external magnetic fields to create a humidity-sensing channel, and its electrical conductivity was monitored. As the humidity increased, the electrical resistance of the sensor also increased. In comparison with various gases, for example, H2, O2, CO, CO2, SO2, and dry air, the IA-CNT-based humidity sensor exhibited high-selectivity performances. IA-CNTs also responded to heavy water (D2O), and it was established that the humidity detection mechanism had D2O-sensing capabilities. Further, the humidity from human out-breathing was also successfully detected by this system. In conclusion, these unique IA-CNTs exhibited potential application as gas detection materials.

  4. Ion-temperature-gradient sensitivity of the hydrodynamic instability caused by shear in the magnetic-field-aligned plasma flow

    SciTech Connect

    Mikhailenko, V. V.; Mikhailenko, V. S.; Lee, Hae June; Koepke, M. E.

    2014-07-15

    The cross-magnetic-field (i.e., perpendicular) profile of ion temperature and the perpendicular profile of the magnetic-field-aligned (parallel) plasma flow are sometimes inhomogeneous for space and laboratory plasma. Instability caused either by a gradient in the ion-temperature profile or by shear in the parallel flow has been discussed extensively in the literature. In this paper, (1) hydrodynamic plasma stability is investigated, (2) real and imaginary frequency are quantified over a range of the shear parameter, the normalized wavenumber, and the ratio of density-gradient and ion-temperature-gradient scale lengths, and (3) the role of inverse Landau damping is illustrated for the case of combined ion-temperature gradient and parallel-flow shear. We find that increasing the ion-temperature gradient reduces the instability threshold for the hydrodynamic parallel-flow shear instability, also known as the parallel Kelvin-Helmholtz instability or the D'Angelo instability. We also find that a kinetic instability arises from the coupled, reinforcing action of both free-energy sources. For the case of comparable electron and ion temperature, we illustrate analytically the transition of the D'Angelo instability to the kinetic instability as (a) the shear parameter, (b) the normalized wavenumber, and (c) the ratio of density-gradient and ion-temperature-gradient scale lengths are varied and we attribute the changes in stability to changes in the amount of inverse ion Landau damping. We show that near a normalized wavenumber k{sub ⊥}ρ{sub i} of order unity (i) the real and imaginary values of frequency become comparable and (ii) the imaginary frequency, i.e., the growth rate, peaks.

  5. Magnetically aligned iron oxide/gold nanoparticle-decorated carbon nanotube hybrid structure as a humidity sensor.

    PubMed

    Lee, Jaewook; Mulmi, Suresh; Thangadurai, Venkataraman; Park, Simon S

    2015-07-22

    Functionalized carbon nanotubes (f-CNTs), particularly CNTs decorated with nanoparticles (NPs), are of great interest because of their synergic effects, such as surface-enhanced Raman scattering, plasmonic resonance energy transfer, magnetoplasmonic, magnetoelectric, and magnetooptical effects. In general, research has focused on a single type of NP, such as a metal or metal oxide, that has been modified on a CNT surface. In this study, however, a new strategy is introduced for the decoration of two different NP types on CNTs. In order to improve the functionality of modified CNTs, we successfully prepared binary NP-decorated CNTs, namely, iron oxide/gold (Au) NP-decorated CNTs (IA-CNTs), which were created through two simple reactions in deionized water, without high temperature, high pressure, or harsh reducing agents. The physicochemical properties of IA-CNTs were characterized by ultraviolet/visible spectroscopy, Fourier transform infrared spectroscopy, a superconducting quantum interference device, scanning electron microscopy, and transmission electron microscopy. In this study, IA-CNTs were utilized to detect humidity. Magnetic IA-CNTs were aligned on interdigitated platinum electrodes under external magnetic fields to create a humidity-sensing channel, and its electrical conductivity was monitored. As the humidity increased, the electrical resistance of the sensor also increased. In comparison with various gases, for example, H2, O2, CO, CO2, SO2, and dry air, the IA-CNT-based humidity sensor exhibited high-selectivity performances. IA-CNTs also responded to heavy water (D2O), and it was established that the humidity detection mechanism had D2O-sensing capabilities. Further, the humidity from human out-breathing was also successfully detected by this system. In conclusion, these unique IA-CNTs exhibited potential application as gas detection materials. PMID:26112318

  6. Renormalized theory of ion temperature gradient instability of the magnetic-field-aligned plasma shear flow with hot ions

    NASA Astrophysics Data System (ADS)

    Mikhailenko, V. V.; Mikhailenko, V. S.; Lee, Hae June

    2015-10-01

    The developed kinetic theory for the stability of a magnetic-field-aligned (parallel) shear flow with inhomogeneous ion temperature [Mikhailenko et al., Phys. Plasmas 21, 072117 (2014)] predicted that a kinetic instability arises from the coupled reinforcing action of the flow velocity shear and ion temperature gradient in the cases where comparable ion and electron temperatures exist. In the present paper, the nonlinear theory was developed for the instability caused by the combined effects of ion-temperature-gradient and shear-flow (ITG-SF). The level of the electrostatic turbulence is determined for the saturation state of the instability on the basis of the nonlinear dispersion equation, which accounts for a nonlinear scattering of ions by the developed turbulence in a sheared flow. The renormalized quasilinear equation for the ion distribution function, which accounts for the turbulent scattering of ions by ITG-SF driven turbulence, was derived and employed for the estimation of the turbulent ion viscosity, the anomalous ion thermal conductivity, and anomalous ion heating rate at the saturation state of the instability.

  7. Renormalized theory of ion temperature gradient instability of the magnetic-field-aligned plasma shear flow with hot ions

    SciTech Connect

    Mikhailenko, V. V. Mikhailenko, V. S.; Lee, Hae June

    2015-10-15

    The developed kinetic theory for the stability of a magnetic-field-aligned (parallel) shear flow with inhomogeneous ion temperature [Mikhailenko et al., Phys. Plasmas 21, 072117 (2014)] predicted that a kinetic instability arises from the coupled reinforcing action of the flow velocity shear and ion temperature gradient in the cases where comparable ion and electron temperatures exist. In the present paper, the nonlinear theory was developed for the instability caused by the combined effects of ion-temperature-gradient and shear-flow (ITG–SF). The level of the electrostatic turbulence is determined for the saturation state of the instability on the basis of the nonlinear dispersion equation, which accounts for a nonlinear scattering of ions by the developed turbulence in a sheared flow. The renormalized quasilinear equation for the ion distribution function, which accounts for the turbulent scattering of ions by ITG–SF driven turbulence, was derived and employed for the estimation of the turbulent ion viscosity, the anomalous ion thermal conductivity, and anomalous ion heating rate at the saturation state of the instability.

  8. Three-dimensional Non-vacuum Pulsar Outer-gap Model: Localized Acceleration Electric Field in the Higher Altitudes

    NASA Astrophysics Data System (ADS)

    Hirotani, Kouichi

    2015-01-01

    We investigate the particle accelerator that arises in a rotating neutron-star magnetosphere. Simultaneously solving the Poisson equation for the electro-static potential, the Boltzmann equations for relativistic electrons and positrons, and the radiative transfer equation, we demonstrate that the electric field is substantially screened along the magnetic field lines by pairs that are created and separated within the accelerator. As a result, the magnetic-field-aligned electric field is localized in higher altitudes near the light cylinder and efficiently accelerates the positrons created in the lower altitudes outward but does not accelerate the electrons inward. The resulting photon flux becomes predominantly outward, leading to typical double-peak light curves, which are commonly observed from many high-energy pulsars.

  9. THREE-DIMENSIONAL NON-VACUUM PULSAR OUTER-GAP MODEL: LOCALIZED ACCELERATION ELECTRIC FIELD IN THE HIGHER ALTITUDES

    SciTech Connect

    Hirotani, Kouichi

    2015-01-10

    We investigate the particle accelerator that arises in a rotating neutron-star magnetosphere. Simultaneously solving the Poisson equation for the electro-static potential, the Boltzmann equations for relativistic electrons and positrons, and the radiative transfer equation, we demonstrate that the electric field is substantially screened along the magnetic field lines by pairs that are created and separated within the accelerator. As a result, the magnetic-field-aligned electric field is localized in higher altitudes near the light cylinder and efficiently accelerates the positrons created in the lower altitudes outward but does not accelerate the electrons inward. The resulting photon flux becomes predominantly outward, leading to typical double-peak light curves, which are commonly observed from many high-energy pulsars.

  10. Initial results on the correlation between the magnetic and electric fields observed from the DE-2 satellite in the field-aligned current regions

    NASA Technical Reports Server (NTRS)

    Sugiura, M.; Maynard, N. C.; Farthing, W. H.; Heppner, J. P.; Ledley, B. G.; Cahill, L. J., Jr.

    1982-01-01

    Initial results of the electric and magnetic field observations from the DE-2 satellite show a remarkably good correlation between the north-south component of the electric field and the east-west component of the magnetic field in many passes of the field-aligned current regions. For a dayside cusp pass on August 15, 1981 the coefficient of correlation between these components was 0.996. A preliminary inspection of the available data from the first 6 months of the DE operation indicates that the similarity between the electric and magnetic field signatures of the field-aligned currents is a commonly observed feature at all local times. This high correlation is interpreted to be an indication that the closure of the field-aligned current is essentially meridional. When the correlation between these components is not good, the closure current is likely to be flowing along the auroral belt. When the correlation between the electric and magnetic fields is high, it is possible to estimate the height-integrated Pedersen conductivity from the observed field components.

  11. The Pulsar Search Collaboratory

    ERIC Educational Resources Information Center

    Rosen, R.; Heatherly, S.; McLaughlin, M. A.; Kondratiev, V. I.; Boyles, J. R.; Wilson, M.; Lorimer, D. R.; Lynch, R.; Ransom, S.

    2010-01-01

    The Pulsar Search Collaboratory (PSC) (NSF #0737641) is a joint project between the National Radio Astronomy Observatory and West Virginia University designed to interest high school students in science, technology, engineering, and mathematics related career paths by helping them to conduct authentic scientific research. The 3 year PSC program,…

  12. Designing an optimum pulsed magnetic field by a resistance/self-inductance/capacitance discharge system and alignment of carbon nanotubes embedded in polypyrrole matrix.

    PubMed

    Kazemikia, Kaveh; Bonabi, Fahimeh; Asadpoorchallo, Ali; Shokrzadeh, Majid

    2015-02-01

    In this work, an optimized pulsed magnetic field production apparatus is designed based on a RLC (Resistance/Self-inductance/Capacitance) discharge circuit. An algorithm for designing an optimum magnetic coil is presented. The coil is designed to work at room temperature. With a minor physical reinforcement, the magnetic flux density can be set up to 12 Tesla with 2 ms duration time. In our design process, the magnitude and the length of the magnetic pulse are the desired parameters. The magnetic field magnitude in the RLC circuit is maximized on the basis of the optimal design of the coil. The variables which are used in the optimization process are wire diameter and the number of coil layers. The coil design ensures the critically damped response of the RLC circuit. The electrical, mechanical, and thermal constraints are applied to the design process. A locus of probable magnetic flux density values versus wire diameter and coil layer is provided to locate the optimum coil parameters. Another locus of magnetic flux density values versus capacitance and initial voltage of the RLC circuit is extracted to locate the optimum circuit parameters. Finally, the application of high magnetic fields on carbon nanotube-PolyPyrrole (CNT-PPy) nano-composite is presented. Scanning probe microscopy technique is used to observe the orientation of CNTs after exposure to a magnetic field. The result shows alignment of CNTs in a 10.3 Tesla, 1.5 ms magnetic pulse.

  13. Designing an optimum pulsed magnetic field by a resistance/self-inductance/capacitance discharge system and alignment of carbon nanotubes embedded in polypyrrole matrix

    NASA Astrophysics Data System (ADS)

    Kazemikia, Kaveh; Bonabi, Fahimeh; Asadpoorchallo, Ali; Shokrzadeh, Majid

    2015-02-01

    In this work, an optimized pulsed magnetic field production apparatus is designed based on a RLC (Resistance/Self-inductance/Capacitance) discharge circuit. An algorithm for designing an optimum magnetic coil is presented. The coil is designed to work at room temperature. With a minor physical reinforcement, the magnetic flux density can be set up to 12 Tesla with 2 ms duration time. In our design process, the magnitude and the length of the magnetic pulse are the desired parameters. The magnetic field magnitude in the RLC circuit is maximized on the basis of the optimal design of the coil. The variables which are used in the optimization process are wire diameter and the number of coil layers. The coil design ensures the critically damped response of the RLC circuit. The electrical, mechanical, and thermal constraints are applied to the design process. A locus of probable magnetic flux density values versus wire diameter and coil layer is provided to locate the optimum coil parameters. Another locus of magnetic flux density values versus capacitance and initial voltage of the RLC circuit is extracted to locate the optimum circuit parameters. Finally, the application of high magnetic fields on carbon nanotube-PolyPyrrole (CNT-PPy) nano-composite is presented. Scanning probe microscopy technique is used to observe the orientation of CNTs after exposure to a magnetic field. The result shows alignment of CNTs in a 10.3 Tesla, 1.5 ms magnetic pulse.

  14. Designing an optimum pulsed magnetic field by a resistance/self-inductance/capacitance discharge system and alignment of carbon nanotubes embedded in polypyrrole matrix.

    PubMed

    Kazemikia, Kaveh; Bonabi, Fahimeh; Asadpoorchallo, Ali; Shokrzadeh, Majid

    2015-02-01

    In this work, an optimized pulsed magnetic field production apparatus is designed based on a RLC (Resistance/Self-inductance/Capacitance) discharge circuit. An algorithm for designing an optimum magnetic coil is presented. The coil is designed to work at room temperature. With a minor physical reinforcement, the magnetic flux density can be set up to 12 Tesla with 2 ms duration time. In our design process, the magnitude and the length of the magnetic pulse are the desired parameters. The magnetic field magnitude in the RLC circuit is maximized on the basis of the optimal design of the coil. The variables which are used in the optimization process are wire diameter and the number of coil layers. The coil design ensures the critically damped response of the RLC circuit. The electrical, mechanical, and thermal constraints are applied to the design process. A locus of probable magnetic flux density values versus wire diameter and coil layer is provided to locate the optimum coil parameters. Another locus of magnetic flux density values versus capacitance and initial voltage of the RLC circuit is extracted to locate the optimum circuit parameters. Finally, the application of high magnetic fields on carbon nanotube-PolyPyrrole (CNT-PPy) nano-composite is presented. Scanning probe microscopy technique is used to observe the orientation of CNTs after exposure to a magnetic field. The result shows alignment of CNTs in a 10.3 Tesla, 1.5 ms magnetic pulse. PMID:25725890

  15. A characterization of the LAP Aquarius Phantom for external LAP laser alignment and magnetic resonance geometric distortion verification for stereotactic radiation surgery patient simulation

    NASA Astrophysics Data System (ADS)

    Vergara, Daniel

    The Thesis explores additional applications of LAP's Aquarius external laser alignment verification Phantom by examining geometric accuracy of magnetic resonance images commonly used for planning intracranial stereotactic radiation surgery (ICSRS) cases. The scans were performed with MRI protocols used for ICSRS, and head and neck diagnosis, and their images fused to computerized tomographic (CT) images. The geometric distortions (GDs) were measured against the CT in all axial, sagittal, and coronal directions at different levels. Using the Aquarius Phantom, one is able to detect GD in ICSRS planning MRI acquisitions, and align the external LAP patient alignment lasers, by following the LAP QA protocol. GDs up to about 2 mm are observed at the distal regions of the longitudinal axis in the SRS treatment planning MR images. Based on the results, one may recommend the use of the Aquarius Phantom to determine if margins should be included for SRS treatment planning.

  16. Pulsar Magnetospheres: Variation Principle, Singularities, and Estimate of Power

    NASA Astrophysics Data System (ADS)

    Gruzinov, Andrei

    2006-08-01

    We formulate a variation principle for the force-free magnetosphere of an inclined pulsar: E+Ω b.dot M (where E and M are electromagnetic energy and angular momentum and Ω is the angular velocity of the star) is stationary under isotopological variations of the magnetic field and arbitrary variations of the electric field. The variation principle gives the reason for the existence and proves the local stability of singular current layers along magnetic separatrices. Magnetic field lines of inclined pulsar magnetospheres lie on magnetic surfaces and do have magnetic separatrices. In the framework of the isotopological variation principle, inclined magnetospheres are expected to be simple deformations of the axisymmetric pulsar magnetosphere. A singular line should exist on the light cylinder, where the inner separatrix terminates and the outer separatrix emanates. The electromagnetic field should have an inverse square root singularity near the singular line inside the inner magnetic separatrix. The large-distance asymptotic solution is calculated and used to estimate the pulsar power, L~c-3μ2Ω4 for spin-dipole inclinations <~30°.

  17. Student Discovers New Pulsar

    NASA Astrophysics Data System (ADS)

    2010-01-01

    A West Virginia high-school student has discovered a new pulsar, using data from the giant Robert C. Byrd Green Bank Telescope (GBT). Shay Bloxton, 15, a participant in a project in which students analyze data from the radio telescope, spotted evidence of the pulsar on October 15. Bloxton, along with NRAO astronomers observed the object again one month later. The new observation confirmed that the object is a pulsar, a rotating, superdense neutron star. Bloxton is a sophomore at Nicholas County High School in Summersville, West Virginia. "I was very excited when I found out I had actually made a discovery," Bloxton said. She went to Green Bank in November to participate in the follow-up observation. She termed that visit "a great experience." "It also helped me learn a lot about how observations with the GBT are actually done," she added. The project in which she participated, called the Pulsar Search Collaboratory (PSC), is a joint project of the National Radio Astronomy Observatory (NRAO) and West Virginia University, funded by a grant from the National Science Foundation. Pulsars are known for their lighthouse-like beams of radio waves that sweep through space as the neutron star rotates, creating a pulse as the beam sweeps by the Earth. First discovered in 1967, pulsars serve as valuable natural "laboratories" for physicists studying exotic states of matter, quantum mechanics and General Relativity. The GBT, dedicated in 2000, has become one of the world's leading tools for discovering and studying pulsars. The PSC, led by NRAO Education Officer Sue Ann Heatherly and Project Director Rachel Rosen, includes training for teachers and student leaders, and provides parcels of data from the GBT to student teams. The project involves teachers and students in helping astronomers analyze data from 1500 hours of observing with the GBT. The 120 terabytes of data were produced by 70,000 individual pointings of the giant, 17-million-pound telescope. Some 300 hours of the

  18. Be/X-Ray Pulsar Binary Science with LOFT

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2011-01-01

    Accretion disks are ubiquitous in astronomical sources. Accretion powered pulsars are a good test bed for accretion disk physics, because unlike for other objects, the spin of the neutron star is directly observable allowing us to see the effects of angular momentum transfer onto the pulsar. The combination of a sensitive wide-field monitor and the large area detector on LOFT will enable new detailed studies of accretion powered pulsars which I will review. RXTE observations have shown an unusually high number of Be/X-ray pulsar binaries in the SMC. Unlike binaries in the Milky Way, these systems are all at the same distance, allowing detailed population studies using the sensitive LOFT WFM, potentially providing connections to star formation episodes. For Galactic accreting pulsar systems, LOFT will allow measurement of spectral variations within individual pulses, mapping the accretion column in detail for the first time. LOFT will also provide better constraints on magnetic fields in accreting pulsars, allowing measurements of cyclotron features, observations of transitions into the centrifugal inhibition regime, and monitoring of spin-up rate vs flux correlations. Coordinated multi-wavelength observations are crucial to extracting the best science from LOFT from these and numerous other objects.

  19. Physics of radio emission in gamma-ray pulsars

    NASA Astrophysics Data System (ADS)

    Petrova, S. A.

    2016-04-01

    > Propagation of radio emission in a pulsar magnetosphere is reviewed. The effects of polarization transfer, induced scattering and reprocessing to high energies are analysed with a special emphasis on the implications for the gamma-ray pulsars. The possibilities of the pulsar plasma diagnostics based on the observed radio pulse characteristics are also outlined. As an example, the plasma number density profiles obtained from the polarization data for the Vela and the gamma-ray millisecond pulsars J1446-4701, J1939+2134 and J1744-1134 are presented. The number densities derived tend to be the highest/lowest when the radio pulse leads/lags the gamma-ray peak. In the PSR J1939+2134, the plasma density profiles for the main pulse and interpulse appear to fit exactly the same curve, testifying to the origin of both radio components above the same magnetic pole and their propagation through the same plasma flow in opposite directions. The millisecond radio pulse components exhibiting flat position angle curves are suggested to result from the induced scattering of the main pulse by the same particles that generate gamma rays. This is believed to underlie the wide-sense radio/gamma-ray correlation in the millisecond pulsars. The radio quietness of young gamma-ray pulsars is attributed to resonant absorption, whereas the radio loudness to the radio beam escape through the periphery of the open field line tube.

  20. Exoplanets around pulsars

    NASA Astrophysics Data System (ADS)

    Kitiashvili, I.; Gusev, A.

    2003-04-01

    Surprise discovery of thrid planets and cometary body (!?) near the pulsar PSR~B1257+12 (Wolszczan and Frail, 1992) posed the problems of describing their moving around pulsar, their origin and early rotation. At the present time the question whether there exist another three pulsars in the planetary systems is under discussion: PSR 0329+54 (1 planet), PSR B1620--26 (1 planet) and PSR 1828--11 (3 planets, Stairs et al., 2000) . It is known the time scale of pulsars is very stable, then in some cases the periodical fluctuation in time of arrival may be provoked motion of planetary bodies, free precession or concerned with the interior of the neutron star. Discovery exoplanets around PSR~B1257+12 gave strong push for search and investigate planets around neutron stars. Dust disks around stars still retain information about the formation processes of the exoplanetary systems as they are formed by collisions of planetesimals or protoplanets.The conventional explanation for the formation gas giant planets, core accretion, presumes that a gaseous envelope collapses upon a roughly 10 M⊕, solid core that was formed by the collisional accumulation of planetary embryos orbiting in a gaseous disk (Boss, 2002). Small protoplanets torque the disk at the Lindblad and corotation resonances, and the resulting back-torque can propel a planet into the star (Ward, 1997). We investigate the equations of the magneto-rotational instability of the Keplerian disk in linear approximation by qualitative and bifurcation methods. The separation of 3-dimensional parameter space of dynamical system by bifurcation surfaces is obtained. The obtained gallery of more ten phase portraits of disk evolution illustrates the various regimes of the planetary systems evolution. Investigation of a matter around young pulsars will allow us to answer about a possibility of birth of planets after explosion of a supernova star.

  1. Mildly Recycled Pulsars at High-Energies

    NASA Astrophysics Data System (ADS)

    Pellizzoni, A.

    2011-08-01

    Mildly recyled pulsars (MRP), conventionally defined as neutron star having spin period in the 20-100 ms range and surface magnetic field <1011 Gauss, probably rise from binary systems (disrupted or not) with an intermediate or an high mass companion. Despite their relatively low spin-down energies compared to the ``fully'' recycled millisecond pulsars (arising from common low mass X-ray binaries), nearby MRPs can be detected by deep X-ray observations and by timing analysis of the very long data span provided by gamma-ray space detectors. The discovery of peculiar timing and spectral properties, possibly transitional, of the MRPs can be of the utmost importance to link different classes of neutron stars and study their evolution.

  2. Design of a self-aligned, wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with 10 nm magnetic force microscope resolution

    SciTech Connect

    Karcı, Özgür; Dede, Münir

    2014-10-01

    We describe the design of a wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with a self-aligned fibre-cantilever mechanism. An alignment chip with alignment groves and a special mechanical design are used to eliminate tedious and time consuming fibre-cantilever alignment procedure for the entire temperature range. A low noise, Michelson fibre interferometer was integrated into the system for measuring deflection of the cantilever. The spectral noise density of the system was measured to be ~12 fm/√Hz at 4.2 K at 3 mW incident optical power. Abrikosov vortices in BSCCO(2212) single crystal sample and a high density hard disk sample were imaged at 10 nm resolution to demonstrate the performance of the system.

  3. Design of a self-aligned, wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with 10 nm magnetic force microscope resolution.

    PubMed

    Karcı, Özgür; Dede, Münir; Oral, Ahmet

    2014-10-01

    We describe the design of a wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with a self-aligned fibre-cantilever mechanism. An alignment chip with alignment groves and a special mechanical design are used to eliminate tedious and time consuming fibre-cantilever alignment procedure for the entire temperature range. A low noise, Michelson fibre interferometer was integrated into the system for measuring deflection of the cantilever. The spectral noise density of the system was measured to be ∼12 fm/√Hz at 4.2 K at 3 mW incident optical power. Abrikosov vortices in BSCCO(2212) single crystal sample and a high density hard disk sample were imaged at 10 nm resolution to demonstrate the performance of the system. PMID:25362401

  4. PARTICLE TRANSPORT IN YOUNG PULSAR WIND NEBULAE

    SciTech Connect

    Tang Xiaping; Chevalier, Roger A. E-mail: rac5x@virginia.edu

    2012-06-20

    The model for pulsar wind nebulae (PWNe) as a result of the magnetohydrodynamic (MHD) downstream flow from a shocked, relativistic pulsar wind has been successful in reproducing many features of the nebulae observed close to central pulsars. However, observations of well-studied young nebulae like the Crab Nebula, 3C 58, and G21.5-0.9 do not show the toroidal magnetic field on a larger scale that might be expected in the MHD flow model; in addition, the radial variation of spectral index due to synchrotron losses is smoother than expected in the MHD flow model. We find that pure diffusion models can reproduce the basic data on nebular size and spectral index variation for the Crab, 3C 58, and G21.5-0.9. Most of our models use an energy-independent diffusion coefficient; power-law variations of the coefficient with energy are degenerate with variation in the input particle energy distribution index in the steady state, transmitting boundary case. Energy-dependent diffusion is a possible reason for the smaller diffusion coefficient inferred for the Crab. Monte Carlo simulations of the particle transport allowing for advection and diffusion of particles suggest that diffusion dominates over much of the total nebular volume of the Crab. Advection dominates close to the pulsar and is likely to play a role in the X-ray half-light radius. The source of diffusion and mixing of particles is uncertain, but may be related to the Rayleigh-Taylor instability at the outer boundary of a young PWN or to instabilities in the toroidal magnetic field structure.

  5. Change of Magnetic Field-gas Alignment at the Gravity-driven Alfvénic Transition in Molecular Clouds: Implications for Dust Polarization Observations

    NASA Astrophysics Data System (ADS)

    Chen, Che-Yu; King, Patrick K.; Li, Zhi-Yun

    2016-10-01

    Diffuse striations in molecular clouds are preferentially aligned with local magnetic fields, whereas dense filaments tend to be perpendicular to them. When and why this transition occurs remain uncertain. To explore the physics behind this transition, we compute the histogram of relative orientation (HRO) between the density gradient and the magnetic field in three-dimensional magnetohydrodynamic (MHD) simulations of prestellar core formation in shock-compressed regions within giant molecular clouds. We find that, in the magnetically dominated (sub-Alfvénic) post-shock region, the gas structure is preferentially aligned with the local magnetic field. For overdense sub-regions with super-Alfvénic gas, their elongation becomes preferentially perpendicular to the local magnetic field. The transition occurs when self-gravitating gas gains enough kinetic energy from the gravitational acceleration to overcome the magnetic support against the cross-field contraction, which results in a power-law increase of the field strength with density. Similar results can be drawn from HROs in projected two-dimensional maps with integrated column densities and synthetic polarized dust emission. We quantitatively analyze our simulated polarization properties, and interpret the reduced polarization fraction at high column densities as the result of increased distortion of magnetic field directions in trans- or super-Alfvénic gas. Furthermore, we introduce measures of the inclination and tangledness of the magnetic field along the line of sight as the controlling factors of the polarization fraction. Observations of the polarization fraction and angle dispersion can therefore be utilized in studying local magnetic field morphology in star-forming regions.

  6. The Optimization of GBT Pulsar Data for the GBNCC Pulsar Survey

    NASA Astrophysics Data System (ADS)

    Gordon, Ashlee Nicole; Green Bank NRAO, GBNCC

    2016-01-01

    The Green Bank Telescope collects data from the Green Bank Northern Celestial Cap (GBNCC) pulsar survey in order to find new pulsars within its sensitivity and also, to confirm previously found pulsars within its sensitivity range. The collected data is then loaded into the CyberSKA website database where astronomers are tasked with rating the data sets based on its potential to be a pulsar from 0(unclassified), 1(class 1 pulsar), 2(class 2 pulsar), 3(class 3 pulsar), 4(radio frequency interference), 5(not a pulsar), 6(know pulsar), 7(harmonic of a known pulsar). This specific research done was to use previously classified pulsars to create a python script that will automatically identify the data set as a pulsar or a non-pulsar. After finding the recurring frequencies of radio frequency interference (RFI), the frequencies were then added to a pipeline to further discern pulsars from RFI.

  7. Effects of magnetic pre-alignment of nano-powders on formation of high textured barium hexa-ferrite quasi-single crystals via a magnetic forming and liquid participation sintering route

    NASA Astrophysics Data System (ADS)

    Liu, Junliang; Zeng, Yanwei; Zhang, Xingkai; Zhang, Ming

    2015-05-01

    Highly textured barium hexa-ferrite quasi-single crystal with narrow ferromagnetic resonance line-width is believed to be a potential gyromagnetic material for self-biased microwave devices. To fabricate barium hexa-ferrite quasi-single crystal with a high grain orientation degree, a magnetic forming and liquid participation sintering route has been developed. In this paper, the effects of the pre-alignment of the starting nano-powders on the formation of barium quasi-single crystal structures have been investigated. The results indicated that: the crystallites with large sizes and small specific surfaces were easily aligned for they got higher driving forces and lower resistances during magnetic forming. The average restricting magnetic field was about 4.647 kOe to overcome the average friction barrier between crystallites. The pre-aligned crystallites in magnetic forming acted as the "crystal seeds" for oriented growth of the un-aligned crystallites during liquid participation sintering to achieve a high grain orientation. To effectively promote the grain orientation degrees of the sintered pellets, the grain orientation degrees of the green compacts must be higher than a limited value of 15.0%. Barium hexa-ferrite quasi-single crystal with a high grain orientation degree of 98.6% was successfully fabricated after sintering the green compact with its grain orientation degree of 51.1%.

  8. X-RAY EVOLUTION OF PULSAR WIND NEBULAE

    SciTech Connect

    Bamba, Aya; Anada, Takayasu; Dotani, Tadayasu; Ebisawa, Ken; Yamazaki, Ryo; Vink, Jacco

    2010-08-20

    During the search for counterparts of very high energy gamma-ray sources, we serendipitously discovered large, extended, low surface brightness emission from pulsar wind nebulae (PWNe) around pulsars with the ages up to {approx}100 kyr, a discovery made possible by the low and stable background of the Suzaku X-ray satellite. A systematic study of a sample of eight of these PWNe, together with Chandra data sets, has revealed that the nebulae keep expanding up to {approx}100 kyr, although the timescale of the synchrotron X-ray emission is only {approx}60 yr for typical magnetic fields of 100 {mu}G. Our result suggests that the accelerated electrons up to {approx}80 TeV can escape from the PWNe without losing most energies. Moreover, in order to explain the observed correlation between the X-ray size and the pulsar spin-down age, the magnetic field strength in the PWNe must decrease with time.

  9. Emission From Rotation-Powered Pulsars and Magnetars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2004-01-01

    I will review the latest developments in understanding the high-energy emission of rotation-powered pulsars and magnetically-powered Anomalous X-ray Pulsars (AXPs) and Soft Gamma-Ray Repeaters (SGRs). These fields have been extremely active in the last few years, both observationally and theoretically, driven partly by new X-ray data from Chandra, XMM-Newton and RXTE. At the same time, the Parkes Multibeam Survey has discovered over 700 new radio pulsars, some of them young, coincident with EGRET sources and others having magnetar-strength magnetic fields. These new observations are raising important questions about neutron star birth and evolution, as well as the properties of their high-energy emission.

  10. Gamma-ray connection of Pulsars-Pulsar Wind Nebulae: From GeV to TeV energies

    NASA Astrophysics Data System (ADS)

    López-Coto, Rubén; de Ona Wilhelmi, Emma

    2015-08-01

    Pulsars are the remnants of massive star explosions and Pulsar Wind Nebulae (PWNe) are the bubbles of relativistic particles and magnetic field surrounding pulsars. The acceleration in PWNe is produced when the pulsar's relativistic wind interacts with its surrounding medium and particles are accelerated at the shock region. The non-thermal photon emission ranges from the radio to the very-high-energy (VHE) range and it is believed to be originated in synchrotron, curvature and inverse Compton processes.So far, pulsars and PWNe represent the largest population of identified GeV and TeV sources. In this contribution, we will describe the recent measurements on young PWNe such as the Crab whose inverse Compton peak was recently accurately determined. We will also discuss the origin of the GeV gamma-ray flares and their non-detection at any other wavelength, together with the recent reports of pulsed emission up to TeV energies. This result evidences the extreme acceleration of electrons in the surrounding of the Crab pulsar, up to Lorenz factors of 5 × 106. We will also put in context the recent discovery of VHE pulsed emission from the Vela pulsar. We will discuss the case of the inefficient pulsar at the center of 3C 58, a PWN discovered by Fermi at GeV energies and by MAGIC at TeV. In addition, we will also present population studies comparing several properties of the central engine such as age or spin-down power with the gamma-ray luminosity of their surrounding PWNe. We will finally show the measurement prospects for this kind of sources with the future Cherenkov Telescope Array.

  11. Strain relaxation and enhanced perpendicular magnetic anisotropy in BiFeO{sub 3}:CoFe{sub 2}O{sub 4} vertically aligned nanocomposite thin films

    SciTech Connect

    Zhang, Wenrui; Jiao, Liang; Li, Leigang; Jian, Jie; Khatkhatay, Fauzia; Chu, Frank; Chen, Aiping; Jia, Quanxi; MacManus-Driscoll, Judith L.; Wang, Haiyan

    2014-02-10

    Self-assembled BiFeO{sub 3}:CoFe{sub 2}O{sub 4} (BFO:CFO) vertically aligned nanocomposite thin films have been fabricated on SrTiO{sub 3} (001) substrates using pulsed laser deposition. The strain relaxation mechanism between BFO and CFO with a large lattice mismatch has been studied by X-ray diffraction and transmission electron microscopy. The as-prepared nanocomposite films exhibit enhanced perpendicular magnetic anisotropy as the BFO composition increases. Different anisotropy sources have been investigated, suggesting that spin-flop coupling between antiferromagnetic BFO and ferrimagnetic CFO plays a dominant role in enhancing the uniaxial magnetic anisotropy.

  12. Gamma radiation from radio pulsars

    NASA Technical Reports Server (NTRS)

    Ruderman, Malvin

    1990-01-01

    The probable magnetospheric location and source of the gamma ray emission from some young radiopulsars is discussed. The suggested evolution of this emission as a function of pulsar period gives a diminished gamma-ray luminosity for a more rapidly spinning pre-Crab pulsar. A greatly enhanced one, similar to that of unidentified Cos B sources, is predicted for a slightly slower post-Vela pulsar, followed by a relatively rapid quenching of the gamma-ray luminosity at still longer periods. Possible anomalous exo-magnetospheric pulsed MeV and TeV-PeV radiation from the Crab pulsar is considered.

  13. WHY DO THE BRAKING INDICES OF PULSARS SPAN A RANGE OF MORE THAN 100 MILLIONS?

    SciTech Connect

    Zhang Shuangnan; Xie Yi

    2012-12-20

    Here we report that the observed braking indices of the 366 pulsars in the sample of Hobbs et al. range from about -10{sup 8} to about +10{sup 8} and are significantly correlated with their characteristic ages. Using the model of magnetic field evolution we developed previously based on the same data, we derive an analytical expression for the braking index which agrees with all the observed statistical properties of the braking indices of the pulsars in the sample of Hobbs et al. Our model is, however, incompatible with the previous interpretation that magnetic field growth is responsible for the small values of braking indices (<3) observed for ''baby'' pulsars with characteristic ages of less than 2 Multiplication-Sign 10{sup 3} yr. We find that the ''instantaneous'' braking index of a pulsar may be different from the ''averaged'' braking index obtained from fitting the data over a certain time span. The close match between our model-predicted ''instantaneous'' braking indices and the observed ''averaged'' braking indices suggests that the time spans used previously are usually smaller than or comparable to their magnetic field oscillation periods. Our model can be tested with the existing data by calculating the braking index as a function of the time span for each pulsar. In doing so, one can obtain for each pulsar all the parameters in our magnetic field evolution model, and may be able to improve the sensitivity of using pulsars to detect gravitational waves.

  14. The Extended Pulsar Magnetosphere

    NASA Technical Reports Server (NTRS)

    Constantinos, Kalapotharakos; Demosthenes, Kazanas; Ioannis, Contopoulos

    2012-01-01

    We present the structure of the 3D ideal MHD pulsar magnetosphere to a radius ten times that of the light cylinder, a distance about an order of magnitude larger than any previous such numerical treatment. Its overall structure exhibits a stable, smooth, well-defined undulating current sheet which approaches the kinematic split monopole solution of Bogovalov 1999 only after a careful introduction of diffusivity even in the highest resolution simulations. It also exhibits an intriguing spiral region at the crossing of two zero charge surfaces on the current sheet, which shows a destabilizing behavior more prominent in higher resolution simulations. We discuss the possibility that this region is physically (and not numerically) unstable. Finally, we present the spiral pulsar antenna radiation pattern.

  15. RADIO-TO-TeV PHASE-RESOLVED EMISSION FROM THE CRAB PULSAR: THE ANNULAR GAP MODEL

    SciTech Connect

    Du, Y. J.; Wang, W.; Qiao, G. J.

    2012-04-01

    The Crab pulsar is a quite young, famous pulsar that radiates multi-wavelength pulsed photons. The latest detection of GeV and TeV pulsed emission with an unprecedented signal-to-noise ratio, supplied by the powerful telescopes Fermi, MAGIC, and VERITAS, challenges the current popular pulsar models, and can be a valuable discriminator to justify the pulsar high-energy-emission models. Our work is divided into two steps. First, taking reasonable parameters (the magnetic inclination angle {alpha} = 45 Degree-Sign and the view angle {zeta} = 63 Degree-Sign ), we use the latest high-energy data to calculate radio, X-ray, {gamma}-ray, and TeV light curves from a geometric view to obtain crucial information on emission locations. Second, we calculate the phase-averaged spectrum and phase-resolved spectra for the Crab pulsar and take a theoretical justification from a physical view for the emission properties as found in the first step. It is found that a Gaussian emissivity distribution with the peak emission near the null charge surface in the so-called annular gap (AG) region gives the best modeled light curves. The pulsed radio, X-ray, {gamma}-ray, and TeV emission are mainly generated from the emission of primary particles or secondary particles with different emission mechanisms in the nearly similar region of the AG located in the only magnetic pole, which leads to the nearly 'phase-aligned' multi-wavelength light curves. The emission of peak 1 and peak 2 originates from the AG region near the null charge surface, while the emission of the bridge primarily originates from the core gap (CG) region. The charged particles cannot co-rotate with the pulsar and escape from the magnetosphere, which determines the original flowing primary particles. The acceleration electric field and potential in the AG and CG are huge enough and are in the several tens of neutron star radii. Thus, the primary particles are accelerated to ultra-relativistic energies and produce numerous

  16. Particle Acceleration in Dissipative Pulsar Magnetospheres

    NASA Technical Reports Server (NTRS)

    Kazanas, Z.; Kalapotharakos, C.; Harding, A.; Contopoulos, I.

    2012-01-01

    Pulsar magnetospheres represent unipolar inductor-type electrical circuits at which an EM potential across the polar cap (due to the rotation of their magnetic field) drives currents that run in and out of the polar cap and close at infinity. An estimate ofthe magnitude of this current can be obtained by dividing the potential induced across the polar cap V approx = B(sub O) R(sub O)(Omega R(sub O)/c)(exp 2) by the impedance of free space Z approx eq 4 pi/c; the resulting polar cap current density is close to $n {GJ} c$ where $n_{GJ}$ is the Goldreich-Julian (GJ) charge density. This argument suggests that even at current densities close to the GJ one, pulsar magnetospheres have a significant component of electric field $E_{parallel}$, parallel to the magnetic field, a condition necessary for particle acceleration and the production of radiation. We present the magnetic and electric field structures as well as the currents, charge densities, spin down rates and potential drops along the magnetic field lines of pulsar magnetospheres which do not obey the ideal MHD condition $E cdot B = 0$. By relating the current density along the poloidal field lines to the parallel electric field via a kind of Ohm's law $J = sigma E_{parallel}$ we study the structure of these magnetospheres as a function of the conductivity $sigma$. We find that for $sigma gg OmegaS the solution tends to the (ideal) Force-Free one and to the Vacuum one for $sigma 11 OmegaS. Finally, we present dissipative magnetospheric solutions with spatially variable $sigma$ that supports various microphysical properties and are compatible with the observations.

  17. Genesis stories for the millisecond pulsar

    NASA Technical Reports Server (NTRS)

    Ruderman, M. A.; Shaham, J.

    1983-01-01

    Theoretical models proposed to explain the origin of the millisecond pulsar (MP) PSR 1937+214 are reviewed, examining their ability to explain its low surface dipole magnetic field (B), its low birth temperature (less than 10 to the 8th K), the absence of a companion or remnant, and its low velocity perpendicular to the Galactic plane. The models discussed are a single isolated explosion forming a rapidly spinning neutron star, spin-up of a dead pulsar by accretion from a companion, collapse of an accreting spinning white dwarf, and fusion of a tight binary composed of two old neutron stars. Although all of the models have difficulties in explaining one or more of the MP characteristics, the second model is found to be most probable in the light of present knowledge. The lack of a companion is explained by its tidal disruption after it had fed the accreting pre-pulsar for 1 Gyr or more and its mass had decreased to about 0.01 solar mass. Neutron stars accreting in this way have been observed in Galactic-bulge X-ray sources.

  18. A self-consistent two-dimensional resistive fluid theory of field-aligned potential structures including charge separation and magnetic and velocity shear

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Birn, Joachim; Schindler, Karl

    1990-01-01

    A self-consistent two-fluid theory that includes the magnetic field and shear patterns is developed to model stationary electrostatic structures with field-aligned potential drops. Shear flow is also included in the theory since this seems to be a prominent feature of the structures of interest. In addition, Ohmic dissipation, a Hall term, and pressure gradients in a generalized Ohm's law, modified for cases without quasi-neutrality, are included. In the analytic theory, the electrostatic force is balanced by field-aligned pressure gradients (i.e., thermal effects in the direction of the magnetic field) and by pressure gradients and magnetic stresses in the perpendicular direction. Within this theory, simple examples of applications are presented to demonstrate the kind of solutions resulting from the model. The results show how the effects of charge separation and shear in the magnetic field and the velocity can be combined to form self-consistent structures such as are found to exist above the aurora, suggested also in association with solar flares.

  19. Chandra Observations of the Pulsar B1929+10 and Its Environment

    NASA Astrophysics Data System (ADS)

    Misanovic, Z.; Pavlov, G. G.; Garmire, G. P.

    2008-10-01

    We report on two Chandra observations of the 3 Myr old pulsar B1929+10, which reveal a faint compact (~9'' × 5'') nebula elongated in the direction perpendicular to the pulsar's proper motion, two patchy wings, and a possible short (~3'') jet emerging from the pulsar. In addition, we detect a tail extending up to at least 4' in the direction opposite to the pulsar's proper motion, aligned with the ~15' long tail detected in ROSAT and XMM-Newton observations. The overall morphology of the nebula suggests that the shocked pulsar wind is confined by the ram pressure due to the pulsar's supersonic speed. The shape of the compact nebula in the immediate vicinity of the pulsar seems to be consistent with the current MHD models. However, since these models do not account yet for the change of the flow velocity at larger distances from the pulsar, they are not able to constrain the extent of the long pulsar tail. The luminosity of the whole nebula as seen by Chandra is LPWN ~ 1030 ergs s-1 in the 0.3-8 keV band, for the distance of 361 pc. Using the Chandra and XMM-Newton data, we found that the pulsar spectrum is composed of nonthermal (magnetospheric) and thermal components. The nonthermal component can be described by a power-law model with photon index Γ ≈ 1.7 and luminosity LnonthPSR ≈ 1.7 × 1030 ergs s-1 in the 0.3-10 keV band. The blackbody fit for the thermal component, which presumably emerges from hot polar caps, gives the temperature kT ≈ 0.3 keV and projected emitting area A⊥ ~ 3 × 103 m2, corresponding to the bolometric luminosity Lbol ~ (1-2) × 1030 ergs s-1.

  20. Physical conditions in the reconnection layer in pulsar magnetospheres

    SciTech Connect

    Uzdensky, Dmitri A.; Spitkovsky, Anatoly E-mail: anatoly@astro.princeton.edu

    2014-01-01

    The magnetosphere of a rotating pulsar naturally develops a current sheet (CS) beyond the light cylinder (LC). Magnetic reconnection in this CS inevitably dissipates a nontrivial fraction of the pulsar spin-down power within a few LC radii. We develop a basic physical picture of reconnection in this environment and discuss its implications for the observed pulsed gamma-ray emission. We argue that reconnection proceeds in the plasmoid-dominated regime, via a hierarchical chain of multiple secondary islands/flux ropes. The inter-plasmoid reconnection layers are subject to strong synchrotron cooling, leading to significant plasma compression. Using the conditions of pressure balance across these current layers, the balance between the heating by magnetic energy dissipation and synchrotron cooling, and Ampere's law, we obtain simple estimates for key parameters of the layers—temperature, density, and layer thickness. In the comoving frame of the relativistic pulsar wind just outside of the equatorial CS, these basic parameters are uniquely determined by the strength of the reconnecting upstream magnetic field. For the case of the Crab pulsar, we find them to be of order 10 GeV, 10{sup 13} cm{sup –3}, and 10 cm, respectively. After accounting for the bulk Doppler boosting due to the pulsar wind, the synchrotron and inverse-Compton emission from the reconnecting CS can explain the observed pulsed high-energy (GeV) and very high energy (∼100 GeV) radiation, respectively. Also, we suggest that the rapid relative motions of the secondary plasmoids in the hierarchical chain may contribute to the production of the pulsar radio emission.

  1. The nature of pulsar radio emission

    NASA Astrophysics Data System (ADS)

    Dyks, J.; Rudak, B.; Demorest, P.

    2010-01-01

    High-quality averaged radio profiles of some pulsars exhibit double, highly symmetric features both in emission and in absorption. It is shown that both types of feature are produced by a split fan beam of extraordinary-mode curvature radiation that is emitted/absorbed by radially extended streams of magnetospheric plasma. With no emissivity in the plane of the stream, such a beam produces bifurcated emission components (BFCs) when our line of sight passes through the plane. An example of a double component created in this way is present in the averaged profile of the 5-ms pulsar J1012+5307. We show that the component can indeed be very well fitted by the textbook formula for the non-coherent beam of curvature radiation in the polarization state that is orthogonal to the plane of electron trajectory. The observed width of the BFC decreases with increasing frequency at a rate that confirms the curvature origin. Likewise, the double absorption features (double notches) are produced by the same beam of the extraordinary-mode curvature radiation, when it is eclipsed by thin plasma streams. The intrinsic property of curvature radiation to create bifurcated fan beams explains the double features in terms of a very natural geometry and implies the curvature origin of pulsar radio emission. Similarly, the `double conal' profiles of class D result from a cut through a wider stream with finite extent in magnetic azimuth. Therefore, their width reacts very slowly to changes of viewing geometry resulting from geodetic precession. The stream-cut interpretation implies a highly non-orthodox origin of both the famous S-swing of polarization angle and the low-frequency pulse broadening in D profiles. The azimuthal structure of polarization modes in the curvature radiation beam provides an explanation for the polarized `multiple imaging' and the edge depolarization of pulsar profiles.

  2. Pulsar Bursts Coming From Beachball-Sized Structures

    NASA Astrophysics Data System (ADS)

    2003-03-01

    mystery. With the help of engineers at the NRAO, Hankins and his team designed and built specialized electronic equipment that allowed them to study the pulsar's radio pulses on extremely small time scales. They took this equipment to the National Science Foundation's giant, 1,000-foot-diameter radio telescope at Arecibo. With their equipment, they analyzed the Crab pulsar's superstrong "giant" pulses, breaking them down into tiny time segments. The researchers discovered that some of the "giant" pulses contain subpulses that last no longer than two nanoseconds. That means, they say, that the regions in which these subpulses are generated can be no larger than about two feet across -- the distance that light could travel in two nanoseconds. This fact, the researchers say, is critically important to understanding how the powerful radio emission is generated. A pulsar's magnetosphere -- the region above the neutron star's magnetic poles where the radio waves are generated -- is "the most exotic environment in the Universe," said Kern. In this environment, matter exists as a plasma, in which electrically charged particles are free to respond to the very strong electric and magnetic fields in the star's atmosphere. The very short subpulses the researchers detected could only be generated, they say, by a strange process in which density waves in the plasma interact with their own electrical field, becoming progressively denser until they reach a point at which they "collapse explosively" into superstrong bursts of radio waves. "None of the other proposed mechanisms can produce such short pulses," Eilek said. "The ability to examine these pulses on such short time scales has given us a new window through which to study pulsar radio emission," she added. The Crab pulsar is one of only three pulsars known to emit superstrong "giant" pulses. "Giant" pulses occur occasionally among the steady but much weaker "normal" pulses coming from the neutron star. Some of the brief subpulses

  3. Youngest Radio Pulsar Revealed with Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    2002-04-01

    times weaker than that from the famous pulsar in the Crab Nebula (the remnant of an explosion in the year 1054 recorded by Chinese astronomers and possibly also by Native Americans of the Anasazi tribe in modern-day Arizona and New Mexico). "Although we knew what we were looking for," said Camilo "it took the new Green Bank Telescope with its unmatched sensitivity -- and, importantly, location in the National Radio Quiet Zone -- to make this remarkable detection." A pulsar is formed when a massive star runs out of nuclear fuel and dies in a cataclysmic explosion called a supernova. The outer layers of the star are blown off into space, and are often seen as an expanding remnant shell of hot gas. The core of the star, with 40 percent more mass than our Sun, collapses under its own gravity to a sphere only about 10 miles in diameter, composed mostly of neutrons. These densest objects known in the Universe typically are born spinning very rapidly; the newly detected pulsar, known as PSR J0205+6449, presently rotates 15 times every second. Pulsar Diagram Pulsar Diagram: Click on image for more detail. The spinning neutron star has very powerful magnetic and electric fields that accelerate electrons and other subatomic particles, causing them to emit beams of radio waves, X-rays, and other forms of radiation. If these beams intersect the Earth as the star rotates, we can then detect the pulsar, as it appears to flash on-and-off, much like a lighthouse. As the pulsar ages, it gradually slows down and loses its rotational energy. After a few million years it is no longer powerful enough to generate radio emission and "turns-off." By detecting this pulsar in the radio spectrum, astronomers may now follow its evolution with greater ease and flexibility than with X-ray telescopes on satellites, study the pulsar emission mechanisms, and also characterize the dynamic interstellar medium between the Earth and the pulsar. "Finding a radio pulsar this young could be somewhat of a gold

  4. Studies of Westward Electrojets and Field-Aligned Currents in the Magnetotail during Substorms: Implications for Magnetic Field Models

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Our studies elucidated the relationship between the auroral arcs and magnetotail phenomena. One paper examined particle energization in the source region of the field-aligned currents that intensify at substorm onset when the arc brightens to form the westward electrojet. A second paper examined the relationship between the precipitating particles in the arcs, the location of the westward electrojet, and magnetospheric source regions. Two earlier papers also investigated the roles that field aligned currents and particle acceleration have during substorms.

  5. Looking for light pseudoscalar bosons in the binary pulsar system J0737-3039.

    PubMed

    Dupays, Arnaud; Rizzo, Carlo; Roncadelli, Marco; Bignami, Giovanni F

    2005-11-18

    We present numerical calculations of the photon-light-pseudoscalar-boson (LPB) production in the recently discovered binary pulsar system J0737-3039. Light pseudoscalar bosons oscillate into photons in the presence of strong magnetic fields. In the context of this binary pulsar system, this phenomenon attenuates the light beam emitted by one of the pulsars, when the light ray goes through the magnetosphere of the companion pulsar. We show that such an effect is observable in the gamma-ray band since the binary pulsar is seen almost edge-on, depending on the values of the LPB mass and on the strength of its two-photon coupling. Our results are surprising in that they show a very sharp and significant (up to 50%) transition probability in the gamma-ray (> tens of MeV) domain. The observations can be performed by the upcoming NASA GLAST mission.

  6. Gamma-ray pulsar light curves as probes of magnetospheric structure

    NASA Astrophysics Data System (ADS)

    Harding, A. K.

    2016-06-01

    > The large number of -ray pulsars discovered by the Fermi Gamma-Ray Space Telescope since its launch in 2008 dwarfs the handful that were previously known. The variety of observed light curves makes possible a tomography of both the ensemble-averaged field structure and the high-energy emission regions of a pulsar magnetosphere. Fitting the -ray pulsar light curves with model magnetospheres and emission models has revealed that most of the high-energy emission, and the particles acceleration, takes place near or beyond the light cylinder, near the current sheet. As pulsar magnetosphere models become more sophisticated, it is possible to probe magnetic field structure and emission that are self-consistently determined. Light curve modelling will continue to be a powerful tool for constraining the pulsar magnetosphere physics.

  7. Pulsar timing and general relativity

    NASA Technical Reports Server (NTRS)

    Backer, D. C.; Hellings, R. W.

    1986-01-01

    Techniques are described for accounting for relativistic effects in the analysis of pulsar signals. Design features of instrumentation used to achieve millisecond accuracy in the signal measurements are discussed. The accuracy of the data permits modeling the pulsar physical characteristics from the natural glitches in the emissions. Relativistic corrections are defined for adjusting for differences between the pulsar motion in its spacetime coordinate system relative to the terrestrial coordinate system, the earth's motion, and the gravitational potentials of solar system bodies. Modifications of the model to allow for a binary pulsar system are outlined, including treatment of the system as a point mass. Finally, a quadrupole model is presented for gravitational radiation and techniques are defined for using pulsars in the search for gravitational waves.

  8. THE DOUBLE PULSAR ECLIPSES. I. PHENOMENOLOGY AND MULTI-FREQUENCY ANALYSIS

    SciTech Connect

    Breton, R. P.; Kaspi, V. M.; McLaughlin, M. A.; Lyutikov, M.; Kramer, M.; Stairs, I. H.; Ransom, S. M.; Ferdman, R. D.; Camilo, F.; Possenti, A.

    2012-03-10

    The double pulsar PSR J0737-3039A/B displays short, 30 s eclipses that arise around conjunction when the radio waves emitted by pulsar A are absorbed as they propagate through the magnetosphere of its companion pulsar B. These eclipses offer a unique opportunity to directly probe the magnetospheric structure and the plasma properties of pulsar B. We have performed a comprehensive analysis of the eclipse phenomenology using multi-frequency radio observations obtained with the Green Bank Telescope. We have characterized the periodic flux modulations previously discovered at 820 MHz by McLaughlin et al. and investigated the radio frequency dependence of the duration and depth of the eclipses. Based on their weak radio frequency evolution, we conclude that the plasma in pulsar B's magnetosphere requires a large multiplicity factor ({approx}10{sup 5}). We also found that, as expected, flux modulations are present at all radio frequencies in which eclipses can be detected. Their complex behavior is consistent with the confinement of the absorbing plasma in the dipolar magnetic field of pulsar B as suggested by Lyutikov and Thompson and such a geometric connection explains that the observed periodicity is harmonically related to pulsar B's spin frequency. We observe that the eclipses require a sharp transition region beyond which the plasma density drops off abruptly. Such a region defines a plasmasphere that would be well inside the magnetospheric boundary of an undisturbed pulsar. It is also two times smaller than the expected standoff radius calculated using the balance of the wind pressure from pulsar A and the nominally estimated magnetic pressure of pulsar B.

  9. Elementary wideband timing of radio pulsars

    SciTech Connect

    Pennucci, Timothy T.; Demorest, Paul B.; Ransom, Scott M. E-mail: pdemores@nrao.edu

    2014-08-01

    We present an algorithm for the simultaneous measurement of a pulse time-of-arrival (TOA) and dispersion measure (DM) from folded wideband pulsar data. We extend the prescription from Taylor's 1992 work to accommodate a general two-dimensional template 'portrait', the alignment of which can be used to measure a pulse phase and DM. We show that there is a dedispersion reference frequency that removes the covariance between these two quantities and note that the recovered pulse profile scaling amplitudes can provide useful information. We experiment with pulse modeling by using a Gaussian-component scheme that allows for independent component evolution with frequency, a 'fiducial component', and the inclusion of scattering. We showcase the algorithm using our publicly available code on three years of wideband data from the bright millisecond pulsar J1824–2452A (M28A) from the Green Bank Telescope, and a suite of Monte Carlo analyses validates the algorithm. By using a simple model portrait of M28A, we obtain DM trends comparable to those measured by more standard methods, with improved TOA and DM precisions by factors of a few. Measurements from our algorithm will yield precisions at least as good as those from traditional techniques, but is prone to fewer systematic effects and is without ad hoc parameters. A broad application of this new method for dispersion measure tracking with modern large-bandwidth observing systems should improve the timing residuals for pulsar timing array experiments, such as the North American Nanohertz Observatory for Gravitational Waves.

  10. Gamma-Ray Pulsar Light Curves in Vacuum and Force-Free Geometry

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; DeCesar, Megan E.; Miller, M. Coleman; Kalapotharakos, Constantinos; Contopoulos, Ioannis

    2011-01-01

    Recent studies have shown that gamma-ray pulsar light curves are very sensitive to the geometry of the pulsar magnetic field. Pulsar magnetic field geometries, such as the retarded vacuum dipole and force-free magnetospheres have distorted polar caps that are offset from the magnetic axis in the direction opposite to rotation. Since this effect is due to the sweepback of field lines near the light cylinder, offset polar caps are a generic property of pulsar magnetospheres and their effects should be included in gamma-ray pulsar light curve modeling. In slot gap models (having two-pole caustic geometry), the offset polar caps cause a strong azimuthal asymmetry of the particle acceleration around the magnetic axis. We have studied the effect of the offset polar caps in both retarded vacuum dipole and force-free geometry on the model high-energy pulse profiles. We find that, compared to the profiles derived from symmetric caps, the flux in the pulse peaks, which are caustics formed along the trailing magnetic field lines, increases significantly relative to the off-peak emission, formed along leading field lines. The enhanced contrast produces improved slot gap model fits to Fermi pulsar light curves like Vela, with vacuum dipole fits being more favorable.

  11. Gamma-Ray Pulsar Light Curves in Offset Polar Cap Geometry

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; DeCesar, Megan; Miller, M. Coleman

    2011-01-01

    Recent studies have shown that gamma-ray pulsar light curves are very sensitive to the geometry of the pulsar magnetic field. Pulsar magnetic field geometries, such as the retarded vacuum dipole and force-free magnetospheres, used to model high-energy light curves have distorted polar caps that are offset from the magnetic axis in the direction opposite to rotation. Since this effect is due to the sweepback of field lines near the light cylinder, offset polar caps are a generic property of pulsar magnetospheres and their effects should be included in gamma-ray pulsar light curve modeling. In slot gap models (having two-pole caustic geometry), the offset polar caps cause a strong azimuthal asymmetry of the particle acceleration around the magnetic axis. We have studied the effect of the offset polar caps in both retarded vacuum dipole and force-free geometry on the model high-energy pulse profile. We find that. corn pared to the profile:-; derived from :-;ymmetric caps, the flux in the pulse peaks, which are caustics formed along the trailing magnetic field lines. increases significantly relative to the off-peak emission. formed along leading field lines. The enhanced contrast produces greatly improved slot gap model fits to Fermi pulsar light curves like Vela, which show very little off-peak emIssIon.

  12. The double pulsar: evolutionary constraints from the system geometry

    NASA Astrophysics Data System (ADS)

    Ferdman, R. D.; Stairs, I. H.; Kramer, M.; Manchester, R. N.; Lyne, A. G.; Breton, R. P.; McLaughlin, M. A.; Possenti, A.; Burgay, M.

    2008-02-01

    The double pulsar system PSR J0737-3039A/B is a highly relativistic double neutron star (DNS) binary, with a 2.4-hour orbital period. The low mass of the second-formed NS, as well the low system eccentricity and proper motion, point to a different evolutionary scenario compared to other known DNS systems. We describe analysis of the pulse profile shape over 6 years of observations, and present the resulting constraints on the system geometry. We find the recycled pulsar in this system, PSR 0737-3039A, to have a low misalignment between its spin and orbital angular momentum axes, with a 68.3% upper limit of 6.1°, assuming emission from both magnetic poles. This tight constraint lends credence to the idea that the supernova that formed the second pulsar was relatively symmetric, possibly involving electron-capture onto an O-Ne-Mg core.

  13. The Unusual Binary Pulsar PSR J1744-3922: Radio Flux Variability, Near-Infrared Observation, and Evolution

    NASA Astrophysics Data System (ADS)

    Breton, R. P.; Roberts, M. S. E.; Ransom, S. M.; Kaspi, V. M.; Durant, M.; Bergeron, P.; Faulkner, A. J.

    2007-06-01

    PSR J1744-3922 is a binary pulsar exhibiting highly variable pulsed radio emission. We report on a statistical multifrequency study of the pulsed radio flux variability which suggests that this phenomenon is extrinsic to the pulsar and possibly tied to the companion, although not strongly correlated with orbital phase. The pulsar has an unusual combination of characteristics compared to typical recycled pulsars: a long spin period (172 ms); a relatively high magnetic field strength (1.7×1010 G); a very circular, compact orbit of 4.6 hr; and a low-mass companion (0.08 Msolar). These spin and orbital properties are likely inconsistent with standard evolutionary models. We find similarities between the properties of the PSR J1744-3922 system and those of several other known binary pulsar systems, motivating the identification of a new class of binary pulsars. We suggest that this new class could result from: a standard accretion scenario of a magnetar or a high magnetic field pulsar; common envelope evolution with a low-mass star and a neutron star, similar to what is expected for ultracompact X-ray binaries; or accretion induced collapse of a white dwarf. We also report the detection of a possible K'=19.30(15) infrared counterpart at the position of the pulsar, which is relatively bright if the companion is a helium white dwarf at the nominal distance, and discuss its implications for the pulsar's companion and evolutionary history.

  14. Searches for Pulsars at the Center of the Galaxy

    NASA Astrophysics Data System (ADS)

    Majid, Walid

    2015-08-01

    Pulsars are highly magnetized, rapidly rotating neutron stars that emit a beam of electromagnetic radiation that could be detected at Earth, if the emission beam is pointing toward the Earth, analogous to the way a lighthouse can be seen when the light is pointed in the direction of the observer. Pulsars within the central parsec of our Galaxy is expected to make excellent probes of not only the environment of the supermassive black hole at the center of the galaxy, but also in the case of pulsar/black hole binary systems expected in this region, of their own rich environment dominated by relativistic gravity effects. In this presentation I will give an overview of why it is important to search for pulsars in the center of the galaxy, and a summary of previous and ongoing efforts to survey this region with radio telescopes. I will describe the difficulties encountered with current surveys and prospects for detection of perhaps hundreds of pulsars in this region with new generations of radio telescopes now under construction.

  15. Pulsar interpretation of lepton spectra measured by AMS-02

    NASA Astrophysics Data System (ADS)

    Feng, Jie; Zhang, Hong-Hao

    2016-05-01

    Alpha Magnetic Spectrometer (AMS-02) recently published its lepton spectra measurement. The results show that the positron fraction no longer increases above ˜ 200 GeV. The aim of this work is to investigate the possibility that the excess of positron fraction is due to pulsars. Nearby known pulsars from the ATNF catalog are considered to be a possible primary positron source of the high energy positrons. We find that the pulsars with age T˜eq (0.45{-}4.5)× 105 year and distance d<0.5 kpc can explain the behavior of positron fraction of AMS-02 in the range of high energy. We show that each of the four pulsars—Geminga, J1741-2054, Monogem, and J0942-5552—is able to be a single source satisfying all considered physical requirements. We also discuss the possibility that these high energy e{}^{± } are from multiple pulsars. The multiple pulsar contribution predicts a positron fraction with some structures at higher energies.

  16. Radiative Grain Alignment

    NASA Astrophysics Data System (ADS)

    Andersson, B. G.

    2015-12-01

    Polarization due to aligned dust grains was discovered in the interstellar medium more than 60 years ago. A quantitative, observationally well tested theory of the phenomenon has finally emerged in the last decade, promising not only an improved understanding of interstellar magnetic fields, but new tools for studying the dust environments and grain characteristics. This Radiative Alignment Torque (RAT) theory also has many potential applications in solar system physics, including for comet dust characteristics. I will review the main aspects of the theory and the observational tests performed to date, as well as some of the new possibilities for using polarization as a tool to study dust and its environment, with RAT alignment.

  17. Evolution of vaporizing pulsars

    NASA Technical Reports Server (NTRS)

    Mccormick, P.

    1994-01-01

    We construct evolutional scenarios for LMXB's using a simplified stellar model. We discuss the origin and evolution of short-period, low mass binary pulsars with evaporating companions. We suggest that these systems descend from low-mass X-ray binaries and that angular momentum loss mainly due to evaporative wind drives their evolution. We derive limits on the energy and angular momentum carried away by the wind based on the observed low eccentricity. In our model the companion remains near contact, and its quasiadiabatic expansion causes the binary to expand. Short-term oscillations of the orbital period may occur if the Roche-lobe overflow forms an evaporating disk.

  18. Possible radio emission mechanism for pulsars

    NASA Technical Reports Server (NTRS)

    Kovalev, Y. A.

    1979-01-01

    A mathematical model is presented and discussed as a possible mechanism to describe radio emission from pulsars. The model determines that the magnetic field in the neutron proton electron (npe) layer of a neutron star results from a quasistationary eddy current of superconducting and normal protons relative to normal electrons, which generates radio emission by the Josephson effect. The radiation propagates in the magnetically active medium, from the optically thick npe layer to the magnetosphere through breaks in the crust. As a result, hot radio spots form on the surface of the star, and a radiation pattern forms near the magnetic poles, the cross section of which gives the observed pulse structure. Due to the specific properties of the mechanism, variations of the quasistationary current are converted to amplitude frequency variations of the radiation spectrum. Variations of the fine structure of the spectrum pulse amplitude and spectral index, as well as their correlation are discussed.

  19. CONSTRAINTS ON THE EMISSION GEOMETRIES AND SPIN EVOLUTION OF GAMMA-RAY MILLISECOND PULSARS

    SciTech Connect

    Johnson, T. J.; Venter, C.; Harding, A. K.; Çelik, Ö.; Ferrara, E. C.; Guillemot, L.; Smith, D. A.; Hou, X.; Den Hartog, P. R.; Lande, J.; Ray, P. S. E-mail: Christo.Venter@nwu.ac.za

    2014-07-01

    Millisecond pulsars (MSPs) are a growing class of gamma-ray emitters. Pulsed gamma-ray signals have been detected from more than 40 MSPs with the Fermi Large Area Telescope (LAT). The wider radio beams and more compact magnetospheres of MSPs enable studies of emission geometries over a broader range of phase space than non-recycled radio-loud gamma-ray pulsars. We have modeled the gamma-ray light curves of 40 LAT-detected MSPs using geometric emission models assuming a vacuum retarded-dipole magnetic field. We modeled the radio profiles using a single-altitude hollow-cone beam, with a core component when indicated by polarimetry; however, for MSPs with gamma-ray and radio light curve peaks occurring at nearly the same rotational phase, we assume that the radio emission is co-located with the gamma rays and caustic in nature. The best-fit parameters and confidence intervals are determined using a maximum likelihood technique. We divide the light curves into three model classes, with gamma-ray peaks trailing (Class I), aligned (Class II), or leading (Class III) the radio peaks. Outer gap and slot gap (two-pole caustic) models best fit roughly equal numbers of Class I and II, while Class III are exclusively fit with pair-starved polar cap models. Distinguishing between the model classes based on typical derived parameters is difficult. We explore the evolution of the magnetic inclination angle with period and spin-down power, finding possible correlations. While the presence of significant off-peak emission can often be used as a discriminator between outer gap and slot gap models, a hybrid model may be needed.

  20. Constraints On the Emission Geometries and Spin Evolution Of Gamma-Ray Millisecond Pulsars

    NASA Technical Reports Server (NTRS)

    Johnson, T. J.; Venter, C.; Harding, A. K.; Guillemot, L.; Smith, D. A.; Kramer, M.; Celik, O.; den Hartog, P. R.; Ferrara, E. C.; Hou, X.; Lande, J.; Ray, P. S.

    2014-01-01

    Millisecond pulsars (MSPs) are a growing class of gamma-ray emitters. Pulsed gamma-ray signals have been detected from more than 40 MSPs with the Fermi Large Area Telescope (LAT). The wider radio beams and more compact magnetospheres of MSPs enable studies of emission geometries over a broader range of phase space than non-recycled radio-loud gamma-ray pulsars. We have modeled the gamma-ray light curves of 40 LAT-detected MSPs using geometric emission models assuming a vacuum retarded-dipole magnetic field. We modeled the radio profiles using a single-altitude hollow-cone beam, with a core component when indicated by polarimetry; however, for MSPs with gamma-ray and radio light curve peaks occurring at nearly the same rotational phase, we assume that the radio emission is co-located with the gamma rays and caustic in nature. The best-fit parameters and confidence intervals are determined using amaximum likelihood technique.We divide the light curves into three model classes, with gamma-ray peaks trailing (Class I), aligned (Class II), or leading (Class III) the radio peaks. Outer gap and slot gap (two-pole caustic) models best fit roughly equal numbers of Class I and II, while Class III are exclusively fit with pair-starved polar cap models. Distinguishing between the model classes based on typical derived parameters is difficult. We explore the evolution of the magnetic inclination angle with period and spin-down power, finding possible correlations. While the presence of significant off-peak emission can often be used as a discriminator between outer gap and slot gap models, a hybrid model may be needed.

  1. Magnetic moment of the 13 /2 + isomeric state in 69Cu: Spin alignment in the one-nucleon removal reaction

    NASA Astrophysics Data System (ADS)

    Kusoglu, A.; Georgiev, G.; Sotty, C.; Balabanski, D. L.; Goasduff, A.; Ishii, Y.; Abe, Y.; Asahi, K.; Bostan, M.; Chevrier, R.; Chikamori, M.; Daugas, J. M.; Furukawa, T.; Nishibata, H.; Ichikawa, Y.; Ishibashi, Y.; Lozeva, R.; Miyatake, H.; Nagae, D.; Nanao, T.; Niikura, M.; Niwa, T.; Okada, S.; Ozawa, A.; Saito, Y.; Shirai, H.; Ueno, H.; Yordanov, D. T.; Yoshida, N.

    2016-05-01

    We report on a new measurement of the g factor of the (13 /2 + ) isomeric state in the neutron-rich nucleus 69Cu. This study demonstrates the possibility of obtaining considerable nuclear spin alignment for multi-quasiparticle states in single-nucleon removal reactions. The time-dependent perturbed angular distribution (TDPAD) method was used to extract the gyromagnetic factor of the (13 /2+ ) [T1 /2=351 (14 ) ns] isomeric state of 69Cu. Its g factor was obtained as g (13 /2+) =0.248 (9 ) . The experimentally observed spin alignment for the state of interest was deduced as A =-3.3 (9 )% .

  2. Polar cap arcs: Sun-aligned or cusp-aligned?

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Paxton, L. J.; Zhang, Qinghe; Xing, Zanyang

    2016-08-01

    Polar cap arcs are often called sun-aligned arcs. Satellite observations reveal that polar cap arcs join together at the cusp and are actually cusp aligned. Strong ionospheric plasma velocity shears, thus field aligned currents, were associated with polar arcs and they were likely caused by Kelvin-Helmholtz waves around the low-latitude magnetopause under a northward IMF Bz. The magnetic field lines around the magnetopause join together in the cusp region so are the field aligned currents and particle precipitation. This explains why polar arcs are cusp aligned.

  3. PSR J0737-3039B: A PROBE OF RADIO PULSAR EMISSION HEIGHTS

    SciTech Connect

    Perera, B. B. P.; McLaughlin, M. A.; Lomiashvili, D.; Gourgouliatos, K. N.; Lyutikov, M.

    2012-05-10

    In the double pulsar system PSR J0737-3039A/B, the strong wind produced by pulsar A distorts the magnetosphere of pulsar B. The influence of these distortions on the orbital-dependent emission properties of pulsar B can be used to determine the location of the coherent radio emission generation region in the pulsar magnetosphere. Using a model of the wind-distorted magnetosphere of pulsar B and the well-defined geometrical parameters of the system, we determine the minimum emission height to be {approx}20R{sub NS} in the two bright orbital longitude regions. We can determine the maximum emission height by accounting for the amount of deflection of the polar field line with respect to the magnetic axis using the analytical magnetic reconnection model of Dungey and the semi-empirical numerical model of Tsyganenko. Both of these models estimate the maximum emission height to be {approx}2500R{sub NS}. The minimum and maximum emission heights we calculate are consistent with those estimated for normal isolated pulsars.

  4. Tempo: Pulsar timing data analysis

    NASA Astrophysics Data System (ADS)

    Manchester, R.; Taylor, J.; Peters, W.; Weisberg, J.; Irwin, A.; Wex, N.; Stairs, I.; Demorest, P.; Nice, D.

    2015-09-01

    Tempo analyzes pulsar timing data. Pulse times of arrival (TOAs), pulsar model parameters, and coded instructions are read from one or more input files. The TOAs are fitted by a pulse timing model incorporating transformation to the solar-system barycenter, pulsar rotation and spin-down and, where necessary, one of several binary models. Program output includes parameter values and uncertainties, residual pulse arrival times, chi-squared statistics, and the covariance matrix of the model. In prediction mode, ephemerides of pulse phase behavior (in the form of polynomial expansions) are calculated from input timing models. Tempo is the basis for the Tempo2 (ascl:1210.015) code.

  5. a Surprise from the Pulsar in the Crab Nebula

    NASA Astrophysics Data System (ADS)

    1995-11-01

    New observations of the spectrum of the rapidly spinning neutron star (the `pulsar') in the Crab Nebula have been carried out with the ESO 3.5-metre New Technology Telescope (NTT) by a group of Italian astronomers [1]. Because of greatly improved spectral resolution which allows to register even very fine details in the pulsar's spectrum, they are able to determine for the first time with high accuracy the overall dependance of the emission on wavelength, i.e. the `shape' of the spectrum. Quite unexpectedly, they also detect a hitherto unknown 100 A (10 nm) broad `absorption dip', which can be securely attributed to the pulsar. These results open an exciting new window for the study of the extreme physical processes close to a pulsar. The Nature of Pulsars It is estimated that there may be as many as 100 million neutron stars in our Galaxy. A neutron star is the superdense remnant of the extremely violent supernova explosion that occurs at the end of the life of a comparatively massive star. In fact, all stars that are more than about 6 times heavier than the Sun are believed to end their lives as supernovae. During the explosion, the central core of the dying star collapses in a few milliseconds and the matter at the centre is compressed to a density comparable to that of an atomic nucleus. Due to the enormous inward pressure, the atomic particles are squeezed together into a kind of neutron jam. The outcome is the formation of a neutron star with a diameter of 10-15 kilometres, weighing as much as the Sun. In accordance with the physical law that implies that the rotation momentum of the exploding star must be conserved, newborn neutron stars will rotate very rapidly around their axis, in some cases as fast as 100 times per second. In the same way, the new neutron star is expected to possess a strong magnetic field. Of these myriads of neutron stars, about 700 have been observed to emit radio pulses (hence the name `pulsar'). A few of these can also be detected

  6. Physical processes in eclipsing pulsars: Eclipse mechanisms and diagnostics

    NASA Technical Reports Server (NTRS)

    Thompson, C.; Blandford, R. D.; Evans, Charles R.; Phinney, E. S.

    1994-01-01

    We investigate how the radio emission of a pulsar interacts with plasma derived from a stellar companion. Various physical mechanisms that can cause radio pulse eclipse are discussed, and predictions are made for the polarization properties of the emergent radio wave. We consider eclipses by a wind from the stellar companion, by a stellar magnetosphere, or by material entrained in the pulsar wind. Eclipses due to refraction require either a relatively high plasma density or a sharp edge to the plasma distribution. The conditions that must prevail for free-free absorption to be effective in eclipsing a radio beam are also outlined. Pulse smearing may be important at higher frequencies; related eclipse mechanisms include pulse spreading due to a rapidly changing electron column, and scattering by Langmuir turbulence. The high brightness temperature radio beam can generate its own plasma turbulence via a number of nonlinear parametric instabilities, such as the instability associated with stimulated Raman scattering. When the plasma turbulence is heavily damped, the radio bean can still undergo induced Compton scattering. Stimulated scattering effects such as these are very sensitive to the presence of narrow-band substructure in the pulsar radio emission. Finally, we consider the possibility that plasma derived from a stellar companion may mix with the relativistic pulsar wind and cause cyclotron absorption at low radio frequencies. Even if the cyclotron optical depth is small, fluctuations in the emergent polarization of the radio beam on the timescale of a few seconds are a very sensitive probe of the spatial structure of the magnetic field in the pulsar wind. The current observational properties of two known eclipsing pulsar systems, PSR 1957+20 and PSR 1744-24A, are used to construct tentative eclipse models. The favored model for PSR 1957+20 is cyclotron or synchrotron absorption by plasma embedded in the pulsar wind combined with pulse smearing at high

  7. NEW X-RAY OBSERVATIONS OF THE GEMINGA PULSAR WIND NEBULA

    SciTech Connect

    Pavlov, George G.; Bhattacharyya, Sudip; Zavlin, Vyacheslav E. E-mail: sudip@tifr.res.i

    2010-05-20

    Previous observations of the middle-aged pulsar Geminga with XMM-Newton and Chandra have shown an unusual pulsar wind nebula (PWN), with a 20'' long central (axial) tail directed opposite to the pulsar's proper motion and two 2' long, bent lateral (outer) tails. Here, we report on a deeper Chandra observation (78 ks exposure) and a few additional XMM-Newton observations of the Geminga PWN. The new Chandra observation has shown that the axial tail, which includes up to three brighter blobs, extends at least 50'' (i.e., 0.06d{sub 250} pc) from the pulsar (d{sub 250} is the distance scaled to 250 pc). It also allowed us to image the patchy outer tails and the emission in the immediate vicinity of the pulsar with high resolution. The PWN luminosity, L{sub 0.3-8{sub keV}} {approx} 3 x 10{sup 29} d {sup 2}{sub 250} erg s{sup -1}, is lower than the pulsar's magnetospheric luminosity by a factor of 10. The spectra of the PWN elements are rather hard (photon index {Gamma} {approx} 1). Comparing the two Chandra images, we found evidence of PWN variability, including possible motion of the blobs along the axial tail. The X-ray PWN is the synchrotron radiation from relativistic particles of the pulsar wind (PW); its morphology is connected with the supersonic motion of Geminga. We speculate that the outer tails are either a sky projection of the limb-brightened boundary of a shell formed in the region of contact discontinuity, where the wind bulk flow is decelerated by shear instability, or polar outflows from the pulsar bent by the ram pressure from the interstellar medium. In the former case, the axial tail may be a jet emanating along the pulsar's spin axis, perhaps aligned with the direction of motion. In the latter case, the axial tail may be the shocked PW collimated by ram pressure.

  8. An extremely bright gamma-ray pulsar in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Fermi LAT Collaboration; Ackermann, M.; Albert, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Barbieri, C.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Bonino, R.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Bruel, P.; Buehler, R.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cecchi, C.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Chiaro, G.; Ciprini, S.; Cohen-Tanugi, J.; Cuoco, A.; Cutini, S.; D'Ammando, F.; Desiante, F. de Palma R.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Franckowiak, A.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hagiwara, K.; Harding, A. K.; Hays, E.; Hewitt, J. W.; Hill, A. B.; Horan, D.; Johnson, T. J.; Knödlseder, J.; Kuss, M.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Maldera, S.; Manfreda, A.; Marshall, F.; Martin, P.; Mayer, M.; Mazziotta, M. N.; Michelson, P. F.; Mirabal, N.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naletto, G.; Nuss, E.; Ohsugi, T.; Orienti, M.; Orlando, E.; Paneque, D.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Reposeur, T.; Romani, R. W.; Parkinson, P. M. Saz; Schulz, A.; Sgrò, C.; Siskind, E. J.; Smith, D. A.; Spada, F.; Spandre, G.; Spinelli, P.; Suson, D. J.; Takahashi, H.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Uchiyama, Y.; Vianello, G.; Wood, K. S.; Wood, M.; Zampieri, L.

    2015-11-01

    Pulsars are rapidly spinning, highly magnetized neutron stars, created in the gravitational collapse of massive stars. We report the detection of pulsed giga-electron volt gamma rays from the young pulsar PSR J0540-6919 in the Large Magellanic Cloud, a satellite galaxy of the Milky Way. This is the first gamma-ray pulsar detected in another galaxy. It has the most luminous pulsed gamma-ray emission yet observed, exceeding the Crab pulsar’s by a factor of 20. PSR J0540-6919 presents an extreme test case for understanding the structure and evolution of neutron star magnetospheres.

  9. Pulsar Emission Geometry and Accelerating Field Strength

    NASA Technical Reports Server (NTRS)

    DeCesar, Megan E.; Harding, Alice K.; Miller, M. Coleman; Kalapotharakos, Constantinos; Parent, Damien

    2012-01-01

    The high-quality Fermi LAT observations of gamma-ray pulsars have opened a new window to understanding the generation mechanisms of high-energy emission from these systems, The high statistics allow for careful modeling of the light curve features as well as for phase resolved spectral modeling. We modeled the LAT light curves of the Vela and CTA I pulsars with simulated high-energy light curves generated from geometrical representations of the outer gap and slot gap emission models. within the vacuum retarded dipole and force-free fields. A Markov Chain Monte Carlo maximum likelihood method was used to explore the phase space of the magnetic inclination angle, viewing angle. maximum emission radius, and gap width. We also used the measured spectral cutoff energies to estimate the accelerating parallel electric field dependence on radius. under the assumptions that the high-energy emission is dominated by curvature radiation and the geometry (radius of emission and minimum radius of curvature of the magnetic field lines) is determined by the best fitting light curves for each model. We find that light curves from the vacuum field more closely match the observed light curves and multiwavelength constraints, and that the calculated parallel electric field can place additional constraints on the emission geometry

  10. Radio Observations of Elongated Pulsar Wind Nebulae

    NASA Astrophysics Data System (ADS)

    Ng, Stephen C.-Y.

    2015-08-01

    The majority of pulsars' rotational energy is carried away by relativistic winds, which are energetic particles accelerated in the magnetosphere. The confinement of the winds by the ambient medium result in synchrotron bubbles with broad-band emission, which are commonly referred to as pulsar wind nebulae (PWNe). Due to long synchrotron cooling time, a radio PWN reflects the integrated history of the system, complementing information obtained from the X-ray and higher energy bands. In addition, radio polarization measurements can offer a powerful probe of the PWN magnetic field structure. Altogether these can reveal the physical conditions and evolutionary history of a system.I report on preliminary results from high-resolution radio observations of PWNe associated with G327.1-1.1, PSRs J1015-5719, B1509-58, and J1549-4848 taken with the Australia Telescope Compact Array (ATCA). Their magnetic field structure and multiwavelength comparison with other observations are discussed.This work is supported by a ECS grant of the Hong Kong Government under HKU 709713P. The Australia Telescope is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO.

  11. PSR J0357+3205: A FAST-MOVING PULSAR WITH A VERY UNUSUAL X-RAY TRAIL

    SciTech Connect

    De Luca, A.; Mignani, R. P.; Marelli, M.; Salvetti, D.; Sartore, N.; Caraveo, P. A.; Bignami, G. F.; Belfiore, A.; Saz Parkinson, P.

    2013-03-01

    The middle-aged PSR J0357+3205 is a nearby, radio-quiet, bright {gamma}-ray pulsar discovered by the Fermi mission. Our previous Chandra observation revealed a huge, very peculiar structure of diffuse X-ray emission originating at the pulsar position and extending for >9' on the plane of the sky. To better understand the nature of such a nebula, we have studied the proper motion of the parent pulsar. We performed relative astrometry on Chandra images of the field spanning a time baseline of 2.2 yr, unveiling a significant angular displacement of the pulsar counterpart, corresponding to a proper motion of 0.''165 {+-} 0.''030 yr{sup -1} at a position angle (P.A.) of 314 Degree-Sign {+-} 8 Degree-Sign . At a distance of {approx}500 pc, the space velocity of the pulsar would be of {approx}390 km s{sup -1} assuming no inclination with respect to the plane of the sky. The direction of the pulsar proper motion is aligned very well with the main axis of the X-ray nebula (P.A. = 315. Degree-Sign 5 {+-} 1. Degree-Sign 5), pointing to a physical, yet elusive, link between the nebula and the pulsar space velocity. No optical emission in the H{alpha} line is seen in a deep image collected at the Gemini telescope, which implies that the interstellar medium into which the pulsar is moving is fully ionized.

  12. An oblique pulsar magnetosphere with a plasma conductivity

    NASA Astrophysics Data System (ADS)

    Cao, Gang; Zhang, Li; Sun, Sineng

    2016-09-01

    An oblique pulsar magnetosphere with a plasma conductivity is studied by using a pseudo-spectral method. In the pseudo-spectral method, the time-dependent Maxwell equations are solved, both electric and magnetic fields are expanded in terms of the vector spherical harmonic functions in spherical geometry and the divergencelessness of magnetic field is analytically enforced by a projection method. The pulsar magnetospheres in infinite (i.e., force free approximation) and finite conductivities are simulated and a family of solutions that smoothly transition from the Deutsch vacuum solution to the force-free solution are obtained. The sin2α dependence of the spin-down luminosity on the magnetic inclination angle α in which the full electric current density are taken into account is retrieved in the force-free regime.

  13. Newly Commissioned Green Bank Telescope Bags New Pulsars

    NASA Astrophysics Data System (ADS)

    2002-01-01

    Astronomers using the National Science Foundation's newly commissioned Robert C. Byrd Green Bank Telescope (GBT) have discovered a windfall of three previously undetected millisecond pulsars in a dense cluster of stars in the Milky Way Galaxy. The Green Bank Telescope The Robert C. Byrd Green Bank Telescope "This globular cluster, known as Messier 62, has been very well studied, and it would have been an exciting discovery to find just one new pulsar. The fact that we were able to detect three new pulsars at one time is simply remarkable," said Bryan Jacoby, a graduate student at the California Institute of Technology who led the research team. Results of the discovery were recently announced in an International Astronomical Union Circular. Jacoby and his colleague Adam Chandler, also a graduate student at Caltech, used the GBT to search for new pulsars in addition to the three already known in this cluster. Their research was part of the GBT's Early Science Program, which allows scientific investigations during the testing and commissioning of the telescope. The researchers used the Berkeley-Caltech Pulsar Machine, a new instrument whose development was overseen by Donald Backer at the University of California at Berkeley, to process the signals from the GBT and record them for later analysis. After their data were analyzed, the researchers discovered the telltale signatures of three additional pulsars and their white dwarf companion stars. Pulsars are rapidly rotating neutron stars that emit intense beams of radio waves along their misaligned magnetic axes. When these beams intersect the Earth, we see the pulsar flash on and off. Due to their exquisitely steady rotation, pulsars allow astronomers to study the basic laws of physics and the ways in which these dense clusters and exotic stellar systems are formed. Astronomers study globular clusters because they are among the oldest building blocks of our Galaxy. With their very dense stellar populations, these

  14. Initial Follow-up of Pulsar Discoveries from the HTRU Galactic Plane Survey

    NASA Astrophysics Data System (ADS)

    Ng, Cherry; Possenti, Andrea; Johnston, Simon; Kramer, Michael; Burgay, Marta; Bailes, Matthew; Bhat, Ramesh; Keith, Michael; Burke-Spolaor, Sarah; van Straten, Willem; Stappers, Benjamin; Bates, Samuel; Keane, Evan; Levin, Lina; Champion, David; Jameson, Andrew; Tiburzi, Caterina; Petroff, Emily; Barr, Ewan; Flynn, Chris

    2014-10-01

    This is a request for observing time for the initial follow-up of pulsar discoveries from the low-latitude Galactic plane section of the HTRU survey (P630). We have already discovered (50 pulsars from just 40% of processed data. Extrapolation and population synthesis show that the Galactic plane survey will result in at least a further 100 discoveries. Currently, with data processing on-going employing all available computing resources, we expect about 20 new discoveries per semester. The discovery of pulsars is just a first step and interesting science can usually only be revealed when a follow-up timing campaign is carried out. One year of initial timing is the minimal timespan required to fully-characterise any newly-discovered pulsars, essential for deriving pulsar parameters such as the characteristic age, magnetic field strength, spin-down rate, as well as to detect any unexpected behaviour of the pulsar which might result from emission instabilities. This follow-up timing project is necessary for identifying any individual interesting pulsar systems discovered from the HTRU Galactic plane survey. Since all of the pulsars on the observing list here are followed-up for the first time, they will produce completely new and exciting results. In addition, this timing project will enable a large-scale examination of the Galactic plane pulsar population, exploring the true boundaries of pulsar phase space. Given the large number of discoveries expected and the long integration length required, this dedicated follow-up timing campaign is vital for achieving our science goals.

  15. Initial Follow-up of Pulsar Discoveries from the HTRU Galactic Plane Survey

    NASA Astrophysics Data System (ADS)

    Ng, Cherry; Possenti, Andrea; Johnston, Simon; Kramer, Michael; Burgay, Marta; Bailes, Matthew; Bhat, Ramesh; Keith, Michael; Burke-Spolaor, Sarah; van Straten, Willem; Stappers, Benjamin; Bates, Samuel; Keane, Evan; Levin, Lina; Champion, David; Jameson, Andrew; Tiburzi, Caterina; Petroff, Emily; Barr, Ewan; Flynn, Chris

    2014-04-01

    This is a request for observing time for the initial follow-up of pulsar discoveries from the low-latitude Galactic plane section of the HTRU survey (P630). We have already discovered 40 pulsars from just 30% of processed data. Extrapolation and population synthesis show that the Galactic plane survey will result in at least a further 120 discoveries. Currently, with data processing on-going employing all available computing resources, we expect about 20 new discoveries per semester. The discovery of pulsars is just a first step and interesting science can usually only be revealed when a follow-up timing campaign is carried out. One year of initial timing is the minimal timespan required to fully-characterise any newly-discovered pulsars, essential for deriving pulsar parameters such as the characteristic age, magnetic field strength, spin-down rate, as well as to detect any unexpected behaviour of the pulsar which might result from emission instabilities. This follow-up timing project is necessary for identifying any individual interesting pulsar systems discovered from the HTRU Galactic plane survey. Since all of the pulsars on the observing list here are followed-up for the first time, they will produce completely new and exciting results. In addition, this timing project will enable a large-scale examination of the Galactic plane pulsar population, exploring the true boundaries of pulsar phase space. Given the large number of discoveries expected and the long integration length required, this dedicated follow-up timing campaign is vital for achieving our science goals.

  16. Stellar structures and the enigma of pulsars rotation frequency decay

    NASA Astrophysics Data System (ADS)

    de Oliveira, H. O.; Marinho, R. M., Jr.; Maglhaes, N. S.

    2015-07-01

    Pulsars are astrophysical objects normally modelled as compact neutron stars that originated from the collapse of another star. This model, that we name canonical, assumes that pulsars are described by spherical magnetized dipoles that rotate, usually with the magnetic axis misaligned to the rotation axis. This misalignment would be responsible for the observation of radiation emitted in well-defined time intervals in a certain direction (lighthouse effect), the typical observational characteristic of this kind of star. It has been noticed that the rotation frequency of pulsars is slowly decaying with time (spin down), implying a gradual decrease of the rotational angular velocity (Ω). Such decay can be quantified by a dimensionless parameter called “braking index” (“n”), given by n = ΩΩ/(Ω)2, where a dot indicates a time derivative. The canonical model predicts that this index has one only value for all pulsars, equal to three. However, observational data indicate that actual braking indices are less than three, representing an enigma. The main goal of this research is the exploration of a more precise model for pulsars’ rotation frequency decay.

  17. Unusual Braking Indices in Young X-ray Pulsars

    NASA Astrophysics Data System (ADS)

    Frederic Archibald, Robert; Kaspi, Victoria M.; Beardmore, Andrew P.; Gehrels, Neil; Kennea, Jamie; Gotthelf, Eric V.; Ferdman, Robert; Guillot, Sebastien; Harrison, Fiona; Keane, Evan; Pivovaroff, Michael; Stern, Daniel; Tendulkar, Shriharsh P.; Tomsick, John

    2016-04-01

    Pulsars spin down over time. By measuring braking indices of pulsars, effectively the change in the spin-down rate over time, we can probe the underlying driving engine of the spin-down. For a magnetic dipole in a vacuum, n is predicted to be 3. To date, all measured braking indices are less than 3, which can be explained, e.g. by particle winds, changes in the magnetic field. In all models of braking indices, n should be nearly constant on year time-scales. Here, I will discuss two recent observation results that challenge this model, interestingly both coming from young X-ray pulsars with no detected radio emission. The first, a long-lived decrease in the braking index of PSR J1846-0258 following a burst of magnetar-like activity, and secondly, the first stationary braking index greater than three. Understanding neutron-star spin evolution is key to constraining these objects' long-term energy output and has relevance to topics ranging from pulsar wind nebulae and supernova remnants to core-collapse supernova rates, physics, and expected outcomes.

  18. Post-trial anatomical frame alignment procedure for comparison of 3D joint angle measurement from magnetic/inertial measurement units and camera-based systems.

    PubMed

    Li, Qingguo; Zhang, Jun-Tian

    2014-11-01

    Magnetic and inertial measurement units (MIMUs) have been widely used as an alternative to traditional camera-based motion capture systems for 3D joint kinematics measurement. Since these sensors do not directly measure position, a pre-trial anatomical calibration, either with the assistance of a special protocol/apparatus or with another motion capture system is required to establish the transformation matrices between the local sensor frame and the anatomical frame (AF) of each body segment on which the sensors are attached. Because the axes of AFs are often used as the rotational axes in the joint angle calculation, any difference in the AF determination will cause discrepancies in the calculated joint angles. Therefore, a direct comparison of joint angles between MIMU systems and camera-based systems is less meaningful because the calculated joint angles contain a systemic error due to the differences in the AF determination. To solve this problem a new post-trial AF alignment procedure is proposed. By correcting the AF misalignments, the joint angle differences caused by the difference in AF determination are eliminated and the remaining discrepancies are mainly from the measurement accuracy of the systems themselves. Lower limb joint angles from 30 walking trials were used to validate the effectiveness of the proposed AF alignment procedure. This technique could serve as a new means for calibrating magnetic/inertial sensor-based motion capture systems and correcting for AF misalignment in scenarios where joint angles are compared directly.

  19. Fermi's New Pulsar Detection Technique

    NASA Video Gallery

    To locate a pulsar in Fermi LAT data requires knowledge of the object’s sky position, its pulse period, and how the pulse rate slows over time. Computers check many different combinations of posi...

  20. Pulsar electrodynamics: an unsolved problem

    NASA Astrophysics Data System (ADS)

    Melrose, D. B.; Yuen, R.

    2016-04-01

    > Pulsar electrodynamics is reviewed emphasizing the role of the inductive electric field in an oblique rotator and the incomplete screening of its parallel component by charges, leaving `gaps' with \\Vert \

  1. FSSC Science Tools: Pulsar Analysis

    NASA Technical Reports Server (NTRS)

    Thompson, Dave

    2010-01-01

    This slide presentation reviews the typical pulsar analysis, giving tips for screening of the data, the use of time series analysis, and utility tools. Specific information about analyzing Vela data is reviewed.

  2. Millisecond radio pulsars in globular clusters

    NASA Technical Reports Server (NTRS)

    Verbunt, Frank; Lewin, Walter H. G.; Van Paradijs, Jan

    1989-01-01

    It is shown that the number of millisecond radio pulsars, in globular clusters, should be larger than 100, applying the standard scenario that all the pulsars descend from low-mass X-ray binaries. Moreover, most of the pulsars are located in a small number of clusters. The prediction that Teran 5 and Liller 1 contain at least about a dozen millisecond radio pulsars each is made. The observations of millisecond radio pulsars in globular clusters to date, in particular the discovery of two millisecond radio pulsars in 47 Tuc, are in agreement with the standard scenario, in which the neutron star is spun up during the mass transfer phase.

  3. A millisecond pulsar timing array

    NASA Astrophysics Data System (ADS)

    Hobbs, George; Manchester, Dick; Sarkissian, John; Bailes, Matthew; Bhat, Ramesh; Jenet, Rick; van Straten, Willem; Yardley, Daniel Roger Billing; Burke, Sarah; Oslowski, Stefan; Hotan, Aidan; Champion, David

    2010-10-01

    The Parkes Pulsar Timing Array (PPTA) project has three primary goals: (a) detection of gravitational waves from astronomical sources, (b) establishment of a pulsar timescale, and (c) improvement of our understanding of Solar-system dynamics. There are many secondary goals, some astrophysical and some instrumental/technique oriented. Achievement of these ambitious primary goals requires frequent observations of at least 20 MSPs at two or preferably three widely spaced frequencies over several years. We wish to continue observing the PPTA sample at intervals of 2-3 weeks using both the 10/50cm and Multibeam receivers. The digital filterbanks (PDFB3, PDFB4) and the baseband system (APSR) are used for data recording. With the new instruments and development of an efficient pipeline processing system, we have achieved the world's best pulsar timing precision, with four pulsars having rms residuals of less than or about 100 ns and 13 less than 1 microsecond. We are collaborating with the European and North American pulsar timing array groups (EPTA and NANOGrav, respectively) to obtain more frequent observations and a larger pulsar sample. Because of the high sensitivity and wide bandwidths required, RFI mitigation is an important part of the project.

  4. A millisecond pulsar timing array

    NASA Astrophysics Data System (ADS)

    Manchester, Dick; Sarkissian, John; Hobbs, George; Bailes, Matthew; Bhat, Ramesh; Jenet, Rick; van Straten, Willem; Yardley, Daniel Roger Billing; Champion, David; Burke, Sarah; Oslowski, Stefan; Hotan, Aidan

    2009-10-01

    The Parkes Pulsar Timing Array (PPTA) project has three primary goals: (a) detection of gravitational waves from astronomical sources, (b) establishment of a pulsar timescale, and (c) improvement of our understanding of Solar-system dynamics. There are many secondary goals, some astrophysical and some instrumental/technique oriented. Achievement of these ambitious primary goals requires frequent observations of at least 20 MSPs at two or preferably three widely spaced frequencies over several years. We wish to continue observing the PPTA sample at intervals of 2-3 weeks using both the 10/50cm and Multibeam receivers. The digital filterbanks (PDFB3, PDFB4) and the baseband systems (CPSR2; APSR) are used for data recording. With the new instruments and development of an efficient pipeline processing system, we have achieved the world's best pulsar timing precision, with three pulsars having rms residuals of less than or about 100 ns and more than half less than 1 microsecond. We are collaborating with the European and North American pulsar timing array groups (EPTA and NANOGrav, respectively) to obtain more frequent observations and a larger pulsar sample. Because of the high sensitivity and wide bandwidths required, RFI mitigation is an important part of the project.

  5. A millisecond pulsar timing array

    NASA Astrophysics Data System (ADS)

    Manchester, Dick; Sarkissian, John; Hobbs, George; Bailes, Matthew; Bhat, Ramesh; Hotan, Aidan; Jenet, Rick; van Straten, Willem; Yardley, Daniel Roger Billing; Champion, David; You, Xiaopeng; Burke, Sarah

    2009-04-01

    The Parkes Pulsar Timing Array (PPTA) project has three primary goals: (a) detection of gravitational waves from astronomical sources, (b) establishment of a pulsar timescale, and (c) improvement of our understanding of Solar-system dynamics. There are many secondary goals, some astrophysical and some instrumental/technique oriented. Achievement of these ambitious primary goals requires frequent observations of at least 20 MSPs at two or preferably three widely spaced frequencies over several years. We wish to continue observing the PPTA sample at intervals of 2-3 weeks using both the 10/50cm and Multibeam receivers. The digital filterbanks (PDFB3, PDFB4) and the baseband systems (CPSR2; APSR) are used for data recording. With the new instruments and development of an efficient pipeline processing system, we have achieved the world's best pulsar timing precision, with three pulsars having rms residuals of less than or about 100 ns and more than half less than 1 microsecond. We are collaborating with the European and North American pulsar timing array groups (EPTA and NANOGrav, respectively) to obtain more frequent observations and a larger pulsar sample. Because of the high sensitivity and wide bandwidths required, RFI mitigation is an important part of the project.

  6. A millisecond pulsar timing array

    NASA Astrophysics Data System (ADS)

    Manchester, Dick; Verbiest, Joris P. W.; Sarkissian, John; Hobbs, George; Bailes, Matthew; Bhat, Ramesh; Hotan, Aidan; Jenet, Rick; Burke-Spolaor, Sarah; van Straten, Willem; Yardley, Daniel Roger Billing; You, Xiaopeng

    2008-10-01

    The Parkes Pulsar Timing Array (PPTA) project has three primary goals: (a) detection of gravitational waves from astronomical sources, (b) establishment of a pulsar timescale, and (c) improvement of our understanding of Solar-system dynamics. There are many secondary goals, some astrophysical and some instrumental/technique oriented. Achievement of these ambitious primary goals requires frequent observations of at least 20 MSPs at two or preferably three widely spaced frequencies over several years. We wish to continue observing the PPTA sample at intervals of 2-3 weeks using both the 10/50cm and Multibeam receivers. The digital filterbanks (PDFB2, PDFB3) and the baseband systems (CPSR2; APSR soon) are used for data recording. With the new instruments and development of an efficient pipeline processing system, we are getting the world's best pulsar timing precision, with four pulsars having rms residuals of less than 200 ns and more than half less than 1 microsecond. We are collaborating with the European and North American pulsar timing array groups (EPTA and NANOGrav, respectively) to obtain more frequent observations and a larger pulsar sample. Because of the high sensitivity and wide bandwidths required, RFI mitigation is an important part of the project.

  7. A millisecond pulsar timing array

    NASA Astrophysics Data System (ADS)

    Manchester, Dick; Sarkissian, John; Hobbs, George; Bailes, Matthew; Bhat, Ramesh; Jenet, Rick; van Straten, Willem; Yardley, Daniel Roger Billing; Burke, Sarah; Oslowski, Stefan; Hotan, Aidan; Champion, David

    2010-04-01

    The Parkes Pulsar Timing Array (PPTA) project has three primary goals: (a) detection of gravitational waves from astronomical sources, (b) establishment of a pulsar timescale, and (c) improvement of our understanding of Solar-system dynamics. There are many secondary goals, some astrophysical and some instrumental/technique oriented. Achievement of these ambitious primary goals requires frequent observations of at least 20 MSPs at two or preferably three widely spaced frequencies over several years. We wish to continue observing the PPTA sample at intervals of 2-3 weeks using both the 10/50cm and Multibeam receivers. The digital filterbanks (PDFB3, PDFB4) and the baseband systems (CPSR2; APSR) are used for data recording. With the new instruments and development of an efficient pipeline processing system, we have achieved the world's best pulsar timing precision, with four pulsars having rms residuals of less than or about 100 ns and 13 less than 1 microsecond. We are collaborating with the European and North American pulsar timing array groups (EPTA and NANOGrav, respectively) to obtain more frequent observations and a larger pulsar sample. Because of the high sensitivity and wide bandwidths required, RFI mitigation is an important part of the project.

  8. Pulsar Observatory for Students (POS)

    NASA Astrophysics Data System (ADS)

    Joshi, Bhal Chandra; Manoharan, P. K.; Gopakumar, A.; Mitra, D.; Bagchi, Joydeep; Saikia, D. J.

    2012-07-01

    A new program, to initiate motivated undergraduate students to the methodology of pulsar astronomy in particular and radio astronomy in general, is being launched at the Ooty Radio Telescope (ORT). The ORT is a 530 m X 30 m cylindrical radio telescope operating at 325 MHz, having an equatorial mount. Its equatorial mount allows modestly trained students to make pulsar observations without any substantial help from the observatory. Due to its large collecting area, it is a sensitive instrument for pulsar astronomy, capable of detecting a large number of pulsars with short observation time. The program consists of biannual workshops that will introduce scores of students to basics of radio-astronomy and pulsars. It will also train them in the use of the ORT as well as expose them to the future prospects and excitements in the field. The second leg of the program involves live ORT observations by these trained students during various academic breaks. There is a possibility for a follow up program of highly motivated students, selected from this program, to pursue projects of their interest from the data obtained in these sensitive observations. The long term aim of the program is to enlarge the pulsar astronomy community in the country. The presentation will highlight the main features of this program and describe the experience drawn from such programs.

  9. Pulsars In The Headlines

    NASA Astrophysics Data System (ADS)

    Del Puerto, C.

    1967 was the year of the so-called “war of the six days” or “third Arab Israeli war”, the year of the Che Guevara's death in Bolivia, the year of the military coup in Greece and, in medicine, the year of the first human heart transplant. Moreover, the signing of the international agreement on the use of space with peaceful means and the crash of the Russian shuttle Soyuz-1, with Cosmonaut Vladimir Kamarov on board also happened that year. Likewise, Spanish writer and professor of journalists, José Azorín, passed away. However, here we are interested in 1967 because it was the year of the detection of pulsars, which astronomers initially confused with signals from extraterrestrials or Little Green Men. Nowadays, they are still present in the headlines.

  10. Ion-proton pulsars

    NASA Astrophysics Data System (ADS)

    Jones, P. B.

    2016-07-01

    Evidence derived with minimal assumptions from existing published observations is presented to show that an ion-proton plasma is the source of radio-frequency emission in millisecond and in normal isolated pulsars. There is no primary involvement of electron-positron pairs. This conclusion has also been reached by studies of the plasma composition based on well-established particle-physics processes in neutron stars with positive polar-cap corotational charge density. This work has been published in a series of papers which are also summarized here. It is now confirmed by simple analyses of the observed radio-frequency characteristics, and its implications for the further study of neutron stars are outlined.

  11. Axion mass limits from pulsar x rays

    SciTech Connect

    Morris, D.E.

    1984-12-01

    Axions thermally emitted by a neutron star would be converted into x rays in the strong magnetic field surrounding the star. An improvement in the observational upper limit of pulsed x rays from the Vela pulsar (PSR 0833-45) by a factor of 12 would constrain the axion mass M/sub a/ < 2 x 10/sup -3/eV if the core is non-superfluid and at temperature T/sub c/ greater than or equal to 2 x 10/sup 8/K. If the core is superfluid throughout, an improvement factor of 240 would be needed to provide the same constraint on the axion mass, while in the absence of superfluidity, an improvement factor of 200 could constrain M/sub a/ < 6 x 10/sup -4/eV. A search for modulated hard x rays from PSR 1509-58 or other young pulsars at presently attainable sensitivities may enable the setting of an upper limit for the axion mass. Observation of hard x rays from a very young hot pulsar with T/sub c/ greater than or equal to 7 x 10/sup 8/K could set a firm bound on the axion mass, since neutron superfluidity is not expected above this temperature. The remaining axion mass range 6 x 10/sup -4/eV > M/sub a/ > 10/sup -5/eV (the cosmological lower bound) can be covered by an improved Sikivie type laboratory cavity detector for relic axions constituting the galactic halo. 48 refs.

  12. The Inclination Angle and Evolution of the Braking Index of Pulsars with Plasma-filled Magnetosphere: Application to the High Braking Index of PSR J1640-4631

    NASA Astrophysics Data System (ADS)

    Ekşi, K. Y.; Andaç, I. C.; Çıkıntoğlu, S.; Gügercinoğlu, E.; Vahdat Motlagh, A.; Kızıltan, B.

    2016-05-01

    The recently discovered rotationally powered pulsar PSR J1640-4631 is the first to have a braking index measured, with high enough precision, that is greater than 3. An inclined magnetic rotator in vacuum or plasma would be subject not only to spin-down but also to an alignment torque. The vacuum model can address the braking index only for an almost orthogonal rotator, which is incompatible with the single-peaked pulse profile. The magnetic dipole model with the corotating plasma predicts braking indices between 3 and 3.25. We find that the braking index of 3.15 is consistent with two different inclination angles, 18.°5 ± 3° and 56° ± 4°. The smaller angle is preferred given that the pulse profile has a single peak and the radio output of the source is weak. We infer the change in the inclination angle to be at the rate -0.°23 per century, three times smaller in absolute value than the rate recently observed for the Crab pulsar.

  13. A MODEL OF THE SPECTRAL EVOLUTION OF PULSAR WIND NEBULAE

    SciTech Connect

    Tanaka, Shuta J.; Takahara, Fumio

    2010-06-01

    We study the spectral evolution of pulsar wind nebulae (PWNe) taking into account the energy injected when they are young. We model the evolution of the magnetic field inside a uniformly expanding PWN. Considering time-dependent injection from the pulsar and coolings by radiative and adiabatic losses, we solve the evolution of the particle distribution function. The model is calibrated by fitting the calculated spectrum to the observations of the Crab Nebula at an age of a thousand years. The spectral evolution of the Crab Nebula in our model shows that the flux ratio of TeV {gamma}-rays to X-rays increases with time, which implies that old PWNe are faint in X-rays, but not in TeV {gamma}-rays. The increase of this ratio is because the magnetic field decreases with time and is not because the X-ray emitting particles are cooled more rapidly than the TeV {gamma}-ray emitting particles. Our spectral evolution model matches the observed rate of the radio flux decrease of the Crab Nebula. This result implies that our magnetic field evolution model is close to the reality. Finally, from the viewpoint of the spectral evolution, only a small fraction of the injected energy from the Crab Pulsar needs to go to the magnetic field, which is consistent with previous studies.

  14. Millisecond pulsars - Nature's most stable clocks

    NASA Astrophysics Data System (ADS)

    Taylor, Joseph H., Jr.

    1991-07-01

    The author describes the role pulsars might play in time and frequency technology. Millisecond pulsars are rapidly rotating neutron stars: spherical flywheels some 20 km in diameter, 1.4 times as massive as the Sun, and spinning as fast as several thousand radians per second. Radio noise generated in a pulsar's magnetosphere by a highly beamed process is detectable over interstellar distances, as a periodic sequence of pulses similar to the ticks of an excellent clock. High-precision comparisons between pulsar time and terrestrial atomic time show that over intervals of several years, some millisecond pulsars have fractional stabilities comparable to those of the best atomic clocks. The author briefly reviews the physics of pulsars, discusses the techniques of pulsar timing measurements, and summarizes the results of careful studies of pulsar stabilities.

  15. Fermi Finds Youthful Pulsar Among Ancient Stars

    NASA Video Gallery

    In three years, NASA's Fermi has detected more than 100 gamma-ray pulsars, but something new has appeared. Among a type of pulsar with ages typically numbering a billion years or more, Fermi has fo...

  16. Magnetar-like emission from the young pulsar in Kes 75.

    PubMed

    Gavriil, F P; Gonzalez, M E; Gotthelf, E V; Kaspi, V M; Livingstone, M A; Woods, P M

    2008-03-28

    We report the detection of magnetar-like x-ray bursts from the young pulsar PSR J1846-0258, at the center of the supernova remnant Kes 75. This pulsar, long thought to be exclusively rotation-powered, has an inferred surface dipolar magnetic field of 4.9 x 10(13) gauss, which is higher than those of the vast majority of rotation-powered pulsars, but lower than those of the approximately 12 previously identified magnetars. The bursts were accompanied by a sudden flux increase and an unprecedented change in timing behavior. These phenomena lower the magnetic and rotational thresholds associated with magnetar-like behavior and suggest that in neutron stars there exists a continuum of magnetic activity that increases with inferred magnetic field strength.

  17. Magnetar-Like Emission from the Young Pulsar in Kes 75

    NASA Technical Reports Server (NTRS)

    Gavriil, F. P.; Gonzalez, M. E.; Gotthelf, E. V.; Kaspi, V. M.; Livingstone, M. A.; Woods, P. M.

    2008-01-01

    We report the detection of magnetar-like x-ray bursts from the young pulsar PSR J1846-0258, at the center of the supernova remnant Kes 75. This pulsar, long thought to be exclusively rotation-powered, has an inferred surface dipolar magnetic field of 4.9deg 10(exp 13) gauss, which is higher than those of the vast majority of rotation-powered pulsars, but lower than those of the approximately 12 previously identified magnetars. The bursts were accompanied by a sudden flux increase and an unprecedented change in timing behavior. These phenomena lower the magnetic and rotational thresholds associated with magnetar-like behavior and suggest that in neutron stars there exists a continuum of magnetic activity that increases with inferred magnetic field strength.

  18. Analyzing the Spectra of Accreting X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Wolff, Michael

    This proposal seeks funding for the analysis of accretion-powered X-ray pulsar spectra from NASA/ HEASARC archived X-ray data. Spectral modeling of accreting X-ray pulsars can tell us a great deal about the physical conditions in and near high mass X-ray binary systems. Such systems have accretion flows where plasma is initially channeled from an accretion disk by the strong neutron star magnetic field, eventually falling onto the magnetic polar cap of the neutron star compact object. Many of these accreting X-ray pulsars have X-ray spectra that consist of broad power-law continua with superposed cyclotron resonant scattering features indicating magnetic field strengths above 10^12 G. The energies of these cyclotron line features have recently been shown to vary with X-ray luminosity in a number of sources such as Her X-1 and V 0332+53, a phenomenon not well understood. Another recent development is the relatively new analytic model for the spectral continuum formation in accretion-powered pulsar systems developed by Becker & Wolff. In their formalism the accretion flows are assumed to go through radiation- dominated radiative shocks and settle onto the neutron star surface. The radiation field consists of strongly Comptonized bremsstrahlung emission from the entire plasma, Comptonized cyclotron emission from the de-excitations of Landau-excited electrons in the neutron star magnetic field, and Comptonized black-body emission from a thermal mound near the neutron star surface. We seek to develop the data analysis tools to apply this model framework to the X-ray data from a wide set of sources to make progress characterizing the basic accretion properties (e.g., magnetic field strength, plasma temperatures, polar cap size, accretion rate per unit area, dominance of bulk vs. thermal Comptonization) as well as understanding the variations of the cyclotron line energies with X-ray luminosity. The three major goals of our proposed work are as follows: In the first year

  19. A fan beam model for radio pulsars. I. Observational evidence

    SciTech Connect

    Wang, H. G.; Pi, F. P.; Deng, C. L.; Wen, S. Q.; Ye, F.; Guan, K.Y.; Liu, Y.; Xu, L. Q.; Zheng, X. P.

    2014-07-01

    We propose a novel beam model for radio pulsars based on the scenario that the broadband and coherent emission from secondary relativistic particles, as they move along a flux tube in a dipolar magnetic field, form a radially extended sub-beam with unique properties. The whole radio beam may consist of several sub-beams, forming a fan-shaped pattern. When only one or a few flux tubes are active, the fan beam becomes very patchy. This model differs essentially from the conal beam models with respect to the beam structure and predictions on the relationship between pulse width and impact angle β (the angle between the line of sight and the magnetic pole) and the relationship between emission intensity and beam angular radius. The evidence for this model comes from the observed patchy beams of precessional binary pulsars and three statistical relationships found for a sample of 64 pulsars, of which β were mostly constrained by fitting polarization position angle data with the rotation vector model. With appropriate assumptions, the fan beam model can reproduce the relationship between 10% peak pulse width and |β|, the anticorrelation between the emission intensity and |β|, and the upper boundary line in the scatter plot of |β| versus pulsar distance. An extremely patchy beam model with the assumption of narrowband emission from one or a few flux tubes is studied and found unlikely to be a general model. The implications of the fan beam model for the studies on radio and gamma-ray pulsar populations and radio polarization are discussed.

  20. What brakes the Crab pulsar?

    NASA Astrophysics Data System (ADS)

    Čadež, A.; Zampieri, L.; Barbieri, C.; Calvani, M.; Naletto, G.; Barbieri, M.; Ponikvar, D.

    2016-03-01

    Context. Optical observations provide convincing evidence that the optical phase of the Crab pulsar follows the radio one closely. Since optical data do not depend on dispersion measure variations, they provide a robust and independent confirmation of the radio timing solution. Aims: The aim of this paper is to find a global mathematical description of Crab pulsar's phase as a function of time for the complete set of published Jodrell Bank radio ephemerides (JBE) in the period 1988-2014. Methods: We apply the mathematical techniques developed for analyzing optical observations to the analysis of JBE. We break the whole period into a series of episodes and express the phase of the pulsar in each episode as the sum of two analytical functions. The first function is the best-fitting local braking index law, and the second function represents small residuals from this law with an amplitude of only a few turns, which rapidly relaxes to the local braking index law. Results: From our analysis, we demonstrate that the power law index undergoes "instantaneous" changes at the time of observed jumps in rotational frequency (glitches). We find that the phase evolution of the Crab pulsar is dominated by a series of constant braking law episodes, with the braking index changing abruptly after each episode in the range of values between 2.1 and 2.6. Deviations from such a regular phase description behave as oscillations triggered by glitches and amount to fewer than 40 turns during the above period, in which the pulsar has made more than 2 × 1010 turns. Conclusions: Our analysis does not favor the explanation that glitches are connected to phenomena occurring in the interior of the pulsar. On the contrary, timing irregularities and changes in slow down rate seem to point to electromagnetic interaction of the pulsar with the surrounding environment.

  1. a Surprise from the Pulsar in the Crab Nebula

    NASA Astrophysics Data System (ADS)

    1995-11-01

    New observations of the spectrum of the rapidly spinning neutron star (the `pulsar') in the Crab Nebula have been carried out with the ESO 3.5-metre New Technology Telescope (NTT) by a group of Italian astronomers [1]. Because of greatly improved spectral resolution which allows to register even very fine details in the pulsar's spectrum, they are able to determine for the first time with high accuracy the overall dependance of the emission on wavelength, i.e. the `shape' of the spectrum. Quite unexpectedly, they also detect a hitherto unknown 100 A (10 nm) broad `absorption dip', which can be securely attributed to the pulsar. These results open an exciting new window for the study of the extreme physical processes close to a pulsar. The Nature of Pulsars It is estimated that there may be as many as 100 million neutron stars in our Galaxy. A neutron star is the superdense remnant of the extremely violent supernova explosion that occurs at the end of the life of a comparatively massive star. In fact, all stars that are more than about 6 times heavier than the Sun are believed to end their lives as supernovae. During the explosion, the central core of the dying star collapses in a few milliseconds and the matter at the centre is compressed to a density comparable to that of an atomic nucleus. Due to the enormous inward pressure, the atomic particles are squeezed together into a kind of neutron jam. The outcome is the formation of a neutron star with a diameter of 10-15 kilometres, weighing as much as the Sun. In accordance with the physical law that implies that the rotation momentum of the exploding star must be conserved, newborn neutron stars will rotate very rapidly around their axis, in some cases as fast as 100 times per second. In the same way, the new neutron star is expected to possess a strong magnetic field. Of these myriads of neutron stars, about 700 have been observed to emit radio pulses (hence the name `pulsar'). A few of these can also be detected

  2. Wide-band, low-frequency pulse profiles of 100 radio pulsars with LOFAR

    NASA Astrophysics Data System (ADS)

    Pilia, M.; Hessels, J. W. T.; Stappers, B. W.; Kondratiev, V. I.; Kramer, M.; van Leeuwen, J.; Weltevrede, P.; Lyne, A. G.; Zagkouris, K.; Hassall, T. E.; Bilous, A. V.; Breton, R. P.; Falcke, H.; Grießmeier, J.-M.; Keane, E.; Karastergiou, A.; Kuniyoshi, M.; Noutsos, A.; Osłowski, S.; Serylak, M.; Sobey, C.; ter Veen, S.; Alexov, A.; Anderson, J.; Asgekar, A.; Avruch, I. M.; Bell, M. E.; Bentum, M. J.; Bernardi, G.; Bîrzan, L.; Bonafede, A.; Breitling, F.; Broderick, J. W.; Brüggen, M.; Ciardi, B.; Corbel, S.; de Geus, E.; de Jong, A.; Deller, A.; Duscha, S.; Eislöffel, J.; Fallows, R. A.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Gunst, A. W.; Hamaker, J. P.; Heald, G.; Horneffer, A.; Jonker, P.; Juette, E.; Kuper, G.; Maat, P.; Mann, G.; Markoff, S.; McFadden, R.; McKay-Bukowski, D.; Miller-Jones, J. C. A.; Nelles, A.; Paas, H.; Pandey-Pommier, M.; Pietka, M.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Röttgering, H.; Rowlinson, A.; Schwarz, D.; Smirnov, O.; Steinmetz, M.; Stewart, A.; Swinbank, J. D.; Tagger, M.; Tang, Y.; Tasse, C.; Thoudam, S.; Toribio, M. C.; van der Horst, A. J.; Vermeulen, R.; Vocks, C.; van Weeren, R. J.; Wijers, R. A. M. J.; Wijnands, R.; Wijnholds, S. J.; Wucknitz, O.; Zarka, P.

    2016-02-01

    Context. LOFAR offers the unique capability of observing pulsars across the 10-240 MHz frequency range with a fractional bandwidth of roughly 50%. This spectral range is well suited for studying the frequency evolution of pulse profile morphology caused by both intrinsic and extrinsic effects such as changing emission altitude in the pulsar magnetosphere or scatter broadening by the interstellar medium, respectively. Aims: The magnitude of most of these effects increases rapidly towards low frequencies. LOFAR can thus address a number of open questions about the nature of radio pulsar emission and its propagation through the interstellar medium. Methods: We present the average pulse profiles of 100 pulsars observed in the two LOFAR frequency bands: high band (120-167 MHz, 100 profiles) and low band (15-62 MHz, 26 profiles). We compare them with Westerbork Synthesis Radio Telescope (WSRT) and Lovell Telescope observations at higher frequencies (350 and 1400 MHz) to study the profile evolution. The profiles were aligned in absolute phase by folding with a new set of timing solutions from the Lovell Telescope, which we present along with precise dispersion measures obtained with LOFAR. Results: We find that the profile evolution with decreasing radio frequency does not follow a specific trend; depending on the geometry of the pulsar, new components can enter into or be hidden from view. Nonetheless, in general our observations confirm the widening of pulsar profiles at low frequencies, as expected from radius-to-frequency mapping or birefringence theories. We offer this catalogue of low-frequency pulsar profiles in a user friendly way via the EPN Database of Pulsar Profiles, http://www.epta.eu.org/epndb/

  3. Alignment-to-orientation conversion in a magnetic field at nonlinear excitation of the D2 line of rubidium: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Auzinsh, M.; Berzins, A.; Ferber, R.; Gahbauer, F.; Kalvans, L.; Mozers, A.; Spiss, A.

    2015-05-01

    We studied alignment-to-orientation conversion caused by excited-state level crossings in a nonzero magnetic field of both atomic rubidium isotopes. Experimental measurements were performed on the transitions of the D2 line of rubidium. These measured signals were described by a theoretical model that takes into account all neighboring hyperfine transitions, the mixing of magnetic sublevels in an external magnetic field, the coherence properties of the exciting laser radiation, and the Doppler effect. In the experiments, laser-induced fluorescence components were observed at linearly polarized excitation and their difference was taken afterwards. By observing the two oppositely circularly polarized components, we were able to see structures not visible in the difference graphs, which give deeper insight into the processes responsible for these signals. We studied how these signals are dependent on intensity and how they are affected when the exciting laser is tuned to different hyperfine transitions. The comparison between experiment and theory was carried out fulfilling the nonlinear absorption conditions. The theoretical curves described the experimental measurements satisfactorily, reproducing even small features in the shapes of the curves.

  4. Dynamics of exciton recombination in strong magnetic fields in ultrathin GaAs/AlAs quantum wells with indirect band gap and type-II band alignment

    NASA Astrophysics Data System (ADS)

    Shamirzaev, T. S.; Debus, J.; Yakovlev, D. R.; Glazov, M. M.; Ivchenko, E. L.; Bayer, M.

    2016-07-01

    The exciton recombination dynamics is studied experimentally and theoretically in two-monolayer-thick GaAs/AlAs quantum wells characterized by an indirect band gap and a type-II band alignment. At cryogenic temperatures, the lifetimes of the excitons that are indirect both in real and k space are in the millisecond range. The exciton recombination time and the photoluminescence (PL) intensity are strongly dependent on strength and orientation of an applied magnetic field. In contrast to the very weak influence of an in-plane field, at 2 K temperature a field applied parallel to the growth axis drastically slows down the recombination and reduces the PL intensity. With increasing temperature the magnetic field effects on PL intensity and decay time are vanishing. The experimental data are well described by a model for the exciton dynamics that takes into account the magnetic-field-induced redistribution of the indirect excitons between their bright and dark states. It allows us to evaluate the lower bound of the heavy-hole longitudinal g factor of 2.5, the radiative recombination time for the bright excitons of 0.34 ms, and the nonradiative recombination time of the bright and dark excitons of 8.5 ms.

  5. Search for Millisecond Pulsars for the Pulsar Timing Array project

    NASA Astrophysics Data System (ADS)

    Milia, S.

    2012-03-01

    Pulsars are rapidly rotating highly magnetised neutron stars (i.e. ultra dense stars, where about one solar mass is concentrated in a sphere with a radius of ~ 10 km), which irradiate radio beams in a fashion similar to a lighthouse. As a consequence, whenever the beams cut our line of sight we perceive a radio pulses, one (or two) per pulsar rotation, with a frequency up to hundred of times a second. Owing to their compact nature, rapid spin and high inertia, pulsars are in general fairly stable rotators, hence the Times of Arrival (TOAs) of the pulses at a radio telescope can be used as the ticks of a clock. This holds true in particular for the sub­class of the millisecond pulsars (MSPs), having a spin period smaller than the conventional limit of 30 ms, whose very rapid rotation and relatively older age provide better rotational stability than the ordinary pulsars. Indeed, some MSPs rotate so regularly that they can rival the best atomic clocks on Earth over timespan of few months or years.This feature allows us to use MSPs as tools in a cosmic laboratory, by exploiting a procedure called timing, which consists in the repeated and regular measurement of the TOAs from a pulsar and then in the search for trends in the series of the TOAs over various timespans, from fraction of seconds to decades.For example the study of pulsars in binary systems has already provided the most stringent tests to date of General Relativity in strong gravitational fields and has unambiguously showed the occurrence of the emission of gravitational waves from a binary system comprising two massive bodies in a close orbit. In last decades a new exciting perspective has been opened, i.e. to use pulsars also for a direct detection of the so far elusive gravitational waves and thereby applying the pulsar timing for cosmological studies. In fact, the gravitational waves (GWs) going across our Galaxy pass over all the Galactic pulsars and the Earth, perturbing the space­time at the

  6. Chandra Confirmation of a Pulsar Wind Nebula in DA 495

    NASA Technical Reports Server (NTRS)

    Arzoumanian, Z.; Safi-Harb, S.; Landecker, T.L.; Kothes, R.; Camilo, F.

    2008-01-01

    As part of a multiwavelength study of the unusual radio supernova remnant DA 495, we present observations made with the Chandra X-ray Observatory. Imaging and spectroscopic analysis confirms the previously detected X-ray source at the heart of the annular radio nebula, establishing the radiative properties of two key emission components: a soft unresolved source with a blackbody temperature of 1 MK consistent with a neutron star, surrounded by a nontherma1 nebula 40" in diameter exhibiting a power-law spectrum with photon index Gamma = 1.63, typical of a pulsar wind nebula. Morphologically, the nebula appears to be slightly extended along a direction, in projection on the sky, previously demonstrated to be of significance in radio and ASCA observations; we argue that this represents the orientation of the pulsar spin axis. At smaller scales, a narrow X-ray feature is seen extending out 5" from the point source, but energetic arguments suggest that it is not the resolved termination shock of the pulsar wind against the ambient medium. Finally, we argue based on synchrotron lifetimes in the nebular magnetic field that DA 495 represents the first example of a pulsar wind nebula in which electromagnetic flux makes up a significant part, together with particle flux, of the neutron star's wind.

  7. High-Energy Emission from Rotation-Powered Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2007-01-01

    Thirty-five years after the discovery of rotation-powered pulsars, we still do not understand their pulsed emission at any wavelength. In the last few years there have been some fundamental developments in acceleration and emission models. I will review both the basic physics of the models as well as the latest developments in understanding the high-energy emission of rotation-powered pulsars. Special and general relativistic effects play important roles in pulsar emission, from inertial frame-dragging near the stellar surface to aberration, time-of-flight and retardation of the magnetic field near the light cylinder. Understanding how these effects determine what we observe at different wavelengths is critical to unraveling the emission physics. Fortunately two new gamma-ray telescopes, AGILE and GLAST, with launches expected this year will detect many new gamma-ray pulsars and test the predictions of these models with unprecedented sensitivity and energy resolution for gamma-rays in the range of 30 MeV to 300 GeV.

  8. Quasispherical subsonic accretion in X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Shakura, Nikolai I.; Postnov, Konstantin A.; Kochetkova, A. Yu; Hjalmarsdotter, L.

    2013-04-01

    A theoretical model is considered for quasispherical subsonic accretion onto slowly rotating magnetized neutron stars. In this regime, the accreting matter settles down subsonically onto the rotating magnetosphere, forming an extended quasistatic shell. Angular momentum transfer in the shell occurs via large-scale convective motions resulting, for observed pulsars, in an almost iso-angular-momentum \\omega \\sim 1/R^2 rotation law inside the shell. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instabilities, with allowance for cooling. A settling accretion regime is possible for moderate accretion rates \\dot M \\lesssim \\dot M_* \\simeq 4\\times 10^{16} g s ^{-1}. At higher accretion rates, a free-fall gap above the neutron star magnetosphere appears due to rapid Compton cooling, and the accretion becomes highly nonstationary. Observations of spin-up/spin-down rates of quasispherically wind accreting equilibrium X-ray pulsars with known orbital periods (e.g., GX 301-2 and Vela X-1) enable us to determine the main dimensionless parameters of the model, as well as to estimate surface magnetic field of the neutron star. For equilibrium pulsars, the independent measurements of the neutron star magnetic field allow for an estimate of the stellar wind velocity of the optical companion without using complicated spectroscopic measurements. For nonequilibrium pulsars, a maximum value is shown to exist for the spin-down rate of the accreting neutron star. From observations of the spin-down rate and the X-ray luminosity in such pulsars (e.g., GX 1+4, SXP 1062, and 4U 2206+54), a lower limit can be put on the neutron star magnetic field, which in all cases turns out to be close to the standard value and which agrees with cyclotron line measurements. Furthermore, both explains the spin-up/spin-down of the pulsar frequency on large time-scales and also accounts for the irregular short

  9. A millisecond pulsar timing array

    NASA Astrophysics Data System (ADS)

    Hobbs, George; Manchester, Dick; Verbiest, Joris P. W.; Sarkissian, John; Bailes, Matthew; Bhat, Ramesh; Jenet, Rick; Keith, Michael; Burke-Spolaor, Sarah; van Straten, Willem; Yardley, Daniel Roger Billing; Ravi, Vikram; Oslowski, Stefan; Hotan, Aidan; Champion, David; Khoo, Jonathan; Shannon, Ryan; Chaudhary, Ankur

    2012-04-01

    The Parkes Pulsar Timing Array (PPTA) project has three primary goals: (a) detection of gravitational waves from astronomical sources, (b) establishment of a pulsar timescale, and (c) improvement of our understanding of Solar-system dynamics. There are many secondary goals, some astrophysical and some instrumental/technique oriented. Achievement of these ambitious primary goals requires frequent observations of at least 20 MSPs at two or preferably three widely spaced frequencies over several years. We wish to continue observing the PPTA sample at intervals of 2-3 weeks using both the 10/50cm and Multibeam receivers. The digital filterbanks (PDFB3, PDFB4) and the baseband systems (CPSR2; APSR) are used for data recording. With the new instruments and development of an efficient pipeline processing system, we have achieved the world's best pulsar timing precision. We are collaborating with the European and North American pulsar timing array groups (EPTA and NANOGrav, respectively) to obtain more frequent observations and a larger pulsar sample. Because of the high sensitivity and wide bandwidths required, RFI mitigation is an important part of the project. We request continuing status for this project.

  10. A millisecond pulsar timing array

    NASA Astrophysics Data System (ADS)

    Hobbs, George; Manchester, Dick; Sarkissian, John; Bailes, Matthew; Bhat, Ramesh; Keith, Michael; Burke-Spolaor, Sarah; Coles, William; van Straten, Willem; Ravi, Vikram; Oslowski, Stefan; Khoo, Jonathan; Shannon, Ryan; Wang, Jingbo; Levin, Yuri

    2013-10-01

    The Parkes Pulsar Timing Array (PPTA) project has three primary goals: (a) detection of gravitational waves from astronomical sources, (b) establishment of a pulsar timescale, and (c) improvement of our understanding of Solar-system dynamics. There are many secondary goals, some astrophysical and some instrumental/technique oriented. Achievement of these ambitious primary goals requires frequent observations of at least 20 MSPs at two or preferably three widely spaced frequencies over several years. We wish to continue observing the PPTA sample at intervals of 2-3 weeks using both the 10/50cm and Multibeam receivers. The digital filterbanks (PDFB3, PDFB4) and the baseband systems (CPSR2; APSR) are used for data recording. With the new instruments and development of an efficient pipeline processing system, we have achieved the world's best pulsar timing precision. We are collaborating with the European and North American pulsar timing array groups (EPTA and NANOGrav, respectively) to obtain more frequent observations and a larger pulsar sample. Because of the high sensitivity and wide bandwidths required, RFI mitigation is an important part of the project. We request continuing status for this project.

  11. A millisecond pulsar timing array

    NASA Astrophysics Data System (ADS)

    Hobbs, George; Manchester, Dick; Verbiest, Joris P. W.; Sarkissian, John; Bailes, Matthew; Bhat, Ramesh; Jenet, Rick; Keith, Michael; Burke-Spolaor, Sarah; van Straten, Willem; Yardley, Daniel Roger Billing; Ravi, Vikram; Oslowski, Stefan; Hotan, Aidan; Champion, David; Khoo, Jonathan; Shannon, Ryan; Chaudhary, Ankur

    2011-10-01

    The Parkes Pulsar Timing Array (PPTA) project has three primary goals: (a) detection of gravitational waves from astronomical sources, (b) establishment of a pulsar timescale, and (c) improvement of our understanding of Solar-system dynamics. There are many secondary goals, some astrophysical and some instrumental/technique oriented. Achievement of these ambitious primary goals requires frequent observations of at least 20 MSPs at two or preferably three widely spaced frequencies over several years. We wish to continue observing the PPTA sample at intervals of 2-3 weeks using both the 10/50cm and Multibeam receivers. The digital filterbanks (PDFB3, PDFB4) and the baseband systems (CPSR2; APSR) are used for data recording. With the new instruments and development of an efficient pipeline processing system, we have achieved the world's best pulsar timing precision. We are collaborating with the European and North American pulsar timing array groups (EPTA and NANOGrav, respectively) to obtain more frequent observations and a larger pulsar sample. Because of the high sensitivity and wide bandwidths required, RFI mitigation is an important part of the project. We request continuing status for this project.

  12. A millisecond pulsar timing array

    NASA Astrophysics Data System (ADS)

    Hobbs, George; Manchester, Dick; Sarkissian, John; Bailes, Matthew; Bhat, Ramesh; Keith, Michael; Burke-Spolaor, Sarah; Coles, William; van Straten, Willem; Yardley, Daniel Roger Billing; Ravi, Vikram; Oslowski, Stefan; Khoo, Jonathan; Shannon, Ryan; Wang, Jingbo; Levin, Yuri

    2013-04-01

    The Parkes Pulsar Timing Array (PPTA) project has three primary goals: (a) detection of gravitational waves from astronomical sources, (b) establishment of a pulsar timescale, and (c) improvement of our understanding of Solar-system dynamics. There are many secondary goals, some astrophysical and some instrumental/technique oriented. Achievement of these ambitious primary goals requires frequent observations of at least 20 MSPs at two or preferably three widely spaced frequencies over several years. We wish to continue observing the PPTA sample at intervals of 2-3 weeks using both the 10/50cm and Multibeam receivers. The digital filterbanks (PDFB3, PDFB4) and the baseband systems (CPSR2; APSR) are used for data recording. With the new instruments and development of an efficient pipeline processing system, we have achieved the world's best pulsar timing precision. We are collaborating with the European and North American pulsar timing array groups (EPTA and NANOGrav, respectively) to obtain more frequent observations and a larger pulsar sample. Because of the high sensitivity and wide bandwidths required, RFI mitigation is an important part of the project. We request continuing status for this project.

  13. A millisecond pulsar timing array

    NASA Astrophysics Data System (ADS)

    Hobbs, George; Manchester, Dick; Verbiest, Joris P. W.; Sarkissian, John; Bailes, Matthew; Bhat, Ramesh; Jenet, Rick; Keith, Michael; Burke-Spolaor, Sarah; van Straten, Willem; Ravi, Vikram; Oslowski, Stefan; Hotan, Aidan; Champion, David; Khoo, Jonathan; Shannon, Ryan; Chaudhary, Ankur

    2012-10-01

    The Parkes Pulsar Timing Array (PPTA) project has three primary goals: (a) detection of gravitational waves from astronomical sources, (b) establishment of a pulsar timescale, and (c) improvement of our understanding of Solar-system dynamics. There are many secondary goals, some astrophysical and some instrumental/technique oriented. Achievement of these ambitious primary goals requires frequent observations of at least 20 MSPs at two or preferably three widely spaced frequencies over several years. We wish to continue observing the PPTA sample at intervals of 2-3 weeks using both the 10/50cm and Multibeam receivers. The digital filterbanks (PDFB3, PDFB4) and the baseband systems (CASPSR; APSR) are used for data recording. With the new instruments and development of an efficient pipeline processing system, we have achieved the world's best pulsar timing precision. We are collaborating with the European and North American pulsar timing array groups (EPTA and NANOGrav, respectively) to obtain more frequent observations and a larger pulsar sample. Because of the high sensitivity and wide bandwidths required, RFI mitigation is an important part of the project. We request continuing status for this project.

  14. A millisecond pulsar timing array

    NASA Astrophysics Data System (ADS)

    Hobbs, George; Manchester, Dick; Verbiest, Joris P. W.; Sarkissian, John; Bailes, Matthew; Bhat, Ramesh; Jenet, Rick; Keith, Michael; Burke-Spolaor, Sarah; van Straten, Willem; Yardley, Daniel Roger Billing; Oslowski, Stefan; Hotan, Aidan; Champion, David; Khoo, Jonathan; Shannon, Ryan; Chaudhary, Ankur

    2011-04-01

    The Parkes Pulsar Timing Array (PPTA) project has three primary goals: (a) detection of gravitational waves from astronomical sources, (b) establishment of a pulsar timescale, and (c) improvement of our understanding of Solar-system dynamics. There are many secondary goals, some astrophysical and some instrumental/technique oriented. Achievement of these ambitious primary goals requires frequent observations of at least 20 MSPs at two or preferably three widely spaced frequencies over several years. We wish to continue observing the PPTA sample at intervals of 2-3 weeks using both the 10/50cm and Multibeam receivers. The digital filterbanks (PDFB3, PDFB4) and the baseband systems (CPSR2; APSR) are used for data recording. With the new instruments and development of an efficient pipeline processing system, we have achieved the world's best pulsar timing precision. We are collaborating with the European and North American pulsar timing array groups (EPTA and NANOGrav, respectively) to obtain more frequent observations and a larger pulsar sample. Because of the high sensitivity and wide bandwidths required, RFI mitigation is an important part of the project. We request continuing status for this project.

  15. Observations of three young γ-ray pulsars with the Gran Telescopio Canarias

    NASA Astrophysics Data System (ADS)

    Mignani, R. P.; Rea, N.; Testa, V.; Marelli, M.; De Luca, A.; Pierbattista, M.; Shearer, A.; Torres, D. F.; De Oña Wilhelmi, E.

    2016-10-01

    We report the analysis of the first deep optical observations of three isolated γ-ray pulsars detected by the Fermi Gamma-ray Space Telescope: the radio-loud PSR J0248+6021 and PSR J0631+1036, and the radio-quiet PSR J0633+0632. The latter has also been detected in the X-rays. The pulsars are very similar in their spin-down age (τ ˜ 40-60 kyr), spin-down energy (dot{E} ˜ 10^{35} erg s-1), and dipolar surface magnetic field (B ˜ 3-5 × 1012 G). These pulsars are promising targets for multiwavelength observations, since they have been already detected in γ-rays and in radio or X-rays. None of them has been detected yet in the optical band. We observed the three pulsar fields in 2014 with the Spanish 10.4 m Gran Telescopio Canarias (GTC). We could not find any candidate optical counterpart to the three pulsars close to their most recent radio or Chandra positions down to 3σ limits of g' ˜ 27.3, g' ˜ 27, g' ˜ 27.3 for PSR J0248+6021, J0631+1036, and J0633+0632, respectively. From the inferred optical upper limits and estimated distance and interstellar extinction, we derived limits on the pulsar optical luminosity. We also searched for the X-ray counterpart to PSR J0248+6021 with Chandra but we did not detect the pulsar down to a 3σ flux limit of 5 × 10-14 erg cm-2 s-1 (0.3-10 keV). For all these pulsars, we compared the optical flux upper limits with the extrapolations in the optical domain of the γ-ray spectra and compared their multiwavelength properties with those of other γ-ray pulsars of comparable age.

  16. CURVATURE-DRIFT INSTABILITY FAILS TO GENERATE PULSAR RADIO EMISSION

    SciTech Connect

    Kaganovich, Alexander; Lyubarsky, Yuri

    2010-10-01

    The curvature-drift instability has long been considered as a viable mechanism for pulsar radio emission. We reconsidered this mechanism by finding an explicit solution describing the propagation of short electromagnetic waves in a plasma flow along curved magnetic field lines. We show that even though the waves could be amplified, the amplification factor remains very close to unity; therefore, this mechanism is unable to generate high brightness temperature emission from initial weak fluctuations.

  17. Pulsars as cosmic ray particle accelerators: Proton orbits

    NASA Technical Reports Server (NTRS)

    Thielheim, K. O.

    1985-01-01

    Proton orbits are calculated in the electromagnetic vacuum field of a magnetic point dipole rotating with its angular velocity omega perpendicular to its dipole moment mu by numerical integration of the Lorentz-Dirac equation. Trajectories are shown and discussed for various initial conditions. A critical surface is shown separating initial positions of protons which finally hit the pulsar in the polar region from those which finally recede to infinity.

  18. CONSTRAINING THE EVOLUTIONARY FATE OF CENTRAL COMPACT OBJECTS: ''OLD'' RADIO PULSARS IN SUPERNOVA REMNANTS

    SciTech Connect

    Bogdanov, Slavko; Ng, C.-Y.; Kaspi, Victoria M.

    2014-09-10

    Central compact objects (CCOs) constitute a population of radio-quiet, slowly spinning (≥100 ms) young neutron stars with anomalously high thermal X-ray luminosities. Their spin-down properties imply weak dipole magnetic fields (∼10{sup 10-11} G) and characteristic ages much greater than the ages of their host supernova remnants (SNRs). However, CCOs may posses strong ''hidden'' internal magnetic fields that may re-emerge on timescales of ≳10 kyr, with the neutron star possibly activating as a radio pulsar in the process. This suggests that the immediate descendants of CCOs may be masquerading as slowly spinning ''old'' radio pulsars. We present an X-ray survey of all ordinary radio pulsars within 6 kpc that are positionally coincident with Galactic SNRs in order to test the possible connection between the supposedly old but possibly very young pulsars and the SNRs. None of the targets exhibit anomalously high thermal X-ray luminosities, suggesting that they are genuine old ordinary pulsars unrelated to the superposed SNRs. This implies that CCOs are either latent radio pulsars that activate long after their SNRs dissipate or they remain permanently radio-quiet. The true descendants of CCOs remain at large.

  19. Alignment validation

    SciTech Connect

    ALICE; ATLAS; CMS; LHCb; Golling, Tobias

    2008-09-06

    The four experiments, ALICE, ATLAS, CMS and LHCb are currently under constructionat CERN. They will study the products of proton-proton collisions at the Large Hadron Collider. All experiments are equipped with sophisticated tracking systems, unprecedented in size and complexity. Full exploitation of both the inner detector andthe muon system requires an accurate alignment of all detector elements. Alignmentinformation is deduced from dedicated hardware alignment systems and the reconstruction of charged particles. However, the system is degenerate which means the data is insufficient to constrain all alignment degrees of freedom, so the techniques are prone to converging on wrong geometries. This deficiency necessitates validation and monitoring of the alignment. An exhaustive discussion of means to validate is subject to this document, including examples and plans from all four LHC experiments, as well as other high energy experiments.

  20. Molecular weight dependence of segmental alignment in a sheared polymer melt: A deuterium nuclear magnetic resonance investigation

    NASA Astrophysics Data System (ADS)

    Cormier, Ryan J.; Callaghan, Paul T.

    2002-06-01

    2H NMR quadrupole interaction spectroscopy has been used to measure the molecular weight dependence of poly(dimethylsiloxane) chain deformation under shear in a cylindrical Couette cell while NMR velocimetry has been used to directly measure shear rates. The signals were acquired from a perdeuterated benzene probe molecule, which provides a motionally averaged sampling of the entire segmental ensemble. We have measured the dependence on shear rate of the SXX (velocity), SYY (velocity gradient), and SZZ (vorticity) elements of the segmented alignment tensor, fitting the data using the standard Doi-Edwards theory and modified to allow for convected constraint release. Our results suggest that the tube disengagement times scale as molecular weight to the power 3.5±0.1, consistent with the usual 3.4 power law. Our velocimetry measurements indicate a reproducible and consistent slip occurring at high molecular weights (>1 M Dalton), a phenomenon which is independently observed in a lower than expected chain deformation.

  1. On the existence of pulsars in the vicinity of the massive black hole in the galactic center

    SciTech Connect

    Zhang, Fupeng; Lu, Youjun; Yu, Qingjuan E-mail: luyj@nao.cas.cn

    2014-04-01

    Pulsars, if existing and detectable in the immediate vicinity of the massive black hole (MBH) in the Galactic center (GC), may be used as a superb tool to probe both the environment and the metric of the central MBH. The recent discovery of a magnetized pulsar in the GC suggests that many more pulsars should exist near the MBH. In this paper, we estimate the number and the orbital distribution of pulsars in the vicinity of the MBH in the GC by assuming that the pulsar progenitors, similar to the GC S-stars, were captured to orbits tightly bound to the MBH through the tidal breakup of stellar binaries. We use the current observations on both the GC S-stars and the hypervelocity stars to calibrate the injection rate(s) of and the dynamical model(s) for the stellar binaries. By including the relaxation processes, supernova kicks, and gravitational wave radiation in our simulations, we estimate that ∼97-190 (9-14) pulsars may presently orbit the central MBH with semimajor axes ≤4000 AU (≤1000 AU), which is compatible with the current observational constraints on the number of the GC pulsars. The semimajor axis and the pericenter distance of the pulsar closest to the central MBH are probably in the range of ∼120-460 AU and ∼2-230 AU, respectively. Future telescopes, such as the Square Kilometer Array, may be able to detect a significant number of pulsars with semimajor axis smaller than a few thousand AU in the GC. Long-term monitoring of these pulsars would be helpful in constraining both the environment and the metric of the central MBH. Our preferred model also results in about ten hyperfast pulsars with velocity ≳ 1500 km s{sup –1} moving away from the Milky Way.

  2. Synchrotron X-ray emission from old pulsars

    NASA Astrophysics Data System (ADS)

    Kisaka, Shota; Tanaka, Shuta J.

    2014-09-01

    We study the synchrotron radiation as the observed non-thermal emission by the X-ray satellites from old pulsars (≳1-10 Myr) to investigate the particle acceleration in their magnetospheres. We assume that the power-law component of the observed X-ray spectra is caused by the synchrotron radiation from electrons and positrons in the magnetosphere. We consider two pair-production mechanisms of X-ray emitting particles, the magnetic and the photon-photon pair productions. High-energy photons, which ignite the pair production, are emitted via the curvature radiation of the accelerated particles. We use the analytical description for the radiative transfer and estimate the luminosity of the synchrotron radiation. We find that for pulsars with the spin-down luminosity Lsd ≲ 1033 erg s-1, the locations of the particle acceleration and the non-thermal X-ray emission are within ≲107 cm from the centre of the neutron star, where the magnetic pair production occurs. For pulsars with the spin-down luminosity Lsd ≲ 1031 erg s-1 such as J0108-1431, the synchrotron radiation is difficult to explain the observed non-thermal component even if we consider the existence of the strong and small-scale surface magnetic field structures.

  3. Pulsar Astrometry with the VLBA

    NASA Astrophysics Data System (ADS)

    Brisken, W.

    2005-12-01

    Many features of the Very Long Baseline Array (VLBA) contrive to make it the best telescope for pulsar astrometry. The measured proper motions and parallaxes allow distances and transverse velocities to be determined. These in turn provide clues to questions spanning nuclear astrophysics on scales of 10-23 m to the distribution of gas in the Galaxy on scales of 1020 m. Three pulsars are discussed in this paper. Among pulsars, B0950+08 has the most accurate VLBI-determined parallax. B1133+16 has a very high transverse velocity; its radial velocity is discussed. B0656+14 is a thermally detected neutron star. Determination of its distance has allowed its radius to be measured and its association with the Monogem ring supernova remnant (SNR) to be established, allowing a long-standing question in cosmic ray astrophysics to be addressed.

  4. String theories and millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Sanchez, N.; Signore, M.

    1988-11-01

    We discuss the two ways of connecting string theories (cosmic, fundamental and the connection between them) to the observational reality: (i) radioastronomy observations (millisecond pulsar timing), and (ii) elementary particle phenomenology (compactification schemes). We study the limits imposed on the string parameter Gμ by recent millisecond pulsar timings. Cosmic strings derived from GUTs agree with (i). For cosmic strings derived from fundamental strings themselves there is contradiction between (i) and (ii). One of these scenarios connecting string theory to reality must be revised (or the transition from fundamental into cosmic strings rejected). Meanwhile, millisecond pulsar can select one scenario, or reject both of them. UA 336 Laboratoire Associé au CNRS, Observatoire de Meudon et Ecole Normale Supérieure, 24 rue Lhomond, F-75231 Paris Cedex 05, France.

  5. A New Physical Model for Pulsars as Gravitational Shielding and Oscillating Neutron Stars

    NASA Astrophysics Data System (ADS)

    Zhang, Tianxi

    2014-06-01

    Pulsars are fast rotating neutron stars that synchronously emit periodic Dirac delta shape pulses of radio-frequency radiation and Lorentzian shape oscillations of X-rays. The acceleration of particles near the magnetic poles, which derivate from the rotating axis produces coherent beams of radio emissions that are viewed as pulses of radiation whenever the magnetic poles sweep the viewers. However, the conventional lighthouse model of pulsars is only conceptual. The physical mechanism through which particles are accelerated to produce coherent beams of radio emissions is still poorly understood. The process for periodically oscillating X-rays to emit from hot spots at the inner edge of accretion disks of pulsars is also remained as an unsolved mystery. Recently, a new physical model of pulsars is proposed by the author to quantitatively interpret the emission characteristics of pulsars, in accordance with his well-developed five-dimensional fully covariant Kaluza-Klein gravitational shielding theory and the physics of thermal and accelerating charged particle radiation. The results indicate that with the significant gravitational shielding by scalar field a neutron star nonlinearly oscillates and produces synchronous periodically Dirac delta shape pulse-like radio-frequency radiation (emitted by the oscillating or accelerating charged particles) as well as periodically Lorentzian shape oscillating X-rays (as the thermal radiation of neutron stars that temperature varies due to the oscillation). This physical model of pulsars as gravitational shielding and oscillating neutron stars broadens our understanding of neutron stars and develops an innovative mechanism to disclose the mystery of pulsars. In this presentation, I will show the results obtained from the quantitative studies of this new physical model of pulsars for the oscillations of neutron stars and the powers of radio pulse-like emissions and oscillating X-rays.

  6. PINT, a New Pulsar Timing Software

    NASA Astrophysics Data System (ADS)

    Luo, Jing; Jenet, Fredrick A.; Ransom, Scott M.; Demorest, Paul; Van Haasteren, Rutger; Archibald, Anne

    2015-01-01

    We are presenting a new pulsar timing software PINT. The current pulsar timing group are heavily depending on Tempo/Tempo2, a package for analysis pulsar data. However, for a high accuracy pulsar timing related project, such as pulsar timing for gravitational waves, an alternative software is needed for the purpose of examing the results. We are developing a Tempo independent software with a different structure. Different modules is designed to be more isolated and easier to be expanded. Instead of C, we are using Python as our programming language for the advantage of flexibility and powerful docstring. Here, we are presenting the detailed design and the first result of the software.

  7. The Disturbance of a Millisecond Pulsar Magnetosphere

    NASA Astrophysics Data System (ADS)

    Shannon, R. M.; Lentati, L. T.; Kerr, M.; Bailes, M.; Bhat, N. D. R.; Coles, W. A.; Dai, S.; Dempsey, J.; Hobbs, G.; Keith, M. J.; Lasky, P. D.; Levin, Y.; Manchester, R. N.; Osłowski, S.; Ravi, V.; Reardon, D. J.; Rosado, P. A.; Spiewak, R.; van Straten, W.; Toomey, L.; Wang, J.-B.; Wen, L.; You, X.-P.; Zhu, X.-J.

    2016-09-01

    Pulsar timing has enabled some of the strongest tests of fundamental physics. Central to the technique is the assumption that the detected radio pulses can be used to accurately measure the rotation of the pulsar. Here, we report on a broadband variation in the pulse profile of the millisecond pulsar J1643-1224. A new component of emission suddenly appears in the pulse profile, decays over four months, and results in a permanently modified pulse shape. Profile variations such as these may be the origin of timing noise observed in other millisecond pulsars. The sensitivity of pulsar-timing observations to gravitational radiation can be increased by accounting for this variability.

  8. The Disturbance of a Millisecond Pulsar Magnetosphere

    NASA Astrophysics Data System (ADS)

    Shannon, R. M.; Lentati, L. T.; Kerr, M.; Bailes, M.; Bhat, N. D. R.; Coles, W. A.; Dai, S.; Dempsey, J.; Hobbs, G.; Keith, M. J.; Lasky, P. D.; Levin, Y.; Manchester, R. N.; Osłowski, S.; Ravi, V.; Reardon, D. J.; Rosado, P. A.; Spiewak, R.; van Straten, W.; Toomey, L.; Wang, J.-B.; Wen, L.; You, X.-P.; Zhu, X.-J.

    2016-09-01

    Pulsar timing has enabled some of the strongest tests of fundamental physics. Central to the technique is the assumption that the detected radio pulses can be used to accurately measure the rotation of the pulsar. Here, we report on a broadband variation in the pulse profile of the millisecond pulsar J1643‑1224. A new component of emission suddenly appears in the pulse profile, decays over four months, and results in a permanently modified pulse shape. Profile variations such as these may be the origin of timing noise observed in other millisecond pulsars. The sensitivity of pulsar-timing observations to gravitational radiation can be increased by accounting for this variability.

  9. Contribution of Field-Aligned Currents to the Variations of Mid-Latitude Magnetic Field on the Ground: Dayside and Nightside are Compared.

    NASA Astrophysics Data System (ADS)

    Dubyagin, S.; Ganushkina, N. Y.

    2015-12-01

    Field-aligned currents (FACs) are believed to be the main contributors to the asymmetric variation of the magnetic field on the ground at mid-latitudes during geomagnetic storms. However, the contribution from the ionospheric currents can interfere with that from FACs on the dayside where ionospheric conductivity is higher and not concentrated along the auroral oval. We present the results of the comparison of the contribution from the large-scale FAC system with the observations at the mid-latitude observatories during 12 geomagnetic storms. The contribution from the FAC system is estimated using the 10 min resolution data of AMPERE system which provides 2D map of the FAC flowing in and out of the ionosphere reconstructed from the measurements onboard of ~70 Irridium satellites . To estimate the magnetic effect of FAC system, we performed Biot-Savart integration of these currents along IGRF field from the equator to the earth center. Although in reality the FACs close via ionosphere, we generally obtain a good quantitative agreement with observations at the ground observatories on the nighside. On the other hand the agreement is much worse on the dayside. The correlation coefficient between the D-component of the magnetic field measured on the ground and that computed using Biot-Savart integration varies between ~0.65 (21-03h MLT) and < 0.1 (12-18h MLT). In addition, we discuss the closure paths of the large scale FACs during storm periods and the sources of the north-south asymmetry of the ground magnetic field at mid-latitudes.

  10. Crustal entrainment and pulsar glitches.

    PubMed

    Chamel, N

    2013-01-01

    Large pulsar frequency glitches are generally interpreted as sudden transfers of angular momentum between the neutron superfluid permeating the inner crust and the rest of the star. Despite the absence of viscous drag, the neutron superfluid is strongly coupled to the crust due to nondissipative entrainment effects. These effects are shown to severely limit the maximum amount of angular momentum that can possibly be transferred during glitches. In particular, it is found that the glitches observed in the Vela pulsar require an additional reservoir of angular momentum.

  11. Crustal entrainment and pulsar glitches.

    PubMed

    Chamel, N

    2013-01-01

    Large pulsar frequency glitches are generally interpreted as sudden transfers of angular momentum between the neutron superfluid permeating the inner crust and the rest of the star. Despite the absence of viscous drag, the neutron superfluid is strongly coupled to the crust due to nondissipative entrainment effects. These effects are shown to severely limit the maximum amount of angular momentum that can possibly be transferred during glitches. In particular, it is found that the glitches observed in the Vela pulsar require an additional reservoir of angular momentum. PMID:23383772

  12. The Optical Spectrum of the Geminga Pulsar

    NASA Technical Reports Server (NTRS)

    Martin, Christopher; Halpern, Jules P.; Schiminovich, David; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    We obtained an optical spectrum of the isolated pulsar Geminga at the Keck Observatory. The optical object is at the limit of spectroscopic capability of any telescope, with a continuum flux that is approx. 0.5% of the dark sky on Mauna Kea. With particular attention paid to the dominant systematics of sky subtraction in our observing and analysis methods, we attained approx. 0.1% systematics in heavily binned spectra. The resulting spectrum spanning 3700 - 8000 A has a flat power-law shape f(sub nu) proportional to nu(exp -0.8) and a broad dip over 6300 - 6500 A. Thermal radiation cannot explain the optical spectrum of Geminga. The dominant component can be modeled as either electron synchrotron emission and ion (proton) cyclotron absorption, or ion cyclotron emission, the latter in a 10(exp 11) G magnetic field.

  13. Dust alignment in astrophysical environments

    NASA Astrophysics Data System (ADS)

    Lazarian, Alex; Thiem Hoang, Chi

    Dust is known to be aligned in interstellar medium and the arising polarization is extensively used to trace magnetic fields. What process aligns dust grains was one of the most long-standing problems of astrophysics in spite of the persistent efforts to solve it. For years the Davis-Greenstein paramagnetic alignment was the primary candidate for explaining grain alignment. However, the situation is different now and the most promising mechanism is associated with radiative torques (RATs) acting on irregular grains. I shall present the analytical theory of RAT alignment, discuss the observational tests that support this theory. I shall also discuss in what situations we expect to see the dominance of paramagnetic alignment.

  14. Fixture for aligning motor assembly

    DOEpatents

    Shervington, Roger M.; Vaghani, Vallabh V.; Vanek, Laurence D.; Christensen, Scott A.

    2009-12-08

    An alignment fixture includes a rotor fixture, a stator fixture and a sensor system which measures a rotational displacement therebetween. The fixture precisely measures rotation of a generator stator assembly away from a NULL position referenced by a unique reference spline on the rotor shaft. By providing an adjustable location of the stator assembly within the housing, the magnetic axes within each generator shall be aligned to a predetermined and controlled tolerance between the generator interface mounting pin and the reference spline on the rotor shaft. Once magnetically aligned, each generator is essentially a line replaceable unit which may be readily mounted to any input of a multi-generator gearbox assembly with the assurance that the magnetic alignment will be within a predetermined tolerance.

  15. The role of magnetic flux tube deformation and magnetosheath plasma beta in the saturation of the Region 1 field-aligned current system

    NASA Astrophysics Data System (ADS)

    Wilder, F. D.; Eriksson, S.; Wiltberger, M.

    2015-03-01

    The phenomena of cross polar cap potential (CPCP) and ionospheric field-aligned current (FAC) saturation remain largely unexplained. In the present study, we expand upon the Alfvén wing model of CPCP saturation by investigating its impact on the magnetosphere-ionosphere current system, particularly the Region 1 FAC input into the polar cap. Our hypothesis is that the ability of open flux tubes to deform in response to applied fluid stress from the magnetosheath is governed by the magnetosheath plasma beta, which in turn governs the Maxwell stress imposed on ionospheric plasma from the magnetosphere. We performed 32 MHD simulations with varying solar wind density and interplanetary magnetic field strength and show that the plasma beta does govern the deformation of open field lines, as well as the nonlinear response of the Region 1 FAC system to increasingly southward interplanetary magnetic field. Further, we show that the current-voltage relationship in the ionosphere also shows a dependence on the plasma beta in the magnetosheath, with the ionosphere becoming more resistive at lower beta.

  16. Orientational alignment in solids from bidimensional isotropic-anisotropic nuclear magnetic resonance spectroscopy: applications to the analysis of aramide fibers.

    PubMed

    Sachleben, J R; Frydman, L

    1997-02-01

    The use of two-dimensional isotropic-anisotropic correlation spectroscopy for the analysis of orientational alignment in solids is presented. The theoretical background and advantages of this natural-abundance 13C NMR method of measurement are discussed, and demonstrated with a series of powder and single-crystal variable-angle correlation spectroscopy (VACSY) experiments on model systems. The technique is subsequently employed to analyze the orientational distributions of three polymer fibers: Kevlar 29, Kevlar 49 and Kevlar 149. Using complementary two-dimensional NMR data recorded on synthetic samples of poly(p-phenyleneterephthalamide), the precursor of Kevlar, it was found that these commercial fibers possess molecules distributed over a very narrow orientational range with respect to the macroscopic director. The widths measured for these director distribution arrangements were (12 +/- 1.5) degrees for Kevlar 29, (15 +/- 1.5) degrees for Kevlar 49, and (8 +/- 1.5) degrees for Kevlar 149. These figures compare well with previous results obtained for non-commercial fiber samples derived from the same polymer.

  17. White Dwarf Pulsars

    NASA Technical Reports Server (NTRS)

    Patterson, Joseph

    1998-01-01

    Work on NAG5-3288 ("White Dwarf Pulsars") has been fully integrated with the identically titled project NAG5-4734. The final report below is the same, since the data analysis and interpretative work are integrated, as are the resulting (previous and in-pipeline) publications. The proposal was designed to study pulse and orbital modulations in candidate DQ Herculis stars. Data on 5 stars were obtained. The best results were obtained on YY Draconis, which exhibited a strongly pulsed hard X-ray flux, and even suggested a transition between one-pole and two-pole emission during the course of the observation. This result is being readied for inclusion in a comprehensive study of YY Draconis. A strong pulsation appeared to be present also in H0857-242, but with a period of - 50 minutes, confusion with the first harmonic of the satellite's orbital frequency is possible. So that result is uncertain and is "on ice". A negative result was obtained on 4UO608-49 (V347 Pup), suggesting either that the X-ray identification is incorrect, or that the source is very transient. Finally, data was obtained on V1432 Aql and WZ Sge, respectively the slowest and fastest of these stars. Combined with the ASCA data, the high-energy data demonstrates the latter to contain a white dwarf rotating with P = 27.87 s (Patterson et al. 1998, PASP, 110, 403). Optical photometry contemporaneous with the X-ray data was obtained of V1432 Aql, in order to study the variations in the eclipse waveform. As anticipated, the width and centroid of the eclipse appeared to vary with the 50-day "supercycle".

  18. New Neighbours: Modelling the Growing Population of gamma-ray Millisecond Pulsars

    NASA Technical Reports Server (NTRS)

    Venter, C.; Harding, A. K.; Johnson, T. J.

    2010-01-01

    The Fermi Large Area Telescope, in collaboration with several groups from the radio community. have had marvelous success at uncovering new gamma-ray millisecond pulsars (MSPs). In fact, MSPs now make up a sizable fraction of the total number of known gamma-ray pulsars. The MSP population is characterized by a variety of pulse profile shapes, peak separations, and radio-to-gamma phase lags, with some members exhibiting nearly phase-aligned radio and gamma-ray light curves (LCs). The MSPs' short spin periods underline the importance of including special relativistic effects in LC calculations, even for emission originating from near the stellar surface. We present results on modelling and classification of MSP LCs using standard pulsar model geometries.

  19. Temporal variations in a four-sheet field-aligned current system and associated aurorae as observed during a Polar-ground magnetic conjunction in the midmorning sector

    NASA Astrophysics Data System (ADS)

    Farrugia, C. J.; Sandholt, P. E.; Maynard, N. C.; Torbert, R. B.; Ober, D. M.

    2003-06-01

    We relate measurements of temporarily varying field-aligned current systems (FACs) and their associated plasmas made by the Polar spacecraft at midmorning local times and likewise temporarily varying aurorae observed from Svalbard, Norway, when the magnetic footprint of the spacecraft passed across the field-of-view of the ground instruments on 3 December 1997. We combine the in situ observations of plasma and magnetic and electric fields with meridian scanning photometry and all-sky imagery from the ground site. The interplanetary magnetic field (IMF) pointed strongly east (By ≫ 0) and generally south. Descending from ˜7.5 to ˜5.5 RE and heading south, Polar traversed a four-sheet current system: a twin-sheet cusp current system C1-C2, spanning 80.6°-77.7° invariant latitudes (ILT), and then the traditional regions 1 (R1) and 2 (R2) currents, extending from 77.7° to 73.3° ILT. A convection reversal separated the C1-C2 from the R1-R2 FACs. Currents C1 and R2 flow out of the ionosphere, while C2 and R1 flow into the ionosphere. Within C1, Polar observed six bursts of ions of typically magnetosheath energies (≤2 keV) repeating every ˜5 min, accompanied by intensified field-aligned electron beams and magnetic field depressions. Auroral data, acquired later but under very similar IMF conditions and at the same latitudes as when Polar was within C1, suggest auroral forms which are pulsed in both red and green lines with a similar period to the plasma bursts observed earlier at Polar. Within C2, at Polar, the pulsing ceased, but magnetosheath plasma was still present, albeit at diminished intensity. This was in part also a temporal change as the IMF clock angle decreased to ˜60°. Equatorward of the cusp aurora we find a mixing region of magnetosheath and magnetospheric plasmas with spectral characteristics of the boundary plasma sheet (BPS) forming the source of the R1 current. Plasma inhomogeneities and bipolar current elements embedded therein were related

  20. Detection of cyclotron resonance scattering feature in high-mass X-ray binary pulsar SMC X-2

    NASA Astrophysics Data System (ADS)

    Jaisawal, Gaurava K.; Naik, Sachindra

    2016-09-01

    We report broad-band spectral properties of the high-mass X-ray binary pulsar SMC X-2 by using three simultaneous Nuclear Spectroscopy Telescope Array and Swift/XRT observations during its 2015 outburst. The pulsar was significantly bright, reaching a luminosity up to as high as ˜5.5 × 1038 erg s-1 in 1-70 keV range. Spin period of the pulsar was estimated to be 2.37 s. Pulse profiles were found to be strongly luminosity dependent. The 1-70 keV energy spectrum of the pulsar was well described with three different continuum models such as (i) negative and positive power law with exponential cutoff, (ii) Fermi-Dirac cutoff power law and (iii) cutoff power-law models. Apart from the presence of an iron line at ˜6.4 keV, a model independent absorption like feature at ˜27 keV was detected in the pulsar spectrum. This feature was identified as a cyclotron absorption line and detected for the first time in this pulsar. Corresponding magnetic field of the neutron star was estimated to be ˜2.3 × 1012 G. The cyclotron line energy showed a marginal negative dependence on the luminosity. The cyclotron line parameters were found to be variable with pulse phase and interpreted as due to the effect of emission geometry or complicated structure of the pulsar magnetic field.

  1. Population synthesis of isolated neutron stars with magneto-rotational evolution - II. From radio-pulsars to magnetars

    NASA Astrophysics Data System (ADS)

    Gullón, M.; Pons, J. A.; Miralles, J. A.; Viganò, D.; Rea, N.; Perna, R.

    2015-11-01

    Population synthesis studies constitute a powerful method to reconstruct the birth distribution of periods and magnetic fields of the pulsar population. When this method is applied to populations in different wavelengths, it can break the degeneracy in the inferred properties of initial distributions that arises from single-band studies. In this context, we extend previous works to include X-ray thermal emitting pulsars within the same evolutionary model as radio-pulsars. We find that the cumulative distribution of the number of X-ray pulsars can be well reproduced by several models that, simultaneously, reproduce the characteristics of the radio-pulsar distribution. However, even considering the most favourable magneto-thermal evolution models with fast field decay, lognormal distributions of the initial magnetic field overpredict the number of visible sources with periods longer than 12 s. We then show that the problem can be solved with different distributions of magnetic field, such as a truncated lognormal distribution, or a binormal distribution with two distinct populations. We use the observational lack of isolated neutron stars (NSs) with spin periods P > 12 s to establish an upper limit to the fraction of magnetars born with B > 1015 G (less than 1 per cent). As future detections keep increasing the magnetar and high-B pulsar statistics, our approach can be used to establish a severe constraint on the maximum magnetic field at birth of NSs.

  2. "Magnetar-like Emission from the Young Pulsar in Kes 75"

    NASA Technical Reports Server (NTRS)

    Gavrill, R.; Gonzalez, M.; Livingstone, M.; Gotthelf, E.; Kaspi, V.; Woods, P.

    2008-01-01

    Soft Gamma Repeaters (SGRs) and Anomalous X-ray Pulsars (AXPs) are thought to be magnetars - isolated neutron stars with ultra-high magnetic fields. These sources exhibit X-ray and gamma-ray bursts, and week to month-long flux enhancements, all too bright to be accounted for by their spindown luminosity. A mystery in neutron star astrophysics is why such emission has never been seen from rotation-powered pulsars with magnetar-like fields. Here we report the first detection of magnetar-like X-ray bursts from what has been long thought to be a rotation-powered pulsar, PSR 51846-0258, at the center of the supernova remnant Kes 75. PSR J1846-0258 has an inferred surface dipolar magnetic field of 4.9 X 1103 G, which is sixth highest among the > 1700 known rotation-powered pulsars, but less than those of the approximately 12 confirmed magnetars. The bursts coincided with a sudden flux increase and an unprecedented change in timing behavior, f m l y establishing PSR 51 846-0258 as a rotation-powered pulsar/magnetar transition object. These observations demonstrate that magnetar-like emission can be seen from sources with fields lower than the magnetars, and suggest that the intensity of magnetar-like activity in neutron stars depends on magnetic field strength in a more continuous way than previously thought.

  3. RESISTIVE SOLUTIONS FOR PULSAR MAGNETOSPHERES

    SciTech Connect

    Li, Jason; Spitkovsky, Anatoly; Tchekhovskoy, Alexander

    2012-02-10

    The current state of the art in the modeling of pulsar magnetospheres invokes either the vacuum or force-free limits for the magnetospheric plasma. Neither of these limits can simultaneously account for both the plasma currents and the accelerating electric fields that are needed to explain the morphology and spectra of high-energy emission from pulsars. To better understand the structure of such magnetospheres, we combine accelerating fields and force-free solutions by considering models of magnetospheres filled with resistive plasma. We formulate Ohm's law in the minimal velocity fluid frame and construct a family of resistive solutions that smoothly bridges the gap between the vacuum and the force-free magnetosphere solutions. The spin-down luminosity, open field line potential drop, and the fraction of open field lines all transition between the vacuum and force-free values as the plasma conductivity varies from zero to infinity. For fixed inclination angle, we find that the spin-down luminosity depends linearly on the open field line potential drop. We consider the implications of our resistive solutions for the spin-down of intermittent pulsars and sub-pulse drift phenomena in radio pulsars.

  4. High-Altitude Emission from Pulsar Slot Gaps: The Crab Pulsar

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Stern, Julie V.; Dyks, Jaroslaw; Frackowiak, Michal

    2008-01-01

    We present results of a 3D model of optical to gamma-ray emission from the slot gap accelerator of a rotation-powered pulsar. Primary electrons accelerating to high-altitudes in the unscreened electric field of the slot gap reach radiation-reaction limited Lorentz factors of approx. 2 x 10(exp 7), while electron-positron pairs from lower-altitude cascades flow along field lines interior to the slot gap. The curvature, synchrotron and inverse Compton radiation of both primary electrons and pairs produce a broad spectrum of emission from infra-red to GeV energies. Both primaries and pairs undergo cyclotron resonant absorption of radio photons, allowing them to maintain significant pitch angles. Synchrotron radiation from pairs with a power-law energy spectrum from gamma = 10(exp 2) - 10(exp 5), dominate the spectrum up to approx. 10 MeV. Synchrotron and curvature radiation of primaries dominates from 10 MeV up to a few GeV. We examine the energy-dependent pulse profiles and phase-resolved spectra for parameters of the Crab pulsar as a function of magnetic inclination alpha and viewing angle zeta, comparing to broad-band data. In most cases, the pulse profiles are dominated by caustics on trailing field lines. We also explore the relation of the high-energy and the radio profiles, as well as the possibility of caustic formation in the radio cone emission. We find that the Crab pulsar profiles and spectrum can be reasonably well reproduced by a model with alpha = 45deg and zeta approx. 100deg or 80deg. This model predicts that the slot gap emission below 200 MeV will exhibit correlations in time and phase with the radio emission.

  5. Quantization of an electromagnetic tornado and the origin of bands in the spectrum of giant pulses from the Crab pulsar

    NASA Astrophysics Data System (ADS)

    Kontorovich, V. M.

    2014-12-01

    When electrons are accelerated to relativistic energies in the inner gap of a pulsar, their motion is quantized in an external magnetic field and the electric field of the space charge of a rotating electron beam, an electromagnetic tornado appearing during breakdown in the pulsar's polar gap. Quantization allows one to propose a natural explanation for the observed bands in the frequency spectrum of interpulse radiation from the pulsar PSR J0534+22 in the Crab Nebula and to determine the physical parameters of the tornado. The difference in the spectra of main pulses and interpulses is discussed.

  6. RADIO AND GAMMA-RAY PULSED EMISSION FROM MILLISECOND PULSARS

    SciTech Connect

    Du, Y. J.; Chen, D.; Qiao, G. J.

    2013-01-20

    Pulsed {gamma}-ray emission from millisecond pulsars (MSPs) has been detected by the sensitive Fermi space telescope, which sheds light on studies of the emission region and its mechanism. In particular, the specific patterns of radio and {gamma}-ray emission from PSR J0101-6422 challenge the popular pulsar models, e.g., outer gap and two-pole caustic models. Using the three-dimensional annular gap model, we have jointly simulated radio and {gamma}-ray light curves for three representative MSPs (PSR J0034-0534, PSR J0101-6422, and PSR J0437-4715) with distinct radio phase lags, and present the best simulated results for these MSPs, particularly for PSR J0101-6422 with complex radio and {gamma}-ray pulse profiles, and for PSR J0437-4715 with a radio interpulse. We have found that both the {gamma}-ray and radio emission originate from the annular gap region located in only one magnetic pole, and the radio emission region is not primarily lower than the {gamma}-ray region in most cases. In addition, the annular gap model with a small magnetic inclination angle instead of an 'orthogonal rotator' can account for the MSPs' radio interpulse with a large phase separation from the main pulse. The annular gap model is a self-consistent model not only for young pulsars but also MSPs, and multi-wavelength light curves can be fundamentally explained using this model.

  7. The Einstein@Home Search for Radio Pulsars and PSR J2007+2722 Discovery

    NASA Astrophysics Data System (ADS)

    Allen, B.; Knispel, B.; Cordes, J. M.; Deneva, J. S.; Hessels, J. W. T.; Anderson, D.; Aulbert, C.; Bock, O.; Brazier, A.; Chatterjee, S.; Demorest, P. B.; Eggenstein, H. B.; Fehrmann, H.; Gotthelf, E. V.; Hammer, D.; Kaspi, V. M.; Kramer, M.; Lyne, A. G.; Machenschalk, B.; McLaughlin, M. A.; Messenger, C.; Pletsch, H. J.; Ransom, S. M.; Stairs, I. H.; Stappers, B. W.; Bhat, N. D. R.; Bogdanov, S.; Camilo, F.; Champion, D. J.; Crawford, F.; Desvignes, G.; Freire, P. C. C.; Heald, G.; Jenet, F. A.; Lazarus, P.; Lee, K. J.; van Leeuwen, J.; Lynch, R.; Papa, M. A.; Prix, R.; Rosen, R.; Scholz, P.; Siemens, X.; Stovall, K.; Venkataraman, A.; Zhu, W.

    2013-08-01

    Einstein@Home aggregates the computer power of hundreds of thousands of volunteers from 193 countries, to search for new neutron stars using data from electromagnetic and gravitational-wave detectors. This paper presents a detailed description of the search for new radio pulsars using Pulsar ALFA survey data from the Arecibo Observatory. The enormous computing power allows this search to cover a new region of parameter space; it can detect pulsars in binary systems with orbital periods as short as 11 minutes. We also describe the first Einstein@Home discovery, the 40.8 Hz isolated pulsar PSR J2007+2722, and provide a full timing model. PSR J2007+2722's pulse profile is remarkably wide with emission over almost the entire spin period. This neutron star is most likely a disrupted recycled pulsar, about as old as its characteristic spin-down age of 404 Myr. However, there is a small chance that it was born recently, with a low magnetic field. If so, upper limits on the X-ray flux suggest but cannot prove that PSR J2007+2722 is at least ~100 kyr old. In the future, we expect that the massive computing power provided by volunteers should enable many additional radio pulsar discoveries.

  8. THE EINSTEIN-HOME SEARCH FOR RADIO PULSARS AND PSR J2007+2722 DISCOVERY

    SciTech Connect

    Allen, B.; Knispel, B.; Aulbert, C.; Bock, O.; Eggenstein, H. B.; Fehrmann, H.; Machenschalk, B.; Cordes, J. M.; Brazier, A.; Chatterjee, S.; Deneva, J. S.; Hessels, J. W. T.; Anderson, D.; Demorest, P. B.; Gotthelf, E. V.; Hammer, D.; Kaspi, V. M.; Kramer, M.; Lyne, A. G.; McLaughlin, M. A.; and others

    2013-08-20

    Einstein-Home aggregates the computer power of hundreds of thousands of volunteers from 193 countries, to search for new neutron stars using data from electromagnetic and gravitational-wave detectors. This paper presents a detailed description of the search for new radio pulsars using Pulsar ALFA survey data from the Arecibo Observatory. The enormous computing power allows this search to cover a new region of parameter space; it can detect pulsars in binary systems with orbital periods as short as 11 minutes. We also describe the first Einstein-Home discovery, the 40.8 Hz isolated pulsar PSR J2007+2722, and provide a full timing model. PSR J2007+2722's pulse profile is remarkably wide with emission over almost the entire spin period. This neutron star is most likely a disrupted recycled pulsar, about as old as its characteristic spin-down age of 404 Myr. However, there is a small chance that it was born recently, with a low magnetic field. If so, upper limits on the X-ray flux suggest but cannot prove that PSR J2007+2722 is at least {approx}100 kyr old. In the future, we expect that the massive computing power provided by volunteers should enable many additional radio pulsar discoveries.

  9. White dwarf pulsars as possible cosmic ray electron-positron factories

    NASA Astrophysics Data System (ADS)

    Kashiyama, Kazumi; Ioka, Kunihito; Kawanaka, Norita

    2011-01-01

    We suggest that white dwarf (WD) pulsars can compete with neutron star (NS) pulsars for producing the excesses of cosmic ray electrons and positrons (e±) observed by the PAMELA, ATIC/PPB-BETS, Fermi, and H.E.S.S. experiments. A merger of two WDs leads to a rapidly spinning WD with a rotational energy (˜1050erg) comparable to the NS case. The birth rate (˜10-2-10-3/yr/galaxy) is also similar, providing the right energy budget for the cosmic ray e±. Applying the NS theory, we suggest that the WD pulsars can in principle produce e± up to ˜10TeV. In contrast to the NS model, the adiabatic and radiative energy losses of e± are negligible since their injection continues after the expansion of the pulsar wind nebula, and hence it is enough that a fraction ˜1% of WDs are magnetized (˜107-109G) as observed. The long activity also increases the number of nearby sources (˜100), which reduces the Poisson fluctuation in the flux. The WD pulsars could dominate the quickly cooling e± above TeV energy as a second spectral bump or even surpass the NS pulsars in the observing energy range ˜10GeV-1TeV, providing a background for the dark matter signals and a nice target for the future AMS-02, CALET, and CTA experiment.

  10. Testing Dissipative Magnetosphere Model Light Curves and Spectra with Fermi Pulsars

    NASA Technical Reports Server (NTRS)

    Brambilla, Gabriele; Kalapotharakos, Constantinos; Harding, Alice K.; Kazanas, Demosthenes

    2015-01-01

    We explore the emission properties of a dissipative pulsar magnetosphere model introduced by Kalapotharakos et al. comparing its high-energy light curves and spectra, due to curvature radiation, with data collected by the Fermi LAT. The magnetosphere structure is assumed to be near the force-free solution. The accelerating electric field, inside the light cylinder (LC), is assumed to be negligible, while outside the LC it rescales with a finite conductivity (sigma). In our approach we calculate the corresponding high-energy emission by integrating the trajectories of test particles that originate from the stellar surface, taking into account both the accelerating electric field components and the radiation reaction forces. First, we explore the parameter space assuming different value sets for the stellar magnetic field, stellar period, and conductivity. We show that the general properties of the model are in a good agreement with observed emission characteristics of young gamma-ray pulsars, including features of the phase-resolved spectra. Second, we find model parameters that fit each pulsar belonging to a group of eight bright pulsars that have a published phase-resolved spectrum. The sigma values that best describe each of the pulsars in this group show an increase with the spin-down rate (E? ) and a decrease with the pulsar age, expected if pair cascades are providing the magnetospheric conductivity. Finally, we explore the limits of our analysis and suggest future directions for improving such models.

  11. Dynamic Alignment at SLS

    SciTech Connect

    Ruland, Robert E.

    2003-04-23

    The relative alignment of components in the storage ring of the Swiss Light Source (SLS) is guaranteed by mechanical means. The magnets are rigidly fixed to 48 girders by means of alignment rails with tolerances of less than {+-}15 {micro}m. The bending magnets, supported by 3 point ball bearings, overlap adjacent girders and thus establish virtual train links between the girders, located near the bending magnet centres. Keeping the distortion of the storage ring geometry within a tolerance of {+-}100 {micro}m in order to guarantee sufficient dynamic apertures, requires continuous monitoring and correction of the girder locations. Two monitoring systems for the horizontal and the vertical direction will be installed to measure displacements of the train link between girders, which are due to ground settings and temperature effects: The hydrostatic levelling system (HLS) gives an absolute vertical reference, while the horizontal positioning system (HPS), which employs low cost linear encoders with sub-micron resolution, measures relative horizontal movements. The girder mover system based on five DC motors per girder allows a dynamic realignment of the storage ring within a working window of more than {+-}1 mm for girder translations and {+-}1 mrad for rotations. We will describe both monitoring systems (HLS and HPS) as well as the applied correction scheme based on the girder movers. We also show simulations indicating that beam based girder alignment takes care of most of the static closed orbit correction.

  12. The global return current in a pulsar's magnetosphere

    NASA Astrophysics Data System (ADS)

    Barzilay, Yudith

    2016-08-01

    An open issue in pulsar's models is the current adjustment between the gap current and the global current that depends on the global structure of the pulsar's magnetosphere. Here I propose a mechanism for the global return current in pulsars.

  13. Aligning Plasma-Arc Welding Oscillations

    NASA Technical Reports Server (NTRS)

    Norris, Jeff; Fairley, Mike

    1989-01-01

    Tool aids in alignment of oscillator probe on variable-polarity plasma-arc welding torch. Probe magnetically pulls arc from side to side as it moves along joint. Tensile strength of joint depends on alignment of weld bead and on alignment of probe. Operator installs new tool on front of torch body, levels it with built-in bubble glass, inserts probe in slot on tool, and locks probe in place. Procedure faster and easier and resulting alignment more accurate and repeatable.

  14. Newest insights from MHD numerical modeling of Pulsar Wind Nebulae

    NASA Astrophysics Data System (ADS)

    Olmi, B.; Del Zanna, L.; Amato, E.; Bucciantini, N.; Bandiera, R.

    2016-06-01

    Numerical MHD models are considered very successful in accounting for many of the observed properties of Pulsar Wind Nebulae (PWNe), especially those concerning the high energy emission morphology and the inner nebula dynamics. Although PWNe are known to be among the most powerful accelerators in nature, producing particles up to PeV energies, the mechanisms responsible of such an efficient acceleration are still a deep mystery. Indeed, these processes take place in one of the most hostile environment for particle acceleration: the relativistic and highly magnetized termination shock of the pulsar wind. The newest results from numerical simulations of the Crab Nebula, the PWN prototype, will be presented, with special attention to the problem of particle acceleration. In particular it will be shown how a multi-wavelengths analysis of the wisps properties can be used to constrain the particle acceleration mechanisms working at the Crab's termination shock, by identifying the particle acceleration site at the shock front.

  15. Alignment fixture

    DOEpatents

    Bell, Grover C.; Gibson, O. Theodore

    1980-01-01

    A part alignment fixture is provided which may be used for precise variable lateral and tilt alignment relative to the fixture base of various shaped parts. The fixture may be used as a part holder for machining or inspection of parts or alignment of parts during assembly and the like. The fixture includes a precisely machined diameter disc-shaped hub adapted to receive the part to be aligned. The hub is nested in a guide plate which is adapted to carry two oppositely disposed pairs of positioning wedges so that the wedges may be reciprocatively positioned by means of respective micrometer screws. The sloping faces of the wedges contact the hub at respective quadrants of the hub periphery. The lateral position of the hub relative to the guide plate is adjusted by positioning the wedges with the associated micrometer screws. The tilt of the part is adjusted relative to a base plate, to which the guide plate is pivotally connected by means of a holding plate. Two pairs of oppositely disposed wedges are mounted for reciprocative lateral positioning by means of separate micrometer screws between flanges of the guide plate and the base plate. Once the wedges are positioned to achieve the proper tilt of the part or hub on which the part is mounted relative to the base plate, the fixture may be bolted to a machining, inspection, or assembly device.

  16. Curriculum Alignment.

    ERIC Educational Resources Information Center

    Crowell, Ronald; Tissot, Paula

    Curriculum alignment (CA) refers to the congruence of all the elements of a school's curriculum: curriculum goals; instructional program--what is taught and the materials used; and tests used to judge outcomes. CA can be a very powerful can be a very powerful factor in improving schools. Although further research is needed on CA, there is…

  17. Key Science with the Square Kilometer Array: Strong-field Tests of Gravity using Pulsars and Black Holes

    NASA Astrophysics Data System (ADS)

    Cordes, J. M.; Kramer, M.; Backer, D. C.; Lazio, T. J. W.; Science Working Groupthe Square Kilometer Array Team

    2005-12-01

    A Galactic census of pulsars with the SKA will discover most of the active pulsars in the Galaxy beamed toward us. The sheer number of pulsars discovered, along with the exceptional timing precision the SKA can provide, will revolutionize the field of pulsar astrophysics and will enable significant tests of theories of gravity. Census discoveries will almost certainly include pulsar-black hole binaries as well as pulsars orbiting the super-massive black hole in the Galactic center. These systems provide unique opportunties for probing the ultra-strong field limit of relativistic gravity and will complement future gravitational wave detections using LISA-like instruments. SKA measurements can be used to test the Cosmic Censorship Conjecture and the No-Hair theorem. The large number of millisecond pulsars discovered with the SKA will also provide a dense array of precision clocks on the sky that can be used as multiple arms of a cosmic gravitational wave detector, which can be used to detect and measure the stochastic cosmological gravitational wave background that is expected from a number of sources. In addition to gravitational tests, the large number of lines of sight will provide a detailed map of the Galaxy's electron density and magnetic fields and important information on the dynamics and evolutionary histories of neutron stars. The census will provide examples of nearly every possible outcome of the evolution of massive stars, including (as above) pulsar black-hole systems and sub-millisecond pulsars, if they exist. These objects will yield constraints on the equation of state of matter at super-nuclear densities. Masses of pulsars and their binary companions planets, white dwarfs, other neutron stars, and black holes will be determined to ˜ 1% for hundreds of objects. The SKA will also provide partial censuses of nearby galaxies through periodicity and giant-pulse detections, yielding important information on the intergalactic medium.

  18. Discovery of Nine Gamma-Ray Pulsars in Fermi-Lat Data Using a New Blind Search Method

    NASA Technical Reports Server (NTRS)

    Celik-Tinmaz, Ozlem; Ferrara, E. C.; Pletsch, H. J.; Allen, B.; Aulbert, C.; Fehrmann, H.; Kramer, M.; Barr, E. D.; Champion, D. J.; Eatough, R. P.; Freire, P. C. C.; Reich, W.; Lyne, A. G.; Ray, P. S.

    2011-01-01

    We report the discovery of nine previously unknown gamma-ray pulsars in a blind search of data from the Fermi Large Area Telescope (LAT). The pulsars were found with a novel hierarchical search method originally developed for detecting continuous gravitational waves from rapidly rotating neutron stars. Designed to find isolated pulsars spinning at up to kHz frequencies, the new method is computationally efficient, and incorporates several advances, including a metric-based gridding of the search parameter space (frequency, frequency derivative and sky location) and the use of photon probability weights. The nine pulsars have spin frequencies between 3 and 12 Hz, and characteristic ages ranging from 17 kyr to 3 Myr. Two of them, PSRs Jl803-2149 and J2111+4606, are young and energetic Galactic-plane pulsars (spin-down power above 6 x 10(exp 35) ergs per second and ages below 100 kyr). The seven remaining pulsars, PSRs J0106+4855, J010622+3749, Jl620-4927, Jl746-3239, J2028+3332,J2030+4415, J2139+4716, are older and less energetic; two of them are located at higher Galactic latitudes (|b| greater than 10 degrees). PSR J0106+4855 has the largest characteristic age (3 Myr) and the smallest surface magnetic field (2x 10(exp 11)G) of all LAT blind-search pulsars. PSR J2139+4716 has the lowest spin-down power (3 x l0(exp 33) erg per second) among all non-recycled gamma-ray pulsars ever found. Despite extensive multi-frequency observations, only PSR J0106+4855 has detectable pulsations in the radio band. The other eight pulsars belong to the increasing population of radio-quiet gamma-ray pulsars.

  19. The Contribution of Millisecond Pulsars to the Local Electron / Positron Spectrum

    NASA Astrophysics Data System (ADS)

    Venter, Christo; Buesching, Ingo; Harding, Alice; Kopp, Andreas; Gonthier, Peter

    The high energies of gamma-ray photons (as well as the presence of lower-energy photons) coupled with the intense magnetic fields characterizing younger pulsars enable formation of electron-positron pair cascades which fills the pulsar magnetosphere with plasma and also feeds an outflowing particle wind that may create a surrounding pulsar wind nebula (PWN). Although this scenario was originally thought to be unique to the younger pulsar population, Fermi LAT demonstrated that the light curves of millisecond pulsars (MSPs) are generally very similar to those of younger pulsars, requiring copious pair production even for this older class with much lower surface magnetic fields and spin-down power. These pair cascades may thus be a primary source of Galactic electrons and positrons, and may present an astrophysical explanation for the observed enhancement in positron flux in the high-energy band. We investigate Galactic MSPs contribution to the flux of local cosmic-ray electrons and positrons. We use a population synthesis code to predict the source properties (number, position, and power) of the present-day Galactic MSPs, taking into account the latest Fermi observations to calibrate the model output. Next, we simulate pair cascade spectra from these MSPs using a model that invokes an offset-dipole magnetic field, as this increases the pair production rate relative to a standard dipole field geometry. The model source pair spectra may extend to several TeV, depending on pulsar properties, neutron star equation of state, and magnetic polar cap offset. Since MSPs are not surrounded by PWNe or supernova shells, we can assume that the pairs escape from the pulsar environment without energy loss and undergo losses only in the intergalactic medium. We lastly compute the spectrum of the transported electrons and positrons at Earth, following their diffusion and energy loss through the Galaxy. We will compare our results with the observed local interstellar spectrum and

  20. Gamma-Ray Pulsar Studies With GLAST

    SciTech Connect

    Thompson, D.J.; /NASA, Goddard

    2011-11-23

    Some pulsars have their maximum observable energy output in the gamma-ray band, offering the possibility of using these high-energy photons as probes of the particle acceleration and interaction processes in pulsar magnetospheres. After an extended hiatus between satellite missions, the recently-launched AGILE mission and the upcoming Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) will allow gamma-ray tests of the theoretical models developed based on past discoveries. With its greatly improved sensitivity, better angular resolution, and larger energy reach than older instruments, GLAST LAT should detect dozens to hundreds of new gamma-ray pulsars and measure luminosities, light curves, and phase-resolved spectra with unprecedented resolution. It will also have the potential to find radio-quiet pulsars like Geminga, using blind search techniques. Cooperation with radio and X-ray pulsar astronomers is an important aspect of the LAT team's planning for pulsar studies.

  1. Relativistic spin precession in the double pulsar.

    PubMed

    Breton, Rene P; Kaspi, Victoria M; Kramer, Michael; McLaughlin, Maura A; Lyutikov, Maxim; Ransom, Scott M; Stairs, Ingrid H; Ferdman, Robert D; Camilo, Fernando; Possenti, Andrea

    2008-07-01

    The double pulsar PSR J0737-3039A/B consists of two neutron stars in a highly relativistic orbit that displays a roughly 30-second eclipse when pulsar A passes behind pulsar B. Describing this eclipse of pulsar A as due to absorption occurring in the magnetosphere of pulsar B, we successfully used a simple geometric model to characterize the observed changing eclipse morphology and to measure the relativistic precession of pulsar B's spin axis around the total orbital angular momentum. This provides a test of general relativity and alternative theories of gravity in the strong-field regime. Our measured relativistic spin precession rate of 4.77 degrees (-0 degrees .65)(+0 degrees .66) per year (68% confidence level) is consistent with that predicted by general relativity within an uncertainty of 13%.

  2. Relativistic spin precession in the double pulsar.

    PubMed

    Breton, Rene P; Kaspi, Victoria M; Kramer, Michael; McLaughlin, Maura A; Lyutikov, Maxim; Ransom, Scott M; Stairs, Ingrid H; Ferdman, Robert D; Camilo, Fernando; Possenti, Andrea

    2008-07-01

    The double pulsar PSR J0737-3039A/B consists of two neutron stars in a highly relativistic orbit that displays a roughly 30-second eclipse when pulsar A passes behind pulsar B. Describing this eclipse of pulsar A as due to absorption occurring in the magnetosphere of pulsar B, we successfully used a simple geometric model to characterize the observed changing eclipse morphology and to measure the relativistic precession of pulsar B's spin axis around the total orbital angular momentum. This provides a test of general relativity and alternative theories of gravity in the strong-field regime. Our measured relativistic spin precession rate of 4.77 degrees (-0 degrees .65)(+0 degrees .66) per year (68% confidence level) is consistent with that predicted by general relativity within an uncertainty of 13%. PMID:18599782

  3. Gamma-Ray Pulsar Studies with GLAST

    SciTech Connect

    Thompson, D. J.

    2008-02-27

    Some pulsars have their maximum observable energy output in the gamma-ray band, offering the possibility of using these high-energy photons as probes of the particle acceleration and interaction processes in pulsar magnetospheres. After an extended hiatus between satellite missions, the recently-launched AGILE mission and the upcoming Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) will allow gamma-ray tests of the theoretical models developed based on past discoveries. With its greatly improved sensitivity, better angular resolution, and larger energy reach than older instruments, GLAST LAT should detect dozens to hundreds of new gamma-ray pulsars and measure luminosities, light curves, and phase-resolved spectra with unprecedented resolution. It will also have the potential to find radio-quiet pulsars like Geminga, using blind search techniques. Cooperation with radio and X-ray pulsar astronomers is an important aspect of the LAT team's planning for pulsar studies.

  4. Construction of CuS Nanoflakes Vertically Aligned on Magnetically Decorated Graphene and Their Enhanced Microwave Absorption Properties.

    PubMed

    Liu, Panbo; Huang, Ying; Yan, Jing; Yang, Yiwen; Zhao, Yang

    2016-03-01

    Hybrid nanocomposites with enhanced microwave absorption properties have been designed by growing CuS nanoflakes on magnetically decorated graphene, and the effect of special nanostructures on microwave absorption properties has been investigated. The structure of the nanocomposites was characterized by Fourier transform infrared spectra (FTIR), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), N2 adsorption-desorption, and vibrating sample magnetometer (VSM). The influence of cetyltrimethylammonium bromide (CTAB) on the morphology of CuS nanoflakes was also investigated. A possible formation process of the nanocomposites and the mechanism of microwave absorption were explained in detail. As an absorber, the nanocomposites with a filler loading of 20 wt % exhibited enhanced microwave absorption properties due to the special nanostructures, extra void space, and synergistic effect. The maximum reflection loss can reach -54.5 dB at 11.4 GHz, and the absorption bandwidths exceeding -10 dB are 4.5 GHz with a thickness of 2.5 mm, which can be adjusted by the thickness. The results indicate that the hybrid nanocomposites with enhanced microwave absorption properties and lightweight have a promising future in decreasing electromagnetic wave irradiation.

  5. Neutrino trigger of the magnetorotational mechanism of a natal-pulsar kick

    SciTech Connect

    Kuznetsov, A. V. Mikheev, N. V.

    2013-10-15

    A mechanism generating a natal-neutron-star kick and involving only standard neutrinos is discussed. In this mechanism, the neutrino effect on the plasma of the supernova-core envelope in a magnetorotational explosion accompanied by the generation of a strong toroidal magnetic field leads to a redistribution of the magnetic field B in the 'upper' and 'lower' hemispheres of the supernova-core envelope. The emerging asymmetry of the magnetic-field pressure may generate a natal-pulsar kick.

  6. Neutrino-Triggered Asymmetric Magnetorotational Pulsar Natal Kick Cherry-Stone Shooting" Mechanism)

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. V.; Mikheev, N. V.

    2013-11-01

    The sterile neutrino mechanisms for natal neutron stars kicks are re-analyzed. It is shown that the magnetic field strengths needed for a kick were underestimated essentially. Another mechanism with standard neutrinos is discussed where the outgoing neutrino flux in a supernova explosion with a strong toroidal magnetic field generation causes the field redistribution in "upper" and "lower" hemispheres of the supernova envelope. The resulting magnetic field pressure asymmetry causes the pulsar natal kick.

  7. Relaxation of Pulsar Wind Nebula via Current-Driven Kink Instability

    NASA Astrophysics Data System (ADS)

    Mizuno, Yosuke; Lyubarsky, Yuri; Nishikawa, Ken-Ichi; Hardee, Philip E.

    We have investigated the relaxation of a hydrostatic hot plasma column containing toroidal magnetic field by the Current-Driven (CD) kink instability as a model of pulsar wind nebulae. In our simulations the CD kink instability was excited by a small initial velocity perturbation and developed turbulent structure inside the hot plasma column. We demonstrated that, as envisioned by Begelman, the hoop stress declines and the initial gas pressure excess near the axis decreases. The magnetization parameter "σ", the ratio of the magnetic energy to the thermal energy for a hot plasma, declined from an initial value of 0.3 to about 0.01 when the CD kink instability saturated. Our simulations demonstrated that axisymmetric models strongly overestimate the elongation of the pulsar wind nebulae. Therefore, the previous requirement for an extremely low pulsar wind magnetization can be abandoned. The observed structure of the pulsar wind nebulae do not contradict the natural assumption that the magnetic energy flux still remains a good fraction of the total energy flux after dissipation of alternating fields.

  8. Birth of millisecond pulsars in globular clusters

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Bailyn, C. D.

    1988-01-01

    It is argued here that accretion-induced collapse of white dwarfs in binaries can form millisecond pulsars directly without requiring a precursor low-mass X-ray binary stage. Ablation of the precollapse binary companion by the millisecond pulsar's radiation field, a process invoked to explain some of the characteristics of the recently discovered eclipsing millisecond pulsar, can then yield isolated neutron stars witout requiring an additional stellar encounter.

  9. High-sensitivity observations of 28 pulsars

    NASA Technical Reports Server (NTRS)

    Weisberg, J. M.; Armstrong, B. K.; Backus, P. R.; Cordes, J. M.; Boriakoff, V.

    1986-01-01

    Average 430-MHz pulse profiles and, where possible, modulation indices and pulse-nulling fractions are computed for 28 pulsars. Morphological classifications are determined for most of the pulsars. It is found that core emission components tend to have lower modulation indices than conal components, and that pulsars having only a core component never exhibit pulse pulling. PSR 1612 + 07 is shown to undergo mode changes.

  10. Self-modulational formation of pulsar microstructures

    NASA Technical Reports Server (NTRS)

    Chian, A. C.-L.; Kennel, C. F.

    1987-01-01

    A nonlinear plasma theory for self modulation of pulsar radio pulses is discussed. A nonlinear Schroedinger equation is derived for strong electromagnetic waves propagating in an electron positron plasma. The nonlinearities arising from wave intensity induced particle mass variation may excite the modulational instability of circularly and linearly polarized pulsar radiation. The resulting wave envelopes can take the form of periodic wave trains or solitons. These nonlinear stationary waveforms may account for the formation of pulsar microstructures.

  11. Studies of Westward Electrojets and Field-Aligned Currents in the Magnetotail During Substorms: Implications for Magnetic Field Models

    NASA Technical Reports Server (NTRS)

    Spence, Harlan E.

    1996-01-01

    This section outlines those tasks undertaken in the final year that contribute integrally to the overarching project goals. Fast, during the final year, it is important to note that the project benefited greatly with the addition of a Boston University graduate student, Ms. Karen Hirsch. Jointly, we made substantial progress on the development of and improvements to magnetotail magnetic field and plasma models. The ultimate aim of this specific task was to assess critically the utility of such models for mapping low-altitude phenomena into the magnetotail (and vice-versa). The bulk of this effort centered around the finite-width- magnetotail convection model developed by and described by Spence and Kivelson (J. Geophys. Res., 98, 15,487, 1993). This analytic, theoretical model specifies the bulk plasma characteristics of the magnetotail plasma sheet (number density, temperature, pressure) across the full width of the tail from the inner edge of the plasma sheet to lunar distances. Model outputs are specified by boundary conditions of the source particle populations as well as the magnetic and electric field configuration. During the reporting period, we modified this code such that it can be interfaced with the auroral particle precipitation model developed by Dr. Terry Onsager. Together, our models provide a simple analytic specification of the equatorial distribution of fields and plasma along with their low-altitude consequences. Specifically, we have built a simple, yet powerful tool which allows us to indirectly 'map' auroral precipitation signatures (VDIS, inverted-V's, etc.) measured by polar orbiting spacecraft in the ionosphere, to the magnetospheric equatorial plane. The combined models allow us to associate latitudinal gradients measured in the ion energy fluxes at low-altitudes with the large-scale pressure gradients in the equatorial plane. Given this global, quasi-static association, we can then make fairly strong statements regarding the location of

  12. ALIGNING JIG

    DOEpatents

    Culver, J.S.; Tunnell, W.C.

    1958-08-01

    A jig or device is described for setting or aligning an opening in one member relative to another member or structure, with a predetermined offset, or it may be used for measuring the amount of offset with which the parts have previously been sct. This jig comprises two blocks rabbeted to each other, with means for securing thc upper block to the lower block. The upper block has fingers for contacting one of the members to be a1igmed, the lower block is designed to ride in grooves within the reference member, and calibration marks are provided to determine the amount of offset. This jig is specially designed to align the collimating slits of a mass spectrometer.

  13. Properties of young pulsar wind nebulae: TeV detectability and pulsar properties

    NASA Astrophysics Data System (ADS)

    Tanaka, Shuta J.; Takahara, Fumio

    2013-03-01

    Among dozens of young pulsar wind nebulae (PWNe), some have been detected in TeV γ-rays (TeV PWNe), while others have not (non-TeV PWNe). The TeV emission detectability is not correlated with either the spin-down power or the characteristic age of the central pulsars and it is an open question as to what determines the detectability. To study this problem, we investigate the spectral evolution of five young non-TeV PWNe: 3C 58, G310.6-1.6, G292.0+1.8, G11.2-0.3 and SNR B0540-69.3. We use a spectral evolution model that was developed in our previous works to be applied to young TeV PWNe. The TeV γ-ray flux upper limits of non-TeV PWNe give upper or lower limits on parameters such as the age of the PWN and the fraction of spin-down power going into magnetic energy injection (the fraction parameter). Combined with other independent observational and theoretical studies, we can guess a plausible value of the parameters for each object. For 3C 58, we prefer parameters with an age of 2.5 kyr and fraction parameter of 3.0 × 10-3, although the spectral modelling alone does not rule out a lower age and a higher fraction parameter. The fraction parameter of 3.0 × 10-3 is also consistent for other non-TeV PWNe and thus the value is regarded as common to young PWNe, including TeV PWNe. Moreover, we find that the intrinsic properties of the central pulsars are similar: 1048-50 erg for the initial rotational energy and 1042-44 erg for the magnetic energy (2 × 1012-3 × 1013 G for the dipole magnetic field strength at the surface). The TeV detectability is correlated with the total injected energy and the energy density of the interstellar radiation field around PWNe. Except for the case of G292.0+1.8, broken power-law injection of the particles reproduces the broad-band emission from non-TeV PWNe well.

  14. GLAST Observations of Pulsars and their Environments

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2006-01-01

    Pulsars and pulsar wind nebulae seen at gamma-ray energies offer insight into particle acceleration to very high energies. Pulsed emission provides information about the geometry and interaction processes in the magnetospheres of these rotating neutron stars, while the pulsar wind nebulae yield information high-energy particles interacting with their surroundings. During the next decade, a number of new and expanded gamma-ray facilities will become available for pulsar studies. In particular, the GLAST Large Area Telescope, a successor to EGRET on the Compton Observatory, will provide an excellent complement to H.E.S.S. for the study of the highest-energy emissions powered by neutron stars.

  15. Image alignment

    SciTech Connect

    Dowell, Larry Jonathan

    2014-04-22

    Disclosed is a method and device for aligning at least two digital images. An embodiment may use frequency-domain transforms of small tiles created from each image to identify substantially similar, "distinguishing" features within each of the images, and then align the images together based on the location of the distinguishing features. To accomplish this, an embodiment may create equal sized tile sub-images for each image. A "key" for each tile may be created by performing a frequency-domain transform calculation on each tile. A information-distance difference between each possible pair of tiles on each image may be calculated to identify distinguishing features. From analysis of the information-distance differences of the pairs of tiles, a subset of tiles with high discrimination metrics in relation to other tiles may be located for each image. The subset of distinguishing tiles for each image may then be compared to locate tiles with substantially similar keys and/or information-distance metrics to other tiles of other images. Once similar tiles are located for each image, the images may be aligned in relation to the identified similar tiles.

  16. Models for X-Ray Emission from Isolated Pulsars

    NASA Technical Reports Server (NTRS)

    Wang, F. Y.-H.; Ruderman, M.; Halpern, Jules P.; Zhu, T.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    A model is proposed for the observed combination of power-law and thermal X-rays from rotationally powered pulsars. For gamma-ray pulsars with accelerators very many stellar radii above the neutron star surface, 100 MeV curvature gamma-rays from e(-) or e(+) flowing starward out of such accelerators are converted to e1 pairs on closed field lines all around the star. These pairs strongly affect X-ray emission from near the star in two ways. (1) The pairs are a source of synchrotron emission immediately following their creation in regions where B approx. 10(exp 10) G. This emission, in the photon energy range 0.1 keV less than E(sub X) less than 5 MeV, has a power-law spectrum with energy index 0.5 and X-ray luminosity that depends on the back-flow current, and is typically approx. 10(exp 33) ergs/ s. (2) The pairs ultimately a cyclotron resonance "blanket" surrounding the star except for two holes along the open field line bundles which pass through it. In such a blanket the gravitational pull on e(+,-) pairs toward the star is balanced by the hugely amplified push of outflowing surface emitted X-rays wherever cyclotron resonance occurs. Because of it the neutron star is surrounded by a leaky "hohlraum" of hot blackbody radiation with two small holes, which prevents direct X-ray observation of a heated polar cap of a gamma-ray pulsar. Weakly spin modulated radiation from the blanket together with more strongly spin-modulated radiation from the holes through it would then dominate observed low energy (0.1-10 keV) emission. For non-y-ray pulsars, in which no such accelerators with their accompanying extreme relativistic back-flow toward the star are expected, optically thick e1 resonance blankets should not form (except in special cases very close to the open field line bundle). From such pulsars blackbody radiation from both the warm stellar surface and the heated polar caps should be directly observable. In these pulsars, details of the surface magnetic field

  17. The pulsar planet production process

    NASA Technical Reports Server (NTRS)

    Phinney, E. S.; Hansen, B. M. S.

    1993-01-01

    Most plausible scenarios for the formation of planets around pulsars end with a disk of gas around the pulsar. The supplicant author then points to the solar system to bolster faith in the miraculous transfiguration of gas into planets. We here investigate this process of transfiguration. We derive analytic sequences of quasi-static disks which give good approximations to exact solutions of the disk diffusion equation with realistic opacity tables. These allow quick and efficient surveys of parameter space. We discuss the outward transfer of mass in accretion disks and the resulting timescale constraints, the effects of illumination by the central source on the disk and dust within it, and the effects of the widely different elemental compositions of the disks in the various scenarios, and their extensions to globular clusters. We point out where significant uncertainties exist in the appropriate grain opacities, and in the effect of illumination and winds from the neutron star.

  18. Gamma-Ray Pulsar Revolution

    NASA Astrophysics Data System (ADS)

    Caraveo, Patrizia A.

    2014-08-01

    Isolated neutron stars (INSs) were the first sources identified in the field of high-energy gamma-ray astronomy. In the 1970s, only two sources had been identified, the Crab and Vela pulsars. However, although few in number, these objects were crucial in establishing the very concept of a gamma-ray source. Moreover, they opened up significant discovery space in both the theoretical and phenomenological fronts. The need to explain the copious gamma-ray emission of these pulsars led to breakthrough developments in understanding the structure and physics of neutron star (NS) magnetospheres. In parallel, the 20-year-long chase to understand the nature of Geminga unveiled the existence of a radio-quiet, gamma-ray-emitting INS, adding a new dimension to the INS family. We are living through an extraordinary time of discovery. The current generation of gamma-ray detectors has vastly increased the population of known gamma-ray-emitting NSs. The 100 mark was crossed in 2011, and we are now over 150. The gamma-ray-emitting NS population exhibits roughly equal numbers of radio-loud and radio-quiet young INSs, plus an astonishing, and unexpected, group of isolated and binary millisecond pulsars (MSPs). The number of MSPs is growing so rapidly that they are on their way to becoming the most numerous members of the family of gamma-ray-emitting NSs. Even as these findings have set the stage for a revolution in our understanding of gamma-ray-emitting NSs, long-term monitoring of the gamma-ray sky has revealed evidence of flux variability in the Crab Nebula as well as in the pulsed emission from PSR J2021+4026, challenging a four-decades-old, constant-emission paradigm. Now we know that both pulsars and their nebulae can, indeed, display variable emission.

  19. Electrodynamics of Axisymmetric Pulsar Magnetosphere with Electron-Positron Discharge: A Numerical Experiment

    NASA Astrophysics Data System (ADS)

    Chen, Alexander Y.; Beloborodov, Andrei M.

    2014-11-01

    We present the first self-consistent global simulations of pulsar magnetospheres with operating e ± discharge. We focus on the simple configuration of an aligned or anti-aligned rotator. The star is spun up from a zero (vacuum) state to a high angular velocity, and we follow the coupled evolution of its external electromagnetic field and plasma particles using the "particle-in-cell" method. A plasma magnetosphere begins to form through the extraction of particles from the star; these particles are accelerated by the rotation-induced electric field, producing curvature radiation and igniting e ± discharge. We follow the system evolution for several revolution periods, longer than required to reach a quasi-steady state. Our numerical experiment puts to test previous ideas for the plasma flow and gaps in the pulsar magnetosphere. We first consider rotators capable of producing pairs out to the light cylinder through photon-photon collisions. We find that their magnetospheres are similar to the previously obtained force-free solutions with a Y-shaped current sheet. The magnetosphere continually ejects e ± pairs and ions. Pair creation is sustained by a strong electric field along the current sheet. We observe powerful curvature and synchrotron emission from the current sheet, consistent with Fermi observations of gamma-ray pulsars. We then study pulsars that can only create pairs in the strong-field region near the neutron star, well inside the light cylinder. We find that both aligned and anti-aligned rotators relax to the "dead" state with suppressed pair creation and electric currents, regardless of the discharge voltage.

  20. ELECTRODYNAMICS OF AXISYMMETRIC PULSAR MAGNETOSPHERE WITH ELECTRON-POSITRON DISCHARGE: A NUMERICAL EXPERIMENT

    SciTech Connect

    Chen, Alexander Y.; Beloborodov, Andrei M.

    2014-11-01

    We present the first self-consistent global simulations of pulsar magnetospheres with operating e {sup ±} discharge. We focus on the simple configuration of an aligned or anti-aligned rotator. The star is spun up from a zero (vacuum) state to a high angular velocity, and we follow the coupled evolution of its external electromagnetic field and plasma particles using the ''particle-in-cell'' method. A plasma magnetosphere begins to form through the extraction of particles from the star; these particles are accelerated by the rotation-induced electric field, producing curvature radiation and igniting e {sup ±} discharge. We follow the system evolution for several revolution periods, longer than required to reach a quasi-steady state. Our numerical experiment puts to test previous ideas for the plasma flow and gaps in the pulsar magnetosphere. We first consider rotators capable of producing pairs out to the light cylinder through photon-photon collisions. We find that their magnetospheres are similar to the previously obtained force-free solutions with a Y-shaped current sheet. The magnetosphere continually ejects e {sup ±} pairs and ions. Pair creation is sustained by a strong electric field along the current sheet. We observe powerful curvature and synchrotron emission from the current sheet, consistent with Fermi observations of gamma-ray pulsars. We then study pulsars that can only create pairs in the strong-field region near the neutron star, well inside the light cylinder. We find that both aligned and anti-aligned rotators relax to the ''dead'' state with suppressed pair creation and electric currents, regardless of the discharge voltage.